
M A N N I N G

Benjamin J. Evans
Martijn Verburg

FOREWORD BY Dr. Heinz Kabutz

Vital techniques of Java 7 and polyglot programming

The

RULES OF THE JAVA MEMORY MODEL

Example of Synchronizes-With

JMM has the following rules:

■ An unlock operation on a monitor Synchronizes-With later lock operations
■ A write to a volatile variable Synchronizes-With later reads of the variable
■ If an action A Synchronizes-With action B, then A Happens-Before B
■ If A comes before B in program order within a thread, then A Happens-Before B

Read more in chapter 4.

The Well-Grounded Java Developer

The Well-Grounded
Java Developer

VITAL TECHNIQUES OF JAVA 7 AND

POLYGLOT PROGRAMMING

BENJAMIN J. EVANS
MARTIJN VERBURG

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964

Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Renae Gregoire, Karen G. Miller

20 Baldwin Road Copyeditor: Andy Carroll

PO Box 261 Proofreader: Elizabeth Martin

Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617290060

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

www.manning.com

v

brief contents
PART 1 DEVELOPING WITH JAVA 7 ...1

1 ■ Introducing Java 7 3

2 ■ New I/O 20

PART 2 VITAL TECHNIQUES ...51
3 ■ Dependency Injection 53

4 ■ Modern concurrency 76

5 ■ Class files and bytecode 119

6 ■ Understanding performance tuning 150

PART 3 POLYGLOT PROGRAMMING ON THE JVM....................191
7 ■ Alternative JVM languages 193

8 ■ Groovy: Java’s dynamic friend 213

9 ■ Scala: powerful and concise 241

10 ■ Clojure: safer programming 279

PART 4 CRAFTING THE POLYGLOT PROJECT311
11 ■ Test-driven development 313

12 ■ Build and continuous integration 342

13 ■ Rapid web development 380

14 ■ Staying well-grounded 410

vii

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiv
about the authors xxix
about the cover illustration xxx

PART 1 DEVELOPING WITH JAVA 7..................................1

1 Introducing Java 7 3
1.1 The language and the platform 4

1.2 Small is beautiful—Project Coin 5

1.3 The changes in Project Coin 9

Strings in switch 9 ■ Enhanced syntax for
numeric literals 10 ■ Improved exception handling 12
Try-with-resources (TWR) 13 ■ Diamond syntax 16
Simplified varargs method invocation 17

1.4 Summary 19

2 New I/O 20
2.1 Java I/O—a history 22

Java 1.0 to 1.3 22 ■ Java 1.4 and NIO 23
Introducing NIO.2 24

CONTENTSviii

2.2 Path—a foundation of file-based I/O 24

Creating a Path 27 ■ Retrieving information from a Path 27
Removing redundancies 28 ■ Converting Paths 29
NIO.2 Path and Java’s existing File class 30

2.3 Dealing with directories and directory trees 30

Finding files in a directory 30 ■ Walking the directory tree 31

2.4 Filesystem I/O with NIO.2 33

Creating and deleting files 34 ■ Copying and moving files 35
File attributes 36 ■ Reading and writing data quickly 40
File change notification 41 ■ SeekableByteChannel 42

2.5 Asynchronous I/O operations 43

Future style 44 ■ Callback style 46

2.6 Tidying up Socket-Channel functionality 47

NetworkChannel 48 ■ MulticastChannel 49

2.7 Summary 50

PART 2 VITAL TECHNIQUES ...51

3 Dependency Injection 53

3.1 Inject some knowledge—understanding IoC and DI 54

Inversion of Control 54 ■ Dependency Injection 55
Transitioning to DI 56

3.2 Standardized DI in Java 61

The @Inject annotation 62 ■ The @Qualifier annotation 64
The @Named annotation 65 ■ The @Scope annotation 65
The @Singleton annotation 66 ■ The Provider<T> interface 66

3.3 Guice 3—the reference implementation for DI in Java 67

Getting started with Guice 68 ■ Sailor’s knots—the various
bindings of Guice 70 ■ Scoping your injected objects
with Guice 73

3.4 Summary 75

4 Modern concurrency 76

4.1 Concurrency theory—a primer 77

Explaining Java’s threading model 77 ■ Design concepts 79
How and why do the forces conflict? 80 ■ Sources of overhead 81
A transaction processor example 81

CONTENTS ix

4.2 Block-structured concurrency (pre-Java 5) 83

Synchronization and locks 83 ■ The state model for a thread 84
Fully synchronized objects 85 ■ Deadlocks 86
Why synchronized? 88 ■ The volatile keyword 89
Immutability 90

4.3 Building blocks for modern concurrent applications 91

Atomic classes—java.util.concurrent.atomic 92
Locks—java.util.concurrent.locks 93 ■ CountDownLatch 96
ConcurrentHashMap 97 ■ CopyOnWriteArrayList 99
Queues 102

4.4 Controlling execution 108

Modeling tasks 108 ■ ScheduledThreadPoolExecutor 110

4.5 The fork/join framework 111

A simple fork/join example 112 ■ ForkJoinTask and
work stealing 114 ■ Parallelizing problems 115

4.6 The Java Memory Model (JMM) 116

4.7 Summary 118

5 Class files and bytecode 119

5.1 Classloading and class objects 120

Overview—loading and linking 120 ■ Verification 121
Class objects 122 ■ Classloaders 122 ■ Example—classloaders
in Dependency Injection 124

5.2 Using method handles 125

MethodHandle 126 ■ MethodType 127 ■ Looking up
method handles 127 ■ Example—reflection vs. proxies
vs. MethodHandles 128 ■ Why choose MethodHandles? 131

5.3 Examining class files 132

Introducing javap 132 ■ Internal form for
method signatures 132 ■ The constant pool 134

5.4 Bytecode 136

Example—disassembling a class 137 ■ The runtime
environment 138 ■ Introduction to opcodes 140
Load and store opcodes 141 ■ Arithmetic opcodes 141
Execution control opcodes 142 ■ Invocation opcodes 143
Platform operation opcodes 143 ■ Shortcut opcode forms 144
Example—string concatenation 144

CONTENTSx

5.5 Invokedynamic 146

How invokedynamic works 146 ■ Example—disassembling
an invokedynamic call 147

5.6 Summary 149

6 Understanding performance tuning 150

6.1 Performance terminology—some basic definitions 152

Latency 152 ■ Throughput 152 ■ Utilization 153
Efficiency 153 ■ Capacity 153 ■ Scalability 154
Degradation 154

6.2 A pragmatic approach to performance analysis 154

Know what you’re measuring 155 ■ Know how
to take measurements 156 ■ Know what your performance
goals are 157 ■ Know when to stop optimizing 157
Know the cost of higher performance 158 ■ Know the
danger of premature optimization 158

6.3 What went wrong? Why we have to care 159

Moore’s Law—historic and future performance trends 160
Understanding the memory latency hierarchy 161 ■ Why is
Java performance tuning hard? 162

6.4 A question of time—from the hardware up 163

Hardware clocks 163 ■ The trouble with nanoTime() 164
The role of time in performance tuning 166 ■ A case study—
understanding cache misses 167

6.5 Garbage collection 169

Basics 170 ■ Mark and sweep 170 ■ jmap 172
Useful JVM parameters 176 ■ Reading the GC logs 177
Visualizing memory usage with VisualVM 178
Escape analysis 181 ■ Concurrent Mark-Sweep 182
G1—Java’s new collector 183

6.6 JIT compilation with HotSpot 184

Introduction to HotSpot 186 ■ Inlining methods 187
Dynamic compilation and monomorphic calls 188
Reading the compilation logs 188

6.7 Summary 190

CONTENTS xi

PART 3 POLYGLOT PROGRAMMING ON THE JVM191

7 Alternative JVM languages 193

7.1 Java too clumsy? Them’s fighting words! 194

The reconciliation system 194 ■ Conceptual basics of
functional programming 196 ■ Map and filter idioms 197

7.2 Language zoology 198

Interpreted vs. compiled languages 199 ■ Dynamic vs.
static typing 199 ■ Imperative vs. functional languages 200
Reimplementation vs. original 201

7.3 Polyglot programming on the JVM 202

Why use a non-Java language? 203
Up-and-coming languages 204

7.4 How to choose a non-Java language for your project 205

Is the project area low-risk? 205 ■ Does the language interoperate
well with Java? 206 ■ Is there good tooling and test support for
the language? 207 ■ How hard is the language to learn? 207
Are there lots of developers using this language? 208

7.5 How the JVM supports alternative languages 208

Runtime environments for non-Java languages 209
Compiler fictions 209

7.6 Summary 211

8 Groovy: Java’s dynamic friend 213

8.1 Getting started with Groovy 215

Compiling and running 216 ■ Groovy console 217

8.2 Groovy 101—syntax and semantics 217

Default imports 219 ■ Numeric handling 219
Variables, dynamic versus static types, and scoping 220
Syntax for lists and maps 222

8.3 Differences from Java—traps for new players 223

Optional semicolons and return statements 224
Optional parentheses for method parameters 224
Access modifiers 225 ■ Exception handling 225
Equality in Groovy 225 ■ Inner classes 226

8.4 Groovy features not (yet) in Java 226

GroovyBeans 227 ■ The safe-dereference operator 228
The Elvis operator 228 ■ Enhanced strings 229

CONTENTSxii

Function literals 230 ■ First-class support for
manipulating collections 231 ■ First-class support for
regular expressions 233 ■ Simple XML handling 234

8.5 Interoperating between Groovy and Java 236

Calling Java from Groovy 236 ■ Calling Groovy from Java 237

8.6 Summary 240

9 Scala: powerful and concise 241

9.1 A quick tour of Scala 242

Scala as a concise language 243 ■ Match expressions 245
Case classes 247 ■ Actors 248

9.2 Is Scala right for my project? 249

Comparing Scala and Java 250 ■ When and how to start
using Scala 250 ■ Signs that Scala may not be right for
your current project 251

9.3 Making code beautiful again with Scala 251

Using the compiler and the REPL 252 ■ Type inference 252
Methods 254 ■ Imports 255 ■ Loops and control
structures 256 ■ Functional programming in Scala 257

9.4 Scala’s object model—similar but different 258

Everything is an object 258 ■ Constructors 259 ■ Traits 260
Singleton and companion objects 262 ■ Case classes and
match expressions 264 ■ A cautionary tale 266

9.5 Data structures and collections 267

List 268 ■ Map 271 ■ Generic types 272

9.6 Introduction to actors 275

All the code’s a stage 276 ■ Communicating with actors
via the mailbox 276

9.7 Summary 278

10 Clojure: safer programming 279

10.1 Introducing Clojure 280

Hello World in Clojure 281 ■ Getting started with
the REPL 281 ■ Making a mistake 282
Learning to love the brackets 283

10.2 Looking for Clojure—syntax and semantics 284

Special forms bootcamp 284 ■ Lists, vectors, maps, and sets 285
Arithmetic, equality, and other operations 287

CONTENTS xiii

10.3 Working with functions and loops in Clojure 288

Some simple Clojure functions 289 ■ Loops in Clojure 291
Reader macros and dispatch 292 ■ Functional programming
and closures 293

10.4 Introducing Clojure sequences 295

Lazy sequences 297 ■ Sequences and
variable-arity functions 298

10.5 Interoperating between Clojure and Java 299

Calling Java from Clojure 299 ■ The Java type
of Clojure values 300 ■ Using Clojure proxies 301
Exploratory programming with the REPL 302
Using Clojure from Java 302

10.6 Concurrent Clojure 303

Futures and pcalls 304 ■ Refs 306 ■ Agents 309

10.7 Summary 310

PART 4 CRAFTING THE POLYGLOT PROJECT311

11 Test-driven development 313

11.1 TDD in a nutshell 315

A TDD example with a single use case 316 ■ A TDD example
with multiple use cases 320 ■ Further thinking on the
red-green-refactor lifecycle 322 ■ JUnit 324

11.2 Test doubles 325

Dummy object 326 ■ Stub object 328 ■ Fake object 331
Mock object 336

11.3 Introducing ScalaTest 338

11.4 Summary 340

12 Build and continuous integration 342

12.1 Getting started with Maven 3 345

12.2 Maven 3—a quick-start project 346

12.3 Maven 3—the Java7developer build 348

The POM 348 ■ Running the examples 354

12.4 Jenkins—serving your CI needs 357

Basic configuration 359 ■ Setting up a job 360
Executing a job 364

CONTENTSxiv

12.5 Code metrics with Maven and Jenkins 365

Installing Jenkins plugins 366 ■ Making code consistent
with Checkstyle 367 ■ Setting the quality bar with FindBugs 369

12.6 Leiningen 372

Getting started with Leiningen 372 ■ Leiningen’s
architecture 373 ■ Example—Hello Lein 373
REPL-oriented TDD with Leiningen 376
Packaging and deploying with Leiningen 377

12.7 Summary 379

13 Rapid web development 380

13.1 The problem with Java-based web frameworks 381

Why Java compilation is bad for rapid web development 382
Why static typing is bad for rapid web development 383

13.2 Criteria in selecting a web framework 383

13.3 Getting started with Grails 385

13.4 Grails quick-start project 386

Domain object creation 387 ■ Test-driven development 388
Domain object persistence 390 ■ Test data creation 391
Controllers 392 ■ GSP/JSP views 393
Scaffolding and automatic UI creation 395
Rapid turnaround development 395

13.5 Further Grails exploration 396

Logging 396 ■ GORM—object-relational mapping 397
Grails plugins 398

13.6 Getting started with Compojure 399

Hello World with Compojure 399 ■ Ring and routes 401
Hiccup 402

13.7 A sample Compojure project—“Am I an Otter or Not?” 403

Setting up “Am I an Otter” 404 ■ Core functions in
“Am I an Otter” 406

13.8 Summary 409

14 Staying well-grounded 410

14.1 What to expect in Java 8 411

Lambdas (a.k.a. closures) 411
Modularization (a.k.a. Jigsaw) 413

CONTENTS xv

14.2 Polyglot programming 414

Language interoperability and metaobject protocols 415
Multilanguage modularity 416

14.3 Future concurrency trends 416

The many-core world 417 ■ Runtime-managed concurrency 417

14.4 New directions in the JVM 418

VM convergence 418 ■ Coroutines 419 ■ Tuples 421

14.5 Summary 423

appendix A Java7developer—source code installation 424

appendix B Glob pattern syntax and examples 432

appendix C Installing alternative JVM languages 434

appendix D Downloading and installing Jenkins 441

appendix E Java7developer—the Maven POM 444

index 450

xvii

foreword
“Kirk told me I could buy beer at the petrol station,” was the first sentence I heard out

of Ben Evans’ mouth. He had come to Crete for an Open Spaces Java conference. I

explained that I usually bought petrol at the petrol station, but that there was a shop

around the corner that sold beer. Ben looked disappointed. I had lived on this Greek

island for five years and had never thought of trying to buy beer at the local BP.

 I felt a bit like this while reading this book. I consider myself a Java fundi. I have

spent the past 15 years programming Java, writing hundreds of articles, speaking at

conferences, and teaching advanced Java courses. And yet, when I read Ben and

Martijn’s book, I kept coming across ideas that I hadn’t thought of. They start by

explaining the development effort of changing certain parts of the Java ecosystem.

Changing the internals of a library is relatively easy, and we might see some

improved performance for certain input. Arrays.sort() is now using TimSort,

instead of MergeSort. If you sort a partially ordered array, you might see a slight per-

formance improvement without changing your code. Changing the class file format

or adding a new VM feature requires a major effort. Ben knows. He sits on the JCP

Executive Committee. This book is also about Java 7, so you’ll learn all the new fea-

tures, such as the syntactic sugar enhancements, switching on Strings, fork/join, and

the Java NIO.2.

 Concurrency? That’s Thread and synchronized, right? If that’s all you know about

multithreading, it’s time to upgrade your skills. As the authors point out, “the area of

concurrency is undergoing a massive amount of research at present.” There are daily

discussions on the concurrency interest mailing list, and new ideas are emerging all

FOREWORDxviii

the time. This book shows you how to think about divide-and-conquer and how to

avoid some of the safety flaws.

 When I saw the chapter on classloading, I thought they had gone a bit too far. Here

were the tricks that my friends and I had used to create magical code, laid bare for all to

learn! They explain how javap works, a little tool that can give you insight into the byte-

code generated by the Java compiler. They also cover the new invokedynamic and

explain how it differs from plain reflection.

 One chapter that I particularly like is “Understanding performance tuning.” This

is the first book since Jack Shirazi’s Java Performance Tuning that has captured the

essence of how to make your system faster. I can summarize the chapter in three

words: “Measure, don’t guess.” This is the essence of good performance tuning. It’s

impossible for a human to guess which code is slow. Instead of offering a single coding

trick, this chapter explains performance from a hardware perspective. It also shows

you how to measure the performance. An interesting little benchmark tool is their

CacheTester class, which shows the cost of cache misses.

 Part 3 of the book explains polyglot programming on the JVM. Java is so much more

than a Java programming language. It’s also a platform on which other languages can run.

We’ve seen an explosion of different types of languages. Some are functional, some are

declarative. Some are ports (Jython and JRuby), allowing other languages to run on the

JVM. Languages can be dynamic (Groovy) or stable (Java and Scala). There are many

reasons to use a non-Java language on the JVM. If you’re starting a new project, look at

what’s available before deciding. You might save yourself a lot of boilerplate code.

 Ben and Martijn show us three alternative languages: Groovy, Scala, and Clojure. In

my opinion, these are the most viable languages at the moment. The authors describe

the differences between these languages, how they compare to Java, and their special

features. The chapter on each language is just enough to help you figure out which you

should be using, without too much technical detail. Don’t expect a reference manual to

Groovy; do expect insight on which language is the right one for you.

 Next, you’ll gain insight into how to do test-driven development and continuous

integration of your system. I found it amusing that the old faithful butler Hudson was

so quickly replaced with Jenkins. In any case, these are essential tools for managing

your project, along with tools like Checkstyle and FindBugs.

 Studying this book will help you become a well-grounded Java developer. Not only

that, it will give you tips on how to stay well-grounded. Java is constantly changing. We’ll

see lambdas and modularization in the next version. New languages are being designed;

the concurrency constructs are being updated. Many of the things that you know are

true now might not be true in the future. The lesson is, don’t ever stop learning!

 The other day I drove past the petrol station where Ben wanted to buy his beer.

Like so many companies in depressed Greece, it had closed. I never did find out if

they sold beer.

DR. HEINZ KABUTZ

THE JAVA SPECIALISTS’ NEWSLETTER

http://www.manning.com/TheWell-GroundedJavadDveloper
http://www.manning.com/TheWell-GroundedJavadDveloper

xix

preface
This book started life as a set of training notes written for new graduate intake in the For-

eign Exchange IT department of Deutsche Bank. One of us (Ben), looking at the exist-

ing books on the market, found a lack of up-to-date material aimed at inexperienced

Java developers. So he resolved to write that missing book.

 With the encouragement of Deutsche’s IT management team, Ben traveled to the

Devoxx conference in Belgium to look for inspiration on additional topics. There, he

met three IBM engineers (Rob Nicholson, Zoe Slattery, and Holly Cummins), who

introduced him to the London Java Community (LJC—London’s Java User Group).

 The following Saturday was the annual Open Conference organized by the LJC—

and it was at that conference that Ben met one of the leaders of the LJC, Martijn Ver-

burg. By the end of the day—fueled by their mutual love of teaching, technical com-

munities, and beer—they’d resolved to collaborate on the project and what would

become The Well-Grounded Java Developer was born.

 In this book, we hope that the theme of software development as a social activity

rings out clearly. We believe that the technical aspects of the craft are important, but

the more subtle concerns of communication and interaction between people are at

least as important. It can be hard to explain these facets easily in a book, but that

theme is present throughout.

 Developers are sustained throughout their careers by their engagement with tech-

nology and the passion to keep learning. In this book, we hope that we’ve been able to

highlight some of the topics that will ignite that passion. It’s a sightseeing tour, rather

than an encyclopedic study, but that’s the intention—to get you started and then leave

you to follow up on those topics that capture your imagination.

http://www.manning.com/TheWell-GroundedJavaDeveloper.T
http://www.manning.com/TheWell-GroundedJavaDeveloper.T

PREFACExx

 Over the course of the project’s lifespan, the emphasis moved slightly away from

being purely a bridging guide for graduates (it still largely achieves this goal) to

becoming a guide for all Java developers wondering, “What do I need to know next?

Where’s my future heading? I want to care again!”

 We take you from the new features of Java 7 through to best practices of modern

software development and the future of the platform. Along the way, we show you

some of the highlights that have had great relevance to us on our own journey as Java

technologists. Concurrency, performance, bytecode, and classloading are the core

techniques that fascinated us the most. We also talk about new, non-Java languages on

the JVM (a.k.a. polyglot programming) because they will become more important to

many developers in the years to come.

 Above all, this is a journey that’s forward-looking, and puts you and your interests

front and center. We feel that becoming a well-grounded Java developer will help to

keep you engaged and in control of your own development and will help you learn

more about the changing world of Java and the ecosystem that surrounds it.

 We hope that the distilled experience that you’re holding in your hands is useful

and interesting to you, and that reading it is thought-provoking and fun. Writing it

certainly was!

xxi

acknowledgments
There’s a cliché about it taking a village to raise a child, and in the case of this book,

the phrase is entirely applicable. We could not have done this without our network of

friends, partners, colleagues, peers, and even the occasional adversarial relationship.

We have been exceptionally lucky in that most of our strongest critics can also be

counted among our friends.

 It’s difficult to fit the names of the many people who helped us in this endeavor.

Please visit http://www.java7developer.com and seek out the blog post announcing

the printing of this book and the extra thank-yous. Those names deserve to

be acknowledged.

 If we’ve forgotten anyone, or our bookkeeping wasn’t up to scratch, please accept

our apologies! In no particular order, we’d like to thank the following folks for mak-

ing this book possible.

THE LONDON JAVA COMMUNITY

The London Java Community (LJC) at www.meetup.com/londonjavacommunity is

where we met and has become a huge part of our lives. We’d like to acknowledge the

following people who helped review material: Peter Budo, Nick Harkin, Jodev Devassy,

Craig Silk, N. Vanderwildt, Adam J. Markham, “Rozallin,” Daniel Lemon, Frank

Appiah, P. Franc, “Sebkom” Praveen, Dinuk Weerasinghe, Tim Murray Brown, Luis

Murbina, Richard Doherty, Rashul Hussain, John Stevenson, Gemma Silvers, Kevin

Wright, Amanda Waite, Joel Gluth, Richard Paul, Colin Vipurs, Antony Stubbs,

Michael Joyce, Mark Hindess, Nuno, Jon Poulton, Adrian Smith, Ioannis Mavroukakis,

Chris Reed, Martin Skurla, Sandro Mancuso, and Arul Dhesiaseelan.

http://www.java7developer.com/
www.meetup.com/londonjavacommunity

ACKNOWLEDGMENTSxxii

 We received some detailed help with non-Java languages from James Cook, Alex

Anderson, Leonard Axelsson, Colin Howe, Bruce Durling, and Dr. Russel Winder.

They deserve special thanks.

 A special thank you also to the LJC JCP committee—Mike Barker, Trisha Gee, Jim

Gough, Richard Warburton, Simon Maple, Somay Nakhal, and David Illsley.

 Last, but not least, a thank-you to Barry Cranford, the founder of the LJC, who four

years ago started with a few brave souls and a dream. Today, the LJC has approximately

2500 members and many other tech communities have sprung from it—a true corner-

stone of the London tech scene.

WWW.CODERANCH.COM

We’d like to thank Maneesh Godbole, Ulf Ditmer, David O’Meara, Devaka Cooray, Greg

Charles, Deepak Balu, Fred Rosenberger, Jesper De Jong, Wouter Oet, David O’Meara,

Mark Spritzler, and Roel De Nijs for their detailed comments and valuable feedback.

MANNING PUBLICATIONS

Thanks to Marjan Bace at Manning for taking on two new authors with a crazy idea.

We worked with a number of people over the course of the book. Many thanks for the

hard work by Renae Gregoire, Karen G. Miller, Andy Carroll, Elizabeth Martin, Mary

Piergies, Dennis Dalinnik, Janet Vail, and no doubt others behind the scenes that

we’ve missed; we wouldn’t have made it without you!

 Thanks to Candace Gillhoolley for her marketing efforts and Christina Rudloff

and Maureen Spencer for their ongoing support.

 Thanks to John Ryan III who did a thorough final technical review of the manu-

script during production, shortly before the book went to press.

 Thanks to the following reviewers who read the manuscript at different stages of its

development and provided valuable feedback to our editors and to us: Aziz Rahman,

Bert Bates, Chad Davis, Cheryl Jerozal, Christopher Haupt, David Strong, Deepak

Vohra, Federico Tomassetti, Franco Lombardo, Jeff Schmidt, Jeremy Anderson, John

Griffin, Maciej Kreft, Patrick Steger, Paul Benedict, Rick Wagner, Robert Wenner,

Rodney Bollinger, Santosh Shanbhag, AnttiKoivisto,and Stephen Harrison.

SPECIAL THANKS

Thanks to Andy Burgess for the awesome www.java7developer.com website and to

Dragos Dogaru, our incredible intern, who tried out the code samples as we went along.

 Thanks to Matt Raible for his kind permission to reuse some material about how to

choose your web framework in chapter 13.

 Thanks to Alan Bateman, lead for Java 7’s NIO.2; his feedback was invaluable in

making this great new API available for the day-to-day Java developer.

 Jeanne Boyarsky kindly served as our most excellent technical proofer and, true to

her reputation, nothing fell past her eagle eyes. Thanks Jeanne!

 Thanks to Martin Ling for a very detailed explanation of timing hardware, which

was the primary motivation for the section in chapter 4.

 Thanks to Jason Van Zyl for his kind permission to reuse some material from

Sonatype’s Maven: The Complete Reference for chapter 12.

www.coderanch.com
www.java7developer.com

ACKNOWLEDGMENTS xxiii

 Thanks to Kirk Pepperdine for his insight and comments on chapter 6, in addition

to his friendship and his unique take on our industry.

 Thanks to Dr. Heinz M. Kabutz for his great foreword and amazing hospitality in

Crete, as well as the awesome Java Specialists’ Newsletter (www.javaspecialists.eu/).

FROM BEN EVANS

So many people contributed in different ways that there’s scarcely space to thank

them all. Special thanks to these people:

 To Bert Bates and others at Manning, for teaching me the difference between a

manuscript and a book.

 To Martijn, of course, for friendship, for keeping me writing during the tough

times, and for so much more.

 To my family, especially my grandfathers, John Hinton and John Evans, from

whom I inherited so much of myself.

 Lastly, to E-J (who is the reason otters occur so frequently in the book) and to Liz,

who were both always understanding about “one more evening” being disrupted by

writing. My love to you both.

FROM MARTIJN VERBURG

To my mum Janneke and my dad Nico, thanks for having the foresight to bring home

a Commodore 64 when my sister and I were young. Although “Jumpman”1 dominated

computer time for the family, it was the programming manual that came with it that

sparked my passion for all things tech. Dad also taught me that if you do the little

things right, the large things that they make up tend to take care of themselves, a phi-

losophy I still apply to my coding and work life today.

 To my sister Kim, thanks for writing code with me in our preteen and teenage

years! I’ll never forget when that first (slow2) star field came into being onscreen;

magic had truly happened! My brother-in-law Jos is an inspiration to us all (not just for

being a space scientist, although, how cool is that!). My super-cute niece Gweneth fea-

tures in this book; see if you can spot her!

 Ben is simply one of the most amazing technologists I’ve run across in the industry.

His level of technical ability is simply scary at times! It’s been a privilege to write this

book with him; I’ve certainly learned more about the JVM than I ever thought possi-

ble. Ben has also been a great leader for the LJC, and an entertaining cospeaker with

me at conferences (apparently we even have something of a reputation as a comedy

act now). It was good to write a book with a friend.

 Finally, to my rocking wife Kerry, from putting up with having date nights canceled

for the sake of yet another chapter to graciously delivering all of the graphics and

screenshots for the book—as always you’ve simply been amazing. Would that everyone

had the same sort of love and support I have from her.

1 A really, really cool platform game; it was hysterical watching Mum move with the joystick :-).
2 Let’s just say that performance tuning wasn’t my forte back then.

http://www.javaspecialists.eu/

xxiv

about this book
Welcome to The Well-Grounded Java Developer. This book is aimed at turning you into a

Java developer for the modern age, reigniting your passion for both the language and

platform. Along the way, you’ll discover new Java 7 features, ensure that you’re famil-

iar with essential modern software techniques (such as dependency injection, test-

driven development, and continuous integration), and start to explore the brave new

world of non-Java languages on the JVM.

 To begin, let’s consider this description of the Java language provided by James Iry

in a wonderful blog post “A Brief, Incomplete, and Mostly Wrong History of Program-

ming Languages”:

1996 – James Gosling invents Java. Java is a relatively verbose, garbage

collected, class-based, statically typed, single dispatch, object-oriented

language with single implementation inheritance and multiple interface

inheritance. Sun loudly heralds Java’s novelty.

While the point of Java’s entry is mostly to set up a gag where C# is given the same

write-up, this is not bad as descriptions of languages go. The full blog post contains a

bunch of other gems—you can find it on the web at James’ blog (http://james-iry

.blogspot.com/). It’s well worth a read in an idle moment.

 This does present a very real question. Why are we still talking about a language

that is now around 16 years old? Surely it’s stable and not much new or interesting can

be said about it?

http://james-iry.blogspot.com/
http://james-iry.blogspot.com/

ABOUT THIS BOOK xxv

 If that were the case, this would be a short book. We are still talking about it,

because one of Java’s greatest strengths has been its ability to build on a few core

design decisions, which have proved to be very successful in the marketplace:

■ Automatic management of the runtime environment (for example, garbage

collection, just-in-time compilation)

■ Simple syntax and relatively few concepts in the core language

■ Conservative approach to evolving the language

■ Add functionality and complexity in libraries

■ Broad, open ecosystem

These design decisions have kept innovation moving in the Java world—the simple

core has kept the barrier to joining the developer community low, and the broad

ecosystem has made it easy for newcomers to find pre-existing components that fit

their needs.

 These traits have kept the Java platform and language strong and vibrant—even if

the language has had a historical tendency to change slowly. This trend has continued

with Java 7. The language changes are evolutionary, not revolutionary. One major

difference with earlier versions, however, is that Java 7 is the first version explicitly

released with an eye to the next version. Java 7 contains the groundwork for major

language changes in Java 8, due to Oracle’s “Plan B” strategy for releases.

 The other big shift in recent years has been the rise of non-Java languages on the

JVM. This has led to cross-fertilization between Java and other JVM languages and

there’s now a large (and growing) number of projects running completely on the JVM

that include Java as one of the languages that they use.

 The emergence of the polyglot project, particularly involving languages such as

Groovy, Scala, and Clojure, is a major factor in the current Java ecosystem, and is the

topic of the final part of the book.

How to use this book

The material in this book is broadly designed to be read end-to-end, but we under-

stand that some readers may want to dive straight into particular topics and have

partly catered to that style of reading.

 We strongly believe in hands-on learning and so we recommend that readers try

out the sample code that comes with the book as they read through the text. The rest of

this section deals with how you can approach the book if you are more of a standalone-

chapter style of reader.

The Well-Grounded Java Developer is split into four parts:

■ Developing with Java 7

■ Vital techniques

■ Polyglot programming on the JVM

■ Crafting the polyglot project

ABOUT THIS BOOKxxvi

Part 1 contains two chapters on Java 7. The book uses Java 7 syntax and semantics

throughout, so chapter 1, “Introducing Java 7,” should be considered required reading.

Chapter 2, “New I/O,” will be of specific interest to developers who work with files,

filesystems, and network I/O.

 Part 2 contains four chapters (3-6) covering the topics of dependency injection,

modern concurrency, classfiles/byte code, and performance tuning.

 Part 3 (chapters 7-10) covers polyglot programming on the JVM. Chapter 7 should

be considered required reading as it sets the stage by discussing the categorization and

use of alternative languages on the JVM. The following three language chapters move

from a Java-like language (Groovy), through a hybrid OO-functional language (Scala),

to a fully functional one (Clojure). Those languages can be read standalone although

developers new to functional programming will probably want to read them in order.

 Part 4 (the final four chapters) introduces new material as well as builds on topics

that have been introduced earlier. Although the chapters can be read stand-alone, in

some sections we assume that you’ve read the earlier chapters and/or already have

familiarity with certain topics.

 In short, chapter 1 is required reading for the entire book. Chapter 7 can be considered as

required reading for part 3. The other chapters can be read in sequence or standalone, but

there will be sections in later chapters that assume you’ve read earlier material.

Who should read this book

This book is firmly aimed at Java developers who wants to modernize their knowledge

base in both the language and the platform. If you want to get up to speed with what

Java 7 has to offer, this is the book for you.

 If you are looking to brush up on your techniques and understanding of topics

such as dependency injection, concurrency, and test-driven development, this book

will give you a good grounding in those topics.

 This is also a book for those developers who have acknowledged the polyglot pro-

gramming trend and want to get started down that path. In particular, if you want to

learn about functional programming, then our language chapters (especially Scala

and Clojure) will be of great benefit to you.

Roadmap

In part 1 there are just two chapters. Chapter 1 introduces Java 7 with its wealth of

small but productivity-enhancing features known collectively as Project Coin. Chapter 2

takes you through the new I/O APIs including an overhaul of the filesystem support,

new asynchronous I/O capabilities, and more.

 Part 2 contains four chapters on vital techniques. Chapter 3 takes you through a

journey of how the industry arrived at dependency injection as a technique and goes

on to show a standardized solution in Java with Guice 3. Chapter 4 covers how to deal

with modern concurrency properly in Java, a topic that has once more come to the

fore as the hardware industry firmly moves to multicore processors. Chapter 5 takes

ABOUT THIS BOOK xxvii

you into the classfiles and bytecode of the JVM, demystifying its secrets and enabling you

to understand why Java works the way it does. Chapter 6 takes you through the initial

steps in performance tuning your Java applications and understanding areas such as

the garbage collector.

 Part 3 is about polyglot programming on the JVM and consists of four chapters.

Chapter 7 starts the polyglot story and gives you the context of why it’s important and

when it’s appropriate to use another language. Chapter 8 is an introduction to

Groovy, Java’s dynamic friend. Groovy highlights how a syntactically similar yet

dynamic language can provide great productivity boosts for a Java developer. Chapter 9

brings you into the hybrid functional/OO world of Scala. Scala is a language of great

power and conciseness. Chapter 10 is for the Lisp fans out there. Clojure is widely

lauded as “Lisp done right” and showcases the full power of a functional language on

the JVM.

 Part 4 takes learning from the first three parts and discusses polyglot techniques in

several software development areas. Chapter 11 visits test-driven development and

provides a methodology around dealing with mock objects as well as some practical

tips. Chapter 12 introduces two widely used tools for your build pipeline (Maven 3)

and continuous integration (Jenkins/Hudson) needs. Chapter 13 covers the topic of

rapid web development and why Java has been traditionally weak in this area, and offers

some new technologies to prototype with (Grails and Compojure). Chapter 14 wraps up

and takes a look to the future, including the functional support arriving in Java 8.

Code conventions and downloads

The initial download and installation you’ll need is Java 7. Simply follow the download

and installation instructions for the binary you need for the OS you use. You can find

binaries and instructions online at Oracle’s website for Java SE: www.oracle.com/

technetwork/java/javase/downloads/index.html.

 For everything else, head to appendix A where the instructions for the installation

and running of the source code can be found.

 All source code in the book is in a fixed-width font like this, which sets it off

from the surrounding text. In many listings, the code is annotated to point out the key

concepts, and numbered bullets are sometimes used in the text to provide additional

information about the code. We have tried to format the code so that it fits within the

available page space in the book by adding line breaks and using indentation care-

fully. Sometimes, however, very long lines include line continuation markers.

 Source code for all the working examples is available from www.manning.com/

TheWell-GroundedJavaDeveloper. Code examples appear throughout the book.

Longer listings appear under clear listing headers; shorter listings appear between

lines of text.

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html
www.manning.com/TheWell-GroundedJavadDeveloper
www.manning.com/TheWell-GroundedJavadDeveloper

ABOUT THIS BOOKxxviii

Software requirements

Java 7 runs on just about every modern platform there is today. As long as you are run-

ning on one of the following operating systems you’ll be able to run the source examples:

■ MS Windows XP and above

■ A recent version of *nix

■ Mac OS X 10.6 and above

Most of you will want to try out the code samples in an IDE. Java 7 and the latest ver-

sions of Groovy, Scala, and Clojure are fairly well supported by the following versions

of the main IDEs:

■ Eclipse 3.7.1 and above

■ NetBeans 7.0.1 and above

■ IntelliJ 10.5.2 and above

We used NetBeans 7.1 and Eclipse 3.7.1 to create and run the examples.

Author Online

Purchase of The Well-Grounded Java Developer includes free access to a private web

forum run by Manning Publications where you can make comments about the book,

ask technical questions, and receive help from the authors and from other users. To

access the forum and subscribe to it, point your web browser to www.manning.com/

TheWell-GroundedJavaDeveloper. This page provides information on how to get on

the forum once you’re registered, what kind of help is available, and the rules of con-

duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part of the

authors, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

www.manning.com/TheWell-GroundedJavaDeveloper
www.manning.com/TheWell-GroundedJavaDeveloper

xxix

about the authors
BEN EVANS is an organizer for the LJC (London JUG) and a member of the Java

Community Process Executive Committee, helping define standards for the Java eco-

system. He has lived through many years of “Interesting Times” in the tech industry

and is CEO of a Java-based technology firm working mainly in the financial industry.

Ben is a frequent public speaker on topics such as the Java platform, performance,

and concurrency.

MARTIJN VERBURG (CTO, jClarity) has over 10 years of experience as a technology pro-

fessional and OSS mentor in environments from start-ups to large enterprises. He is

the coleader of the London Java User Group (LJC), and leads the global effort of JUG

members who contribute to JSRs (Adopt a JSR program) and the OpenJDK (Adopt

OpenJDK program).

 As a recognized expert on technical team optimization, his talks and presentations

are in demand at major conferences (JavaOne, Devoxx, OSCON, FOSDEM, and so on)

where he’s known for challenging the industry status quo as the “Diabolical Developer.”

xxx

about the cover illustration
The figure on the cover of The Well-Grounded Java Developer is captioned “A Posy

Seller.” The illustration is taken from a nineteenth-century edition of Sylvain

Maréchal’s four-volume compendium of regional dress customs published in France.

Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s

collection reminds us vividly of how culturally apart the world’s towns and regions

were just 200 years ago. Isolated from each other, people spoke different dialects and

languages. On the streets or in the countryside, it was easy to identify where they lived

and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.

Part 1

Developing with Java 7

These first two chapters are about ramping up with Java 7. You’ll ease in

with an introductory chapter that covers some small syntax changes that will

increase your productivity—all of which punch above their weight. This will set

the stage for the larger topic in this part—a chapter on new I/O in Java.

 The well-grounded Java developer needs to be aware of the latest language

features available. Java 7 comes with several new features that will make your life

as a working developer much easier. But it isn’t enough simply to understand the

syntax of these new changes. In order to write efficient and safe code quickly, you

need an in-depth understanding of how and why the new features were imple-

mented. The Java 7 language changes can be roughly split into two sets: Project

Coin and NIO.2.

 The first set is known as Project Coin, a group of small language-level

changes that were designed to increase developer productivity without heavily

impacting the underlying platform. These changes include:

■ A try-with-resources construct (which automatically closes off resources)

■ Strings in switch

■ Enhanced numeric literals

■ Multi-catch (declare multiple exceptions in a catch block)

■ Diamond syntax (requiring less boilerplate when dealing with generics)

Each of these changes may seem small, but exploring the semantics behind the sim-

ple syntax changes also gives you extra insight into the split between Java the lan-

guage and Java the platform.

2 PART 1 Developing with Java 7

 The second set of changes is the new I/O (NIO.2) API, which completely overhauls

Java’s filesystem support as well as providing new powerful asynchronous capabilities.

These changes include:

■ A new Path construct in order to reference files and file-like entities

■ A Files utility class that simplifies creating, copying, moving, and deleting files

■ Built-in directory tree navigation

■ Future and callback-based asynchronous I/O to deal with large I/O in the

background

By the end of part 1, you’ll be thinking and writing naturally in Java 7. This new knowl-

edge is reinforced throughout the book, as Java 7 features are used in the later chap-

ters as well.

3

Introducing Java 7

Welcome to Java 7. Things around here are a little different than you may be used

to. This is a really good thing—we have a lot to explore, now that the dust has set-

tled and Java 7 has been unleashed. By the time you finish this book, you’ll have

taken your first steps into a larger world—a world of new features, of software

craftsmanship, and of other languages on the Java Virtual Machine (JVM).

 We’re going to warm up with a gentle introduction to Java 7, but one that still

acquaints you with powerful features. We’ll start by explaining a distinction that is

sometimes misunderstood—the duality between the language and the platform.

 After that, we’ll introduce Project Coin—a collection of small yet effective new

features in Java 7. We’ll show you what’s involved in getting a change to the Java

platform accepted, incorporated, and released. With that process covered, we’ll

move on to the six main new features that were introduced as part of Project Coin.

 You’ll learn new syntax, such as an improved way of handling exceptions (multi-

catch) as well as try-with-resources, which helps you avoid bugs in code that deals

This chapter covers

■ Java as a platform and a language

■ Small yet powerful syntax changes

■ The try-with-resources statement

■ Exception-handling enhancements

4 CHAPTER 1 Introducing Java 7

with files or other resources. By the end of this chapter, you’ll be writing Java in a new

way and you’ll be fully primed and ready for the big topics that lie ahead.

 Let’s get under way by discussing the language versus platform duality that lies at

the heart of modern Java. This is a critically important point that we’ll come back to

again throughout the book, so it’s an essential one to grasp.

1.1 The language and the platform

The critical concept we’re kicking off with is the distinction between the Java lan-

guage and the Java platform. Surprisingly, different authors sometimes give slightly

different definitions of what constitutes the language and platform. This can lead to a

lack of clarity and some confusion about the differences between the two and about

which provides the programming features that application code uses.

 Let’s make that distinction clear right now, as it cuts to the heart of a lot of the top-

ics in this book. Here are our definitions:

■ The Java language—The Java language is the statically typed, object-oriented lan-

guage that we lightly lampooned in the “About This Book” section. Hopefully,

it’s already very familiar to you. One very obvious point about the Java language

is that it’s human-readable (or it should be!).

■ The Java platform—The platform is the software that provides a runtime environ-

ment. It’s the JVM that links and executes your code as provided to it in the

form of (not human-readable) class files. It doesn’t directly interpret Java lan-

guage source files, but instead requires them to be converted to class files first.

One of the big reasons for the success of Java as a software system is that it’s a stan-

dard. This means that it has specifications that describe how it’s supposed to work.

Standardization allows different vendors and project groups to produce implementa-

tions that should all, in theory, work the same way. The specs don’t make guarantees

about how well different implementations will perform when handling the same task,

but they can provide assurances about the correctness of the results.

 There are a number of separate specs that govern the Java system—the most

important are the Java Language Specification (JLS) and the JVM Specification

(VMSpec). In Java 7, this separation is taken very seriously; in fact, the VMSpec no lon-

ger makes any reference whatsoever to the JLS. If you’re thinking that this might be an

indication of how seriously non-Java source languages are taken in Java 7, then well

done, and stay tuned. We’ll talk a lot more about the differences between these two

specs later.

 One obvious question, when you’re faced with the described duality, is, “What’s the

link between them?” If they’re now so separate in Java 7, how do they come together

to make the familiar Java system?

 The link between the language and platform is the shared definition of the class

file format (the .class files). A serious study of the class file definition will reward you,

and it’s one of the ways a good Java programmer can start to become a great one. In

figure 1.1 you can see the full process by which Java code is produced and used.

5Small is beautiful—Project Coin

As you can see in the figure, Java code starts life as human-readable Java source, and

it’s then compiled by javac into a .class file. This is then loaded into a JVM. Note that

it’s very common for classes to be manipulated and altered during the loading pro-

cess. Many of the most popular frameworks (especially those with “Enterprise” in their

names) will transform classes as they’re loaded.

With the distinction between language and platform hopefully now clearer, let’s move

on to talk about some of the visible changes in language syntax that have arrived with

Java 7, starting with smaller syntax changes brought in with Project Coin.

1.2 Small is beautiful—Project Coin

Project Coin is an open source project that has been running as part of the Java 7

(and 8) effort since January 2009. In this section, we’re going to explain how features

Is Java a compiled or interpreted language?

The standard picture of Java is of a language that’s compiled into .class files before
being run on a JVM. If pressed, many developers can also explain that bytecode
starts off by being interpreted by the JVM but will undergo just-in-time (JIT) compilation
at some later point. Here, however, many people’s understanding breaks down in a
somewhat hazy conception of bytecode as basically being machine code for an imag-
inary or simplified CPU.

In fact, JVM bytecode is more like a halfway house between human-readable source
and machine code. In the technical terms of compiler theory, bytecode is really a form
of intermediate language (IL) rather than a true machine code. This means that the
process of turning Java source into bytecode isn’t really compilation in the sense that
a C or C++ programmer would understand it, and javac isn’t a compiler in the same
sense as gcc is—it’s really a class file generator for Java source. The real compiler
in the Java ecosystem is the JIT compiler, as you can see in figure 1.1.

Some people describe the Java system as “dynamically compiled.” This emphasizes
that the compilation that matters is the JIT compilation at runtime, not the creation
of the class file during the build process.

So, the real answer to, “Is Java compiled or interpreted?” is “Both.”

Figure 1.1 Java source code

is transformed into .class files,

then manipulated at load time

before being JIT-compiled.

6 CHAPTER 1 Introducing Java 7

get chosen and how the language evolution process works by using the small changes

of Project Coin as a case study.

We think it’s important to explain the “why” of language change as well as the “what.”

During the development of Java 7, there was a lot of interest around new language

features, but the community didn’t always understand how much work is required to

get changes fully engineered and ready for prime time. We hope to shed a bit of light

on this area, and hopefully dispel a few myths. But if you’re not very interested in

how Java evolves, feel free to skip ahead to section 1.3 and jump right into the lan-

guage changes.

 There is an effort curve involved in changing the Java language—some possible

implementations require less engineering effort than others. In figure 1.2 we’ve tried

to represent the different routes and show the relative effort required for each, in a

complexity scale of increasing effort.

 In general, it’s better to take the route that requires the least effort. This means

that if it’s possible to implement a new feature as a library, you generally should. But

not all features are easy, or even possible, to implement in a library or an IDE capabil-

ity. Some features have to be implemented deeper inside the platform.

Naming Project Coin

The aim of Project Coin was to come up with small changes to the Java language. The
name is a piece of wordplay—small change comes as coins, and “to coin a phrase”
means to add a new expression to our language.

These types of word games, whimsy, and the inevitable terrible puns are to be found
everywhere in technical culture. You may just as well get used to them.

Figure 1.2 The relative effort involved in implementing new functionality in different ways

7Small is beautiful—Project Coin

Here’s how some (mostly Java 7) features fit into our complexity scale for new lan-

guage features:

■ Syntactic sugar—Underscores in numbers (Java 7)
■ Small new language feature—try-with-resources (Java 7)
■ Class file format change—Annotations (Java 5)
■ New JVM feature—invokedynamic (Java 7)

Project Coin (and the rest of this chapter) is all about changes that are somewhere in

the range from syntactic sugar to small new language features.

 The initial period for suggestions for Project Coin changes ran on the coin-dev

mailing list from February to March 2009 and saw almost 70 proposals submitted, rep-

resenting a huge range of possible enhancements. The suggestions even included a

joke proposal for adding multiline strings in the style of lolcat captions (superim-

posed captions on pictures of cats that are either funny or irritating, depending on

your viewpoint—http://icanhascheezburger.com/).

 The Project Coin proposals were judged under a fairly simple set of rules. Contrib-

utors needed to do three things:

■ Submit a detailed proposal form describing their change (which should funda-

mentally be a Java language change, rather than a virtual machine change)
■ Discuss their proposal openly on a mailing list and field constructive criticism

from the other participants
■ Be prepared to produce a prototype set of patches that could implement

their change

Project Coin provides a good example of how the language and platform may evolve

in the future, with changes discussed openly, early prototyping of features, and calls

for public participation.

 One question that might well be asked at this point is, “What constitutes a small

change to the spec?” One of the changes we’ll discuss in a minute adds a single

word—"String"—to section 14.11 of the JLS. You can’t really get much smaller than

that as a change, and yet even this change touches several other aspects of the spec.

Syntactic sugar

A phrase that’s sometimes used to describe a language feature is “syntactic sugar.”
This means that the syntax form is redundant—it already exists in the language—but
the syntactic sugar form is provided because it’s easier for humans to work with.

As a rule of thumb, a feature referred to as syntactic sugar is removed from the com-
piler’s representation of the program early on in the compilation process—it’s said
to have been “desugared” into the basic representation of the same feature.

This makes syntactic sugar changes to a language easier to implement because they
usually involve a relatively small amount of work, and only involve changes to the
compiler (javac in the case of Java).

http://icanhascheezburger.com/

8 CHAPTER 1 Introducing Java 7

Any alteration produces consequences, and these have to be chased through the

entire design of the language.

 The full set of actions that that must be performed (or at least investigated) for any

change is as follows:

■ Update the JLS

■ Implement a prototype in the source compiler

■ Add library support essential for the change

■ Write tests and examples

■ Update documentation

In addition, if the change touches the VM or platform aspects:

■ Update the VMSpec

■ Implement the VM changes

■ Add support in the class file and VM tools

■ Consider the impact on reflection

■ Consider the impact on serialization

■ Think about any impacts on native code components, such as Java Native Inter-

face (JNI).

This isn’t a small amount of work, and that’s after the impact of the change across the

whole language spec has been considered!

 An area of particular hairiness, when it comes to making changes, is the type system.

That isn’t because Java’s type system is bad. Instead, languages with rich static type sys-

tems are likely to have a lot of possible interaction points between different bits of those

type systems. Making changes to them is prone to creating unexpected surprises.

 Project Coin took the very sensible route of suggesting to contributors that they

mostly stay away from the type system when proposing changes. Given the amount of

work that has gone into even the smallest of these small changes, this has proved a

pragmatic approach.

Java 7 is the first version developed in an open source manner

Java was not always an open source language, but following an announcement at the
JavaOne conference in 2006, the source code for Java itself (minus a few bits that
Sun didn’t own the source for) was released under the GPLv2 license. This was
around the time of the release of Java 6, so Java 7 is the first version of Java to be
developed under an open source software (OSS) license. The primary focus for open
source development of the Java platform is the OpenJDK project.

Mailing lists such as coin-dev, lambda-dev, and mlvm-dev have been major forums for dis-
cussing possible future features, allowing developers from the wider community to par-
ticipate in the process of producing Java 7. In fact, we help lead the “Adopt OpenJDK”
program to guide developers new to the OpenJDK, helping improve Java itself! See http://
java.net/projects/jugs/pages/AdoptOpenJDK if you’d like to join us.

http://java.net/projects/jugs/pages/AdoptOpenJDK
http://java.net/projects/jugs/pages/AdoptOpenJDK

9The changes in Project Coin

 With that bit of the background on Project Coin covered, it’s time to start looking

at the features chosen for inclusion.

1.3 The changes in Project Coin

Project Coin brought six main new features to Java 7. These are Strings in switch,

new numeric literal forms, improved exception handling, try-with-resources, diamond

syntax, and fixes for varargs warnings.

 We’re going to talk in some detail about these changes from Project Coin—we’ll

discuss the syntax and the meaning of the new features, and also try to explain the

motivations behind the features whenever possible. We won’t resort to the full formal

details of the proposals, but all that material is available from the archives of the coin-

dev mailing list, so if you’re a budding language designer, you can read the full pro-

posals and discussion there.

 Without further ado, let’s kick off with our very first new Java 7 feature—String

values in a switch statement.

1.3.1 Strings in switch

The Java switch statement allows you to write an efficient multiple-branch statement

without lots and lots of ugly nested ifs—like this:

public void printDay(int dayOfWeek) {
 switch (dayOfWeek) {
 case 0: System.out.println("Sunday"); break;
 case 1: System.out.println("Monday"); break;
 case 2: System.out.println("Tuesday"); break;
 case 3: System.out.println("Wednesday"); break;
 case 4: System.out.println("Thursday"); break;
 case 5: System.out.println("Friday"); break;
 case 6: System.out.println("Saturday"); break;
 default: System.err.println("Error!"); break;
 }
}

In Java 6 and before, the values for the cases could only be constants of type byte,

char, short, int (or, technically, their reference-type equivalents Byte, Character,

Short, Integer) or enum constants. With Java 7, the spec has been extended to allow

for the String type to be used as well. They’re constants after all.

public void printDay(String dayOfWeek) {
 switch (dayOfWeek) {
 case "Sunday": System.out.println("Dimanche"); break;
 case "Monday": System.out.println("Lundi"); break;
 case "Tuesday": System.out.println("Mardi"); break;
 case "Wednesday": System.out.println("Mercredi"); break;
 case "Thursday": System.out.println("Jeudi"); break;
 case "Friday": System.out.println("Vendredi"); break;
 case "Saturday": System.out.println("Samedi"); break;
 default: System.out.println("Error: '"+ dayOfWeek
 ➥ +"' is not a day of the week"); break;
 }
}

10 CHAPTER 1 Introducing Java 7

In all other respects, the switch statement remains the same. Like many Project Coin

enhancements, this is really a very simple change to make life in Java 7 a little bit easier.

1.3.2 Enhanced syntax for numeric literals

There were several separate proposals around new syntax for the integral types. The

following aspects were eventually chosen:

■ Numeric constants (that is, one of the integer primitive types) may now be

expressed as binary literals.

■ Underscores may be used in integer constants to improve readability

Neither of these is, at first sight, particularly earth-shattering, but both have been

minor annoyances to Java programmers.

 These are both of special interest to the low-level programmer—the sort of person

who works with raw network protocols, encryption, or other pursuits, where a certain

amount of bit twiddling is involved. Let’s begin with a look at binary literals.

BINARY LITERALS

Before Java 7, if you wanted to manipulate a binary value, you’d have had to either

engage in awkward (and error-prone) base conversion or utilize parseX methods. For

example, if you wanted to ensure that an int x represented the bit pattern for the dec-

imal value 102 correctly, you’d write an expression like:

int x = Integer.parseInt("1100110", 2);

This is a lot of code just to ensure that x ends up with the correct bit pattern. There’s

worse to come though. Despite looking fine, there are a number of problems with

this approach:

■ It’s really verbose.
■ There is a performance hit for that method call.
■ You’d have to know about the two-argument form of parseInt().
■ You need to remember the details of how parseInt()behaves when it has

two arguments.
■ It makes life hard for the JIT compiler.
■ It represents a compile-time constant as a runtime expression, which means the

constant can’t be used as a value in a switch statement.
■ It will give you a RuntimeException (but no compile-time exception) if you

have a typo in the binary value.

Fortunately, with the advent of Java 7, we can now write this:

int x = 0b1100110;

No one’s saying that this is doing anything that couldn’t be done before, but it has

none of the problems we listed.

 If you’ve got a reason to work with binary, you’ll be glad to have this small feature.

For example, when doing low-level handling of bytes, you can now have bit patterns as

binary constants in switch statements.

11The changes in Project Coin

 Another small, yet useful, new feature for representing groups of bits or other long

numeric representations is underscores in numbers.

UNDERSCORES IN NUMBERS

You’ve probably noticed that the human mind is radically different from a computer’s

CPU. One specific example of this is in the way that our minds handle numbers.

Humans aren’t, in general, very comfortable with long strings of numbers. That’s one

reason we invented hexadecimal—because our minds find it easier to deal with

shorter strings that contain more information, rather than long strings containing not

much information per character.

 That is, we find 1c372ba3 easier to deal with than

00011100001101110010101110100011, even though a CPU would only ever see the

second form. One way that we humans deal with long strings of numbers is to break

them up. A U.S. phone number is usually represented like this: 404-555-0122.

NOTE If you’re like the (European) authors and have ever wondered why US

phone numbers in films or books always start with 555, it’s because the num-
bers 555-01xx are reserved for fictional use—precisely to prevent real people
getting calls from people who take their Hollywood movies a little too seriously.

Other long strings of numbers have separators too:

■ $100,000,000 (large sums of money)

■ 08-92-96 (UK banking sort codes)

Unfortunately, both the comma (,) and hyphen (-) have too many possible meanings

within the realm of handling numbers in programming, so we can’t use either as a sep-

arator. Instead, the Project Coin proposal borrowed an idea from Ruby, and introduced

the underscore (_) as a separator. Note that this is just a bit of easy-on-the-eyes compile-

time syntax. The compiler strips out those underscores and stores the usual digits.

 This means that you can write 100_000_000 and hopefully not confuse it with

10_000_000, whereas 100000000 is easily confused with 10000000. Let’s look at a cou-

ple of examples, at least one of which should be familiar:

long anotherLong = 2_147_483_648L;
int bitPattern = 0b0001_1100__0011_0111__0010_1011__1010_0011;

Notice how much easier it is to read the value being assigned to anotherLong.

WARNING In Java, it’s still legal to use the lowercase l character to denote a
long. For example 1010100l. Make sure you always use an uppercase L so that
maintainers don’t get confused between the number 1 and the letter l:
1010100L is much clearer!

By now, you should be convinced of the benefit of these tweaks to the handling of

integers, so let’s move on to looking at Java 7’s improved exception handling.

12 CHAPTER 1 Introducing Java 7

1.3.3 Improved exception handling

There are two parts to this improvement—multicatch and final rethrow. To see why

they’re a help, consider the following Java 6 code, which tries to find, open, and parse

a config file and handle a number of different possible exceptions.

public Configuration getConfig(String fileName) {
 Configuration cfg = null;
 try {
 String fileText = getFile(fileName);
 cfg = verifyConfig(parseConfig(fileText));
 } catch (FileNotFoundException fnfx) {
 System.err.println("Config file '" + fileName + "' is missing");
 } catch (IOException e) {
 System.err.println("Error while processing file '" + fileName + "'");
 } catch (ConfigurationException e) {
 System.err.println("Config file '" + fileName + "' is not consistent");
 } catch (ParseException e) {
 System.err.println("Config file '" + fileName + "' is malformed");
 }

 return cfg;
}

This method can encounter a number of different exceptional conditions:

■ The config file may not exist.

■ The config file may disappear while you’re trying to read from it.

■ The config file may be malformed syntactically.

■ The config file may have invalid information in it.

These conditions fit into two distinct functional groups. Either the file is missing or

bad in some way, or the file is present and correct but couldn’t be retrieved properly

(perhaps because of a hardware failure or network outage).

 It would be nice to compress this down to just these two cases, and handle all the

“file is missing or bad in some way” exceptions in one catch clause. Java 7 allows you

to do this.

public Configuration getConfig(String fileName) {
 Configuration cfg = null;
 try {
 String fileText = getFile(fileName);
 cfg = verifyConfig(parseConfig(fileText));
 } catch (FileNotFoundException|ParseException|ConfigurationException e) {
 System.err.println("Config file '" + fileName +
 "' is missing or malformed");
 } catch (IOException iox) {
 System.err.println("Error while processing file '" + fileName + "'");
 }

Listing 1.1 Handling several different exceptions in Java 6

Listing 1.2 Handling several different exceptions in Java 7

13The changes in Project Coin

 return cfg;
}

The exception e has a type that isn’t precisely knowable at compile time. This means

that it has to be handled in the catch block as the common supertype of the excep-

tions that it could be (which will often be Exception or Throwable, in practice).

 An additional bit of new syntax helps with rethrowing exceptions. In many cases,

developers may want to manipulate a thrown exception before rethrowing it. The

problem is that in previous versions of Java you’ll often see code like this:

try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
} catch (Exception e) {
 ...
 throw e;
}

This forces you to declare the exception signature of this code as Exception—the real

dynamic type of the exception has been swallowed.

 Nevertheless, it’s relatively easy to see that the exception can only be an IOException

or a SQLException, and if you can see it, so can the compiler. This snippet changes a

single word change to use the Java 7 syntax:

try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
} catch (final Exception e) {
 ...
 throw e;
}

The appearance of the final keyword indicates that the type that’s actually thrown is

the runtime type of the exception that was encountered—in this example, that would

be either IOException or SQLException. This is referred to as final rethrow, and it can

protect against throwing an overly general type, which then has to be caught by a very

general catch in a higher scope.

 The final keyword is optional in the previous example, but in practice, we’ve

found that it helps to use it while adjusting to the new semantics of catch and rethrow.

 In addition to these general improvements in exception handling, the specific case

of resource management has been improved in Java 7, so that’s where we’ll turn next.

1.3.4 Try-with-resources (TWR)

This change is easy to explain, but it has proved to have hidden subtleties, which

made it much less easy to implement than originally hoped. The basic idea is to allow

a resource (for example, a file or something a bit like one) to be scoped to a block in

such a way that the resource is automatically closed when control exits the block.

 This is an important change, for the simple reason that virtually no one gets man-

ual resource closing 100 percent right. Until recently, even the reference how-tos

14 CHAPTER 1 Introducing Java 7

from Sun were wrong. The proposal submitted to Project Coin for this change

includes the astounding claim that two-thirds of the uses of close() in the JDK had

bugs in them!

 Fortunately, compilers can be made to produce exactly the sort of pedantic, boiler-

plate code that humans so often get wrong, and that’s the approach taken by this change.

 This is a big help in writing error-free code. To see just how helpful, consider how

you’d write a block of code that reads from a stream coming from a URL (url) and

writes to a file (out) with Java 6. Here’s one possible solution.

InputStream is = null;
try {
 is = url.openStream();
 OutputStream out = new FileOutputStream(file);
 try {
 byte[] buf = new byte[4096];
 int len;
 while ((len = is.read(buf)) >= 0)
 out.write(buf, 0, len);
 } catch (IOException iox) {
 } finally {
 try {
 out.close();
 } catch (IOException closeOutx) {
 }
 }
} catch (FileNotFoundException fnfx) {
} catch (IOException openx) {
} finally {
 try {
 if (is != null) is.close();
 } catch (IOException closeInx) {
 }
}

How close did you get? The key point here is that when handling external resources,

Murphy’s Law applies—anything can go wrong at any time:

■ The InputStream can fail to open from the URL, to read from it, or to close

properly.

■ The File corresponding to the OutputStream can fail to open, to write to it, or

to close properly.

■ A problem can arise from some combination of more than one factor.

This last possibility is where a lot of the headaches come from—a combination of

exceptions is very difficult to deal with well.

 This is the main reason for preferring the new syntax—it’s much less error-prone.

The compiler isn’t susceptible to the mistakes that every developer will make when try-

ing to write this type of code manually.

Listing 1.3 Java 6 syntax for resource management

Handle exception
(could be read
or write)

Handle
exception

Can’t do
much with
exception

15The changes in Project Coin

 Let’s look at the Java 7 code for performing the same task as listing 1.3. As before, url

is a URL object that points at the entity you want to download, and file is a File object

where you want to save what you’re downloading. Here’s what this looks like in Java 7.

try (OutputStream out = new FileOutputStream(file);
 InputStream is = url.openStream()) {
 byte[] buf = new byte[4096];
 int len;
 while ((len = is.read(buf)) > 0) {
 out.write(buf, 0, len);
 }
}

This basic form shows the new syntax for a block with automatic management—the

try with the resource in round brackets. For C# programmers, this is probably a bit

reminiscent of a using clause, and that’s a good conceptual starting point when work-

ing with this new feature. The resources are used by the block, and they’re automati-

cally disposed of when you’re done with them.

 You still have to be careful with try-with-resources, as there are cases where a

resource might still not be closed. For example, the following code would not close its

FileInputStream properly if there was an error creating the ObjectInputStream

from the file (someFile.bin).

try (ObjectInputStream in = new ObjectInputStream(new
 FileInputStream("someFile.bin"))) {
 ...
}

Let’s assume that the file (someFile.bin) exists, but it might not be an ObjectInput

file, so the file might not open correctly. Therefore, the ObjectInputStream wouldn’t

be constructed and the FileInputStream wouldn’t be closed!

 The correct way to ensure that try-with-resources always works for you is to split the

resources into separate variables.

try (FileInputStream fin = new FileInputStream("someFile.bin");
 ObjectInputStream in = new ObjectInputStream(fin)) {
 ...
}

One other aspect of TWR is the appearance of enhanced stack traces and suppressed

exceptions. Prior to Java 7, exception information could be swallowed when handling

resources. This possibility also exists with TWR, so the stack traces have been enhanced

to allow you to see the type information of exceptions that would otherwise be lost.

 For example, consider this snippet, in which a null InputStream is returned from

a method:

try(InputStream i = getNullStream()) {
 i.available();
}

Listing 1.4 Java 7 syntax for resource management

16 CHAPTER 1 Introducing Java 7

This will give rise to an enhanced stack trace, in which the suppressed NullPointer-

Exception (NPE for short) can be seen:

Exception in thread "main" java.lang.NullPointerException
 at wgjd.ch01.ScratchSuprExcep.run(ScratchSuprExcep.java:23)
 at wgjd.ch01.ScratchSuprExcep.main(ScratchSuprExcep.java:39)
 Suppressed: java.lang.NullPointerException
 at wgjd.ch01.ScratchSuprExcep.run(ScratchSuprExcep.java:24)
 1 more

We encourage you to use try-with-resources as soon as you’re able, to eliminate unnec-

essary bugs from your codebase.

1.3.5 Diamond syntax

Java 7 also introduces a change that means less typing for you when dealing with

generics. One of the problems with generics is that the definitions and setup of

instances can be really verbose. Let’s suppose that you have some users, whom you

identify by userid (which is an integer), and each user has one or more lookup tables

specific to that user. What would that look like in code?

Map<Integer, Map<String, String>> usersLists =
 new HashMap<Integer, Map<String, String>>();

That’s quite a mouthful, and almost half of it is duplicated characters. Wouldn’t it be

better if you could write something like this,

Map<Integer, Map<String, String>> usersLists = new HashMap<>();

and have the compiler work out the type information on the right side? Thanks to the

magic of Project Coin, you can. In Java 7, the shortened form for declarations like that

is entirely legal. It’s backwards compatible as well, so when you find yourself revisiting

old code, you can cut the older, more verbose declaration and start using the new

type-inferred syntax to save a few pixels.

 We should point out that the compiler is using a new form of type inference for

this feature. It’s working out the correct type for the expression on the right side, and

isn’t just substituting in the text that defines the full type.

TWR and AutoCloseable

Under the hood, the TWR feature is achieved by the introduction of a new interface,
called AutoCloseable, which a class must implement in order to be able to appear
as a resource in the new TWR try clause. Many of the Java 7 platform classes have
been converted to implement AutoCloseable (and it has been made a superinter-
face of Closeable), but you should be aware that not every aspect of the platform
has yet adopted this new technology. It’s included as part of JDBC 4.1, though.

For your own code, you should definitely use TWR whenever you need to work with
resources. It will help you avoid bugs in your exception handling.

17The changes in Project Coin

The new diamond syntax will certainly save your fingers from some typing. The last Proj-

ect Coin feature we’ll explore is the removal of a warning when you’re using varargs.

1.3.6 Simplified varargs method invocation

This is one of the simplest changes of all—it moves a warning about type information

for a very specific case where varargs combines with generics in a method signature.

 Put another way, unless you’re in the habit of writing code that takes as arguments

a variable number of references of type T and does something to make a collection

out of them, you can move on to the next section. On the other hand, if this bit of

code looks like something you might write, you should read on:

public static <T> Collection<T> doSomething(T... entries) {
 ...
}

Still here? Good. So what’s this all about?

 As you probably know, a varargs method is one that takes a variable number of

parameters (all of the same type) at the end of the argument list. What you may not

know is how varargs is implemented; basically, all of the variable parameters at the end

are put into an array (which the compiler automatically creates for you) and they’re

passed as a single parameter.

 This is all well and good, but here we run into one of the admitted weaknesses of

Java’s generics—you aren’t normally allowed to create an array of a known generic

type. For example, this won’t compile:

HashMap<String, String>[] arrayHm = new HashMap<>[2];

You can’t make arrays of a specified generic type. Instead, you have to do this:

HashMap<String, String>[] warnHm = new HashMap[2];

This gives a warning that has to be ignored. Notice that you can define the type of

warnHm to be an array of HashMap<String, String>—you just can’t create any instances

of that type, and instead have to hold your nose (or at least, suppress the warning) and

force an instance of the raw type (which is array of HashMap) into warnHm.

 These two features—varargs methods working on compiler-generated arrays, and

arrays of known generic types not being an instantiable type—come together to cause

a slight headache. Consider this bit of code:

HashMap<String, String> hm1 = new HashMap<>();
HashMap<String, String> hm2 = new HashMap<>();

Collection<HashMap<String, String>> coll = doSomething(hm1, hm2);

The “diamond syntax” name

This form is called “diamond syntax” because, well, the shortened type information
looks like a diamond. The proper name in the proposal is “Improved Type Inference
for Generic Instance Creation,” which is a real mouthful and has ITIGIC as an acro-
nym, which sounds stupid, so diamond syntax it is.

18 CHAPTER 1 Introducing Java 7

The compiler will attempt to create an array to contain hm1 and hm2, but the type of

the array should strictly be one of the forbidden array types. Faced with this dilemma,

the compiler cheats and breaks its own rule about the forbidden array of generic type.

It creates the array instance, but grumbles about it, producing a compiler warning

that mutters darkly about “unchecked or unsafe operations.”

 From the point of view of the type system, this is fair enough. But the poor devel-

oper just wanted to use what seemed like a perfectly sensible API, and there are scary-

sounding warnings for no adequately explained reason.

WHERE DID THE WARNING GO IN JAVA 7?

The new feature in Java 7 changes the emphasis of the warning. After all, there is a

potential for violating type safety in these types of constructions, and somebody had bet-

ter be informed about them. There’s not much that the users of these types of APIs

can really do, though. Either the code inside doSomething() is evil and violates type

safety, or it doesn’t. In any case, it’s out of the API user’s hands.

 The person who should really be warned about this issue is the person who wrote

doSomething()—the API producer, rather than the consumer. So that’s where the

warning goes—it’s moved from where the API is used to where the API was defined.

 The warning once was triggered when code that used the API was compiled.

Instead, it’s now triggered when an API that has the potential to trigger this kind of

type safety violation is written. The compiler warns the coder implementing the API,

and it’s up to that developer to pay proper attention to the type system.

 To make things easier for API developers, Java 7 also provides a new annotation

type, java.lang.SafeVarargs. This can be applied to an API method (or constructor)

that would otherwise produce a warning of the type discussed. By annotating the

method with @SafeVarargs, the developer essentially asserts that the method doesn’t

perform any unsafe operations. In this case, the compiler will suppress the warning.

CHANGES TO THE TYPE SYSTEM

That’s an awful lot of words to describe a very small change—moving a warning from

one place to another is hardly a game-changing language feature, but it does serve to

illustrate one very important point. Earlier in this chapter we mentioned that Project

Coin encouraged contributors to mostly stay away from the type system when propos-

ing changes. This example shows how much care is needed when figuring out how dif-

ferent features of the type system interact, and how that interaction will alter when a

change to the language is implemented. This isn’t even a particularly complex

change—larger changes would be far, far more involved, with potentially dozens of

subtle ramifications.

 This final example illustrates how intricate the effect of small changes can be.

Although they represent mostly small syntactic changes, they can have a positive impact

on your code that is out of proportion with the size of the changes. Once you’ve started

using them, you’ll likely find that they offer real benefit to your programs.

19Summary

1.4 Summary

Making changes to the language itself is hard. It’s always easier to implement new fea-

tures in a library (if you can—not everything can be implemented without a language

change). The challenges involved can cause language designers to make smaller, and

more conservative, changes than they might otherwise wish.

 Now, it’s time to move on to some of the bigger pieces that make up the release,

starting with a look at how some of the core libraries have changed in Java 7. Our next

stop is the I/O libraries, which have been considerably revamped. It will be helpful to

have a grasp of how previous Java versions coped with I/O, because the Java 7 classes

(sometimes called NIO.2) build upon the existing framework.

 If you want to see some more examples of the TWR syntax in action, or want to

learn about the new, high-performance asynchronous I/O classes, then the next chap-

ter has all the answers.

20

New I/O

One of the larger API changes in the Java language—a major update to the set of

I/O APIs, called “more New I/O” or NIO.2 (aka JSR-203)—is the focus of this chapter.

NIO.2 is a set of new classes and methods, that primarily live in the java.nio package.

■ It’s an out-and-out replacement of java.io.File for writing code that inter-

acts with the filesystem.

■ It contains new asynchronous classes that will allow you to perform file and

network I/O operations in a background thread without manually configur-

ing thread pools and other low-level concurrency constructs.

■ It simplifies coding with sockets and channels by introducing a new Network-

Channel construct.

This chapter covers

■ The new Java 7 I/O APIs (aka NIO.2)

■ Path—the new foundation for file- and

directory-based I/O

■ The Files utility class and its various

helper methods

■ How to solve common I/O use cases

■ An introduction to asynchronous I/O

21New I/O

Let’s look at an example use case. Imagine your boss asked you to write a Java routine

that went through all the directories on the production server and found all of the

properties files that have been written with a variety of read/write and ownership per-

missions. With Java 6 (and below) this task is almost impossible for three reasons:

■ There is no direct class or method support for navigating directory trees.

■ There is no way of detecting and dealing with symbolic links.1

■ It’s not possible to read the attributes (such as readable, writable, or execut-

able) of a file in one easy operation.

The new Java 7 NIO.2 API makes this programming task much more possible, with

direct support for navigating a directory tree (Files.walkFileTree(), section 2.3.1),

symbolic links (Files.isSymbolicLink(), listing 2.4) and simple one-line operations

to read the file attributes (Files.readAttributes(), section 2.4.3).

 In addition, your boss now wants you to read in those properties files without inter-

rupting the flow of the main program. You know that one of the properties files is at

least 1MB in size; reading this will likely interrupt the main flow of the program! Under

Java 5/6, you’d likely have to use the classes in the java.util.concurrent package to

create thread pools and worker queues and read this file in a separate background

thread. As we’ll discuss in chapter 4, modern concurrency in Java is still pretty difficult

and the room for error is high. With Java 7 and the NIO.2 API, you can read the large

file in the background without having to specify your own workers or queues by using

the new AsynchronousFileChannel (section 2.5). Phew!

 The new APIs won’t make you a perfect cup of coffee (although that would be a nice

feature), but they will be extremely useful because of major trends in our industry.

 First, there is a trend to explore alternative means of data storage, especially in the

area of nonrelational or large data sets. This means the use case for reading and writ-

ing large files (such as large report files from a microblogging service) is likely to

come up in your immediate future. NIO.2 allows you to read and write large files in an

asynchronous, efficient manner, taking advantage of underlying OS features.

 A second trend is that of multicore CPUs, which open up the possibility for truly

concurrent (and therefore faster) I/O. Concurrency isn’t an easy domain to master,2

and NIO.2 offers a large helping hand by presenting a simple abstraction for utilizing

multithreaded file and socket access. Even if you don’t use these features directly, they

will have a large impact on your programming life as IDEs and application servers, and

popular frameworks will utilize them heavily.

 These are just some examples of how NIO.2 can help you. If NIO.2 sounds like it

solves some of the problems you’re facing as a developer, this chapter is for you! If

not, you can always come back to the sections in this chapter that deal with Java I/O

coding tasks.

1 A symbolic link is a special type of file that points to another file or location on the file system—think of it as
a shortcut.

2 Chapter 4 explores the subtle complexities that concurrency can bring to your programming life.

22 CHAPTER 2 New I/O

 This chapter will give you enough of a taste of Java 7’s new I/O capabilities for you

to start writing NIO.2-based code and confidently explore the new APIs. As an addi-

tional benefit, these APIs use some of the features we covered in chapter 1—proof that

Java 7 does indeed eat its own dog food!

TIP The combination of try-with-resources (from chapter 1) and the new
APIs in NIO.2 make for very safe I/O programming, probably for the first time
in Java!

We expect that you’ll most likely be wanting to use the new file I/O capabilities, so

we’ll cover that in the greatest detail. You’ll begin by learning about the new filesystem

abstraction, Path, and its supporting classes. Building on top of Path, you’ll work

through common filesystem operations such as copying and moving files.

 We’ll also give you an introduction to asynchronous I/O and look at a filesystem-

based example. Lastly we’ll discuss the amalgamation of Socket and Channel func-

tionality and what that means for developers of network applications. First, though,

we’ll look at how NIO.2 came about.

2.1 Java I/O—a history

To truly appreciate the design of the NIO.2 APIs (and to gain insight into how they’re

meant to be used), the well-grounded Java developer should understand the history of

Java I/O. But we completely understand that you may want to get to the code! In that

case, you should jump straight to section 2.2.

 If you find some of the API usage particularly elegant or perhaps a little odd, this

section will help you see NIO.2 from the API designer’s mind. This is Java’s third major

I/O implementation, so let’s look over the history of I/O support in Java to see how

NIO.2 came about.

 One of the reasons Java is so popular is its rich library support, which provides

powerful and concise APIs to solve most of your programming needs. But experienced

Java developers know that there are a few areas in which older versions of Java weren’t

quite up to scratch. One of the biggest headaches for developers has been Java’s

input/output (I/O) APIs.

2.1.1 Java 1.0 to 1.3

With the earliest versions of Java (1.0-1.3), there was a lack of comprehensive I/O sup-

port. Namely, developers faced the following problems when developing applications

that required I/O support:

■ There was no concept of buffers or channel abstractions for data, meaning lots

of detailed low-level programming for developers.

■ I/O operations would get blocked, limiting scalability.

■ There was limited character set encoding support, leading to a plethora of

hand-coded solutions to support certain types of hardware.

■ There was no regular expression support, making data manipulation difficult.

23Java I/O—a history

Basically, Java lacked support for nonblocking I/O, so developers struggled to write

scalable I/O solutions. We believe that this played a part in holding back Java from

heavy use in server-side development until the release of Java 1.4.

2.1.2 Java 1.4 and NIO

In order to solve these problems, Java began to implement nonblocking I/O support,

as well as other I/O features, to help developers deliver faster, more reliable I/O solu-

tions. There have been two major advancements:

■ The introduction of nonblocking I/O as part of Java 1.4

■ An overhaul of nonblocking I/O as part of Java 7

Under the guise of JSR-51, nonblocking input/output (NIO) was added to Java when

version 1.4 was released in 2002. The following broad feature set was added at that

time, turning Java into an attractive language to use for server-side development:

■ Buffer and channel abstraction layers for I/O operations

■ The ability to encode and decode character sets

■ An interface that can map files to data held in memory

■ The capability to write nonblocking I/O

■ A new regular expression library based on the popular Perl implementation

NIO was definitely a great step forward, but Java developers still faced hardship when

programming I/O. In particular, the support for handling files and directories on a

filesystem was still inadequate. The java.io.File class, at the time, had some annoy-

ing limitations:

■ It did not deal with filenames consistently across all platforms.3

■ It failed to have a unified model for file attributes (for example, modeling

read/write access).

■ It was difficult to traverse directories.

■ It didn’t allow you to use platform- or OS-specific features.4

■ It didn’t support nonblocking operations for filesystems.5

Perl—the king of regular expressions

The Perl programming language is the undisputed king of regular expression support.
In fact, its design and implementation is so good that several programming languages
(including Java) have pretty much copied Perl’s syntax and semantics. If you’re a curi-
ous language lover, visit http://www.perl.org/ to see what Perl is all about.

3 This is an area that some critics of Java would say breaks the famous “Write once, run anywhere” slogan.
4 Access to the symbolic linking mechanism on Linux/UNIX operating systems is the common request here.
5 Nonblocking operations for network sockets did have support in Java 1.4.

http://www.perl.org/

24 CHAPTER 2 New I/O

2.1.3 Introducing NIO.2

JSR-203 (led by Alan Bateman) was formed to address the preceding limitations as

well as to provide support for some of the new I/O paradigms in modern hardware

and software. JSR-203 has become what we now know as the NIO.2 API in Java 7. It had

three major goals, which are detailed in JSR-203, section 2.1 (http://jcp.org/en/jsr/

detail?id=203):

1 A new filesystem interface that supports bulk access to file attributes, escape to

filesystem-specific APIs, and a service-provider interface for pluggable filesystem

implementations.

2 An API for asynchronous (as opposed to polled, nonblocking) I/O operations

on both sockets and files.

3 The completion of the socket-channel functionality defined in JSR-51, including the

addition of support for binding, option configuration, and multicast datagrams.

Let’s start with the fundamentals of the new filesystem support with Path and friends.

2.2 Path—a foundation of file-based I/O

Path is one of the key classes you need to master for file-based I/O under NIO.2. A Path

typically represents a location in the filesystem, such as C:\workspace\java7developer (a

directory in the MS Windows filesystem) or /usr/bin/zip (the location of the zip util-

ity in a *nix filesystem). If you gain a thorough understanding of how to create and

manipulate paths, you’ll be able to navigate any type of filesystem, including such file-

systems as a zip archive.

 Figure 2.1 (based on the layout of the source code for this book) provides a

refresher on several filesystem concepts:

■ A directory tree

■ The root of a path

■ An absolute path

■ A relative path

We talk about absolute and relative paths because you need to think about where loca-

tions in the filesystem are in relation to where your application is running from. For

example, your application might be running from the /java7developer/src/test direc-

tory and you have code that reads filenames from the /java7developer/src/main dir-

ectory. To travel to /java7developer/src/main, you could use a relative path of ../main.

 But what if your application was running from /java7developer/src/test/java/

com/java7developer? Using the relative path of ../main would not take you to

the directory you wanted to get to (it would take you to the nonexistent directory of

/java7developer/src/test/java/com/main). Instead, you’d have to think about using

an absolute path, such as /java7developer/src/main.

 The converse case is also true; your application might consistently run from the

same place (say from the target directory in figure 2.1). But the root of the directory

http://jcp.org/en/jsr/detail?id=203
http://jcp.org/en/jsr/detail?id=203

25Path—a foundation of file-based I/O

tree might change (say from /java7developer to D:\workspace\j7d). In that case, you

can’t rely on an absolute path—you’ll need to use relative paths to reliably move to

the locations you need to get to.

 A Path in NIO.2 is an abstract construct. You can create (and work with) a Path that

isn’t immediately bound to a corresponding physical location. Although this may

seem counterintuitive, it makes a lot of sense for several use cases. For example, you

might want to create a Path that represents the location of a new file that you’re about

to create. That file doesn’t exist until you use the Files.createFile(Path target)6

method. If you had tried to read the contents of that file represented by the Path before

6 You’ll meet this method in the Files section soon!

Figure 2.1 Directory tree illustrating the root,

absolute path, and relative path concepts

26 CHAPTER 2 New I/O

it was created, you’d get an IOException. The same logic applies if you were to specify

a Path that didn’t exist and tried to read from it using a method such as Files

.readAllBytes(Path). In short, the JVM only binds a Path to the physical location

at runtime.

WARNING Be careful when writing filesystem-specific code. Creating a Path of
C:\workspace\java7developer, then trying to read from it, will only work for
computers that have the C:\workspace\java7developer location on their filesys-
tem. Always ensure that your logic and exception handling covers the case
where your code might run on a different filesystem, or a filesystem that could
have had its structure altered. One of the authors forgot this in the past, caus-
ing an entire series of hard disks to fail across his university CS department!7

It’s worth repeating that NIO.2 has a definite split between the concept of a location

(represented by Path) and the manipulation of the physical filesystem (for example,

copying a file), which is generally carried out by the Files helper class.

 The Path class is described in further detail (along with some other classes you’ll

meet in this section) in table 2.1.

Remember that a Path doesn’t have to represent a real file or directory. You can

manipulate a Path to your heart’s content, and use the Files functionality to check

whether the file actually exists and to perform work on it.

TIP Path isn’t limited to traditional filesystems. It can also cover filesystems
such as a zip or jar filesystem.

Let’s explore the Path class by performing a few simple tasks:

■ Creating a Path

■ Retrieving information about a Path

7 We won’t mention any names, but you’re welcome to try to figure out this whodunit.

Table 2.1 Key foundation classes for learning file I/O

Class Description

Path The Path class includes methods that can be used to obtain information about the

path, to access elements of the path, to convert the path to other forms, or to

extract portions of a path. There are also methods for matching the path string and

for removing redundancies in a path.

Paths A utility class that provides helper methods to return a path, such as

get(String first, String... more) and get(URI uri).

FileSystem The class that interfaces with the filesystem, whether that be the default filesystem

or an alternative filesystem retrieved by its uniform resource identifier (URI).

FileSystems A utility class that provides various methods, such as one that returns the default

filesystem, FileSystems.getDefault().

27Path—a foundation of file-based I/O

■ Removing redundancies from a Path

■ Converting a Path

■ Joining two Paths, creating a Path between two Paths, and comparing two Paths

We’ll begin by creating a Path to represent a location in a filesystem.

2.2.1 Creating a Path

Creating a Path is trivial. The quickest way to do so is to call the Paths.get(String

first, String... more) method. The second variable isn’t normally used, it’s simply

a way of joining additional strings to form the Path string.

TIP You’ll notice that in the NIO.2 APIs, the only checked exception thrown
by the various methods in Path or Paths is an IOException. We think this aids
the goal of simplicity, but it can obscure the underlying problem at times, and
you may need to write extra exception handling if you want to deal with one
of the explicit subclasses of IOException.

Let’s use the Paths.get(String first) method to create an absolute Path for the

useful file-compressing utility, zip, in the /usr/bin/ directory:

Path listing = Paths.get("/usr/bin/zip");

This Paths.get("/usr/bin/zip") call is equivalent to calling the following lon-

ger sequence:

Path listing = FileSystems.getDefault().getPath("/usr/bin/zip");

TIP You can use a relative path when creating a Path. For example, your pro-
gram might be running from the /opt directory, and to create a Path to /usr/
bin/zip you might use ../usr/bin/zip. That takes you one directory up from /opt
(which takes you to /) and then to /usr/bin/zip. It’s easy to convert this rela-
tive path to an absolute path by calling the toAbsolutePath() method, like
this: listing.toAbsolutePath().

You can interrogate the Path for information, such as the parent of that Path, its file-

name (assuming one exists), and more.

2.2.2 Retrieving information from a Path

The Path class has a group of methods that return useful information about the path

that you’re dealing with. The following code listing creates a Path for the useful zip

utility located in /usr/bin and prints useful information, including its root Path, and

its parent Path. Assuming you’re running an OS with the zip utility located in /usr/

bin, you should expect to see the following output.

File Name [zip]
Number of Name Elements in the Path [3]
Parent Path [/usr/bin]
Root of Path [/]
Subpath from Root, 2 elements deep [usr/bin]

28 CHAPTER 2 New I/O

When you run this listing on your own machine, the results will depend on what OS

you have and from where you’re running the code listing.

import java.nio.file.Path;
import java.nio.file.Paths;

public class Listing_2_1 {

 public static void main(String[] args) {
 Path listing = Paths.get("/usr/bin/zip");
 System.out.println("File Name [" +
 listing.getFileName() + "]");
 System.out.println("Number of Name Elements
 in the Path [" +
 listing.getNameCount() + "]");
 System.out.println("Parent Path [" +
 listing.getParent() + "]");
 System.out.println("Root of Path [" +
 listing.getRoot() + "]");
 System.out.println("Subpath from Root,
 2 elements deep [" +
 listing.subpath(0, 2) + "]");

 }
}

After creating the Path for /usr/bin/zip, you can investigate how many elements

make up its Path (in this case, the number of directories) B. It’s always useful to know

where your Path is relative to its parent Path and the root. You can also pick out a sub-

path by specifying starting and ending indexes. In this case, you’re retrieving the subpath

from root (0) to the second element in the Path (2) c.

 Using these methods will be invaluable when you’re first learning the NIO.2 file

APIs because you can use them to log the results of manipulating paths.

2.2.3 Removing redundancies

When writing utility programs (such as a properties file analyzer) you might get

passed a Path that can contain elements such as one or two periods:

■ . represents this directory

■ .. represents the parent directory

Let’s assume your application is running from /java7developer/src/main/java/

com/java7developer/chapter2/ (see figure 2.1). You’re in the same directory as

Listing_2_1.java, so if you were passed in a Path of ./Listing_2.1.java, the ./ part

(which is effectively the directory you’re running in) is irrelevant. In this case, the

shorter Path of Listing_2_1.java would be sufficient.

 Other types of redundancy can also occur when evaluating a Path, such as a sym-

bolic link (which we’ll cover in section 2.4.3). For example, suppose you’re on a *nix

OS and you’re looking for information on a log file called log1.txt under a /usr/logs

Listing 2.1 Retrieving information from a Path

Create
absolute Path

Get
filename

Get number of
name elements

b

Get Path
information

c

29Path—a foundation of file-based I/O

directory. But that /usr/logs directory is in fact a symbolic link to /application/logs,

the real location of the log file. Because you want to know the real location, you’ll want

to remove the redundant symbolic information.

 All of these types of redundancy can result in a Path not leading to the file location

you think it’s pointing to.

 With Java 7, there are a couple of helper methods you can use to clarify what

your Path really is. First, you can remove redundant information from a Path by

using its normalize() method. The following snippet would return the Path of

Listing_2_1.java, stripping out the redundant notation that indicates it’s in the same

directory (the ./ part).

Path normalizedPath = Paths.get("./Listing_2_1.java").normalize();

There is also a powerful toRealPath() method that combines the functionality of the

toAbsolutePath() and normalize() methods and detects and follows symbolic links.

 Let’s go back to the example where you’re on a *nix OS and you have a log file called

log1.txt under a /usr/logs directory, which is in fact a symbolic link to /application/logs.

By using toRealPath(), you’d get the real Path of /application/logs/log1.txt.

Path realPath = Paths.get("/usr/logs/log1.txt").toRealPath();

The last feature of the Path API that we’ll cover is manipulating multiple Paths in

order to compare them, find the Path between them, and more.

2.2.4 Converting Paths

Utility programs are the most common use case for converting paths. For example,

you might be asked to compare where files are in relation to each other so that you

know that the structure of your source code directory tree meets the coding stan-

dards. Or you could be passed a variety of Path arguments from the shell script exe-

cuting your program, and you need to turn those into a sensible Path. In NIO.2 you

can easily join Paths, create a Path between two other Paths, and compare Paths

against each other.

 The following snippet demonstrates joining two Paths, uat and conf/applica-

tion.properties, via the resolve method in order to represent the full Path of /uat/

conf/application.properties.

Path prefix = Paths.get("/uat/");
Path completePath = prefix.resolve("conf/application.properties");

To retrieve the Path between two other Paths, you use the relativize(Path) method.

The following code snippet calculates the Path to the configuration directory from

the logging directory.

String logging = args[0];
String configuration = args[1];
Path logDir = Paths.get(logging);
Path confDir = Paths.get(configuration);
Path pathToConfDir = logDir.relativize(confDir);

30 CHAPTER 2 New I/O

As you’d expect, you can use startsWith(Path prefix) and endsWith(Path suffix)

as well as the full equals(Path path) equality comparison to compare paths.

 Now that you’re comfortable using the Path class, what about all of that existing

pre-Java 7 code that you have? The NIO.2 team has thought about this backward com-

patibility issue and added a couple of new API features to ensure interoperability

between the new Path-based I/O and previous versions of Java.

2.2.5 NIO.2 Path and Java’s existing File class

The classes in the new filesystem API can be used as a complete replacement for the

old java.io.File-based API. But it won’t be uncommon for you to have to interact

with large amounts of legacy code that uses the older java.io.File-based I/O. Java 7

introduces two new methods:

■ A new toPath() method on the existing java.io.File class, which immedi-

ately converts an existing File to the newer Path construct.

■ A toFile() method on the Path class, which immediately converts an existing

Path into a File.

The following code snippet quickly demonstrates this capability.

File file = new File("../Listing_2_1.java");
Path listing = file.toPath();
listing.toAbsolutePath();
file = listing.toFile();

That completes our exploration of the Path class. Next up, we’ll visit Java 7’s support

for dealing with directories, and directory trees in particular.

2.3 Dealing with directories and directory trees

As you’ll likely have surmised from reading section 2.2 on paths, a directory is just a

Path with special attributes. A compelling new feature in Java 7 is the ability to navi-

gate directories. The addition of the new java.nio.file.DirectoryStream<T> inter-

face and its implementing classes allow you to perform the following broad functions:

■ Iterate over entries in a directory; for example, to find files in a directory

■ Filter entries in a directory using glob expressions (such as *Foobar*) and

MIME-based content detection (such as text/xml files)

■ Perform recursive move, copy, and delete operations via the walkFileTree method

In this section, we’ll cover the two most common use cases: finding files in a single

directory and then performing that same task over a directory tree. Let’s begin with

the simplest case—finding arbitrary files in a directory.

2.3.1 Finding files in a directory

First, we’ll cover a simple example of using a pattern-matching filter to list all .properties

files in the java7developer project directory. Take a look at the following listing.

31Dealing with directories and directory trees

Path dir = Paths.get("C:\\workspace\\java7developer");

try(DirectoryStream<Path> stream
 = Files.newDirectoryStream(dir, "*.properties")) {
 for (Path entry: stream)
 {
 System.out.println(entry.getFileName());
 }
}
catch (IOException e)
{
 System.out.println(e.getMessage());
}

You start by declaring the familiar Paths.get(String) call B. The key part comes

with the call to Files.newDirectoryStream(Path directory, String patternMatch)

c, which returns a DirectoryStream filtered by files ending in .properties. Finally,

you print each entry d.

 The pattern matching that’s used is called a glob pattern match, which is similar to,

but has some differences from, the sorts of Perl-like regular expression pattern match-

ing you’re used to. See appendix B for complete details on how you can apply glob

pattern matching.

 Listing 2.2 shows the power of the new API when dealing with a single directory.

But what if you need to recursively filter across multiple directories?

2.3.2 Walking the directory tree

Java 7 introduces support for navigating a full directory tree. This means you can eas-

ily search for files in a directory tree (searching through subfolders) and perform

actions on them as you wish. You may want to have a utility class that deletes all of the

.class files under the /opt/workspace/java directory on your development box as a

cleanup step for your build.

 Walking the directory tree is a new feature in Java 7, and you’ll need to know a

number of interfaces and implementation details in order to use it correctly. The key

method to use for walking the directory tree is

Files.walkFileTree(Path startingDir, FileVisitor<? super Path> visitor);

Providing the startingDir is easy enough, but in order to provide an implementation

of the FileVisitor interface (the tricky-looking FileVisitor<? super Path> visitor

parameter) it gets a bit trickier, because the FileVisitor interface forces you to

implement at least the following five methods (where T is typically Path):

■ FileVisitResult preVisitDirectory(T dir)

■ FileVisitResult preVisitDirectoryFailed(T dir, IOException exc)

■ FileVisitResult visitFile(T file, BasicFileAttributes attrs)

■ FileVisitResult visitFileFailed(T file, IOException exc)

■ FileVisitResult postVisitDirectory(T dir, IOException exc)

Listing 2.2 Listing properties files in a directory

Set starting pathb

Declare filtering
streamc

List each
.properties
file and print

d

32 CHAPTER 2 New I/O

Looks like a good deal of work, right? Luckily, the Java 7 API designers have supplied a

default implementation, the SimpleFileVisitor<T> class.

 We’ll extend and alter the behavior of listing 2.2, which listed the .properties files

in the C:\workspace\java7developer directory. The following listing lists .java source

files from all of the directories that sit both in and underneath C:\workspace\

java7developer\src. This listing demonstrates the use of the Files.walkFileTree

method with the default SimpleFileVisitor implementation, enhanced with a spe-

cific implementation of the visitFile method.

public class Find
{

 public static void main(String[] args) throws IOException
 {
 Path startingDir =
 Paths.get("C:\\workspace\\java7developer\\src");
 Files.walkFileTree(startingDir,
 new FindJavaVisitor());
 }

 private static class FindJavaVisitor
 extends SimpleFileVisitor<Path>
 {

 @Override
 public FileVisitResult
 visitFile(Path file, BasicFileAttributes attrs)
 {
 if (file.toString().endsWith(".java")) {
 System.out.println(file.getFileName());
 }
 return FileVisitResult.CONTINUE;
 }
 }
}

You start by calling the Files.walkFileTree method B. The key point to take in here

is that you’re passing in FindJavaVisitor, which extends the default SimpleFile-

Visitor implementation c. You want SimpleFileVisitor to do most of the work for

you, traversing the directories, and so on. The only code you have to write is when you

override the visitFile(Path, BasicFileAttributes) method d, in which we you write

simple Java to see if a file ends with .java and to echo it to stdout if it does.8

 Other use cases could be to recursively move, copy, delete, or otherwise modify

files. In most cases, you’ll only need to extend SimpleFileVisitor, but the flexibility

exists in the API if you want to implement your own complete FileVisitor.

Listing 2.3 Listing Java source code in subdirectories

8 You’ll learn about BasicFileAttributes in section 2.4, so just file that one away for now.

Set starting
directory

Call to
walkFileTree

b

Extend SimpleFile-
Visitor<Path>c

Override
visitFile
methodd

33Filesystem I/O with NIO.2

NOTE The walkFileTree method doesn’t automatically follow symbolic
links, making operations like recursion safer. If you do need to follow sym-
bolic links, you’ll need to detect that attribute (as discussed in section 2.4.3)
and act on it accordingly.

Now that you’re comfortable with paths and directory trees, it’s time to move on from

the manipulation of locations to performing operations on the actual filesystem itself,

using the new Files class and friends.

2.4 Filesystem I/O with NIO.2

Support for performing operations on the filesystem, such as moving files, changing

file attributes, and working with file contents, has been improved under NIO.2. The

main class that provides this support is the Files class.

Files is described in further detail in table 2.2, along with one other important

class you’ll meet in this section (WatchService).

In this section, you’ll learn about performing tasks with files and the filesystem:

■ Creating and deleting files

■ Moving, copying, renaming, and deleting files

■ Reading and writing file attributes

■ Reading from files and writing to them

■ Dealing with symbolic links

■ Using the WatchService for file change notification

■ Using SeekableByteChannel, an enhanced byte channel where you can specify

position and size

The scale of these changes may seem daunting, but the API is well designed with lots

of helper methods that hide the layers of abstraction and allow you to work with file-

systems quickly and easily.

WARNING Although the NIO.2 APIs offer much improved support for atomic
operations, it still pays to code defensively when dealing with a filesystem.
Even when an operation is midflight, it’s all too easy for a network share to
fail, a cup of coffee to be spilled on a server, or (in the case of an infamous
incident by one of the authors) the shutdown now command to be executed
on the wrong UNIX box. The API does throw RuntimeException from some of

Table 2.2 Key foundation classes for working with files

Class Description

Files The major utility class that contains all of the methods you need to easily copy,

move, delete, or otherwise manipulate files.

WatchService The core class used to keep an eye on files, directories, and whether or not they

have changed.

34 CHAPTER 2 New I/O

its methods, but some exceptional cases can be mitigated by helper methods
such as Files.exists(Path).

A great way to learn any new API is to read and write code in it. Let’s move on to some

real-world use cases, starting with the basic creation and deletion of files.

2.4.1 Creating and deleting files

By using the simple helper methods in the Files class, you can create files and delete

them easily as well. Of course, creating and deleting isn’t always as simple as the

default case, so let’s work through a few of the extra options, such as setting the read/

write/execute security permissions on a newly created file.

TIP If you’re running the code snippets in this section, replace the actual
paths with ones that match your filesystem!

The following code snippet shows basic file creation, using the Files.create-

File(Path target) method. Assuming your OS has a directory at D:\\Backup, then a

file MyStuff.txt will be created there.

Path target = Paths.get("D:\\Backup\\MyStuff.txt");
Path file = Files.createFile(target);

More often than not, you’ll want to specify some FileAttributes on that file for secu-

rity purposes as well to define whether the file is being created for the purpose of

reading, writing, executing, or some combination of the three. As this is filesystem-

dependent, you need to utilize a filesystem-specific file permissions class.

 An example of setting read/write permissions for the owner, users in the owners

group, and all users in a POSIX filesystem9 is as follows. Basically this means allowing

all users to read from and write to the D:\\Backup\\MyStuff.txt file that’s about to

be created.

Path target = Paths.get("D:\\Backup\\MyStuff.txt");
Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-rw-rw-");
FileAttribute<Set<PosixFilePermission>> attr =
 PosixFilePermissions.asFileAttribute(perms);
Files.createFile(target, attr);

The java.nio.file.attribute package contains a list of provided *FilePermission

classes. File attribute support is also covered in further detail in section 2.4.3.

WARNING When creating files with specific permissions, be aware of any
umask restrictions or restrictive permissions that the parent directory of that
file is enforcing. For example, you may find that even though you specify
rw-rw-rw for your new file, it’s actually created as rw-r--r-- due to direc-
tory masking.

9 Portable Operating System Interface (for UNIX)—A base standard that many OSs support.

35Filesystem I/O with NIO.2

Deleting a file is a bit simpler and is performed by the Files.delete(Path) method.

The following snippet deletes the file at D:\\Backup\\MyStuff.txt that you just created.

Of course, the user that your Java process is running under will need to have permis-

sion to do this!

Path target = Paths.get("D:\\Backup\\MyStuff.txt");
Files.delete(target);

Next up, you’ll learn to copy and move files in a filesystem.

2.4.2 Copying and moving files

By using the simple helper methods in the Files class, you can perform your copy

and move operations with ease.

 The following code snippet showcases a basic copy, using the Files.copy(Path

source, Path target) method.

Path source = Paths.get("C:\\My Documents\\Stuff.txt");
Path target = Paths.get("D:\\Backup\\MyStuff.txt");
Files.copy(source, target);

More often than not, you’ll want to specify options with the copy operation. The next

example uses an overwrite (replace existing) option.

import static java.nio.file.StandardCopyOption.*;

Path source = Paths.get("C:\\My Documents\\Stuff.txt");
Path target = Paths.get("D:\\Backup\\MyStuff.txt");
Files.copy(source, target, REPLACE_EXISTING);

Other copy options include COPY_ATTRIBUTES (copies over the file attributes) and

ATOMIC_MOVE (ensures that both sides of a move operation succeed or the operation

gets rolled back).

 The move operation is very similar to the copy operation and is executed using the

atomic Files.move(Path source, Path target) method. Again, you typically want

copy options to go with that move, so you can use the Files.move(Path source, Path

target, CopyOptions...) method (note the use of varargs).

 In this case, we want to keep the attributes of the source file when we move it, as

well as overwrite the target file (if it exists).

import static java.nio.file.StandardCopyOption.*;

Path source = Paths.get("C:\\My Documents\\Stuff.txt");
Path target = Paths.get("D:\\Backup\\MyStuff.txt");

Files.move(source, target, REPLACE_EXISTING, COPY_ATTRIBUTES);

Now that you can create, delete, copy, and move files, it’s time to take a closer look at

Java 7’s support for file attributes.

36 CHAPTER 2 New I/O

2.4.3 File attributes

File attributes control what can be done to a file by whom. The classic what permissions

include whether you can do one or more of reading from, writing to, or executing a

file. The classic whom permissions include owner, group, and all.

 This section will start by covering the group of basic file attributes, such as when a

file was last accessed, whether it’s a directory or a symbolic link, and so on. The second

part of this section will cover file attribute support for specific filesystems, which is

tricky because different filesystems have their own set of attributes and their own

interpretation of what those attributes mean.

 Let’s start with the basic file attribute support.

BASIC FILE ATTRIBUTE SUPPORT

Although there aren’t many file attributes that are truly universal, there is a group that

most filesystems support. The BasicFileAttributes interface defines this common

set, but you actually use the Files utility class to answer various questions about a file,

such as the following:

■ What was the last modified time?

■ What is its size?

■ Is it a symbolic link?

■ Is it a directory?

Listing 2.4 demonstrates the methods on the Files class for gathering these basic file

attributes. The listing prints information about /usr/bin/zip and you should see out-

put similar to the following:

/usr/bin/zip
2011-07-20T16:50:18Z
351872
false
false
{lastModifiedTime=2011-07-20T16:50:18Z,
fileKey=(dev=e000002,ino=30871217), isDirectory=false,
lastAccessTime=2011-06-13T23:31:11Z, isOther=false,
isSymbolicLink=false, isRegularFile=true,
creationTime=2011-07-20T16:50:18Z, size=351872}

Note that all of the attributes are shown with the call to Files.readAttributes(Path

path, Stringattributes, LinkOption... options).

try
{
 Path zip = Paths.get("/usr/bin/zip");
 System.out.println(Files.getLastModifiedTime(zip));
 System.out.println(Files.size(zip));
 System.out.println(Files.isSymbolicLink(zip));
 System.out.println(Files.isDirectory(zip));

Listing 2.4 Universal file attributes

Get Path

Print
attributes

37Filesystem I/O with NIO.2

 System.out.println(Files.readAttributes(zip, "*"));
}
catch (IOException ex)
{
 System.out.println("Exception [" + ex.getMessage() + "]");
}

There is further common file attribute information that can be gathered from meth-

ods on the Files class. This includes such information about the owner of the file,

whether it’s a symbolic link, and more. See the Javadoc for the Files class for a full

listing of these helper methods.

 Java 7 also provides support for viewing and manipulating file attributes across spe-

cific filesystems.

SPECIFIC FILE ATTRIBUTE SUPPORT

You’ve already seen some of Java 7’s support with the FileAttribute interface and

the PosixFilePermissions class when you created a file in section 2.4.1. In order to

support filesystem-specific file attributes, Java 7 allows filesystem providers to imple-

ment the FileAttributeView and BasicFileAttributes interfaces.

WARNING We’ve said this before, but it’s worth repeating. Be careful when
writing filesystem-specific code. Always ensure that your logic and exception
handling covers the case where your code might run on a different filesystem.

Let’s look at an example where you want to use Java 7 to ensure that the correct file

permissions have been set on a particular file. Figure 2.2 shows a directory listing for

the home directory of the user Admin. Note the special .profile hidden file, which has

the write permission set for the Admin user (but not anyone else), yet allows all others

to read that file.

 In the following code listing, you’re going to enforce that the file permissions on

the .profile file are set correctly, in accordance with figure 2.2. The user (Admin)

wishes to allow all users to have permission to read that file, but only Admin can write

to it. By using the specific POSIX PosixFilePermission and PosixFileAttributes

classes, you can ensure that the permissions (rw-r--r--) are correct.

Perform
bulk read

Figure 2.2 Directory listing for the home directory of the Admin user, showing the .profile permissions

38 CHAPTER 2 New I/O

import static java.nio.file.attribute.PosixFilePermission.*;

try
{
 Path profile = Paths.get("/user/Admin/.profile");

 PosixFileAttributes attrs =
 Files.readAttributes(profile,
 PosixFileAttributes.class);

 Set<PosixFilePermission> posixPermissions =
 attrs.permissions();
 posixPermissions.clear();

 String owner = attrs.owner().getName();
 String perms =
 PosixFilePermissions.toString(posixPermissions);
 System.out.format("%s %s%n", owner, perms);

 posixPermissions.add(OWNER_READ);
 posixPermissions.add(GROUP_READ);
 posixPermissions.add(OTHER_READ);
 posixPermissions.add(OWNER_WRITE);
 Files.setPosixFilePermissions(profile, posixPermissions);
}
catch(IOException e)
{
 System.out.println(e.getMessage());
}

You begin by importing PosixFilePermission constants (as well as other imports not

shown), then get the Path for the .profile file. The Files class has a helpful utility

method that allows you to read the filesystem-specific attributes, which in this case is

PosixFileAttributes B. You can then gain access to the PosixFilePermission c.

After clearing the existing permissions d, you then add the new permissions to the

file, again via a helpful Files utility method e.

 You may have noticed that the PosixFilePermission is an enum and therefore

doesn’t implement the FileAttributeView interface. So why is there no PosixFile-

AttributeView implementation being used? Well, actually there is! But the Files

helper class is hiding this abstraction from you by allowing you to read the file attri-

butes directly (via the readAttributes method) and to set the permissions directly

(via the setPosixFilePermissions method).

 Apart from basic attributes, Java 7 also has an extensible system for supporting

special OS features. Unfortunately, we can’t cover every special case in this chapter,

but we’ll take you through one example of this extendible system—Java 7’s symbolic

link support.

SYMBOLIC LINKS

A symbolic link can be thought of as a pointer to another file or directory, and in most

cases they’re treated transparently. For example, changing directory to a symbolic link

Listing 2.5 File attribute support in Java 7

Get attribute
view

b

Read file
permissions

c

Clear
permissionsd

Log
information

Set new
permissions

e

39Filesystem I/O with NIO.2

will put you in the directory that the symbolic link is pointing to. But when you’re writ-

ing software, such as a backup utility or deployment script, you need to be able to

make sensible decisions about whether you should follow (or not) a symbolic link,

and NIO.2 allows for this.

 Let’s reuse an example from section 2.2.3. You’re on a *nix OS, and you’re looking

for information about a log file called log1.txt under the /usr/logs directory. But that

/usr/logs directory is in fact a symbolic link (a pointer) to the /application/logs

directory, which is the real location of the log file.

 Symbolic links are utilized in a host of operating systems, including (but not lim-

ited to) UNIX, Linux, Windows 7, and Mac OS X. Java 7’s support for symbolic links

follows the semantics of the UNIX operating system implementation.

 The following listing checks to see if the Path for a Java installation in /opt/plat-

form is a symbolic link before trying to read its basic file attributes; we want to read

the attributes for the real file location.

Path file = Paths.get("/opt/platform/java");
try
{
 if(Files.isSymbolicLink(file))
 {
 file = Files.readSymbolicLink(file);
 }
 Files.readAttributes(file, BasicFileAttributes.class);
}
catch (IOException e)
{
 System.out.println(e.getMessage());
}

The Files class provides an isSymbolicLink(Path) method to check for a symbolic

link B. It has a helper method to return the real Path that’s the target of the sym-

bolic link c, so you can then read the correct file attributes d.

 By default, symbolic links are followed in the NIO.2 API. In order to not follow a

symbolic link, you need to apply LinkOption.NOFOLLOW_LINKS. This can be applied

with several method calls. If you wanted to read the basic file attributes of the symbolic

link itself, you’d call

Files.readAttributes(target,
 BasicFileAttributes.class,
 LinkOption.NOFOLLOW_LINKS);

Symbolic links are the most popular example of specific filesystem support in Java 7,

and the API design allows for future filesystem-specific features to be added (such as

that super-secret quantum filesystem you’ve been working on).

 Now that you’ve had practice at manipulating files, you’re ready to tackle manipu-

lating their contents.

Listing 2.6 Exploring symbolic links

Check
symbolic link

b

Read
symbolic
link

c

Read file
attributesd

40 CHAPTER 2 New I/O

2.4.4 Reading and writing data quickly

One of the goals for Java 7 is to provide as many helper methods as possible for read-

ing from files, as well as for writing to them. Of course, these new methods use Path

locations, but interoperability with the old stream-based classes in the java.io pack-

age is also taken care of. The net result is that you can perform tasks like reading all

lines from a file or reading all bytes from a file with a single method invocation.

 This section will take you through the process of opening files (with the options that

go with that) and through a group of small examples that cover common read/write use

cases. Let’s begin with the different ways in which you can open a file for processing.

OPENING FILES

Java 7 allows you to directly open files for processing with buffered readers and writers

or (for compatibility with older Java I/O code) input and output streams. The follow-

ing snippet demonstrates how you’d open a file (using the Files.newBufferedReader

method) for reading lines in Java 7.

Path logFile = Paths.get("/tmp/app.log");
try (BufferedReader reader =
 Files.newBufferedReader(logFile, StandardCharsets.UTF_8)) {
 String line;
 while ((line = reader.readLine()) != null) {
 ...
 }
}

Opening a file for writing is just as easy.

Path logFile = Paths.get("/tmp/app.log");

try (BufferedWriter writer =
 Files.newBufferedWrite(logFile, StandardCharsets.UTF_8,
 StandardOpenOption.WRITE)) {
 writer.write("Hello World!");
 ..
}

Note the use of the StandardOpenOption.WRITE, which is one of several varargs Open-

Option options you can add. This ensures that the file has the correct permissions for

writing to. Other commonly used open options include READ and APPEND.

 Interoperability with InputStream and OutputStream are provided through special

Files.newInputStream(Path, OpenOption...) and Files.newOutputStream(Path,

OpenOption...) methods. This nicely bridges the gap between the old I/O based around

the java.io package and the new world of file I/O based around the java.nio package.

TIP Don’t forget that when you’re dealing with a String, you should always
know its character encoding. Forgetting to set the character encoding (via the
StandardCharsets class, for example, new String(byte[], StandardCharsets
.UTF_8)) can lead to unexpected character encoding issues further down
the line.

41Filesystem I/O with NIO.2

The previous code snippets show fairly typical code for reading from and writing to

files that you’d use with Java 6 and older versions today. This is still fairly laborious low-

level code, and Java 7 gives you some nice higher-level abstractions that avoid a lot of

unnecessary boilerplate code.

SIMPLIFYING READING AND WRITING

The Files helper class has a couple of helpful methods that perform the common

tasks of reading all of the lines in a file and reading all of the bytes in a file. This

means you no longer have to write the boilerplate code of having a while loop read

byte arrays of data into a buffer. The following snippet shows you how to call the

helper methods.

Path logFile = Paths.get("/tmp/app.log");
List<String> lines = Files.readAllLines(logFile, StandardCharsets.UTF_8);
byte[] bytes = Files.readAllBytes(logFile);

For certain software applications, the question of knowing when to read and when to

write comes up, especially with regards to properties files or logs. This is where the

new file change notification system can come in handy.

2.4.5 File change notification

Java 7 enables you to monitor a file or directory for changes through the java.nio

.file.WatchService class. This class uses client threads to keep an eye on registered

files or directories for changes, and will return an event when a change is detected.

This sort of event notification can be useful for security monitoring, refreshing data

from a properties file, and many other use cases. It’s ideal for replacing the (compara-

tively poorly performing) polling mechanisms that some applications use today.

 In the following listing, the WatchService is used to detect any changes to the

home directory of the user karianna and to print out that modification event to the con-

sole. As with many continuously polling loop designs, it’s always worth including a

lightweight shutdown mechanism.

import static java.nio.file.StandardWatchEventKinds.*;

try
{
 WatchService watcher =
 FileSystems.getDefault().newWatchService();

 Path dir =
 FileSystems.getDefault().getPath("/usr/karianna");

 WatchKey key = dir.register(watcher, ENTRY_MODIFY);

 while(!shutdown)
 {
 key = watcher.take();
 for (WatchEvent<?> event: key.pollEvents())

Listing 2.7 Using the WatchService

Watch for
modifications

b

Check shutdown flagc

Get next key
and its events

d

42 CHAPTER 2 New I/O

 {
 if (event.kind() == ENTRY_MODIFY)
 {
 System.out.println("Home dir changed!");
 }
 }
 key.reset();
 }
}
catch (IOException | InterruptedException e)
{
 System.out.println(e.getMessage());
}

After getting the default WatchService, you register a modification watch on the kar-

ianna home directory B. Then, in an endless loop (until the shutdown flag is

changed) c, the take() method on the WatchService waits until a WatchKey is avail-

able. As soon as a WatchKey is made available, the code polls that WatchKey for Watch-

Events d. If a WatchEvent is found of Kind ENTRY_MODIFY e, you communicate that

fact to the outside world. Lastly, you reset the key f so it’s ready for the next event.

 There are other kinds of events you can monitor, such as ENTRY_CREATE,

ENTRY_DELETE, and OVERFLOW (which can indicate that an event may have been lost

or discarded).

 Next up, we’ll move on to a very important new abstraction API for reading and

writing data—the asynchronous I/O—enabling SeekableByteChannel.

2.4.6 SeekableByteChannel

Java 7 introduces a SeekableByteChannel interface, which is designed to be extended

by implementations that give developers the ability to change the position and the size

of the byte channel. For example, you could have an application server with multiple

threads that accesses a byte channel attached to a large log file in order to parse the

log for a particular error code.

 The java.nio.channels.SeekableByteChannel interface has one implementing

class in the JDK, java.nio.channels.FileChannel. This class gives you the ability to

hold the current position of where you are when reading from, or writing to, a file.

For example, you might want to write code that reads the last 1000 characters of a log

file, or write some price data into a particular place inside a text file.

 The following snippet shows how you can use the new seekable aspects of the

FileChannel to read the last 1000 characters from a log file.

Path logFile = Paths.get("c:\\temp.log");
ByteBuffer buffer = ByteBuffer.allocate(1024);
FileChannel channel = FileChannel.open(logFile, StandardOpenOption.READ);
channel.read(buffer, channel.size() - 1000);

The new seekable capability of the FileChannel class should mean that developers can

be far more flexible in dealing with file contents. We expect to see some interesting

Check for
modificatione

Reset watch keyf

43Asynchronous I/O operations

open source projects come out of this for parallel access to large files, and, with exten-

sions to the interface, perhaps continuous streams of network data as well.

 The next major change in the NIO.2 API is the introduction of asynchronous I/O,

which gives you the ability to use multiple underlying threads when reading and writ-

ing files, sockets, and channels.

2.5 Asynchronous I/O operations

Another major new feature of NIO.2 is asynchronous capabilities for both socket-

and file-based I/O. Asynchronous I/O is simply a type of I/O processing that allows

other activity to take place before the reading and writing has finished. In practical

terms, it allows you to take advantage of the latest hardware and software advances,

such as multicore CPUs and OS socket- and file-handling support. Asynchronous I/O

is a vital performance and scalability feature for any language that wishes to remain

relevant on the server side and in the systems programming space. We believe that

this will be one of the major factors in extending Java’s lifespan as an important

server-side language.

 Consider the simple use case of writing 100 GB of data to a filesystem or network

socket. With previous versions of Java, you’d have to manually write multithreaded

code (using java.util.concurrent constructs) in order to write to multiple areas of

that file or socket at the same time. Nor was it easily possible to read from more than

one part of a file at a time. Again, unless you had some clever manual code, your main

thread was blocked when utilizing I/O, which meant having to wait for potentially

long I/O operations to complete before you could continue with your main work.

TIP If you haven’t worked with NIO channels in a while, this is probably a
good time to refresh your knowledge before continuing with this section.
There is a lack of modern titles in this area, so even though it’s slightly out of
date, we recommend Java NIO by Ron Hitchens (O’Reilly, 2002) as a good
place to start.

Java 7 has three new asynchronous channels that you can work with:

■ AsynchronousFileChannel—For file I/O

■ AsynchronousSocketChannel—For socket I/O, supports timeouts

■ AsynchronousServerSocketChannel—For asynchronous sockets accepting

connections

There are two main paradigms (styles) for utilizing the new asynchronous I/O APIs:

the Future paradigm and the Callback paradigm. Interestingly, these new asynchronous

APIs use some of the modern concurrency techniques discussed in chapter 4, so

you’re really getting a bit of a sneak preview!

 We’ll begin with the Future style of asynchronous file access. Hopefully it’s a con-

currency technique you’ve used before, but if not, don’t worry. The following section

covers it in enough detail for a developer new to this topic to understand it.

44 CHAPTER 2 New I/O

2.5.1 Future style

Future style is a term used by those who designed the NIO.2 APIs—it indicates the use

of the java.util.concurrent.Future interface. You’ll typically want a Future style of

asynchronous processing if you want your main thread of control to initiate the I/O

and then poll for the results of that I/O.

 The Future style uses the existing java.util.concurrent technique of declaring a

Future that will hold the result of your asynchronous operation. Crucially, this means

that your current thread isn’t halted by the potentially slow operation of performing

I/O. Instead, a separate thread initiates the I/O operation and returns a result when

it’s done. In the meantime, your main thread can continue to perform other tasks as

needed. Once those other tasks are completed, your main thread will then wait until

the I/O operation is completed before continuing. Figure 2.3 illustrates this process

being used to read a large file. (Listing 2.8 shows the code used in such a situation.)

 Typically you’ll use the Future get() method (with or without a timeout parameter)

to retrieve the result when that asynchronous I/O activity has completed. Let’s say that

you want to read 100,000 bytes from a file on disk (a relatively slow operation) as part of

some overall activity. With previous versions of Java, you had to wait until the read had

completed (unless you implemented a thread pool and worker threads using java.util

.concurrent building blocks, which is a nontrivial task). With Java 7 you can continue to

perform useful work in your main thread, as the following listing demonstrates.

Figure 2.3 Future style

asynchronous read

45Asynchronous I/O operations

try
{
 Path file = Paths.get("/usr/karianna/foobar.txt");

 AsynchronousFileChannel channel =
 AsynchronousFileChannel.open(file);

 ByteBuffer buffer = ByteBuffer.allocate(100_000);
 Future<Integer> result = channel.read(buffer, 0);

 while(!result.isDone())
 {
 ProfitCalculator.calculateTax();
 }

 Integer bytesRead = result.get();
 System.out.println("Bytes read [" + bytesRead + "]");
}
catch (IOException | ExecutionException | InterruptedException e)
{
 System.out.println(e.getMessage());
}

You begin by opening an AsynchronousFileChannel in order to read or write to

foobar.txt with a background thread B. The next step is for the I/O to proceed con-

currently with the thread that initiated it. This concurrent I/O process is used auto-

matically, because you’re using an AsynchronousFileChannel, utilizing a Future to

hold the result of that read c. While the read is happening, your main thread contin-

ues to perform useful work (such as calculating tax) d. Finally, when the useful work

is complete, you check the result of the read e.

 It’s important to notice that we artificially made sure the result would be finished

(by using isDone()). Normally the result would either be finished (and your main

thread would continue), or it would wait until the background I/O is complete.

 You may be wondering how this works behind the scenes. In short, the API/JVM

provides thread pools and channel groups to perform this work. Alternatively, you can

supply and configure your own. The details take some explaining, but they’re well cov-

ered in the official documentation, so we’ll use the text directly from the Javadoc for

AsynchronousFileChannel:

An AsynchronousFileChannel is associated with a thread pool to which

tasks are submitted to handle I/O events and dispatch to completion han-

dlers (that consume the results of I/O operations on the channel). The

completion handler for an I/O operation initiated on a channel is guaran-

teed to be invoked by one of the threads in the thread pool.

When an AsynchronousFileChannel is created without specifying a

thread pool then the channel is associated with a system-dependent and

default thread pool (that may be shared with other channels). The

default thread pool is configured by the system properties defined by the

AsynchronousChannelGroup class.

Listing 2.8 Asynchronous I/O—Future style

Open file
asynchronously

b

Start to read
100,000 bytes

c

Execute
other logic

d

Get
result

e

46 CHAPTER 2 New I/O

There is also an alternative technique known as Callback. Some developers find the

Callback style more comfortable to use, because it’s similar to event handling tech-

niques they have seen before in Swing, messaging, and other Java APIs.

2.5.2 Callback style

In contrast to the Future style, the Callback style uses a technique similar to event han-

dlers that you may be familiar with from Swing UI programming. The basic idea is that

the main thread will send a scout (the CompletionHandler) to the separate thread

performing the I/O operation. This scout will get the result of the I/O operation,

which triggers its own completed or failed method (which you override) and returns

back to the main thread.

 This style is typically used when you want to immediately act upon the success or

failure of an asynchronous event. For example, if you were reading financial data that

was mandatory for a profit-calculating business process, and that read failed, you’d

immediately want to execute rollback or exception handling.

 More formally, the java.nio.channels.CompletionHandler<V, A> interface (where

V is the result type and A is the attached object you’re getting the result from) is

invoked when the asynchronous I/O activity has completed. Its completed(V, A) and

failed(V, A) methods must then be implemented so that your program knows how

to behave when the asynchronous I/O operation has completed successfully or failed

for some reason. Figure 2.4 illustrates this process. (Listing 2.9 shows code that imple-

ments this.)

Figure 2.4 Callback style

asynchronous read

47Tidying up Socket-Channel functionality

In the following example, you once more read 100,000 bytes from foobar.txt, using

CompletionHandler<Integer, ByteBuffer> to declare your success or failure.

try
{
 Path file = Paths.get("/usr/karianna/foobar.txt");
 AsynchronousFileChannel channel =
 AsynchronousFileChannel.open(file);

 ByteBuffer buffer = ByteBuffer.allocate(100_000);

 channel.read(buffer, 0, buffer,
 new CompletionHandler<Integer, ByteBuffer>()
 {
 public void completed(Integer result,
 ByteBuffer attachment)
 {
 System.out.println("Bytes read [" + result + "]");
 }

 public void failed(Throwable exception, ByteBuffer attachment)
 {
 System.out.println(exception.getMessage());
 }
 });
}
catch (IOException e)
{
 System.out.println(e.getMessage());
}

The two code listings in this section were file-based, but the Future and Callback styles

of asynchronous access can also be applied to AsynchronousServerSocketChannel and

AsynchronousSocketChannel. This allows developers writing applications that deal with

network sockets, such as voice over IP, to write better-performing clients and servers.

 Next up is a series of small changes that unify sockets and channels, enabling you to

have a single point of contact in the API to manage your socket and channel interaction.

2.6 Tidying up Socket-Channel functionality

Software applications need greater access to networks than ever before. It seems that

before too long, even your most common household item will be networked in some

way (if it isn’t already!). With older versions of Java, the programming constructs of a

Socket and a Channel were not married up very well—it was awkward to fit the two

together. Java 7 makes life a little easier for developers working with channels and

sockets by introducing the concept of a NetworkChannel, which binds a Socket and a

Channel together.

 Writing low-level networking code is a reasonably specialized area. If you’re not

already working in this area, this section is definitely optional reading! But if you do

work in this area, this section will give you a brief overview of the new features.

Listing 2.9 Asynchronous I/O—Callback style

Open
asynchronous file

Read from
channel

Complete reading
callback

48 CHAPTER 2 New I/O

 We’ll begin by refreshing your memory of what roles channels and sockets play in

Java with their definitions from the Javadoc:

java.nio.channels package

Defines channels, which represent connections to entities that are capa-

ble of performing I/O operations, such as files and sockets; defines selec-

tors, for multiplexed, non-blocking I/O operations.

java.net.Socket class

This class implements client sockets (also called just “sockets”). A socket is

an endpoint for communication between two machines.

In older versions of Java, you’d indeed try to tie a channel to an implementation of

Socket in order to perform some sort of I/O operation, such as writing data to a TCP

port. But there were gaps between tying up a Channel and a Socket:

■ In older versions of Java, you had to mix channel and socket APIs in order to

manipulate socket options and to perform binds on sockets.

■ In older versions of Java, you couldn’t make use of platform-specific socket

behavior.

Let’s explore two areas of this “tidying up” effort with the new interface, Network-

Channel, and its subinterface, the MulticastChannel.

2.6.1 NetworkChannel

The new java.nio.channels.NetworkChannel interface represents a mapping of a

channel to a network socket. It defines a group of useful methods, such as methods to

see what socket options are available and to set new socket options on that channel.

The following listing highlights those utility methods by echoing out the supported

options of the internet socket address at port 3080, setting an IP Terms of Service, and

identifying the SO_KEEPALIVE option on that socket channel.

SelectorProvider provider = SelectorProvider.provider();
try
{
 NetworkChannel socketChannel =
 provider.openSocketChannel();
 SocketAddress address = new InetSocketAddress(3080);
 socketChannel = socketChannel.bind(address);

 Set<SocketOption<?>> socketOptions =
 socketChannel.supportedOptions();
 System.out.println(socketOptions.toString());

 socketChannel.setOption(StandardSocketOptions.IP_TOS,
 3);
 Boolean keepAlive =

Listing 2.10 NetworkChannel options

Bind
NetworkChannel
to port 3080

Check socket
options

Set ToS
socket option

49Tidying up Socket-Channel functionality

 socketChannel.getOption(StandardSocketOptions.SO_KEEPALIVE);
 ..
 ..
}
catch (IOException e)
{
 System.out.println(e.getMessage());
}

An extra addition enabled by this new NetworkChannel functionality is multicast

operations.

2.6.2 MulticastChannel

The ability to multicast is a common use case

for peer-to-peer networking applications, such

as BitTorrent. With previous versions of Java,

you could cobble together a multicast imple-

mentation, but Java didn’t have a nice abstrac-

tion in its API set. Java 7 introduces the new

MulticastChannel interface to address this.

 The term multicast refers to one-to-many

communications over a network, often with

reference to the Internet Protocol (IP). The

basic premise is that you send one packet out

to a multicast group address and have the network replicate that packet as often as

needed for all receivers who have registered with that multicast group to get a copy.

Figure 2.5 illustrates this behavior.

 In order to support the new NetworkChannels joining multicast groups, there is a

new java.nio.channels.MulticastChannel interface with a default implementing

class called DatagramChannel. This means you can easily send to and receive from

multicast groups.

 In the following hypothetical example, you send and receive system status messages

to and from a multicast group by joining that group at the IP address of 180.90.4.12.

try
{
 NetworkInterface networkInterface =
 NetworkInterface.getByName("net1");

 DatagramChannel dc =
 DatagramChannel.open(StandardProtocolFamily.INET);

 dc.setOption(StandardSocketOptions.SO_REUSEADDR,
 true);
 dc.bind(new InetSocketAddress(8080));
 dc.setOption(StandardSocketOptions.IP_MULTICAST_IF,
 networkInterface);

Listing 2.11 NetworkChannel options

Get SO_KEEPALIVE
option

Figure 2.5 Multicast example

Select network
interface

Open
DatagramChannel

Set channel
to multicast

50 CHAPTER 2 New I/O

 InetAddress group =
 InetAddress.getByName("180.90.4.12");
 MembershipKey key = dc.join(group, networkInterface);
}
catch (IOException e)
{
 System.out.println(e.getMessage());
}

That completes our initial investigation of the new NIO.2 APIs; we hope you’ve

enjoyed the whirlwind tour!

2.7 Summary

Hardware and software I/O is advancing rapidly, and Java 7 is well-placed to take max-

imum advantage of the new capabilities with the new APIs introduced as part of NIO.2.

The new libraries in Java 7 allow you to manipulate locations (Path) and perform

operations on the filesystem, such as manipulating files, directories, symbolic links,

and more. In particular, navigating through filesystems with full support for platform-

specific behavior is now a breeze, and large directory structures can now be dealt with.

NIO.2 has been focused on giving you one-stop methods for performing tasks that

would normally have taken large amounts of code to solve. In particular, the new

Files utility class is full of helper methods that make writing file I/O code a good deal

faster and simpler than the old java.io.File based I/O.

 Asynchronous I/O is a powerful new feature for dealing with large files without

drastically reducing performance. It’s also useful for applications that have heavy traf-

fic on their network sockets and channels.

NIO.2 also eats Java 7’s own dog food, with features from Project Coin (chapter 1)

retrofitted to it. This makes dealing with I/O much safer in Java 7 than previously, as

well as allowing you to write less verbose code.

 Now it’s time to step up a gear and challenge the brain muscles with a look at some

advanced modern Java in part 2 of this book, including dependency injection, mod-

ern concurrency, and tuning a Java-based software system. We suggest you grab a cof-

fee in your favorite Duke mug,10 and jump in when you’re ready!

10 We mentioned it earlier, but didn’t explain: Duke is Java’s mascot! http://kenai.com/projects/duke/pages/
Home

Join multicast
group

http://kenai.com/projects/duke/pages/Home
http://kenai.com/projects/duke/pages/Home

Part 2

Vital techniques

This part of the book (chapters 3 to 6) is all about exploring vital program-

ming knowledge and techniques with Java.

 We’ll start with a chapter on Dependency Injection, a common technique

used to decouple code and increase testability and comprehension. As well as

explaining the basics of Dependency Injection, we’ll also cover how it evolved

and discuss how a best practice turned into a design pattern and from there into

a framework (and even a Java standard).

 Next, we’ll get to grips with the multicore CPU revolution occurring in hard-

ware. The well-grounded Java developer needs to be aware of Java’s concurrency

capabilities, and how to use them to get the most out of modern processors.

Despite Java having strong support for concurrent programming since 2006

(Java 5), it’s an area that has been poorly understood and underutilized, so we’ll

dedicate a chapter to this material.

 You’ll learn about the Java Memory Model and how threading and concur-

rency is implemented in that model. Once you have some theory under your belt,

we’ll guide you through the features of the java.util.concurrent package (and

beyond) to start building your practical grounding in Java concurrency.

 Next, we’ll turn to classloading. Many Java developers don’t have a good

understanding of how the JVM actually loads, links, and verifies classes. This leads

to frustration and wasted time when an “incorrect” version of some class is exe-

cuted due to some sort of classloader conflict.

 We’ll also cover Java 7’s MethodHandle, MethodType, and invokedynamic, giv-

ing developers who write code using Reflection a faster and safer way of per-

forming the same tasks.

52 PART 2 Vital techniques

 Being able to dive into the internals of a Java class file and the bytecode it contains

is a powerful debugging skill. We’ll show you how to use javap to navigate and under-

stand the meaning of bytecode.

 Performance tuning is often seen as an art, as opposed to a science, and tracking

down and fixing performance issues often takes development teams extraordinary

time and effort. In chapter 6, the final chapter in this part, we’ll teach you that you

should measure, not guess, and that “tuning by folklore” is wrong. We’ll show you a

scientific approach that quickly gets you to the heart of your performance issues.

 In particular, we focus on garbage collection (GC) and the just-in-time (JIT) com-

piler, two major parts of the JVM that affect performance. Among other performance

knowledge, you’ll learn how to read GC logs and use the free Java VisualVM (jvisualvm)

tool to analyze memory usage.

 By the end of part 2, you’ll no longer be a developer who only thinks of the source

code sitting in your IDE. You’ll know how Java and the JVM work under the hood, and

you’ll be able to take full advantage of what is arguably the most powerful general-

purpose VM the planet has to offer.

53

Dependency Injection

Dependency Injection (a form of Inversion of Control) is an important program-

ming paradigm that has become part of mainstream Java development since about

2004. In short, DI is a technique in which your object gets its dependencies given to

it, as opposed to having to construct them itself. There are many benefits to using

DI—it makes your codebase loosely coupled, easier to test, and easier to read.

 This chapter begins by cementing your knowledge of DI theory and the benefits

that it brings to your codebase. Even if you already work with an IoC/DI framework,

there’s material in this chapter that will give you a deeper understanding of what DI

is truly about. This is especially important if (like many of us) you started working

This chapter covers

■ Inversion of Control (IoC) and Dependency

Injection (DI)

■ Why DI is an important technique to master

■ How JSR-330 united DI for Java

■ Common JSR-330 annotations such

as @Inject

■ Guice 3, the reference implementation (RI)

for JSR-330

54 CHAPTER 3 Dependency Injection

with DI frameworks before you had a real chance to fully explore the reasoning

behind them.

 You’ll learn about JSR-330, the official standard for DI in Java, which will give you

the behind-the-scenes understanding of the standard set of DI annotations for Java.

Following on from that, we’ll introduce the Guice 3 framework, which is the reference

implementation (RI) for JSR-330 and is also considered by many to be a nice, light-

weight approach for DI in Java.

 Let’s begin with some of the theory and reasoning behind this popular paradigm

and why you’ll want to master it.

3.1 Inject some knowledge—understanding IoC and DI

So why do you need to know about Inversion of Control (IoC), Dependency Injection

(DI), and their underlying principles? There are many possible answers to this

question and, indeed, if you were to ask this question at the popular programmers

.stackexchange.com Q&A site, you’d get lots of different answers!

 You could simply start using the various DI frameworks and learn from examples

on the internet, but much like the area of object-relational mapping (ORM) frame-

works (such as Hibernate), you’ll become a much stronger developer by understand-

ing what goes on under the hood.

 We’ll begin this section by covering some of the theory behind the two core terms

(IoC and DI) and discussing the benefits of using this paradigm. To make the concepts a

little more concrete, you’ll then be shown the transition of a HollywoodService from

a version that finds its own dependencies to a version that has its dependencies injected.

 Let’s begin with IoC, a term that often (incorrectly) gets interchanged with DI.

3.1.1 Inversion of Control

When you use a non-IoC programming paradigm, the flow of the program logic is

usually controlled by a central piece of functionality. Assuming a fairly decent design,

this central functionality then calls methods on reusable objects that perform spe-

cific functions.

 Using IoC, this “central control” design principle is inverted. The caller’s code

deals with the program’s execution order, but the program logic is encapsulated by

the called subroutines.

 Also known as the Hollywood Principle, IoC boils down to the idea that there is

another piece of code that has the initial thread of control and will therefore call your

code, rather than your code calling it.

The Hollywood Principle: “Don’t call us, we’ll call you”

Hollywood agents always call you, as opposed to your calling them! Some of you may
have experienced this principle when contacting agents in Hollywood with your “Heroic
Java programmer who saves the world” proposal for next summer’s blockbuster.

55Inject some knowledge—understanding IoC and DI

Another way to look at IoC is to think about how the UI for Zork (http://en.wikipedia

.org/wiki/Zork), an early text-based video game, would be controlled in its text-based

versus a GUI-based version.

 With the text-based version, the UI would simply have a blank prompt, waiting for

the user to provide input. The user would then enter an action such as “go east” or

“run from Grue,” and the main application logic then invokes the correct event han-

dler to process the action and return the result. The important point here is that the

application logic has control over which event handler to invoke.

 With the GUI version of the same game, IoC comes into play. The GUI framework

has control over which event handler will be executed; it’s no longer the role of the

application logic to do so. When the user clicks on an action, such as “go east,” the

event handler is invoked directly and the application logic can focus on processing

the action.

 The main control of the program has been inverted, moving control away from the

application logic to the GUI framework itself.

 There are several implementations of IoC, including the Factory patterns, Service

Locator pattern, and, of course, Dependency Injection, a term popularized by Martin

Fowler in his “Inversion of Control Containers and the Dependency Injection pat-

tern” article.1

3.1.2 Dependency Injection

DI is a particular form of IoC, whereby the process of finding your dependencies is

outside the direct control of your currently executing code. You can write your own DI

mechanism, but most developers use a third-party DI framework with a built-in IoC

container, such as Guice.

NOTE An IoC container can be seen as a runtime execution environment.
Example containers for Java DI include Guice, Spring, and PicoContainer.

IoC containers can provide useful services, like ensuring that a reusable dependency

is configured as a singleton. Some of these services will be explored in section 3.3

when we introduce Guice.

TIP Dependencies can be injected into objects by many means. You can use
specialized DI frameworks to do this, but they certainly aren’t obligatory!
Instantiating and passing objects (dependencies) explicitly to your object can
be just as good as injection by a framework.2

Like many programming paradigms, it’s important to understand why DI is used.

We’ve summarized what we consider its major benefits in table 3.1.

1 You can find the article by searching for Dependency Injection at Martin Fowler’s site: http://
martinfowler.com/.

2 Thanks to Thiago Arrais (http://stackoverflow.com/users/17801/thiago-arrais) for this tip!

http://en.wikipedia.org/wiki/Zork
http://en.wikipedia.org/wiki/Zork
http://stackoverflow.com/users/17801/thiago-arrais
http://martinfowler.com/
http://martinfowler.com/

56 CHAPTER 3 Dependency Injection

We find that transforming code into dependency injected code is the best way to really

grasp the theory, so let’s move on to that next.

3.1.3 Transitioning to DI

This section will highlight how code can be transitioned from using no IoC, to using a

Factory (or Service Locator) style implementation, to using DI. A key technique

behind much of this is coding to interfaces, a practice which allows for potential sub-

stitution of objects at runtime.

NOTE This section is aimed toward solidifying your understanding of DI.
Some boilerplate code has therefore been deliberately left out.

Let’s say that you’ve inherited a small project that will return all friendly agents in

Hollywood—the ones who deal with Java developers. The following listing has an

Table 3.1 Benefits of DI

Benefit Description Example

Loose

coupling

Your code is no longer tightly bound to creat-

ing the dependencies it needs.

Combined with the technique of coding to

interfaces, it can also mean that your code

is no longer tightly bound to specific imple-

mentations of a dependency.

Instead of your HollywoodService
object needing to create its own

SpreadsheetAgentFinder, it can

have it passed in to it.

If you’re coding to interfaces, this

means that the HollywoodService
can have any type of AgentFinder
passed to it.

Testability As an extension to loose coupling, there’s a

special use case worth mentioning. For the

purposes of testing, you can inject a test

double3 as a dependency.

You can inject a stub ticket pricing ser-

vice that always returns the same price,

as opposed to using the ‘real’ pricing

service, which is external and not

always available.

Greater

cohesion

Your code is more focused on performing its

task as opposed to dealing with loading and

configuring dependencies. A side benefit to

this is increased readability.

Your DAO object is focused on executing

queries and not on looking up JDBC

driver details.

Reusable

components

As an extension to loose coupling, your

code can be utilized by a wider range of

users who can provide their own specific

implementations.

An enterprising software developer

could sell you a LinkedIn agent finder.

Lighter

code

Your code no longer needs to pass depen-

dencies between layers. Dependencies can

instead be injected directly at the point

they’re required.

Instead of passing down the JDBC

driver details from a service class, you

can directly inject the driver at the DAO

where it’s really needed.

3 Chapter 11 covers Test Doubles in detail

57Inject some knowledge—understanding IoC and DI

AgentFinder interface with two implementations, a SpreadsheetAgentFinder and

WebServiceAgentFinder.

public interface AgentFinder
{
 public List<Agent> findAllAgents();
}

public class SpreadsheetAgentFinder implements AgentFinder
{
 @Override
 public List<Agent> findAllAgents(){ ... }
}

public class WebServiceAgentFinder implements AgentFinder
{
 @Override
 public List<Agent> findAllAgents(){ ... }
}

In order to use the agent finders, the project has a default HollywoodService class

that gets a list of agents from a SpreadsheetAgentFinder, filters them on friendliness,

and returns that friendly list as shown in the following code listing.

public class HollywoodService
{

 public static List<Agent> getFriendlyAgents()
 {
 AgentFinder finder = new SpreadsheetAgentFinder();
 List<Agent> agents = finder.findAllAgents();
 List<Agent> friendlyAgents =
 filterAgents(agents, "Java Developers");
 return friendlyAgents;
 }

 public static List<Agent> filterAgents(List<Agent> agents,
 String agentType)
 {
 List<Agent> filteredAgents = new ArrayList<>();
 for (Agent agent:agents) {
 if (agent.getType().equals("Java Developers")) {
 filteredAgents.add(agent);
 }
 }
 return filteredAgents;
 }
}

Look back over the HollywoodService in the listing and notice how the code is locked

in to using the SpreadsheetAgentFinder implementation of the AgentFinder B.

Listing 3.1 AgentFinder interface and its implementing classes

Listing 3.2 HollywoodService, with hard-coded AgentFinder

Lots of
implementation

Use Spreadsheet-
AgentFinder

b

Call interface
method

Return friendly
agents

58 CHAPTER 3 Dependency Injection

 This type of implementation lock-in was a problem for many Java developers. And

as with many common problems, patterns evolved to resolve the problem. To begin

with, many developers used variations on the Factory and Service Locator patterns, all

of which were a type of IoC.

HOLLYWOOD SERVICE WITH FACTORY AND/OR SERVICE LOCATOR PATTERNS

One of (or a combination of) the Abstract Factory, Factory Method, or Service Locator

patterns was commonly used to resolve the issue of being locked in to one dependency.

NOTE The Factory Method and Abstract Factory patterns are discussed in
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Profes-
sional, 1994). The Service Locator pattern is discussed in Core J2EE Patterns:
Best Practices and Design Strategies, second edition, by Deepak Alur, John Crupi,
and Dan Malks (Prentice Hall, 2003).

The following code listing is a version of the HollywoodService class utilizing an

AgentFinderFactory in order to dynamically pick which AgentFinder to use.

public class HollywoodServiceWithFactory {

 public List<Agent>
 getFriendlyAgents(String agentFinderType)
 {
 AgentFinderFactory factory =
 AgentFinderFactory.getInstance();
 AgentFinder finder =
 factory.getAgentFinder(agentFinderType);
 List<Agent> agents = finder.findAllAgents();
 List<Agent> friendlyAgents =
 filterAgents(agents, "Java Developers");
 return friendlyAgents;
 }

 public static List<Agent> filterAgents(List<Agent> agents,
 String agentType)
 {
 ...
 }
}

As you can see, you’ve now avoided being locked in to using one specific AgentFinder

implementation. You inject the agentFinderType B, then ask the AgentFinderFactory

to get an AgentFinder based on that type c.

 This is getting pretty close to DI, but you still have two issues:

■ The code is injecting a lookup reference (agentFinderType) as opposed to the

real implementation of the AgentFinder object.

■ The getFriendlyAgents method still contains code to find its dependency,

which ideally isn’t its core concern.

Listing 3.3 HollywoodService, with factory lookup for AgentFinder

Inject
agentFinderType

b

Get AgentFinder
via Factory

c

Same implementation
as listing 3.2

59Inject some knowledge—understanding IoC and DI

As developers moved toward writing cleaner code, the technique of DI became more

widely used, often replacing Factory and Service Locator pattern implementations.

HOLLYWOODSERVICE WITH DI

You can probably already guess what your next logical refactoring will be! The next

step is to directly supply the getFriendlyAgents method with the AgentFinder it

needs. The following listing demonstrates this.

public class HollywoodServiceWithDI
{

 public static List<Agent>
 emailFriendlyAgents(AgentFinder finder)
 {
 List<Agent> agents = finder.findAllAgents();
 List<Agent> friendlyAgents =
 filterAgents(agents, "Java Developers");
 return friendlyAgents;
 }

 public static List<Agent> filterAgents(List<Agent> agents,
 String agentType)
 {
 ...
 }
}

Now you effectively have a hand-coded DI solution—the AgentFinder is injected into

the getFriendlyAgents method B. You can already see how clean the getFriendly-

Agents method has become, focusing purely on the business logic c.

 But there is still a major headache remaining for a developer hand-rolling their

own DI in this manner. The issue of how to configure which implementation of

AgentFinder you want to use still remains—the work that the AgentFinderFactory

was performing has to be done somewhere.

 That’s where a DI framework with an IoC container can really help out. As a basic

analogy, the DI framework is a runtime wrapper around your code, injecting the

dependencies that you need, when you need them.

DI frameworks have the advantage that they can do this at just about any point in the

code where you need a dependency. The framework is able to do this because it has an

IoC container that holds the dependencies ready for your code to use at runtime.

 Let’s look at what the HollywoodService might look like when using a standard

JSR-330 annotation that any of the compliant frameworks can use.

HOLLYWOODSERVICE WITH JSR-330 DI

Let’s look at a final code example where we want a framework to perform the DI for

us. In this case, the DI framework injects the dependency directly into the getFriendly-

Agents method using the standard JSR-330 @Inject annotation, as the following list-

ing demonstrates.

Listing 3.4 HollywoodService, with hand-rolled DI for AgentFinder

Inject
AgentFinder

b

Execute find
logic

c

See listing 3.2

60 CHAPTER 3 Dependency Injection

public class HollywoodServiceJSR330
{
 @Inject public void emailFriendlyAgents(AgentFinder finder)
 {
 List<Agent> agents = this.finder.findAllAgents();
 List<Agent> friendlyAgents =
 filterAgents(agents, "Java Developers");
 return friendlyAgents;
 }

 public static List<Agent> filterAgents(List<Agent> agents,
 String agentType)
 {
 ...
 }
}

A specific implementation of AgentFinder (for example, WebServiceAgentFinder) is

now injected at runtime by the DI framework that supports the JSR-330 @Inject anno-

tation B.

TIP Although JSR-330 annotations allow you to inject dependencies for a
method, it’s typically only done for constructors or setters. This convention is
discussed further in the next section.

Let’s look back at the some of the benefits of DI again, with reference to the Hollywood-

ServiceJSR330 class in listing 3.5:

■ Loose coupling—The HollywoodService is no longer dependent on a specific

type of AgentFinder to perform its work.

■ Testability—To test the HollywoodService class, you could inject a basic Java

class (such as POJOAgentFinder) that returns a fixed number of agents (this is

known as a stub class in test-driven development terminology). This is perfect

for unit testing, as you won’t need a web service, spreadsheet, or other third-

party implementation.

■ Greater cohesion—Your code is no longer dealing with factories and their asso-

ciated lookups; it executes only the business logic.

■ Reusable components—Imagine how easy it would be for another developer

using your API to now inject whichever specific implementation of AgentFinder

they need, such as a JDBCAgentFinder.

■ Lighter code—The code in the HollywoodServiceJSR330 class has been

reduced significantly from its HollywoodService beginnings.

Using DI has become an increasingly standard practice for the well-grounded Java

developer, and several popular containers provide excellent DI capabilities. But in the

not too distant past, the various DI frameworks all had differing standards for how you

should configure your code to take advantage of their IoC containers. Even if the

Listing 3.5 HollywoodService, with JSR-330 DI for AgentFinder

JSR-330
injected
AgentFinder

b

Execute
find logic

See listing 3.2

61Standardized DI in Java

various frameworks had followed a similar configuration style (for example, XML or

Java annotations) there was still the question of what the common annotations or con-

figuration would be.

 The new standardized approach to DI for Java (JSR-330) solves this issue. It also

nicely sums up the core capabilities that most Java-based DI frameworks implement.

We’ll therefore explore this standardized approach in some depth, as it gives a nice

solid grounding on the under-the-hood workings of a DI framework, such as Guice.

3.2 Standardized DI in Java

Since 2004 there have been several widely used IoC containers for the purposes of DI

(Guice, Spring, and PicoContainer to name a few). Up until recently, all of the imple-

mentations have had different approaches to configuring DI for your code, which

made it difficult for developers to swap between frameworks.

 A resolution of sorts came about in May 2009 when two leading members of the DI

community, Bob Lee (from Guice) and Rod Johnson (from SpringSource) announced

that they had come together to work on a standard set of interface annotations.4 Sub-

sequently JSR-330 (javax.inject) was raised to provide standardized DI for Java SE

with effectively 100 percent support from all major players in that space.

With the addition of javax.inject into Java (Java SE versions 5, 6, and 7 are sup-

ported), it’s now possible to use standardized DI and move between DI frameworks as

required. For example, you can run your code within the Guice framework as a light-

weight solution for your DI needs, and then perhaps move to the Spring framework in

order to use its richer set of features.

WARNING In practice, this isn’t as easy as it sounds. As soon as your code uti-
lizes a feature that’s only supported by a particular DI framework, you are
locked in to that framework. The javax.inject package provides a subset of
common DI functionality, but you may need to use more advanced DI features
than that. As you can imagine, there was quite a bit of debate as to what
should be part of the common standard and what should not. The situation
isn’t perfect, but at least there is now a way to avoid framework lock-in.

4 Bob Lee, “Announcing @javax.inject.Inject” (8 May 2009).
www.theserverside.com/news/thread.tss?thread_id=54499.

What about Enterprise Java?

Enterprise Java is already getting its own DI in JEE 6 (a.k.a. CDI), covered under JSR-
299 (“Contexts and Dependency Injection for the Java EE platform”). You can find out
more by searching for JSR-299 at http://jcp.org/. In short, JSR-299 builds on top of
JSR-330 in order to provide standardized configuration for enterprise scenarios.

http://jcp.org/
www.theserverside.com/news/thread.tss?thread_id=54499

62 CHAPTER 3 Dependency Injection

To understand how the latest DI frameworks utilize the new standard, you need to inves-

tigate the javax.inject package. A key thing to remember is that the javax.inject

package simply provides an interface and several annotation types that the various DI

frameworks implement. You wouldn’t typically implement these yourself unless you’re

creating your own JSR-330 compatible IoC container for Java. (And if you are, then

hats off to you!)

The Javadoc for javax.inject does an excellent job of explaining the purpose of this

package, so we’ll quote it verbatim:

Package javax.inject5

This package specifies a means for obtaining objects in such a way as to

maximize reusability, testability and maintainability compared to traditional

approaches such as constructors, factories, and service locators (e.g.,

JNDI). This process, known as dependency injection, is beneficial to most

nontrivial applications.

The javax.inject package consists of five annotation types (@Inject, @Qualifier,

@Named, @Scope, and @Singleton) and a single Provider<T> interface. These are

explained over the next few sections, starting with the @Inject annotation.

3.2.1 The @Inject annotation

The @Inject annotation can be used with three class member types to indicate where

you’d like a dependency to be injected. The class member types that can be injected,

in the order that they’re processed at runtime are:

1 Constructors

2 Methods

3 Fields

You can annotate a constructor with @Inject and expect its parameters to be provided

at runtime by your configured IoC container. For example, the Header and Content

objects are injected into the MurmurMessage when the constructor is invoked.

@Inject public MurmurMessage(Header header, Content content)
{

Why should I care how this stuff works?

The well-grounded Java developer doesn’t simply use libraries and frameworks without
understanding at least the basics of how they work under the hood. In the DI space, a
lack of understanding can lead to incorrectly configured dependencies, dependencies
mysteriously falling out of scope, dependencies being shared when they shouldn’t be,
step debugging mysteriously dying, and a whole host of other insidious problems.

5 “Package javax.inject,” Javadoc, http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/package-
summary.html.

http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/package-summary.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/package-summary.html

63Standardized DI in Java

 this.header = header;
 this.content = content;
}

The specification allows for zero or more parameters to be injected for constructors,

so injecting a zero-parameter constructor is still valid.

WARNING As per the specification, there can only be one constructor in a
class with an @Inject annotation. This makes sense, as the JRE would not be
able to decide which injected constructor took precedence.

You can annotate a method with @Inject and, like a constructor, expect its zero or

more parameters to be injected at runtime. There are some restrictions in that

injected methods can’t be declared abstract and can’t declare type parameters of

their own.6 The following short code sample demonstrates the use of @Inject with a

setter method, a common technique when using DI to set optional fields.

@Inject public void setContent(Content content)
{
 this.content = content;
}

This technique of method parameter injection is especially powerful when it comes to

providing service methods with the resources they need to do their jobs. For example,

you could pass a data access object (DAO) argument to a finder service method that

was tasked to retrieve some data.

TIP It has become a default best practice to use constructor injection for set-
ting mandatory dependencies for a class and to use setter injection for non-
mandatory dependencies, such as fields that already have sensible defaults.

It’s also possible to inject fields (as long as they aren’t final), but the practice isn’t com-

mon, because it makes unit testing more difficult. The syntax again is quite simple.

public class MurmurMessenger
{
 @Inject private MurmurMessage murmurMessage;
 ...
}

You can read further about the @Inject annotation in the Javadoc,7 where you can

discover some nuances about what types of values can be injected and how circular

dependencies are dealt with.

 You should now be comfortable with the @Inject annotation, so it’s time to look at

how you can qualify (further identify) those injected objects for use in your code.

6 By this, we mean you can’t use the “Generic Methods” trick as discussed in The Java Tutorials on Oracle’s web-
site: http://download.oracle.com/javase/tutorial/extra/generics/methods.html.

7 “Annotation Type Inject,” Javadoc, http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Inject.html.

http://download.oracle.com/javase/tutorial/extra/generics/methods.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Inject.html

64 CHAPTER 3 Dependency Injection

3.2.2 The @Qualifier annotation

The @Qualifier annotation defines the contract for implementing frameworks that

can be used to qualify (identify) the objects you wish to inject into your code. For

example, if you had two objects of the same type configured in your IoC container,

you’d want to be able to distinguish between those two objects when it came to

injecting them into your code. The visual representation in figure 3.1 helps explain

this concept.

 When you use an implementation provided by one of the frameworks, you should

be aware that there are rules around creating an implementation of the @Qualifier

annotation:

■ It must be annotated with the @Qualifier and @Retention(RUNTIME) annota-

tions. This ensures that the qualifier is retained at runtime.

■ It should typically be @Documented so that the implementation is added as part

of the public Javadoc for that API.

■ It can have attributes.

■ It may have restricted usage if annotated with @Target; for example, it might

restrict usage to fields as opposed to the default of fields and method parameters.

To bring the preceding list into perspective, here’s a brief hypothetical example of a

@Qualifier implementation that an IoC container might provide for you. A music

library framework might provide a @MusicGenre qualifier, which can be used by devel-

opers when they create a MetalRecordAlbumns class. The qualifier ensures that the

injected Genre is of the right type.

@Documented
@Retention(RUNTIME)
@Qualifier
public @interface MusicGenre
{
 Genre genre() default Genre.TRANCE;

Figure 3.1 A @Qualifier annotation used to differentiate between two

beans of the same MusicGenre type

65Standardized DI in Java

 public enum GENRE { CLASSICAL, METAL, ROCK, TRANCE }
}

public class MetalRecordAlbumns
{
 @Inject @MusicGenre(GENRE.METAL) Genre genre;

}

It’s unlikely that you’ll be creating your own @Qualifier annotations, but it’s important

to have a basic understanding of how the various IoC container implementations work.

 One type of @Qualifier that the specification defines for all IoC containers to

implement is the @Named annotation interface.

3.2.3 The @Named annotation

The @Named annotation interface is a specific @Qualifier that provides a contract for

implementers to qualify injected objects by their names. When you combine the

@Inject annotation with the qualifying @Named annotation, that specifically named

object of the correct type will be injected.

 In the following example, the MurmurMessage that’s named "murmur" as well as one

named "broadcast" will be injected.

public class MurmurMessenger
{
 @Inject @Named("murmur") private MurmurMessage murmurMessage;
 @Inject @Named("broadcast") private MurmurMessage broadcastMessage;
 ...
}

Although there are other qualifiers that could be seen as common, it was decided

that only the @Named qualifier would be implemented by all of the DI frameworks as

part of JSR-330.

 Another area that the various backers of the original specification came to agree-

ment on was having a standardized interface to deal with what scopes the injected

objects can live in.

3.2.4 The @Scope annotation

The @Scope annotation defines a contract that can be used to define how the injector

(that is, the IoC container) reuses instances of the injected object. The specification

defines a few default behaviors:

■ When no implementation of the @Scope annotation interface is declared, the

injector should create an instance of the object to inject but only use that

instance once for injection purposes.

■ If an implementation of the @Scope annotation interface is declared, the

lifespan of that injected object is defined by the implementation of that scope.

■ If an injected object can be used by multiple threads in an implementation of

@Scope, that injected object needs to be thread-safe. For more details on

threads and thread safety, see chapter 4.

66 CHAPTER 3 Dependency Injection

■ The IoC container should generate an exception if there is more than one

@Scope annotation declared in the same class or if it discovers a @Scope annota-

tion that it doesn’t support.

Those default behaviors give the DI frameworks some boundaries to work within when

managing the lifecycles of their injected objects. Several IOC containers do support

their own @Scope implementations, especially in the web frontend space (at least until

JSR-299 is universally adopted in that area). Only the @Singleton annotation was

deemed to be a common @Scope implementation for JSR-330, and it’s therefore also

defined as a specific annotation in the specification.

3.2.5 The @Singleton annotation

The @Singleton annotation interface is a widely used annotation in DI frameworks.

More often than not, you’re wanting to inject a value object that doesn’t change, and

a singleton is an efficient solution.

Most DI frameworks treat @Singleton as a hidden default. For example, if you don’t

declare a scope, then by default the framework assumes you want to use a singleton. If

you do declare it explicitly, you can do so in the following manner.

public MurmurMessage
{
 @Inject @Singleton MessageHeader defaultHeader;
}

In this example, the assumption is that the defaultHeader never changes (it’s effec-

tively static data) and can therefore be injected as a singleton.

 Last, we’ll cover the most flexible option for when one of the standard annotations

isn’t enough.

3.2.6 The Provider<T> interface

To give you extra control over the object being injected into your code by the DI

framework, you can ask the DI framework to inject an implementation of the

Provider<T> interface for that object (T) instead. This gives you the following benefits

in controlling that injected object:

■ You can retrieve multiple instances of that object.

■ You can defer the retrieval of the object to when it’s needed (lazy loading) or

even not at all.

The Singleton pattern

A Singleton is simply a design pattern that enforces that the instantiation of a class
occurs once and once only. For more details, see Design Patterns: Elements of Reus-

able Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (Addison-Wesley Professional, 1994), p. 127. Do take care with the
Singleton pattern, it can be an antipattern in some cases!

67Guice 3—the reference implementation for DI in Java

■ You can break circular dependencies.

■ You can define the scope, allowing you to look up objects in a smaller scope

than the entire loaded application.

The interface contains only one method, T get(), which is expected to provide a fully

constructed, injected instance of the object (T). For example, you can inject an imple-

mentation of the Provider<T> interface (Provider<Message>) into the Murmur-

Message constructor. This will get different Message objects based on arbitrary

criteria, as the following listing demonstrates.

import com.google.inject.Inject;
import com.google.inject.Provider;

class MurmurMessage
{
 @Inject MurmurMessage (Provider<Message> messageProvider)
 {
 Message msg1 = messageProvider.get();
 if (someGlobalCondition)
 {
 Message copyOfMsg1 = messageProvider.get();
 }
 ...
 }
}

Notice how you can grab further instances of the injected Message object from the

Provider<Message>, as opposed to just the single instance if you had injected a

Message directly. In this case you’re using a second copy of that injected Message

object, only loading it in when you need it B.

 Now that we’ve covered the theory and a few small examples of the new

javax.inject package, it’s time to put all of that knowledge into practice by using a

full-fledged DI framework, Guice.

3.3 Guice 3—the reference implementation for DI in Java

Guice (pronounced “Juice”), led by Bob Lee, has been around since 2006 and is

hosted at http://code.google.com/p/google-guice/. There you can find out about its

motivations, read the documentation, and download the binary JAR files you’ll need

to run the examples.

 It’s in a DI framework like Guice that you actually configure your dependencies,

how they will bind, and what scope they will bind to when your code uses the @Inject

annotation (and its JSR-330 friends).

 Guice 3 is the full RI for JSR-330, and we’ll be using that version throughout this

section. Guice is more than a simple DI framework, but for the purposes of this sec-

tion we’ll be focusing primarily on its DI capabilities and showcase examples in which

you can use JSR-330 standard annotations with Guice to write your DI code.

Listing 3.6 Use of the Provider<T> interface

Get a
Message

Get copy of
Messageb

http://code.google.com/p/google-guice/

68 CHAPTER 3 Dependency Injection

3.3.1 Getting started with Guice

You’ve now got an understanding of the various JSR-330 annotations you can use in your

code via Guice! Guice enables you to build a collection of Java objects (including their

dependencies) that you want to inject. In Guice terminology, in order to have an injec-

tor build this object graph you need to create modules that declare a collection of bindings

that define the specific implementations you want to inject. Sound complicated? Don’t

worry, it’s actually quite simple once you see the concepts laid out in code.

TIP Object graph, binding, module, and injector are common terms used in the
Guice world, so it’s a good idea to get comfortable with that terminology if
you’re going to be building Guice-based applications.

In this section, we’ll revisit the HollywoodService example. We’ll start by creating a

configuration class (module) that will hold the bindings. This is effectively the exter-

nal configuration of the dependencies that the Guice framework is going to manage

for you.

Let’s begin by creating an AgentFinderModule of bindings. This AgentFinderModule

class needs to extend AbstractModule, and the bindings are declared in the overrid-

den configure() method. In this particular case, you’ll bind the WebServiceAgent-

Finder class as the object to inject when the HollywoodServiceGuice asks to @Inject

an AgentFinder. We’re going to follow the convention of constructor injection here,

as the following listing demonstrates.

import com.google.inject.AbstractModule;

public class AgentFinderModule extends AbstractModule
{
 @Override
 protected void configure()
 {
 bind(AgentFinder.class).

Where to get your Guice

Download the latest version of Guice 3 from http://code.google.com/p/google-guice/
downloads/list; its corresponding documentation set can be found at http://code
.google.com/p/google-guice/wiki/Motivation?tm=6.

To get full IoC container and DI support, you’ll need to download the Guice zip file and
unzip the contents into a location of your choice. In order to utilize Guice in your Java
code, you’ll need to ensure that the JAR files are included in your classpath.

For the purposes of the following code samples in this book, the Guice 3 JARs will
also automatically come down as part of the Maven build.

Listing 3.7 HollywoodService, with Guice DI for AgentFinder

Extends
AbstractModule

Overrides
configure() method

http://code.google.com/p/google-guice/downloads/list
http://code.google.com/p/google-guice/downloads/list
http://code.google.com/p/google-guice/wiki/Motivation?tm=6
http://code.google.com/p/google-guice/wiki/Motivation?tm=6

69Guice 3—the reference implementation for DI in Java

 to(WebServiceAgentFinder.class);
 }
}

public class HollywoodServiceGuice
{
 private AgentFinder finder = null;

 @Inject
 public HollywoodServiceGuice(AgentFinder finder)
 {
 this.finder = finder;
 }

 public List<Agent> getFriendlyAgents()
 {
 List<Agent> agents = finder.findAllAgents();
 List<Agent> friendlyAgents = filterAgents(agents, "Java Developers");
 return friendlyAgents;
 }

 public List<Agent> filterAgents(List<Agent> agents, String agentType)
 {
 ...
 }

}

The heart of the binding occurs when you use Guice’s bind method, passing it the

class you want to bind (AgentFinder), then using the to method to declare which

implementation will be injected B.

 Now that you have your binding declared in your module, you can get the injector to

build an object graph. We’ll look at how to do that both in a standalone Java application

and in a web application.

BUILDING A GUICE OBJECT GRAPH—STANDALONE JAVA

In a standard Java application, you can build the Guice object graph via the public

static void main(String[] args) method. The following code listing shows how this

is done.

import com.google.inject.Guice;
import com.google.inject.Injector;
import java.util.List;

public class HollywoodServiceClient
{
 public static void main(String[] args)
 {
 Injector injector =
 Guice.createInjector(new AgentFinderModule());

 HollywoodServiceGuice hollywoodService =
 injector.getInstance(HollywoodServiceGuice.class);

Listing 3.8 HollywoodServiceClient—building the object graph with Guice

Binds
implementation
to injectb

Same implementation
as listing 3.2

70 CHAPTER 3 Dependency Injection

 List<Agent> agents = hollywoodService.getFriendlyAgents();
 ...
 }
}

For web applications, it’s a little different.

BUILDING A GUICE OBJECT GRAPH—WEB APPLICATION

In web applications, you add the guice-servlet.jar file to your web application and add

the following snippet to your web.xml file.

<filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

It’s fairly standard practice to then extend the ServletContextListener to use a

Guice ServletModule (synonymous with AbstractModule in listing 3.7).

public class MyGuiceServletConfig extends GuiceServletContextListener {
 @Override
 protected Injector getInjector() {
 return Guice.createInjector(new ServletModule());
 }
}

As a last step, add the following to web.xml so the servlet container triggers this class

when the app is deployed:

<listener>
 <listener-class>com.java7developer.MyGuiceServletConfig</listener-class>
</listener>

By creating HollywoodServiceGuice from the injector, you have a fully configured

class that you can immediately call the getFriendlyAgents method on.

 Pretty simple, right? Well yes, but it does get a little bit more complicated because

you might want to have more complex bindings than the simple WebServiceAgent-

Finder binding to the AgentFinder, as shown in listing 3.7.

3.3.2 Sailor’s knots—the various bindings of Guice

Guice offers a multitude of bindings. The official documentation lists the following types:

■ Linked bindings

■ Binding annotations

■ Instance bindings

■ @Provides methods

■ Provider bindings

■ Untargeted bindings

71Guice 3—the reference implementation for DI in Java

■ Built-in bindings

■ Just-in-time bindings

We don’t want to repeat the documentation verbatim, so we’ll cover the most

commonly used ones—linked bindings, binding annotations, as well as @Provides

and Provider<T> bindings.

LINKED BINDINGS

Linked bindings are the simplest form of binding and are the same type of binding

you used when configuring the AgentFinderModule in listing 3.6. This type of bind-

ing simply indicates to the injector that it should inject the implementing or extending

class (yes, you can inject direct subclasses) at runtime.

@Override
protected void configure()
{
 bind(AgentFinder.class).to(WebServiceAgentFinder.class);
}

You’ve already seen that binding in action, so let’s look at the next most common type

of binding, the binding annotation.

BINDING ANNOTATIONS

Binding annotations are used to combine the type of class you want to inject with an

additional identifier in order to identify exactly which object to inject. You can write

your own binding annotations (see the Guice documentation online), but we’ll high-

light the use of the JSR-330 standard @Named binding that comes built into Guice.

 In this case, you still have the familiar @Inject annotation, but you supplement

that with the @Named annotation to pull in a particularly named AgentFinder. You con-

figure this @Named type of binding in your AgentModule by using the annotatedWith

method as shown in the following listing.

public class HollywoodService
{
 private AgentFinder finder = null;

 @Inject
 public HollywoodService(@Named("primary") AgentFinder finder)
 {
 this.finder = finder;
 }
}

public class AgentFinderModule extends AbstractModule
{
 @Override
 protected void configure()
 {
 bind(AgentFinder.class)

Listing 3.9 HollywoodService, using @Named

Use
@Named
annotation

72 CHAPTER 3 Dependency Injection

 .annotatedWith(Names.named("primary"))
 .to(WebServiceAgentFinder.class);
 }
}

Now that you’ve learned to configure your named dependencies, you can move on to

the next type of binding—one that allows you to pass in a full-fledged dependency via

the @Provides annotation and the Provider<T> interface.

@PROVIDES AND PROVIDER<T>—PROVIDING FULL INSTANTIATED OBJECTS

You can use the @Provides annotation as well as, or instead of, using binding in the

configure() method if you want to return a full instantiated object. For example, you

might want to inject a very specific MS Excel spreadsheet implementation of the

SpreadsheetAgentFinder.

 The injector will look at the return type of all of the methods with a @Provides

annotation in order to determine which object to inject. For example, the Hollywood-

Service will use the AgentFinder provided by the provideAgentFinder method with

the @Provides annotation, as shown in the following code listing.

public class AgentFinderModule extends AbstractModule
{
 @Override
 protected void configure(){ }

 @Provides
 AgentFinder provideAgentFinder()
 {
 SpreadsheetAgentFinder finder =
 new SpreadsheetAgentFinder();
 finder.setType("Excel 97");
 finder.setPath("C:/temp/agents.xls");
 return finder;
 }

}

The number of @Provides methods can grow to be rather large, so you may want to

split them out into their own classes (as opposed to cluttering up your module classes).

Guice supports the JSR-330 Provider<T> interface for this purpose; if you remember back

to the JSR-330 section, you’ll recall the T get() method. This method is invoked when the

AgentFinderModule class configures the binding of the AgentFinderProvider via

the toProvider method. The following code listing demonstrates this binding.

public class AgentFinderProvider implements Provider<AgentFinder>
{
 @Override
 public AgentFinder get()
 {

Listing 3.10 AgentFinderModule, using @Provides

Listing 3.11 AgentFinderModule, using the Provider<T> interface

Bind with named
parameter

Return type
that injector
looks for

Specific
SpreadsheetAgentFinder

Use T get()
method

73Guice 3—the reference implementation for DI in Java

 SpreadsheetAgentFinder finder = new SpreadsheetAgentFinder();
 finder.setType("Excel 97");
 finder.setPath("C:/temp/agents.xls");
 return finder;
 }
}

public class AgentFinderModule extends AbstractModule
{
 @Override
 protected void configure()
 {
 bind(AgentFinder.class)
 .toProvider(AgentFinderProvider.class);
 }
}

That wraps up the last of our binding examples. You should now be able to use Guice

to bind your dependencies ready for use by your code. But we haven’t yet covered

what scope these dependencies live in—understanding scope is important, because if

objects end up living in the wrong scope, they’ll live longer and take up more memory

than necessary.

3.3.3 Scoping your injected objects with Guice

Guice provides several levels of scope for objects that you wish to inject. The narrowest

scope is @RequestScope, followed by @SessionScope, and the familiar JSR-330 @Singleton

scope, which is, in fact, an application-level scope.

 The scope for your dependencies can be applied to your code in a number of ways:

■ On the class that you’re going to inject

■ As part of the binding sequence (for example, bind().to().in())

■ As an extra annotation to the @Provides contract

The preceding list is a little abstract, so we’ll look at what they mean in the context of

some small code examples, starting with scoping the class that you want to inject.

SCOPING THE CLASS THAT YOU WANT TO INJECT

Let’s say you only ever want to have one instance of the SpreadsheetAgentFinder that

you’ll use across your entire application. For this, you can set the @Singleton scope

on the class declaration, like so:

@Singleton
public class SpreadsheetAgentFinder
{
 ...
}

An added bonus of using this method is that it indicates to a developer how thread-

safe the class should be. As SpreadsheetAgentFinder in theory can be injected at mul-

tiple times, the @Singleton scope indicates that you need to make sure that the class is

thread-safe (see more on thread safety in chapter 4).

Bind
provider

74 CHAPTER 3 Dependency Injection

 If you prefer to have all of your scoping information declared when you bind the

dependency, you can do so.

USING THE BIND() SEQUENCE FOR SCOPING

Some developers may be more comfortable with having all of their rules related to an

injected object in one place. Remember how you used a binding in listing 3.9 that

had the primary AgentFinder bound? Adding the scope to this binding works in a

similar manner—you simply add .in(<Scope>.class) as an extra method call on the

bind sequence.

 In the following code snippet, you enhance listing 3.9 by adding the extra

in(Session.class) to the sequence, making the injected primary AgentFinder

object available in a session scope.

public class AgentFinderModule extends AbstractModule
{
 @Override
 protected void configure()
 {
 bind(AgentFinder.class)
 .annotatedWith(Names.named("primary"))
 .to(WebServiceAgentFinder.class)
 .in(Session.class);
 }
}

There is one final approach to scoping objects that you’re injecting: joining up with

the @Provides annotation.

SCOPING A @PROVIDES OBJECT PROVIDER

You can add a scope alongside a @Provides annotation in order to define the scope of

the objects provided by that method. For example, if you look back to listing 3.9, you

can add the extra @Request annotation in order to bind the resulting Spreadsheet-

AgentFinder instances to a request scope.

@Provides @Request
AgentFinder provideAgentFinder()
{
 SpreadsheetAgentFinder finder = new SpreadsheetAgentFinder();
 finder.setType("Excel 97");
 finder.setPath("C:/temp/agents.xls");
 return finder;
}

Guice also provides specific scopes based on web applications (servlet request scope,

for example), and you can also write custom scopes for your needs.

 Now you’ve got a good basic understanding of how Guice works with JSR-330 annota-

tions in order to implement DI in your codebase. There are also non-JSR-330 features that

you can explore further, such as Guice’s aspect-oriented programming (AOP) support,

which can be useful for implementing the cross cutting concerns of security and logging.

For that, you’ll need to refer to Guice’s online documentation and code samples.

75Summary

3.4 Summary

IoC can be a difficult concept to get your head around. But by exploring the concepts

of Factory and Service Locator patterns, you can see how a basic IoC implementation

works. The Factory pattern can be seen as an intermediate step toward understanding

DI and the benefits it can bring your codebase. Even if you’re struggling with the DI

paradigm, it’s worth sticking with it, because it enables you to write loosely coupled

code that’s easy to test and clearer to read.

JSR-330 isn’t only an important standard that unifies common DI functionality, it

also provides behind-the-scenes rules and limitations that you should be aware of. By

studying the standard set of DI annotations, you can gain a much greater appreciation

for how the various DI frameworks implement the specification, and therefore how

you can use them most effectively.

 Guice is the reference implementation for JSR-330 and it’s also a popular, lightweight

way to start using DI in your code. Indeed, for many applications, using Guice and the

JSR-330 compatible set of annotations is probably enough for most of your DI needs.

 If you’ve been reading this book from the start, we think you deserve a break! Go

and inject some nonreading activity into your day and come back refreshed for a topic

that every well-grounded Java developer needs to master, that of concurrency.

Choose your scope carefully!

One key decision that the well-grounded Java developer always takes into consider-
ation is the scope of the objects that they’re dealing with. Stateless objects that are
relatively cheap to create don’t need to worry about having their scope set. The JVM
will have no trouble creating and destroying these as needed. (Chapter 6 covers the
JVM and performance in more detail.)

On the other hand, stateful objects always need to be scoped! You should think about
whether you want the lifespan of that object to be for the entire application, the cur-
rent session, or the current request. As a second step, you should always think about
the thread safety of that object. (Chapter 4 covers this in further detail.)

76

Modern concurrency

In this chapter, we’ll begin with basic concepts and a whistle-stop tour of block-

structured concurrency. This was the only game in town prior to Java 5, and it’s

still worth understanding. Next, we’ll cover what every working developer should

know about java.util.concurrent and how to use the basic concurrency building

blocks it provides.

 We’ll conclude with a look at the new fork/join framework, so that by the end of

the chapter, you’ll be ready to start applying these new concurrency techniques in your

own code. You’ll also have enough theory to fully grasp the different views of concur-

rency that we’ll discuss in later parts of the book, when we meet non-Java languages.

 This chapter isn’t intended to be a complete statement of everything you’ll ever

need to know about concurrency—it’s enough to get you started and give you an

This chapter covers

■ Concurrency theory

■ Block-structured concurrency

■ The java.util.concurrent libraries

■ Lightweight concurrency with the

fork/join framework

■ The Java Memory Model (JMM)

77Concurrency theory—a primer

appreciation of what you’ll need to learn more about, and to stop you being danger-

ous when writing concurrent code. But you’ll need to know more than we can cover

here if you’re going to be a truly first-rate developer of multithreaded code. There are

a number of excellent books about nothing but Java concurrency—two of the best are

Concurrent Programming in Java, second edition, by Doug Lea (Prentice Hall, 1999),

and Java Concurrency in Practice by Brian Goetz and others (Addison-Wesley Profes-

sional, 2006).

 The aim of this chapter is to make you aware of the underlying platform mecha-

nisms that explain why Java’s concurrency works the way it does. We’ll also cover

enough general concurrency theory to give you the vocabulary to understand the

issues involved, and to teach you about both the necessity and the difficulty involved

in getting concurrency right. In fact, that’s where we’re going to start.

4.1 Concurrency theory—a primer

To make sense of Java’s approach to concurrent programming, we’re going to start

off by talking about theory. First, we’ll discuss the fundamentals of the Java thread-

ing model.

 After that, we’ll discuss the impact that “design forces” have in the design and imple-

mentation of systems. We’ll talk about the two most important of these forces, safety and

liveness, and mention some of the others. After that we’ll turn to why the forces are often

in conflict, and look at some reasons for overhead in concurrent systems.

 We’ll conclude this section by looking at an example of a multithreaded system,

and illustrate how java.util.concurrent is a very natural way to write code.

4.1.1 Explaining Java’s threading model

Java’s threading model is based on two fundamental concepts:

■ Shared, visible-by-default mutable state

■ Preemptive thread scheduling

But I already know about Thread!

It’s one of the most common (and potentially deadly) mistakes a developer can
make—to assume that an acquaintance with Thread, Runnable, and the language-
level basic primitives of Java’s concurrency mechanism is enough to be a competent
developer of concurrent code. In fact, the subject of concurrency is a very large one,
and good multithreaded development is difficult and continues to cause problems for
even the best developers with years of experience under their belts.

One other point you should be aware of is that the area of concurrency is undergoing
a massive amount of active research at present—research that will certainly have an
impact on Java and the other languages you’ll use over the course of your career. If
we were to pick one fundamental area of computing that’s likely to change radically
in terms of industry practice over the next five years, it would be concurrency.

78 CHAPTER 4 Modern concurrency

Let’s consider some of the most important aspects of these ideas:

■ Objects can be easily shared between all threads within a process.

■ Objects can be changed (“mutated”) by any threads that have a reference

to them.

■ The thread scheduler can swap threads on and off cores at any time, more

or less.

■ Methods must be able to be swapped out while they’re running (otherwise a

method with an infinite loop would steal the CPU forever).

This, however, runs the risk of an unpredictable thread swap leaving a method

“half-done” and an object in an inconsistent state. There is also the risk of

changes made in one thread not being visible in other threads when they need

to be. To mitigate these risks, we come to the last point.

■ Objects can be locked to protect vulnerable data.

Java’s thread- and lock-based concurrency is very low-level, and often hard to work with.

To cope with this, a set of concurrency libraries, known as java.util.concurrent,

was introduced in Java 5. This provided a set of tools for writing concurrent code

that many programmers find easier to use than the classic block-structured concur-

rency primitives.

As developers become more experienced with writing concurrent code, they find

themselves running up against recurring concerns that are important to their systems.

We call these concerns “design forces.” They’re high-level forces that exist (and often

conflict) in the design of practical concurrent OO systems.

 We’re going to spend a little bit of time looking at some of the most important of

these forces in the next couple of sections.

Lessons learned

Java was the first mainstream programming language to have built-in support for mul-
tithreaded programming. This represented a huge step forward at the time, but now,
15 years later, we’ve learned a lot more about how to write concurrent code.

It turns out that some of Java’s initial design decisions are quite difficult for most
programmers to work with. This is unfortunate, because the increasing trend in hard-
ware is toward processors with many cores, and the only good way to take advan-
tage of those cores is with concurrent code. We’ll discuss some of the difficulties of
concurrent code in this chapter. The subject of modern processors naturally requir-
ing concurrent programming is covered in some detail in chapter 6 where we dis-
cuss performance.

79Concurrency theory—a primer

4.1.2 Design concepts

The most important design forces were catalogued by Doug Lea as he was doing his

landmark work producing java.util.concurrent:

■ Safety (also known as concurrent type safety)

■ Liveness

■ Performance

■ Reusability

Let’s look at each of these forces now.

SAFETY AND CONCURRENT TYPE SAFETY

Safety is about ensuring that object instances remain self-consistent regardless of any

other operations that may be happening at the same time. If a system of objects has

this property, it’s said to be concurrently type-safe.

 As you might guess from the name, one way to think about concurrency is in terms

of an extension to the regular concepts of object modeling and type safety. In noncon-

current code, you want to ensure that regardless of what public methods you call on

an object, it’s in a well-defined and consistent state at the end of the method. The

usual way to do this is to keep all of an object’s state private and expose a public API of

methods that only alter the object’s state in a self-consistent way.

 Concurrent type safety is the same basic concept as type safety for an object, but

applied to the much more complex world in which other threads are potentially oper-

ating on the same objects on different CPU cores at the same time.

LIVENESS

A live system is one in which every attempted activity eventually either progresses

or fails.

 The key word in the definition is eventually—there is a distinction between a tran-

sient failure to progress (which isn’t that bad in isolation, even if it’s not ideal) and a

permanent failure. Transient failures could be caused by a number of underlying

problems, such as:

■ Locking or waiting to acquire a lock

■ Waiting for input (such as network I/O)

■ Temporary failure of a resource

■ Not enough CPU time available to run the thread

Staying safe

One strategy for safety is to never return from a non-private method in an inconsistent
state, and to never call any non-private method (and certainly not a method on any
other object) while in an inconsistent state. If this is combined with a way of protect-
ing the object (such as a synchronization lock or critical section) while it’s inconsis-
tent, the system can be guaranteed to be safe.

80 CHAPTER 4 Modern concurrency

Permanent failures could be due to a number of causes. These are some of the

most common:

■ Deadlock

■ Unrecoverable resource problem (such as if the NFS goes away)

■ Missed signal

We’ll discuss locking and several of these other problems later in the chapter,

although you may already be familiar with some or all of them.

PERFORMANCE

The performance of a system can be quantified in a number of different ways. In

chapter 6, we’ll talk about performance analysis and techniques for tuning, and we’ll

introduce a number of other metrics you should know about. For now, think of per-

formance as being a measure of how much work a system can do with a given amount

of resources.

REUSABILITY

Reusability forms a fourth design force, because it isn’t really covered by any of the

other considerations. A concurrent system that has been designed for easy reuse is

sometimes very desirable, although this isn’t always easy to implement. One approach

is to use a reusable toolbox (like java.util.concurrent) and build non-reusable

application code on top of it.

4.1.3 How and why do the forces conflict?

The design forces are often in opposition to each other, and this tension can be

viewed as a central reason why designing good concurrent systems is difficult.

■ Safety stands in opposition to liveness—safety is about ensuring that bad things

don’t happen, whereas liveness requires progress to be made.

■ Reusable systems tend to expose their internals, which can cause problems

with safety.

■ A naïvely written safe system will typically not be very performant, as it usually

resorts to the heavy use of locking to provide safety guarantees.

The balance that you should ultimately try to achieve is for the code to be flexible

enough to be useful for a wide range of problems, closed enough to be safe, and still

reasonably live and performant. This is quite a tall order, but, fortunately, there are

some practical techniques to help with this. Here are some of the most common in

rough order of usefulness:

■ Restrict the external communication of each subsystem as much as possible.

Data hiding is a powerful tool for aiding with safety.

■ Make the internal structure of each subsystem as deterministic as possible. For

example, design in static knowledge of the threads and objects in each subsys-

tem, even if the subsystems will interact in a concurrent, nondeterministic way.

81Concurrency theory—a primer

■ Apply policy approaches that client apps must adhere to. This technique is pow-

erful, but relies on user apps cooperating, and it can be hard to debug if a badly

behaved app disobeys the rules.

■ Document the required behavior. This is the weakest of the alternatives, but it’s

sometimes necessary if the code is to be deployed in a very general context.

The developer should be aware of each of these possible safety mechanisms and

should use the strongest possible technique, while being aware that there are circum-

stances in which only the weaker mechanisms are possible.

4.1.4 Sources of overhead

There are many aspects of a concurrent system that can contribute to the inher-

ent overhead:

■ Locks and monitors

■ Number of context switches

■ Number of threads

■ Scheduling

■ Locality of memory

■ Algorithm design

This should form the basis of a checklist in your mind. When developing concurrent

code, you should ensure that you have thought about everything on this list, before

considering the code “done.”

We’ll mention many of these sources of overhead in this chapter (and in chapter 6,

about performance).

4.1.5 A transaction processor example

To round off this rather theoretical section, let’s apply some of this theory to the

design of an example concurrent application. We’ll see how we might approach it

using a high-level view of the classes from java.util.concurrent.

 Consider a basic transaction processing system. A simple and standard way to con-

struct such an application is to have different phases of the application correspond to

different parts of the business process. Each phase is then represented by a thread

Algorithm design

This is an area in which developers can really distinguish themselves—learning about
algorithm design will make you a better programmer in any language. Two of the best
books are Introduction to Algorithms by Thomas H. Corman et al. (MIT, 2009)—don’t
be deceived by the title, this is a serious work—and The Algorithm Design Manual,
second edition, by Steven Skiena (Springer-Verlag, 2008). For both single-threaded
and concurrent algorithms, these are excellent choices for further reading.

82 CHAPTER 4 Modern concurrency

pool that takes in work items one by one, does an amount of processing on each item,

and hands off the item to the next thread pool. In general, it’s good design to have

each thread pool concentrate on processing that is pertinent to one specific func-

tional area. You can see an example application in figure 4.1.

 If you design applications like this, you can improve throughput because you can

have several work items in flight at once. One work item can be in processing in the

Credit Check phase at the same time as another is in Stock Check. Depending on the

details of the application, there can even be multiple different orders in Stock Check

at the same time.

 Designs of this type are very well-suited to being implemented using the classes

found in java.util.concurrent. The package contains thread pools for execution

(and a nice set of factory methods in the Executors class to create them) and queues

for handing work off between pools. There are also concurrent data structures (for

building shared caches and other use cases) and many other useful low-level tools.

 But, you might ask, what would we have done before the advent of Java 5, when

we didn’t have these classes available? In many cases, application groups would come

up with their own concurrent programming libraries—they’d end up building com-

ponents similar in aims to the ones found in java.util.concurrent. But many of

these bespoke components would have design problems, and subtle (or not-so-

subtle) concurrency bugs. If java.util.concurrent didn’t exist, application devel-

opers would end up reinventing much of it for themselves (probably in a buggy,

badly tested form).

Figure 4.1 An example multithreaded application

83Block-structured concurrency (pre-Java 5)

With this example in mind, let’s turn to our next subject—a review of Java’s “classic”

concurrency and a close look at why programming with it can be difficult.

4.2 Block-structured concurrency (pre-Java 5)

Much of this chapter is taken up with discussing alternatives to the block-synchronization-

based approach to concurrency. But to get the most out of the discussion of the alter-

natives, it’s important to have a firm grasp of what’s good and bad about the classic

view of concurrency.

 To that end, we’ll discuss the original, quite low-level way of tackling multithreaded

programming using Java’s concurrency keywords—synchronized, volatile, and so

on. This discussion will take place in the context of the design forces and with an eye

to what will come in the next sections.

 Following on from that, we’ll briefly consider the lifecycle of a thread, and then

discuss common techniques (and pitfalls) of concurrent code, such as fully synchro-

nized objects, deadlocks, the volatile keyword, and immutability.

 Let’s get started with a review of synchronization.

4.2.1 Synchronization and locks

As you already know, the synchronized keyword can be applied either to a block or

to a method. It indicates that before entering the block or method, a thread must

acquire the appropriate lock. For a method, that means acquiring the lock belong-

ing to the object instance (or the lock belonging to the Class object for static

synchronized methods). For a block, the programmer should indicate which object’s

lock is to be acquired.

 Only one thread can be progressing through any of an object’s synchronized

blocks or methods at once; if other threads try to enter, they’re suspended by the JVM.

This is true regardless of whether the other thread is trying to enter either the same or

a different synchronized block on the same object. In concurrency theory, this type of

construct is referred to as a critical section.

NOTE Have you ever wondered why the Java keyword used for a critical sec-
tion is synchronized? Why not “critical” or “locked”? What is it that’s being
synchronized? We’ll return to this in section 4.2.5, but if you don’t know or
have never thought about it, you may want to take a couple of minutes to pon-
der it before continuing.

We’re really focusing on some of the newer concurrency techniques in this chapter. But

as we’re talking about synchronization, let’s look at some basic facts about synchroniza-

tion and locks in Java. Hopefully you already have most (or all) of these at your fingertips:

■ Only objects—not primitives—can be locked.

■ Locking an array of objects doesn’t lock the individual objects.

■ A synchronized method can be thought of as equivalent to a synchronized

(this) { ... } block that covers the entire method (but note that they’re repre-

sented differently in bytecode).

84 CHAPTER 4 Modern concurrency

■ A static synchronized method locks the Class object, because there’s no

instance object to lock.

■ If you need to lock a class object, consider carefully whether you need to do so

explicitly, or by using getClass(), because the behavior of the two approaches

will be different in a subclass.

■ Synchronization in an inner class is independent of the outer class (to see why

this is so, remember how inner classes are implemented).

■ synchronized doesn’t form part of the method signature, so it can’t appear on

a method declaration in an interface.

■ Unsynchronized methods don’t look at or care about the state of any locks, and

they can progress while synchronized methods are running.

■ Java’s locks are reentrant. That means a thread holding a lock that encounters a

synchronization point for the same lock (such as a synchronized method calling

another synchronized method in the same class) will be allowed to continue.

WARNING Non-reentrant locking schemes exist in other languages (and can
be synthesized in Java—see the Javadoc for ReentrantLock in java.util
.concurrent.locks if you want the gory details) but they’re generally painful to
deal with, and they’re best avoided unless you really know what you’re doing.

That’s enough review of Java’s synchronization. Now let’s move on to discuss the states

that a thread moves through during its lifecycle.

4.2.2 The state model for a thread

In figure 4.2, you can see how a thread lifecycle progresses—from creation to run-

ning, to possibly being suspended, before running again (or blocking on a resource),

and eventually completing.

 A thread is initially created in the Ready state. The scheduler will then find a core

for it to run upon, and some small amount of waiting time may be involved if the

machine is heavily loaded. From there, the thread will usually consume its time alloca-

tion and be placed back into the Ready state to await further processor time slices.

This is the action of the forcible thread scheduling that we mentioned in section 4.1.1.

 As well as the standard action by the scheduler, the thread itself can indicate that it

isn’t able to make use of the core at this time. This can be because the program code indi-

cates that the thread should pause before continuing (via Thread.sleep()) or because

the thread must wait until notified (usually that some external condition has been met).

Under these circumstances, the thread is removed from the core and releases all its locks.

It can only run again by being woken up (after sleeping for the right length of time, or

because it has received the appropriate signal) and placed back in the Ready state.

 The thread can be blocked because it’s waiting on I/O or to acquire a lock held by

another thread. In this case, the thread isn’t swapped off the core but is kept busy,

waiting for the lock or data to become available. If this happens, the thread will con-

tinue to execute until the end of its timeslice.

85Block-structured concurrency (pre-Java 5)

Let’s move on to talk about one well-known way to solve the synchronization problem.

This is the idea of fully synchronized objects.

4.2.3 Fully synchronized objects

Earlier in this chapter, we introduced the concept of concurrent type safety and men-

tioned one strategy for achieving this (in the “Staying Safe” sidebar). Let’s look at a

more complete description of this strategy, which is usually called fully synchronized

objects. If all of the following rules are obeyed, the class is known to be thread-safe and

will also be live.

 A fully synchronized class is a class that meets all of these conditions:

■ All fields are always initialized to a consistent state in every constructor.

■ There are no public fields.

■ Object instances are guaranteed to be consistent after returning from any non-

private method (assuming the state was consistent when the method was called).

■ All methods provably terminate in bounded time.

■ All methods are synchronized.

■ There is no calling of another instance’s methods while in an inconsistent state.

■ There is no calling of any non-private method while in an inconsistent state.

Listing 4.1 shows an example of such a class from the backend of an imaginary distrib-

uted microblogging tool. The ExampleTimingNode class will receive updates by having

its propagateUpdate() method called and can also be queried to see if it has received

a specific update. This situation provides a classic conflict between a read and a write

operation, so synchronization is used to prevent inconsistency.

Figure 4.2 The state model of a Java thread

86 CHAPTER 4 Modern concurrency

public class ExampleTimingNode implements SimpleMicroBlogNode {

 private final String identifier;

 private final Map<Update, Long> arrivalTime
 ➥ = new HashMap<>();

 public ExampleTimingNode(String identifier_) {
 identifier = identifier_;
 }

 public synchronized String getIdentifier() {
 return identifier;
 }

 public synchronized void propagateUpdate(
 ➥ Update update_) {
 long currentTime = System.currentTimeMillis();
 arrivalTime.put(update_, currentTime);
 }

 public synchronized boolean confirmUpdateReceived(
 ➥ Update update_) {
 Long timeRecvd = arrivalTime.get(update_);
 return timeRecvd != null;
 }
}

This seems fantastic at first glance—the class is both safe and live. The problem comes

with performance—just because something is safe and live doesn’t mean it’s necessar-

ily going to be very quick. You have to use synchronized to coordinate all the accesses

(both get and put) to the arrivalTime map, and that locking is ultimately going to

slow you down. This is a central problem of this way of handling concurrency.

4.2.4 Deadlocks

Another classic problem of concurrency (and not just Java’s take on it) is the deadlock.

Consider listing 4.2, which is a slightly extended form of the last example. In this ver-

sion, as well as recording the time of the last update, each node that receives an

update informs another node of that receipt.

Listing 4.1 A fully synchronized class

Code fragility

In addition to the performance problems, the code in listing 4.1 is quite fragile. You
can see that you never touch arrivalTime outside of a synchronized method (and
in fact there’s only get and put access), but this is only possible because of the
small amount of code in play. In real, larger systems, this would not be possible due
to the amount of code. It’s very easy for bugs to creep into larger codebases that use
this approach, which is another reason that the Java community began to look for
more robust approaches.

No public
fields

All fields initialized
in constructor

All methods are
synchronized

87Block-structured concurrency (pre-Java 5)

 This is a naïve attempt to build a multithreaded update handling system. It’s

designed to demonstrate deadlocking—you shouldn’t use this as the basis for real code.

public class MicroBlogNode implements SimpleMicroBlogNode {
 private final String ident;

 public MicroBlogNode(String ident_) {
 ident = ident_;
 }

 public String getIdent() {
 return ident;
 }

 public synchronized void propagateUpdate(Update upd_, MicroBlogNode
backup_) {

 System.out.println(ident +": recvd: "+ upd_.getUpdateText()
 ➥ +" ; backup: "+backup_.getIdent());
 backup_.confirmUpdate(this, upd_);
 }

 public synchronized void confirmUpdate(MicroBlogNode other_, Update
update_) {

 System.out.println(ident +": recvd confirm: "+
 ➥ update_.getUpdateText() +" from "+other_.getIdent()k);
 }
}

final MicroBlogNode local =

➥ new MicroBlogNode("localhost:8888");
final MicroBlogNode other = new MicroBlogNode("localhost:8988");
final Update first = getUpdate("1");
final Update second = getUpdate("2");

new Thread(new Runnable() {
 public void run() {
 local.propagateUpdate(first, other);
 }
}).start();

new Thread(new Runnable() {
 public void run() {
 other.propagateUpdate(second, local);
 }
}).start();

At first glance, this code looks sensible. You have two updates being sent to separate

threads, each of which has to be confirmed on backup threads. This doesn’t seem too

outlandish a design—if one thread has a failure, there is another thread that can

potentially carry on.

 If you run the code, you’ll normally see an example of a deadlock—both threads

will report receiving the update, but neither will confirm receiving the update for

which they’re the backup thread. The reason for this is that each thread requires the

Listing 4.2 A deadlocking example

Keyword final
is required

First update
sent to first
thread

Second update
sent to other
thread

88 CHAPTER 4 Modern concurrency

other to release the lock it holds before the confirmation method can progress. This is

illustrated in figure 4.3.

 To deal with deadlocks, one technique is to always acquire locks in the same order

in every thread. In the preceding example, the first thread to start acquires them in

the order A, B, whereas the second thread acquires them in the order B, A. If both

threads had insisted on acquiring in order A, B, the deadlock would have been

avoided, because the second thread would have been blocked from running at all

until the first had completed and released its locks.

 In terms of the fully synchronized object approach, this deadlock is prevented

because the code violates the consistent state rule. When a message arrives, the receiv-

ing node calls another object while the message is still being processed—the state isn’t

consistent when it makes this call.

 Next, we’ll return to a puzzle we posed earlier: why the Java keyword for a critical

section is synchronized. This will lead us into a discussion of immutability and then

the volatile keyword.

4.2.5 Why synchronized?

One of the biggest changes in concurrent programming in recent years has been in

the realm of hardware. It wasn’t that many years ago that a working programmer

could go for years on end without encountering a system that had more than one or

at most two processing cores. It was thus possible to think of concurrent program-

ming as being about the timesharing of the CPU—threads swapping on and off a sin-

gle core.

 Today, anything larger than a mobile phone has multiple cores, so the mental

model should be different too, encompassing multiple threads all running on differ-

ent cores at the same physical moment (and potentially operating on shared data).

You can see this in figure 4.4. For efficiency, each thread that is running simultane-

ously may have its own cached copy of data being operated on. With this picture in

mind, let’s turn to the question of the choice of keyword used to denote a locked sec-

tion or method.

Figure 4.3 Deadlocked threads

89Block-structured concurrency (pre-Java 5)

We asked earlier, what is it that’s being syn-

chronized in the code in listing 4.1? The

answer is: The memory representation in differ-

ent threads of the object being locked is what

is being synchronized. That is, after the

synchronized block (or method) has com-

pleted, any and all changes that were made

to the object being locked are flushed back

to main memory before the lock is released,

as illustrated in figure 4.5.

 In addition, when a synchronized block

is entered, then after the lock has been acquired, any changes to the locked object are

read in from main memory, so the thread with the lock is synchronized to main mem-

ory’s view of the object before the code in the locked section begins to execute.

4.2.6 The volatile keyword

Java has had the volatile keyword since the dawn of time (Java 1.0), and it’s used as a

simple way to deal with the synchronization of object fields, including primitives. The

following rules govern a volatile field:

■ The value seen by a thread is always reread from main memory before use.

■ Any value written by a thread is always flushed through to main memory before

the instruction completes.

This can be thought of as acting like a tiny little synchronized block around the oper-

ation. It allows the programmer to write simplified code, but at the cost of the extra

flushes on every access. Notice also that the volatile variable doesn’t introduce any

locks, so you can’t deadlock by using volatile variables.

 One slightly more subtle consequence of volatile variables is that for true thread-

safety, a volatile variable should only be used to model a variable where writes to the

variable don’t depend on the current state (the read state) of the variable. For cases

where the current state matters, you must always introduce a lock to be completely safe.

Figure 4.4 Old and new ways of thinking about concurrency and threads

Figure 4.5 A change to an object propagates

between threads via main memory

90 CHAPTER 4 Modern concurrency

4.2.7 Immutability

One technique that can be of great value is the use of immutable objects. These are

objects that either have no state, or that have only final fields (which must therefore

be populated in the constructors of the objects). These are always safe and live,

because their state can’t be mutated, so they can never be in an inconsistent state.

 One problem is that any values that are required to initialize a particular object

must be passed into the constructor. This can lead to unwieldy constructor calls, with

many parameters. Alternatively, many coders use a FactoryMethod instead. This can

be as simple as using a static method on the class, instead of a constructor, to pro-

duce new objects. The constructors are usually made protected or private, so that

the static FactoryMethods are the only way of instantiating.

 This still has the problem of potentially needing many parameters to be passed in to

the FactoryMethod. This isn’t always very convenient, especially when you may need

to accumulate state from several sources before creating a new immutable object.

 To solve this, you can use the Builder pattern. This is a combination of two con-

structs: a static inner class that implements a generic builder interface, and a private

constructor for the immutable class itself.

 The static inner class is the builder for the immutable class, and it provides the

only way that a developer can get hold of new instances of the immutable type. One

very common implementation is for the Builder class to have exactly the same fields

as the immutable class, but to allow mutation of the fields.

 This listing shows how you might use this to model a microblogging update (again,

building on the earlier listings in this chapter).

public interface ObjBuilder<T> {
 T build();
}

public class Update {
 private final Author author;
 private final String updateText;

 private Update(Builder b_) {
 author = b_.author;
 updateText = b_.updateText;
 }

 public static class Builder
 ➥ implements ObjBuilder<Update> {
 private Author author;
 private String updateText;

 public Builder author(Author author_) {
 author = author_;
 return this;
 }

 public Builder updateText(String updateText_) {

Listing 4.3 Immutable objects and builders

Builder interface

Final fields must be
initialized in constructor

Builder class
must be
static inner

Methods on Builder
return Builder for
chain calls

91Building blocks for modern concurrent applications

 updateText = updateText_;
 return this;
 }
 public Update build() {
 return new Update(this);
 }
 }

}

With this code, you could then create a new Update object like this:

Update.Builder ub = new Update.Builder();
Update u = ub.author(myAuthor).updateText("Hello").build();

This is a very common pattern and one that has wide applicability. In fact, we’ve

already made use of the properties of immutable objects in listings 4.1 and 4.2.

 One last point about immutable

objects—the final keyword only applies

to the object directly pointed to. As you

can see in figure 4.6, the reference to the

main object can’t be assigned to point at

object 3, but within the object, the refer-

ence to 1 can be swung to point at object 2.

Another way of saying this is that a final

reference can point at an object that has

nonfinal fields.

 Immutability is a very powerful technique, and you should use it whenever feasible.

Sometimes it’s just not possible to develop efficiently with only immutable objects,

because every change to an object’s state requires a new object to be spun up. So we’re

left with the necessity of dealing with mutable objects.

 We’ll now turn to one of the biggest topics in this chapter—a tour of the more mod-

ern and conceptually simple concurrency APIs presented in java.util.concurrent.

We’ll look at how you can start to use them in your own code.

4.3 Building blocks for modern concurrent applications

With the advent of Java 5, a new way of thinking about concurrency in Java emerged.

This was spearheaded by the package java.util.concurrent, which contained a

rich new toolbox for working with multithreaded code. This toolbox has been

enhanced with subsequent versions of Java, but the classes and packages that were

introduced with Java 5 still work the same way and they’re still very valuable to the

working developer.

 We’re going to take a whirlwind tour through some of the headline classes in

java.util.concurrent and related packages, such as the atomic and locks packages.

We’ll get you started using the classes and look at examples of use cases for them.

You should also read the Javadoc for them and try to build up your familiarity with

the packages as a whole—they make programming concurrent classes much easier.

hashCode() and
equals() methods
omitted

Figure 4.6 Immutability of value versus

reference

92 CHAPTER 4 Modern concurrency

Consider this discussion a starter toolkit for concurrent code, not a full workshop.

To get the most out of java.util.concurrent, you’ll need to read more than we can

present here.

4.3.1 Atomic classes—java.util.concurrent.atomic

The package java.util.concurrent.atomic contains several classes that have names

starting with Atomic. They’re essentially providing the same semantics as a volatile,

but wrapped in a class API that includes atomic (meaning all-or-nothing) methods for

suitable operations. This can be a very simple way for a developer to avoid race condi-

tions on shared data.

 The implementations are written to take advantage of modern processor features, so

they can be nonblocking (lock-free) if suitable support is available from the hardware

and OS, which it should be for most modern systems. A common use is to implement

sequence numbers, using the atomic getAndIncrement() method on the Atomic-

Integer or AtomicLong.

 To be a sequence number, the class should have a nextId() method that will

return a number guaranteed to be unique (and strictly increasing) each time it’s

called. This is very similar to the database concept of a sequence number (hence the

name of the variable).

 Let’s look at a bit of code that replicates sequence numbers:

private final AtomicLong sequenceNumber = new AtomicLong(0);

public long nextId() {
 return sequenceNumber.getAndIncrement();
}

CAUTION Atomic classes don’t inherit from the similarly named classes, so
AtomicBoolean can’t be used in place of a Boolean, and AtomicInteger isn’t
an Integer (but it does extend Number).

Next, we’ll examine how java.util.concurrent models the core of the synchroniza-

tion model—the Lock interface.

Migrating code

If you have existing multithreaded code that is still based on the older (pre-Java 5)
approaches, you should refactor it to use java.util.concurrent. In our experience,
your code will be improved if you make a conscious effort to port it to the newer
APIs—the greater clarity and reliability will be well worth the effort expended to
migrate in almost all cases.

93Building blocks for modern concurrent applications

4.3.2 Locks—java.util.concurrent.locks

The block-structured approach to synchronization is based around a simple notion of

what a lock is. This approach has a number of shortcomings:

■ There is only one type of lock.

■ It applies equally to all synchronized operations on the locked object.

■ The lock is acquired at the start of the synchronized block or method.

■ The lock is released at the end of the block or method.

■ The lock is either acquired or the thread blocks—no other outcomes

are possible.

If we were going to reengineer the support for locks, there are several things we could

potentially change for the better:

■ Add different types of locks (such as reader and writer locks).

■ Not restrict locks to blocks (allow a lock in one method and unlock in another).

■ If a thread cannot acquire a lock (for example, if another thread has the

lock), allow the thread to back out or carry on or do something else—a try-

Lock() method.

■ Allow a thread to attempt to acquire a lock and give up after a certain amount

of time.

The key to realizing all of these possibilities is the Lock interface in java.util

.concurrent.locks. This ships with a couple of implementations:

■ ReentrantLock—This is essentially the equivalent of the familiar lock used in

Java synchronized blocks, but it’s slightly more flexible.

■ ReentrantReadWriteLock—This can provide better performance in cases

where there are many readers but few writers.

The Lock interface can be used to completely replicate any functionality that is

offered by block-structured concurrency. Here is the deadlock example rewritten to

use the ReentrantLock.

private final Lock lock = new ReentrantLock();

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
 lock.lock();
 try {
 System.out.println(ident +": recvd: "+
 ➥ upd_.getUpdateText() +" ; backup: "+
 ➥ backup_.getIdent());
 backup_.confirmUpdate(this, upd_);
 } finally {
 lock.unlock();
 }
}

Listing 4.4 Rewriting deadlock example to use ReentrantLock

Each thread locks
own lock first

Calls confirmUpdate() to
acknowledge in other thread

94 CHAPTER 4 Modern concurrency

public void confirmUpdate(MicroBlogNode other_, Update upd_) {
 lock.lock();
 try{
 System.out.println(iden +": recvd confirm: "+
 ➥ upd_.getUpdateText() +" from "+ other_.getIdentifier());
 } finally {
 lock.unlock();
 }
}

The attempt B to lock the other thread will generally fail, because it’s already locked

(as per figure 4.3). That’s how the deadlock arises.

There are a number of strategies for dealing with deadlocks, but there’s one in partic-

ular that doesn’t work that you should be aware of. Consider the version of the

propagateUpdate() method shown in the next listing (and imagine that the same

change has been made to the confirmUpdate() code). In this example, we’ve

replaced the unconditional lock with tryLock() with a timeout. This is an attempt to

remove the deadlock by giving other threads a chance to get at the lock.

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
 boolean acquired = false;

 while (!acquired) {
 try {
 int wait = (int)(Math.random() * 10);
 acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);
 if (acquired) {
 System.out.println(ident +": recvd: "+
 ➥ upd_.getUpdateText() +" ; backup: "+backup_.getIdent());
 backup_.confirmUpdate(this, update_);
 } else {
 Thread.sleep(wait);
 }
 } catch (InterruptedException e) {
 } finally {

Using try ... finally with lock

The pattern of lock() with a try ... finally block, where the lock is released is a
good addition to your toolbox. It works very well if you’re replicating a situation that
is similar to one where you’d have used block-structured concurrency. On the other
hand, if you need to pass around the Lock objects (such as by returning it from a
method), you can’t use this pattern.

Using Lock objects can be considerably more powerful than a block-structured
approach, but it is still sometimes hard to use them to design a robust lock-
ing strategy.

Listing 4.5 A flawed attempt to fix deadlock

Attempts to lock
other thread b

Try and
lock, with
random
timeout

Confirm on
other thread

95Building blocks for modern concurrent applications

 if (acquired) lock.unlock();
 }
 }
}

If you run the code in listing 4.5, you’ll see that it seems to resolve the deadlock, but

only sometimes. You’ll see the “received confirm of update” text, but only some of

the time.

 In fact, the deadlock hasn’t really been resolved, because if the initial lock is

obtained (in propagateUpdate()) the thread calls confirmUpdate() and never

releases the first lock until completion. If both threads manage to acquire their first

lock before either can call confirmUpdate(), the threads will still be deadlocked.

 The real solution is to ensure that if the attempt to get the second lock fails, the

thread should release the lock it’s holding and wait briefly, as shown in the next list-

ing. This gives the other threads a chance to get a complete set of the locks needed

to progress.

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
 boolean acquired = false;
 boolean done = false;

 while (!done) {
 int wait = (int)(Math.random() * 10);
 try {
 acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);
 if (acquired) {
 System.out.println(ident +": recvd: "+
 ➥ upd_.getUpdateText() +" ; backup: "+backup_.getIdent());
 done = backupNode_.tryConfirmUpdate(this, update_);
 }
 } catch (InterruptedException e) {
 } finally {
 if (acquired) lock.unlock();
 }
 if (!done) try {
 Thread.sleep(wait);
 } catch (InterruptedException e) { }
 }
}

public boolean tryConfirmUpdate(MicroBlogNode other_, Update upd_) {
 boolean acquired = false;
 try {
 int wait = (int)(Math.random() * 10);
 acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);

 if (acquired) {
 long elapsed = System.currentTimeMillis() - startTime;
 System.out.println(ident +": recvd confirm: "+
 ➥ upd_.getUpdateText() +" from "+other_.getIdent()
 ➥ +" - took "+ elapsed +" millis");

Listing 4.6 Fixing deadlock

Only unlock
if locked

Examine return
from tryConfirm-
Update()

If not done, release
lock and wait

96 CHAPTER 4 Modern concurrency

 return true;
 }
 } catch (InterruptedException e) {
 } finally {
 if (acquired) lock.unlock();
 }

 return false;
}

In this version, you examine the return code of tryConfirmUpdate(). If it returns

false, the original lock will be released. The thread will pause briefly, allowing the

other thread to potentially acquire its lock.

 Run this code a few times, and you should see that both threads are basically always

able to progress—you’ve eliminated the deadlock. You may like to experiment with

some different forms of the preceding versions of the deadlock code—the original,

the flawed solution, and the corrected form. By playing with the code, you can get a

better understanding of what is happening with the locks, and you can begin to build

your intuition about how to avoid deadlock issues.

We’ve only scratched the surface of the possibilities of Lock—there are a number of

ways of producing more complex lock-like structures. One such concept, the latch, is

our next topic.

4.3.3 CountDownLatch

The CountDownLatch is a simple synchronization pattern that allows for multiple

threads to all agree on a minimum amount of preparation that must be done before

any thread can pass a synchronization barrier.

 This is achieved by providing an int value (the count) when constructing a new

instance of CountDownLatch. After that point, two methods are used to control the

latch: countDown() and await(). The former reduces the count by 1, and the latter

causes the calling thread to wait until the count reaches 0 (it does nothing if the count

is already 0 or less). This simple mechanism allows the minimum preparation pattern

to be easily deployed.

 In the following listing, a group of processing threads within a single process want to

know that at least half of them have been properly initialized (assume that initialization

Why does the flawed attempt seem to work sometimes?

You’ve seen that the deadlock still exists, so what is it that causes the code in the
flawed solution to sometimes succeed? The extra complexity in the code is the cul-
prit. It affects the JVM’s thread scheduler and makes it less easy to predict. This
means that it will sometimes schedule the threads so that one of them (usually the
first thread) is able to get into confirmUpdate() and acquire the second lock
before the second thread can run. This is also possible in the original code, but
much less likely.

97Building blocks for modern concurrent applications

of a processing thread takes a certain amount of time) before the system as a whole

starts sending updates to any of them.

public static class ProcessingThread extends Thread {
 private final String ident;
 private final CountDownLatch latch;

 public ProcessingThread(String ident_, CountDownLatch cdl_) {
 ident = ident_;
 latch = cdl_;
 }
 public String getIdentifier() {
 return identifier;
 }
 public void initialize() {
 latch.countDown();
 }
 public void run() {
 initialize();
 }
}

final int quorum = 1 + (int)(MAX_THREADS / 2);
final CountDownLatch cdl = new CountDownLatch(quorum);

final Set<ProcessingThread> nodes = new HashSet<>();
try {
 for (int i=0; i<MAX_THREADS; i++) {
 ProcessingThread local = new ProcessingThread("localhost:"+
 ➥ (9000 + i), cdl);
 nodes.add(local);
 local.start();
 }
 cdl.await();
} catch (InterruptedException e) {
} finally {
}

In the code, you set up a latch with a quorum value. Once that many threads are initial-

ized, you can start processing. Each thread will cause a countDown() once it has finished

initialization, so the main thread need only wait until the quorum level has been reached

before starting (and sending updates, although we omitted that part of the code).

 The next class we’ll discuss is one of the most useful classes in the multithreaded

developer’s toolkit: the ConcurrentHashMap from java.util.concurrent.

4.3.4 ConcurrentHashMap

The ConcurrentHashMap class provides a concurrent version of the standard HashMap.

This is an improvement on the synchronizedMap() functionality provided in the

Collections class, because those methods return collections that have more locking

than is strictly necessary.

Listing 4.7 Using latches to help with initialization

initialize
node

Begin sending—
quorum reached

98 CHAPTER 4 Modern concurrency

As you can see from figure 4.7, the classic HashMap uses a function (the hash function)

to determine which “bucket” it will store the key/value pair in. This is where the

“hash” part of the class’s name comes from. This suggests a rather straightforward

multithreaded generalization—instead of needing to lock the whole structure when

making a change, it’s only necessary to lock the bucket that’s being altered.

TIP A well-written implementation of a concurrent HashMap will be essen-
tially lock-free on reads, and for writes will only lock the bucket being modi-
fied. Java basically achieves this, but there are some additional low-level
details that most developers won’t need to worry about too much.

The ConcurrentHashMap class also implements the ConcurrentMap interface, which

contains some new methods to provide truly atomic functionality:

■ putIfAbsent()—Adds the key/value pair to the HashMap if the key isn’t

already present.
■ remove()—Atomically removes the key/value pair only if the key is present and

the value is equal to the current state.
■ replace()—The API provides two different forms of this method for atomic

replacement in the HashMap.

As an example, you can replace the synchronized methods in listing 4.1 with regular,

unsynchronized access if you alter the HashMap called arrivalTime to be a Concurrent-

HashMap as well. Notice the lack of locks in the following listing—there is no explicit

synchronization at all.

public class ExampleMicroBlogTimingNode implements SimpleMicroBlogNode {
 ...
private final Map<Update, Long> arrivalTime =

➥ new ConcurrentHashMap <>();
 ...
public void propagateUpdate(Update upd_) {
 arrivalTime.putIfAbsent(upd_, System.currentTimeMillis());

Listing 4.8 Using ConcurrentHashMap

Figure 4.7 The classic view of a HashMap

99Building blocks for modern concurrent applications

 }
 public boolean confirmUpdateReceived(Update upd_) {
 return arrivalTime.get(upd_) != null;
 }
}

The ConcurrentHashMap is one of the most useful classes in java.util.concurrent. It

provides additional multithreaded safety and higher performance, and it has no seri-

ous drawbacks in normal usage. The counterpart to it for List is the CopyOnWrite-

ArrayList, which we’ll discuss next.

4.3.5 CopyOnWriteArrayList

As the name suggests, the CopyOnWrite-

ArrayList class is a replacement for

the standard ArrayList class. CopyOn-

WriteArrayList has been made thread-

safe by the addition of copy-on-write

semantics, which means that any opera-

tions that mutate the list will create a

new copy of the array backing the list

(as shown in figure 4.8). This also means

that any iterators formed don’t have to

worry about any modifications that they didn’t expect.

 This approach to shared data is ideal when a quick, consistent snapshot of data

(which may occasionally be different between readers) is more important than perfect

synchronization (and the attendant performance hit). This is often seen in non-mission-

critical data.

 Let’s look at an example of copy-on-write in action. Consider a timeline of microb-

logging updates. This is a classic example of data that isn’t 100 percent mission-critical

and where a performant, self-consistent snapshot for each reader is preferred over

total global consistency. This listing shows a holder class that represents an individual

user’s view of their timeline. (Then we’ll use that class in listing 4.10 to show exactly

how the copy-on-write behavior works.)

public class MicroBlogTimeline {
 private final CopyOnWriteArrayList<Update> updates;
 private final ReentrantLock lock;
 private final String name;
 private Iterator<Update> it;

 public void addUpdate(Update update_) {
 updates.add(update_);
 }
 public void prep() {
 it = updates.iterator();
 }

Listing 4.9 Copy-on-write example

Figure 4.8 Copy-on-write array

Set up
Iterator

Constructor
omitted

100 CHAPTER 4 Modern concurrency

 public void printTimeline() {
 lock.lock();
 try {
 if (it != null) {
 System.out.print(name+ ": ");
 while (it.hasNext()) {
 Update s = it.next();
 System.out.print(s+ ", ");
 }
 System.out.println();
 }
 } finally {
 lock.unlock();
 }
 }
}

This class is specifically designed to illustrate the behavior of an Iterator under copy-

on-write semantics. You need to introduce locking in the print method to prevent the

output being jumbled between the two threads, and to allow you to see the separate

state of the two threads.

 You can call the MicroBlogTimeline class from the code shown here.

final CountDownLatch firstLatch = new CountDownLatch(1);
final CountDownLatch secondLatch = new CountDownLatch(1);
final Update.Builder ub = new Update.Builder();

final List<Update> l = new CopyOnWriteArrayList<>();
l.add(ub.author(new Author("Ben")).updateText("I like pie").build());
l.add(ub.author(new Author("Charles")).updateText(

➥ "I like ham on rye").build());

ReentrantLock lock = new ReentrantLock();
final MicroBlogTimeline tl1 = new MicroBlogTimeline("TL1", l, lock);
final MicroBlogTimeline tl22 = new MicroBlogTimeline("TL2", l, lock);

Thread t1 = new Thread() {
 public void run() {
 l.add(ub.author(new Author("Jeffrey")).updateText(
 ➥ "I like a lot of things").build());
 tl1.prep();
 firstLatch.countDown();
 try { secondLatch.await(); }
 ➥ catch (InterruptedException e) { }
 tl1.printTimeline();
 }
};

Thread t2 = new Thread(){
 public void run(){
 try {
 firstLatch.await();
 l.add(ub.author(new Author("Gavin")).updateText(
 ➥ "I like otters").build());

Listing 4.10 Exposing copy-on-write behavior

Need to
lock here

Set up
initial
state

b

Enforce strict
event ordering
with latches

101Building blocks for modern concurrent applications

 tl2.prep();
 secondLatch.countDown();
 } catch (InterruptedException e) { }
 tl2.printTimeline();
}
};
t1.start();
t2.start();

There is a lot of scaffolding in the listing—unfortunately this is difficult to avoid.

There are quite a few things to notice about this code:

■ CountDownLatch is used to maintain close control over what is happening

between the two threads.

■ If the CopyOnWriteArrayList was replaced with an ordinary List (B), the

result would be a ConcurrentModificationException.

■ This is also an example of a Lock object being shared between two threads to

control access to a shared resource (in this case, STDOUT). This code would be

much messier if expressed in the block-structured view.

The output of this code will look like this:

TL2: Update [author=Author [name=Ben], updateText=I like pie, createTime=0],
Update [author=Author [name=Charles], updateText=I like ham on rye,
createTime=0], Update [author=Author [name=Jeffrey], updateText=I like a
lot of things, createTime=0], Update [author=Author [name=Gavin],
updateText=I like otters, createTime=0],

TL1: Update [author=Author [name=Ben], updateText=I like pie, createTime=0],
Update [author=Author [name=Charles], updateText=I like ham on rye,
createTime=0], Update [author=Author [name=Jeffrey], updateText=I like a
lot of things, createTime=0],

As you can see, the second output line (tagged as TL1) is missing the final update (the

one that mentions otters), despite the fact that the latching meant that mbex1 was

accessed after the list had been modified. This demonstrates that the Iterator con-

tained in mbex1 was copied by mbex2, and that the addition of the final update was invis-

ible to mbex1. This is the copy-on-write property that we want these objects to display.

Performance of CopyOnWriteArrayList

The use of the CopyOnWriteArrayList class does require a bit more thought than
using ConcurrentHashMap, which really is a drop-in concurrent replacement for
HashMap. This is because of performance issues—the copy-on-write property means
that if the list is altered while a read or a traversal is taking place, the entire array
must be copied.

This means that if changes to the list are common, compared to read accesses, this
approach won’t necessarily yield high performance. But as we’ll say repeatedly in
chapter 6, the only way to reliably get well-performing code is to test, retest, and mea-
sure the results.

Enforce strict
event ordering
with latches

102 CHAPTER 4 Modern concurrency

The next major common building block of concurrent code in java.util.concurrent

is the Queue. This is used to hand off work elements between threads, and it can be

used as the basis for many flexible and reliable multithreaded designs.

4.3.6 Queues

The queue is a wonderful abstraction (and no, we’re not just saying that because we

live in London, the world capital of queuing). The queue provides a simple and reli-

able way to distribute processing resources to work units (or to assign work units to

processing resources, depending on how you want to look at it).

 There are a number of patterns in multithreaded Java programming that rely heav-

ily on the thread-safe implementations of Queue, so it’s important that you fully under-

stand it. The basic Queue interface is in java.util, because it can be an important

pattern even in single-threaded programming, but we’ll focus on the multithreaded

use cases and assume that you have already encountered queues in basic use cases.

 One very common use case, and the one we’ll focus on, is the use of a queue to

transfer work units between threads. This pattern is often ideally suited for the sim-

plest concurrent extension of Queue—the BlockingQueue.

BLOCKINGQUEUES

The BlockingQueue is a queue that has two additional special properties:

■ When trying to put() to the queue, it will cause the putting thread to wait for

space to become available if the queue is full.

■ When trying to take() from the queue, it will cause the taking thread to block

if the queue is empty.

These two properties are very useful because if one thread (or pool of threads) is out-

stripping the ability of the other to keep up, the faster thread is forced to wait, thus

regulating the overall system. This is illustrated in figure 4.9.

USING WORKUNIT

The Queue interfaces are all generic—they’re Queue<E>, BlockingQueue<E>, and so

on. Although it may seem strange, it’s sometimes wise to exploit this and introduce an

artificial container class to wrap the items of work.

 For example, if you have a class called MyAwesomeClass that represents the units of

work that you want to process in a multithreaded way, then rather than having this,

BlockingQueue<MyAwesomeClass>

Two implementations of BlockingQueue

Java ships with two basic implementations of the BlockingQueue interface: the
LinkedBlockingQueue and the ArrayBlockingQueue. They offer slightly different
properties; for example, the array implementation is very efficient when an exact
bound is known for the size of the queue, whereas the linked implementation may be
slightly faster under some circumstances.

103Building blocks for modern concurrent applications

it can be better to have this,

BlockingQueue<WorkUnit<MyAwesomeClass>>

where WorkUnit (or QueueObject, or whatever you want to call the container class) is

a packaging interface or class that may look something like this:

public class WorkUnit<T> {
 private final T workUnit;

 public T getWork(){ return workUnit; }

 public WorkUnit(T workUnit_) {
 workUnit = workUnit_;
 }
}

The reason for doing this is that this level of indirection provides a place to add addi-

tional metadata without compromising the conceptual integrity of the contained type

(MyAwesomeClass in this example).

 This is surprisingly useful. Use cases where additional metadata is helpful are

abundant. Here are a few examples:

■ Testing (such as showing the change history for an object)

■ Performance indicators (such as time of arrival or quality of service)

■ Runtime system information (such as how this instance of MyAwesomeClass has

been routed)

Figure 4.9 The

BlockingQueue

104 CHAPTER 4 Modern concurrency

It can be much harder to add in this indirection after the fact. If you find that more

metadata is required in certain circumstances, it can be a major refactoring job to add

in what would have been a simple change in the WorkUnit class.

A BLOCKINGQUEUE EXAMPLE

Let’s see the BlockingQueue in action in a simple example—pets waiting to be seen

by a veterinarian. This example represents a collection of pets that may be seen at a

vet’s surgery.

public abstract class Pet {
 protected final String name;

 public Pet(String name) {
 this.name = name;
 }
 public abstract void examine();
}

public class Cat extends Pet {
 public Cat(String name) {
 super(name);
 }
 public void examine(){
 System.out.println("Meow!");
 }
}

public class Dog extends Pet
 public Dog(String name) {
 super(name);
 }
 public void examine(){
 System.out.println("Woof!");
 }
}

public class Appointment<T> {
 private final T toBeSeen;

 public T getPatient(){ return toBeSeen; }

 public Appointment(T incoming) {
 toBeSeen = incoming;
 }
}

From this simple model, you can see that we can model the veterinarian’s queue as

LinkedBlockingQueue<Appointment<Pet>>, with the Appointment class taking the role

of WorkUnit.

 The veterinarian object is constructed with a queue (where appointments will be

placed, by an object modeling a receptionist) and a pause time, which is the amount

of downtime the veterinarian has between appointments.

Listing 4.11 Modeling pets in Java

105Building blocks for modern concurrent applications

 We can model the veterinarian as shown in the next listing. As the thread runs, it

repeatedly calls seePatient() in an infinite loop. Of course, in the real world, this

would be unrealistic, because the veterinarian would probably want to go home for

evenings and weekends, rather than hanging around the office waiting for sick ani-

mals to show up.

public class Veterinarian extends Thread {
 protected final BlockingQueue<Appointment<Pet>> appts;
 protected String text = "";
 protected final int restTime;
 private boolean shutdown = false;

 public Veterinarian(BlockingQueue<Appointment<Pet>> lbq, int pause) {
 appts = lbq;
 restTime = pause;
 }

 public synchronized void shutdown(){
 shutdown = true;
 }

 @Override
 public void run(){
 while (!shutdown) {
 seePatient();
 try {
 Thread.sleep(restTime);
 } catch (InterruptedException e) {
 shutdown = true;
 }
 }
 }

 public void seePatient() {
 try {
 Appointment<Pet> ap = appts.take();
 Pet patient = ap.getPatient();
 patient.examine();
 } catch (InterruptedException e) {
 shutdown = true;
 }
 }
}

Inside the seePatient() method, the thread will dequeue appointments and exam-

ine the pets corresponding to each in turn, and will block if there are no appoint-

ments currently waiting on the queue.

FINE-GRAINED CONTROL OF BLOCKINGQUEUE

In addition to the simple take() and offer() API, BlockingQueue offers another way

to interact with the queue that provides even more control, at the cost of a bit of

extra complexity. This is the possibility of putting or taking with a timeout, to allow

Listing 4.12 Modeling a veterinarian

Blocking
take

106 CHAPTER 4 Modern concurrency

the thread encountering issues to back out from its interaction with the queue and do

something else instead.

 In practice, this option isn’t often used, but it can be a useful technique on occa-

sion, so we’ll demonstrate it for completeness. You can see it in the following example

from our microblogging scenario.

public abstract class MicroBlogExampleThread extends Thread {
 protected final BlockingQueue<Update> updates;
 protected String text = "";
 protected final int pauseTime;
 private boolean shutdown = false;

 public MicroBlogExampleThread(BlockingQueue<Update> lbq_, int pause_) {
 updates = lbq_;
 pauseTime = pause_;
 }

 public synchronized void shutdown(){
 shutdown = true;
 }

 @Override
 public void run(){
 while (!shutdown) {
 doAction();
 try {
 Thread.sleep(pauseTime);
 } catch (InterruptedException e) {
 shutdown = true;
 }
 }
 }
 public abstract void doAction();
}

final Update.Builder ub = new Update.Builder();
final BlockingQueue<Update> lbq = new LinkedBlockingQueue<>(100);

MicroBlogExampleThread t1 = new MicroBlogExampleThread(lbq, 10) {
 public void doAction(){
 text = text + "X";
 Update u = ub.author(new Author("Tallulah")).updateText(text).build();
 boolean handed = false;
 try {
 handed = updates.offer(u, 100, TimeUnit.MILLISECONDS);
 } catch (InterruptedException e) {
 }
 if (!handed) System.out.println(
 ➥ "Unable to hand off Update to Queue due to timeout");
 }
};

MicroBlogExampleThread t2 = new MicroBlogExampleThread(lbq, 1000) {
 public void doAction(){
 Update u = null;

Listing 4.13 BlockingQueue behavior example

Allow clean thread-
shutdown

Force subclass to
implement action

107Building blocks for modern concurrent applications

 try {
 u = updates.take();
 } catch (InterruptedException e) {
 return;
 }
 }
};
t1.start();
t2.start();

Running this example as is shows how the queue will quickly fill, meaning that the

offering thread is outpacing the taking thread. Within a very short time, the message

“Unable to hand off Update to Queue due to timeout” will start to appear.

 This represents one extreme of the “connected thread pool” model—when the

upstream thread pool is running quicker than the downstream one. This can be prob-

lematic, introducing such issues as an overflowing LinkedBlockingQueue. Alterna-

tively, if there are more consumers than producers, the queue can empty. Fortunately

Java 7 has a new twist on the BlockingQueue that can help—the TransferQueue.

TRANSFERQUEUES—NEW IN JAVA 7

Java 7 introduced the TransferQueue. This is essentially a BlockingQueue with an

additional operation—transfer(). This operation will immediately transfer a work

item to a receiver thread if one is waiting. Otherwise it will block until there is a thread

available to take the item. This can be thought of as the “recorded delivery” option—

the thread that was processing the item won’t begin processing another item until it

has handed off the current item. This allows the system to regulate the speed at which

the upstream thread pool takes on new work.

 It would also be possible to regulate this by using a blocking queue of bounded

size, but the TransferQueue has a more flexible interface. In addition, your code may

show a performance benefit by replacing a BlockingQueue with a TransferQueue.

This is because the TransferQueue implementation has been written to take into

account modern compiler and processor features and can operate with great effi-

ciency. As with all discussions of performance, however, you must measure and prove

benefits and not simply assume them. You should also be aware that Java 7 ships with

only one implementation of TransferQueue—the linked version.

 In the next code example, we’ll look at how easy it is to drop in a TransferQueue as

a replacement for a BlockingQueue. Just these simple changes to listing 4.13 will

upgrade it to a TransferQueue implementation, as you can see here.

public abstract class MicroBlogExampleThread extends Thread {
 protected final TransferQueue<Update> updates;
 ...

public MicroBlogExampleThread(TransferQueue<Update> lbq_, int pause_) {
 updates = lbq_;
 pauseTime = pause_;
 }

Listing 4.14 Replacing a BlockingQueue with a TransferQueue

108 CHAPTER 4 Modern concurrency

 ...
 }

final TransferQueue<Update> lbq = new LinkedTransferQueue<Update>(100);

MicroBlogExampleThread t1 = new MicroBlogExampleThread(lbq, 10) {
 public void doAction(){
 ...
try {
 handed = updates.tryTransfer(u, 100, TimeUnit.MILLISECONDS);
 } catch (InterruptedException e) {
 }
 ...
 }
};

This concludes our tour of the main building blocks that provide the raw materials for

developing solid multithreaded applications. The next step is to combine them with

the engines that drive concurrent code—the executor frameworks. These allow tasks

to be scheduled and controlled, which lets you assemble efficient concurrent flows for

handling work items and to build large multithreaded applications.

4.4 Controlling execution

We’ve spent some time in this chapter discussing work as abstract units. There’s a sub-

tlety to this, however. The part that we haven’t mentioned so far is that these units are

smaller than a Thread—they provide a way of running the computations contained in

the work unit without having to spin up a new thread for each unit. This is often a

much more efficient way of working with multithreaded code because it means that the

Thread startup cost doesn’t need to be paid for each unit. Instead, the threads that are

actually executing the code are reused; after they finish processing one task, they will

carry on with a new unit.

 For the cost of a bit of extra complexity, you can access such abstractions as thread

pools, worker and manager patterns and executors—some of the most versatile pat-

terns in the developer’s vocabulary. The classes and interfaces we’ll focus on most

closely are those that model tasks (Callable, Future, and FutureTask) and the execu-

tor classes, in particular ScheduledThreadPoolExecutor.

4.4.1 Modeling tasks

Our ultimate goal is to have tasks (or work units) that can be scheduled without spin-

ning up a new thread for each one. Ultimately, this means that they have to be mod-

eled as code that can be called (usually by an executor), rather than directly as a

runnable thread.

 We’ll look at three different ways of modeling tasks—the Callable and Future

interfaces and the FutureTask class.

CALLABLE INTERFACE

The Callable interface represents a very common abstraction. It represents a piece

of code that can be called and that returns a result. Despite being a straightforward

109Controlling execution

idea, this is actually a subtle and powerful concept that can lead to some extremely

useful patterns.

 One typical use of a Callable is the anonymous implementation. The last line of

this snippet sets s to be the value of out.toString():

final MyObject out = getSampleObject();

Callable<String> cb = new Callable<String>() {
 public String call() throws Exception {
 return out.toString();
 }
};
String s = cb.call();

Think of an anonymous implementation of Callable as being a deferred invocation

of the single abstract method, call(), which the implementation must provide.

 Callable is an example of what is sometimes called a SAM type (short for “single

abstract method”)—this is the closest that Java 7 gets to having functions as first-class

types. We’ll talk more about the concept of functions as values or first-class types in

later chapters, when we encounter them in non-Java languages.

FUTURE INTERFACE

The Future interface is used to represent an asynchronous task, in the sense of a

future result from a task that may not have finished yet. We met these briefly in chap-

ter 2 when we talked about NIO.2 and asynchronous I/O.

 These are the primary methods on a Future:

■ get()—This gets the result. If the result isn’t yet available, get() will block until

it is. There’s also a version that takes a timeout, which won’t block forever.

■ cancel()—This allows the computation to be canceled before completion.

■ isDone()—This allows the caller to determine whether the computation

has finished.

The next snippet shows a sample use of a Future in a prime number finder:

Future<Long> fut = getNthPrime(1_000_000_000);

Long result = null;
while (result == null) {
 try {
 result = fut.get(60, TimeUnit.SECONDS);
 } catch (TimeoutException tox) { }
 System.out.println("Still not found the billionth prime!");
}
System.out.println("Found it: "+ result.longValue());

In this snippet, you should imagine that getNthPrime() returns a Future that is exe-

cuting on some background thread (or even on multiple threads)—perhaps on one

of the executor frameworks we’ll discuss in the next subsection. Even on modern

hardware, this calculation may be running for a long time—you may need the

Future’s cancel() method after all.

110 CHAPTER 4 Modern concurrency

FUTURETASK CLASS

The FutureTask class is a commonly used implementation of the Future interface,

which also implements Runnable. As you’ll see, this means that a FutureTask can be

fed to executors, which is a crucial point. The interface is basically those of Future

and Runnable combined: get(), cancel(), isDone(), isCancelled(), and run(),

although this last method would be called by the executor, rather than directly.

 Two convenience constructors for FutureTask are also provided: one that takes a

Callable and one that takes a Runnable. The connections between these classes sug-

gest a very flexible approach to tasks, allowing a job to be written as a Callable, then

wrapped into a FutureTask that can then be scheduled (and cancelled if necessary)

on an executor, due to the Runnable nature of FutureTask.

4.4.2 ScheduledThreadPoolExecutor

The ScheduledThreadPoolExecutor (STPE) is the backbone of the thread pool

classes—it’s versatile and as a result is quite common. The STPE takes in work in the

form of tasks and schedules them on a pool of threads.

■ The thread pools can be of a predefined size or adaptive.

■ Tasks can be scheduled to execute periodically or just once.

■ STPE extends the ThreadPoolExecutor class (which is similar, but lacks the peri-

odic scheduling capabilities).

One of the most common patterns for medium- to large-scale multithreaded applications

is of STPE thread pools of executing threads connected by the java.util.concurrent

utility classes that we’ve already met (such as ConcurrentHashMap, CopyOnWrite-

ArrayList, BlockingQueue).

STPE is only one of a number of related executors that can be obtained very easily by

using factory methods available on the Executors class in java.util.concurrent. These

factory methods are largely convenience methods; they allow the developer to access a

typical configuration easily, while exposing the full available interface if required.

 The next listing shows an example of periodic read. This is a common usage of

newScheduledThreadPool(): the msgReader object is scheduled to poll() the queue,

get the work item from the WorkUnit object on the queue, and then print it.

private ScheduledExecutorService stpe;
private ScheduledFuture<?> hndl;

private BlockingQueue<WorkUnit<String>> lbq = new LinkedBlockingQueue<>();

private void run(){
 stpe = Executors.newScheduledThreadPool(2);

 final Runnable msgReader = new Runnable(){
 public void run(){
 String nextMsg = lbq.poll().getWork();
 if (nextMsg != null) System.out.println("Msg recvd: "+ nextMsg);

Listing 4.15 Periodic reads from an STPE

Needed for cancellation

Executors
factory method

111The fork/join framework

 }
 };
 hndl = stpe.scheduleAtFixedRate(msgReader, 10, 10,
 ➥ TimeUnit.MILLISECONDS);
}

public void cancel() {
 final ScheduledFuture<?> myHndl = hndl;

 stpe.schedule(new Runnable() {
 public void run() { myHndl.cancel(true); }
 }, 10, TimeUnit.MILLISECONDS);
}

In the example, an STPE wakes up a thread every 10 milliseconds and has it attempt to

poll() from a queue. If the read returns null (because the queue is currently empty),

nothing else happens and the thread goes back to sleep. If a work unit was received,

the thread prints out the contents of the work unit.

We’ll now turn to one of the highlights of Java 7—the fork/join framework for light-

weight concurrency. This new framework allows a wide range of concurrent problems

to be handled even more efficiently than the executors we’ve seen in this section can

do (which is no mean feat).

4.5 The fork/join framework

As we’ll discuss in chapter 6, processor speeds (or, more properly, transistor counts on

CPUs) have increased hugely in recent years. This has had the side effect that waiting

for I/O is now a very common situation. This suggests that we could make better use

of the processing capabilities inside our computers. The fork/join framework is an

attempt to do just that—a way that also provides the biggest new additions to the con-

currency arena in Java 7.

 Fork/join is all about automatic scheduling of tasks on a thread pool that is invisi-

ble to the user. In order to do this, the tasks must be able to be broken up, in a way

Problems representing invocation with callable

There are a number of problems with the simple forms of Callable, FutureTask,
and their relatives—notably that the type system gets in the way.

To see this, consider the case of trying to account for all possible signatures that an
unknown method could have. Callable only provides a model of methods that take
zero arguments. You’d need many different variations of Callable to account for all
the possibilities.

In Java, you can work around this by being prescriptive about what method signatures
exist in the systems you model. But as you’ll see in part 3 of the book, dynamic lan-
guages don’t share this static view of the world. This mismatch between type sys-
tems is a major theme to which we’ll return. For now, just note that Callable, while
useful, is a little too restrictive to build a general framework for modeling execution.

Needed for
cancellation

112 CHAPTER 4 Modern concurrency

that the user specifies. In many applications, fork/join has a notion of “small” and

“large” tasks that is very natural for the framework.

 Let’s take a quick look at some of the headline facts and fundamentals related to

fork/join.

■ The fork/join framework introduces a new kind of executor service, called a

ForkJoinPool.

■ The ForkJoinPool service handles a unit of concurrency (the ForkJoinTask)

that is “smaller” than a Thread.

■ The ForkJoinTask is an abstraction that can be scheduled in a more light-

weight manner by the ForkJoinPool.

■ Fork/join usually makes use of two kinds of tasks (although they’re both repre-

sented as instances of ForkJoinTask):

– “Small” tasks are those that can be performed straightaway without consum-

ing too much processor time.

– “Large” tasks are those that need to be split up (possibly more than once)

before they can be directly performed.

■ The framework provides basic methods to support the splitting up of large

tasks, and it has automatic scheduling and rescheduling.

One key feature of the framework is that it’s expected that these lightweight tasks

may well spawn other instances of ForkJoinTask, which will be scheduled by the

same thread pool that executed their parent. This pattern is sometimes called divide

and conquer.

 We’ll start with a simple example of using the fork/join framework, then briefly

touch on the feature called “work-stealing,” and finally discuss the features of prob-

lems that are well suited to parallel-processing techniques. The best way to get started

with fork/join is with an example.

4.5.1 A simple fork/join example

As a simple example of what the fork/join framework can do, consider the following

case: we have an array of updates to the microblogging service that may have arrived

at different times, and we want to sort them by their arrival times, in order to generate

timelines for the users, like the one you generated in listing 4.9.

 To achieve this, we’ll use a multithreaded sort, which is a variant of MergeSort.

Listing 4.16 uses a specialized subclass of ForkJoinTask—the RecursiveAction. This

is simpler than the general ForkJoinTask because it’s explicit about not having any

overall result (the updates will be reordered in place), and it emphasizes the recursive

nature of the tasks.

 The MicroBlogUpdateSorter class provides a way of ordering a list of updates

using the compareTo() method on Update objects. The compute() method (which

you have to implement because it’s abstract in the RecursiveAction superclass) basi-

cally orders an array of microblog updates by the time of creation of an update.

113The fork/join framework

public class MicroBlogUpdateSorter extends RecursiveAction {
 private static final int SMALL_ENOUGH = 32;
 private final Update[] updates;
 private final int start, end;
 private final Update[] result;

 public MicroBlogUpdateSorter(Update[] updates_) {
 this(updates_, 0, updates_.length);
 }

 public MicroBlogUpdateSorter(Update[] upds_,
 ➥ int startPos_, int endPos_) {
 start = startPos_;
 end = endPos_;
 updates = upds_;
 result = new Update[updates.length];
 }

 private void merge(MicroBlogUpdateSorter left_,
 ➥ MicroBlogUpdateSorter right_) {
 int i = 0;
 int lCt = 0;
 int rCt = 0;
 while (lCt < left_.size() && rCt < right_.size()) {
 result[i++] = (left_.result[lCt].compareTo(right_.result[rCt]) < 0)
 ? left_.result[lCt++]
 : right_.result[rCt++];
 }
 while (lCt < left_.size()) result[i++] = left_.result[lCt++];
 while (rCt < right_.size()) result[i++] = right_.result[rCt++];
 }

 public int size() {
 return end - start;
 }

 public Update[] getResult() {
 return result;
 }

 @Override
 protected void compute() {
 if (size() < SMALL_ENOUGH) {
 System.arraycopy(updates, start, result, 0, size());
 Arrays.sort(result, 0, size());
 } else {
 int mid = size() / 2;
 MicroBlogUpdateSorter left = new MicroBlogUpdateSorter(
 ➥ updates, start, start + mid);
 MicroBlogUpdateSorter right = new MicroBlogUpdateSorter(
 ➥ updates, start + mid, end);
 invokeAll(left, right);
 merge(left, right)
 }
 }
}

Listing 4.16 Sorting with a RecursiveAction

32 or fewer
sorted serially

RecursiveAction
method

114 CHAPTER 4 Modern concurrency

To use the sorter, you can drive it with some code like that shown next, which will gen-

erate some updates (that consist of a string of Xs) and shuffle them, before passing

them to the sorter. The output is the reordered updates.

List<Update> lu = new ArrayList<Update>();
String text = "";
final Update.Builder ub = new Update.Builder();
final Author a = new Author("Tallulah");

for (int i=0; i<256; i++) {
 text = text + "X";
 long now = System.currentTimeMillis();
 lu.add(ub.author(a).updateText(text).createTime(now).build());
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 }
}
Collections.shuffle(lu);
Update[] updates = lu.toArray(new Update[0]);

MicroBlogUpdateSorter sorter = new MicroBlogUpdateSorter(updates);
ForkJoinPool pool = new ForkJoinPool(4);
pool.invoke(sorter);

for (Update u: sorter.getResult()) {
 System.out.println(u);
}

4.5.2 ForkJoinTask and work stealing

ForkJoinTask is the superclass of RecursiveAction. It’s a generic class in the return

type of an action (so RecursiveAction extends ForkJoinTask<Void>). This makes

ForkJoinTask very suitable for map-reduce approaches that return a result from boil-

ing down a dataset.

ForkJoinTasks are scheduled on a ForkJoinPool, which is a new type of executor

service designed specifically for these lightweight tasks. The service maintains a list of

Listing 4.17 Using the recursive sorter

TimSort

With the arrival of Java 7, the default sort algorithm for arrays has changed. Previ-
ously it had been a form of QuickSort, but with Java 7 it has become “TimSort”—a
version of MergeSort that has been hybridized with an insertion sort. TimSort was
originally developed for Python by Tim Peters, and it has been the default sort in
Python since version 2.3 (2002).

Want to see evidence of TimSort’s presence in Java 7? Just pass a null array of
Update objects into listing 4.16. The comparisons inside the array sorting routine
Arrays.sort() will fail with a null pointer exception, and you’ll see the TimSort
classes in the stack trace.

Pass zero-sized
array, save
allocation

115The fork/join framework

tasks for each thread, and if one task finishes, the service can reassign tasks from a

fully loaded thread to an idle one.

 The reason for this “work-stealing” algorithm is that without it, there could be

scheduling problems related to the two sizes of tasks. In general, the two sizes of tasks

will take very different lengths of time to run. For example, one thread may have a run

queue consisting only of small tasks, whereas another may have only large tasks. If the

small tasks run five times faster than large tasks, the thread with only small tasks may

well find itself idle before the large-task thread finishes.

 Work-stealing has been implemented precisely to work around this problem and

allow all the pool threads to be utilized throughout the lifecycle of the fork/join job.

It’s completely automatic and you don’t need to do anything specific to get the bene-

fits of work-stealing. It’s another example of the runtime environment doing more to

help developers manage concurrency, rather than making it a manual task.

4.5.3 Parallelizing problems

The promise of fork/join is tantalizing, but in practice, not every problem is easily

reduced to as simple a form as the multithreaded MergeSort in section 4.5.1.

 These are some examples of problems well suited to the fork/join approach:

■ Simulating the motion of large numbers of simple objects (such as particle effects)

■ Log file analysis

■ Data operations where a quantity is calculated from inputs (such as map-

reduce operations)

Another way of looking at this is to say that a good problem for fork/join is one that

can be broken up as in figure 4.10.

 One practical way of determining whether a problem is likely to reduce well is to

apply this checklist to the problem and its subtasks:

■ Can the problem’s subtasks work without explicit cooperation or synchroniza-

tion between the subtasks?

■ Do the subtasks calculate some value from their data without altering it (are

they what a functional programmer would call “pure” functions)?

■ Is divide-and-conquer natural for the subtasks? Is one outcome of a subtask the

creation of more subtasks (which could be finer-grained than the task that

spawned them)?

Figure 4.10 Fork and join

116 CHAPTER 4 Modern concurrency

If the answer to the preceding questions is “Yes!” or “Mostly, but with edge cases,” your

problem may well be amenable to a fork/join approach. If, on the other hand, the

answer to those questions is “Maybe” or “Not Really,” you may well find that fork/join

performs poorly, and a different synchronization approach may pay off better.

NOTE The preceding checklist could be a useful way of testing to see if a
problem (such as one of the kind often seen in Hadoop and NoSQL data-
bases) could be well handled by fork/join.

Designing good multithreaded algorithms is hard, and fork/join doesn’t work in

every circumstance. It’s very useful within its own domain of applicability, but in the

end, you have to decide whether your problem fits within the framework, and if not,

you must be prepared to develop your own solution, building on the superb toolbox

of java.util.concurrent.

 In the next section, we’ll discuss the often-misunderstood details of the Java Mem-

ory Model (JMM). Many Java programmers are aware of the JMM and have been cod-

ing to their own understanding of it without ever being formally introduced to it. If

that sounds like you, this new understanding will build upon your informal awareness

and place it onto firm foundations. The JMM is quite an advanced topic, so you can

skip it if you’re in a hurry to get on to the next chapter.

4.6 The Java Memory Model (JMM)

The JMM is described in section 17.4 of the Java Language Specification (JLS). This is

quite a formal part of the spec, and it describes the JMM in terms of synchronization

actions and the mathematical construct known as a partial order. This is great from the

point of view of language theorists and implementers of the Java spec (compiler and

VM makers), but it’s worse for application developers who need to understand the

details of how their multithreaded code will execute.

 Rather than repeat the formal details, we’ll list the most important rules here in

terms of a couple of basic concepts: the Synchronizes-With and Happens-Before relation-

ships between blocks of code.

■ Happens-Before—This relationship indicates that one block of code fully com-

pletes before the other can start.

■ Synchronizes-With—This means that an action will synchronize its view of an

object with main memory before continuing.

If you’ve studied formal approaches to OO programming, you may have heard the

expressions Has-A and Is-A used to describe the building blocks of object orientation.

Some developers find it useful to think of Happens-Before and Synchronizes-With as basic

conceptual building blocks for understanding Java concurrency. This is by analogy

with Has-A and Is-A, but there is no direct technical connection between the two sets

of concepts.

 In figure 4.11 you can see an example of a volatile write that Synchronizes-With a

later read access (for the println).

117The Java Memory Model (JMM)

The JMM has these main rules:

■ An unlock operation on a monitor Synchronizes-With later lock operations.

■ A write to a volatile variable Synchronizes-With later reads of the variable.

■ If an action A Synchronizes-With action B, then A Happens-Before B.

■ If A comes before B in program order, within a thread, then A Happens-Before B.

The general statement of the first two rules is that “releases happen before acquires.”

In other words, the locks that a thread holds when writing are released before the

locks can be acquired by other operations (including reads).

 There are additional rules, which are really about sensible behavior:

■ The completion of a constructor Happens-Before the finalizer for that object

starts to run (an object has to be fully constructed before it can be finalized).

■ An action that starts a thread Synchronizes-With the first action of the new thread.

■ Thread.join() Synchronizes-With the last (and all other) actions in the thread

being joined.

■ If X Happens-Before Y and Y Happens-Before Z then X Happens-Before Z (transitivity).

These simple rules define the whole of the platform’s view of how memory and syn-

chronization works. Figure 4.12 illustrates the transitivity rule.

NOTE In practice, these rules are the minimum guarantees made by the JMM.
Real JVMs may behave much better in practice than these guarantees suggest.
This can be quite a pitfall for the developer because it’s easy for the false
sense of safety given by the behavior of a particular JVM to turn out to be just
a quirk hiding an underlying concurrency bug.

From these minimum guarantees, it’s easy to see why immutability is an important

concept in concurrent Java programming. If objects can’t be changed, there are no

issues related to ensuring that changes are visible to all threads.

Figure 4.11 A Synchronizes-

With example

118 CHAPTER 4 Modern concurrency

4.7 Summary

Concurrency is one of the most important features of the Java platform, and a good

developer will increasingly need a solid understanding of it. We’ve reviewed the

underpinnings of Java’s concurrency and the design forces that occur in multi-

threaded systems. We’ve discussed the Java Memory Model and low-level details of

how the platform implements concurrency.

 More important to the modern Java developer, we’ve addressed the classes in

java.util.concurrent, which should be your preferred toolkit for all new multi-

threaded Java code. We’ve updated you with details of some of the brand new classes

in Java 7, such as LinkedTransferQueue and the fork/join framework.

 We hope we’ve prepared the ground for you to begin using the classes of

java.util.concurrent in your own code. This is the single most important takeaway

from this chapter. Although we’ve looked at some great theory, the most important

part is the practical examples. Even if you just start with ConcurrentHashMap and the

Atomic classes, you’ll be using well-tested classes that can immediately provide real

benefit to your code.

 It’s time to move on to the next big topic that will help you stand out as a Java

developer. In the next chapter, you’ll gain a firm grounding in another fundamental area

of the platform—classloading and bytecode. This topic is at the heart of many of the plat-

form’s security and performance features, and it underpins many of the advanced tech-

niques in the ecosystem. This makes it an ideal subject of study for the developer who

wishes to gain an edge.

Figure 4.12 Transitivity of Happens-Before

119

Class files and bytecode

One tried-and-trusted way to become a more well-grounded Java developer is to

improve your understanding of how the platform works. Getting to grips with core

features such as classloading and the nature of JVM bytecode can greatly help with

this goal.

 Imagine you have an application that makes heavy use of Dependency Injection

(DI) techniques such as Spring, and it develops problems starting up and fails with

a cryptic error message. If the problem is more than a simple configuration error,

you may need to understand how the DI framework is implemented to track down

the problem. This means understanding classloading.

 Or suppose that a vendor you’re dealing with goes out of business—you’re left

with a final drop of compiled code, no source code, and patchy documentation.

How can you explore the compiled code and see what it contains?

This chapter covers

■ Classloading

■ Method handles

■ The anatomy of class files

■ JVM bytecode and why it matters

■ The new invokedynamic opcode

120 CHAPTER 5 Class files and bytecode

 All but the simplest applications can fail with a ClassNotFoundException or

NoClassDefFoundError, but many developers don’t know what these are, what the dif-

ference is between them, or why they occur.

 This chapter focuses on the aspects of the platform that underlie these develop-

ment concerns. We’ll also discuss some more advanced features—they’re intended for

the enthusiasts and can be skipped if you’re in a hurry.

 We’ll get started with an overview of classloading—the process by which the VM

locates and activates a new type for use in a running program. Central to that discus-

sion are the Class objects that represent types in the VM. Next, we’ll look at the new

Method Handles API and compare it to existing Java 6 techniques, such as reflection.

 After that, we’ll discuss tools for examining and dissecting class files. We’ll use

javap, which ships with the Oracle JDK, as our reference tool. Following this class file

anatomy lesson, we’ll turn to bytecode. We’ll cover the major families of JVM opcodes

and look at how the runtime operates at a low level.

 Armed with a working knowledge of bytecode, we’ll dive into the new invoke-

dynamic opcode, introduced in Java 7 to help non-Java languages get the most out of

the JVM as a platform.

 Let’s get started by discussing classloading—the process by which new classes are

incorporated into a running JVM process.

5.1 Classloading and class objects

A .class file defines a type for the JVM, complete with fields, methods, inheritance

information, annotations, and other metadata. The class file format is well-described

by the standards, and any language that wants to run on the JVM must adhere to it.

 The class is the smallest unit of program code that the platform can load. In order

to get a new class into the current execution state of the JVM, a number of steps must

be performed. First, a class file must be loaded and linked, and then it must be exten-

sively verified. After this, a new Class object representing the type will be available to

the running system, and new instances can be created.

 In this section, we’ll cover all of these steps and provide an introduction to class-

loaders, which are the classes that control this entire process. Let’s get started by look-

ing at loading and linking.

5.1.1 Overview—loading and linking

The purpose of the JVM is to consume class files and execute the bytecode they con-

tain. To do so, the JVM must retrieve the contents of the class file as a data stream of

bytes, convert it to a useable form, and add it to the running state. This two-step

process is referred to as loading and linking (but linking breaks down into a number

of subphases).

LOADING

The first step is to take the data stream of bytes that constitute the class file and to thaw

out this frozen representation of the class. This process starts with a byte array (often read

121Classloading and class objects

in from a filesystem) and produces a Class object that corresponds to the class you’re

loading. During this process, some basic checks are performed on the class, but at the end

of the loading process, the Class object isn’t fully fledged, and the class isn’t yet usable.

LINKING

After loading, the class must be linked. This step breaks down into three subphases—

verification, preparation, and resolution. Verification confirms that the class file con-

forms to expectations and won’t cause runtime errors or other problems for the run-

ning system. After this, the class is prepared, and all other types referenced in the class

file will be located to ensure that this class is ready to run.

 This relationship between the phases of linking can be seen in figure 5.1.

5.1.2 Verification

Verification can be quite a complex process, consisting of several stages.

 First is a basic integrity check. This is really part of loading and ensures that the

class file is sufficiently well-formed to attempt to link.

 Then comes a pass that checks that the symbolic information contained in the con-

stant pool (discussed in detail in section 5.3.3) is self-consistent and obeys the basic behav-

ior rules for constants. Other static checks that don’t involve looking at the code (such as

checking that final methods aren’t overridden) are also performed at this time.

 After this comes the most complex part of verification—checking the bytecode of

methods. This involves ensuring that the bytecode is well-behaved and doesn’t try to

circumvent the VM’s environmental controls. The following are some of the main

checks that are performed:

■ Check that all methods respect access control keywords

■ Check that methods are called with the right number of parameters of the cor-

rect static types

■ Make sure that the bytecode doesn’t try to manipulate the stack in evil ways

■ Ensure that variables are properly initialized before they’re used

■ Check that variables are only assigned suitably typed values

Figure 5.1 Loading and linking (with subphases of linking)

122 CHAPTER 5 Class files and bytecode

These checks are done for performance reasons—they enable the skipping of run-

time checks, thus making the interpreted code run faster. They also simplify the com-

pilation of bytecode into machine code at runtime (this is just-in-time compilation,

which we’ll cover in section 6.6).

PREPARATION

Preparing the class involves allocating memory and getting static variables in the class

ready to be initialized, but it doesn’t initialize variables or execute any VM bytecode.

RESOLUTION

Resolution causes the VM to check that every type referred to by the new class file is

known to the runtime. If the types aren’t known, they may also need to be loaded.

This can kick off the classloading process again for any new types that have now

been seen.

 Once all additional types that need to be loaded have been located and resolved,

the VM can initialize the class it was originally asked to load. In this final phase, any

static variables can be initialized and any static initialization blocks run—you’re now

running bytecode from the newly loaded class. When this completes, the class is fully

loaded and ready to go.

5.1.3 Class objects

The end result of the linking and loading process is a Class object, which represents

the newly loaded and linked type. It’s now fully functional in the VM, although for per-

formance reasons some aspects of the Class object are only initialized on demand.

Your code can now go ahead and use the new type and create new instances. In addi-

tion, the Class object of a type provides a number of useful methods, such as getSuper-

Class(), which returns the Class object corresponding to the supertype.

 Class objects can be used with the Reflection

API for indirect access to methods, fields, con-

structors, and so forth. A Class object has refer-

ences to Method and Field objects that

correspond to the members of the class. These

objects can be used in the Reflection API to pro-

vide indirect access to the capabilities of the

class. You can see the high-level structure of this

in figure 5.2.

 So far, we haven’t discussed exactly which part of the runtime is responsible for

locating and linking the byte stream that will become the newly loaded class. This is

handled by classloaders—subclasses of the abstract class ClassLoader, and they’re our

next subject.

5.1.4 Classloaders

The platform ships with a number of typical classloaders, which are used to do differ-

ent jobs during the startup and normal operation of the platform:

Figure 5.2 Class object and Method

references

123Classloading and class objects

■ Primordial (or bootstrap) classloader—This is instantiated very early in the process

of starting up the VM, and is usually implemented as native code. It’s often best

to think of it as being a part of the VM itself. It’s typically used to get the basic

system JARs—basically rt.jar—loaded and it does no verification.

■ Extension classloader—This is used to load installation-wide standard extensions.

This often includes security extensions.

■ Application (or system) classloader—This is the most widely used classloader. It’s

the one that will load the application classes and do the majority of the work in

most SE environments.

■ Custom classloader—In more complex environments, such as EE or the more

sophisticated SE frameworks, there will often be a number of additional (a.k.a.

custom) classloaders. Some teams even write classloaders that are specific to

their individual applications.

In addition to their core role, classloaders are also often used to load resources (files

that aren’t classes, such as images or config files) from JAR files or other locations on

the classpath.

It’s also quite common to encounter frame-

works and other code that makes use of special-

ized (or even user-defined) classloaders with

additional properties. These will frequently

transform the bytecode as it’s being loaded, as

we alluded to in chapter 1.

 In figure 5.3, you can see the inheritance

hierarchy of classloaders, and how the different

loaders relate to each other.

 Let’s take a look at an example of a special-

ized classloader and look at how classloading

can be used to implement DI.

Example—an instrumenting classloader

One simple example of a classloader that transforms as it loads is the one used in the
EMMA testing coverage tool. EMMA is available from http://emma.sourceforge.net/.

EMMA’s classloader alters the bytecode of classes as they’re loaded to add extra
instrumentation information. When test cases are run against the transformed code,
EMMA records which methods and code branches are actually tested by the test
cases. From this, the developer can see how thorough the unit tests for a class are.
We’ll have more to say about testing and coverage in chapters 11 and 12.

Figure 5.3 Classloader hierarchy

http://emma.sourceforge.net/

124 CHAPTER 5 Class files and bytecode

5.1.5 Example—classloaders in Dependency Injection

The core idea of DI is twofold:

■ Units of functionality within a system have dependencies and configuration

information upon which they rely for proper functioning.

■ The dependencies are usually difficult or clumsy to express within the context

of the objects themselves.

The picture that should be in your head is of classes that contain behavior, and config-

uration and dependencies that are external to the objects. This latter part is what is

usually referred to as the runtime wiring of the objects.

 In chapter 3, we met the Guice framework as an example of DI. In this subsection,

we’ll discuss how a framework could make use of classloaders to implement DI. How-

ever, the approach we’ll discuss in this example is quite different from Guice. In fact,

it’s like a simplified version of the Spring framework.

 Let’s look at how we’d start an application under our imaginary DI framework:

java -cp <CLASSPATH> org.framework.DIMain /path/to/config.xml

The CLASSPATH must contain the JAR files for the DI framework, and for any classes that

are referred to in the config.xml file (along with any dependencies that they have).

 Let’s adapt an example we’ve already met before to this style. The service shown in

listing 3.7 is easy to adapt—and the result is shown in listing 5.1.

public class HollywoodServiceDI {
 private AgentFinder finder = null;

 public HollywoodServiceDI() {}

 public void setFinder(AgentFinder finder) {
 this.finder = finder;
 }

 public List<Agent> getFriendlyAgents() {
 ...
 }

 public List<Agent> filterAgents(List<Agent> agents, String agentType) {
 ...
 }
}

For this to be managed under DI, you’ll need a config file too, like this:

<beans>
 <bean id="agentFinder" class="wgjd.ch03.WebServiceAgentFinder"
 ... />

 <bean id="hwService" class="wgjd.ch05.HollywoodServiceDI"
 p:finder-ref="agentFinder"/>
</beans>

Listing 5.1 HollywoodService—alternative DI style

Void
constructor

Setter
method

Same implementation
as listing 3.7

Same implementation
as listing 3.7

125Using method handles

In this approach, the DI framework will use the config file to determine which objects

to construct. This example will need the hwService and agentFinder beans, and the

framework will call the void constructor for each bean, followed by the setter methods

(for example, setFinder() for the AgentFinder dependency of HollywoodServiceDI).

 This means that classloading occurs in two separate phases. The first phase (which

is handled by the application classloader) loads the class DIMain and any classes that it

refers to. Then DIMain starts to run and receives the location of the config file as a

parameter to main().

 At this point, the framework is up and running in the JVM, but the user classes

specified in config.xml haven’t yet been touched. In fact, until DIMain examines the

config file, the framework has no way of knowing what the classes to be loaded are.

 To bring up the application configuration specified in config.xml, a second phase

of classloading is required. This uses a custom classloader. First, the config.xml file is

checked for consistency and to make sure it’s error-free. Then, if all is well, the custom

classloader tries to load the types from the CLASSPATH. If any of these fail, the whole

process is aborted.

 If this succeeds, the DI framework can proceed to instantiate the required objects

and call the appropriate setter methods on the created instances. If all of this com-

pletes OK, the application context is up and can begin to run.

 We’ve briefly touched on a Spring-like approach to DI, which makes heavy use of

classloading. Many other areas of the Java technology space are big users of classload-

ers and related techniques. These are some of the best-known examples:

■ Plugin architectures

■ Frameworks (whether vendor or homegrown)

■ Class file retrieval from unusual locations (not filesystems or URLs)

■ Java EE

■ Any circumstance where new, unknown code may need to be added after the

JVM process has already started running

This concludes our discussion of classloading, so let’s move on to the next section

where we’ll talk about a new Java 7 API that addresses some of the same needs

as reflection.

5.2 Using method handles

If you aren’t familiar with the Java Reflection API (Class, Method, Field, and friends),

you may want to just skim (or even skip) this section. On the other hand, if your code-

bases include a lot of reflective code, you’ll definitely want to read this, as it explains a

new Java 7 way to achieve the same ends, with much cleaner code.

 Java 7 introduces a new API for invoking methods indirectly. The key to this is the

java.lang.invoke package, a.k.a. method handles. It can be thought of as a more

modern approach to reflection, but without the verbosity, overhead, and rough edges

that the Reflection API sometimes displays.

126 CHAPTER 5 Class files and bytecode

Method handles were produced as part of the project to bring invokedynamic (which

we’ll discuss in section 5.5) to the JVM. But they have applications in framework and

regular user code that go far beyond the invokedynamic use cases. We’ll start by intro-

ducing the basic technology of method handles; then we’ll look at an extended exam-

ple that compares them to the existing alternatives and summarizes the differences.

5.2.1 MethodHandle

What is a MethodHandle? The official answer is that it’s a typed reference to a method

(or field, constructor, and so on) that is directly executable. Another way of saying this

is that a method handle is an object that represents the ability to call a method safely.

 Let’s get a method handle to a two-argument method (which we may not even

know the name of), and then let’s call our handle on the object obj, passing arg0 and

arg1 as arguments:

MethodHandle mh = getTwoArgMH();

MyType ret;
try {
 ret = mh.invokeExact(obj, arg0, arg1);
} catch (Throwable e) {
 e.printStackTrace();
}

This capability is a bit like reflection and a bit like the Callable interface, which you

met in section 4.4. In fact, Callable is an earlier attempt to model the ability to call a

method. The problem with Callable is that it can only model methods that take no

arguments. In order to cope with a realistic set of different combinations of parame-

ters and call possibilities, we’d need to make other interfaces, with specific combina-

tions of parameters.

 This is done in a lot of Java 6 code but very quickly leads to a huge proliferation of

interfaces, which can cause problems for the developer (such as running out of Perm-

Gen memory to store classes in—see chapter 6). By contrast, method handles can

model any method signature, without needing to produce a vast number of small

classes. This is achieved by means of the new MethodType class.

Replacing reflective code

Reflection has a lot of boilerplate code. If you’ve written more than a few lines of
reflective code, you’ll remember all the times that you have to refer to the types of the
arguments of introspected methods as Class[], all the packaging-up method argu-
ments as Object[], the having to catch nasty exceptions if you get it wrong, and the
lack of intuition that comes from looking at reflective code.

These are all very good reasons to reduce the boilerplate and improve the feel of your
code by migrating your code to method handles.

127Using method handles

5.2.2 MethodType

A MethodType is an immutable object that represents the type signature of a method.

Every method handle has a MethodType instance that includes the return type and the

argument types. But it doesn’t include the name of the method or the “receiver

type”—the type that an instance method is called on.

 To get new MethodType instances, you can use factory methods in the MethodType

class. Here are a few examples:

MethodType mtToString = MethodType.methodType(String.class);
MethodType mtSetter = MethodType.methodType(void.class, Object.class);
MethodType mtStringComparator = MethodType.methodType(int.class,
String.class, String.class);

These are the MethodType instances that represent the type signatures of toString(),

a setter method (for a member of type Object) and the compareTo() method defined

by a Comparator<String>. The general instance follows the same pattern, with the

return type passed in first, followed by the types of the arguments (all as Class

objects), like this:

MethodType.methodType(RetType.class, Arg0Type.class, Arg1Type.class, ...);

As you can see, different method signatures can now be represented as normal

instance objects, without your needing to define a new type for each signature that

was required. This also gives you a simple way to ensure as much type safety as possi-

ble. If you want to know whether a candidate method handle can be called with a cer-

tain set of arguments, you can examine the MethodType belonging to the handle.

 Now that you’ve seen how MethodType objects solve the interface-proliferation

problem, let’s see how we can get new method handles that point at methods from

our types.

5.2.3 Looking up method handles

The next listing shows how to get a method handle that points at the toString()

method on the current class. Notice that mtToString exactly matches the signature of

toString()—it has a return type of String and takes no arguments. This means that

the corresponding MethodType instance is MethodType.methodType(String.class).

public MethodHandle getToStringMH() {
 MethodHandle mh;
 MethodType mt = MethodType.methodType(String.class);
 MethodHandles.Lookup lk = MethodHandles.lookup();

 try {
 mh = lk.findVirtual(getClass(), "toString", mt);
 } catch (NoSuchMethodException | IllegalAccessException mhx) {
 throw (AssertionError)new AssertionError().initCause(mhx);
 }

Listing 5.2 Looking up a method handle

Obtain lookup
context

Look up
handle
from
context

128 CHAPTER 5 Class files and bytecode

 return mh;
}

The way to obtain a new method handle is to use a lookup object, like lk in listing 5.2.

This is an object that can provide a method handle on any method that’s visible from

the execution context where the lookup was created.

 To get a method handle from a lookup object, you need to provide the class that

holds the method you want, the name of the method, and a MethodType correspond-

ing to the signature you want.

NOTE You can use a lookup context to get handles on methods belonging to
any type, including system types. Of course, if you get handles from a class
that you have no connection with, the lookup context will only be able to see
or obtain handles to public methods. This means that method handles are
always safe to use under security managers—there’s no equivalent of the
reflection setAccessible() hack.

Now that you have a method handle, the natural thing to do with it is to execute it.

The Method Handles API provides two main ways to do this: the invokeExact() and

invoke() methods. The invokeExact() method requires the types of arguments to

exactly match what the underlying method expects. The invoke() method will per-

form some transformations to try to get the types to match if they’re not quite right

(for example, boxing or unboxing as required).

 In the next subsection, we’ll show a longer example of how method handles can be

used to replace older techniques, such as reflection and small proxy classes.

5.2.4 Example—reflection vs. proxies vs. MethodHandles

If you’ve spent any time dealing with a codebase that contains a lot of reflection,

you’re probably all too familiar with some of the pain that comes from reflective code.

In this subsection, we want to show you how method handles can be used to replace a

lot of reflective boilerplate, and hopefully make your coding life a little easier.

 Listing 5.3 shows an example adapted from an earlier chapter. The ThreadPool-

Manager is responsible for scheduling new jobs onto a thread pool, and is lightly

adapted from listing 4.15. It also provides the capability to cancel a running job, but

this method is private.

 To show the differences between method handles and other techniques, we’ve pro-

vided three different ways to access the private cancel() method from outside the

class—the methods shown in bold in the listing. We also show two Java 6 style tech-

niques—reflection and a proxy class, and compare them to a new MethodHandle-

based approach. We’re using a queue-reading task called QueueReaderTask (which

implements Runnable). You’ll find an implementation of QueueReaderTask in the

source code which accompanies this chapter.

129Using method handles

public class ThreadPoolManager {

 private final ScheduledExecutorService stpe =
Executors.newScheduledThreadPool(2);
 private final BlockingQueue<WorkUnit<String>> lbq;

 public ThreadPoolManager(BlockingQueue<WorkUnit<String>> lbq_) {
 lbq = lbq_;
 }

 public ScheduledFuture<?> run(QueueReaderTask msgReader) {
 msgReader.setQueue(lbq);
 return stpe.scheduleAtFixedRate(msgReader, 10, 10,
TimeUnit.MILLISECONDS);
 }

 private void cancel(final ScheduledFuture<?> hndl) {
 stpe.schedule(new Runnable() {
 public void run() { hndl.cancel(true); }
 }, 10, TimeUnit.MILLISECONDS);
 }

 public Method makeReflective() {
 Method meth = null;

 try {
 Class<?>[] argTypes = new Class[] { ScheduledFuture.class };
 meth = ThreadPoolManager.class.getDeclaredMethod("cancel",
argTypes);
 meth.setAccessible(true);
 } catch (IllegalArgumentException | NoSuchMethodException
| SecurityException e) {
 e.printStackTrace();
 }

 return meth;
 }

 public static class CancelProxy {
 private CancelProxy() { }

 public void invoke(ThreadPoolManager mae_, ScheduledFuture<?> hndl_) {
 mae_.cancel(hndl_);
 }
 }

 public CancelProxy makeProxy() {
 return new CancelProxy();
 }

 public MethodHandle makeMh() {
 MethodHandle mh;
 MethodType desc = MethodType.methodType(void.class,
ScheduledFuture.class);

 try {
 mh = MethodHandles.lookup()
.findVirtual(ThreadPoolManager.class, "cancel", desc);

Listing 5.3 Providing access three ways

Private method
to access

Required
to access
private
method

MethodType
creation

MethodHandle
lookup

130 CHAPTER 5 Class files and bytecode

 } catch (NoSuchMethodException | IllegalAccessException e) {
 throw (AssertionError)new AssertionError().initCause(e);
 }

 return mh;
 }
}

This class provides the capabilities to access the private cancel() method. In practice,

only one of these capabilities would usually be provided—we’re only showing all three

in order to discuss the distinctions between them.

 To see how to use the capabilities, look at this listing:

private void cancelUsingReflection(ScheduledFuture<?> hndl) {
 Method meth = manager.makeReflective();

 try {
 System.out.println("With Reflection");
 meth.invoke(hndl);
 } catch (IllegalAccessException | IllegalArgumentException
| InvocationTargetException e) {
 e.printStackTrace();
 }
}

private void cancelUsingProxy(ScheduledFuture<?> hndl) {
 CancelProxy proxy = manager.makeProxy();

 System.out.println("With Proxy");
 proxy.invoke(manager, hndl);
}

private void cancelUsingMH(ScheduledFuture<?> hndl) {
 MethodHandle mh = manager.makeMh();

 try {
 System.out.println("With Method Handle");
 mh.invokeExact(manager, hndl);
 } catch (Throwable e) {
 e.printStackTrace();
 }
}

BlockingQueue<WorkUnit<String>> lbq = new LinkedBlockingQueue<>();
manager = new ThreadPoolManager(lbq);

final QueueReaderTask msgReader = new QueueReaderTask(100) {
 @Override
 public void doAction(String msg_) {
 if (msg_ != null) System.out.println("Msg recvd: "+ msg_);
 }
};
hndl = manager.run(msgReader);

Listing 5.4 Using access capabilities

Proxy
invocation
is statically
typed

Signature
must match
exactly

Must catch
Throwable

Use hndl
to cancel
task later

131Using method handles

The cancelUsing methods all take a ScheduledFuture as a parameter, so you can use

the preceding code to experiment with the different methods of cancellation. In prac-

tice, as a user of an API, you should not need to care how it’s implemented.

 In the next subsection, we’ll discuss why an API or framework developer would

want to use method handles over the alternatives.

5.2.5 Why choose MethodHandles?

In the last subsection, we looked at an example of how to use method handles in situ-

ations that could have used reflection or proxies in Java 6. This leaves the question—

why should we use method handles instead of the older approaches?

 In table 5.1 you can see that the main advantage of reflection is familiarity. Proxies

may be easier to understand for simple use cases, but we believe method handles repre-

sent the best of both worlds. We strongly recommend their use in all new applications.

One additional feature that method handles provide is the ability to determine the

current class from a static context. If you’ve ever written logging code (such as for

log4j) that looked like this,

Logger lgr = LoggerFactory.getLogger(MyClass.class);

you know that this code is fragile. If it’s refactored to move into a superclass or sub-

class, the explicit class name would cause problems. With Java 7, however, you can

write this:

Logger lgr = LoggerFactory.getLogger(MethodHandles.lookup().lookupClass());

In this code, the lookupClass() expression can be thought of as an equivalent to get-

Class(), which can be used in a static context. This is particularly useful in situations

such as dealing with logging frameworks, which typically have a logger per user class.

 With the new technology of method handles in your toolbox of techniques, let’s

move on to examine some of the low-level details of class files and the tools needed to

make sense of them.

Table 5.1 Comparing Java’s indirect method access technologies

Feature Reflection Proxy Method handle

Access control Must use setAccesible().

Can be disallowed by an active

security manager.

Inner classes can

access restricted

methods.

Full access to all meth-

ods allowed from suit-

able context. No issue

with security managers.

Type discipline None. Ugly exception

on mismatch.

Static. Can be too strict.

May need a lot of Perm-

Gen for all proxies.

Type-safe at runtime.

Doesn’t consume

PermGen.

Performance Slow compared to alternatives. As fast as any other

method call.

Aiming to be as fast as

other method calls.

132 CHAPTER 5 Class files and bytecode

5.3 Examining class files

Class files are binary blobs, so they aren’t easy to work with directly. But there are

many circumstances in which you’ll find that investigating a class file is necessary.

 Imagine that your application needs additional methods to be made public to

allow better runtime monitoring (such as via JMX). The recompile and redeploy

seems to complete fine, but when the management API is checked, the methods aren’t

there. Additional rebuild and redeploy steps have no effect.

 To debug the deployment issue, you may need to check that javac has produced

the class file that you think it has. Or you may need to investigate a class that you don’t

have source for and where you suspect the documentation is incorrect.

 For these and similar tasks, you must make use of tools to examine the contents of

class files. Fortunately, the standard Oracle JVM ships with a tool called javap, very

handy for peeking inside and disassembling class files.

 We’ll start off by introducing javap and some of the basic switches it provides to

examine aspects of class files. Then we’ll discuss some of the representations for

method names and types that the JVM uses internally. We’ll move on to take a look at

the constant pool—the JVMs “box of useful things”—which plays an important role in

understanding how bytecode works.

5.3.1 Introducing javap

javap can be used for numerous useful tasks, from seeing what methods a class

declares to printing the bytecode. Let’s examine the simplest form of javap usage, as

applied to a version of the microblogging Update class we discussed in chapter 4.

$ javap wgjd/ch04/Update.class
Compiled from "Update.java"
public class wgjd.ch04.Update extends java.lang.Object {
 public wgjd.ch04.Author getAuthor();
 public java.lang.String getUpdateText();
 public int hashCode();
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 wgjd.ch04.Update(wgjd.ch04.Update$Builder, wgjd.ch04.Update);
}

By default, javap shows the public, protected, and default (that is, package-protected)

visibility methods. The -p switch will also show the private methods and fields.

5.3.2 Internal form for method signatures

The JVM uses a slightly different form for method signatures internally than the

human-readable form displayed by javap. As we delve deeper into the JVM, you’ll see

these internal names more frequently. If you’re keen to keep going, you can jump

ahead, but remember that this section’s here—you may need to refer to it from later

sections and chapters.

133Examining class files

 In the compact form, type names are compressed. For example, int is represented

by I. These compact forms are sometimes referred to as type descriptors. A complete list

is provided in table 5.2.

In some cases, the type descriptor can be longer than the type name that appears in

source code (for example, Ljava/lang/Object; is longer than Object, but the type

descriptors are fully qualified so they can be directly resolved.

javap provides a helpful switch, -s, which will output the type descriptors of signa-

tures for you, so you don’t have to work them out using the table. You can use a

slightly more advanced invocation of javap to show the signatures for some of the

methods we looked at earlier:

$ javap -s wgjd/ch04/Update.class
Compiled from "Update.java"
public class wgjd.ch04.Update extends java.lang.Object {
 public wgjd.ch04.Author getAuthor();
 Signature: ()Lwgjd/ch04/Author;

 public java.lang.String getUpdateText();
 Signature: ()Ljava/lang/String;

 public int compareTo(wgjd.ch04.Update);
 Signature: (Lwgjd/ch04/Update;)I

 public int hashCode();
 Signature: ()I

 ...
}

Table 5.2 Type descriptors

Descriptor Type

B byte

C char (a 16-bit Unicode character)

D double

F float

I int

J long

L<type name>; Reference type (such as Ljava/lang/String; for a string)

S short

Z boolean

[array-of

134 CHAPTER 5 Class files and bytecode

As you can see, each type in a method signature is represented by a type descriptor.

 In the next section, you’ll see another use of type descriptors. This is in a very

important part of the class file—the constant pool.

5.3.3 The constant pool

The constant pool is an area that provides handy shortcuts to other (constant) ele-

ments of the class file. If you’ve studied languages like C or Perl, which make explicit

use of symbol tables, you can think of the constant pool as being a JVM equivalent. But

unlike some other languages, Java doesn’t give full access to the information con-

tained in the constant pool.

 Let’s use a very simple example to demonstrate the constant pool, so we don’t

swamp ourselves with detail. The next listing shows a simple “playpen” or “scratchpad”

class. This provides a way to quickly test out a Java syntax feature or library, by writing

a small amount of code in run().

package wgjd.ch04;

public class ScratchImpl {
 private static ScratchImpl inst = null;

 private ScratchImpl() {
 }

 private void run() {
 }

 public static void main(String[] args) {
 inst = new ScratchImpl();
 inst.run();
 }
}

To see the information in the constant pool, you can use javap -v. This prints a lot of

additional information—much more than just the constant pool—but let’s focus on

the constant pool entries for the playpen.

 Here’s the constant pool:

 #1 = Class #2 // wgjd/ch04/ScratchImpl
 #2 = Utf8 wgjd/ch04/ScratchImpl
 #3 = Class #4 // java/lang/Object
 #4 = Utf8 java/lang/Object
 #5 = Utf8 inst
 #6 = Utf8 Lwgjd/ch04/ScratchImpl;
 #7 = Utf8 <clinit>
 #8 = Utf8 ()V
 #9 = Utf8 Code
#10 = Fieldref #1.#11

➥ // wgjd/ch04/ScratchImpl.inst:Lwgjd/ch04/ScratchImpl;
#11 = NameAndType #5:#6 // instance:Lwgjd/ch04/ScratchImpl;
#12 = Utf8 LineNumberTable

Listing 5.5 Sample playpen class

135Examining class files

#13 = Utf8 LocalVariableTable
#14 = Utf8 <init>
#15 = Methodref #3.#16 // java/lang/Object."<init>":()V
#16 = NameAndType #14:#8 // "<init>":()V
#17 = Utf8 this
#18 = Utf8 run
#19 = Utf8 ([Ljava/lang/String;)V
#20 = Methodref #1.#21 // wgjd/ch04/ScratchImpl.run:()V
#21 = NameAndType #18:#8 // run:()V
#22 = Utf8 args
#23 = Utf8 [Ljava/lang/String;
#24 = Utf8 main
#25 = Methodref #1.#16 // wgjd/ch04/ScratchImpl."<init>":()V
#26 = Methodref #1.#27

➥ // wgjd/ch04/ScratchImpl.run:([Ljava/lang/String;)V
#27 = NameAndType #18:#19 // run:([Ljava/lang/String;)V
#28 = Utf8 SourceFile
#29 = Utf8 ScratchImpl.java

As you can see, constant pool entries are typed. They also refer to each other, so, for

example, an entry of type Class will refer to an entry of type Utf8. A Utf8 entry means

a string, so the Utf8 entry that a Class entry points out will be the name of the class.

 Table 5.3 shows the set of possibilities for entries in the constant pool. Entries

from the constant pool are sometimes discussed with a CONSTANT_ prefix, such as

CONSTANT_Class.

Table 5.3 Constant pool entries

Name Description

Class A class constant. Points at the name of the class (as a Utf8 entry).

Fieldref Defines a field. Points at the Class and NameAndType of

this field.

Methodref Defines a method. Points at the Class and NameAndType of

this field.

InterfaceMethodref Defines an interface method. Points at the Class and NameAndType
of this field.

String A string constant. Points at the Utf8 entry that holds the characters.

Integer An integer constant (4 bytes).

Float A floating-point constant (4 bytes).

Long A long constant (8 bytes).

Double A double-precision floating-point constant (8 bytes).

NameAndType Describes a name and type pair. The type points at the Utf8 that holds

the type descriptor for the type.

Utf8 A stream of bytes representing Utf8-encoded characters.

136 CHAPTER 5 Class files and bytecode

Using this table, you can look at an example constant resolution from the constant

pool of the playpen. Consider the Fieldref at entry #10.

 To resolve a field, you need a name, a type, and a class where it resides: #10 has the

value #1.#11, which means constant #11 from class #1. It’s easy to check that #1 is

indeed a constant of type Class, and #11 is a NameAndType. #1 refers to the

ScratchImpl class itself, and #11 is #5:#6—a variable called inst of type ScratchImpl.

So, overall, #10 refers to the static variable inst in the ScratchImpl class itself (which

you might have been able to guess from the output in listing 5.6).

 In the verification step of classloading, there’s a step to check that the static infor-

mation in the class file is consistent. The preceding example shows the kind of integ-

rity check that the runtime will perform when loading a new class.

 We’ve discussed some of the basic anatomy of a class file. Let’s move on to the next

topic, where we’ll delve into the world of bytecode. Understanding how source code is

turned into bytecode will help you gain a better understanding of how your code will

run. In turn, this will lead to more insights into the platform’s capabilities when we

reach chapter 6 and beyond.

5.4 Bytecode

Bytecode has been a somewhat behind-the-scenes player in our discussion so far. Let’s

start bringing it into full view by reviewing what we’ve already learned about it:

■ Bytecode is an intermediate representation of a program—halfway between

human readable source and machine code.

■ Bytecode is produced by javac from Java source code files.

■ Some high-level language features have been compiled away and don’t appear

in bytecode. For example, Java’s looping constructs (for, while, and the like)

are gone, turned into bytecode branch instructions.

■ Each opcode is represented by a single byte (hence the name bytecode).

■ Bytecode is an abstract representation, not “machine code for an imaginary CPU.”

■ Bytecode can be further compiled to machine code, usually “just in time.”

When explaining bytecode, there can be a slight chicken-and-egg problem. In order

to fully understand what’s going on, you need to understand both bytecode and the

runtime environment that it executes in.

 This is a rather circular dependency, so to solve it, we’ll start by diving in and looking

at a relatively simple example. Even if you don’t get everything that’s in this example on

InvokeDynamic (New in Java 7) See section 5.5.

MethodHandle (New in Java 7) Describes a MethodHandle constant.

MethodType (New in Java 7) Describes a MethodType constant.

Table 5.3 Constant pool entries (continued)

Name Description

137Bytecode

the first pass, you can come back to it after you’ve read more about bytecode in the

following sections.

 After the example, we’ll provide some context about the runtime environment,

and then catalogue the JVM’s opcodes, including bytecodes for arithmetic, invocation,

shortcut forms, and more. At the end, we’ll round off with another example, based on

string concatenation. Let’s get started by looking at how you can examine bytecode

from a .class file.

5.4.1 Example—disassembling a class

Using javap with the -c switch, you can disassemble classes. In our example, we’ll use

the playpen/scratchpad class we met in listing 5.5. The main focus will be to examine the

bytecode contained within methods. We’ll also use the -p switch so we can see byte-

code that’s contained within private methods.

 Let’s work section by section—there’s a lot of information in each part of javap’s

output, and it’s easy to become overwhelmed. First, the header. There’s nothing terri-

bly unexpected or exciting in here:

$ javap -c -p wgjd/ch04/ScratchImpl.class
Compiled from "ScratchImpl.java"
public class wgjd.ch04.ScratchImpl extends java.lang.Object {
 private static wgjd.ch04.ScratchImpl inst;

Next is the static block. This is where variable initialization is placed, so this represents

initializing inst to null. Looks like putstatic might be a bytecode to put a value in a

static field.

 static {};
 Code:
 0: aconst_null
 1: putstatic #10 // Field inst:Lwgjd/ch04/ScratchImpl;
 4: return

The numbers in the preceding code represent the offset into the bytecode stream

since the start of the method. So byte 1 is the putstatic opcode, and bytes 2 and 3

represent a 16-bit index into the constant pool. In this case, the 16-bit index is the

value 10, which means that the value (in this case null) will be stored in the field indi-

cated by constant pool entry #10. Byte 4 from the start of the bytecode stream is the

return opcode—the end of the block of code.

 Next up is the constructor.

 private wgjd.ch04.ScratchImpl();
 Code:
 0: aload_0
 1: invokespecial #15 // Method java/lang/Object."<init>":()V
 4: return

Remember that in Java, the void constructor will always implicitly call the superclass con-

structor. Here you can see this in the bytecode—it’s the invokespecial instruction. In

general, any method call will be turned into one of the VM’s invoke instructions.

138 CHAPTER 5 Class files and bytecode

 There’s no code in the run() method, as this is just an empty scratchpad class:

 private void run();
 Code:
 0: return

In the main method, you initialize inst and do a bit of object creation. This demon-

strates some very common basic bytecode patterns that you can learn to recognize:

 public static void main(java.lang.String[]);
 Code:
 0: new #1 // class wgjd/ch04/ScratchImpl
 3: dup
 4: invokespecial #21 // Method "<init>":()V

This pattern of three bytecode instructions—new, dup, and invokespecial of an

<init>—always represents the creation of a new instance.

 The new opcode only allocates memory for a new instance. The dup opcode dupli-

cates the element that’s on top of the stack. To fully create the object, you need to call

the body of the constructor. The <init> method contains the code for the construc-

tor, so you call that code block with invokespecial. Let’s look at the remaining byte-

codes for the main method:

 7: putstatic #10 // Field inst:Lwgjd/ch04/ScratchImpl;
 10: getstatic #10 // Field inst:Lwgjd/ch04/ScratchImpl;
 13: invokespecial #22 // Method run:()V
 16: return
}

Instruction 7 saves the singleton instance that has been created. Instruction 10 puts it

back on top of the stack, so that instruction 13 can call a method on it. Note that 13 is

an invokespecial because the method that’s being called—run()—is private. Private

methods can’t be overridden, so you don’t want Java’s standard virtual lookup to be

applied. Most method calls will be turned into invokevirtual instructions.

NOTE In general, the bytecode produced by javac is quite a simple representa-
tion—it isn’t highly optimized. The overall strategy is that JIT compilers do a lot
of optimizing, so it helps if they have a relatively plain and simple starting point.
The expression, “Bytecode should be dumb,” describes the general feeling of
VM implementers toward the bytecode produced from source languages.

Let’s move on to discuss the runtime environment that bytecode needs. After that,

we’ll introduce the tables that we’ll use to describe the major families of bytecode

instructions—load/store, arithmetic, execution control, method invocation, and plat-

form operations. Then we’ll discuss possible shortcut forms of opcodes, before mov-

ing on to another example.

5.4.2 The runtime environment

Understanding the operation of the stack machine that the JVM uses is critical to

understanding bytecode.

139Bytecode

One of the most obvious ways that the JVM doesn’t look like a hardware CPU (such as

an x64 or ARM chip) is that the JVM doesn’t have processor registers, and instead uses

a stack for all calculations and operations. This is sometimes called the operand (or

evaluation) stack. Figure 5.4 shows how the operand stack might be used to perform

an addition operation on two ints.

 As we discussed earlier in this chapter, when a class is linked into the running envi-

ronment, its bytecode will be checked, and a lot of that verification boils down to ana-

lyzing the pattern of types on the stack.

NOTE Manipulations of the values on the stack will only work if the values
on the stack have the correct types. Undefined or bad things could hap-
pen if, for example, we pushed a reference to an object onto the stack and
then tried to treat it as an int and do arithmetic on it. The verification
phase of classloading performs extensive checks to ensure that methods in
newly loaded classes don’t try to abuse the stack. This prevents a mal-
formed (or deliberately evil) class from ever being accepted by the system
and causing problems.

As a method runs, it needs an area of memory to use as an evaluation stack, for com-

puting new values. In addition, every running thread needs a call stack that records

which methods are currently in flight (the stack that would be reported by a stack

trace). These two stacks will interact in some cases. Consider this bit of code:

return 3 + petRecords.getNumberOfPets("Ben");

To evaluate this, you put 3 on the operand stack. Then you need to call a method to

calculate how many pets Ben has. To do this, you push the receiver object (the one

you’re calling the method on—petRecords in this example) onto the evaluation

stack, followed by any arguments you want to pass in.

 Then the getNumberOfPets() method will be called using an invoke opcode,

which will cause control to transfer to the called method, and the just-entered method

to appear in the call stack. But as you enter the new method, you need to start using a

different operand stack, so that the values already on the caller’s operand stack can’t

possibly affect results calculated in the called method.

 As getNumberOfPets() completes, the return value is placed onto the operand

stack of the caller, as part of the process whereby getNumberOfPets() is removed from

the call stack. Then the addition operation can take the two values and add them.

Figure 5.4 Using a stack for

numerical calculations

140 CHAPTER 5 Class files and bytecode

 Let’s now turn to examining bytecode. This is a large subject, with lots of special

cases, so we’re going to present an overview of the main features rather than a com-

plete treatment.

5.4.3 Introduction to opcodes

JVM bytecode consists of a sequence of operation codes (opcodes), possibly with some

arguments following each instruction. Opcodes expect to find the stack in a given

state, and transform the stack, so that the arguments are removed and results placed

there instead.

 Each opcode is denoted by a single-byte value, so there are at most 255 possible

opcodes. Currently, only around 200 are used. This is too many for us to list exhaus-

tively, but fortunately most opcodes fit into one of a number of families. We’ll discuss

each family in turn, to help you get a feel for them. There are a number of operations

that don’t fit cleanly into any of the families, but they tend to be encountered less often.

NOTE The JVM isn’t a purely object-oriented runtime environment—it has
knowledge of primitive types. This shows up in some of the opcode families—
some of the basic opcode types (such as store and add) are required to have a
number of variations that differ depending on the primitive type they’re act-
ing upon.

The opcode tables have four columns:

■ Name—This is a general name for the type of opcode. In many cases there will

be several related opcodes that do similar things.

■ Args—The arguments that the opcode takes. Arguments that start with i are

bytes that are used as a lookup index in the constant pool or local variable

table. If there are more of them, they’re joined together, so that i1, i2 means

“make a 16-bit index out of these two bytes.” If an arg is shown in brackets, it

means that not all forms of the opcode will use it.

■ Stack layout—This shows the state of the stack before and after the opcode has

executed. Elements in brackets indicate that not all forms of the opcode use

them, or that the elements are optional (such as for invocation opcodes).

■ Description—What the opcode does.

Let’s look at an example of a row from table 5.4, by examining the entry for the get-

field opcode. This is used to read a value from a field of an object.

The first column gives the name of the opcode—getfield. The next column says that

there are two arguments that follow the opcode in the bytecode stream. These argu-

ments are put together to make a 16-bit value that is looked up in the constant pool to

see which field is wanted (remember that constant pool indexes are always 16-bit).

getfield i1, i2 [obj] → [val] Gets the field at the constant pool index specified

from the object on top of the stack.

141Bytecode

 The stack layout column shows you that after the index has been looked up in the

constant pool of the class of the object on top of the stack, the object is removed and

is replaced by the value of that field for the object that was on top of the stack.

 This pattern of removing object instances as part of the operation is just a way to

make bytecode compact, without lots of tedious cleanup and remembering to remove

object instances that you’re finished with.

5.4.4 Load and store opcodes

The family of load and store opcodes is concerned with loading values onto the stack,

or retrieving them. Table 5.4 shows the main operations in the load/store family.

As we noted earlier, there are a number of different forms of the load and store

instructions. For example, there is a dload opcode to load a double onto the stack

from a local variable, and an astore opcode to pop an object reference off the stack and

into a local variable.

5.4.5 Arithmetic opcodes

These opcodes perform arithmetic on the stack. They take arguments from the top of the

stack and perform the required calculation on them. The arguments (which are always

primitive types) must always match exactly, but the platform provides a wealth of opcodes

to cast one primitive type to another. Table 5.5 shows the basic arithmetic operations.

 The cast opcodes have very short names, such as i2d for an int to double cast. In

particular, the word cast doesn’t appear in the names, which is why it’s in parentheses

in the table.

Table 5.4 Load and store opcodes

Name Args Stack layout Description

load (i1) [] → [val] Loads a value (primitive or reference) from a

local variable onto the stack. Has shortcut

forms and type-specific variants.

ldc i1 [] → [val] Loads a constant from the pool onto the

stack. Has type-specific and wide variants.

store (i1) [val] → [] Stores a value (primitive or reference) in a

local variable, removing it from the stack in

the process. Has shortcut forms and type-

specific variants.

dup [val] → [val, val] Duplicates the value on top of the stack. Has

variant forms.

getfield i1, i2 [obj] → [val] Gets the field at the constant pool index spec-

ified from the object on top of the stack.

putfield i1, i2 [obj, val] → [] Puts the value into the object’s field at the

specified constant pool index.

142 CHAPTER 5 Class files and bytecode

5.4.6 Execution control opcodes

As mentioned earlier, the control constructs of high-level languages aren’t present in

JVM bytecode. Instead, flow control is handled by a small number of primitives, which

are shown in table 5.6.

Like the index bytes used to look up constants, the b1, b2 args are used to construct a

bytecode location within this method to jump to. The jsr instructions are used to

access small self-contained regions of bytecode that can be outside the main flow (it

Table 5.5 Arithmetic opcodes

Name Args Stack layout Description

add [val1, val2] → [res] Adds two values (which must be of the same

primitive type) from the top of the stack and

stores the result on the stack. Has shortcut

forms and type-specific variants.

sub [val1, val2] → [res] Subtracts two values (of the same primitive type)

from top of the stack. Has shortcut forms and

type-specific variants.

div [val1, val2] → [res] Divides two values (of the same primitive type)

from top of the stack. Has shortcut forms and

type-specific variants.

mul [val1, val2] → [res] Multiplies two values (of the same primitive type)

from top of the stack. Has shortcut forms and

type-specific variants.

(cast) [value] → [res] Casts a value from one primitive type to another.

Has forms corresponding to each possible cast.

Table 5.6 Execution control opcodes

Name Args Stack layout Description

if b1, b2 [val1, val2] → []
or [val1] → []

If the specific condition matches,

jump to the specified branch offset.

goto b1, b2 [] → [] Unconditionally jump to the branch

offset. Has wide form.

jsr b1, b2 [] → [ret] Jump to a local subroutine, and

place the return address (the offset

of the next opcode) on the stack.

Has wide form.

ret index [] → [] Return to the offset specified in the

local variable at index.

tableswitch {depends} [index] → [] Used to implement switch.

lookupswitch {depends} [key] → [] Used to implement switch.

143Bytecode

could be at offsets past the end of the main bytecode of the method). This can be use-

ful in certain circumstances, such as in exception-handling blocks.

 The wide forms of the goto and jsr instructions take 4 bytes of arguments, and

construct an offset, which can be larger than 64 KB. This isn’t often needed.

5.4.7 Invocation opcodes

The invocation opcodes comprise four opcodes for handling general method calling,

plus the special invokedynamic opcode, new with Java 7, which we’ll discuss in more

detail in section 5.5. The five method invocation opcodes are shown in table 5.7.

There are a couple of wrinkles to notice with the invocation opcodes. First off is that

invokeinterface has extra parameters. These are present for historical and backward

compatibility reasons and aren’t used these days. The two extra zeros on invoke-

dynamic are present for forward-compatibility reasons.

 The other important point is the distinction between a regular and a special

instance method call. A regular call is virtual. This means that the exact method to be

called is looked up at runtime using the standard Java rules of method overriding. Spe-

cial calls don’t take overrides into account. This is important for two cases—private

methods and calls to a superclass method. In both cases, you don’t want the override

rules to be triggered, so you need a different invocation opcode to allow for this case.

5.4.8 Platform operation opcodes

The platform operation family of opcodes includes the new opcode, for allocating

new object instances, and the thread-related opcodes, such as monitorenter and

monitorexit. The details of this family can be seen in table 5.8.

 The platform opcodes are used to control certain aspects of object lifecycle, such

as creating new objects and locking them. It’s important to notice that the new opcode

only allocates storage. The high-level conception of object construction also includes

running the code inside the constructor.

Table 5.7 Invocation opcodes

Name Args Stack layout Description

invokestatic i1, i2 [(val1, ...)] → [] Calls a static method.

invokevirtual i1, i2 [obj, (val1, ...)] → [] Calls a “regular” instance

method.

invokeinterface i1, i2,
count, 0

[obj, (val1, ...)] → [] Calls an interface

method.

invokespecial i1, i2 [obj, (val1, ...)] → [] Calls a “special” instance

method.

invokedynamic i1, i2, 0,
0

[val1, ...] → [] Dynamic invocation; see

section 5.5.

144 CHAPTER 5 Class files and bytecode

At the bytecode level, the constructor is turned into a method with a special name—

<init>. This can’t be called from user Java code, but can be called by bytecode. This

leads to a distinctive bytecode pattern that directly corresponds to object creation—a

new followed by a dup followed by an invokespecial to call the <init> method.

5.4.9 Shortcut opcode forms

Many of the opcodes have shortcut forms to save a few bytes here and there. The gen-

eral pattern is that certain local variables will be accessed much more frequently than

others, so it makes sense to have a special opcode that means “do the general opera-

tion directly on the local variable,” rather than having to specify the local variable as

an argument. This gives rise to opcodes such as aload_0 and dstore_2 within the

load/store family.

 Let’s put some of this theory to the test, and do another example.

5.4.10 Example—string concatenation

Let’s add content to the playpen class to demonstrate slightly more advanced byte-

code—code that touches on most of the major bytecode families we’ve already met.

 Remember that in Java, String is immutable. So what happens when you concate-

nate two strings together with the + operator? You have to create a new String object,

but there’s more going on here than might be apparent at first.

 Consider the playpen with the run() method adjusted as shown:

private void run(String[] args) {
 String str = "foo";
 if (args.length > 0) str = args[0];
 System.out.println("this is my string: " + str);
}

The bytecode corresponding to this relatively simple method is as follows:

$ javap -c -p wgjd/ch04/ScratchImpl.class
Compiled from "ScratchImpl.java"

 private void run(java.lang.String[]);
 Code:
 0: ldc #17 // String foo
 2: astore_2
 3: aload_1

Table 5.8 Platform opcodes

Name Args Stack layout Description

new i1, i2 [] → [obj] Allocates memory for a new object, of the

type specified by the constant at the

specified index.

monitorenter [obj] → [] Locks an object.

monitorexit [obj] → [] Unlocks an object.

145Bytecode

 4: arraylength
 5: ifle 12 #A

If the size of the array you’re passed is less than or equal to 0, jump forward to instruc-

tion 12.

 8: aload_1
 9: iconst_0
 10: aaload
 11: astore_2
 12: getstatic #19

➥ // Field java/lang/System.out:Ljava/io/PrintStream;

The preceding line shows how the bytecode represents an access to System.out.

 15: new #25 // class java/lang/StringBuilder
 18: dup
 19: ldc #27 // String this is my string:
 21: invokespecial #29

➥ // Method java/lang/StringBuilder."<init>":(Ljava/lang/String;)V
 24: aload_2
 25: invokevirtual #32

➥ // Method java/lang/StringBuilder.append

➥ (Ljava/lang/String;)Ljava/lang/StringBuilder;
 28: invokevirtual #36

➥ // Method java/lang/StringBuilder.toString:()Ljava/lang/String;

These instructions show the creation of the concatenated string you want to output.

In particular, instructions 15–23 show object creation (new, dup, invokespecial), but

this case includes an ldc (load constant) after the dup. This bytecode pattern indi-

cates that you’re calling a nonvoid constructor—StringBuilder(String) in this case.

 This result may at first be a little surprising. You’re just concatenating some strings,

and all of a sudden the bytecode is telling you that underneath you’re really creating

additional StringBuilder objects, and calling append(), then toString() on them.

The reason behind this is that Java’s strings are immutable. You can’t modify the string

object by concatenating it, so instead you have to make a new object. The String-

Builder is just a convenient way to do this.

 Finally, let’s call the method to print out the result:

 31: invokevirtual #40

➥ // Method java/io/PrintStream.println:(Ljava/lang/String;)V
 34: return

Finally, with the output string assembled, you can call the println() method. This is

being called on System.out because the top two elements of the stack at this point are

[System.out, <output string>]—just as you’d expect from table 5.7, which defines

the stack layout for a valid invokevirtual.

 To become a truly well-grounded Java developer, you should run javap against

some of your own classes and learn to recognize common bytecode patterns. For now,

with this brief introduction to bytecode under our belts, let’s move on to tackle our

next subject. This is one of the major new features of Java 7—invokedynamic.

146 CHAPTER 5 Class files and bytecode

5.5 Invokedynamic

This section deals with one of the most technically sophisticated new features of Java 7.

But despite being enormously powerful, it isn’t a feature that will necessarily be used

directly by every working developer, because it involves a very advanced use case. This

feature is for frameworks developers and non-Java languages at present.

 This means that if you’re not interested in knowing how the platform works under

the hood, or the details of the new bytecode, feel free to skip ahead to the summary

section or the next chapter.

 If you’re still here, good. We can get on with explaining how unusual the appear-

ance of invokedynamic is. Java 7 introduces a brand new bytecode—a development

that has not previously occurred in the Java world. The new opcode is invokedynamic,

and it’s a new type of invocation instruction, so it’s used for making method calls. It’s

used to indicate to the VM that it must defer figuring out which method to call. That is,

the VM doesn’t need to work all the details out at compile or link time as it usually does.

 Instead, the details of what method is needed should be decided at runtime. This

is done by calling a helper method that makes the decision of which method ought to

be called.

In this section, we’ll cover the details of how invokedynamic works, and look at a

detailed example of decompiling a call site that makes use of the new bytecode. Note

that it isn’t necessary to fully understand this in order to use languages and frame-

works that leverage invokedynamic.

5.5.1 How invokedynamic works

To support invokedynamic, several new entries have been added to the constant pool

definitions. These provide necessary support to invokedynamic that can’t be provided

within the constraints of Java 6 technology.

 The index provided to an invokedynamic instruction must point at a constant of

type CONSTANT_InvokeDynamic. It has two 16-bit indices (that is, 4 bytes) attached to it.

The first index is into a table of methods that will determine what to call. These are

called bootstrap methods (sometimes BSMs), and they have to be static and have a cer-

tain argument signature. The second index is to a CONSTANT_NameAndType.

javac won’t emit invokedynamic

There is no direct Java language support for invokedynamic in Java 7—no Java
expression will be directly compiled into an invokedynamic bytecode by javac. Java 8
is expected to add more language constructs (such as default methods) that will
make use of the dynamic capabilities.

Instead, invokedynamic is an improvement that is squarely targeted at non-Java lan-
guages. The bytecode has been added for dynamic languages to make use of when
targeting the Java 7 VM (but some clever Java frameworks have found ways to make
it work for them too).

147Invokedynamic

From this, you can see that a CONSTANT_InvokeDynamic is like an ordinary CONSTANT_

MethodRef, except that instead of specifying which class’s constant pool to look up the

method in, an invokedynamic call uses a bootstrap method to provide an answer.

 Bootstrap methods take in information about the call site, and link the dynamic

call, by returning an instance of CallSite. This call site holds a MethodHandle, which

is the effect of calling the call site.

 An invokedynamic instruction starts off without a target method—it’s said to be

unlinked. The first time that the call is executed, the bootstrap method for the site is

called. The bootstrap method returns a CallSite, which is then linked to the invoke-

dynamic instruction. This can be seen in figure 5.5.

 With the CallSite linked, the actual method call can then be made—it’s to the

MethodHandle being held by the CallSite. This setup means that invokedynamic calls

can potentially be optimized by the JIT compiler in a similar way to invokevirtual

calls. We’ll talk more about these optimizations in the next chapter.

 It’s also worth noting that some CallSite objects can be relinked (made to point

at different target methods over their lifetime). Some dynamic languages will make

quite heavy use of this feature.

 In the next subsection, we’ll look at a simple example of how an invokedynamic

call is represented in bytecode.

5.5.2 Example—disassembling an invokedynamic call

As we noted previously, Java 7 doesn’t have syntax support for invokedynamic.

Instead, you have to use a bytecode manipulation library to produce a .class file with

the dynamic call instruction in it. One good choice for this is the ASM library (http://

asm.ow2.org/)—this is an industrial strength library used in a wide range of well-

known Java frameworks.

 Using this library, we can construct a representation of a class that includes an

invokedynamic instruction, then convert it to a byte stream. This can either be written

out to disk or handed to a classloader for insertion into the running VM.

 One simple example is to have ASM produce a class that has just a single static

method containing a single invokedynamic instruction. This method can then be

Figure 5.5 Virtual vs. dynamic dispatch

http://asm.ow2.org/
http://asm.ow2.org/

148 CHAPTER 5 Class files and bytecode

called from normal Java code—it’s wrapping (or hiding) the dynamic nature of the

real call. Remi Forax and the ASM team provided a simple tool to produce test classes

that do exactly this, as part of the development of invokedynamic, and ASM was one of

the first tools to fully support the new bytecode.

 As an example, let’s look at the bytecode for such a wrapper method:

public static java.math.BigDecimal invokedynamic();
 Code:
 0: invokedynamic #22, 0

➥ // InvokeDynamic #0:_:()Ljava/math/BigDecimal;
 5: areturn

So far, there’s not much to see—most of the complexity is happening in the constant

pool. So let’s look at those entries that relate to the dynamic call:

BootstrapMethods:
 0: #17 invokestatic test/invdyn/DynamicIndyMakerMain.bsm:

➥ (Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;

➥ Ljava/lang/invoke/MethodType;Ljava/lang/Object;)

➥ Ljava/lang/invoke/CallSite;
 Method arguments:
 #19 1234567890.1234567890
#10 = Utf8 ()Ljava/math/BigDecimal;
#18 = Utf8 1234567890.1234567890
#19 = String #18 // 1234567890.1234567890
#20 = Utf8 _
#21 = NameAndType #20:#10 // _:()Ljava/math/BigDecimal;
#22 = InvokeDynamic #0:#21 // #0:_:()Ljava/math/BigDecimal;

This does take a bit of looking at to fully decode. Let’s step through it:

■ The invokedynamic opcode points at entry #22. This refers to the bootstrap

method #0 and the NameAndType #21.

■ The BSM at #0 is an ordinary static method bsm() on a class called Dynamic-

IndyMakerMain. It has the correct signature for a BSM.

■ The entry at #21 gives the name of this particular dynamic linkage site, “_”, and

the return type, BigDecimal (which is stored at #10).

■ Entry #19 is a static argument that is passed into the bootstrap method.

As you can see, there is quite a lot of machinery required to ensure type safety. There

are still plenty of ways this can go wrong at runtime, but this mechanism goes a long

way to providing safety while still remaining flexible.

NOTE There is an additional level of indirection, or flexibility, available, in
that the BootstrapMethods table points at method handles, rather than meth-
ods directly. We’ve omitted this in the preceding discussion, as it can obscure
what’s happening and doesn’t really help when trying to understand how the
mechanism works.

This marks the end of our discussion of invokedynamic and the inner workings of

bytecode and classloading.

149Summary

5.6 Summary

In this chapter, we’ve taken a quick first look into bytecode and classloading. We’ve

dissected the class file format and taken a brief tour through the runtime environ-

ment that the JVM provides. By learning more about the internals of the platform,

you’ll become a better developer.

 These are some of the things that we hope you’ve learned from this chapter:

■ The class file format and classloading are central to the operation of the JVM.

They’re essential for any language that wants to run on the VM.

■ The various phases of classloading enable both security and performance fea-

tures at runtime.

■ Method handles are a major new API with Java 7—an alternative to reflection.

■ JVM bytecode is organized into families with related functionality.

■ Java 7 introduces invokedynamic—a new way of calling methods.

It’s time to move on to the next big topic that will help you stand out as a well-

grounded Java developer. By reading the next chapter, you’ll get a firm grounding in

the often-misunderstood subject of performance analysis. You’ll learn how to measure

and tune for performance and how to get the most out of some of the powerful tech-

nology at the heart of the JVM, such as the JIT compiler, which turns bytecode into

super-fast machine code.

150

Understanding
performance tuning

Poor performance kills applications—it’s bad for your customers and your applica-

tion’s reputation. Unless you have a totally captive market, your customers will vote

with their feet—they’ll already be out of the door, heading to a competitor. To stop

poor performance harming your project, you need to understand performance

analysis and how to make it work for you.

 Performance analysis and tuning is a huge subject, and there are too many

treatments out there that focus on the wrong things. So we’re going to start by tell-

ing you the big secret of performance tuning.

 Here it is—the single biggest secret of performance tuning: You have to measure.

You can’t tune properly without measuring.

 And here’s why: The human brain is pretty much always wrong when it comes to

guessing what the slow parts of systems are. Everyone’s is. Yours, mine, James

This chapter covers

■ Why performance matters

■ The new G1 collector

■ VisualVM—a tool for visualizing memory

■ Just-in-time compilation

151Understanding performance tuning

Gosling’s—we’re all subject to our subconscious biases and tend to see patterns that

may not be there.

 In fact, the answer to the question, “Which part of my Java code needs optimiz-

ing?” is quite often, “None of it.”

 Consider a typical (if rather conservative) ecommerce web application, providing

services to a pool of registered customers. It has an SQL database, Apache web servers

fronting Java application servers, and a fairly standard network configuration connect-

ing all this up. Very often, the non-Java parts of the system (database, filesystem, net-

work) are the real bottleneck, but without measurement, the Java developer would

never know that. Instead of finding and fixing the real problem, the developer may

will waste time on micro-optimization of code aspects that aren’t really contributing to

the issue.

 The kind of fundamental questions that you want to be able to answer are these:

■ If you have a sales drive and suddenly have 10 times as many customers, will the

system have enough memory to cope?

■ What is the average response time your customers see from your application?

■ How does that compare to your competitors?

To do performance tuning, you have to get out of the realm of guessing about what’s

making the system slow. You have to start knowing, and the only way to know for sure

is to measure.

 You also need to understand what performance tuning isn’t. It isn’t

■ A collection of tips and tricks

■ Secret sauce

■ Fairy dust that you sprinkle on at the end of a project

Be especially careful of the “tips and tricks” approaches. The truth is that the JVM is a

very sophisticated and highly tuned environment, and without proper context, most

of these tips are useless (and may actually be harmful). They also go out of date very

quickly as the JVM gets smarter and smarter at optimizing code.

 Performance analysis is really a type of experimental science. You can think of your

code as a type of science experiment that has inputs and produces “outputs”—perfor-

mance metrics that indicate how efficiently the system is performing the work asked

of it. The job of the performance engineer is to study these outputs and look for pat-

terns. This makes performance tuning a branch of applied statistics, rather than a col-

lection of old wives’ tales and applied folklore.

 This chapter is here to help you get started—it’s an introduction to the practice of

Java performance tuning. But this is a big subject, and we only have space to give you a

primer on some essential theory and some signposts. We’ll try to answer the most fun-

damental questions:

■ Why does performance matter?

■ Why is performance analysis hard?

152 CHAPTER 6 Understanding performance tuning

■ What aspects of the JVM make it potentially complex to tune?

■ How should performance tuning be thought about and approached?

■ What are the most common underlying causes of slowness?

We’ll also give you an introduction to the two subsystems in the JVM that are the most

important when it comes to performance-related matters:

■ The garbage collection subsystem

■ The JIT compiler

This should be enough to get you started and help you apply this (admittedly some-

what theory-heavy) knowledge to the real problems you face in your code.

 Let’s get going by taking a quick look at some fundamental vocabulary that will

enable you to express and frame your performance problems and goals.

6.1 Performance terminology—some basic definitions

To get the most out of our discussions in this chapter, we need to formalize some

notions of performance that you may be aware of. We’ll begin by defining some of the

most important terms in the performance engineer’s lexicon:

■ Latency

■ Throughput

■ Utilization

■ Efficiency

■ Capacity

■ Scalability

■ Degradation

A number of these terms are discussed by Doug Lea in the context of multithreaded

code, but we’re considering a much wider context here. When we speak of perfor-

mance, we could mean anything from a single multithreaded process all the way up to

an entire clustered server platform.

6.1.1 Latency

Latency is the end-to-end time taken to process a single work-unit at a given workload.

Quite often latency is quoted just for “normal” workloads, but an often-useful perfor-

mance measure is the graph showing latency as a function of increasing workload.

 The graph in figure 6.1 shows a sudden, nonlinear degradation of a performance

metric (for example latency) as the workload increases. This is usually called a perfor-

mance elbow.

6.1.2 Throughput

Throughput is the number of units of work that a system can perform in some time

period with given resources. One commonly quoted number is transactions per second

153Performance terminology—some basic definitions

on some reference platform (for example, a specific brand of server with specified

hardware, OS, and software stack).

6.1.3 Utilization

Utilization represents the percentage of available resources that are being used to han-

dle work units, instead of housekeeping tasks (or just being idle). People will com-

monly quote a server as being 10 percent utilized—this refers to the percentage of

CPU processing work units during normal processing time. Note that there can be a

very large difference between the utilization levels of different resources, such as CPU

and memory.

6.1.4 Efficiency

The efficiency of a system is equal to the throughput divided by the resources used. A

system that requires more resources to produce the same throughput is less efficient.

 For example, consider comparing two clustering solutions. If solution A requires

twice as many servers as solution B for the same throughput, it’s half as efficient.

 Remember that resources can also be considered in cost terms—if solution X costs

twice as much (or requires twice as many staff to run the production environment) as

solution Y, it’s only half as efficient.

6.1.5 Capacity

Capacity is the number of work units (such as transactions) that can be in flight

through the system at any time. That is, it’s the amount of simultaneous processing

available at specified latency or throughput.

Figure 6.1 A performance

elbow

154 CHAPTER 6 Understanding performance tuning

6.1.6 Scalability

As resources are added to a system, the throughput (or latency) will change. This

change in throughput or latency is the scalability of the system.

 If solution A doubles its throughput when the available servers in a pool are dou-

bled, it’s scaling in a perfectly linear fashion. Perfect linear scaling is very, very diffi-

cult to achieve under most circumstances.

 You should also note that the scalability of a system is dependent on a number of

factors, and it isn’t constant. A system can scale close to linearly up until some point

and then begin to degrade badly. That’s a different kind of performance elbow.

6.1.7 Degradation

If you add more work units, or clients for network systems, without adding more

resources, you’ll typically see a change in the observed latency or throughput. This

change is the degradation of the system under additional load.

The preceding terms are the most frequently used indicators of performance. There

are others that are occasionally important, but these are the basic system statistics that

will normally be used to guide performance tuning. In the next section, we’ll lay out

an approach that is grounded in close attention to these numbers and that is as quan-

titative as possible.

6.2 A pragmatic approach to performance analysis

Many developers, when they approach the task of performance analysis, don’t start

with a clear picture of what they want to achieve by doing the analysis. A vague sense

that the code “ought to run faster” is often all that developers or managers have when

the work begins.

 But this is completely backward. In order to do really effective performance tun-

ing, there are key areas that you should have think about before beginning any kind

of technical work. You should know the following things:

■ What observable aspects of your code you’re measuring

■ How to measure those observables

Positive and negative degradation

The degradation will, under normal circumstances, be negative. That is, adding work
units to a system will cause a negative effect on performance (such as causing the
latency of processing to increase). But there are circumstances under which degra-
dation could be positive.

For example, if the additional load causes some part of the system to cross a thresh-
old and switch to a high-performance mode, this can cause the system to work more
efficiently and reduce processing times even though there is actually more work to
be done. The JVM is a very dynamic runtime system, and there are several parts of
it that could contribute to this sort of effect.

155A pragmatic approach to performance analysis

■ What the goals for the observables are

■ How you’ll recognize when you’re done with performance tuning

■ What the maximum acceptable cost is (in terms of developer time invested and

additional complexity in the code) for the performance tuning

■ What not to sacrifice as you optimize

Most importantly, as we’ll say many times in this chapter, you have to measure. Without

measurement of at least one observable, you aren’t doing performance analysis.

 It’s also very common when you start measuring your code, to discover that time

isn’t being spent where you think it is. A missing database index, or contended filesys-

tem locks can be the root of a lot of performance problems. When thinking about

optimizing your code, you should always remember that it’s very possible that the

code isn’t the issue. In order to quantify where the problem is, the first thing you need

to know is what you’re measuring.

6.2.1 Know what you’re measuring

In performance tuning, you always have to be measuring something. If you aren’t

measuring an observable, you’re not doing performance tuning. Sitting and staring at

your code, hoping that a faster way to solve the problem will strike you, isn’t perfor-

mance analysis.

TIP To be a good performance engineer, you should understand terms such
as mean, median, mode, variance, percentile, standard deviation, sample size,
and normal distribution. If you aren’t familiar with these concepts, you
should start with a quick web search and do further reading if needed.

When undertaking performance analysis, it’s important to know exactly which of the

observables we described in the last section are important to you. You should always

tie your measurements, objectives, and conclusions to one or more of the basic

observables we introduced.

 Here are some typical observables that are good targets for performance tuning:

■ Average time taken for method handleRequest() to run (after warmup)

■ The 90th percentile of the system’s end-to-end latency with 10 concurrent clients

■ The degradation of the response time as you increase from 1 to 1,000 concur-

rent users

All of these represent quantities that the engineer might want to measure, and poten-

tially tune. In order to obtain accurate and useful numbers, a basic knowledge of sta-

tistics is essential.

 Knowing what you’re measuring and having confidence that your numbers are

accurate is the first step. But vague or open-ended objectives don’t often produce

good results, and performance tuning is no exception.

156 CHAPTER 6 Understanding performance tuning

6.2.2 Know how to take measurements

There are only two ways to determine precisely how long a method or other piece of

code takes to run:

■ Measure it directly, by inserting measurement code into the source class

■ Transform the class that is to be measured at class loading time

Most simple, direct performance measuring techniques will rely on one (or both) of

these techniques.

 We should also mention the JVM Tool Interface (JVMTI), which can be used to cre-

ate very sophisticated profilers, but it has drawbacks. It requires the performance

engineer to write native code, and the profiling numbers it produces are essentially

statistical averages, rather than direct measurements.

DIRECT MEASUREMENT

Direct measurement is the easiest technique to understand, but it’s also intrusive. In

its simplest form, it looks like this:

long t0 = System.currentTimeMillis();
methodToBeMeasured();
long t1 = System.currentTimeMillis();
long elapsed = t1 - t0;
System.out.println("methodToBeMeasured took "+ elapsed +" millis");

This will produce an output line that should give a millisecond-accurate view of how

long methodToBeMeasured() took to run. The inconvenient part is that code like this

has to be added throughout the codebase, and as the number of measurements

grows, it becomes difficult to avoid being swamped with data.

 There are other problems too—what happens if methodToBeMeasured() takes under

a millisecond to run? As we’ll see later in this chapter, there are also cold-start effects to

worry about—later runs of the method may well be quicker than earlier runs.

AUTOMATIC INSTRUMENTATION VIA CLASSLOADING

In chapters 1 and 5 we discussed how classes are assembled into an executing program.

One of the key steps that is often overlooked is the transformation of bytecode as it’s

loaded. This is incredibly powerful, and it lies at the heart of many modern techniques in

the Java platform. One simple example of it is automatic instrumentation of methods.

 In this approach, methodToBeMeasured() is loaded by a special classloader that adds

in bytecode at the start and end of the method to record the times at which the method

was entered and exited. These timings are typically written to a shared data structure,

which is accessed by other threads. These threads act on the data, typically either writing

output to log files or contacting a network-based server that processes the raw data.

 This technique lies at the heart of many high-end performance monitoring tools

(such as OpTier CoreFirst) but at time of writing, there seems to be no actively main-

tained open source tool that fills the same niche.

NOTE As we’ll discuss later, Java methods start off interpreted, then switch to
compiled mode. For true performance numbers, you have to discard the

157A pragmatic approach to performance analysis

timings generated when in interpreted mode, as they can badly skew the
results. Later we’ll discuss in more detail how you can know when a method
has switched to compiled mode.

Using one or both of these techniques will allow you to produce numbers for how

quickly a given method executes. The next question is, what do you want the numbers

to look like when you’ve finished tuning?

6.2.3 Know what your performance goals are

Nothing focuses the mind like a clear target, so just as important as knowing what to

measure is knowing and communicating the end goal of tuning. In most cases, this

should be a simple and precisely stated goal:

■ Reduce 90th percentile end-end latency by 20 percent at 10 concurrent users

■ Reduce mean latency of handleRequest() by 40 percent and variance by

25 percent

In more complex cases, the goal may be to reach several related performance targets

at once. You should be aware that the more separate observables that you measure

and try to tune, the more complex the performance exercise can become. Optimizing

for one performance goal can negatively impact on another.

 Sometimes it’s necessary to do some initial analysis, such as determining what the

important methods are, before setting goals, such as making them run faster. This is

fine, but after the initial exploration it’s almost always better to stop and state your

goals before trying to achieve them. Too often developers will plow on with the analy-

sis without stopping to elucidate their goals.

6.2.4 Know when to stop optimizing

In theory, knowing when it’s time to stop optimizing is easy—you’re done when

you’ve achieved your goals. In practice, however, it’s easy to get sucked into perfor-

mance tuning. If things go well, the temptation to keep pushing and do even better

can be very strong. Alternatively, if you’re struggling to reach your goal, it’s hard to

keep from trying out different strategies in an attempt to hit the target.

 Knowing when to stop involves having an awareness of your goals, but also a sense

of what they’re worth. Getting 90 percent of the way to a performance goal can often

be enough, and the engineer’s time may well be spent better elsewhere.

 Another important consideration is how much effort is being spent on rarely used

code paths. Optimizing code that accounts for 1 percent or less of the program’s run-

time is almost always a waste of time, yet a surprising number of developers will

engage in this behavior.

 Here’s a set of very simple guidelines for knowing what to optimize. You may need

to adapt these for your particular circumstances, but they work well for a wide range

of situations:

■ Optimize what matters, not what is easy to optimize.

■ Hit the most important (usually the most often called) methods first.

158 CHAPTER 6 Understanding performance tuning

■ Take low-hanging fruit as you come across it, but be aware of how often the

code that it represents is called.

At the end, do another round of measurement. If you haven’t hit your performance

goals, take stock. Look and see how close you are to hitting those goals, and whether

the gains you’ve made have had the desired impact on overall performance.

6.2.5 Know the cost of higher performance

All performance tweaks have a price tag attached.

■ There’s the time taken to do the analysis and develop an improvement (and it’s

worth remembering that the cost of developer time is almost always the greatest

expense on any software project).

■ There’s the additional technical complexity that the fix will probably have intro-

duced. (There are performance improvements that also simplify the code, but

they’re not the majority of cases.)

■ Additional threads may have been introduced to perform auxiliary tasks to

allow the main processing threads to go faster, and these threads may have

unforeseen effects on the overall system at higher loads.

Whatever the price tag, pay attention to it and try identify it before you finish a round

of optimization.

 It often helps to have some idea of what the maximum acceptable cost for higher

performance is. This can be set as a time constraint on the developers doing the tun-

ing, or as numbers of additional classes or lines of code. For example, a developer

could decide that no more than a week should be spent optimizing, or that the opti-

mized classes should not grow by more than 100 percent (double their original size).

6.2.6 Know the danger of premature optimization

One of the most famous quotes on optimization is from Donald Knuth:

Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and

these attempts at efficiency actually have a strong negative impact ...

premature optimization is the root of all evil.1

This statement has been widely debated in the community, and in many cases only the

second part is remembered. This is unfortunate for several reasons:

■ In the first part of the quote, Knuth is reminding us implicitly of the need to

measure, without which we can’t determine the critical parts of programs.

■ We need to remember yet again that it might not be the code that’s causing the

latency—it could be something else in the environment.

1 Donald E. Knuth, “Structured Programming with go to Statements,” Computing Surveys, 6, no. 4 (Dec. 1974).
http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf.

http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

159What went wrong? Why we have to care

■ In the full quote, it’s easy to see that Knuth is talking about optimization that

forms a conscious, concerted effort.

■ The shorter form of the quote leads to the quote being used as a fairly pat

excuse for poor design or execution choices.

Some optimizations are really a part of good style:

■ Don’t allocate an object you don’t need to.

■ Remove a debug log message if you’ll never need it.

In the following snippet, we’ve added a check to see if the logging object will do any-

thing with a debug log message. This kind of check is called a loggability guard. If the

logging subsystem isn’t set up for debug logs, this code will never construct the log

message, saving the cost of the call to currentTimeMillis() and the construction of

the StringBuilder object used for the log message.

if (log.isDebugEnabled()) log.debug("Useless log at: "+
System.currentTimeMillis());

But if the debug log message is truly useless, we can save a couple of processor cycles

(the cost of the loggability guard) by removing the code altogether.

 One aspect of performance tuning is to write good, well-performing code in the first

place. Gaining a better awareness of the platform and how it behaves under the hood

(for example, understanding the implicit object allocations that come from the con-

catenation of two strings) and thinking about aspects of performance as you go, leads

to better code.

 We now have some basic vocabulary we can use to frame our performance prob-

lems and goals, and an outline approach for how to tackle problems. But we still

haven’t explained why this is a software engineer’s problem, and where this need

came from. To understand this, we need to delve briefly into the world of hardware.

6.3 What went wrong? Why we have to care

For a few halcyon years in the middle of last decade, it seemed as though performance

was not really a concern. Clock speeds were going up and up, and it seemed that all

software engineers had to do was to wait a few months, and the improved CPU speeds

would give an uptick to even badly written code.

 How, then, did things go so wrong? Why are clock speeds not improving that much

anymore? More worryingly, why does a computer with a 3 GHz chip not seem much faster

than one with a 2 GHz chip? Where has this trend for software engineers across the

industry to be concerned about performance come from?

 In this section, we’ll talk about the forces driving this trend, and why even the pur-

est of software developers needs to care a bit about hardware. We’ll set the stage for

the topics in the rest of the chapter, and give you the concepts you’ll need to really

understand JIT compilation and some of our in-depth examples.

 You may have heard the term “Moore’s Law” bandied about. Many developers are

aware that it has something to do with the rate at which computers get faster but

160 CHAPTER 6 Understanding performance tuning

are vague on the details. Let’s get under way by explaining exactly what it means and

what the consequences are of it possibly coming to an end in the near future.

6.3.1 Moore’s Law—historic and future performance trends

Moore’s Law is named for Gordon Moore, one of the founders of Intel. Here is one of

the most common formulations of his law: The maximum number of transistors on a chip

which is economic to produce roughly doubles every two years.

 The law, which is really an observation about trends in computer processors

(CPUs), is based on a paper he wrote in 1965, in which he originally forecast for 10

years—that is, up until 1975. That it has lasted so well (and is forecast to remain valid

up until about 2015) is truly remarkable.

 In figure 6.2 we’ve plotted a number of real CPUs from the Intel x86 family—all

the way from 1980 through to the i7 in 2010. The graph shows the transistor counts of

the chips against their release dates.

 This is a log-linear graph, so each increment on the y axis is 10 times the previous

one. As you can see, the line is essentially straight, and takes about six or seven years to

cross each vertical level. This demonstrates Moore’s Law, because taking six or seven

years to increase tenfold is the same as roughly doubling every two years.

 Keep in mind that the y axis on the graph is a log scale—this means that a main-

stream Intel chip produced in 2005 had around 100 million transistors. This is

100 times as many as a chip produced in 1990.

 It’s important to notice that Moore’s Law specifically talks about transistor counts.

This is the basic point that must be understood in order to grasp why Moore’s Law

alone isn’t enough for the software engineer to continue to obtain a free lunch from

the hardware engineers.

Figure 6.2 Log-linear

plot of transistor count

over time

161What went wrong? Why we have to care

NOTE Transistor counts aren’t the same thing as clock speed, and even the
still-common idea that a higher clock speed means better performance is a
gross oversimplification.

Moore’s Law has been a good guide to the past, and it should remain accurate for a

while longer (estimates vary, but until at least 2015 seems reasonable). But Moore’s

Law is formulated in terms of transistor counts, and these are increasingly not a good

guide to the performance that developers should expect from their code. Reality, as

we’ll see, is more complicated.

 The truth is that real-world performance depends on a number of factors, all of

which are important. If we had to pick just one, however, it would be how fast data rel-

evant to the instructions can be located. This is such an important concept to perfor-

mance that we should take an in-depth look at it.

6.3.2 Understanding the memory latency hierarchy

Computer processors require data to work on. If the data to process isn’t available, then it

doesn’t matter how fast the CPU cycles—it just has to wait, performing no-operation

(NOP) and basically stalling until the data is available.

 This means that two of the most fundamental questions when addressing latency are,

“Where is the nearest copy of the data that the CPU core needs to work on?” and “How

long will it take to get to where the core can use it?” These are the main possibilities:

■ Registers—This is a memory location that’s on the CPU and ready for immediate

use. This is the part of memory that instructions operate on directly.

■ Main memory—This is usually DRAM. The access time for this is around 50 ns (but

see later on for details about how processor caches are used to avoid this latency).

■ Solid-state drive (SSD)—It takes 0.1 ms or less to access these disks, but they’re less

expensive compared to traditional hard disks.

■ Hard disk—It takes around 5 ms to access the disk and load the required data

into main memory.

Moore’s Law has described an exponential increase in transistor count, and this has

benefited memory as well—memory access speed has also increased exponentially.

But the exponents for these two have not been the same. Memory speed has improved

more slowly than CPUs have added transistors, which means there’s a risk that the pro-

cessing cores will fall idle due to not having the relevant data on hand to process.

 To solve this problem, caches have been introduced between the registers and

main memory. These are small amounts of faster memory (SRAM, rather than DRAM).

This faster memory costs a lot more than DRAM, both in terms of money and transis-

tor budget, which is why computers don’t simply use SRAM for their entire memory.

 Caches are referred to as L1 and L2 (some machines also have L3), with the num-

bers indicating how close to the CPU the cache is (and closer caches will be faster).

We’ll talk more about caches in section 6.6 (on JIT compilation), and show an exam-

ple of how important the L1 cache effects are to running code. Figure 6.3 shows just

162 CHAPTER 6 Understanding performance tuning

how much faster L1 and L2 cache are than main memory. Later on, we’ll have an

example of just how much these speed differences affect the performance of run-

ning code.

 As well as adding caches, another technique that was used extensively in the 1990s

and early 2000s was to add increasingly complex processor features to try to work

around the latency of memory. Sophisticated hardware techniques, such as instruction-

level parallelism (ILP) and chip multithreading (CMT), were used to try to keep the

CPU operating on data, even in the face of the widening gap between CPU capability

and memory latency.

 These techniques came to consume a large percentage of the transistor budget of

the CPU, and the impact they had on real performance was subject to diminishing

returns. This trend led to the viewpoint that the future of CPU design is chips with

multiple (or many) cores.

 This means the future of performance is intimately tied to concurrency—one of

the main ways that a system can be made more performant overall is by having more

cores. That way, even if one core is waiting for data, the other cores may still be able to

progress. This connection is so important that we’re going to say it again:

■ The future of CPU is multicore

■ This ties performance and concurrency together as concerns

These hardware concerns aren’t specific to Java programmers, but there are some

additional complexities that the managed nature of the JVM brings in. Let’s take a

look at these in the next section.

6.3.3 Why is Java performance tuning hard?

Tuning for performance on the JVM (or indeed, any other managed runtime) is

inherently more difficult than for code that runs unmanaged. This is because C/C++

programmers have to do almost everything for themselves. The OS supplies only mini-

mal services, such as rudimentary thread scheduling.

 In a managed system, the entire point is to allow the runtime to take some control

of the environment, so that the developer doesn’t have to cope with every detail. This

makes programmers much more productive overall, but it does mean that some con-

trol has to be given up. The only alternative is to give up all the advantages that a man-

aged runtime brings, which is almost always a much higher cost than the additional

effort required to performance tune.

Figure 6.3 Relative

access times for

registers, processor

caches, and main

memory

163A question of time—from the hardware up

 Some of the most important aspects of the platform that contribute to making tun-

ing hard are

■ Thread scheduling

■ Garbage collection (GC)

■ Just-in-time (JIT) compilation

These aspects can interact in subtle ways. For example, the compilation subsystem

uses timers to decide which methods to compile. This means that the set of methods

that are candidates for compilation can be affected by concerns such as scheduling

and GC. The methods that get compiled could be different from run to run.

 As you’ve seen throughout this section, accurate measurement is key to the deci-

sion-making processes of performance analysis. An understanding of the details of

(and limitations of) how time is handled in the Java platform is therefore very useful if

you want to get serious about performance tuning.

6.4 A question of time—from the hardware up

Have you ever wondered where time is stored and handled inside a computer? Hard-

ware is ultimately responsible for keeping track of time, but the picture isn’t as simple

as you might hope!

 For performance tuning, you need a good understanding of the details of how

time works. To get there, we’ll start with the underlying hardware, then talk about how

Java integrates with these subsystems, and introduce some of the complexities of the

nanoTime() method.

6.4.1 Hardware clocks

There can be as many as four different hardware time sources in an average x64-based

machine these days: RTC, 8254, TSC, and possibly HPET.

 The real-time clock (RTC) is basically the same electronics you’d find in a cheap

digital watch (quartz crystal based) and it’s kept powered by the motherboard battery

when the system is powered off. That’s where the system time is initially set from at

startup, although many machines will use Network Time Protocol (NTP) to synchro-

nize to a time server on the network during the OS boot-up sequence.

The 8254 is a programmable timer chip that’s been kicking around since the dawn of

time. The clock source for this is a 119.318 kHz crystal, which is one-third of the NTSC

Everything old was new once

The name Real-Time Clock is rather unfortunate—it was indeed considered real time
in the 1980s when it was introduced, but it’s now nowhere near accurate enough for
serious applications. This is often the fate of innovations that are named for being
“new” or “fast,” such as the Pont Neuf (“New Bridge”) in Paris. It was built in 1607
and is now the oldest still-standing bridge in the city.

164 CHAPTER 6 Understanding performance tuning

color subcarrier frequency, for reasons that go back to the CGA graphics system. This

is what once was used for feeding regular ticks (for timeslicing) to OS schedulers, but

that’s done from elsewhere (or isn’t required) now.

 This brings us to the most widely used modern counter—Time Stamp Counter

(TSC). This is basically a CPU counter that tracks how many cycles the CPU has run. At

first glance this seems ideal as a clock. But this counter is per-CPU and can potentially

be affected by power saving and other factors at runtime. This means that different

CPUs can drift away from each other and from wall-clock time.

 Finally, there are High Precision Event Timers (HPETs). These started appearing

in more recent years in order to stop people tearing their hair out trying to get better

timing from the older clock hardware. HPET uses at least a 10 MHz timer, so it should

be accurate to at least 1 µs—but it’s not yet available on all hardware, and it’s not yet

supported by all operating systems.

 If all of this seems like a bit of a mess, that’s because, well, it is. Fortunately the Java

platform provides facilities to make sense of this confusion—it hides the dependency

on the hardware and OS support available within a specific machine configuration. As

we’ll see, however, the attempts to hide the dependency aren’t entirely successful.

6.4.2 The trouble with nanoTime()

Java has two main methods for accessing the time: System.currentTimeMillis() and

System.nanoTime(), the latter of which is used to measure times at better than milli-

second accuracy. Table 6.1 summarizes the main differences between them.

If the description of nanoTime() in table 6.1 sounds a bit like it might be some kind of

countervalue, that’s good, because on most OSs these days, it will be sourced from the

CPU counterclock—TSC.

 The output of nanoTime() is relative to a certain fixed time. This means it must be

used to record a duration—by subtracting the result of one call to nanoTime() from

an earlier one. This snippet, from a case study later in the chapter, shows exactly this:

long t0 = System.nanoTime();
doLoop1();
long t1 = System.nanoTime();
...
long el = t1 - t0;

The time el is the time in nanoseconds that elapsed while doLoop1() was executing.

Table 6.1 Comparing Java’s built-in time access methods

currentTimeMillis nanoTime

Resolution in milliseconds Quoted in nanoseconds

Closely corresponds to wall-clock time under almost

all circumstances

May drift away from wall-clock time

165A question of time—from the hardware up

 To make proper use of these basic methods in performance tuning, it’s necessary

to understand something about the behavior of nanoTime(). The following listing out-

puts the maximum observed drift between the millisecond timer and the nano timer

(which will usually be provided by TSC).

private static void runWithSpin(String[] args) {
 long nowNanos = 0, startNanos = 0;
 long startMillis = System.currentTimeMillis();
 long nowMillis = startMillis;

 while (startMillis == nowMillis) {
 startNanos = System.nanoTime();
 nowMillis = System.currentTimeMillis();
 }

 startMillis = nowMillis;
 double maxDrift = 0;
 long lastMillis;

 while (true) {
 lastMillis = nowMillis;
 while (nowMillis - lastMillis < 1000) {
 nowNanos = System.nanoTime();
 nowMillis = System.currentTimeMillis();
 }

 long durationMillis = nowMillis - startMillis;
 double driftNanos = 1000000 *
(((double)(nowNanos - startNanos)) / 1000000 - durationMillis);
 if (Math.abs(driftNanos) > maxDrift) {
 System.out.println("Now - Start = "+ durationMillis
+" driftNanos = "+ driftNanos);
 maxDrift = Math.abs(driftNanos);
 }
 }
}

This prints the maximum observed drift, and it turns out to behave in a highly OS-specific

manner. Here’s an example on Linux:

Now - Start = 1000 driftNanos = 14.99999996212864
Now - Start = 3000 driftNanos = -86.99999989403295
Now - Start = 8000 driftNanos = -89.00000011635711
Now - Start = 50000 driftNanos = -92.00000204145908
Now - Start = 67000 driftNanos = -96.0000033956021
Now - Start = 113000 driftNanos = -98.00000407267362
Now - Start = 136000 driftNanos = -98.99999713525176
Now - Start = 150000 driftNanos = -101.0000123642385
Now - Start = 497000 driftNanos = -2035.000012256205
Now - Start = 1006000 driftNanos = 20149.99999664724
Now - Start = 1219000 driftNanos = 44614.00001309812

And here’s the result with an older Solaris installation on the same hardware:

Listing 6.1 Timer drift

Align startNanos at
milisecond boundary

Notice the
big jump

166 CHAPTER 6 Understanding performance tuning

Now - Start = 1000 driftNanos = 65961.0000000157
Now - Start = 2000 driftNanos = 130928.0000000399
Now - Start = 3000 driftNanos = 197020.9999999497
Now - Start = 4000 driftNanos = 261826.99999981196
Now - Start = 5000 driftNanos = 328105.9999999343
Now - Start = 6000 driftNanos = 393130.99999981205
Now - Start = 7000 driftNanos = 458913.9999998224
Now - Start = 8000 driftNanos = 524811.9999996561
Now - Start = 9000 driftNanos = 590093.9999992261
Now - Start = 10000 driftNanos = 656146.9999996916
Now - Start = 11000 driftNanos = 721020.0000008626
Now - Start = 12000 driftNanos = 786994.0000000497

Notice how Solaris has a steadily increasing maximum value, whereas Linux seems to

be OK for longer periods and then has large jumps. The example code has been quite

carefully chosen to avoid creating any additional threads, or even objects, to minimize

the intervention of the platform (for example, no object creation means no GC), but

even here, we see the influence of the JVM.

 The large jumps in the Linux timings turn out to be due to discrepancies between

the TSC counters held on different CPUs. The JVM will periodically suspend the run-

ning Java thread and migrate it to running on a different core. This can cause the dif-

ferences between the CPU counters to become visible to application code.

 This means that nanoTime() can become basically untrustworthy over long periods

of time. It’s useful for measuring short durations of time, but over longer (macro-

scopic) timeframes, it should be rebaselined against currentTimeMillis().

 In order to get the most out of performance tuning, it’s useful to have a grounding

in some measurement theory as well as the implementation details.

6.4.3 The role of time in performance tuning

Performance tuning requires you to understand how to interpret the measurements

recorded during code execution, which means you also need to understand the limi-

tations inherent in any measurement of time on the platform.

PRECISION

Quantities of time are usually quoted to the nearest unit on some scale. This is

referred to as the precision of the measurement. For example, times are often mea-

sured to millisecond precision. A timing is precise if repeated measurements give a

narrow spread around the same value.

 Precision is a measure of the amount of random noise contained in a given mea-

surement. We’ll assume that the measurements made of a particular piece of code are

normally distributed. In that case, a common way of quoting the precision is to quote

the width of the 95 percent confidence interval.

ACCURACY

The accuracy of a measurement (in our case, of time) is the ability to obtain a value

close to the true value. In reality, you won’t normally know the true value, so the accu-

racy may be harder to determine than the precision.

Smooth
progression

167A question of time—from the hardware up

 Accuracy measures the systematic error in a measurement. It’s possible to have

accurate measurements that aren’t very precise (so the basic reading is sound, but

there is random environmental noise). It’s also possible to have precise results that

aren’t accurate.

GRANULARITY

The true granularity of the system is that of the frequency of the fastest timer—likely

the interrupt timer, in the 10 ns range. This is sometimes called the distinguishability,

the shortest interval between which two events can be definitely said to have occurred

“close together but at different times.”

 As we progress through layers of OS, VM, and library code, the resolution of these

extremely short times becomes basically impossible. Under most circumstances, these very

short times aren’t available to the application developer.

NETWORK-DISTRIBUTED TIMING

Most of our discussion of performance tuning centers on systems where all the pro-

cessing takes places on a single host. But you should be aware that there are a number

of special problems that arise when doing performance tuning of systems spread over

a network. Synchronization and timing over networks is far from easy, and not only

over the internet. Even Ethernet networks will show these issues.

 A full discussion of network-distributed timing is outside the scope of this book,

but you should be aware that it’s, in general, difficult to obtain accurate timings for

workflows that extend over several boxes. In addition, even standard protocols such as

NTP can be too inaccurate for high-precision work.

 Before we move on to discuss garbage collection, let’s look at an example we

referred to earlier—the effects of memory caches on code performance.

6.4.4 A case study—understanding cache misses

For many high-throughput pieces of code, one of the main factors reducing perfor-

mance is the number of L1 cache misses that are involved in executing application code.

 Listing 6.2 runs over a 1 MB array and prints the time taken to execute one of two

loops. The first loop increments 1 in every 16 entries of an int[]. There are usually

64 bytes in an L1 cache line (and Java ints are 4 bytes wide on a 32-bit JVM), so this

means touching each cache line once.

 Note that before you can get accurate results, you need to warm up the code, so

that the JVM will compile the methods you’re interested in. We’ll talk about the need

for warmup more in section 6.6.

Understanding measurements

An interval quoted at nanosecond precision as 5945 ns that came from a timer accu-
rate to 1 µs is really somewhere between 3945–7945 ns (with 95 percent probabil-
ity). Beware of performance numbers that seem overly precise—always check the
precision and accuracy of the measurements.

168 CHAPTER 6 Understanding performance tuning

public class CacheTester {
 private final int ARR_SIZE = 1 * 1024 * 1024;
 private final int[] arr = new int[ARR_SIZE];

 private void doLoop2() {
 for (int i=0; i<arr.length; i++) arr[i]++;
 }

 private void doLoop1() {
 for (int i=0; i<arr.length; i += 16) arr[i]++;
 }

 private void run() {
 for (int i=0; i<10000; i++) {
 doLoop1();
 doLoop2();
 }
 for (int i=0; i<100; i++) {
 long t0 = System.nanoTime();
 doLoop1();
 long t1 = System.nanoTime();
 doLoop2();
 long t2 = System.nanoTime();
 long el = t1 - t0;
 long el2 = t2 - t1;
 System.out.println("Loop1: "+ el +" nanos ; Loop2: "+ el2);
 }
 }

 public static void main(String[] args) {
 CacheTester ct = new CacheTester();
 ct.run();
 }
}

The second function, loop2(), increments every byte in the array, so it looks like it

does 16 times as much work as loop1(). But here are some sample results from a typi-

cal laptop:

Loop1: 634000 nanos ; Loop2: 868000
Loop1: 801000 nanos ; Loop2: 952000
Loop1: 676000 nanos ; Loop2: 930000
Loop1: 762000 nanos ; Loop2: 869000
Loop1: 706000 nanos ; Loop2: 798000

Listing 6.2 Understanding cache misses

Timing subsystems gotcha

Notice that in the results all the nanos values are neat, round thousands. This means
the underlying system call (which is what System.nanoTime() is ultimately calling)
is only returning a whole number of microseconds—a microsecond is 1000 nanos.
As this example is from a Mac laptop, we can guess that the underlying system call
only has microsecond precision on OS X—in fact, it’s gettimeofday().

Touch every
item

Touch each
cache line

Warm up
the code

169Garbage collection

The results of this code show that loop2() doesn’t take 16 times as long to run as

loop1(). This means that it’s the memory accesses that come to dominate the overall

performance profile. loop1() and loop2() have the same number of cache line

reads, and the cycles spent on actually modifying the data are but a small percentage

of the overall time needed.

 Before moving on, let’s recap the most important points about Java’s timing systems:

■ Most systems have several different clocks inside them

■ Millisecond timings are safe and reliable

■ Higher-precision time needs careful handling to avoid drift

■ You need to be aware of the precision and accuracy of timing measurements

Our next topic is a discussion of the garbage collection subsystem of the platform.

This is one of the most important pieces of the performance picture, and it has a great

many tunable parts that can be very important tools for the developer doing perfor-

mance analysis.

6.5 Garbage collection

Automatic memory management is one of the most important parts of the Java plat-

form. Before managed platforms such as Java and .NET, developers could expect to

spend a noticeable percentage of their careers hunting down bugs caused by imper-

fect memory handling.

 In recent years, however, automatic allocation techniques have become so

advanced and reliable that they have become part of the furniture—a large number of

Java developers are unaware of how the memory management capabilities of the plat-

form work, what options are available to the developer, and how to optimize within

the constraints of the framework.

 This is a sign of how successful Java’s approach has been. Most developers don’t

know about the details of the memory and GC systems because they often don’t need

to know. The VM can do a pretty good job of handling most applications without spe-

cial tuning, so most apps never get tuned.

 In this section, we’ll talk about what you can do when you’re in a situation where

you do need to do some tuning. We’ll cover basic theory, explain how memory is han-

dled for a running Java process, explore the basics of mark-and-sweep collection, and

discuss a couple of useful tools—jmap and VisualVM. We’ll round off by describing two

common alternative collectors—Concurrent Mark-Sweep (CMS) and the new Garbage

First (G1) collector.

 Perhaps you have a server-side application that is running out of memory or is suf-

fering long pauses. In the section 6.5.3 on jmap, we’ll show you a simple way to see if

any of your classes are using a lot of memory. We’ll also teach you about the switches

you can use to control the VM’s memory profile.

 Let’s start with the basics.

170 CHAPTER 6 Understanding performance tuning

6.5.1 Basics

The standard Java process has both a stack and a heap. The stack is where local vari-

ables holding primitives are created (but local variables of reference type will point at

heap-allocated memory). The heap is where objects will be created. Figure 6.4 shows

where storage for variables of various types is created.

 Note that the primitive fields of an object are still allocated at addresses within the

heap. The basic algorithm by which the platform recovers and reuses heap memory

that is no longer in use by application code is called mark and sweep.

6.5.2 Mark and sweep

Mark and sweep is the simplest garbage collection algorithm, and it was the first to be

developed. There are other automatic memory management techniques, such as the

reference-counting schemes used by languages like Perl and PHP, which are arguably

simpler, but they aren’t schemes that require garbage collection.

 In its simplest form, the mark-and-sweep algorithm pauses all running program

threads and starts from the set of objects that are known to be “live”—objects that

have a reference in any stack frame (whether that reference is the content of a local

variable, method parameter, temporary variable, or some rarer possibility) of any user

thread. It then walks through the tree of references from the live objects, marking as

live any object found en route. When this has completed, everything left is garbage

and can be collected (swept). Note that the swept memory is returned to the JVM, not

necessarily to the OS.

 The Java platform provides an enhancement to the basic mark-and-sweep approach.

This is the addition of “generational GC.” In this approach, the heap isn’t a uniform

area of memory—there are a number of different areas of heap memory that partici-

pate in the lifecycle of a Java object. Depending on how long an object lives, refer-

ences to it can point to several different areas of memory during the lifespan of the

object (as illustrated in figure 6.5). The object can be moved from area to area dur-

ing collections.

 The reason for this arrangement is that analysis of running systems shows that objects

tend to have either brief lives or be very long lived. The different areas of heap memory

are designed to allow the platform to exploit this property of the lifecycle of objects.

Figure 6.4 Variables in the stack

and heap

171Garbage collection

AREAS OF MEMORY

The JVM has different areas of memory that are used to store objects during their nat-

ural lifecycle:

■ Eden—Eden is the area of the heap where all objects are initially allocated, and

for many objects this will be the only part of memory that they ever reside in.

■ Survivor—There are typically two survivor spaces (or you can think of it as one

space split in half). These spaces are where objects that survive from Eden

(hence the name) are moved. They are sometimes referred to as From and To.

For reasons explained later, one of the survivor spaces is always empty unless a

collection is under way.

■ Tenured—The tenured space (a.k.a. old generation) is where surviving objects

deemed to be “old enough” are moved to (escaping from the survivor spaces).

Tenured memory isn’t collected during young collections.

■ PermGen—This is where memory for internal structures is allocated, such as the

definitions of classes. PermGen isn’t strictly part of the heap proper, and ordi-

nary objects don’t ever end up here.

As noted, these areas of memory also participate in collections in different ways. Spe-

cifically, there are two types of collections: young and full.

What about the non-deterministic pause?

One of the criticisms often leveled at Java and .NET is that the mark-and-sweep form
of garbage collection inevitably leads to stop-the-world—states in which all user
threads must be stopped briefly. This can cause pauses that go on for some non-
deterministic amount of time.

This issue is frequently overstated. For server software, there are very few applica-
tions that have to care about the pause times displayed by Java. Elaborate schemes
to avoid a pause, or a full collection of memory, are sometimes dreamed up—these
should be avoided unless careful analysis has shown that there are genuine issues
to do with the full collection times.

Figure 6.5 The Eden, survivor, tenured, and

PermGen areas of memory

172 CHAPTER 6 Understanding performance tuning

YOUNG COLLECTIONS

A young collection only attempts to clear the “young” spaces (Eden and survivor). The

process is relatively simple:

■ All live young objects found during the marking phase are moved:

– Objects that are sufficiently old (ones that have survived enough previous GC

runs) go into tenured.

– All other young, live objects go into the empty survivor space.

■ At the end, Eden and the recently vacated survivor space are ready to be over-

written and reused, as they contain nothing but garbage.

A young collection is triggered when Eden is full. Note that the marking phase must

traverse the entire live object graph. That means that if a young object has a reference

to a tenured object, the references held by the tenured object must still be scanned

and marked. Otherwise the situation could arise where a tenured object holds a refer-

ence to an object in Eden but nothing else does. If the mark phase doesn’t fully tra-

verse, this Eden object would never been seen and would not be correctly handled.

FULL COLLECTIONS

When a young collection can’t promote an object to tenured (due to lack of space), a

full collection is triggered. Depending on the collector used in the old generation,

this may involve moving around objects within the old generation. This is done to

ensure that the old generation has enough space to allocate a large object if necessary.

This is called compacting.

SAFEPOINTS

Garbage collection can’t take place without at least a short pause of all application

threads. But threads can’t be stopped at any arbitrary time for GC. Instead, there are

certain special times when GC can take place—these are called safepoints. The usual

example of a safepoint is a point where a method is called (a “call site”), but there are

others. For garbage collection to take place, all application threads must be stopped at

a safepoint.

 Let’s take a brief timeout and introduce a simple tool, jmap, which can help you to

understand the memory utilization of your live applications, and where all that memory

goes. Later in the chapter we’ll introduce a more advanced GUI tool, but many prob-

lems can be triaged by using the very simple command-line tools, so you should defi-

nitely know how to drive them (rather than automatically reaching for the GUI tool).

6.5.3 jmap

The standard Oracle JVM ships with simple tools to help you get some insight into

your running processes. The simplest one, jmap, shows memory maps of Java pro-

cesses (it can also work on a Java core file or even connect to a remote debug server).

Let’s return to our example of a server-side ecommerce application and use jmap to

explore it while it’s running.

173Garbage collection

DEFAULT VIEW

jmap’s simplest form shows native libraries linked in to a process. This isn’t usually of

great interest unless you’ve got a lot of JNI code in your application, but we’ll demon-

strate it anyway so it doesn’t confuse you if you ever forget to specify which view you

want jmap to display:

$ jmap 19306
Attaching to process ID 19306, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 20.0-b11
0x08048000 46K /usr/local/java/sunjdk/1.6.0_25/bin/java
0x55555000 108K /lib/ld-2.3.4.so
... some entries omitted
0x563e8000 535K /lib/libnss_db.so.2.0.0
0x7ed18000 94K /usr/local/java/sunjdk/1.6.0_25/jre/lib/i386/libnet.so
0x80cf3000 2102K /usr/local/kerberos/mitkrb5/1.4.4/lib/

libgss_all.so.3.1
0x80dcf000 1440K /usr/local/kerberos/mitkrb5/1.4.4/lib/libkrb5.so.3.2

Far more useful are the -heap and -histo switches, which we’ll tackle next.

HEAP VIEW

The -heap switch gives a quick snapshot of the heap as it is at the moment when you

run it. In the output from -heap you can see the basic parameters that define the

makeup of the Java process’s heap memory.

 The size of the heap is the size of the young and old generations plus the size of

PermGen. But inside the young generation, you have Eden and survivor spaces, and

we haven’t yet told you how the sizes of these areas are related. There is a number

called the survivor ratio, which determines the relative sizes of the areas.

 Let’s take a look at some sample output. Here you can see Eden, the survivor

spaces (labeled From and To), and the tenured space (Old Generation) and related

information:

$ jmap -heap 22186
Attaching to process ID 22186, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 20.0-b11

using thread-local object allocation.
Parallel GC with 13 thread(s)

Heap Configuration:
 MinHeapFreeRatio = 40
 MaxHeapFreeRatio = 70
 MaxHeapSize = 536870912 (512.0MB)
 NewSize = 1048576 (1.0MB)
 MaxNewSize = 4294901760 (4095.9375MB)
 OldSize = 4194304 (4.0MB)
 NewRatio = 2
 SurvivorRatio = 8
 PermSize = 16777216 (16.0MB)
 MaxPermSize = 67108864 (64.0MB)

Eden = (From + To) *
SurvivorRatio

174 CHAPTER 6 Understanding performance tuning

Heap Usage:
PS Young Generation
Eden Space:
 capacity = 163774464 (156.1875MB)
 used = 58652576 (55.935455322265625MB)
 free = 105121888 (100.25204467773438MB)
 35.81301661289516% used
From Space:
 capacity = 7012352 (6.6875MB)
 used = 4144688 (3.9526824951171875MB)
 free = 2867664 (2.7348175048828125MB)
 59.10553263726636% used
To Space:
 capacity = 7274496 (6.9375MB)
 used = 0 (0.0MB)
 free = 7274496 (6.9375MB)
 0.0% used
PS Old Generation
 capacity = 89522176 (85.375MB)
 used = 6158272 (5.87298583984375MB)
 free = 83363904 (79.50201416015625MB)
 6.87904637170571% used
PS Perm Generation
 capacity = 30146560 (28.75MB)
 used = 30086280 (28.69251251220703MB)
 free = 60280 (0.05748748779296875MB)
 99.80004352072011% used

Although the basic makeup of spaces can be very useful, what you can’t see from this

picture is what’s in the heap. Being able to see which objects make up the contents

of memory can give you more useful clues about where all the memory is going. For-

tunately, jmap comes with a histogram mode that can give you simple statistics on

exactly that.

HISTOGRAM VIEW

The histogram view shows the amount of memory occupied by instances of each type

in the system (and some internal entries as well). The types are listed in order of how

much memory they use, to make it easy to see the biggest memory hogs.

 Of course, if all the memory is paying for framework and platform classes, there

may not be much you can do. But if one of your classes really stands out, you may be

in a much better position to do something about its memory usage.

 A bit of warning: jmap uses the internal names for types that you saw in chapter 5.

For example, array-of-char is written [C and arrays of class objects will be shown as

[Ljava.lang.Class;.

$ jmap -histo 22186 | head -30

num #instances #bytes class name
--
 1: 452779 31712472 [C
 2: 76877 14924304 [B
 3: 20817 12188728 [Ljava.lang.Object;

Eden = (From + To) *
SurvivorRatio

To space is
currently empty

175Garbage collection

 4: 2520 10547976 com.company.cache.Cache$AccountInfo

 5: 439499 9145560 java.lang.String
 6: 64466 7519800 [I
 7: 64466 5677912 <constMethodKlass>
 8: 96840 4333424 <methodKlass>
 9: 6990 3384504 <symbolKlass>
 10: 6990 2944272 <constantPoolKlass>
 11: 4991 1855272 <instanceKlassKlass>
 12: 25980 1247040 <constantPoolCacheKlass>
 13: 17250 1209984 java.nio.HeapCharBuffer
 14: 13515 1173568 [Ljava.util.HashMap$Entry;
 15: 9733 778640 java.lang.reflect.Method
 16: 17842 713680 java.nio.HeapByteBuffer
 17: 7433 713568 java.lang.Class
 18: 10771 678664 [S
 19: 1543 489368 <methodDataKlass>
 20: 10620 456136 [[I
 21: 18285 438840 java.util.HashMap$Entry
 22: 9985 399400 java.util.HashMap
 23: 13725 329400 java.util.Hashtable$Entry
 24: 9839 314848 java.util.LinkedHashMap$Entry
 25: 9793 249272 [Ljava.lang.String;
 26: 11927 241192 [Ljava.lang.Class;
 27: 6903 220896 java.lang.ref.SoftReference

We’ve cut off the display after a couple of dozen lines, because the histogram can out-

put a lot of data. You may need to use grep or other tools to look through the histo-

gram view and find the details that interest you.

 In this example, you can see that a lot of the memory usage comes from entries

like the one for [C. Arrays of character data are often found inside String objects

(where they hold the contents of the string), so this isn’t very surprising—strings are

really common in most Java programs. But there are other interesting things that you

can learn by looking at the histograms. Let’s look at two of them.

 The Cache$AccountInfo entries are the only actual application classes that appear

in the top entries—everything else is a platform or a framework type—so they’re the

most important type that the developer has full control over. The AccountInfo objects

are occupying a lot of space—10.5 MB for around 2,500 entries (or 4 KB per account).

That’s quite a lot for some account details.

 This information can be really useful. You’ve already figured out what the

largest contribution to memory usage from your code is. Suppose your boss now

comes to you and tells you that due to a massive sales promotion, there are

going to be 10 times as many customers in the system in a month’s time. You

know that that’s potentially going to add a lot of strain—the AccountInfo objects

are heavy beasts. You’re a little bit worried—but at least you’ve started analyzing

the problem.

 The information from jmap can be used as input to help govern a decision-making

process about how to tackle the potential issue. Should you split up the account cache,

look to reduce the information held in the type, or go and buy more RAM for the

Internal
VM objects
and type
information

176 CHAPTER 6 Understanding performance tuning

server. There’s more analysis to be done before making any changes, but you have a

place to start.

 To see another interesting thing, let’s rerun the histogram, but specify -histo:live.

This will tell jmap to only do the live objects, not the whole heap (by default, jmap will

do everything, including garbage that is still in memory and hasn’t been collected

yet). Let’s see what this looks like:

$ jmap -histo:live 22186 | head -7

 num #instances #bytes class name
--
 1: 2520 10547976 com.company.cache.Cache$AccountInfo
 2: 32796 4919800 [I
 3: 5392 4237628 [Ljava.lang.Object;
 4: 141491 2187368 [C

Notice how the picture has changed—the amount of character data has dropped

from 31 MB to about 2 MB, and about two-thirds of the String objects you saw in the

first run turn out to be garbage awaiting collection. The account information objects

are 100 percent live though, further confirming that they’re a source of much mem-

ory consumption.

 When using these modes of jmap, you should always be a bit careful. The JVM is still

running when you do this operation (and if you’re unlucky, it may have done a GC

run in between the snapshots you took), so you should always do several runs, espe-

cially if you see any results that seem weird or too good to be true.

PRODUCING OFFLINE DUMP FILES

The final mode of jmap we’re going to look at is its ability to create a dump file,

like this:

jmap -dump:live,format=b,file=heap.hprof 19306

Dumps are really for offline analysis, either in jmap itself at some later date, or in an

Oracle-provided tool called jhat (Java Heap Analysis Tool) for advanced analysis.

Unfortunately, we can’t fit in a full discussion of it here.

 With jmap you can start to see some of the basic settings and memory consump-

tion of your application. For performance tuning, however, it’s often necessary to

exercise more control over the GC subsystem. The standard way to do this is via com-

mand-line parameters, so let’s take a look at some of the parameters you can use to

control your JVM and change aspects of its behavior to better fit the needs of your

application.

6.5.4 Useful JVM parameters

The JVM ships with a huge number of useful parameters (at least a hundred) that can

be used to customize many aspects of the runtime behavior of the JVM. In this section,

we’ll discuss some of the switches that pertain to garbage collection; in later sections we’ll

cover the other switches.

177Garbage collection

Table 6.2 lists the basic GC switches and displays the default value (if any) of the switch.

One very common technique is to set the size of -Xms to the same as -Xmx. This then

means that the process will run with exactly that heap size, and there will be no need

to resize during execution (which can lead to unpredictable slowdowns).

 The last switch in the list outputs standard information about GC to the log, the

interpretation of which is the subject of our next section.

6.5.5 Reading the GC logs

To make the most out of garbage collection, it’s often useful to see what the subsystem

is doing. As well as the basic verbose:gc flag, there are a large number of other

switches that control the information being printed.

 Reading the GC logs can be a bit of a task—you may find yourself drowning in out-

put at times. As you’ll see in the next section, on VisualVM, having a graphical tool to

help you visualize the VM’s behavior can be very useful. Nevertheless, it’s important

to be able to read the log formats and to know about the basic switches that affect GC, as

there are times when GUI tools may not be available. Some of the most useful GC log-

ging switches are shown in table 6.3.

 In combination, these switches will produce log lines like this:

6.580: [GC [PSYoungGen: 486784K->7667K(499648K)]
1292752K->813636K(1400768K), 0.0244970 secs]

Nonstandard JVM switches

If a switch starts with -X: it’s a nonstandard switch and may not be portable across
JVM implementations.

If it starts with -XX: it’s an extended switch and isn’t recommended for casual use.
Many performance-relevant switches are extended switches.

Some switches are Boolean in effect and take a + or - in front of them to turn it on or
off. Other switches take a parameter, such as -XX:CompileThreshold=1000 (which
would set the number of times a method needs to be called before being considered
for JIT compilation to 1000). Still others, including many standard ones, take neither.

Table 6.2 Basic garbage collection switches

Switch Effect

-Xms<size in MB>m Initial size of the heap (default 2 MB)

-Xmx<size in MB>m Maximum size of the heap (default 64 MB)

-Xmn<size in MB>m Size of the young generation in the heap

-XX:-DisableExplicitGC Prevent calls to System.gc() from having any effect

178 CHAPTER 6 Understanding performance tuning

Let’s break this apart and see what each piece means:

<time>: [GC [<collector name>: <occupancy at start>

➥ -> <occupancy at end>(<total size>)] <full heap occupancy at start>

➥ -> <full heap occupancy at end>(<total heap size>), <pause time> secs

The first field shows the time at which the GC occurred, in seconds since the JVM

was fired up. Then you have the collector name (PSYoungGen) used to collect the

young generation. Then there’s the memory used before and after collection in

the young generation, and the total young generation size. Then there are the same

fields for the full heap.

 In addition to the GC logging flags, there’s a flag that could potentially be a bit mis-

leading without some explanation. The -XX:+PrintGCApplicationStoppedTime flag

produces log lines like this:

Application time: 0.9279047 seconds
Total time for which application threads were stopped: 0.0007529 seconds
Application time: 0.0085059 seconds
Total time for which application threads were stopped: 0.0002074 seconds
Application time: 0.0021318 seconds

These don’t refer, necessarily, to how long GC took. Instead, they refer to how long

threads were stopped during an operation that was started at a safepoint. This

includes GC operations, but there are other safepoint operations (such as biased lock

operations in Java 6), so it’s impossible to say with certainty that the log message refers

to GC.

 All this information, while useful for logging and after-the-fact analysis, isn’t very

easy to visualize. Instead, many developers prefer to use a GUI tool while performing

initial analysis. Fortunately, the HotSpot VM (from the standard Oracle installation,

which we’ll discuss in detail later) ships with a very useful tool.

6.5.6 Visualizing memory usage with VisualVM

VisualVM is a visualization tool that ships with the standard Oracle JVM. It has a plugin

architecture, and in one standard configuration can be used as a more convenient

replacement for the now quite elderly JConsole.

 Figure 6.6 shows a standard VisualVM summary screen. This is the view that you’ll

see if you start up VisualVM and connect it to an application running locally on your

machine. (VisualVM can also connect to remote applications, but not all functionality

Table 6.3 Additional switches for extended logging

Switch Effect

-XX:+PrintGCDetails Extended details about GC

-XX:+PrintGCDateStamps Timestamps on GC operations

-XX:+PrintGCApplicationConcurrentTime Time spent on GC with application threads

still running

179Garbage collection

is available over the network.) Here you can see VisualVM profiling an instance of

Eclipse running on a MacBook Pro, which is the very setup that we used to create the

code examples in this book.

 There are a load of useful tabs across the top of the right panel. We run with the

Extensions, Sampler, JConsole, MBeans, and VisualVM plugins, which provides an

excellent toolset for really getting to grips with some of the dynamic aspects of the

Java runtime. We recommend installing all of these plugins into VisualVM before

doing any serious work with it.

 In figure 6.7 you can see the “sawtooth” pattern of memory utilization. This is an

absolutely classic visualization of how memory is used in the Java platform. It repre-

sents objects being allocated in Eden, used, and then collected in young collections.

 After each young collection, the amount of memory used falls back to a baseline

level. This level is the combined usage of the objects in tenured and survivor, and it

can be used to ascertain the health over time of a Java process. If the baseline stays sta-

ble (or even decreases over time) while the process is working, the memory utilization

should be very healthy.

 If the baseline level rises, this doesn’t necessarily mean that anything is wrong, just

that some objects are living long enough to reach tenure. In this case, a full collection

will eventually occur. The full collections will lead to a second sawtooth pattern, with

the memory used falling back to a baseline that corresponds to the level with only

Figure 6.6 VisualVM application summary screen

180 CHAPTER 6 Understanding performance tuning

truly live objects in memory. If the full collection baseline is stable over time, the pro-

cess should not run out of memory.

 One key concept is that the gradient of the slope on the saw teeth is the rate at

which a process is using young generation (usually Eden) memory. The aim of reduc-

ing the frequency of young collections is basically trying to reduce the steepness of the

saw teeth.

 Another way of visualizing the running memory usage is shown in figure 6.8.

Here, you can see Eden, the survivor spaces (S0 and S1), and the old generation and

PermGen. As the application runs, you can see the sizes of the generations change.

In particular, after a young collection you’ll see Eden shrink and the survivor spaces

swap roles.

 Exploring the memory system and other aspects of the runtime environment will

help you understand how your code runs. This, in turn, shows how the services that

the VM provides impact performance, so it’s definitely worth taking time to experi-

ment with VisualVM, especially in combination with switches such as Xmx and Xms.

 Let’s move on to the next section, where we’ll discuss a new JVM technique to auto-

matically reduce the amount of heap memory that’s used during execution.

Figure 6.7 VisualVM overview screen

181Garbage collection

6.5.7 Escape analysis

This section is largely informational—it describes a recent change to the JVM. This

isn’t a change that the programmer can directly influence or control, and the optimi-

zation is enabled by default on recent releases of Java. For that reason, there aren’t

many takeaways or examples for this change. So if you’re interested in seeing one of

the tricks that the JVM plays to improve performance, keep reading. Otherwise, feel

free to skip ahead to section 6.5.8, on the concurrent collector.

 Escape analysis is, at first sight, quite a surprising idea. The basic idea is to analyze

a method and see which local variables (of reference type) are only used inside the

method, determining which variables aren’t passed in to other methods or returned

from the current method.

 The JVM is then able to create the object on the stack inside the frame belonging

to the current method, rather than using up heap memory. This can improve perfor-

mance by reducing the number of young collections your program needs to perform.

You can see this in figure 6.9.

 This means that a heap allocation can be avoided, because when the current

method returns, the memory that was used to hold the local variable is automatically

freed. This lack of heap allocation means that variables allocated in this way don’t con-

tribute to the growth of garbage, or ever need collection.

Figure 6.8 VisualVM’s Visual GC plugin

182 CHAPTER 6 Understanding performance tuning

 Escape analysis is a new approach to

reducing garbage collection on the JVM. It

can have a dramatic effect on the number

of young collections that a process under-

goes. Experience using the feature shows

that, in general, it can provide an overall

performance impact of a few percent.

That’s not a huge amount, but it’s worth

having, especially if your processes do a lot

of garbage collection.

 From Java 6u23 onwards, escape analy-

sis is enabled by default, so newer versions

of Java get this speed uptick for free.

 We’ll now turn to look at another

aspect that can have a huge impact on

your code—the choice of collection strat-

egy. We’ll start with a classic high-performance choice (Concurrent Mark-Sweep) and

then take a look at the newest collector—Garbage First.

 There are many good reasons for considering a high-performance collector. The

application might benefit from shorter GC pauses and be willing to have extra threads

running (and consuming CPU) to achieve that. Or you might want to exercise control

over how often the GC pauses happen. In addition to the basic collector, it’s possible

to use switches to force the platform to use a different collection strategy. In the next

two sections, we’ll cover two collectors that enable these possibilities.

6.5.8 Concurrent Mark-Sweep

The Concurrent Mark-Sweep (CMS) collector is the high-performance collector that

was the recommended choice for Java 5 and most of the service life of Java 6. It’s

enabled by a combination of switches, as shown in table 6.4.

These switches override the default settings for garbage collection and instead config-

ure a CMS garbage collector with N parallel threads for GC. This collector will do as

much GC work as possible in a concurrent mode.

Table 6.4 Switches for CMS collector

Switch Effect

-XX:+UseConcMarkSweepGC Switch on CMS collection

-XX:+CMSIncrementalMode Incremental mode (usually required)

-XX:+CMSIncrementalPacing Incremental mode (usually required)

-XX:+UseParNewGC Collect young generation concurrently

-XX:ParallelGCThreads=<N> Number of threads to use for GC

Figure 6.9 Escape analysis avoids heap

allocation of objects

183Garbage collection

 How does the concurrent approach work? There are three key facts about mark

and sweep that are relevant:

■ Some sort of stop-the-world pause is unavoidable.

■ The GC subsystem must never miss a live object—to do so would cause the JVM

to crash (or worse).

■ You can only guarantee to collect all the garbage if all the application threads

are stopped for the whole collection.

CMS works by exploiting this last point. It makes two, very short, STW pauses, and runs

at the same time as application threads for the rest of the GC cycle. This means that it’s

willing to make the trade-off of “false negatives,” failing to identify some garbage due

to race conditions (the garbage it misses will be collected on a following GC cycle).

CMS also needs to do more complicated bookkeeping about what is and isn’t gar-

bage while it’s running. This extra overhead is part of the price of being able to run

mostly without stopping application threads. It tends to perform better on machines

with more CPU cores, and to produce more frequent, shorter pauses. It produces log

lines such as this:

2010-11-17T15:47:45.692+0000: 90434.570: [GC 90434.570:
[ParNew: 14777K->14777K(14784K), 0.0000595 secs]90434.570:
[CMS: 114688K->114688K(114688K), 0.9083496 secs] 129465K->117349K(129472K),
[CMS Perm : 49636K->49634K(65536K)] icms_dc=100 , 0.9086004 secs]
[Times: user=0.91 sys=0.00, real=0.91 secs]

These lines are similar to the basic unit of GC logging that you saw in section 6.4.4, but

with additional sections for the CMS and CMS Perm collectors.

 In recent years, a new challenger to CMS as the best high-performance collector has

arrived—the Garbage First (G1) collector. Let’s look at this upstart, and explain how

novel its approach is and why it represents a break with all of the existing Java collectors.

6.5.9 G1—Java’s new collector

G1 is the brand-new collector for the Java platform. It was originally intended to be

introduced as part of Java 7, but it was made available as a prerelease in point releases

of Java 6 and reached production status with Java 7. It isn’t widely deployed in Java 6

installations, but as Java 7 becomes widespread, it’s anticipated that G1 will become

the default choice for high-performance (and possibly for all) applications.

 The central idea with G1 is the pause goal. This is how long the program can pause

for GC while executing (such as 20 ms every 5 minutes). G1 will do everything it can to

hit your pause goals. This represents a radical departure from the other collectors

we’ve come across so far, and allows the developer a lot more control over how GC

is performed.

G1 isn’t really a generational collector (although it still uses the mark-and-sweep

approach). Instead, G1 divides the heap into equal-sized regions (such as 1 MB each)

that aren’t distinguished between young and old regions. During a pause, objects are

evacuated to another region (like Eden objects being moved to survivor spaces), and

184 CHAPTER 6 Understanding performance tuning

the region is placed back on the free list

(of empty regions). The new arrange-

ment of equal-sized regions in the heap

is illustrated in figure 6.10.

 This change to collection strategy

allows the platform to collect statistics on

how long (on average) a single region

takes to collect. This is how you can specify

(within reason) a pause goal. G1 will only

collect as many regions as it has time for

(although there may be overruns if the last region takes longer to collect than expected).

 To turn on G1, use settings such as those in table 6.5.

The switches can be combined, such as to set a maximum pause goal of 50 ms with

pauses occurring no closer together than 200 ms. Of course, there’s a limit on how hard

the GC system can be pushed. There has to be enough pause time to take out the trash.

A pause goal of 1 ms per 100 years is certainly not going to be attainable, or honored.

G1 offers great promise as a collector across a wide variety of workloads and appli-

cation types. If you’ve reached the point of tuning your application’s GC, it’s likely to

be worth considering.

 In the next section, we’ll look at JIT compilation. For many (or even most) pro-

grams, this is the single biggest contributing factor to producing performant code.

We’ll look at some of the basics of JIT compilation, and at the end of the section we’ll

explain to how to switch on logging of JIT compilation to enable you to tell which of

your methods are being compiled.

6.6 JIT compilation with HotSpot

As we discussed in chapter 1, the Java platform is perhaps best thought of as “dynami-

cally compiled.” This means that the application classes undergo further compilation

at runtime to transform them into machine code.

 This process is called just-in-time (JIT) compilation, or JITing, and it usually occurs

on one method at a time. Understanding this process is key to identifying the impor-

tant parts of any sizable codebase.

Table 6.5 Flags for the G1 collector

Switch Effect

-XX:+UseG1GC Switch on G1 collection

-XX:MaxGCPauseMillis=50 Indicate to G1 that it should try to pause for no more than

50 ms during one collection

-XX:GCPauseIntervalMillis=200 Indicate to G1 that it should try to run for at least 200 ms

between collections

Figure 6.10 How G1 divides up the heap

185JIT compilation with HotSpot

 Let’s look at some good basic facts about JIT compilation:

■ Virtually all modern JVMs will have a JIT compiler of some sort.

■ Purely interpreted VMs are very slow by comparison.

■ Compiled methods run much, much faster than interpreted code.

■ It makes sense to compile the most heavily used methods first.

■ When doing JIT compilation, it’s always important to take the low-hanging

fruit first.

This last point means that we should look at the compiled code first, because under

normal circumstances, any method that is still in interpreted state hasn’t been run as

often as one that has been compiled. (Occasionally a method will fail compilation, but

this is quite rare.)

 Methods start off being interpreted from their bytecode representation, with the

JVM keeping track of how many times a method has been called (and a few other statis-

tics). When a threshold value is reached (10,000 times, by default), and if the method is

eligible, a JVM thread will compile the bytecode to machine code in the background. If

compilation succeeds, all further calls to the method will use the compiled form, unless

something happens to invalidate it or otherwise cause deoptimization.

 Depending on the exact nature of the code in a method, a compiled method can

be up to 100 times faster than the same method in interpreted mode. Understanding

which methods are important in a program, and which important methods are being

compiled, is very often the cornerstone of improving performance.

For the rest of this discussion of the mechanics of JITing, we’ll be speaking specifically

about the JVM called HotSpot. A lot of the general discussion will apply to other VMs,

but the specifics could vary a lot.

 We’ll start by introducing the different JIT compilers that ship with HotSpot, and

then explain two of the most powerful optimizations available from HotSpot—inlin-

ing and monomorphic dispatch. We’ll conclude this short section by showing how to

Why have dynamic compilation?

A question that is sometimes asked is why does the Java platform bother with
dynamic compilation—why isn’t all compilation done up front (like C++). The first
answer is usually that having platform-independent artifacts (.jar and .class files) as
the basic unit of deployment is much less of a headache than trying to deal with a
different compiled binary for each platform being targeted.

An alternative, and more ambitious, answer is that languages that use dynamic com-
pilation have more information available to their compiler. Specifically, ahead-of-time
(AOT) compiled languages don’t have access to any runtime information—such as
the availability of certain instructions or other hardware details, or any statistics on
how the code is running. This opens the intriguing possibility that a dynamically com-
piled language like Java could actually run faster than AOT-compiled languages.

186 CHAPTER 6 Understanding performance tuning

turn on logging of method compilation, so that you can see exactly which methods

are being compiled. Let’s get started by introducing HotSpot.

6.6.1 Introduction to HotSpot

HotSpot is the VM that Oracle acquired when it bought Sun Microsystems (it already

owned a VM called JRockit, which was originally developed by BEA Systems). HotSpot

is the VM that forms the basis of OpenJDK. It’s capable of running in two separate

modes—client and server. The mode can be chosen by specifying the -client or

-server switch to the JVM on startup. (This must be the first switch provided on the

command line.) Each of these modes has different applications that they can be pre-

ferred for.

CLIENT COMPILER

The client compiler is primarily intended for use in GUI applications. This is an arena

where consistency of operation is vital, so the client compiler (sometimes called C1)

tends to make more conservative decisions when compiling. This means that it can’t

pause unexpectedly while it backs out an optimization decision that turned out to be

incorrect or based on a faulty assumption.

SERVER COMPILER

By contrast, the server compiler (C2) will make aggressive assumptions when compil-

ing. To ensure that the code that’s run is always correct, C2 will add a quick runtime

check (usually called a guard condition) that the assumption it made is valid. If not,

it will back out the aggressive compilation and will often try something else. This

aggressive approach can yield far better performance than the rather risk-averse cli-

ent compiler.

REAL-TIME JAVA

In recent years, there has been a form of Java developed called real-time Java, and

some developers wonder why code that has a need for high performance doesn’t sim-

ply use this platform (which is a separate JVM, not a HotSpot option). The answer is

that a real-time system is not, despite common myth, necessarily the fastest system.

 Real-time programming is really about the guarantees that can be made. In statisti-

cal terms, a real-time system seeks to reduce the variance of the time taken to perform

certain operations, and is prepared to sacrifice a certain amount of mean latency to

do so. Overall performance may be slightly sacrificed in order to attain more consis-

tent running.

 In figure 6.11, you can see two series of points that represent latency. Series 2 (the

upper group of points) has an increased mean latency (as it is higher on the latency

scale), but a reduced variance, because the points are more closely clustered around

their mean than the Series 1 points, which are quite widely scattered by comparison.

 Teams in search of higher performance are usually in search of lower mean

latency, even at the cost of higher variance, so the aggressive optimizations of the

server compiler (which corresponds to Series 1) are the usual choice.

187JIT compilation with HotSpot

Our next topic is one that is extensively used by all of the runtimes—server, client, and

real-time—to great effect.

6.6.2 Inlining methods

Inlining is one of the most powerful techniques that HotSpot has at its disposal. It

works by eliminating the call to the inlined method, and instead placing the code of

the called method inside the caller.

 One of the advantages of the platform is that the compiler can make the decision

to inline based on decent runtime statistics about how often the method is called and

other factors (for example, will it make the caller method too large and potentially

affect code caches). This means that HotSpot’s compiler can make much smarter

decisions about inlining than ahead-of-time compilers.

 Inlining of methods is entirely automatic, and under almost all circumstances the

default parameter values are fine. There are switches to control what size of methods

will be inlined, and how often a method needs to be called before becoming a candi-

date. These switches are mostly useful for the curious programmer to get a better

understanding of how the inlining part of the internals works. They aren’t often use-

ful for production code and should be considered something of a last resort as a per-

formance technique, because they may well have other unpredictable effects on the

performance of the runtime system.

Figure 6.11 Changes in variance and mean

188 CHAPTER 6 Understanding performance tuning

6.6.3 Dynamic compilation and monomorphic calls

One example of this type of aggressive optimization is that of the monomorphic call.

This is an optimization that’s based around the observation that in most circum-

stances, a method call on an object, like this,

MyActualClassNotInterface obj = getInstance();
obj.callMyMethod();

will only ever be called by one type of object. Another way of saying this is that the call

site obj.callMyMethod() will almost never encounter both a class and its subclass. In

this case, the Java method lookup can be replaced with a direct call to the compiled

code corresponding to callMyMethod().

TIP Monomorphic dispatch provides an example of the JVM runtime profil-
ing allowing the platform to perform optimizations that an AOT language like
C++ simply can’t.

There’s no technical reason why the getInstance() method can’t return an object of

type MyActualClassNotInterface under some circumstances and an object of some

subclass under others, but in practice this almost never occurs. But to guard against

the possibility that it might, a runtime check to ensure that the type of obj is inserted

by the compiler, as expected. If this expectation is ever violated, the runtime backs out

the optimization without the program ever noticing or ever doing anything incorrect.

 This is a fairly aggressive optimization that is only ever performed by the server

compiler. The real-time and client compilers would not do this.

6.6.4 Reading the compilation logs

Let’s take a look at an example to illustrate how you can use the log messages output

by the JIT compiler. The Hipparcos star catalog lists details about stars that can be

observed from Earth. Our example application processes the catalog to generate star

maps of the stars that can be seen on a given night, in a given location.

What about accessor methods?

Some developers incorrectly assume that an accessor method (a public getter
accessing a private member variable) can’t be inlined by HotSpot. Their reasoning is
that because the variable is private, the method call can’t be optimized away,
because access to it is prohibited outside the class. This is incorrect. HotSpot can
and will ignore access control when compiling methods to machine code and will
replace an accessor method with a direct access to the private field. This doesn’t
compromise Java’s security model, because all of the access control was checked
at class loading and linking time.

If you still need to be convinced that this behavior occurs, a good exercise is to write
a test harness similar to the one in listing 6.2, comparing the speed of a warmed-up
accessor method to the speed of access to a public field.

189JIT compilation with HotSpot

 Let’s look at some example output that shows which methods are being compiled

when we run our star map application. The key VM flag we’re using is -XX:+Print-

Compilation. This is one of the extended switches we briefly discussed earlier. Adding

this switch to the command line used to start the JVM tells the JIT compilation threads

to add messages to the standard log. These messages indicate when methods have

passed the compilation threshold and been turned into machine code.

 1 java.lang.String::hashCode (64 bytes)
 2 java.math.BigInteger::mulAdd (81 bytes)
 3 java.math.BigInteger::multiplyToLen (219 bytes)
 4 java.math.BigInteger::addOne (77 bytes)
 5 java.math.BigInteger::squareToLen (172 bytes)
 6 java.math.BigInteger::primitiveLeftShift (79 bytes)
 7 java.math.BigInteger::montReduce (99 bytes)
 8 sun.security.provider.SHA::implCompress (491 bytes)
 9 java.lang.String::charAt (33 bytes)
 1% ! sun.nio.cs.SingleByteDecoder::decodeArrayLoop @ 129 (308 bytes)
...
 39 sun.misc.FloatingDecimal::doubleValue (1289 bytes)
 40 org.camelot.hipparcos.DelimitedLine::getNextString (5 bytes)
 41 ! org.camelot.hipparcos.Star::parseStar (301 bytes)
...
 2% ! org.camelot.CamelotStarter::populateStarStore @ 25 (106 bytes)
 65 s java.lang.StringBuffer::append (8 bytes)

This is pretty typical output from PrintCompilation. These lines indicate which meth-

ods have been deemed sufficiently “hot” to be compiled. As you might expect, the first

methods to be compiled will likely be platform methods (such as String#hashCode).

Over time, application methods (such as the org.camelot.hipparcos.Star#parse-

Star method, which is used in the example to parse a record from the astronomical

catalog) will also be compiled.

 The output lines have a number, which indicates in which order the methods are

compiled on this run. Note that this order may change slightly between runs due to

the dynamic nature of the platform. These are some of the other fields:

■ s—Indicates the method is synchronized.

■ !—Indicates that the method has exception handlers.

■ %—On-stack replacement (OSR). The method was compiled and replaced the

interpreted version in running code. Note that OSR methods have their own

numbering scheme from 1.

BEWARE OF THE ZOMBIE

When looking at sample output logs on code that is run using the server compiler

(C2), you’ll occasionally see lines like “made not entrant” and “made zombie.” These

lines mean that a particular method, which had been compiled, has now been invali-

dated, usually because of a classloading operation.

190 CHAPTER 6 Understanding performance tuning

DEOPTIMIZATION

HotSpot is capable of deoptimizing code that’s based on an assumption that turned

out not to be true. In many cases, it will then reconsider and try an alternative optimi-

zation. Thus, the same method may be deoptimized and recompiled several times.

 Over time, you’ll see that the number of compiled methods stabilizes. Code

reaches a steady, compiled state and largely remains there. The exact details of which

methods get compiled can depend on the exact JVM version and OS platform in use.

It’s a mistake to assume that all platforms will produce the same set of compiled meth-

ods, and that the compiled code for a given method will be roughly the same size

across platforms. As with so much else in the performance space, this should be mea-

sured, and the results may surprise. Even a fairly innocent looking Java method has

proved to have a factor-of-5 difference between Solaris and Linux in terms of the

machine code generated by JIT compilation. Measurement is always necessary.

6.7 Summary

Performance tuning isn’t about staring at your code and praying for enlightenment,

or applying canned quick fixes. Instead, it’s about meticulous measurement, attention

to detail, and patience. It’s about persistent reduction of sources of error in your tests,

so that the true sources of performance problems emerge.

 Let’s look at some of the key points that you’ve learned about performance optimi-

zation in the dynamic environment provided by the JVM:

■ The JVM is an incredibly powerful and sophisticated runtime environment.

■ The JVM’s nature can make it sometimes challenging to optimize code within.

■ You have to measure to get an accurate idea of where the problems really are.

■ Pay particular attention to the garbage collection subsystem and the JIT compiler.

■ Monitoring and other tools can really help.

■ Learn to read the logs and other indicators of the platform—tools aren’t

always available.

■ You must measure and set goals (this is so important we’re saying it twice).

You should now have the basic grounding needed to explore and experiment with the

platform’s advanced performance features, and to understand how the performance

mechanisms will affect your own code. Hopefully, you’ve also started to gain the confi-

dence and experience to analyze all of this data with an open mind and to apply that

insight to solving your own performance problems.

 In the next chapter, we’ll start to look beyond the Java language to alternatives on

the JVM, but many of the performance features of the platform will be very useful in

the wider context—especially what you’ve learned about JIT compilation and GC.

Part 3

Polyglot programming
on the JVM

This part of the book is all about exploring new language paradigms and poly-

glot programming on the JVM.

 The JVM is an amazing runtime environment—it provides not only perfor-

mance and power, but also a surprising amount of flexibility to the programmer.

In fact, the JVM is the gateway to exploring other languages beyond Java, and it

allows you to try out some different approaches to programming.

 If you’ve programmed only in Java, you may be wondering what you’ll gain

from learning different languages. As we said in chapter 1, the essence of being

a well-grounded Java developer is to have a growing mastery of all aspects of the

Java language, platform, and ecosystem. That includes an appreciation of topics

that are on the horizon now, but that will be an integral part of the landscape in

the near future.

The future is already here—it’s just not evenly distributed.

—William Gibson

It turns out that many of the new ideas that will be needed in the future are pres-

ent in other JVM languages today, such as functional programming. By learning

a new JVM language, you can steal a glimpse into another world—one that may

resemble some of your future projects. Exploring an unfamiliar point of view can

help you put your existing knowledge into a fresh light. This opens the possibility

192 PART 3 Polyglot programming on the JVM

that by learning a new language you’ll discover new talents you didn’t know you had

and add new skills that will prove useful going forward.

 You’ll begin with a chapter that explains why Java isn’t always the ideal language to

solve all problems, why functional programming concepts are useful, and how to

choose a non-Java language for a particular project.

 Many recent books and blog articles are putting forward the view that functional

programming is likely to be a major feature of every working developer’s life in the

near future. Many of these articles can make functional programming sound quite

daunting, and it isn’t always made clear how it would manifest itself in a language such

as Java.

 In fact, functional programming is not a monolithic construct at all. Instead, it’s

more of a style, and a gradual progression in a developer’s way of thinking. In chapter 8,

we’ll show examples of slightly functional programming, which are just a way to han-

dle collections code in a cleaner, less bug-friendly style using the Groovy language.

We’ll build up to talking about “object-functional” style in chapter 9 with the Scala lan-

guage. We’ll look at a purer approach to functional programming (one that even

leaves behind object orientation) in chapter 10 with the language Clojure.

 In part 4, we’ll cover a number of real-world use cases where alternative languages

provide superior solutions. If you need convincing, peek ahead at part 4, then come

back here to learn the languages you need to apply those techniques.

193

Alternative JVM languages

If you’ve used Java for any sizable amount of work, you’ve probably noticed that it

tends toward being a bit verbose and clumsy at times. You may even have found

yourself wishing that things were different—easier somehow.

 Fortunately, as you’ve seen in the last few chapters, the JVM is awesome! So awe-

some, in fact, that it provides a natural home for programming languages other

than Java. In this chapter, we’ll show you why and how you might want to start mix-

ing another JVM programming language into your project.

 In this chapter, we’ll cover ways of describing the different language types (such

as static versus dynamic), why you might want to use alternative languages, and

what criteria to look for in choosing them. You’ll also be introduced to the three

languages (Groovy, Scala, and Clojure) that we’ll cover in more depth throughout

parts 3 and 4 of this book.

This chapter covers

■ Why you should use alternative JVM languages

■ Language types

■ Selection criteria for alternative languages

■ How the JVM handles alternative languages

194 CHAPTER 7 Alternative JVM languages

 Before we get started on that, however, you might need more convincing about

some of Java’s shortcomings. The next section is an extended example that high-

lights some annoyances, and points the way toward the programming language style

called functional programming.

7.1 Java too clumsy? Them’s fighting words!

Suppose you’re writing a new component in a system that deals with trade (transac-

tion) handling. A simplified view of the system is shown in figure 7.1.

 As you can see, the system has two sources of data—the upstream incoming orders

system, which you can query via a web service, and the dispatch database, which is fur-

ther downstream.

 This is a real bread-and-butter system, of the kind Java developers build all the time.

In this section, we’re going to introduce a simple bit of code that reconciles the two

sources of data. Then we’ll show how it can be a little clumsy to work with. After that,

we’ll introduce a core concept of functional programming, and show how functional

idioms, such as map and filter, can simplify many common programming tasks. You’ll

see that Java’s lack of direct support for these idioms makes programming harder

than it needs to be.

7.1.1 The reconciliation system

You need a reconciliation system to check that the data is actually reaching the data-

base. The core of such a system is the reconcile() method, which takes two parame-

ters: sourceData (data from the web service, boiled down into a Map) and dbIds.

 You need to pull out the main_ref key from sourceData and compare it to the pri-

mary key on the rows you pulled back from the database. Listing 7.1 shows how you

can do the comparison.

Figure 7.1 An example

trade-handling system

195Java too clumsy? Them’s fighting words!

public void reconcile(List<Map<String, String>> sourceData,
Set<String> dbIds) {
 Set<String> seen = new HashSet <String>();
 MAIN: for (Map<String, String> row : sourceData) {
 String pTradeRef = row.get("main_ref");

 if (dbIds.contains(pTradeRef)) {
 System.out.println(pTradeRef +" OK");
 seen.add(pTradeRef);
 } else {
 System.out.println("main_ref: "+ pTradeRef +" not present in DB");
 }
 }

 for (String tid : dbIds) {
 if (!seen.contains(tid)) {
 System.out.println("main_ref: "+ tid +" seen in DB but not Source");
 }
 }
}

The main case you need to check is that everything in the incoming orders system

made it to the dispatch database. This is handled by the top for loop—which is

labeled MAIN for clarity.

 But there is another possibility. Suppose an intern did some test orders via the

administration interface (not realizing they were using the live system). Then the orders

would show up in the dispatching database but not in the incoming orders system.

 To take care of this exceptional case, you have a second loop. It checks to see if

the seen set (all the trades that were in both systems) contains all the rows you saw in the

database. It will also confirm which ones are missing. Here’s some output from a sam-

ple run:

7172329 OK
1R6GV OK
1R6GW OK
main_ref: 1R6H2 not present in DB
main_ref: 1R6H3 not present in DB
1R6H6 OK

What’s gone wrong? The answer is that the upstream system is case-insensitive,

whereas the downstream one is case-sensitive. 1R6H2 is present in the dispatch data-

base—it’s called 1r6h2 instead.

 If you examine the code in listing 7.1, you can see that the problem is the use of

the contains() method. This method checks to see if the argument appears in the

collection in question, but it only returns true if there’s an exact match.

 This means that what you really need is a containsCaseInsensitive() method,

which doesn’t exist! So instead you have to replace this bit of code,

if (dbIds.contains(pTradeRef)) {
 System.out.println(pTradeRef +" OK");

Listing 7.1 Reconciling two data sources

Assume pTradeRef
never null

Exceptional
case

196 CHAPTER 7 Alternative JVM languages

 seen.add(pTradeRef);
} else {
 System.out.println("main_ref: "+ pTradeRef +" not present in DB");
}

with a loop, like this:

for (String id : dbIds) {
 if (id.equalsIgnoreCase(pTradeRef)) {
 System.out.println(pTradeRef +" OK");
 seen.add(pTradeRef);
 continue MAIN;
 }
}
System.out.println("main_ref: "+ pTradeRef +" not present in DB");

This seems clunky. You’re having to loop over the collection instead of handling it as a

whole. The code is less concise and seems more fragile.

 As your applications get larger, this difference in conciseness will become more

important—you want to write concise code to conserve your mental bandwidth.

7.1.2 Conceptual basics of functional programming

There are two ideas in the last example that we want to draw your attention to:

■ Operating on collections as a whole is more concise and usually better then iter-

ating through the contents of the collection.

■ Wouldn’t it be awesome if we could add a tiny bit of logic to tweak the behavior

of existing methods on our objects?

If you’ve ever found yourself writing collections code and getting frustrated because

there’s a method that almost provides a way to do what you need, but you need to

tweak it slightly, then that frustration is an itch that could be scratched by functional

programming (FP).

 Another way of saying this is that a major limiting factor in writing concise (and

safer) object-oriented code is the inability to add additional logic to existing methods.

This leads us to the big idea of FP: Suppose you did have some way to tweak the func-

tionality of a method by adding in some new code of your own.

 What would that mean? To add in code of your own after the fact, you’d need to

pass a representation of your block of code into the method as a parameter. What you

really want to be able to write is something like this (we’ve called out the special con-

tains() method in bold):

if (dbIds.contains(pTradeRef, matchFunction)) {
 System.out.println(pTradeRef +" OK");
 seen.add(pTradeRef);
} else {
 System.out.println("main_ref: "+ pTradeRef +" not present in DB");
}

If you could do this, the contains() method could be customized to use whatever test

you wanted—a case-insensitive match in this example. In order to do that, you’d need

197Java too clumsy? Them’s fighting words!

some way of representing your match function as though it were a value—to be able to

write out the bit of code as a “function literal” and then assign it to a variable.

 To do functional programming, you need to be able to represent bits of logic (basi-

cally methods) as though they were values. This is the central idea of FP, and we’ll

come back to it, but first, let’s look at another Java example that has some new FP

ideas buried in it.

7.1.3 Map and filter idioms

Let’s expand our example a little, and consider the context in which reconcile()

gets called:

reconcile(sourceData, new HashSet<String>(extractPrimaryKeys(dbInfos)));

private List<String> extractPrimaryKeys(List<DBInfo> dbInfos) {
 List<String> out = new ArrayList<>();
 for (DBInfo tinfo : dbInfos) {
 out.add(tinfo.primary_key);
 }

 return out;
}

The extractPrimaryKeys() method returns a list of primary key vales (as strings) that

have been extracted from the database objects. FP fans would call this a map() expres-

sion—extractPrimaryKeys() takes a List and returns a List by running an operation

on each element in turn. This builds up the new list, which is returned from the method.

 Note that the type contained in the returned List may be different (String) from

the incoming List (DBInfo), and the original list hasn’t been affected in any way.

 This is where the name “functional programming” comes from—the functions

behave like mathematical functions. After all, a function like f(x) = x * x doesn’t alter

the value 2 when it’s passed in. Instead, it returns a different value, 4.

This use of a map() is a classic FP idiom. It’s often paired with another very well-known

pattern, the filter() form, which you can see in the next listing.

List<Map<String, String>> filterCancels(List<Map<String, String>> in) {
 List<Map<String, String>> out = new ArrayList<>();
 for (Map<String, String> msg : in) {
 if (!msg.get("status").equalsIgnoreCase("CANCELLED")) {

Cheap optimization trick

There’s a useful and slightly sneaky trick in the call to reconcile()—you pass the
returned List from extractPrimaryKeys() into the constructor for HashSet to con-
vert it to a Set. This handily de-dups the List for you, making the contains() call
do less work in the reconcile() method.

Listing 7.2 Filter form

Defensive
copy

198 CHAPTER 7 Alternative JVM languages

 out.add(msg);
 }
 }

 return out;
}

Notice the defensive copy—this means that you return a new List instance. You don’t

mutate the existing List (so the filter() form behaves like a mathematical func-

tion). You build up a new List by testing each element against a function that returns

a boolean. If the result of testing an element is true, you add it into the output List.

 For the filter form to work, you need a function that says whether or not a given

element should be included. You can think of this function as asking the question,

“Should this element be allowed to pass through the filter?” for each element in

the collection.

 These functions are called predicate functions, and we need some way to represent

them. Here’s one way you could write one in some pseudocode (it’s almost Scala):

(msg) -> { !msg.get("status").equalsIgnoreCase("CANCELLED") }

This is a function that takes in one argument (called msg) and returns a boolean

result. It returns false if the msg has been canceled, and true otherwise. When used

in a filter form, it will filter out any canceled messages.

 This is precisely what you want. Before calling the reconciliation code, you need to

remove any canceled orders because a canceled order won’t be present in the dis-

patch database.

 As it turns out, this syntax is how Java 8 is going to write it (but it was strongly influ-

enced by the Scala and C# syntax). We’ll come back to this theme in chapter 14, but we’ll

meet these function literals (also called lambda expressions) in several other contexts first.

 Let’s move on and discuss some of these other contexts, starting by taking a look at

the types of languages available on the JVM—what is sometimes called language zoology.

7.2 Language zoology

Programming languages come in many different flavors and classifications. Another

way of saying this is that there is a wide range of styles and approaches to program-

ming that are embodied in different languages. If you’re going to master these differ-

ent styles and use them to make your life easier, you need to understand the

differences and how to classify languages.

NOTE These classifications are an aid to thinking about the diversity of lan-
guages. Some of these divisions provide clearer-cut classifications than others,
and none of the classifying schemes is perfect.

In recent years there has also been a trend for languages to add features from across

the spectrum of possibilities. This means that it’s often helpful to think of a given lan-

guage as being “less functional” than another language, or “dynamically typed but

with optional static typing when needed.”

199Language zoology

 The classifications we’ll cover are “interpreted versus compiled,” “dynamic versus

static,” “imperative versus functional,” and reimplementations of a language versus

the original. In general, these classifications should be used as a useful tool for think-

ing about the space, rather than as a complete and precise academic scheme.

 Java is a runtime-compiled, statically typed, imperative language. It emphasizes safety,

code clarity, and performance, and it’s happy to accept a certain amount of verbosity and

lack of agility (such as in deployment). Different languages may have different priorities;

for example, dynamically typed languages may emphasize deployment speed.

 Let’s get started with the interpreted versus compiled classification.

7.2.1 Interpreted vs. compiled languages

An interpreted language is one in which each step of the source code is executed as is,

rather than the entire program being transformed to machine code before execution

begins. This contrasts with a compiled language, which is one that uses a compiler to

convert the human-readable source code into a binary form as an initial task.

 This distinction is one that has become less clear recently. In the ’80s and early

’90s, the divide was fairly clear: C/C++ and the like were compiled languages, and Perl

and Python were interpreted languages. But as we alluded to in chapter 1, Java has

features of both compiled and interpreted languages. The use of bytecode further

muddies the issue. Bytecode is certainly not human readable, but neither is it true

machine code.

 For the JVM languages we’ll study in this part of the book, the distinction we’ll

make is whether the language produces a class file from the source code, and executes

that—or not. In the latter case, there will be an interpreter (probably written in Java)

that’s used to execute the source code, line by line. Some languages provide both a

compiler and an interpreter, and some provide an interpreter and a just-in-time (JIT)

compiler that will emit JVM bytecode.

7.2.2 Dynamic vs. static typing

In languages with dynamic typing, a variable can contain different types at different

times. As an example, let’s look at a simple bit of code in a well-known dynamic lan-

guage, JavaScript. This example should hopefully be comprehensible even if you

don’t know the language in detail:

var answer = 40;
answer = answer + 2;
answer = "What is the answer? " + answer;

In this code, the variable answer starts off being set to 40, which is, of course, a

numeric value. We then add 2 to it, giving 42. Then we change track slightly and make

answer hold a string value. This is a very common technique in a dynamic language,

and it causes no syntax errors.

 The JavaScript interpreter is also able to distinguish between the two uses of

the + operator. The first use of + is numeric addition—adding 2 to 40, whereas in the

200 CHAPTER 7 Alternative JVM languages

following line the interpreter figures out from context that the developer meant

string concatenation.

NOTE The key point here is that dynamic typing keeps track of informa-
tion about what sort of values the variables contain (for example, a num-
ber or a string), and static typing keeps track of type information about
the variables.

Static typing can be a good fit for a compiled language because the type information

is all about the variables, not the values in them. This makes it much easier to reason

about potential type system violations at compile time.

 Dynamically typed languages carry type information on the values held in vari-

ables. This means that it’s much harder to reason about type violations because the

information needed for that reasoning isn’t known until execution time.

7.2.3 Imperative vs. functional languages

Java 7 is a classic example of an imperative language. Imperative languages can be

thought of as languages that model the running state of a program as mutable data

and issue a list of instructions that transform that running state. Program state is thus

the concept that has center stage in imperative languages.

 There are two main subtypes of imperative languages. Procedural languages, such

as BASIC and FORTRAN, treat code and data as completely separate, and have a simple

code-operates-on-data paradigm. The other subtype is object-oriented (OO) lan-

guages, where data and code (in the form of methods) are bundled together into

objects. In OO languages, additional structure is imposed to a greater or lesser degree

by metadata (such as class information).

 Functional languages take the view that computation itself is the most important

concept. Functions operate on values, as in procedural languages, but instead of alter-

ing their inputs, functions are seen as acting like mathematical functions and return

new values.

 As illustrated in figure 7.2, functions are seen as “little processing machines” that

take in values and output new values. They don’t have any state of their own, and it

doesn’t really make sense to bundle them up with any external state. This means that

the object-centered view of the world is somewhat at odds with the natural viewpoint

of functional languages.

 In each of the next three chapters, we’ll focus on a different language and build

on the previous treatments of functional programming. We’ll start off with Groovy,

which enables a “slightly functional style,” processing collections in the way we dis-

cussed in section 7.1, then Scala which makes more of a big deal out of FP, and finally

Clojure (a purer functional language, but no longer OO).

201Language zoology

7.2.4 Reimplementation vs. original

Another important distinction between JVM languages is the division into those that

are reimplementations of existing languages versus those that were specifically written

to target the JVM. In general, languages that were specifically written to target the JVM

are able to provide a much tighter binding between their type systems and the native

types of the JVM.

 The following three languages are JVM reimplementations of existing languages:

■ JRuby is a JVM reimplementation of the Ruby programming language. Ruby is a

dynamically typed OO language with some functional features. It’s basically

interpreted on the JVM, but recent versions have included a runtime JIT com-

piler to produce JVM bytecode under favorable conditions.

■ Jython was started in 1997 by Jim Hugunin as a way to use high-performance Java

libraries from Python. It’s a reimplementation of Python on the JVM, so it’s a

dynamic, mostly OO language. It operates by generating internal Python byte-

code, then translating that to JVM bytecode. This enables it to operate in a man-

ner that looks like Python’s typical interpreted mode. It can also work in an

ahead-of-time (AOT) compiled mode, by generating the JVM bytecode, and sav-

ing the resulting class files to disk.

■ Rhino was originally developed by Netscape, and later the Mozilla project. It pro-

vides an implementation of JavaScript on the JVM. JavaScript is a dynamically typed

OO language (but one that takes a very different approach to object orientation

than Java does). Rhino supports both a compiled and an interpreted mode and

ships with Java 7 (see the com.sun.script.javascript package for details).

The earliest JVM language?

The earliest non-Java JVM language is hard to pin down. Certainly, Kawa, an imple-
mentation of Lisp, dates to 1997 or so. In the years since then, we’ve seen an explo-
sion of languages, to the point that it’s almost impossible to keep track of them.

Figure 7.2 Imperative and

functional languages

202 CHAPTER 7 Alternative JVM languages

A reasonable guess at time of writing is that there are at least 200 languages that target the

JVM. Not all can be considered to be active or widely used, but the large number indicates

that the JVM is a very active platform for language development and implementation.

NOTE In the versions of the language and VM spec that debuted with Java 7,
all direct references to the Java language have been removed from the VM

spec. Java is now simply one language among many that run on the JVM—it
no longer enjoys a privileged status.

The key piece of technology that enables so many different languages to target the

JVM is the class file format, as we discussed in chapter 5. Any language that can pro-

duce a class file is considered a compiled language on the JVM.

 Let’s move on to discuss how ployglot programming came to be an area of interest

for Java programmers. We’ll explain the basic concepts, and why and how to choose

an alternative JVM language for your project.

7.3 Polyglot programming on the JVM

The phrase “polyglot programming on the JVM” is rela-

tively new. It was coined to describe projects that utilize

one or more non-Java JVM languages alongside a core of

Java code. One common way to think about polyglot pro-

gramming is as a form of separation of concerns. As you

can see in figure 7.3, there are potentially three layers

where non-Java technologies can play a useful role. This

diagram is sometimes called the polyglot programming

pyramid, and it’s due to the work of Ola Bini.

 Within the pyramid, you can see three well-defined

layers—domain-specific, dynamic, and stable.

Table 7.1 shows these three layers in more detail.

 As you can see, there are patterns in the layers—the statically typed languages tend

to gravitate toward tasks in the stable layer. Conversely, the less-powerful and general-

purpose technologies tend to be well-suited to roles at the top of the pyramid.

The secret of polyglot programming

Polyglot programming makes sense because different pieces of code have different
lifetimes. A risk engine in a bank may last for five or more years. JSP pages for a web-
site could last for a few months. The most short-lived code for a startup could be live
for just a few days. The longer the code lives, the closer to the bottom of the pyramid
it is.

This represents a trade-off between concerns like performance and thorough testing
at the bottom versus flexibility and rapid deployment at the top.

Figure 7.3 The polyglot

programming pyramid

203Polyglot programming on the JVM

In the middle of the pyramid, there is a rich role for languages in the dynamic tier.

These are also the most flexible—in many cases there is potential overlap between the

dynamic tier and either of the neighboring tiers.

 Let’s dig a little deeper into this diagram and look at why Java isn’t the best choice

for everything in the pyramid. We’ll begin by discussing why you should consider a

non-Java language, then we’ll cover some of the major criteria to look at in choosing

a non-Java language for your project.

7.3.1 Why use a non-Java language?

Java’s nature as a general-purpose, statically typed, compiled language provides many

advantages. These qualities make it a great choice for implementing functionality in

the stable layer. But these same attributes become a burden in the upper tiers of the

pyramid. For example,

■ Recompilation is laborious

■ Static typing can be inflexible and lead to long refactoring times

■ Deployment is a heavyweight process

■ Java’s syntax isn’t a natural fit for producing DSLs

The recompilation and rebuild time of a Java project quickly reaches the 90 seconds

to 2 minutes mark. This is a long enough to seriously break a developer’s flow, and it’s

a bad fit for developing code that may live in production for only a few weeks.

 A pragmatic solution is to play to Java’s strengths, and to take advantage of its rich API

and library support to do the heavy lifting for the application—down in the stable layer.

NOTE If you’re starting a new project from scratch, you may also find that
another stable layer language (such as Scala) has a particular feature (for
example, superior concurrency support) that’s important to your project. In
most cases, however, you should not throw out working stable layer code to
rewrite in a different stable language.

At this point, you may be asking yourself, “What type of programming challenges fit

inside these layers? Which languages should I choose?” A well-grounded Java devel-

oper knows that there is no silver bullet, but we do have criteria that you could con-

sider when evaluating your choices. We can’t cover every alternative choice in the

Table 7.1 Three layers of the polyglot programming pyramid

Name Description Examples

Domain-specific Domain-specific language. Tightly coupled to a

specific part of the application domain.

Apache Camel DSL, Drools,

Web templating

Dynamic Rapid, productive, flexible development of func-

tionality.

Groovy, Jython, Clojure

Stable Core functionality, stable, well-tested, performant. Java, Scala

204 CHAPTER 7 Alternative JVM languages

book, so for the rest of the chapters, we’ll focus on three languages that we think

cover a wide spectrum of possible sensible choices for Java shops.

7.3.2 Up-and-coming languages

For the rest of the book, we’ve picked three languages that we see having the greatest

potential longevity and influence. These are the languages on the JVM (Groovy, Scala,

and Clojure) that already have well-established mind share among polyglot program-

mers. So why are these three languages gaining traction. Let’s look at each in turn.

GROOVY

The Groovy language was invented by James Strachan in 2003. It’s a dynamic, com-

piled language with syntax very similar to Java’s, but more flexible. It’s widely used as a

scripting and rapid prototyping language, and it’s often the first non-Java language

that developers or teams investigate on the JVM. Groovy can be seen as sitting in the

dynamic layer and is also known for being great for building DSLs. Chapter 8 provides

an introduction to Groovy.

SCALA

Scala is an OO language that also supports aspects of functional programming. It

traces its origins to 2003, when Martin Odersky began work on it, following his earlier

projects related to generics in Java. It’s a statically typed, compiled language like Java,

but unlike Java it performs a large amount of type inference. This means that it often

has the feel of a dynamic language.

 Scala has learned a great deal from Java, and its language design “fixes” several

long-term annoyances that Java developers have with Java. Scala can be seen as sitting

in the stable layer, and some developers argue that it might one day challenge Java as

the “next big language on the JVM.” Chapter 9 provides an introduction to Scala.

CLOJURE

Clojure, designed by Rich Hickey, is a language from the Lisp family. It inherits many

syntactic features (and lots of parentheses) from that heritage. It’s a dynamically

typed, functional language, as is usual for Lisps. It’s a compiled language, but usually

distributes code in source form—for reasons we’ll see later. It also adds a significant

number of new features (especially in the arena of concurrency) to its Lisp core.

 Lisps are usually seen as experts-only languages. Clojure is somewhat easier to

learn than other Lisps, yet still provides the developer with formidable power (and

also lends itself very nicely to the test-driven development style). But it’s likely to

remain outside the mainstream, for enthusiasts and specialized jobs (for example,

some financial applications find its combination of features very appealing).

 Clojure is usually seen as sitting in the dynamic layer, but due to its concurrency

support and other features can be seen as capable of performing many of the roles of

a stable layer language. Chapter 10 provides an introduction to Clojure.

 Now that we’ve outlined some of the possible choices, let’s discuss the issues that

should drive your decision of which language to choose.

205How to choose a non-Java language for your project

7.4 How to choose a non-Java language for your project

Once you’ve decided to experiment with non-Java languages in your project, you need

to identify which parts of your project naturally fit into the stable, dynamic, or

domain-specific layers. Table 7.2 highlights tasks that might be suitable for each layer.

As you can see, there is a wide range of use cases for alternative languages. But identi-

fying a task that could be resolved with an alternative language is just the beginning.

You next need to evaluate whether using an alternative language is appropriate. Here

are some useful criteria that we take into account when considering technology stacks:

■ Is the project area low-risk?

■ How easily does the language interoperate with Java?

■ What tooling support (for example, IDE support) is there for the language?

■ How steep is the learning curve for this language?

■ How easy is it to hire developers with experience in this language?

Let’s dive into each of these areas so you get an idea of the sorts of questions you need

to be asking yourself.

7.4.1 Is the project area low-risk?

Let’s say you have a core payment-processing rules engine that handles over one mil-

lion transactions a day. This is a stable piece of Java software that has been around for

over seven years, but there aren’t a lot of tests, and there are plenty of dark corners in

the code. The core of the payment-processing engine is clearly a high-risk area to

bring a new language into, especially when it’s running successfully and there’s a lack

of test coverage and of developers who fully understand it.

 But there’s more to a system than its core processing. For example, this is a situa-

tion where better tests would clearly help. Scala has a great testing framework called

Table 7.2 Project areas suited for domain-specific, dynamic, and stable layers

Name Example problem domains

Domain-specific Build, continuous integration, continuous deployment

Dev-ops

Enterprise Integration Pattern modeling

Business rules modeling

Dynamic Rapid web development

Prototyping

Interactive administrative and user consoles

Scripting

Tests (such as for test- and behavior-driven development)

Stable Concurrent code

Application containers

Core business functionality

206 CHAPTER 7 Alternative JVM languages

ScalaTest (which we’ll meet properly in chapter 11). It enables developers to produce

JUnit-like tests for Java or Scala code, but without a lot of the boilerplate that JUnit

seems to generate. So once they’re over the initial ScalaTest learning curve, develop-

ers can be much more productive at improving the test coverage. ScalaTest also pro-

vides a great way to gradually introduce concepts like behavior-driven development to

the codebase. The availability of modern testing features can really help when the

time comes to refactor or replace parts of the core—whether the new processing

engine ends up being written in Java or Scala.

 Or suppose you need to build a web console so that the operations users can

administer some of the noncritical static data behind the payment-processing system.

The development team members already know Struts and JSF, but don’t feel any

enthusiasm for either technology. This is another low-risk area to try out a new lan-

guage and technology stack. One obvious choice would be Grails (the Groovy-based

web framework originally inspired by ideas from Ruby on Rails). Developer buzz,

backed up by some studies (including a very interesting one by Matt Raible), says that

Grails is the best-available web framework for productivity.

 By focusing on a limited pilot in an area that is low-risk, the manager always has the

option of terminating the project and porting to a different delivery technology with-

out too much disruption if it turns out that the attempted technology stack was not a

good fit for the team or system.

7.4.2 Does the language interoperate well with Java?

You don’t want to lose the value of all of that great Java code you’ve already written!

This is one of the main reasons organizations are hesitant to introduce a new pro-

gramming language into their technology stack. But with alternative languages that

run on the JVM, you can turn this on its head, so it becomes about maximizing your

existing value in the codebase and not throwing away working code.

 Alternative languages on the JVM are able to cleanly interoperate with Java and

can, of course, be deployed on a preexisting environment. This is especially important

when discussing this step with the production management folks. By using a non-Java

JVM language as part of your system, you’ll be able to make use of their expertise in

supporting the existing environment. This can help alleviate any worries they might

have about supporting the new solution and help reduce risk.

NOTE DSLs are typically built using a dynamic (or, in some cases, stable) layer
language, so many of them run on the JVM via the languages that they were
built in.

Some languages interoperate with Java more easily than others. We’ve found that

most popular JVM alternatives (such as Groovy, Scala, Clojure, Jython, and JRuby) all

have good interoperability with Java (and for some of the languages, the integration is

excellent, almost completely seamless). If you’re a really cautious shop, it’s quick and

easy to run a few experiments first, and make certain that you understand how the

integration can work for you.

207How to choose a non-Java language for your project

 Let’s take Groovy, for example. You can import Java packages directly into its code

via the familiar import statement. You can build a quick website using the Groovy-

based Grails framework, yet still reference your Java model objects. Conversely, it’s

very easy for Java to call Groovy code in a variety of ways and receive back familiar Java

objects. One example use case here could be calling out to Groovy from Java to pro-

cess some JSON, and have a Java object returned.

7.4.3 Is there good tooling and test support for the language?

Most developers underestimate the amount of time they save once they’ve become

comfortable in their environment. Their powerful IDEs and build and test tools help

them to rapidly produce high quality software. Java developers have benefited from

great tooling support for years, so it’s important to remember that other languages

may not be at quite the same level of maturity.

 Some languages (such as Groovy) have had longstanding IDE support for compil-

ing, testing, and deploying the end result. Other languages may have tooling that

hasn’t matured as fully. For example, Scala’s IDEs aren’t as polished as Java’s, but Scala

fans feel that the power and conciseness of Scala more than make up for the imperfec-

tions of the current generation of IDEs.

 A related issue is that when an alternative language has developed a powerful tool

for its own use (such as Clojure’s awesome Leiningen build tool), the tool may not be

well adapted to handle other languages. This means that the team will need to think

carefully about how to divide up a project, especially for deployment of separate but

related components.

7.4.4 How hard is the language to learn?

It always takes time to learn a new language, and that time only increases if the para-

digm of the language isn’t one that your development team is familiar with. Most Java

development teams will be comfortable picking up a new language if it’s object ori-

ented with a C-like syntax (for example, Groovy).

 It gets harder for Java developers as they move further away from this paradigm.

Scala tries to bridge the gap between the OO and functional worlds, but the jury is still

out on whether this fusion is viable for large-scale software projects. At the extreme of

the popular alternative languages, a language such as Clojure can bring incredibly

powerful benefits, but can also represent a significant retraining requirement for

development teams as they learn Clojure’s functional nature and Lisp syntax.

 One alternative is to look at the JVM languages that are reimplementations of exist-

ing languages. Ruby and Python are well-established languages, with plenty of mate-

rial available for developers to use to educate themselves. The JVM incarnations of

these languages could provide a sweet spot for your teams to begin working with an

easy-to-learn non-Java language.

208 CHAPTER 7 Alternative JVM languages

7.4.5 Are there lots of developers using this language?

Organizations have to be pragmatic; they can’t always hire the top 2 percent (despite

what their advertising might say), and their development teams will change through-

out the course of a year. Some languages, such as Groovy and Scala, are becoming

well-established enough that there is a pool of developers to hire from. But a language

such as Clojure is still finding its way to popularity, and finding good Clojure develop-

ers is going to be difficult.

WARNING A warning about the reimplemented languages: many existing
packages and applications written in Ruby, for example, are only tested
against the original C-based implementation. This means that there may be
problems when trying to use them on top of the JVM. When making platform
decisions, you should factor in extra testing time if you’re planning to lever-
age an entire stack written in a reimplemented language.

Again, the reimplemented languages (JRuby, Jython, and so on) can potentially help

here. Few developers may have JRuby on their CV, but as it’s just Ruby on the JVM, there’s

actually a large pool of developers to hire from—a Ruby developer familiar with the C

version can learn the differences induced by running on the JVM very easily.

 In order to understand some of the design choices and limitations of alternative lan-

guages on the JVM, you need to understand how the JVM supports multiple languages.

7.5 How the JVM supports alternative languages

There are two possible ways that a language can run on the JVM:

■ Have a compiler that emits class files

■ Have an interpreter that is implemented in JVM bytecode

In both cases, it’s usual to have a runtime environment that provides language-specific

support for executing programs. Figure 7.4 shows the runtime environment stack for

Java and for a typical non-Java language.

 These runtime support systems vary in complexity, depending on the amount of

hand holding that a given non-Java language requires at runtime. In almost all cases,

the runtime will be implemented as a set of JARs that an executing program needs to

have on its classpath and that will bootstrap before program execution starts.

Figure 7.4 Non-Java language

runtime support

209How the JVM supports alternative languages

In this book, our focus is on compiled languages. The interpreted languages—such as

Rhino—are mentioned for completeness, but we won’t spend too much time on

them. In the rest of this section, we’ll discuss the need for runtime support for alterna-

tive languages (even for compiled languages) and then talk about compiler fictions—

language-specific features that are synthesized by the compiler and that may not

appear in the low-level bytecode.

7.5.1 Runtime environments for non-Java languages

One simple way to measure the complexity of the runtime environment that a particu-

lar language requires is to look at the size of the JAR files that provide the implementa-

tion of the runtime. Using this as a metric, we can see that Clojure is a relatively

lightweight runtime, whereas JRuby is a language that requires more support.

 This isn’t a completely fair test, as some languages bundle much larger standard

libraries and additional functionality into their standard distributions than others. But

it can be a useful (if rough) rule of thumb.

 In general, the purpose of the runtime environment is to help the type system

and other aspects of the non-Java language achieve the desired semantics. Alterna-

tive languages don’t always have exactly the same view as Java about basic program-

ming concepts.

 For example, Java’s approach to OO isn’t universally shared by other languages. In

Ruby, an individual object instance can have additional methods attached to it at run-

time that were not known when the class was defined and that aren’t defined on other

instances of the same class. This property (which is somewhat confusingly called

“open classes”) needs to be replicated by the JRuby implementation. This is only possi-

ble with some advanced support from the JRuby runtime.

7.5.2 Compiler fictions

Certain language features are synthesized by the programming environment and

high-level language and aren’t present in the underlying JVM implementation. These

are referred to as compiler fictions. We’ve already met one good example in chapter 6—

Java’s string concatenation.

TIP It helps to have some knowledge of how these features are imple-
mented—otherwise you can find your code running slowly, or in some cases
even crashing the process. Sometimes the environment has to do a lot of work
to synthesize a particular feature.

Other examples in Java include checked exceptions and inner classes (which are

always converted to top-level classes with specially synthesized access methods if neces-

sary, as shown in figure 7.5). If you’ve ever looked inside a JAR file (using jar tvf) and

seen a load of classes with $ in their names, then these are the inner classes unpacked

and converted to “regular” classes.

210 CHAPTER 7 Alternative JVM languages

Alternative languages also have compiler fictions. In some cases, these compiler fic-

tions even form a core part of the language’s functionality. Let’s take a look at a cou-

ple of important examples.

FIRST-CLASS FUNCTIONS

In section 7.1, we introduced the key concept of functional programming—that func-

tions should be values that can be put into variables. The usual way of saying this is

that “functions are first-class values.” We also showed that Java doesn’t have a very

good way to model functions.

 All of the non-Java languages that we’ll consider in part 3 of this book support

functions as first-class values. This means that functions can be put into variables,

passed to methods, and manipulated in the same ways as any other value. The JVM

only handles classes as the smallest unit of code and functionality, so under the hood,

all the non-Java languages are creating little anonymous classes to hold the functions

(although this may change with Java 8).

 The solution to this discrepancy between source code and JVM bytecode is to

remember that objects are just bundles of data along with methods to act on that data.

Now imagine you had an object that has no state, and just one method—for example,

a simple anonymous implementation of Java’s Callable interface from chapter 4. It

wouldn’t be at all unusual to put such an object in a variable, pass it around, and then

invoke its call() method later, like this:

Callable<String> myFn = new Callable<String>() {
 @Override
 public String call() {
 return "The result";
 }
};

try {
 System.out.println(myFn.call());
} catch (Exception e) {
}

We’ve omitted exception handling because, in this case, the call() method of myFn

can never throw.

Figure 7.5 Inner classes

as a compiler fiction

211Summary

NOTE The myFn variable in this example is an anonymous type, so it will show
up after compilation as something like NameOfEnclosingClass$1.class. The
class numbers start at 1 and go up for each anonymous type the compiler
encounters. If they’re dynamically created, and there are a lot of them (as
sometimes happens in languages like JRuby), this can place pressure on the
PermGen area of memory where the definitions of classes are stored.

Java programmers use this trick of creating an anonymous implementation a lot,

although Java doesn’t have any special syntax for it. This means that the result can be

a bit long-winded. All of the languages that we’re about to meet provide a special syn-

tax for writing out these function values (or “function literals” or “anonymous func-

tions”). They’re a major pillar of the functional programming style, which both Scala

and Clojure support well.

MULTIPLE INHERITANCE

As another example, in Java (and the JVM), there’s no way to express multiple inheri-

tance of implementation. The only way to achieve multiple inheritance is to use inter-

faces, which don’t allow any method bodies to be specified.

 By contrast, in Scala, the traits mechanism allows implementation of methods to

be mixed into a class, so it provides a different view of inheritance. We’ll cover this in

full detail in chapter 9. For now, just remember that this behavior has to be synthe-

sized by the Scala compiler and runtime—there’s no provision for it at the VM level.

 This concludes our introduction to the different types of languages available on

the JVM and some of the ways their unique features are implemented.

7.6 Summary

Alternative languages on the JVM have come a long way. They can now offer better

solutions than Java for certain problems while retaining compatibility with existing sys-

tems and investments made in Java technology. This means that even for Java shops,

Java isn’t always the automatic choice for every programming task.

 Understanding the different ways languages can be classified (static versus

dynamic, imperative versus functional, and compiled versus interpreted) gives you the

foundation for being able to pick the right language for the right task.

 For the polyglot programmer, languages fall roughly into three programming lay-

ers: stable, dynamic, and domain-specific. Languages such as Java and Scala are best

used for the stable layer of software development, whereas others, such as Groovy and

Clojure, are more suited to tasks in the dynamic or domain-specific realms.

 Certain programming challenges fit well into particular layers, such as rapid web

development in the dynamic layer or modeling enterprise messaging in the domain-

specific layer.

 It’s worth emphasizing again that the core business functionality of an existing pro-

duction application is almost never the correct place to introduce a new language.

The core is where high-grade support, excellent test coverage, and a proven track

212 CHAPTER 7 Alternative JVM languages

record of stability are of paramount importance. Rather than start here, choose a low-

risk area for your first deployment of an alternative language.

 Always remember that each team and project has its own unique characteristics

that will impact the decision of which language to choose. There are no universal

right answers here. When choosing to implement a new language, managers and

senior techs must take into account the nature of their projects and team.

 A small team composed exclusively of experienced propeller-heads may choose

Clojure for its clean design, sophistication, and power (and never mind the concep-

tual complexity and possible difficulty of hiring). Meanwhile, a web shop, looking to

grow the team quickly and attract young developers, may choose Groovy and Grails

for the productivity gains and relatively deep talent pool.

 There are three alternative languages on the JVM that we see as leading the pack:

Groovy, Scala, and Clojure. By the time you finish this book, you’ll have learned the

basics of three of the most promising alternative languages on the JVM and will have

expanded your programming toolkit in interesting new directions.

 In the next chapter, you’ll learn about the first of these—Groovy.

213

Groovy:
Java’s dynamic friend

Groovy is an OO, dynamically typed language that, like Java, runs on the JVM. In fact, it

can be seen as a language that provides dynamic capabilities to complement the static

world of Java. The Groovy project was initially founded by James Strachan and Bob

McWhirter in late 2003, with its leadership changed to Guillaume Laforge in 2004. The

community based at http://groovy.codehaus.org/ continues to thrive and grow today.

Groovy is seen as the most popular language on the JVM after Java itself.

 Inspired by Smalltalk, Ruby, and Python, Groovy has implemented several lan-

guage features that Java doesn’t have, such as:

■ Function literals
■ First-class1 support for collections

This chapter covers

■ Why you should learn Groovy

■ Basic Groovy syntax

■ Differences between Groovy and Java

■ Powerful Groovy features not found in Java

■ How Groovy is also a scripting language

■ Groovy interoperability with Java

1 By first-class, we mean that support is built into the language syntax as opposed to requiring library calls.

http://groovy.codehaus.org/

214 CHAPTER 8 Groovy: Java’s dynamic friend

■ First-class support for regular expressions

■ First-class support for XML processing

NOTE In Groovy, function literals are called closures. As explained in chapter 7,
they’re functions that can be put into variables, passed to methods, and
manipulated in the same ways as any other value.

So why would you want to use Groovy? If you remember back to the polyglot program-

ming pyramid in chapter 7, you’ll recall that Java isn’t ideal for solving problems in

the dynamic layer. These problems include rapid web development, prototyping,

scripting, and more. Groovy is designed to solve exactly those problems.

 Here’s an example of Groovy’s usefulness. Imagine that your boss asked you to

write a Java routine that turned a bunch of Java beans into XML. With Java, this task is

certainly possible, and you have a wide variety of APIs and libraries to choose from:

■ Java Architecture for XML Binding (JAXB) with Java API for XML Processing

(JAXP) that comes as part of Java 6

■ The XStream library hosted at Codehaus

■ Apache’s XMLBeans library

And the list goes on...

 This processing is laborious. For example, to marshal a Person object under JAXB,

you’d have to write something like this:

JAXBContext jc = JAXBContext.newInstance("net.teamsparq.domain");
ObjectFactory objFactory = new ObjectFactory();
Person person = (Person)objFactory.createPerson();
person.setId(2);
person.setName("Gweneth");
Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
m.marshal(person, System.out);

You’d also have to have a full Person class coded up with getters and setters to make it

a proper Java bean.

 Groovy takes a different approach because it treats XML as a first-class citizen in the

language. This would be the Groovy equivalent:

def writer = new StringWriter();
def xml = new groovy.xml.MarkupBuilder(writer);
xml.person(id:2) {
 name 'Gweneth'
 age 1
}
println writer.toString();

As you can see, it’s a very quick language to work with, and it’s close enough to Java

that developers can transition easily to it.

 Groovy’s features are also aimed at helping you write less boilerplate code; for

example, you can deal with XML and loop over collections in a much more concise

215Getting started with Groovy

way than in Java. Groovy interoperates well with Java and so you can use Groovy’s

dynamic nature and language features and yet still easily interoperate with Java.

 Groovy has a very flat learning curve for Java developers as it’s syntactically very

similar to Java and you only need the Groovy JAR to get started. By the end of this

chapter, we expect that you’ll be well into the groove with this new language!2

 Groovy is fully parsed, compiled, and generated before execution by the JVM,

which leaves some developers wondering, “Why doesn’t it pick up obvious errors at

compile time?” It always pays to remember that Groovy is a dynamic language—that

performs its type checking and binding at runtime.

Groovy still relies on Java for some of its heavy lifting, and it’s very easy to call out to

existing Java libraries. This ability to use Java along with Groovy’s dynamic typing and

new language features makes Groovy an excellent rapid prototyping language. Groovy

can also be used as a scripting language, and it therefore has a firmly established repu-

tation as Java’s agile and dynamic friend.

 In this chapter, you’ll start by running some simple Groovy examples. Once you’re

comfortable with the running of a basic Groovy program, you’ll move on to learning

Groovy-specific syntax and the parts of Groovy that typically trip up a Java developer.

The remainder of the chapter gets into the meat of Groovy, covering several major

language features that have no equivalents in Java. Finally, you’ll learn to become a

polyglot programmer on the JVM by blending Java and Groovy code!

8.1 Getting started with Groovy

If you haven’t got Groovy installed, see appendix C for the details of how to get it set

up on your machine before you move on to compiling and running the first example

in this chapter.

 In this section, we’ll show you how to run the basic commands to compile and exe-

cute Groovy so you can do so comfortably from any OS. We’ll also introduce you to

2 Yes, another terrible pun—we warned you, and yet here you are.

Groovy performance

Groovy isn’t always the best choice of language if your software has stringent perfor-
mance requirements. Groovy objects extend from GroovyObject, which contains an
invokeMethod(String name, Object args) method. Each time you call a Groovy
method, that method isn’t called directly as it would in Java. Instead, it’s executed
via the aforementioned invokeMethod(String name, Object args), which itself
executes a number of reflection calls and lookups, which of course slows processing.
The Groovy language developers have made several optimizations, and more will fol-
low as future versions of Groovy take advantage of the new invokedynamic bytecode
in the JVM.

216 CHAPTER 8 Groovy: Java’s dynamic friend

the Groovy console, a valuable, OS-independent scratchpad environment ideal for try-

ing out quick bits of Groovy code.

 Have it installed? Then let’s get started compiling and running some Groovy code!

8.1.1 Compiling and running

There are a number of useful command-line tools that you should get to know with

Groovy; in particular, the compiler (groovyc) and the runtime executor (groovy).

These two commands are roughly synonymous with javac and java respectively.

Let’s quickly explore these command-line tools by compiling and running a simple

Groovy script that will print this line:3

It's Groovy baby, yeah!

Open a command-line prompt and follow these steps.

1 Create a file called HelloGroovy.groovy in any directory you like.

2 Edit the file, adding this line:
System.out.println("It's Groovy baby, yeah!");

3 Save HelloGroovy.groovy.

4 Compile the file by executing this command:
groovyc HelloGroovy.groovy

5 Run it by executing this command:
groovy HelloGroovy

TIP You can skip the compile step if the Groovy source file is in your CLASSPATH.
The Groovy runtime will execute groovyc on the source file first if need be.

Congratulations, you’ve run your first line of Groovy code!

 Just like Java, you can write, compile, and execute Groovy code from the command

line, but that quickly becomes unwieldy when dealing with things such as the CLASSPATH.

Groovy is well supported by the major Java IDEs (Eclipse, IntelliJ, and NetBeans) but

Groovy also provides a useful console for you to run code in. This console is ideal if

you’re quickly trying to script up a solution or prototype a small piece of code, as it’s

much faster to use than a full-fledged IDE.

Why is the style of the code examples changing?

The syntax and semantics of the code snippets and listings will evolve from Java-like
examples to purely idiomatic Groovy examples as you move through this chapter. Our
intention here is to ease your transition from Java to Groovy. Another excellent title
to assist you is Making Java Groovy, by Kenneth A. Kousen (Manning, 2012).

3 Thank you Austin Powers!

217Groovy 101—syntax and semantics

8.1.2 Groovy console

We’ll use the Groovy console to run the code examples in this chapter, because it’s a

nice, lightweight IDE to use. To start the console, execute groovyConsole on the com-

mand line.

 A separate window should come up that looks similar to figure 8.1.

 First, you’ll want to untick the Show Script in Output option under the View menu.

This will make the output a little cleaner. Now you can make sure that the console is

working correctly by running the same line of Groovy code as in the previous exam-

ple. In the top panel of the console, enter the following code:

System.out.println("It's Groovy baby, yeah!");

Then click the Execute Script button or use the Ctrl-R keyboard shortcut. The Groovy

console will then show the following output in the bottom panel:

It's Groovy baby, yeah!

As you can see, the output panel shows you the result of the expression you’ve

just executed.

 Now that you know how to execute Groovy code quickly, it’s time to move on to

learning some Groovy syntax and semantics.

8.2 Groovy 101—syntax and semantics

In the previous section, you wrote a one-line Groovy statement with no class or

method constructs (which you’d typically need with Java). You were, in fact, writing a

Groovy script.

Figure 8.1 The Groovy console

218 CHAPTER 8 Groovy: Java’s dynamic friend

A key feature of Groovy is that you can use the same constructs as in Java, and similar

syntax too. In order to highlight this similarity, execute the following Java-like code in

the Groovy console:

public class PrintStatement
{
 public static void main(String[] args)
 {
 System.out.println("It's Groovy baby, yeah!");
 }
}

The result here is the same "It’s Groovy baby, yeah!" output that you got from the

previous one-line Groovy script. As an alternative to using the Groovy console, you could

happily place the preceding code into a source file called PrintStatement.groovy, use

groovyc to compile it, and then execute groovy to run it. In other words, you can

write Groovy source code with classes and methods just as you would with Java.

TIP You can use almost all of the common Java syntax with Groovy, so your
while/for loops, if/else constructs, switch statements, and so on, will all
work as you’d expect them to. Any new syntax and major differences will be
highlighted in this and corresponding sections.

We’ll introduce you to Groovy-only syntax idioms as the chapter progresses, with the

examples shifting from very Java-like syntax to more pure Groovy syntax. You’ll see a

marked difference between the heavily structured Java code that you’re used to and

the less verbose script-like Groovy syntax.

 The rest of this section will cover the basic syntax and semantics of Groovy and why

they’ll help you as a developer. In particular, we’ll cover

■ Default imports

■ Numeric handling

■ Variables, dynamic versus static types, and scoping

■ Syntax for lists and maps

Groovy as a scripting language

Unlike Java, Groovy source code can be executed as a script. For example, if you have
code outside of a class definition, that code will still execute. Like other dynamic
scripting languages, such as Ruby or Python, a Groovy script is fully parsed, compiled,
and generated in memory before execution on the JVM. Any code that you can exe-
cute in the Groovy console can also be saved in a .groovy file, compiled, and then run
as a script.

Some developers have taken to using Groovy scripts over shell scripts, because
they’re more powerful, easier to write, and cross-platform as long as there is a JVM
installed. A quick performance tip here is to utilize the groovyserv library, which
starts up the JVM and Groovy extensions, making your scripts run that much faster.

219Groovy 101—syntax and semantics

First, it’s important to understand what Groovy provides out of the box. Let’s look at

the language features that are imported by default for a Groovy script or program.

8.2.1 Default imports

Groovy imports some language and utility packages by default to provide the basic

language support. Groovy also imports a series of Java packages to give it a wider

base of initial functionality. The following list of imports is always implicit in your

Groovy code:

■ groovy.lang.*

■ groovy.util.*

■ java.lang.*

■ java.io.*

■ java.math.BigDecimal

■ java.math.BigInteger

■ java.net.*

■ java.util.*

In order to utilize further packages and classes, you can use the import statement in

the same way that you would in Java. For example, to get all of the Math classes from

Java, you can simply add the import java.math.*; line to your Groovy source code.

Let’s use some of that default language support and look at the differences between

how Java and Groovy deal with numeric handling.

8.2.2 Numeric handling

Groovy can evaluate mathematical expressions on the fly, and its observable effects

have been described as the principle of least surprise. This principle is especially appar-

ent when you’re dealing with literal floating point numbers (for example, 3.2). Java’s

BigDecimal is used to represent the literal floating point number under the hood, but

Groovy ensures that the behavior is what will least surprise the developer.

JAVA AND BIGDECIMAL

Let’s look at a common area where Java developers have been tripped up with regards to

numeric handling. In Java, if you were to add 3 and 0.2 using BigDecimal, what answer

would you expect? The inexperienced Java developer who doesn’t check the Javadoc

Setting up optional JAR files

In order to add functionality (like that of an in-memory database and its driver), you’ll
want to add optional JARs to the Groovy installation. There are Groovy idioms for
this—a commonly used one is to use the @Grab annotation in your script. Another
way (while you’re still learning Groovy) is to add the JAR files to your CLASSPATH, just
like you would with Java.

220 CHAPTER 8 Groovy: Java’s dynamic friend

might well execute something like the following code, which would return the truly hor-

rendous result of 3.200000000000000011102230246251565404236316680908203125.

BigDecimal x = new BigDecimal(3);
BigDecimal y = new BigDecimal(0.2);
System.out.println(x.add(y));

More experienced Java developers know that the better practice is to use the BigDecimal

(String val) constructor as opposed to using the BigDecimal constructor with a

numeric literal argument. Writing it the better-practice way would get you the answer

of 3.2:

BigDecimal x = new BigDecimal("3");
BigDecimal y = new BigDecimal("0.2");
System.out.println(x.add(y));

This is a little counterintuitive and Groovy solves this problem by utilizing the better-

practice constructor as a default.

GROOVY AND BIGDECIMAL

In Groovy the better-practice constructor is used automatically when dealing with

floating point numeric literals (remember these are BigDecimals under the hood); 3 +

0.2 will result in 3.2. You can prove this for yourself by executing the following snippet

in your Groovy console:

3 + 0.2;

You’ll find that BEDMAS4 is correctly supported and that Groovy seamlessly swaps

between numeric types (such as int and double) as required.

 Already Groovy is helping you perform arithmetic operations just that little bit eas-

ier than Java. If you’d like to know what’s really going on under the hood in all cases,

the page at http://groovy.codehaus.org/Groovy+Math has the complete details.

 The next bit of Groovy semantics you’ll need to learn about is how Groovy deals

with its variables and scoping. Here the rules are a little different from Java, due to

Groovy’s dynamic nature and script-capable execution.

8.2.3 Variables, dynamic versus static types, and scoping

As Groovy is a dynamic language that’s capable of being a scripting language, there

are some nuances about dynamic versus static types and about how variables are

scoped that you need to know about.

TIP If you intend your Groovy code to interoperate with Java, it can pay to use
static types where possible, because it simplifies type overloading and dispatch.

The first step is to understand the difference between Groovy’s dynamic and static types.

4 Takes you back to school doesn’t it! BEDMAS stands for Brackets, Exponents, Division, Multiplication, Addi-
tion, Subtraction—the standard order of operations for arithmetic. Depending on where you grew up, you
may remember BODMAS or PEMDAS instead.

http://groovy.codehaus.org/Groovy+Math

221Groovy 101—syntax and semantics

DYNAMIC VERSUS STATIC

Groovy is a dynamic language, so you don’t have to specify the type of the variable

you’re declaring (or returning). For example, you can assign a Date to a variable x,

and assign a different type to x immediately afterward.

x = new Date();
x = 1;

Using dynamic types can have the benefits of terser code (omitting “obvious” types),

faster feedback, and the flexibility to assign different types of objects to a single vari-

able that you want to execute work on. For those who like to be more sure about what

type they’re using, Groovy does support static types as well. For example:

Date x = new Date();

The Groovy runtime can detect if you have declared a static type and then try to assign

an incorrect type to it, for example.

Exception thrown

org.codehaus.groovy.runtime.typehandling.GroovyCastException: Cannot cast
object 'Thu Oct 13 12:58:28 BST 2011' with class 'java.util.Date' to
class 'double'

...

You can reproduce that output by running the following code in the Groovy console.

double y = -3.1499392;
y = new Date();

As expected the Date type cannot be assigned to a double. That covers dynamic versus

static typing in Groovy, but what about scope?

SCOPES IN GROOVY

For classes in Groovy, scoping works just like it does in Java, with class, method, and

loop scoped variables, as you’d expect. It’s when you’re dealing with a Groovy script

that the topic of scoping gets interesting.

TIP Remember, Groovy code that’s not inside the usual class and method
constructs is considered to be a Groovy script. You saw an example of this in
section 8.1.1.

In simple terms, a Groovy script has two scopes:

■ binding—The binding is the global scope for the script.

■ local—The local scope is just that—variables are scoped locally to the block that

they’re declared in. With regards to a variable declared inside the script block

(for example, at the top of a script) the variable is in the local scope if it has

been defined.

Having the ability to use global variables in a script allows for great flexibility. You can

think of it a little like a class-scoped variable in Java. A defined variable is one that has a

222 CHAPTER 8 Groovy: Java’s dynamic friend

static type declared or that uses the special def keyword to indicate that it is a defined

variable with no type.

 Methods declared in a script don’t have access to the local scope. If you call a method

that tries to reference a locally scoped variable, it will fail with a message similar to this:

groovy.lang.MissingPropertyException: No such property: hello for class:
listing_8_2

...

The following code outputs the preceding exception, highlighting this scoping issue.

String hello = "Hello!";
void checkHello()
{
 System.out.println(hello);
}
checkHello();

If you were to replace the first line in the preceding code with hello = "Hello!"; the

method would successfully print “Hello.” As the variable hello is no longer defined as

a String, it’s now in the binding scope.

 Apart from the differences in writing a Groovy script, dynamic and static types,

scoping, and variable declarations work pretty much as you’d expect. Let’s move on to

Groovy’s built-in support for collections (lists and maps).

8.2.4 Syntax for lists and maps

Groovy treats lists and maps (including sets) as first-class citizens in the language, so

there’s no need to explicitly declare a List or a Map construct like you would in Java.

That said, Groovy lists and maps are implemented behind the scenes as the familiar

Java ArrayList and LinkedHashMap constructs.

 A massive advantage for you in using the Groovy syntax here is that there is far

less boilerplate code to write, and the code is much more concise, yet retains maxi-

mum readability.

 In order to specify and utilize a list in Groovy, you use square bracket [] syntax

(reminiscent of Java’s native array syntax). The following code demonstrates this

behavior, by referencing the first element (Java), setting the size of the list (4), and

then setting the list to empty [].

jvmLanguages = ["Java", "Groovy", "Scala", "Clojure"];
println(jvmLanguages[0]);
println(jvmLanguages.size());
jvmLanguages = [];
println(jvmLanguages);

You can see that working with a list as a first-class citizen is more lightweight than hav-

ing to use java.util.List and its implementations!

 Groovy’s dynamic typing allows you to store values of mixed types in a list (or a

map, for that matter), so the following code is also valid:

jvmLanguages = ["Java", 2, "Scala", new Date()];

223Differences from Java—traps for new players

Dealing with maps in Groovy is similar, using the [] notation and a colon character

(:) to separate key/value pairs. To reference a value in a map, you use the special

map.key notation. The following code demonstrates this behavior by

■ Referencing the value 100 for the key "Java"

■ Referencing the value "N/A" for the key "Clojure"

■ Changing the value to 75 for the key "Clojure"

■ Setting the map to be empty ([:])

languageRatings = [Java:100, Groovy:99, Clojure:"N/A"];
println(languageRatings["Java"]);
println(languageRatings.Clojure);
languageRatings["Clojure"] = 75;
println(languageRatings["Clojure"]);
languageRatings = [:];
println languageRatings;

TIP Notice how the keys in the map are strings, but without the quotation
marks? Again Groovy makes some syntax optional for conciseness. You can
choose to use or not use quotation marks around map keys.

This is all fairly intuitive and comfortable to work with. Groovy takes this concept of

first-class support of maps and lists further.

 You can perform a few syntax tricks such as referencing a range of items in a collec-

tion or even referencing the last item using a special negative index. The following

code demonstrates this behavior by referencing the first three elements in the list

([Java, Groovy, Scala]) and the last element (Clojure).

jvmLanguages = ["Java", "Groovy", "Scala", "Clojure"];
println(jvmLanguages[0..2]);
println(jvmLanguages[-1]);

You’ve now seen some of the basic syntax and semantics that Groovy has to offer. But

there’s more to explore in this area before you can use Groovy effectively. The next

section covers further syntax and semantics, with a particular emphasis on things that

can trip up a Java developer new to Groovy.

8.3 Differences from Java—traps for new players

By now you should be quite comfortable with the basic syntax of Groovy, in part

due to its syntactic similarity with Java. But that similarity can sometimes trip you

up, and this section will cover further syntax and semantics that commonly confuse

Java developers.

 Groovy has a great deal of syntax that isn’t required, such as

■ Semicolons at the end of a statement

■ return statements

■ Parentheses for method parameters

■ public access modifiers

224 CHAPTER 8 Groovy: Java’s dynamic friend

This is all designed to make your source code more concise, an advantage when

you’re rapidly prototyping a piece of software.

 Other changes include their being no difference between checked and unchecked

exceptions, an alternative way of dealing with the concept of equality, and the idiom

of no longer using inner classes. Let’s begin with the simplest change: optional semi-

colons and optional return statements.

8.3.1 Optional semicolons and return statements

In Groovy, semicolon characters (;) at the end of a statement are optional, unless you

have several statements on one line.

 Another optional piece of syntax is that you don’t need to specify the return key-

word when returning an object or value from a method. Groovy will automatically

return the result of the last evaluated expression.

 The following listing demonstrates these optional behaviors and returns 3 as the

last expression evaluated in the method.

Scratchpad pad = new Scratchpad()
println(pad.doStuff())

public class Scratchpad
{
 public Integer doStuff()
 {
 def x = 1
 def y; def String z = "Hello";
 x = 3
 }
}

The preceding code still looks pretty similar to Java, and Groovy continues this theme

of less verbose code even further. Next up, you’ll see how Groovy has optional paren-

theses for method parameters.

8.3.2 Optional parentheses for method parameters

Method calls in Groovy can omit the parentheses if there is at least one parameter and

there is no ambiguity. This means that the following code

println("It's Groovy baby, yeah!")

can be written as

println "It's Groovy baby, yeah!"

Again, the code is becoming slightly less verbose yet still retains its readability.

 The next aspect that makes Groovy code look less like Java is the optional public

access modifier.

Listing 8.1 Semicolons and returns are optional

No semicolons

No return
statement

225Differences from Java—traps for new players

8.3.3 Access modifiers

The well-grounded Java developer knows that determining the level of access to your

classes, methods, and variables is an important part of your OO design. Groovy provides

the same public, private, and protected levels as Java, but unlike Java, its default

access modifier is public. So let’s alter the previous listing (8.1) by removing some of

the public modifiers and adding a few private modifiers to clarify this change.

Scratchpad2 pad = new Scratchpad2()
println(pad.doStuff())

class Scratchpad2
{
 def private x;
 Integer doStuff()
 {
 x = 1
 def y; def String z = "Hello";
 x = 3
 }
}

Continuing with the theme of reducing the amount of syntax, what about those famil-

iar throws clauses that you, as a Java developer, use in your method signatures for

throwing checked exceptions?

8.3.4 Exception handling

Unlike Java, there is no difference between checked and unchecked exceptions in

Groovy. Any throws clauses in method signatures are ignored by the Groovy compiler.

 Groovy utilizes certain syntax shortcuts to make your source code more concise

while still maintaining readability. Now it’s time to look at a syntax change that has

some serious semantic impact—the equality operator.

8.3.5 Equality in Groovy

Following the principle of least surprise, Groovy treats == as the equivalent of the

equals() method in Java. Again, this is a benefit to the intuitive developer; you don’t

have to remember to swap between == and equals() for primitives and objects like

you do in Java.

 If you want to check for actual object identity equality, you need to use Groovy’s built-

in is() function. There is an exception to this rule, in that you can still use == when

checking to see if an object is null. The following listing demonstrates these behaviors.

Integer x = new Integer(2)
Integer y = new Integer(2)
Integer z = null

Listing 8.2 public is the default access modifier

Listing 8.3 Equality in Groovy

No public access
modifier

226 CHAPTER 8 Groovy: Java’s dynamic friend

if (x == y)
{
 println "x == y"
}

if (!x.is(y))
{
 println "x is not y"
}

if (z.is(null))
{
 println "z is null"
}

if (z == null)
{
 println "z is null"
}

You can, of course, use the equals() method to check for equality, if that’s what

you’re more comfortable with.

 There is one last Java construct that’s worth mentioning briefly—inner classes,

which are pretty much replaced by a new language construct in Groovy.

8.3.6 Inner classes

Inner classes are supported in Groovy, but in most cases you’ll be using the concept of

a function literal instead. We’ll cover function literals in the next section, because it’s

a powerful modern programming construct that deserves fuller treatment.

 Groovy syntax and semantics allow you to write less code while retaining decent

readability, and you can (mostly) keep using the Java syntax constructs that you feel

comfortable with. Next up, you’ll see some of the language features of Groovy that

Java doesn’t have yet. Some of these features are likely to be the tipping point for your

project in choosing Groovy for a particular task, such as XML processing.

8.4 Groovy features not (yet) in Java

There are some major language features in Groovy that Java (as of version 7) doesn’t

yet have. It’s here that a well-grounded Java developer can really reach out to a new

language in order to solve certain problems in a more elegant fashion. In this section

we’ll explore a number of these features, including:

■ GroovyBeans—beans made simpler

■ Safe navigation of null objects using the ?. operator

■ Elvis operator—an even shorter way of writing if/else constructs

■ Groovy strings, a more powerful string abstraction

■ Function literals (a.k.a. closures)—passing around functions

■ Native support for regular expressions

■ XML handling made easy

Implicit
equals() called

Object identity
check

Check for null
with is()

Check for
null

227Groovy features not (yet) in Java

We’ll start with GroovyBeans, because you’ll see them regularly in Groovy code. As a

Java developer, you may perhaps look upon them with slight suspicion, as they never

seem to be quite as complete as JavaBeans. But rest assured; GroovyBeans are every bit

as complete and they’re more convenient to use as well.

8.4.1 GroovyBeans

GroovyBeans are much like JavaBeans, except they omit the explicit getters and set-

ters, provide auto constructors, and allow you to reference member variables using

dot (.) notation. If you need to make a particular getter or setter private, or wish to

change the default behavior, you can explicitly provide that method and change it

accordingly. Auto constructors simply allow you to construct a GroovyBean, passing in

a map of parameters that correspond to the member variables of that GroovyBean.

 All of this saves you from having to deal with an awful lot of boilerplate code gener-

ation that comes with writing JavaBeans, whether you laboriously type the getters and

setters by hand or your IDE generates them for you.

 Let’s explore how a GroovyBean behaves using a Character class for a role-playing

game (RPG).5 The following code listing will produce an output of STR[18], WIS[15],

which represents the strength and wisdom member variables of the GroovyBean.

class Character
{
 private int strength
 private int wisdom
}

def pc = new Character(strength: 10, wisdom: 15)
pc.strength = 18
println "STR [" + pc.strength + "] WIS [" + pc.wisdom + "]"

The behavior here is very similar to an equivalent JavaBean in Java (encapsulation is

preserved), yet the syntax is more concise.

TIP You can use the @Immutable annotation to make a GroovyBean immuta-
ble (meaning its state can’t change). This can be useful for passing around
thread-safe data constructs, which is much safer for use with concurrent code.
This concept of immutable data structures is explored further in chapter 10,
which discusses Clojure.

Next we’ll move on to Groovy’s ability to help you with checking for null. Again, more

boilerplate code is reduced, so that you can prototype your ideas more quickly.

5 A shout out to PCGen (http://pcgen.sf.net) belongs here—a truly useful open source project for us RPGers!

Listing 8.4 Exploring the GroovyBean

http://pcgen.sf.net

228 CHAPTER 8 Groovy: Java’s dynamic friend

8.4.2 The safe-dereference operator

The NullPointerException6 (NPE) is something that all Java developers will be

(unfortunately) well acquainted with. In order to avoid the NPE, the Java developer

typically has to check for null before referencing an object, especially if they can’t

guarantee that the object they’re dealing with isn’t null. If you were to carry over that

development style into Groovy, in order to iterate over a list of Person objects, you’d

probably write null-safe code as follows (the code simply prints out “Gweneth”).

List<Person> people = [null, new Person(name:"Gweneth")]
for (Person person: people) {
 if (person != null) {
 println person.getName()
 }
}

Groovy helps you reduce some of the boilerplate “if object is null” checking code by

introducing a safe-dereference syntax, using the ?. notation. By using this notation,

Groovy introduces a special null construct that effectively represents “do nothing” as

opposed to an actual null reference.

 In Groovy, you could rewrite the previous snippet with the safe-dereference syntax

as follows:

people = [null, new Person(name:"Gweneth")]
for (Person person: people) {
 println person?.name
}

This safe-dereference support is extended to Groovy function literals, so default

Groovy collection methods such as the max() method automatically play nicely with

null references.

 Next up is the Elvis operator, which looks like the safe-dereference operator, but

has a particular use case to reduce the syntax of certain if/else constructs.

8.4.3 The Elvis operator

The Elvis operator (?:) allows you to write if/else constructs that have a default value

in extremely short syntax. Why Elvis? Because the symbol apparently looks like his

wavy hair back when Elvis was at his peak.7 The Elvis operator allows you to omit the

explicit null check as well as avoiding any repetition of variables.

 Assume you were checking whether Austin Powers was an active agent. In Java you

might use the ternary operator as follows:

String agentStatus = "Active";
String status = agentStatus != null ? agentStatus : "Inactive";

Groovy can shorten this because it coerces types to boolean values as needed, such as

in conditional checks like if statements. In the preceding code snippet, Groovy

6 One of the greatest shames of Java is that this is not called a NullReferenceException, which is what this
actually is. This still causes one of the authors to rant on demand!

7 The authors will stringently deny knowing what Elvis looked like in his heyday. We’re not that old, seriously!

229Groovy features not (yet) in Java

coerces the String into a boolean; assuming the String was null, it will convert to

the Boolean value of false, so you can omit the null check. You can then write the

previous snippet as follows:

String agentStatus = "Active"
String status = agentStatus ? agentStatus : "Inactive"

But the agentStatus variable is still repeated, and Groovy can save you extra syntax

typing here. The Elvis operator can be used to remove the need to duplicate the vari-

able name:

String agentStatus = "Active"
String status = agentStatus ?: "Inactive"

The second occurrence of the agentStatus variable is removed to reduce the code to

a more concise form.

 It’s now time to look at strings in Groovy and how they’re a little different from the

regular String in Java.

8.4.4 Enhanced strings

There is an extension to the Java String class in Groovy known as GString, which has

slightly more power and flexibility than the standard Java String.

 By convention, ordinary strings are defined by an opening and closing single

quote, although double quotes are also valid. For example:

String ordinaryString = 'ordinary string'
String ordinaryString2 = "ordinary string 2"

GStrings on the other hand must be defined with double quotes. Their main benefit

to the developer is that they can contain expressions (using ${} syntax) that can be

evaluated at runtime. If the GString is subsequently converted to an ordinary String

(that is, if it’s passed to a println call) any expressions contained within the GString are

evaluated. For example:

String name = 'Gweneth'
def dist = 3 * 2
String crawling = "${name} is crawling ${dist} feet!"

The expressions are evaluated down to either an Object, which toString() can be

called on, or a function literal. (See http://groovy.codehaus.org/Strings+and+GString

for details on the complex rules around function literals and GString.)

WARNING GStrings are not Java Strings under the covers! In particular, you
should not use GStrings as keys in maps or try to compare their equality.
Results are likely to be unexpected!

One other slightly useful construct in Groovy is the triple-quoted String or triple-quoted

GString, which allows you to wrap a string across multiple lines in your source code.

"""This GString
wraps over two lines!"""

http://groovy.codehaus.org/Strings+and+GString

230 CHAPTER 8 Groovy: Java’s dynamic friend

We’ll now move on to function literals, a coding technique that has become a hot

topic again in recent years due to the rise of interest in functional languages. Under-

standing function literals can take a little bit of a mind shift, if you’re not used to

them, so if this is your first time, now is probably a good time for a Duke mug full of

your favorite brew before you get going.

8.4.5 Function literals

A function literal is a representation of a block of code that can be passed around as a

value and can be manipulated just like any other value. It can be passed in to meth-

ods, assigned to variables, and so on. As a language feature, they have been heavily

debated in the Java community, but they’re a standard tool in the Groovy program-

mer’s kit.

 As usual, working through examples is often the best way to learn a new concept,

so we’ll walk you through a few!

 Imagine you have an ordinary static method that builds out a String with a greet-

ing to authors or readers. You call that static method from outside the utility class in

the usual manner, as in the following code listing.

class StringUtils
{
 static String sayHello(String name)
 {
 if (name == "Martijn" || name == "Ben")
 "Hello author " + name + "!"
 else
 "Hello reader " + name + "!"
 }
}
println StringUtils.sayHello("Bob");

With function literals, you can define the code that does the work without needing to

use method or class structures so you can provide the same functionality as the

sayHello(String name) method, but in a function literal. That function literal, in

turn, can be assigned to a variable, which can be passed around and executed.

 The following listing prints “Hello author Martijn!” as a result of passing the func-

tion literal assigned to sayHello, with the variable "Martijn" passed in.

def sayHello =
{
 name ->
 if (name == "Martijn" || name == "Ben")
 "Hello author " + name + "!"
 else

Listing 8.5 A simple static function

Listing 8.6 Utilizing a simple function literal

Static method
declaration

Caller

Assign function literal

Split variable
from logicb

231Groovy features not (yet) in Java

 "Hello reader " + name + "!"
}

println(sayHello("Martijn"))

Notice the use of the { syntax that opens the function literal. The arrow syntax (->) B
separates the parameters being passed into the function literal from the logic being

performed. Lastly, the } character closes off the function literal.

 In listing 8.6, we’ve treated the function literal pretty much like we would a

method. You might therefore be thinking, “They still don’t seem that useful!” It’s only

when you start getting creative with them (thinking in a functional way) that you start

to see their benefits. For example, function literals are especially powerful when com-

bined with the first-class support Groovy provides for collections.

8.4.6 First-class support for manipulating collections

Groovy has several built-in methods that can be utilized with collections (lists and

maps). This language level support for collections, combined with function literals,

results in a significant reduction of the sort of boilerplate code you’d typically have to

write in Java. It’s important to note that readability isn’t sacrificed, ensuring that your

code stays maintainable.

 A useful subset of the built-in functions that utilize function literals are listed in

table 8.1.

A fairly typical coding task in Java is when you have to iterate over a collection of

objects and perform some sort of action on each object in that collection. For exam-

ple, using Java 7, if you wanted to print movie titles, you’d probably write code similar

to the next listing.8

Table 8.1 Subset of Groovy functions on collections

Method Description

each Iterates over a collection applying a function literal

collect Collects the return value of the function literal call on each item in a collection

(equivalent to map in the map/reduce pairing in other languages)

inject Processes the collection with a function literal and builds up a return value

(equivalent to reduce in the map/reduce pairing in other languages)

findAll Finds all of the items in the collection matching the function literal

max Returns the maximum value in that collection

min Returns the minimum value in that collection

8 No, we’re not going to tell you who picked Snow White as his favorite movie (it was the other author!)

Print
result

232 CHAPTER 8 Groovy: Java’s dynamic friend

List<String> movieTitles = new ArrayList<>();
movieTitles.add("Seven");
movieTitles.add("Snow White");
movieTitles.add("Die Hard");

for (String movieTitle : movieTitles)
{
 System.out.println(movieTitle);
}

There are some syntactical tricks you can play in Java to reduce the amount of source

code, but the fact remains that you have to manually iterate over the List of movie

titles using some sort of a loop construct.

 With Groovy, you can use its first-class support for collections, built-in functionality

for iterating over a collection (the each function), and a function literal to radically

reduce the amount of source code you need to write. In doing so, you also invert the

relationship between the list and the algorithm you want to execute. Instead of pass-

ing the collection into a method, you effectively pass the method into the collection!

 The following code performs exactly the same work as listing 8.7, but it’s reduced

to just two lines of easily readable code:

movieTitles = ["Seven", "SnowWhite", "Die Hard"]
movieTitles.each({x -> println x})

In fact, you can make this even more concise by using the implicit it variable, which

can be used with single-argument function literals, as follows:9

movieTitles = ["Seven", "SnowWhite", "Die Hard"]
movieTitles.each({println it})

As you can see, the code is concise, easy to read, and has the same observable effect as

the Java 7 version.

TIP There’s only so much room in this chapter, so for more examples we
recommend you check out the collections section on the Groovy website
(http://groovy.codehaus.org/JN1015-Collections) or the excellent Groovy in
Action, second edition, by Dierk König, Guillaume Laforge, Paul King, Jon
Skeet, and Hamlet D’Arcy (Manning, 2012).

The next language feature that might take some getting used to is Groovy’s built-in

regular expression support, so while you’ve still got that coffee going it’s best to jump

straight in!

Listing 8.7 Printing out a collection in Java 7

9 Groovy gurus will also point out that this can be reduced to one line of code!

http://groovy.codehaus.org/JN1015-Collections

233Groovy features not (yet) in Java

8.4.7 First-class support for regular expressions

Groovy treats regular expressions as a built-in part of the language, making activities

such as text processing much simpler than in Java. Table 8.2 shows the regular expres-

sion syntax you can use in Groovy, with the Java equivalent.

Say you want to partially match on some incorrect log data that you’ve received from a

piece of hardware. In particular, you’re looking for instances of the pattern 1010,

which you’re then looking to flip around to 0101. In Java 7, you’d probably write code

similar to the following.

Pattern pattern = Pattern.compile("1010");
String input = "1010";
Matcher matcher = pattern.matcher(input);
if (input.matches("1010"))
{
 input = matcher.replaceFirst("0101");
 System.out.println(input);
}

In Groovy, the individual lines of code are shorter, because the Pattern and Matcher

objects are built into the language. The output (0101), of course, stays the same, as

the following code demonstrates.

def pattern = /1010/
def input = "1010"
def matcher = input =~ pattern
if (input ==~ pattern)
{
 input = matcher.replaceFirst("0101")
 println input
}

Groovy supports the full semantics of regular expressions in the same way that Java

does, so you should have the full flexibility you’re used to there.

 Regular expressions can also be combined nicely with function literals. For exam-

ple, you could print out the details of a person by parsing a String and pulling out

the name and age.

("Hazel 1" =~ /(\w+) (\d+)/).each {full, name, age
 -> println "$name is $age years old."}

Table 8.2 Groovy regular expression syntax

Method Description and Java equivalent

~ Creates a pattern (creates a compiled Java Pattern object)

=~ Creates a matcher (creates a Java Matcher object)

==~ Evaluates the string (effectively calls Java’s match() on the Pattern)

234 CHAPTER 8 Groovy: Java’s dynamic friend

Now is probably a good time to take a mental breather, because you’ll be exploring a

quite different concept next—XML handling.

8.4.8 Simple XML handling

Groovy has the concept of builders, abstractions that help you deal with arbitrary tree-

like data structures using native Groovy syntax. Examples of this can include HTML,

XML, and JSON. Groovy understands the need to be able to process this type of data

easily and provides out-of-the-box builders to do this.

In this section, we’ll focus on XML, a common format for exchanging data. Although

the core Java language (via JAXB and JAXP) and a virtual army of third-party Java

libraries (XStream, Xerces, Xalan, and so on) do give you a lot of power with XML pro-

cessing, deciding which solution to pick can often be confusing, and the Java code to

utilize those solutions can become quite verbose.

 This section will take you through creating XML from Groovy and show how you

can parse that XML back into GroovyBeans.

CREATING XML

Groovy can make it very simple for you to build up your XML documents, such as

a person:

<person id='2'>
 <name>Gweneth</name>
 <age>1</age>
</person>

Groovy can produce this XML structure using its built-in MarkupBuilder for XML. The

following code listing will produce the person XML record.

def writer = new StringWriter()
def xml = new groovy.xml.MarkupBuilder(writer)
xml.person(id:2) {
 name 'Gweneth'
 age 1

XML—a widely abused language

XML is an excellent, verbose data exchange language that has become much
maligned these days. Why? Because software developers have attempted to treat
XML as a programming language, something it isn’t suited for because it isn’t a Tur-
ing complete language.9 Hopefully in your projects, XML is being used as it was
intended, to exchange data in a human-readable format.

10 For a language to be Turing complete, it must at least be able to conditionally branch and have the ability to
change memory locations.

Listing 8.8 Producing simple XML

235Groovy features not (yet) in Java

}
println writer.toString()

Notice how the starting person element (with the id attribute set to 2) is simply created

without having to define what a Person object is. Groovy doesn’t force you to have an

explicit GroovyBean backing this XML creation, again saving you time and effort.

 Listing 8.8 is a fairly simple example. You can experiment further by changing the

output type from StringWriter, and you can try different builders such as

groovy.json.JsonBuilder() to instantly create JSON.11 When dealing with more

complex XML structures, there is also extra help to deal with namespaces and other

specific constructs.

 You’ll also want to be able to perform the reverse operation, reading in some XML

and parsing it into a useful GroovyBean.

PARSING XML

There are several ways that Groovy can parse incoming XML. Table 8.3 lists three meth-

ods and is derived from the official Groovy documentation (http://docs.codehaus.org/

display/GROOVY/Processing+XML).

All three are quite simple to use, but for this section we’ll focus on using a XMLParser.

NOTE GPath is an expression language. You can read all about it in the
Groovy documentation: http://groovy.codehaus.org/GPath.

Let’s take the XML representing “Gweneth” (a person) produced in listing 8.8 and

parse it back into a Person GroovyBean. The following code listing demonstrates this.

class XmlExample {
 static def PERSON =
 """
 <person id='2'>
 <name>Gweneth</name>
 <age>1</age>
 </person>
 """
}

11 Dustin has a great post on this, titled “Groovy 1.8 Introduces Groovy to JSON” in his Inspired by Actual Events
blog at http://marxsoftware.blogspot.com/.

Table 8.3 Groovy XML parsing techniques

Method Description

XMLParser Supports GPath expressions for XML documents

XMLSlurper Similar to XMLParser but does so in a lazy loading manner

DOMCategory Low-level parsing of the DOM with some syntax support

Listing 8.9 Parsing XML with XMLParser

XML as
Groovy
source

b

http://marxsoftware.blogspot.com/
http://docs.codehaus.org/display/GROOVY/Processing+XML
http://docs.codehaus.org/display/GROOVY/Processing+XML
http://groovy.codehaus.org/GPath

236 CHAPTER 8 Groovy: Java’s dynamic friend

class Person {def id; def name; def age}

def xmlPerson = new XmlParser().
 parseText(XmlExample.PERSON)

Person p = new Person(id: xmlPerson.@id,
 name: xmlPerson.name.text(),
 age: xmlPerson.age.text())

println "${p.id}, ${p.name}, ${p.age}"

You begin by taking a slight shortcut and rendering the XML document in code so

that it’s already nicely on your CLASSPATH B. The first real step is to use the parse-

Text() method of the XMLParser to read in the XML data c. A new Person object is

then created, values are assigned to it d, and the Person is finally printed out for an

eyeball check.

 That completes your introduction to Groovy. By now, you’re probably itching to

use some of Groovy’s features alongside one of your Java projects! In the next section,

we’ll take you through how you can interoperate between Java and Groovy. You’ll take

that first important step for a well-grounded Java developer, becoming a polyglot pro-

grammer on the JVM.

8.5 Interoperating between Groovy and Java

This section is deceptively small, but its importance can’t be overstated! Assuming you

have been reading the material in this book in order, this is the part where you take

the leap into becoming more than just a Java developer on the JVM. The well-

grounded Java developer needs to be capable of utilizing more than one language on

the JVM to complement Java, and Groovy is a great language to start with!

 First, you’ll revisit how trivial it is to call out to Java from Groovy. Following on

from that, you’ll work through the three common ways to interface with Groovy from

Java, using GroovyShell, GroovyClassLoader, and GroovyScriptEngine.

 Let’s start with a recap of how you call Java from Groovy.

8.5.1 Calling Java from Groovy

You remember how we told you that calling Java from Groovy is as simple as providing

the JAR on the CLASSPATH and using the standard import notation? Here’s an example

of importing the classes from the org.joda.time package that belongs to the popular

Joda date and time library:12

import org.joda.time.*;

You use the classes as you would in Java. The following code snippet will print the

numerical representation of the current month.

DateTime dt = new DateTime()
int month = dt.getMonthOfYear()
println month

12 Joda is the de facto date and time library for Java until Java 8 is delivered.

Person definition
in Groovy

Read in XMLc

Populate Person
GroovyBean

d

237Interoperating between Groovy and Java

Hmm, surely it has to be more complicated than this right?

 Admiral Ackbar: “It’s a Trap!”13

 Only joking, there’s no trap! It really is that simple, so let’s look at the more diffi-

cult case shall we? Calling Groovy from Java and getting back some meaningful results

is a little more tricky.

8.5.2 Calling Groovy from Java

Calling Groovy from inside a Java application requires the Groovy JAR and other related

JARs to be put into your Java application’s CLASSPATH, as they’re runtime dependencies.

TIP Simply put the GROOVY_HOME/embeddable/groovy-all-1.8.6.jar file into
your CLASSPATH.

There are several ways you can call Groovy code from inside a Java application:

■ Using the Bean Scripting Framework (BSF)—a.k.a. JSR 223

■ Using GroovyShell

■ Using GroovyClassLoader

■ Using GroovyScriptEngine

■ Using the embedded Groovy console

In this section, we’ll focus on the most commonly used ways (GroovyShell, Groovy-

ClassLoader, and GroovyScriptEngine), starting with the simplest, the GroovyShell.

GROOVYSHELL

The GroovyShell can be invoked on a temporary basis to quickly call out to Groovy

and evaluate some expressions or script-like code. For example, some developers who

may prefer Groovy’s handling of numeric literals could call out to the GroovyShell to

perform some mathematical arithmetic. The following Java code listing will return the

value of 10.4 by using Groovy’s numeric literals to perform the addition.

import groovy.lang.GroovyShell;
import groovy.lang.Binding;
import java.math.BigDecimal;

public class UseGroovyShell {

 public static void main(String[] args) {
 Binding binding = new Binding();
 binding.setVariable("x", 2.4);
 binding.setVariable("y", 8);
 GroovyShell shell = new GroovyShell(binding);
 Object value = shell.evaluate("x + y");
 assert value.equals(new BigDecimal(10.4));
 }

}

13 Star Wars fans will be familiar with this internet meme!

Listing 8.10 Using GroovyShell to execute Groovy from Java

Set binding
to shell

Evaluate and
return expression

238 CHAPTER 8 Groovy: Java’s dynamic friend

This use of the GroovyShell covers the case where you want to execute a quick bit of

Groovy code, but what if you have a full-fledged Groovy class that you want to interact

with? In that case, you can look at using the GroovyClassLoader.

GROOVYCLASSLOADER

From a developer’s perspective, the GroovyClassLoader behaves much like a Java Class-

Loader. You look up the class and the method that you want to call, and simply call it!

 The following code snippet contains a simple CalculateMax class that contains a

getMax method, which in turn uses Groovy’s built-in max function. To run this from

Java via the GroovyClassLoader, you need create a Groovy file (CalculateMax.groovy)

with the following source code:

class CalculateMax {
 def Integer getMax(List values) {
 values.max();
 }
}

Now that you have the Groovy script that you want to execute, you can call that from

Java. The following listing has Java call out to the CalculateMax getMax function,

which returns 10 as the maximum value of the arguments passed in.

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import groovy.lang.GroovyClassLoader;
import groovy.lang.GroovyObject;
import org.codehaus.groovy.control.CompilationFailedException;

public class UseGroovyClassLoader {

 public static void main(String[] args) {
 GroovyClassLoader loader = new GroovyClassLoader();

 try {
 Class<?> groovyClass = loader.parseClass(
 new File("CalculateMax.groovy"));

 GroovyObject groovyObject = (GroovyObject)
 groovyClass.newInstance();

 ArrayList<Integer> numbers = new ArrayList<>();
 numbers.add(new Integer(1));
 numbers.add(new Integer(10));
 Object[] arguments = {numbers};

 Object value =
 groovyObject.invokeMethod("getMax", arguments);
 assert value.equals(new Integer(10));
 }
 catch (CompilationFailedException | IOException | InstantiationException
 | IllegalAccessException e) {
 System.out.println(e.getMessage());

Listing 8.11 Using GroovyClassLoader to execute Groovy from Java

Prepare
ClassLoader

Get
Groovy
class

Get instance of
Groovy class

Prepare
arguments

Call Groovy
Method

239Interoperating between Groovy and Java

 }
 }
}

This technique will probably be useful if you have a few Groovy utility classes that you

want to call out to. But if you have a larger amount of Groovy code that you need to

access, using the complete GroovyScriptEngine is the recommended option.

GROOVYSCRIPTENGINE

When you use the GroovyScriptEngine, you specify the URL or directory location of

your Groovy code. The engine then loads and compiles those scripts as necessary,

including dependent scripts. For example, if you change script B and script A is reli-

ant on B, the engine will recompile the whole lot.

 Let’s say that you have a Groovy script (Hello.groovy) that defines a simple state-

ment of “Hello” followed by a name (a parameter that you want to be supplied by your

Java application).

def helloStatement = "Hello ${name}"

Your Java application then uses the GroovyScriptEngine to utilize Hello.groovy and

prints out a greeting, as in the following code listing.

import groovy.lang.Binding;
import groovy.util.GroovyScriptEngine;
import groovy.util.ResourceException;
import groovy.util.ScriptException;
import java.io.IOException;

public class UseGroovyScriptEngine {
 public static void main(String[] args)
 {
 try {
 String[] roots = new String[] {"/src/main/groovy"};
 GroovyScriptEngine gse =
 new GroovyScriptEngine (roots);

 Binding binding = new Binding();
 binding.setVariable("name", "Gweneth");

 Object output = gse.run("Hello.groovy", binding);
 assert output.equals("Hello Gweneth");
 }
 catch (IOException | ResourceException | ScriptException e) {
 System.out.println(e.getMessage());
 }
 }
}

Remember that any Groovy script that’s being monitored by the GroovyScriptEngine

can now be changed by you at whim. For example, if you were to change the

Hello.groovy script to this,

def helloStatement = "Hello ${name}, it's Groovy baby, yeah!"

Listing 8.12 Using GroovyScriptEngine to execute Groovy from Java

Set
roots

Initialize
Engine

Run
script

240 CHAPTER 8 Groovy: Java’s dynamic friend

then the next time that bit of Java code ran, it would use that new, longer message.

This gives your Java applications a dynamic flexibility that was not possible before. This

can be invaluable in situations such as debugging production code, altering proper-

ties of a system at runtime, and more!

 That completes your introduction to Groovy. There’s been a lot to go over!

8.6 Summary

Groovy has several compelling features that make it a great language to use alongside

Java. You can write syntax that’s very similar to that of Java, but you also have the

choice of writing the same logical code in a more concise manner. Readability isn’t

sacrificed with this conciseness, and Java developers will have no trouble in picking up

the new shortened syntax related to collections, null reference handling, and Groovy-

Beans. There are a few traps awaiting the Java developer in Groovy, but you’ve now

worked through most of the common cases, and you’ll hopefully be able to pass this

newfound knowledge on to your colleagues.

 Groovy has several new language features that many Java developers hope to see in

the Java language itself one day. The most difficult to grasp, yet most powerful, of

these is function literals, a powerful programming technique that (amongst other

capabilities) helps you execute operations over collections with ease. Collections, of

course, are treated as first-class citizens, and you’re able to create, alter, and generally

manipulate them with short, easy to use syntax.

 Most Java developers have to either generate or parse XML in their Java programs,

and you can get assistance from Groovy, which takes much of the heavy burden with

its built-in XML support.

 You took your first steps toward becoming a polyglot programmer by making use

of various techniques to integrate your Java and Groovy code so that they can work

together to solve your coding challenges.

 Your journey doesn’t stop here. You’ll continue to use and explore more Groovy in

chapter 13, which discusses rapid web development.

 Next up, we have Scala, another language on the JVM that’s causing a bit of a stir in

the industry. Scala is a language that’s both object oriented and functional, making it

a language worth looking at to solve modern programming dilemmas.

241

Scala: powerful
and concise

Scala is a language that came out of the academic and programming language

research community. It has gained a certain amount of adoption, due to its very

powerful type system and advanced features, which have proved to be useful for

elite teams.

 There is currently a lot of interest in Scala, but it’s too early to tell whether it’s a

language that will fully permeate the Java ecosystem and challenge Java as a pri-

mary development language.

 Our best guess is that Scala is going to filter down into more teams, and that

some projects are going to end up deploying it. Our prediction is that a larger pool

of developers will see some Scala in one of their projects over the next 3-4 years.

This means that the well-grounded Java developer should be aware of it, and be

able to determine whether it’s right for their projects.

This chapter covers

■ Scala is not Java

■ Scala syntax and more functional style

■ Match expressions and patterns

■ Scala’s type system and collections

■ Concurrent Scala with actors

242 CHAPTER 9 Scala: powerful and concise

EXAMPLE A financial risk modeling application might want to make use of
Scala’s novel approach to object-orientation, type inference, and flexible
syntax capabilities, new collections classes (including natural functional pro-
gramming style, such as the map/filter idioms), and the actor-based concur-
rency model.

When arriving from Java, there are some aspects of Scala that a new developer needs

to keep uppermost in mind—most importantly the simple fact that Scala is not Java.

 This seems like a pretty obvious point. After all, every language is different, so of

course Scala is a different beast from Java. But as we discussed in chapter 7, some lan-

guages are more similar to each other than others. When we introduced Groovy in

chapter 8, we emphasized the similarities it has to Java. This hopefully helped with

your first exploration of a non-Java JVM language.

 In this chapter, we want to do something a little different—we’ll start by highlight-

ing some Scala features that are quite specific to the language. We like to think of it as

“Scala in its natural habitat”—a tour of how to start writing Scala that doesn’t look like

translated Java. After that, we’ll discuss project aspects—how to figure out if Scala is

right for your project. Then, we’ll look at some of Scala’s syntax innovations that can

make Scala code concise and beautiful. Next up is Scala’s approach to object orienta-

tion, and then a section on collections and data structures. We’ll conclude with a section

on Scala’s approach to concurrency and its powerful actor model.

 As we go over our featured aspects of Scala, we’ll explain the syntax (and any other

necessary concepts) as we go. Scala is quite a large language compared to Java—there

are more basic concepts and more syntax points to be aware of. This means you

should expect that as you’re exposed to more Scala code, you’ll need to explore more

of the language on your own.

 Let’s take a peek ahead at some of the themes we’ll be encountering in full later

on. This will help you get used to Scala’s different syntax and mindset, and will help

pave the way for what’s to come.

9.1 A quick tour of Scala

These are the main aspects that we want to showcase:

■ The use of Scala as a concise language, including the power of type inference

■ Match expressions, and associated concepts like patterns and case classes

■ Scala’s concurrency, which is based on messages and actors, rather than on the

locks of old-school Java code

These topics won’t teach you the entire language, or make you a full-fledged Scala

developer. What they can do is whet your appetite and start to show you concrete exam-

ples of where Scala might be applicable. To go further, you’ll need to explore the lan-

guage more deeply—either by finding some online resources or a book that provides a

full treatment of Scala, such as Joshua Suereth’s Scala in Depth (Manning, 2012).

243A quick tour of Scala

 The first and most visible aspect of Scala’s difference that we want to explain is the

conciseness of Scala’s syntax, so let’s head straight there.

9.1.1 Scala as a concise language

Scala is a compiled, statically typed language. This means that developers sometimes

expect the same sort of verbose code that you sometimes see in Java. Fortunately, Scala

is much more succinct—so much so that it can almost feel like a scripting language.

This can make the developer much faster and more productive, picking up some of

the speed gains that can come when working in a dynamically typed language.

 Let’s look at some very simple sample code and examine Scala’s approach to con-

structors and classes. For example, consider writing a simple class to model a cash

flow. This needs the user to supply two pieces of information—the amount of the

cash flow and the currency. In Scala, you’d do it like this:

class CashFlow(amt : Double, curr : String) {
 def amount() = amt
 def currency() = curr
}

This class is just four lines (and one of those is the terminating right brace). Neverthe-

less, it provides getter methods (but no setters) for the parameters, and a single con-

structor. This is considerably more bang for the buck (or line of code) than the

corresponding Java code:

public class CashFlow {
 private final double amt;
 private final String curr;

 public CashFlow(double amt, String curr) {
 this.amt = amt;
 this.curr = curr;
 }

 public double getAmt() {
 return amt;
 }

 public String getCurr() {
 return curr;
 }
}

The Java version is much more repetitive than the Scala code, and this repetition is

one of the causes of verbosity.

 By taking the Scala path of trying not to make the developer repeat information,

more code will fit on an IDE screen at any one time. This means that when faced with

a complex bit of logic, the developer can see more of it, and hopefully get additional

clues toward understanding it.

244 CHAPTER 9 Scala: powerful and concise

While we’re here, let’s have a look at some of the syntax points can we glean from this

first example:

■ The definition of a class (in terms of its parameters) and the constructor for a

class are one and the same. Scala does allow additional “auxiliary construc-

tors”—we’ll talk about those later.
■ Classes are public by default, so there’s no need for a public keyword.
■ Return types of methods are type-inferred, but you need the equals sign in the

def clause that defines them to tell the compiler to type-infer.
■ If a method body is just a single statement (or expression), it doesn’t need

braces around it.
■ Scala doesn’t have primitive types in the same way that Java does. Numeric types

are objects.

Conciseness doesn’t stop there. You can even see it in as simple a program as the clas-

sic Hello World:

object HelloWorld {
 def main(args : Array[String]) {
 val hello = "Hello World!"

 println(hello)
 }
}

There are a few features that help reduce boilerplate even in this most basic example:

■ The object keyword tells the Scala compiler to make this class a singleton.
■ The call to println() doesn’t need to be qualified (thanks to default imports).
■ main() doesn’t need to have the keywords public or static applied to it.
■ You don’t have to declare the type of hello—the compiler just works it out.
■ You don’t have to declare the return type of main()—it’s automatically Unit

(Scala’s equivalent of void).

There are some other useful syntax facts that are relevant in this example:

■ Unlike Java and Groovy, the type of the variable comes after the variable name.
■ Square brackets are used by Scala to indicate a generic type, so the type of args

is specified as Array[String] instead of String[].
■ Array is a genuine generic type.
■ Generics are mandatory for collection types (you can’t have the equivalent of a

Java raw type).

Want to save $1,500?

The Scala version of the CashFlow class is almost 75 percent shorter than the Java
version. One estimate for the cost of code is $32 per line per year. If we assume a
five-year lifespan for this piece of code, the Scala version will cost $1,500 less in
maintenance than the Java code over the lifetime of the project.

245A quick tour of Scala

■ Semicolons are pretty much optional.

■ val is the equivalent of a final variable in Java—it declares an immutable variable.

■ Initial entry points to Scala applications are always contained in an object.

In the sections to come, we’ll explain in more detail how the syntax we’ve met so far

works, and we’ll cover a selection of Scala’s other finger-saving innovations. We’ll also dis-

cuss Scala’s approach to functional programming, which helps considerably with writing

concise code. For now, let’s move on to discuss a very powerful “native Scala” feature.

9.1.2 Match expressions

Scala has a very powerful construct called a match expression. The simple cases of

match are related to Java’s switch, but match has forms that are far more expressive.

The form of a match expression depends on the structure of the expression in the

case clause. Scala calls the different types of case clauses patterns, but be careful to

note that these are distinct from the “patterns” found in regular expressions

(although you can use a regexp pattern in a match expression, as you’ll see).

 Let’s start by looking at an example that comes from familiar ground. The following

code snippet shows the strings-in-switch example we met way back in section 1.3.1, but

freely translated into Scala code.

var frenchDayOfWeek = args(0) match {
 case "Sunday" => "Dimanche"
 case "Monday" => "Lundi"
 case "Tuesday" => "Mardi"
 case "Wednesday" => "Mercredi"
 case "Thursday" => "Jeudi"
 case "Friday" => "Vendredi"
 case "Saturday" => "Samedi"
 case _ => "Error: '"+ args(0) +"' is not a day of the week"
}
println(frenchDayOfWeek)

In this example, we’re only exhibiting the two most basic patterns—the constant pat-

terns for the days of the week, and the _ pattern, which handles the default case. We’ll

meet others later in the chapter.

 From a language purity point of view, we could note that Scala’s syntax is cleaner

and more regular than Java’s in at least two ways:

■ The default case doesn’t require the use of a different keyword.

■ Individual cases don’t fall through into the next case as they do in Java, so

there’s no need for the break keyword either.

Some other syntax points to take away from this example:

■ The var keyword is used to declare a mutable (nonfinal) variable. Try not to

use it unless necessary, but it is needed some of the time.

■ Array access uses round brackets; for example, args(0) for the first argument

to main().

246 CHAPTER 9 Scala: powerful and concise

■ A default case should always be included. If Scala fails to find a match with any

case at runtime, a MatchError will be thrown. This is pretty much never what

you want to happen.

■ Scala supports indirect method call syntax, so you can write args(0) match { ... }

as an equivalent to args(0).match({ ... }).

So far, so good. The match construct looks like a slightly cleaner switch statement.

But this is only the most Java-like of many possible patterns. Scala has a large number

of language constructions that use different sorts of patterns. As an example, let’s con-

sider a typed pattern, which is a useful way of handling data of uncertain provenance,

without a lot of messy casts or Java-style instanceof tests:

def storageSize(obj: Any) = obj match {
 case s: String => s.length
 case i: Int => 4
 case _ => -1
}

This very simple method takes in a value of type Any (that is, of unknown type). Then,

patterns are used to handle values of type String and Int separately. Each case binds

a temporary alias for the value under consideration to allow methods to be called on

the value if necessary.

 A syntax form that is very similar to the variable pattern is used in Scala’s exception

handling code. Let’s look at classcoding code that is lightly adapted from the ScalaTest

framework we’ll meet in chapter 11:

def getReporter(repClassName: String, loader: ClassLoader): Reporter = {
 try {
 val reporterCl: java.lang.Class[_] = loader.loadClass(repClassName)
 reporterCl.newInstance.asInstanceOf[Reporter]
 }
 catch {
 case e: ClassNotFoundException => {
 val msg = "Can't load reporter class"
 val iae = new IllegalArgumentException(msg)
 iae.initCause(e)
 throw iae
 }
 case e: InstantiationException => {
 val msg = "Can't instantiate Reporter"
 val iae = new IllegalArgumentException(msg)
 iae.initCause(e)
 throw iae
 }
...
 }
}

In getReporter(), you’re attempting to load a custom reporter class (via reflection)

to report on a test suite as it runs. A number of things can go wrong with the class load

and instantiation, so you have a try-catch block protecting execution.

247A quick tour of Scala

 The catch blocks are very similar to match expressions with a match on the type of

the exception seen. This idea can be extended even further with the concept of case

classes, which is where we’ll turn next.

9.1.3 Case classes

One of the most powerful ways to use match expressions is with Scala’s case classes

(which can be thought of as similar to object-oriented extensions of the concept of

enums). Let’s examine an example—an alarm signal that indicates that a temperature

has gone too high:

case class TemperatureAlarm(temp : Double)

This single line of code defines a perfectly valid case class. A roughly equivalent class

in Java would look something like this:

public class TemperatureAlarm {
 private final double temp;
 public TemperatureAlarm(double temp) {
 this.temp = temp;
 }

 public double getTemp() {
 return temp;
 }

 @Override
 public String toString() {
 return "TemperatureAlarm [temp=" + temp + "]";
 }

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 long temp;
 temp = Double.doubleToLongBits(this.temp);
 result = prime * result + (int) (temp ^ (temp >>> 32));
 return result;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 TemperatureAlarm other = (TemperatureAlarm) obj;
 if (Double.doubleToLongBits(temp) !=
 Double.doubleToLongBits(other.temp))
 return false;
 return true;
 }
}

248 CHAPTER 9 Scala: powerful and concise

Just adding the single keyword case causes the Scala compiler to create these addi-

tional methods. It also creates a lot of additional scaffolding methods. Most of the

time, these other methods aren’t directly used by the developer. Instead, they exist to

provide runtime support for certain Scala features—to enable the case class to be used

in a “naturalistic Scala” manner.

 Case classes can be created without needing the new keyword, like this:

val alarm = TemperatureAlarm(99.9)

This reinforces the view of case classes as being similar to “parametrized enums” or a

form of value type.

Case classes fit very naturally into the constructor pattern, as you can see:

def ctorMatchExample(sthg : AnyRef) = {
 val msg = sthg match {
 case Heartbeat => 0
 case TemperatureAlarm(temp) => "Tripped at temp "+ temp
 case _ => "No match"
 }
 println(msg)
}

Let’s move on to look at the final feature we want to address in our introductory tour

of Scala—the concurrency construct known as actors.

9.1.4 Actors

Actors are Scala’s alternative take on concurrent programming. They provide an asyn-

chronous model of concurrency, which is based on passing messages between executing

units of code. This is a different high-level concurrency model that many developers

find easier to use than the lock-based, shared-by-default model that Java provides

(although Scala is, of course, built on the same low-level model—the JMM).

 Let’s look at an example. Suppose the veterinarian we met in chapter 4 needs to

monitor the health (and especially the body temperature) of the animals in the clinic.

We can imagine that the hardware temperature sensors will send messages containing

their readings to a central piece of monitoring software.

 We can model this setup in Scala via an actor class, TemperatureMonitor. This

will expect two different sorts of messages—a standard “heartbeat” message, and a

TemperatureAlarm message. The second of these will take a parameter indicating the

temperature at which the alarm went off. The following listing shows these classes.

Equality in Scala

Scala regards Java’s use of == to mean “reference equality” as a mistake. Instead,
in Scala, == and .equals() are equivalent. If reference equality is required, then ===
can be used. Case classes have an .equals() method that returns true if and only
if two instances have exactly the same values for all parameters.

249Is Scala right for my project?

case object Heartbeat
case class TemperatureAlarm(temp : Double)

import scala.actors._

class TemperatureMonitor extends Actor {
 var tripped : Boolean = false
 var tripTemp : Double = 0.0

 def act() = {
 while (true) {
 receive {
 case Heartbeat => 0
 case TemperatureAlarm(temp) =>
 tripped = true
 tripTemp = temp
 case _ => println("No match")
 }
 }
 }
}

You have three separate cases that the monitoring actor can respond to (via receive).

The first is a heartbeat message, which tells you only that all is well. Because this case

class takes no parameters, it’s technically a singleton, so it’s referred to as a case object.

The actor doesn’t need to take any action when it receives a heartbeat.

 If you receive a TemperatureAlarm message, the actor will save the temperature at

which the alarm was tripped. You can imagine that the veterinarian will have another

piece of code that periodically checks the TemperatureMonitor actor to see if it’s

been tripped.

 Finally, there’s a default case. This is a catch-all just in case any unexpected mes-

sages leak into the actor’s environment. Without this catch-all, the actor would throw

an exception if an unexpected message type was seen. We’ll come back to actors at the

end of this chapter and look at a little more of the detail, but Scala concurrency is a

huge subject, and we give you more than a taste in this book.

 We’ve had a very quick spin through some of the highlights of Scala. Hopefully

you’ve seen some features that have sparked your interest. In the next section, we’ll

spend a bit of time talking about the reasons why you might (and might not) choose

to use Scala for some part of your project.

9.2 Is Scala right for my project?

The decision to start using an additional language in your Java project should always

be driven by sound reasoning and evidence. In this section, we want you to think

about those reasons and how they apply to your project.

 We’ll start by having a quick look at how Scala compares to Java, then move on to

the when and how of starting to use Scala. To round out this short section, we’ll look

at some telltale signs that Scala may not be the language best suited for your project.

Listing 9.1 Simple communication with an actor

Override act()
method in actor

Receive new
message

250 CHAPTER 9 Scala: powerful and concise

9.2.1 Comparing Scala and Java

Key differences between the languages are summarized in table 9.1. The “surface

area” of a language is the number of keywords and independent language constructs

that the working developer must master to be productive in the language.

These differences can provide some reasons why Scala might be attractive to the well-

grounded Java developer as an alternative language for some projects or components.

Let’s draw out in more detail how you might start bringing Scala into a project.

9.2.2 When and how to start using Scala

As we discussed in chapter 7, it’s always better to start introducing a new language to

low-risk areas if you’re working on an existing project. An example of a low-risk area

might be the ScalaTest testing framework we’ll meet in chapter 11. If the experiment

with Scala doesn’t go well all it has cost is wasted developer time (the unit tests can

probably be salvaged and turned into regular JUnit tests).

 In general, a good introductory component for Scala within an existing project

will have most or all of these characteristics:

■ You can estimate effort required with some degree of confidence.

■ There is a bounded, well-defined problem area.

■ You have properly specified requirements.

■ There are known interoperability requirements with other components.

■ You have identified developers who are motivated to learn the language.

When you’ve thought about the area, you can move into implementing your first Scala

component. The following guidelines have proved to be very useful in ensuring that

the initial component remains on track:

■ Produce a quick spike to start with.

■ Test interoperation with existing Java components early.

■ Have gating criteria (based on requirements) that define the success or failure

of the spike.

Table 9.1 Comparing Java and Scala

Feature Java Scala

Type system Static, quite verbose Static, heavily type-inferred

Polyglot layer Stable Stable, dynamic

Concurrency model Lock-based Actor-based

Functional programming Requires disciplined special coding

style, not a natural fit

Built-in support, natural part of the

language

Surface area Small/medium Large/very large

Syntax style Simple, regular, relatively verbose Flexible, concise, many special cases

251Making code beautiful again with Scala

■ Have a plan B for use if the spike fails.

■ Budget additional refactoring time for the new component. (A first project in a

new language will almost certainly acquire higher technical debt than the same

project written in the team’s existing languages.)

The other angle that you should also consider when evaluating Scala is to check

whether there are any obvious aspects that may make the language a less than ideal fit

for your project.

9.2.3 Signs that Scala may not be right for your current project

There are a number of signs that Scala may not be right for your current project. If

your team shows signs of one or more of these, you should carefully consider whether

this is the right time to introduce Scala to your project. If two or more of these are in

evidence, this is a big red flag.

■ Resistance or lack of buy-in from operations and other groups who need to sup-

port your application

■ No clear buy-in from the development team to learn Scala

■ Divided or politically polarized views in the group

■ Lack of support from senior technologists in the group

■ Very tight deadlines (no time to learn a new language)

One other factor to consider closely is the global distribution of your team. If you have

staff in several locations who will need to develop (or support) Scala code, this will

increase the cost and burden of reskilling staff in Scala.

 Now that we’ve discussed the mechanics of introducing Scala into your project,

let’s move on to look at some of Scala’s syntax. We’ll focus on features that will make

the Java developer’s life easier, encouraging much more compact code, with less boil-

erplate and no lingering aftertaste of verbosity.

9.3 Making code beautiful again with Scala

In this section, we’ll start by introducing the Scala compiler and interactive environ-

ment (REPL). Then we’ll discuss type inference, followed by method declarations

(which may be slightly less Java-like than you’re used to). Together, these two features

will help you to write a lot less boilerplate code and thus improve your productivity.

 We’ll cover Scala’s approach to code packages and its more powerful import state-

ment, and then we’ll take a close look at loops and control structures. These are

rooted in a very different programming tradition than Java, so we’ll use this as an

opportunity to discuss some of Scala’s functional programming aspects. These include

a functional approach to looping constructs, match expressions, and function literals.

 All of this will set you up to be able to make the most of the rest of the chapter and

build your confidence and skill as a Scala programmer. Let’s get under way by discuss-

ing the compiler and built-in interactive environment.

252 CHAPTER 9 Scala: powerful and concise

9.3.1 Using the compiler and the REPL

Scala is a compiled language, so the usual way of executing Scala programs is to first

compile them into .class files, then execute them in a JVM environment that includes

scala-library.jar (the runtime library for Scala) on the classpath.

 If you haven’t got Scala installed yet, see appendix C for details of how to get it set

up on your machine before moving on. An example program (the HelloWorld exam-

ple from section 9.1.1) can be compiled with scalac HelloWorld.scala (assuming

you’re currently in the directory where you saved the HelloWorld.scala file).

 Once you have a .class file, you can kick it off by using the command scala

HelloWorld. This command will launch a JVM with the Scala runtime environment on

the classpath, and then enter at the main method of the class file specified.

 In addition to these options for compiling and running, Scala has a built-in inter-

active environment—a bit like Groovy’s console, which you saw in the last chapter. But

unlike Groovy, Scala implements this within a command-line environment. This

means that in a typical Unix/Linux environment (with a correctly set up Path), you

can type scala, and this will open within the terminal window rather than spawning a

new window.

NOTE Interactive environments of this sort are sometimes called Read-Eval-
Print loops, or REPLs for short. They’re quite common in languages that are
more dynamic than Java. In a REPL environment, the results of previous lines
of input remain around and can be reused in later expressions and calcula-
tions. In the rest of the chapter, we’ll make occasional use of the REPL envi-
ronment to illustrate more of Scala’s syntax.

Now, let’s move on to the next big feature that we want to discuss—Scala’s advanced

type inference.

9.3.2 Type inference

In the code snippets you’ve seen so far, you may have noticed that when we declared

hello as a val, we didn’t need to tell the compiler what type it was. It was “obvious”

that it was a string. On the surface, this looks a bit like Groovy, where variables don’t

have types (Groovy is dynamically typed), but something very different is happening

with Scala code.

 Scala is a statically typed language (so variables do have definite types), but its com-

piler is able to analyze source code and in many cases is able to work out what the

types ought to be from context. If Scala can work the types out, you don’t need to pro-

vide them.

 This is type inference, a feature we’ve mentioned in several places already. Scala has

very advanced capabilities in this area—so much so that the developer can often for-

get the static types and the code just flows. This can give the language more of a

dynamic language “feel” most of the time.

253Making code beautiful again with Scala

You’ve already seen the simplest example of these features—the var and val key-

words, which cause a variable to infer its type from the value being assigned to it.

Another important aspect of Scala’s type inference involves method declarations.

Let’s look at an example (and keep in mind that the Scala type AnyRef is the same as

Java’s Object):

def len(obj : AnyRef) = {
 obj.toString.length
}

This is a type-inferred method. The compiler can figure out that it returns Int by

examining the return code of java.lang.String#length, which is int. Notice that

there is no explicit return type specified, and that we didn’t need to use the return

keyword. In fact, if you include an explicit return, like this,

def len(obj : AnyRef) = {
 return obj.toString.length
}

you’ll get a compile-time failure:

error: method len has return statement; needs result type
 return obj.toString.length
 ^

If you omit the = from a def altogether, the compiler will assume that this is a method

that returns Unit (the Scala equivalent of a method that returns void in Java).

 In addition to the previous restrictions, there are two main areas where type infer-

ence is limited:

■ Parameter types in method declarations—Parameters to methods must always have

their types specified.

■ Recursive functions—The Scala compiler is unable to infer the return type of a

recursive function.

We’ve talked quite a bit about Scala methods, but we haven’t covered them in any

kind of systematic way, so let’s put what you’ve already learned onto a firmer footing.

Type inference in Java

Java has limited type inference capabilities, but they do exist, and the most obvious
example is the diamond syntax for generic types that we looked at in chapter 1.
Java’s type inference usually infers the type of the value on the right-hand side of an
assignment. Scala usually infers the type of a variable rather than of a value, but it
can do inference of the type of a value as well.

254 CHAPTER 9 Scala: powerful and concise

9.3.3 Methods

You’ve already seen how to define a method with the def keyword. There are some

other important facts about Scala methods that you should be aware of as you get

more familiar with Scala:

■ Scala doesn’t have the static keyword. The equivalent of static methods in Java

must live in Scala’s object (singleton) constructs. Later on, we’ll introduce you

to companion objects, which are a useful, related concept in Scala.

■ The Scala language runtime is quite heavyweight compared to Groovy (or Clo-

jure). Scala classes may have a lot of additional methods that are autogenerated

by the platform.

■ The concept of method calls is central to Scala. Scala doesn’t have operators in

the Java sense.

■ Scala is more flexible than Java about which characters can appear in method

names. In particular, characters that are used as operators in other languages

may be legal in Scala method names (such as the plus symbol, +).

The indirect method call syntax (that you met earlier) offers a clue as to how Scala is

able to merge the syntax of method calls and operators. As an example, consider addi-

tion of two integers. In Java, you’d write an expression like a + b. You can also use this

syntax in Scala, but additionally, you can write a.+(b). In other words, you call the +()

method on a and pass it b as a parameter. This is how Scala is able to get rid of opera-

tors as a separate concept.

NOTE You may have noticed that the form a.+(b) involves calling a method
on a. But what if a is a variable of a primitive type? The full explanation is in
section 9.4, but for now, you should know that Scala’s type system basically
regards everything as an object, so you can call methods on anything—even
variables that would be primitives in Java.

You’ve already seen one example of using the def keyword to declare a method.

Let’s look at another example, of a simple recursive method to implement the facto-

rial function:

def fact(base : Int) : Int = {
 if (base <= 0)
 return 1
 else
 return base * fact(base - 1)
}

This function slightly cheats by returning 1 for all negative numbers. In fact, the facto-

rial of a negative number doesn’t exist, but we’re among friends here. It looks a bit

Java-like—it has a return type (Int, in this case) and uses the return keyword to indi-

cate which value to hand back to the caller. The only additional thing to notice is the

use of the = sign before the block defining the function body.

255Making code beautiful again with Scala

 Scala permits another concept that isn’t present in Java—the local function. This is

a function that is defined (and is only in scope) within another function. This can be

a simple way to have a helper function that the developer doesn’t want to expose to

the outside world. In Java there would be no recourse but to use a private method and

have the function visible to other methods within the same class. But in Scala you can

simply write this:

def fact2(base : Int) : Int = {

 def factHelper(n : Int) : Int = {
 return fact2(n-1)
 }

 if (base <= 0)
 return 1
 else
 return base * factHelper(base)
}

factHelper() will never be visible outside of the enclosing scope of fact2().

 Next, let’s look at how Scala handles code organization and imports.

9.3.4 Imports

Scala uses packages in the same way as Java, and it uses the same keywords: package

and import. Scala can import and use Java packages and classes without an issue. A

Scala var or val can hold an instance of any Java class, without any special syntax

or treatment:

import java.io.File
import java.net._
import scala.collection.{Map, Seq}
import java.util.{Date => UDate}

The first two of these code lines are the equivalent of a standard import and a wild-

card import in Java. The third allows multiple classes from a single package to be

imported with a single line. The last shows aliasing of a class’s name at import time (to

prevent unfortunate shortname clashes).

 Unlike in Java, imports in Scala can appear anywhere in the code (not just at the

top of the file), so you can isolate the import to just a subset of the file. Scala also pro-

vides default imports; in particular, scala._ is always imported into every .scala file.

This contains a number of useful functions, including some we’ve already discussed,

such as println. For all of the default imports, the full details are available in the API

documentation at www.scala-lang.org/.

 Let’s move on and discuss how you can control the execution flow of a Scala

program. This can be a little different from what you may be familiar with from Java

and Groovy.

www.scala-lang.org/
www.scala-lang.org/

256 CHAPTER 9 Scala: powerful and concise

9.3.5 Loops and control structures

Scala introduces a few novel twists on control and looping constructs. But before we

meet the unfamiliar forms, let’s look at a few old friends, such as the standard

while loop:

var counter = 1
while (counter <= 10) {
 println("." * counter)
 counter = counter + 1
}

And here’s the do-while form:

var counter = 1
do {
 println("." * counter)
 counter = counter + 1
} while (counter <= 10)

Another familiar-seeming form is the basic for loop:

for (i <- 1 to 10) println(i)

So far, so good. But Scala has additional flexibility, such as the conditional for loop:

for (i <- 1 to 10; if i %2 == 0) println(i)

The for loop is also able to accommodate looping over multiple variables, like this:

for (x <- 1 to 5; y <- 1 to x)
 println(" " * (x - y) + x.toString * y)

These more flexible forms of the for loop come from a fundamental difference in the

way that Scala approaches the construct. Scala uses a concept from functional pro-

gramming, called a list comprehension, to implement for.

 The general idea of a list comprehension is that you start with a list and apply a

transformation (or filter, in the case of the conditional for loop) to the elements of

the list. This generates a new list, which you then run the body of the for loop on, one

element at a time.

 It’s even possible to split up the definition of the filtered list from the execution of

the for body, using the yield keyword. For example, this bit of code:

val xs = for (x <- 2 to 11) yield fact(x)
for (factx <- xs) println(factx)

This sets up xs as the new collection before looping over the elements of it in the sec-

ond for loop, which prints the values out. This alternative syntax can be extremely

useful if you want to make a collection once, and use it multiple times.

 This construction is due to Scala’s support for functional programming, so let’s

move on to see how Scala implements functional ideas.

257Making code beautiful again with Scala

9.3.6 Functional programming in Scala

As we mentioned in section 7.5.2, Scala supports functions as first-class values. This

means that the language allows you to write functions in a way that can be put into

vars or vals and treated as any other value. These are called function literals (or anony-

mous functions) and they’re very much part of the Scala worldview.

 Scala provides a very simple way of writing function literals. The key piece of syntax

is the arrow, =>, which Scala uses to express taking in the list of parameters and pass-

ing them to a block of code:

(<list of function parameters>) => { ... function body as a block ... }

Let’s use the Scala interactive environment to demonstrate this. This simple example

defines a function that takes in an Int and doubles it:

scala> val doubler = (x : Int) => { 2 * x }
doubler: (Int) => Int = <function1>

scala> doubler(3)
res4: Int = 6

scala> doubler(4)
res5: Int = 8

Notice how Scala infers the type of doubler. Its type is “function that takes in an Int

and returns an Int.” This isn’t a type that Java’s type system has an entirely satisfactory

way of expressing. As you can see, to call doubler with a value, you use the standard

call syntax with brackets.

 Let’s take this concept a little further. In Scala, function literals are just values.

And values are returned from functions. This means you could have a function-

making function—a function literal that takes in a value and returns a new func-

tion as a value.

 For example, you can define a function literal called adder. The purpose of

adder() is to make functions that add a constant to their argument:

scala> val adder = (n : Int) => { (x : Int) => x + n }
adder: (Int) => (Int) => Int = <function1>

scala> val plus2 = adder(2)
plus2: (Int) => Int = <function1>

scala> plus2(3)
res2: Int = 5

scala> plus2(4)
res3: Int = 6

As you’ve seen, Scala has good support for function literals. In fact, Scala can gener-

ally be written using a very functional programming view of the world, as well as by

using the more imperative style that you’ve seen so far. We won’t do much more than

dip a toe into Scala’s functional programming capabilities, but it’s important to know

that they’re there.

258 CHAPTER 9 Scala: powerful and concise

 In the next section, we’ll cover Scala’s object model and approach to OO in some

detail. Scala has a number of advanced features that make the treatment of OO quite

different from Java in some important respects.

9.4 Scala’s object model—similar but different

Scala is sometimes referred to as a “pure” object-oriented language. This means that

all values are objects, so you can’t get very far without encountering OO concepts.

We’ll start this section by exploring the consequences of “everything is an object.”

This leads very naturally into a consideration of Scala’s hierarchy of types.

 This hierarchy differs in a couple of important ways from Java’s, and also encom-

passes Scala’s approach to the handling of primitive types, such as boxing and unbox-

ing. From there, we’ll consider Scala constructors and class definitions and how they

can help you write a lot less code. The important topic of traits is next, and then we’ll

look at Scala’s singleton, companion, and package objects. We’ll round out the sec-

tion by seeing how case classes can reduce boilerplate still further, and we’ll conclude

with a cautionary tale of Scala syntax.

 Let’s get started.

9.4.1 Everything is an object

Scala takes the view that every type is an object type. This includes what Java regards as

primitive types. Figure 9.1 shows Scala’s inheritance of types, including the equivalent

of both value (aka primitive) and reference types.

 As you can see, the Unit type is a proper type in Scala, along with the other value

types. The AnyRef class is Scala’s name for java.lang.Object. Every time you see

AnyRef, you should mentally translate it to Object. The reason why it has a separate

name is that at one time Scala also targeted the .NET runtime, so it made sense to have

a separate name for the concept.

 Scala uses the extends keyword for class inheritance, and it behaves very similarly

to Java—all nonprivate members will be inherited, and the superclass/subclass rela-

tionship will be set up between the two types. If a class definition doesn’t explicitly

extend another class, the compiler will assume the class is a direct subclass of AnyRef.

 The “everything is an object” principle explains a Scala syntax point that you’ve

already met—the infix notation for method calls. You saw in section 9.3.3 that

obj.meth(param)and obj meth param were equivalent ways of calling a method. Now

you can see that the expression 1 + 2, which in Java would be an expression about

numeric primitives and the addition operator, is in Scala equivalent to: 1.+(2), which

uses a method call on the scala.Int class.

 Scala does away with some of the confusion around boxed numerics that Java can

sometimes cause. Consider this bit of Java code:

Integer one = new Integer(1);
Integer uno = new Integer(1);
System.out.println(one == uno);

259Scala’s object model—similar but different

This prints the potentially surprising result false. As you’ll see, Scala has an approach

to boxed numerics, and equality in general, that helps in several ways:

■ Numeric classes can’t be instantiated from constructors. They’re effectively

abstract and final (this combination would be illegal in Java).

■ The only way to get a new instance of a numeric class is as a literal. This ensures

that 2 is always the same 2.

■ Equality using the == method is defined to be the same as equals()—it isn’t ref-

erence equality.

■ == can’t be overridden, but equals() can.

■ Scala provides the eq method for reference equality. It isn’t very often needed.

Now that we’ve covered some of the most basic Scala OO concepts, we need to introduce

a little more of Scala’s syntax. The simplest place to start is with Scala’s constructors.

9.4.2 Constructors

Scala classes must have a primary constructor that defines the parameters for the class.

In addition, a class may have additional auxiliary constructors. These are denoted using

the this() syntax, but they’re more restrictive than Java’s overloaded constructors.

Figure 9.1 Scala’s

inheritance hierarchy

260 CHAPTER 9 Scala: powerful and concise

 A Scala auxiliary constructor must, as its first statement, call another constructor in

the same class (either the primary, or another auxiliary constructor). This restriction

serves to funnel the control flow towards the primary constructor, which is the only

true entrance point to the class. This means that the auxiliary constructors really act

like providers of default parameters to the primary constructor.

 Consider these auxiliary constructors added to CashFlow:

class CashFlow(amt : Double, curr : String) {
 def this(amt : Double) = this(amt, "GBP")
 def this(curr : String) = this(0, curr)

 def amount = amt
 def currency = curr
}

The auxiliary constructors in this example allow you to specify just an amount, in

which case the CashFlow class will assume that the user intended for the cash flow to

be in British pounds. The other auxiliary constructor allows construction with just a

currency; the amount in that case is assumed to be 0.

 Note that we’ve also defined amount and currency as methods without including

brackets or a parameter list (even an empty one). This tells the compiler that, when using

this class, the code may call amount or currency without needing parentheses, like this:

val wages = new CashFlow(2000.0)
println(wages.amount)
println(wages.currency)

Scala’s definitions of classes broadly map to those of Java. But there are some signifi-

cant differences in terms of how Scala approaches the inheritance aspects of OO.

That’s the subject of the next section.

9.4.3 Traits

Traits are a major part of Scala’s approach to object-oriented programming. Broadly,

they play the same role that interfaces do in Java. But unlike with Java interfaces, you

can include the implementation of methods in a trait, and have that code be shared

by different classes that have the trait.

 To see the problem in Java that this solves, consider figure 9.2, which shows two

Java classes that derive from different base classes. If these two classes both want to dis-

play additional, common functionality, this is done by declaring that they both imple-

ment a common interface.

 Listing 9.2 shows a simple Java example that implements this in code. Recall the

example of a veterinarian’s office that you saw in section 4.3.6. Many animals brought

to the office will be microchipped for identification. For example, cats and dogs

almost certainly will be, but other species may not.

 The capability of being chipped needs to be factored out into a separate interface.

Let’s update the Java code from listing 4.11 to incorporate this capability (and we’ll

omit the examine() method for clarity).

261Scala’s object model—similar but different

public abstract class Pet {
 protected final String name;

 public Pet(String name_) {
 name = name_;
 }
}

public interface Chipped {
 String getName();
}

public class Cat extends Pet implements Chipped {
 public Cat(String name_) {
 super(name_);
 }

 public String getName() {
 return name;
 }
}

public class Dog extends Pet implements Chipped {
 public Dog(String name_) {
 super(name_);
 }

 public String getName() {
 return name;
 }
}

As you can see, both Dog and Cat need to duplicate the code that implements get-

Name() because Java interfaces can’t contain implementation code. The following list-

ing shows how you could implement this in Scala using traits.

Listing 9.2 Demonstrating implementation code duplication

Figure 9.2 Duplication of implementation in Java’s model

262 CHAPTER 9 Scala: powerful and concise

class Pet(name : String)

trait Chipped {
 var chipName : String
 def getName = chipName
}

class Cat(name : String) extends Pet(name : String) with Chipped {
 var chipName = name
}

class Dog(name : String) extends Pet(name : String) with Chipped {
 var chipName = name
}

Scala requires you to assign a value to each parameter present in a superclass con-

structor clause in every subclass. But the method declarations that are present in the

trait are inherited by each subclass. This reduces implementation duplication. You

can see this in action where the name parameter must be handled by both Cat and

Dog. Both subclasses have access to the implementation provided by Chipped—in this

case, there’s a parameter called chipName that can be used to store the name written

on the microchip.

9.4.4 Singleton and companion objects

Let’s take a look at how Scala’s singletons (that is, classes that start with the keyword

object) are implemented. Recall the code for our very first Hello World example in

section 9.1.1:

object HelloWorld {
 def main(args : Array[String]) {
 val hello = "Hello World!"
 println(hello)

 }
}

If this were Java, you’d expect this code to be turned into a single file called HelloWorld

.class. In fact, Scala compiles it to two files: HelloWorld.class and HelloWorld$.class.

 As these are ordinary class files, you can use the javap decompilation tool that you

met in chapter 5 to look at the bytecode that the Scala compiler has produced. This will

give you a number of insights into the Scala type model and how it’s implemented. The

following listing shows the result of running javap -c -p on the two class files:

Compiled from "HelloWorld.scala"
public final class HelloWorld extends java.lang.Object {
 public static final void main(java.lang.String[]);
 Code:
 0: getstatic #11

Listing 9.3 Pets in Scala

Listing 9.4 Decompiling Scala’s singleton objects

263Scala’s object model—similar but different

➥ // Field HelloWorld$.MODULE$:LHelloWorld$;
 3: aload_0
 4: invokevirtual #13

➥ // Method HelloWorld$.main:([Ljava/lang/String;)V
 7: return
}

Compiled from "HelloWorld.scala"
public final class HelloWorld$ extends java.lang.Object

➥ implements scala.ScalaObject {
 public static final HelloWorld$ MODULE$;

 public static {};
 Code:
 0: new #9 // class HelloWorld$
 3: invokespecial #12 // Method "<init>":()V
 6: return

 public void main(java.lang.String[]);
 Code:
 0: getstatic #19 // Field scala/Predef$.MODULE$:Lscala/Predef$;
 3: ldc #22 // String Hello World!
 5: invokevirtual #26

➥ // Method scala/Predef$.println:(Ljava/lang/Object;)V
 8: return

 private HelloWorld$();
 Code:
 0: aload_0
 1: invokespecial #33 // Method java/lang/Object."<init>":()V
 4: aload_0
 5: putstatic #35 // Field MODULE$:LHelloWorld$;
 8: return
}

You can see where the statement that “Scala doesn’t have static methods or fields” comes

from. Instead of these constructs, the Scala compiler has automatically generated code

corresponding to the Singleton pattern (immutable static instance, and private construc-

tor) and inserted it into the .class file that ends with “$”. The main() method is still a reg-

ular instance method, but it’s being called on the HelloWorld$ class, which is a singleton.

 This means that there’s a duality between

a pair of .class files—one with the same name

as the Scala file, and the other with a “$”

added. The static methods and fields have

been placed into this second, singleton class.

 It’s very common for there to be both a

Scala class and object with the same name.

In this case, the singleton class is referred to as

a companion object. The relationship between

the Scala source file and the two VM classes

(the primary class and the companion object)

is shown in figure 9.3.

Get companion
singleton MODULE$

Call main() on
companion

Singleton
companion instance

Private
constructor

Figure 9.3 Scala singleton objects

264 CHAPTER 9 Scala: powerful and concise

 You’ve already met companion objects, although you didn’t know it. In our Hello

World example, you didn’t have to specify which class the println() method was con-

tained in. It looks like a static method, so you’d expect that it’s a method that belongs

to a companion object.

 Let’s have another look at the bytecode from listing 9.2 that corresponds to the

main() method:

public void main(java.lang.String[]);
 Code:
 0: getstatic #19 // Field scala/Predef$.MODULE$:Lscala/Predef$;
 3: ldc #22 // String Hello World!
 5: invokevirtual #26

➥ // Method scala/Predef$.println:(Ljava/lang/Object;)V
 8: return

From this, you can see that println(), and the other always-available Scala functions,

are contained in the companion object to the Scala.Predef class.

 A companion object has a privileged relationship to its class. In particular, it can

access private methods of the class. This allows Scala to define private auxiliary con-

structors in a sensible way. The Scala syntax for a private constructor is to include the

keyword private before the parameter list of the constructor, like this:

class CashFlow private (amt : Double, curr : String) {
 ...
}

If the constructor that is made private is the primary, there will be only two ways to

construct new instances of this class: either via a factory method contained in the com-

panion object (which is able to access the private constructor), or by calling a public

auxiliary constructor.

 Let’s move on to look at our next topic—Scala’s case classes. You’ve already met

them, but to refresh your memory, these are a useful way to reduce boilerplate code

by automatically providing a number of basic methods.

9.4.5 Case classes and match expressions

Consider modeling a simple entity in Java, such as the Point class.

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public String toString() {
 return "Point(x: " + x + ", y: " + y + ")";
 }

Listing 9.5 Simple class implementation in Java

Boilerplate
code

265Scala’s object model—similar but different

 @Override
 public boolean equals(Object obj) {
 if (!(obj instanceof Point)) {
 return false;
 }
 Point other = (Point)obj;
 return other.x == x && other.y == y;
 }

 @Override
 public int hashCode() {
 return x * 17 + y;
 }
}

This has an enormous amount of boilerplate code, and what’s worse, methods such as

hashCode(), toString(), equals(), and any getters will usually be autogenerated by

the IDE. Wouldn’t it be nicer if the language permitted a simpler syntax, and the auto-

generation was handled within the language core?

 Scala does indeed have such support in the form of a language feature called case

classes. You can rewrite listing 9.5 into a very simple form:

case class Point(x : Int, y : Int)

This provides all of the functionality of the longer Java example, but has additional

other benefits as well as being much shorter.

 For example, with the Java version, if you were to change the code (say by adding a

z coordinate), you’d have to update toString() and the other methods. In practice,

you’d do this by deleting the entire existing method and regenerating the method

from the IDE.

 With the Scala version, this is simply not necessary because there is no explicit method

definition that needs to be kept up to date. This boils down to a very powerful principle—

you can’t introduce bugs into code that doesn’t exist in the source-level representation.

 When creating new instances of a case class, the new keyword can be omitted. You

can write code like this:

val pythag = Point(3, 4)

This syntax reinforces the view that case classes are like enums with one or more free

parameters. Under the hood, what’s actually happening is that the case class defini-

tion is providing a factory method that will make new instances.

 Let’s take a look at a major use of case classes: patterns and match expressions.

Case classes can be used in a Scala pattern type called a Constructor pattern. Consider

the following code.

val xaxis = Point(2, 0)
val yaxis = Point(0, 3)
val some = Point(5, 12)

Listing 9.6 Constructor pattern in match expression

Boilerplate
code

266 CHAPTER 9 Scala: powerful and concise

val whereami = (p : Point) => p match {
 case Point(x, 0) => "On the x-axis"
 case Point(0, y) => "On the y-axis"
 case _ => "Out in the plane"
}
println(whereami(xaxis))
println(whereami(yaxis))
println(whereami(some))

We’ll revisit Constructor patterns and case classes in section 9.6 when we discuss actors

and Scala’s view of concurrency.

 Before we leave this section, we want to sound a note of caution. The richness of

Scala’s syntax and the cleverness of its parser can produce some very concise and ele-

gant ways to represent complex code. But Scala doesn’t have a formal language speci-

fication, and new features are added fairly often. You should take extra care—even

experienced Scala coders are sometimes caught out by language features not always

behaving the way they expected. This is especially true when syntax features are com-

bined with each other.

 Let’s look at an example of this—a way to simulate operator overloading in

Scala syntax.

9.4.6 A cautionary tale

Let’s consider the Point case class we just introduced. You may want a simple way to

represent the adding of coordinates, or linear scaling of coordinates. If you have a

mathematical background, then you’ll probably recognize that these are the vector

space properties of coordinates in a plane.

 The next listing shows a simple way to define methods that will look like operators

in normal usage.

case class Point(x : Int, y : Int) {
 def *(m : Int) = Point(this.x * m, this.y * m)
 def +(other : Point) = Point(this.x + other.x, this.y + other.y)
}

var poin = Point(2, 3)
var poin2 = Point(5, 7)
println(poin)
println(poin 2)
println(poin * 2)
println(poin + poin2)

If you run this bit of code, you’ll see some output like this:

Point(2,3)
Point(5,7)
Point(4,6)
Point(7,10)

This shows how much nicer it is to work with the Scala case classes than the Java equiv-

alents. With very little code, you’ve generated a friendly class that produces sensible

Listing 9.7 Simulating operator overloading

267Data structures and collections

output. With the method definitions for + and *, you’ve been able to simulate aspects

of operator overloading.

 But there’s a problem with this approach. Consider this bit of code:

var poin = Point(2, 3)
println(2 * poin)

This will produce a compile-time error:

error: overloaded method value * with alternatives:
 (Double)Double <and>
 (Float)Float <and>
 (Long)Long <and>
 (Int)Int <and>
 (Char)Int <and>
 (Short)Int <and>
 (Byte)Int
cannot be applied to (Point)
 println(2 * poin)
 ^
one error found

The reason for this error is that although you’ve defined a method *(m : Int) on the

case class Point, that isn’t the method that Scala is looking for. For the previous code

to compile, you’d need to supply a method *(p : Point) on the standard Int class.

This isn’t feasible, so the illusion of operator overloading is left incomplete.

 This illustrates an interesting point about Scala—many of the syntactic features

have limitations that may cause surprise in some circumstances. Scala’s language

parser and runtime do a lot of work under the hood, but this hidden machinery

largely works on the basis of trying to do the right thing.

 This concludes our introductory survey of Scala’s approach to object orientation.

There are many advanced features we didn’t cover. Scala has implemented a lot of

modern ideas about the ways that type systems and objects should behave, so if you’re

interested in those areas, there’s plenty to explore. Consult Joshua Suereth’s Scala in

Depth (Manning Publications, 2012) or another dedicated Scala book if what you’ve

read so far has got you fired up about Scala’s approach to type systems and OO.

 One important application of this part of language theory is, as you might expect, the

subject of data structures and collections in Scala. This is the focus of our next section.

9.5 Data structures and collections

You’ve already met a simple example of Scala’s data structures—the List. This is a

fundamental data structure in any programming language, and it’s no less important

in Scala. We’ll spend some time looking at List in detail, and then move on to study-

ing Scala’s Map.

 Next, we’ll make a serious study of Scala’s generics, including the differences and

additional power that Scala gives over Java’s implementation. This discussion relies on

your having seen some of the earlier examples of standard Scala collections to ground

the theory.

268 CHAPTER 9 Scala: powerful and concise

 Let’s get started with a few general remarks about Scala’s collections—especially

concerning immutability and interoperability with Java’s collections.

9.5.1 List

Scala’s approach to collections is quite different from Java’s. This can be quite surpris-

ing, as in many other areas Scala reuses and extends Java components and concepts.

Let’s take a look at the largest differences that the Scala philosophy brings:

■ Scala collections are usually immutable.
■ Scala decomposes the many aspects of a List-like collection into separate

concepts.
■ Scala builds up the core of its List from a very small number of concepts.
■ Scala’s approach to collections is to provide a consistent experience across dif-

ferent types of collections.
■ Scala encourages developers to build their own collections that feel like the

built-in collection classes.

We’ll look at each of these major differences in turn.

IMMUTABLE AND MUTABLE COLLECTIONS

One of the first things you need to know is that Scala has both immutable and muta-

ble versions of its collections, and that the immutable versions are the default (and are

always available to every Scala source file).

 We need to draw an essential distinction between mutability of the collection and

mutability of the contents. Let’s look at this in action.

import scala.collection.mutable.LinkedList
import scala.collection.JavaConversions._
import java.util.ArrayList

object ListExamples {
 def main(args : Array[String]) {
 var list = List(1,2,3)
 list = list :+ 4
 println(list)

 val linklist = LinkedList(1,2,3)
 linklist.append(LinkedList(4))
 println(linklist)

 val jlist = new ArrayList[String]()
 jlist.add("foo")
 val slist = jlist.toList
 println(slist)
 }
}

As you can see, list is a mutable reference (it’s a var). It points at an instance of an

immutable list, so you can reassign it to point at a new object. The :+ method returns

a new (immutable) List instance, with the additional element appended.

Listing 9.8 Mutable and immutable

Append
methods

269Data structures and collections

By contrast, linklist is an immutable reference (a val) to a LinkedList, which is

mutable. You can change the contents of linklist in place; for example, by calling

append() on it. This distinction is illustrated in figure 9.4.

 We also demonstrated a useful group of conversion functions in listing 9.8—the

JavaConversions class, which is used to convert Java collections to and from their

Scala equivalents.

TRAITS FOR LIST

One other important way in which Scala is different is that it chooses to emphasize the

traits and behavioral aspects of its collections. As an example, consider Java’s Array-

List. Leaving aside Object, this class directly or indirectly extends

■ java.util.AbstractList

■ java.util.AbstractCollection

There are also interfaces to consider. ArrayList or one of its superclasses implements

the interfaces shown in table 9.2.

For Scala, the situation is a bit more complicated. Consider the LinkedList class. It

derives from 27 other classes or traits, as shown in table 9.3.

 Scala’s collections aren’t as distinctively different from each other as Java’s are. In

Java, List, Map, Set, and so on, are treated with slightly different patterns depending on

the specific type in use. But in Scala, the use of traits makes the types much more fine-

grained than in Java. This allows you to focus on one or more aspects of the collection’s

Table 9.2 Java interfaces implemented by ArrayList

Serializable Cloneable Iterable

Collection List RandomAccess

Figure 9.4 Immutable and mutable

collections

270 CHAPTER 9 Scala: powerful and concise

nature and to express your intent more precisely by using a type that closely corre-

sponds to the aspect that’s under consideration.

 For this reason, collection handling code in Scala can seem a lot more uniform

than the corresponding Java code would be.

Lists can be built up from a couple of simple conceptual basics: Nil, which represents

the empty list, and the :: operator, which makes new lists from old ones. The :: oper-

ator is pronounced “cons,” and it’s related to Clojure’s (concat) form, which you’ll

meet in chapter 10. These are both illustrations of Scala’s roots in more functional

programming—roots that ultimately go back to Lisp.

 The cons operator takes two arguments—an element of type T and an object of

type List[T]. It creates a new value of type List[T] that contains the contents of the

two arguments pushed together:

scala> val x = 2 :: 3 :: Nil
x: List[Int] = List(2, 3)

Alternatively, you can write this directly:

scala> val x = List(2, 3)
x: List[Int] = List(2, 3)

scala> 1 :: x
res0: List[Int] = List(1, 2, 3)

Table 9.3 Scala interfaces implemented by LinkedList

Serializable LinkedListLike LinearSeq

LinearSeqLike Cloneable Seq

SeqLike GenSeq GenSeqLike

PartialFunction Function1 Iterable

IterableLike Equals GenIterable

GenIterableLike Mutable Traversable

GenTraversable GenTraversableTemplate TraversableLike

GenTraversableLike Parallelizable TraversableOnce

Sets in Scala

As you might expect by now, Scala includes support for both immutable and mutable
sets. Typical usage of the sets follows the same pattern as you see in Java—using
an intermediate object to act sequentially over the collection. But where Java would
use an Iterator or Iterable, Scala uses a Traversable, which isn’t interoperable
with the Java types.

271Data structures and collections

As well as List, Scala has its own forms of other familiar collections. The next one

we’ll consider is Map.

9.5.2 Map

The Map collection is another classic data structure. In Java it’s most often seen in its

HashMap guise. Scala provides the immutable Map class as its default and provides HashMap

as the standard mutable form.

 In the following listing you can see some simple standard ways of defining and

working with maps.

import scala.collection.mutable.HashMap

var x = Map(1 -> "hi", 2 -> "There")
for ((key, vau) <- x) println(key + ": " + vau)
x = x + (3 -> "bye")

val hm = HashMap(1 -> "hi", 2 -> "There")
hm += (3 -> "bye")
println(hm)

As you can see, Scala has a lovely compact syntax for defining a map literal: Map(1 ->

"hi", 2 -> "There"). The arrow notation shows visually which value each key “points

at.” To get values back from maps, the get() method is used, just like in Java.

 Both mutable and immutable maps use + to denote adding to a map (and - for

removing). But there are some subtleties involved in this. When used on a mutable

map, + alters the map and returns it. On an immutable instance, a new map contain-

ing the new key/value pair is returned. This leads to the following corner case involv-

ing the += operator:

scala> val m = Map(1 -> "hi", 2 -> "There", 3 -> "bye", 4 -> "quux")
m: scala.collection.immutable.Map[Int,java.lang.String]

➥ = Map(1 -> hi, 2 -> There, 3 -> bye, 4 -> quux)

scala> m += (5 -> "Blah")
<console>:10: error: reassignment to val
 m += (5 -> "Blah")
 ^

The cons operator and brackets

The definition of the cons operator means that A :: B :: C is unambiguous. It
means A :: (B :: C). The reason for this is that the first argument of :: is a single
value of type T. But A :: B is a value of type List[T], so (A :: B) :: C doesn’t
make any sense as a possible value. Academic computer scientists would say that
:: is right-associative.

This also explains why you need to say 2 :: 3 :: Nil rather than just 2 :: 3. You
need the second argument to :: to be a value of type List, and 3 isn’t a List.

Listing 9.9 Maps in Scala

272 CHAPTER 9 Scala: powerful and concise

scala> val hm = HashMap(1 -> "hi", 2 -> "There", 3 -> "bye", 4 -> "quux")
hm: scala.collection.mutable.HashMap[Int,java.lang.String]

➥ = Map(3 -> bye, 4 -> quux, 1 -> hi, 2 -> There)

scala> hm += (5 -> "blah")
res6: hm.type = Map(5 -> blah, 3 -> bye, 4 -> quux, 1 -> hi, 2 -> There)

The reason for this is that += is implemented differently for an immutable and a muta-

ble map. For a mutable map, += is a method that alters the map in place. This means

that this method can quite legally be called on a val (just like calling put() on a

final HashMap in Java). For the immutable case, += decomposes to a combination of =

and +, just like in listing 9.9; it can’t be used on a val, as reassignment isn’t allowed.

 Another nice piece of syntax illustrated in listing 9.9 is the for loop syntax. This

uses the idea of the list comprehension (which you saw in section 9.3.5), but combines

it with splitting each key/value pair into a key and value. This is called a destructuring

of the pair—another concept from Scala’s functional heritage.

 We’ve only scratched the surface of Scala’s maps and their power, but we need to

move on to take a look at our next topic—generic types.

9.5.3 Generic types

You’ve already seen that Scala uses square brackets to indicate parameterized types,

and you’ve met some of Scala’s basic data structures. Let’s dig deeper and look at how

Scala’s approach to generics differs from Java’s.

 First off, let’s see what happens if you try to ignore generics when defining a func-

tion parameter’s type:

scala> def junk(x : List) = println("hi")
<console>:5: error: type List takes type parameters
 def junk(x : List) = println("hi")
 ^

In Java, this would be completely legal. The compiler might complain, but it would

allow it. In Scala, this is a hard compile-time failure. Lists (and other generic types) must

be parameterized—end of story. There’s no equivalent of Java’s “raw type” concept.

TYPE INFERENCE FOR GENERIC TYPES

When assigning to a variable of a generic type, Scala provides suitable type inference

around type parameters. This is in accordance with Scala’s general effort to provide

useful type inference and a lack of boilerplate wherever possible:

scala> val x = List(1, 2, 3)
x: List[Int] = List(1, 2, 3)

One feature of Scala’s generics that may seem strange at first sight can be demon-

strated using the ::: concat operator, which joins lists together to make a new list:

scala> val y = List("cat", "dog", "bird")
y: List[java.lang.String] = List(cat, dog, bird)
scala> x ::: y
res0: List[Any] = List(1, 2, 3, cat, dog, bird)

273Data structures and collections

This means that rather than cause an error when trying to make a new List in this

way, the runtime produced a list with the smallest common supertype of Int and

String, which is Any.

GENERICS EXAMPLE—WAITING PETS

Suppose you have pets that need to be seen by a veterinarian, and you want to model

the queue in the waiting room. The following listing shows some familiar basic classes

and a helper function that can be used as a starting point.

class Pet(name : String)
class Cat(name : String) extends Pet(name : String)
class Dog(name : String) extends Pet(name : String)
class BengalKitten(name : String) extends Cat(name : String)

class Queue[T](elts : T*) {
 var elems = List[T](elts : _*)

 def enqueue(elem : T) = elems ::: List(elem)

 def dequeue = {
 val result = elems.head
 elems = elems.tail
 result
 }
}

def examine(q : Queue[Cat]) {
 println("Examining: " + q.dequeue)
}

Let’s now consider how you might use these classes from the Scala prompt. These are

the simplest examples:

scala> examine(new Queue(new Cat("tiddles")))
Examining: line5$object$$iw$$iw$Cat@fb0d6fe

scala> examine(new Queue(new Pet("george")))
<console>:10: error: type mismatch;
 found : Pet
 required: Cat
 examine(new Queue(new Pet("george")))
 ^

So far, so Java-like. Let’s do a couple more simple examples:

scala> examine(new Queue(new BengalKitten("michael")))
Examining: line7$object$$iw$$iw$BengalKitten@464a149a

scala> var kitties = new Queue(new BengalKitten("michael"))
kitties: Queue[BengalKitten] = Queue@2976c6e4

scala> examine(kitties)
<console>:12: error: type mismatch;
 found : Queue[BengalKitten]
 required: Queue[Cat]

Listing 9.10 Pets waiting to be seen

Need type
hint

274 CHAPTER 9 Scala: powerful and concise

 examine(kitties)
 ^

This is also relatively unsurprising. In the example where you don’t create kitties as

a temporary variable, Scala type-infers the type of the queue to be Queue[Cat], and

then accepts michael as being of a suitable type—BengalKitten—to be added to the

queue. In the second example, you explicitly provide the type of kitties. This means

that Scala is unable to use type inference and so can’t make the parameters match.

 Next, we’ll look at how to fix some of these type problems by using the type variance

of a language’s type system—in particular, the form called covariance. (There are other

possible forms of type variance, but covariance is the most commonly used.) In Java,

this is very flexible, but it can also be somewhat arcane. We’ll show you how this works

in both Scala and Java.

COVARIANCE

Have you ever found yourself wondering things like, “Is List<String> a subtype of

List<Object> in Java?” If so, then this topic is for you.

 By default, Java’s answer to that question, is “No,” but you can set things up to

make it “Yes.” To see how, consider this bit of code:

public class MyList<T> {
 private List<T> theList;
}

MyList<Cat> katzchen = new MyList<Cat>();
MyList<? extends Pet> petExt = petl;

The ? extends Pet clause means that petExt is a variable of a type that is partly

unknown (the ? in a Java type is always read as “unknown”). What you do know is

that the type parameter to MyList must be a Pet or a subtype of Pet. The Java com-

piler then allows petExt to have a value assigned to it where the type parameter is

a subtype.

 This is effectively saying that MyList<Cat> is a subtype of MyList<? extends Pet>.

Notice how this subtyping relationship was set up when you used the MyList type, not

when you defined it. This property of types is called covariance.

 Scala does things differently than Java. Rather than have the type variance defined

at the point of use of a type, Scala allows you to make covariance explicit at the point

where the type is declared. This has some advantages:

■ The compiler can check for usage that doesn’t fit with covariance at com-

pile time.

■ Any conceptual burden is placed on the writer of a type, not on the users of

that type.

■ It allows intuitive relationships to be built into basic collection types.

This does produce the theoretical disadvantage that it’s technically not as flexible

as Java’s use site variance, but in practice the benefits of Scala’s approach usually

275Introduction to actors

outweigh this concern. The really advanced features of Java’s generics are rarely

used by most programmers.

 The standard Scala collections, such as List, implement covariance. This means

that List[BengalKitten] is a subtype of List[Cat], which is a subtype of List[Pet].

To see this in action, let’s fire up the interpreter:

scala> val kits = new BengalKitten("michael") :: Nil
kits: List[BengalKitten] = List(BengalKitten@71ed5401)

scala> var katzen : List[Cat] = kits
katzen: List[Cat] = List(BengalKitten@71ed5401)

scala> var haustieren : List[Pet] = katzen
haustieren: List[Pet] = List(BengalKitten@71ed5401)

We’re using explicit types on the vars to ensure that Scala doesn’t infer the types

too narrowly.

 This concludes our brief look at Scala’s generics. The next big topic we want to

address is Scala’s novel approach to concurrency, which makes use of the actors model

as an alternative approach to explicit management of multiple threads.

9.6 Introduction to actors

Java’s model of explicit locks and synchronization is showing its age. It was a fantastic

innovation when the language was first conceived, but it has a big problem. Java’s con-

currency model is essentially a balancing act between two unwanted outcomes.

 Too little locking leads to unsafe concurrent code, which will manifest as race con-

ditions. Too much locking leads to failures of liveness, and the code will grind to a

halt, unable to make meaningful forward progress. This is the tension between safety

and liveness that we discussed in chapter 4.

 The lock-based model requires you to think about all of the concurrent operations

that could be in flight at a given time. This means that as applications become larger,

it becomes more and more difficult to think about all of the things that could go

wrong. Although there are things that Java can do to mitigate some of these issues, the

core problem remains and can’t be completely fixed within the Java language without

a backwards-incompatible release.

 Non-Java languages have an opportunity to start again. Instead of exposing the low-

level details of locks and threads to the programmer, alternative languages can provide

features in their language runtimes that provide extra support for concurrency.

 This should not be an unusual idea. After all, when Java first appeared, the idea

that the runtime would manage memory and the developer would be kept away from

the details was considered odd by many C and C++ developers.

 Let’s take a look at how Scala’s concurrency model, based on a technology called

actors, can provide a different (and simpler) approach to concurrent programming.

276 CHAPTER 9 Scala: powerful and concise

9.6.1 All the code’s a stage

An actor is an object that extends scala.actors.Actor and implements the act()

method. This should hopefully echo the definition of a thread in Java in your mind.

The most important difference is that Scala actors don’t communicate using explicit

shared data under most circumstances.

 Note that the shared data part is some-

thing the programmer must do as part of best

practices. There is nothing in Scala stopping

you from sharing state between actors if you

want to. It’s just considered bad style to do so.

Instead, actors have a communication channel

called a mailbox, which is used to send a mes-

sage (a work item) into an actor from another context. Figure 9.5 shows how.

 To implement an actor, you could simply extend the Actor class:

import scala.actors._

class MyActor extends Actor {
 def act() {
 ...
 }
}

This looks a lot like the way that Java code would declare a subclass of Thread. Just as

with threads, you need to tell the actor to start and put itself into a state where it can

start to receive methods. This is done with the start() method.

 As you might expect by now, Scala also provides a handy factory method, actor, to

help with creating new actors (the equivalent Java concept might be a static factory

method that produces anonymous implementations of Runnable). That allows con-

cise Scala code like this:

val myactor = actor {
 ...
}

The contents of the block being passed to actor are turned into the contents of the

act() method. In addition, actors that are created this way don’t need to be started

with a separate start() call—they automatically start.

 That’s a neat bit of syntactic sugar, but we still need to introduce the heart of the

Scala concurrency model—the mailbox. Let’s move on to look at that now.

9.6.2 Communicating with actors via the mailbox

Sending a message into an actor from another object is very simple—you just call the

! method on the actor object.

 On the receiving end, however, you need some code to handle the messages or

they’ll just pile up in the mailbox. In addition, the body of the actor method usually

Figure 9.5 Scala actors and mailboxes

277Introduction to actors

needs to loop, so that it can handle an entire stream of incoming messages. Let’s see

some of this in action at the Scala REPL:

scala> import scala.actors.Actor._
 val myact = actor {
 while (true) {
 receive {
 case incoming => println("I got mail: "+ incoming)
 }
 }
 }
myact: scala.actors.Actor = scala.actors.Actor$$anon$1@a760bb0

scala> myact ! "Hello!"
I got mail: Hello!

scala> myact ! "Goodbye!"
I got mail: Goodbye!

scala> myact ! 34
I got mail: 34

This example uses the receive method to make the actor handle a message. This

takes a block as an argument, which is the body of the processing method that Scala

will use to handle the method.

NOTE Overall, the Scala model is similar to a processing pattern that we dis-
cussed in chapter 4 (listing 4.13) with the Java processing threads playing the
role of actors, and the LinkedBlockingQueue playing the role of the Scala
mailbox. Scala provides language and library level support for this pattern in
a very straightforward way, which really helps to reduce the amount of boiler-
plate that needs to be written.

Despite being a very simple example, this demonstrates a lot of the basics of working

with actors:

■ Use a loop in the actor method to handle a stream of incoming messages.

■ Use receive to handle incoming messages.

■ Use a set of cases as the body of receive.

This last point is worth further discussion. The set of cases defines what is called a par-

tial function. This is useful, because of another aspect of Scala’s actors that’s more con-

venient than the Java equivalent. Specifically, Scala’s mailboxes as set up here are

untyped. This means that you can send a message of any type into an actor, and set up

patterns to receive messages of different types by using the typed patterns and the

constructor patterns that you saw earlier in the chapter.

 In addition to these basics, there are a number of best practices for using actors.

Here are some of the main ones that you should try to adhere to in your own code:

■ Make incoming messages immutable.

■ Consider making message types case classes.

■ Don’t do any blocking operations within an actor.

278 CHAPTER 9 Scala: powerful and concise

Not every application is in a position to follow all of these best practices, but most apps

should strive to use as many as possible.

 For more sophisticated actors, it’s often necessary to control the startup and shut-

down of actors. This is often done with a loop that uses a Boolean condition to control

shutting down the actor. Depending on your preferred style, you may also like to write

the actor in a functional style so that it has no state that’s affected by incoming messages.

 Scala provides a lot more support for concurrent programming in the actor style.

We’re only just scratching the surface here. For a comprehensive treatment, we rec-

ommend Scala in Action by Nilanjan Raychaudhuri (Manning, 2010).

9.7 Summary

Scala is a language that differs significantly from Java:

■ Functional techniques can be used to provide a more flexible style of

programming.

■ Type inference can make a statically typed language feel like a dynamic language.

■ Scala’s advanced type system can extend the notion of object orientation that

you see in Java.

In the next chapter, we’ll meet the last of our non-Java languages—the Lisp dialect

called Clojure. This is probably the language that is least like Java in most ways. We’ll

build on the discussions of immutability, functional programming, and alternative con-

currency from this chapter and show how Clojure takes all of these ideas and builds an

incredibly powerful and beautiful programming environment from them.

279

Clojure: safer programming

Clojure is a very different style of language from Java and the other languages we’ve

studied so far. Clojure is a JVM reboot of one of the oldest programming languages—

Lisp. If you’re not familiar with Lisp, don’t worry. We’ll teach you everything you

need to know about the Lisp family of languages to get you started with Clojure.

 In addition to its heritage of powerful programming techniques from classic

Lisp, Clojure adds amazing cutting-edge technology that’s very relevant to the mod-

ern Java developer. This combination makes Clojure a standout language on the

JVM and an attractive choice for application development.

 Particular examples of Clojure’s new tech are its concurrency toolkits and data

structures. The concurrency abstractions enable programmers to write much

safer multithreaded code. These can be combined with Clojure’s seq abstraction

This chapter covers

■ Clojure’s concept of identity and state

■ The Clojure REPL

■ Clojure syntax, data structures, and sequences

■ Clojure interoperability with Java

■ Multithreaded development with Clojure

■ Software transactional memory

280 CHAPTER 10 Clojure: safer programming

(a different take on collections and data structures) to provide a very powerful devel-

oper toolbox.

 To access all of this power, some important language concepts are approached in a

fundamentally different way from Java. This difference in approach makes Clojure

interesting to learn, and it will probably also change the way you think about program-

ming. Learning Clojure can help to make you a better programmer in any language.

 We’ll kick off with a discussion of Clojure’s approach to state and variables. After

some simple examples, we’ll introduce the basic vocabulary of the language—the spe-

cial forms that can be used to build up the rest of the language. We’ll also delve into

Clojure’s syntax for data structures, loops, and functions. This will allow us to intro-

duce sequences, which are one of Clojure’s most powerful abstractions. We’ll con-

clude the chapter by looking at two very compelling features: tight Java integration

and Clojure’s amazing concurrency support.

10.1 Introducing Clojure

Let’s get started by looking at one of Clojure’s most important

conceptual differences from Java. This is the treatment of

state, variables, and storage. As you can see in figure 10.1, Java

(like Groovy and Scala) has a model of memory and state that

involves a variable being a “box” (really a memory location)

with contents that can change over time.

 Clojure is a little bit different—the important concept is

that of a value. Values can be numbers, strings, vectors, maps,

sets, or a number of other things. Once created, values never

alter. This is really important, so we’ll say it again. Once created,

Clojure values can’t be altered—they’re immutable.

 This means that the imperative language model of a

box that has contents that change isn’t the way Clojure

works. Figure 10.2 shows how Clojure deals with state

and memory. It creates an association between a name

and a value.

 This is called binding, and it’s done using the special form (def). Special forms are

the Clojure equivalent of Java keywords, but be aware that Clojure has a different

meaning for the term “keyword,” which we’ll encounter later.

 The syntax for (def) is

(def <name> <value>)

Don’t worry that the syntax looks a little weird—this is entirely normal for Lisp syntax,

and you’ll get used to it really quickly. For now you can pretend that the brackets are

arranged slightly differently and that you’re calling a method like this:

def(<name>, <value>)

Let’s demonstrate (def) with a time-honored example that uses the Clojure interac-

tive environment.

Figure 10.1 Imperative

language memory use

Figure 10.2 Clojure memory use

281Introducing Clojure

10.1.1 Hello World in Clojure

If you haven’t already installed Clojure, check out appendix D. Then change into the

directory where you installed Clojure and run this command:

java -cp clojure.jar clojure.main

This brings up the user prompt for the Clojure read-evaluate-print loop (REPL). This

is the interactive session, which is where you’ll typically spend quite a lot of time when

developing Clojure code.

 The user=> part is the Clojure prompt for the session, which can be thought of as

a bit like an advanced debugger or a command line:

user=> (def hello (fn [] "Hello world"))
#'user/hello
user=> (hello)
"Hello world"

In this code, you start off by binding the identifier hello to a value. (def) always binds

identifiers (which Clojure calls symbols) to values. Behind the scenes, it will also create

an object, called a var, that represents the binding (and the name of the symbol).

 What is the value you’re binding to? It’s the value:

(fn [] "Hello world")

This is a function, which is a genuine value (and so therefore immutable) in Clojure.

It’s a function that takes no arguments and returns the string "Hello world".

 After binding it, you execute it via (hello). This causes the Clojure runtime to

print the results of evaluating the function, which is "Hello world."

 At this point, you should enter the Hello World example (if you haven’t already), and

see that it behaves as described. Once you’ve done that, we can explore a little further.

10.1.2 Getting started with the REPL

The REPL allows you to enter Clojure code and execute Clojure functions. It’s an

interactive environment, and the results of earlier evaluations are still around. This

enables a type of programming called exploratory programming, which we’ll discuss in

section 10.5.4—it basically means that you can experiment with code. In many cases

the right thing to do is to play around in the REPL, building up larger and larger func-

tions once the building blocks are correct.

 Let’s look at an example of that right now. One of the first things to point out is that

the binding of a symbol to a value can be changed by another call to def, so let’s see that

in action in the REPL—we’ll actually use a slight variant of (def) called (defn):

user=> (hello)
"Hello world"
user=> (defn hello [] "Goodnight Moon")
#'user/hello
user=> (hello)
"Goodnight Moon"

282 CHAPTER 10 Clojure: safer programming

Notice that the original binding for hello is still in

play until you change it—this is a key feature of the

REPL. There is still state, in terms of which symbols are

bound to which values, and that state persists between

lines the user enters.

 The ability to change which value a symbol is

bound to is Clojure’s alternative to mutating state.

Rather than allowing the contents of a “memory box”

to change over time, Clojure allows a symbol to be

bound to different immutable values at different

points in time. Another way of saying this is that the var can point to different values

during the lifetime of a program. An example can be seen in figure 10.3.

NOTE This distinction between mutable state and different bindings at differ-
ent times is subtle, but it’s a very important concept to grasp. Remember,
mutable state means the contents of the box change, whereas rebinding means
pointing at different boxes at different points in time.

We’ve also slipped in another Clojure concept in the last code snippet—the (defn)

“define function” macro. Macros are one of the key concepts of Lisp-like languages.

The central idea is that there should be as little distinction between built-in constructs

and ordinary code as possible.

 Macros allow you to create forms that behave like built-in syntax. The creation of

macros is an advanced topic, but mastering their creation will allow you to produce

incredibly powerful tools.

 This means that the true language primitives of the system (the special forms) can be

used to build up the core of the language in such a way that you don’t really notice the

difference between the two. The (defn) macro is an example of this. It’s just a slightly

easier way to bind a function value to a symbol (and create a suitable var, of course).

10.1.3 Making a mistake

What happens if you make a mistake? Say you leave out the [] (which is the part of the

function declaration that says that this function takes no arguments):

user=> (defn hello "Goodnight Moon")
#'user/hello
user=> (hello)
java.lang.IllegalArgumentException: Wrong number of args (0) passed to:
user$hello (NO_SOURCE_FILE:0)

All that’s happened is that you’ve got your hello identifier bound to something that

doesn’t make a lot of sense. In the REPL, you can fix this by simply rebinding it:

user=> (defn hello [] (println "Dydh da an Nor"))

➥ ; "Hello World" in Cornish
#'user/hello
user=> (hello)

Figure 10.3 Clojure bindings

changing over time

283Introducing Clojure

Dydh da an Nor
nil
user=>

As you might guess from the preceding snippet, the semicolon (;) character means

that everything to the end of the line is a comment, and (println) is the function

that prints a string. Notice that (println), like all functions, returns a value, which is

echoed back to the REPL at the end of the function’s execution. That value is nil,

which is basically the Clojure equivalent of Java’s null.

10.1.4 Learning to love the brackets

The culture of programmers has always had a large element of whimsy and humor.

One of the oldest jokes is that Lisp is an acronym for Lots of Irritating Silly Parenthe-

ses (instead of the more prosaic truth—that it’s an abbreviation for List Processing).

This rather self-deprecating joke is popular with some Lisp coders, partly because it

points out the unfortunate truth that Lisp syntax has a reputation for being difficult

to learn.

 In reality, this hurdle is rather exaggerated. Lisp syntax is different from what most

programmers are used to, but it isn’t the obstacle that it’s sometimes presented as. In

addition, Clojure has several innovations that reduce the barrier to entry even further.

 Let’s take another look at the Hello World example. To call the function that

returns the value “Hello World”, you wrote this:

(hello)

If you were writing this in Java, it would look something like the following (assuming

you had a function called hello defined somewhere in the class):

hello();

But Clojure is different. Rather than having expressions such as myFunction(someObj),

this is written in Clojure as (myFunction someObj). This syntax is called Polish notation,

as it was developed by Polish mathematicians in the 19th century.

 If you’ve studied compiler theory, you might wonder if there’s a connection here

to concepts like the abstract syntax tree (AST). The short answer is yes, there is. A Clo-

jure (or other Lisp) program that is written in Polish notation (usually called an

s-expression by Lisp programmers) can be shown to be a very simple and direct repre-

sentation of the AST of that program.

 You can think of a Lisp program as being written in terms of its AST directly.

There’s no real distinction between a data structure representing a Lisp program and

the code, so code and data are very interchangeable. This is the reason for the slightly

strange notation—it’s used by Lisp-like languages to blur the distinction between

built-in primitives and user and library code. This power is so great that it far out-

weighs the slight oddity of the syntax to the eyes of a newly arrived Java programmer.

 Let’s dive into some more of the syntax and start using Clojure to build real programs.

284 CHAPTER 10 Clojure: safer programming

10.2 Looking for Clojure—syntax and semantics

In the previous section, you met the (def) and (fn) special forms. There are a small

number of other special forms that you need to know immediately to provide a basic

vocabulary for the language. In addition, there are a large number of useful forms

and macros, of which a greater awareness will develop with practice.

 Clojure is blessed with a very large number of useful functions for doing a wide

range of conceivable tasks. Don’t be daunted by this—embrace it. Be happy that for

many practical programming tasks you may face in Clojure, somebody else has already

done the heavy lifting for you.

 In this section, we’ll cover the basic working set of special forms, then progress to

Clojure’s native data types (the equivalent of Java’s collections). After that, we’ll prog-

ress to a natural style for writing Clojure—one in which functions rather than vari-

ables have center stage. The object-oriented nature of the JVM will still be present

beneath the surface, but Clojure’s emphasis on functions has a power that isn’t as

obviously present in purely OO languages.

10.2.1 Special forms bootcamp

Table 10.1 covers the definitions of some of Clojure’s most commonly used special

forms. To get best use of the table, skim through it now and refer back to it as neces-

sary when you reach some of the examples in sections 10.3 onwards.

Table 10.1 Some of Clojure’s basic special forms

Special form Meaning

(def <symbol> <value?>) Binds a symbol to a value (if provided). Creates a var corre-

sponding to the symbol if necessary.

(fn <name>? [<arg>*] <expr>*) Returns a function value that takes the specified args, and

applies them to the exprs. Often combined with (def)
into forms like (defn).

(if <test> <then> <else>?) If test evaluates to logical-true, evaluate and yield then.

Otherwise, evaluate and yield else, if present.

(let [<binding>*] <expr>*) Aliases values to a local name and implicitly defines a

scope. Makes the alias available inside all exprs within the

scope of let.

(do <expr>*) Evaluates the exprs in order and yields the value of the

last.

(quote <form>) Returns form as is (without evaluation). It only takes a sin-

gle form and ignores all other arguments.

(var <symbol>) Returns the var corresponding to symbol (returns a Clojure

JVM object, not a value).

285Looking for Clojure—syntax and semantics

This isn’t an exhaustive list of special forms, and a high percentage of them have mul-

tiple ways of being used. Table 10.1 is a starter collection of basic use cases, and not

anything comprehensive.

 Now that you have an appreciation of the syntax for some basic special forms, let’s

turn to Clojure’s data structures and start to see how the forms can operate on data.

10.2.2 Lists, vectors, maps, and sets

Clojure has several native data structures. The most familiar is the list, which in Clojure is

a singly linked list.

 Lists are typically surrounded with parentheses, which presents a slight syntactic

hurdle because round brackets are also used for general forms. In particular, paren-

theses are used for evaluation of function calls. This leads to the following common

beginner’s syntax error:

1:7 user=> (1 2 3)
java.lang.ClassCastException: java.lang.Integer cannot be cast to
clojure.lang.IFn (repl-1:7)

The problem here is that, because Clojure is very flexible about its values, it’s expect-

ing a function value (or a symbol that resolves to one) as the first argument, so it can

call that function and pass 2 and 3 as arguments; 1 isn’t a value that is a function, so

Clojure can’t compile this form. We say that this s -expression is invalid. Only valid

s -expressions can be Clojure forms.

 The solution is to use the (quote) form that you met in the last section. This has a

handy short form, which is '. This gives us these two equivalent ways of writing this list:

1:22 user=> '(1 2 3)
(1 2 3)
1:23 user=> (quote (1 2 3))
(1 2 3)

Note that (quote) handles its arguments in a special way. In particular, there is no

attempt made to evaluate the argument, so there’s no error arising from a lack of a

function value in the first slot.

 Clojure has vectors, which are like arrays (in fact, it’s not too far from the truth to

think of lists as being basically like Java’s LinkedList and vectors as like ArrayList).

They have a convenient literal form that makes use of square brackets, so all of these

are equivalent:

1:4 user=> (vector 1 2 3)
[1 2 3]
1:5 user=> (vec '(1 2 3))
[1 2 3]
1:6 user=> [1 2 3]
[1 2 3]

We’ve already met vectors. When we declared the Hello World function and others,

we used a vector to indicate the parameters that the declared function takes. Note that

286 CHAPTER 10 Clojure: safer programming

the form (vec) accepts a list and creates a vector from it, whereas (vector) is a form

that accepts multiple individual symbols and returns a vector of them.

 The function (nth) for collections takes two parameters: a collection and an

index. It can be thought of as similar to the get() method from Java’s List interface.

It can be used on vectors and lists, but also on Java collections and even strings, which

are treated as collections of characters. Here’s an example:

1:7 user=> (nth '(1 2 3) 1)
2

Clojure also supports maps (which you can think of as being very similar to Java’s

HashMap), with this simple literal syntax:

{key1 value1 key2 "value2}

To get a value back out of a map, the syntax is very simple:

user=> (def foo {"aaa" "111" "bbb" "2222"})
#'user/foo
user=> foo
{"aaa" "111", "bbb" "2222"}
user=> (foo "aaa")
"111"

One very useful stylistic point is the use of keys that have a colon in front of them.

These are what Clojure refers to as “keywords”:

1:24 user=> (def martijn {:name "Martijn Verburg",

➥ :city "London", :area "Highbury"})
#'user/martijn
1:25 user=> (:name martijn)
"Martijn Verburg"
1:26 user=> (martijn :area)
"Highbury"
1:27 user=> :area
:area
1:28 user=> :foo
:foo

Here are some useful points about keywords and maps to keep in mind:

■ A keyword in Clojure is a function that takes one argument, which must be

a map.

■ Calling a keyword function on a map returns the value that corresponds to the

keyword function in the map.

■ When using keywords, there’s a useful symmetry in the syntax, as (my-map :key)

and (:key my-map) are both legal.

■ As a value, a keyword returns itself.

■ Keywords don’t need to be declared or def’d before use.

■ Remember that Clojure functions are values, and therefore are eligible to be

used as keys in maps.

287Looking for Clojure—syntax and semantics

■ Commas can be used (but aren’t necessary) to separate key/value pairs, as Clo-

jure considers them whitespace.

■ Symbols other than keywords can be used as keys in Clojure maps, but the keyword

syntax is extremely useful and is worth emphasizing as a style in your own code.

In addition to map literals, Clojure also has a (map) function. But don’t be caught

out. Unlike (list), the (map) function doesn’t produce a map. Instead, (map) applies

a supplied function to each element in a collection in turn, and builds a new collec-

tion (actually a Clojure sequence, which you’ll meet in detail in section 10.4) from

the new values returned.

1:27 user=> (def ben {:name "Ben Evans", :city "London", :area "Holloway"})
#'user/ben
1:28 user=> (def authors [ben martijn])
#'user/authors
1:29 user=> (map (fn [y] (:name y)) authors)
("Ben Evans" "Martijn Verburg")

There are additional forms of (map) that are able to handle multiple collections at

once, but the form that takes a single collection as input is the most common.

 Clojure also supports sets, which are very similar to Java’s HashSet. They also have

a short form for data structures:

#{"apple" "pair" "peach"}

These data structures provide the fundamentals for building up Clojure programs.

 One thing that may surprise the Java native is the lack of any immediate mention

of objects as first-class citizens. This isn’t to say that Clojure isn’t object-oriented, but it

doesn’t see OO in quite the same way as Java. Java chooses to see the world in terms of

statically typed bundles of data and code in explicit class definitions of user-defined

data types. Clojure emphasizes the functions and forms instead, although these are

implemented as objects on the JVM behind the scenes.

 This philosophical distinction between Clojure and Java manifests itself in how

code is written in the two languages, and to fully understand the Clojure viewpoint,

it’s necessary to write programs in Clojure and understand some of the advantages

that deemphasizing Java’s OO constructs brings.

10.2.3 Arithmetic, equality, and other operations

Clojure has no operators in the sense that you might expect them in Java. So how

would you, for example, add two numbers? In Java it’s easy:

3 + 4

But Clojure has no operators. We’ll have to use a function instead:

(add 3 4)

That’s all well and good, but we can do better. As there aren’t any operators in

Clojure, we don’t need to reserve any of the keyboard’s characters to represent

288 CHAPTER 10 Clojure: safer programming

them. That means our function names can be more outlandish than in Java, so we

can write this:

(+ 3 4)

Clojure’s functions are in many cases variadic (they take a variable number of inputs),

so you can, for example, write this:

(+ 1 2 3)

This will give the value 6.

 For the equality forms (the equivalent of equals() and == in Java), the situation is

a little more complex. Clojure has two main forms that relate to equality: (=) and

(identical?). Note that these are both examples of how the lack of operators in

Clojure means that more characters can be used in function names. Also, (=) is a single

equals sign, because there’s not the same notion of assignment as in Java-like languages.

 This bit of REPL code sets up a list, list-int, and a vector, vect-int, and applies

equality logic to them:

1:1 user=> (def list-int '(1 2 3 4))
#'user/list-int
1:2 user=> (def vect-int (vec list-int))
#'user/vect-int
1:3 user=> (= vect-int list-int)
true
1:4 user=> (identical? vect-int list-int)
false

The key point is that the (=) form on collections checks to see whether the collections

comprise the same objects in the same order (which is true for list-int and vect-

int), whereas (identical?) checks to see if they’re really the same object.

 You might also notice that our symbol names don’t use camel-case. This is usual for

Clojure. Symbols are usually all in lowercase, with hyphens between words.

With basic data structures and operators under our belts, let’s put together some of

the special forms and functions we’ve seen and write slightly longer example Clo-

jure functions.

10.3 Working with functions and loops in Clojure

In this section, we’ll start dealing with some of the meat of Clojure programming.

We’ll start writing functions to act on data and bring Clojure’s focus on functions to

True and false in Clojure

Clojure provides two values for logical false: false and nil. Anything else is logical
true. This parallels the situation in many dynamic languages, but it’s a bit strange for
Java programmers encountering it for the first time.

289Working with functions and loops in Clojure

the fore. Next up are Clojure’s looping constructs, then reader macros and dispatch

forms. We’ll round out the section by discussing Clojure’s approach to functional pro-

gramming, and its take on closures.

 The best way to start doing all of this is by example, so let’s get going with a few

simple examples and build up toward some of the powerful functional programming

techniques that Clojure provides.

10.3.1 Some simple Clojure functions

Listing 10.1 defines three functions. Two of which are very simple functions of one

argument; the third is a little more complex.

(defn const-fun1 [y] 1)

(defn ident-fun [y] y)

(defn list-maker-fun [x f]
 (map (fn [z] (let [w z]
 (list w (f w))
)) x))

In this listing, (const-fun1) takes in a value and returns 1, and (ident-fun) takes in

a value and returns the very same value. Mathematicians would call these a constant

function and the identity function. You can also see that the definition of a function uses

vector literals to denote the arguments to a function, and for the (let) form.

 The third function is more complex. The function (list-maker-fun) takes two

arguments: first a vector of values to operate on, which is called x, and second a value

that must be a function.

 Take a look at how list-maker-fun works:

user=> (list-maker-fun ["a"] const-fun1)
(("a" 1))
user=> (list-maker-fun ["a" "b"] const-fun1)
(("a" 1) ("b" 1))
user=> (list-maker-fun [2 1 3] ident-fun)
((2 2) (1 1) (3 3))
user=> (list-maker-fun [2 1 3] "a")
java.lang.ClassCastException: java.lang.String cannot be cast to
clojure.lang.IFn

Note that when you’re typing these expressions into the REPL, you’re interacting with

the Clojure compiler. The expression (list-maker-fun [2 1 3] "a") fails to compile

because (list-maker-fun) expects the second argument to be a function, which a

string isn’t. In section 10.5 you’ll learn that, to the VM, Clojure functions are objects

that implement clojure.lang.IFn.

Listing 10.1 Defining simple Clojure functions

Listing 10.2 Working with functions

290 CHAPTER 10 Clojure: safer programming

 This example shows that when interacting with the REPL, you still have a certain

amount of static typing in play. This is because Clojure isn’t an interpreted language.

Even in the REPL, every Clojure form that is typed is compiled to JVM bytecode and

linked into the running system. The Clojure function is compiled to JVM bytecode

when it’s defined, so the ClassCastException occurs because of a static typing viola-

tion in the VM.

 Listing 10.3 shows a longer piece of Clojure code, the Schwartzian transform. This

is a piece of programming history, made popular by the Perl programming language

in the 1990s. The idea is to do a sort operation on a vector, based not on the provided

vector, but on some property of the elements of the vector. The property values to sort

on are found by calling a keying function on the elements.

 The definition of the Schwartzian transform in listing 10.3 calls the keying func-

tion key-fn. When you actually want to call the (schwartz) function, you need to sup-

ply a function to use for keying. In listing 10.3, you use our old friend, (ident-fun),

from listing 10.1.

1:65 user=> (defn schwartz [x key-fn]
 (map (fn [y] (nth y 0))
 (sort-by (fn [t] (nth t 1))
 (map (fn [z] (let [w z]
 (list w (key-fn w)))
) x))))
#'user/schwartz
1:66 user=> (schwartz [2 3 1 5 4] ident-fun)
(1 2 3 4 5)
1:67 user=> (apply schwartz [[2 3 1 5 4] ident-fun])
(1 2 3 4 5)

This code is performing three separate steps:

■ Create a list consisting of pairs.

■ Sort the pairs based on the values of the keying function.

■ Construct a new list by taking only the original value from each pair in the

sorted list of pairs (and discarding the keying function values).

This is shown in figure 10.4.

 Note that in listing 10.3 we introduced a new form: (sort-by). This is a function

that takes two arguments: a function to use to do the sorting, and a vector to be

sorted. We’ve also showcased the (apply) form, which takes two arguments: a func-

tion to call, and a vector of arguments to pass to it.

 One amusing aspect of the Schwartzian transform is that the person for whom it

was named (Randall Schwartz) was deliberately aping Lisp when he came up with the

Perl version. Representing it in the Clojure code here means we’ve come full circle—

back to a Lisp again!

Listing 10.3 Schwartzian transform

Step 3

Step 2

Step 1

291Working with functions and loops in Clojure

The Schwartzian transform is a useful example that we’ll refer back to later on. This is

because it contains just enough complexity to demonstrate quite a few useful concepts.

 Now, let’s move on to discuss loops in Clojure, which work a bit differently than

you may be used to.

10.3.2 Loops in Clojure

Loops in Java are a fairly straightforward proposition—the developer can choose from

a for, a while, and a couple of other loop types. Usually central is the concept of

repeating a group of statements until a condition (often expressed in terms of a muta-

ble variable) is met.

 This presents us with a slight conundrum in Clojure: how can we express a for

loop, for example, when there are no mutable variables to act as the loop index? In

more traditional Lisps, this is often solved by rewriting iterative loops into a form that

uses recursion. But the JVM doesn’t guarantee to optimize tail recursion (as is required

by Scheme and other Lisps), so using recursion can cause the stack to blow up.

 Instead, Clojure provides useful constructions to allow looping without increas-

ing the size of the stack. One of the most common is loop-recur. The next snippet

shows how loop-recur can be used to build up a simple construction similar to a

Java for loop.

(defn like-for [counter]
(loop [ctr counter]
 (println ctr)
 (if (< ctr 10)
 (recur (inc ctr))
 ctr
)))

The (loop) form takes a vector of arguments of local names for symbols—effectively

aliases as (let) does. Then, when execution reaches the (recur) form (which it will

only do in this example if the ctr alias is less than 10), the (recur) causes control to

Figure 10.4 The Schwartzian

transform

292 CHAPTER 10 Clojure: safer programming

branch back to the (loop) form, but with the new value specified. This allows us to

build up iteration-style constructs (such as for and while loops), but to still have a

recursive flavor to the implementation.

 We’ll now turn to our next topic, which is a look at useful shorthand in Clojure syn-

tax, to help make your programs even shorter and less verbose.

10.3.3 Reader macros and dispatch

Clojure has syntax features that surprise many Java programmers. One of them is the

lack of operators. This has the side effect of relaxing Java’s restrictions on which charac-

ters can be used in function names. You’ve already met functions such as (identical?),

which would be illegal in Java, but we haven’t addressed the issue of exactly which

characters aren’t allowed in symbols.

 Table 10.2 lists the characters that aren’t allowed in Clojure symbols. These are all

characters that are reserved by the Clojure parser for its own use. They’re usually

referred to as reader macros.

The dispatch reader macro has several different subforms, depending on what follows

the # character. Table 10.3 shows the different possible forms.

Table 10.2 Reader macros

Character Name Meaning

' Quote Expands to (quote). Yields the unevaluated form.

; Comment Marks a comment to end of line. Like // in Java.

\ Character Produces a literal character.

@ Deref Expands to (deref), which takes in a var object and returns the value

in that object (the opposite action of the (var) form). Has additional

meaning in a transactional memory context (see section 10.6).

^ Metadata Attaches a map of metadata to an object. See the Clojure documentation

for details.

` Syntax-

quote

Form of quote often used in macro definitions. Not really suitable for

beginners. See the Clojure documentation for details.

Dispatch Has several different subforms. See table 10.3

Table 10.3 The subforms of the dispatch reader macro

Dispatch form Meaning

#' Expands to (var).

#{} Creates a set literal, as discussed in section 10.2.2.

#() Creates an anonymous function literal. Useful for single uses where (fn) is too

wordy.

293Working with functions and loops in Clojure

Here are a couple of additional points that follow from the dispatch forms. The var-

quote, #', form explains why the REPL behaves as it does after a (def):

1:49 user=> (def someSymbol)
#'user/someSymbol

The (def) form returns the newly created var object named someSymbol, which lives

in the current namespace (which is user in the REPL), so #'user/someSymbol is the

full value of what’s returned from (def).

 The anonymous function literal also has an innovation to reduce verboseness. This

is to omit the vector of arguments, and instead use a special syntax to allow the

Clojure reader to infer how many arguments are required for the function literal.

Let’s rewrite the Schwartzian transform to see how to use this syntax.

(defn schwartz [x f]
 (map #(nth %1 0)
 (sort-by #(nth %1 1)
 (map #(let [w %1]
 (list w (f w))
) x))))

The use of %1 as a placeholder for a function literal’s argument (and %2, %3, and so on

for subsequent arguments) makes the usage really stand out, and makes the code a lot

easier to read. This visual clue can be a real help for the programmer, similar to the

arrow symbol used in function literals in Scala, which you saw in section 9.3.6.

 As you’ve seen, Clojure relies heavily on the concept of functions as the basic unit of

computation, rather than on objects, which are the staple of languages like Java. The

natural setting for this approach is functional programming, which is our next topic.

10.3.4 Functional programming and closures

We’re now going to turn to the scary world of functional programming in Clojure. Or

rather, we’re not, because it’s not that scary. In fact, we’ve been doing functional pro-

gramming for this entire chapter; we just didn’t tell you, in order to not put you off.

 As we mentioned in section 7.3.2, functional programming means a function is a

value. A function can be passed around, placed in Vars and manipulated, just like 2 or

"hello." But so what? We did that back in our very first example: (def hello (fn []

#_ Skips the next form. Can be used to produce a multiline comment, via #_(...
multi-line ...).

#"<pattern>" Creates a regular expression literal (as a java.util.regex.Pattern
object).

Listing 10.4 Rewritten Schwartzian transform

Table 10.3 The subforms of the dispatch reader macro (continued)

Dispatch form Meaning

Anonymous
function literals

294 CHAPTER 10 Clojure: safer programming

"Hello world")). We created a function (one that takes no arguments and returns

the string "Hello world") and bound it to the symbol hello. The function was just a

value, not fundamentally different for a value like value 2.

 In section 10.3.1, we introduced the Schwartzian transform as an example of a

function that takes another function as an input value. Again, this is just a function

taking a particular type as one of its input arguments. The only thing that’s slightly dif-

ferent about is that the type it’s taking is a function.

 What about closures? Surely they’re really scary, right? Well, not so much. Let’s

take a look at a simple example that should hopefully remind you of some of the

examples we did for Scala in chapter 9:

1:5 user=> (defn adder [constToAdd] #(+ constToAdd %1))
#'user/adder
1:6 user=> (def plus2 (adder 2))
#'user/plus2
1:7 user=> (plus2 3)
5
1:8 user=> 1:9 user=> (plus2 5)
7

You first set up a function called (adder). This is a function that makes other func-

tions. If you’re familiar with the Factory Method pattern in Java, you can think of this

as kind-of a Clojure equivalent. There’s nothing strange about functions that have

other functions as their return values—this is a key part of the concept that functions

are just ordinary values.

 Notice that this example uses the shorthand form #() for an anonymous function

literal. The function (adder) takes in a number and returns a function, and the func-

tion returned from (adder) takes one argument.

 You then use (adder) to define a new form: (plus2). This is a function that takes

one numeric argument and adds 2 to it. That means the value that was bound to

constToAdd inside (adder) was 2. Now let’s make a new function:

1:13 user=> (def plus3 (adder 3))
#'user/plus3
1:14 user=> (plus3 4)
7
1:15 user=> (plus2 4)
6

This shows that you can make a different function, (plus3), that has a different value

bound to constToAdd. We say that the functions (plus3) and (plus2) have captured,

or “closed over” a value from their environment. Note that the values that were cap-

tured by (plus3) and (plus2) were different, and that defining (plus3) had no

effect on the value captured by (plus2).

 Functions that “close over” some values in their environment are called closures;

(plus2) and (plus3) are examples of closures. The pattern whereby a function-making

function returns another function that has closed over something is a very common

one in languages that have closures.

295Introducing Clojure sequences

 Now let’s turn to a powerful Clojure feature—sequences. These are used some-

thing like Java’s collections or iterators, but they have somewhat different properties.

Sequences are a major part of writing Clojure code that utilizes the strengths of the

language, and they’ll provide a fresh look at how Java handles similar concepts.

10.4 Introducing Clojure sequences

Consider the Java Iterator, as shown in the next code snippet. This is a slightly old-

school way of using an iterator. In fact, this is what a Java 5 for loop is turned into

under the covers:

Collection<String> c = ...;

for (Iterator<String> it = c.iterator(); it.hasNext();) {
 String str = it.next();
 ...
}

This is fine for looping over a simple collection, such as a Set or List. But the

Iterator interface only has the next() and hasNext() methods, plus an optional

remove() method.

CONCEPTUAL PROBLEMS WITH JAVA ITERATORS

There is a problem with Java iterators, however. The Iterator interface doesn’t pro-

vide as rich a set of methods for interacting with a collection as you might want. With

the Java Iterator, you can only do two things:

■ Check to see whether the collection has any more elements in it

■ Get the next element, and advance the iterator

The key to the problems with the Iterator

is that getting the next element and advanc-

ing the iterator are combined into a single

operation (figure 10.5). This means that

there’s no way of examining the next ele-

ment in a collection, deciding that it needs

special handling, and handing it off intact.

 The very act of getting the next element

from the iterator alters it. That is, mutation

is built into Java’s approach to collections

and iterators, and it makes constructing a

robust multipass solution all but impossible.

CLOJURE’S KEY ABSTRACTION

Clojure’s approach to this subject differs. It has a powerful core abstraction that corre-

sponds to collections and iterators in Java. This is the sequence, or seq. It essentially

merges some of the features of both Java classes into one concept. This is motivated by

wanting three things:

Figure 10.5 The nature of Java iterators

296 CHAPTER 10 Clojure: safer programming

■ More robust iterators, especially for multipass algorithms

■ Immutability, allowing the seqs to be passed around between functions without

a problem

■ The possibility of lazy sequences (more on these later)

Some core functions that relate to sequences are shown in table 10.4. Note that none

of these functions will mutate their input arguments; if they need to return a different

value, it will be a different seq.

Here are a few examples:

1:1 user=> (rest '(1 2 3))
(2 3)
1:2 user=> (first '(1 2 3))
1
1:3 user=> (rest [1 2 3])
(2 3)
1:13 user=> (seq ())
nil
1:14 user=> (seq [])
nil
1:15 user=> (cons 1 [2 3])
(1 2 3)
1:16 user=> (every? is-prime [2 3 5 7 11])
true

One important point to note is that Clojure lists are their own seqs, but vectors aren’t. In

theory, that would mean that you shouldn’t be able to call (rest) on a vector. The reason

you’re able to is that (rest) acts by calling (seq) on the vector before operating on it.

This is a very common property of the seq construct—many of the sequence functions

take more general objects than seqs, and will call (seq) on them before they begin.

Table 10.4 Basic sequence functions

Function Effect

(seq <coll>) Returns a seq that acts as a “view” onto the collection acted upon.

(first <coll>) Returns the first element of the collection, calling (seq) on it

first if necessary. Returns nil if the collection is nil.

(rest <coll>) Returns a new seq, made from the collection, minus the first ele-

ment. Returns nil if the collection is nil.

(seq? <o>) Returns true if o is a seq (meaning, if it implements ISeq).

(cons <elt> <coll>) Returns a seq made from the collection, with the additional ele-

ment prepended.

(conj <coll> <elt>) Returns a new collection with the new element added to the

appropriate end—the end for vectors and the head for lists.

(every? <pred-fn> <coll>) Returns true if (pred-fn) returns logical-true for every item

in the collection.

297Introducing Clojure sequences

 In this section, we’re going to explore some of the basic properties and uses of the

seq abstraction, paying special attention to lazy sequences and variadic functions. The

first of these concepts, laziness, is a programming technique that isn’t often exploited

in Java, so it may be new to you. Let’s take a look at it now.

10.4.1 Lazy sequences

Laziness in programming languages is a powerful concept. Essentially, laziness allows

an expression to be delayed in computation until it’s required. In Clojure this means

that rather than having a complete list of every value that’s in a sequence, values can

instead be obtained when they’re required (such as by calling a function to generate

them on demand).

 In Java, such an idea would require something like a custom implementation of

List, and there would be no convenient way to write it without large amounts of boil-

erplate code. Clojure comes with powerful macros designed to help you create lazy

seqs with only a small amount of effort.

 Consider how you could represent a lazy, potentially infinite sequence. One obvi-

ous choice would be to use a function to generate items in the sequence. The function

should do two things:

■ Return the next item in a sequence

■ Take a fixed, finite number of arguments

Mathematicians would say that such a function defines a recurrence relation, and the the-

ory of such relations immediately suggests that recursion is an appropriate way to proceed.

 Imagine you have a machine in which stack space and other constraints aren’t

present, and suppose that you can set up two threads of execution: one will prepare

the infinite sequence, and the other will use it. Then you could use recursion to

define the lazy seq in the generation thread with something like the following snippet

of pseudocode:

(defn infinite-seq <vec-args>
(let [new-val (seq-fn <vec-args>)]
 (cons new-val (infinite-seq <new-vec-args>))))

In actual Clojure, this doesn’t work, because the recursion on (infinite-seq) blows

the stack up. But by adding a construct that tells Clojure not to go crazy on the recur-

sion, instead only proceeding as needed, you can do it.

 Not only that, but you can do it within a single thread of execution, as the next

example shows. The following listing defines the lazy sequence k, k+1, k+2, ... for

some number k.

(defn next-big-n [n] (let [new-val (+ 1 n)]
 (lazy-seq
 (cons new-val (next-big-n new-val))
)))

Listing 10.5 Lazy sequence example

lazy-seq marker

Infinite
recursion

298 CHAPTER 10 Clojure: safer programming

(defn natural-k [k]
 (concat [k] (next-big-n k)))

1:57 user=> (take 10 (natural-k 3))
(3 4 5 6 7 8 9 10 11 12)

The key points are the form (lazy-seq), which marks a point where an infinite recur-

sion could occur, and the (concat) form, which handles it safely. You can then use the

(take) form to pull the required number of elements from the lazy sequence, which

is essentially defined by the form (next-big-n).

 Lazy sequences are an extremely powerful feature, and with practice you’ll find

them a very useful tool in your Clojure arsenal.

10.4.2 Sequences and variable-arity functions

There is one powerful feature of Clojure’s approach to functions that we’ve delayed

discussing fully until now. This is the natural ability to easily have variable numbers of

arguments to functions, sometimes called the arity of functions. Functions that accept

variable numbers of parameters are called variadic.

 As a trivial example, consider the constant function (const-fun1) that we dis-

cussed in listing 10.1. This function takes in a single argument and discards it, always

returning the value 1. But consider what happens when you pass more than one argu-

ment to (const-fun1):

1:32 user=> (const-fun1 2 3)
java.lang.IllegalArgumentException: Wrong number of args (2) passed to:
user$const-fun1 (repl-1:32)

The Clojure compiler is still enforcing some runtime checks on the number (and

types) of arguments passed to (const-fun1). For a function that simply discards all of

its arguments and returns a constant value, this seems overly restrictive. What would a

function that could take any number of arguments look like in Clojure?

 Listing 10.6 shows how to do this for a version of the (const-fun1) constant func-

tion from earlier in the chapter. We’ve called it (const-fun-arity1), for const-fun1

with variable arity. This is a homebrewed version of the (constantly) function pro-

vided in the Clojure standard function library.

1:28 user=> (defn const-fun-arity1
 ([] 1)
 ([x] 1)
 ([x & more] 1)
)
#'user/const-fun-arity1
1:33 user=> (const-fun-arity1)
1
1:34 user=> (const-fun-arity1 2)
1
1:35 user=> (const-fun-arity1 2 3 4)
1

Listing 10.6 Variable arity function

concat constrains
recursion

Multiple defns with
different signatures

299Interoperating between Clojure and Java

The key is that the function definition is followed not by a vector of function parame-

ters and then a form defining the behavior of the function. Instead, there is a list of

pairs, with each pair consisting of a vector of parameters (effectively the signature of

this version of the function) and the implementation for this version of the function.

This can be thought of as a similar concept to method overloading in Java. The usual

convention is to define a few special-case forms (that take none, one, or two parame-

ters) and an additional form that has as its last parameter a seq. In listing 10.6 this is

the form that has the parameter vector of [x & more]. The & sign indicates that this

is the variadic version of the function.

 Sequences are a very powerful Clojure innovation. In fact, a large part of learning

to think in Clojure is to start thinking about how the seq abstraction can be put to use

to solve your specific coding problems.

 Another important innovation in Clojure is the integration between Clojure and

Java, which is the subject of the next section.

10.5 Interoperating between Clojure and Java

Clojure was designed from the ground up to be a JVM language and to not attempt to

completely hide the JVM character from the programmer. These specific design choices

are apparent in a number of places. For example, at the type-system level, Clojure’s lists

and vectors both implement List—the standard interface from the Java collections

library. In addition, it’s very easy to use Java libraries from Clojure and vice versa.

 These properties are extremely useful, as it means that Clojure programmers can

make use of the rich variety of Java libraries and tooling, as well as the performance

and other features of the JVM. In this section, we’ll cover a number of aspects of this

interoperability decision, specifically

■ Calling Java from Clojure

■ How Java sees the type of Clojure functions

■ Clojure proxies

■ Exploratory programming with the REPL

■ Calling Clojure from Java

Let’s start exploring this integration by looking at how to access Java methods

from Clojure.

10.5.1 Calling Java from Clojure

Consider this piece of Clojure code being evaluated in the REPL:

1:16 user=> (defn lenStr [y] (.length (.toString y)))
#'user/lenStr
1:17 user=> (schwartz ["bab" "aa" "dgfwg" "droopy"] lenStr)
("aa" "bab" "dgfwg" "droopy")
1:18 user=>

In this snippet, we’ve used the Schwartzian transform to sort a vector of strings by

their lengths. To do that, we’ve used the forms (.toString) and (.length), which

300 CHAPTER 10 Clojure: safer programming

are Java methods. They’re being called on the Clojure objects. The period at the start

of the symbol means that the runtime should invoke the named method on the next

argument. This is achieved by the use of the (.) macro under the covers.

 All Clojure values defined by (def) or a variant of it are placed into instances of

clojure.lang.Var, which can house any java.lang.Object, so any method that can

be called on java.lang.Object can be called on a Clojure value. Some of the other

forms for interacting with the Java world are

(System/getProperty "java.vm.version")

for calling static methods (in this case the System.getProperty() method) and

Boolean/TRUE

for accessing static public variables (such as constants). In these last two examples,

we’ve implicitly used Clojure’s namespaces concept. These are similar to Java pack-

ages, and have mappings from shorthand forms to Java package names for common

cases, such as the preceding ones.

If you want to create a new instance of a Java object and manipulate it in Clojure, you can

easily do so by using the (new) form. This has an alternative short form, which is the class

name followed by the full stop, which boils down to another use of the (.) macro:

(import '(java.util.concurrent CountDownLatch LinkedBlockingQueue))
(def cdl (new CountDownLatch 2))
(def lbq (LinkedBlockingQueue.))

Here we’re also using the (import) form, which allows multiple Java classes from a

single package to be imported in just one line.

 We mentioned earlier that there’s a certain amount of alignment between Clojure’s

type system and that of Java. Let’s take a look at this concept in a bit more detail.

10.5.2 The Java type of Clojure values

From the REPL, it’s very easy to take a look at the Java types of some Clojure values:

1:8 user=> (.getClass "foo")
java.lang.String

The nature of Clojure calls

A function call in Clojure is a true JVM method call. The JVM does not guarantee
to optimize away tail recursion, which Lisps (especially Scheme implementations)
usually do. Some other Lisp dialects on the JVM take the viewpoint that they
want true tail recursion and so are prepared to have a Lisp function call not be
exactly equivalent to a JVM method call under all circumstances. Clojure, how-
ever, fully embraces the JVM as a platform, even at the expense of full compli-
ance with usual Lisp practice.

301Interoperating between Clojure and Java

1:9 user=> (.getClass 2.3)
java.lang.Double
1:10 user=> (.getClass [1 2 3])
clojure.lang.PersistentVector
1:11 user=> (.getClass '(1 2 3))
clojure.lang.PersistentList
1:12 user=> (.getClass (fn [] "Hello world!"))
user$eval110$fn__111

The first thing to notice is that all Clojure values are objects; the primitive types of the

JVM aren’t exposed by default (although there are ways of getting at the primitive

types for the performance-conscious). As you might expect, the string and numeric

values map directly onto the corresponding Java reference types (java.lang.String,

java.lang.Double, and so on).

 The anonymous "Hello world!" function has a name that indicates that it’s an

instance of a dynamically generated class. This class will implement the interface clo-

jure.lang.IFn, which is the interface that Clojure uses to indicate that a value is a

function, and it can be thought of as Clojure’s equivalent to the Callable interface in

java.util.concurrent.

 Seqs will implement the clojure.lang.ISeq interface. They will typically be one of

the concrete subclasses of the abstract ASeq or the single lazy implementation, LazySeq.

 We’ve looked at the types of various values, but what about the storage for those

values? As we mentioned at the start of this chapter, (def) binds a symbol to a value,

and in doing so creates a var. These vars are objects of type clojure.lang.Var (which

implements IFn amongst other interfaces).

10.5.3 Using Clojure proxies

Clojure has a powerful macro called (proxy) that enables you to create a bona fide

Clojure object that extends a Java class (or implements an interface). For example,

the next listing revisits an earlier example (listing 4.13), but the heart of the execu-

tion example is now done in a fraction of the code, due to Clojure’s more com-

pact syntax.

(import '(java.util.concurrent Executors LinkedBlockingQueue TimeUnit))
(def stpe (Executors/newScheduledThreadPool 2))
(def lbq (LinkedBlockingQueue.))

(def msgRdr (proxy [Runnable] []
 (run [] (.toString (.poll lbq)))
))

(def rdrHndl

➥ (.scheduleAtFixedRate stpe msgRdr 10 10 TimeUnit/MILLISECONDS))

The general form of (proxy) is

(proxy [<superclass/interfaces>] [<args>] <impls of named functions>+)

Listing 10.7 Revisiting scheduled executors

STPE factory
method

Define anon
Runnable impl

302 CHAPTER 10 Clojure: safer programming

The first vector argument holds the interfaces that this proxy class should implement.

If the proxy should also extend a Java class (and it can, of course, only extend one Java

class), that class name must be the first element of the vector.

 The second vector argument comprises the parameters to be passed to a superclass

constructor. This is quite often the empty vector, and it will certainly be empty for all

cases where the (proxy) form is just implementing Java interfaces.

 After these two arguments come the forms that represent the implementations of

individual methods, as required by the interfaces or superclasses specified.

 The (proxy) form allows for the simple implementation of any Java interface. This

leads to an intriguing possibility—that of using the Clojure REPL as an extended play-

pen for experimenting with Java and JVM code.

10.5.4 Exploratory programming with the REPL

The key concept of exploratory programming is that with less code to write, due to

Clojure’s syntax, and the live, interactive environment that the REPL provides, the

REPL can be a great environment for exploring not only Clojure programming, but

for learning about Java libraries as well.

 Let’s consider the Java list implementations. They have an iterator() method

that returns an object of type Iterator. But Iterator is an interface, so you might be

curious about what the real implementing type is. Using the REPL, it’s easy to find out:

1:41 user=> (import '(java.util ArrayList LinkedList))
java.util.LinkedList
1:42 user=> (.getClass (.iterator (ArrayList.)))
java.util.ArrayList$Itr
1:43 user=> (.getClass (.iterator (LinkedList.)))
java.util.LinkedList$ListItr

The (import) form brings in two different classes from the java.util package. Then

you can use the getClass() Java method from within the REPL just as you did in sec-

tion 10.5.2. As you can see, the iterators are actually provided by inner classes. This

perhaps shouldn’t be surprising; as we discussed in section 10.4, iterators are tightly

bound up with the collections they come from, so they may need to see internal

implementation details of those collections.

 Notice that in the preceding example, we didn’t use a single Clojure construct—

just a little bit of syntax. Everything we were manipulating was a true Java construct.

Let’s suppose, though, that you wanted to use a different approach and use the power-

ful abstractions that Clojure brings within a Java program. The next subsection will

show you just how to accomplish this.

10.5.5 Using Clojure from Java

Recall that Clojure’s type system is closely aligned with Java’s. The Clojure data struc-

tures are all true Java collections that implement the whole of the mandatory part of

the Java interfaces. The optional parts aren’t usually implemented, as they’re often

about mutation of the data structures, which Clojure doesn’t support.

303Concurrent Clojure

 This alignment of type systems opens the possibility of using Clojure data struc-

tures in a Java program. This is made even more viable by the nature of Clojure

itself—it’s a compiled language with a calling mechanism that matches that of the

JVM. This minimizes the runtime aspects and means a class obtained from Clojure can

be treated almost like any other Java class. Interpreted languages would find it a lot

harder to interoperate and would typically require a minimal non-Java language run-

time for support.

 The next example shows how Clojure’s seq construct can be used on an ordinary

Java string. For this code to run, clojure.jar will need to be on the classpath:

ISeq seq = StringSeq.create("foobar");
while (seq != null) {
 Object first = seq.first();
 System.out.println("Seq: "+ seq +" ; first: "+ first);
 seq = seq.next();
}

The preceding code snippet uses the factory method create() from the StringSeq

class. This provides a seq view on the character sequence of the string. The first()

and next() methods return new values, as opposed to mutating the existing seq, just

as we discussed in section 10.4.

 So far we’ve dealt solely with single-threaded Clojure code. In the next section,

we’ll move on to talk about concurrency in Clojure. In particular, we’ll talk about Clo-

jure’s approach to state and mutability, which allows a model of concurrency that’s

quite different from Java’s.

10.6 Concurrent Clojure

Java’s model of state is based fundamentally around the idea of mutable objects. As we

saw in chapter 4, this leads directly to problems with safety in concurrent code. We

needed to introduce quite complicated locking strategies in order to prevent other

threads from seeing intermediate (meaning inconsistent) objects states while a given

thread was working on mutating an object’s state. These strategies were hard to come

up with, hard to debug, and harder to test.

 Clojure’s abstractions for concurrency aren’t as low-level as Java’s in some respects.

For example, the use of threadpools that are managed by the Clojure runtime (and

over which the developer has little or no control) may seem strange. But the power

gained comes from allowing the platform (in this case, the Clojure runtime) to metic-

ulously perform bookkeeping for you, to free up your mind for much more important

tasks, such as overall design.

 The philosophy guiding Clojure is to isolate threads from each other by default,

which goes a long way to making the language concurrently type safe by default. By

assuming a baseline of “nothing needs to be shared” and having immutable values,

Clojure sidesteps a lot of Java’s issues, and instead can focus on ways to share state

safely for concurrent programming.

304 CHAPTER 10 Clojure: safer programming

NOTE To help promote safety, Clojure’s runtime provides mechanisms for
coordinating between threads, and it’s very strongly recommended that you
use these mechanisms rather than trying to use Java idioms or making your
own concurrency constructs.

In fact, there are several different methods that Clojure uses to provide different sorts

of concurrency models—futures and pcalls, refs, and agents. Let’s look at each in

turn, starting with the simplest.

10.6.1 Futures and pcalls

The first, and most obvious, way to share state is not to. In fact, the Clojure construct

that we’ve been using up until now, the var, isn’t really able to be shared. If two differ-

ent threads inherit the same name for a var, and rebind it in-thread, then those

rebindings are only visible within those individual threads and can never be shared by

other threads.

 You can start new threads by exploiting Clojure’s tight binding to Java. This means

that you can write concurrent Java code very easily in Clojure. But some of these

abstractions have a cleaned-up form within Clojure. For example, Clojure provides a

very clean approach to the Future concept that we encountered in Java in chapter 4.

The following listing shows a simple example.

user=> (def simple-future
 (future (do
 (println "Line 0")
 (Thread/sleep 10000)
 (println "Line 1")
 (Thread/sleep 10000)
 (println "Line 2"))))
#'user/simple-future
Line 0
user=> (future-done? simple-future)
user=> false
Line 1
user=> @simple-future
Line 2
nil
user=>

In this listing, you set up a Future with (future). As soon as this is created, it begins

to run on a background thread, which is why you see the printout of Line 0 (and later

Line 1) on the Clojure REPL—the code has started to run on another thread. You can

then test to see whether the code has completed using (future-done?), which is a

nonblocking call. The attempt to dereference the future, however, causes the calling

thread to block until the function has completed.

 This is effectively a thin Clojure wrapper over a Java Future, with some slightly

cleaner syntax. Clojure also provides useful helper forms that can be very useful to the

Listing 10.8 Futures in Clojure

Starts executing
at once

Blocks when
dereferencing

305Concurrent Clojure

concurrent programmer. One simple function is (pcalls), which takes in a variable

number of 0-argument functions and executes them in parallel. They’re executed on

a runtime-managed threadpool and will return a lazy seq of the results. Trying to

access any elements of the seq that haven’t yet completed will cause the accessing

thread to block.

 The next listing sets up a 1-argument function called (wait-with-for). This uses

a loop form similar to the one introduced in section 10.3.2. From this, you create a

number of 0-argument functions (wait-1), (wait-2), and so on, which you can feed

to (pcalls).

user=> (defn wait-with-for [limit]
 (let [counter 1]
 (loop [ctr counter]
 (Thread/sleep 500)
 (println (str "Ctr=" ctr))
 (if (< ctr limit)
 (recur (inc ctr))
 ctr))))
#'user/wait-with-for
user=> (defn wait-1 [] (wait-with-for 1))
user=> #'user/wait-1
user=> (defn wait-2 [] (wait-with-for 2))
user=> #'user/wait-2
user=> (defn wait-3 [] (wait-with-for 3))
user=> #'user/wait-3
user=> (def wait-seq (pcalls wait-1 wait-2 wait-3))
#'user/wait-seq
Ctr=1
Ctr=1
Ctr=1
Ctr=2
Ctr=2
Ctr=3

user=> (first wait-seq)
1
user=> (first (next wait-seq))
2

With a thread sleep value of only 500 ms, the wait functions complete very quickly. By

playing with the timeout (such as by extending it to 10 s), it’s easy to verify that the

lazy sequence called wait-seq that is returned by (pcalls) has the described block-

ing behavior.

 This access to simple multithreaded constructs is fine for the case where you don’t

need to share state, but in many applications different processing threads need to

communicate in flight. Clojure has a couple of models for handling this, so let’s look

at one of these next: the shared state enabled by the (ref) form.

Listing 10.9 Parallel calls in Clojure

306 CHAPTER 10 Clojure: safer programming

10.6.2 Refs

Clojure’s refs are a way of sharing state

between threads. They rely on a model

provided by the runtime for state

changes that need to be seen by multiple

threads. This model introduces an addi-

tional level of indirection between a sym-

bol and a value. That is, a symbol is

bound to a reference to a value, rather

than directly to a value. The system is

essentially transactional and is coordi-

nated by the Clojure runtime. This is

illustrated in figure 10.6.

 This indirection means that before a ref can be altered or updated, it has to be

placed inside a transaction. When the transaction is completed, either all or none of

the updates will take effect. This can be thought of as being like a transaction in

a database.

 This can seem a bit abstract, so let’s look at an example and model an ATM. In Java,

you’re required to protect every sensitive bit of data with locks. The following listing

shows a simple example of one way to model a cash machine, including the locks.

public class Account {
 private double balance = 0;
 private final String name;
 private final Lock lock = new ReentrantLock();

 public Account(String name_, double initialBal_){
 name = name_;
 balance = initialBal_;
 }

 public synchronized double getBalance(){
 return balance;
 }

 public synchronized void debit(double debitAmt_) {
 balance -= debitAmt_;
 }

 public String getName() {
 return name;
 }

 public String toString() {
 return "Account [balance=" + balance + ", name=" + name + "]";
 }

 public Lock getLock() {
 return lock;

Listing 10.10 Modeling an ATM in Java

Figure 10.6 Software transactional memory

307Concurrent Clojure

 }
}

public class Debitter implements Runnable {
 private final Account acc;
 private final CountDownLatch cdl;

 public Debitter(Account account_, CountDownLatch cdl_) {
 acc = account_;
 cdl = cdl_;
 }

 public void run() {
 double bal = acc.getBalance();
 Lock lk = acc.getLock();

 while (bal > 0) {
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) { }
 lk.lock();
 bal = acc.getBalance();
 if (bal > 0) {
 acc.debit(1);
 bal--;
 }
 lk.unlock();
 }
 cdl.countDown();
 }
}

Account myAcc = new Account("Test Account", 500 * NUM_THREADS);
CountDownLatch stopl = new CountDownLatch(NUM_THREADS);

for (int i=0; i<NUM_THREADS; i++) {
 new Thread(new Debitter(myAcc, stopl)).start();
}
stopl.await();
System.out.println(myAcc);

Let’s see how you could rewrite this in Clojure. Let’s start with a single-threaded ver-

sion. Then we can develop a concurrent version and compare it to the single-threaded

code. This should make the concurrent code easier to understand.

 The following listing contains a simple single-threaded version.

(defn make-new-acc [account-name opening-balance]
 {:name account-name :bal opening-balance})

(defn loop-and-debit [account]
 (loop [acc account]
 (let [balance (:bal acc) my-name (:name acc)]
 (Thread/sleep 1)
 (if (> balance 0)
 (recur (make-new-acc my-name (dec balance)))

Listing 10.11 Simple ATM model in Clojure

Could synchronize
on acc

Must re-get
balance

loop/recur replaces
Java while

308 CHAPTER 10 Clojure: safer programming

 acc
))))

(loop-and-debit (make-new-acc "Ben" 5000))

Notice how compact this code is compared to the Java version. Admittedly, this is still

single-threaded, but it’s a lot less code than was needed for Java. Running the code

will give you the expected result—you end up with a map called acc with a zero bal-

ance. Now let’s move to a concurrent form.

 To make this code concurrent, you need to introduce Clojure’s refs. These are cre-

ated with the (ref) form and are JVM objects of type clojure.lang.Ref. Usually

they’re set up with a Clojure map to hold the state. You’ll also need the (dosync)

form, which sets up a transaction. Within this transaction, you’ll also use the (alter)

form, which can be used to modify a ref. The functions that make use of refs for this

multithreaded ATM are shown in the following listing.

(defn make-new-acc [account-name opening-balance]
 (ref {:name account-name :bal opening-balance}))

(defn alter-acc [acc new-name new-balance]
 (assoc acc :bal new-balance :name new-name))

(defn loop-and-debit [account]
 (loop [acc account]
 (let [balance (:bal @acc)
 my-name (:name @acc)]
 (Thread/sleep 1)
 (if (> balance 0)
 (recur (dosync (alter acc alter-acc my-name (dec balance)) acc))
 acc
))))

(def my-acc (make-new-acc "Ben" 5000))

(defn my-loop [] (let [the-acc my-acc]
 (loop-and-debit the-acc)
))

(pcalls my-loop my-loop my-loop my-loop my-loop)

As noted, the (alter-acc) function acts on a value and must return a value. The

value acted upon is the local value visible to this thread during the transaction. This is

called the in-transaction value. The value returned is the new value of the ref after the

alter function returns. This value isn’t visible outside the altering thread until you exit

the transaction block defined by (dosync).

 Other transactions may be proceeding at the same time as this one. If so, the

Clojure STM system will keep track of that and will only allow a transaction to commit

if it’s consistent with other transactions that have committed since it started. If it’s

inconsistent, it will be rolled back and may be retried with an updated view of

the world.

Listing 10.12 Multithreaded ATM

Must return
value, not ref

309Concurrent Clojure

 This retry behavior can cause problems if the transaction does anything that pro-

duces side effects (such as a log file or other output). It’s up to you to keep the trans-

actional parts as simple and as pure in the functional programming sense (meaning as

side-effect free) as possible.

 For some multithreaded approaches, this optimistic-transactional behavior can

seem a rather heavyweight approach. Some concurrent applications only need to

communicate between threads occasionally, and in a rather asymmetric fashion. For-

tunately, Clojure provides another concurrency mechanism that is much more fire-

and-forget, and it’s the topic of our next section.

10.6.3 Agents

Agents are Clojure’s asynchronous, message-oriented concurrency primitive. Instead

of having shared state, a Clojure agent is a bit of state that belongs to another thread,

but it will accept messages (in the form of functions) from another thread. This can

seem like a strange idea at first, although perhaps less so after thinking about Scala’s

actors from section 9.5.

“They must go by the carrier,” she thought; “and how funny it’ll seem,

sending presents to one’s own feet! And how odd the directions will look!”

—Lewis Carroll, Alice’s Adventures in Wonderland

The functions that are applied to the agent execute on the agent’s thread. This thread

is managed by the Clojure runtime, in a threadpool that isn’t usually accessible to the

programmer. The runtime also ensures that the values of the agent that are seen from

outside are isolated and atomic. This means that user code will only see the value of

the agent in its before or after state.

 The following listing shows a simple example of agents, similar to the example

used to discuss futures.

(defn wait-and-log [coll str-to-add]
 (do (Thread/sleep 10000)
 (let [my-coll (conj coll str-to-add)]
 (Thread/sleep 10000)
 (conj my-coll str-to-add))))

(def str-coll (agent []))

(send str-coll wait-and-log "foo")

@str-coll

The send call dispatches a (wait-and-log) call to the agent, and by using the REPL to

dereference it, you can see that, as promised, you never see an intermediate state of

the agent—only the final state appears (where the "foo" string has been added twice).

 In fact, the (send) call in listing 10.13 is rather reminiscent of the directions to

Alice’s feet. They could almost be written as Clojure code, because Carroll gives them as

Listing 10.13 Clojure agents

310 CHAPTER 10 Clojure: safer programming

Alice's Right Foot, Esq.
 Hearthrug,
 Near the Fender,
 (with Alice's love)

They do seem odd when you think that one’s feet are an integral part of one’s body.

Similarly, it could seem odd that you’d send a message to an agent that’s scheduled on a

thread in a Clojure-managed threadpool, when both threads share an address space.

But one of the themes in concurrency that you’ve now encountered several times is that

additional complexity can be a good thing if it enables a simpler and clearer usage.

10.7 Summary

As a language, Clojure is arguably the most different from Java of the languages we’ve

looked at. Its Lisp heritage, emphasis on immutability, and different approaches seem

to make it into an entirely separate language. But its tight integration with the JVM,

alignment of its type system (even when it provides alternatives, such as seqs), and the

power of exploratory programming make it a very complementary language to Java.

 Nowhere is this synergy clearer than in Clojure’s delegation of many low-level

aspects of threading and concurrency control to the runtime. This frees the program-

mer to focus on good multithreaded design and higher-level concerns. This is similar

to the way in which Java’s garbage collection facilities allow you to free yourself from

the details of memory management.

 The differences between the languages we’ve studied in this part clearly show the

power of the Java platform to evolve, and to continue to be a viable destination for

application development. This is also a testament to the flexibility and capability of

the JVM.

 In the final part of the book, we’ll show how our three new languages provide new

approaches to software engineering practices. The next chapter is all about test-driven

development—a subject you may well have encountered in the Java world. But Groovy,

Scala, and Clojure provide a brand-new perspective and will hopefully strengthen and

reinforce what you already know.

Part 4

Crafting the
polyglot project

In this final part of the book, we’ll apply what we’ve learned about the plat-

form and polyglot programming to some of the most common and important

techniques in modern software development.

 Being a well-grounded Java developer isn’t simply about mastering the JVM

and the languages that run on top of it. In order to successfully deliver software

development projects, you should also follow the most important industry best

practices. Fortunately, quite a few of these practices started out in the Java eco-

system, so there’s plenty to talk about.

 We’ll devote an entire chapter to the fundamentals of test-driven develop-

ment (TDD) and discuss how to apply the concept of test doubles to complex

testing scenarios. Another chapter will be dedicated to the important practice of

introducing a formal build lifecycle into your build process, including the tech-

nique of continuous integration. In those two chapters, you’ll meet some stan-

dard tools, such as JUnit for testing, Maven for the build lifecycle, and Jenkins

for continuous integration.

 We’ll also discuss web development for the Java 7 age, covering how you can

decide which framework will work best for your project and how to develop with

speed in this environment.

 Following on from part 3, you’ll learn that the non-Java languages we dis-

cussed have a huge role to play in the areas of TDD, build lifecycles, and rapid

web development. Be it the ScalaTest framework for TDD or Grails (Groovy) and

312 PART 4 Crafting the polyglot project

Compojure (Clojure) frameworks for building web apps, many areas of the Java/JVM

ecosystem are being affected by the arrival of these new languages.

 We’ll show you how to put the strengths of these new languages to work on familiar

aspects of the software development craft. Combined with the solid foundations of the

JVM and the Java ecosystem as a whole, you’ll find that there are potentially big gains

to be made by the developer who fully embraces the polyglot viewpoint.

 In the concluding chapter of the book, we’ll look into the future of the platform

and make some predictions about what might lie ahead. Part 4 is all about frontiers, so

turn the page, and let’s start our push to the horizon.

313

Test-driven development

Test-driven development (TDD) has been part of the software development indus-

try for quite some time. Its basic premise is that you write a test before writing the

code that actually provides the implementation, and then you refactor that

implementation as needed. For example, in order to write an implementation

of concatenating two String objects ("foo" and "bar"), you’d write the test

This chapter covers

■ The benefits of practicing test-driven

development (TDD)

■ The red-green-refactor lifecycle at the heart

of TDD

■ A brief intro to JUnit, the de facto Java testing

framework

■ The four types of test double: dummy, fake,

stub, and mock

■ Testing against an in-memory database for your

DAO code

■ Mocking subsystems with Mockito

■ Using ScalaTest, the testing framework for Scala

314 CHAPTER 11 Test-driven development

first (testing the result must equal "foobar") to ensure that you know your imple-

mentation is correct.

 Many developers already know about the JUnit testing framework and use it on a

semi-regular basis. But more often than not, they’re writing tests after they’ve written

the implementation, and therefore are losing out on some of the major benefits

of TDD.

 Despite its seeming pervasiveness, many developers don’t understand why they

should be doing TDD. The question for many developers remains, “Why write test-

driven code? What’s the benefit?”

 We believe that eliminating fear and uncertainty is the overriding reason you should

write test-driven code. Kent Beck (co-inventor of the JUnit testing framework) also

sums this up nicely in his book, Test-Driven Development: by Example (Addison-Wesley

Professional, 2002):

■ Fear makes you tentative.
■ Fear makes you want to communicate less.
■ Fear makes you shy away from feedback.
■ Fear makes you grumpy.

TDD takes away the fear, making the well-grounded Java developer a more confident,

communicative, receptive, and happier developer. In other words, TDD helps you

break free from the mindset that leads to statements like these:

■ When starting a new piece of work, “I don’t know where to start, so I’ll just

start hacking.”

■ When changing existing code, “I don’t know how the existing code is going to

behave, so I’m secretly too scared to change it.”

TDD brings many other benefits that aren’t always immediately obvious:

■ Cleaner code—You write only the code you need

■ Better design—Some developers call TDD test-driven design

■ Greater flexibility—TDD encourages coding to interfaces

■ Fast feedback—You learn about bugs now, not in production

One barrier for developers who are just getting started is that TDD can sometimes be

viewed as a technique that isn’t used by “ordinary” developers. The perception can

be that only practitioners of some imaginary “Church of Agile” or other esoteric

movement use TDD. This perception is completely false, as we’ll demonstrate. TDD is a

technique for every developer.

 In addition, agile approaches and the software craftsmanship movement are all

about making life easier for developers. They’re certainly not out to exclude others

from using TDD or any other technique.

 This chapter will begin by explaining the basic idea behind TDD—the red-green-

refactor loop. Then we’ll introduce the workhorse of Java testing, JUnit, and look at a

simple example that illustrates the principles.

315TDD in a nutshell

Next, we’ll move on to covering the four main types of make-believe objects that are

used in TDD. These are important because they simplify the process of isolating the

code under test versus the code in a third-party library or the behavior of a subsystem

such as a database. As these dependencies become more complicated, you need

smarter and smarter pretend objects to help you. At the extreme end, we’ll introduce

mocking and the Mockito library, a popular mocking tool that works with Java to help

you isolate your tests from these external influences.

 The Java testing frameworks (especially JUnit) are pretty well known to developers,

and you’ll probably have some experience in writing tests with them. But you may not

be familiar with how to test drive new languages such as Scala and Clojure. We’ll make

sure that you can apply a TDD methodology to your development by introducing you

to ScalaTest, the testing framework for Scala.

 Let’s begin with an introduction to TDD with a bit of a twist.

11.1 TDD in a nutshell

TDD can be applied at many levels. Table 11.1 lists the four levels of testing that the TDD

approach is usually applied to.

The Agile Manifesto and the Software Craftsmanship movement

The Agile movement (http://agilemanifesto.org/) has been around for a long time and
has arguably changed parts of our software development industry for the better. Many
great techniques, such as TDD, were championed as part of this movement. Software
Craftsmanship is a newer movement that encourages its practitioners to write clean
code (http://manifesto.softwarecraftsmanship.org/).

We like to tease our Agile and Software Craftsmanship practicing brethren. Heck, we
even champion these practices ourselves (most of the time). But let’s not lose sight
of what is useful for you, the well-grounded Java developer. TDD is a software devel-
opment technique, nothing more, nothing less.

Table 11.1 Levels of TDD testing

Level Description Example

Unit Tests to verify code contained in

a class

Test methods in the BigDecimal class.

Integration Tests to verify interaction

between classes

Test the Currency class and how it inter-

acts with BigDecimal.

System Tests to verify a running system Test the accounting system from the UI

through to the Currency class.

System

integration

Tests to verify a running system,

including third-party components

Test the accounting system, including

its interactions with the third-party

reporting system.

http://agilemanifesto.org/
http://manifesto.softwarecraftsmanship.org/

316 CHAPTER 11 Test-driven development

It’s easiest to use TDD at the unit testing level, and if you’re unfamiliar with TDD, this

is a good place to start. This section will mainly deal with using TDD at the unit test

level. Later sections will cover other levels, when discussing testing against third-parties

and subsystems.

TIP Dealing with existing code that has very few or no tests can be a daunting
task. It’s almost impossible to retroactively fill in all of the tests. Instead, you
should simply add tests for each new bit of functionality that you add. See
Michael Feathers’ excellent book Working Effectively with Legacy Code (Prentice
Hall, 2004) for further help.

We’ll start with brief coverage of the red-green-refactor premise behind TDD, using

JUnit to test drive code for calculating sales revenue for selling theater tickets.1 As long

as you follow this red-green-refactor premise, you’re fundamentally practicing TDD!

We’ll then go into some of the philosophical ideas behind red-green-refactor that will

make clear why you should use that technique. Last, we’ll introduce JUnit, the de facto

testing framework for Java developers; we’ll cover the basics of using this library.

 Let’s start with a working example of the three basic steps of TDD—the red-green-

refactor loop—by calculating the revenue when selling theater tickets.

11.1.1 A TDD example with a single use case

If you’re an experienced TDD practitioner, you may want to skip this small example,

although we’ll offer insights that are likely to be new. Suppose you’ve been asked to write

a rock-solid method to calculate the revenue generated by selling a number of theater

tickets. The initial business rules from the theater company’s accountant are simple:

■ The baseline price of a ticket is $30.
■ Total revenue = number of tickets sold * price.
■ The theater seats 100 people.

As the theater doesn’t have very good point of sale software, the user currently has to

manually enter the number of tickets sold.

 If you have practiced TDD, you’ll be familiar with the three basic steps of TDD: red,

green, refactor. If you’re new to TDD or are looking for a little refresher, let’s take a

look at Kent Beck’s definition of those steps, from Test-Driven Development: by Example:

1 Red—Write a little test that doesn’t work (failing test).

2 Green—Make that test pass as quickly as possible (passing test).

3 Refactor—Eliminate the duplication (refined passing test).

To give you an idea of the TicketRevenue implementation that we’re trying to

achieve, here is some pseudocode you might have in your head.

estimateRevenue(int numberOfTicketsSold)

if (numberOfTicketsSold is less than 0 OR greater than 100)
then

1 Selling theater tickets is big business in London, our home while writing this book.

317TDD in a nutshell

 Deal with error and exit
else
 revenue = 30 * numberOfTicketsSold;
 return revenue;
endif

Note that it’s important that you don’t think too deeply about this. The tests will end

up driving your design and partly your implementation too.

NOTE In section 11.1.2, we’ll cover the ways in which you can start with a fail-
ing test, but a key concept for this example is that we’re going to write a test
that won’t even compile!

Let’s begin by writing a failing unit test using the popular JUnit framework. If you

aren’t familiar with JUnit, jump forward and to section 11.1.4, then return here.

WRITING A FAILING TEST (RED)

The point in this step is to start with a test that fails. In fact, the test won’t even com-

pile, because you haven’t even written a TicketRevenue class yet!

 After a brief whiteboard session with the accountant, you realize that you’ll want to

write tests for five cases: ticket sales that are negative, 0, 1, 2–100, and > 100.

TIP A good rule of thumb when writing tests (especially involving numbers)
is to think of the zero/null case, the one case, and the many (N) case. A step
beyond that is to think about other constraints on N, such as a negative
amount or an amount beyond a maximum limit.

To begin, you decide to write a test that covers the revenue received from one ticket

sale. Your JUnit test would look similar to the following code (remember we’re not

writing a perfect, passing test at this stage).

import java.math.BigDecimal;
import static junit.framework.Assert.*;
import org.junit.Before;
import org.junit.Test;
public class TicketRevenueTest {

 private TicketRevenue venueRevenue;
 private BigDecimal expectedRevenue;

 @Before
 public void setUp() {
 venueRevenue = new TicketRevenue();
 }

 @Test
 public void oneTicketSoldIsThirtyInRevenue() {
 expectedRevenue = new BigDecimal("30");
 assertEquals(expectedRevenue, venueRevenue.estimateTotalRevenue(1));
 }
}

Listing 11.1 Failing unit test for TicketRevenue

One sold
case

318 CHAPTER 11 Test-driven development

As you can see from the code, the test quite clearly expects the revenue from one

ticket sale to equal 30 in revenue.

 But as it stands, this test won’t compile, because you haven’t written a TicketRevenue

class with the estimateTotalRevenue(int numberOfTicketsSold) method. In order

to make the compilation error go away so that you can run the test, you can add a ran-

dom implementation so that the test will compile.

public class TicketRevenue {
 public BigDecimal estimateTotalRevenue(int i) {
 return BigDecimal.ZERO;
 }
}

Now that the test compiles, you can run it from your favorite IDE. Each IDE has its own

way of running JUnit tests, but generally speaking they all allow you to right-click on

the test class and select a Run Test option. Once you do that, the IDE will generally

update a window or section that informs you that your test has failed, because the

expected value of 30 was not returned by the call to estimateTotalRevenue(1);

instead 0 was returned.

 Now that you have a failing test, the next step is to make the test pass (go green).

WRITING A PASSING TEST (GREEN)

The point in this step is to make the test pass, but the implementation doesn’t have to

be perfect. By providing the TicketRevenue class with a better implementation of

estimateTotalRevenue (an implementation that doesn’t just return 0), you’ll make

the test pass (go green).

 Remember, at this stage, you’re trying to make the test pass without necessarily writ-

ing perfect code. Your initial solution might look something like the following code.

import java.math.BigDecimal;

public class TicketRevenue {

 public BigDecimal estimateTotalRevenue(int numberOfTicketsSold) {
 BigDecimal totalRevenue = BigDecimal.ZERO;
 if (numberOfTicketsSold == 1) {
 totalRevenue = new BigDecimal("30");
 }
 return totalRevenue;
 }
}

When you now run the test, it will pass, and in most IDEs that will be indicated with a

green bar or tick. Figure 11.1 shows how a passing test looks in the Eclipse IDE.

 The next question is, should you then say “I’m done!” and move on to the next bit

of work? The resounding answer here should be “No!” Like us, you’ll be itching to

tidy up the previous code listing, so let’s get into that right now.

Listing 11.2 First version of TicketRevenue that passes the test

Implementation
that passes test

319TDD in a nutshell

REFACTORING THE TEST

The point of this step is to look at the quick implementation you wrote in order to

pass the test and make sure that you’re following accepted practice. Clearly the code

in listing 11.2 isn’t as clean and tidy as it could be. You can certainly refactor it and

reduce technical debt for yourself and others in the future.

TECHNICAL DEBT A metaphor coined by Ward Cunningham that refers to the
extra cost (effort) that you pay later when you make a quick and dirty design
or code decision now.

Remember, now that you have a passing test, you can refactor without fear. There’s no

chance of losing sight of the business logic that you’re supposed to implement.

TIP Another benefit that you’ve given yourself and the broader team by writ-
ing the initial passing test is a faster overall development process. The rest of
the team can immediately take this first version of the code and begin to test
it alongside the larger codebase (for integration tests and beyond).

In this example, you don’t want to be using magic numbers—you want to make sure

that the ticket price of 30 is a named concept in the code.

Figure 11.1 A green bar, shown in the print book in medium gray, indicates a passing test in the Eclipse IDE

320 CHAPTER 11 Test-driven development

import java.math.BigDecimal;

public class TicketRevenue {

 private final static int TICKET_PRICE = 30;

 public BigDecimal estimateTotalRevenue(int numberOfTicketsSold) {
 BigDecimal totalRevenue = BigDecimal.ZERO;
 if (numberOfTicketsSold == 1) {
 totalRevenue =
 new BigDecimal(TICKET_PRICE *
 numberOfTicketsSold);
 }
 return totalRevenue;
 }
}

The refactoring has improved the code, but clearly it doesn’t cover all potential use

cases (negative, 0, 2–100, and > 100 ticket sales). Instead of trying to guess what the

implementation should look like for the other use cases, you should have further tests

drive the design and the implementation. The next section follows test-driven design

by taking you through more use cases in this ticket revenue example.

11.1.2 A TDD example with multiple use cases

If you’re following a particular style of TDD, you’ll continue to add one test at a time for

the negative, 0, 2–100, and > 100 ticket sale test cases. But another valid approach can

be to write a set of test cases up front, especially if they’re related to the original test.

 Note that it’s still very important to follow the red-green-refactor lifecycle here.

After adding all of these use cases, you might end up with a test class with failing tests

(red) as follows.

import java.math.BigDecimal;
import static junit.framework.Assert.*;
import org.junit.Test;

public class TicketRevenueTest {

 private TicketRevenue venueRevenue;
 private BigDecimal expectedRevenue;

 @Before
 public void setUp() {
 venueRevenue = new TicketRevenue();
 }

 @Test(expected=IllegalArgumentException.class)
 public void failIfLessThanZeroTicketsAreSold() {
 venueRevenue.estimateTotalRevenue(-1);
 }

 @Test
 public void zeroSalesEqualsZeroRevenue() {

Listing 11.3 Refactored version of TicketRevenue that passes the test

Listing 11.4 Failing unit tests for TicketRevenue

No magic
number

Refactored
calculation

Negative
sold case

0 sold
case

321TDD in a nutshell

 assertEquals(BigDecimal.ZERO, venueRevenue.estimateTotalRevenue(0));
 }

 @Test
 public void oneTicketSoldIsThirtyInRevenue() {
 expectedRevenue = new BigDecimal("30");
 assertEquals(expectedRevenue, venueRevenue.estimateTotalRevenue(1));
 }

 @Test
 public void tenTicketsSoldIsThreeHundredInRevenue() {
 expectedRevenue = new BigDecimal("300");
 assertEquals(expectedRevenue, venueRevenue.estimateTotalRevenue(10));
 }

 @Test(expected=IllegalArgumentException.class)
 public void failIfMoreThanOneHundredTicketsAreSold() {
 venueRevenue.estimateTotalRevenue(101);
 }
}

The initial basic implementation in order to pass all of those tests (green) would then

look something like the following listing.

import java.math.BigDecimal;

public class TicketRevenue {

 public BigDecimal estimateTotalRevenue(int numberOfTicketsSold)
 throws IllegalArgumentException {

 BigDecimal totalRevenue = null;
 if (numberOfTicketsSold < 0) {
 throw new IllegalArgumentException("Must be > -1");
 }
 if (numberOfTicketsSold == 0) {
 totalRevenue = BigDecimal.ZERO;
 }
 if (numberOfTicketsSold == 1) {
 totalRevenue = new BigDecimal("30");
 }
 if (numberOfTicketsSold == 101) {
 throw new IllegalArgumentException("Must be < 101");
 }
 else {
 totalRevenue =
 new BigDecimal(30 * numberOfTicketsSold);
 }
 return totalRevenue;
 }
}

With the implementation just completed, you now have passing tests.

 Again, by following the TDD lifecycle, you’ll now refactor that implementation. For

example, you could combine the illegal numberOfTicketsSold cases (< 0 or > 100)

Listing 11.5 First version of TicketRevenue that passes the tests

1 sold
case

N sold
case

> 100
sold case

Exceptional
cases

N sold
case

322 CHAPTER 11 Test-driven development

into one if statement and use a formula (TICKET_PRICE * numberOfTicketsSold) to

return the revenue for all other legal values of numberOfTicketsSold. The following

code listing should be similar to what you would come up with.

import java.math.BigDecimal;

public class TicketRevenue {

 private final static int TICKET_PRICE = 30;

 public BigDecimal estimateTotalRevenue(int numberOfTicketsSold)
 throws IllegalArgumentException {

 if (numberOfTicketsSold < 0 || numberOfTicketsSold > 100) {
 throw new IllegalArgumentException
 ("# Tix sold must == 1..100");
 }

 return new BigDecimal
 (TICKET_PRICE * numberOfTicketsSold);
 }
}

The TicketRevenue class is now far more compact and yet still passes all of the tests!

Now you’ve completed the full red-green-refactor cycle and can confidently move on

to your next piece of business logic. Alternatively, you can start the cycle again, should

you (or the accountant) spot any edge cases you’ve missed, such as having a variable

ticket price.

 We highly recommend understanding the reasoning behind using the red-green-

refactor TDD approach, which we’ll discuss next. But if you’re impatient, you can

jump to section 11.1.4 to learn more about JUnit, or section 11.2 to learn about test

doubles for testing with third-party code.

11.1.3 Further thinking on the red-green-refactor lifecycle

This section builds on top of the working example and explores some of the thinking

behind TDD. Once more, we’ll cover the red-green-refactor lifecycle, and as you’ll

recall, the first step is to write a failing test. But there are a couple of approaches you

can take.

FAILING TEST (RED)

Some developers prefer to write a test that actually fails compilation, preferring to

wait for the green step before providing any implementation code. Other developers

prefer to at least stub out the methods that the test is calling so that the test compiles,

yet still fails. We find either style is fine. Choose what you feel most comfortable with.

TIP These tests are the first client for your code, so you should think care-
fully about their design—what the method definitions should look like. Some
questions you should ask yourself are what parameters do you want to pass in?

Listing 11.6 TicketRevenue, refactored

Exceptional
case

All other
cases

323TDD in a nutshell

What are the expected return values? Will there be any exceptional cases?
Also, don’t forget to have tests for the all-important domain object equals()
and hashCode() methods.

Once you’ve written your failing test, it’s time to move on to the next stage: getting it

to pass.

PASSING TEST (GREEN)

In this step, you should be trying to write the minimal code required to make the test

pass. This doesn’t mean you need to write the perfect implementation! That comes in

the refactoring stage.

 Once the test passes, you can indicate to others in your team that your code does

what it says on the tin, and that they can start to use it.

REFACTOR

In this step, you should start by refactoring your implementation code. There’s an

infinite number of categories that you can refactor on. There are some obvious refac-

torings, such as removing hardcoded variables or splitting a method into two. If you’re

developing object-oriented code, the SOLID principles are a good guideline to follow.

 Coined by Robert “Uncle Bob” Martin, the SOLID principles are summarized in

table 11.2. See his article, “The Principles of OOD” (http://butunclebob.com/

ArticleS.UncleBob.PrinciplesOfOod), for further details on the SOLID principles.

TIP We also recommend using static code analysis tools such as Checkstyle
and FindBugs (more on these in chapter 12). Another useful resource is Joshua
Bloch’s Effective Java, second edition (Addison-Wesley, 2008), which is full of
tips and tricks for dealing with the Java language.

An area that’s often forgotten is the refactoring of the test itself. You’ll more often

than not be able to extract some common setup and teardown code, rename the test

so that it more accurately reflects the test’s intent, and make other small fixes recom-

mended by static analysis tools.

 Now that you’re up to speed with the three steps of TDD, it’s time to get familiar

with JUnit, the default tool you’ll reach for when writing TDD code in Java.

Table 11.2 Principles of SOLID object-oriented code

Principle Description

Single responsibility principle (SRP) Each object should do one thing, and one thing only.

Open/closed principle (OCP) Objects should be extensible but not modifiable.

Liskov substitution principle (LSP) Objects should be replaceable by their subtypes.

Interface segregation principle (ISP) Small specific interfaces are better.

Dependency inversion principle (DIP) Don’t depend on concrete implementations. (See chapter 3,

on Dependency Injection, for further details.)

http://butunclebob.com/Ar ticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/Ar ticleS.UncleBob.PrinciplesOfOod

324 CHAPTER 11 Test-driven development

11.1.4 JUnit

JUnit is the de facto testing framework for Java projects. There are alternatives to JUnit,

such as TestNG, which has vocal adherents, but the simple fact is that the majority of

Java shops run on JUnit.

NOTE If you’re already familiar with JUnit, you can jump to section 11.2.

JUnit provides the following three main features:

■ Assertions to test for expected results and exceptions, such as assertEquals().

■ The ability to set up and tear down common test data, such as @Before and @After.

■ Test runners for running suites of tests.

As you can see, JUnit makes use of a simple annotation-driven model that provides

much of the important functionality.

 Most IDEs (such as Eclipse, IntelliJ, and NetBeans) have JUnit built in, so you won’t

have to download, install, or configure JUnit if you’re using one of those IDEs. If your

IDE doesn’t support JUnit out of the box, you can visit www.junit.org for instructions

on downloading and installing it.2

NOTE For the purposes of the examples in this chapter, we used JUnit 4.8.2.
We recommend you use the same version if you are following the examples.

A basic JUnit test is laid out with the following elements.

■ An @Before annotated method for setting up test data before each test run

■ An @After annotated method that tears down the test data after each test run

■ The tests themselves (marked by the @Test annotation)

To highlight these elements, we’ll look at a couple of very basic JUnit tests.

 Let’s say you’re helping the OpenJDK team write unit tests against the BigDecimal

class. There’s one test to check the use case of the add method (1.5 + 1.5 == 3.0) and

a second test to check that a NumberFormatException gets thrown when trying to cre-

ate a BigDecimal with a value that isn’t a number.

NOTE For the code examples in this chapter, we often show more than one
failing test, implementation (green), and refactoring at a time. This goes
against the pure TDD approach of going through the red-green-refactor cycle
for a single test, but it allows us to fit more examples in the chapter. We recom-
mend that, in your coding, you try to follow the single test model of develop-
ment as much as possible.

You can run the code in the following listing in your IDE by right-clicking on the

source code and selecting the run or test option (remember, the three major IDEs all

have an obvious option that’s something like Run Test or Run File).

2 We cover integrating JUnit with the Maven build tool in chapter 12.

www.junit.org
www.junit.org

325Test doubles

import java.math.BigDecimal;
import org.junit.*;
import static org.junit.Assert.*;

public class BigDecimalTest {

 private BigDecimal x;

 @Before
 public void setUp() { x = new BigDecimal("1.5"); }

 @After
 public void tearDown() { x = null; }

 @Test
 public void addingTwoBigDecimals() {
 assertEquals(new BigDecimal("3.0"), x.add(x));
 }

 @Test(expected=NumberFormatException.class)
 public void numberFormatExceptionIfNotANumber() {
 x = new BigDecimal("Not a number");
 }

}

Before each test is run, x is set to BigDecimal("1.5") in the @Before section B.

This ensures that each test is dealing with a known value of x, as opposed to an inter-

mediate value of x altered by one of the previous running tests. After each test is

run, you make sure that x is set to null in the @After section c (so that x can be

garbage-collected). You then test that BigDecimal.add() works as expected using

assertEquals() d (one of JUnit’s many static assertX methods). In order to deal

with expected exceptions, you add the optional expected parameter to the @Test

annotation e.

 The best way to get into the TDD groove is to start practicing. With the TDD princi-

ples firmly in your mind, and with an understanding of the practical JUnit framework,

you can get started! As you’ve seen in the examples, TDD at the unit-testing level is

fairly easy to grasp.

 But all TDD practitioners eventually run across the problem of testing code that

utilizes a dependency or subsystem. The next section will cover techniques you can

use to effectively test those.

11.2 Test doubles

As you continue to write code in a TDD style, you’ll quickly run into the situation

where your code references some (often third-party) dependency or subsystem. In

this situation, you’ll typically want to ensure that the code under test is isolated from

that dependency to ensure that you’re only writing test code against what you’re actu-

ally building. You’ll also want the tests to run as quickly as possible. Invoking a third-

party dependency or subsystem, such as a database, can take a lot of time, which

Listing 11.7 Basic JUnit test structure

Standard JUnit
imports

Set up before
each test

b

Tear down after
each test

c

Perform
test

d

Deal with expected
exceptione

326 CHAPTER 11 Test-driven development

means you lose the fast feedback benefit that TDD gives you (this is especially true of

unit-test level testing). Test doubles are the solution to this problem.

 In this section, you’ll learn how a test double can help you to effectively isolate

dependencies and subsystems. You’ll work through examples that use the four types of

test double (dummy, stub, fake, and mock).

 At the most complex end of the spectrum, where you’re testing against external

dependencies (such as distributed or networked services), the technique of Depen-

dency Injection (discussed in chapter 3) in combination with test doubles can come

to your rescue, even for systems that seem dauntingly large.

We like Gerard Meszaros’s simple explanation of a test double in his xUnit Test Patterns

book (Addison-Wesley Professional, 2007), so we’ll gladly quote him here: “A Test Dou-

ble (think Stunt Double) is the generic term for any kind of pretend object used in

place of a real object for testing purposes.”

 Meszaros continues to define four kinds of test doubles, which are outlined table 11.3.

The four types of test doubles are far easier to understand when you work through

code examples that use them. Let’s go do that now, starting with the dummy object.

11.2.1 Dummy object

A dummy object is the easiest of the four test double types to use. Remember, it’s

designed to help fill parameter lists or fulfill some mandatory field requirements

Why aren’t you using Guice?

If chapter 3 is fresh in your mind, you’ll remember Guice—the reference implemen-
tation DI framework for Java. As you read through this section, you’ll likely ask your-
self, "Why don’t they use Guice here?"

The simple answer is that the code listings don’t warrant the extra complexity that
even a simple framework like Guice adds. Remember, DI is a technique. You don’t
always need to introduce a framework in order to apply it.

Table 11.3 The four types of test double

Type Description

Dummy An object that is passed around but never used. Typically used to fulfill the parameter list of

a method.

Stub An object that always returns the same canned response. May also hold some dummy state.

Fake An actual working implementation (not of production quality or configuration) that can replace

the real implementation.

Mock An object that represents a series of expectations and provides canned responses.

327Test doubles

where you know the object will never get used. In many cases, you can even pass in an

empty or null object.

 Let’s go back to the theater tickets scenario. It’s all very well having an estimate of

the revenue coming in from your single kiosk, but the owners of the theater have

started to think a bit bigger. Better modeling of the tickets sold and the revenue

expected is needed, and you’re hearing murmurings of more requirements and com-

plexity coming down the pipe.

 You’ve been asked to keep track of the tickets sold, and to allow for a 10 percent

discounted price on some tickets. It looks like you’re going to need a Ticket class

that provides a discounted price method. You start the familiar TDD cycle with a fail-

ing test, focusing on a new getDiscountPrice() method. You also know that there

will need to be a couple of constructors—one for a regular priced ticket, and one

where the face value of the ticket may vary. The Ticket object will ultimately expect

two arguments:

■ The client name—A String that won’t be referenced at all for this test

■ The normal price—A BigDecimal that will get used for this test

You’re pretty sure that the client name won’t be referenced in the getDiscount-

Price() method. This means you can pass the constructor a dummy object (in this

case, the arbitrary string "Riley") as shown in the following code.

import org.junit.Test;
import java.math.BigDecimal;
import static org.junit.Assert.*;

public class TicketTest {

 @Test
 public void tenPercentDiscount() {
 String dummyName = "Riley";
 Ticket ticket = new Ticket(dummyName,
 new

BigDecimal("10"));
 assertEquals(new BigDecimal("9.0"), ticket.getDiscountPrice());
 }

}

As you can see, the concept of a dummy object is trivial.

 To make the concept extremely clear, the code in the following listing has a partial

implementation of the Ticket class.

import java.math.BigDecimal;

public class Ticket {
 public static final int BASIC_TICKET_PRICE = 30;

Listing 11.8 TicketTest implementation using a dummy object

Listing 11.9 Ticket class to test against using a dummy object

Create
dummy
object

Pass in
dummy
object

Default
price

328 CHAPTER 11 Test-driven development

 private static final BigDecimal DISCOUNT_RATE =
 new BigDecimal("0.9");

 private final BigDecimal price;
 private final String clientName;

 public Ticket(String clientName) {
 this.clientName = clientName;
 price = new BigDecimal(BASIC_TICKET_PRICE);
 }

 public Ticket(String clientName, BigDecimal price) {
 this.clientName = clientName;
 this.price = price;
 }

 public BigDecimal getPrice() {
 return price;
 }

 public BigDecimal getDiscountPrice() {
 return price.multiply(DISCOUNT_RATE);
 }
}

Some developers become confused by dummy objects—they look for complexity that

doesn’t exist. Dummy objects are very straightforward—they’re any old object used to

avoid NullPointerException and to get the code to run.

 Let’s move on to the next type of test double. The next step up (in terms of com-

plexity) is the stub object.

11.2.2 Stub object

You typically use a stub object when you want to replace a real implementation with an

object that will return the same response every time. Let’s return to our theater ticket

pricing example to see this in action.

 You’ve come back from a well-deserved holiday after implementing the Ticket

class, and the first thing in your inbox is a bug report stating that your tenPercent-

Discount() test from listing 11.8 is now failing intermittently. When you look into the

codebase, you see that the tenPercentDiscount() method has been altered. The

Ticket instance is now created using a concrete HttpPrice class that implements a

newly introduced Price interface.

 Upon further investigation, you discover that a getInitialPrice() method on the

HttpPrice class is called in order to get the initial price from an external website via

the third-party HttpPricingService class.

 This call to getInitialPrice() can therefore return a different price each time,

and it can also fail intermittently for a number of reasons. Sometimes the company

firewall rules change, and other times the third-party website is simply unavailable.

 Your test is therefore failing, and the purpose of the test has unfortunately been

polluted. Remember, all you wanted the unit test to do was to calculate the 10 per-

cent discount!

Default
discount

329Test doubles

NOTE Calling a third-party pricing site is certainly not part of the test’s
responsibility. But you could think of having separate system integration tests
that cover the HttpPrice class and its third-party HttpPricingService.

Before you replace the HttpPrice class with a stub, take a look at the current state of

the code, as shown in the three following code listings (listings 11.10–11.12). In addi-

tion to the changes involving the Price interface, the theater owners have changed

their minds and no longer want to record the names of people who purchase tickets,

as the following listing demonstrates.

import org.junit.Test;
import java.math.BigDecimal;
import static org.junit.Assert.*;

public class TicketTest {

 @Test
 public void tenPercentDiscount() {
 Price price = new HttpPrice();
 Ticket ticket = new Ticket(price);
 assertEquals(new BigDecimal("9.0"),
 ticket.getDiscountPrice());
 }
}

The next listing shows the new implementation of Ticket, which now includes a pri-

vate class, FixedPrice, to deal with the simple case where a price is known and fixed,

rather than derived from some external source.

import java.math.BigDecimal;

public class Ticket {
 public static final int BASIC_TICKET_PRICE = 30;
 private final Price priceSource;
 private BigDecimal faceValue = null;
 private final BigDecimal discountRate;

 private final class FixedPrice implements Price {
 public BigDecimal getInitialPrice() {
 return new BigDecimal(BASIC_TICKET_PRICE);
 }
 }

 public Ticket() {
 priceSource = new FixedPrice();
 discountRate = new BigDecimal("1.0");
 }

 public Ticket(Price price) {
 priceSource = price;

Listing 11.10 TicketTest implementation with new requirements

Listing 11.11 Ticket implementation with new requirements

HttpPrice
implements
Price Create

Ticket

Test can
fail

Altered
constructor

330 CHAPTER 11 Test-driven development

 discountRate = new BigDecimal("1.0");
 }

 public Ticket(Price price,
 BigDecimal specialDiscountRate) {
 priceSource = price;
 discountRate = specialDiscountRate;
 }

 public BigDecimal getDiscountPrice() {
 if (faceValue == null) {
 faceValue = priceSource.getInitialPrice();
 }
 return faceValue.multiply(discountRate);
 }
}

Providing a full implementation of the HttpPrice class would take us too far afield, so

let’s just suppose that it calls out to another class, HttpPricingService.

import java.math.BigDecimal;

public interface Price {
 BigDecimal getInitialPrice();
}

public class HttpPrice implements Price {
 @Override
 public BigDecimal getInitialPrice() {
 return HttpPricingService.getInitialPrice();
 }
}

So how can you provide the equivalent of what HttpPricingService provides? The

trick is to think carefully about what it is you’re really trying to test. In this example,

you want to test that the multiplication in the Ticket class’s getDiscountPrice()

method works as expected.

 You can therefore replace the HttpPrice class with a StubPrice stub implementa-

tion that will reliably return a consistent price for the call to getInitialPrice(). This

isolates the test from the inconsistent and intermittently failing HttpPrice class. The

test will pass with the implementation in the following code.

import org.junit.Test;
import java.math.BigDecimal;
import static org.junit.Assert.*;

public class TicketTest {

 @Test
 public void tenPercentDiscount() {
 Price price = new StubPrice();

Listing 11.12 Price interface and HttpPrice implementation

Listing 11.13 TicketTest implementation using a stub object

Altered
constructor

New getInitialPrice
call

Unchanged
calculation

Returns
random
results

StubPrice
stub

331Test doubles

 Ticket ticket = new Ticket(price);
 assertEquals(9.0,
 ticket.getDiscountPrice().doubleValue(),
 0.0001);
 }
}

The StubPrice class is a simple little class that consistently returns the initial price of 10.

import java.math.BigDecimal;

public class StubPrice implements Price {

 @Override
 public BigDecimal getInitialPrice() {
 return new BigDecimal("10");
 }
}

Phew! Now the test passes again, and, equally important, you can look at refactoring

the rest of the implementation details without fear.

 Stubs are a useful type of test double, but sometimes it’s desirable to have the stub

perform some real work that’s as close to the production system as possible. For that,

you use a fake object as your test double.

11.2.3 Fake object

A fake object can be seen as an enhanced stub that almost does the same work as your

production code, but that takes a few shortcuts in order to fulfill your testing require-

ments. Fakes are especially useful when you’d like your code to run against something

that’s very close to the real third-party subsystem or dependency that you’ll use in the

live implementation.

 Most well-grounded Java developers will sooner or later have to write code that

interacts with a database, typically performing CRUD operations on Java objects. Prov-

ing that your Data Access Object (DAO) code works before running it against the pro-

duction database is often left until the system integration test phase, or it isn’t checked

at all! It would be of great benefit if you could check that the DAO code works during

your unit test or integration test phase, giving you that all important, fast feedback.

 A fake object could be used in this case—one that represents the database you’re

interacting with. But writing your own fake object representing a database would be

quite difficult! Luckily, over recent years, in-memory databases have become small

enough, lightweight enough, and feature-rich enough to act as a fake object for you.

HSQLDB (www.hsqldb.org) is a popular in-memory database used for this purpose.

 The theater ticket application is coming along nicely, and the next stage

of work is to store the tickets in a database so that they can be retrieved later.

The most common Java framework used for database persistence is Hibernate

(www.hibernate.org).

Listing 11.14 StubPrice stub implementation

Create
Ticket

Check
price

Return
consistent price

www.hsqldb.org
www.hibernate.org

332 CHAPTER 11 Test-driven development

To begin, you’ll need a Hibernate configuration file to define the connection to the

HSQLDB database.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.url">
 jdbc:hsqldb:mem:wgjd
 </property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"></property>
 <property name="hibernate.connection.autocommit">true</property>
 <property name="hibernate.hbm2ddl.auto">
 create
 </property>
 <property name="hibernate.show_sql">true</property>
 <mapping resource="Ticket.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

You’ll notice that in the last line of the listing there was a reference to mapping the

Ticket class as a resource (<mapping resource="Ticket.hbm.xml"/>) B. This tells

Hibernate how to map the Java files to the database columns. Along with the dialect

Hibernate and HSQLDB

If you’re unfamiliar with Hibernate or HSQLDB, don’t panic! Hibernate is an object-
relational mapping (ORM) framework that implements the Java Persistence API (JPA)
standard. In short, it means you can call simple save, load, update, and many other
Java methods to perform CRUD operations. This is opposed to using raw SQL and
JDBC, and it abstracts away database-specific syntax and semantics.

HSQLDB is simply a Java in-memory database. To use it, all you need is the hsqldb.jar
file in your CLASSPATH. It pretty much behaves like your regular RDBMS, although
when you shut it down you’ll lose your data. (This data loss can be mitigated—see
the HSQLDB website for more details.)

Although we’re throwing potentially two new technologies at you, the build scripts pro-
vided with this book’s source code will ensure that you have the correct JAR depen-
dencies and configuration files in the right place.

Listing 11.15 Hibernate configuration for HSQLDB

Set
dialect

Specify URL to
connect to

Autocreate
tables

Map the
Ticket classb

333Test doubles

information provided in the Hibernate configuration file (HSQLDB in this case) that’s

all Hibernate needs to automatically construct SQL for you behind the scenes.

 Although Hibernate allows you add mapping information directly to the Java class

via annotations, we prefer the XML mapping style shown in the following listing.

WARNING Many a war has erupted over this annotations versus XML mapping
choice on mailing lists, so it’s best to pick the style you’re comfortable with
and leave it at that.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

 <class
 name="com.java7developer.chapter11

➥ .listing_11_18.Ticket">

 <id name="ticketId"
 type="long"
 column="ID" />

 <property name="faceValue"
 type="java.math.BigDecimal"
 column="FACE_VALUE"
 not-null="false" />

 <property name="discountRate"
 type="java.math.BigDecimal"
 column="DISCOUNT_RATE"
 not-null="true" />

 </class>
</hibernate-mapping>

With the configuration files completed, it’s time to think about what you want to test.

The business wants to be able to retrieve the Ticket by a unique ID. In order to support

this (and the Hibernate mapping), you’ll have to modify the Ticket class as follows.

import java.math.BigDecimal;

public class Ticket {

 public static final int BASIC_TICKET_PRICE = 30;
 private long ticketId;
 private final Price priceSource;
 private BigDecimal faceValue = null;
 private BigDecimal discountRate;

 private final class FixedPrice implements Price {
 public BigDecimal getInitialPrice() {

Listing 11.16 Hibernate mapping for Ticket

Listing 11.17 Ticket with ID

Identify
class to
map

Specify
ticketId
as PK

Map
faceValue

Map
discountRate

Addition
of ID

334 CHAPTER 11 Test-driven development

 return new BigDecimal(BASIC_TICKET_PRICE);
 }
 }

 public Ticket(long id) {
 ticketId = id;
 priceSource = new FixedPrice();
 discountRate = new BigDecimal("1.0");
 }

 public void setTicketId(long ticketId) {
 this.ticketId = ticketId;
 }

 public long getTicketId() {
 return ticketId;
 }

 public void setFaceValue(BigDecimal faceValue) {
 this.faceValue = faceValue;
 }

 public BigDecimal getFaceValue() {
 return faceValue;
 }

 public void setDiscountRate(BigDecimal discountRate) {
 this.discountRate = discountRate;
 }

 public BigDecimal getDiscountRate() {
 return discountRate;
 }

 public BigDecimal getDiscountPrice() {
 if (faceValue == null) faceValue = priceSource.getInitialPrice();
 return faceValue.multiply(discountRate);
 }
}

Now that you have the Ticket mapping and the altered Ticket class, you can start

with a test that will invoke the findTicketById method on the TicketHibernateDao

class. There’s additional JUnit test setup scaffolding to put in place, as follows.

import java.math.BigDecimal;
import org.hibernate.cfg.Configuration;
import org.hibernate.SessionFactory;
import org.junit.*;
import static org.junit.Assert.*;

public class TicketHibernateDaoTest {

 private static SessionFactory factory;
 private static TicketHibernateDao ticketDao;
 private Ticket ticket;
 private Ticket ticket2;

Listing 11.18 TicketHibernateDaoTest test class

335Test doubles

 @BeforeClass
 public static void baseSetUp() {
 factory =
 new Configuration().
 configure().buildSessionFactory();
 ticketDao = new TicketHibernateDao(factory);
 }

 @Before
 public void setUpTest()
 {
 ticket = new Ticket(1);
 ticketDao.save(ticket);
 ticket2 = new Ticket(2);
 ticketDao.save(ticket2);
 }

 @Test
 public void findTicketByIdHappyPath() throws Exception {
 Ticket ticket = ticketDao.findTicketById(1);
 assertEquals(new BigDecimal("30.0"),
 ticket.getDiscountPrice());
 }

 @After
 public static void tearDown() {
 ticketDao.delete(ticket);
 ticketDao.delete(ticket2);
 }

 @AfterClass
 public static void baseTearDown() {
 factory.close();
 }

}

Before any tests are run, you use the Hibernate configuration to create the DAO that

you want to test B. Following from there, before each test is run, you save a couple of

tickets into the HSQLDB database (as test data) c. The test is run, and the DAO’s

findTicketById method is tested d.

 The test will initially fail because you haven’t written the TicketHibernateDao class

and its corresponding methods. By using the Hibernate framework, there’s no need

for SQL or to refer to the fact that you’re running against the HSQLDB database.

Therefore, your DAO implementation will look something like the following listing.

import java.util.List;
import org.hibernate.Criteria;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.criterion.Restrictions;

public class TicketHibernateDao {

Listing 11.19 The TicketHibernateDao class

Use Hibernate
configuration

b

Set up test
Ticket data

c

Find
Ticket

d

Clear
data

Close
off

336 CHAPTER 11 Test-driven development

 private static SessionFactory factory;
 private static Session session;

 public TicketHibernateDao(SessionFactory factory)
 {
 TicketHibernateDao.factory = factory;
 TicketHibernateDao.session = getSession();
 }

 public void save(Ticket ticket)
 {
 session.save(ticket);
 session.flush();
 }

 public Ticket findTicketById(long ticketId)
 {
 Criteria criteria =
 session.createCriteria(Ticket.class);
 criteria.add(Restrictions.eq("ticketId", ticketId));
 List<Ticket> tickets = criteria.list();
 return tickets.get(0);
 }

 public void delete(Ticket ticket) {
 session.delete(ticket);
 session.flush();
 }

 private static synchronized Session getSession() {
 return factory.openSession();
 }

}

The DAO’s save method is fairly trivial, simply invoking the Hibernate framework’s

save method, followed by a flush to ensure the object is stored in the HSQLDB data-

base B. In order to retrieve the Ticket, you use Hibernate’s Criteria functionality

(equivalent to constructing a WHERE clause in SQL) c.

 With the DAO complete, the test now passes. You may have noticed that the save

method has also been partly tested. You can now go on to write more thorough

tests, checking cases such as whether tickets are coming back from the database

with the correct discountRate. Your database access code can now be tested much

earlier in the testing cycle, so your data access layer gains all of the benefits of a

TDD approach.

 Let’s now turn to discussing the next type of test doubles—mock objects.

11.2.4 Mock object

Mock objects are related to the stub test doubles that you’ve already met, but stub

objects are usually pretty dumb beasts. For example, stubs typically fake out methods

so that they always give the same result when you call them. This doesn’t provide any

way to model state-dependent behavior.

Set factory
and session

Save a
Ticket

b

Find Ticket
by ID

c

337Test doubles

 As an example: You’re trying to follow TDD, and you’re writing a text analysis sys-

tem. One of your unit tests instructs the text analysis classes to count the number of

occurrences of the phrase “Java7” for a particular blog post. But as the blog post is a

third-party resource, there are a number of possible failure scenarios that have very lit-

tle to do with the counting algorithm you’re writing. In other words, the code under

test isn’t isolated, and calling the third-party resource could be time-consuming. Here

are some common failure scenarios:

■ Your code might not be able to go out to the internet to query the blog post,

due to firewall restrictions in your organization.

■ The blog post may have been moved and there’s no redirect.

■ The blog post might be edited to increase or decrease the number of times

“Java7” appears!

Using stubs, this test would be almost impossible to write, and it would be incredibly ver-

bose for each test case. Enter the mock object. This is a special kind of test double, which

you can think of as a preprogrammable stub or superstub. Using the mock object is very

simple—when you’re preparing the mock for use, you tell it the sequence of calls to

expect and how it should respond to each one. The mock will combine well with DI; it

allows you to inject a pretend object that will behave in precisely known ways.

 Let’s see this in action by looking at a simple example for the theater tickets use

case. We’ll be using the popular mocking library, Mockito (available from http://

mockito.org/). The following listing shows how to use it.

import static org.mockito.Mockito.*;
import static org.junit.Assert.*;

import java.math.BigDecimal;
import org.junit.Test;

public class TicketTest {

 @Test
 public void tenPercentDiscount() {
 Price price = mock(Price.class);
 when(price.getInitialPrice()).
 ➥ thenReturn(new BigDecimal("10"));

 Ticket ticket = new Ticket(price, new BigDecimal("0.9"));
 assertEquals(9.0, ticket.getDiscountPrice().doubleValue(), 0.000001);

 verify(price).getInitialPrice();
 }
}

To create a mock object, you call the static mock() method B with the class object of

the type you want to mock up. Then you “record” the behavior that you want your mock

to display by calling the when() method to indicate which method you want to record

behavior for, and thenReturn() to specify what the expected result should be c. Lastly

Listing 11.20 Mocking for theater tickets

Create
mock

b

Program mock
for test

c

http://mockito.org/
http://mockito.org/

338 CHAPTER 11 Test-driven development

you verify that you’ve called the expected methods on the mocked object. This

ensures that you didn’t get to the correct result via an incorrect path.

 You can use the mock just like a regular object, and pass it to your call to the

Ticket constructor without any further ceremony. This makes mock objects a very

powerful tool for TDD, and some practitioners don’t really use the other types of test

doubles, preferring to do almost everything with mocks.

 Whether or not you choose this “mockist” style of TDD, a thorough knowledge of test

doubles (plus a little DI if needed) will let you continue refactoring and coding without

fear, even when you’re dealing with complex dependencies and third-party subsystems.

 As a Java developer, you’ll find working in a TDD manner is relatively easy to pick

up. But there is the recurring problem that often comes with Java—it can be a bit ver-

bose. Doing TDD in a pure-Java project can lead to a lot of boilerplate code. Fortu-

nately, now that you’ve studied some other JVM languages, you can potentially use

them to do more concise TDD. In fact, one of the classic ways to bring in a non-Java

language and start moving toward a polyglot project is to start with tests.

 In the next section, we’ll discuss ScalaTest—a testing framework that can be used

for a wide range of testing purposes. We’ll start by introducing ScalaTest and show

how it can be used to run JUnit tests against Java classes.

11.3 Introducing ScalaTest

In section 7.4, if you recall, we talked about TDD being an ideal use case for a dynamic

language. In fact, Scala has many of the same benefits for testing because of Scala’s

advanced type inference, which often makes the language feel dynamic, despite

Scala’s static type system.

 Scala’s Premier test framework is ScalaTest. It provides a number of extremely use-

ful traits and classes for doing all kinds of testing—from JUnit style unit tests through

to full-scale integration and acceptance tests. Let’s look at an example of ScalaTest in

action by rewriting some of the tests from earlier in this chapter in ScalaTest.

 The next listing shows the tests from listing 11.4 rewritten in ScalaTest, and it adds

a new test of the sellTicket() method—the fiftyDiscountTickets() test.

import java.math.BigDecimal
import java.lang.IllegalArgumentException
import org.scalatest.junit.JUnitSuite
import org.scalatest.junit.ShouldMatchersForJUnit
import org.junit.Test
import org.junit.Before
import org.junit.Assert._

class RevenueTest extends JUnitSuite with ShouldMatchersForJUnit {

 var venueRevenue: TicketRevenue = _

 @Before def initialize() {
 venueRevenue = new TicketRevenue()
 }

Listing 11.21 JUnit tests in ScalaTest style

339Introducing ScalaTest

 @Test def zeroSalesEqualsZeroRevenue() {
 assertEquals(BigDecimal.ZERO, venueRevenue estimateTotalRevenue 0);
 }

 @Test def failIfTooManyOrTooFewTicketsAreSold() {
 evaluating { venueRevenue.estimateTotalRevenue(-1) }

➥ should produce [IllegalArgumentException]
 evaluating { venueRevenue.estimateTotalRevenue(101) }

➥ should produce [IllegalArgumentException]
 }

 @Test def tenTicketsSoldIsThreeHundredInRevenue() {
 val expected = new BigDecimal("300");
 assert(expected == venueRevenue.estimateTotalRevenue(10));
 }

 @Test def fiftyDiscountTickets() {
 for (i <- 1 to 50)

➥ venueRevenue.sellTicket(new Ticket())
 for (i <- 1 to 50)

➥ venueRevenue.sellTicket(new Ticket(new StubPrice(),

➥ new BigDecimal(0.9)))
 assert(1950.0 ==

➥ venueRevenue.getRevenue().doubleValue());
 }
}

One of the points about Scala that we haven’t mentioned yet is how Scala handles

annotations. As you can see, they look just like Java annotations. Not much drama

here. Your tests also live in a class that extends JUnitSuite—this means that ScalaTest

will recognize this class as being something that it can run.

 You can easily run ScalaTest from the command line, using a native ScalaTest run-

ner like this:

ariel:scalatest boxcat$ scala -cp /Users/boxcat/projects/tickets.jar:/Users/
boxcat/projects/wgjd/code/lib/scalatest-1.6.1.jar:/Users/boxcat/
projects/wgjd/code/lib/junit-4.8.2.jar org.scalatest.tools.Runner -o -s
com.java7developer.chapter11.scalatest.RevenueTest

In this run, the Java classes you’re testing are in tickets.jar, so you need this file on the

classpath along with the ScalaTest and JUnit JARs.

 The preceding command specifies the specific test suite to run with the -s switch

(omitting the -s switch runs all of the tests in all test suites). The -o switch sends the

test output to standard out (use -e to send it to standard error instead). ScalaTest

refers to this as configuring a reporter for the output (it includes others, such as a

graphical reporter). The preceding example produces output like this:

Run starting. Expected test count is: 4
RevenueTest:
- zeroSalesEqualsZeroRevenue
- failIfTooManyOrTooFewTicketsAreSold
- tenTicketsSoldIsThreeHundredInRevenue
- fiftyDiscountTickets
Run completed in 820 milliseconds.

Exception
expected

Scala-style
assertion

340 CHAPTER 11 Test-driven development

Total number of tests run: 4
Suites: completed 1, aborted 0
Tests: succeeded 4, failed 0, ignored 0, pending 0
All tests passed.

Note that the tests have been compiled to a class file. As long as you have JARs for both

JUnit and ScalaTest on the classpath, you can use scala to run these tests from within

a JUnit runner instead:

ariel:scalatest boxcat$ scala -cp /Users/boxcat/projects/tickets.jar:/Users/
boxcat/projects/wgjd/code/lib/scalatest-1.6.1.jar:/Users/boxcat/
projects/wgjd/code/lib/junit-4.8.2.jar org.junit.runner.JUnitCore
com.java7developer.chapter11.scalatest.RevenueTest

JUnit version 4.8.2
...
Time: 0.096

OK (4 tests)

This, of course, leads to slightly different output, because you’re using a different tool

(a JUnit runner) to execute the tests.

NOTE We’ll use this JUnit runner when utilizing Maven to build the
java7developer project in chapter 12.

This quick look at ScalaTest completes our treatment of TDD. In chapter 14, we’ll

build on these ideas when we discuss behavior-driven development (BDD), which can

be seen as the next logical step after TDD.

11.4 Summary

Test-driven development is about eliminating or reducing fear in the development

process. By following the practices of TDD, such as the red-green-refactor loop for unit

tests, you can free yourself of the mindset that leads to just hacking code together.

JUnit is the de facto testing library for Java developers. It provides support for

running a suite of independent tests by allowing you to specify setup and teardown

hooks. JUnit’s assert mechanism ensures that the desired result is met when calling

your logic.

 Different types of test doubles can help you write tests that zero in on just the

right amount of system behavior. The four types of test doubles (dummy, stub, fake,

Testing Scala code with ScalaTest

In this section, we’re mostly talking about using ScalaTest to test Java code. But
what if the project you’re working on uses Scala as its main coding language?

Scala is usually thought of as a stable layer language, so if you’re working with a code-
base of Scala code, your code should be as well tested as Java code. This makes it a
perfect candidate for using a TDD approach, with ScalaTest in place of JUnit.

341Summary

and mock) allow you to replace a dependency with a test double that allows your test

to run quickly and accurately. Mocks can provide the ultimate flexibility when writ-

ing tests.

 ScalaTest holds out the promise of substantially reducing boilerplate testing code,

and it gives you an insight into the behavior-driven development style of testing.

 In the next chapter, we’ll discuss automated builds and the methodology called

continuous integration (CI), which builds on TDD. The CI approach allows you to get

immediate, automatic feedback on every new change, and it encourages radical trans-

parency among the members of a development team.

342

Build and
continuous integration

The story we’re about to tell you is based on true events at MegaCorp, although

the names of the parties have been changed to protect the innocent! Our protag-

onists are:

■ Riley, the new graduate

■ Alice and Bob, two existing “experienced” developers

■ Hazel, their stressed project manager

It’s 2:00 p.m. Friday, and Sally’s new payment feature needs to go into production

before the weekend batch runs.

In this chapter

■ Why build pipelines and continuous integration

(CI) are vital

■ Introducing Maven 3—the convention over

configuration build tool

■ Introducing Jenkins—the de facto CI tool

■ Using static code analysis tools such as

FindBugs and Checkstyle

■ Introducing Leiningen—the build tool for Clojure

343Build and continuous integration

Riley: Can I help with the release?

Alice: Sure, I think Bob built the last release. Bob?

Bob: Oh yeah, that was generated from my Eclipse IDE a couple of weeks ago.

Riley: Um, but we all use the IntelliJ IDE now—how shall we do the build?

Bob: Well, that’s where experience comes in! We’ll make it work somehow kid!

Riley: Well, OK. I’m new at this, but the payment feature should build OK, right?

Alice: Oh sure, I only forked the code from two weeks ago. The rest of the team can’t

have changed the code that much, surely.

Bob: Well, actually, you know we added in the Generics change, right?

[Cue awkward silence.]

Hazel: You guys need to try your changes together more often. We’ve talked about this!

Riley: Shall I order the pizza? Sounds like we’re not going home on time tonight.

Hazel: You got that right! You’re learning fast kid.

Alice: Actually, I’ve got them on speed dial—this happens all the time!

Hazel: Just get it sorted—we’ve lost thousands on late, buggy releases—senior man-

agement is looking for heads to roll!

Clearly Alice, Bob, and Riley don’t have good build and continuous integration (CI)

practices in place, but what does “build and CI” really mean?

BUILD AND CONTINUOUS INTEGRATION The practice of rapidly and repeat-
edly producing high quality binary artifacts for deployment to your vari-
ous environments.

Development teams often talk about

“the build” or a “build process.”1 For

the purposes of this chapter, when we

talk about building, we’re talking about using a build tool to transform your source

code into a binary artifact by following a build lifecycle. Build tools such as Maven

have a very long, detailed build lifecycle, most of which is hidden from the developer’s

sight. A fairly basic, typical build lifecycle is outlined in figure 12.1.

 Continuous integration is where individuals in a development team integrate their

work frequently, following the mantra of “commit early, commit often.” Each devel-

oper will commit their code to version control at least daily, and the CI server will run

regular automated builds to detect integration errors as quickly as possible.2 Feedback

is often displayed to the team with a happy/sad display on a large screen.

 So why are build and CI important? Each section of this chapter will highlight indi-

vidual benefits, but a few overriding themes are outlined in table 12.1.

1 If your team does so in a hushed, reverent, or fearful tone, this is the chapter for you!
2 This is configurable—you can run builds every so many minutes, on commit, or at other specified times.

Figure 12.1 A simplified typical build lifecycle

344 CHAPTER 12 Build and continuous integration

In order to be deployed to an environment, your source code needs to go through a

build lifecycle and be turned into a binary artifact (JAR, WAR, RAR, EAR, and so on).

Older Java projects typically use the Ant build tool, with newer projects utilizing

Maven or Gradle. Many development teams also have a nightly integration build, and

some have evolved to using a CI server to perform regular builds.

WARNING If you’re building JAR files or other artifacts from your IDE, you’re
looking for trouble. When you build from your IDE, you don’t have a repeat-
able build that’s independent of your local IDE settings, and that’s a disaster
waiting to happen. We can’t state this strongly enough—friends don’t let
friends build artifacts from the IDE!

But most developers don’t see build and CI as an exciting or rewarding area to put

their efforts into. Build tools and CI servers are often set up at the start of the project

and promptly forgotten. Over the years we’ve heard many variations on the following

comment: “Why should we spend extra time on the build and CI server? What we’ve

got in place kind of works. It’s good enough, right?”

 We strongly believe that having good build and CI in place means that you can

write code more quickly, with a higher quality bar. In conjunction with TDD (discussed

in chapter 11) build and CI means you can rapidly refactor without fear. Think of it as

having a mentor looking over your shoulder, providing a safe environment in which

you can code quickly and make bold changes.

 We’ll start this chapter by introducing you to Maven 3, a popular (yet polarizing—

some developers loathe it) build tool that forces you to work within its strict definition

of a build lifecycle. As part of the Maven 3 introduction, you’ll build Groovy and Scala

code alongside the more common Java code.

Table 12.1 Common themes of why build and CI is important

Theme Explanation

Repeatability Anyone can run the build, any time, anywhere. It means your whole development team

can comfortably run the build as opposed to needing a dedicated “build master” to do

it. If the newest team member needs to run the build at 3 a.m. on a Sunday, they can

do so with confidence.3

Early feedback You are informed immediately when something breaks. This is especially pertinent to

CI when developers are working on code that needs to integrate.

Consistency You know what versions of your software are deployed and exactly what code is in

each version.

Dependency

management

Most Java projects have several dependencies, such as log4j, Hibernate, Guice, and

so on. Managing these manually can be very difficult, and a change in version can

mean broken software. Good build and CI ensures that you’re always compiling and

running against the same third-party dependencies.

3 Extremely slick project teams get it to a state where their nontechnical teammates run builds.

345Getting started with Maven 3

 Jenkins is a hugely popular CI server that can be configured in a multitude of ways

(via its plugin system) to continuously execute builds and produce quality metrics. As

part of learning about Jenkins, we’ll dive into the code quality metrics that can be

reported by looking at the FindBugs and Checkstyle plugins.

 After learning about Maven and Jenkins, you’ll be comfortable with the end-to-end

flow of a typical Java-based build and CI process. Lastly, we’ll take a completely differ-

ent look at build and deployment tools by focusing on the Leiningen build tool for

Clojure. You’ll see how it can enable a very rapid, hands-on style of TDD while still pro-

viding industrial-strength build and deployment capabilities.

 Let’s get started with your build and CI journey by meeting Maven 3!

12.1 Getting started with Maven 3

Maven is a popular, yet hugely polarizing, build tool for Java and related JVM lan-

guages. Its underlying premise is that a strict build lifecycle backed up with powerful

dependency management is essential for successful builds. Maven goes beyond being

merely a build tool. It’s more of a project management tool for the technical compo-

nents of your project. In fact, Maven calls its build scripts Project Object Model (POM)

files. These POM files are in XML, and each Maven project or module will have an

accompanying pom.xml file.

NOTE Alternative language support is coming for POM files, which should
give users full flexibility should they require it (much like what’s available for
the Gradle build tool).

Maven favors convention over configuration, expecting you to fit into its world view of

how your source code should be laid out, how to filter properties, and so on. This can be

frustrating for some developers, but an awful lot of deep thought about build lifecycles

What about Ant and Gradle?

Ant is a popular build tool, especially on older Java projects. It was the de facto stan-
dard for a long time. We’re not covering it here because it has been covered a hun-
dred times before. More crucially, we feel that Ant doesn’t enforce a common build
lifecycle and it doesn’t have a set of common (enforced) build targets. This means
that developers have to learn the details of each Ant build they come across. If you
need to use Ant, the Ant site (http://ant.apache.org) has all of the details you need.

Gradle is the new cool kid on the block. It deliberately takes the opposite approach of
Maven, freeing you from tight constraints and allowing you to specify the build your way.
Like Maven, it provides dependency management and a host of other features. If you’d
like to try Gradle, the Gradle site (www.gradle.org) is where you’ll find the details.

For the purposes of learning about good build practices, we think that Maven is still
the best tool to use. It forces you to adhere to the build lifecycle and allows you to
run the build for any Maven project in the world.

http://ant.apache.org
www.gradle.org

346 CHAPTER 12 Build and continuous integration

has gone into Maven over the years, and more often than not it’s forcing you down a

sensible path. For those who rail against conventions, Maven does allow you to override

its defaults, but that makes for a more verbose and less standard set of build scripts.

 In order to execute builds with Maven, you ask it to run one or several goals, which

represent specific tasks (compiling your code, running tests, and more). Goals are all

tied into the default build lifecycle, so if you ask Maven to run some tests (for exam-

ple, mvn test), it’ll compile your code and your test code before trying to run the

tests. In short, it forces you to adhere to a correct build lifecycle.

 If you haven’t already downloaded and installed Maven 3, turn to section A.2 in

appendix A. Once you’ve completed the download and installation, come back here

to create your first Maven project.

12.2 Maven 3—a quick-start project

Maven follows convention over configuration, and its project structure conventions

become quickly evident when you create a quick-start project. The typical project

structure it prefers looks similar to the following layout.

project
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- com
 | `-- company
 | `-- project
 | `-- App.java
 | `-- resources
 `-- test
 `-- java
 `-- com
 `-- company
 `-- project
 `-- AppTest.java
 `-- resources
`-- target

As part of its conventions, Maven splits your main code from your test code. It also has

a special resources directory for any other files that need to be included as part of the

build (such as log4.xml file for logging, Hibernate configuration files, and other simi-

lar resources). The pom.xml file is the build script for Maven. It’s covered in full detail

in appendix E.

 If you’re a polyglot programmer, your Scala and Groovy source code follows the

same structure as the Java source code (in the java directory), except that the root

folders are called scala and groovy respectively. Java, Scala, and Groovy code can hap-

pily sit side by side in a Maven project.

 The target directory doesn’t get created until a build is run. All classes, artifacts,

reports, and other files that the build produces will appear under this directory. For a

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

347Maven 3—a quick-start project

full listing of the project structure that Maven expects, see the “Introduction to the

Standard Directory Layout” page on the Maven website (http://maven.apache.org/

guides/introduction/introduction-to-the-standard-directory-layout.html).

 To create this conventional structure for a new project, execute the following goal

with the specified parameters:

mvn archetype:generate
 -DgroupId=com.mycompany.app
 -DartifactId=my-app
 -DarchetypeArtifactId=maven-archetype-quickstart
 -DinteractiveMode=false

At this point you’ll see your console filling up with output from Maven stating that it’s

downloading plugins and third-party libraries. Maven needs these plugins and librar-

ies in order to run this goal, and by default it downloads these from Maven Central—

the de facto online repository for these artifacts.

Apart from the “Downloading...” information, you should also see a statement similar

to the following one in your console:

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.703s
[INFO] Finished at: Fri Jun 24 13:51:58 BST 2011
[INFO] Final Memory: 6M/16M
[INFO] --

If this step fails, it’s likely that your proxy server is blocking access to Maven Central,

where the plugins and third-party libraries are held. To resolve this issue, simply edit

the settings.xml file (mentioned in section A.2 of appendix A) and add the following

section, filling out the appropriate values for the various elements:

<proxies>
 <proxy>
 <active>true</active>
 <protocol></protocol>
 <username></username>
 <password></password>
 <host></host>

Why does Maven seem to download the internet?

“Oh, there goes Maven again, downloading the internet” is a common meme among
those involved in building Java projects. But is this really Maven’s fault? We think that
there are two root causes of this behavior. One is poor packaging and dependency
management by third-party library developers (for example, specifying a dependency in
their pom.xml file that isn’t actually required). The other is the inherent weaknesses
in the JAR-based packaging system itself, which doesn’t allow for a more fine-grained
set of dependencies.

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

348 CHAPTER 12 Build and continuous integration

 <port></port>
 </proxy>
</proxies>

Rerun the goal and you should see the my-app project created in your directory.

TIP Add the proxy configuration in $M2_HOME/conf/settings.xml if every-
one in your team is suffering from the same problem.

Maven supports an almost limitless bunch of archetypes (project layouts). If you want

to generate a specific type of project, such as a JEE6 project, you can execute the mvn

archetype:generate goal and simply follow the prompts it gives you.

 To explore Maven in more detail, let’s look at a project that already has source

code and tests ready so we can take you through the build lifecycle.

12.3 Maven 3—the Java7developer build

Remember the build lifecycle in figure 12.1? Maven follows a similar build life-

cycle, and you’re now going to build the source code that comes with this book,

working through those build lifecycle phases. Despite the fact that the source code

for the book doesn’t turn into a single application, we’ll refer to the project as the

java7developer project.

 This section will focus on

■ Exploring the basics of a Maven POM file (that is, your build script)

■ How to compile, test, and package your code (including Scala and Groovy)

■ How to deal with multiple environments using profiles

■ How to generate a website containing various reports

First you need to understand the pom.xml file that defines the java7developer project.

12.3.1 The POM

The pom.xml file represents the java7developer project, including all of the plugins,

resources, and other elements required to build it. You can find the pom.xml file at

the base of where you unzipped or checked out the project code for this book (we’ll

call this location $BOOK_CODE from now on). The POM has four main sections:

■ Basic project information

■ Build configuration

■ Dependency management

■ Profiles

It’s a fairly long file, but it’s much simpler than it first appears. If you want the full gory

details of what can go in a POM see the “POM Reference” on the Maven website (http://

maven.apache.org/pom.html).

 We’ll split the explanation of the pom.xml file for the java7developer project into

the four parts, starting with the basic project information.

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html

349Maven 3—the Java7developer build

BASIC PROJECT INFORMATION

Maven allows you to include a host of basic project information in the pom.xml file.

The following listing contains what we feel is a minimum to get started.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.java7developer</groupId>
 <artifactId>java7developer</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>java7developer</name>
 <description>
 Project source code for the book!
 </description>
 <url>http://www.java7developer.com</url>

 <properties>
 <project.build.sourceEncoding>
 UTF-8
 </project.build.sourceEncoding>
 </properties>
 ...

The <groupId> element value of com.java7developer makes up the first part of the

unique identifier for this artifact in a Maven repository B. The <artifactId> ele-

ment value of java7developer is the second part of that unique identifier. The

<packaging> element value of jar tells Maven you’re trying to build a JAR file (as

you’d expect war, ear, rar, sar, and har are all possible values here). And the final

piece of the unique identification comes from the <version> element value of 1.0.0,4

which specifies what version you’re building (this value changes to an incremented

SNAPSHOT version when you perform Maven releases).

 The <projectName> and <url> are also specified, along with a host of other

optional project information c. You ensure that the build is consistent across all plat-

forms by specifying the <sourceEncoding> as UTF-8 d.

 To put this into further context, this configuration will guide Maven to building

the java7developer-1.0.0.jar artifact that will be stored in the Maven repository under

com/java7developer/1.0.0.

Listing 12.1 POM—basic project information

4 This follows the Major.Minor.Trivial versioning scheme, our personal favorite!

Unique
identifier

b

Project
information

c

Platform-independent
encoding

d

350 CHAPTER 12 Build and continuous integration

BUILD CONFIGURATION

The build section contains the plugins5 and their respective configurations needed to

execute the Maven build lifecycle goals. For many projects, this section is quite small,

because the default plugins and their default settings are usually adequate.

 For the java7developer project, the <build> section contains several plugins that

override some of the defaults. This is so that the java7developer project can do sev-

eral things:

■ Build the Java 7 code

■ Build the Scala and Groovy code

■ Run Java, Scala, and Groovy tests

■ Provide Checkstyle and FindBugs code metric reports

Plugins are JAR-based artifacts (mainly written in Java). To configure a build plugin,

you need to place it inside the <build><plugins> section of your pom.xml file. Like

all Maven artifacts, each plugin is uniquely identified, so you need to specify the

<groupId>, <artifactId>, and <version> information. Any extra configuration for

the plugin then goes into the <configuration> section, and these details are specific

to each plugin. For example, the compiler plugin has configuration elements such as

<source>, <target>, and <showWarnings>, which is configuration information that’s

unique to a compiler.

 The following listing shows a section of the build configuration for the

java7developer project (the complete listing, with the corresponding explanations, is

in appendix E).

Maven versions and SNAPSHOTs

As part of its convention over configuration, Maven prefers to have your version num-
bers in the major.minor.trivial format. It deals with artifacts of a temporary nature by
the convention of adding a -SNAPSHOT suffix to that version number. For example, if
your team is constantly building a JAR for an upcoming 1.0.0 release, by convention
you’d have the version set to 1.0.0-SNAPSHOT. That way, various Maven plugins
know that it isn’t the production version yet and will treat it appropriately. When you
release the artifact to production, you’d release it as 1.0.0, with the next version for
bug fixes starting at 1.0.1-SNAPSHOT.

Maven helps automate all this through its Release plugin. For more details, see the
Release plugin’s page (http://maven.apache.org/plugins/maven-release-plugin/).
Now that you understand the basic project information section, let’s take a look at
the <build> section.

5 If you need to configure aspects of your build, you can check out the full list of plugins on Maven’s plugins
page (http://maven.apache.org/plugins/index.html).

http://maven.apache.org/plugins/index.html
http://maven.apache.org/plugins/maven-release-plugin/

351Maven 3—the Java7developer build

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <showDeprecation>true</showDeprecation>
 <showWarnings>true</showWarnings>
 <fork>true</fork>
 <executable>${jdk.javac.fullpath}</executable>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.9</version>
 <configuration>
 <excludes>
 <exclude>
 com/java7developer/chapter11/

➥ listing_11_2/TicketRevenueTest.java
 </exclude>
 <exclude>
 com/java7developer/chapter11/

➥ listing_11_7/TicketTest.java
 </exclude>
 ...
 </excludes>
 </configuration>
 </plugin>
 </plugins>
</build>

You need to specify that you’re using the compiler plugin (at a particular version) B
as you want to change the default behavior of compiling Java 1.5 code to that of

Java 1.7 c.

 Because you’ve already broken from convention, you might as well add a few other

useful compiler warning options d. Next, you make sure that you can specify where

your Java 7 installation is e. Simply copy over the sample_<os>_build.properties file

for your OS to build.properties and edit the value of the jdk.javac.fullpath prop-

erty in order for this property to be picked up.

 The Surefire plugin allows you to configure the tests. In the configuration for this

project we’re excluding several tests f that deliberately fail (you’ll remember these

two tests from chapter 11 on TDD).

 Now that you’ve covered the build section, you can move on to a vital part of the

POM, the dependency management.

Listing 12.2 POM—build information

Plugin
to use

b

Compile Java 7
code

c

Compiler
warnings

d

Path to
javace

Exclude
tests

f

352 CHAPTER 12 Build and continuous integration

DEPENDENCY MANAGEMENT

The list of dependencies for most Java projects can be quite long, and the java7developer

project is no different. Maven helps you manage those dependencies with its vast store

of third-party libraries in the Maven Central Repository. Crucially, those third-party

libraries have their own pom.xml files that declare their respective dependencies,

allowing Maven to figure out and download any further libraries you require.

 There are two main scopes (compile and test) that you’ll initially use.6 These

pretty much correspond to putting the JAR files on your CLASSPATH for compiling

your code and running your tests. The following listing shows the <dependencies>

section for the java7developer project. You’ll find the full listing with the correspond-

ing explanations in appendix E.

<dependencies>

 <dependency>
 <groupId>com.google.inject</groupId>
 <artifactId>guice</artifactId>
 <version>3.0</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
 <scope>compile</scope>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.8.5</version>
 <scope>test</scope>
 </dependency>
 ...
</dependencies>

In order for Maven to find the artifact that you’re referencing, it needs the correct

<groupId>, <artifactId>, and <version> B. As we alluded to earlier, setting the

<scope> to compile c will add those JARs to the CLASSPATH for the compilation of

the code. Setting the <scope> to test d will ensure that those JARs are added to the

CLASSPATH when Maven compiles and runs the tests.

6 J2EE/JEE projects also typically have some dependencies declared with a runtime scope.

Listing 12.3 POM—dependencies

Unique ID
of artifact

b

Compile
scopec

Test
scoped

353Maven 3—the Java7developer build

 But how do you know what <groupId>, <artifactId>, and <version> to specify?

The answer is almost always that you can search for these values at the Maven Central

Repository—http://search.maven.org/.

 If you can’t find the appropriate artifact, you can manually download and install

the plugin yourself by using the install:install-file goal. Here’s an example of

installing the asm-4.0_RC1.jar library.

mvn install:install-file
-Dfile=asm-4.0_RC1.jar
-DgroupId=org.ow2.asm
-DartifactId=asm
-Dversion=4.0_RC1
-Dpackaging=jar

After running this command, you should find that this artifact has been installed into

your local repository at $HOME/.m2/repository/org/ow2/asm/asm/4.0_RC1/, just

as if Maven had downloaded it itself!

The last part of the POM to understand is the profiles section, which effectively deals

with the environmentalization of your builds.

PROFILES

Profiles are how Maven deals with environmentalization (for example, your UAT as

opposed to your production environment) or other slight variations from your nor-

mal build. As an example in the java7developer project, there’s a profile that switches

off the compiler and deprecation warnings, as the next listing demonstrates.

<profiles>
 <profile>
 <id>ignore-compiler-warnings</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Artifact manager

When you manually install a third-party library, you’re only installing it for yourself, but
what about the rest of your team? The same issue occurs when you’ve produced an
artifact that you want to share with your colleagues, but can’t put into Maven Central
(because it’s proprietary code).

The solution for this is to use a binary artifact manager, such as Nexus (http://
nexus.sonatype.org/). An artifact manager acts as a local Maven Central for you and
your team, allowing you to share artifacts with each other, but not with the outside
world. Most artifact managers also cache Maven Central and other repositories, mak-
ing it a one-stop shop for your development team.

Listing 12.4 POM—profiles

ID for this
profileb

http://search.maven.org/
http://nexus.sonatype.org/
http://nexus.sonatype.org/

354 CHAPTER 12 Build and continuous integration

 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <showDeprecation>false</showDeprecation>
 <showWarnings>false</showWarnings>
 <fork>true</fork>
 <executable>${jdk.javac.fullpath}</executable>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

You reference the profile that you want to use with the -P <id> parameter when you

execute Maven (for example, mvn compile -P ignore-compile-warnings) B. When

this profile is activated, this version of the compiler plugin is used, and the depreca-

tion and other compiler warnings are switched off c.

 You can find out more about profiles and how to use them for other environmen-

talization purposes at Maven’s “Introduction to Build Profiles” page (http://

maven.apache.org/guides/introduction/introduction-to-profiles.html).

 Now that you’ve finished taking the tour of the pom.xml file for the java7developer

project, you’re probably itching to build it, right?

12.3.2 Running the examples

Hopefully you’ve already downloaded the code listings for this book. You’ll notice that

there were also some pom.xml files. It’s these files that control the Maven build.

 In this section you’ll go through the most common Maven build lifecycle goals

(clean, compile, test, and install). The first build lifecycle goal is to clean up any

leftover artifacts from a previous build.

CLEAN

The Maven clean goal deletes the target directory. To see this in action, change to the

$BOOK_CODE directory and execute the Maven clean goal.

cd $BOOK_CODE
mvn clean

Unlike the other Maven build lifecycle goals you’ll be using, clean isn’t automatically

called. If you want the previous build artifacts cleaned up, you always need to include

the clean goal.

 Now that you’ve removed any leftover remnants from the previous build, the next

build lifecycle goal you typically want to execute is to compile your code.

COMPILE

The Maven compile goal uses the compiler plugin configuration in the pom.xml file to

compile the source code under src/main/java, src/main/scala, and src/main/groovy.

Switch off
warnings

c

http://maven.apache.org/guides/introduction/introduction-to-profiles.html
http://maven.apache.org/guides/introduction/introduction-to-profiles.html

355Maven 3—the Java7developer build

This effectively means executing the Java, Scala, and Groovy compilers (javac, scalac,

and groovyc) with the compile-scoped dependencies added to the CLASSPATH. Maven

will also process the resources under src/main/resources, ensuring that they’re part

of the CLASSPATH for compilation.

 The resulting compiled classes end up under the target/classes directory. To see

this in action, execute the following Maven goal:

mvn compile

The compile goal should execute pretty quickly, and in your console you’ll see some-

thing similar to the following output.

...
[INFO] [properties:read-project-properties {execution: default}]
[INFO] [groovy:generateStubs {execution: default}]
[INFO] Generated 22 Java stubs
[INFO] [resources:resources {execution: default-resources}]
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Copying 2 resources
[INFO] [compiler:compile {execution: default-compile}]
[INFO] Compiling 119 source files to

C:\Projects\workspace3.6\code\trunk\target\classes
[INFO] [scala:compile {execution: default}]
[INFO] Checking for multiple versions of scala
[INFO] includes = [**/*.scala,**/*.java,]
[INFO] excludes = []
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\java:-1: info: compiling
[INFO] C:\Projects\workspace3.6\code\trunk\target\generated-sources\groovy-

stubs\main:-1: info: compiling
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\groovy:-1: info:

compiling
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\scala:-1: info: compiling
[INFO] Compiling 143 source files to

C:\Projects\workspace3.6\code\trunk\target\classes at 1312716331031
[INFO] prepare-compile in 0 s
[INFO] compile in 12 s
[INFO] [groovy:compile {execution: default}]
[INFO] Compiled 26 Groovy classes
[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 43 seconds
[INFO] Finished at: Sun Aug 07 12:25:44 BST 2011
[INFO] Final Memory: 33M/79M
[INFO] ---

At this stage, your test classes under src/test/java, src/test/scala, and src/test/groovy

haven’t been compiled. Although there is a specific test-compile goal for this, the

most typical approach is to simply ask Maven to run the test goal.

TEST

The test goal is where you really see Maven’s build lifecycle in action. When you ask

Maven to run the tests, it knows it needs to execute all of the earlier build lifecycle

356 CHAPTER 12 Build and continuous integration

goals in order to run the test goal successfully (including compile, test-compile, and

a host of others).

 Maven will run the tests via the Surefire plugin, using the test provider (in this case

JUnit) that you’ve supplied as one of the test-scoped dependencies in the pom.xml

file. Maven not only runs the test but produces report files that can be analyzed later

to investigate failing tests and to gather test metrics.

 To see this in action, execute the following Maven goals:

mvn clean test

Once Maven has completed compiling the tests and running them, you should see it

report something similar to the following output.

...
Running com.java7developer.chapter11.listing_11_3.TicketRevenueTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec
Running com.java7developer.chapter11.listing_11_4.TicketRevenueTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec
Running com.java7developer.chapter11.listing_11_5.TicketTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.015 sec

Results :

Tests run: 20, Failures: 0, Errors: 0, Skipped: 0

[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO]--
[INFO] Total time: 16 seconds
[INFO] Finished at: Wed Jul 06 13:50:07 BST 2011
[INFO] Final Memory: 24M/58M
[INFO]--

The results of the tests are stored at target/surefire-reports. You can take a look at

the text files there now. Later on you’ll be viewing these results through a nicer

web frontend.

TIP You’ll notice that we also included the clean goal. We do this out of
habit, just in case there’s some old cruft lying about.

Now that you have compiled and tested code, it’s ready to be packaged up. Although

you can use the package goal to do this directly, we’ll use the install goal. Read on to

find out why!

INSTALL

The install goal performs two major tasks. It packages up the code as specified by

the <packaging> element in the pom.xml file (in this case, a JAR file). It installs that

artifact into your local Maven repository (under $HOME/.m2/repository) so that it can

be used as a dependency by your other projects. As usual, if it detects that earlier build

lifecycle steps haven’t been executed, it will executed those relevant goals as well.

 To see this in action, execute the following Maven goal:

mvn install

357Jenkins—serving your CI needs

Once Maven has completed the install goal, you should see it report something sim-

ilar to the following output.

...
[INFO] [jar:jar {execution: default-jar}]
[INFO] Building jar: C:\Projects\workspace3.6\code\trunk\target\
java7developer-1.0.0.jar
[INFO] [install:install {execution: default-install}]
[INFO] Installing C:\Projects\workspace3.6\code\trunk\target\java7developer-

1.0.0.jar
to C:\Documents and Settings\Admin\.m2\repository\com\java7developer\
java7develope
r\1.0.0\java7developer-1.0.0.jar
[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO]--
[INFO] Total time: 17 seconds
[INFO] Finished at: Wed Jul 06 13:53:04 BST 2011
[INFO] Final Memory: 28M/66M
[INFO]--

You be able to look at the java7developer-1.0.0.jar artifact in the target directory (the

result of the package goal) as well as in your local Maven repository under $HOME/

.m2/repository/com.java7developer/1.0.0.

TIP You may wish to split your Scala and Groovy code into their own JAR

files. Maven supports this, but you have to remember that for Maven, each
separate JAR artifact should be a project in its own right. This means you’ll
have to use the Maven concept of a multimodule project. See Maven’s “Guide
to Working with Multiple Modules” page for details (http://maven.apache
.org/guides/mini/guide-multiple-modules.html for further details).

Most of us work in teams and often share a codebase, so how can we ensure that we still

have quick, reliable builds for everyone to share? This is where a CI server comes into

play, and by far the most popular one out there for Java developers today is Jenkins.

12.4 Jenkins—serving your CI needs

Having a successful CI build requires a combination of developer discipline and the

right tooling. In order to support the hallmarks of a good CI process, Jenkins provides

much of the tooling support required, as table 12.2 shows.

Table 12.2 Hallmarks of a good CI build and how Jenkins fulfills those

Hallmark Jenkins fulfillment

Automatic builds Jenkins will run builds anytime you want it to. It can do so automatically via

build triggers.

Always tested Jenkins will run any goals you like, including the Maven test goal. It has powerful

trend reporting on test failures and can report a build as failing if the tests don’t

all pass.

http://maven.apache.org/guides/mini/guide-multiple-modules.html
http://maven.apache.org/guides/mini/guide-multiple-modules.html

358 CHAPTER 12 Build and continuous integration

All CI servers are capable of polling a version control repository and executing

compile and test build lifecycle goals. What makes Jenkins stand out is its easy-to-use

UI and its extensive plugin ecosystem.

 The UI is extremely helpful when you’re configuring Jenkins and its plugins, often

using Ajax-style calls to check the sanity of your input as you complete each field.

There’s also plenty of context-sensitive help content on offer; it doesn’t take a special-

ist to get Jenkins up and running.

 Jenkins’ plugin ecosystem is vast and allows you to poll almost any type of version

control repository, run builds for multiple languages, and view a host of valuable

reports about your code.

Jenkins is free and open source, and it has a very active community willing to help

new practitioners.

 Refer to appendix D for information on how to download and install Jenkins.

Once you’ve completed the download and installation, come back here to continue!

WARNING We’re assuming that you’ll install Jenkins as a WAR file on your
favorite web server and that the base URL for the Jenkins install will be http://
localhost:8080/jenkins/. If you’re running the WAR file directly, the base URL

will be http://localhost:8080/.

This section will cover the basics of configuring a basic Jenkins install, followed by how

to set up, then execute a build job. We’ll be using the java7developer project as an

example, but feel free to follow along with your own favorite project.

Regular commits This one is up to the developers!

Build each

commit

Jenkins can perform a build each time it detects a new commit to the version

control repository.

Fast builds This is more important for your unit-test based builds, because you want these to

have a fast turnaround time. Jenkins can help here by sending off jobs to slave

nodes, but more often it’s up to the developers to have a lean, mean build script and

to configure Jenkins to call the right build lifecycle goals when executing a build.

Visible results Jenkins has a web-based dashboard as well as a host of notification methods.

Jenkins and Hudson

In literature around the internet and in certain books, you’ll see some confusion over the
name of this CI server. Jenkins is actually a recent fork of the Hudson project, taking
with it the majority of the developers and active community. Hudson continues as a great
CI server project in its own right, but for now Jenkins is the more active project of the two.

Table 12.2 Hallmarks of a good CI build and how Jenkins fulfills those (continued)

Hallmark Jenkins fulfillment

http://localhost:8080/jenkins/
http://localhost:8080/jenkins/
http://localhost:8080/

359Jenkins—serving your CI needs

 In order to get Jenkins to monitor your source code repository and to execute your

builds, you need to set up basic configuration first.

12.4.1 Basic configuration

You’ll start at the Jenkins home page at http://localhost:8080/jenkins/. To start con-

figuring Jenkins, click on the Manage Jenkins link in the menu at the left (http://

localhost:8080/jenkins/manage). Listed on the management page are a variety of

setup options you can explore.

 For now, select the Configure System link (http://localhost:8080/jenkins/configure).

You should arrive at a screen whose top section is similar to figure 12.2.

 At the top of this screen, you’ll notice that Jenkins tells you where its home direc-

tory is. If you ever need to perform configuration outside of the UI, you can go there.

TIP If you’re installing Jenkins for your team and need to think about secu-
rity, you should check the Enable Security and Prevent Cross Site Request
Forgery Exploits check boxes and configure accordingly. To begin, it’s easiest
to use Jenkins’ own database. You can always swap to your enterprise LDAP or
Active Directory–based authentication and authorization later.

In order to execute builds, Jenkins will need to know where your build tool is located.

This is located further down the configuration page. Look for the word “Maven”.

Figure 12.2 Jenkins configuration page

http://localhost:8080/jenkins/
http://localhost:8080/jenkins/manage
http://localhost:8080/jenkins/manage
http://localhost:8080/jenkins/configure
http://localhost:8080/jenkins/configure

360 CHAPTER 12 Build and continuous integration

BUILD TOOL CONFIGURATION

Out of the box, Jenkins supports both Ant and Maven (you can get other build tool

support via plugins). In the case of the java7developer project, we’re using Maven (on

Windows), so we have Jenkins configured as shown in figure 12.3.

 Note that Jenkins gives you the option to automatically install Maven, which is

handy if you’re installing on a clean machine.

 Now that you have Maven configured, you need to tell Jenkins what type of version

control repository you’re going to use. This is located further down the configuration

page. Look for the word SVN.

VERSION CONTROL CONFIGURATION

Out of the box, Jenkins supports both CVS and Subversion (SVN). Other version con-

trol systems such as Git and Mercurial can be supported via plugins. We’re using ver-

sion 1.6 of SVN for the java7developer project, and its configuration can be seen in

figure 12.4.

 At the end of setting up this configuration, click the Save button at the bottom of

the screen to ensure that the configuration is kept.

 Now that you have the basics of Jenkins configured, it’s time to create your first job.

12.4.2 Setting up a job

To begin setting up a new job, go back to the dashboard and click the New Job link on

the left-hand menu to get to the job setup page (http://localhost:8080/jenkins/view/

All/newJob). There are a bunch of options to choose from.

Figure 12.3 Maven build tool configuration

Figure 12.4 SVN version control configuration

http://localhost:8080/jenkins/view/All/newJob
http://localhost:8080/jenkins/view/All/newJob

361Jenkins—serving your CI needs

To set up a job to build the java7developer project, give the job a title (java7developer),

choose the Build a Maven2/3 Project option and click the OK button to continue. You

should be taken to a configuration screen whose top section looks similar to figure 12.5.

 There are a number of fields you can fill out here, but these are the sections you’ll

be interested in initially:

■ Source Code Management

■ Build Triggers

■ Build

You begin by specifying the source code management aspects.

SOURCE CODE MANAGEMENT

The source code management section is mainly about specifying which version control

branch, tag, or label you’re building the source code from. It’s the “integration” in con-

tinuous integration as your team will be constantly adding new code to version control.

 For the java7developer project, we’re using SVN and want to build the source code

from trunk. Figure 12.6 demonstrates these settings.

 Once you’ve told Jenkins where to get the source code from, the next set of details

to configure is how often Jenkins should build for you. This is done via build triggers.

Figure 12.5 Maven 2/3 job configuration page

362 CHAPTER 12 Build and continuous integration

BUILD TRIGGERS

Build triggers bring the “continuous” into continuous integration. You can ask Jenkins

to build as often as each new commit hits the source control repository or set it for a

more leisurely once-a-day build.

 For the java7developer project, we simply ask Jenkins to poll SVN every 15 minutes,

shown in figure 12.7.

 You can find out from Jenkins how to use a particular field by clicking on the help

icon (represented by the ? image). In this case, you might want assistance in writing a

cron-like expression to specify the polling period.

 At this stage Jenkins, knows where to get the code and how often to build it. The

next step is to tell Jenkins what build lifecycle phases (goals or targets in your build

script) you want it to execute.

BUILD

With Jenkins, you can set up many jobs all executing different parts of the build lifecy-

cle. You might want to have a job that executes the full suite of system integration tests

Figure 12.6 Java7developer source code management configuration

Figure 12.7 Java7developer build trigger configuration

363Jenkins—serving your CI needs

once a night. More commonly, you’ll want a more frequent job that compiles the code

and runs the unit tests each time someone commits to version control.

 For the java7developer project, we ask Jenkins to execute the familiar Maven clean

and install goals as shown in figure 12.8.

 For the java7developer project, Jenkins now has everything it needs in order to

poll the trunk of its SVN repository every 15 minutes and execute the Maven clean

and install goals. Don’t forget to click the Save button to save your job!

 Now you can go back to the dashboard and see your job there, much like in fig-

ure 12.9.

 In the Last Success (S) column, the circle icon represents the status of the latest

build for that job. In the Weather (W) column, the weather icon represents the overall

health of the project and is determined by how often your build has failed, whether

the tests have passed, and a whole host of other potential scenarios, depending on

your configured plugins. For further details on interpreting these icons, you can click

the Legend link in the dashboard (http://localhost:8080/jenkins/legend).

Figure 12.8 Java7developer Maven build lifecycle goals to execute (clean, install)

Figure 12.9 Dashboard with java7developer job

http://localhost:8080/jenkins/legend

364 CHAPTER 12 Build and continuous integration

Now that you have the job ready to go, you’re probably wanting to see it run! You could

wait up to 15 minutes for the first poll, or you can simply execute a one-off build.

12.4.3 Executing a job

Forcing the execution of a job is a great way of immediately checking your new config-

uration. To do so, simply go the dashboard and, for the java7developer job, click the

Schedule a Build button (which is the green arrow on the clock image next to the Last

Duration field). You can then refresh the page to see the build executing.

TIP By clicking on the Enable Auto Refresh link at the top-right corner of
the dashboard, you can automatically keep the dashboard refreshing. This
gives you a constantly updated view on the status of all of your builds that are
currently in progress.

While the build is executing, you’ll see the first icon of the java7developer job flashing

to indicate there’s a build in progress. You’ll also see the Build Executor Status on the

left side of the page. Once the build has completed, you’ll see that the icon in the Last

Success (S) column has gone a red color, indicating that the build has failed!

 This failure is due to the missing build.properties file. If you have not done so

already in section 12.2, you can fix this quickly by copying over one of the sample

build.properties files and editing it, so that your local Java 7 JDK is referenced. Here’s

an example on a Unix OS:

cd $USER/.jenkins/jobs/java7developer/workspace/java7developer
cp sample_build_unix.properties build.properties

You can now go back to the dashboard and manually run the build again. This time

the build should run successfully and your dashboard should show the java7developer

job with a blue icon in the Last Success column, representing a successful build.

 Another aspect of the build you can immediately check is a report on the tests,

because Jenkins knows how to read the output produced by Maven. To go immediately to

the test result, you can click the link in the Last Success column for the java7developer

job (http://localhost:8080/jenkins/job/java7developer/lastSuccessfulBuild/). When you

follow the link to Latest Test Result, you’ll come to a test results screen similar to fig-

ure 12.10.

 The tests have all passed, which is great! If any of them fail, you can dive into the

individual details of each test.

 That concludes the basics of running an unsuccessful and then a successful build.

For the java7developer project, Jenkins will continue to poll SVN and will execute new

builds if it detects a new commit.

 You’ve seen how Jenkins runs a build and how it visually warns you if the build fails

for any reason and how it checks on the success or failure of tests. But you can go

much further than this. Jenkins can also report on a host of useful code metrics, giv-

ing you an insight into the quality of your codebase.

http://localhost:8080/jenkins/job/java7developer/lastSuccessfulBuild/
http://localhost:8080/jenkins/job/java7developer/lastSuccessfulBuild/

365Code metrics with Maven and Jenkins

12.5 Code metrics with Maven and Jenkins

Java and the JVM have been around for a long time now, and over the years powerful

tools and libraries have been developed to guide developers into writing higher qual-

ity code. We loosely define this area as code metrics or static code analysis, and both Maven

and Jenkins support the most popular tools out there today. These tools are primarily

focused on the Java language itself, although increasingly the more popular tools are

also providing support for other languages (or new specific tools are being built).

TIP Several static code analysis tools and libraries are also supported by mod-
ern IDEs (such as Eclipse, IntelliJ, and NetBeans) and it’s worth spending
some time investigating that support as well.

Code metric tooling is primarily aimed at eliminating all of the small, common mis-

takes that we all make as developers. It helps you set a minimum quality bar for your

code, telling you useful things like these:

■ How much of your code is being covered by your tests7

■ Whether the code is formatted cleanly (this aids diff comparisons and readability)

■ Whether you’re likely to get a NPE

■ Whether you’ve forgotten your equals() and hashCode() methods on a

domain object

7 We do not cover the common code coverage tools in this book as they are not yet compatible with Java 7.

Figure 12.10 Test results for the successful java7developer build

366 CHAPTER 12 Build and continuous integration

The list of checks that the various tools provide is long, and it’s up to each develop-

ment team to decide what checks they want activated for their project.

Maven and Jenkins combine well in order to give you overviews as well as detailed

information on your code metrics. In this section you’ll learn two main things:

■ How to install and configure Jenkins plugins

■ How to configure code consistency (Checkstyle) and bug-finding (FindBugs)

plugins

Again, we’ll use the java7developer project as an example. Let’s begin by looking at

how you can install plugins for Jenkins, a prerequisite for getting the code-metrics-

reporting functionality.

12.5.1 Installing Jenkins plugins

Installing Jenkins plugins is easy because Jenkins provides a nice UI-based plugin man-

ager to handle the downloading and installing for you. Jenkins needs to perform a

restart when you install plugins, so you’ll first want to go to the Jenkins management

page (http://localhost:8080/jenkins/manage) and click the Prepare to Shutdown

link. This halts any jobs that are due to be executed so you can safely install the plu-

gins and restart Jenkins.

 Once you’ve prepared Jenkins for shutdown, it’s time to visit the plugin manager.

From the management page, click the Manage Plugins link (http://localhost:8080/

jenkins/pluginManager/). You should be presented with a screen similar to figure 12.11.

 You start on the Updates tab. Swap to the Available tab and you’ll be presented

with a long list of available plugins. For the purposes of this chapter, you’ll want to tick

the check box for the following plugins:

■ Checkstyle

■ FindBugs

Then go to the bottom of the screen and click the Install button to initiate the

installation. Once the installation is complete, you can restart Jenkins via the http://

localhost:8080/jenkins/restart link.

The limits of code metrics

Some teams make the mistake of thinking that they have perfect high-quality code
base because they’ve resolved all of the issues that the code metric tooling warned
them about. This premise is false. Code metric warnings are a useful tool that can
help you eliminate lots of low-level bugs and bad coding practices. They don’t guar-
antee quality or tell you whether you got your business logic right or wrong!

Another issue can be that management may be tempted to use these metrics to
report on. Do management and yourselves a favor by keeping code metrics at the
developer level. They aren’t intended to be a project management metric.

http://localhost:8080/jenkins/manage
http://localhost:8080/jenkins/pluginManager/
http://localhost:8080/jenkins/restart
http://localhost:8080/jenkins/restart
http://localhost:8080/jenkins/pluginManager/

367Code metrics with Maven and Jenkins

Once Jenkins has restarted, the plugins are installed. Now it’s time to configure those

plugins, starting with the Checkstyle plugin.

12.5.2 Making code consistent with Checkstyle

Checkstyle is a static code analysis tool for Java that focuses on how your source code is

laid out, whether you have appropriate levels of Javadocs, and other syntactic sugar

checks. It also checks for common coding errors, but FindBugs does a more thorough

job of this.

 Checkstyle is important for a couple of reasons. First, it can help enforce a mini-

mum set of coding style rules so that your team can easily read each other’s code (a

major reason why Java is popular is because of its readability). The second benefit is

that it’s much easier to work with diffs and patches if whitespace and positioning of

code elements are consistent.

 The Checkstyle plugin has already been configured in the Maven pom.xml, so all

you need to do is alter the java7developer job in order to add the checkstyle:check-

style goal. You can configure the job by clicking on the java7developer link in the job

listed on the dashboard, and then in the subsequent screen clicking on the Configure

link in the left-hand menu.

 Next, you configure the report as well as define whether a build should fail if there

are too many violations. Figure 12.12 shows the configuration of the Maven build and

the report that we used for the java7developer project.

Figure 12.11 The Jenkins plugin manager

368 CHAPTER 12 Build and continuous integration

Don’t forget to click Save to store this configuration! The default ruleset for Check-

style is the original Sun Microsystems coding convention for Java. Checkstyle can

be tweaked to the nth degree, so that your team’s coding conventions are accu-

rately represented.

WARNING The latest version of Checkstyle may not yet fully support Java 7
syntax, so you may see false positives around try-with-resources, the diamond
operator, and other Project Coin syntax elements.

Let’s take a look at how the Java7developer project lines up against the default rule-

set. As usual, you can go back to the Jenkins dashboard and manually execute the

build. Once the build is complete, you can go back to the last successful build page

(remember, you can get there via the link in the Last Success column) and click the

Checkstyle Warnings link in the left-hand menu to be taken to the page that shows

the Checkstyle report. For the java7developer project, this should look similar to fig-

ure 12.13.

 As you can see, the Java7developer codebase has some valid warnings. Looks like

we’ve still got work to do! You can dive into each of the warnings to get an explanation

as to why the violation has occurred and set about correcting it for the next build cycle.

 Checkstyle is certainly helpful, but its primary focus isn’t on potential code errors.

For that type of important detection, it’s better to use the FindBugs plugin.

Figure 12.12 Checkstyle configuration

369Code metrics with Maven and Jenkins

12.5.3 Setting the quality bar with FindBugs

FindBugs (created by Bill Pugh) is a bytecode analysis tool that focuses on finding

potential bugs in your code. Its bytecode analysis nature means that FindBugs does

work on Scala and Groovy code as well. But the rules are set up for catching Java lan-

guage bugs, so you need to be careful of false positives in your Groovy and Scala code.

 FindBugs has a lot of research behind it, done by developers who are intimately

familiar with the Java language. It will detect situations such as:

■ Code that will lead to a NPE

■ Assigning to a variable that never gets used

■ Using == when comparing String objects, as opposed to using the equals method

■ Using basic + String concatenation in a loop (as opposed to using StringBuffer)

It’s worth running FindBugs with its default settings and tweaking which rules you

want checked a little later on.

WARNING Even for the Java language, FindBugs can produce false positives.
The warnings should be carefully investigated, and if they should be ignored,
you can specifically exclude those particular use cases.

Figure 12.13 Checkstyle report

370 CHAPTER 12 Build and continuous integration

FindBugs is important for a couple of reasons. First, it teaches developers good habits

by acting as a pair programmer (as far as helping detect potential bugs goes). Second,

the overall code quality of the project goes up and your issue tracker will be less full of

small annoying bugs, leaving the team to tackle the real issues, such as changes in

business logic.

 As with the Checkstyle plugin, you can configure the job by clicking on the

java7developer link in the job listed on the dashboard, and in the subsequent screen

clicking on the Configure link in the left-hand menu.

 In order to execute the FindBugs plugin, you need to add the compile find-

bugs:findbugs goals to the Maven build command in Jenkins (you need compile so

that FindBugs can work on the bytecode).

 You can also configure the report as well as define whether a build fails if there are

too many violations. Figure 12.14 shows this configuration.

 Don’t forget to click Save in order to store your configuration! FindBugs comes

with a predefined ruleset that can be extensively tweaked so that your team’s coding

standards are accurately represented. Let’s take a look at how the Java7developer proj-

ect lines up against the default ruleset.

Figure 12.14 FindBugs configuration

371Code metrics with Maven and Jenkins

As usual, you can go back to the Jenkins dashboard and manually execute the build.

Once the build is complete, you can go to the last successful build page (via the link in

the Last Success column) and click the FindBugs Warnings link in the left-hand menu

to get to the pages that shows the report. Figure 12.15 shows a report that should be

similar to what you’ll get for the java7developer project.

 As you can see, the Java7developer codebase has some valid warnings. Book

authors certainly aren’t always perfect programmers! You can dive into each of the

warnings to get an explanation as to why the violation has occurred, and if you’re so

inclined, you can correct it for the next build cycle.

 FindBugs will find the vast majority of common Java gotchas and coding mistakes.

As your development team learns from these mistakes, the reports will show a decreas-

ing number of warnings. Not only have you improved the quality of your code, but

you’ve also improved your own coding!

 That completes the section on Jenkins, Maven, and code metrics. The tooling in

this area is quite mature now (with Scala and Groovy still requiring more support),

and it’s very easy to get up and running. If you’re a CI fiend and want to explore the

full power of Jenkins, we highly recommend John’s Smart’s constantly updated

Jenkins: The Definitive Guide (O’Reilly). You may have noticed that we’re still missing

Figure 12.15 FindBugs report

372 CHAPTER 12 Build and continuous integration

one piece of the puzzle with regards to polyglot programming on the JVM and build

and CI—we haven’t dealt with Clojure projects. Fortunately, the Clojure community

has produced several build tools that are geared toward pure-Clojure projects and are

in common use. One of the most popular is Leiningen, which is a build tool that’s

written in Clojure itself.

12.6 Leiningen

As you’ve already seen, a build tool needs to provide several capabilities to be as useful

as possible to the developer. These are the key ones:

■ Dependency management

■ Compilation

■ Test automation

■ Packaging for deployment

Leiningen takes the position that it’s better to divide up these aspects. It reuses exist-

ing Java technology to provide each of the capabilities, but it does so in a way that isn’t

dependent on a single package for all of them.

 This sounds potentially complicated and a bit scary, but in practice the complex-

ity is hidden from you as a developer. In fact, Leiningen can be used even by devel-

opers who don’t have experience with the underlying Java tools. We’ll begin by

installing Leiningen via a very simple bootstrapping process. Then we’ll discuss Lein-

ingen’s components and overall architecture, and we’ll finally try it with a Hello

World project.

 We’ll show you how to start a new project, add a dependency, and work with that

dependency inside the Clojure REPL that Leiningen provides. This naturally leads to a

discussion of how to do TDD in Clojure using Leiningen. We’ll conclude the chapter

by looking at how you can package your code for deployment as an application or

library for others to use.

 Let’s see how we can get started with Leiningen.

12.6.1 Getting started with Leiningen

Leiningen provides a very simple way to get started. For Unix-like systems (including

Linux and Mac OS X), start by grabbing the lein script. This can be found on GitHub

(from https://github.com/ search for Leiningen, or use your preferred search engine).

 Once the lein script is on your PATH and is executable, it can simply be run. The

first time lein is run, it will detect which dependencies need to be installed (and which

are already present). This will even install other needed components that aren’t part

of core Leiningen. As a result, the first run could be slightly slower than subsequent

runs as dependencies are installed.

 In the next section, we’ll explain the architecture of Leiningen and the Java tech-

nologies that it relies upon to provide its core functionality.

https://github.com/
https://github.com/

373Leiningen

12.6.2 Leiningen’s architecture

As we discussed, Leiningen wraps up some mainstream Java technologies and simpli-

fies them to provide its capabilities. The main components that are wrapped are

Maven (version 2), Ant, and javac.

 In Figure 12.16, you can see that Maven is used to provide dependency resolution

and management, while javac and Ant are used for the actual build, running tests,

and other aspects of the build process.

 Leiningen’s approach allows the power user to reach through the abstraction that

it provides to access the full power of the underlying tools used at each stage. But the

basic syntax and usage is very simple and doesn’t require any previous experience with

the underlying tools.

 Let’s look at a simple example to see how the syntax of a project.clj file works and

the basic commands that are used in the Leiningen project lifecycle.

12.6.3 Example—Hello Lein

With lein on your path, let’s start a new project using it. The way to do this is by using

the lein new command:

ariel:projects boxcat$ lein new hello-lein
Created new project in: /Users/boxcat/projects/hello-lein
ariel:projects boxcat$ cd hello-lein/
ariel:hello-lein boxcat$ ls
README project.clj src test

Installing Leiningen on Windows

One of the annoying things about Windows from an old Unix hacker’s viewpoint is the
lack of standard, simple tools that command-line lovers rely upon. For example, a
vanilla Windows install lacks a curl or wget utility for pulling down files via HTTP
(which Leiningen needs to pull down jars from Maven repositories). The solution is to
use a Leiningen Windows install—a zip file containing the lein.bat batch file and a
prebuilt wget.exe that need to be placed into a directory on your Windows PATH for
lein self-install to work properly.

Figure 12.16 Leiningen and its components

374 CHAPTER 12 Build and continuous integration

This command creates a project called

hello-lein. There’s a project directory that

contains a simple README description file,

a project.clj file (which we’ll talk more

about in just a minute), and parallel src

and test directories.

 If you import the project that Leinin-

gen has just set up into Eclipse (for exam-

ple, with the CounterClockwise plugin

installed), the project layout will look like

it does in figure 12.17.

 This project structure mirrors the

straightforward layout of Java projects—

there are parallel test and src structures

with a core.clj file in each one (for tests

and top-level code, respectively). The other important file is the project.clj, which is

used by Leiningen to control the build and hold metadata.

 Let’s take a look at the skeletal file that’s generated by lein new.

(defproject hello-lein "1.0.0-SNAPSHOT"
 :description "FIXME: write description"
 :dependencies [[org.clojure/clojure "1.2.1"]])

Parsing this Clojure form is relatively straightforward—there’s a macro called

(defproject) that makes new values that represent Leiningen projects. This macro

needs to be told what the project is called—hello-lein in this case. You also need to

tell the macro what version of the project this is—1.0.0-SNAPSHOT by default (a

Maven version number as discussed in section 12.3.1)—and then provide a map of

metadata that describes the project.

 Out of the box, lein provides two pieces of metadata: a description string and a vec-

tor of dependencies, which is a handy place to start adding new dependencies. Let’s

add a new dependency—the clj-time library. This provides a Clojure interface to a

useful Java date and time library (Joda-Time, but you don’t need to know the Java

library to make sense of this example). After adding the new dependency, your

project.clj file will look like this:

(defproject hello-lein "1.0.0-SNAPSHOT"
 :description "FIXME: write description"
 :dependencies [[org.clojure/clojure "1.2.1"]
 [clj-time "0.3.0"]])

The second element of the vector describing the new dependency is the version of the

library to use. This is the version that will be retrieved from a repository if Leiningen

can’t find a copy in its local dependencies repository.

 By default, Leiningen uses a repository at http://clojars.org/ to retrieve missing

libraries. As Leiningen uses Maven under the hood, this is essentially just a Maven

Figure 12.17 A newly created Leiningen project

http://clojars.org/

375Leiningen

repository. Clojars provides a search tool, which is useful if you know the libraries you

need but don’t know the version you want.

 With this new dependency in place, you need to update the local build environ-

ment. This is done with the command lein deps.

ariel:hello-lein boxcat$ lein deps
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.pom from central
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.pom from clojure
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.pom from clojars
Transferring 2K from clojars
Downloading: joda-time/joda-time/1.6/joda-time-1.6.pom from clojure
Downloading: joda-time/joda-time/1.6/joda-time-1.6.pom from clojars
Transferring 5K from clojars
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.jar from central
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.jar from clojure
Downloading: clj-time/clj-time/0.3.0/clj-time-0.3.0.jar from clojars
Transferring 7K from clojars
Downloading: joda-time/joda-time/1.6/joda-time-1.6.jar from clojure
Downloading: joda-time/joda-time/1.6/joda-time-1.6.jar from clojars
Transferring 522K from clojars
Copying 4 files to /Users/boxcat/projects/hello-lein/lib
ariel:hello-lein boxcat$

Leiningen has used Maven to pull down the Clojure interface, but also the underlying

Joda-Time JAR. Let’s make use of it in some code and demonstrate how to use Leinin-

gen as a REPL for development in the presence of dependencies.

 You need to modify your main source file, src/hello_lein/core.clj, like this:

(ns hello-lein.core)

(use '[clj-time.core :only (date-time)])

(defn isodate-to-millis-since-epoch [x]
 (.getMillis (apply date-time

➥ (map #(Integer/parseInt %) (.split x "-")))))

This provides you with a Clojure function that converts an ISO standard date (in the

form YYYY-MM-DD) to the number of milliseconds since the Unix epoch.

 Let’s test it out, REPL-style, using Leiningen. First you need to add an additional

line to project.clj, so that it looks like this:

(defproject hello-lein "1.0.0-SNAPSHOT"
 :description "FIXME: write description"
 :dependencies [[org.clojure/clojure "1.2.1"]
 [clj-time "0.3.0"]]
 :repl-init hello-lein.core)

With this line in place, you can bring up a REPL that has the dependencies fully available,

and which has brought into scope the functions from the namespace hello-lein.core:

ariel:hello-lein boxcat$ lein repl
REPL started; server listening on localhost:10886.

hello-lein.core=> (isodate-to-millis-since-epoch "1970-01-02")
86400000
hello-lein.core=>

http://clojars.org/

376 CHAPTER 12 Build and continuous integration

This is the correct answer for the number of milliseconds in a day, and it demonstrates

the core principle of this way of working with the REPL in a real project. Let’s expand

a bit on this, and look at a very powerful way of working in a test-oriented way with the

Leiningen REPL.

12.6.4 REPL-oriented TDD with Leiningen

At the heart of any good TDD methodology should be a simple, basic loop that you

can use to develop new functionality. With Clojure and Leiningen, the basic cycle can

be something like this:

1 Add any needed new dependencies (and rerun lein deps).

2 Start the REPL (lein repl).

3 Draft a new function and bring it into scope inside the REPL.

4 Test the function within the REPL.

5 Iterate steps 3 and 4 until the function behaves correctly.

6 Add the final version of the function to the appropriate .clj file.

7 Add the test cases you ran to the test suite .clj files.

8 Restart the REPL and repeat from 3 (or 1 if you now need new dependencies).

This style of development is test-driven, but rather than having to answer the question

of whether the code or tests are written first, with REPL-style TDD both proceed at the

same time.

 The reason for the restart of the REPL at step 8 when adding a newly crafted func-

tion to the source base is to ensure that the new function will compile cleanly. Some-

times when creating a new function, minor changes are made to other functions or to

the environment to support it. It’s sometimes easy to forget these changes when mov-

ing the function to the permanent source base. Restarting the REPL helps catch those

forgotten changes early.

 This process is simple and clear, but one question that we haven’t addressed, either

here or in chapter 11 on TDD, is how to write tests in Clojure. Fortunately, this is very

simple. Let’s have a look at the template that lein new provides you with when you

create a new project:

(ns hello-lein.test.core
 (:use [hello-lein.core])
 (:use [clojure.test]))

(deftest replace-me ;; FIXME: write
 (is false "No tests have been written."))

To run tests, you use the lein test command. Let’s run it against this autogenerated

case to see what will happen (although you can probably guess).

ariel:hello-lein boxcat$ lein test
Testing hello-lein.test.core
FAIL in (replace-me) (core.clj:6)
No tests have been written.

377Leiningen

expected: false
 actual: false
Ran 1 tests containing 1 assertions.
1 failures, 0 errors.

As you can see, the supplied case is a failure, and it nags you to write some test cases.

Let’s do just that, by writing a core.clj file in the test folder:

(ns hello-lein.test.core
 (:use [hello-lein.core])
 (:use [clojure.test]))

(deftest one-day
 (is true
 (= 86400000 (isodate-to-millis-since-epoch "1970-01-02"))))

The anatomy of the test is very simple—you use the (deftest) macro, give your test a

name (one-day), and provide a form that has a very similar form to an assert clause.

 The structure of Clojure code means that the (is) form can be read very naturally—

almost like a DSL. This test can be read aloud as, “Is it true that 86400000 is equal to the

number of milliseconds since the epoch on 1970-01-02?” Let’s see this test case in action:

ariel:hello-lein boxcat$ lein test
Testing hello-lein.test.core
Ran 1 tests containing 1 assertions.
0 failures, 0 errors.

The key package here is clojure.test, and it provides a number of other useful

forms for building up test cases where more complex environments or test fixtures

need to be used. There’s full coverage of TDD in Clojure in Clojure in Action by Amit

Rathore (Manning, 2011) if you want to know more.

 With your REPL-oriented TDD process in place, you can now build a sizable appli-

cation in Clojure and work with it. But the time will come when you produce some-

thing that you want to share with others. Fortunately, Leiningen has a number of

commands that promote easy packaging and deployment.

12.6.5 Packaging and deploying with Leiningen

Leiningen provides two main ways to distribute your code to others. These are essen-

tially with and without dependencies. The corresponding commands are lein jar

and lein uberjar respectively.

 Let’s see lein jar in action:

ariel:hello-lein boxcat$ lein jar
Copying 4 files to /Users/boxcat/projects/hello-lein/lib
Created /Users/boxcat/projects/hello-lein/hello-lein-1.0.0-SNAPSHOT.jar

And here’s what the resulting JAR file contains:

ariel:hello-lein boxcat$ jar tvf hello-lein-1.0.0-SNAPSHOT.jar
 72 Sat Jul 16 13:38:00 BST 2011 META-INF/MANIFEST.MF
 1424 Sat Jul 16 13:38:00 BST 2011 META-INF/maven/hello-lein/hello-lein/

pom.xml

378 CHAPTER 12 Build and continuous integration

 105 Sat Jul 16 13:38:00 BST 2011
META-INF/maven/hello-lein/hello-lein/pom.properties
 196 Fri Jul 15 21:52:12 BST 2011 project.clj
 238 Fri Jul 15 21:40:06 BST 2011 hello_lein/core.clj
ariel:hello-lein boxcat$

One obvious facet of this process is that Leiningen’s basic commands lead to distribu-

tion of Clojure source files, rather than compiled .class files. This is traditional for

Lisp code, as the macro and read-time components of the system would be hampered

by having to deal with compiled code.

 Now, let’s see what happens when you use lein uberjar. This should produce a

JAR that contains not only your code, but also your dependencies.

ariel:hello-lein boxcat$ lein uberjar
Cleaning up.
Copying 4 files to /Users/boxcat/projects/hello-lein/lib
Copying 4 files to /Users/boxcat/projects/hello-lein/lib
Created /Users/boxcat/projects/hello-lein/hello-lein-1.0.0-SNAPSHOT.jar
Including hello-lein-1.0.0-SNAPSHOT.jar
Including clj-time-0.3.0.jar
Including clojure-1.2.1.jar
Including clojure-contrib-1.2.0.jar
Including joda-time-1.6.jar
Created /Users/boxcat/projects/hello-lein/

➥ hello-lein-1.0.0-SNAPSHOT-standalone.jar

As you can see, this produces a JAR that contains not only your code, but also all

your dependencies, and their dependencies. This is known as the transitive closure

of your dependency graph. It means that you’re completely packaged for stand-

alone running.

 Of course, this also means the result of lein uberjar will be a lot larger than the

result of lein jar because you have all those dependencies to package. Even for the

simple example we’ve been working with here, this difference is quite stark:

ariel:hello-lein boxcat$ ls -lh h*.jar
-rw-r--r-- 1 boxcat staff 4.1M 16 Jul 13:46
hello-lein-1.0.0-SNAPSHOT-standalone.jar
-rw-r--r-- 1 boxcat staff 1.7K 16 Jul 13:46
hello-lein-1.0.0-SNAPSHOT.jar

One useful way to think about lein jar and lein uberjar is this: You’ll want to use

lein jar if you’re building a library (that builds on top of other libraries) and that

others may want to use in their applications, or build on top of. If you’re building a

Clojure application for end use rather than extension (by the typical user), you’ll want

to use lein uberjar.

 You’ve seen how to use Leiningen to start, manage, build, and deploy Clojure proj-

ects. Leiningen has many other useful commands built in and a powerful plugin sys-

tem that allows for heavy customization. To see more of what Leiningen can do for

you, just call it without a command, as lein.

379Summary

 We’ll meet Leiningen again in the next chapter when we build a Clojure web

application.

12.7 Summary

Having a fast, repeatable, and simple build should be the hallmark of any project that

the well-grounded Java developer is involved with. If you can’t build your software

quickly and consistently, a great deal of time and money are being wasted, including

your own!

 Understanding the basic build lifecycle of compile-test-package is key to having a

good build process. After all, you can’t test the code if it hasn’t compiled yet!

 Maven takes the concept of the build lifecycle and expands it into a project lifecy-

cle that’s used consistently across all Maven projects. This convention over configura-

tion approach is very helpful for large software teams, but some projects may need a

little more flexibility.

 Maven also tackles the issue of dependency management, a difficult task in the world

of open source and Java, as the average project has its fair share of third-party libraries.

 By hooking your build process into a CI environment, you gain the benefits of

incredibly fast feedback and the ability to merge changes quickly without fear.

 Jenkins is the popular CI server that can not only build almost any type of project,

but also provides rich reporting support via its extensive plugin system. Over time, a

team can have Jenkins execute a rich set of builds, from the fast unit testing build to

an overreaching system integration build.

 Leiningen is a very natural choice for Clojure projects. It brings together a very

tight loop TDD and REPL approach with a very clean tool for build and deployment.

 Next up, we’ll cover rapid web development, a topic that most well-grounded Java

developers have struggled with since the first Java-based web frameworks appeared.

380

Rapid web development

Rapid web development matters. A lot. A huge number of websites and applica-

tions driven by web technology dominate commercial and social activities across

the globe. Businesses (especially startups) live and die by their capability to get a

new product or feature rapidly into a competitive market. End users now expect

near-instant turnaround of new features and rapid fixes for any bugs they discover.

The modern user is less patient than ever before.

 Unfortunately a vast majority of Java-based web frameworks aren’t good at sup-

porting rapid web development, and organizations have turned to technologies

such as PHP and Rails to stay competitive.

 So where does this leave you as a well-grounded Java developer? With the recent

advancement of dynamic layer languages on the JVM, you now have some fantastic

rapid web development options. There are now frameworks, such as Grails (Groovy)

This chapter covers

■ Why Java isn’t ideal for rapid web development

■ Criteria to use when choosing a web framework

■ Comparing JVM based web frameworks

■ Introducing Grails (with Groovy)

■ Introducing Compojure (with Clojure)

381The problem with Java-based web frameworks

and Compojure (Clojure) that can provide you with the rapid web development capa-

bilities that you need. This means you don’t have to throw away the power and flexibil-

ity of the JVM, and you no longer have to spend hours of overtime to try to compete

with technologies such as PHP and Rails.

 This chapter will start by explaining why the Java-based web frameworks aren’t

ideal for rapid web development. Following that, you’ll learn about the wide range of

criteria that a great web framework should meet. Through some quantitative research

and the work of Matt Raible, you’ll see how you can rank the various JVM web frame-

works based upon a list of 20 criteria.

 One of the leading rapid web development frameworks, in terms of fulfilling many

of the criteria, is Grails. We’ll take you through this Groovy-based web framework,

which is heavily influenced by the extremely popular Rails framework.

 As an alternative to Grails, we’ll also cover Compojure, a Clojure-based web frame-

work that allows for very concise web programming and fast development.

 Let’s kick off by looking at why web frameworks based on Java aren’t necessarily

the perfect choice for modern web projects.

13.1 The problem with Java-based web frameworks

As you’ll, we discussed the polyglot programming pyramid and the three layers of pro-

gramming in chapter 7. It’s repeated here as figure 13.1.

 Java sits firmly in the stable layer, and so do all of its web frameworks. As

expected for a popular and mature language, Java has a variety of web frameworks,

such as these:

■ Spring MVC

■ GWT

■ Struts 2

■ Wicket

■ Tapestry

■ JSF (and other related “Faces” libraries)

■ Vaadin

■ Play

■ Plain old JSP/Servlet

Java EE 6—a step closer to rapid web development with Java?

Java Enterprise Edition (Java EE) 6 has come a long way since the days of J2EE (and
its much maligned early JSP, Servlet, and EJB APIs). Despite the improvements in
Java EE 6 (with much improved JSP, Servlet, and EJB APIs) it still suffers from static
typing and compilation issues from being based on Java.

Figure 13.1 The polyglot

programming pyramid

382 CHAPTER 13 Rapid web development

Java has no de facto leader in this space, and this partly stems from Java simply not

being an ideal language for rapid web development. The former leader of the Struts 2

project, a popular Java-based web framework, had this to say on the subject:

I’ve gone over to the dark side :-) and much prefer to develop in Rails --

for the conciseness mentioned above, but also because I don’t ever have

to do a “build” or “deploy” step during my development cycle any more.

But you guys and gals need to be reminded that *this* is the kind of thing

you are competing against if you expect to attract Rails developers ... or to

avoid even more “previously Java web developer” defectors like me :-).

—Craig McClanahan, Oct. 23, 2007
(http://markmail.org/thread/qfb5sekad33eobh2)

This section will cover why Java isn’t a good choice for rapid web development.

Let’s start by exploring why a compiled language slows you down when developing

web applications.

13.1.1 Why Java compilation is bad for rapid web development

Java is a compiled language, and as alluded to previously, this means that every

time you make a code change to a web application, you have to go through all of

these steps:

■ Recompile the Java code.

■ Stop your web server.

■ Redeploy the changes to your web server.

■ Start your web server.

As you can imagine, this wastes a tremendous amount of time! Especially when you’re

making lots of small code changes, such as altering the destinations in a controller or

making small changes to the view.

NOTE The line between what is an application server and what is a web server
is starting to get very blurred. This is due to the advent of JEE 6 (allowing you
to run EJBs in a web container) and the fact that most application servers are
highly modular. When we refer to a “web server,” we mean any server that has
a Servlet container.

If you’re a seasoned web developer, you’ll know that there are some techniques you

can use to try to solve this problem. Most of these approaches rely on some sort of

ability to apply code changes without stopping and starting the web server, which is

also known as hot deployment. Hot deployment can come in the form of replacing all of

the resources (such as an entire WAR file) or just a select few (such as a single JSP

page). Unfortunately, hot deployment has never been 100 percent reliable (due to

classloading limitations and container bugs), and the web server often still has to per-

form expensive recompilation of code.

 Generally speaking, Java-based web frameworks don’t reliably allow you to have a

fast turnaround time for your changes. But that isn’t the only concern with Java-based

http://markmail.org/thread/qfb5sekad33eobh2

383Criteria in selecting a web framework

web frameworks. Another factor that slows down rapid web development is the flexi-

bility of the language, and this is where static typing can be a drawback.

13.1.2 Why static typing is bad for rapid web development

In the early stages of developing a new product or feature, it’s often wise to keep an

open-ended design (with regards to typing) of the user presentation layer. It’s all too

easy for a user to demand that a numeric value have decimal precision, or for a list of

books to become a list of books and toys instead. Having a statically typed language

can be a great hindrance here. If you have to change a list of Book objects into a list of

BookOrToy1 objects, you’d have to change your static types throughout your codebase.

 Although it’s true that you can always use the base type as the type of objects in

container classes (for example, Java’s Object class), this is certainly not seen as a best

practice—this is effectively reverting to pregenerics Java.

 As a result, choosing a web framework that’s based on a language in the dynamic

layer is certainly a valid option to investigate.

NOTE Scala is, of course, a statically typed language. But due to its advanced
type inference, it can sidestep a lot of the problems associated with Java’s
approach to static typing. This means Scala can be, and is, used as a viable
web layer language.

Before you go leaping into the deep end and choosing a dynamic language for your

web development, let’s take a step back and look at the bigger picture. Let’s consider

what criteria should be supported by a good rapid web development framework.

13.2 Criteria in selecting a web framework

There are a number of powerful Java-based web frameworks to choose from, as you’d

expect, given the number of years Java has been the top programming language in the

world. More recently there has been a rise in web frameworks based on other JVM lan-

guages, such as Groovy, Scala, and Clojure. Unfortunately, there has not been a clear

leader in this space for many years, and it’s up to you to decide which framework

to choose.

Hot deployment with JRebel and LiveRebel

If you must use a Java-based web framework, we highly recommend products called
JRebel and LiveRebel (http://www.zeroturnaround.com/jrebel/). JRebel sits between
your IDE and your web server, and when you make source code changes locally,
they’re automatically applied to your running web server through some genuinely
impressive JVM trickery (LiveRebel is used for production deploys). It’s basically hot
deployment done right, and these tools are seen as de facto industry standards for
solving the hot deployment problem.

1 Spidey senses tingling! If you have a domain class with the words Or or And in it, then you’re likely breaking
the SOLID principles as discussed in chapter 11.

http://www.zeroturnaround.com/jrebel/

384 CHAPTER 13 Rapid web development

 You should expect a great deal of help from your web framework, and you must evalu-

ate the available frameworks on a number of criteria. The more criteria that a web frame-

work supports, the more likely you are to be able to rapidly develop web applications.

 Matt Raible has come up with a list of 20 criteria for web frameworks.2 Table 13.1

briefly explains these criteria.

As you can see, that’s quite a large list, and you’ll need to decide which criteria hold

more weight in making your decision. Luckily, Matt has recently done some brave3

research in this area, and although the results are hotly debated, a clear picture does

start to emerge. Figure 13.2 shows how the various frameworks score (out of a possible

2 Matt Raible, “Comparing JVM Web Frameworks” (March 2011), presentation. http://raibledesigns.com/rd/
page/publications.

Table 13.1 The 20 criteria

Criteria Examples

Developer productivity Can you build a CRUD page in 1 day or 5 days?

Developer perception Is it fun to use?

Learning curve Are you productive after 1 week or 1 month of learning?

Project health Is the project in dire straits?

Developer availability Are there developers on the market who have the expertise?

Job trends Will you be able to hire developers in the future?

Templating Can you follow the DRY (Don’t Repeat Yourself) principle?

Components Are there things such as date pickers out of the box?

Ajax Does it support asynchronous JavaScript calls from the client?

Plugins or add-ons Can you bolt on functionality like Facebook integration?

Scalability Does its default controller deal with 500+ concurrent users?

Testing support Can you test drive the development?

I18n and l10n Does it support other languages and locales out of the box?

Validation Can you easily validate user input and provide rapid feedback?

Multilanguage support Can you use, say, both Java and Groovy?

Quality of documentation/tutorials Are common use cases and questions documented?

Books published Have industry experts used it and shared their war stories?

REST support (client and server) Does it support using the HTTP protocol as it was designed?

Mobile support Is it easy to support Android, iOS, and other mobile devices?

Degree of risk “Storing recipes” application or “nuclear power station controller”?

3 As you can imagine, people are somewhat passionate about their favorite web framework!

http://raibledesigns.com/rd/page/publications
http://raibledesigns.com/rd/page/publications

385Getting started with Grails

100) when given a high weighting on the criteria that we see as being the most impor-

tant for rapid web development. Those criteria are developer productivity, testing sup-

port, and quality of documentation.

 Your needs are possibly going to be different, and you can easily run your own

analysis by altering Matt’s weightings at http://bit.ly/jvm-frameworks-matrix and pro-

ducing a graph.

TIP We highly recommend that you prototype some functionality in the top
two or three frameworks that meet your weighted criteria, before settling
down with one particular framework.

Now that you know what criteria to evaluate on, and you have access to Matt’s handy

tool, you can make an informed decision on choosing a rapid web development

framework. For us, the Grails framework came out on top when using our weighted

criteria analysis (Compojure doesn’t score in the top, but it’s very new, and we expect

it to rapidly rise up the leader board in the near future).

 Let’s take a look at the winner, Grails!

13.3 Getting started with Grails

Grails is a Groovy-based rapid web application framework that utilizes several third-

party libraries to implement its functionality, including Spring, Hibernate, JUnit, a

Tomcat server, and more. It’s a full-stack web framework, providing solutions for all

20 criteria that we listed in section 13.2. Another important point is that Grails bor-

rows heavily from the Rails concept of convention over configuration. If you write your

code according to the conventions, the framework will perform a lot of boilerplate

work for you.

 In this section, we’ll cover building your first quick-start application. While build-

ing the quick-start application, you’ll see plenty of evidence as to why Grails puts the

Figure 13.2 Matt

Raible’s weighted ratings

of JVM frameworks

http://bit.ly/jvm-frameworks-matrix

386 CHAPTER 13 Rapid web development

“rapid” into rapid web development. We’ll also give you pointers to important Grails

technologies that you’ll want to explore further, in order to build serious production-

ready applications.

 If you aren’t familiar with Groovy, it may be prudent to review chapter 8 where we

covered the Groovy language. Once you’re happy with that, you’ll want to get Grails

downloaded and installed. Head on over to appendix C for the full instructions.

 Once you’ve got Grails installed, it’s time to kick-start your first Grails project!

13.4 Grails quick-start project

This section will take you through a Grails quick-start project, highlighting parts

where Grails really shines as a rapid web framework. You’ll touch on the following

steps as you go through this section:

■ Domain object creation

■ Test-driven development

■ Domain object persistence

■ Test data creation

■ Controllers

■ GSP views

■ Scaffolding and automatic UI creation

■ Rapid development turnaround

In particular, we’re going to get you to work on a basic building block (PlayerCharacter)

for supporting a role-playing game.4 By the end of this section, you’ll have created a

simple domain object (PlayerCharacter) that

■ Has some running tests

■ Has prepopulated test data

■ Can be persisted to a database

■ Has a basic UI that enables CRUD operations

The first important time-saver that Grails gives you is its ability to automatically create a

quick-start project structure for you. By running the grails create-app <my-project>

command, you get an instantly built project! All you need is to make sure you have an

Don’t like Groovy? Try Spring Roo

Spring Roo (www.springsource.org/roo) is a rapid development web framework
that’s based on the same principles as Grails but uses Java as its core language
and exposes more of the Spring DI framework to the developer. We don’t feel that
it’s as mature as Grails, but if you really dislike Groovy, this could be a viable alter-
native for you.

4 Think Dungeons and Dragons or Lord of the Rings :).

www.springsource.org/roo

387Grails quick-start project

active internet connection, because it will download the standard Grails dependencies

(such as Spring, Hibernate, JUnit, the Tomcat server, and more).

 Grails uses a technology called Apache Ivy for managing and downloading

dependencies. It’s a very similar concept to how Maven (which you met in chapter 12)

downloads and manages dependencies. The following command will create an appli-

cation called pcgen_grails, creating for you a project structure that’s optimized for

Grails conventions.

grails create-app pcgen_grails

Once the dependencies have been downloaded and other automated installation steps

have completed, you should have a project structure that looks similar to figure 13.3.

 Now that you have a project structure, you can get started with producing some

running code! The first step is to create your domain classes.

13.4.1 Domain object creation

Grails treats domain objects as the central part of your application, thus encouraging

you to think along a domain-driven design (DDD) approach.5 You create domain

objects by executing the grails create-domain-class command.

 In the following example, you’re creating a PlayerCharacter object that repre-

sents a character in a role-playing game:

cd pcgen_grails
grails create-domain-class com.java7developer.chapter13.PlayerCharacter

5 For more on DDD (coined by Eric Evans), see the Domain-Driven Design Community website (http://
domaindrivendesign.org/).

Figure 13.3 Grails project layout

http://domaindrivendesign.org/
http://domaindrivendesign.org/

388 CHAPTER 13 Rapid web development

Grails automatically creates the following for you:

■ A PlayerCharacter.groovy source file that represents your domain object (under

grails-app/domain/com/java7developer/chapter13)

■ A PlayerCharacterTests.groovy source file for developing your unit tests (under

test/unit/com/java7developer/chapter13)

Already you can see that Grails encourages you to write your unit tests!

 You’re going to flesh out the PlayerCharacter object by defining some attributes,

such as strength, dexterity, and charisma. With these attributes, you can start to imag-

ine how the character will interact in your imaginary world.6 But having just read

chapter 11, you’ll of course want to write a test first!

13.4.2 Test-driven development

Let’s flesh out PlayerCharacter by following the TDD methodology by writing a fail-

ing test and then making that test pass by implementing PlayerCharacter.

 We’re going to make use of another rapid web development feature that Grails

has: support for automatically validating domain objects. The validate() method

can be automatically called on any domain object in Grails in order to ensure that it’s

a valid object. The following code listing will test that the three statistics of strength,

dexterity, and charisma are all numeric values from 3 to 18.

package com.java7developer.chapter13

import grails.test.*

class PlayerCharacterTests extends GrailsUnitTestCase {

 PlayerCharacter pc;

 protected void setUp() {
 super.setUp()
 mockForConstraintsTests(PlayerCharacter)
 }

 protected void tearDown() {
 super.tearDown()
 }

 void testConstructorSucceedsWithValidAttributes {
 pc = new PlayerCharacter(3, 5, 18)
 assert pc.validate()
 }

 void testConstructorFailsWithSomeBadAttributes() {
 pc = new PlayerCharacter(10, 19, 21)
 assertFalse pc.validate()
 }
}

6 Will Gweneth be good at arm wrestling, juggling, or disarming opponents with a smile?

Listing 13.1 Unit tests for PlayerCharacter

Extend
GrailsUnitTestCase

b

Inject
validate()

c

Pass
validation

d

Fail
validation

e

389Grails quick-start project

Grails unit tests should always extend from GrailsUnitTestCase B. As is standard

with any JUnit-based test, you have setUp() and tearDown() methods. But in order to

use the Grails built-in validate() method during the unit test phase, you have to pull it

in via the mockForConstraintsTest method c. This is because Grails treats validate()

as an integration test concern and typically only makes it available then. You

want faster feedback, so you can bring it into the unit test phase. Next, you can call

validate() to check whether or not the domain object is valid d, e.

 You can now run the tests by executing the following on the command line:

grails test-app

This command runs both unit and integration tests (though we only have unit tests so

far), and you’ll see via the console output that the tests have failed.

 In order to get the full details as to why the tests failed, you need to look in the tar-

get/test-reports/plain folder. For the example application that you’re working on, look

for a file called TEST-unit-unit-com.java7developer.chapter13.PlayerCharacterTests.txt.

This file will tell you that the tests failed due to a lack of a matching constructor when

trying to create a new PlayerCharacter. This makes perfect sense, as you haven’t yet

fleshed out the PlayerCharacter domain object!

 You can now build up the PlayerCharacter class, repeatedly running the tests

until you get them passing. You’ll add the three attributes of strength, dexterity,

and charisma as you’d expect. But for specifying the minimum (3) and maximum

(18) constraints on those attributes, you need to use special constraint syntax. That

way you can utilize the helpful default validate() method that Grails provides.

The following code listing contains a version of the PlayerCharacter class that pro-

vides the minimum set of attributes and constraints to pass the tests.

package com.java7developer.chapter13

class PlayerCharacter {

 Integer strength
 Integer dexterity
 Integer charisma

 PlayerCharacter() {}

Constraints in Grails

Constraints are implemented by the underlying Spring validator API. They allow you to
specify validation requirements for the properties of your domain classes. There is a
long list of constraints produced by Grails (we used min and max in listing 13.2), and
you can write your own. See http://grails.org/doc/latest/guide/validation.html for
further details.

Listing 13.2 PlayerCharacter class

Typed variables
are persisted

b

http://grails.org/doc/latest/guide/validation.html

390 CHAPTER 13 Rapid web development

 PlayerCharacter(Integer str, Integer dex, Integer cha) {
 strength = str
 dexterity = dex
 charisma = cha
 }

 static constraints = {
 strength(min:3, max:18)
 dexterity(min:3, max:18)
 charisma(min:3, max:18)
 }
}

The PlayerCharacter class is quite simple. You have three basic attributes that will

automatically be persisted in a PlayerCharacter table B. You provide a constructor

that takes the three attributes as arguments c. The special static block for

constraints allows you specify the min and max values d that the validate()

method can check against.

 With the PlayerCharacter class fleshed out, you should now have happily passing

tests (run grails test-app again to make sure). If you’re following true TDD, at this

stage you’d look at refactoring PlayerCharacter and the tests to make the code that

little bit cleaner.

 Grails also ensures that the domain objects can be persisted to a datastore.

13.4.3 Domain object persistence

Persistence support is automatically taken care of because Grails treats any class variable

that has a specific type as a field that should be persisted to the database. Grails automati-

cally maps the domain object to a table of the same name. In the case of the Player-

Character domain object, all three attributes (strength, dexterity, and charisma) are

of type Integer and will therefore be mapped to the PlayerCharacter table. By default,

Grails uses Hibernate under the hood and provides a HSQLDB in-memory database

(you’ll remember this database from chapter 11, when we used a test double known as a

fake), but you can override that default with your own datasource.

 The file grails-app/conf/DataSource.groovy contains the datasource configura-

tion. Here you can specify datasource settings for each environment. Remember,

Grails already provides a default HSQLDB implementation in the pcgen_grails project,

so in order to run the application, you don’t need to change anything! But listing 13.3

shows you how you could change your configuration to use an alternative database.

 For example, you could have MySQL for your production database but leave the

development and test environments to be HSQLDB. The syntax is fairly standard Java

Database Connectivity (JDBC) configuration that you’ll be familiar with from your

Java development.

dataSource {}

environments {
 development { dataSource {} }

Listing 13.3 Possible datasource for pcgen_grails

Constructor
to pass test

c

Constraints for
validation

d

391Grails quick-start project

 test { dataSource {} }

 production {
 dataSource {
 dbCreate = "update"
 driverClassName = "com.mysql.jdbc.Driver"
 url = "jdbc:mysql://localhost/my_app"
 username = "root"
 password = ""
 }
 }
}

The developers behind Grails have also thought of the annoyance of having to create

lots of manual test data, and they provide a mechanism to prepopulate your database

whenever your app starts.

13.4.4 Test data creation

Creating test data is typically done via the Grails BootStrap class, which you can find

at grails-app/conf/BootStrap.groovy. Whenever the Grails app is started or the Servlet

container starts, the init method is run. This is synonymous with the startup servlet that

most Java-based web frameworks use.

NOTE The Bootstrap class lets you initialize whatever else you like, but we’re
focusing on test data for now.

The following code listing generates two PlayerCharacter domain objects during this

initialization phase and saves them to the database.

import com.java7developer.chapter13.PlayerCharacter

class BootStrap {

 def init = { servletContext ->
 if (!PlayerCharacter.count()) {
 new PlayerCharacter(strength: 3, dexterity: 5, charisma: 18)
 ➥.save(failOnError: true)
 new PlayerCharacter(strength: 18, dexterity: 10, charisma: 4)
 ➥.save(failOnError: true)
 }
 }

 def destroy = {}
}

The init code is executed every time code is deployed to the Servlet container (so on

application start and whenever Grails autodeploys) B. To make sure you don’t over-

ride any existing data, you can perform a simple count() of existing PlayerCharacter

instances. If you’ve determined there are no instances, you can create some. An

important feature here is that you can ensure that the save will fail if an exception is

Listing 13.4 Bootstrapping test data for pcgen_grails

Production
datasource

Database
driver

JDBC connection
URL

Bootstrap on Servlet
context start

b

392 CHAPTER 13 Rapid web development

thrown or if the construction of the object fails validation. You can perform teardown

logic, if you’re so inclined, in the destroy method.

 Now that you have a basic domain object with persistence support, you can move

on to the next stage, visualizing your domain objects in a web page. For that, you need

to build what Grails calls a controller, which should be a familiar term from the MVC

design pattern.

13.4.5 Controllers

Grails follows the MVC design pattern and uses controllers to handle web requests

from the client, typically a web browser. The Grails convention is to have a controller

for each domain object.

 To create a controller for your PlayerCharacter domain object simply execute

this command:

grails create-controller com.java7developer.chapter13.PlayerCharacter

It’s important to specify the fully qualified class name of the domain object, including

its package name.

 Once the command has completed, you’ll find that you have the following files:

■ A PlayerCharacterController.groovy source file that represents your controller

for the PlayerCharacter domain object (under grails-app/controller/com/

java7developer/chapter13).

■ A PlayerCharacterControllerTests.groovy source file for developing your con-

troller unit tests (under test/unit/com/java7developer/chapter13).

■ A grails-app/view/playerCharacter folder (you’ll use this later).

The controllers support RESTful URLs and action mapping in a simple manner.

Let’s say you wanted to map the RESTful URL http://localhost:8080/pcgen_grails/

playerCharacter/list to return a list of PlayerCharacter objects. Grail’s convention

over configuration approach allows you to map that URL in the PlayerCharacter-

Controller class with a minimum amount of source code. The URL is constructed

from these elements:

■ The server (http://localhost:8080/)

■ The base project (pcgen_grails/)

■ A derived potion of the controller name (playerCharacter/)

■ The action block variable declared in the controller (list)

To see this in code, replace the existing PlayerCharacterController.groovy source code

with the code in the following listing.

package com.java7developer.chapter13

class PlayerCharacterController {
 List playerCharacters

Listing 13.5 PlayerCharacterController

http://localhost:8080/pcgen_grails/playerCharacter/list
http://localhost:8080/pcgen_grails/playerCharacter/list
http://localhost:8080/

393Grails quick-start project

 def list = {
 playerCharacters = PlayerCharacter.list()
 }
}

By using the Grails conventions, the playerCharacters attribute will be used in the

view referenced by the RESTful URL B.

 But if you had the Grails app up and running and then went to http://

localhost:8080/pcgen_grails/playerCharacter/list, it would fail, because you haven’t

yet created a JSP or GSP view. Let’s resolve that now.

13.4.6 GSP/JSP views

You can create either GSP or JSP views with Grails. In this section, you’ll create a simple

GSP page to list the PlayerCharacter objects. (Designers, web developers, and HTML/

CSS gurus, look away now!)

 The GSP page for the following code listing resides at grails-app/view/player-

Character/list.gsp.

<html>
 <body>
 <h1>PC's</h1>
 <table>
 <thead>
 <tr>
 <td>Strength</td>
 <td>Dexterity</td>
 <td>Charisma</td>
 </tr>
 </thead>
 <tbody>
 <% playerCharacters.each({ pc -> %>
 <tr>
 <td><%="${pc?.strength}"%></td>
 <td><%="${pc?.dexterity}"%></td>
 <td><%="${pc?.charisma}"%></td>
 </tr>
 <%})%>
 </thead>
 </table>
 </body>
</html>

The HTML is very simple. The key area is how you use Groovy scriptlets. You’ll notice

the familiar Groovy functional literal syntax from chapter 8, which simplifies iterat-

ing over a collection B. You then reference the character attributes (note the safe

null dereference operator use, also from chapter 8) c, and you close off the func-

tional literal d.

Listing 13.6 PlayerCharacter listing GSP page

Return a list of
PlayerCharacters

b

Start
loop

b

Output
attribute

c

Close off
loopd

http://localhost:8080/pcgen_grails/playerCharacter/list
http://localhost:8080/pcgen_grails/playerCharacter/list

394 CHAPTER 13 Rapid web development

 Now that you’ve prepared a domain object, its controller, and its view, you can run

your Grails application for the first time! Simply execute the following on the com-

mand line:

grails run-app

Grails automatically starts up a Tomcat instance on http://localhost:8080 and deploys

the pcgen_grails application to it.

WARNING Many developers already have the popular Tomcat server installed
for their Java work. If you intend on having more than one Tomcat instance
up and running, you’ll need to change the port numbers so that only one
instance is listening on port 8080.

If you open your favorite web browser and go to http://localhost:8080/pcgen_grails/,

you’ll see the PlayerCharacterController listed, as shown in figure 13.4.

 Click on the com.java7developer.chapter13.PlayerCharacterController link and

you’ll be taken to a screen that shows a list of PlayerCharacter domain objects.

 Although this GSP page is pretty quick to whip up, wouldn’t it be nice if the frame-

work could do this for you? With Grail’s scaffolding feature, you can rapidly prototype

the CRUD pages for your domain.

Figure 13.4 The pcgen_grails home page

http://localhost:8080
http://localhost:8080/pcgen_grails/

395Grails quick-start project

13.4.7 Scaffolding and automatic UI creation

Grails can use its scaffolding feature to automatically create a UI that allows you to per-

form CRUD operations on your domain object.

 To utilize the scaffolding feature, replace the existing code in the PlayerCharacter-

Controller.groovy source file with the following:

package com.java7developer.chapter13

class PlayerCharacterController {
 def scaffold = PlayerCharacter
}

The PlayerCharacterController class is very simple. By using the convention of

assigning the name of the domain object to the scaffold variable B, Grails can then

instantly build the default UI for you.

 You’ll also need to temporarily rename your list.gsp to list_original.gsp so that it

doesn’t get in the way of what the scaffolding wants to produce. Once you’ve done

that, refresh the http://localhost:8080/pcgen_grails/playerCharacter/list page and

you’ll see the automatically generated list of PlayerCharacter domain objects, as in

figure 13.5.

 From this page you can also create, update, and delete more PlayerCharacter

objects as you like. Make sure you add a couple of PlayerCharacter domain objects,

then move on to the following section about the fast turnaround of changes.

13.4.8 Rapid turnaround development

There’s something a little special about the Grails run-app command that helps put the

“rapid” into rapid web development. By running your application using the grails run-

app command, Grails can keep a link between your source code and the running server.

Although this isn’t recommended for production installations (as there are perfor-

mance issues), it’s highly recommended for development and test purposes.

Listing 13.7 PlayerCharacterController with scaffolding

Scaffolding for
PlayerCharacter

b

Figure 13.5 List of PlayerCharacter instances

http://localhost:8080/pcgen_grails/playerCharacter/list

396 CHAPTER 13 Rapid web development

TIP For production, you’d typically use grails war to create a WAR file,
which you can then deploy via your standard deployment process.

If you change some source code in your Grails application, that change will automati-

cally be applied to your running server.7 Let’s try this by altering the PlayerCharacter

domain object. Add a name variable to the PlayerCharacter.groovy file and save it.

String name = 'Gweneth the Merciless'

You can now reload the http://localhost:8080/pcgen_grails/playerCharacter/list

page and you’ll see that the name attribute has been added as a column for Player-

Character objects. Notice how you didn’t have to stop Tomcat? Or recompile code?

Or perform any other actions? This near instant turnaround time is a major factor in

making Grails a leading rapid web development framework.

 That finishes our quick-fire introduction, giving you a taste for the rapid web devel-

opment that you can get with Grails. There is, of course, a wide range of ways you can

customize the default behavior that you’ll also want to explore. Let’s look at some of

those now.

13.5 Further Grails exploration

Sadly, we can’t cover the entirety of the Grails framework in this chapter, as that would

require a book in its own right! In this short section, we’ll cover the extra areas that

you, as a new Grails developer, will want to explore:

■ Logging

■ GORM—Grails object-relational mapping

■ Grails plugins

Additionally, you can look at the http://www.grails.org website, which covers these top-

ics with basic tutorials. We can also highly recommend Grails in Action by Glen Smith

and Peter Ledbrook (Manning, 2009) for a full treatment of the Grails framework.

 Let’s begin by looking at logging for Grails.

13.5.1 Logging

Logging is provided by log4j under the hood, and it can be configured in the grails-app/

conf/Config.groovy file.

 You might want to show WARN messages for the code in the chapter13 package, for

example, yet only show ERROR messages for the PlayerCharacter domain class. To

do so, you can prefix the following snippet to the existing log4j configuration section

in the Config.groovy file:

log4j = {
 ...
 warn 'com.java7developer.chapter13'
 error 'com.java7developer.chapter13.PlayerCharacter',

7 For most types of source code, and assuming your change doesn’t cause an error.

http://localhost:8080/pcgen_grails/playerCharacter/list
http://www.grails.org

397Further Grails exploration

 'org.codehaus.groovy.grails.web.servlet', // controllers
 ...

}

The logging configuration can be just as flexible as the log4j.xml configuration that

you’re used to when using log4j for Java.

 Next up, we’ll look at GORM, the object-relational mapping technology for Grails.

13.5.2 GORM—object-relational mapping

GORM is implemented by Spring/Hibernate under the hood, a familiar technology

mix for Java developers. It has a wide range of capabilities, but at its heart it works

much like Java’s JPA.

 To quickly test out some of this persistence behavior, open a Grails console by exe-

cuting the following on the command line:

grails console

Remember the Groovy console from chapter 8? This is a very similar environment

that’s aware of your Grails application.

 First, let’s save a PlayerCharacter domain object:

import com.java7developer.chapter13.PlayerCharacter
new PlayerCharacter(strength:18, dexterity:15, charisma:15).save()

Now that the PlayerCharacter is stored you can retrieve it in a number of ways. The

simplest way is to get the full writable instance back via the implicit id property that

Grails adds to your domain class. Replace the previous code in the console with the

following snippet and execute it.

import com.java7developer.chapter13.PlayerCharacter
def pc = PlayerCharacter.get(1)
assert 18 == pc.strength

In order to update an object, alter some properties and call save() again. Once more,

clear your console and then run the following snippet.

import com.java7developer.chapter13.PlayerCharacter
def pc = PlayerCharacter.get(1)
pc.strength = 5
pc.save()
pc = PlayerCharacter.get(1)
assert 5 == pc.strength

To delete an instance, use the delete() method. Again, clear your console and run

the following snippet to delete the PlayerCharacter.

import com.java7developer.chapter13.PlayerCharacter
def pc = PlayerCharacter.get(1)
pc.delete()

GORM has the full rich capabilities of specifying many-to-one and many-to-many rela-

tionships, as well as other familiar Hibernate/JPA support.

398 CHAPTER 13 Rapid web development

 Let’s now look at the time-saving concept borrowed from the Rails world, that

of plugins.

13.5.3 Grails plugins

A powerful aid to rapid web development is that Grails has a large repository of plu-

gins to perform common work for you. Some of the more popular plugins are:

■ Cloud Foundry Integration (for deploying Grails apps to the cloud)

■ Quartz (for scheduling)

■ Mail (for dealing with email)

■ Twitter, Facebook (for social integration)

To see what plugins are available, execute the following on the command line:

grails list-plugins

You can then execute grails plugin-info [name] to find out more information

about an existing plugin; just replace [name] with the name of the plugin you want to

find out more about. Alternatively, you can visit http://grails.org/plugins/ for in-

depth information about the plugins and their ecosystem.

 To install one of these plugins, run grails install-plugin [name], replacing

[name] with the name of the plugin you want to install. For example, you can install

the Joda-Time plugin for better date and time support.

grails install-plugin joda-time

By installing the Joda-Time plugin, you can now alter the PlayerCharacter domain

object and add a LocalDate attribute. Add the following import statements to the

domain class.

import org.joda.time.*
import org.joda.time.contrib.hibernate.*

Now add the following attribute to the PlayerCharacter domain class.

LocalDate timestamp = new LocalDate()

Why is this different from referencing an API in a JAR file? Because the Joda-Time

plugin ensures that its types are compatible with the Grails convention over configura-

tion philosophy. This means that Joda-Time’s types are mapped to database types,

and mapping and scaffolding is fully supported. If you now go back to the http://

localhost:8080/pcgen_grails/playerCharacter/list page, you’ll see the dates listed.

 Grails developers can build an amazing amount of functionality in a very short

space of time due to this type of plugin support.

 That ends our initial look at Grails, but that’s not the end of the rapid web develop-

ment story in this chapter. The next section deals with Compojure, which is a rapid

web development library for Clojure. It enables the developer who is familiar with Clo-

jure to build small- to medium-scale web apps very quickly in clean Clojure code.

http://grails.org/plugins/
http://localhost:8080/pcgen_grails/playerCharacter/list
http://localhost:8080/pcgen_grails/playerCharacter/list

399Getting started with Compojure

13.6 Getting started with Compojure

One of the most pernicious ideas in web development is that every website needs to be

engineered as if it were Google Search. Overengineering can be as much of an issue as

underengineering for web apps.

 The pragmatic and well-grounded developer considers the context that a web

application exists in and doesn’t try to add any complexity beyond what is needed.

Careful analysis of the nonfunctional requirements of any application is a key prereq-

uisite to avoiding building the wrong thing.

 Compojure is an example of a web framework that doesn’t try to conquer the

world. It’s a great choice for such applications as web dashboards, operations monitor-

ing, and many other simple tasks where massive scalability and other nonfunctionals

are less important than simplicity and speed of development. From this description,

it’s easy to guess that Compojure sits in the domain-specific and dynamic layers of the

polyglot programming pyramid.

 In this section, we’ll build a simple Hello

World application, then discuss Compojure’s

simple rules for wiring up a web application.

Then we’ll introduce a useful Clojure HTML

library (Hiccup) before using all of these strands

to build a sample application.

 As you can see in figure 13.6, Compojure

builds upon a framework called Ring, which is a

Clojure binding to the Jetty web container. But

in order to make use of Compojure/Ring you

don’t need an in-depth knowledge of Jetty.

 Let’s get started with a simple Hello World

application that uses Compojure.

13.6.1 Hello World with Compojure

Getting started with a new Compojure project is very easy, as Compojure naturally

fits into the workflow of the Leiningen build tool that you met in the last chapter. If

you haven’t got Leiningen installed and read the section on it in chapter 12, you

should do that now because the following discussion assumes that you’re familiar

with it.

 To start the project, execute the usual Leiningen command:

lein new hello-compojure

As noted before, in the section on Leiningen, you can easily specify the dependencies

for a project in the project.clj file. The following listing shows how to do this for your

simple Hello World example.

Figure 13.6 Compojure and Ring

400 CHAPTER 13 Rapid web development

(defproject hello-compojure "1.0.0-SNAPSHOT"
 :description "FIXME: write description"
 :dependencies [[org.clojure/clojure "1.2.1"]
 [compojure "0.6.2"]]
 :dev-dependencies [[lein-ring "0.4.0"]]
 :ring {:handler hello-compojure.core/app})

As you can see, the (defproject) macro looks a lot like the basic case you saw in chap-

ter 12. There are two additional bits of metadata:

■ :dev-dependencies enables useful lein commands at development time. You’ll

see an example of this later when we discuss lein ring server.

■ :ring brings in the hook needed for the Ring library. This takes a map of Ring-

specific metadata.

In this case, there’s a :handler property passed to Ring. This looks like it’s expecting a

symbol called app from the namespace hello-compojure.core. Let’s look at the spec-

ification of this bit of wiring in core.clj to see how it fits together.

(ns hello-compojure.core
 (:use compojure.core)
 (:require [compojure.route :as route]
 [compojure.handler :as handler]))

(load "hello")

(defroutes main-routes
 (GET "/" [] (page-hello-compojure))

 (route/resources "/")
 (route/not-found "Page not found"))

(def app (handler/site main-routes))

This pattern, of keeping core.clj for the wiring and other information, is quite a useful

convention. It’s a simple matter to load a separate file containing the functions that

are called when URLs are requested (the page functions). This is really just a conven-

tion to promote readability and a simple separation of concerns.

 Compojure uses a set of rules, called routes, to determine how to handle an incom-

ing HTTP request. These are provided by the Ring framework, which Compojure

depends upon, and they’re both simple and useful. You can probably guess that the

GET "/" rule in listing 13.9 tells the web server how to handle GET requests for the root

URL. We’ll have more to say about routes in the next subsection.

 To complete the code for this example, you need a file called hello.clj in the src/

hello_compojure directory. In this file you need to define your solitary page function

(page-hello-compojure) as shown here:

Listing 13.8 Simple Compojure project.clj

Listing 13.9 Simple core.clj file for a Compojure Hello World

Defines main
route

Registers
routes

401Getting started with Compojure

(ns hello-compojure.core)

(defn page-hello-compojure [] "<h1>Hello Compojure</h1>")

The page function is a regular Clojure function, and it returns a string that will be used

as the contents of the HTML <body> tag in the document that’s returned to the user.

 Let’s get this example up and running. As you might expect, in Compojure this is

quite a simple operation. First, ensure that you have all the dependencies installed:

ariel:hello-compojure boxcat$ lein deps
Downloading: org/clojure/clojure/1.2.1/clojure-1.2.1.pom from central
Downloading: org/clojure/clojure/1.2.1/clojure-1.2.1.jar from central
Copying 9 files to /Users/boxcat/projects/hello-compojure/lib
Copying 17 files to /Users/boxcat/projects/hello-compojure/lib/dev

So far, so good. Now you need to bring it up, using one of the useful features from

Ring that Compojure builds upon—the ring server method.

ariel:hello-compojure boxcat$ lein ring server
2011-04-11 18:02:48.596:INFO::Logging to STDERR via org.mortbay.log.StdErrLog
2011-04-11 18:02:48.615:INFO::jetty-6.1.26
2011-04-11 18:02:48.743:INFO::Started SocketConnector@0.0.0.0:3000
Started server on port 3000

This starts up a simple Ring/Jetty webserver (by default on port 3000) that can be

used as a way to do rapid-feedback development. By default, the server will reload any

modified files as you change them.

WARNING Be aware that the development server reload is done at the file level.
This can mean that a running server can have its state flushed (or worse, partially
flushed) by the reload of a page. If you suspect that this has occurred and is caus-
ing problems, you should shut down the server and restart. Ring/Jetty is a very
quick server to start, so this should not impact your development time too much.

If you navigate to port 3000 of your development machine (or http://127.0.0.1:3000

for a local machine) in your favorite browser, you should see the “Hello Compojure” text.

13.6.2 Ring and routes

Let’s take a more in-depth look at how the routes are configured for a Compojure

application. The specification of the routes should have reminded you of a domain-

specific language:

(GET "/" [] (page-hello-compojure))

These routing rules should be read as rules that attempt to match against incoming

requests. They break up in a very simple way:

(<HTTP method> <URL> <params> <action>)

■ HTTP method—This is usually GET or POST, but Compojure supports PUT, DELETE,

and HEAD as well. This must match against the incoming request if this rule is

to match.

http://127.0.0.1:3000

402 CHAPTER 13 Rapid web development

■ URL—The URL to which the request was addressed. This must match against

the incoming request if this rule is to match.

■ params—An expression covering how parameters should be handled. We’ll

have more on this subject shortly.

■ action—The expression to return (usually expressed as a function call with the

arguments to pass in) if this rule matches.

The rules are matched from top to bottom until a match is found. The first rule to

match causes the action to execute, and the value of the expression is used as the con-

tents of a body tag in a return document.

 Compojure gives a lot of flexibility in specifying rules. For example, it’s very simple

to create a rule that can extract a function parameter from part of the URL. Let’s mod-

ify the routes for the Hello World shown in listing 13.5:

(defroutes main-routes
 (GET "/" [] (page-hello-compojure))
 (GET ["/hello/:fname", :fname #"[a-zA-Z]+"]

➥ [fname] (page-hello-with-name fname))

 (route/resources "/")
 (route/not-found "Page not found"))

This new rule will only match if a browser targets a URL that consists of /hello/

<name>. The name must be made up of a single sequence of letters (which can be

uppercase or lowercase or a mixture)—this constraint is provided by the Clojure regu-

lar expression #"[a-zA-Z]+".

 If the rule matches, Compojure will call (page-hello-with-name) with the

matched name as a parameter. The function is defined very simply:

(defn page-hello-with-name [fname]
 (str "<h1>Hello from Compojure " fname "</h1>"))

Although it’s possible to write inline HTML for very simple applications, it quickly

becomes a pain. Fortunately, there’s a straightforward module called Hiccup that pro-

vides useful functionality to web apps that need to output HTML. We’ll take a look at it

in the next subsection.

13.6.3 Hiccup

To get Hiccup hooked up with your hello-compojure application, you need to do

three things:

■ Add in the dependency to project.clj; for example, [hiccup "0.3.4"]

■ Rerun lein deps

■ Restart the web container

So far so good. Let’s now look at how you can use Hiccup to write nicer HTML from

within Clojure.

 One key form that Hiccup provides is the (html) form. This allows HTML to be writ-

ten very directly. Here’s how you might rewrite (page-hello-with-name) to use Hiccup:

403A sample Compojure project—“Am I an Otter or Not?”

(defn page-hello-html-name [fname]
 (html [:h1 "Hello from Compojure " fname]
 [:div [:p "Paragraph text"]]))

The nested format of HTML tags now reads much more like Clojure code itself, so it

seems to sit much more naturally within the code. The (html) form takes one or more

vectors (the tags) as arguments, and allows tags to be nested as deeply as required.

 Next, we’ll introduce you to a slightly larger example application—a simple site for

voting on your favorite otters.

13.7 A sample Compojure project—“Am I an Otter or Not?”

The internet never seems to get tired of two things—online polls and pictures of cute

animals. You’ve been hired by a startup that intends to make money from the ad reve-

nue obtained by combining these two trends—allowing people to vote on pictures of

otters. Let’s face it, stupider ideas for startups have been tried.

 We’ll get started by considering the basic pages and functionality that the otter vot-

ing site needs:

■ The site’s home page should present the user with a choice of two otters.

■ The user should be able to vote for their preferred otter out of the two presented.

■ A separate page should allow users to upload new pictures of otters.

■ A dashboard page should display the current votes for each otter.

In figure 13.7 you can see how the pages and HTTP requests that make up the applica-

tion are arranged.

 One other equally important aspect is the nonfunctional requirements that are

considered out of scope for this application:

■ No attempt is made to control access to the site.

■ There are no safeguards about the files being uploaded as new otter images.

They will be displayed as images on the pages, but neither the content nor the

safety of the uploaded objects is checked. We trust our users not to upload any-

thing unsuitable.

■ The site is nonpersistent. If the web container crashes, all votes are lost. But the

app will scan the disk at startup to prepopulate the store of otter images.

Figure 13.7 Page flow for

“Am I an Otter?”

404 CHAPTER 13 Rapid web development

There’s a version of this project hosted on github.com, which you may find easier to

work with. We will include and cover the important files in this chapter, though.

13.7.1 Setting up “Am I an Otter”

To start this Compojure project, you need to define the basic project, its dependen-

cies, some routes, and some page functions. Let’s start by looking at the project.clj file.

(defproject am-i-an-otter "1.0.0-SNAPSHOT"
 :description "Am I an Otter or Not?"
 :dependencies [[org.clojure/clojure "1.2.0"]
 [org.clojure/clojure-contrib "1.2.0"]
 [compojure "0.6.2"]
 [hiccup "0.3.4"]
 [log4j "1.2.15" :exclusions [javax.mail/mail
 javax.jms/jms
 com.sun.jdmk/jmxtools
 com.sun.jmx/jmxri]]
 [org.slf4j/slf4j-api "1.5.6"]
 [org.slf4j/slf4j-log4j12 "1.5.6"]]
 :dev-dependencies [[lein-ring "0.4.0"]]
 :ring {:handler am-i-an-otter.core/app})

There should be no real surprises in this project.clj file. You’ve seen everything except

the log4j libraries in earlier examples.

 Let’s move on to the wiring and routing logic in the core.clj file.

(ns am-i-an-otter.core
 (:use compojure.core)
 (:require [compojure.route :as route]
 [compojure.handler :as handler]
 [ring.middleware.multipart-params :as mp]))

(load "imports")
(load "otters-db")
(load "otters")

(defroutes main-routes
 (GET "/" [] (page-compare-otters))
 (GET ["/upvote/:id", :id #"[0-9]+"] [id] (page-upvote-otter id))
 (GET "/upload" [] (page-start-upload-otter))
 (GET "/votes" [] (page-otter-votes))

 (mp/wrap-multipart-params
 (POST "/add_otter" req (str (upload-otter req)

➥
 (page-start-upload-otter))))

 (route/resources "/")
 (route/not-found "Page not found"))

(def app
 (handler/site main-routes))

Listing 13.10 Am I an Otter project.clj

Listing 13.11 Routes—core.clj

Import
functions

Main
routes

File upload
handler

405A sample Compojure project—“Am I an Otter or Not?”

The file upload handler introduces a new way of handling parameters. We’ll have

more to say about this in the next subsection, but for now, read it as “we’re passing the

whole HTTP request to the page function for handling.”

 The core.clj file provides wiring and lets you see clearly which page functions are

related to which URLs. As you can see, all of the page functions start with “page”—this

is just a handy naming convention.

 The next listing shows the page functions for the application.

(ns am-i-an-otter.core
 (:use compojure.core)
 (:use hiccup.core))

(defn page-compare-otters []
 (let [otter1 (random-otter), otter2 (random-otter)]
 (.info (get-logger) (str "Otter1 = " otter1 " ; Otter2 = "

➥ otter2 " ; " otter-pics))
 (html [:h1 "Otters say 'Hello Compojure!'"]
 [:p [:a {:href (str "/upvote/" otter1)}
 [:img {:src (str "/img/"

➥ (get otter-pics otter1))}]]]
 [:p [:a {:href (str "/upvote/" otter2)}
 [:img {:src (str "/img/"

➥ (get otter-pics otter2))}]]]
 [:p "Click " [:a {:href "/votes"} "here"]
 " to see the votes for each otter"]
 [:p "Click " [:a {:href "/upload"} "here"]
 " to upload a brand new otter"])))

(defn page-upvote-otter [id]
 (let [my-id id]
 (upvote-otter id)
 (str (html [:h1 "Upvoted otter id=" my-id]) (page-compare-otters))))

(defn page-start-upload-otter []
 (html [:h1 "Upload a new otter"]
 [:p [:form {:action "/add_otter" :method "POST"

➥ :enctype "multipart/form-data"}
 [:input {:name "file" :type "file" :size "20"}]
 [:input {:name "submit" :type "submit" :value "submit"}]]]
 [:p "Or click " [:a {:href "/"} "here"] " to vote on some otters"]))

(defn page-otter-votes []
 (let []
 (.debug (get-logger) (str "Otters: " @otter-votes-r))
 (html [:h1 "Otter Votes"]
 [:div#votes.otter-votes
 (for [x (keys @otter-votes-r)]
 [:p [:img {:src (str "/img/" (get otter-pics x))}]

➥ (get @otter-votes-r x)])])))

In the listing there are two other useful Hiccup features. The first is being able to loop

through a group of elements—in this case, the otters that have been uploaded. This

Listing 13.12 Page functions for “Am I an Otter?”

Compare
otters page

Handle
voting

Select otter for upload page

Set up
form

Show
votes

406 CHAPTER 13 Rapid web development

lets Hiccup act very much like a simple templating language—with the embedded

(for) form in this snippet:

[:div#votes.otter-votes
 (for [x (keys @otter-votes-r)]
 [:p [:img {:src (str "/img/" (get otter-pics x))}]

➥ (get @otter-votes-r x)])]

The other useful feature is the :div#votes.otter-votes syntax. This is a quick way

to specify the id and class attributes of a particular tag. It becomes the HTML tag

<div class="otter-votes" id="votes">. This enables the developer to separate out

the attributes most likely to be used by CSS, without obscuring too much of the

HTML structure.

 In general, the CSS and other code (for example, JavaScript source files) will be

served out of a static content directory. By default, this would be under the resources/

public directory of the Compojure project.

We’ve looked at the wiring up of the app and its routes, and the page functions. Let’s

continue our discussion of the app by looking at some of the backend functions that

you need to make the otter voting happen.

13.7.2 Core functions in “Am I an Otter”

When we discussed the core functionality for the application, we mentioned that the

app should scan the image directory to locate any existing otter images that are

already present on disk. This listing shows the code that scans the directories and per-

forms this prepopulation.

(def otter-img-dir "resources/public/img/")
(def otter-img-dir-fq
 (str (.getAbsolutePath (File. ".")) "/" otter-img-dir))

HTTP method choice

In our example otter-voting application, we’ve included an architectural flaw. We spec-
ified the routing rule for the upvoting page as a GET rule. This is incorrect.

An application should never use a GET request to change state on the server side
(such as the vote count of your favorite otter). That’s because web browsers are
allowed to retry GET requests if the server seems unresponsive (for example, if it was
paused for garbage collection when the request came in). This retry behavior could
result in duplicate votes for the same otter being received, even though the user only
clicked once. For an ecommerce application, the results could be disastrous!

Remember this rule: No meaningful server state should be changed by an incoming
GET request.

Listing 13.13 Directory scanning functions

407A sample Compojure project—“Am I an Otter or Not?”

(defn make-matcher [pattern]
 (.getPathMatcher (FileSystems/getDefault) (str "glob:" pattern)))

(defn file-find [file matcher]
 (let [fname (.getName file (- (.getNameCount file) 1))]
 (if (and (not (nil? fname)) (.matches matcher fname))
 (.toString fname)
 nil)))

(defn next-map-id [map-with-id]
 (+ 1 (nth (max (let [map-ids (keys map-with-id)]
 (if (nil? map-ids) [0] map-ids))) 0)))

(defn alter-file-map [file-map fname]
 (assoc file-map (next-map-id file-map) fname))

(defn make-scanner [pattern file-map-r]
 (let [matcher (make-matcher pattern)]
 (proxy [SimpleFileVisitor] []
 (visitFile [file attribs]
 (let [my-file file,
 my-attrs attribs,
 file-name (file-find my-file matcher)]
 (.debug (get-logger) (str "Return from file-find " file-name))
 (if (not (nil? file-name))
 (dosync (alter file-map-r alter-file-map file-name) file-map-r)
 nil)
 (.debug (get-logger)

➥ (str "After return from file-find " @file-map-r))
 FileVisitResult/CONTINUE))

 (visitFileFailed [file exc] (let [my-file file my-ex exc]
 (.info (get-logger)
 (str "Failed to access file " my-file " ; Exception: " my-ex))
 FileVisitResult/CONTINUE)))))

(defn scan-for-otters [file-map-r]
 (let [my-map-r file-map-r]
 (Files/walkFileTree (Paths/get otter-img-dir-fq

➥ (into-array String [])) (make-scanner "*.jpg" my-map-r))
 my-map-r))

(def otter-pics (deref (scan-for-otters (ref {}))))

The entry point for this code is (scan-for-otters). This uses the Files class from

Java 7 to walk the filesystem starting at otter-img-dir-fq, and returns a ref to a map.

This code uses the simple convention that a symbol name that ends with -r is a ref to

a structure of interest.

 The code that walks over the files is a Clojure proxy of the SimpleFileVisitor

class (from the package java.nio.file), which you saw in chapter 2. You provide cus-

tomized implementations of two methods—(visitFile) and (visitFileFailed)—

which is sufficient for this case.

 The other interesting functions are those that implement the voting functionality.

These are detailed in the following listing.

Returns trimmed
filename if match

Use (toString) to
make :img tags work

Get next
otter ID

Alter function and
add filename to map

Return
scanner

Called back
for each file

Set up
otter-pics

408 CHAPTER 13 Rapid web development

(def otter-votes-r (ref {}))

(defn otter-exists [id] (contains? (set (keys otter-pics)) id))

(defn alter-otter-upvote [vote-map id]
 (assoc vote-map id (+ 1 (let [cur-votes (get vote-map id)]
 (if (nil? cur-votes) 0 cur-votes)))))

(defn upvote-otter [id]
 (if (otter-exists id)
 (let [my-id id]
 (.info (get-logger) (str "Upvoted Otter " my-id))
 (dosync (alter otter-votes-r alter-otter-upvote my-id)

➥ otter-votes-r))
 (.info (get-logger) (str "Otter " id " Not Found " otter-pics))))

(defn random-otter [] (rand-nth (keys otter-pics)))

(defn upload-otter [req]
 (let [new-id (next-map-id otter-pics),
 new-name (str (java.util.UUID/randomUUID)

➥ ".jpg"),
 tmp-file (:tempfile

➥ (get (:multipart-params req) "file"))]
 (.debug (get-logger) (str (.toString req) " ; New name = "

➥ new-name " ; New id = " new-id))
 (ds/copy tmp-file (ds/file-str

➥ (str otter-img-dir new-name)))
 (def otter-pics (assoc otter-pics new-id new-name))
 (html [:h1 "Otter Uploaded!"])))

In the (upload-otter) function, you’re dealing with the full HTTP request map. This

contains a lot of useful information that can be of use to the web developer—some of

this may already be familiar to you:

{:remote-addr "127.0.0.1",
 :scheme :http,
 :query-params {},
 :session {},
 :form-params {},
 :multipart-params {"submit" "submit", "file" {:filename "otter_kids.jpg",

:size 122017, :content-type "image/jpeg", :tempfile #<File /var/tmp/
upload_646a7df3_12f5f51ff33__8000_00000000.tmp>}},

 :request-method :post,
 :query-string nil,
 :route-params {},
 :content-type "multipart/form-data; boundary=----

WebKitFormBoundaryvKKZehApamWrVFt0",
 :cookies {},
 :uri "/add_otter",
 :server-name "127.0.0.1",
 :params {:file {:filename "otter_kids.jpg", :size 122017, :content-type

"image/jpeg", :tempfile #<File /var/tmp/
upload_646a7df3_12f5f51ff33__8000_00000000.tmp>}, :submit "submit"},

 :headers {"user-agent" "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_6;
en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.205

Listing 13.14 Otter voting functions

Assign
random
filename

Extract
temp file

Copy onto
filesystem

409Summary

Safari/534.16", "origin" "http://127.0.0.1:3000", "accept-charset" "ISO-
8859-1,utf-8;q=0.7,*;q=0.3", "accept" "application/xml,application/
xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5", "host"
"127.0.0.1:3000", "referer" "http://127.0.0.1:3000/upload", "content-
type" "multipart/form-data; boundary=----
WebKitFormBoundaryvKKZehApamWrVFt0", "cache-control" "max-age=0",
"accept-encoding" "gzip,deflate,sdch", "content-length" "122304",
"accept-language" "en-US,en;q=0.8", "connection" "keep-alive"},

 :content-length 122304,
 :server-port 3000,
 :character-encoding nil,
 :body #<Input org.mortbay.jetty.HttpParser$Input@206bc833>}

From this req map, you can see that the container has already uploaded the content

of the incoming file into a temp file in /var/tmp. You can access the File object that

corresponds to it via (:tempfile (get (:multipart-params req) "file")). Then it’s

a simple use of the (copy) function from clojure.contrib.duck-streams to save it

to the filesystem.

 The otter-voting application is small, but complete. Within the constraints of the

functional and nonfunctional requirements that we stated at the start of this section, it

performs as we intended it. This concludes our tour of Compojure and some of the

related libraries.

13.8 Summary

Rapid web development is something that all well-grounded Java developers should

be capable of. But with a poorly chosen language or framework, you can quickly fall

behind non-Java/JVM technologies such as Rails and PHP. In particular, Java isn’t

always a great choice for web development due to its static and compiled nature. Con-

versely, with the right language or framework, building new features quickly without

sacrificing quality puts you at the top of the web development food chain, able to react

quickly to the needs of your users.

 As a well-grounded Java developer, you don’t want to throw away the power and

flexibility of the JVM. Luckily, with the advancement of languages and their web frame-

works on the JVM, you don’t have to! Dynamic layer frameworks, such as Grails and

Compojure, provide you with the rapid web development capabilities that you need.

 In particular, Grails allows you to build a full end-to-end (UI to database) prototype

very quickly and then allows you to flesh out parts of that stack with a powerful view

technology (GSP), persistence technology (GORM), and a host of useful plugins.

 Compojure is a natural fit for projects that are already written in Clojure. It’s also

very suitable for adding small web components, such as dashboards and operations

consoles, to projects that may be written in Java or another language. Clean code and

speed of development are Compojure’s main strengths.

 This brings us to the end of the chapters in which we walk through examples of

polyglot programming on the JVM. In the final chapter, we’ll draw all the threads

together, and look beyond what you’ve learned so far. There are exciting challenges

that are outside our current experience, but we now have the tools to tackle them.

410

Staying well-grounded

To stay ahead of the curve, the well-grounded Java developer should always be aware

of what’s coming around the corner. In this final chapter, we’ll discuss several topics

that we feel point the way toward the future of the Java language and the platform.

 As we don’t have a TARDIS or crystal ball, this chapter focuses on language fea-

tures and platform changes that we know are already under way. That means that

this is inevitably a point-in-time view, which is a polite way of saying that it’s partially

a work of (science) fiction.

 Our discussion represents a possible future, at the time when we were writing

this book. How things will turn out remains to be seen. It will doubtless differ in

some important ways from what we present here, and getting there should be an

interesting ride. It usually is.

 Let’s get under way by taking a look at our first topic, which is a quick tour of

the likely major features of Java 8.

This chapter covers

■ What Java 8 holds for you as a developer

■ The future of polyglot programming

■ Where concurrency is heading next

■ New JVM-level features

411What to expect in Java 8

14.1 What to expect in Java 8

In autumn 2010, the Executive Committee for Java SE met and decided to proceed

with Plan B. This was the decision to release a Java 7 version as soon as possible, and

defer some major features to Java 8. This conclusion came after extensive consultation

and polling of the community as to which option would be preferred.

 Some of the features that had been originally in Java 7 were pushed out to Java 8,

and some others were reduced in scope so that they effectively laid the groundwork

for features still to come. In this section, we’ll give a brief overview of some of the

highlights that we expect for Java 8, including the features that were deferred. At this

stage, nothing is set in stone, and especially not language syntax. All code examples

are preliminary and may well look very different in the version of Java 8 that ships.

Welcome to the bleeding edge!

14.1.1 Lambdas (a.k.a. closures)

A good example of Java 7 features that will be built upon in Java 8 is MethodHandles

and invokedynamic. They’re useful features in their own right (in Java 7, invoke-

dynamic is of most use to language and framework implementers).

 In Java 8, these features will be built upon to introduce lambda expressions in the

Java language. You can think of lambdas as being similar to the function literals that in

all of the alternative languages we looked at, and they can be used to solve the same

sorts of problems that we highlighted in previous chapters.

 In terms of the Java 8 language syntax, there is still work to be done to decide what

a lambda will look like in code. But the basic features have been determined, so let’s

take a look at the basic Java 8 syntax.

public List<T> schwarz(List<T> x, Mapper<T, V> f) {
 return x.map(w -> new Pair<T,V>(w, f.map(w)))
 .sorted((l,r) -> l.hashed.compareTo(r.hashed))
 .map(l -> l.orig).into(new ArrayList<T>());
}

The method called schwartz() should look familiar—it’s an implementation of the

Schwartzian transform in section 10.3, where you saw it done in Clojure. Listing 14.1

shows the basic syntax features of lambdas in Java 8.

■ There’s a list of parameters to the lambda upfront.

■ The braces denote the block that comprises the lambda body.

■ The arrow (->) separates the parameter list from the body of the lambda.

■ The types of parameters in the argument list are inferred.

In chapter 9, you learned about Scala’s function literals, which are written in a very

similar way, so this syntax shouldn’t be too surprising. In listing 14.1 the lambdas are

very short—just a single line each. In practice, lambdas can be multiline and even

Listing 14.1 Schwartzian transform in Java with lambdas

412 CHAPTER 14 Staying well-grounded

have large bodies. A preliminary analysis of some sizable codebases that are suitable

for retrofitting with lambdas indicates that most lambda code bodies will be 1–5 lines

in length.

 In listing 14.1, we’ve also introduced another new feature. The variable x is of type

List<T>. As part of the code, we call a method map() on x. The map() method takes a

lambda as its argument. But hold on! The List interface doesn’t have a map()

method, and in Java 7 and before there aren’t any lambdas.

 Let’s take a closer look at how this problem can be resolved.

EXTENSION AND DEFAULT METHODS

The essential problem we have is this: how can we add methods to existing interfaces

to “lambda-ify” them without breaking backward compatibility?

 The answer comes from a new feature of Java—extension methods. These work by

providing a default method that can be used if an implementation of the interface

doesn’t provide a version of the extension method.

 These default method implementations must be defined inside the interface itself.

 As examples, List is paired with AbstractList, Map with AbstractMap, and Queue

with AbstractQueue. These classes are ideal places to keep the default implementa-

tion of any new extension methods for their respective interfaces. The built-in Java

collections classes are a primary use case for both extension methods and lambda-

fication, but this model seems suitable for use in end-user code as well.

Extension methods provide a major new capability to evolve interfaces after their ini-

tial publication, without breaking backward compatibility. This allows you to breathe

new life into old APIs with the addition of lambdas. But what do lambdas look like to

the JVM? Are they objects? If so, what type are they?

SAM CONVERSION

Lambdas provide a compact way to declare a small amount of code inline and pass it

around as though it were data. This means that a lambda is an object, as we explained

when you met lambdas and function literals in the non-Java languages in part 3 of this

book. Specifically, you can think of a lambda as a subclass of Object that has no

parameters (so no state) and just one method.

 A useful way of thinking about this is in terms of the single abstract method (SAM).

The concept of the SAM comes from looking around at the various Java APIs that exist

How Java could implement extension methods

Extension methods will be handled at class load time. When a new implementation
of an interface with extension methods is loaded, the classloader checks to see if it
has defined its own implementations of the extension methods. If not, the class-
loader locates the default method and inserts a bridge method into the bytecode of
the newly loaded class. The bridge method will call the default implementation using
invokedynamic.

413What to expect in Java 8

and noticing a common theme. A lot of APIs have interfaces that specify just a single

method. Runnable, Comparable, Callable, and listeners such as ActionListener all

specify just one method and are thus examples of a SAM type.

 As you start to work with lambdas, you can think of them as a bit of syntactic

sugar—a shorter way of writing an anonymous implementation of a given interface.

Over time, you can start to bring more functional techniques to bear, perhaps even

importing your favorite tricks from Scala or Clojure into your Java code. Learning

functional programming is often quite a gradual process—learning to use mapping,

sorting, and filtering techniques on collections as a first step, and building outward

from there.

 Now let’s move on to the next big topic: the modularization program, which has

been carried out under the auspices of Project Jigsaw.

14.1.2 Modularization (a.k.a. Jigsaw)

There’s no doubt that dealing with the Java classpath is sometimes not ideal. There

are well-known problems associated with the ecosystem that has built up around JAR

files and the classpath:

■ The JRE itself is massive.

■ JAR files promote monolithic deployment models.

■ Too much cruft and rarely needed classes still have to be loaded.

■ Startup is slow.

■ Classpaths are fragile beasts and

are tightly coupled to the filesys-

tem of the machine.

■ The classpath is basically a flat

namespace.

■ JARs aren’t inherently versioned.

■ There are complex interdepen-

dencies, even among classes that

aren’t logically related.

To solve these issues, a new module system

is needed. But there are architectural

questions that need to be addressed. The

most important of these is illustrated in

figure 14.1.

 Should we bootstrap the VM and then use a “userland” module system (such as

OSGi), or try to move to a completely modular platform?

 The latter option would involve booting a minimal, module-aware VM as a “ker-

nel,” then adding only those modules that are needed for the specific application

being started. This would require root-and-branch changes to the VM and many of the

existing classes in the JRE, but it potentially offers much greater gains:

Figure 14.1 Module system architecture choices

414 CHAPTER 14 Staying well-grounded

■ JVM applications could rival shell and scripting languages for startup time.

■ Application deployments could become significantly less complicated.

■ Java’s footprint for special-purpose installs could be greatly reduced (with posi-

tive implications for disk, memory, and security). If you don’t need CORBA or

RMI, you wouldn’t need to have it installed!

■ Java installs could be upgraded in a much more flexible manner. If a critical

bug was found in the Collections, only that module would need to be upgraded.

At the time of writing, it seems that Project Jigsaw will choose the second route. There

is still a long way to go before Project Jigsaw is released and ready for prime time.

These are some of the most important questions that are still being discussed:

■ What is the correct unit of platform or application distribution?

■ Do we need a new construct that is distinct from both package and JAR?

The consequences of this design decision are hugely important—Java is everywhere,

and the modularity design needs to scale up and down that space. It also needs to

make sense across OS platforms.

 The Java platform needs to be able to deploy modular apps on Linux, Solaris, Win-

dows, Mac OS X, BSD Unix, and AIX at the very least. Some of these platforms have

package managers that Java modules will need to integrate with (such as Debian’s apt,

Red Hat’s rpm, and Solaris packages). Others, such as Windows, don’t have a package

management system that’s readily usable by Java.

 The design has other constraints as well. There are already some well-established

projects in this space—dependency management systems such as Maven and Ivy, as

well as the OSGi initiative. The new modularity system should integrate with the

incumbents if at all possible, and provide a painless upgrade path in the event that full

integration and compatibility proves to be impossible.

 Whatever lies ahead, the release of Java 8 should bring with it a revolution in the

way that Java applications are delivered and deployed.

 Let’s move on and take a look at some of the features that JDK 8 should bring

to the other citizens of the JVM, including the languages that we’ve studied in ear-

lier chapters.

14.2 Polyglot programming

As you’ve seen in numerous other chapters, starting with chapter 5, the JVM is a fantas-

tic foundation on which to base a language runtime. The OpenJDK project, which you

met in chapter 1, became the reference implementation for Java over the course of

the Java 7 release lifecycle. One very interesting offshoot of this was the development

of the JVM as a language-agnostic and truly polyglot virtual machine.

 In particular, with the release of Java 7, the privileged position of the Java lan-

guage on the VM is removed. All languages are now considered equal citizens on the

platform. This has led to a strong interest in adding features to the VM that may be of

high importance to alternative languages, and only of marginal interest to Java itself.

415Polyglot programming

 Much of this work was carried out in a subproject called the Da Vinci Machine, or

mlvm (for multilanguage VM). Features were incubated in this project and moved into

the main source tree. The example that you saw in chapter 5 (section 5.5) is invoke-

dynamic, but there are a number of other features that would be very useful for non-

Java languages. There are also issues to solve.

 Let’s meet the first of these language features—a means for different languages to

communicate seamlessly with each other when running within the same JVM.

14.2.1 Language interoperability and metaobject protocols

Language equality is a major step toward a terrific environment for polyglot program-

ming, but some thorny issues remain. Chief among these is the simple fact that differ-

ent languages have different type systems. Ruby’s strings are mutable, whereas Java’s

are immutable. Scala regards everything as an object—even entities that would be

primitives in Java.

 Dealing with these differences, and providing better ways for different languages

to communicate and interoperate within the same JVM, is a currently unsolved prob-

lem, and one that there is active interest in resolving soon.

 Imagine a web application that you might work on in the future. This could com-

bine a core of Java code with the web part of the application being written in Compo-

jure (that is, Clojure) and that makes use of a JSON processing library written in pure

JavaScript. Now suppose that you want to test this using some of the cool TDD features

provided by ScalaTest.

 This leads to a situation in which JavaScript, Clojure, Scala, and Java could all be call-

ing each other directly. This need for interoperability and a standard way for JVM lan-

guages to call each other’s objects is one that will grow over time. The general consensus

in the community is that a Metaobject Protocol (MOP) is required, so that all of this can

be made to work in a standard way. A MOP can be thought of as a way of describing within

code how a particular language implements object orientation and related concerns.

 To achieve this goal, we need to think about ways in which objects from one lan-

guage could be made useful in another. One simple approach would be to cast to a

type that was native to the foreign language (or even create a new “shadow” object in

the foreign runtime). This is a simple approach, but has serious problems:

■ Every language must have a common “master” interface (or superclass) that is

implemented by all types within that language implementation (such as

IRubyObject for JRuby).

■ If used, the shadow objects lead to a lot of allocation and poor performance.

Instead, we can consider building a service to act as the entry point to the foreign run-

time. This service would provide an interface that can allow one runtime to do stan-

dard operations on objects of the foreign runtime, such as

■ Create a new object in the foreign runtime and return a reference to it

■ Access (get or set) a property of a foreign object

416 CHAPTER 14 Staying well-grounded

■ Call a method on a foreign object, and get the result back

■ Cast a foreign object to a different, relevant type

■ Access additional capabilities of a foreign object, which may have different

semantics than a method call for some languages

In such a system, the foreign method or property can be accessed via a call to the “nav-

igator” of the foreign runtime. The caller would need to provide a way to identify the

method being accessed—someMethod. This would typically be a string, but it may also

be a MethodHandle under some circumstances.

navigator.callMethod(someObject, someMethod, param1, param2, ...);

For this approach to work effectively, the Navigator interface would have to be the

same for all cooperating language runtimes. Behind the scenes, the actual linkages

between languages would likely be built using invokedynamic.

 Let’s move on to look at how the multilanguage JVM would look with Java 8’s mod-

ularity subsystem in the mix as well.

14.2.2 Multilanguage modularity

With the advent of Jigsaw and modularization of the platform, it’s not just Java that

would benefit from (and need to participate in) modularity. Other languages would

be able to get in on the act as well.

 We can imagine that the navigator interfaces and helper

classes would be likely to form one module, and the runtime

support for individual non-Java languages would be provided by

one or more modules. In figure 14.2, you can see how this sys-

tem of modules could look.

 As you can see, we can build well-contained polyglot applica-

tions using the modules system. The Clojure module provides

the basic Clojure platform, and the Compojure module brings

in the components required to run the webapp stack, including

specific versions of JARs that may be present in different versions

elsewhere in the running process. Scala and its XML stack are

present, and the Navigator module is also present for language

interoperability between Scala and Clojure.

 In the next section, we’ll discuss another programming trend that has been driven

by the explosion of non-Java languages onto the platform—concurrency.

14.3 Future concurrency trends

Twenty-first century computer hardware isn’t necessarily very well served by twentieth

century languages. This is an observation that has been implicit in a lot of our discus-

sion so far. In chapter 6 (section 6.3.1) when we discussed Moore’s Law of increasing

transistor counts, there was one very important consequence that we discussed only

Figure 14.2 Modules

implementing a

multilanguage solution

417Future concurrency trends

briefly. This is the interplay between Moore’s Law, performance, and concurrency,

and it’s our first topic.

14.3.1 The many-core world

While transistor counts have increased exponentially in line with predictions, memory

access times have not improved by the same amount. In the 1990s and early years of

the 2000s, this led chip designers to use a larger amount of the available transistors to

work around the relative slowness of main memory.

 As we discussed in chapter 6, this was to ensure that a steady stream of data was

available for processing cores to work upon. But this is a fundamentally losing battle:

the gains from using transistors to work around the speed of main memory become

more and more marginal. This is because the tricks used (such as instruction-level

parallelism and speculative execution) have now exhausted the easy gains and have

become more and more speculative.

 In recent years, attention has shifted to using the transistors to provide multiple

processing cores per chip. Now almost all laptop or desktop machines have at least 2

cores, and 4 or 8 are quite common. In higher spec server equipment, you can find 6

or 8 cores per chip, and up to 32 (or more) cores per machine. The many-core world

is here, and to take full advantage of it, you need programs that are written in a less

serial style. Those programs need language and runtime support.

14.3.2 Runtime-managed concurrency

We’ve already looked at the beginnings of a possible future of concurrent program-

ming. In Scala and Clojure we discussed perspectives on concurrency that didn’t look

a lot like Java’s Thread and lock model—the actor model from Scala and the software

transactional memory approach from Clojure.

 Scala’s actor model allows for messages to be sent between executing blobs of code

that are potentially running on totally different cores (and there are even extensions

that allow actors to be remote). This means that code written in a completely actor-

centric way can potentially scale out to a many-core machine relatively simply.

 Clojure has agents to fill much of the same evolutionary niche as Scala actors, but

it also has shared data (refs) that can only be modified from within a memory transac-

tion—the software transactional memory mechanism.

 In both of these cases, you can see the germ of a new concept—the management

of concurrency by the runtime, rather than explicitly by the developer. While the JVM

provides thread scheduling as part of the low-level services it provides, it doesn’t pro-

vide higher-level constructs for managing concurrent programs.

 This shortcoming is visible in the Java language, which essentially makes the JVM’s

low-level model available to the Java programmer.

 With the large body of code that’s in the wild, it will be very difficult to produce an

entirely new mechanism for Java, enforce it, and have it interoperate seamlessly with

418 CHAPTER 14 Staying well-grounded

existing code. This is why a lot of attention is being paid to non-Java languages on the

JVM for new concurrency directions. They have two important features:

■ They’re based on the JMM as a low-level model.

■ They have a “clean slate” language runtime that can provide different abstrac-

tions (and enforce more) than the Java language can.

It isn’t impossible that additional concurrency support could appear at the VM level

(as discussed in the next section), but for now the major direction of innovation

seems to be new languages on top of the JMM’s solid foundation, rather than low-level

changes to the basic threading model.

 There definitely are areas of the JVM that may see changes in JDK 8 and beyond.

Some of these possible changes follow on from the invokedynamic work in Java 7, and

they form the next topic of our discussion.

14.4 New directions in the JVM

In chapter 1 we introduced the VMSpec—the JVM Specification. This is a document

that spells out exactly how a VM must behave to be considered an implementation of

the JVM standard. When new behavior is introduced (such as invokedynamic with Java 7)

all implementations must upgrade to include the new capabilities.

 In this section, we’ll talk about possibilities for changes that are being discussed

and prototyped. This work is being carried out within the OpenJDK project, which is

also the basis of the reference implementation for Java and the starting point for Ora-

cle’s JDK. As well as possible spec changes, we’ll also cover significant changes to the

OpenJDK/Oracle JDK codebase.

14.4.1 VM convergence

After Oracle bought Sun Microsystems, it was in possession of two very strong virtual

machines for Java: the HotSpot VM (inherited from Sun) and JRockit (which had

come from the earlier acquisition of BEA).

 It was quickly decided that trying to maintain both VMs would be a waste of

resources, so Oracle decided merge the two. The HotSpot VM was chosen as the base

VM, with JRockit features being carefully ported over to it in future releases of Java.

Don’t be too hard on Java’s concurrency

When Java was released in 1996, it was one of the first major languages to have con-
currency considerations baked in from the start. With the benefit of 15 years of wide-
spread industrial practice as hindsight, we can see that the model of mutable data,
state shared by default, and exclusion enforced by collaborating locks has problems.
But the engineers who released Java 1.0 had no such benefit. In many ways, Java’s
initial attempts at concurrency support allowed us to get to this point.

419New directions in the JVM

So why is this important to you, the developer? The existing VM that you likely use

today (the HotSpot VM) will over time gain a host of new features including (but not

limited to) the following:

■ Elimination of PermGen—Will prevent a large category of classloader-related

crashes.

■ Enhancement JMX Agent support—Will give you more insight into aspects of a run-

ning VM.

■ New approach to JIT compilation—Brings in new optimizations from the JRockit

codebase

■ Mission Control—Provides advanced tooling to help with tuning and profiling of

production apps. Some of these tools will be for-pay additional components to

the JVM, not part of the free download.

There are plenty of other small improvements all aimed at making the VM smaller,

faster, and more flexible. Given the approximately 1000 person-years of effort that’s

already gone into HotSpot, we can only see a bright future for the combined VM as

many more years of JRockit effort comes in to join it.

 In addition to the VM merge, there are plenty of new features also being worked

on. One of these is the possible addition of a concurrency feature known as coroutines.

14.4.2 Coroutines

Multithreading is the form of concurrency most widely understood by Java and JVM

language programmers. It relies on the JVM’s thread scheduling services to start and

stop threads on the physical processing cores, and threads have no way to control this

scheduling. For this reason, multithreading is called “preemptive multitasking”

What’s in a name?

There is no official name for the merged VM, although VM enthusiasts and the Java
community at large have dubbed it “HotRockit.” This is certainly a catchy title, but it
remains to be seen whether Oracle’s marketing department agrees!

Eliminating PermGen

As you learned in section 6.5.2, metadata about your classes currently gets held in
a special memory space in the VM (PermGen). This can quickly fill up, especially in
non-Java languages and frameworks that create a lot of classes at runtime. PermGen
space isn’t reclaimed, and running out will crash your VM. Work is under way to make
metadata live in native memory instead, making the dreaded “java.lang.OutOfMemory-
Error: PermGen space” message a thing of the past.

420 CHAPTER 14 Staying well-grounded

because the scheduler is able to preempt the running threads and force them to sur-

render control of the CPU.

 The idea behind coroutines is to allow execution units to partially control how

they’re scheduled. Specifically, a coroutine will run like an ordinary thread until it hits

a command to “yield.” This causes the coroutine to suspend itself and allow another

coroutine to run in its place. When the original coroutine is given another chance to

run, it will carry on from the next statement after the yield, rather than from the

beginning of the method.

 As this approach to multithreading relies on the

cooperation of the currently live coroutines to yield

occasionally to allow other coroutines, this form of

multiprocessing is called “cooperative multitasking.”

 The exact design of how coroutines could work

is still very much under discussion, and there’s no

commitment to definitely include them. One possi-

ble model is to have coroutines created and sched-

uled within the scope of a single shared thread (or

possibly a threadpool similar to those in

java.util.concurrent). This design is illustrated

in figure 14.3.

 The threads that are executing coroutines can

be preempted by any other thread in the system,

but the JVM thread scheduler can’t force a yield on a coroutine. This means that, at

the price of having to trust all the other coroutines within your execution pool, a

coroutine can control when it’s context-switched.

 This control means that switches between coroutines can be synchronized better.

Multithreaded code has to build complex, fragile locking strategies to protect data,

because a context switch can happen at any time. This is the problem of concurrent

type safety we discussed in section 4.1. By contrast, a coroutine needs to ensure only

that its data is consistent at yield points, because it knows it can’t be preempted at

other times.

 This trade-off of additional guarantees in exchange for having to trust others is a

useful complement to threading for some programming problems. Some non-Java

languages have support for coroutines (or a closely related concept called fibers)—

notably Ruby and newer versions of JavaScript. The addition of coroutines at the VM

level (but not necessarily to the Java language) would be a great help to those lan-

guages that could make use of them.

 As our final example of possible VM changes, let’s consider a proposed VM feature

called “tuples,” which could have a great impact in the performance-sensitive comput-

ing space.

Figure 14.3 A possible coroutine

model

421New directions in the JVM

14.4.3 Tuples

In the JVM today, all data items are either primitives or references (which can either

be to objects or arrays). The only way to create a more complicated type is define it in

a class and pass around references to objects that are instances of the new type. This is

a simple and fairly elegant model that has served Java well.

 But there are a couple of drawbacks to this model that appear when trying to build

high-performance systems. In particular, in applications such as games and financial

software it’s quite common to run up against the limitations of this simple model. One

of the ways that we could address these issues is with a concept called a tuple.

Tuples (sometimes called value objects) are a language construct that bridges the gap

between primitives and classes. Like classes, they allow for the definition of custom

complex types that can contain primitives, references, and other tuples. Like primi-

tives, their whole value is used when passing them to and from methods and storing

them in arrays and other objects. Think of them as an equivalent to structs in C (or

.NET), if you’re familiar with those environments.

 Let’s look at an example—an existing Java API.

public class MyInputStream {
 public void write(byte[], int off, int len);
}

This allows a user to write a specified amount of data into a specific point in the array,

which is useful. But it’s not particularly well-designed. In an ideal OO world, the offset

and length would be encapsulated inside of the array, and neither the user nor the imple-

menter of the method would need to track the additional information separately.

 In fact, with the introduction of NIO came the concept of a ByteBuffer that encap-

sulates this information. Unfortunately, it doesn’t come for free—creating a new slice

from a ByteBuffer requires the allocation of a new object, which puts pressure on the

garbage collection subsystem. While most garbage collectors are pretty good at col-

lecting short-lived objects, in a latency-sensitive environment that’s dealing with very

high throughput rates, this allocation can add up and result in unacceptable pauses in

the application.

 Let’s imagine what could happen if we were able to define a Slice as a value object

(i.e., tuple) type that held the reference to the array, an offset, and a length. In the fol-

lowing listing, we’ll use a new tuple keyword to indicate this new concept.

public tuple Slice {
 private int offset;
 private int length;
 private byte[] array;

 public byte get(int i) {
 return array[offset + i];
 }
}

Listing 14.2 Array slice as a tuple

422 CHAPTER 14 Staying well-grounded

The slice construction combines many of the advantages of both primitive and refer-

ence types:

■ Slice values could be copied into and out of methods just as efficiently as pass-

ing the array reference and int values manually.

■ Slice tuples would be cleaned up by exiting methods (because they’re like

value types).

■ The handling of the offset and length would be cleanly encapsulated by

the tuple.

There are numerous examples of types common in everyday programming that would

benefit from the use of tuples, such as rational numbers with a numerator and

denominator, complex numbers with a real and imaginary value, or a user principal

reference with an ID and a realm identifier (for you MMORPG fans out there!).

 The other area that tuples bring a performance benefit to is in the handling of

arrays. Arrays currently hold homogeneous collections of data values—either primi-

tives or references. The existence of tuples would give us more control over the layout

of memory when using arrays.

 Let’s consider an example—a simple hash table that uses a primitive long as a key.

public class MyHashTable {
 private Entry[] entries;
}

public class Entry {
 private long key;
 private Object value;
}

In the current incarnation of the JVM, the entries array has to hold references to

instances of Entry. Every time the caller looks up a key in the table, the relevant Entry

must be dereferenced before its key can be compared to the value passed in.

 When implemented using a tuple, it would be possible to lay out the Entry type

inline in the array, thereby removing the cost of dereferencing to reach the key. Fig-

ure 14.4 shows the current case, and the improvement available using tuples.

 The key to the performance benefit of tuples is also clearer when we consider

arrays of tuples. As you saw in chapter 6, the performance of most application code is

Figure 14.4 JVM

arrays vs. tuples

423Summary

dominated by L1 cache misses. In figure 14.4 you can see that code that scans through

the hash table would be more efficient if it used tuples. It would be able to read key

values without incurring additional cache fetches. This the essence of the perfor-

mance benefit of tuples—they allow the programmer to employ better spatial locality

when laying out data in memory.

 This marks the end of our discussion of the possible new features of Java and JDK 8.

How many of them will come to pass is something we’ll only find out as the release

nears. If you’re interested in the evolution of the features, you can join the OpenJDK

project and the Java Community Process and take part in the active development of

these features. Look up these projects and how to join them if you’re not already

familiar with them.

14.5 Summary

Hot on the heels of Java 7, you’ll soon have Java 8—full of the sorts of productivity

improvements that you’ll need in order to write code for modern hardware, from the

smallest of embedded devices to the largest of mainframes.

 The myth of a single language being able to solve all programming problems has

been well and truly punctured. In order to build effective solutions, such as a highly

concurrent trading system, you’ll need to learn new languages that can interoperate

with core Java code.

 Concurrency will continue to be a hot topic as multicore hardware and OSs

increasingly offer highly parallel architectures to code on. In order to solve large data,

complex computational, or speedy applications, this is an area you’ll want to keep on

top of.

 The Java VM is quite rightly seen as the best of the virtual machines out there today.

The well-grounded Java developer will want to keep an eye on further advances

because they’ll likely open up new fields, such as high performance computing.

 As you can see, there’s an awful lot going on! We think that the Java ecosystem is

undergoing a massive resurgence and that over the next few years the well-grounded

Java developer will truly shine.

424

appendix A
Java7developer—

source code installation

We all love working with the actual code when reading through a new technical

book. It helps you gain a proper working understanding of the material, which you

can’t get from reading a code example.

 You can download the source code for this book from www.manning.com/

evans/ or www.java7developer.com/. We’ll refer to the location that you put the code

in as $BOOK_CODE.

 The project that holds all of the source code for this book is called

java7developer. It’s a mix of Java, Groovy, Scala, and Clojure source code, along

with their supporting libraries and resources. It isn’t your typical Java-only source

code project, and you’ll need to follow the instructions in this appendix in order to

run the build (that is, compile the code and run the tests). We’ll use the Maven 3

build tool to execute various build lifecycle goals, such as example compile and test.

 Let’s look at how the source code is laid out for the java7developer project.

A.1 Java7developer source code structure

The java7developer project structure follows the Maven conventions discussed in

chapter 12 and is therefore laid out in the following manner:

java7developer
|-- lib
|-- pom.xml
|-- sample_posix_build.properties
|-- sample_windows_build.properties
`-- src
 |-- main
 | '–- groovy
 | `-- com

www.manning.com/evans/
www.manning.com/evans/
www.java7developer.com/

425Downloading and installing Maven

 | `-- java7developer
 | `-- chapter8
 | `-- java
 | `-- com
 | `-- java7developer
 | `-- chapter1
 | `-- ...
 | `-- ...
 | `-- resources
 | `-- scala
 | `-- com
 | `-- java7developer
 | `-- chapter9
 `-- test
 `-- java
 `-- com
 `-- java7developer
 `-- chapter1
 `-- ...
 `-- ...
 `-- scala
 `-- com
 `-- java7developer
 `-- chapter9
`-- target

As part of its conventions, Maven splits your main code from your test code. It also has

a special resources directory for any other files that need to be included as part of the

build (for example, log4.xml for logging, Hibernate configuration files, and other

similar resources). The pom.xml file is the build script for Maven; it’s discussed in

detail in appendix E.

 The Scala and Groovy source code follows the same structure as the Java source code

in the java folder, except that their root folders are called scala and groovy respectively.

Java, Scala, and Groovy code can happily sit side by side in a Maven project. The Clojure

source code needs to be handled a little differently. Clojure is handled via an interactive

environment most of the time (and uses a different build tool called Leiningen), so

we’ve just provided a directory called clojure which houses the source code as snippets

that can be copied into a Clojure REPL.

 The target directory doesn’t get created until a Maven build is run. All classes, arti-

facts, reports, and other files that the build produces will appear under this directory.

 The lib directory holds some libraries, just in case your Maven installation can’t

access the internet to download what it needs.

 Take a look around the project structure to familiarize yourself with where the

source code lies for the various chapters. Once you’re happy with where the source

code lives, it’s time to install and configure Maven 3.

A.2 Downloading and installing Maven

You can download Maven from http://maven.apache.org/download.html. For the exam-

ples in chapter 12, we used Maven 3.0.3. Download the apache-maven-3.0.3-bin.tar.gz

http://maven.apache.org/download.html

426 APPENDIX A Java7developer— source code installation

file if you’re a running a *nix OS or apache-maven-3.0.3-bin.zip file if you’re a Win-

dows user. Once the file is downloaded, simply untar/gunzip or unzip the contents

into a directory of your choosing.

WARNING As in many Java/JVM-related software installations, it pays to not
install Maven into a directory with spaces in its name, because you might
get PATH and CLASSPATH errors. For example, if you’re using a MS Windows
operating system, don’t install Maven into a directory that looks like C:\Pro-
gram Files\Maven\ .

After downloading and unzipping, the next step is to set the M2_HOME environment

variable. For *nix-based operating systems, you’ll need to add something like this:

M2_HOME=/opt/apache-maven-3.0.3

For Windows-based operating systems, you’ll add something like this:

M2_HOME=C:\apache-maven-3.0.3

You may be wondering, “Why M2_HOME and not M3_HOME? This is Maven 3, right?” The

reason for this is that the team behind Maven really wanted to ensure backward com-

patibility with the widely used Maven 2.

 Maven needs the Java JDK to run. Any version greater than 1.5 is fine (of course, by

this stage, you already have JDK 1.7 installed). You’ll also need to make sure that your

JAVA_HOME environment variable is set—this has probably already been set if you have

Java installed. You’ll also need to be able to execute Maven-related commands from

anywhere in your command line, so you should set the M2_HOME/bin directory to be

in your PATH. For *nix-based operating systems, you’ll need to add something like this:

PATH=$PATH:$M2_HOME/bin

For Windows-based operating systems, you’ll add something like this:

PATH=%PATH%;%M2_HOME%\bin

You can now execute Maven (mvn) with its -version parameter to make sure the basic

install has worked.

mvn -version

You should see output from Maven that looks similar to the following snippet:

Apache Maven 3.0.3 (r1075438; 2011-02-28 17:31:09+0000)
Maven home: C:\apache-maven-3.0.3
Java version: 1.7.0, vendor: Oracle Corporation
Java home: C:\Java\jdk1.7.0\jre
Default locale: en_GB, platform encoding: Cp1252
OS name: "windows xp", version: "5.1", arch: "x86", family: "windows"

As you can see, Maven churns out a bunch of useful configuration information so that

you know that it and its dependency on your platform are all OK.

http://maven.apache.org/download.html

427Running the java7developer build

TIP Maven is supported by the major IDEs (Eclipse, IntelliJ, and NetBeans),
so once you’re comfortable with using Maven on the command line you can
swap to using the IDE-integrated version instead.

Now that you’ve got Maven installed, it’s time to look at where the user settings are

located. In order to trigger the creation of the user settings directory, you’ll need to

ensure that a Maven plugin is downloaded and installed. The simplest one to execute

is the Help plugin.

mvn help:system

This downloads, installs, and runs the Help plugin, giving you some extra information

over and above mvn –version. It also ensures that the .m2 directory is created. Know-

ing where the user settings are located is important, as there are a couple of instances

where you may need to edit your user settings; for example, to allow Maven to work

behind a proxy server. In your home directory (which we’ll refer to as $HOME), you’ll

see the directories and files listed in table A.1.

Note again the use of the backward compatibility with Maven 2 via the .m2 directory

(as opposed to the .m3 directory you’d expect).

 Now that you have Maven installed and you know the location of the user configu-

ration, you can get started on running the java7developer build.

A.3 Running the java7developer build

In this section, you’ll start by going through a couple of one-off steps in order to pre-

pare the build.2 This includes manually installing a library as well as renaming a prop-

erties file and editing it to point to your local Java 7 installation.

Table A.1 Maven user directories and files1

Theme Explanation

$HOME/.m2 A hidden directory that contains user configuration for Maven.

$HOME/.m2/settings.xml A file containing user-specific configuration. Here you can specify proxy

bypasses, add private repositories, and include other information to cus-

tomize the behavior of your installation of Maven.

$HOME/.m2/repository/ Your local Maven repository. When Maven downloads a plugin or a depen-

dency from Maven Central (or another remote Maven repository), it stores

a copy of the dependency in your local repository. The same is true when

you install your own dependencies with the install goal. This way,

Maven can use the local copy instead of downloading a new copy

each time.

1 Courtesy of Sonatype, in its Maven: the Complete Reference online manual, www.sonatype.com/Request/Book/
Maven-The-Complete-Reference.

2 Despite recent improvements in the Maven build tool and its polyglot programming support, there are still a
couple of gaps.

www.sonatype.com/Request/Book/Maven-The-Complete-Reference
www.sonatype.com/Request/Book/Maven-The-Complete-Reference

428 APPENDIX A Java7developer— source code installation

 You’ll then go through the most common Maven build lifecycle goals (clean,

compile, and test). The first build lifecycle goal (clean) is used to clean up any left-

over artifacts from a previous build.

 Maven calls its build scripts Project Object Model (POM) files. These POM files are

in XML, and each Maven project or module will have an accompanying pom.xml file.

There is alternative language support coming for POM files, which should give you

much more flexibility should you require it (much like the Gradle build tool).

 In order to execute builds with Maven, you ask it to run one or several goals that

represent specific tasks (such as compiling your code, running tests, and more). Goals

are all tied into the default build lifecycle, so if you ask Maven to run some tests (for

example, mvn test), it’ll compile both the main source code and the source code for

the tests before trying to run those tests. In short, it forces you to adhere to a correct

build lifecycle.

 Let’s begin with the one-off task to get it out of the way.

A.3.1 One-off build preparation

To run the build successfully, you need to first rename and edit a properties file. If you

have not already done so in section 12.2, then in the $BOOK_CODE directory, copy over

the sample_<os>_build.properties file (for your OS) to build.properties, and edit the value

of the jdk.javac.fullpath property to point to your local install of Java 7. This ensures

that the correct JDK gets picked up and used by Maven when building the Java code.

 Now that you’ve gotten that step out of the way, you can run the clean goal that

you should always execute as part of your build.

A.3.2 Clean

The Maven clean goal simply deletes the target directory. To see this in action,

change to the $BOOK_CODE directory and execute the Maven clean goal.

cd $BOOK_CODE
mvn clean

At this point, you’ll see your console filling up with output from Maven stating that it’s

downloading various plugins and third-party libraries. Maven needs these plugins and

libraries to run goals, and by default it downloads them from Maven Central—the pri-

mary online repository for these artifacts. The java7developer project is also config-

ured with one other repository so that the asm-4.0.jar file is downloaded.

NOTE Maven will occasionally perform this task for other goals, so don’t be
alarmed if you see it “downloading the internet” when you execute other
goals. It will only perform those downloads once.

Apart from the “Downloading...” information, you should also see a statement similar

to the following in your console:

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

429Running the java7developer build

[INFO] Total time: 1.703s
[INFO] Finished at: Fri Jun 24 13:51:58 BST 2011
[INFO] Final Memory: 6M/16M
[INFO] --

If the clean goal fails, it’s likely that your proxy server is blocking access to Maven

Central, where the plugins and third-party libraries are held. To resolve this issue, sim-

ply edit the $HOME/.m2/settings.xml file and add the following, filling out the values

for the various elements.

<proxies>
 <proxy>
 <active>true</active>
 <protocol></protocol>
 <username></username>
 <password></password>
 <host></host>
 <port></port>
 </proxy>
</proxies>

Rerun the goal, and you should see the BUILD SUCCESS message as expected.

TIP Unlike the other Maven build lifecycle goals you’ll be using, clean isn’t
automatically called. If you want the previous build artifacts cleaned up, you
always need to include the clean goal.

Now that you’ve removed any leftover remnants from the previous build, the next

build lifecycle goal you typically want to execute is to compile your code.

A.3.3 Compile

The Maven compile goal uses the compiler plugin configuration in the pom.xml file

to compile the source code under src/main/java, src/main/scala, and src/main/

groovy. This effectively means executing the Java, Scala, and Groovy compilers

(javac, scalac, and groovyc) with the compile-scoped dependencies added to the

CLASSPATH. Maven will also process the resources under src/main/resources, ensur-

ing that they’re part of the CLASSPATH for compilation.

 The resulting compiled classes end up under the target/classes directory. To see

this in action, execute the following Maven goal:

mvn compile

The compile goal should execute pretty quickly, and in your console you’ll have some-

thing similar to the following output.

...
[INFO] [compiler:compile {execution: default-compile}]
[INFO] Compiling 119 source files to

C:\Projects\workspace3.6\code\trunk\target\classes
[INFO] [scala:compile {execution: default}]
[INFO] Checking for multiple versions of scala
[INFO] includes = [**/*.scala,**/*.java,]

430 APPENDIX A Java7developer— source code installation

[INFO] excludes = []
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\java:-1: info: compiling
[INFO] C:\Projects\workspace3.6\code\trunk\target\generated-sources\groovy-

stubs\main:-1: info: compiling
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\groovy:-1: info:

compiling
[INFO] C:\Projects\workspace3.6\code\trunk\src\main\scala:-1: info: compiling
[INFO] Compiling 143 source files to

C:\Projects\workspace3.6\code\trunk\target\classes at 1312716331031
[INFO] prepare-compile in 0 s
[INFO] compile in 12 s
[INFO] [groovy:compile {execution: default}]
[INFO] Compiled 26 Groovy classes
[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 43 seconds
[INFO] Finished at: Sun Aug 07 12:25:44 BST 2011
[INFO] Final Memory: 33M/79M
[INFO] ---

At this stage, your test classes under src/test/java, src/test/scala, and src/test/groovy

haven’t been compiled. Although there is a specific test-compile goal for this, the

most typical approach is to ask Maven to run the test goal.

A.3.4 Test

The test goal is where you really see Maven’s build lifecycle in action. By asking

Maven to run the tests, it knows it needs to execute all of the earlier build lifecycle

goals in order to run the test goal successfully (including compile, test-compile, and

a host of others).

 Maven will run the tests via the Surefire plugin, using the test provider (in this case

JUnit) that you’ve supplied as one of the test-scoped dependencies in the pom.xml

file. Maven not only runs the tests, but produces report files that can be analyzed later

to investigate failing tests and to gather test metrics.

 To see this in action, execute the following Maven goals:

mvn clean test

Once Maven has completed compiling the tests and running them, you should see it

report something similar to the following output.

...
Running com.java7developer.chapter11.listing_11_3.TicketRevenueTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec
Running com.java7developer.chapter11.listing_11_4.TicketRevenueTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec
Running com.java7developer.chapter11.listing_11_5.TicketTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.015 sec

Results :

Tests run: 20, Failures: 0, Errors: 0, Skipped: 0

431Summary

[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO]--
[INFO] Total time: 16 seconds
[INFO] Finished at: Wed Jul 06 13:50:07 BST 2011
[INFO] Final Memory: 24M/58M
[INFO]--

The results of the tests are stored at target/surefire-reports. You can take a look at the

text files there now and see that the tests passed successfully.

A.4 Summary

By running the source code samples as you read the chapters, you’ll gain a deeper

understanding of the material presented in this book. If you’re feeling adventurous,

you can alter our code or even add new code and compile and test it in the same way.

 Build tools like Maven 3 are surprisingly complex under the hood. If you want to

gain an in-depth understanding of this subject, read chapter 12, which discusses build

and continuous integration.

432

appendix B
Glob pattern

syntax and examples

Glob patterns are used by the Java 7 NIO.2 libraries for applying filters when iterat-

ing over directories and other similar tasks, as seen in chapter 2.

B.1 Glob pattern syntax

Glob patterns are simpler than regular expressions and follow the basic rules

shown in table B.1.

Further information on glob pattern syntax can be found in the Java Tutorial

hosted online by Oracle (http://docs.oracle.com/javase/tutorial/essential/io/

fileOps.html#glob) and in the Javadoc for the FileSystem class.

Table B.1 Glob pattern syntax

Syntax Description

* Matches zero or more characters.

** Matches zero or more characters across directories.

? Matches exactly one character.

{} Delimits a collection of subpatterns to match with an implicit OR for each pattern; e.g.

matches pattern A or B or C etc.

[] Matches a single set of characters, or if a hyphen (-) character is used, matches a range

of characters.

\ Escape character; used if you want to match a special character such as *, ?, or \.

http://docs.oracle.com/javase/tutorial/essential/io/fileOps.html#glob
http://docs.oracle.com/javase/tutorial/essential/io/fileOps.html#glob

433Glob pattern examples

B.2 Glob pattern examples

Some basic examples on using glob patterns, sometimes known as globbing, are

shown in table B.2.

Further examples on glob pattern matches can be found in the Java Tutorial hosted

online by Oracle and in the Javadoc for the FileSystem class.

WARNING The Java 7 specification defines its own glob semantics (rather than
adopting an existing standard one). This leads to a few potential gotchas, partic-
ularly on Unix. For example, doing the equivalent of rm * in Java 7 will remove
files whose names begin with a dot (.), whereas the Unix rm/glob will not.

Table B.2 Glob pattern examples

Syntax Description

*.java Matches all strings that end in .java, such as Listing_2_1.java.

?? Matches any two characters, such as ab or x1.

[0-9] Matches any digit from 0 to 9.

{groovy, scala}.* Matches any string starting with groovy. or scala., such as scala.txt or

groovy.pdf.

[]a-z, A-Z Matches an uppercase or lowercase western alphabet character.

\\ Matches the \ character.

/usr/home/** Matches all strings starting with /usr/home/, such as usr/home/kari-

anna or /usr/home/karianna/docs.

434

appendix C
Installing alternative

JVM languages

This appendix covers the download and installation instructions for the three JVM

languages (Groovy, Scala, and Clojure) as well as the Groovy-based web framework

(Grails) covered in chapters 8, 9, 10, and 13 respectively.

C.1 Groovy

Groovy is fairly simple to install, but if you’re unfamiliar with setting environment

variables or you’re new to your particular operating system, you should find this

guide helpful.

C.1.1 Downloading Groovy

First of all, go to http://groovy.codehaus.org/Download and download the latest

stable version of Groovy. We used Groovy 1.8.6 for the examples, so we recommend

downloading the groovy-binary-1.8.6.zip file. Then unzip the contents of the zip file

you downloaded into a directory of your choosing.

WARNING As in many Java/JVM-related software installations, it pays to not
install Groovy into a directory with spaces in the path, because you might
get PATH and CLASSPATH errors. For example, if you’re using an MS Win-
dows operating system, don’t install Groovy into a directory that looks like
C:\Program Files\Groovy\.

There aren’t many steps to go. Next you need to set environment variables.

C.1.2 Installing Groovy

After downloading and unzipping, you’ll need to set three environment variables

to be able to run Groovy effectively. We’ll look at both the POSIX-based operating

systems (Linux, Unix, and Mac OS X) as well as Microsoft Windows.

http://groovy.codehaus.org/Download

435Groovy

POSIX-BASED OSS (LINUX, UNIX, MAC OS X)

Where you set environment variables on a POSIX-based OS usually depends on what

user shell you’re running when you open a terminal window. Table C.1 covers the

common names and locations of your user shell configuration file on the various

POSIX operating system shells.

You’ll want to open your user shell configuration file with your favorite editor and add

three environment variables: GROOVY_HOME, JAVA_HOME, and PATH.

 First you need to set the GROOVY_HOME environment variable. Add the following

line and replace <installation directory> with the location where you unzipped

the contents of the Groovy binary file.

GROOVY_HOME=<installation directory>

In the following example, we unzipped the Groovy binary file to /opt/groovy-1.8.6:

GROOVY_HOME=/opt/groovy-1.8.6

Next, Groovy needs the Java JDK to run. Any version greater than 1.5 is fine (though,

by this stage you likely have JDK 1.7 installed). You’ll also need to make sure that your

JAVA_HOME environment variable is set. This has probably already been set if you have

Java installed, but if it hasn’t, you can add the following line:

JAVA_HOME=<path to where Java is installed>

In the following example, we set JAVA_HOME to /opt/java/java-1.7.0:

JAVA_HOME=/opt/java/java-1.7.0

Finally, you’ll need to be able to execute Groovy-related commands from anywhere

in your command line, so you should set the GROOVY_HOME/bin directory to be in

your PATH:

PATH=$PATH:$GROOVY_HOME/bin

Save your user shell configuration file, and when you next start a new shell, the three

environment variables will be set. You can now execute groovy with its -version

parameter on the command line to make sure the basic install has worked:

groovy -version
Groovy Version: 1.8.6 JVM: 1.7.0

Table C.1 Common locations of user shell configuration files

Shell File location

bash ~/.bashrc and/or ~/.profile

Korn (ksh) ~/.kshrc and/or ~/.profile

sh ~/.profile

Mac OS X ~/.bashrc and/or ~./.profile and/or ~./bash_profile

436 APPENDIX C Installing alternative JVM languages

That completes the POSIX-based section on installing Groovy. You can now go back to

chapter 8 to compile and run Groovy code!

MS WINDOWS

In MS Windows, the best place to set the environment variables is via the GUI provided

when you manage your computer. Follow these steps:

1 Right-click My Computer, then click Properties.

2 Click the Advanced tab.

3 Click Environment Variables.

4 Click New to add a new variable name and value.

Now you need to set the GROOVY_HOME environment variable. Add the following line

and replace <installation directory> with the location where you unzipped the

contents of the Groovy binary file.

GROOVY_HOME=<installation directory>

In the following example, we unzipped the contents of the Groovy binary file to

C:\languages\groovy-1.8.6:

GROOVY_HOME=C:\languages\groovy-1.8.6

Groovy also needs the Java JDK to run, and any version greater than 1.5 is fine

(though, by this stage you likely have JDK 1.7 installed). You’ll also need to make sure

that your JAVA_HOME environment variable is set. This has probably already been set if

you have Java installed, but if it hasn’t, you can add the following line:

JAVA_HOME=<path to where Java is installed>

In the following example, we set JAVA_HOME to C:\Java\jdk-1.7.0:

JAVA_HOME=C:\Java\jdk-1.7.0

You’ll also need to be able to execute Groovy-related commands from anywhere

in your command line, so you should set the GROOVY_HOME/bin directory to be in

your PATH:

PATH=%PATH%;%GROOVY_HOME%\bin

Click OK until you’ve exited the management screens for My Computer. When you

next start a new command line, the three environment variables will be set. You can

now execute groovy with its -version parameter on the command line to make sure

the basic install has worked:

groovy -version
Groovy Version: 1.8.6 JVM: 1.7.0

That completes the MS Windows section on installing Groovy. You can now go back to

chapter 8 to compile and run Groovy code!

437Clojure

C.2 Scala

The Scala environment can be downloaded from www.scala-lang.org/downloads. The

current version at the time of writing is 2.9.1, but there may have been newer versions

released by the time you read this. Scala does tend to introduce language changes

with each new revision of the language, so if you find that some of the examples don’t

work with your (newer) Scala install, check the version of the language carefully and

make sure you have a 2.9.1 install for the purposes of this book.

 Windows users will want to download the .zip version of the archive; users of Unix-

based OSs (including Mac and Linux users) will want the .tgz version. Unpack the

archive, and put it where you choose on your machine’s filesystem. As with the Groovy

installation, you should avoid locating it in a directory that has a space in its name.

 There are a number of ways that you can set up the Scala installation on your

machine. The simplest is probably to set up an environment variable called

SCALA_HOME that points to the directory where you installed Scala. Then follow the

instructions for your OS in section C.1.2 (on installing Groovy), but replace

GROOVY_HOME with SCALA_HOME throughout.

 After you’ve finished configuring your environment, you can type scala at a com-

mand prompt, and the Scala interactive session should open. If it doesn’t, that means

that your environment isn’t properly configured, and you should retrace your steps to

ensure that you’ve set SCALA_HOME and your PATH correctly.

 You should now be able to run the Scala listings and interactive code snippets in

chapter 9.

C.3 Clojure

To download Clojure, go to http://clojure.org/ and get the zip file containing the lat-

est stable version. In our examples, we’ll be using Clojure 1.2, so if you’re using a later

version, be aware that there might be some slight differences.

 Unzip the file you downloaded and change into the directory that’s been created.

Provided that you have JAVA_HOME set and java on your PATH, you should now be able

to run a basic REPL as shown in chapter 10, like this:

java -cp clojure.jar clojure.main

Clojure is a little different from the previous two new languages in this appendix—all

you really need to make use of the language is the clojure.jar file. There isn’t any need

to set up an environment variable as you did for Groovy and Scala.

 While you’re learning Clojure, it’s probably easiest to work with a REPL. When the

time comes to think about using Clojure for a production deployment, a proper build

tool, like Leiningen (which you’ll meet in chapter 12), will be used to manage not

only the deployment of apps, but also the install of Clojure itself (by downloading the

JAR from a remote Maven repository).

 This basic install of Clojure has some limitations, but thankfully there are a num-

ber of very good integrations of Clojure with a number of IDEs. If you’re a user of the

http://clojure.org/
www.scala-lang.org/downloads

438 APPENDIX C Installing alternative JVM languages

Eclipse IDE, we heartily recommend the Counterclockwise plugin for the Eclipse IDE,

which is very functional and easy to set up.

 Having a slightly richer development experience can be very useful, as developing

large amounts of code in the simple REPL can be a bit distracting. But for many appli-

cations (and especially while you’re learning), the basic REPL will suffice.

C.4 Grails

Grails is fairly simple to install, but if you’re unfamiliar with setting environment vari-

ables or if you’re new to your OS, you should find this guide helpful. Full installation

instructions can be found at www.grails.org/installation.

C.4.1 Downloading Grails

First, go to www.grails.org and download the latest stable version of Grails. For this

book, we used version 2.0.1. Once you’ve downloaded the zip file, unzip the contents

into a directory of your choosing.

WARNING Like with many Java/JVM-related software installations, it pays to
not install Grails into a directory with spaces in the path, because you might
get PATH and CLASSPATH errors. For example, if you’re using an MS Windows
OS, don’t install Grails into a directory that looks like C:\Program Files\Grails\.

Next you need to set environment variables.

C.4.2 Installing Grails

After downloading and unzipping Grails, you’ll need to set three environment vari-

ables in order to be able to run Grails effectively. This section will cover the POSIX-

based operating systems (Linux, Unix, and Mac OS X) as well as Microsoft Windows.

POSIX-BASED OSS (LINUX, UNIX, MAC OS X)

Where you set environment variables on a POSIX-based OS usually depends on what

user shell you’re running when you open up a terminal window. Table C.2 covers the

common names and locations of your user shell configuration file on the various

POSIX operating system shells.

You’ll want to open your user shell configuration file with your favorite editor and add

three environment variables: GRAILS_HOME, JAVA_HOME, and PATH.

Table C.2 Common locations of user shell configuration files

Shell File location

bash ~/.bashrc and/or ~/.profile

Korn (ksh) ~/.kshrc and/or ~/.profile

sh ~/.profile

Mac OS X ~/.bashrc and/or ~./.profile and/or ~./bash_profile

www.grails.org/installation
www.grails.org

439Grails

 First, you need to set the GRAILS_HOME environment variable. Add the following

line, replacing <installation directory> with the location where you unzipped the

contents of the Grails zip file:

GRAILS_HOME=<installation directory>

In the following example we unzipped the contents to /opt/grails-2.0.1:

GRAILS_HOME=/opt/grails-2.0.1

Grails also needs the Java JDK to run. Any version greater than 1.5 is fine (though, by

this stage you likely already have JDK 1.7 installed). You’ll also need to make sure that

your JAVA_HOME environment variable is set. This has probably already been set if you

have Java installed, but if it hasn’t, you can add the following line:

JAVA_HOME=<path to where Java is installed>

In the following example, we set JAVA_HOME to /opt/java/java-1.7.0:

JAVA_HOME=/opt/java/java-1.7.0

You’ll need to be able to execute Grails-related commands from anywhere in your

command line, so you should set the GRAILS_HOME/bin directory to be in your PATH,

as follows:

PATH=$PATH:$GRAILS_HOME/bin

Save your user shell configuration file, and when you next start a new shell, the three

environment variables will be set. You can now execute grails with its -version

parameter to make sure the basic install has worked:

grails -version

Grails version: 2.0.1

That completes the POSIX-based section on installing Grails. You can now go back to

chapter 13 to start your first Grails project!

MS WINDOWS

In MS Windows, the best place to set the environment variables is via the GUI provided

when you manage your computer. To do so, follow these steps:

1 Right-click My Computer, then click Properties.

2 Click the Advanced tab.

3 Click Environment Variables.

4 Click New to add a new variable name and value.

Now you need to set the GRAILS_HOME environment variable. Add the following line,

replacing <installation directory> with the location where you unzipped the con-

tents of the Grails zip file.

GRAILS_HOME=<installation directory>

In the following example, we unzipped the Grails file to C:\languages\grails-2.0.1:

GRAILS_HOME=C:\languages\grails-2.0.1

440 APPENDIX C Installing alternative JVM languages

Grails also needs the Java JDK to run, and any version greater than 1.5 is fine (though,

by this stage you likely have JDK 1.7 installed). You’ll also need to make sure that your

JAVA_HOME environment variable is set. This has probably already been set if you have

Java installed, but if it hasn’t, you can add the following line:

JAVA_HOME=<path to where Java is installed>

In the following example, we set JAVA_HOME to C:\Java\jdk-1.7.0:

JAVA_HOME=C:\Java\jdk-1.7.0

You’ll need to be able to execute Grails-related commands from anywhere in your

command line, so you should also set the GRAILS_HOME\bin directory to be in

your PATH:

PATH=%PATH%;%GRAILS_HOME%\bin

Click OK until you’ve exited the management screens for My Computer. When you

next start a new command line, the three environment variables will be set. You can

now execute grails with its -version parameter on the command line to make sure

the basic install has worked:

grails -version

Grails version: 2.0.1

That completes the MS Windows section on installing Grails. You can now go back to

chapter 13 to start your first Grails project!

441

appendix D
Downloading

and installing Jenkins

This appendix covers the download and installation of Jenkins, which is required

for chapter 12. Downloading and installing Jenkins is simple. If you do run into any

trouble, you can probably find some help in the wiki at https://wiki.jenkins-ci.org/

display/JENKINS/Meet+Jenkins.

D.1 Downloading Jenkins

You can download Jenkins from http://mirrors.jenkins-ci.org/. For the examples in

chapter 12, we used Jenkins 1.424.

 The common, OS-independent way to install Jenkins is to use the jenkins.war

package. But if you’re not familiar with running your own web server, such as

Apache Tomcat or Jetty, you can download the standalone package for your OS.

TIP The Jenkins team puts out new releases with impressive frequency,
which can be disconcerting for teams who like a little more stability in their
CI server. The Jenkins team has addressed this concern, and they now offer
a Long Term Support (LTS) version of Jenkins.

Next up, you need to follow some simple installation steps.

D.2 Installing Jenkins

After downloading either the WAR file or the standalone package for your OS, you

need to install Jenkins. Jenkins needs the Java JDK to run, and any version greater

than 1.5 is fine (though, by this stage, you likely already have JDK 1.7 installed). We’ll

cover the WAR installation first, followed by the standalone package installation.

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://mirrors.jenkins-ci.org/

442 APPENDIX D Downloading and installing Jenkins

D.2.1 Running the WAR file

You can install Jenkins very quickly by executing the Jenkins WAR file directly on the

command line:

java -jar jenkins.war

This installation method should probably only be used for a quick trial of Jenkins as it

is harder to configure other web server–related variables that a smoothly running

installation might need.

D.2.2 Installing the WAR file

For a more permanent installation, deploy the WAR file to your favorite Java-based web

server. For the purposes of the java7developer project, we simply copied the jenkins

.war file into the webapps directory of a running Apache Tomcat 7.0.16 server.

 If you’re unfamiliar with WAR files and Java-based web servers, you can always go

for the standalone package installation.

D.2.3 Installing the standalone package

The standalone package is also simple to install. For Windows-based OSs, unzip the

jenkins-<version>.zip file and run the exe or msi installer. For the various Linux

distributions, you’ll need to run the appropriate yum or rpm package manager. For

Mac OS X, you run the pkg file.

 In all cases, you can select the default options that the installer offers, or, if you

wish, you can customize installation paths and other settings.

 By default, Jenkins stores its configuration and jobs under the home directory of

the user (which we’ll refer to as $USER) in a .jenkins directory. If you need to edit any

configuration outside of the UI, you can do so there.

D.2.4 Running Jenkins for the first time

You’ll know that you’ve installed Jenkins correctly by going to its dashboard (typically

located at http://localhost:8080/ or http://localhost:8080/jenkins) with your favorite

web browser. You should see a screen similar to figure D.1.

 Now that you have Jenkins installed, you can get started on creating a Jenkins job.

Head back to the Jenkins section in chapter 12!

http://localhost:8080/
http://localhost:8080/jenkins

443Installing Jenkins

Figure D.1 Jenkins dashboard

444

appendix E
Java7developer—
the Maven POM

This appendix covers sections of the pom.xml file that builds the java7developer

project discussed in chapter 12. This appendix expands on the contents of the

important parts of the pom.xml file, so you can understand the full build. Basic

project information (section 12.1) and profiles (listing 12.4) are covered ade-

quately in chapter 12, so we’ll look at these two sections of the POM here:

■ The build configuration

■ The dependencies

We’ll begin with the longest section, the build configuration.

E.1 Build configuration

The build section contains the plugins and their configuration, which you need in

order to execute the Maven build lifecycle goals. For many projects, this section is

quite small, because the default plugins at their default settings are usually adequate.

But for the java7developer project, the <build> section contains several plugins

that override some of the defaults. We do this so that the java7developer project can

■ Build the Java 7 code

■ Build the Scala and Groovy code

■ Run Java, Scala, and Groovy tests

■ Provide Checkstyle and FindBugs code metric reports

If you need to configure further aspects of your build, you can check out the full

list of plugins at http://maven.apache.org/plugins/index.html.

 The following code listing shows the build configuration for the java7-

developer project.

http://maven.apache.org/plugins/index.html

445Build configuration

<build>
 <plugins>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <showDeprecation>true</showDeprecation>
 <showWarnings>true</showWarnings>
 <fork>true</fork>
 <executable>${jdk.javac.fullpath}</executable>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.scala-tools</groupId>
 <artifactId>maven-scala-plugin</artifactId>
 <version>2.14.1</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <scalaVersion>2.9.0</scalaVersion>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.codehaus.gmaven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <version>1.3</version>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>
 <artifactId>gmaven-runtime-1.7</artifactId>
 <version>1.3</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <configuration>
 <providerSelection>1.7</providerSelection>
 </configuration>
 <goals>
 <goal>generateStubs</goal>
 <goal>compile</goal>
 <goal>generateTestStubs</goal>

Listing E.1 POM—build information

Specify plugin
to use

b

Compile Java 7
code

c

Set compiler
options

d

Set path
to javace

Force Scala
compilation

f

446 APPENDIX E Java7developer— the Maven POM

 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>properties-maven-plugin</artifactId>
 <version>1.0-alpha-2</version>
 <executions>
 <execution>
 <phase>initialize</phase>
 <goals>
 <goal>read-project-properties</goal>
 </goals>
 <configuration>
 <files>
 <file>${basedir}/build.properties</file>
 </files>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.9</version>
 <configuration>
 <excludes>
 <exclude>
 com/java7developer/chapter11/listing_11_2
 ➥ /TicketRevenueTest.java
 </exclude>
 <exclude>
 com/java7developer/chapter11/listing_11_7
 ➥ /TicketTest.java
 </exclude>
 ...
 </excludes>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <includeTestSourceDirectory>
 true
 </includeTestSourceDirectory>
 </configuration>
 </plugin>

Exclude
tests

g

Run Checkstyle
on tests

447Dependency management

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <findbugsXmlOutput>true</findbugsXmlOutput>
 <findbugsXmlWithMessages>
 true
 </findbugsXmlWithMessages>
 <xmlOutput>true</xmlOutput>
 </configuration>
 </plugin>

</build>

You need to specify that you’re using the Compiler plugin (at a particular version) B
because you want to change the default behavior of compiling Java 1.5 code to Java 1.7 c.

 And because you’ve already broken from convention, you might as well add a few

other useful compiler warning options d. You can also specify where your Java 7

installation is e. Simply copy over the sample_build.properties file for your OS to

build.properties and edit the value of the jdk.javac.fullpath property in order for

the location of javac to be picked up.

 In order to get the Scala plugin working, you need to ensure that it gets executed

when you run the compile and testCompile goals f.1 The Surefire plugin allows you to

configure the tests. In the configuration for this project, you’re excluding several tests g
that deliberately fail (you’ll remember these two tests from chapter 11 on TDD).

 Now that we’ve covered the build section, let’s move on to the other vital part of

the POM, the dependency management.

E.2 Dependency management

The list of dependencies for most Java projects can be quite long, and the

java7developer project is no different. Maven helps you manage those dependen-

cies—it has a vast store of third-party libraries in the Maven Central Repository. Cru-

cially, those third-party libraries have their own pom.xml files that declare their

respective dependencies, allowing Maven to figure out and download any further

libraries you require.

 There are two main scopes (compile and test) that you’ll initially use.2 These

pretty much correspond to putting the JAR files on your CLASSPATH for compiling your

code and then running your tests.

 The following listing shows the <dependencies> section for the java7developer

project.

1 We expect future versions of this plugin to hook into the goals automatically.
2 J2EE/JEE projects also typically have some dependencies declared with a runtime scope.

Generate
FindBugs report

448 APPENDIX E Java7developer— the Maven POM

<dependencies>

 <dependency>
 <groupId>com.google.inject</groupId>
 <artifactId>guice</artifactId>
 <version>3.0</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>1.8.6</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>3.6.3.Final</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.ow2.asm</groupId>
 <artifactId>asm</artifactId>
 <version>4.0</version>
 <scope>compile</scope>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.8.5</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.scalatest</groupId>
 <artifactId>scalatest_2.9.0</artifactId>
 <version>1.6.1</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>

Listing E.2 POM—dependencies

Unique ID
of artifact

b

compile
scopec

test
scope

d

compile
scope

e

449Dependency management

 <version>2.2.4</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>javassist</groupId>
 <artifactId>javassist</artifactId>
 <version>3.12.1.GA</version>
 <scope>test</scope>
 </dependency>
</dependencies>

In order for Maven to find the artifact that you’re referencing, it needs the correct

<groupId>, <artifactId>, and <version> B. As we alluded to earlier, setting the

<scope> to compile c will add those JARs to the CLASSPATH for compiling the code.

Setting the <scope> to test d will ensure that those JARs are added to the CLASSPATH

when Maven compiles and runs the tests. The scalatest library is the odd one out—it

should be at the test scope, but it requires a compile scope e to work.3

 The Maven pom.xml file isn’t quite as compact as we’d like, but we’re performing

a three-language build (Java, Groovy, and Scala) with some reporting thrown in as

well. We expect to see polyglot language Maven build scripts become more concise

as tooling support improves in this area.

3 We expect this to be resolved in future versions of the plugin.

450

index

Symbols

@Inject annotation 59–60, 62–

63, 65, 67, 71
@Named annotation 65
@Provides annotation

bindings for Guice 3 72–73
scope of injected objects 74

@Qualifier annotation 62, 64–

65
@Retention annotation 64
@SafeVarargs 18
@Scope annotation 65–66
@Singleton annotation 66
@Target annotation 64

A

AbstractList 412
AbstractMap 412
AbstractQueue 412
Access control 131
access modifiers, in Groovy

225
accessor methods 188
AccountInfo 175
accuracy, of hardware time 166–

167
act() method 249, 276
ActionListener 413
Actor class 276
actors, in Scala 248–249

communicating with 276–278
overview 276

adder() method 257

AgentFinder 59
@Inject 68
getFriendlyAgents method

59
hard-coded 57
HollywoodService 56, 59–60
injected at runtime 60
which to choose 58

agentFinder bean 125
AgentFinderFactory 58–59
AgentFinderFactory.get-

Instance() method 58
AgentFinderModule class 68, 72
agentFinderType 58
agents, concurrency in

Clojure 309–310
ahead-of-time. See AOT
alternative JVM languages

193–212
choosing 205–208

development
community 208

language interpolation with
Java 206–207

learning curve 207
low-risk project area

205–206
support for testing 207

Clojure 204
compiler fictions 209–211

first-class functions
210–211

multiple inheritance 211
Groovy 204
polyglot programming on

JVM 202–203

runtime environments
for 209

Scala 204
shortcomings of Java

194–198
and functional

programming 196–197
map and filter idioms

197–198
reconciliation system

example 194–196
amount() method 243
Ant tool 345
AnyRef class 258
AOT (ahead-of-time) 185, 201
append() method 145, 269
application classloader 123
Appointment class 104
arithmetic opcodes 141
ArrayList class 99, 222
ArrayList[String]() method 268
Arrays.sort() method 114
arrow syntax 231
artifact manager 353
<artifactId> element 349
assertEquals() method 324–325
asynchronous I/O

operations 43–47
callback style 46–47
future style 44–46

AsynchronousChannelGroup
class 45

AsynchronousFileChannel 21,

43, 45, 47
AsynchronousServerSocket-

Channel 43, 47

INDEX 451

AsynchronousSocketChannel
43, 47

Atomic class 92, 118
attributes, for files 36–39

filesystem-specific
support 37–38

symbolic links 38–39
attrs.owner() method 38
attrs.permissions() method 38
AutoCloseable interface 16
await() method 96

B

basic project information, in
pom.xml file 349

BasicFileAttributes 32, 36–37
Bean Scripting Framework. See

BSF
BigDecimal class 219–220, 315,

324
BigDecimal.add() method 325
binary literals, syntax for 10–11
bind() method 73–74
binding annotations, bindings

for Guice 3 71–72
binding scope 222
bindings, for Guice 3 70–73

@Provides annotation 72–73
binding annotations 71–72
linked bindings 71
Provider<T> interface 72–73

BlockingQueue interface
container class for 102–104
example of 104–105
overview 102
timeout for 105–107

block-structured
concurrency 83–91

deadlocks 86–88
fully synchronized objects 85–

86
immutability 90–91
state model for thread 84–85
synchronization and

locks 83–84
volatile keyword 89
what is being

synchronized 88–89
BootStrap class 391
BootstrapMethods table 148
BSF (Bean Scripting

Framework) 237
build configuration, for pom

.xml file 350–351, 444–447

Build Executor Status 364
<build> section 350
build.properties file 364
Builder class 90
ByteBuffer 421
bytecode 5, 136–145, 199, 201,

208–210
disassembling class 137–138
opcodes in

arithmetic 141
execution control 142–143
invocation 143
invokedynamic 146–148
load 141
overview 140–141
platform operation 143–

144
shortcut forms for 144
store 141

runtime environment
for 138–140

string concatenation example
in 144–145

C

CalculateMax class 238
call() method 109, 210
Callable interface 108–109, 126,

210, 301
Callback paradigm 43
callback style, for asynchronous

I/O operations 46–47
cancel() method 109–110, 128,

130
capacity, defined 153
case classes, in Scala 247–248,

264–266
CashFlow class 244, 260
changes, in Java 7 9–18

diamond syntax 16–17
exception handling 12–13
strings in switch 9–10
syntax for numeric

literals 10–11
try-with-resources 13–16
varargs methods 17–18

channel.size() method 42
Character class 227
Checkstyle plugin 367–368
checkstyle:checkstyle goal 367
chip multithreading. See CMT
classes

class files 132–136
constant pool in 134–136

javap 132
method signatures in 132–

134
Class objects 122
classloaders 122–123
disassembling 137–138
linking 121
loading 120–121
scope of injected objects 73–

74
verifying 121–122

preparation 122
resolution 122

classloading 122–123
in dependency injection 124–

125
measuring performance

via 156–157
ClassNotFoundException 120
CLASSPATH 216, 219,

236–237
clean goal 354, 356
client compiler, for HotSpot

VM 186
clj-time library 374
Clojure 279–310

concurrency in 303–310
agents 309–310
futures and pcalls 304–305
refs 306–309

correcting mistakes in 282–

283
data structures in 285–287
functional

programming 293–295
functions in 289–291
hello world in 281
installing 437–438
interoperating between Java

and 299–303
calling Java from 299–300
exploratory programming

with REPL 302
Java type of Clojure

values 300–301
using Clojure proxies 301–

302
using in Java 302–303

lack of operators in 287–288
loops in 291–292
overview 204
Polish notation of 283
reader macros in 292–293
REPL for 281–282
sequences in 295–299

INDEX452

Clojure (continued)
and variadic functions 298–

299
lazy sequences 297–298
overview 295–297
vs. Java iterators 295–299

special forms in 284–285
Clojure interface 374–375
Clojure object 300–301
CMS (Concurrent Mark-

Sweep) 169, 182–183
CMT (chip multithreading) 162
code metrics 365–372

Checkstyle plugin 367–368
FindBugs tool 369–372
Jenkins plugins 366–367

coding mistakes 371
Collections class 97
collections, in Groovy 231–232
com.sun.script.javascript

package 201
communicating, with

actors 276–278
companion objects, in

Scala 262–264
compareTo() method 112, 127
compile findbugs:findbugs

goals 370
compile goal 354–355, 429–430
compile scope 448–449
compiled languages, vs. inter-

preted languages 199
compiler fictions 209–211

first-class functions 210–211
multiple inheritance 211

compiler, for Scala 252
compiling

Groovy 216
Compojure 399–409

hello world with 399–401
routes in 401–402
using Hiccup with 402–403

compute() method 112
concurrency 76–118

and future of Java 416–418
and many-core world 417
runtime-managed 417–418

BlockingQueue interface
container class for 102–104
example of 104–105
overview 102
timeout for 105–107

block-structured
concurrency 83–91
deadlocks 86–88

fully synchronized
objects 85–86

immutability 90–91
state model for thread 84–

85
synchronization and

locks 83–84
volatile keyword 89
what is being

synchronized 88–89
ConcurrentHashMap

class 97–99
controlling execution 108–

111
Callable interface 108–109
Future interface 109
FutureTask class 110
ScheduledThreadPool-

Executor class 110–111
CopyOnWriteArrayList

class 99–102
CountDownLatch class 96–97
fork/join framework 111–116

example using 112–114
ForkJoinTask class 114–115
when to use 115–116

in Clojure 303–310
agents 309–310
futures and pcalls 304–305
refs 306–309

in Java 77–78
Java Memory Model 116–117
java.util.concurrent.atomic

package 92
Lock interface 93–96
theory of

concurrent type safety 79
liveness 79–80
performance 80
reusability 80
sources of overhead 81
transaction processor

example 81–83
TransferQueue

interface 107–108
Concurrent Mark-Sweep. See

CMS
concurrent type safety, theory of

concurrency 79
ConcurrentHashMap class 97–

99, 101, 110, 118
ConcurrentMap interface 98
config file 12
Config.groovy file 396
configure() method 68, 72

confirmUpdate() method 94–

96
conflicts, theory of

concurrency 80–81
console, for Groovy 217
constant pool, in class files 134–

136
constructors, in Scala 259–260
container class, for Blocking-

Queue interface 102–104
contains() method 195–197
containsCaseInsensitive()

method 195
continuous integration

342–379
code metrics 365–372

Checkstyle plugin 367–368
FindBugs tool 369–372
Jenkins plugins 366–367

Jenkins 357–364
build 362–364
build tool

configuration 360
build triggers 362
executing job 364
source code

management 361
version control

configuration 360
controllers, in Grails 392–393
converting paths 29–30
copying files 35
CopyOnWriteArrayList class 99,

101–102
CopyOptions method 35
coroutines, and future of

Java 419–420
costs, involved in performance

tuning 158
count() method 391
countDown() method 96–97
CountDownLatch class 96–97
CounterClockwise plugin 374,

438
covariance, with generic

types 274–275
create() method 303
Currency class 315
currency() method 243
currentTimeMillis()

method 159, 166
custom classloader 123

INDEX 453

D

DAO (data access object) 63
data structures, in Clojure 285–

287
database driver 391
Date type 221
deadlocks, block-structured

concurrency 86–88
default view, for jmap tool

173
defproject macro 374
deftest macro 377
degradation, defined 154
delete() method 397
deleting files 34–35
deoptimization, with HotSpot

VM 190
<dependencies> section 352
Dependency Injection. See DI
dependency management

for pom.xml file 447–449
in pom.xml file 352–353

DI (Dependency Injection) 53–

75
and IoC 54–55
classloaders in 124–125
overview 55–56
standardized 61–67

@Inject annotation 62–63
@Named annotation 65
@Qualifier annotation 64–

65
@Scope annotation 65–66
@Singleton annotation 66
Provider<T> interface 66–

67
transitioning to 56–61

from factory or service loca-
tor patterns 58–59

with JRS-330 DI 59–61
using Guice 3 67–74

bindings for 70–73
object graph using 68–70
scope of injected

objects 73–74
diamond syntax, in Java 7 9, 16–

17
direct measurement, for

performance 156
directories 30–33

finding files in 30–31
navigating directory tree 31–

33
DirectoryStream 30–31

disassembling
classes 137–138
invokedynamic call 147–148

distinguishability 167
domain objects, in Grails

creating 387–388
persistence of 390–391

DOMCategory 235
downloading

Grails 438
Groovy 434
Jenkins 441

dummy objects, for TDD 326–

328
dump files, creating with jmap

tool 176
dynamic compilation 185
dynamic typing, vs. static

typing 199–200
dynamic variables, vs. static

variables 221

E

Eden 171–173, 179–180
efficiency, defined 153
Elvis operator, in Groovy 228–

229
Enterprise Java 61
entries array 422
Entry type 422
equality, in Groovy 225–226
equals() method 225–226, 248,

259, 265, 288, 323, 365
escape analysis 181–182
examine() method 260
ExampleTimingNode class 85
exception handling

in Groovy 225
in Java 7 12–13

execution control opcodes 142–

143
execution, controlling 108–111

Callable interface 108–109
Future interface 109
FutureTask class 110
ScheduledThreadPool-

Executor class 110–111
Executors class 82, 110
exploratory programming, with

Clojure 302
extended logging switches 178
extensible markup language. See

XML
extension classloader 123

extension methods, and future
of Java 412

extractPrimaryKeys()
method 197

F

factHelper() method 255
failing tests, for TDD 317–318,

322–323
fake objects, for TDD 331–336
fibers 420
File object 15, 409
file.getFileName() method 32
file.toPath() method 30
FileAttribute interface 37
FileAttributeView interface 38
FileChannel class 42
FileInputStream 15
Files class 33–43, 407

and NIO.2 Path 30
copying files 35
creating files 34–35
deleting files 34–35
file attributes 36–39

filesystem-specific
support 37–38

symbolic links 38–39
limitations 23
moving files 35
reading files 40–41
watching for changes to

files 41–42
writing files 40–41

Files.createFile 25, 34
Files.delete(Path) method 35
Files.newBufferedReader

method 40
Files.newDirectoryStream 31
Files.readAllBytes 26, 41
Files.readAttributes 21, 36, 39
Files.walkFileTree 21, 31–32
FileSystem 432–433
FileSystems.getDefault()

method 26–27
filesystem-specific support, for

file attributes 37–38
FileVisitor interface 31
filter() method 197–198
final rethrow 13
FindBugs tool 366, 369–372
finding files, in directories 30–

31
FindJavaVisitor() method 32
first() method 303

INDEX454

for loop 195
fork/join framework 111–116

example using 112–114
ForkJoinTask class 114–115
when to use 115–116

ForkJoinTask class 114–115
frameworks, not ideal for web

development 383–385
full collections, mark and sweep

algorithm 172
fully synchronized objects,

block-structured
concurrency 85–86

function literals, in Groovy 230–

231
functional languages, vs. impera-

tive languages 200
functional programming 196

and Scala 204
and shortcomings of

Java 196–197
Clojure 293–295
conceptual basics of 196
how named 197
in Scala 257–258
key concept 210

functions, in Clojure 289–291
Future interface 109
future of Java

concurrency 416–418
and many-core world 417
runtime-managed 417–418

JVM 418–423
coroutines 419–420
tuples 421–423
VM convergence 418–419

lambda expressions 411–413
and extension methods 412
SAM conversion 412–413

modularization 413–414
polyglot programming 414–

416
language

interoperability 415–416
multilanguage

modularity 416
Future paradigm 43
future style, for asynchronous

I/O operations 44–46
futures, concurrency in

Clojure 304–305
FutureTask class 108, 110

G

G1 (Garbage First)
collector 183–184

garbage collection 169–184
and escape analysis 181–182
CMS collector 182–183
G1 collector 183–184
jmap tool 172–176

creating dump files 176
default view for 173
heap view for 173–174
histogram view for 174–176

JVM parameters for 176–177
logs for 177–178
mark and sweep

algorithm 170–172
areas of memory 171
full collections 172
safepoints 172
young collections 172

overview 170
VisualVM tool 178–180

garbage collection switches
177

generic types, in Scala 272–275
covariance with 274–275
example of 273–274
type inference for 272–273

get() method 67, 72, 109–110,

271, 286
getAndIncrement() method 92
getNullStream() method 15
getSuperClass() method 122
gettimeofday() method 168
glob patterns 31, 432–433

examples 433
syntax 432

GORM, in Grails 397–398
Gradle 345
Grails 438–440

controllers in 392–393
domain object creation

in 387–388
domain object persistence

in 390–391
downloading 438
GORM in 397–398
GSP views in 393–394
installing 438–440

MS Windows 439–440
POSIX-based OS 438–439

logging in 396–397
overview 385–386
plugins for 398

rapid development with 395–

396
scaffolding with 395
test data in 391–392
test-driven development

in 388–390
Grails file 439
Grails object 396
GRAILS_HOME environment

variable 439
GRAILS_HOME/bin

directory 439
granularity, of hardware

time 167
Groovy 213–240, 434–436

BigDecimal types in 219–220
calling from Java 237–240

using GroovyClassLoader
238–239

using GroovyScriptEngine
239–240

using GroovyShell 237–238
calling Java from 236–237
compiling 216
console for 217
default imports 219
downloading 434
installing 434–436

MS Windows 436
POSIX-based OS 435–436

lists in 222–223
maps in 222–223
overview 204
running 216
unique features 226–236

Elvis operator 228–229
function literals 230–231
GroovyBeans 227
GString class 229–230
manipulating

collections 231–232
regular expressions

support 233–234
safe-dereference

operator 228
XML handling 234–236

variables in 220–222
dynamic vs. static 221
scope for 221–222

vs. Java 223–226
access modifiers 225
equality 225–226
exception handling 225
inner classes supported

226

INDEX 455

Groovy (continued)
parentheses for method

parameters are
optional 224

return statements are
optional 224

semicolons are
optional 224

Groovy class 238
Groovy console 217

alternative to using 218
calling Groovy from inside

Java app 237
illustrated 217

Groovy file 238
Groovy method 215
Groovy statement 217
GROOVY_HOME environment

variable 435–436
GROOVY_HOME/bin

directory 435–436
groovy.json.JsonBuilder()

method 235
GroovyBeans 227
GroovyClassLoader 236–239
GroovyObject 215
GroovyScriptEngine 236–237,

239–240
groovyserv library 218
GroovyShell 236–238
<groupId> element 349
GSP views, in Grails 393–394
GString class, in Groovy 229–

230
Guice 3 67–74

bindings for 70–73
@Provides annotation 72–

73
binding annotations 71–72
linked bindings 71
Provider<T> interface 72–

73
object graph using 68–70

standalone Java 69–70
web application 70

scope of injected objects 73–

74
for classes 73–74
using @Provides

annotation 74
using bind() sequence 74

Guice framework 61, 68
Guice object 69–70

H

handleRequest() method 155,

157
hardware time 163–169

accuracy 166–167
case study 167–169
granularity 167
hardware clocks 163–164
nanoTime() issues 164–166
network-distributed

timing 167
precision 166

hashCode() method 247, 265
HashSet 197
heap view, for jmap tool 173–

174
Hiccup, using with

Compojure 402–403
High Precision Event Timers. See

HPETs
histogram view, for jmap

tool 174–176
Hollywood Principle 54
HollywoodService

and AgentFinder 56, 60, 68
and SpreadsheetAgentFinder

57
using @Named 71
with DI 59
with factory lookup for

AgentFinder 58
with hard-coded

AgentFinder 57
with JSR-330 DI 59

HollywoodServiceJSR330
class 60

HotSpot VM 184–190
and real-time JAVA 186–187
client compiler 186
compilation logs for 188–190
deoptimization with 190
inlining methods in 187
monomorphic calls 188
server compiler 186

HPETs (High Precision Event
Timers) 164

HSQLDB database 332, 335–

336
HTTP method 401, 406
HttpPrice class 328–330
HttpPricingService class 328
Hudson project 358

I

I/O activity 44, 46
I/O operations 20–50

asynchronous 43–47
callback style 46–47
future style 44–46

directories 30–33
finding files in 30–31
navigating directory

tree 31–33
Files class 33–43

copying files 35
creating files 34–35
deleting files 34–35
file attributes 36–39
moving files 35
reading files 40–41
watching for changes to

files 41–42
writing files 40–41

in previous versions 22–24
and NIO.2 24
Java 1.0 to 1.3 22–23
Java 1.4 and NIO 23

Path class 24–30
and legacy code 30
converting paths 29–30
creating object 27
removing

redundancies 28–29
retrieving information

from 27–28
SeekableByteChannel

interface 42–43
Socket-Channel

functionality 47–50
MulticastChannel

interface 49–50
NetworkChannel

interface 48–49
ILP (instruction-level

parallelism) 162
immutability, block-structured

concurrency 90–91
immutable collections, in

Scala 268–269
imperative languages, vs.

functional languages
200

import notation 236
import statement 207
imports

default, for Groovy 219
in Scala 255

INDEX456

inlining methods, in HotSpot
VM 187

inner classes, in Groovy 226
InputStream 14–15, 40
install goal 356–357
install:install-file goal 353
installing

Grails 438–440
MS Windows 439–440
POSIX-based OS 438–439

Groovy 434–436
MS Windows 436
POSIX-based OS 435–436

Java7developer-source
code 424–431

Jenkins 441–442
installing standalone

package 442
installing WAR file 442
running Jenkins for first

time 442
running WAR file 442

Maven 425–427
instruction-level parallelism. See

ILP
Int class 258, 267
interoperating, Java and

Clojure 299–303
calling Java from 299–300
exploratory programming

with REPL 302
Java type of Clojure

values 300–301
using Clojure proxies 301–302
using in Java 302–303

interpreted languages, vs. com-
piled languages 199

Inversion of Control. See IoC
invocation opcodes 143
invoke() method 128
invokedynamic 7, 146–148,

411–412, 415–416
and javac 146
bring to JVM 126
calls optimized by JIT

compiler 147
disassembling call 147
how it works 146
unusual appearance 146

invokedynamic bytecode 215
invokedynamic opcodes 146–

148
disassembling invokedynamic

call 147–148
overview 146–147

invokeExact() method 128
IoC (Inversion of Control), and

DI 54–55
IOException 12–14, 26–27
isCancelled() method 110
isDone() method 45, 109–110
ISeq interface 301
it variable 232
it.hasNext() method 295
it.next() method 295
Iterator interface 295
iterator() method 302
iterators, vs. sequences 295–

299

J

JAR file 209, 337, 344, 349, 352,

356–357, 377
Java

not ideal for web
development 381–383
compilation 382–383
static typing 383

vs. Scala 250
Java 1.0 to 1.3, I/O operations

in 22–23
Java 1.4 and NIO, I/O opera-

tions in 23
Java 7 3–18

and Project Coin 5–9
changes in 9–18

diamond syntax 16–17
exception handling

12–13
strings in switch 9–10
syntax for numeric

literals 10–11
try-with-resources 13–16
varargs methods 17–18

language vs. platform 4–5
Java API for XML Processing.

See JAXP
Java Architecture for XML

Binding. See JAXB
Java class 60, 170, 255, 260, 295,

300–301, 413
Java interface 302
Java Language Specification.

See JLS
Java Memory Model. See JMM
Java method 156, 188, 190, 299–

300, 302, 332
Java Native Interface. See JNI
Java type 270, 274, 300

JAVA_HOME environment
variable 426, 435–436, 439–

440
java.io package 40
java.io.File 20, 23, 30, 50
java.lang.SafeVarargs 18
java.nio package 20, 40
java.nio.file.Directory-

Stream<T> interface 30
java.util.concurrent 21, 43–44,

92, 420
java7developer project 348, 424,

428, 444, 447
Java7developer-source code

building 427–431
installing 424–431
installing Maven 425–427

JavaConversions class 269
Javadocs 367
javap 132
javax.inject 61–62, 67
JAXB (Java Architecture for

XML Binding) 214
JAXP (Java API for XML

Processing) 214
JDBC driver 56
JDBCAgentFinder 60
jdk.javac.fullpath property 351,

428, 447
Jenkins 357–364, 441–442

and code metrics 366–367
build 362–364
downloading 441
executing job 364
installing 441–442

installing standalone
package 442

installing WAR file 442
running Jenkins for first

time 442
running WAR file 442

source code management 361
version control

configuration 360
JIT (just-in-time) 5, 199
JLS (Java Language

Specification) 4
jmap tool 172–176

creating dump files 176
default view for 173
heap view for 173–174
histogram view for 174–176

JMM (Java Memory
Model) 116–117

JNI (Java Native Interface) 8

INDEX 457

JRuby 201
JSR 330 59–61
JUnit framework, for TDD 324–

325
just-in-time. See JIT
JVM method 300
JVM parameters, for garbage

collection 176–177
JVM, and future of Java 418–423

coroutines 419–420
tuples 421–423
VM convergence 418–419

JVMTI (JVM Tool
Interface) 156

Jython 201

K

key.pollEvents() method 41
key.reset() method 42

L

lambda expressions, future of
Java 411–413

and extension methods 412
SAM conversion 412–413

language interoperability, and
future of Java 415–416

language, vs. platform 4–5
latency, defined 152
Latest Test Result 364
lazy sequences 297–298
legacy code, and Path class 30
lein jar command 377–378
lein uberjar command 377–378
Leiningen command 399
limitations, of Scala 266–267
linked bindings, bindings for

Guice 3 71
LinkedHashMap 222
LinkedList class 269
linking classes 121
LinkOption.NOFOLLOW_

LINKS option 39
list collection, in Scala 268–271

immutable and mutable
collections available 268–

269
traits for 269–271

List interface 286, 412
listing.getFileName()

method 28
listing.getNameCount()

method 28

listing.getParent() method 28
listing.getRoot() method 28
listing.toAbsolutePath()

method 27, 30
listing.toFile() method 30
lists, in Groovy 222–223
liveness, theory of

concurrency 79–80
load opcodes 141
loading classes 120–121
LocalDate() method 398
Lock interface 93–96
lock() method 94
locks, block-structured

concurrency 83–84
Log file 115
loggability guard 159
logging, in Grails 396–397
logs

for garbage collection 177–

178
for HotSpot VM 188–190

lolcat captions 7
lookupClass() method 131
loops

in Clojure 291–292
in Scala 256

M

M2_HOME environment
variable 426

main_ref key 194
main() method 125, 244–245,

263–264
Manage Plugins link 366
Map class 271
map collection, in Scala 271–

272
map() method 197, 412
mark and sweep algorithm 170–

172
areas of memory 171
full collections 172
safepoints 172
young collections 172

match expressions, in
Scala 245–247, 264–266

match() method 233
Matcher object 233
Maven

installing 425–427
pom.xml file 444–449

build configuration 444–

447

dependency management
447–449

Maven 3
overview 345–348
pom.xml file for 348–354

basic project
information 349

build configuration 350–

351
dependency

management 352–353
profiles 353–354

running examples 354–357
clean 354
compile 354–355
install 356–357
test 355–356

Maven Central Repository 447
max() method 228
measuring performance

how to measure 156–157
direct measurement 156
via classloading 156–157

what to measure 155
memory latency, reasons for

performance tuning 161–

162
Message object 67
Metaobject Protocol. See MOP
method handles 125–131

looking up 127–128
MethodHandle object 126
MethodType object 127
reasons to use 131
vs. proxies 128–131
vs. reflection 128–131

method signatures, in class
files 132–134

MethodHandles 411, 416
MethodHandles.lookup()

method 131
methods, in Scala 254–255
MethodType class 127
microblogging service 21
MicroBlogTimeline class 100
MicroBlogUpdateSorter

class 112
mock objects, for TDD 336–338
mock() method 337
modularization, and future of

Java 413–414
monomorphic calls, in HotSpot

VM 188
Moore’s Law, reasons for perfor-

mance tuning 160–161

INDEX458

MOP (Metaobject
Protocol) 415

moving files 35
MS Windows, installing

Grails 439–440
Groovy 436

MulticastChannel interface
49–50

multilanguage modularity, and
future of Java 416

multimodule project 357
multiple use cases, for

TDD 320–322
MurmurMessage 62–63, 65, 67
MusicGenre type 64
mutable collections, in

Scala 268–269
mvn archetype:generate goal

348

N

Named type 71
nanoTime() method 163–166
navigating, directory tree 31–33
Navigator interface 416
negative degradation 154
Network Time Protocol. See NTP
NetworkChannel construct 20
NetworkChannel interface 48–

49
network-distributed timing 167
newScheduledThreadPool()

method 110
next() method 295, 303
nextId() method 92
NoClassDefFoundError 120
non-deterministic pauses 171
normalize() method 29
NTP (Network Time

Protocol) 163
NullPointerException 228
numbers, underscores in 11
numeric literals, syntax for 10–11

binary literals 10–11
underscores in numbers 11

O

obj.getClass() method 247
Object class 383
object graphs, using Guice

3 68–70
standalone Java 69–70
web application 70

object model, for Scala 258–267
ObjectInput file 15
ObjectInputStream 15
offer() method 105
old generation 171–172, 180
on-stack replacement. See OSR
OO languages 200
opcodes

arithmetic 141
execution control 142–143
invocation 143
invokedynamic 146–148

disassembling invoke-
dynamic call 147–148

overview 146–147
load 141
overview 140–141
platform operation 143–144
shortcut forms for 144
store 141

Open file 45
OpenJDK project 414, 418, 423
operators

in Clojure 287–288
in Groovy

Elvis operator 228–229
safe-dereference

operator 228
original languages, vs. reimple-

mentation languages 201–

202
OSR (on-stack

replacement) 189
out.close method 14
out.toString() method 109
OutputStream 14, 40

P

parentheses, for method
parameters 224

parseInt method 10
parseText() method 236
parsing, XML in Groovy 235–

236
passing tests, for TDD 318, 323
Path class 24, 26–27

and legacy code 30
converting paths 29–30
creating object 27
removing redundancies 28–

29
retrieving information

from 27–28
Path file 32, 34, 39, 45, 47

Path method 29, 39
Pattern object 233, 293
pauses, non-deterministic 171
pcalls, concurrency in

Clojure 304–305
performance tuning 150–190

and hardware time 163–169
accuracy 166–167
case study 167–169
granularity 167
hardware clocks 163–164
nanoTime() issues 164–166
network-distributed

timing 167
precision 166

and HotSpot VM 184–190
and real-time JAVA 186–187
client compiler 186
compilation logs for 188–

190
deoptimization with 190
inlining methods in 187
monomorphic calls 188
server compiler 186

capacity, defined 153
degradation, defined 154
difficulty of with Java 162–163
efficiency, defined 153
garbage collection 169–184

and escape analysis 181–

182
CMS collector 182–183
G1 collector 183–184
jmap tool 172–176
JVM parameters for 176–

177
logs for 177–178
mark and sweep

algorithm 170–172
overview 170
VisualVM tool 178–180

latency, defined 152
reasons for 159–163

memory latency 161–162
Moore’s Law 160–161

required knowledge for 154–

159
costs involved 158
how to measure 156–157
performance goals 157
premature

optimization 158–159
what to measure 155
when to stop trying 157–

158

INDEX 459

performance tuning (continued)
scalability, defined 154
throughput, defined 152–153
utilization, defined 153

performance, theory of
concurrency 80

Perl programming language 23
PermGen 171, 173, 180, 419
Person class 214, 228, 235–236
platform operation

opcodes 143–144
platform, vs. language 4–5
PlayerCharacter class 387–389,

395–396
listing GSP page 393
return a list of objects 392

PlayerCharacter table 390
PlayerCharacter.groovy file 396
PlayerCharacterController

class 392, 395
plugins, for Grails 398
Polish notation, of Clojure 283
poll() method 110–111
polyglot programming

pyramid 202–203
polyglot programming, and

future of Java 414–416
language

interoperability 415–416
multilanguage

modularity 416
reasons to use other

languages 203–204
POM (Project Object

Model) 345, 428
pom.xml file 348–354, 444–449

basic project information 349
build configuration 350–351,

444–447
dependency

management 352–353,

447–449
profiles 353–354

positive degradation 154
POSIX-based OS, installing

Grails 438–439
Groovy 435–436

PosixFileAttributes class 37–38
PosixFilePermission class 34,

37–38
posixPermissions.clear()

method 38
precision, of hardware time 166
premature optimization, of

performance 158–159

preparation, for verifying
classes 122

Price interface 328–330
primordial classloader 123
PrintCompilation 189
println() method 145, 244, 264
profiles, in pom.xml file 353–

354
programming languages 198–

202
dynamic vs. static typing 199–

200
imperative vs. functional

languages 200
interpreted vs. compiled 199
reimplementation vs. original

languages 201–202
Project Coin 5–10

and Java 7 5–9
borrowed idea from Ruby 11
changes 9, 18
proposals judged 7
stay away from type system 8
why named 6

Project Object Model. See POM
project.clj file 373–374
propagateUpdate() method 85,

94–95
provider.openSocketChannel()

method 48
Provider<T> interface 66–67,

72–73
proxies

in Clojure 301–302
vs. method handles 128–131

PSYoungGen 178
public access modifiers 223
put() method 102, 272
putIfAbsent() method 98

Q

Queue interface 102

R

rapid development, with
Grails 395–396

Read file 38–39
reader macros, in Clojure 292–

293
reader.readLine() method 40
reading files 40–41
README description file 374
real-time clock. See RTC

real-time JAVA, and HotSpot
VM 186–187

reconcile() method 194, 197
redundancy, and Path class 28–

29
refactoring tests, for TDD 319–

320, 323
reference implementation. See

RI
reflection, vs. method

handles 128–131
refs, concurrency in

Clojure 306–309
regular expressions 23, 233–

234
reimplementation languages, vs.

original languages 201–202
remove() method 98, 295
REPL environment, for

Scala 252
REPL, for Clojure 281–282
replace() method 98
resolution, for verifying

classes 122
result.get() method 45
result.isDone() method 45
return statements 223–224
reusability, theory of

concurrency 80
RI (reference implementation)

53–54, 67, 75
role-playing game. See RPG
routes, in Compojure 401–402
RPG (role-playing game) 227
RTC (real-time clock) 163
rulesets 368, 370
run() method 110, 134, 138,

144
runtime environments

for alternative JVM
languages 209

for bytecode 138–140
RuntimeException 10, 33
runtime-managed concurrency,

and future of Java 417–418

S

safe-dereference operator, in
Groovy 228

safepoints, mark and sweep
algorithm 172

SAM (single abstract method)
conversion, and future of
Java 412–413

INDEX460

sample_<os>_build.properties
file 351, 428

sample_build.properties file
447

save() method 397
sawtooth pattern 179
scaffolding, with Grails 395
Scala 241–278

actors in 248–249
communicating with 276–

278
overview 276

case classes in 247–248, 264–

266
companion objects in 262–

264
compiler for 252
constructors 259–260
functional programming

in 257–258
generic types in 272–275

covariance with 274–275
example of 273–274
type inference for 272–273

imports in 255
installing 437
is concise 243–245
limitations of 266–267
list collection 268–271

immutable and mutable col-
lections available 268–

269
traits for 269–271

loops in 256
map collection 271–272
match expressions in 245–

247, 264–266
methods in 254–255
object model for 258–267
overview 204
REPL environment 252
singletons 262–264
traits 260–262
type inference in 252–253
vs. Java 250
when to use 249–251

Scala class 254, 263
Scala file 263
Scala method 253–254
Scala type 253, 262, 274
Scala.Predef class 264
scalability, defined 154
ScalaTest framework, for

TDD 338–340
scalatest library 449

ScheduledThreadPoolExecutor
class 110–111

Schwartzian transform 411
scope

for variables, in Groovy 221–

222
of injected objects 73–74

for classes 73–74
using @Provides

annotation 74
using bind() sequence 74

ScratchImpl class 136
SeekableByteChannel

interface 42–43
SelectorProvider.provider()

method 48
sellTicket() method 338
semicolons, in Groovy 224
sequenceNumber.getAnd-

Increment() method 92
sequences, in Clojure 295–299

and variadic functions 298–

299
lazy sequences 297–298
overview 295–297
vs. Java iterators 295–299

server compiler, for HotSpot
VM 186

setAccessible() method 128
setFinder() method 125
settings.xml file 347
setUp() method 389
shortcomings of Java 194–198

and functional
programming 196–197

map and filter idioms 197–

198
reconciliation system

example 194–196
shortcut forms, for opcodes 144
SimpleFileVisitor class 32, 407
single abstract method. See SAM
single use case, for TDD 316–

320
singletons, in Scala 262–264
-SNAPSHOT suffix 350
Socket class 48
Socket-Channel

functionality 47–50
MulticastChannel

interface 49–50
NetworkChannel

interface 48–49
socketChannel.supported-

Options() method 48

SOLID object 323
solid-state drive. See SSD
sources of overhead, theory of

concurrency 81
special forms, in Clojure 284–

285
SpreadsheetAgentFinder 56–57,

72
and HollywoodService 57
can be injected at multiple

times 73
have only one instance 73

Spring framework 61
SQL database 151
SQLException 13
SSD (solid-state drive) 161
StandardCharsets class 40
StandardOpenOption.WRITE 40
start() method 276
state model, for threads 84–85
static code analysis 342, 365, 367
static typing

Java not ideal for web
development 383

vs. dynamic typing 199–200
static variables, vs. dynamic

variables 221
store opcodes 141
String class 229
String objects 144, 369
String type 9
StringBuffer 369
StringBuilder 145, 159
strings, in switch statement 9–10
StringSeq class 303
StringWriter 235
stub objects, for TDD 328–331
StubPrice class 331
Subversion. See SVN
Success column 364
superclass 415
Surefire plugin 351, 356
survivor spaces 171
SVN (Subversion) 360
switch statement, strings in 9–10
symbolic links 38–39
synchronization, block-

structured concurrency 83–

84
synchronizedMap() method 97
syntactic sugar 7
syntax

diamond syntax, in Java 7 16–

17
for Glob patterns 432

INDEX 461

syntax (continued)
for numeric literals 10–11

binary literals 10–11
underscores in numbers 11

System.currentTimeMillis()
method 159, 164

System.err.println 12
System.gc() method 177
System.getProperty()

method 300
System.nanoTime()

method 164, 168
System.out.println.entry.getFile-

Name() method 31
System.out.println.socketOp-

tions.toString() method 48

T

take() method 42, 102, 105
TDD (test-driven

development) 313–341
failing tests 317–318, 322–323
in Grails 388–390
JUnit framework 324–325
multiple use cases 320–322
passing tests 318, 323
refactoring tests 319–320, 323
ScalaTest framework 338–340
single use case 316–320
test doubles in 325–338

dummy objects 326–328
fake objects 331–336
mock objects 336–338
stub objects 328–331

tearDown() method 389
tenPercentDiscount()

method 328
tenured space 171
test doubles 325–338

dummy objects 326–328
fake objects 331–336
mock objects 336–338
stub objects 328–331

test goal 430
test scope 448–449
test-compile goal 355
test-driven development. See

TDD
thenReturn() method 337
theory, of concurrency

concurrent type safety 79
conflicts with 80–81
liveness 79–80
performance 80

reusability 80
sources of overhead 81
transaction processor

example 81–83
Thread.join() method 117
Thread.sleep() method 84
ThreadPoolExecutor class 110
threads, state model for 84–85
throughput, defined 152–153
Ticket class

testing 327, 330, 334
TicketHibernateDao class 334–

335
TicketRevenue class 317–318,

322
Time Stamp Counter. See TSC
timeout, for BlockingQueue

interface 105–107
toAbsolutePath() method 27,

29
toFile() method 30
toPath() method 30
toRealPath() method 29
toString() method 127, 145,

229, 247, 264–265
traits

for list collection 269–271
in Scala 260–262

transaction processor
example 81–83

transfer() method 107
TransferQueue interface 107–

108
trees, directory 31–33
tryConfirmUpdate() method 96
tryLock() method 93–94
try-with-resources 13–16
TSC (Time Stamp Counter) 164
tuples 420–422
type inference

for generic types 272–273
in Scala 252–253

U

underscores, in numbers 11
Unit type 258
Unix PATH 372
URL object 15
url.openStream method 14–15
using clause 15
utilization, defined 153

V

validate() method 388–390
value objects 421
values.max() method 238
varargs method 17
variables, in Groovy 220–222

dynamic vs. static 221
scope for 221–222

variadic functions, and
sequences 298–299

verbose:gc flag 177
verifying classes 121–122
Version control 360
-version parameter 426
visitFile method 32
VisualVM tool 178–180
VM convergence, and future of

Java 418–419
VMSpec 4
volatile keyword, block-

structured concurrency 89

W

walkFileTree method 30, 32–33
WAR file 358, 382, 396, 441–

442
warnings about, varargs

methods 18
WatchEvent 41–42
WatchKey 41–42
WatchService 33, 41–42
web applications, object

graphs 70
web development 380–409

Compojure 399–403
hello world with 399–401
routes in 401–402
using Hiccup with 402–403

Grails
controllers in 392–393
domain object creation

in 387–388
domain object persistence

in 390–391
GORM in 397–398
GSP views in 393–394
logging in 396–397
overview 385–386
plugins for 398
rapid development

with 395–396
scaffolding with 395
test data in 391–392

INDEX462

web development (continued)
test-driven development

in 388–390
Java not ideal for 381–383

compilation 382–383
static typing 383

selecting framework for 383–

385
webapp stack 416
WebServiceAgentFinder class 68
when() method 337

WorkUnit object 110
writing files 40–41

X

XML (extensible markup lan-
guage), in Groovy 234–236

creating 234–235
parsing 235–236

XMLParser 235–236
XMLSlurper 235

Y

young collections, mark and
sweep algorithm 172

Z

zombie methods, in HotSpot
VM 189

POLYGLOT PROGRAMMING PYRAMID

Polyglot programming makes sense because different pieces of code have different lifetimes. A risk

engine in a bank may last for five or more years. JSP pages for a website could last for a few months.

The most short-lived code for a startup could be live for just a few days. The longer the code lives, the

closer to the bottom of the pyramid it is. This represents a trade-off between concerns like performance

and thorough testing at the bottom versus flexibility and rapid deployment at the top. (See chapter 7.)

B. J. Evans ● M. Verburg

T
his book takes a fresh and practical look at new Java 7
features, new JVM languages, and the array of supporting
technologies you need for the next generation of Java-

based sot ware.

You’ll start with thorough coverage of Java 7 features like try-
with-resources and NIO.2. You’ll then explore a cross-section of
emerging JVM-based languages, including Groovy, Scala, and
Clojure. You will i nd clear examples that are practical and that
help you dig into dozens of valuable development techniques
showcasing modern approaches to the dev process, concurrency,
performance, and much more.

What’s Inside
● New Java 7 features
● Tutorials on Groovy, Scala, and Clojure
● Discovering multicore processing and concurrency
● Functional programming with new JVM languages
● Modern approaches to testing, build, and CI

Written for readers familiar with Java. No experience with Java 7
or new JVM languages required.

Ben Evans is the CEO of a Java performance i rm and a member
of the Java Community Process Executive Committee.
Martijn Verburg is the CTO of a Java performance i rm, coleader
of the London JUG, and a popular conference speaker.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/TheWell-GroundedJavaDeveloper

$49.99 / Can $52.99 [INCLUDING eBOOK]

The Well-Grounded Java Developer

JAVA

M A N N I N G

“How to become a well-
grounded Java developer—
and how to stay that way.”

—From the Foreword by
Dr. Heinz Kabutz

� e Java Specialists’ Newsletter

“At the cutting edge of
Java development … learn

to speak Java 7 and
next-gen languages.”—Paul Benedict

Corporate Personnel & Associates

“Buy this book for what’s
new in Java 7. Keep it open
for lessons in expert Java.”—Stephen Harrison, PhD

FirstFuel Sot ware

“A great collection of
 knowledge on the
 JVM platform.”—Rick Wagner, Red Hat

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How to use this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online

	about the authors
	about the cover illustration
	Part 1—Developing with Java 7
	1 Introducing Java 7
	1.1 The language and the platform
	1.2 Small is beautiful—Project Coin
	1.3 The changes in Project Coin
	1.3.1 Strings in switch
	1.3.2 Enhanced syntax for numeric literals
	1.3.3 Improved exception handling
	1.3.4 Try-with-resources (TWR)
	1.3.5 Diamond syntax
	1.3.6 Simplified varargs method invocation

	1.4 Summary

	2 New I/O
	2.1 Java I/O—a history
	2.1.1 Java 1.0 to 1.3
	2.1.2 Java 1.4 and NIO
	2.1.3 Introducing NIO.2

	2.2 Path—a foundation of file-based I/O
	2.2.1 Creating a Path
	2.2.2 Retrieving information from a Path
	2.2.3 Removing redundancies
	2.2.4 Converting Paths
	2.2.5 NIO.2 Path and Java’s existing File class

	2.3 Dealing with directories and directory trees
	2.3.1 Finding files in a directory
	2.3.2 Walking the directory tree

	2.4 Filesystem I/O with NIO.2
	2.4.1 Creating and deleting files
	2.4.2 Copying and moving files
	2.4.3 File attributes
	2.4.4 Reading and writing data quickly
	2.4.5 File change notification
	2.4.6 SeekableByteChannel

	2.5 Asynchronous I/O operations
	2.5.1 Future style
	2.5.2 Callback style

	2.6 Tidying up Socket-Channel functionality
	2.6.1 NetworkChannel
	2.6.2 MulticastChannel

	2.7 Summary

	Part 2—Vital techniques
	3 Dependency Injection
	3.1 Inject some knowledge—understanding IoC and DI
	3.1.1 Inversion of Control
	3.1.2 Dependency Injection
	3.1.3 Transitioning to DI

	3.2 Standardized DI in Java
	3.2.1 The @Inject annotation
	3.2.2 The @Qualifier annotation
	3.2.3 The @Named annotation
	3.2.4 The @Scope annotation
	3.2.5 The @Singleton annotation
	3.2.6 The Provider<T> interface

	3.3 Guice 3—the reference implementation for DI in Java
	3.3.1 Getting started with Guice
	3.3.2 Sailor’s knots—the various bindings of Guice
	3.3.3 Scoping your injected objects with Guice

	3.4 Summary

	4 Modern concurrency
	4.1 Concurrency theory—a primer
	4.1.1 Explaining Java’s threading model
	4.1.2 Design concepts
	4.1.3 How and why do the forces conflict?
	4.1.4 Sources of overhead
	4.1.5 A transaction processor example

	4.2 Block-structured concurrency (pre-Java 5)
	4.2.1 Synchronization and locks
	4.2.2 The state model for a thread
	4.2.3 Fully synchronized objects
	4.2.4 Deadlocks
	4.2.5 Why synchronized?
	4.2.6 The volatile keyword
	4.2.7 Immutability

	4.3 Building blocks for modern concurrent applications
	4.3.1 Atomic classes—java.util.concurrent.atomic
	4.3.2 Locks—java.util.concurrent.locks
	4.3.3 CountDownLatch
	4.3.4 ConcurrentHashMap
	4.3.5 CopyOnWriteArrayList
	4.3.6 Queues

	4.4 Controlling execution
	4.4.1 Modeling tasks
	4.4.2 ScheduledThreadPoolExecutor

	4.5 The fork/join framework
	4.5.1 A simple fork/join example
	4.5.2 ForkJoinTask and work stealing
	4.5.3 Parallelizing problems

	4.6 The Java Memory Model (JMM)
	4.7 Summary

	5 Class files and bytecode
	5.1 Classloading and class objects
	5.1.1 Overview—loading and linking
	5.1.2 Verification
	5.1.3 Class objects
	5.1.4 Classloaders
	5.1.5 Example—classloaders in Dependency Injection

	5.2 Using method handles
	5.2.1 MethodHandle
	5.2.2 MethodType
	5.2.3 Looking up method handles
	5.2.4 Example—reflection vs. proxies vs. MethodHandles
	5.2.5 Why choose MethodHandles?

	5.3 Examining class files
	5.3.1 Introducing javap
	5.3.2 Internal form for method signatures
	5.3.3 The constant pool

	5.4 Bytecode
	5.4.1 Example—disassembling a class
	5.4.2 The runtime environment
	5.4.3 Introduction to opcodes
	5.4.4 Load and store opcodes
	5.4.5 Arithmetic opcodes
	5.4.6 Execution control opcodes
	5.4.7 Invocation opcodes
	5.4.8 Platform operation opcodes
	5.4.9 Shortcut opcode forms
	5.4.10 Example—string concatenation

	5.5 Invokedynamic
	5.5.1 How invokedynamic works
	5.5.2 Example—disassembling an invokedynamic call

	5.6 Summary

	6 Understanding performance tuning
	6.1 Performance terminology—some basic definitions
	6.1.1 Latency
	6.1.2 Throughput
	6.1.3 Utilization
	6.1.4 Efficiency
	6.1.5 Capacity
	6.1.6 Scalability
	6.1.7 Degradation

	6.2 A pragmatic approach to performance analysis
	6.2.1 Know what you’re measuring
	6.2.2 Know how to take measurements
	6.2.3 Know what your performance goals are
	6.2.4 Know when to stop optimizing
	6.2.5 Know the cost of higher performance
	6.2.6 Know the danger of premature optimization

	6.3 What went wrong? Why we have to care
	6.3.1 Moore’s Law—historic and future performance trends
	6.3.2 Understanding the memory latency hierarchy
	6.3.3 Why is Java performance tuning hard?

	6.4 A question of time—from the hardware up
	6.4.1 Hardware clocks
	6.4.2 The trouble with nanoTime()
	6.4.3 The role of time in performance tuning
	6.4.4 A case study—understanding cache misses

	6.5 Garbage collection
	6.5.1 Basics
	6.5.2 Mark and sweep
	6.5.3 jmap
	6.5.4 Useful JVM parameters
	6.5.5 Reading the GC logs
	6.5.6 Visualizing memory usage with VisualVM
	6.5.7 Escape analysis
	6.5.8 Concurrent Mark-Sweep
	6.5.9 G1—Java’s new collector

	6.6 JIT compilation with HotSpot
	6.6.1 Introduction to HotSpot
	6.6.2 Inlining methods
	6.6.3 Dynamic compilation and monomorphic calls
	6.6.4 Reading the compilation logs

	6.7 Summary

	Part 3—Polyglot programming on the JVM
	7 Alternative JVM languages
	7.1 Java too clumsy? Them’s fighting words!
	7.1.1 The reconciliation system
	7.1.2 Conceptual basics of functional programming
	7.1.3 Map and filter idioms

	7.2 Language zoology
	7.2.1 Interpreted vs. compiled languages
	7.2.2 Dynamic vs. static typing
	7.2.3 Imperative vs. functional languages
	7.2.4 Reimplementation vs. original

	7.3 Polyglot programming on the JVM
	7.3.1 Why use a non-Java language?
	7.3.2 Up-and-coming languages

	7.4 How to choose a non-Java language for your project
	7.4.1 Is the project area low-risk?
	7.4.2 Does the language interoperate well with Java?
	7.4.3 Is there good tooling and test support for the language?
	7.4.4 How hard is the language to learn?
	7.4.5 Are there lots of developers using this language?

	7.5 How the JVM supports alternative languages
	7.5.1 Runtime environments for non-Java languages
	7.5.2 Compiler fictions

	7.6 Summary

	8 Groovy: Java’s dynamic friend
	8.1 Getting started with Groovy
	8.1.1 Compiling and running
	8.1.2 Groovy console

	8.2 Groovy 101—syntax and semantics
	8.2.1 Default imports
	8.2.2 Numeric handling
	8.2.3 Variables, dynamic versus static types, and scoping
	8.2.4 Syntax for lists and maps

	8.3 Differences from Java—traps for new players
	8.3.1 Optional semicolons and return statements
	8.3.2 Optional parentheses for method parameters
	8.3.3 Access modifiers
	8.3.4 Exception handling
	8.3.5 Equality in Groovy
	8.3.6 Inner classes

	8.4 Groovy features not (yet) in Java
	8.4.1 GroovyBeans
	8.4.2 The safe-dereference operator
	8.4.3 The Elvis operator
	8.4.4 Enhanced strings
	8.4.5 Function literals
	8.4.6 First-class support for manipulating collections
	8.4.7 First-class support for regular expressions
	8.4.8 Simple XML handling

	8.5 Interoperating between Groovy and Java
	8.5.1 Calling Java from Groovy
	8.5.2 Calling Groovy from Java

	8.6 Summary

	9 Scala: powerful and concise
	9.1 A quick tour of Scala
	9.1.1 Scala as a concise language
	9.1.2 Match expressions
	9.1.3 Case classes
	9.1.4 Actors

	9.2 Is Scala right for my project?
	9.2.1 Comparing Scala and Java
	9.2.2 When and how to start using Scala
	9.2.3 Signs that Scala may not be right for your current project

	9.3 Making code beautiful again with Scala
	9.3.1 Using the compiler and the REPL
	9.3.2 Type inference
	9.3.3 Methods
	9.3.4 Imports
	9.3.5 Loops and control structures
	9.3.6 Functional programming in Scala

	9.4 Scala’s object model—similar but different
	9.4.1 Everything is an object
	9.4.2 Constructors
	9.4.3 Traits
	9.4.4 Singleton and companion objects
	9.4.5 Case classes and match expressions
	9.4.6 A cautionary tale

	9.5 Data structures and collections
	9.5.1 List
	9.5.2 Map
	9.5.3 Generic types

	9.6 Introduction to actors
	9.6.1 All the code’s a stage
	9.6.2 Communicating with actors via the mailbox

	9.7 Summary

	10 Clojure: safer programming
	10.1 Introducing Clojure
	10.1.1 Hello World in Clojure
	10.1.2 Getting started with the REPL
	10.1.3 Making a mistake
	10.1.4 Learning to love the brackets

	10.2 Looking for Clojure—syntax and semantics
	10.2.1 Special forms bootcamp
	10.2.2 Lists, vectors, maps, and sets
	10.2.3 Arithmetic, equality, and other operations

	10.3 Working with functions and loops in Clojure
	10.3.1 Some simple Clojure functions
	10.3.2 Loops in Clojure
	10.3.3 Reader macros and dispatch
	10.3.4 Functional programming and closures

	10.4 Introducing Clojure sequences
	10.4.1 Lazy sequences
	10.4.2 Sequences and variable-arity functions

	10.5 Interoperating between Clojure and Java
	10.5.1 Calling Java from Clojure
	10.5.2 The Java type of Clojure values
	10.5.3 Using Clojure proxies
	10.5.4 Exploratory programming with the REPL
	10.5.5 Using Clojure from Java

	10.6 Concurrent Clojure
	10.6.1 Futures and pcalls
	10.6.2 Refs
	10.6.3 Agents

	10.7 Summary

	Part 4—Crafting the polyglot project
	11 Test-driven development
	11.1 TDD in a nutshell
	11.1.1 A TDD example with a single use case
	11.1.2 A TDD example with multiple use cases
	11.1.3 Further thinking on the red-green-refactor lifecycle
	11.1.4 JUnit

	11.2 Test doubles
	11.2.1 Dummy object
	11.2.2 Stub object
	11.2.3 Fake object
	11.2.4 Mock object

	11.3 Introducing ScalaTest
	11.4 Summary

	12 Build and continuous integration
	12.1 Getting started with Maven 3
	12.2 Maven 3—a quick-start project
	12.3 Maven 3—the Java7developer build
	12.3.1 The POM
	12.3.2 Running the examples

	12.4 Jenkins—serving your CI needs
	12.4.1 Basic configuration
	12.4.2 Setting up a job
	12.4.3 Executing a job

	12.5 Code metrics with Maven and Jenkins
	12.5.1 Installing Jenkins plugins
	12.5.2 Making code consistent with Checkstyle
	12.5.3 Setting the quality bar with FindBugs

	12.6 Leiningen
	12.6.1 Getting started with Leiningen
	12.6.2 Leiningen’s architecture
	12.6.3 Example—Hello Lein
	12.6.4 REPL-oriented TDD with Leiningen
	12.6.5 Packaging and deploying with Leiningen

	12.7 Summary

	13 Rapid web development
	13.1 The problem with Java-based web frameworks
	13.1.1 Why Java compilation is bad for rapid web development
	13.1.2 Why static typing is bad for rapid web development

	13.2 Criteria in selecting a web framework
	13.3 Getting started with Grails
	13.4 Grails quick-start project
	13.4.1 Domain object creation
	13.4.2 Test-driven development
	13.4.3 Domain object persistence
	13.4.4 Test data creation
	13.4.5 Controllers
	13.4.6 GSP/JSP views
	13.4.7 Scaffolding and automatic UI creation
	13.4.8 Rapid turnaround development

	13.5 Further Grails exploration
	13.5.1 Logging
	13.5.2 GORM—object-relational mapping
	13.5.3 Grails plugins

	13.6 Getting started with Compojure
	13.6.1 Hello World with Compojure
	13.6.2 Ring and routes
	13.6.3 Hiccup

	13.7 A sample Compojure project—“Am I an Otter or Not?”
	13.7.1 Setting up “Am I an Otter”
	13.7.2 Core functions in “Am I an Otter”

	13.8 Summary

	14 Staying well-grounded
	14.1 What to expect in Java 8
	14.1.1 Lambdas (a.k.a. closures)
	14.1.2 Modularization (a.k.a. Jigsaw)

	14.2 Polyglot programming
	14.2.1 Language interoperability and metaobject protocols
	14.2.2 Multilanguage modularity

	14.3 Future concurrency trends
	14.3.1 The many-core world
	14.3.2 Runtime-managed concurrency

	14.4 New directions in the JVM
	14.4.1 VM convergence
	14.4.2 Coroutines
	14.4.3 Tuples

	14.5 Summary

	appendix A Java7developer— source code installation
	A.1 Java7developer source code structure
	A.2 Downloading and installing Maven
	A.3 Running the java7developer build
	A.3.1 One-off build preparation
	A.3.2 Clean
	A.3.3 Compile
	A.3.4 Test

	A.4 Summary

	appendix B Glob pattern syntax and examples
	B.1 Glob pattern syntax
	B.2 Glob pattern examples

	appendix C Installing alternative JVM languages
	C.1 Groovy
	C.1.1 Downloading Groovy
	C.1.2 Installing Groovy

	C.2 Scala
	C.3 Clojure
	C.4 Grails
	C.4.1 Downloading Grails
	C.4.2 Installing Grails

	appendix D Downloading and installing Jenkins
	D.1 Downloading Jenkins
	D.2 Installing Jenkins
	D.2.1 Running the WAR file
	D.2.2 Installing the WAR file
	D.2.3 Installing the standalone package
	D.2.4 Running Jenkins for the first time

	appendix E Java7developer— the Maven POM
	E.1 Build configuration
	E.2 Dependency management

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

