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Standardized Mixed Language Programming

for Fortran and C

Bo Einarsson∗, Richard J. Hanson†, Tim Hopkins‡

1 August 2009

Abstract

Programmers have long practiced the matter of mixed language procedure calls. This
is particularly true for the programming languages C and Fortran. The use of the alternate
language often results in efficient running time or the effective use of human or other resources.

Prior to the Fortran 2003 standard there was silence about how the two languages inter-
operated. Before this release there existed a set of differing ad hoc methods for making the
inter-language calls. These typically depended on the Fortran and C compilers. The newer
Fortran standard provides an intrinsic module, iso_c_binding, that permits the languages to
interoperate. There remain restrictions regarding interoperable data types.

This paper illustrates several programs that contain core exercises likely to be encountered
by programmers. The source code is available from the first author’s web site. Included is an
illustration of a “trap” based on use of the ad hoc methods: A call from a C to a Fortran 2003
routine that passes a character in C to a character variable in Fortran results in a run-time
error.
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1 Introduction

At a conference in Kyoto 1995 a lecture about the use of routines in C from Fortran, and the
opposite, was presented (Einarsson, 1995). At that time, it was then necessary to describe this
differently for each different platform.

Fortran 2003 has standardized the mixing of Fortran and C with the concept of “Interoperability
with C.” Many Fortran compilers already implement parts of the 2003 standard, see (Chivers and
Sleightholme, 2009). We look at a number of different aspects of mixed language programming
and present examples to demonstrate the facilities that are available in the new standard.

We have checked all these examples using the following compilers

1. Intel Fortran compiler 10.1,

2. IBM XL Fortran Enterprise Edition for AIX, V11.1 (5724-S72) Version 11.01.0000.0001D,
(September 19, 2007),

3. Sun Fortran 95 8.3 (July 18, 2007),

4. NAGWare Fortran 95 compiler Release 5.2 (668),

5. g95 version 0.92 (March 14, 2009),

6. gfortran version 4.4.0 (February 19, 2009), and

7. The Portland Group, pgf90 8.0-5 64-bit target on x86-64 Linux.

There is an old recommendation for mixed language programming (or inter-language commu-
nication) that only one of the languages should be used for input and output. We violate this
recommendation in the last example of Section 4, where output is generated both by Fortran and
C. The order of the output may differ on different platforms due to the fact that both Fortran and
C may buffer output for efficiency reasons. This is especially noticeable when output is redirected
to a file. This problem can often be ameliorated by judicious use of the flush statement in both
languages.

The 2003 standard allows data to be exchanged between Fortran and C provided that it is
represented and interpreted in the same way in each language. The tables given in (Metcalf et al.,
2004, Table 14.1) and (Adams et al., 2008, Table 15-1) detail how to choose the correct Fortran
kind values to ensure compatibility between the two languages. We restrict the use of these KIND
values to the small wrapper routines that we write to implement cross calling.

The BIND attribute and the iso_c_binding intrinsic module provide the necessary facilities to
write standard conforming code that will allow Fortran and C components to interoperate. It may
also be the case that a Fortran compiler requires a specific C compiler to be used in order for
interoperability to take place.

Note that there may be traps for the unwary when using a Fortran 2003 compatible compiler
to compile and link mixed Fortran and C code that was written to make use of the old platform-
dependent mechanisms. We have encountered examples where the combination of a new compiler
and ad hoc methods cause unexpected run-time errors. Typically these are caused by problems
relating to the length of string arguments.

A simplified form of an example that caused such as error is given by these code fragments:

SUBROUTINE f o r t r an ( char )
CHARACTER(LEN=1) char
. . .

extern void fortran_ ( char∗ a )
. . .

fortran_ ( "L" ) ; // Here fortran_ i s the mangled external name

// provided by the Fortran 2003 compiler ,
// but without us ing i n t e r o p e r a b i l i t y standards .
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The calling C routine has no direct language support for specifying the length of the Fortran
character argument "L". The Fortran run-time system, if it is “picky,” can certainly check that the
length of this argument has a value at least one. By chance the value in memory might be positive,
but otherwise arbitrary. Or the Fortran system can assume that the length of the character is
exactly one and make no check. But if by chance the arbitrary value is non-positive, then the
“picky” Fortran system can rightly issue an error. The NAGWare Fortran 95 compiler gives an
instance where exactly this error occurs.

Our first example checks to see if the basic data types are compatible between the two lan-
guages. With the exception of the Portland compiler1, running the code given in Listing 1 gives
the following results

Default Fortran and C variables of type integer/int

are interoperable

Default Fortran and C variables of type real/float

are interoperable

Default Fortran and C variables of type double precision/double

are interoperable

Default Fortran and C variables of type logical/boolean

are NOT interoperable

Default Fortran and C variables of type character/char

are interoperable

Default Fortran and C variables of type complex/float_complex

are interoperable

Listing 1: CandF.f90

PROGRAM CandF
! Program to t e s t coopera t ion between C and Fortran
USE, INTRINSIC : : iso_c_binding

CALL check ( c_int , KIND( 1 ) , ’ integer/ int ’ )
CALL check ( c_f loat , KIND( 1 . 0 e0 ) , ’ real / f l o a t ’ )
CALL check ( c_double , KIND( 1 . 0 d0 ) , ’double precision/double ’ )
CALL check ( c_bool , KIND( .TRUE. ) , ’ log ica l /boolean ’ )
CALL check ( c_char , KIND( ’A’ ) , ’ character/char ’ )
CALL check ( c_float_complex , KIND( ( 1 . 0 e0 , 1 . 0 e0 ) ) , ’complex/ float_complex ’ )

END Program CandF

SUBROUTINE check ( ckind , fk ind , vartype )
INTEGER, INTENT(IN) : : ckind , fk ind
CHARACTER (LEN=∗) , INTENT(IN) : : vartype

IF ( ckind == fk ind ) THEN

WRITE( ∗ , ’ ( ’ ’Default Fortran and C va r i a b l e s o f type ’ ’ , a , &
& ’ ’ are i n t e r ope rab l e ’ ’ ) ’ ) vartype

ELSE IF ( ckind < 0) THEN

WRITE(∗ , &
’ ( ’ ’A compatible Fortran kind value i s not a v a i l a b l e f o r type ’ ’ &
&, a ) ’ ’ ) ’ ) vartype

ELSE

WRITE( ∗ , ’ ( ’ ’Default Fortran and C va r i a b l e s o f type ’ ’ , a , &
& ’ ’ are NOT in t e r ope rab l e ’ ’ ) ’ ) vartype

END IF

1The Portland 8.0 compiler gives an error message that a KIND value is negative, indicating a not implemented

data type.
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END SUBROUTINE check

The value returned for c_bool indicates that a compatible LOGICAL(KIND=c_bool) is provided
by the compiler but this must be explicitly declared as it differs from the KIND value associated
with the default LOGICAL. In this instance we can arrange to convert between the Fortran and
C types using intrinsic overloaded assignment in the communication (or wrapper) routine. For
example

. . .
USE, INTRINSIC : : iso_c_binding
! Dec lare t ype s f o r l o g i c a l v a r i a b l e s

LOGICAL : : f o r t r a n_ l o g i c a l
LOGICAL( c_bool ) : : c_boolean

! Transfer va lue o f Fortran LOGICAL to C c_bool type
c_boolean = f o r t r an_ l o g i c a l

! Transfer in the oppo s i t e d i r e c t i o n
f o r t r an_ l o g i c a l = c_boolean

. . .

With version 8.0 of the Portland compiler a system dependent solution has to be used. For
example a wrapper C routine can convert a c_bool or _Bool variables to c_int variables, with
{0,1} values, that are communicated to Fortran.

2 Use of a Fortran subroutine/function from a C program

We begin by showing what we need to do to call a simple Fortran subroutine and function from
C. This illustrates how a wrapper routine can be constructed to allow calls to be made from C
even when the original source code to the Fortran procedures is not available.

We start by defining the two simple Fortran subprograms (Listing 3) and constructing a Fortran
driver program (Listing 2) to call them. Running this program results in the output

6 648 Bo G E

Listing 2: f2sam.f90

! Sample main program used to check co r r e c t opera t ion o f the
! sub rou t ine sam and the func t i on f

PROGRAM f d r i v e r
EXTERNAl f
INTEGER f
CHARACTER∗7 s
INTEGER b (3)
CALL sam( f , b ( 2 ) , s )
WRITE( 6 , ’ ( i5 , i5 , 10 x , a7 ) ’ ) b ( 2 ) , f (REAL(b ( 2 ) ) ) , s
ENDPROGRAM f d r i v e r

Listing 3: sam.f90

SUBROUTINE sam( f , b , s )
EXTERNAL f
INTEGER f
CHARACTER(LEN=7) , INTENT(OUT) : : s
INTEGER, INTENT(OUT) : : b
REAL : : x
x = 1 .3
s = ’Bo G E ’
b = f (x )
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END SUBROUTINE sam

INTEGER FUNCTION f ( x )
REAL, INTENT(IN) : : x
f=3∗x∗∗3
RETURN

END FUNCTION f

We now look at what needs to be done to make the procedures sam and f callable from C
without the need for any changes to the original code. We achieve this in Listing 4 by constructing
wrapper or communication routines in Fortran which call the original procedures.

We draw attention here to two important requirements in the interoperability of character
parameters. Only a scalar or an array of CHARACTER(LEN=1) is interoperable although the standard
does allow an actual argument of length greater than one to be used when the dummy argument
is an array of CHARACTER(LEN=1). Second, C expects that strings will be terminated with the null
character; failure to do this may result in fatal errors if C attempts to process the string with,
for example, strcpy. This means that a C string will be one character longer than its equivalent
Fortran string.

Listing 4: c_sam.f90

SUBROUTINE c_sam( c_f , b , s ) BIND(C, NAME=’c_sam ’ )
USE, INTRINSIC : : iso_c_binding , ONLY : c_char , &

c_int , c_null_char

INTERFACE

FUNCTION c_f (x ) RESULT( f_res ) BIND(C)
USE, INTRINSIC : : iso_c_binding , ONLY : c_int , c_f loat
INTEGER ( c_int ) : : f_res
REAL ( c_f loat ) : : x
END FUNCTION c_f

END INTERFACE

! C r e qu i r e s t ha t the s t r i n g be one charac t e r l onger than i t s Fortran
! e q u i v a l e n t as i t needs to be n u l l terminated .

CHARACTER(KIND=c_char ) : : s (8 )
CHARACTER( len=7) : : t
INTEGER ( c_int ) : : b
INTEGER : : i

CALL sam( c_f , b , t )

DO i =1,7
s ( i )=t ( i : i )

END DO

s (8)=c_null_char ! Terminate C s t r i n g wi th n u l l charac t e r

END SUBROUTINE c_sam

FUNCTION c_f (x ) RESULT ( f_res ) BIND(C,NAME=’c_f ’ )
USE, INTRINSIC : : iso_c_binding , ONLY : c_int , c_f loat

INTEGER ( c_int ) : : f_res
REAL( c_f loat ) : : x
INTEGER, EXTERNAL : : f
f_res=f (x )

END FUNCTION c_f
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Finally, in Listing 5 we give the C program that calls the original routines sam and f via the
wrapper routines c_sam and c_f respectfully. Note that the function prototypes of any Fortran
routines called by the C program must be included.

Listing 5: c2sam.c

#include <s td i o . h>

/∗ Function pro t o t ype s to wrapper rou t i n e s to be c a l l e d from C ∗/

int c_f ( f loat ∗ ) ;
int c_sam( int (∗ c_f ) ( f loat ∗ ) , int ∗ , char [ ] ) ;

int main ( )
{

char s [ 8 ] ; /∗ S t r ing i s one entry l onger f o r n u l l ending ∗/
int b [ 3 ] ;
f loat x ;

/∗ Fortran wrapper rou t ine c_sam c a l l s sam ∗/
c_sam( c_f , &b [ 1 ] , s ) ;
x = b [ 1 ] ;
p r i n t f ( "%5d%5d␣␣␣␣␣␣␣␣␣␣%7s \n" , b [ 1 ] , c_f(&x ) , s ) ;
return 0 ;

}

We may compile and run these on a Unix/Linux system using a set of commands of the form

cc -c c2sam.c

f95 c_sam.f90 sam.f90 c2sam.o

a.out

to give the result

6 648 Bo G E

as before.

3 Use from Fortran of a matrix assigned values in C

In this case we wish to initialize elements of an array via a function written in C and use these
values in a Fortran program. Because the Fortran standard mandates that array elements are
stored in column major order and C requires their storage in row major order, we need to reverse
the order of the indices to ensure that both languages use the same ordering of elements within
memory. In addition, we need to remember that in C an array declared a[3][2] defines elements
a[0][0] ... a[2][1] and we must adjust our indexing accordingly. The C routine is given in
Listing 6 while the Fortran main program is provided in Listing 7.

Listing 6: mlp4.c

void p( f loat a [ 3 ] [ 2 ] , int ∗ i , int ∗ j ) {
a [∗ j −1] [∗ i −1] = ∗ i + ∗ j / 1 0 . 0 ; /∗ Ind i c e s reduced by 1 ∗/

}

Listing 7: mlp3.f90

PROGRAM mlp3
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INTERFACE

SUBROUTINE p(a , i , j ) BIND(C,NAME=’p ’ )
USE, INTRINSIC : : iso_c_binding , ONLY : c_f loat , c_int

REAL ( c_f loat ) : : a ( 2 , 3 )
INTEGER ( c_int ) : : i , j

END SUBROUTINE p
END INTERFACE

! Dec lare a to be dimensioned 2 ,3 to match C de c l a r a t i on
! o f 3 ,2

REAL : : a ( 2 , 3 )
CALL p(a , 1 , 3 )
WRITE ( 6 , ’ ( 1 x , dc , f 9 . 1 ) ’ ) a (1 , 3 )

ENDPROGRAM mlp3

These are run in Unix/Linux with

cc -c mlp4.c

f95 mlp3.f90 mlp4.o

a.out

with the result2 1,3.

4 Use of Fortran COMMON data in a C program

As in the first example we wish to use a Fortran routine from both Fortran and C, therefore we
once again need a communication routine. The COMMON block is assigned its values in the routine
init_name (Listing 9) which together with the Fortran driver in Listing 8 give the result 786 3.2.

Listing 8: mlp0.f90

PROGRAM mlp0
INTEGER i
REAL r
COMMON /name/ i , r

CALL init_name
WRITE(∗ , ’ ( i4 , f 10 . 3 ) ’ ) i , r

ENDPROGRAM mlp0

Listing 9: mlp2a.f90

SUBROUTINE init_name ( )
COMMON /name/ i , r

i = 786
r = 3 .2

RETURN

END SUBROUTINE init_name

If we only wish to use the routine init_name from C it is quite simple, we just modify
init_name to the routine init_read as shown in Listing 10 and use the C program, given in
Listing 11 to obtain the same result.

2The Fortran 2003 command dc for decimal comma does not work on the Portland compiler.
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Listing 10: mlp2b.f90

MODULE com_init_read
USE, INTRINSIC : : iso_c_binding , ONLY : c_int , c_f loat
INTEGER( c_int ) : : i
REAL( c_f loat ) : : r
COMMON /com/ i , r
BIND( c ) : : /com/
ENDMODULE com_init_read

SUBROUTINE in i t_read ( ) BIND(C,NAME=’ init_read ’ )
USE com_init_read

i = 786
r = 3 .2

END SUBROUTINE in i t_read

Listing 11: mlp1.c

#include <s td i o . h>

/∗ Use o f a COMMON Block from Fortran ∗/

struct {
int i ; f loat r ;

} com ;

void in i t_read ( ) ;

int main ( )
{

in i t_read ( ) ;
p r i n t f ( "%4d%10.3 f \n" ,com . i , com . r ) ;
return 0 ;

}

However the standard requires that if the BIND attribute is associated with one instance of
a common block, it must be associated with all instances of that common block throughout the
code. Thus, if we do not have access to the complete source code (e.g., we only have a pre-
compiled library) providing the BIND attribute to a single definition of a common block that is
used elsewhere will result in a non-conforming program. Even if the source code is available the
changes required can be both numerous and error prone.

We therefore consider a second approach which uses a pointer and makes use of the fact that
data stored in a common block must occupy a contiguous block of memory, see (Adams et al.,
2008, section 5.14.2). We note here that this approach works best when all occurrences of the
same common block have the same data layout.

The C routine is given in Listing 13 with the Fortran driver in Listing 12. Here we also let the
C routine change the values in the COMMON block. This program may be compiled using

cc -c mlp7.c

f95 mlp6.f90 mlp7.o

a.out

which runs to give

Fortran has common block /com/: 786 3.20

C gets Common block /com/: 786 3.20

C gives Common block /com/: 457 17.50

Fortran has the block /com/: 457 17.50
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Listing 12: mlp6.f90

PROGRAM main_fortran
USE, INTRINSIC : : iso_c_binding , ONLY : c_int , c_f loat

INTEGER( c_int ) : : i
REAL( c_f loat ) : : r
COMMON /com/ i , r

INTERFACE

SUBROUTINE init_name
END SUBROUTINE init_name
SUBROUTINE mc( ) BIND(C,NAME=’mc ’ )
END SUBROUTINE

END INTERFACE

CALL init_name ! l oad COMMON b l o c k in Fortran
CALL mc ! Ca l l C code t ha t g e t s po in t e r to COMMON
WRITE(∗ , ’ ( a , i4 , f 6 . 2 ) ’ ) ’ Fortran has the block /com/ : ’ , i , r

ENDPROGRAM main_fortran

SUBROUTINE init_name_c (comp) BIND(C,NAME=’init_name_c ’ )
USE, INTRINSIC : : iso_c_binding , &

ONLY : c_ptr , c_int , c_f loat , c_loc
! The C func t i on mc c a l l s init_name_c () to g e t the
! l o c a t i o n o f the COMMON b l o c k s t a r t .

TYPE( c_ptr ) : : comp

INTEGER( c_int ) , TARGET : : i
REAL( c_f loat ) : : r
COMMON /com/ i , r

! Return a po in t e r to the f i r s t l o c a t i o n o f the COMMON b l o c k .
comp = c_loc ( i )
WRITE(∗ , ’ ( a , i4 , f 6 . 2 ) ’ ) ’ Fortran has common block /com/ : ’ , i , r

END SUBROUTINE init_name_c

SUBROUTINE init_name
! This i s the o r i g i n a l Fortran func t i on
! a s s i gn in g va l u e s to the COMMON BLOCK

INTEGER : : i
REAL : : r
COMMON /com/ i , r

i = 786
r = 3 .2

END SUBROUTINE init_name

Listing 13: mlp7.f90

#include <s td i o . h>
/∗ Use o f a COMMON Block from Fortran ∗/

/∗ This i s the l a you t o f the common b l o c k in Fortran : ∗/
typedef struct {
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int i ; f loat r ;
} comv ;

/∗ Function pro t o t ype s f o r Fortran wrapper rou t i n e s ∗/

void ∗ init_name_c ( ) ;

void mc( )
{

comv ∗p ;

/∗ Get address o f common b l o c k from Fortran code . ∗/
init_name_c(&p ) ;
p r i n t f ( "C␣ ge t s ␣Common␣ block ␣/com/ : ␣%4d%6.2 f \n" ,p−>i , p−>r ) ;

/∗ Change the va l u e s in the common b l o c k . ∗/
p−>i = 457 ;
p−>r = 17 . 5 ;
p r i n t f ( "C␣ g i v e s ␣Common␣ block ␣/com/ : ␣%4d%6.2 f \n" ,p−>i , p−>r ) ;

}

5 Use of a C routine from Fortran

As in the example above we wish to use a routine in C from a main program in Fortran, but in
this case the C routine is a simple function.

As a simple example we write a function in C (see Listing 14) to evaluate the mean value of
its two arguments. This may be called via the main program in Listing 15.

Listing 14: mean.c

extern f loat mean ( f loat x , f loat y ) ;

/∗ Function to e va l ua t e the mean va lue o f two arguments ∗/

f loat mean ( f loat x , f loat y )
{

return ( ( x + y) / 2 ) ;
}

Listing 15: c_mean.c

#include <s td i o . h>
/∗ Function to e va l ua t e the mean va lue o f two arguments ∗/

f loat mean ( f loat x , f loat y ) ;

int main ( )
{

f loat a , b , c ;
a = ( f loat ) 1 . 0 ;
b = ( f loat ) 3 . 0 ;
c = mean(a , b ) ;
p r i n t f ( "␣Mean␣ value ␣ i s ␣␣%f ␣\n␣" , c ) ;
return 0 ;

}

When a procedure is called in Fortran, by default, all arguments are passed by reference; i.e.,
the address of the argument is passed through to the routine. In C it is possible to pass arguments
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either by value or by reference; the cases are distinguished by passing a variable or a pointer to a
variable of the relevant type respectively.

To allow Fortran to interoperate successfully with C it is necessary to be able to distinguish
between these two types of argument. The VALUE attribute, introduced in Fortran 2003, enables
procedure arguments to be declared as called by value. This facility is available for defining the
way in which parameters are passed among Fortran procedures as well as for interoperability with
C.

In the function mean the two parameters, x and y, are both passed by value and hence, in the
Fortran interface, these variables need to be declared with the value attribute. Failure to do this
will result in the values being treated as addresses and either incorrect results or a fatal run-time
error will result.

The complete program is provided in Listing 16.

Listing 16: mlp8.f90

PROGRAM mlp8
USE, INTRINSIC : : iso_c_binding

INTERFACE

REAL( c_f loat ) FUNCTION mean(a , b) BIND(C,NAME=’mean ’ )
USE, INTRINSIC : : iso_c_binding

REAL ( c_f loat ) , VALUE : : a , b
END FUNCTION mean

END INTERFACE

REAL : : a , b , c

a = 1 .0
b = 3 .0
c = mean(a , b)
WRITE (∗ ,∗ ) ’ Mean value computed by C i s ’ , c

ENDPROGRAM mlp8

6 GPU implementation

This example is compelling because the topic of using an attached Graphics Processing Unit
(GPU) is now under intense discussion in the High Performance Computing (HPC) community.
Some attractive benchmarking results (Barrachina et al., 2008) have been obtained from using an
NVIDIA chip with BLAS (Dongarra et al., 1990). These routines are the basics of the LAPACK
(Anderson et al., 1999) package.

We use a version of the matrix multiplication routine SGEMM that uses a GPU implementation
of a routine available in the NVIDIA CUBLAS library (CUDA, 2008).

CUDA is a general purpose parallel computing architecture introduced by NVIDIA that en-
ables the GPU to solve complex computational problems. It includes the CUDA Instruction Set
Architecture (ISA) and the parallel compute engine in the GPU. To program to the CUDA archi-
tecture, developers can use C, which can then be run with great performance on a CUDA enabled
processor. Other languages will be supported in the future, including Fortran and C++.

This example is noteworthy for three reasons:

1. The use of this level 3 BLAS code is well-known to be one of the most important for numerical
linear algebra. This particular GPU provides significant performance increases. At first
glance it appears that one must replace calls to SGEMM with calls to cublasSgemm, the NVIDIA
version. This can be avoided and is important when dealing with a pre-compiled application
that uses SGEMM.
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2. The NVIDIA documentation (CUDA, 2008) makes a statement that there is no standard
interface for calling C functions from Fortran. The Fortran 2003 C interoperability facilities
provide a solution to this issue.

3. Using a replacement code for SGEMM that turns around and calls the NVIDIA code is easy to
write in a standard way. As we have preserved the BLAS name using this approach we need
to ensure that the correct version of SGEMM is linked into the final executable rather than a
‘standard’ version that may be included in one of the standard pre-compiled libraries our
application uses. Placing the required code ahead of any such libraries in the link command
is usually enough to achieve this.

The example here uses the VALUE attribute for some scalar arguments and also transfers For-
tran CHARACTER data to C char data which we note are single characters in the C specification.
We include below a version of the SGEMM routine. On the web site we also have a small driver
program sgemm_driver.f90 (also with explanation of all the arguments) and a C dummy routine
c_sgemm.c. Our intent is to emulate the interface to the C NVIDIA code by using an identical
specification for the arguments. NVIDIA wrote the C code to have column-oriented storage!

Listing 17: sgemm.f90

SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

USE ISO_C_BINDING
IMPLICIT NONE

! . . Sca lar Arguments . .
REAL ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER(LEN=∗) TRANSA,TRANSB
CHARACTER(KIND=c_char ) CTA, CTB

! . .
! . . Array Arguments . .

REAL A(LDA, ∗ ) ,B(LDB, ∗ ) ,C(LDC, ∗ )
! Def ine the INTERFACE to the NVIDIA C code cublasSgemm .
! This ve r s i on o f SGEMM i s used in a user a p p l i c a t i o n
! t h a t c a l l s LAPACK s i n g l e p r e c i s i on rout ines , or makes
! o ther uses o f t h a t code .

INTERFACE

! This i s what the NVIDIA code expec t s f o r i t s inpu t s :
! vo id cublasSgemm ( char transa , char transb , i n t m, i n t n ,
! i n t k , f l o a t alpha , cons t f l o a t ∗A, i n t lda ,
! cons t f l o a t ∗B, i n t ldb , f l o a t beta ,
! f l o a t ∗C, i n t l d c )

subroutine c_sgemm( transa , transb , m, n , k,&
alpha , A, lda , B, ldb , beta , c , l dc ) bind (C,name=’cublasSgemm ’ )
USE, INTRINSIC : : iso_c_binding , ONLY : c_int , c_f loat , c_char

character (KIND=c_char ) , va lue : : transa , t ransb
integer ( c_int ) , va lue : : m, n , k , lda , ldb , ldc
real ( c_f loat ) , va lue : : alpha , beta
real ( c_f loat ) : : A( lda , ∗ ) ,B( ldb , ∗ ) ,C( ldc , ∗ )

end subroutine c_sgemm
END INTERFACE

! The ca l c u l a t i on , e x c ep t i n g i n i t i a l i z a t i o n and f i n a l i z a t i o n ,
! i s done wi th the NVIDIA C rou t ine ’ cublasSgemm . ’
! A l o c a l name c_sgemm i s used in Fortran .
! The name c_sgemm cou ld be r ep l aced by NVIDIA’ s name i f one chose .
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cta = transa ( 1 : 1 )
ctb = transb ( 1 : 1 )
ca l l c_sgemm( cta , ctb , &
m, n , k , alpha , A, lda , B, ldb , beta , c , l dc )

return

! . .
END SUBROUTINE SGEMM

In practice, to ensure maximum efficiency, the GPU would only be used when the problem
size exceeded some break-even point; smaller problems would be dealt with directly on the master
CPU, for example, using either the Intel MKL (Intel, 2008) or the vanilla code available from
netlib (http://www.netlib.org/blas/). The break-even point is dependent on the GPU device
being used and benchmarking would be needed to determine a suitable value.

The character arguments to sgemm are declared to be CHARACTER(LEN=1) in the definition of the
routine in (Dongarra et al., 1990). It appears to be almost standard practice to use longer, more
descriptive, constant, actual arguments; for example, ’TRANSPOSE’ rather than ’T’. However,
the Fortran standard states that only the first character of such arguments is used and thus the
arguments to sgemm can be passed directly to c_sgemm provided that the default character type is
interoperable. However, this does not work with all compilers, hence the use of the extra variables
cta and ctb.

7 Enumerated Types

Fortran 2003 introduced a new enumeration definition mainly to allow interoperability with enu-
meration constants in C although it may be used freely within Fortran code. The standard
guarantees that constants declared as type enumerator will correspond to the same integer type
used by C, i.e., int.

An example of an enumeration in Fortran is shown in Listing 18 and is very similar to the
enum definition in C.

Listing 18: Enumerator Example

ENUM, BIND(C)
ENUMERATOR : : jan=1, feb , mar , apr , may , jun , &

ju l , aug , sep , oct , nov , dec
END ENUM

An enumerator constant may either be initialized explicitly (as jan above) or implicitly when it
takes a value one greater that the previous enumerator constant in the list. If the first enumerator
constant in the list is not explicitly initialized it is set to zero.

The Fortran standard provides no means of directly determining the kind selected for the
integer used to store an enumerator value. Variables that may be assigned enumerator constants
therefore need to be declared as, for example,

INTEGER(KIND( jan ) ) : : month

The simple Fortran subroutine and driver program given in Listings 19 and 20 illustrate how the
enumerator constants are used completely within Fortran.

Running this code gives the output

month 7 has 31 days

month 2 has 28 or 29 days

Listing 19: f_print_days.f90

SUBROUTINE print_days (month) BIND(C, NAME=’printDays ’ )
USE enumdefs
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INTEGER(KIND( jan ) ) , VALUE : : month

SELECT CASE (month)
CASE( jan , mar , may , ju l , aug , oct , dec )

write ( ∗ , ’ ( ’ ’ month ’ ’ , i2 , ’ ’ has 31 days ’ ’ ) ’ ) month

CASE( apr , jun , sep , nov )
write ( ∗ , ’ ( ’ ’ month ’ ’ , i2 , ’ ’ has 30 days ’ ’ ) ’ ) month

CASE( f eb )
write ( ∗ , ’ ( ’ ’ month ’ ’ , i2 , ’ ’ has 28 or 29 days ’ ’ ) ’ ) month

CASE DEFAULT

write ( ∗ , ’ ( ’ ’ month ’ ’ , i2 , ’ ’ does not exist ! ! ’ ’ ) ’ ) month

END SELECT

END SUBROUTINE print_days

Listing 20: f_main.f90

PROGRAM f_month
USE enumdefs , ONLY: j u l , f eb

INTERFACE

SUBROUTINE print_days (month) BIND(C, NAME=’printDays ’ )
USE enumdefs
INTEGER(KIND( jan ) ) , VALUE : : month
END SUBROUTINE print_days

END INTERFACE

CALL print_days ( j u l )

CALL print_days ( f eb )

ENDPROGRAM f_month

Listing 21: c_print_days.c

#include<s td i o . h>
enum months { jan=1, feb , mar , apr , may , jun , ju l , aug ,

sep , oct , nov , dec } ;

void printDays (enum months month)
{

switch (month) {
case jan : case mar : case may : case j u l :
case aug : case oct : case dec :

p r i n t f ( "month␣%2d␣has␣31␣days\n" , month ) ;
break ;

case apr : case jun : case sep : case nov :
p r i n t f ( "month␣%2d␣has␣30␣days\n" , month ) ;
break ;

case f eb :
p r i n t f ( "month␣%2d␣has␣28␣ or ␣29␣days\n" , month ) ;
break ;
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default :
p r i n t f ( "month␣%2d␣does ␣not␣ e x i s t ! ! \ n" , month ) ;
break ;

}
}

Combining f_main and the C version of print_days given in Listing 21 illustrates how enumer-
ation constants interoperate.

Linking the Fortran version of print_days with the C driver program in Listing 22 provides a
second example.

Listing 22: c_main.c

enum months { jan=1, feb , mar , apr , may , jun , ju l , aug ,
sep , oct , nov , dec } ;

void printDays (enum months month ) ;

i n t main ( )
{

printDays ( j u l ) ;
pr intDays ( f eb ) ;

return 0 ;
}

8 Other Functionality

We finish by mentioning a number of additional features and functionality that the iso_c_binding

module provides that we have not mentioned in the preceding sections.
“Pointers” for C and Fortran are very different and are not interoperable with one another.

A C pointer is just an address and, since it is considered to be a separate type, can be used to
point to data of any type. On the other hand a Fortran pointer is defined to be of the same type
as its target. Second, when considering array data, a Fortran pointer needs to store additional
information regarding the bounds and shape of the array making it incompatible with C’s concept
of a simple address in memory. For example, it is not possible to make a non-contiguous array
section the target of a C pointer. However, non-contiguous array sections can still be passed as
actual arguments to an interoperable C function since Fortran will perform copy-in and copy-out
under these circumstances.

The iso_c_binding module provides two derived types to allow interoperability with C data
pointers (c_ptr) and C function pointers (c_funptr). These may be used, for example, to pre-
serve access to non-interoperable C data that needs to be preserved between calls to C functions.
Accompanying these derived types are five subroutines and inquiry functions, (c_loc, c_funloc,
c_associated, c_f_pointer, c_f_procpointer) that allow a variety of tests and conversions to be per-
formed. For full details of the rules and restrictions governing these functions we refer the reader
to (Adams et al., 2008, pp.569–579).

9 Closing Remarks

All the files mentioned here are available for testing, together with explanations on how to compile
them, at http://www.nsc.liu.se/wg25/mlpcode/.

We also tested our examples using Sun Fortran 95 8.2 (October 13, 2005). There is a minor
error in this implementation; the standard requires

subroutine sub(f, b) bind(c)
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but this has to be written, using this version of the Sun compiler with a comma in order to avoid
compilation errors

subroutine sub(f, b) , bind(c)

A similar remark holds for functions. This comma is optional in Sun Fortran 95 8.3 (July 18,
2007).

There is also a problem on some systems in using CHARACTER(c_char) since CHARACTER(length)
has the same syntax. We therefore recommend using CHARACTER(KIND=c_char).

The interoperability problem can be messy, even with the standard. For example, the enum
construct (Metcalf et al., 2004, Section 14.11) is not implemented in all compilers. It is, for
example, on IBM but not Intel 10.13, Sun 8.3, and Portland pgf90 8.0-5. Not only that, but
Microsoft C++ does not have _Bool as a supported type. This makes portability difficult! If a
programmer has to deal with problems like these then one may have to write two wrappers — in
both languages to deal with non-portable data types and constructs, but the two wrappers can
have a standard interface.
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