
June 2008
Hallvard Trætteberg, IDI
Carl Christensen, Bekk Consulting AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Polyglot Programming
A business perspective

Hans-Christian Fjeldberg

Problem Description
Polyglot programming is the activity of using several programming languages in a software
system. This is commonly used in the industry, for example when embedding SQL in code, but not
much research has been done on this topic. The goal of this master thesis is twofold:

1. Get an understanding of methods and techniques for polyglot programming and integration,
when these are applicable, and positive and negative effects of polyglot programming.

2. Showing how polyglot programming is used in industrial projects today, and formulate
guidelines for the use of polyglot programming based on these experiences.

This master thesis should give the industry in general, and Bekk Consulting AS in particular better
measures for deciding whether polyglot programming is the right choice for a particular project. It
should also give polyglot programming more credibility by researching scenarios that give
business value, not only confirming that something is possible.

Assignment given: 15. January 2008
Supervisor: Hallvard Trætteberg, IDI

Acknowledgements

First of all would I like to thank Christian Schwarz, whose help has been es-
sential in organising this master thesis. The supervisor for this thesis has been
Hallvard Trætteberg at NTNU, and co-superviser has been Carl Christensen
at BEKK. Thank you both for guiding me through this process. For excellent
proof reading, I would like to thank Liv Marie Gustavson.

The case study could not have been done without some willing interview sub-
jects. For this, I would like to thank consultants at BEKK and representatives
of the customers.

Additional interviews have also been conducted to get a broader view of poly-
glot programming, and I would like to thank Neal Ford, Ola Bini and Jay
Fields, and finally Aslak Hellesøy who put me in touch with these three.

Trondheim, June 10th, 2008

Hans-Christian Fjeldberg

i

Abstract

Polyglot programming is the activity of programming in more than one lan-
guage within the same context. Much like humans use different languages
to make expressions more effective, the goal of polyglot programming is to
render simpler solutions by combining the best solutions from different pro-
gramming languages.

Because the term polyglot programming has been coined only recently, no aca-
demic research has been done on polyglot programming before. This research
has therefore consisted of a literature study to synthesise the opinions of those
who have discussed polyglot programming, and an explorative case study to
research how polyglot programming is used in a Norwegian consulting firm.
The focus of the research has been business benefits and problems.

During the literature study, the expected advantages and disadvantages were
found, in addition to examples were polyglot programming can give business
value. A part of the literature study has also been a description of the different
language paradigms, and a layered description of how they can be organised.

The case study consisted of three smaller case studies, which were analysed
based on the theoretical propositions discovered in the literature study, namely
the perceived advantages and disadvantages. Using pattern matching, poly-
glot programming was found to offer increased productivity, and in the only
case where it was addressed, easier maintenance. In addition, the use of poly-
glot programming helped motivate and change the developers’ perspective. It
was also found that the frameworks written in the new languages were easy to
learn because they offered a more natural solution to the problem, discrediting
the perceived disadvantage of lack of knowledge. The disadvantage of tool
support was, however, confirmed.

Based on the literature study and case study, guidelines for how to utilise poly-
glot programming are also described, and as a compromise between having
free and no language choice, it is suggested that a set of languages should be
used. This set should consist of different types of languages, and will give
the developers more flexibility, and at the same time give management control
over which languages are used.

iii

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Research method . 2

1.2 Research contributions . 2

2 Research context 3

2.1 Research goal . 3

2.2 Research questions . 4

2.3 Research approach . 4

2.3.1 Literature study . 4

3 Polyglot programming 5

3.1 Definition . 5

3.2 Advantages associated with polyglot programming 6

3.2.1 Productivity . 7

3.2.2 Maintainability . 8

3.3 Disadvantages associated with polyglot programming 8

3.3.1 Knowledge . 9

3.3.2 Maintainability . 9

3.3.3 Developer tools support 9

3.4 Summary . 10

v

4 Technical platforms 11

4.1 The business platforms . 11

4.1.1 The .NET platform . 12

4.1.2 The Java platform . 13

4.1.3 Comparison of the polyglot programming support in the
.NET and the Java platforms 15

4.2 Language classification . 15

4.2.1 The imperative paradigm 16

4.2.2 The object oriented paradigm 16

4.2.3 The functional paradigm 17

4.2.4 The logical paradigm . 19

4.2.5 Statically or dynamically typed languages 19

4.2.6 Domain specific languages 20

4.2.7 The language layers . 21

4.3 Summary . 22

5 Examples 23

5.1 Web development . 23

5.2 Testing . 24

5.3 Concurrency . 26

5.4 Business rules . 27

5.5 Summary . 28

6 Research process 29

6.1 Case study research . 29

6.1.1 Data collection . 30

6.1.2 Data analysis . 31

6.2 Case study design . 32

6.2.1 Data collection . 32

6.2.2 Data analysis . 33

6.3 Case study implementation . 33

vi

6.3.1 Data collection . 33

7 Bekk Consulting AS - A case study 35

7.1 Web development . 35

7.1.1 Buypass . 36

7.1.2 Web based extranet solution 37

7.2 Testing . 39

7.2.1 Statens vegvesen . 39

7.3 Summary . 39

8 Discussion 41

8.1 Polyglot programming context of the cases 41

8.2 Advantages . 42

8.2.1 Productivity . 42

8.2.2 Maintainability . 42

8.2.3 Motivation and change of perspective 43

8.3 Disadvantages . 43

8.3.1 Knowledge . 43

8.3.2 Maintainability . 44

8.3.3 Tool support . 45

8.4 Critique of polyglot programming 46

8.5 Research questions . 46

8.5.1 RQ1: How is polyglot programming used today? 46

8.5.2 RQ2: Guidelines for using polyglot programming 46

9 Conclusion 49

References 51

A Interviews 57

A.1 Neal Ford . 58

A.2 Ola Bini . 61

vii

A.3 Jay Fields . 64

B Technologies used in the case studies 67

B.1 Ruby . 67

B.2 Ruby on Rails . 68

B.3 RSpec . 68

B.4 Watir . 69

C Abbreviations 71

viii

List of Figures

4.1 The relationship between DLR, CLR, CTS and CLS 12

4.2 The relationship between different parts of the Java platform . . 14

4.3 The relationship between the stable, dynamic and domain layer. 22

7.1 Buypass’ architecture . 37

ix

List of Tables

3.1 Levels of polyglot programming of the example architectures . 7

xi

Chapter 1

Introduction

Throughout much of the last decade, the focus in business has been on one
standard language for software development, mainly C# or Java. The ratio-
nale for this is that it makes things easier, both for the developers, manage-
ment when tutoring and hiring employees and the system administrators. The
rationale is not wrong, but ignores one important aspect. In enterprise de-
velopment, the programming environment is partly language, but more so
frameworks. Normally, frameworks for XML, SQL, web development and
web services are used to make it easier for the developers. So even though
all these frameworks are written in the same language, they introduce new ab-
stractions and normally require extensive knowledge on how to configure the
framework. It is therefore a good idea to look for languages that can do the
same job as the framework, but better. If it is more naturally implemented in
the other language, the cost of learning a new language will be equivalent to
learning a new framework (Fowler, 2007a).

This approach has been coined polyglot programming. To be a polyglot is
to know or use several languages, and is manifested with the introduction of
English words in non-English languages, like for example Norwegian. One
extreme example of polyglotism is the upper class Lebanese, who speak a mix
of French, English and Arabic at the same time. Even though this is not al-
ways useful, sometimes expressions in another language are more effective
than translating the expression to the native language.

Applied to software engineering, to be a polyglot is to use several program-
ming languages when creating software. This is used extensively in practise,
for example SQL and HTML embedded in PHP code, but only limited research
has been conducted on this topic. Even though polyglot programming is pos-
sible, it is more important to emphasise the real business benefits of using it.
Possible examples include testing, concurrency, and web development. Prob-
lems to consider include management issues like training and support for new

1

CHAPTER 1. INTRODUCTION

languages. It is also important to have a good framework for choosing the
correct language to solve the problem at hand.

1.1 Research method

The chosen research methods for this research are a literature study to get an
extensive overview of the field, and an explorative case study to investigate
how polyglot programming is used in a Norwegian consulting firm.

The literature study will focus on polyglot programming in general but with
the business perspective in mind. As an example of how polyglot program-
ming can be achieved technically, polyglot programming using a managed
runtime will also be described.

The case study will investigate how polyglot programming is used in a Norwe-
gian consulting firm. Lessons learned from this case study will be compared
to the findings from the literature study. Data collection will consist of inter-
views of key persons at the consulting firm. In addition, key persons within
the community also be interviewed, both as part of the literature study, and as
part of the discussion.

1.2 Research contributions

During the time period when this research was conducted, a lot of discussion
has appeared concerning polyglot programming. The main reason for this is
the interest Microsoft and Sun has shown towards other languages, improving
support for all languages on their runtimes. Microsoft has officially added
support for Ruby, JavaScript and F#, in addition to Python, C#, C++ and Visual
Basic that are already supported. Sun is adding support for Ruby, Groovy and
Scala, in addition to Python, JavaScript and Java support. However, a lot of this
discussion is personal opinions based more on feelings than anything else.

Thus, this report constitutes the first ever attempt at approaching polyglot pro-
gramming from an academic point of view. In addition to synthesising the
opinions available, this research will give a definition of polyglot program-
ming. Because it is a broad concept, different degrees of polyglot programming
will also be presented.

Based on a case study conducted on a Norwegian consulting firm, this research
will also investigate how polyglot programming is used in a business setting.
This way, not only personal opinions, but also business perspectives will form
the basis for evaluating polyglot programming.

2

Chapter 2

Research context

This chapter will describe the context within which the research will be con-
ducted. This includes the research goal, research questions and the research
approach selected.

2.1 Research goal

Based on the problem description given for this research, the research goal has
been simplified to the following: discover how polyglot programming can be and is
used in businesses.

Previously articles written on polyglot programming have focused on how
polyglot programming can be achieved technically (Meyer, 2002; Bini, 2008a;
Byrne, 2008; Leghari, 2008). This research will focus on the business perspec-
tive, as this has not been researched to the same extent and has the most unan-
swered questions. In this respect, the business perspective is more than just the
technical aspects. It also involves managerial aspects like knowledge, support
and decision making.

In addition to focusing on the business perspective, as an example of how
polyglot programming can be achieved technically, polyglot programming us-
ing a managed runtime will also be described. The rationale for focusing on
this type of polyglot programming is that it is on these managed runtimes a
lot of language research is being done, and a lot of languages are being made
able to run on them. Both Microsoft and Sun are officially adding support for
languages including JavaScript, Ruby, Groovy, F# and Scala. The managed
runtimes also offer a lot of possibilities and integration that is not possible us-
ing some of the other techniques, for example seamless inheritance between
classes in different languages, and the integration between the languages are
handled automatically by the runtimes, freeing the developers to focus on the

3

CHAPTER 2. RESEARCH CONTEXT

problem.

2.2 Research questions

To discover how polyglot programming can be used, a literature study will be
conducted, as well as interviews of key persons. To discovered how polyglot
programming is used, a case study will be conducted on a Norwegian consult-
ing firm. The emphasis will be not so much on the technical perspective, but
rather on the business perspective and the advantages and disadvantages sur-
rounding the use of polyglot programming. The following research questions
will be the basis for the research:

RQ1: How is polyglot programming used today in businesses?

RQ2: Which general guidelines can be formulated based on current experiences?

2.3 Research approach

Two research approaches are identified based on the research goal, namely lit-
erature study and case study. The literature study will consist of a description
of polyglot programming, technical aspects of polyglot programming includ-
ing a language classification, and examples where polyglot programming can
be used. The case study design is further described in Chapter 6, but will
consist of an explorative case study because little has been written about the
business perspective of polyglot programming, and what little literature there
is tends to be riddled with personal opinions and biased statements. The case
study approach was adopted because it is appropriate when the research has
a descriptive and exploratory focus (Yin, 2003).

2.3.1 Literature study

Because the information available on polyglot programming mainly consists
of personal opinions, the literature study will synthesise these opinions. Based
on the research goal and questions, the focus will be on four areas: (1) the defi-
nition of polyglot programming, (2) advantages and disadvantages of polyglot
programming, (3) a language classification to form the basis when choosing
languages, and (4) examples where polyglot programming can be applied.

The first two areas will consist of personal opinions from web pages and ar-
ticles. The third area is well established, and the literature will therefore be

4

2.3. RESEARCH APPROACH

of the academic kind. The forth example will take examples from literature
when found, but will also consist of my own contributions. When collecting
literature, it will be analysed and categorised according to these focus areas.

5

Chapter 3

Polyglot programming

Polyglot programming is not a new idea, and two realisations have pushed
the need for it. The first is the realisation that there is “No Silver Bullet”; that
there is no tool that is best at solving all problems (Brooks, 1987). It is there-
fore important to figure out which tool is most appropriate in each case, which
in software development prompts examination of languages, frameworks and
development tools. The second realisation is that developers are more expen-
sive than hardware, and programmer productivity is therefore becoming more
important than runtime performance.

Polyglot programming is also known as multi language programming (Kullbach,
Winter, Dahm, & Ebert, 1998). Language oriented programming (Fowler, 2005b;
Dmitriev, 2004; Ward, 1994) also expresses similar ideas, but is a precise devel-
opment methodology where the creation of domain specific languages are at
the centre.

This chapter will describe polyglot programming and propose a simple defini-
tion, with additional information about the degree of polyglot programming.
Advantages and disadvantages will also be discussed in light of current liter-
ature.

3.1 Definition

The term polyglot programming has not been defined in a research context be-
fore, and those who describe it tend to use slightly different wordings (Bini,
Fields & Ford, personal interviews). The goal is the same, however, and is per-
haps best defined by Watts (2008): “programming in more than one language
within the same context”.

This just pushes the definition onto what the context is. In a personal inter-

7

CHAPTER 3. POLYGLOT PROGRAMMING

view, Neal Ford suggested viewing polyglot programming as the use of dif-
ferent languages on the same managed runtime. Using a managed runtime is
definitely polyglot programming, but the definition should not put any restric-
tions on the architecture. Polyglot programming is mainly about choosing the
best programming language for the job.

From a business perspective, the context can be seen in light of the people
working on the project. The context will depend on the number of teams, and
how the applications they produce are integrated. If one team uses different
languages, that will constitute polyglot programming regardless of architec-
ture. If different teams use different languages, but the integration between the
applications created is tight, for example using a managed runtime, that will
also constitute polyglot programming. However, an application is no longer
polyglot when the different teams do not require information about what lan-
guages the others are using to be able to use their application, because then
the applications could be seen as separate. An example would be a service-to-
service application where the interfaces between the applications are the only
requirements to use it.

Thus, the definition of polyglot programming can be expanded to programming
in more than one language within the same context, where the context is either within
one team, or several teams where the integration between the resulting applications
require knowledge of the languages involved.

In addition to the definition of polyglot programming, a degree of polyglotism
is suggested, making it possible to differentiate the use of it. The different lev-
els of polyglotism are integration, organisation of code, the processes within
languages run, and the data being manipulated. Integration can be either net-
worked or non-networked, the code can be organised either in the same or
different files, either the same or different processes can be used, and the lan-
guages can manipulate either the same data or the same object. Example ar-
chitectures where polyglot programming can be utilised are service oriented
architecture (SOA), managed runtimes, C integration and polyglots where dif-
ferent languages are presented in the same file. HTML in conjunction with
CSS, JavaScript and a server side language (here called HTML++ for abbrevi-
ation) is an example of a polyglot. The level of polyglot programming of these
architectures are represented in Table 3.1.

3.2 Advantages associated with polyglot program-
ming

Polyglot programming promises advantages including programmer produc-
tivity and maintainability. These are only perceived advantages based on per-

8

3.2. ADVANTAGES ASSOCIATED WITH POLYGLOT PROGRAMMING

Table 3.1: Levels of polyglot programming of the example architectures SOA, managed run-
time, HTML++ server and client side and C integration. Integration is either networked or
non-networked. The organisation of code is either in the same or different files. Either the
same process or different processes are used to run the different languages, and they can ac-
cess either the same data or same object.

Architecture Integration Organisation Process Data/object
SOA Networked Different files Different Same data
Managed runtime Non-networked Different files Same Same object
HTML++ server Non-networked Different files Different Same data
HTML++ client Non-networked Same file Same Same object
C integration Non-networked Different files Different Same data

sonal opinions however, and will be discussed in light of the case study in
Chapter 8.

3.2.1 Productivity

Productivity, its definition and especially how it is measured, are much de-
bated aspects of programming languages. The most used metrics are lines of
code (LOC) per unit time (Delorey, Knutson, & Chun, 2007; Maxwell, Van Wassen-
hove, & Dutta, Oct 1996) and function points per unit time (Delorey et al., 2007;
Maxwell & Forselius, 2000). An additional problem is assessing the productiv-
ity of different languages regardless of metric. Brooks (1995) states that the
productivity is constant regardless of programming language, but according
to Delorey et al. (2007), who provide evidence to the contrary, this assumption
is based on insufficient data. Problems with measuring productivity include
human factors like experience, skill and motivation and environmental factors
like IDE support and library support, and it is therefore hard to generalise any
findings from case studies.

Polyglot programming, however, promises increased productivity. Because no
single language is best at solving all problems, combining the best solutions
from different languages and integrating them may render a simpler solution
to the given problem. Regarding LOC, a language better suited for a particular
problem normally has a shorter solution because of the built-in primitives and
idioms to aid in solving it. If it is assumed that developers produce the same
amount of LOC regardless of programming language, high-level languages
that require less LOC will be more productive. When interpreted languages
are used in a polyglot environment, the productivity can be further enhanced
because no compile cycle is required to test new features. A compile cycle
in large applications normally takes several minutes. Vinoski (2008) gives an
example for XML processing. Where a general purpose language normally
uses an XML parser, a better solution would be to use languages that support

9

CHAPTER 3. POLYGLOT PROGRAMMING

literal XML, for example ECMAscript for XML (E4X) and Scala, which makes
it possible to write XML directly within the language’s syntax. This would
remove the overhead of parsing the XML file, and also provide a more natural
way of interacting with the data using the familiar dot notation. In Chapter 5,
more examples where polyglot programming can be productive are presented.

In addition to a shorter solution, the thought process will normally be shorter
because the solution comes naturally in the appropriate language. It will also
enable the developer to work on the problem and not the required plumbing.
One example is Erlang’s built-in primitives for message passing between pro-
cesses, without worrying about race conditions and deadlocks because of Er-
lang’s functional nature. This can be referred to as the Sapir-Whorf hypothesis,
stating that thought is constrained by the language (Wexelblat, 1980; Whorf,
1941).

The business value of increased productivity is reduced cost, either because of
a shorter development cycle and therefore faster time-to-market, or the possi-
bility to create the same application using fewer developers. In a fast-moving
market, the ability to deliver is paramount.

3.2.2 Maintainability

The initial development of applications is only a part of the total cost. Large
important systems normally have a long life cycle, often 5-10 years. Therefore,
the cost of maintaining an application will in many cases dwarf that of initial
development. Because of this, productivity gains from choosing the correct
language can be even more important in the maintenance phase than develop-
ment phase (Vinoski, 2008).

The rationale behind this is that an application written in the languages where
the solution comes naturally and can be expressed using fewer lines of code,
will have fewer lines of code to maintain, as well as fewer instructions. Several
studies cited in Brooks (1995) show that the effort required to develop and
maintain applications rises exponentially with the numbers of instructions,
and it is therefore important to have as few instructions as possible (Vinoski,
2008). This is further enhanced by the fact that research also shows that the
number of faults per LOC increases with the number of LOCs in the applica-
tion (Lipow, 1982).

10

3.3. DISADVANTAGES ASSOCIATED WITH POLYGLOT PROGRAMMING

3.3 Disadvantages associated with polyglot program-
ming

Polyglot programming also has its disadvantages, the most notable being the
knowledge required to use different languages, the maintainability of different
languages and the tools support. Similarly to the advantages, these are also
based on personal opinions, and will be discussed in Chapter 8.

3.3.1 Knowledge

In order to benefit from polyglot programming, it is important to have knowl-
edge about different programming languages, and the different problem areas
which best suits each language. This is a problem, because some developers
do not know many languages, and will not be interested in learning a new
language (Spiewak, 2008). This is further enhanced in businesses where devel-
opers have gotten used to using one language, normally Java or C#, and the
infrastructure, tools and certifications are all built around this language (Bini,
personal interview). The seminal work of Hunt and Thomas (1999) suggests
that developers should learn at least one new language each year. In many
situations this is not realistic (Duarte, 2008; Nilsson, 2008), and in many cases
it will take more than one year to learn a new language (Braithwaite, 2007;
Norvig, 1998).

In addition to this, the management also need increased knowledge of pro-
gramming languages, especially in the hiring process, but also when selecting
languages to use (Ford, personal interview).

3.3.2 Maintainability

Even though maintainability is an advantage of polyglot programming, be-
cause of the decreased code base, it does require that the developers who main-
tain the application know the languages used. For large applications, with a
life cycle of 5-10 years, it is likely that different companies will be responsible
of the administration. Every time a new language is added, the pool of devel-
opers who have enough knowledge to maintain the application will decrease
(Spiewak, 2008).

11

CHAPTER 3. POLYGLOT PROGRAMMING

3.3.3 Developer tools support

Developers using Java and .NET are used to having comprehensive IDE sup-
port, with support for version control, syntax highlighting, refactoring, debug-
ging and much more. Creating support for a new language usually requires
a lot of work, and will normally only be implemented if the language gains
enough popularity and traction. If the tools do not bridge the borders between
languages, different tools must be used for the different languages, increasing
the overhead of using different languages (Bini, personal interview). One ex-
ample is the refactoring of a dynamic language, which is, at best, very difficult.
The reason is that the IDE cannot know the type of a given variable, because
this is only revealed at run-time (Eyler, 2006). While developers could use the
automatic refactoring tools for C# parts, they would need to manually refactor
Python parts.

3.4 Summary

This chapter has defined polyglot programming as programming in more than
one language within the same context, where same context is either within one team, or
several teams where the integration between the resulting applications require knowl-
edge of the languages involved. This is the first attempt at a formal definition of
polyglot programming.

Within this definition, the degree of polyglot programming can vary between
four levels, namely integration, organisation of code, the processes within lan-
guages run, and the data being manipulated.

Perceived advantages of polyglot programming are productivity and main-
tainability, and the perceived disadvantages are knowledge, maintainability
and tool support. These will be further discussed in Chapter 8. Based on
this introduction to polyglot programming, Chapter 4 will describe the tech-
niques required to use polyglot programming, and Chapter 5 will give exam-
ples where using polyglot programming will benefit businesses.

12

Chapter 4

Technical platforms

Two aspects are essential in a polyglot environment. The first aspect is the
platforms used for integration. As mentioned in Chapter 2, the technical focus
will be managed runtimes because of the development being done to support
polyglot programming on these. This chapter will therefore describe the two
dominant business platforms, the .NET platform and the Java platform. The
second aspect is the different languages available on the given platform, and
a language classification is therefore given to form a basis for choosing the
appropriate language for the task at hand. The language classification will also
be the basis for the examples given in Chapter 5, and it is therefore important
to know the advantages and disadvantages of different paradigms.

4.1 The business platforms

In the business world, two platforms dominate; the .NET and the Java plat-
forms. The languages used on these platforms are not the business-critical
aspect; it is the infrastructure that is built around the platforms that is impor-
tant for the businesses. Being able to create new infrastructure without having
to rewrite old legacy code is essential, and recent development on these two
platforms is one of the reasons why polyglot programming has the potential
for success. This section will describe the two platforms, focusing on the im-
portance of these platforms in the business world and the techniques used to
support polyglot programming, as well as a comparison on how these plat-
forms support polyglot programming.

13

CHAPTER 4. TECHNICAL PLATFORMS

4.1.1 The .NET platform

When introduced, the .NET platform was a new framework for programming
on the Windows platform. After decades of backward compatibility, the frame-
works had to be updated, without including outdated solutions and technolo-
gies. Before .NET, two languages, Visual Basic and C++, were predominant on
the Windows platform. C# was introduced together with the .NET platform,
and because of these three languages, the architecture of .NET was developed
to support polyglot programming from the beginning (Robinson et al., 2004).
.NET has become especially popular in businesses already running on a Win-
dows platform, and in businesses adopting a SOA architecture because of the
web service support.

C# Visual Basic C++ ...

IronPython IronRuby ...

Dynamic Language Runtime

Common Language Specification (CLS)

Common Type System (CTS)

Base Class Libraries

Common Language Runtime (CLR)

Operating System

Common Language Infrastructure (CLI)

JIT Compiler Garbage Collector Security Manager ...

Dynamic Type System

Hosting Model
Performance

tools

Figure 4.1: The relationship between DLR, CLR, CTS and CLS. Compiled languages integrate
through CLS, while dynamic languages must additionally integrate through DLR. Inspired by
(Troelsen, 2003).

The .NET platform consists of four parts; the Common Language Runtime
(CLR), the Common Type System (CTS), the Common Language Specifications
(CLS), and the newly created Dynamic Language Runtime (DLR) (Robinson et
al., 2004; Troelsen, 2003; Hugunin, 2007). The relationship between these four
parts can be seen in Figure 4.1. The primary role of the CLR is to locate, load
and manage .NET types. In addition to this, the CLR offers memory man-
agement, language integration and type safety that can be shared among all
languages running on it. The CLR is built to run the Common Intermediate
Language (CIL), the language which all source code running on the .NET plat-

14

4.1. THE BUSINESS PLATFORMS

form is compiled into. The CTS fully describes all possible data types and
programming constructs supported by the runtime, how they interact and the
.NET metadata format. Because of the wide range of languages that can run
on top of the .NET platform, a type can be either class, structure, interface, enu-
meration or delegate. For statically typed languages, the final part they need to
run on the .NET platform is a compiler that conforms to the rules defined by
CLS. CLS enables languages to be hosted and accessed in a uniform manner
by all languages that target the .NET platform (Troelsen, 2003).

To support dynamic languages, the DLR has been created based on experi-
ences from the IronPython project (Lam & Hugunin, 2007). The DLR adds to
CLR support for dynamic languages through a shared dynamic type system, a
standard hosting model, and support to make it easy to generate fast dynamic
code and symbol tables. This enables dynamic languages to interact with each
other, and because of the interaction with CLR, also lets statically typed and
dynamically typed languages interact. Initially, DLR will support four lan-
guages, namely Python, JavaScript, Visual Basic and Ruby, but the shared fea-
tures makes it easy to support new languages (Hugunin, 2007).

4.1.2 The Java platform

The Java platform first became successful on the Internet, but has since been
widely adopted in business because of its high portability. The Java Virtual
Machine (JVM) is built to run on almost all platforms, from cell phones to
personal computers to super computers. In addition, the widespread use of
Java means that libraries exist for almost any task. This has made the JVM
very popular, and it is becoming more attractive to use other programming
languages on the JVM.

Because JVM was created to run the Java programming languages it is de-
signed specifically to support the restrictions and idioms of this language.
JVM also supports other languages as long as they are specifically targeting
the platform, and obey the same rules (Venners, 1999). Problems occur, how-
ever, when existing languages that do not follow these rules are implemented
on JVM. Take C++ for example, with its multiple inheritance; this cannot be
supported on the JVM without fundamental changes. Code written in dy-
namic languages, which might change even after it has been run, is another
architectural problem that the JVM cannot currently support well. The equiva-
lent to CIL on the Java platform is the bytecode, and is what is executed on the
JVM. Because the bytecode targets the JVM and not the underlying operating
system, the bytecode allows the code to be cross-platform (Venners, 1999). The
Java platform can be seen in Figure 4.2.

To improve support for polyglot programming on the Java platform, JSR 223

15

CHAPTER 4. TECHNICAL PLATFORMS

Java Groovy Scala ... Jython JRuby ...

Java Library (API)

Class Files

Java Virtual Machine

Operating System

Native Method Invocation

Class loader Execution Engine ...

Python Ruby

Figure 4.2: The relationship between different parts of the Java platform. Languages targeting
the platform can talk directly to the Java libraries, while interpreted languages like Python and
Ruby must use an interpreter written in Java to get the same access.

Scripting APIs has been added to JDK 6. These APIs allow arbitrary code to be
evaluated by Java, provided there exists a scripting engine for that language.
This has been possible before; one example the Bean Scripting Framework
(BSF) for writing web pages in other languages than Java using Java Server
Pages (JSP), but JSR 223 aims to standardise these efforts (Zukowski, 2006). In
addition to this, the JSR 292 Supporting Dynamically Typed Languages expert
group is working on adding a new bytecode, invokedynamic, which supports
efficient and flexible execution of method invocations. The goal is to help im-
prove performance for dynamic languages (Rose et al., 2008).

JSR 292 is part of the Da Vinci Machine project, with a mission of extending the
JVM with first-class architectural support for languages other than Java, espe-
cially dynamic languages. The emphasis is on general purpose extensions,
that will benefit all the languages being implemented on JVM. The goal is to
remove some of the problems when running new languages, including limi-
tations on calling sequences and control stack management, finite inheritance,
and scaling problems when generating classes, and the new capabilities are
planned for inclusion in JDK 7 (Krill, 2008; The Da Vinci Machine Project, 2008).

In addition to being able to evaluate code written in other languages from the
Java side, interpreters that closely co-operate with the JVM have been written
for many languages, for example JRuby for Ruby (JRuby: Java powered Ruby
implementation, n.d.) and Jython for Python (The Jython Project, n.d.). These
interpreters make it possible to use Java libraries from inside the respective
languages and also to utilise the best features in any given language. These in-
terpreters normally have support for compiling some of the code, while other

16

4.2. LANGUAGE CLASSIFICATION

parts must be evaluated.

4.1.3 Comparison of the polyglot programming support in the
.NET and the Java platforms

The difference between the two platforms is not as large as one might think.
Both virtual machines are built to run an assembly-like language, and are in
it self not aware of the language the source has been compiled from. Even
though the .NET platform was designed to run C++, only managed C++ can
coexist with C# and the other languages running on the runtime. Managed
C++ removes many of the properties of the language; for example, multiple
inheritance is not allowed. Because both runtimes abstract out the operating
system with their CIL and bytecode language, they are both inherently cross-
platform. The difference is that the JVM has been created to run on as many
platforms as possible, while the CLR was only created to run on a Windows
platform. To run .NET on other platforms, Novell has created Mono (Mono
project, n.d.), which will run .NET on Linux and Mac OS X.

To support dynamic languages, however, the two platforms use different philoso-
phies. While the DLR works above the level of the CLR without enhancing it,
the Da Vinci Machine project is extending the JVM and the libraries at the same
time. The end result will be the same, however, using different approaches
(Rose, 2008).

4.2 Language classification

According to Pigott (2006) there exists more than 8500 programming languages.
These include both English and non-English languages, ranging from assem-
bly languages to dynamically typed interpreted languages. Very few of these
languages are still in use, but inspiration and knowledge from previous lan-
guages has been vital in shaping the languages used today. In business, even
fewer languages are used; newer programs mainly target the .NET and the
Java platforms. The business is changing however, and support for polyglot
programming may prove essential for businesses to modernise in the future,
without having to rewrite legacy code.

Not all programming languages will be discussed, rather different classes of
languages, and the most used languages within these classes. Strengths and
weaknesses of the classes will be discussed to point out the situations in which
each class will be best suited, as well as support for the .NET and the Java
platforms. Following Sebesta (2008), languages will not be classified within

17

CHAPTER 4. TECHNICAL PLATFORMS

categories, but according to paradigms.

4.2.1 The imperative paradigm

The imperative paradigm is the oldest and most-well developed paradigm,
emerging as early as in the 1940s. Even though programming languages from
this paradigm are used extensively today in areas where low-level details are
very important, for example operating systems and drivers, these are not used
extensively in business.

The architecture of the von Neumann-Eckert model is the basis of the imper-
ative paradigm. In this architecture, both program instructions and data val-
ues are stored in memory. Important aspects of imperative programming are
assignments, variable declarations, expressions, conditional statements, loops
and procedural abstraction. In imperative programming, the instructions are
normally executed in the order in which they appear, all though conditional
statements and loops can change the flow of execution (Tucker & Noonan,
2007).

Because the imperative paradigm offers little abstraction, this enables good
performance. However, the lack of abstraction is also one of the limitations, as
it becomes hard to organise and manage large applications.

Languages

Because the von Neumann-Eckert model is so fundamental to computer pro-
gramming, almost all programming languages possess imperative properties,
including Java and C#. Of the purely imperative programming languages still
in use today, C is the most important one and is the basis for C++, C#, and
Java. C is also used in all major operating systems because of its performance
and possibility of communicating with hardware. It is not possible to run C
on either the .NET or Java platform, but both have facilities for invoking code
written in C.

4.2.2 The object oriented paradigm

Because of limitations in imperative programming, efforts such as Simula 67
tried to introduce data abstraction as well as procedural abstraction to the
paradigm. The goal was to have a better encapsulation for logically related
constants, variables, methods and so on. However, these efforts did not go far
enough in its support, lacking automatic initialisation and finalisation, as well

18

4.2. LANGUAGE CLASSIFICATION

as a simple mechanism for extending data abstractions. More importantly, dur-
ing the 1980s, developers were realising that imperative programming was not
well suited for a significant range of applications, for example graphical user
interfaces and large applications in general (Tucker & Noonan, 2007; Sebesta,
2008).

The result of the evolution was object oriented programming, in which ob-
ject decomposition is a central aspect instead of functional decomposition and
data abstraction. These objects are normally related to human aspects, like Per-
son and Tree, and are represented using a class concept. A class encapsulates
constants, variables and functions, but also support inheritance. The specific
implementation of the class concept varies from language to language. The
class also includes support for visibility and information hiding in that vari-
ables and methods can be declared public or private (Tucker & Noonan, 2007;
Sebesta, 2008). The advantage of higher abstraction is a natural and simple
organisation of related aspects, at the cost of performance. This is especially
beneficial in large applications.

Languages

Because of the popularity of object-orientation a lot of languages have been
created within this paradigm. The first popular language to include object-
orientation was C++, which is still used today for a lot of applications. For
enterprise applications, C# and Java are being used with great success, and
are the main languages for the .NET and Java platforms respectively. On the
Mac OS X platform, Objective-C is the main programming language, and in a
lot of banking services, COBOL is still being used. COBOL 2002 added sup-
port for object orientation. For complex calculations like weather simulation,
FORTRAN is still being used, which added support for object orientation in its
2003 revision.

These are all statically typed languages, but this paradigm also has a range
of dynamically typed languages, including Groovy, JavaScript, Python, Ruby,
Perl and PHP, that can all run on the .NET and Java platforms. These languages
are often called scripting languages to indicate that they are used for smaller
applications, but can also be used in large applications. The difference between
statically and dynamically typed languages is discussed in Section 4.2.5.

4.2.3 The functional paradigm

At the same time as the von Neumann-Eckert model was developed, others de-
veloped alternative computational models. One of these was the lambda cal-
culus, and is the basis for the functional paradigm (Backus, 1978). Functional

19

CHAPTER 4. TECHNICAL PLATFORMS

programming adopts mathematical thinking, where everything is a function
with input and result. Functions interact with each other through functional
composition, conditionals and recursion (Tucker & Noonan, 2007). Functional
programming offer features that help developers build elegant yet powerful
and general libraries, and shift the focus from how it should be computed to
what should be computed (Thompson, 1999). In recent years, interest in func-
tional programming has increased because the introduction of multi-core pro-
cessors requires more concurrency, something that functional programming
can offer without side-effects and deadlocks.

For those who understand functional languages, code can become very expres-
sive and succinct, as illustrated by the following quick sort example:

qsort [] = []
qsort (pivot:list) = qsort less ++ [pivot] ++ qsort more

where less = filter (< pivot) list
more = filter (>= pivot) list

The first statement says that sorting an empty list results in an empty list. The
second statement says that by sorting a list consisting of a pivot and a list,
one will first sort all elements smaller than the pivot, then add the pivot, and
finally sort all elements equal to or larger than the pivot. This code is much
more expressive than either C# and Java, and do not care about how elements
should be moved, only what should move.

Unlike imperative programming, functional programming does not involve
the use of variables. The effect of this is that no functions can have any side
effects, since there exists no states to change. This allows expressions to be
evaluated in any order, and makes it easier to build concurrent and trans-
actional programs. This is called referential transparency (Thompson, 1999;
Hughes, 1989). Other important characteristics of functional programming in-
clude concurrency, lazy evaluation and higher order functions. Concurrency
in functional programming comes naturally because there are no mutable ob-
jects, and therefore functions can be evaluated in any order. Lazy evaluation
means that no function will be called or no value evaluated unless it is neces-
sary and it is therefore possible to create infinite expressions, using only the
values needed. Higher order functions are the basis of functional program-
ming, and make it possible to send functions in addition to values to other
functions (Hughes, 1989).

The major problem with functional programming is the steep learning curve
for developers used to object oriented programming, especially the different
mindset needed for functional programming. So called hybrid functional lan-
guages, for example F# and Scala, are among the solutions to this problem, and
offer a mix between object oriented programming and functional program-
ming (Werner, 2008).

20

4.2. LANGUAGE CLASSIFICATION

Languages

Several languages have been designed for functional programming. Lisp was
one of the first, and is still important in the world of artificial intelligence.
Other widely used languages include Erlang and Haskell, both of which can
be run on the .NET and Java platforms. More recent additions to the list in-
clude F# and Scala, specifically designed for the .NET and the Java platforms
respectively.

4.2.4 The logical paradigm

Unlike the other three paradigms, in logical (declarative) programming, rather
than declaring how something should be accomplished, what should be ac-
complished is declared. This is often given as a collection of assertions, or
rules about the outcomes and the constraints. Logical programming is often
called rule-based programming for this reason, and is most used within artifi-
cial intelligence and database information retrieval (Tucker & Noonan, 2007).

Two distinct properties of logical programming are nondeterminism and back-
tracking. Nondeterminism is the property of being able to find several solu-
tions to a problem, and backtracking means that it is possible to reason about
and reproduce decisions made (Tucker & Noonan, 2007).

The advantage of logical programming is the ability to specify what should
happen, enabling the machine to decide how it should be accomplished and
optimise the performance. The disadvantage is that the paradigm is limited to
the field of artificial intelligence and database information retrieval, making it
very specialised.

Languages

Within the field of artificial intelligence, Prolog is the most notable logical pro-
gramming language, and has been used with great success within for exam-
ple natural language processing (Amble, 2000). Prolog can be used both on
the .NET and the Java platforms. In addition to Prolog, CLIPS has also been
used with success within expert systems, and is available on the Java platform
through the Jess framework (Jess, the Rule Enginge for the Java Platform, n.d.).

For database information retrieval, the Structured Query Language (SQL) is
most used. Inspired by SQL, Microsoft has created the Language Integrated
Query (LINQ) framework, which lets the developer define queries over objects
in the language’s syntax (Language-Integrated Query (LINQ), 2008).

21

CHAPTER 4. TECHNICAL PLATFORMS

4.2.5 Statically or dynamically typed languages

Independently of language paradigm, a programming language can be either
statically or dynamically typed. For statically typed languages, the types of all
variables are declared before compile time and cannot change, while for dy-
namically typed languages the types are declared at run-time and can change.
One exception of this rule is type casting, which is checked in run-time in many
languages. Examples of statically typed languages include C, C++, C#, Java,
Haskell, and dynamically typed languages include Perl, Python, Ruby, Lisp
(Tucker & Noonan, 2007).

The advantage of a statically typed language is the certainty that all the types
are correct, and that no other are allowed. This normally means that statically
typed languages have better performance because the compiler can make op-
timisation based on type. However, statically typed languages often require
more typing because the type of each variable must be specified.

The advantages of a dynamically typed language are that they allow new fea-
tures to be tested without compilation, because they are often interpreted, and
that they require less typing because the type is implicit. However, these fea-
tures are added at the cost of performance.

4.2.6 Domain specific languages

Domain specific languages (DSL) are computer languages created specifically
to solve a particular kind of problem. DSLs are used extensively and exam-
ples include CSS, regular expressions and Ant (Fowler, 2008). Domain specific
languages are also essential in language oriented programming (Ward, 1994),
as mentioned in Chapter 3. The importance of DSL is also apparent in Bini
(2008b, 2008d, 2008c), where he suggests that applications will consist of three
language layers, as described in Section 4.2.7.

Fowler (2008) separates domain specific languages into two categories; inter-
nal and external. An internal DSL is one that uses a general purpose language,
but uses the language in a particular and limited manner. Only some aspects
of the general purpose language is used, and only a limited part of the applica-
tion is affected. This is sometimes called fluent interfaces (Fowler, 2005a), and
has successfully been used in the Lisp and Ruby community. In the following
example, an internal DSL is used in Rails to specify the relationship between
the database model Person and various other models.

class Person < ActiveRecord::Base
has_many :jobs
has_many :companies, :through => :jobs
has_many :studies

22

4.2. LANGUAGE CLASSIFICATION

has_many :schools_programmes, :through => :studies
belongs_to :city
belongs_to :minority
belongs_to :role

end

Unlike an internal DSL, an external DSL uses a language different from the
one used in the application. This can either be created using its own syntax,
as is the case with CSS and regular expressions, or by using some familiar
syntax, as in the case of Ant that uses XML. In most cases, when creating an
external DSL, a parser must also be created to enable use of the information
in the application. An example of an external DSL is the following from the
RSpec story framework (RSpec, n.d.):

Story: transfer from savings to checking account
As a savings account holder
I want to transfer money from my savings account to my

checking account
So that I can get cash easily from an ATM

Scenario: savings account has sufficient funds
Given my savings account balance is $100
And my checking account balance is $10
When I transfer $20 from savings to checking
Then my savings account balance should be $80
And my checking account balance should be $30

Fields (n.d.) describes what he calls Business Natural Language (BNL), a sub-
set of DSL but with a focus on the business rules. The goal is to create a domain
vocabulary similar to the one the domain experts use in their daily life, with
the goal that the experts can maintain the rules themselves. An example of a
BNL is given in Section 5.4.

To integrate with general purpose languages, the DSL must either be created
in the syntax of the language, as is the case of internal DSLs, or a parser that
translated from the DSL to the general purpose language must be used, as is
the case of external DSLs.

The advantage of creating DSLs is increased productivity because the language
is designed specifically for the problem. The disadvantage is the extra effort
needed to create the language, and it is important to analyse the return on
investment for each problem.

4.2.7 The language layers

One of the problems when developing in a polyglot environment, is how the
different languages should be organised. Bini (2008b, 2008d, 2008c) suggests

23

CHAPTER 4. TECHNICAL PLATFORMS

Figure 4.3: The relationship between the stable, dynamic and domain layer. The domain layer
contains the domain rules, the dynamic layer consists of most the application code, and the
stable layer is the thin foundation that everything else is built upon (Bini, 2008b).

that an application should consist of three language layers, namely the stable
layer, the dynamic layer and the domain layer. He calls this fractal program-
ming because of the bounded fractal representation of the languages, as shown
in Figure 4.3.

Following this representation, the domain layer will consist of one or more
DSLs to define the actual domain rules. The DSLs can be either internal or ex-
ternal, but it must be possible to change rules in production. Beneath the do-
main layer is the dynamic layer, whose most important property is that appli-
cation code should not need to be compiled. Languages from all the paradigms
can be used, as long as they are dynamic and do not require compilation. The
stable layer is what everything else is built on top of, and should preferably be
a thin foundation. Statically typed languages from all paradigms are suited for
this layer, as performance and stability is of the utmost importance. All inter-
faces to external applications are also defined in this layer, as this will provide
type safety and enable other clients to trust it.

4.3 Summary

This chapter has described the .NET and Java platforms, and how they support
polyglot programming. A short comparison has also been made to evaluate
whether there is any difference in their support for polyglot programming,
and found that they use different approaches, but with the same goal.

In addition to the platforms, the different classes of programming languages
have been described. First of all, the different paradigms the languages can
support have been described, as well as the difference between statically and
dynamically typed languages. In addition, domain specific languages have

24

4.3. SUMMARY

been described, and how the different languages can be organised into lan-
guage layers.

The next chapter will introduce examples of situations where it can be bene-
ficial to use languages from the different paradigms, and how different lan-
guages can work together to create the best solution. The examples will also
be related to the various language layers.

25

Chapter 5

Examples

Polyglot programming is not useful unless it gives business value; the fact that
it is possible to integrate different languages is not enough. Without using the
term polyglot programming, it has been used in games (Civilization 4 uses
C++ and Python, and World of Warcraft uses C++ and Lua (Walters, 2008)),
to script applications (Applescript for Mac software, Ruby in Google Sketchup
(Google SketchUp Ruby API, n.d.)) and to mediate requests (Google uses Python
to push binary data between servers (Harrison, 2006)).

This chapter will describe examples of situations where polyglot programming
can give real business value. The common business value for all the exam-
ples is decreased costs of development and maintenance, as the result of the
increased productivity gained by using the most efficient tool. For each exam-
ple, the language paradigm best suited will be described, as well as how the
example fit into the language layers presented in Section 4.2.7.

5.1 Web development

Web development is one area within software development that has always
been polyglot (Ford, 2006). Best practise today is to separate the content from
the presentation using cascading style sheets (CSS). More advanced web ap-
plications also include JavaScript to make the web pages more interactive, and
interact with a database, using a server side language, where information is
stored. This means that in most web applications, at least four different lan-
guages are already used for development, from at least two different classes.
HTML and CSS are DSLs, while JavaScript and in most cases the server side
language are object oriented languages. This is a non-networked type of poly-
glot programming where the different languages are in the same file, but be-
cause of the increasing support for polyglot programming in the .NET and Java

27

CHAPTER 5. EXAMPLES

platforms, polyglot programming using a managed runtime is also becoming
more popular for web development.

The major reason for the increased popularity of using polyglot programming
for web development is the excellent frameworks created using dynamic lan-
guages, promising increased productivity and faster turnover. These frame-
works normally also include support for generating JavaScript. The most im-
portant of these include Ruby on Rails (Ruby on Rails: Web development that
doesn’t hurt, n.d.) created in Ruby, Django (Django: The Web framework for per-
fectionists with deadlines, n.d.) created in Python, and Grails (Grails: The search is
over, n.d.) created in Groovy. The importance of these frameworks can be seen
in that frameworks in other languages use the same ideas, and the fact that
the consulting firm ThoughtWorks uses Ruby on Rails for around 40% of their
new projects in the US (Fowler, 2007b).

The separation between the stable layer and the dynamic layer as described
in Section 4.2.7 fits very well for web development. Because the web interface
is likely to change more often than the services it is built upon, a dynamic
language is a good fit since it will offer faster turnover. Using this model,
the web interface will work as a mediator between the requests and the stable
layer, and the stable layer will do the heavy lifting.

The advantage of using more productive frameworks is further increased be-
cause the decrease in performance is not that important for web development.
This is because the main bottleneck is the Internet connection of the users; the
users will not notice it if the application uses 100ms instead of 10ms, as long as
it takes 1 second to send the data anyway.

5.2 Testing

The popularity of automated testing has increased recently, especially since it
is commonly a key concept in many of the new agile development method-
ologies, including test driven development (TDD), behaviour driven develop-
ment (BDD) and extreme programming (XP) (Janzen & Saiedian, 2005; North,
2006; Beck, 1999). Automated testing also gives the developers confidence that
the code is still working after changes have been made, especially in dynamic
languages which lack a compile cycle. Testing can also be a first introduction
to polyglot programming in many businesses; as the test code is not an inte-
gral part of the application, it will be easier to introduce new languages here.
Since testing is a continuous activity that preferably should include the whole
application, it will not fit into one of the three language layers, but will interact
with all three.

A problem when testing complex code is that it can be time consuming and

28

5.2. TESTING

introduces a high amount of coupling in the test process. The time it takes
to run the tests is dramatically increased if the code relies on databases and
web services, and small changes in the database table might break all tests.
To overcome this problem, mock and stub objects are created, to mimic the
behaviour of other objects. The purpose of using mock and stub objects is to
test in isolation, without relying on the other objects (Thomas & Hunt, 2002).
This is an area where testing using a statically language can be replaced with
a dynamic language, as the following example from Ford (2008) shows:

The code to test is the interaction between an Order class and a Warehouse
class. The following code is the test using JMock (jMock - A Lightweight Mock
Object Library for Java, n.d.), a mock framework written in Java.

Order order = new OrderImpl(TALISKER, 50);
Mock warehouseMock = new Mock(Warehouse.class);

warehouseMock.expects(once()).method("hasInventory")
.with(eq(TALISKER),eq(50))
.will(returnValue(true));

warehouseMock.expects(once()).method("remove")
.with(eq(TALISKER), eq(50))
.after("hasInventory");

order.fill((Warehouse) warehouseMock.proxy());

warehouseMock.verify();
assertTrue(order.isFilled());

The following code is the same test using JRuby and the Mocha (Mocha, n.d.)
framework.

order = OrderImpl.new(TALISKER, 50)
warehouse = Warehouse.new

warehouse.stubs(:hasInventory).with(TALISKER, 50).returns(true)
warehouse.stubs(:remove).with(TALISKER, 50)

order.fill(warehouse)

assert order.is_filled

The Ruby code is much more concise, and the intent of the code is much clearer,
because the programming language provides the freedom to remove unneces-
sary syntax.

Because the testing code will not be run in production, the runtime perfor-
mance of the language used is not important, but rather programming produc-
tivity. Using an interpreted language also enables new tests to be run without
compilation.

29

CHAPTER 5. EXAMPLES

5.3 Concurrency

With the introduction of multi-core processors the developers were faced with
a new challenge, namely how to best utilise these processors using existing
tools. One of the hardest aspects of imperative and object oriented program-
ming is dealing with threads, because these introduce race conditions and the
risk of deadlocks, because different threads can modify the same variables. Al-
though concurrency has long been an issue for some developers, with multi-
core entering the mainstream, concurrency has become important for all de-
velopers. It is therefore important to make it easier to manage threads and
concurrency (Tucker & Noonan, 2007).

Functional programming aids the process of creating concurrent programs be-
cause there are no shared states between processes. This removes the risk of
deadlocks, as no data is shared directly. This also makes it easier to add concur-
rency to an existing application written in a functional programming language
(see Section 4.2.3 for more details on functional programming).

In Erlang, a programming language designed for concurrency by Ericsson,
data sharing is achieved using message passing. This is similar to commu-
nication between people and is therefore a more natural programming idiom
(Armstrong, 2007). When benchmarking Yaws (Yaws webserver webpage, n.d.),
a web server written in Erlang, against the Apache web server, Apache dies at
about 4000 parallel sessions, but Yaws is still functioning with more than 80000
parallel sessions (Ghodsi & Armstrong, 2007). This, and the fact that Ericsson
has been using Erlang in the telecommunication area for several years, shows
that functional programming can be used with great success for concurrent
problems.

Although functional languages are good for concurrency, they are not as good
when developing user interfaces, for example. By using them in a polyglot
environment, the parts that need to be highly concurrent can be written in a
functional language, while the rest are written in languages more suited as
general purpose languages. Facebook recently used this approach when cre-
ating their new chat client, integrating an Erlang chat client with the existing
infrastructure written in C++, PHP and JavaScript (Letuchy, 2008).

The business value of better concurrency is first of all about improved scala-
bility because the overhead of spawning new processes is decreased. Because
of the independency between the processes, it will also be easier to distribute
load on multiple cores and machines. Because the load can be distributed on
multiple cores, this also means that the hardware is better utilised.

30

5.4. BUSINESS RULES

5.4 Business rules

In most applications today, the business logic is an integrated part of the source
code, making it difficult for the domain experts to verify that the business rules
are implemented correctly. For the same reason, it is difficult for the domain
experts to change the rules, which might happen quite often in business.

A better solution would be to implement the business rules either using a BNL,
or a rules engine. As described in Section 4.2.6, a BNL is a language created
specifically for describing the business rules, and is a subset of DSLs. This can
be created in a vocabulary that the domain experts are already using, making
it easier to verify the business rules, and enabling the experts to change the
rules. Other benefits include clear communication of the intent of the applica-
tion and easier communication with the domain experts because they actually
understand the rules (Fowler, 2008).

An alternative to a BNL is to use a rules engine. The advantage of using a rules
engine as opposed to a BNL is that the developer does not have to create a new
parser for the language. The disadvantage is that the language must follow the
syntax of the rules engine. Several rules engines have been created. Popular
rules engine for the Java platform include Drools (Drools, n.d.) and Jess, for the
.NET platform InRule (InRule Technology - Business Rule Engine for .NET, n.d.)
and BizTalk Server (Microsoft BizTalk Server, n.d.), and the logical languages
are rule engines in themselves.

When creating a BNL or using a rules engine, it is important to consider who
will be authoring the rules. Unless the rules are readable and maintainable to
the authors, they will require help from the developers, which goes against
part of the purpose of using this technique. Another consideration is how
often the rules will change. If the rules rarely change, using this technique will
probably not be a good investment, but in cases where the rules are changed
often, the technique will be beneficial (Fields, 2008). To illustrate this benefit
the following example is described in detail in Fields (n.d.):

You have been contracted to replace a payroll calculation system for a con-
sulting company. Each employee have a varying compensation package, the
following is for employee John Jones:

employee John Jones
compensate $2500 for each deal closed in the past 30 days
compensate $500 for each active deal that closed more than 365 days ago
compensate 5% of gross profits if gross profits are greater than $1,000,000
compensate 3% of gross profits if gross profits are greater than $2,000,000
compensate 1% of gross profits if gross profits are greater than $3,000,000

Instead of bending the rules to match the syntax of a programming language,
the programming language is made to understand the given rules, so the do-

31

CHAPTER 5. EXAMPLES

main expert does not have to learn a new syntax. In this example this only
involves string manipulation, but will be more advanced for other problems,
so the effort of parsing the rules must be considered.

5.5 Summary

This chapter has described situations where polyglot programming will offer
increased business value. In most of the examples the increased productivity
is the main reason for choosing a polyglot approach.

This concludes the literature study, which will be followed by a case study,
to shed some light on how polyglot programming can be used in a business
environment.

32

Chapter 6

Research process

In Chapter 2, two research methods were identified. The first was a literature
study, the second a case study. This chapter will describe case study research
in general according to Yin (2003), how this method is planned used in this
case study, and how it was actually used.

6.1 Case study research

Although there are many different types of case studies, a common definition
is that a case study is “an empirical inquiry that investigates a contemporary
phenomenon within its real-life context” (Yin, 2003, pg. 13). Case studies are
especially relevant when the boundaries between phenomenon and context are
not clearly defined. Because case studies are performed within real-life con-
texts, they are one of the preferred research methods when asking “how” and
“why” something happens, without being able to control influential variables.
A case study can consist of both single-case or multiple cases, and both quali-
tative and quantitative data can be used in the same case study (Yin, 2003).

Case studies have the advantage of researching a phenomenon in its real-life
context, which might lead to findings not possible outside this context, and
is especially true whenever humans are involved. Case studies also result in
detailed description that can be used as basis for new research (Yin, 2003).

According to Yin (2003), because case studies are loosely defined, and because
many case studies have been poorly performed, prejudice exists. One of the
greatest concerns with case studies is the lack of rigour. Because the research
method has been poorly defined, many researchers have allowed biased views
to influence the direction of findings and conclusions. Bias will exist in any re-
search method, but more so in case studies because bias can be introduced in
all phases of the research. When preparing and choosing sources, one can for

33

CHAPTER 6. RESEARCH PROCESS

example, choose to look at only the ones which favour some predetermined
agenda. Similarly, during data collection, certain types of people may be se-
lected for interviews, and the questions asked may be biased and cause an-
swers to lean in a particular direction.

Another concern about case studies is that the results give little basis for scien-
tific generalisation, because only a single case is studied. But case studies can
be generalised to theoretical propositions, and should be used in combination
with experiments to increase the credibility of results (Tichy, 1998). The de-
tailed descriptions resulting from a case study can also be used as the basis for
new hypothesis and further experimentation (Fitzgerald, Hartnett, & Conboy,
2006; Yin, 2003). A third concern is that case studies are time consuming and
often produce documentation that is too detail-oriented to be useful. This can
be a result of bad practises, and is not necessarily true for all case studies (Yin,
2003).

6.1.1 Data collection

In order to increase the rigour and the reliability of case studies, Yin (2003)
proposes three principles which should be followed when collecting data. The
first principle is the use of multiple sources. It is possible to base a case study
solely on one of the methods described in Section 6.1.1.1, but being able to use
multiple sources is one of the strengths of case studies. The use of data trian-
gulation enables the researcher to address a broader range of issues. Triangu-
lation can also address problems related to construct validity, which is one of
the four tests used to evaluate the quality of research (Kidder & Judd, 1986),
and is used to test whether the research follows correct operational measures
(Yin, 2003).

The second principle is to create a case study database; to organise and docu-
ment the data collection. This allows other researchers to use the data without
being biased by opinions and conclusions drawn in the related research, and
therefore increase the reliability of the whole case study.

The third and last principle is to maintain the chain of evidence. This allows
other researchers to follow the train of thought from research questions to con-
clusions, and will increase the reliability of the research. Thus, making suffi-
cient citations, and organising and documenting all data, is necessary through-
out the collection of data.

34

6.1. CASE STUDY RESEARCH

6.1.1.1 Data collection methods

When collecting data several methods exist, including documentation, inter-
view, observation and participation (Yin, 2003; Marshall & Rossman, 2006).
All of these will be described in short detail.

Documentation

Documentation is most likely to be relevant for every case study, because this
will give the researcher access to information already available about the topic
(Marshall & Rossman, 2006). Documentation is a stable source of information
that can be reviewed repeatedly, and normally has a broad coverage of the
studied case, although it might be difficult to retrieve and access. When se-
lecting documentation it is important for the researcher to stay unbiased (Yin,
2003).

Interview

Kahn and Cannell (1957) calls the interview “a conversation with a purpose”,
and that purpose is for the participant’s perspective of the phenomenon of in-
terest to unfold according to the participant’s point of view, not the researcher’s
(Marshall & Rossman, 2006). To achieve this, it is important that the questions
are not addressed in a way that leads the participant into answering a cer-
tain way, but that the questions are neutral (Marshall & Rossman, 2006). In
a successful interview, the participant should be an informer instead of a re-
spondent, and achieving this cooperation is essential (Yin, 2003).

Observation

The use of observation allows the researcher to cover events in real time and
also cover the context within which the events happen. Results in a lab, where
conditions are carefully controlled, may be very different from the ones ob-
served in the natural work environment. The problem with observation is that
it is time-consuming and may affect the behaviour of the research subjects be-
cause they are aware that a researcher is present (Yin, 2003).

Participation

Participation goes one step further than observation. Not only is the researcher
observing; he or she is also actively taking part in the events studied. This

35

CHAPTER 6. RESEARCH PROCESS

gives the same benefits as observation, but from another perspective, as the
researcher is actually part of the events that occur. The problems are also the
same, but because of researcher interruption, the risk of bias increases (Yin,
2003).

6.1.2 Data analysis

When analysing the collected data, the goal is to treat it fairly and produce
compelling analytic conclusions, and to rule out alternative interpretations.
Analysis consists of recombining the data to address the initial research ques-
tions, but is especially difficult because of the qualitative nature of the data
produced by a case study (Yin, 2003).

Yin (2003) describes two general strategies for analysing data. The first strat-
egy is to rely on the theoretical propositions that led to the case study, and
shaped the data collection. This will help focus attention on certain data while
ignoring other data. The second strategy is to develop a case description, suit-
able for descriptive case studies. As this study will be explorative, no further
details will be included on this second strategy.

6.2 Case study design

Based on the literature study and Section 6.1, this section will describe how
this particular case study is designed.

6.2.1 Data collection

To increase the credibility of the data collected in the case study, the three prin-
ciples described in Section 6.1.1 will be followed as best as possible. The first
principle, data triangulation, will be followed through the collection of data
from documentation and interviews. This way it will be easier to verify that
what the interview subjects answer are similar to that which is documented.
To support the second principle, creating a case study database, the recount
of what has happened during the case study will be presented objectively and
the interview transcripts will be available in Appendix A. The third principle,
maintaining a chain of evidence, will be supported by referencing to relevant
parts of the literature study and case study.

36

6.2. CASE STUDY DESIGN

6.2.1.1 Data collection methods

As mentioned, the data collection methods selected for this case study are doc-
umentation and interview. Observation and participation were not selected be-
cause of the geographical distance between the researcher and the consultant
firm, and a questionnaire was not selected because it would not have given
the appropriate information. For software development, possible documenta-
tion include source code, planning documents, and in the case of consulting
firms, the actual offer to the customer. The source code can help in highlight-
ing problems related to technical aspects, while planning documents and offers
can highlight problems related to managerial aspects.

In the case study, interviews will be conducted on management, for example
the project leader, but also the developers. This way, a more holistic view
of how it was working in a polyglot environment will be discovered, from
managerial to technical issues. The plan is to have open ended interviews, but
the "conversation" will be steered towards the business perspective and the
business benefits of using polyglot programming.

6.2.2 Data analysis

Section 6.1.2 describes two general data analysis strategies. For this case study,
the first will be used, namely to rely on the theoretical propositions. These
were established in the literature study. As a part of this general strategy,
pattern-matching will be used, comparing the actually observed patterns with
the predicted ones (Yin, 2003).

When conducting the data collection, findings will be related to what has been
discovered in the literature study. To put the case into context, it will be related
to the definition of polyglot programming to see what kind of technologies
are used to integrate the different languages, and how the team or teams are
organised. The languages involved are also of relevance.

The case will also be related to the perceived advantages found in the literature
study. These were productivity and maintainability. If other advantages are
discovered, these will also be described.

Lastly, the cases will be related to the perceived disadvantages. These were the
difficulty of learning new languages, maintainability and tool support. If other
disadvantages are discovered these will also be described.

37

CHAPTER 6. RESEARCH PROCESS

6.3 Case study implementation

Based on Section 6.2, a case study of a Norwegian consulting firm was con-
ducted. The case study consisted of three smaller case studies of either finished
or ongoing projects. Two of these were web development projects as described
in Section 5.1 and one was related to testing as described in Section 5.2.

6.3.1 Data collection

The original plan was to use both documentation and interview as data col-
lection methods. Due to confidentiality, none of the documentation was made
available.

Several employees were however interviewed. All of the interviews were open
ended, but the first interview less so than the other. For the first interview, be-
cause the researcher had some knowledge about the interview subjects and
the projects he had participated in, some of the questions were already created
and sent to the subject. The goal was to discover the business benefits, prob-
lems and possible resistance during the project. This subject was also part of
both the web development projects, and therefore shared valuable informa-
tion about both, that was later used to steer the other interviews. The other
interviews were more open ended, but also tried to steer the conversation in
the same direction as the first. For the first web development, the interview
subjects were the CTO of the customer, and a senior consultant. For the sec-
ond web development the same senior consultant was interviewed, as well as
a consultant.

In the testing case study, only one consultant was interviewed. Because of the
low degree of polyglot programming in this case, the interview revolved more
around technical aspects than managerial ones. This made this particular case
study less relevant than the other two.

38

Chapter 7

Bekk Consulting AS - A case study

Bekk Consulting AS (BEKK) is a Norwegian consulting firm delivering ad-
visory services, technology services and application management. BEKK is
a part of ErgoGroup AS, and currently has 200 employees (BEKK’s webpage,
2008). Even though BEKK is relatively small compared to international compa-
nies, the projects they are involved in are not; examples include ABB, Telenor,
NAV, StatoilHydro.

The rationale for doing a case study of BEKK is their ambition for developing
projects using new technology. Examples include their use of agile methodol-
ogy and Ruby on Rails. At BEKK, polyglot programming is used in at least
two areas, web development and testing, and both these areas are targeted by
this case study.

This chapter will describe two web development projects using Ruby on Rails,
and a project using RSpec and Watir for testing purposes. The findings are
later analysed and discussed in Chapter 8 and the technologies involved are
described in further detail in Appendix B.

7.1 Web development

In Norway, BEKK is one of the leading actors within web based self-service
solutions and portals. Traditionally these are created using technologies like
ASP.Net, Java EE and Lotus/Domino, but recently, BEKK has finished one
proof of concept project, and has another one in development using Ruby on
Rails (Rails). Utilising JRuby makes it possible to develop modern web pages,
and at the same time utilise existing functionality written in Java. This section
will present both these projects. As mentioned in Chapter 6, data collection has
been achieved by interviewing key persons within BEKK and the customers.
The transcripts are not included because of confidentiality.

39

CHAPTER 7. BEKK CONSULTING AS - A CASE STUDY

7.1.1 Buypass

Buypass is a Norwegian company delivering identification and payment solu-
tions for the web. Customers include NAV, Posten and Norsk Tipping (Buypass’
webpage, 2008). Most of Buypass’ solutions are written in Java, but they wanted
to try out Rails because they wondered if it could be used to increase their
productivity and reduce the cost of web development. They also wanted to
evaluate whether it was possible to use the framework and language in their
existing architecture.

BEKK was hired to create two prototypes. For the first prototype, the goal
was to get to know Rails and the libraries that already existed at Buypass, and
to verify the ease with which integration between these technologies could be
achieved. Because these libraries were written in Java, the decision was to use
JRuby and access these libraries directly.

Once it was verified that it was possible to integrate the Rails solution with
the existing services, the goal of the second prototype was to verify that Rails
could be used in their existing architecture. Because Buypass delivers iden-
tification and payment solutions, security is the number one priority. All the
clients therefore do not have direct access to the database, but must use an
existing Java server. Between the database and the Java server, firewalls are in-
serted for security purposes, and additional firewalls are introduced between
the Java server and the clients. The business logic is also centralised in the Java
servers, making it easier for all the clients to use it without duplication. This
architecture is shown in Figure 7.1.

To overcome the problems with the architecture, and at the same time utilis-
ing ActiveRecord, an object-relational mapping framework offered by Ruby on
Rails, a connection adapter for ActiveRecord was created. Instead of talking
to a database, the adapter routed the requests to the Java server. This allowed
the client to use ActiveRecord as though it was using a database, when in fact
it was not.

Because ActiveRecord creates objects per database table, the Java solution was
extended to include support for this. The reason was that the existing solu-
tions used the database at a much higher granularity level, and created objects
according to concept instead of tables. To automate the generation of the meth-
ods needed to support this, the SQL created from ActiveRecord was analysed.

Because none of the developers had prior experience with neither Ruby nor
Rails in a professional environment, Buypass and BEKK arranged a course
prior to the initiation of the project. The course was held by “Dr.” Nic Williams
(Dr Nic, n.d.), a renowned developer in the Rails community. In addition to
this course, Aslak Hellesøy, the CTO at BEKK, who has broad experience using
Ruby and Rails, acted as a coach for the developers in case they needed any

40

7.1. WEB DEVELOPMENT

client

Java servers

Database

client
JSP

client
Ruby on

Rails client

firewall

firewall

Figure 7.1: Buypass’ architecture. Firewalls exist between the database, the Java servers and
all the clients using the Java servers. The Ruby on Rails client access the Java server through
the same firewall as the rest of the clients.

guidance.

The developers experienced it as easier to learn Rails than the equivalent Java
frameworks, mainly because of the “convention over configuration” and DRY
(don’t repeat yourself) principles that were used when creating the frame-
work, and because everything is inside one framework, and therefore follow
the same standards.

They also experienced a productivity gain from using Rails. First of all, be-
cause it was not necessary to configure the application, developers could start
developing at once. Second, no compilation meant the developers did not have
to wait until compilation was finished to see the changes. However, although
the language and framework was perceived as more productive, the lack of au-
tomatic refactoring and the need to write additional tests did counteract some
of the productivity gain.

Buypass used continuous integration and unit tests to verify that changes did
not break the application.

7.1.2 Web based extranet solution

BEKK is currently creating a web based extranet solution for one of its cus-
tomers. The customer originally contacted BEKK to change both the extranet

41

CHAPTER 7. BEKK CONSULTING AS - A CASE STUDY

and executive work solution because the existing solutions were created in
outdated Java, and were nearly ten years old. The original idea was to use
Java, but because BEKK offered to do the same project cheaper and faster us-
ing Rails, the customer was convinced to try it out, but only for the extranet
solution.

Based on the Buypass project, the developers had concluded that Rails was
best for database driven web applications. Thus, it was a candidate for the ex-
tranet solution, which was going to be built on top of a legacy database, con-
sisting of hundred of database tables. Where necessary, existing Java libraries
could also be used because of the ability to use JRuby.

In the beginning, the customer was sceptical to using Rails. They did not know
much about the language and framework, and did not want to throw out all
of their existing Java code. Because of this, a technical offer comparing frame-
works, in addition to a prototype of core functionality in the executive work
solution was made. However, this prototype was too simplistic, and it did not
use the legacy database.

The plan was to create a new database, but since only the extranet solution was
to be created, the executive work solution would still use the legacy database.
Additionally, a data warehouse application also used the legacy database, and
a new database would require a rewrite in that application. To follow the con-
ventions in Rails, they decided to create MSSQL views, which translated the
existing tables into a form that could be used by Rails without any configura-
tion.

As BEKK already had the application management of the old system, some
of the developers managing it became part of the Rails team. These had little
experience with Rails prior to this project, and found the framework easier to
learn than the equivalent in .NET or Java. In addition, one of the consultants
from the Buypass project, and Aslak Hellesøy joined the team. No time was al-
located to dedicated learning, but pair programming was used, and pairs were
changed regularly, paring the experienced Rails developer with the inexperi-
enced.

The possibility of using JRuby to interact with existing Java infrastructure was
one of the major selling points when choosing Rails. It has been decided
not to use this possibility, but the application will be deployed on JRuby and
Glassfish for performance reasons. The integration with existing services are
achieved using servlets.

42

7.2. TESTING

7.2 Testing

At BEKK, testing is of the utmost importance to increase the quality of the
code, but also because they like to use agile development methodologies in
their projects. BEKK therefore has a group dedicated to quality and testing.
The consultant interviewed is a part of this group, and an interview with him
is the basis for this section. The interview transcript is not included because of
confidentiality.

7.2.1 Statens vegvesen

Statens vegvesen is the Norwegian public roads administration, and is respon-
sible for the planning, construction and operation of the national and county
road networks, vehicle inspection and requirements, driver training and li-
censing (Norwegian Public Roads Administration, n.d.). BEKK was hired to re-
place Autosys, the old system for driver licensing- and vehicle registration
(Kristiansen, 2006).

The new system, called Au2sys, is a web application written in Java. Because
of the complexity of the business rules and treatments rules present in the web
interface, BEKK has decided to use extensive automated web testing.

It was decided to use RSpec and Watir, as these were evaluated as the best
tools available when the project started. Watir is a framework for interacting
with the web browser, and RSpec a framework for testing. This architecture
allowed the web testing to be independent from the actual Java code.

7.3 Summary

This chapter has described three projects where BEKK has used polyglot pro-
gramming when developing software. The first two projects used the Rails
web development framework in conjunction with existing Java solutions, us-
ing JRuby for integration in the first project, and servlets in the second. The
third project used RSpec and Watir to enable web testing of a web application
written in Java. In the next chapter, the findings from these case studies will
be discussed and contrasted related to the literature study.

43

Chapter 8

Discussion

In this chapter, the polyglot programming context of the case studies are first
discussed. Thereafter, findings in the literature study are discussed in light of
the case study conducted on BEKK, as well as the interviews conducted on
key persons within the community. Additional findings discovered during the
case studies will also be discussed. To conclude the research, the use of case
study research will be discussed, a critique of polyglot programming given
and a compromise between free and no language choice given.

8.1 Polyglot programming context of the cases

The three projects studied at BEKK all use a different degree of polyglot pro-
gramming. At Buypass, they use a managed runtime, allowing the languages
to interact directly. At the web based extranet solution project, however, the
Ruby application will be deployed on a managed runtime, but will interact
with existing Java services using a networked servlet approach. This allows
for lower coupling between the two languages, and technologies can change
independently of each other. Yet another degree of polyglot programming is
achieved at Statens Vegvesen, where the web browser becomes the integra-
tion between Ruby and Java. The web based extranet solution project and the
project at Statens Vegvesen would not have been polyglot, had it not been for
the fact that one team is responsible for both languages.

In all the cases studied, the languages involved are Ruby and Java, and the rea-
son is the frameworks available in Ruby, namely Rails, RSpec and Watir in this
case. Since its release, Rails has become increasingly popular, and promises
increased productivity and less code. Especially for consulting firms, this is an
important argument because it means that they can use fewer employees and
deliver the solutions faster than they would normally do. Ruby and Rails are

45

CHAPTER 8. DISCUSSION

also getting support from Microsoft, Sun and other commercial actors, making
it a safer bet for the future. RSpec has also become popular and offer a new
approach to unit testing. It is becoming the new standard for testing Ruby
applications.

8.2 Advantages

During the literature study, two business benefits of polyglot programming
were discovered, namely productivity and maintainability. In this section,
these are related to the case studies.

8.2.1 Productivity

Polyglot programming promises increased productivity because the correct
tool is used for the task at hand. In all the cases, a dynamic language was
chosen because of the frameworks created in them. But using the dynamic lan-
guage also offers a higher level of abstraction, and frees the developers from
a lot of repetition. One example is the meta-programming support present in
Ruby, which enables code to be generated in run-time.

Especially in Buypass and the web based extranet solution project did the
developers notice a productivity increase. Part of this was the productivity
gained of using the language and framework, but productivity was also in-
creased because the principles of “convention over configuration” and DRY
(don’t repeat yourself) that is the philosophies driving the development of
Rails. The lack of configuration meant that the developers could start develop-
ing at once, and because Ruby is an interpreted language, developers did not
have to wait until compilation was finished to see the changes. However, al-
though the language and framework is more productive, the lack of automatic
refactoring and the need to write additional tests did counteract some of the
productivity gain, further discussed in Section 8.3.3.

8.2.2 Maintainability

The advantage of using polyglot programming from a maintainability perspec-
tive is mainly the belief that choosing the correct tool will result in shorter and
more natural code. In the case of Buypass, the application created was new,
and they therefore did not have any equivalent code written in another lan-
guage to compare it with. In the case of Statens Vegvesen, the code was only
for testing, and therefore not part of the application. As was the case with

46

8.3. DISADVANTAGES

Buypass, Statens Vegvesen did not have any pre-existing equivalent code, and
thus no comparison was possible.

In the case of the web based extranet solution project, the size of the current
code base was one of the motivations for rewriting it. The existing solution
consisted of over a hundred thousand lines of code (LOC), and the extranet
solution to rewrite consisted of over 20000 LOC of application code alone, with
almost no test code. Although the project was not finished when the case study
ended, the new codebase written in Rails consisted of a total of around 10000
LOC, but this is including around 7000 LOC with tests.

8.2.3 Motivation and change of perspective

An additional advantage discovered during the case studies, is that the de-
velopers had fun while developing, and had to change their perspective of
the existing applications. Especially developers that enjoy learning and using
new tools will thrive in a polyglot environment. For many developers, being
allowed to only use one language will feel like a limitation.

At Buypass, this was especially noticeable. First of all, the development method-
ology changed when using a dynamic language. Because they could no longer
rely on the type safety present in statically typed languages, and because there
is no compile cycle that run through the whole application, they used exten-
sive unit testing to ensure type safety and that the code did not break when
changes where made. Continuous integration was also used to discovered
errors as early as possible. Second, because Rails follow “convention over con-
figuration”, the interaction with the database had to be changed in order to use
the framework without configuring it.

8.3 Disadvantages

During the literature study, disadvantages were also discovered, concerning
knowledge, maintainability and tool support. In this section, these are related
to the case studies and personal interviews conducted on key persons, and
counter measures to the problems are discussed.

8.3.1 Knowledge

One of the perceived disadvantages of using polyglot programming is the in-
creased knowledge required both from the developers and the management.
It is also argued that developers are not interested in learning new languages.

47

CHAPTER 8. DISCUSSION

From the developers’ perspective, none of the case studies conducted confirm
this statement. According to the developers interviewed, they found the new
framework easy to learn and use, more so than it would be to learn the equiva-
lent frameworks in Java. One of the reasons will of course be that the languages
are in the same language paradigm, and the concepts are therefore the same.
Using a web framework written in a functional programming language, for
example Lift (Lift, the Scala web framework, n.d.) written in Scala, would most
likely be more effort to learn.

BEKK also put in place measures to counter the knowledge gap of using a
new language and framework. In the case of Buypass, they arranged a course
together prior to the initiation of the project. In addition, Aslak Hellesøy acted
as a coach. In the the case of the web based extranet solution project, the team
consisted of consultants with varying knowledge and experience about Ruby
and Rails. A new course was not held, but the developers worked in pairs,
enabling the inexperienced to learn from the experienced.

From the management’s perspective, the web based extranet solution project
confirm that the management needs increased knowledge, and might be more
reluctant to introduce new technology. Because the old system was written in
Java, the original plan was to use Java for the new application as well. The
thought of throwing away all the old code was especially intimidating. To
convince the management, they needed more knowledge about the tools, and
a prototype was created to show it was capable of solving the problem.

When it comes to knowledge, developers can be divided into two classes; those
who enjoy developing software, and those who do it to bring bread to the
family. Those who enjoy developing software will have no problems adopting
new technologies. In a personal interview with Ola Bini, he goes so far as
suggesting that enterprise should not hire developers that are not proficient in
more than one language. Most businesses cannot afford this luxury; they need
developers, even if they are average or worse. Jay Fields also suggests that
the management should only focus on hiring the best developers possible, and
let the developers choose the platform themselves. In most businesses, it is
unlikely that the management will give the developers this freedom.

8.3.2 Maintainability

The problem with maintainability when introducing new languages is that the
pool of developers that can maintain the application decreases.

In the case of Buypass, maintainability was not originally an issue because
only prototypes were created. However, after BEKK left the project, Buypass
decided to further enhance the second prototype created and use this in pro-

48

8.3. DISADVANTAGES

duction, but has not put any further thoughts to how it will be maintained. For
the web based extranet solution project, BEKK currently has the responsibility
for maintenance. At Statens Vegvesen, the code written in Ruby is mainly for
testing purposes, and maintaining it becomes less critical.

The problem with maintainability is not much different from today’s situa-
tion however, where a lot of old legacy applications in FORTRAN, PL/1, and
COBOL are still being used and maintained. Developers with knowledge in
these languages are getting older, and the same will eventually happen with
any language. As long as the niche languages are avoided, it should not be a
problem to maintain an application.

8.3.3 Tool support

Especially developers using Java and .NET are used to having comprehensive
IDE support. In these languages the IDE becomes necessary to increase the
productivity, and when new languages are introduced, it is important not to
change the way developers work.

In the cases of Buypass and the web based extranet solution project, some of
the productivity gain was counteracted because of the lack of automatic refac-
toring. IDEs currently also lack support for integrated debugging, interrupting
the normal workflow of the developers.

One of the developers at Statens Vegvesen described the situation where he
would have to manually refactor the Ruby tests, as his biggest concern if he
were to use RSpec to test the existing Java code, instead of using JUnit.

Although the support for other languages are currently not good enough, a lot
of research is being done to improve the support in general, specifically refac-
toring and debugging. NetBeans, Eclipse, Komodo and IntelliJ will all have
improved support for languages running on the JVM in forthcoming versions.
Visual Studio is likely to include support for additional languages as they re-
lease their dynamic language runtime.

Steele (2004) describe what he call the language-maven and tool-maven. De-
velopers living in a language-maven use most of their time learning about lan-
guages and how to use them, while those living in a tool-maven use most of
their time mastering the development tools. Polyglot programming will prob-
ably be of better use to those who thinks of the languages, and not the IDE as
the tools.

49

CHAPTER 8. DISCUSSION

8.4 Critique of polyglot programming

As seen in the case studies, the number one reason for choosing Ruby was
because of the frameworks available for it. Then, what if the frameworks
could just be ported to another language. In some cases, this would be pos-
sible, while in others it would not. The elegance and flexibility of a framework
written in a dynamic language for example, where types do not have to be de-
clared, are not easily ported to a static language without changing the look and
feel. The concurrency support for functional programming languages are also
hard to port because they rely on the interpreter or virtual machine specifically
created for the problem. This is a problem with F# and Scala, that are bound
to the workings of their underlying managed runtime, and can therefore not
offer for example lazy evaluation.

8.5 Research questions

Based on the research results, this section will answer the research questions
listed in Chapter 2.

8.5.1 RQ1: How is polyglot programming used today?

As seen in Chapter 5 and in the case studies, polyglot programming is used in
a variety of problem areas. These areas include game development, scripting,
web development and testing. In all of these cases, polyglot programming
is used because it offers the best solution to the problem, utilising the best
features from the different languages.

8.5.2 RQ2: Guidelines for using polyglot programming

To answer the second research question, this section will present guidelines
for when and how to use polyglot programming, based on both the literature
study and the case study. This will involve the situations where polyglot pro-
gramming is beneficial, choosing how to integrate the different languages and
how to choose languages.

8.5.2.1 When to use polyglot programming

Examples where polyglot programming can be used are described in Chapter
5, but whenever another language offer a solution that is radically better than

50

8.5. RESEARCH QUESTIONS

the one in the general purpose language should it be considered.

8.5.2.2 Choosing how to integrate

The focus of this research has been on managed runtimes, as these offer easy
integration between languages, and have support for many languages (see Sec-
tion 4.1 for more details). Regardless of this, in only one of the cases studied
was this used, in the other two a more loosely coupled integration was pre-
ferred. The use of polyglot programming should preferably not involve too
much change in the current environment, as this will hinder its adoption, and
the integration between languages should have been solved already to min-
imise overhead of introducing new languages.

8.5.2.3 Choosing languages to use

Based on the literature study and case study it is evident that the language
that is best suited for the problem should be chosen, either because the lan-
guage has built in support to help solving it, or because a framework has been
written in that language that helps solve it. This may however, introduce too
many languages in the application, so a compromise between allowing all lan-
guages to be used, and to use only one language, is to follow Google’s exam-
ple, where a restricted set of languages are allowed. In this case, they allow
JavaScript, Python, Java and C++ (Yegge, 2007). This will also help minimise
the knowledge disadvantage, as both the developers and management only
have to relate to a set of languages, and build support accordingly. Ideally, this
should be a minimal set that achieves the goals of the business, and the set
should take into account changes in the environment. A good idea would be
to pick at least one language from each of the paradigms described in Section
4.2, and preferably both a statically and a dynamically typed language.

51

Chapter 9

Conclusion

The goal of this research has been twofold. The first goal was to describe how
polyglot programming can be used, and has been achieved using a literature
study. Because no formal definition has been given of polyglot programming,
it has been defined in this research as programming in more than one language
within the same context, where same context is either within one team, or several
teams where the integration between the resulting applications require knowledge of
the languages involved. Within this definition, the degree of polyglot program-
ming can vary between four levels, namely integration, organisation of code,
the processes within languages run, and the data being manipulated.

Perceived advantages of polyglot programming were productivity and main-
tainability, and the perceived disadvantages were knowledge, maintainability
and tool support.

To aid developers in choosing which languages to use, a language classifica-
tion has been given, describing the imperative, object oriented, functional and
logical paradigm. The difference between statically and dynamically typed
languages has also been discussed, and domain specific languages, that are
specialised languages for each problem, have been described. The different
languages can be organised into three language layers, namely the stable layer,
the dynamic layer and domain layer.

Based on the this information, examples where polyglot programming can
be used include web development, testing, concurrency and business rules.
Web development fits well within the dynamic layer, and recent frameworks
promise increased productivity. Testing is an activity that interacts with all lan-
guage layers, and utilising a dynamic language can make tests shorter are more
understandable. Concurrency is best solved using a functional programming
language, but will most often be combined with other languages because it is
not suitable as a general purpose language. Business rules are implemented
on the domain layer, and using a business natural language will allow domain

53

CHAPTER 9. CONCLUSION

experts to change rules without interacting with the developers. The common
business value for all the examples was decreased costs of development and
maintenance, as a result of increased productivity.

The second goal of this research has been to describe how polyglot program-
ming is used, and has been achieved through an explorative case study. The
case study was conducted on BEKK, a Norwegian consulting firm, and con-
sisted of three smaller case studies, two using polyglot programming for web
development, and one using it for testing. Based on these case studies, the
advantages found in the literature study was confirmed. The advantage of
productivity was confirmed in both the web development cases, and the ad-
vantage of maintainability was confirmed in the case of the web based extranet
solution project. The other two did not consider maintenance. An additional
advantage that was discovered was increased motivation and change of per-
spective, especially in the case of Buypass. The disadvantage of knowledge
was not confirmed from the developers’ point of view, but was confirmed from
the management’s. Neither cases considered maintainability as an issue, but
the disadvantage of tool support was confirmed.

Based on the literature study and case study, guidelines for how to utilise poly-
glot programming has been described, and as a compromise between having
free and no language choice, it is suggested that a set of languages should be
used. This set should consist of different types of languages, and will give
the developers more flexibility, and at the same time give management control
over which languages are used.

Further work

As this has been the first academic work describing polyglot programming, it
is important to do further research. A natural way to expand on this research
will be to do an experiment to verify that the findings are correct. Especially
the advantages and disadvantages concerning maintainability are inconclu-
sive as this was not addressed specifically in any of the cases.

More case studies on businesses using polyglot programming should also be
conducted to increase awareness and credibility around it. In many cases,
polyglot programming is used without developers knowing it, and increasing
their awareness can help them utilise the technique better.

54

References

Amble, T. (2000). BusTUC: A natural language bus route oracle. In
Proceedings of the sixth conference on applied natural language pro-
cessing (pp. 1–6). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. Available from http://portal.acm.org/
ft_gateway.cfm?id=974148&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=8421618&CFTOKEN=81844230

Armstrong, J. (2007). Programming Erlang: Software for a concurrent world. The
Pragmatic Programmers.

Backus, J. (1978). Can programming be liberated from the von Neumann
style?: A functional style and its algebra of programs. Communications of
the ACM, 21(8), 613–641. Available from http://portal.acm.org/
ft_gateway.cfm?id=1283933&type=pdf&coll=Portal&dl=
GUIDE&CFID=71008603&CFTOKEN=93682548

Beck, K. (1999). Embracing change with extreme programming.
Computer, 32(10), 70–77. Available from http://ieeexplore
.ieee.org/iel5/2/17277/00796139.pdf?tp=&arnumber=
796139&isnumber=17277

Bekk’s webpage. (2008). Retrieved 2008-04-21, from http://www.bekk.no

Bini, O. (2008a). Connecting languages (or polyglot programming example 1). Re-
trieved 2008-05-08, from http://ola-bini.blogspot.com/2008/
04/connecting-languages-or-polyglot.html

Bini, O. (2008b). Fractal programming. Retrieved 2008-06-07, from http://ola
-bini.blogspot.com/2008/06/fractal-programming.html

Bini, O. (2008c). Language explorations. Retrieved 2008-05-08,
from http://ola-bini.blogspot.com/2008/01/language
-explorations.html

Bini, O. (2008d). Viability of Java and the stable layer. Retrieved 2008-05-08,
from http://ola-bini.blogspot.com/2008/01/viability-of
-java-and-stable-layer.html

Braithwaite, R. (2007). The challenge of teaching yourself a programming language.
Retrieved 2008-06-02, from http://weblog.raganwald.com/2007/
10/challenge-of-teaching-yourself.html

Brooks, F. P. (1987, April). No silver bullet: Essence and accidents of software

55

http://portal.acm.org/ft_gateway.cfm?id=974148&type=pdf&coll=GUIDE&dl=GUIDE&CFID=8421618&CFTOKEN=81844230
http://portal.acm.org/ft_gateway.cfm?id=974148&type=pdf&coll=GUIDE&dl=GUIDE&CFID=8421618&CFTOKEN=81844230
http://portal.acm.org/ft_gateway.cfm?id=974148&type=pdf&coll=GUIDE&dl=GUIDE&CFID=8421618&CFTOKEN=81844230
http://portal.acm.org/ft_gateway.cfm?id=1283933&type=pdf&coll=Portal&dl=GUIDE&CFID=71008603&CFTOKEN=93682548
http://portal.acm.org/ft_gateway.cfm?id=1283933&type=pdf&coll=Portal&dl=GUIDE&CFID=71008603&CFTOKEN=93682548
http://portal.acm.org/ft_gateway.cfm?id=1283933&type=pdf&coll=Portal&dl=GUIDE&CFID=71008603&CFTOKEN=93682548
http://ieeexplore.ieee.org/iel5/2/17277/00796139.pdf?tp=&arnumber=796139&isnumber=17277
http://ieeexplore.ieee.org/iel5/2/17277/00796139.pdf?tp=&arnumber=796139&isnumber=17277
http://ieeexplore.ieee.org/iel5/2/17277/00796139.pdf?tp=&arnumber=796139&isnumber=17277
http://www.bekk.no
http://ola-bini.blogspot.com/2008/04/connecting-languages-or-polyglot.html
http://ola-bini.blogspot.com/2008/04/connecting-languages-or-polyglot.html
http://ola-bini.blogspot.com/2008/06/fractal-programming.html
http://ola-bini.blogspot.com/2008/06/fractal-programming.html
http://ola-bini.blogspot.com/2008/01/language-explorations.html
http://ola-bini.blogspot.com/2008/01/language-explorations.html
http://ola-bini.blogspot.com/2008/01/viability-of-java-and-stable-layer.html
http://ola-bini.blogspot.com/2008/01/viability-of-java-and-stable-layer.html
http://weblog.raganwald.com/2007/10/challenge-of-teaching-yourself.html
http://weblog.raganwald.com/2007/10/challenge-of-teaching-yourself.html

References

engineering. Computer, 20(4), 10–19.
Brooks, F. P. (1995). Calling the shots. In The mythical man-month: Essays on

software engineering (Anniversary ed., pp. 87–94). Addison-Wesley.
Buypass’ webpage. (2008). Retrieved 2008-04-21, from http://buypass.no/

Byrne, D. (2008, January). Integrating Java and Erlang. TheServerSide.com.
Retrieved 2008-05-12, from http://www.theserverside.com/tt/
articles/article.tss?l=IntegratingJavaandErlang

The Da Vinci machine project. (2008). Retrieved 2008-05-22, from http://
openjdk.java.net/projects/mlvm/

Delorey, D. P., Knutson, C. D., & Chun, S. (2007, May). Do program-
ming languages affect productivity? A case study using data from
open source projects. Emerging Trends in FLOSS Research and Devel-
opment, 2007. FLOSS ’07. First International Workshop on. Available
from http://ieeexplore.ieee.org/iel5/4273068/4273069/
04273079.pdf?tp=&arnumber=4273079&isnumber=4273069

Django: The web framework for perfectionists with deadlines. (n.d.). Retrieved 2008-
04-30, from http://www.djangoproject.com/

Dmitriev, S. (2004, November). Language oriented programming: The
next programming paradigm. onBoard(1). Available from http://
www.onboard.jetbrains.com/is1/articles/04/10/lop/

Dr Nic. (n.d.). Retrieved 2008-06-09, from http://drnicwilliams.com/

Drools. (n.d.). Retrieved 2008-06-04, from http://www.jboss.org/
drools/

Duarte, G. (2008). Language dabbling considered wasteful. Retrieved 2008-06-
02, from http://duartes.org/gustavo/blog/post/language
-dabbling-considered-wasteful

Eyler, P. (2006). A new JRuby interview and more. Retrieved 2008-05-20, from
http://www.linuxjournal.com/node/1000103

Fields, J. (n.d.). Business natural languages - Domain specific languages for
empowering subject matter experts. Retrieved 2008-05-22, from http://
bnl.jayfields.com/

Fields, J. (2008, March). Business natural languages. In QCon London.
Available from http://www.infoq.com/presentations/fields
-business-natural-languages-ruby

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods
to software practices at Intel Shannon. European Journal of Information
Systems(15), 200–213.

Ford, N. (2006). Polyglot programming. Retrieved 2008-05-08, from
http://memeagora.blogspot.com/2006/12/polyglot
-programming.html

Ford, N. (2008). Polyglot programming. In The ThoughtWorks anthology: Essays
on software technology and innovation (pp. 60–69). The Pragmatic Program-
mers.

56

http://buypass.no/
http://www.theserverside.com/tt/articles/article.tss?l=IntegratingJavaandErlang
http://www.theserverside.com/tt/articles/article.tss?l=IntegratingJavaandErlang
http://openjdk.java.net/projects/mlvm/
http://openjdk.java.net/projects/mlvm/
http://ieeexplore.ieee.org/iel5/4273068/4273069/04273079.pdf?tp=&arnumber=4273079&isnumber=4273069
http://ieeexplore.ieee.org/iel5/4273068/4273069/04273079.pdf?tp=&arnumber=4273079&isnumber=4273069
http://www.djangoproject.com/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://drnicwilliams.com/
http://www.jboss.org/drools/
http://www.jboss.org/drools/
http://duartes.org/gustavo/blog/post/language-dabbling-considered-wasteful
http://duartes.org/gustavo/blog/post/language-dabbling-considered-wasteful
http://www.linuxjournal.com/node/1000103
http://bnl.jayfields.com/
http://bnl.jayfields.com/
http://www.infoq.com/presentations/fields-business-natural-languages-ruby
http://www.infoq.com/presentations/fields-business-natural-languages-ruby
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
http://memeagora.blogspot.com/2006/12/polyglot-programming.html

References

Fowler, M. (2005a). Fluent interface. Retrieved 2008-05-22, from http://
martinfowler.com/bliki/FluentInterface.html

Fowler, M. (2005b, June). Language workbenches: The killer-app for domain spe-
cific languages? Available from http://www.martinfowler.com/
articles/languageWorkbench.html

Fowler, M. (2007a). One language. Retrieved 2008-01-15, from http://
martinfowler.com/bliki/OneLanguage.html

Fowler, M. (2007b). Railsconf 2007. Retrieved 2008-04-30, from http://
martinfowler.com/bliki/RailsConf2007.html

Fowler, M. (2008). Domain specific languages. Available from http://
martinfowler.com/dslwip/ (Work in progress)

Ghodsi, A., & Armstrong, J. (2007). Apache vs. Yaws. Retrieved 2008-03-13,
from http://www.sics.se/~joe/apachevsyaws.html

Google SketchUp Ruby API. (n.d.). Retrieved 2008-06-09, from http://code
.google.com/apis/sketchup/

Grails: The search is over. (n.d.). Retrieved 2008-04-30, from http://grails
.codehaus.org

Harrison, M. (2006). Python at Google (Greg Stein - SDForum). Retrieved 2008-
06-09, from http://panela.blog-city.com/python_at_google
_greg_stein__sdforum.htm

Hughes, J. (1989). Why functional programming matters. Computer Jour-
nal, 32(2), 98–107. Available from http://www.math.chalmers.se/
~rjmh/Papers/whyfp.html

Hugunin, J. (2007). A dynamic language runtime (DLR). Retrieved 2008-02-13,
from http://blogs.msdn.com/hugunin/archive/2007/04/30/
a-dynamic-language-runtime-dlr.aspx

Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to
master. Addison-Wesley.

InRule technology - Business rule engine for .NET. (n.d.). Retrieved 2008-06-04,
from http://www.inrule.com/firstTime.aspx

Janzen, D., & Saiedian, H. (2005). Test-driven development con-
cepts, taxonomy, and future direction. Computer, 38(9), 43–50.
Available from http://ieeexplore.ieee.org/iel5/2/32339/
01510569.pdf?tp=&arnumber=1510569&isnumber=32339

Jess, the rule enginge for the Java platform. (n.d.). Retrieved 2008-06-02, from
http://www.jessrules.com/

jMock - A lightweight mock object library for Java. (n.d.). Retrieved 2008-06-04,
from http://www.jmock.org/

JRuby: Java powered Ruby implementation. (n.d.). Retrieved 2008-03-13, from
http://jruby.codehaus.org/

The Jython project. (n.d.). Retrieved 2008-03-13, from http://www.jython
.org/Project/index.html

Kahn, R. L., & Cannell, C. F. (1957). The dynamics of interviewing: Theory, tech-

57

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/bliki/OneLanguage.html
http://martinfowler.com/bliki/OneLanguage.html
http://martinfowler.com/bliki/RailsConf2007.html
http://martinfowler.com/bliki/RailsConf2007.html
http://martinfowler.com/dslwip/
http://martinfowler.com/dslwip/
http://www.sics.se/~joe/apachevsyaws.html
http://code.google.com/apis/sketchup/
http://code.google.com/apis/sketchup/
http://grails.codehaus.org
http://grails.codehaus.org
http://panela.blog-city.com/python_at_google_greg_stein__sdforum.htm
http://panela.blog-city.com/python_at_google_greg_stein__sdforum.htm
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://blogs.msdn.com/hugunin/archive/2007/04/30/a-dynamic-language-runtime-dlr.aspx
http://blogs.msdn.com/hugunin/archive/2007/04/30/a-dynamic-language-runtime-dlr.aspx
http://www.inrule.com/firstTime.aspx
http://ieeexplore.ieee.org/iel5/2/32339/01510569.pdf?tp=&arnumber=1510569&isnumber=32339
http://ieeexplore.ieee.org/iel5/2/32339/01510569.pdf?tp=&arnumber=1510569&isnumber=32339
http://www.jessrules.com/
http://www.jmock.org/
http://jruby.codehaus.org/
http://www.jython.org/Project/index.html
http://www.jython.org/Project/index.html

References

nique, and cases. John Wiley, New York.
Kidder, L., & Judd, C. (1986). Research methods in social relations (5th ed.). Holt,

Rinehart and Winston, New York.
Krill, P. (2008). Sun’s Da Vinci machine broadens JVM coverage. Re-

trieved 2008-05-22, from http://www.infoworld.com/article/
08/01/31/davinci-machine_1.html

Kristiansen, M. (2006). Bekk vant storkontrakt med statens vegvesen. Com-
puterworld. Available from http://www.idg.no/computerworld/
article34935.ece

Kullbach, B., Winter, A., Dahm, P., & Ebert, J. (1998, October). Pro-
gram comprehension in multi-language systems. Reverse Engineer-
ing, 1998. Proceedings. Fifth Working Conference on, 135–143. Avail-
able from http://ieeexplore.ieee.org/iel4/5867/15624/
00723183.pdf?tp=&arnumber=723183&isnumber=15624

Lam, J., & Hugunin, J. (2007). Just glue it: Dynamic languages on Silverlight.
In Mix07. Available from http://msstudios.vo.llnwd.net/o21/
mix08/07_MP4s/DEV02.mp4

Language-integrated query (LINQ). (2008). Retrieved 2008-06-03, from
http://msdn.microsoft.com/hi-in/library/bb397926(en
-us).aspx

Leghari, N. (2008). Integrating .NET and Erlang using OPT.NET. Retrieved
2008-05-12, from http://weblogs.asp.net/nleghari/archive/
2008/01/08/integrating-net-and-erlang-using-otp-net
.aspx

Letuchy, E. (2008). Facebook chat. Retrieved 2008-06-09, from http://
www.facebook.com/note.php?note_id=14218138919&id=
9445547199&index=1

Lift, the Scala web framework. (n.d.). Retrieved 2008-06-04, from http://
liftweb.net/index.php/Main_Page

Lipow, M. (1982, July). Number of faults per line of code. IEEE
Transactions on Software Engineering, SE-8(4), 437–439. Available
from http://ieeexplore.ieee.org/iel5/32/35929/01702967
.pdf?tp=&isnumber=&arnumber=1702967

Marshall, C., & Rossman, G. B. (2006). Designing qualitative research (4th ed.).
SAGE Publications.

Maxwell, K., & Forselius, P. (2000, Jan/Feb). Benchmarking software develop-
ment productivity. IEEE Software, 17(1), 80–88.

Maxwell, K., Van Wassenhove, L., & Dutta, S. (Oct 1996). Software develop-
ment productivity of European space, military, and industrial applica-
tions. Software Engineering, IEEE Transactions on, 22(10), 706–718.

Meyer, B. (2002, May). Multi-language programming: how .NET does it.
Software Development. Available from http://se.ethz.ch/~meyer/
publications/softdev/multi-language.pdf

58

http://www.infoworld.com/article/08/01/31/davinci-machine_1.html
http://www.infoworld.com/article/08/01/31/davinci-machine_1.html
http://www.idg.no/computerworld/article34935.ece
http://www.idg.no/computerworld/article34935.ece
http://ieeexplore.ieee.org/iel4/5867/15624/00723183.pdf?tp=&arnumber=723183&isnumber=15624
http://ieeexplore.ieee.org/iel4/5867/15624/00723183.pdf?tp=&arnumber=723183&isnumber=15624
http://msstudios.vo.llnwd.net/o21/mix08/07_MP4s/DEV02.mp4
http://msstudios.vo.llnwd.net/o21/mix08/07_MP4s/DEV02.mp4
http://msdn.microsoft.com/hi-in/library/bb397926(en-us).aspx
http://msdn.microsoft.com/hi-in/library/bb397926(en-us).aspx
http://weblogs.asp.net/nleghari/archive/2008/01/08/integrating-net-and-erlang-using-otp-net.aspx
http://weblogs.asp.net/nleghari/archive/2008/01/08/integrating-net-and-erlang-using-otp-net.aspx
http://weblogs.asp.net/nleghari/archive/2008/01/08/integrating-net-and-erlang-using-otp-net.aspx
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=1
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=1
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=1
http://liftweb.net/index.php/Main_Page
http://liftweb.net/index.php/Main_Page
http://ieeexplore.ieee.org/iel5/32/35929/01702967.pdf?tp=&isnumber=&arnumber=1702967
http://ieeexplore.ieee.org/iel5/32/35929/01702967.pdf?tp=&isnumber=&arnumber=1702967
http://se.ethz.ch/~meyer/publications/softdev/multi-language.pdf
http://se.ethz.ch/~meyer/publications/softdev/multi-language.pdf

References

Microsoft BizTalk server. (n.d.). Retrieved 2008-06-04, from http://www
.microsoft.com/biztalk/en/us/default.aspx

Mocha. (n.d.). Retrieved 2008-06-04, from http://mocha.rubyforge
.org/

Mono project. (n.d.). Retrieved 2008-06-09, from http://www.mono-project
.com/Main_Page

Nilsson, N. (2008). Should you really learn another language? Retrieved 2008-
06-02, from http://www.infoq.com/news/2008/05/should-you
-learn-languages

North, D. (2006). Introducing BDD. Retrieved 2008-06-03, from http://
dannorth.net/introducing-bdd

Norvig, P. (1998). Teach yourself programming in ten years. Retrieved 2008-06-02,
from http://norvig.com/21-days.html

Norwegian public roads administration. (n.d.). Retrieved 2008-06-
04, from http://www.vegvesen.no/cs/Satellite?c=
Publication&pagename=SVV%2FSVVforwardToSite&sitename=
engelsk

Pigott, D. (2006). HOPL: An interactive roster of programming languages. Re-
trieved 2008-01-15, from http://hopl.murdoch.edu.au/

Robinson, S., Nagel, C., Watson, K., Glynn, J., Skinner, M., & Evjen, B. (2004).
Professional C# (3rd ed.). Wiley Publishing.

Rose, J. (2008). Bravo for the dynamic runtime! Retrieved 2008-06-
02, from http://blogs.sun.com/jrose/entry/bravo_for_the
_dynamic_runtime

Rose, J., Coward, D., Bini, O., Cook, W. R., Pedroni, S., & Theodorou, J.
(2008). JSR 292: Supporting dynamically typed languages on the Java plat-
form. Retrieved 2008-03-13, from http://jcp.org/en/jsr/detail
?id=292

RSpec. (n.d.). Retrieved 2008-05-22, from http://rspec.info/

Ruby on Rails: Web development that doesn’t hurt. (n.d.). Retrieved 2008-04-30,
from http://www.rubyonrails.org

Sebesta, R. W. (2008). Concepts of programming languages (8th ed.). Pearson
Addison Wesley.

Spiewak, D. (2008). The plague of polyglotism. Retrieved 2008-05-20,
from http://www.codecommit.com/blog/java/the-plague-of
-polyglotism

Steele, O. (2004). The IDE divide. Available from http://osteele.com/
archives/2004/11/IDES

Thomas, D., & Hunt, A. (2002). Mock objects. IEEE Software, 19(3), 22-24.
Available from http://ieeexplore.ieee.org/iel5/52/21654/
01003449.pdf?tp=&arnumber=1003449&isnumber=21654

Thompson, S. (1999). Haskell: The craft of functional programming (2nd ed.).
Addison-Wesley.

59

http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.microsoft.com/biztalk/en/us/default.aspx
http://mocha.rubyforge.org/
http://mocha.rubyforge.org/
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page
http://www.infoq.com/news/2008/05/should-you-learn-languages
http://www.infoq.com/news/2008/05/should-you-learn-languages
http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd
http://norvig.com/21-days.html
http://www.vegvesen.no/cs/Satellite?c=Publication&pagename=SVV%2FSVVforwardToSite&sitename=engelsk
http://www.vegvesen.no/cs/Satellite?c=Publication&pagename=SVV%2FSVVforwardToSite&sitename=engelsk
http://www.vegvesen.no/cs/Satellite?c=Publication&pagename=SVV%2FSVVforwardToSite&sitename=engelsk
http://hopl.murdoch.edu.au/
http://blogs.sun.com/jrose/entry/bravo_for_the_dynamic_runtime
http://blogs.sun.com/jrose/entry/bravo_for_the_dynamic_runtime
http://jcp.org/en/jsr/detail?id=292
http://jcp.org/en/jsr/detail?id=292
http://rspec.info/
http://www.rubyonrails.org
http://www.codecommit.com/blog/java/the-plague-of-polyglotism
http://www.codecommit.com/blog/java/the-plague-of-polyglotism
http://osteele.com/archives/2004/11/IDES
http://osteele.com/archives/2004/11/IDES
http://ieeexplore.ieee.org/iel5/52/21654/01003449.pdf?tp=&arnumber=1003449&isnumber=21654
http://ieeexplore.ieee.org/iel5/52/21654/01003449.pdf?tp=&arnumber=1003449&isnumber=21654

References

Tichy, W. T. (1998, May). Should computer scientists experiment more? Com-
puter, 31(5), 32–40. Available from http://ieeexplore.ieee.org/
iel4/2/14870/00675631.pdf?tp=&isnumber=&arnumber=
675631

Troelsen, A. (2003). C# and the .NET platform (2nd ed.). Apress.
Tucker, A. B., & Noonan, R. E. (2007). Programming languages: Principles and

paradigms (2nd ed.). McGraw Hill.
Venners, B. (1999). Inside the Java virtual machine (2nd ed.). McGraw Hill.
Vinoski, S. (2008). Multilanguage programming. IEEE Internet Computing,

11(3), 83–85.
Walters, C. G. (2008). Polyglot programming. Retrieved 2008-06-09, from

http://cgwalters.livejournal.com/17292.html
Ward, M. (1994). Language oriented programming. Software — Concepts

and Tools(15), 147–161. Available from http://www.cse.dmu.ac.uk/
~mward/martin/papers/middle-out-t.pdf

Watts, N. (2008). Even more than polyglot programming. Retrieved 2008-
05-11, from http://thewonggei.wordpress.com/2008/01/22/
even-more-than-polyglot-programming/

Werner, B. (2008). The rise of functional programming: F#/Scala/Haskell and the fail-
ing of Lisp. Retrieved 2008-02-13, from http://www.brandonwerner
.com/2008/01/13/the-rise-of-functional-programming
-fscalahaskell-and-the-failing-of-lisp/

Wexelblat, R. L. (1980). The consequences of one’s first program-
ming language. In Sigsmall ’80: Proceedings of the 3rd acm sigs-
mall symposium and the first sigpc symposium on small systems (pp.
52–55). ACM. Available from http://portal.acm.org/
ft_gateway.cfm?id=802823&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=71501395&CFTOKEN=12997147

Whorf, B. (1941). The relation of habitual thought and behavior to language. In
L. Spier (Ed.), Language, culture, and personality, essays in memory of Edward
Sapir (pp. 75–93). Sapir Memorial Publication Fund.

Yaws webserver webpage. (n.d.). Retrieved 2008-03-13, from http://yaws
.hyber.org/

Yegge, S. (2007). Rhino on Rails. Retrieved 2008-06-09, from http://steve
-yegge.blogspot.com/2007/06/rhino-on-rails.html

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). SAGE
Publications.

Zukowski, J. (2006). Java 6 platform revealed. Apress.

60

http://ieeexplore.ieee.org/iel4/2/14870/00675631.pdf?tp=&isnumber=&arnumber=675631
http://ieeexplore.ieee.org/iel4/2/14870/00675631.pdf?tp=&isnumber=&arnumber=675631
http://ieeexplore.ieee.org/iel4/2/14870/00675631.pdf?tp=&isnumber=&arnumber=675631
http://cgwalters.livejournal.com/17292.html
http://www.cse.dmu.ac.uk/~mward/martin/papers/middle-out-t.pdf
http://www.cse.dmu.ac.uk/~mward/martin/papers/middle-out-t.pdf
http://thewonggei.wordpress.com/2008/01/22/even-more-than-polyglot-programming/
http://thewonggei.wordpress.com/2008/01/22/even-more-than-polyglot-programming/
http://www.brandonwerner.com/2008/01/13/the-rise-of-functional-programming-fscalahaskell-and-the-failing-of-lisp/
http://www.brandonwerner.com/2008/01/13/the-rise-of-functional-programming-fscalahaskell-and-the-failing-of-lisp/
http://www.brandonwerner.com/2008/01/13/the-rise-of-functional-programming-fscalahaskell-and-the-failing-of-lisp/
http://portal.acm.org/ft_gateway.cfm?id=802823&type=pdf&coll=GUIDE&dl=GUIDE&CFID=71501395&CFTOKEN=12997147
http://portal.acm.org/ft_gateway.cfm?id=802823&type=pdf&coll=GUIDE&dl=GUIDE&CFID=71501395&CFTOKEN=12997147
http://portal.acm.org/ft_gateway.cfm?id=802823&type=pdf&coll=GUIDE&dl=GUIDE&CFID=71501395&CFTOKEN=12997147
http://yaws.hyber.org/
http://yaws.hyber.org/
http://steve-yegge.blogspot.com/2007/06/rhino-on-rails.html
http://steve-yegge.blogspot.com/2007/06/rhino-on-rails.html

Appendix A

Interviews

During this study, interviews have been conducted on key persons within
BEKK, Buypass and in the community.

The purpose of interviewing employees from BEKK and Buypass was to gain
knowledge on how they used polyglot programming in their projects, and the
purpose of interviewing persons in the community was to get a broader per-
spective. In this appendix only the interview transcripts of the key persons
within the community can be found, the others are not included because of
confidentiality. The interview subjects and their roles were:

• Neal Ford, meme wrangler

• Ola Bini, core contributor to JRuby

• Jay Fields, working with DSL and BNL

61

APPENDIX A. INTERVIEWS

A.1 Neal Ford

Neal Ford is a "meme wrangler" and talks about polyglot programming on his
blog, keynotes, podcasts and books.

Neal Ford was interviewed by email on May 17, 2008.

Question 1. Definition of polyglot programming

Talking to Aslak, it seems that I might have misinterpreted the meaning of polyglot
programming. How would you define it?

In my definition, polyglot programming defines a new kind of software stack:
utilizing languages most suited to a particular problem running on the same
managed runtime. We’ll build applications by composing languages instead
of using a single, general purpose language (like Java), trying to enhance it
with increasingly complex frameworks.

In my definition, I exclude things like web services because I use the level of integration
as a measurement. Do you agree with this definition or is it polyglot as long as different
languages are used?

I would agree with your separation. I define a polyglot solution as languages
that run on the same runtime, not as an integration solution. That would, for
example, exclude the common places where people are using multiple special
purpose languages now, such as using Java, SQL, XML, and JavaScript in a
single application. Polyglot solutions for me produce the same bytecode.

Question 2. How to choose what languages to use?

If corporations are to embrace polyglot programming, both developers and managers
must become proficient in more than one language, or the corporation must hire devel-
opers that know the different languages.

If corporations are to embrace polyglot programming, both developers and
managers must become proficient in more than one language, or the corpora-
tion must hire developers that know the different languages.

How is the corporation supposed to choose what languages to use, and what metrics
do you suggest they use?

Corporations already do this to a massive degree. Look at the standard Java
solution stack: Java, of course, but also Ant, Spring, Struts, Hibernate, SQL,
JavaScript, etc. Each framework is its own language because of the ubiquitous
use of XML. Each configuration file is it’s own language, which share the same

62

A.1. NEAL FORD

syntax but different semantics. Each XML file has it’s own grammar (expressed
in DTD or Schema). Developers already know more than 10 languages. But
often these languages are ills-suited to the problem to which they are applied.
For example, the declarative nature of Ant greatly restricts its power, and the
syntax in XML is horrid. Something like Gant (and DSL written atop Groovy)
is imperative, expressive, and much more suited to the task at hand. Trying
to shoe horn development into a few language means you use lots of tools not
suited to their tasks.

Question 3. What do you see as polyglot programming benefits?

The benefits are more concise, expressive code, closer to the problem you try
to solve. My colleague Ola Bini has published a pyramid that helps define the
new software stack. In it, he has a stable layer on the bottom, written in a lan-
guage that is performant and amenable to verification (either through a static
type system or mathematically). On top of that is a dynamic (or series of) dy-
namic languages that allow developer to get work done more effectively. On
top of that are domain specific languages (DSLs), getting abstractions closer
to the problem domain in a way that is much more effective than with frame-
works.

Regarding the benefits, do you know of any experiments or experiences that show this?

Not on a large scale yet, but I would argue that we’ve been doing this in a
not very effective way for the last 12 years, with the advent of code reuse via
frameworks in Java. Another place where this is used to great effectiveness is
the Unix file system. Developers who are familiar with it routinely use sed,
awk, perl, and bash to solve problems.

Question 4. What do you see as polyglot programming problems?

Any modern software problem! Let’s say you have an application ostensibly
written in Java, but you have one part that needs extreme multi-threading,
like a scheduling algorithm. Instead of trying to write that in Java (threading
in Java is difficult at best), use Jaskell or Scala, which are inherently thread-
safe because they are functional. It would be cumbersome to write the entire
application in Scala, but it is well suited for the parts that are ill suited to Java.
Let’s say this application has a Swing-based user interface. Writing that in
Java is insane: static typing adds a ridiculous amount of overhead to UI code.
So, write the user interface in Groovy, using its SwingBuilder DSL. The entire
thing runs on the JVM, but you’ve composed the application from multiple
languages.

63

APPENDIX A. INTERVIEWS

Regarding the problems, do you know of any experiments or experiences that show
this?

Currently, people solve this problem by using separate platforms. SQL is a
classic case here: we endure the terrible impedance mis-match between sets
and objects and the headaches of crossing machine boundaries to justify the
higher efficiency of SQL. The new stack will avoid the impedance problems by
running most of the applications on the same managed run-time.

Question 5. Where do domain specific languages belong in a polyglot pro-
gramming model?

See question 3!

64

A.2. OLA BINI

A.2 Ola Bini

Ola Bini is one of the core contributors to JRuby, enabling Ruby to run on the
Java Virtual Machine. He is also a member of the JSR 292 expert group, assess-
ing the possibility of adding a invoke_dynamic bytecode to the JVM which
will increase performance for dynamic languages. In addition to this he writes
about polyglot programming and programming languages in his blog.

Ola Bini was interviewed by email on April 17, 2008.

Polyglot programming

Question 1. Definition of polyglot programming

Talking to Aslak, it seems that I might have misinterpreted the meaning of polyglot
programming. How would you define it?

In my definition, I exclude things like web services because I use the level of integration
as a measurement. Do you agree with this definition or is it polyglot as long as different
languages are used?

This is actually a bit hard. My general gut feeling is that we are talking about
polyglot programming when you are using more than one language inside
one application. That just pushes the definition onto what an application is,
of course. But in some cases if you have a good restful architecture that is
tight and used within one application with different languages, that would
still constitute polyglot programming.

Question 2. How to choose what languages to use?

If corporations are to embrace polyglot programming, both developers and managers
must become proficient in more than one language, or the corporation must hire de-
velopers that know the different languages. How is the corporation supposed to choose
what languages to use, and what metrics do you suggest they use?

Metrics is always a problem. To some degree this will of course be a problem
for the enterprises and corporations. Polyglot programming is generally more
suited for better programmers, and larger enterprises doesn’t necessarily have
lots of high-end programmers. Most good developers should be able to choose
the right language based on the task at hand. I do think that Google’s approach
is really good - they have chosen a few languages at different levels (C++,
Java, JavaScript and Python), and then build their infrastructure around these
languages. That means that training can be handled better, ways of figuring

65

APPENDIX A. INTERVIEWS

out which language should be used at different places gets easier and so on.

For the other question in there, I think that no one should hire a programmer
who is not proficient in more than one language.

Question 3. What do you see as polyglot programming benefits?

In my opinion, there are lots of benefits to the approach. The most obvious one
might be that you get access to more libraries and frameworks (an example
is using Ruby with Java. You get Rails together with Java’s XML processing
libraries, for example).

Languages are good at different things, and to a degree programming is al-
ways a trade-off between using what comes natural in the language or work-
ing around deficiencies in it. Design patterns in Java is a good example here.
Many of them doesn’t exist in languages with higher order functionality, and
using them in Java helps you around some of the things that are generally
painful in that language.

One of the things that I like about the approach is that I can use a dynamic lan-
guage that gives me ultimate flexibility, while at the same time I can fall back
on a static language in those places I need it. Since I never will know perfectly
well where bottlenecks might show up, this gives me quicker turnaround and
less problems when something goes wrong.

Regarding the benefits, do you know of any experiments or experiences that show this?

I don’t know of any specific experiments about this approach, although I know
that ThoughtWorks has used these approaches for a while - especially with
JRuby.

Question 4. What do you see as polyglot programming problems?

Regarding the problems, do you know of any experiments or experiences that show
this?

I think there is a certain resistance to it. Programmers have gotten used to
living in one programming languages for a long time and it’s hard to convince
them about the benefits. Another problem is tool support. In many cases the
current tools doesn’t correctly cross the borders between languages, so you
need to use different tools in different places of the application.

66

A.2. OLA BINI

Question 5. Where do domain specific languages belong in a polyglot pro-
gramming model?

I definitely believe that DSL’s are absolutely crucial for polyglot programming.
Programming is getting more and more complex and it’s obvious that we need
approaches to separate the parts that need to be more malleable from the more
static parts of an application. Generally all domains have domain languages,
jargon and so on, and this makes total sense to translate into a layer in the
application. This gives many benefits - the most visible one might be that it’s
easier to make sure that business rules actually model the domain correctly.
The closer the language the programmer use to the language used by business
experts, the easier it will be to verify the correctness. And it will also be easier
to identify and fix errors.

Java platform

Compared to the .NET platform, the Java platform was created to run Java, as opposed
to C#, C++ and VB. As far as I have understood it this means that support for new
languages are built differently on the two platforms. But there is a lot of new develop-
ment being done on the Java platform, including JSR 223, JSR 292, and the Da Vinci
Machine. It is also possible to compile code from any language into bytecode, as long
as that language follows the constraints of the bytecode.

Question 6. How are these new technologies utilised and how are the con-
straints overcome in JRuby, including meta-programming?

Actually, the Java platform and the .NET platform is extremely similar. .NET
is really a machine for running C# good, and both C++ and VB needed to be
modified quite heavily to work well on the .NET platform. So .NET is really
not more multi-language than Java is. And the support is actually extremely
similar between the environments. They need exactly the same layers. There
are some small functional differences but in the large it’s extremely similar.

Currently in JRuby, we compile down to quite dynamic bytecode. Since the dy-
namic dispatch happens here, metaprogramming is really simple, even though
we pay a performance hit on this it’s not really hard to get it working. When
JSR292 arrives with invoke_dynamic we will be able to utilise this for some
performance benefits, but it won’t really change our model that much.

67

APPENDIX A. INTERVIEWS

A.3 Jay Fields

Jay Fields use Rails in his daily work, and talks a lot about domain specific
languages and business natural languages in his blog.

Jay Fields was interviewed by email on April 16, 2008.

Polyglot programming

Question 1. Definition of polyglot programming

Talking to Aslak, it seems that I might have misinterpreted the meaning of polyglot
programming. How would you define it?

Concisely, I would define Polyglot Programming as using many languages in
combination to provide the simplest solution.

I think we’ve been doing Polyglot programming for a very long time. For
example, to do my day job I need to know Ruby, SQL, Javascript, HTML and
so on. Polyglot programming is not new, and neither is the recognition that it
is a good thing. I first heard the idea under as "It’s better to be a specializing
generalist than a specialist". Unfortunately, I can’t remember where that comes
from, it was many years ago.

Polyglot programming also fits well with the "No Silver Bullet" and "The right
tool for the job" memes. I don’t think it’s important because it’s a new idea,
but I do think it’s a great way to concisely express what we’ve already been
talking about for several years.

In my definition, I exclude things like web services because I use the level of integration
as a measurement. Do you agree with this definition or is it polyglot as long as different
languages are used?

For simplicity I’d probably stick with more than one language equals polyglot.

Question 2. How to choose what languages to use?

If corporations are to embrace polyglot programming, both developers and managers
must become proficient in more than one language, or the corporation must hire de-
velopers that know the different languages. How is the corporation supposed to choose
what languages to use, and what metrics do you suggest they use?

I don’t think corporations should choose the languages. I think they’re best
off by hiring the best IT employees that they possibly can and then let the
employees make the decision.

68

A.3. JAY FIELDS

Of course, you’ll need to include not just the developers, but also the support
staff. However, assuming you hire the best for all roles they should be able to
work together to find the best solution for everyone.

Question 3. What do you see as polyglot programming benefits?

Regarding the benefits, do you know of any experiments or experiences that show this?

I don’t know of any experiments, but I think experience is all around us. The
fact that we already use several different languages to perform different tasks
proves that there are benefits. If we could do everything in one language I
think we would. I don’t think anyone desires to learn many different lan-
guages, I think everyone would prefer a silver bullet. However, experience
has shown us that we need different tools for different tasks; therefore, every
day I need to use around 6 different languages to be effective.

Question 4. What do you see as polyglot programming problems?

Regarding the problems, do you know of any experiments or experiences that show
this?

Again, I don’t know of any experiments, but we also have plenty of experience
with problems. First of all, there are many more bad programmers than good.
Good programmers use the best tool for the job and grow their experience so
they know what the best tool is. Bad programmers believe that they are too
busy working to become better at their job. They don’t spend time learning
other languages. As a result they solve problems using the one or two lan-
guages that they know. Generally good programmers have to come in and
clean up those mistakes. Polyglot programming also requires constant learn-
ing. Today’s languages will quickly be eclipsed by the languages of tomorrow
that solve problems in superior ways. The rate at which technology is currently
moving requires good programmers to learn a new language every year, and
often requires you to already know several before you can be effective. It also
provokes application rewrites every few years (of course, bad programmers
contribute to requiring rewrites).

69

APPENDIX A. INTERVIEWS

Domain specific languages

Question 5. Where do domain specific languages belong in the polyglot
programming model?

Domain Specific Languages are already a large part of polyglot programming.
For example, the configuration files in modern Java frameworks are domain
specific languages that every Java developer needs to learn in order to be pro-
ductive. Build systems, regex, etc are also DSLs that every good programmer
knows and uses to be better at their job.

If what I call "Business Natural Languages (BNL)" gain more popularity they
could slightly change what polyglot programming looks like for a developer.
BNL is what I use to describe Domain Specific Languages that are written and
maintained entirely by domain experts. I’ve done a few projects that used this
model and we were very successful with it. However, introducing this type of
solution means that developers need to know many different languages, but
they also need to know how to design a language for their domain experts to
use. It remains to be seen whether this will be a realistic mainstream solution
in the future. Having done it successfully twice I find it fascinating and very
beneficial; however, people smarter than me (Martin Fowler is one of them)
believe that it’s unrealistic that domain experts will ever take the place of pro-
grammers for designing the business rules of the system.

70

Appendix B

Technologies used in the case
studies

In the case studies, BEKK used new frameworks that might be unknown for
many. This appendix will explain these, namely Ruby, Ruby on Rails, RSpec
and Watir.

B.1 Ruby

Just like the dog is a human’s best friend, Matz is with Ruby trying to create a
programmers best friend. Inspired by a mix of Smalltalk, Perl, Eiffel, Ada and
Lisp, Ruby is trying to capture the best from all worlds. The principle behind
Ruby is simply put: ”Principle of least surprise”, manifested in how natural it
is to read Ruby code, see the code below.

2.times do
articles.each do |article|

article.read
end

end

This short example shows off some of Ruby’s great features. First of all, ev-
erything in Ruby is an object, so in this example, 2 is an object. It is therefore
possible to call the function times on this object, which is an iterator in Ruby.
The code inside the do and end is called a block. A block is similar to a lambda
function and can be called explicitly. Each, the function called on articles, is
another iterator in Ruby, which will iterate over all the articles, and for each
article will call the function read. As can be seen from all the functions in this
example, function calls can omit the braces if the function takes no parameters.

71

APPENDIX B. TECHNOLOGIES USED IN THE CASE STUDIES

Ruby is also dynamically typed, meaning that types only exist in run-time,
using duck typing (if it walks like a duck and quacks like a duck, it have to
be a duck) to decide what class an object belongs to. An important feature
with Ruby is that all classes are open, giving Ruby build in support for meta-
programming, where code is added to classes in run-time.

B.2 Ruby on Rails

Rails is a web framework written in Ruby following the MVC (model-view-
controller) pattern. In essence, Rails is a domain specific language for the web,
making it easy and natural to develop web applications. Rails enhanced the
Ruby language through added functionality, utilising Ruby’s capabilities to
extend all classes in runtime, and offer a systematic way of building web ap-
plications.

Rails principles are DRY (don’t repeat yourself) and ”convention over config-
uration”. This makes programmers very productive, and means a lot of boiler-
plate code can be omitted. A good example of this is that the object relational
mapper in Rails called ActiveRecords that use meta-programming to populate
objects with the corresponding data and methods needed to read and change
this data.

B.3 RSpec

RSpec is a behaviour driven development (BDD) framework written in Ruby.
It provides two frameworks, namely a story framework for describing be-
haviour at the application level, and a spec framework for describing behaviour
at the object level. The capabilities of the spec framework are similar to reg-
ular unit test frameworks, but use a different approach. The approach is to
create a domain specific language for describing the expected behaviour. The
following example tests that a new account has a balance of $0:

describe Account, " when first created" do
before do

@account = Account.new
end

it "should have a balance of $0" do
@account.balance.should eql(Money.new(0, :dollars))

end

after do
@account = nil

72

B.4. WATIR

end
end

B.4 Watir

Watir is a simple library for automating web browsers, and is optimised for
simplicity and flexibility. One of the main areas of use is automatic web testing.
Watir drives browsers the same way people do. It clicks links, fills in forms
and presses buttons. Watir also checks results, such as whether expected text
appears on the page. Watir is a Ruby library that works with Internet Explorer
on Windows. The following example tests that a search in Google for "pickaxe"
include "Programming Ruby":

require ’watir’
require ’test/unit’

class TC_article_example < Test::Unit::TestCase
def test_search

ie = Watir::IE.new
ie.goto("http://www.google.com/ncr")
ie.text_field(:name, "q").set("pickaxe")
ie.button(:value, "Google Search").click
assert(ie.text.include?("Programming Ruby"))

end
end

73

Appendix C

Abbreviations

AJAX: Asynchronous Javascript And
XML

API: Application Program Interface

ASP: Active Server Pages

BEKK: Bekk Consulting AS

BDD: Behaviour Driven Development

BNL: Business Natural Language

BSF: Bean Scripting Framework

CIL: Common Intermediate Language

CLR: Common Language Runtime

CLS: Common Language Spesification

CSS: Cascading Style Sheet

CTO: Chief Technology Officer

CTS: Common Type System

DLR: Dynamic Language Runtime

DRY: Don’t Repeat Yourself

DSL: Domain Specific Language

DTD: Document Type Definition

E4X: ECMAScript for XML

EJB: Enterprise Java Bean

GC: Garbage Collector

GUI: Graphical User Interface

HTML: HyperText Markup Language

IDE: Integrated Developer Environ-
ment

JDK: Java Development Kit

JIT: Just In Time

JMS: Java Messaging Service

JSP: Java Server Pages

JSR: Java Specification Request

JVM: Java Virtual Machine

LOC: Lines Of Code

MRI: Matz Ruby Interpreter

MSSQL: Microsoft SQL

MVC: Model-View-Controller

.NET: Microsoft Platform

ORM: Object-Relation Mapping

RBAC: Role Based Access Control

REST: Representational State Trans-
fer

RPC: Remote Procedure Call

SQL: Structured Query Language

XML: eXtensible Markup Language

75

	Acknowledgements
	Abstract
	Introduction
	Research method
	Research contributions

	Research context
	Research goal
	Research questions
	Research approach
	Literature study

	Polyglot programming
	Definition
	Advantages associated with polyglot programming
	Productivity
	Maintainability

	Disadvantages associated with polyglot programming
	Knowledge
	Maintainability
	Developer tools support

	Summary

	Technical platforms
	The business platforms
	The .NET platform
	The Java platform
	Comparison of the polyglot programming support in the .NET and the Java platforms

	Language classification
	The imperative paradigm
	The object oriented paradigm
	The functional paradigm
	The logical paradigm
	Statically or dynamically typed languages
	Domain specific languages
	The language layers

	Summary

	Examples
	Web development
	Testing
	Concurrency
	Business rules
	Summary

	Research process
	Case study research
	Data collection
	Data analysis

	Case study design
	Data collection
	Data analysis

	Case study implementation
	Data collection

	Bekk Consulting AS - A case study
	Web development
	Buypass
	Web based extranet solution

	Testing
	Statens vegvesen

	Summary

	Discussion
	Polyglot programming context of the cases
	Advantages
	Productivity
	Maintainability
	Motivation and change of perspective

	Disadvantages
	Knowledge
	Maintainability
	Tool support

	Critique of polyglot programming
	Research questions
	RQ1: How is polyglot programming used today?
	RQ2: Guidelines for using polyglot programming

	Conclusion
	References
	Interviews
	Neal Ford
	Ola Bini
	Jay Fields

	Technologies used in the case studies
	Ruby
	Ruby on Rails
	RSpec
	Watir

	Abbreviations

