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Abstract

Inter-language interoperability is big business, as the success of Mi-
crosoft’s .NET and COM and Sun’s JVM show. Programming lan-
guage designers are designing programming languages that reflect
that fact — SML#, Mondrian, and Scala, to name just a few ex-
amples, all treat interoperability with other languages as a central
design feature. Still, current multi-language research tends not to
focus on the semantics of interoperation features, but only on how
to implement them efficiently. In this paper, we take first steps to-
ward higher-level models of interoperating systems. Our technique
abstracts away the low-level details of interoperability like garbage
collection and representation coherence, and lets us focus on se-
mantic properties like type-safety and observable equivalence.

Beyond giving simple expressive models that are natural com-
positions of single-language models, our studies have uncovered
several interesting facts about interoperability. For example, higher-
order contracts naturally emerge as the glue to ensure that inter-
operating languages respect each other’s type systems. While we
present our results in an abstract setting, they shed light on real
multi-language systems and tools such as the JNI, SWIG, and
Haskell’s stable pointers.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, theory

Keywords Interoperability, multi-language systems, operational
semantics

1. Introduction

A modern large-scale software system is likely written in a vari-
ety of languages: its core might be written in Java, while it has
specialized system interaction routines written in C and a web-
based user interface written in PHP. And even academic languages
have caught multi-language programming fever, perhaps due to
temptingly large numbers of pre-existing libraries written in other
languages. This has prompted language implementors to target
COM [18,41], Java Virtual Machine bytecode [7,27,34], and most
recently Microsoft’s Common Language Runtime [8, 32, 36]. Fur-
thermore, where foreign function interfaces have historically been
used in practice to allow high-level safe languages to call libraries
written in low-level unsafe languages like C (as was the motivation
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for the popular wrapper generator SWIG [5]), these new foreign
function interfaces are built to allow high-level, safe languages to
interoperate with other high-level, safe languages, such as Python
with Scheme [33] and Lua with OCaml [39].

Since these embeddings are driven by practical concerns, the
research that accompanies them rightly focuses on the bits and
bytes of interoperability — how to represent data in memory, how
to call a foreign function efficiently, and so on. But an important
theoretical problem arises, independent of these implementation-
level concerns: how can we reason formally about multi-language
programs? This is a particularly important question for systems
that involve typed languages, because we have to show that the
embeddings respect their constituents’ type systems.

In this paper we present a simple method for giving operational
semantics to multi-language systems. Our models are rich enough
to support a wide variety of multi-language embedding strategies,
and powerful enough that we have been able to use them for
type soundness and contextual equivalence proofs. Our technique
is based on simple constructs we call boundaries, cross-language
casts that regulate both control flow and value conversion between
languages. We introduce boundaries through series of operational
semantics in which we combine a simple ML-like language with a
simple Scheme-like language.

In section 2, we introduce those two constituent languages for-
mally and connect them using a primitive embedding where values
in one language are opaque to the other. In section 3, we enrich
that embedding so that boundaries use type information to convert
one language’s values into their counterparts in the other, and we
show that this embedding naturally leads to higher-order contracts.
Section 4 shows a surprising relationship between the expressive
power of these two embeddings, and section 5 shows how the sys-
tem scales beyond purely type-directed conversion.

2. The lump embedding

To begin, we pick two languages, give them formal models, and
then tie those formal models together. In the interest of focusing
on interoperation rather than the special features of particular lan-
guages, we have chosen two simple calculi: an extended model
of the untyped call-by-value lambda calculus, which we use as a
stand-in for Scheme, and an extended model of the simply-typed
lambda calculus, which we use as a stand-in for ML (though it more
closely resembles Plotkin’s PCF without fixpoint operators [37]).
Figure 1 presents these languages in an abstract manner that we in-
stantiate multiple ways to model different forms of interoperability.
One goal of this section is to explain that figure’s peculiarities, but
for now notice that aside from unusual subscripts and font choices,
the two language models look pretty much as they would in a nor-
mal Felleisen-and-Hieb-style presentation [15].

To make the preparation more concrete, as we explain our pre-
sentation of the core models we also simultaneously develop our
first interoperation model, which we call the lump embedding.
In the lump embedding, ML values can appear in Scheme and



e = x | v | (e e) | (op e e) | (if0 e e e)
v = (λ x : τ . e) | n
op = + | −
τ = ι| τ → τ
x = ML variables (distinct from Scheme variables)
E = [ ]M | (E e) | (v E) | (op E e) | (op v E) | (if0 E e e)

Γ, x : τ ⊢M x : τ

Γ, x : τ1 ⊢M e : τ2

Γ ⊢M (λ x : τ1 . e) : τ1 → τ2 Γ ⊢M n : ι

Γ ⊢M e1 : τ1 → τ2 Γ ⊢M e2 : τ1

Γ ⊢M (e1 e2) : τ2

Γ ⊢M e1 : ι Γ ⊢M e2 : ι

Γ ⊢M (op e1 e2) : ι

Γ ⊢M e1 : ι Γ ⊢M e2 : τ Γ ⊢M e3 : τ

Γ ⊢M (if0 e1 e2 e3) : τ

E[((λ x : τ . e) v)]M → E[e[x / v]]
E[(+ n1 n2)]M → E[n1 + n2]

E[(− n1 n2)]M → E[max(n1 − n2, 0)]

E[(if0 0 e1 e2)]M → E[e1]
E[(if0 n e1 e2)]M → E[e2] (where n 6= 0)

e = x | v | (e e) | (op e e) | (if0 e e e) | (pr e) | (wrong str)
v = (λ x . e) | n
op = + | −
pr = proc? | nat?
x = Scheme variables (distinct from ML variables)
E = [ ]S | (E e) | (v E) | (op E e) | (op v E) | (if0 E e e) | (pr E)

Γ, x : TST ⊢S x : TST

Γ, x : TST ⊢S e : TST

Γ ⊢S (λ x . e) : TST
· · ·

E[((λ x . e) v)]S → E[e[x / v]]
E[v1 v2]S → E[wrong “non-proc”] (v1 6= λx.e)
E[(+ n1 n2)]S → E[n1 + n2]

E[(− n1 n2)]S → E[max(n1 − n2, 0)]
E[(op v1 v2)]S → E[wrong “non-num”] (v1 6= n or v2 6= n)

E[(if0 0 e1 e2)]S → E[e1]

E[(if0 v e1 e2)]S → E[e2] (v 6= 0)

E[(proc? (λ x . e))]S → E[0]

E[(proc? v)]S → E[1] (v 6= (λx.e))

E[(nat? n)]S → E[0]

E[(nat? v)]S → E[1] (v 6= n)
E[(wrong str)]S → Error: str

Figure 1. Models of ML (left) and Scheme (right), primed for interoperability

Scheme values can appear in ML. However, ML treats Scheme val-
ues as opaque lumps that cannot be used directly, only returned to
Scheme; likewise ML values are opaque lumps to Scheme. For in-
stance, we allow ML to pass a function to Scheme and then use
it again as a function if Scheme returns it; but we do not allow
Scheme to use that same value as a function directly or vice versa.

The lump embedding is a conveniently simple example, but it is
worth attention for other reasons as well. First, it represents a par-
ticularly easy-to-implement useful multi-language system, achiev-
able more or less automatically for any pair of programming lan-
guages so long as both languages have some notion of expressions
that yield values. Second, it corresponds to real multi-language sys-
tems that can be found “in the wild”: many foreign function inter-
faces give C programs access to native values only as pointers that
C can only use by returning to the host language. For instance this
is how stable pointers in the Haskell foreign function interface be-
have [12].

Where possible, we have typeset the nonterminals of our ML
language using a bold font with serifs, and those of our Scheme
language with a light sans-serif font. For instance, e means the
ML expression nonterminal and e means the Scheme expression
nonterminal. These distinctions are meaningful. Occasionally we
use a subscript instead of a font distinction in cases where the font
difference would be too subtle.

2.1 Syntax

The syntaxes of the two languages we use as our starting point are
shown in figure 1. On the ML side, we have taken the explicitly-
typed lambda calculus syntax and added numbers (where n indi-
cates the syntactic term representing the number n) and a few built-
in primitives including an if0 form. On the Scheme side, we have
taken an untyped lambda calculus syntax and added the same ex-
tensions plus some useful predicates and a wrong form that takes a
literal error message string.

To extend that base syntax with the ability to interoperate, we
introduce syntactic boundaries between ML and Scheme, a kind
of cross-language cast that indicate a switch of languages. The
extension is shown in figure 2.

e = · · · | (τ
MS e)

v = · · · | (L
MS v)

τ = · · · | L
E = · · · | (τ

MS E)

e = · · · | (SM τ e)
v = · · · | (SM τ v)

where τ 6= L
E = · · · | (SM τ E)

E = E

Γ ⊢S e : TST

Γ ⊢M (τ
MS e) : τ

Γ ⊢M e : τ

Γ ⊢S (SM τ e) : TST

E [(τ
MS(SM τ v))]M → E [v]

E [τMS v]M → E [(τ
MS (wrong “Bad value”))]
if v 6= (SM τ v) and τ 6= L

E [(SM L (L
MS v))]S → E [v]

Figure 2. Extensions to figure 1 to form the lump embedding

Concretely we add boundaries as a new kind of expression in
each language. In ML, we extend e to also produce (τ

MS e) (think
of MS as “ML-outside, Scheme-inside”) and we extend Scheme’s
e to also produce (SM τ e) (“Scheme outside, ML inside”) where
the τ on the ML side of each boundary indicates the type ML will
consider the expression on its side of the boundary to be.

2.2 Typing rules

In figure 1, ML has a standard type system with the typing judg-
ment ⊢M where numbers have type ι and functions have arrow
types. Scheme has a type system with the judgment ⊢S that gives all
closed terms the type TST (“the Scheme type”). We have omitted
several typing rules from the Scheme side; every Scheme expres-
sion has a rule that gives it type TST if its subparts have type TST.

In our lump embedding extension, we add a new type L (for
“lump”) to ML and we add two new typing rules, one for each new
syntactic form. The new Scheme judgment says that an (SM τ e)
boundary is well-typed if ML’s type system proves e has type τ —
that is, a Scheme program type-checks if it is closed and all its ML
subterms have the types the program claims they have. The new
ML judgment says that (τMS e) has type τ if e type-checks under



Scheme’s typing system. In both cases, τ can be any type, not just
L as one might expect. If τ = L we are sending a native Scheme
value across the boundary (which will be a lump in ML); if τ 6= L
we are sending an ML value across the boundary (which will be a
lump in Scheme).

In these typing judgments, Scheme rules use the same type
environment that ML does. We do that to allow ML expressions
to refer to variables bound by ML (or vice versa) even if they are
separated by a sequence of boundaries. This is necessary to give
types to functions that use foreign arguments, as we shall see.

2.3 Operational semantics

We use Felleisen and Hieb-style reduction semantics to specify op-
erational semantics for our systems. In figure 1, we define an eval-
uation context for ML (E) and one for Scheme (E), and we use a
third, unspecified evaluation context (E) to represent the top-level
context. In examples in this paper, we will assume E = E and thus
that the top-level program is written in ML; we could set E = E to
reverse that assumption. To allow Scheme expressions to evaluate
inside ML expressions and vice versa, we define evaluation con-
texts mutually recursively at boundaries: E produces (τ

MS E) and
E produces (SM τ E).

The reduction rules in the core model are all reasonably stan-
dard, with a few peculiarities. On the ML side, we allow subtraction
of two numbers but floor all results at zero. The Scheme side has a
bit more going on dynamically. Since Scheme’s type system does
not protect it, we add dynamic checks to every appropriate form
that reduce to wrong if they receive an illegal value. The reduction
rule for wrong itself discards the entire program context and aborts
the program with an error message.

To combine the languages, we might hope to just merge
their sets of reductions together. That does not quite work. For
instance, the ML term ((λx : ι.x) (1 1)) would reduce to
(wrong “Non-procedure”), rather than getting stuck, since Scheme’s
reduction for a non-procedure application would apply to (1 1).
To remedy this, we extend Felleisen and Hieb’s context-sensitive
rewriting framework by differentiating [ ]M holes generated by ML
evaluation contexts from [ ]S holes generated by Scheme evalu-
ation contexts. Scheme’s rewriting rules only apply to evaluation
contexts with [ ]S holes, (and similarly for ML); we indicate that
restriction by writing an S (or M ) subscript next to the bracket on
each evaluation context on the left-hand side of Scheme’s (or ML’s)
rewriting rules.1

With this extension, the example above decomposes into the
context ((λx : ι.x)[ ]M ) but not ((λx : ι.x)[ ]S). Because the
hole is named [ ]M and the Scheme application rule only applies
to holes named [ ]S , the term remains stuck. However, if instead we
had written ((λx : ι.x) (ι

MS (1 1))) it would decompose into an
ML context with a Scheme hole: ((λx : ι.x) (ι

MS [ ]S)) with the
erroneous application (1 1) inside. Since that redex is in a Scheme
hole it would reduce to an error.

To finish the lump embedding, all that remains is to specify the
reduction rules and values for the boundaries between languages.
If an MS boundary of type L has a Scheme value inside, then
the boundary is an ML value. Similarly, when an SM boundary
of a non-lump type has an ML value inside, then it is a Scheme
value. However,MS boundaries with a non-lump type that contain
Scheme values and SM boundaries of type L that contain ML
values should reduce, since they represent foreign values returning

1 We could also have introduced two different notations for Scheme and
ML application, but we find it inelegant; it suggests that a multi-language
implementation would decide how to evaluate each term by inspecting it,
when real systems decide how to evaluate a term based on the language in
which the term is being evaluated — i.e., its context. Also, this is the same
extension we made in earlier work to model Scheme’s multiple values [30].

to a native context. We do that by cancelling matching boundaries,
as the reduction rules in figure 2 show.

ML’s typing rules guarantee that values that appear inside
(SM L v) expressions will in fact be lump values, so the SM

L

reduction can safely restrict its attention to values of the correct
form. Scheme offers no such guarantee, so the rule for eliminating
an τ

MS boundary must apply whenever the Scheme expression is
a value at all.

These additions give us a precise account of the behavior for
lump embedding we described at the beginning of this section. To
get a sense of how the calculus works, consider this example:

((λ fa : L→ L→ L. ((fa (L
MS (λ x . (+ x 1))))

(L
MS 3)))

(λ f : L. λ x : L. (L
MS ((SM L f) (SM L x)))))

→2 (L
MS ((SM L(L

MS(λx.(+ x 1)))(SM L (L
MS 3)))))

→2 (L
MS ((λx.(+ x 1)) 3)) →2 (L

MS 4)

In the initial term of this reduction sequence, we use a “left-left-
lambda” encoding of let to bind the name fa (for “foreign-apply”)
to a curried ML function that takes two foreign values, applies
the first to the second, and returns the result as another foreign
value. The program uses fa to apply a Scheme add-one function
to the Scheme number 3. In two computation steps, we plug in
the Scheme function and its argument into the body of fa. In that
term there are two instances of (SM L (L

MS v)) subterms, both of
which are cancelled in the next two computation steps. After those
cancellations, the term is just a Scheme application of the add-one
function to 3, which reduces to the Scheme value 4.

If we try to apply the ML add-one function to the Scheme
number 3 instead (and adjust fa’s type to make that possible), we
will end up with an intermediate term like this:

(ι
MS ((SM ι→ι(λx : ι.(+ x 1))) 3)) →2

Error: non-procedure

Here, Scheme tries to apply the ML function directly, which leads
to a runtime error since it is illegal for Scheme to apply ML
functions. We cannot make the analogous mistake and try to apply
a Scheme function in ML, since terms like ((L

MS (λx.(+ x 1))) 3)
are ill-typed.

The formulation of the lump embedding in figure 2 allows us to
prove type soundness in the standard way, by establishing preserva-
tion and progress lemmas. Notice that because of the way we have
combined the two languages, type soundness entails that both lan-
guages are type-sound with respect to their own type systems — in
other words, that both single-language type soundness proofs are
special cases of the soundness theorem for the entire system.

Theorem 1 (Lump type soundness). If Γ ⊢M e : τ , then either
e →∗ v, e →∗ Error: str, or e diverges.

Proof. (Sketch) A mutually-recursive variation on the standard
preservation and progress lemmas.

Proofs of this and the other theorems in this paper are available
in this paper’s companion technical report, University of Chicago
CS TR-2006-10.

3. The natural embedding

The lump embedding is a useful starting point, but many multi-
language systems offer richer cross-language communication prim-
itives. A more natural way to pass values between our Scheme and
ML models, suggested many times in the literature (e.g., [6,35,39])
is to use a type-directed strategy to convert ML numbers to equiva-
lent Scheme numbers and ML functions to equivalent Scheme func-
tions (for some suitable notion of equivalence) and vice versa. We
call this the natural embedding.



We can quickly get at the essence of this strategy by extending
the core calculi from figure 1, just as we did before to form the
lump embedding. Again, we add new syntax and reduction rules to
figure 1. In this section we will add τ

MSN and SM
τ

N boundaries,
adding the subscript N (for “natural”) to distinguish these new
boundaries from lump boundaries from section 2.

We will assume we can translate numbers from one language to
the other, and give reduction rules for boundary-crossing numbers
based on that assumption:

E [(SM ι

N n)]S → E [n]
E [(ι

MSN n)]M → E [n]

In some multi-language settings, differing byte representations
might complicate this task. Worse, some languages may have more
expansive notions of numbers than others — for instance, the actual
Scheme language treats many different kinds of numbers uniformly
(e.g., integers, floating-point numbers, arbitrary precision rationals,
and complex numbers are all operated on by the same operators),
whereas the actual ML language imposes much more structure
on its number representations. More sophisticated versions of the
above rules would address these problems straightforwardly.

We must be more careful with procedures, though. We can-
not get away with just moving the text of a Scheme procedure
into ML or vice versa; aside from the obvious problem that their
grammars generate different sets of terms, ML does not even have
a reasonable equivalent for every Scheme procedure. Instead, for
this embedding we represent a foreign procedure with a proxy. We
represent a Scheme procedure in ML at type τ1 → τ2 by a new pro-
cedure that takes an argument of type τ1, converts it to a Scheme
equivalent, runs the original Scheme procedure on that value, and
then converts the result back to ML at type τ2. For example,
the scheme function f becomes (λx : τ1.(

τ2MSN (f (SM τ1

N
x))))

when embedded in ML. Since function arguments flow in the op-
posite direction from function results, the boundary that converts
the argument to the Scheme function must be an SM

τ1

N
boundary,

not an τ1MSN boundary.
This would complete the natural embedding, but for one im-

portant problem: the system has stuck states, since a boundary
might receive a value of an inappropriate shape. Stuck states violate
type-soundness, and in an implementation they might correspond
to segmentation faults or other undesirable behavior. As it turns
out, higher-order contracts [16,17] arise naturally as the checks re-
quired to protect against these stuck states. We show that in the next
three sections: first we add dynamic guards directly to boundaries
to provide a baseline, then show how to separate them, and finally
observe that these separated guards are precisely contracts between
ML and Scheme, and that since ML statically guarantees that it
always lives up to its contracts, we can eliminate their associated
dynamic checks.

3.1 A simple method for adding error transitions

In the lump embedding, we can always make a single, immediate
check that would tell us if the value Scheme provided to ML was
consistent with the type ML ascribed to it. This is no longer pos-
sible, since we cannot know if a Scheme function always produces
a value that can be converted to the appropriate type. Still, we can
perform an optimistic check that preserves ML’s type safety: when
a Scheme value crosses a boundary, we only check its first-order
qualities — i.e., whether it is a number or a procedure. If it has the
appropriate first-order behavior, we assume the type ascription is
correct and perform the conversion, distributing into domain and
range conversions as before. If it does not, we immediately signal
an error. This method works to catch all errors that would lead to
stuck states. Although it only checks first-order properties, the pro-

gram can only reach a stuck state if a value is used in such a way
that it does not have the appropriate first-order properties anyway.

To model this method, rather than adding the SM
τ

N and τ
MSN

constructs to our core languages from figure 1, we instead add
“guarded” versions GSM

τ and MSG
τ shown in figure 3. These

rules translate values in the same way that SM
τ

N and τ
MSN did

before, but also detect concrete, first-order witnesses to an invalid
type ascription (i.e., numbers for procedures or procedures for num-
bers) and abort the program if one is found. We call the language
formed by these rules the simple natural embedding. We give its
rules in figure 3, but it may be easier to understand how it works by
reconsidering the examples we gave at the end of section 2. Each
of those examples, modified to use the natural embedding rather
than the lump embedding, successfully evaluates to the ML num-
ber 4. Here is the reduction sequence produced by the last of those
examples, which was ill-typed before:

((MSG
ι→ι (λx.(+ x 1))) 3)

→ ((λx′ : ι.(MSG
ι ((λx.(+ x 1)) (GSM

ι x′)))) 3)
→ (MSG

ι ((λx.(+ x 1)) (GSM
ι 3)))

→ (MSG
ι ((λx.(+ x 1)) 3))

→2 (MSG
ι 4) → 4

ML converts the Scheme add-one function to an ML function with
type ι → ι by replacing it with a function that converts its argument
to a Scheme number, feeds that number to the original Scheme
function, and then converts the result back to an ML number.
Then it applies this new function to the ML number 3, which
gets converted to the Scheme number 3, run through the Scheme
function, and finally converted back to the ML number 4, which is
the program’s final answer.

The method works at higher-order types because it applies type
conversions recursively. Consider this expression:

((ι→ι)→ι
MSN (λf. (if0 (f 1) 2 f))))

Depending on the behavior of its arguments, the Scheme procedure
may or may not always produce numbers. ML treats it as though it
definitely had type (ι → ι) → ι, and wraps it to the ML value

λx : ι → ι.(ι
MSN ((λf.if0 (f 1) 2 f)(SM ι→ι

N x)))

Whenever this value is applied to a function, that function is
converted to a Scheme value at type ι → ι and the result is con-
verted from Scheme to ML at type ι. Thus, intuitively, conversion
in either direction works at a given type if it works in both direc-
tions at all smaller types.

Theorem 2. If ⊢M e : τ , then either e →∗ v, e →∗ Error: str,
or e diverges.

3.2 A refinement: guards

Adding dynamic checks to boundaries themselves is an expedient
way to ensure type soundness, but we find it a little troublesome.
For one thing, boundaries are necessarily the core of any multi-
language system, so they should be as small and simple as possible.
For another, coupling the task of value conversion with the concep-
tually unrelated task of detecting and signalling errors means that
changing the method of signalling errors requires modifying the
internals of value conversion.

To decouple error-handling from value conversion, we separate
the guarded boundaries of the previous subsection into their con-
stituent parts: boundaries and guards. These separated boundaries
have the semantics of the τ

MSN and SM
τ

N boundaries we intro-
duced at the beginning of this section. Guards will be new expres-
sions of the form (Gτ e) that perform all dynamic checks necessary
to ensure that their arguments behave as τ in the sense of the pre-
vious subsection. In all initial terms, we will wrap every boundary



e = · · · | (MSG
τ e)

e = · · · | (GSM
τ e)

E = · · · | (MSG
τ E)

E = · · · | (GSM
τ E)

Γ ⊢S e : TST
Γ ⊢M (MSG

τ e) : τ

Γ ⊢M e : τ
Γ ⊢S (GSM

τ e) : TST

E [MSG
ι n]M → E [n]

E [MSG
ι v]M → E [MSG

ι (wrong “Non-number”)]
v 6= n

E [MSG
τ1→τ2λx.e]M → E [λx : τ1.MSG

τ2 ((λx.e) (GSM
τ1 x))]

x not free in e
E [MSG

τ1→τ2v]M → E [MSG
τ1→τ2 wrong “Non-procedure”]

v 6= λx.e
E [(GSM

ι n)]S → E [n]
E [(GSM

τ1→τ2 v)]S → E [(λx. (GSM
τ2(v (MSG

τ1 x))))]

Figure 3. Extensions to figure 1 to form the simple natural embed-
ding

e = · · · | (τ
MSN e)

e = · · · | (Gτ e) | (SM τ

N e)

E = · · · | (τ
MSN E)

E = · · · | (Gτ E) | (SM τ

N E)

Γ ⊢S e : TST

Γ ⊢S (Gτ e) : TST

Γ ⊢S e : TST

Γ ⊢M (τ
MSN e) : τ

Γ ⊢M e : τ

Γ ⊢S (SM τ

N e) : τ

E [ιMSN n]M → E [n]
E [SM ι

N n]S → E [n]
E [τ1→τ2MSN λx.e]M → E [λx : τ1.SM

τ2

N
((λx.e) (SM τ1

N
x))]

E [(SM τ1→τ2

N
v)]S → E [(λx.(SM τ2

N
(v (τ1MSN x))))]

E [(Gι n)]S → E [n]
E [(Gιv)]S → E [wrong “Non-number”] (v 6= n)

E [(Gτ1→τ2(λx.e))]S → E [(λx′.(Gτ2((λx.e)(Gτ1x′))))]
E [(Gτ1→τ2v)]S → E [wrong “Non-procedure”] (v 6= λx.e)

Figure 4. Extensions to figure 1 to form the separated-guards
natural embedding

with an appropriate guard: (τ
MSN (Gτ e)) instead of (MSG

τ e)
and (Gτ (SM τ e)) instead of (GSM

τ e).
Figure 4 shows the rules for guards. An ι guard applied to a

number reduces to that number, and the same guard applied to
a procedure aborts the program. A τ1 → τ2 guard aborts the
program if given a number, and if given a procedure reduces to
a new procedure that applies a τ1 guard to its input, runs the
original procedure on that value, and then applies a τ2 guard to
the original procedure’s result. This is just like the strategy we use
to convert functions in the first place, but it doesn’t perform any
foreign-language translation by itself; it just distributes the guards
in preparation for conversion later on.

The guard distribution rules for functions can move a guard
arbitrarily far away from the boundary it protects; if this motion
ever gave a value the opportunity to get to a boundary without
first being blessed by the appropriate guard, the system would get
stuck. We can prove this never happens by defining a combined
language that has both guarded boundaries GSM

τ and MSG
τ and

unguarded boundaries with separated guards τ
MSN , SM τ

N , and Gτ ;
i.e. the language formed by combining figure 1 with figures 3 and
4. In this combined language, an argument by induction shows that

guarded boundaries are observably equivalent to guards combined
with unguarded boundaries.

Theorem 3. For all Scheme expressions e and ML expressions e,
the following propositions hold:

(1) (MSG
τ
e) ≃ (τ

MSN (Gτ
e))

(2) (GSM
τ e) ≃ (Gτ (SM τ

N e))

where ≃ is observable equivalence in the combined language.

In other words, we can replace any or all MSG
τ and GSM

τ

boundaries with their separated versions without affecting the
program, and therefore a program with only MSG

τ and GSM
τ

boundaries is equivalent to the same program with only separated
guards and unchecked boundaries; and therefore the language of
figure 3 is the same as the language of figure 4.

3.3 A further refinement: contracts

While the guard strategy of the last subsection works, an imple-
mentation based on it would perform many unnecessary dynamic
checks. For instance, the term (ι→ι

MSN (Gι→ι (λx.(x)))) is equiv-
alent to

(λx : ι.(ι
MSN (Gι ((λx.x) (Gι (SM ι

N x))))))

The check performed by the leftmost guard is necessary, but the
check performed by the rightmost guard could be omitted — since
the value is coming directly from ML, ML’s type system guarantees
that the conversion will succeed.

We can refine our guarding strategy to eliminate those unnec-
essary checks. We split guards into two varieties: positive guards,
written Gτ

+, that apply to values going from Scheme to ML, and
negative guards, written Gτ

−, that apply to values going from ML to
Scheme. Their reduction rules are:

E [(Gι
+ n)]S → E [n]

E [(Gι
+v)]S → E [(wrong “Non-number”)] (v 6= n)

E [(Gτ1→τ2

+ v)]S → E [(Gτ2

+ (v (Gτ1

−
x)))] (v = λx.e)

E [(Gτ1→τ2

+ v)]S → E [(wrong “Non-function”)] (v 6= λx.e)
E [(Gι

−v)]S → E [v]
E [(Gτ1→τ2

−
v)]S → E [(λx.(Gτ2

−
(v(Gτ1

+ x))))]

The function cases are the interesting rules here. Since functions
that result from positive guards are bound for ML, we check the
inputs that ML will supply them using a negative guard; since
the result of those functions will be Scheme values going to ML,
they must be guarded with positive guards. Negative guards never
directly signal an error; they exist only to protect ML functions
from erroneous Scheme inputs. They put positive guards on the
arguments to ML functions but use negative guards on their results
because those values will have come from ML.

This new system eliminates half of the first-order checks asso-
ciated with the first separated-guard system, but maintains equiva-
lence with the simple natural embedding system.

Theorem 4. For all ML expressions e and Scheme expressions e in
the language that combines simple natural boundaries and positive
and negative guards, both of the following propositions hold:

(1) (MSG
τ

e) ≃ (τ
MSN (Gτ

+ e))
(2) (GSM

τ e) ≃ (Gτ
− (SM τ

N e))

As it happens, we do not need to add Gτ
+ and Gτ

− as extensions,
because they can be implemented directly in the core Scheme
language of figure 1. In fact, they are exactly contracts, or more
specifically pairs of projections in exactly the sense of Findler and
Blume [16] where the two parties are + (Scheme) and - (ML). Since
ML’s type system guarantees that - never breaks its contract, only +
will ever be blamed for a violation. Practically, this means we can
safely use contracts to protect type invariants in foreign function



T τ1→τ2

M

def
= λx : L.λy : τ1.(T

τ2

M
(L
MSL((SM L

Lx)T τ1

S
(SM τ1

L
y))))

T τ1→τ2

S

def
= λx.λy.T τ2

S
(SM τ2

L
((τ1→τ2MSLx)(T τ1

M
(L
MSLy)))))

T ι

M

def
= (λ x : L. ι

MSL

(Y (λ f . λ n .
(if0 n

(SM ι

L 0)
(SM ι

L (+ 1 (ιMSL (f (− n 1)))))))
(SM L

L x)))

T ι

S

def
= (λ x .

(Y (λ f . λ n . (SM L
L

(if0 (ιMSL n)
(L
MSL 0)

(L
MSL (+ 1 (f (SM ι

L (− (ιMSL n) 1))))))))
x))

Figure 5. Translation functions for lump values

interfaces. This adds to our confidence in Gray et al’s fine-grained
interoperability scheme [23], for example. More theoretically, it
means we can use the simple system of section 3.1 for our models
and be more confident that our soundness results apply to actual
multi-language embeddings that we write with contracts. From the
contract perspective, it also shows one way of using mechanized
reasoning to statically eliminate dynamic assertions from annotated
programs. In this light it can be seen as a hybrid type system [20].

4. What have we gained?

The natural embedding fits our intuitive notion of what a useful
interoperability system ought to look like much more than the lump
embedding does, so it seems like it should give us the power to
write more programs. However, that is not the case: τ

MSN and
SM

τ

N boundaries are macro-expressible in the lump embedding (in
the sense of Felleisen [14]), meaning that any natural-embedding
program can be translated using local transformations into a lump-
embedding program.

To show that, we define two type-indexed functions, T τ

S and
T τ

M , that can be written in the lump embedding. These functions
translate values whose ML type is τ from Scheme to ML and from
ML to Scheme, respectively; they are shown in figure 5. (for clarity,
in that figure and below we use the notation τ

MSL and SM
τ

L rather
than τ

MS and SM
τ to refer to the lump embedding’s boundaries.)

The translation functions for higher-order types use essentially the
same method we presented in section 3 for converting a procedure
value — they translate a procedure by left- and right-composing
appropriate translators for its input and output types. That leaves us
with nothing but the base types, in our case numbers.

Those require more work. The key insight is that we can use
a two-language equivalent of Church-encoded numbers to send a
number across a boundary, and both translators do that the same
way: the receiver gives the sender the opaque number to be trans-
lated, a zero value, and a successor function. The sender then per-
forms a foreign application of the successor function to the zero
value n times where n is the number to be sent. The result of that
operation is a foreign value representing the native number that was
to be sent. (The two translators are superficially different from each
other, but only because we restrict the Y fixed-point combinator to
Scheme, where it can be written directly.)

Theorem 5. In the language formed by extending the language of
figure 1 with both figure 2 and the language of section 3.3, both of

the following propositions hold:

(Gτ
− (SM τ

N e)) ≃ (Gτ
− (T τ

S (SM τ

L e)))
(τ

MSN (Gτ
+e)) ≃ (T τ

M (τ
MSL (Gτ

+ e)))

In other words, we can run any natural-embedding program in
the lump embedding by converting all of its natural-embedding
boundaries into lump boundaries wrapped in the appropriate guard
and conversion functions. Since each translation in figure 5 can be
applied independently, since each one is a local transformation, and
since guards are expressible in the core Scheme language, it follows
that the SM

τ

N and τ
MSN boundaries are macro-expressible in the

lump embedding.
Based on these translation rules, we were able to implement a

program that communicated numbers between PLT Scheme and C
using PLT Scheme’s foreign interface [3] but maintaining a strict
lump discipline.

While the translations of figure 5 suffice for our purposes here,
is worth mentioning that they could be made faster. Rather than
having the sender transmit “add-one” and “stop” signals, the re-
ceiver could give the sender representations of 0 and 1 and let the
sender send successive bits of the number to be converted. This ap-
proach would run in time proportional to the log of the converted
number, assuming efficient bit-shift operations. This is likely to be
linear in the size of the representation of integers, though this is still
suboptimal since such conversions are likely to be either simple bit
operations or even noops at the level of the underlying machine.

5. From type-directed to type-mapped conversion

In the previous sections, we have gotten double duty out of the
type annotations on boundaries: statically, they have indicated the
type of each boundary, and dynamically they have indicated how
to convert any value that appears at the boundary. That overloading
is fine (even desirable) for some multi-language systems, but it is
insufficient for others. For instance, since C does not have an ex-
ception mechanism, many C functions (e.g., malloc, fopen, sqrt)
return a normal value on success and a sentinel value on error. A
foreign function interface might automatically convert error indi-
cators from such functions into exceptions, while converting non-
errors as normal. To model such a conversion, we must generalize
boundaries so that instead of containing a type, they contain a con-
version strategy from which a type can be derived.

In the numbers-for-errors example, we can consider a variant of
our earlier multi-language systems in which we expect ML to use
the zero for error convention for some functions, and Scheme has
a very simple exception mechanism in which (wrong str) raises an
exception, and (handle e1 e2) tries to evaluate e2 unless it raises an
exception, in which case it abandons e2 and instead evaluates the
handler expression e1. If a Scheme exception reaches ML, it aborts
the program unless the ML boundary it reaches expects a value
following the zero-for-error convention, in which case it becomes
0. Similarly if 0 flows from ML to Scheme in a context where
the zero-for-error convention is in place, it becomes a Scheme
exception.

We give a model of this system in figure 6. The Scheme con-
texts identify two different layers: those in which no boundary or
exception handler appears (H), and those in which boundaries and
handlers may appear (E). This layering is a simplified variant of the
exception model presented by Wright and Felleisen [43].

The core of the system is a conversion strategy κ that replaces
the type on all boundaries, and an associated ⌊·⌋ metafunction from
κ to τ that takes a conversion strategy “down to” a type. We use the
conversion strategy to add a single conversion, ι!, indicating places
where 0 indicates an error. Typing judgments are as before, except
that boundary rules must apply the ⌊·⌋ function as necessary. Re-
ducing a boundary is also as before, with additions corresponding



e = · · · | (MSG
κ e)

e = · · · | (handle e e) | (GSM
κ e) | (handle e e)

κ = ι | ι! | κ → κ

E = · · · | E[(MSG
κ E)]M

H = [ ]S | (H e) | (v H) | (op H e) | (op v H) |(if0 H e e) | (pr H)
E = H | H[(GSM

κ E)]
S
| H[(handle e E)]S

Γ ⊢S e : TST

Γ ⊢M (MSG
κ e) : ⌊κ⌋

Γ ⊢M e : ⌊κ⌋

Γ ⊢S (GSM
κ e) : TST

⌊ι⌋ = ι
⌊ι!⌋ = ι

⌊κ1 → κ2⌋ = ⌊κ1⌋ → ⌊κ2⌋

E [(MSG
ι! n)]M → E [n]

E [(MSG
ι! H[wrong str])]M → E [0]

E [(MSG
κ H[wrong str])]M → Error: str (if κ 6= ι!)

E [(GSM
ι! 0)]S → E [(wrong “zero”)]

E [(GSM
ι! n)]S → E [n] (if n 6= 0)

E [(handle e1 H[(wrong str)])]S → E [e1]

Figure 6. Extensions to figure 3 for mapped embedding

to the ML-to-Scheme and Scheme-to-ML conversions for values at
ι! boundaries.

Theorem 6. The language of figure 6 is type-sound.

This example demonstrates a larger point: although we have
used a boundary’s type as its conversion strategy for most of the
systems in this paper, they are separate ideas. Decoupling them has
a number of pleasant effects: first, it allows us to use non-type-
directed conversions, as we have shown. Second, it illustrates that
boundaries depend on conversion strategies, not type information
per se, which suggests that type erasure (but not conversion strategy
erasure) remains possible in our framework. Finally, the separation
makes it easier to understand the connection between these formal
systems and tools like SWIG, in particular SWIG’s type-map fea-
ture [4]: from this perspective, SWIG is a tool that automatically
generates boundaries that pull C++ values into Python (or another
high-level language), and type-maps allow the user to write a new
conversion strategy and specify the circumstances under which it
should be used.

6. Related work

The work most directly related to ours is Benton’s “Embedded In-
terpreters” [6], which lays out a method for embedding interpreters
into statically typed languages using type-indexed embeddings and
projections (the same method was also discovered independently
by Ramsey [39]). His work considers only the asymmetric case
where a typed host language embeds an untyped language, and fo-
cuses on implementation rather than formal techniques. Still, read-
ers will find that the flavor of his work is quite similar to this work.
Zdancewic, Grossman, and Morrisett’s work [44] is also similar to
ours in that it introduces two-agent calculi and boundaries; their
work, however, focuses on information-hiding properties and does
not allow different languages to interoperate.

Other work on the semantics of interoperability tends to fo-
cus on the properties of multi-language runtime systems. This in-
cludes a pair of formalisms for the semantics of COM, the first by
Ibrahim and Szyperski [26] and the second by Pucella [38] and also
Gordon and Syme’s formalization of a type-safe intermediate lan-
guage designed specifically for multi-language interoperation [22].

Kennedy [28] pointed out that in multi-language systems, obser-
vations in one language can break equations in the other and that
this is a practical problem. Our system is one way to reason about
these problems precisely. Trifonov and Shao have developed an ab-
stract intermediate language for multi-language programs that aids
reasoning about interactions between effects in the two source lan-
guages [42]. While our framework can also addresses effects, it
does not address their implementation. Instead our work focuses on
their semantics as seen by the source languages, a topic Trifonov
and Shao do not discuss. Finally, Furr and Foster have built a sys-
tem for verifying certain safety properties of the OCaml foreign-
function interface by analyzing C code for problematic uses of
OCaml values [21].

On the issue of combining typed and untyped code, Henglein
and Rehof [24,25] have done work on translating Scheme into ML,
inserting ML equivalents of our guards to simulate Scheme’s dy-
namic checks. Some languages have introduced ways of mixing
typed and untyped code using a dynamic type [1], similar to our
boundaries and lumps; for instance Cardelli’s Amber [10], Cham-
bers et al’s Cecil [13] or Gray, Findler and Flatt’s ProfessorJ [23].

There has been far too much implementation work connecting
high-level languages to list it all here. In addition to the projects
we have already mentioned, there are dozens of compilers that
target the JVM, the .NET CLR, or COM. There have also been
more exotic embeddings; two somewhat recent examples are an
embedding of Alice (an SML extension) into the Oz programming
language [29] and the LazyScheme educational embedding of a
lazy variant of Scheme into strict-evaluation-order Scheme [2].
There has been even more work on connecting high-level languages
to low-level languages; in addition to the venerable SWIG [5] there
are many more systems that try to sanitize the task [3,9,11,19,40].

7. Conclusion

We have shown how to give operational semantics to multi-
language systems and still use the same formal techniques that
apply to single languages. This work has focused on two points in
the design space for interoperating languages: the lump and natu-
ral embeddings. We see aspects of these two points in many real
foreign function interfaces: for instance, SML.NET translates flat
values and .NET objects, but forces lump-like behavior for higher-
order ML functions. The Java Native Interface provides all foreign
values as lumps, but provides a large set of constant functions for
manipulating them, similar to our fa (“foreign-apply”) function
from section 2. The lump embedding’s ease of implementation and
natural embedding’s ease of use both pull on language design, and
most real multi-language systems lie in between.

Furthermore, we have talked mostly about foreign function in-
terfaces in this paper, but our technique scales to other kinds of
multi-language systems. Any situation in which two logically dif-
ferent languages interact is a candidate for this treatment — e.g.
embedded domain-specific languages, some uses of metaprogram-
ming, and even contract systems, viewing each party to the con-
tract as a separate language. By treating these uniformly as multi-
language systems, we might be able to connect them in fruitful
ways. Even with the limited scope considered in this paper, we
have discovered connections between contracts, foreign function
interfaces, and hybrid type systems (as discussed in section 3.3).
Widening the net to include a broader interpretation of interoperat-
ing systems suggests that this work barely scratches the surface.
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