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ABSTRACT

As scripts grow into full-fledged applications, programmers
should want to port portions of their programs from script-
ing languages to languages with sound and rich type sys-
tems. This form of interlanguage migration ensures type-
safety and provides minimal guarantees for reuse in other
applications, too.

In this paper, we present a framework for expressing this
form of interlanguage migration. Given a program that con-
sists of modules in the untyped lambda calculus, we prove
that rewriting one of them in a simply typed lambda calcu-
lus produces an equivalent program and adds the expected
amount of type safety, i.e., code in typed modules can’t go
wrong. To ensure these guarantees, the migration process
infers constraints from the statically typed module and im-
poses them on the dynamically typed modules in the form
of behavioral contracts.

1. WHEN SCRIPTS GROW UP

In the beginning, the programmer created a script to
mechanize some routine but problematic task. The script
consisted of a few dozen lines of code in a dynamically typed
and expressive scripting language. Before long, the pro-
grammer discovered that friends were coping with similar
problems, and with a few changes here and a few hacks there,
the script became a useful 1,000-line program for his friends,
too. Not surprisingly, the programmer decided to offer this
service to some of his favorite mailing lists and modified the
program a few more times. At that point, there were ac-
tually several related applications; each consisted of a few
dozen components, mostly drawn from a common library
of modules; and all these applications supported different
tasks, only superficially related to the original one. It goes
without saying that the application suite became the core
of a small, yet exponentially growing business and that the
programmer sold it for a lot of money to some big company.

Fortunately, our programmer has employed a test-driven
or test-first approach to programming [5], a technique that
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originated with dynamically typed languages such as Lisp,
Scheme and Smalltalk. ' Every bug report has been turned
into a test case; the test suites have been maintained in a
meticulous manner. Unfortunately the big company isn’t
satisfied with the result. Because the software deals with
people’s financial holdings, the company’s management team
wants to cross all the t’s and dot all the i’s, at least for the
critical modules. The team has set the goal to rewrite the
program in a programming language with a sound type sys-
tem. They believe that this step will eliminate some long-
standing bugs from the modules and improve the efficiency
of the debugging team. After all, “typed programs can’t go
wrong” [24], i.e., the programmer doesn’t have to look at
code in typed modules when a run-time type check fails.

Currently, this common, realistic situation poses a major
difficulty for the (unfortunate) programmers of the company.
Ideally, they should port one module at a time, always leav-
ing the overall product intact and running. Most foreign-
language interfaces, however, support only connections be-
tween high-level languages and C-level libraries. Support
for connecting a high-level typed language with a high-level
dynamically typed language rarely exists. Hence, program-
mers often re-develop the entire program from scratch and
run into Brooks’s “second system” syndrome [8].

In this paper, we investigate an alternative to this reim-
plementation approach. Specifically, we present a frame-
work for porting programs in a gradual manner from an
dynamically typed to a syntactically and semantically re-
lated, statically typed programming language. We are mak-
ing three philosophical assumptions. First, a program is a
sequence of modules in a safe, but dynamically typed pro-
gramming language. The second assumption is that we have
an explicitly, statically typed programming language that is
variant of the dynamically typed language. Specifically, the
two languages share run-time values and differ only in that
one has a type system and the other doesn’t. While there
have been few realistic examples of such systems [7], one
can imagine creating such a pair of languages from any dy-
namically typed language (say Scheme), possibly based on
the decade-old soft typing research. Finally, a third and less
realistic assumption is that (at least) one of the modules is
“typable,” meaning that equipping variables with type dec-

LAlthough Kent Beck has coined the phrase and popular-
ized test-driven development, the idea of developing tests
first had been around for ages in the Scheme community and
had been inherited from the Lisp community. For example,
see the unpublished manuscript “A Guide to the Metaphys-
ical Universe” by Friedman, Haynes, Kohlbecker, and Wand
ca. 1984.



larations suffices to port the module from the untyped to
the typed version of the language. We realize that “typing”
a module may require a serious rewriting effort, possibly
supported by tools, but for our purposes, this simplifying
assumption suffices.

Our primary goal is to establish a Milner-style theorem
for the process of adding types to a program:

typed modules can’t go wrong, and all run-time
errors originate in untyped modules.

While we initially thought that such a theorem would “ob-
viously” hold, we soon realized that even our simple model
turned out to pose research questions. A modicum of reflec-
tion suggests that a soundness guarantee (such as the above)
demands some protection of the typed module(s) from the
dynamically typed ones. First, a dynamically typed module
may abuse a typed function imported from a typed mod-
ule. Second, the typed module may import functions from
untyped modules and those may violate the type discipline
of the module. Finally, because of higher-order functions,
which are found in most popular scripting languages these
days, both the first and the second problem aren’t separable
and most be solved together.
For a first impression, consider a concrete example:

(module f ;; declare and export f
(int -> int) ;; with type int to int
;3 as follows:
(lambda (x int)
(g x)))

If this typed module is to export a value of type (int — int),
g must be a function that maps integers to integers. Unfor-
tunately, the module from which f imports g provides no
such guarantees. We solve this problem with a type checker
that infers constraints from the typed module on the remain-
der of the modules. Typically such constraints are written
down in the documentation of a module but are not checked.
Once we have derived the constraints, we turn them into be-
havioral contracts [11] for the dynamically typed modules.
Since that is still insufficient for safety, we also generate
wrapper modules that import functions from dynamically
typed modules with contracts and re-export them with more
stringent contracts. To keep things manageable for program-
mers, we avoid this second step as much as possible, since it
introduces unexpected new modules into the code base.

The paper consists of six sections. The second section
gives a high-level overview of interlanguage migration, plus
the supporting contract and module systems. A formal
model of the interlanguage migration is introduced in the
third section and proved sound in the fourth. In the fifth
section we discuss related work.

2. ANINFORMAL TOUR

A typical scripting language is a highly expressive but un-
typed programming language. Usually scripting languages
are (intended to be) safe. Almost all the popular ones in-
clude a module-like facility. To make things simple, we as-
sume that a program is a sequence of modules followed by
a “main expression.”

The evaluation of such a program starts with the main
expression. Evaluation proceeds as usual in an expression-
oriented language. When the evaluation process encounters

a reference to a module, it imports the appropriate expres-
sion from there and evaluates it.

To keep things as simple as possible, we work with a typed
variant of the untyped language where all binding positions
in the come with type declarations. In short, we migrate to
an explicitly typed language that is otherwise syntactically
and semantically equivalent to the untyped one.

In a program that mixes typed and untyped modules, eval-
uation proceeds as before. This implies that the values of the
typed language are those of the untyped language (and vice
versa). For the reader with formal inclinations, figures 1,
2, 3 and 4 present the formal syntax and semantics of our
model, though in this section we liberally add features to il-
lustrate our points; section 3 explains these figures in detail.

Given an untyped modular program, the first step of in-
terlanguage migration is to turn one module into a typed
module. We assume that this step simply adds types to all
binding positions of the module, including the module ex-
ports. Naturally, we don’t believe that this is possible in
reality. Instead, we expect that programmers rewrite their
modules in a meaning-preserving manner—possibly using
software analysis tools—so that they can add type declara-
tions where needed. Still, because the goal of migration is
to change the program without changing its meaning and
our goal is to understand the effect of the overall process,
we consider it justified for a first framework to simplify this
step as much as possible.

After the chosen module has been rewritten in the typed
version of the language, we need to check the types and infer
from them how the typed module is going to interact with
the others, which remain untyped. Consider the following
simplistic program:

(module f (int -> int) (lambda (x int) (g x)))
(module g 999)
(f 5)

It consists of two modules: the first is presumably a module
that has been rewritten in the typed language, the second
one is still in the untyped language. Also, the first one
exports a function from integers to integers; the second one
exports a simple integer.

If we were to evaluate this program as is, it would even-
tually attempt to apply 999 to 5 via the application (g x)
in the typed module. In other words, the typed portion of
the program would trigger a run-time error, which, assum-
ing proper source tracking, would tell the programmer that
the typed module went wrong.

A different view of the problem is that when one module
changes, the rest of the program has to play by new rules,
too. In this case, the very fact that the export from g, the
second module, is used as a function in the typed module
establishes an agreement between the two modules. This
agreement, however, is informal (and unuttered) and is not
monitored during run-time. The evaluation therefore results
in a run-time error seemingly due to the typed module.

Thus our first lesson is that informal agreements don’t jive
with the goal of introducing types. To reap the benefits of
types, we must not only have agreements, we must enforce
them. This line of reasoning naturally suggests the use of be-
havioral contracts in the spirit of Findler and Felleisen [11].
More precisely, we assume that an interlanguage migration
process has access to the interfaces of the remaining modules
and that it is possible to add contracts to these interfaces.



false, a boolean.
boolean value flows into the typed module without any ob-
jections, only to cause havoc there. Again, the typed module
appears to have gone wrong.

P :=e | MP Programs

M ::= (module f v) Modules

v n=n | (Az.e) Values

e ==v | x| f | (ee) | (if0 eece) Expressions

Figure 1: Scripting Language Syntax

P :=en | MP Programs
M =M. | My | M, Modules
M, ::= (module f v) Untyped Modules
M. ::= (module f cv) Contracted Modules
M = (module f t v;) Typed Modules
c =int | (c—c¢) | int V (c—¢) Contracts
t =int | (t—1) Types C Contracts
v =n | (Az.e) Untyped Values
ve n=mn | (A\z:te) Typed Values
vm i=n | (AT item) | (Az.em) Mixed Values
e ==v | x| f| (ee) | (if0 eee) Untyped Expressions
er w=wve | x| f | (erer) | (if0 et et er) Typed Expressions
em =Um | T f | (emem) | (ifO em em em) Mixed Expressions

Figure 2: Typed Language Syntax

For our running example we would expect that migration

changes the program as follows:

(module f (int -> int) (lambda (x int) (g x)))
(module g (integer? -> integer?) 999)

(f 5)

Put differently, we can infer from the types of the first mod-
ule that the second module must always export a function
from integers to integers. In our framework, we express this
fact with a contract to the module interface.

The example has two implications for interlanguage mi-

gration and its formal model. First, the language must also
include optional contracts at module boundaries. Second,
a type checker for the typed variant of the language must
not only enforce the rules of the type system, it must also
infer the contracts that these type annotations imply for the
remaining modules.

Unfortunately, there are yet more problems. Consider this

second program:

(module h (int -> int)

(lambda (y int)
(let ((g (lambda (x int) (+ x 10))))
+ (g (g 1000))

(h false)

Here the programmer applies an (int — int) function to
Since our evaluator ignores types, the

In this case, the solution is to interpret the types on the

module exports as contracts so that the evaluator monitors
how the other modules use functional exports from the typed
module. For flat types such as int, the values that flow into
typed functions are checked immediately; for functional val-
ues, the contracts are distributed over the domain and range

of the function until flat values show up [11]. Technically,

the types become contracts on external references to the
module £, and are interpreted as runtime checks, or casts,
which specify the party to be blamed if they fail:

(h false)
steps to

({(integer? -> integer?) <= h : Main} false)

steps to

{integer? <= (h {integer? <= false : Main}) : Main}

At this point it has become clear that false is a bad value,
and the evaluator can abort the execution blaming the main
expression for supplying bad values to the typed module.

Simply adding contracts to existing modules doesn’t solve
all problems, though:

(module f int
(if (not (m 5))
(m true)
7))
(module m ((or/c boolean? integer?)
->
(or/c boolean? integer?))
(lambda (x)
(if (boolean? x) true (+ x 1))))
£

The first, typed module contains two references to m, the sec-
ond, untyped module. From the types of the subexpressions
we can infer that m must export a function that can consume
both booleans and integers and that can also produce both
kinds of values. The resulting contract uses or/c in the do-
main and range part to state this fact but it still means that
the evaluation of f raises a run-time error because (m true)
produces a boolean rather than a number.

Our solution is to add new wrapper modules with more
specific contracts based on the existing type and contract
information:



n | Az:te) | Oxe) | {(c--+c) <=l v} Values

v
ex=v | x| f| (ee) | (ifoeee) | {c<= e} Expressions
Figure 3: Runtime Syntax
((A\z.e) v) [v/z]e SUBST
((A\x : t.e) v) [v/z]e TYPEDSUBST
(n v)* (blame f) APP-ERROR
(if0 0 e e2) e1 IFO-TRUE
(if0 v e1 e2) €2 IFO-FALSE
{int <7 n} n INT-INT
{int V ¢<n} n INT-INTOR
{int V ¢ <7 v} {c <=9 v} INT-LAMOR
{int <9 v} (blame g) INT-LAM
{(c1 = c2) < n} (blame g) LAM-INT
{(c1 — ¢2) <7 v} {(c1 --» c2) <9 v} LaM-LaM
{(c1 --» ¢2) <9 v} w)f {2 <9 (v {1 =F w})} SPLIT
...(module fv)...E[f] module f v)...E[v] Lookup

...(module f cv)...E[f]
...(module f twv)...E[f?] where g # f
...(module f tv)...E[f?]

o (

...(module f cv)...E[{c <’ v}] LoOOKUP-CONTRACT
...(module ftwv)...E[{t<?v}] LoOKUP-TYPE
...(module ftv)...E[v] LOOKUP-TYPE-SELF

Figure 4: Reduction Rules

(module f int
(if (not (m-bool 5))
(m-int true)

7))

(module m-int
((or/c boolean? integer?) -> integer?)
m)

(module m-bool
((or/c boolean? integer?) -> boolean?)
m)

(module m ((or/c boolean? integer?)
->
(or/c boolean? integer?))
(lambda (x)
(if (boolean? x) true (+ x 1))))

The new wrapper modules m-int and m-bool provide addi-
tional guarantees about the behavior of m, by placing stricter
runtime contracts on the body of m than the contracts that
were originally inferred. The new contracts allow the origi-
nal module f to typecheck. When the program is evaluated,
the contracts show that m-bool misrepresented m, and is thus
blamed for the runtime violation.

This strategy raises the question: why we do not add

wrapper modules everywhere, that contracts add safety checks

for particular variable occurrences? This solution, while
conceptually simple, fails to generate maintainable code.
Each time this migration step is applied (for example, for
each module ported from being untyped to typed), a slew of
new wrapper modules would be created. Soon, the system
would be an incomprehensible mess.

This points to a design requirement we consider funda-
mental: that the resulting program be maintainable. Our
transformation is not a compilation strategy to ensure safety,
it is a migration that is part of the development of a system.
As with a semantics-preserving refactoring, it must respect
the surrounding code as much as possible.

The rest of the paper presents a formal model of this mi-
gration process, drawing on our experience of implementing
the model as a prototype. The focus of our presentation
concerns the derivation of constraints via type checking; the
translation of these constraints into contracts; the addition
of wrapper modules based on types and contracts; and last
but not least a theorem that proves that typed modules can’t
go wrong in this setting.

3. THE FORMAL FRAMEWORK

The objective of this section is to describe our interlan-
guage migration framework formally, from the syntax and
semantics of the programming languages all the way to the
linguistic aspects of the process itself.

3.1 Syntax

Our scripting language is a simplified version of the lan-
guage of Meunier et al [23], augmented with types and typed
modules. It consists of the lambda calculus enriched with
numeric constants and a conditional, as well as casts, mod-
ules and contracts. The initial syntax used in the original
program is specified in figure 1. After the migration step,
the syntax is more complicated: see figure 2. The runtime
system collapses some distinctions and adds casts, which are
specified in figure 3.

MoDULES Our language has a simple first-order module sys-
tem, in which each module consists of a name and a value.
The module exports its value via its name. T'wo other mod-
ule forms are provided: modules with contracts and modules



with types. Contracted modules are identical to their un-
typed counterparts, except that a contract is added to the
(simplified) module interface. When the value of the module
is used, that value is checked against the contract. Typed
modules have a top-level type, and contain only typed val-
ues, v; in figure 2.

CONTRACTS AND CASTS The contracts allow the base int
contract, as well as function contracts and disjunction. Func-
tion contracts have the Findler—Felleisen semantics [11], and
disjunction allows either of the two branches to be satisfied.
The disjunction of two function contracts is syntactically
prohibited. This restriction significantly reduces the com-
plexity of the reduction rules for V-contracts. At run-time,
contracts turn into checks, which we express with casts. Syn-
tactically, a cast {¢ <=° m} combines a contract with an ex-
pression and a label for a module, which it blames for the
contract violation if the check fails.

Casts are not part of the source language, but the state
space of the runtime system; programmers cannot write
them and our transformation does not insert them.

TypPES The types of the typed fragment of the language
are just the base type int and function types. Importantly,
every type is syntactically also a contract.

EXPRESSIONS The language contains three kinds of expres-
sions: typed, untyped and mixed. Typed expressions occur
only in the typed module. Untyped expressions occur in all
other modules. Mixed expressions can contain typed and
untyped subexpressions and appear only in the main ex-
pression. The main expression is initially untyped.

3.2 Semantics

For the dynamic semantics, we assume that every expres-
sion has been labeled with the name of its original source
module. The main expression is labeled with m. This la-
beling is necessary for appropriate blame assignment when
a dynamic error occurs. It corresponds to an annotation
pass for source location tracking. For clarity, we omit these
labels wherever they are not needed.

The dynamic semantics is defined in figure 4 as a reduction
semantics, and again follows Meunier et al, with additions
for types and V-contracts. Reduction takes place in the
context of modules, which are not altered during reduction.
The relation — is the one-step reduction relation, with —*
as its reflexive, transitive closure, and the set of evaluation
contexts is defined as:

E=[| (Ee) | (WE) | (ifo Ece) | {c=' E}

Rules that do not refer explicitly to the context are im-
plicitly wrapped in E[—] on both sides, with the exception
of the rules that reduce to (blame f), which discard the
evaluation context.

The reduction rules fall into the following categories:

e The rules that lookup module references all refer ex-
plicitly to the module context. The LOOKUP rule refers
to untyped modules, and simply substitutes the body
of the module for the reference. The LOOKUPCON-
TRACT and LOOKUPTYPE rules retrieve the appropri-
ate expression and wrap it in a contract. The con-
tract wrapped around typed module bodies is neces-
sary so that typed expressions are never used in incor-
rect ways, even when the untyped modules refer to the

typed module. This check is not necessary when the
typed module refers to itself, and is thus omitted in
the LOOKUPTYPESELF rule [11].

e The rules for the A-calculus core are straightforward.
These include SUBST and TYPEDSUBST, which perform
Byu-reduction on untyped and typed abstraction respec-
tively. IFO-TRUE and IFO-FALSE are also simple.

e APP-ERROR is the one runtime error that does not
involve a contract or a cast. If a number is in the
application position of an application, clearly the in-
variants of the language have been violated. We blame
the source of the application for this error.

The remaining rules handle contracts and casts.

e INT-INT and INT-INTOR pass numbers through int
contracts unchanged. INT-LAMOR discards an unsat-
isfiable disjunct. We do not need rules for disjunction
with an arrow contract on the left, since such contracts
are syntactically prohibited.

e INT-LAM and LAM-INT represent contract failures and
blame the appropriate party, as labeled on the cast.

e LAM-LAM blesses an arrow contract applied to an ab-
straction, turning it into a blessed arrow contract. In
contrast to INT-INT, we must keep the contract around
for later use. The resulting expression, while still a
cast, is also a syntactic value.

e The SPLIT rule breaks a blessed arrow contract into its
positive and negative halves, and places them around
the argument and the entire application. The creation
of two new casts, with appropriate blame assignment,
is the key to proper contract checking for higher-order
functions [11].

3.3 Adding Type Declarations

The first step in interlanguage migration requires the pro-
grammer to change one module from the untyped language
to the typed one. In our system, this involves adding types
to every variable binding and to the module export as a
whole.

Once this module is annotated, the new program is re-

ferred to as PM, where M is the name of the now-typed
module.

Since the simply-typed A-calculus has a straightforward
type-soundness theorem, we might expect a similar one to
hold for migrated programs, provided the type annotations
are self-consistent. Sadly, this is not the case. For exam-
ple, the typed module M might refer to some other mod-
ule, which could provide an arbitrary value or raise a run-
time error. The other modules may contain outright er-
rors, such as (3 4), as well as untypeable expressions such as
(Az.(if0 z 1 (Ay.y))); we do not rule these out, since the pro-
grammer is only adding types to one module. Furthermore,
since we do not typecheck the other modules, they may use
the typed module in ways that do not accord with its type.
Because of these possibilities, the migration process must
protect the typed module from its untyped brethren.
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Figure 5: Constraint Generation

3.4 Inferring Constraintsfrom Types

In order to protect the typed module when it refers to
untyped ones, we apply a transformation to the program
that expresses the implicit agreements between the typed
and untyped modules via contracts. Our transformation
examines the references to other modules in M and from
these uses infers contracts that become obligations of those
other modules. For example, in the following program, the
context makes it obvious that g must have type (int — int):

(module f int (g 5))

The transformation would therefore add the contract (int —
int) to g.

The type system in figure 5 formalizes this intuition. Its
rules define the judgement

FFRTe:t;@

which states that in type environment I', expression e has
type t under the constraint set ®. The rules are similar
to those of the simply typed A-calculus, propagating and
combining the constraints from their constituents, except for
the module variable reference rules: MT-MODVARSELF and
MT-MoDVAR. The former checks references to the typed
module itself. The latter allows a module variable to be
assigned any type and adds a matching constraint to the
constraint set. Constraints are of the form g<c, which states
that g must have contract c.

Because of the non-determinism of the MT-MODVAR rule,
these rules do not naturally map onto a syntax-directed type
checker. They do define a logic program, however, which
potentially produces many solutions, each satisfying the de-
sired type, and including a matching set of constraints. Each
of these solutions gives rise to a potentially different set of
contracts imposed on the other modules in the program. For
example, consider the following program:

(module f int (g h))

There are many possible sets of constraints that could be
generated by our system. A simple one requires that h be
an int and that g have the contract (int — int). Of course,
there are infinitely many possibilities. While a real system
for migration would use programmer input and static anal-
ysis to choose one solution, our soundness theorem holds
for all of them. We have prototyped this system in Sche-
log [27], an embedding of Prolog in Scheme. In our proto-
type, we simply choose the first solution produced. In real
programs, we conjecture that the contracts are over- not
under-determined, and that migration tools like these will

need input from programmers to decide whether to reject
a program with conflicting constraints, or to change some
portion of the original program.

merge(c,c) = ¢
merge(int,¢) = int V¢
merge(c,int) = int V¢
merge((c1 — ¢2),(cs — ca)) =

(merge(c1, c3) — merge(cz, ca))
Figure 6: From Constraints to Contracts

3.5 From Constraintsto Contracts

The next step is to turn the set of constraints into an
actual contract. For example, the constraint set for our
first example is {g < (int — int)}. The obvious contract is
then (int — int) for module g. When there are multiple
references to a module variable within the typed module,
however, there are necessarily multiple constraints on that
module, which we must somehow combine into a single con-
tract.

Two obvious approaches present themselves. Consider the
following program:

(module f (int -> int)

(lambda (x int) ((g 1) (g 0))))
(module g (lambda (x) (if0 x 1 (lambda (y) y))))
f

Given our evaluation rules for if0, this is a perfectly rea-
sonable untyped program. Furthermore, the untypeable ex-
pression is in g, to which we are not adding types.

The constraints generated for g are

{g < (int — int), g < (int — (int — int))}

First, if the language of contracts supported conjunction,
the merge operation could just compute the conjunction of
all constraints. This would give

(int — ((int — int) A int))

as the contract for g. But no value is both a function and an
integer, so this contract cannot possibly be satisfied. Since
we want to allow this program, conjunction is not the correct
solution.

Second, the merge can choose the disjunction of the con-
straints. In our example, we would get

(int — (int V(int — int)))



which is legal and acceptable

The process of combining constraints into contracts is
specified in figure 6. This process ensures that contracts
are tidy in arrows: there is only one arrow contract in any
disjunction. This invariant is required by our contract syn-
tax, and simplifies the reduction rules for contracts with
disjunction.

3.6 Adding Wrapper Modules

Unfortunately, disjunction in contracts introduces new prob-

lems. The contract we assign to g is not sufficient to estab-
lish that (¢ 1) produces an abstraction, which is required
for the body of f to execute without type errors. There-
fore, we must place some additional constraint on (g 1). To
implement these constraints, we add a wrapper module to
the program, with a more precise contract for g. To accom-
plish this, we perform a second pass over the typed module,
accumulating unsatisfied constraints and changing module
references to point to the new wrapper modules. Then the
transformation adds the required wrappers to the program.
These rules have three interesting cases:

e AC-MODVARCONTRACT applies for module variables
where the contract is sufficient to ensure that the type
is always satisfied.

e AC-MODVARWRAP requires a new wrapper module
and changes the module reference to the new wrapper
module, whose name is formed from the original name
and the type, when the contract is insufficient.

e AC-MODVARSELF handles self-reference to the typed
module M.

The other rules merely recur structurally.

Once we have a collection of constraints C, it is trivial
to construct the appropriate wrapper modules. For every
element (f,t) € C, simply add a new module of the form

(module f-t t f)

to the original program.

This transformation relies on a relationship between con-
tracts and types. We write ¢ = ¢ when contract c establishes
the preconditions for type t. Then we insert casts precisely
at those module references f in M when ¢ #% t, where c is
the contract on f and t is the desired type. We formalize
this relation with two new judgements

Fe=t
and
Fe<t

These judgements are defined in figure 8. The first judge-
ment states that contract c is sufficient to establish the pre-
conditions of type t. The second is the converse, namely
that ¢ establishes the preconditions for ¢. The second judge-
ment is not used in the rest of the transformation; it is only
needed for the definition of the first.

With this definition, we can now define a further trans-
formation on the typed module, which adds wrappers at
the places we have just described. This transformation is
presented in figure 7, which defines the judgement

PTF e:te;c

This states that I'" proves that e can be transformed to €',
which then has type t with wrapper modules generated from
constraints c.

3.7 Summary of the transformation

The transformation we have just described is MT, for
migration transformation. MT (P) transforms P as follows:

1. The programmer chooses one module M from P and
adds types to this module, so that is is now a typed
module according to the grammar and type system,
producing M'.

2. Using the type system described in figure 5, generate
constraints from module M'.

3. Merge these constraints according to figure 6 to pro-
duce contracts, which are added to the other modules.

4. Transform M into M” to accommodate weak contracts.

5. Add wrapper modules as required by the transforma-

tion of M to M".

This gives a new program PM.
Since step 2 in this process is nondeterministic, M T (P)
produces a set of programs. We prove in the next section

that every element PM of this set implements P.

4. SOUNDNESS

Before we can prove that our migration transformation
is sound, we must first define what soundness means for a
partially typed system. It cannot mean absence of runtime
errors, since not all modules are necessarily typed. All we
can say instead is that the typed modules do not go wrong.

4.1 Soundnessfor Mixed Programs

Soundness for interlanguage migration is a relation be-
tween the program before and after migration. Intuitively,
this relation states that the two programs agree when they
both produce values and that the typed module never pro-
duces a type error at runtime. We say that a program that
has been migrated is partially typed.

DEFINITION 1 (SOUNDNESS). P > PM, where PM s
partially typed with typed module M iff:

1. If P —* v then Jv' where PM o+ o with v o or

pM - (blame g) with g # M.

2. If P —* (blame h) then 3g where pM - (blame g)
with g # M.

8. If P reduces forever, then PM reduces forever or dg
where PM _» (blame g) with g # M.

This definition relies on the similarity relation v >v’, which
states that v’ is the same as v, with the possible addition of
types and casts. In figure 9, this relation is defined formally
and extended to modules and to programs. For programs,

P> PM states that P and PM are syntactically identical,
ignoring casts, contracts and types.

We say that a system for typed migration is sound if the
migrated program is always in the > relation to the original
program.
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Figure 9: Similarity

This captures our intuition as to how typed migration
should work: that once we have migrated, we have proven
the absence of errors in the typed module. Further, if we
get an answer, it is related to the original answer. Since our
reduction system tracks where errors occur, we are able to
make this statement formally.

4.2 Soundness of our system

Proving soundness for our system is a multi-step process.
First, we establish that the migrated system agrees with the
original one, when errors are ignored. This is established
through a simple relation between programs. Second, we
define, and prove the correctness of, a transformation called
ST that is simpler than MT. Finally, we prove that MT is
appropriately related to ST.

For the first of these steps, we make use of the similarity
property mentioned above and defined in figure 9. This
relation between an untyped program (respectively, module
or expression) and a partially typed one, states syntactically

that the two programs P and PM are similar, written P >

pM , if they are identical ignoring contracts, types and casts.
Similarity satisfies three lemmas:

Lemma 1. If P> PM and P —* w and PM —* W' then
w>w.

LEMMA 2. If P> PM and P reduces forever then pM

reduces forever or pM _ (blame f) for some f.

Lemuva 3. If P PM and P —* (blame f) for some f
then PM (blame g) for some g.

Proof Sketch These three lemmas all follow from simi-
lar bisimulation arguments. If e; > e2, then there are three
possibilities:

1. e2 = E[{c < v}] Then either ez — (blame f) or
e2 — €5 where e; > e5. This can be seen by simple
inspection of the reduction rules for casts.

2. e2 = E[({(c1 -+ ¢2) <f v} w)]. Then ez — ¢} and
e1 > eh

3. e1 = E[r1] and ez = E[rz] where r1 >r2. Then 11 —
ry and 7o — r5 where 7] > 75 or pi — (blame f)
and 72 — (blame g). That the hypothesis holds is
true from the definition of similarity and the grammar
for E[|]. The fact that the redexes reduce to similar
terms or to errors can be seen from inspection of the
reduction rules where the redex is not a cast or the
application of a (blessed arrow) cast to a value.

Given this, similarity is consistently maintained by reduc-
tion, which is all we need for three three lemmas. [

These lemmas are insufficient to establish soundness, since
they make no claim about who is blamed for an error. To
prove that the typed module is not the one blamed for errors,
we introduce a different transformation on typed modules,
for which it is possible to prove soundness with conventional
techniques. This new transformation, ST, is defined as a
sequence of four steps.



1. Choose one module M from P.

2. Add types to this module, so that is is now a typed
module according to the grammar. Call this new mod-

ule M.

3. Apply the transformation and typechecking pass de-
fined in figure 10 to the body of M’. That is, if

M = (module Mt e)
and I' F°7 ) : e;te’ then
M'" = (module Mt e¢)

4. Replace M in P with M", producing pM,

The transformation of figure 10 annotates every module
reference in the typed module with a cast to the appropri-
ate type. The key type rules are ST-MODVAR, which adds
a cast around a module reference, and ST-MODVARSELF,
which handles self-reference to the typed module and does
not insert a cast. In the program that results, no module has
a contract. These invariants simplify the proof of soundness.

This transformation, like the original, is non-deterministic,
thus ST(P), like MT(P), is a set. We must therefore prove
that it is sound for any set of casts that it might generate.

LEMMA 4
pr pPM,

(SOUNDNESS OF ST). If pM ¢ ST(P) then

Proof Sketch By similarity, if P —* v and pM o«

then v > o', Similarly, if P reduces forever, then pM A% v
for any v. Therefore, the following lemma, stating that if
an error occurs, the blame is assigned to one of the untyped
modules, suffices for the proof. [

LEMMA 5
pPM ¢ ST(P), and pM (blame g) then g # M.

Proof Sketch The only way we could ever reduce to

(blame M) is if (n v)M is the redex or if a cast fails and
blames M. To prove that neither of these happens, we show
that the main expression is always wvalid, using the type sys-
tem of Figure 11. Soundness is then implied by lemma 6. [

Validity implies that there are no applications of numbers
where the application is labeled with M, and also that every
cast blaming M is applied to a term that satisfies that cast.

This type system, with judgement I' }—Jng em :t for mixed
term e,,, allows us to type mixed terms even if they are
not originally from the typed module M. This is key to the
subsequent proofs, since we need to verify that both numbers
and casted terms have the appropriate types, even if they
arose from untyped sources.

There a several rules to note in the type system of fig-
ure 11. First, the rule T-CAST does not ensure that its
argument is well-typed. Therefore, it applies even where
the argument is an untyped term, and the cast is protect-
ing the context of the cast from its argument. Second, the
T-BLESSEDCAST rule is necessary so that blessed casts can
appear during reduction, even though they are not part of
the syntax of types. Third, we allow the typed module to be
used without a cast in rule T-TYPEMOD. Such module ref-
erences are still protected from the untyped world, because
they are within a typed expression.

We now define two important properties of mixed terms.

(ST NEVER BLAMES THE TYPED MODULE). If

DEFINITION 2. A mized term e is consistent in PM iff
0 FgM e:t for some type t.

Terms may be consistent even if they do not originate in
a typed module, or even if some of their subterms are not
consistent. For example, § F¥,, {int </ (Az.(3 2))} : int
for any f, even though the expression is patently erroneous.

Based on this definition, only some kinds of terms can be
consistent: typed abstractions, numbers, casts and applica-
tions of two consistent terms.

DEFINITION 3. A mized term ef is typed in pM iff f is
the name of module M.

This definition gives us a handle on those terms that came
from the original typed module. These are the terms that
must not trigger errors during the execution of the program.

With these definitions, we can define validity, the property
that we use for our central lemma. This property ensures
both that numbers are not in the operator position of a
typed application, and that typed terms satisfy any imme-
diately surrounding casts. Maintenance of these two proper-
ties is sufficient to ensure that M is never blamed. The third
portion of the definition states that there is always a syn-
tactic barrier between consistent and inconsistent portions
of the expression, with the exception of numbers. This is
the mechanism that is central to maintaining the other two
during reduction.

DEFINITION 4. A mized term e, is valid in program rM
iff all of the following hold:

1. every typed subexpression dM € em 1S either consistent

or or the form ((A\x.e) e’)M

2. for every expression of the form {t <:M eM}, 0 }—ng
M
e i t.

8. every consistent term d € en, is either a number or the
immediate subterm of a consistent term

LEMMA 6. If a mized term ey, is valid in program PM €
ST(P) for some P, and en — e, then e, is valid in pro-

gram M.

Proof Sketch This proof proceeds by cases on the re-
duction rule that takes e, to e},. The important cases are
SpLIT, SUBST, TYPEDSUBST and LOOKUPTYPED. We ex-
plain how to prove one of these here.

Consider case SPLIT. Then r = ({(c1 --» ¢2) < v} w)’
and 7’ = {c2 <9 (v {1 <7 w})}. We consider the three
components of validity in turn.

1. Since the casts and application in r" are new, they can-
not be labeled M. Therefore, typed subexpressions of
r" occur only in v and w. If v or w contain typed subex-
pression, these subexpressions must have been typed
in r, and so by hypothesis they are still consistent. If
the redex is part of a larger typed expression, then r
must have been consistent, and must have had type
c2. But FII\fM 7’ : 2, so this property is maintained.

2. The application expression in r’ is new, and so can-
not have label M. Therefore, we only need to consider
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the inner cast. If w is typed, then it must have been
consistent (since the only other possibility is a redex).
Therefore, the whole application must have been con-
sistent, and thus Hﬁ!M w : c¢1, which is precisely the
desired type.

3. Both casts trivially satisfy this case. Thus we have
to consider v, w, and the application. Both the ap-
plication and w are immediate arguments to a cast.
If v is consistent, then it must be been a typed ab-
straction, since it is the argument of a blessed ar-
row contract, and untyped abstractions are not con-
sistent. If it is a type-annotated abstraction, it must
have label M, as required by the grammar. Thus,
by hypothesis, it must satisfy its cast, and have type
(e1 — c2). Therefore, since the operand is a cast to
2, Py (v {ar = w)) s e

This concludes the case. The others are proved in a similar
way. [l

Given the soundness of S7T', we can turn to proving sound-
ness for MT'. This relies on a relationship between contracts,
as stated in the following lemma.

LEMMA 7 (SOUNDNESS OF THE = RELATION). If {t </
v} =" v and c =t then {c < v} =" .

Proof Sketch By induction on the derivation of ¢ =
t, either ¢ = t or ¢ contains some disjunction in negative
position, where ¢ does not. If ¢ = ¢ then the conclusion
trivially follows. Further, by examination of the reduction
rules INT-INTOR and INT-LAMOR we note that if {¢1 <
v} — vthen {c1 V ¢2 < v} — v. Therefore, these additional
disjunctions will not introduce new failures that did not exist
previously. [

With this, we can now conclude the main theorem of our
paper.

THEOREM 1 (SOUNDNESS OF THE TRANSFORMATION).
If P' € MT(P) then P> P'.

Proof Sketch Given the soundness of the simple trans-
formation, all we need to prove is that every module vari-
able reference that is not wrapped in a cast reduces to an
appropriate value. By the definition of the MT transfor-
mation, however, every module reference is to a module to
which we have added a contract. And by the lookup rule,
that contract is turned into a cast at the point of reference.
Therefore, by lemma 7, and the rules in figure 7 by which
we add casts to the typed module, the new program still
cannot blame the typed module. [

5. RELATED WORK

Over the past 20 years, researchers have made significant
progress in related areas, both in typing untyped programs,
and in inter-operation between languages with different type
systems. Additionally, several systems have added a type
discipline to previously untyped languages.

5.1 Soft Typing

Fagan and Cartwright [9], Aiken, Wimmers and Laksh-
man [2], Henglein and Rehof [15], Wright and Cartwright
[30], Flanagan and Felleisen [12] and Meunier, Findler and
Felleisen [23] studied the use of static analysis to infer types
from untyped programs and to use the types to predict run-
time errors statically in untyped programs. Meunier et al,
whose calculus forms the basis for our own research, study an
analysis that operated in the context of a first-order mod-
ule system and a contract system. None of these systems
considered the problem in a context with both typed and
untyped code. Variants of these techniques will be useful,
however, for automatically inserting the type annotations
that we currently require programmers to write.

5.2 Interoperability

The problem of integrating typed languages with untyped
ones has also seen significant study. Abadi, Cardelli, Pierce
and Plotkin [1] considered the addition of a “type Dynamic”



to a typed functional language. Values of “type Dynamic”
can be created from arbitrary untyped sources such as I/O
ports. The assumption is that the program is statically
typed, and it periodically receives dynamically typed val-
ues from the outside world. The language requires an ex-
plicit typecase construct for deconstructing such values and
converting them into some other type in the system. This
approach is useful for a statically-typed language, but it
does not form the basis for interlanguage migration. The
programmer who wants to migrate a module from an un-
typed to a typed language must explicitly add typecase to
every place the untyped code is used from the typed code,
although this could potentially be done by a constraint anal-
ysis such as the one we present. More significantly, there is
no provision for passing back and forth between the stat-
ically and the dynamically typed worlds. In contrast, our
model allows full interaction between the two worlds. Sys-
tems based on “type Dynamic” have also been implemented
and studied in the context of OCaml [18] and Haskell [4].

Gray, Findler and Flatt [13] consider the practical inte-
gration of a dynamically-typed language (Scheme) and a
statically-typed one (Java), where back and forth commu-
nication is possible. Their work is in the spirit of exten-
sive previous work on foreign function interfaces, but pro-
vides finer-grained interoperability, since Java and Scheme
are both high-level languages. The work is presented in the
context of interoperability, however, and does not address
the issues involved in interlanguage migration.

Matthews and Findler [22], who continue where Gray et al
leave off, discuss the meaning of programs that combine mul-
tiple languages. Their work concerns interoperability, how-
ever, not interlanguage migration. They do not attempt to
generate general contracts that apply to the untyped mod-
ules under consideration. Instead, their system, in the spirit
of traditional foreign function interfaces, requires program-
mers to insert syntactic separation between code in differ-
ent languages. Requiring this in our system would require
changes to the internals of modules other than the one being
migrated, which is contrary to the spirit of modular devel-
opment. Indeed, the source to the other modules may not
even be accessible.?

Siek and Taha [26] propose “gradual typing”, which incor-
porates both a type Dynamic with automatic coercions, as
well as allowing only portions of types to be dynamic. The
non-dynamic portions of types are then checked for con-
sistency. This provides advantages over the traditional type
Dynamic system, but does not address modularity, and does
not provide a guarantee about where errors resulting from
dynamic checks can occur.

Finally, there is extensive work on embedding typed and
untyped languages on a single runtime system. For example,
Jython, a version of Python [17], Groovy [14] and JScheme
[3] are all untyped languages that run on the Java Virtual
Machine [29], and several languages, include both Python
[16] and Scheme [10] have also been ported to Microsoft’s
NET runtime. Since the runtime in these cases is stati-
cally typed, the implementers of these languages are forced
to embed all of their values into a single host-language type.
Additionally, numerous strongly typed languages are able to
interact with C, which is not type-safe. While these systems

While our transformation does add contracts to existing
modules, this only requires changes to the interface, not to
the internal implementation.

are related, none addresses the central issues of our work:
support for the interlanguage migration process and of the
soundness of that migration. In fact, where interlanguage
migration is done using such systems, it is often in the direc-
tion of less safety, in order to achieve greater performance.

5.3 Explicit Typesfor Dynamic L anguages

Several previous systems focus on adding a type system to
an existing untyped language. The Strongtalk system [7] is
a type checker for Smalltalk code that relies on programmer
annotations for types, but erases all types and runs the un-
derlying Smalltalk code at execution time. Strongtalk would
therefore be a candidate for use in our migration framework.
Although the Strongtalk system did integrate with the (un-
typed) Smalltalk class library, no provision is made for en-
suring type safety in the presence of untyped code. Indeed,
it is unclear what guarantees are made by the Strongtalk
type system.

Similarly, the Cecil type system of Litvinov [19] and the
Erlang type system of Marlow and Wadler [21] also can be
ignored at runtime, but again do not deal with the integra-
tion between typed and untyped code. Recently, Bracha [6]
proposes adding multiple optional type systems to dynamic
languages, but does not address the details of the interac-
tions between such systems.

Numerous compilers for dynamic languages attempt to
infer the types left unstated by the programmer for perfor-
mance reasons. A number of Lisp and Scheme systems go
further and allow type declarations, which can be used as a
guide to these optimizations [28, 25]. The Python compiler
for Common Lisp [20] ensures that these declarations hold
via static and dynamic checking, but it does not attempt to
enforce a type safety property.

6. CONCLUSION

In this paper we have presented the first framework for an
interlanguage migration process and a technique for proving
it correct. The framework identifies important steps of the
process: typing modules; deriving constraints on the rest of
the program from the types; and turning the constraints into
behavioral contracts for module interfaces. For our simple
concrete instance, we have also been able to show that inter-
language migration truly adds type safety in the expected
manner: the typed portion of the program can’t go wrong;
only the untyped portions may trigger run-time exceptions.

Working out the the framework suggests several pieces of
future work. First, interlanguage migration needs tools that
help programmers rewrite modules so that they satisfy a
type discipline. This requires simultaneous work on more
powerful type systems and analyses such as soft-typing and
static debugging. Second, we need to study how much type
safety we can get with richer type systems than the simply-
typed A-calculus.

Given the explosive use of dynamically typed scripting
languages and the growing desire of programmers to improve
the quality of their programs, we believe that interlanguage
migration will become an important element in the software
engineering process. This paper is only a first step in the
exploration of this process; much more work needs to be
done to find a truly satisfying framework for a relatively
clean scripting language such as Scheme.
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