
Embedding Languages Without Breaking Tools⋆

Lukas Renggli, Tudor Gı̂rba, Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Domain-specific languages (DSLs) are increasingly used as
embedded languages within general-purpose host languages. DSLs provide
a compact, dedicated syntax for specifying parts of an application related
to specialized domains. Unfortunately, such language extensions typically
do not integrate well with the development tools of the host language.
Editors, compilers and debuggers are either unaware of the extensions,
or must be adapted at a non-trivial cost. We present a novel approach to
embed DSLs into an existing host language by leveraging the underlying
representation of the host language used by these tools. Helvetia is an
extensible system that intercepts the compilation pipeline of the Smalltalk
host language to seamlessly integrate language extensions. We validate our
approach by case studies that demonstrate three fundamentally different
ways to extend or adapt the host language syntax and semantics.

1 Introduction

General purpose languages, by being “good enough” to code software for arbitrary
domains, are necessarily suboptimal for many specialized domains. They may
be overly verbose, confusing or just plain awkward to use. Many DSLs have
been developed to address the needs of these specialized domains, but most of
these languages typically do not integrate well with the host language and tools,
making it clumsy to develop and debug programs written in these languages.

Further complicating matters, multiple DSLs may be active within the same
application software. These DSLs may either be globally available, or they may
be context-dependent, being active only within selected packages or classes.

DSLs come in many flavors. At one extreme we have so-called internal DSLs

which simply make creative use of APIs and of the host syntax. Such DSLs are
sometimes referred to as fluent interfaces [1]. They provide a seamless integration
in the host language, and as such they can benefit from the tools provided by
the development environment (e.g., code editor, debugger) of the host language.
However, the expressiveness of internal DSLs is confined by the host syntax. At the
other end of the spectrum we find external DSLs [2]. These are typically developed
as a preprocessing step or through an extensible compiler, thus providing freedom
for expressing diverse syntax and semantics. However, while doing so they break
the tools of the host development environment.
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In between these two extremes we find embedded DSLs, which extend a host
language with new syntax and semantics. Language workbenches support the
development of embedded DSLs by introducing a common representation for all
languages and by integrating multiple languages into a common toolset. Mernik
et al. [3] point out that such an embedded approach [4] leads to better reuse of
existing host language features and tools, and significantly reduces development
and training costs. In practice however, language workbenches do not leverage
the existing tools but provide their own environment. Often they introduce a
non-standard language representation and thus pose compatibility problems with
existing code.

Table 1. Taxonomy for Pidgin, Creole and Argot embedded languages.
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Pidgin X X A pidgin is a simplified form of the host language. It intro-
duces a new vocabulary and new semantics to the code.

Creole X X A creole changes the syntax of the host language and defines
new semantics.

Argot X An argot switches the semantics of the existing language,
without affecting its syntax.

We propose to address these shortcomings by developing an approach that
enables multiple, context-dependent embedded DSLs that leverage existing tools.
Embedded languages extend a host language by adapting the existing syntax
and semantics, or by introducing new syntax. In Table 1 we identify essentially
three different ways this can be done:1

Pidgin. A pidgin bends the syntax of the host language to extend its semantics
[5]. This kind of embedded language reuses a limited part of the host syntax
and combines it with a new vocabulary.

Creole. A creole introduces a completely new syntax by defining its own gram-
mar and a custom transformation to the host language that defines the
semantics.

Argot. An argot uses the existing host language syntax, but changes its seman-
tics. An argot reinterprets the semantics of valid host language code, whereas

1 In the domain of natural language, a “pidgin” is “a grammatically simplified form of
a language, used for communication between people not sharing a common language”;
a “creole” is “a mother tongue formed from the contact of two languages through an
earlier pidgin stage”; an “argot” is a “jargon or slang of a particular group or class”
[New Oxford American Dictionary].



pidgin code is only syntactically correct host code — it has meaning only for
the pidgin.

An embedded language must either introduce new syntax to the host language
for the concepts it introduces (a creole), or it must adopt the host syntax as is. If
the host syntax is reused, it must either be overloaded, reinterpreting the syntax
in a novel way (pidgin), or it must alter the semantics of the host (argot). A fully
general approach to integrating new embedded languages into an existing host
language and environment must therefore support all three classes of embedded
language.

Our approach. In this paper we present a language workbench called Helvetia

for defining embedded languages and for integrating them into the host language.
Helvetia accommodates new languages through extension points of the existing
compiler and tools. All languages are transformed and represented in terms of
the abstract syntax tree (AST) of the host language. The transformations are
expressed as rules and they can be scoped to various contexts. Furthermore, these
rules can be active at the same time, allowing us to embed different languages into
a common host language, and to integrate them into the host environment and its
tools. Since our approach builds on top of the existing infrastructure of the host
language, existing tools, such as editors and debuggers, continue to work with
minimal adaptation. Helvetia provides the necessary low-level infrastructure
for Language Boxes [6], an adaptive language model for fine-grained language
changes and language composition.

Outline. Section 2 discusses the related work and enumerates the shortcomings
of these approaches. In Section 3 we present concrete language extensions that
exemplify the three types of languages our solution supports. Section 4 illustrates
how the different types of embedded languages can be specified with Helvetia.
In Section 5 we explain how Helvetia leverages the host toolchain to seamlessly
embed new languages. Section 6 evaluates our approach in comparison with
related work, and in Section 7 we summarize the paper and discuss future work.

2 Related Work

We review the state of the art in systems for authoring embedded languages to
establish the open challenges facing a new approach. In particular, we consider
how these systems support the development of pidgin, creole and argot embed-
ded languages, and we assess how well these systems facilitate integration of
embedded languages with their respective host language and host language tools.
Furthermore, we compare the existing approaches with respect to the following
properties of language embedding:

Multiple Context-Dependent Languages. Switching between different lan-
guages should be possible at arbitrary points and not enforce the use of
special syntactic markers. It should be practicable to mix and match different



language extensions and the host language. Language changes should be
scopable at a fine-grained level, to make it possible to use several otherwise
conflicting language extensions in the same compilation unit.

Homogeneous Tool Integration. A uniform tool set is important to software
engineers. To ease the development and use of embedded languages all
development activities should happen in the same familiar programming
environment of the host language. No special code browser, editors, debuggers
or source control should be necessary; all existing tools should continue to work
transparently with different languages. To facilitate debugging a precise bi-
directional connection between the original source, the various transformation
stages and the final executable code should be maintained.

Homogeneous Language Integration. The meta-language used to specify
new language features should be the same as the host language [7]. Homo-
geneous language integration is central for several reasons: A homogeneous
system is a requirement to transparently pass values between the different
meta-levels and to use reflection to reason about static and dynamic structure
of the application [8].

Table 2 provides an overview of the related work split into four categories.
For each considered system we indicate the host language, the capability of
defining pidgins, creoles and argots, and the support for the aforementioned
characteristics. The following sections offer details for each individual system.

2.1 Extensible Compilers

Extensible Compilers are best described as open toolboxes that provide entry
points into the toolchain to extend and change the host language.

The Java Annotation Processing Tool (APT) enables a compile time, read-
only view of the Java program structure. ASTs can be transformed only using a
private API, which is not supported and may be subject to change or deletion.
As such, argots and pidgins can be implemented, but a creole would require an
additional preprocessing step. In a similar way people are using the weaving
mechanism of AOP to achieve semantic changes for pidgins and argots.

ableJ [9], Dryad [10], JastAddJ [11], and Polyglot [12] are extensible Java
compiler frameworks and provide the necessary infrastructure to build argots,
pidgins and creoles. Language extensions are composable and modular, and are
transformed into Java for execution. Most extensible compilers define the syntax
changes using a external language definition. The Dryad compiler uses bytecode
as its central representation, and thus it is not homogeneous as well. None of
the systems offers tight IDE integration, and the transformed code cannot be
debugged at the source level.

Xoc [13] is an extensible C compiler. Xoc uses a source-to-source translator
that reads the input, analyzes and transforms it, to eventually generate standard
C code. The system provides no reflective facilities and no tool integration, neither
at compile time nor at run time.



Table 2. Comparison of different systems for embedded language authoring. We
indicate custom host languages with parentheses.
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Helvetia Smalltalk X X X X X X

Extensible

Compilers

Java Annotation Processing Java X · X X · X

ableJ Java X X X X · ·

Dryad Java X X X X · ·

JastAddJ Java X X X X · ·

Polyglot Java X X X X · X

Xoc C X X X X · ·

Meta

Programming

Systems

Cola (various) · X · X · X

Converge (Python) · X · X · X

MetaOCaml OCaml X · X X · X

Scheme Scheme X · X X X X

Language

Workbenches

JetBrains MPS (Java) · X · X X X

Intentional Software (C#) ? X ? ? X ?
openArchitectureWare Java · X · · · ·

Java Development Tools Java · · · · X ·

IDE Metatooling Platform Java · · · · X ·

WholePlatform Java · X · · · ·

Katahdin (C#) · X · X · X

Ceteva XMF (Java) · X · X · X

Language

Transformation

Systems

Khepera C X X X · · ·

MontiCore Java · X · · · ·

MetaBorg X X X X · ·

2.2 Meta-Programming Systems

Meta-Programming Systems are programming languages that come with meta-
programming facilities targeted at code generation.

Cola [14] implements an open object model for experimentation with different
programming paradigms. Cola is bootstrapped in itself using a Smalltalk-like
language called Pepsi. Jolt is a Lisp-like language that serves as a common
abstract syntax and executable representation for other languages. OMeta [15] is
an object-oriented pattern matcher based on Parsing Expression Grammars that
is used to transform new languages to Jolt. Even if all languages are built on

http://smallwiki.unibe.ch/helvetia
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http://melt.cs.umn.edu/ablej14.html
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http://intentsoft.com/
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http://www.eclipse.org/jdt/
http://www.eclipse.org/imp/
http://whole.sourceforge.net/
http://www.chrisseaton.com/katahdin/
http://www.ceteva.com/
http://www.cs.unc.edu/~faith/khepera.html
http://www.monticore.org/
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top of the same infrastructure, the authors do not provide mechanisms to easily
embed them into each other. Furthermore there is no common tool support for
editing and debugging the different languages.

Converge [16] is a dynamic programming language resembling Python. A
special block construct $<<language>> is used to embed languages into the source
code. The creation of argots and pidgins, i.e., the modification or extension of
existing languages, is not supported. Meta-programming is possible at compile
time only. There is no IDE integration.

MetaOCaml [17] uses multi-stage programming to generate and transform
code at runtime. Similar quoting mechanisms are available in programming
languages like Scheme, Lisp or Template Haskell, but these mechanisms alone
do not allow new syntax to be introduced. Both system have powerful macro
programing constructs, making it possible to tweak the default towards pidgins
or argots. Typically these kind of systems are used together with traditional text
editors and thus do not allow an easy adaptation to language changes. Debuggers
are available.

2.3 Language Workbenches

Language Workbenches are characterized by a specialized IDE with a well-defined
workflow to specify and use different languages. Language designers are required
to follow clearly defined steps to describe syntax, semantics and editor behavior
of a new language.

The Meta Programming System (MPS) by JetBrains [18] and Intentional

Software [19] both provide a programming environment to define new languages
and to change existing ones. Neither system uses text representation for source
code, but instead they provide a graphical cell editor that maps valid programs
directly to an underlying abstract code representation. MPS defines new lan-
guages using different concepts for structure (semantic model), editor (parser),
constraints, behavior, type systems, data flow and code generators for Java. MPS
1.1 does not come with a source level debugger; debugging and error reporting
happens at the level of the generated Java code. Similarly Intentional Software
requires language developers to define edit, display, and transformation concerns
for language extensions. As no product previews and no detailed documentation
is available, the exact properties of this system are not clear. For example it is
unknown how closely the system integrates with the host language and if it is
possible to transparently step with a debugger through different languages.

openArchitectureWare andWhole Platform [20] are language workbenches that
are tightly integrated into the Eclipse platform. In both cases templating systems
are used to generate executable Java code. openArchitectureWare provides a
strong integration with the Eclipse meta-modeling facilities, such as the Eclipse
Modeling Framework (EMF) and the Graphical Modeling Framework (GMF).
They both provide basic support for editor integration such as syntax highlighting
and code completion of textual languages. However, both systems lack debugging
support and the ability to change the semantics of their host language.



The Java Development Tools (JDT) provide the basic tools to build Eclipse
plugins. The IDE Metatooling Platform (IMP) [21] is an extensible IDE architec-
ture for the Eclipse platform. Contrary to all other tools listed in this section
JDT and IMP do not provide functionality for language design and embedding
themselves. The only purpose of IMP is to closely integrate existing languages
into the Eclipse IDE using a service architecture. At the time being there is no
support for interaction with language runtimes and debuggers.

Katahdin [22] is a programming language implemented on top of C#. Katahdin
is a dynamically typed language that syntactically resembles C#. New constructs
such as expressions or statements are defined by subclassing existing parse-tree
nodes that can then be added to the host language at runtime. Languages can
be enabled on a per-file basis, or can be integrated into the host language by
extending it with a specific keyword such as language { ... } and connecting the
two grammar-trees. The semantics of user-defined parse-tree nodes is specified
by overriding certain methods in the respective node-classes. Code is interpreted
by traversing the parse-tree nodes and calling methods defining the semantics.
There is a simple debugger available visualizing the internal parse-tree structure
of the interpreter. The debugger is not able to work at the level of Katahdin
programs.

The Extensible Programming Language (XMF) by Ceteva is a specification
of a “superlanguage” [23]. A superlanguage is characterized through usability
(interactive, dynamic, reflection, interfaces), expressiveness (high-level, dynamic
typing, garbage-collection), and extensibility (aspects, reflexive, extensible syntax).
XMF is written in itself, and allows one to easily define new languages. A special
@language construct is used to switch between different languages. Although a
Java interface is available, XMF uses its own proprietary virtual machine written
in Java. XMF does not provide an IDE integration.

2.4 Language Transformations

Language transformation systems define languages through the transformation
and composition of language models.

Khepera [24] is a preprocessor that transforms source-to-source and pretty-
prints the generated code to C before compiling with a traditional compiler. It
parses input into an abstract syntax tree and performing complex tree-based
analysis and manipulation. All transformations preserve the knowledge of the
origin of each node. Thus, in theory Khepera makes it possible to develop
debuggers for new languages. However, the system provides no ready-to-use IDE
or debugger. Furthermore, it does not support multiple languages to be used
simultaneously.

MontiCore [25] provides a framework for language inheritance and language
embedding. MontiCore has its own syntax to define grammars and their mapping
to Java types. The parser is created using the ANTLR [26] parser generator.
The abstract syntax tree is automatically derived from the grammar. Language
inheritance allows one to subclass existing grammars to modify and extend.
Language embedding is achieved by manually introducing a superordinate parser



for every pair of languages that are used together. ANTLR has been patched
to support swapping between the grammars on the fly. Visitors are used to add
new behavior for productions, to generate code and to build editors for Eclipse.
There is no IDE integration or support for debugging.

MetaBorg [27] is a method for embedding DLSs and extending existing
languages. MetaBorg is based on the Stratego/XT [28] toolkit, a language in-
dependent program transformation engine, hence there is no integration into
development environments and model level debuggers of the host language.

3 ❍❡❧✈❡t✐❛ Exemplified

In this section we introduce three cases of language extensions. The first two
cases take the same underlying API of a graphical engine and transform it into a
pidgin (Section 3.1) and a creole (Section 3.2). We then describe the use of an
argot for introducing a transactional memory mechanism without changing the
syntax of the host language (Section 3.3).

The prototype of Helvetia
2 and the examples presented in this paper are

implemented in Pharo3, an open-source Smalltalk [29] dialect. Readers unfamiliar
with the syntax of Smalltalk might want to read the code examples in the
following sections aloud and interpret them as normal sentences.

An invocation to a method named method:with:, using two arguments looks
like: receiver method: arg1 with: arg2. The semicolon separates messages that
are sent to the same receiver. For example, receiver method1: arg1; method2:

arg2 sends the messages method1: and method2: to receiver. Other syntactic ele-
ments of Smalltalk are: the dot to separate statements: statement1. statement2;
square brackets to denote code blocks or anonymous functions: [ statements ];
single quotes to delimit strings: 'a string'; and double quotes delimit comments:
"comment". The caret ^ returns the result of the following expression.

3.1 A Pidgin: Mondrian

Mondrian [30] is a graph based visualization framework that provides a declarative
Smalltalk API for users to specify new visualizations and compose existing ones.

One of the features of Mondrian is an API to compose custom shapes out of
basic ones, called FormsBuilder. The FormsBuilder is inspired by CSS 3 and uses
a grid to align primitive graphical elements such as text labels and boxes. For
example, the code below in Listing 1 creates a UML package shape as depicted
in Figure 1. The package shape is built from a 2× 2 grid.

The first column and row are told to grow to enclose their children. The
second column and row are told to fill the remaining space. In cell (1, 1) we
place a bordered LabelShape. In cell (1, 2) we place a bordered RectangleShape

that spans two horizontal cells.

2 The implementation along with its source code and examples can be downloaded
from http://scg.unibe.ch/research/helvetia.

3 http://www.pharo-project.org

http://scg.unibe.ch/research/helvetia
http://www.pharo-project.org


Package Name

(1, 2) (2, 2)

(2, 1)y = 1

y = 2

x = 1 x = 2

Fig. 1. A UML package shape in Mondrian.

aBuilder row grow. " defines row sizing "

aBuilder row fill.

aBuilder column grow. " define column sizing "

aBuilder column fill.

aBuilder x: 1 y: 1 add: (LabelShape new " define the cells "

text: [ :each | each name ];

borderColor: #black;

borderWidth: 1;

yourself).

aBuilder x: 1 y: 2 w: 2 h: 1 add: (RectangleShape new

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100;

yourself)

Listing 1. Traditional Mondrian Forms Builder API.

Mondrian provides an internal DSL that offers a high-level interface for
composing visualizations. While it makes the composition easy, there is still a
considerable amount of syntactic noise that makes the script hard to read.

We incrementally bend the syntax of the host language towards a more
suitable DSL, first by creating a pidgin, and then by creating a creole. Our final
goal is to be able to define the visualizations using a simple syntax resembling
cascading style-sheets (CSS), which offers a compact notation to programmers
and designers to declaratively specify layout and design of web sites.

If we have a look at the code in Listing 1 we see that the noise is caused
by certain semantic elements that are required to make this example run as
Smalltalk code conforming to the original Mondrian API. We discover three
things that are repetitive and that could be simplified:

1. The variable aBuilder is referenced in every rule as an entry point to construct
and configure the different parts of the forms.



2. The specification of the cells and their content is repetitive and rather hard
to read.

3. The instantiation of different shapes is cumbersome as in this case the host
language syntax is rather verbose.

The following code addresses these issues:

row = grow.

row = fill.

column = grow.

column = fill.

(1 , 1) = label

text: [ :each | each name ];

borderColor: #black;

borderWidth: 1.

(1 , 2) - (2 , 1) = rectangle

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100.

Listing 2. Pidgin: Eliminating syntactic noise.

While the above code is syntactically valid and is parsed by the standard
Smalltalk parser, it is not semantically valid. For example numbers do not
implement a , method, and column is an unknown variable.

In our implementation (described in Section 4.1), the above pidgin example
is transformed transparently into the code from Listing 1. This kind of transfor-
mation simplifies the amount and complexity of source code significantly. The
transformation is specified at the AST level using two transformation rules that
are applied by the compiler after parsing.

3.2 A Creole: Mondrian

The pidgin shows an improvement over the original Smalltalk code, but our goal
is to obtain an even more concise CSS-like language as in the listing below:

shape {

cols: #grow, #fill;

rows: #grow, #fill;

}

label {

position: 1 , 1;

text: [ :each | each name ];

borderColor: #black;

borderWidth: 1;

}

rectangle {

position: 1 , 2;

colspan: 2;



borderColor: #black;

borderWidth: 1;

width: 200;

height: 100;

}

Listing 3. Creole: A CSS-like syntax.

The code above does not follow Smalltalk syntax. At this point, the assumption
of a pidgin relying on the host syntax starts to get in our way.

The solution is to allow the definition of a new parser that handles the creole
syntax. We typically also want to integrate the new language constructs with
the host language or with other language constructs. In our example, the code
text: [ :each | each name ] provides such a case in which we parameterize the
shape specification with a Smalltalk expression.

As shown in Section 4.2, Helvetia offers a mechanism for writing a custom
parser that can also include productions external to the language at hand. Like
this we can accommodate any syntax.

3.3 An Argot: Transactional Memory

In our previous work [31] we have presented a solution for introducing software
transactional memory (STM) [32,33] at the language level of dynamic program-
ming languages without requiring changes to the virtual machine. We achieved
this by patching the compiler. As a result we were able to make all applications,
libraries and system code transaction-aware. However since our changes at the
compiler level were rather ad hoc, we lost the ability to use the debugger within
a transaction.

Introducing STM into an existing language provides a concrete use case for
changing the execution semantics without changing the syntax of the language.
A piece of library code that is used as part of transactional code should continue
to work without requiring any adaptation. Unlike a pidgin, which bends the host
syntax in ways that break the semantics, an argot more subtly reinterprets the
semantics of otherwise valid code.

In the example below the global counter value is incremented by 1. The code
does not ensure mutual exclusion, thus it might happen that some of the updates
are lost when multiple threads run this method concurrently.

✐♥❝r❡♠❡♥t❇②✿ ❛♥■♥t❡❣❡r

value := value + anInteger

When running the above method from within a transaction, the change is
deferred to the end of the transaction, instead of incrementing the variable
immediately. This allows the system to check for conflicts and revert the changes
if necessary. Thus, even if the source code looks exactly the same, its behav-
ior changes. We describe the transformations applied to transactional code in
Section 4.3.



4 Specifying Embedded Languages with ❍❡❧✈❡t✐❛

In this section we present the specifications of the three examples given in the
previous section.

4.1 Specifying the Mondrian Pidgin

The syntax of the Mondrian pidgin can be parsed by the traditional parser of the
Smalltalk host language. However, we need to apply several transformations to
get the semantics right. We define a set of transformation rules that are applied
by Helvetia after parsing the code from Listing 2:

1 ▼♦♥❞r✐❛♥P✐❞❣✐♥ ❝❧❛ss❃❃r♦✇❈♦❧✉♠♥❚r❛♥s❢♦r♠❛t✐♦♥

2 <transform>

3 ^ TreeRule new

4 expression: 'row = `@expr';

5 expression: 'column = `@expr';

6 action: [ :ast |

7 ast swapWith: ``(aBuilder

8 `,(ast receiver)

9 `,(ast at: '`@expr')) ]

10

11 ▼♦♥❞r✐❛♥P✐❞❣✐♥ ❝❧❛ss❃❃❝❡❧❧❚r❛♥s❢♦r♠❛t✐♦♥

12 <transform>

13 ^ TreeRule new

14 expression: '(`@x , `@y) = `@expr';

15 expression: '(`@x , `@y) - (`@w , `@h) = `@expr';

16 action: [ :ast |

17 ast swapWith: ``(aBuilder

18 x: `,(ast at: '`@x')

19 y: `,(ast at: '`@y')

20 w: `,(ast at: '`@w' ifAbsent: [ 1 ])

21 h: `,(ast at: '`@h' ifAbsent: [ 1 ])

22 add: ``(`,(Shapes at: (context at: '`var') name)

23 new `,(ast at: '`@expr'))) ]

The transformation rules are split into two methods. Each of these methods
is tagged with the method annotation <transform> (lines 2 and 12), so that the
compiler knows that it has to apply these transformations before performing
semantic analysis. Each rule consists of two match expressions (lines 4–5 and
14–15) to find particular parse-tree nodes. This functionality is part of the
Refactoring Engine [34] and is provided by the host environment. In our context
these patterns match the specific constructs we introduced in Listing 2.

The action blocks (lines 6–9 and 16–23) perform a transformation on the
matched AST node. For example the first action block transforms expressions
of the form row = grow into aBuilder row grow. It does so by using a syntactic
extension of Smalltalk with partial evaluation [35]. Everything that follows the
quasiquote meta-character `` is delayed in execution and represents the AST of



the enclosed expression at runtime. Similarly everything that follows the unquote
meta-character `, is again executed when performing the code and is used to
combine smaller delayed values (e.g., from matched AST nodes) to larger ones.
A third operator to compile, evaluate and splice in the result at compile-time is
available too, but not used in the examples of this paper.

The two mentioned methods are all that is needed to implement the Mondrian
pidgin. The swapWith: method call replaces the matched AST node with the new
code. Since all AST nodes carry information about their original source origin,
a debugger is able to step through and properly highlight the recomposed code
fragments. Newly generated code is marked as hidden, so that the user of the
pidgin does not see it in the debugger.

4.2 Specifying the Mondrian Creole

In contrast to a pidgin, a creole requires a custom parser and Helvetia offers
the possibility to define one. For example, for the creole we presented in Listing 3
we define the following grammar rules defined as individual methods of the class
CSSParser:

❈❙❙P❛rs❡r❃❃r✉❧❡s = { rule }

❈❙❙P❛rs❡r❃❃r✉❧❡ = selector "{" declarations "}"

❈❙❙P❛rs❡r❃❃s❡❧❡❝t♦r = #identifier

❈❙❙P❛rs❡r❃❃❞❡❝❧❛r❛t✐♦♥s = declaration { ";" declaration }

❈❙❙P❛rs❡r❃❃❞❡❝❧❛r❛t✐♦♥ = #keywordMessage

This grammar looks very similar to Extended Backus-Naur Form (EBNF)
[36]. In fact, it is a DSL for parser generators implemented in Helvetia. As
an extension to EBNF we allow productions to reference grammar rules of
other languages. The name of external grammar rules are prefixed with a hash
character #. For example, the CSS selector is simply a Smalltalk identifier, and
the declaration of a property is a keyword message (a Smalltalk method name
with arguments, but without receiver) of the host language.

Next we create a new subclass of CSSParser called CSSTranslator, to reuse the
abstract grammar definition and to augment it with productions to transform the
parse tree nodes to the host language AST [37]. Again we use quasiquoting to build
the AST of the host language. Two of CSSTranslator’s parse tree transformations
look like in the following listing. The other grammar productions are similarly
defined.

1 ❈❙❙❚r❛♥s❧❛t♦r❃❃r✉❧❡s

2 ^ super rules ==> [ :ast | ``(buildOn: aBuilder `,ast) ]

3

4 ❈❙❙❚r❛♥s❧❛t♦r❃❃r✉❧❡

5 ^ super rule ==> [ :ast | self transform: (ast at: 'selector')

declarations: (ast at: 'declarations') ]

This assigns semantic actions to the productions defined in the superclass.
The argument ast is a collection of parse nodes built by the grammar productions



CSSParser

rules()
rule()
selector()
declarations()
declaration()

CSSCompiler

rules()
rule()
...

CSSHighlighter

rules()
rule()
...

Fig. 2. The CSS Parser Hierarchy.

of the superclass. Lines 3–4 use quasiquoting to define the method header and to
embed the AST nodes of the rules into its body. Lines 7–9 call the helper method
build:declarations: with the selector token and a collection of declaration
messages to build a Smalltalk AST.

To tell the system to use our custom parser instead of the default one, we use
a method annotation <parse> on the classes where we want to use the custom
syntax. The code in Listing 3 is parsed, transformed and eventually compiled to
bytecode identical to the methods we manually wrote in Listing 1 and Listing 2.

▼♦♥❞r✐❛♥❈r❡♦❧❡ ❝❧❛ss❃❃❝ssP❛rs❡r

<parse>

^ CSSTranslator

One small problem at this point is that the syntax highlighter in the code editor
is broken. As before, we create a new subclass of CSSParser named CSSHighlighter

that underlines the selectors and dispatches to standard Smalltalk highlighting
for the definitions. Again this is achieved by overriding the appropriate methods
of CSSParser. For example, the selector method is defined in CSSHighlighter like
this:

❈❙❙❍✐❣❤❧✐❣❤t❡r❃❃s❡❧❡❝t♦r

^ super selector ==> [ :ast | ast -> TextEmphasis underlined ]

Using a <highlight> annotation we declare the handler to be responsible for
syntax highlighting of the CSS code:

▼♦♥❞r✐❛♥❈r❡♦❧❡ ❝❧❛ss❃❃❝ss❍✐❣❤❧✐❣❤t❡r

<highlight>

^ CSSHighlighter

Adding a pidgin or creole over an existing framework can simplify its use and
reduce a considerable amount of syntactic noise. Without touching the original



framework we are able to provide different language skins that might be an
appealing alternative to the internal DSL that was used before.

The changes shown in this section are all that is needed to also affect the
debugger. Figure 4 shows a live result of stepping through the execution of the
script building the UML package shape.

4.3 Specifying the Transactional Memory Argot

In a nutshell, our software transactional memory implementation works as follows.
We compile every method in the system twice, once for the transactional and
once for the non-transactional context. On the transactional code we apply
two transformations: (1) all state access is reified to be dispatched through the
transactional context, and (2) method names and method sends are prefixed
with __atomic__. Furthermore we use method annotations to disable or customize
these transformations in certain places, such as when primitive code is called or
in the transactional infrastructure itself. A transaction is started by assigning
a transaction manager to a thread-local variable and by calling an __atomic__

method. At the end of a transaction the cached changes are atomically checked
for conflicts and applied to the involved objects. The transaction boundaries are
handled at the language level using the reflective facilities of the host language.
For details on the implementation of the semantic model please refer to our
previous work [31].

Through the use of Helvetia the argot specification becomes simple. The
complete set of transformation rules are presented below:

1 ❖❜❥❡❝t ❝❧❛ss❃❃tr❛♥s❢♦r♠❆t♦♠✐❝

2 <attribute>

3 ^ ConditionRule new

4 if: [ :context | context isTransactional ]

5 then: (TreeRule new

6 expression: '`@receiver `@msg: `@args' do: [ :ast |

7 ast swapWith: ``(`,(ast at: '`@receiver')

8 `,('__atomic__' , (ast at: '`@msg:'))

9 `,(ast at: '`@args')) ];

10 expression: '`var := `@expr' do: [ :ast |

11 ast swapWith: ``(self

12 atomicInstVarAt: `,(ast binding index)

13 put: `,(ast at: '`@expr')) ];

14 expression: '`var' do: [ :ast |

15 ast swapWith: ``(self

16 atomicInstVarAt: `,(ast binding index)) ])

The code uses the <attribute> method annotation (line 2), to tell the com-
piler that the rules are expected to run after the symbols have been resolved
(attributed). Line 4 makes sure that the transformation is only performed when
compiling code for the transactional context. Lines 5–16 implement the actual
transformations, exemplified in the table below:



6–9 Transform Message Sends
self printString → self __atomic__printString

10–13 Transform Instance Variable Write
value := 'Atomic' → self atomicInstVarAt: 2 put: 'Atomic'

14–16 Transform Instance Variable Read
value → self atomicInstVarAt: 2

All message sends are prepended with __atomic__ to ensure that the execution
stays in the atomic context. All state accesses, such as instance variable reads and
writes, are transformed to message sends and dispatched through the transaction
manager. This allows us to delay modifications to objects, so that the changes
are only visible within the current transaction. The number 2 in the examples
above refer to the index of the named instance variable value. This slot index is
retrieved from the attributed AST.

To trigger the compilation of a transactional and a non-transaction version of
every method we hook into the parser using the <parser> annotation. We copy
the compilation context and spawn a new compilation path for the transaction
context. (Details follow in Section 5.)

❖❜❥❡❝t ❝❧❛ss❃❃❝♦♠♣✐❧❡❚r❛♥s❛❝t✐♦♥❛❧✿ ❛❈♦♥t❡①t

<parser>

aContext isTransactional ifFalse: [

aContext copy

beTransactional;

perform ].

^ nil

The implementation of transactional memory using Helvetia has numerous
advantages over our previous implementation: The code base is not integrated
into the compiler in an ad hoc manner anymore, but through clearly defined
Helvetia extension points. In our previous implementation, we directly patched
in several places the existing compiler. Following the support of Helvetia, the
transformations are specified at a single place that is external to the compiler. As a
consequence the code is nicely modularized and more concise. Without additional
work the use of the debugger becomes viable, because the transformations preserve
location integrity. In our previous example it was not possible to transparently
step through transactional code, as the tools would display the generated code.
The new implementation takes advantage of Helvetia and single stepping
through transactional code looks exactly the same as the regular code.

5 Leveraging the Host Toolchain with ❍❡❧✈❡t✐❛

Helvetia manages to integrate multiple embedded languages with existing
tools by leveraging and intercepting the existing toolchain and the underlying
representation of the host language.Helvetia provides hooks to intercept parsing,
AST transformation and semantic analysis of the standard compilation toolchain.



5.1 Homogeneous Language Integration

Rules

<parse> <transform> <attribute>

Source
Code

Smalltalk
Parser

Semantic
Analysis

Bytecode
Generator

Executable
Code

Traditional Smalltalk Compiler

Pidgin

Creole

Argot

Fig. 3. The code compilation pipeline showing multiple interception paths.

In Smalltalk the unit of compilation is the method. Whenever a method is
saved, it automatically triggers the Smalltalk compiler within the same envi-
ronment. The source code and compiled methods as well as the compiler are
all available at runtime. As seen in Figure 3 we have enhanced the standard
compilation pipeline to be able to intercept the data passed from one compilation
step to the other. We are able to perform source-to-source transformations or
to bypass the regular Smalltalk parser altogether. Furthermore we are able to
perform AST transformations either before, instead of, or after semantic analysis.

The rules to intercept this transformation pipeline are defined using annotated
methods. These methods constitute conventional Smalltalk code that is called at
compile time [38]. The interception rules allow us not only to modify data in the
pipeline but also to bypass conventional components.

– A rule marked with <parser> allows one to intercept the parsing of the source
code. The result of a parser rule can be either a new source string (in case of
a source-to-source transformation) or a Smalltalk AST (in which the original
Smalltalk parser is skipped).

– A rule marked with <transform> is performed on the AST after parsing and
before semantic analysis. It allows developers to apply arbitrary transforma-
tions on the AST. Furthermore, it is possible to change the default semantic
analysis and instead perform a custom one.

– A rule marked with <attribute> is performed after symbol resolution and
before bytecode generation. This makes it possible to perform transformations
on the attributed AST as well.

Compilation errors are handled by the standard toolchain. Since all data
passed from one step to the next carries information on its original source location,



the error location is determined automatically and it is revealed to the the user
through the traditional means of the compiler. For example, when a variable
is undeclared, its occurrence is highlighted and the user is asked to correct the
problem.

5.2 Homogeneous Tool Integration

To control syntax highlighting, we use the rule database to change the default
highlighting. The traditional Smalltalk syntax highlighter is only applied to
normal Smalltalk methods. As soon as there is a custom parser involved, the
affected part of the source code remains black unless a custom highlighter
is provided. The annotation <highlight> is used to define a highlighting rule.
Figure 4 shows the result of the custom highlighter in the source pane of the
debugger. Helvetia provides similar extension points for code-completion and
contextual menus.

Fig. 4. Traditional Smalltalk debugger with language specific syntax highlighting
stepping through a mixture of Smalltalk and the creole defined in Section 3.2.

The lack of dedicated tools to find and fix bugs in a new language is one of
the major drawbacks when designing and using embedded languages. Since our
approach uses the code abstraction of the host language, the standard debugging
tools continue to work. One can set breakpoints as in a conventional methods.
Stepping through code written in a mixture of languages poses no problem either.
The AST of a debugged method carries information about the source range in
the original code. Generated code either reuses the source ranges of the parent
node, or has no source range and is therefore invisible in the debugger. With this
information from the original AST the debugger is able to accurately highlight



the current execution point and step to the next statement, without having to
know anything about the structure of the source string.

Helvetia currently does not change the way the debugger presents informa-
tion, e.g., the stack frames and variables are displayed at the level of host language.
However, we envision the addition of new rules to enable the customization of
the debugger’s user-interface.

Figure 4 shows how we step through the code of our creole example. The top
part shows the execution stack, with the top method being LabelShape>>text:

which sets the Mondrian text of the shape. The main editor shows the creole
code corresponding to the creation of the shape. This example shows how the
debugger accommodates both the creole code and the called framework code.

5.3 Multiple Context-Dependent Languages

Helvetia uses annotated methods class-side (static) methods to define a rule
database that is queried by the compiler and other tools. The rules affect instance-
code of the corresponding class and its subclasses. To define a system-wide rule,
it has to be installed within an extension method for Object, the root of the class
hierarchy. The following primitive rule types are currently supported:

– The ConditionRule behaves like a case statement. An ordered list of conditions
is checked and the first matching action is executed. If no match is found
a default action is executed as an alternative. Both the condition and the
match action are implemented using the host language and can check for
arbitrary conditions using the reflective API. This rule type is typically used
to scope the effect of rules to specific parts of the system.

– MatchRule and RangeRule use regular expressions to match source code. This
is useful to check for specific strings in the code when no parse tree is available
yet. For example, regular expressions are sometimes used to provide custom
syntax highlighting within string literals of the host language. In many cases
matching the parse tree is simpler. This rule type is only supported for
<parse> rules.

– The TreeRule is a parse tree matcher. Unlike string matching these patterns
work on the AST and make it possible to efficiently find all occurrences
of particular node combinations. Again, action code can be supplied that
is executed when a match is found. This rule type is only supported for
<transform> and <attribute> rules.

As we have seen in transactional example in Section 4.3, rules can be arbitrarily
nested. Instead of attaching Smalltalk code to an action, another rule can be used
that is subsequently applied in the context of the parent match. Furthermore,
as we have seen in the creole example in Section 4.2, it is possible to supply a
custom rule object such as a custom parser or syntax highlighter.



6 Evaluation

In the related work, support for pidgin, creole and argot embedded languages is
variable. In the category of extensible compilers usually all types are supported.
Meta programming systems either do not provide a model of the host language
that can be modified (Converge) or do not provide the possibility to change the
syntax (MetaOCaml, Scheme). Language workbenches are designed to implement
creoles, that is to build new language elements and combine them with other
languages.

6.1 Host Language Choice

Meta programming systems and language workbenches provide large toolsets
to define new languages, however in many cases (Converge, MPS, Intentional
Software, Katahdin, XMF) they use derivatives. In some cases (Katahdin, XMF)
they implement a new runtime layer that makes it difficult to reuse existing code
and libraries.

We believe that it is beneficial for the adaptation of a language authoring
system to build into an existing host language and leverage as many features
as possible. Helvetia reuses the Smalltalk code representation, the complete
compiler toolchain and the existing IDE to provide a lightweight language inte-
gration. Helvetia code shows performance penalty as it uses the same runtime
infrastructure as the host language.

In our previous work [39] we have evaluated several host language choices
for a system like Helvetia. Smalltalk has proven to be a good practical choice,
though not a requirement:

– In Smalltalk the compiler is part of the development environment and can be
changed on the fly. For Helvetia, we did so by carefully introducing inter-
ception points before and after the different compilation steps (Section 5.1).
Rules are defined using annotated methods that are evaluated at compilation
time.

– Rules that that work on AST nodes need to preserve the source mapping
with every transformation. In our case we use the refactoring engine of the
host language to query the AST nodes. Meta-programming facilities, such as
the quasiquoting facilities [40] in Scheme or OMetaCaml’s staging constructs
[41], greatly simplify the generation of code.

– As with the compiler, editors are required to support extension points for
custom highlighting, code completion, error reporting, etc. In Smalltalk the
editors are implemented within the host language and can be customized by
extending or changing the existing code. In our case we did so by consulting
the rule database for every method being edited. It is essential that the
environment have full access to the rules.

– To support debugging of different languages, the debugger must be able
to use an arbitrary source mapping between the custom language and the
executable representation of the host environment. In our case we maintain



this mapping from the source string through all transformation stages down
to the bytecode. The debugger is fed with a custom function that maps
source ranges to bytecode ranges. Since the debugger reuses the normal code
editor of the programming environment, syntax highlighting works without
additional support.

– Since all languages use the same underlying representation, there are no
difficulties to share application state between different parts of the system.
For example, a new language construct can access temporary variables,
instance variables or globals. When a method is evaluated, it does not matter
in what language it has been implemented. Block closures can be passed
around, no matter what origin they have and from what language context
they are evaluated.

We see the following main challenges to implement a system like Helvetia in
an existing environment like Eclipse: (1) replace the default editor, compiler and
debugger with a customized ones, (2) connect these to a central rule database
(this requires communication between different Java VMs), and (3) establish a
fine-grained mapping between byte code and source code (by default Java only
supports a line based mapping).

6.2 Multiple Embedded Languages

The integration of new embedded languages into each other and into the host
language is solved in different ways. Most existing systems do this on a per-file
basis. Some systems require special tokens to switch between languages (Converge,
XMF, MontiCore). In Katahdin this token is freely definable by changing the
host language.

In Helvetia the scope of each language is defined in a way that differs from
the systems discussed. Language extensions are defined in rules that use reflection
capabilities of the host language to check for specific conditions. Namespaces,
packages, class-hierarchies, or annotated classes can define a scope. At a method
level we are able to look for specific annotations in the source string or simply
try different parsers. At a sub-method level we are able to look for certain code
statements to transform, either using regular-expressions (before parsing) or
using parse-tree matching (after parsing). These techniques enable a fine-grained
control over the languages, however for end users it is often less evident what
parts of the system belong to the host language or are externally defined. This
can be addressed by means of tailored highlighting of such code.

6.3 Combining Languages

Since multiple rule-sets can be active at the same time, different language exten-
sions can be combined. For example, both the transactional memory extension
and any of the Mondrian languages can be active at the same time, since they
do not perform transformations at the same place in the compiler toolchain. If



conflicting rules are active, for example two language extensions that define their
own parser, Helvetia raises an error.

Transformation rules typically don’t conflict, since they work on the same
AST model. Rules are performed in a deterministic order based on their priority.
Thanks to the reflective capabilities of the system, each rule can detect other
active rules and choose to disable itself or other rules on the fly. In practice
conflicts are rare, because language extensions are typically scoped to a small
portion of the system, such as a class hierarchy or a package.

6.4 Homogeneous Languages

The language transformation systems use a preprocessor. This considerably slows
down the compile cycles, as several transformation passes and compilation cycles
of different independent tools are involved. Furthermore, it can be difficult to
debug the generated code, as it is often impossible to provide a correct mapping
from generated code back to the original source. Different host and meta languages
make interoperability more difficult.

Helvetia maintains this mapping throughout a single compiler pipeline
that allows one to use this information in the standard Smalltalk debugger.
Transformation rules are defined in the host language and take advantage of the
reflective capabilities of the system.

6.5 Homogeneous Tools

Most systems provide debugging tools for language developers, however they
mostly lack sophisticated debugging support for application developers. We
believe that it is crucial for the end users of a language to have good debugging
support. Implementing custom debuggers is expensive and thus seldom done in
practice. Furthermore switching between different debuggers in a multilingual
environment is cumbersome. End users do not want to be forced to learn new
tools, but instead prefer the familiar tools provided by the host language in use.

Helvetia supports the use of the existing debugging facilities for language
developers and end users. While the host language debugger might not offer the
optimal abstraction for all languages, it offers a free live view on the untransformed
source code and the current execution point. This is something that most other
systems to not provide without additional development effort.

7 Conclusion

In this paper we have presented Helvetia, an environment for defining embedded
languages and for integrating them into the host language. We have shown how
we can bend the syntax and semantics of the host language, by introducing a
few extension points into the standard compiler pipeline. Our contributions are
the following:



1. We have identified and demonstrated three fundamental types of embedded
languages: pidgins adopt the syntax of the host language while extending
its semantics; creoles further refine pidgins with their own dedicated syntax;
argots switch the semantics of the host language without changing the syntax
and without requiring changes in existing application code.

2. We have presented a novel approach to language embedding that leverages
the host language toolchain. Reusing the traditional code representation
of the host system has numerous advantages. We have achieved a tight
integration of different languages that work seamlessly with each other. We
specify transformation rules using annotated methods, and specify the scope
of these transformations using reflective facilities of the host language. Our
approach works nicely with existing code, and integrates well into the existing
toolset. Fine-grained customizations such as syntax highlighting are readily
supported.

3. We have demonstrated a fully working prototype of the Helvetia sys-
tem and shown the implementation of three non-trivial embedded DSLs in
detail. We have also mentioned two other language extensions in the do-
main of language engineering that have been implemented using Helvetia,
the grammar specification language and the quasiquoting facility. Further-
more the Helvetia infrastructure has been used for the implementation of
Language Boxes [6], an adaptive language model for fine-grained language
changes, language composition and language re-use in terms of grammar
transformation. A collection of Helvetia example languages can be found
at http://scg.unibe.ch/research/helvetia/examples.

4. We have identified the basic requirements for the host language and have
compared Helvetia with other systems for embedding languages.

As future work we plan to validate our approach on a wide variety of other
language extensions that we have collected from an industrial context. We also
intend to look into ways to automatically refactor code from the host language
towards a DSL, as well as how to automate the creation of DSL layers to improve
the use of existing frameworks.
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