
Under consideration for publication in Theory and Practice of Logic Programming 1

Customisable Handling of Java References

in Prolog Programs

SERGIO CASTRO, KIM MENS and PAULO MOURA∗

ICTEAM Institute, Université catholique de Louvain, Belgium

CRACS & INESC TEC, Faculty of Sciences, University of Porto

(e-mail: {sergio.castro,kim.mens}@uclouvain.be,pmoura@inescporto.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Integration techniques for combining programs written in distinct language paradigms facilitate
the implementation of specialised modules in the best language for their task. In the case of
Java-Prolog integration, a known problem is the proper representation of references to Java
objects on the Prolog side. To solve it adequately, multiple dimensions should be considered,
including reference representation, opacity of the representation, identity preservation, reference
life span, and scope of the inter-language conversion policies. This paper presents an approach
that addresses all these dimensions, generalising and building on existing representation patterns
of foreign references in Prolog, and taking inspiration from similar inter-language representa-
tion techniques found in other domains. Our approach maximises portability by making few
assumptions about the Prolog engine interacting with Java (e.g., embedded or executed as an
external process). We validate our work by extending JPC, an open-source integration library,
with features supporting our approach. Our JPC library is currently compatible with three
different open source Prolog engines (SWI, YAP and XSB) by means of drivers.

KEYWORDS: Multi-Paradigm Programming, Language Interoperability, Logic Programming,
Object-Oriented Programming, Prolog, Java

1 Introduction

Writing program modules in the language best suited for their task can greatly facilitate

their implementation (Mernik et al. 2005). However, integrating modules written in dif-

ferent languages is not trivial when such languages belong to different paradigms (Gybels

2003). This is especially the case for Prolog programs integrated with an object-oriented

language such as Java (Denti et al. 2005). One of the main problems of this integration

is the proper representation of foreign language artefacts in the logic language, such that

they can be conveniently manipulated and interpreted (Gybels 2003).

The scope of this work concerns a portable approach to simplify the management

and representation of Java object references in Prolog. Studying existing solutions to

this problem in Prolog, similar logic languages (e.g., Soul (Roover et al. 2011)) and

even inter-language conversion libraries in other domains (e.g., Google’s Gson library

(Google Inc. 2012)), we have identified the following dimensions to be tackled: 1) reference

∗ This work is partially funded by ERDF through the CMPETE Programme and by FCT within project
FCOMP-01-0124-FEDER-037281).

ar
X

iv
:1

40
5.

26
93

v2
 [

cs
.P

L
]

 2
9

M
ay

 2
01

4

2 Sergio Castro, Kim Mens and Paulo Moura

representation; 2) opacity of the representation; 3) identity preservation; 4) reference life

span and 5) scope of the inter-language conversion policies. To maximise portability, our

approach does not make any simplifying assumption regarding the architecture of the

Prolog engine (e.g., such as it being embedded in the JVM). We validate our work by

extending our Java Prolog Connectivity (JPC)1 integration library (Castro et al.

2013) with customisable support for managing Java references in Prolog.

This paper is structured as follows. Section 2 discusses the main Java reference repre-

sentation issues in Prolog. Section 3 presents an overview of JPC’s architecture. JPC’s

approach for custom management of Java references in Prolog is discussed in section 4.

Section 5 discusses related work. Section 6 summarizes our conclusions and future work.

2 The Problem of Representing Java References in Prolog

In this section, we identify the different dimensions to be taken into consideration when

looking at the problem of representing Java references in Prolog (figure 1). These dimen-

sions have been extracted and generalised from existing solutions to this problem both

in Prolog and other inter-language representation domains.

Context -Dependent

Explicit

Management vs.

Garbage

Collection

Life Span

Strong vs.

Weak (or Soft)

References

Identity

Preservation

Identity

Identity vs.

Equality
Symbolic

Opacity

Object

Reference

Constant vs.

Open

Unification

White vs.

Black Box

Representation

Property

(A)

(B)

(C)

(D) (F)

{ {Any
architecture

Engine
embedded

in JVM

(E)

Fig. 1. Reference Management Dimensions

2.1 Reference Representation

A first important dimension is how Java objects are represented on the logic side. Several

integration libraries allow to reify Java objects in Prolog using a symbolic term represen-

tation (Singleton et al. 2004; Carlsson et al. 1995; Calejo 2004). As show in figure 1, such

approach has the advantage of not relying on any specific Prolog engine architecture.

Alternatively, Prolog implementations running in the JVM may support the storage

of direct object references (e.g., Jinni (Tarau 2004) and LeanProlog (Tarau 2011)). An

advantage of this representation scheme is that there are no performance penalties asso-

ciated to the marshalling/unmarshalling of Java objects to/from the Prolog engine.

2.2 Opacity of the Representation

A second important dimension is the degree of opacity of the representation (i.e., the

degree of data exposed). For symbolic term representations (A), frequently a fine-grained

reification of the internal object structure (i.e., a white box representation) is desired.

For example, JTransformer (Kniesel et al. 2007) allows to reason over the structure of

1
https://github.com/java-prolog-connectivity

https://github.com/java-prolog-connectivity

Customisable Handling of Java References in Prolog Programs 3

terms reifying objects modelling a Java abstract syntax tree. However, if inspecting the

object’s structure on the Prolog side is not required, having an opaque reference (i.e., a

black box representation) to the corresponding Java object is preferable (e.g., an opaque

reference to a GUI component on the Java side). In those cases, an automatic mechanism

to generate opaque term representations of Java objects is desirable.

When the Prolog engine is embedded in a JVM, a more direct kind of reference to

Java objects can be established (B). In the simplest case, the object reference can be

considered and unified as a special constant term. In spite of the more direct mapping

(no automated mapping to generate the reference is required; the term wraps the object

‘as is’), this case is conceptually equivalent to mapping the object reference to an opaque

term representation. But we may want to combine the best of both worlds and have direct

references to the actual Java objects, while still allowing Prolog programs to reason over

the internal structure of such objects. Approaches such as Soul (Roover et al. 2011)

have achieved this through the mechanism of open unification (Brichau et al. 2007). This

approach consists in allowing the programmer to customise not the term representation of

an object, but rather its unification mechanism. In a nutshell, the unification mechanism

is opened up so that Java objects are not regarded as constants but can be unified with

structured logic terms of the right form.

2.3 Object Identity Preservation

For logic engines running in the JVM (D) object references are preserved automatically

since the term wraps the object ‘as is’. For engines not embedded in the JVM, a pro-

grammer needs to decide if an object reified as a term should preserve its identity when

the term is translated back to a Java object (C). In many situations, it is not important

to preserve such identity (e.g., instances of String) and a different reference, considered

equivalent to the original object (e.g., by means of the equals method), is acceptable.

However, in certain cases, keeping track of the original reference is required to guarantee

the expected behaviour of the program (e.g., if the reference points to a GUI component).

Furthermore, passing around symbolic representations of object references is often more

efficient than marshalling and unmarshalling large Java objects. Note that the need for

preserving the original object identity is orthogonal to the required opacity of the repre-

sentation. I.e., independently if the reference should be preserved or not, the programmer

should still be able to decide on the best representation of the object on the Prolog side.

2.4 Reference Life Span

A fourth dimension is the life span of Prolog references to Java objects. For a symbolic

term representation, a programmer should decide on a mechanism for delimiting the life

span of a mapping between a Java reference and a Prolog term (E). This mechanism

can be explicit (e.g., an API allowing to request to ‘forget’ a mapping) or rely on JVM

garbage collection mechanisms. An explicit mechanism enables a fine-grained control

over the life span of a reference. For example, a symbolic term representation of an

object that is not explicitly referenced in a program (i.e., normally to be scheduled

for garbage collection) can still remain valid until explicitly discarded. Alternatively,

a reference life span may be automatically delimited by the JVM garbage-collection

mechanism (e.g., a reference to the application main window). For an object reference

representation (F), the programmer may want to keep the reference alive as long as it

4 Sergio Castro, Kim Mens and Paulo Moura

is present in the Prolog database (i.e., a strong reference). However, in certain scenarios

a Java reference stored in Prolog should not prevent it from being garbage collected

(e.g., the reference points to a disposed GUI component). In that case, the reference

should be invalidated when it is reclaimed by the garbage collector. A programmer may

also want to define customisable cleaning tasks to be automatically executed when a

reference is garbage collected. For example, clauses containing dead references may be

automatically retracted from the Prolog database to avoid unexpected behaviours (e.g.,

null pointer exceptions). Furthermore, references that may be reclaimed by the garbage

collector should be classified according to the Java (garbage-collected) reference types:

Weak for eagerly collected references (discarded at the next garbage collection cycle) and

Soft for references not aggressively reclaimed (only collected when the memory is tight).2

2.5 Scope of the Inter-Language Conversion Policies

We claim that it is useful for a programmer to be able to choose different reference

management policies in different parts of the program. To achieve that, it is needed a

simple mechanism for scoping and encapsulating the best reference handling policy for

certain objects. Besides greater flexibility, this facilitates performance tuning and testing

(e.g., generating mocking representations of references). Next, we will introduce the ar-

chitecture of a library that supports a customisable management of all these dimensions.

3 Architecture

JPC is an integration library supporting the development of hybrid Java–Prolog pro-

grams. It provides different levels of abstractions, simplifying the implementation of com-

mon inter-operability tasks. To set the ground for discussing the JPC features for Java

reference management in Prolog, this section overviews its main components (figure 2).

3.1 Prolog VM Abstraction

Several integration libraries rely on the notion of a Prolog engine as a convenient abstrac-

tion for interacting with a Prolog virtual machine from Java (Tarau 2004; Rho et al.

2004; Calejo 2004). In JPC, a programmer interacts with a Prolog engine abstraction

that communicates with concrete Prolog engines using drivers. With portability in mind,

when modelling such an abstract Prolog engine we tried to find a compromise between

(1) offering convenient features facilitating the interaction from Java programs and (2)

not assuming a specific implementation architecture of the underlying Prolog engine. Our

Prolog engine abstraction provides a general purpose API for interacting with Prolog.

However, as illustrated in section 4, JPC also supplies a higher level API that simplifies

certain tasks (e.g., inter-language conversions). JPC defines a set of classes reifying Pro-

log data types: Term, Atom, Compound, IntegerTerm, FloatTerm, Var, JRef (a Java reference term; a

special kind of term wrapping a Java reference).
3.2 Embedded Prolog Database

JPC uses an embedded Prolog database running on the JVM and supporting the storage

of Java object references in addition to standard Prolog terms. Several JPC interoper-

2
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/Reference.html

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/Reference.html

Customisable Handling of Java References in Prolog Programs 5

Concrete Prolog engines

Engine-specific drivers

JPC library

Java-Prolog

applications

High-level API

Prolog VM

abstraction

(layer coupling denoted
by the direction of the arrows)

Embedded Prolog

database

JPLPDT InterProlog

SWI XSBYAP

Fig. 2. The JPC architecture

ability features rely on this component, which maintains mappings between Prolog terms

and arbitrary Java objects (represented as JRef terms).

4 Reference Management with JPC

This section describes JPC’s support for the different dimensions related to the manage-

ment of Java references in Prolog (figure 1).

4.1 Symbolic Representation

To illustrate the properties of symbolic references (identified by the first row of figure 1),

we start by defining a Person class (listing 1) declaring name as its only instance variable.

1 public class Person implements Serializable {

2 private final String name;

3 public Person(String name) {this.name = name;}

4 ...

5 @Override

6 public boolean equals(Object obj) {

7 ... return ((Person)obj).name.equals(name); //simplified implementation

8 }

9 }

Listing 1. The Person class

The PersonConverter class (listing 2) defines how instances of class Person are translated to

a Prolog compound term (lines 5–7) and back (lines 8–10). According to our classification

in section 2.2, the term reification of a person, according to this converter, corresponds

to a white box representation since it exposes its internal data.

1 public class PersonConverter implements FromTermConverter<Compound, Person>,

2 ToTermConverter<Person, Compound> {

3 public static final String PERSON_FUNCTOR_NAME = "person";

4

5 @Override public Compound toTerm(Person person, Class<Compound> termClass, Jpc context) {

6 return new Compound(PERSON_FUNCTOR_NAME, asList(new Atom(person.getName())));

7 }

8 @Override public Person fromTerm(Compound personTerm, Type targetType, Jpc context) {

9 return new Person(((Atom)((Compound)personTerm).arg(1)).getName());

10 }

11 }

Listing 2. The PersonConverter class

6 Sergio Castro, Kim Mens and Paulo Moura

Listing 3 illustrates a white box term representation of a Java object, without object

identity preservation (the first three lines are common to most examples; we will not

repeat them). A central artefact in our approach is a conversion context, instantiated in

line 4 using a builder class and configured with the PersonConverter converter. With this

context we obtain the conversion of a person in line 5 (person(mary)). Next, we assert the fact

student(person(mary)) (line 6). A student(A) goal is instantiated in line 7 passing the context

defined before. A person is queried in line 8 using a deterministic query. The selectObject()

method adapts each solution to the query as an object whose term reification is given

as a string. This adaptation corresponds to the conversion as a Java object of the term

that has been bound to the Person variable in the solution. Lines 9 and 10 verify that the

queried and the original persons are equal, although with different identities.

1 final String STUDENT_FUNCTOR_NAME = "student";

2 PrologEngine prologEngine = getPrologEngine();

3 Person mary = new Person("Mary");

4 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

5 Term personTerm = ctx.toTerm(mary);

6 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

7 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

8 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

9 assertEquals(mary, queriedPerson);

10 assertFalse(mary == queriedPerson);

Listing 3. White Box without Identity Preservation

Listing 4 illustrates the mapping of a reference to a term representation (line 2) in the

scope of a context. The newRefTerm() method associates a person reference (first argument)

to an arbitrary (compound) term representation (second argument). In this example, the

term corresponds to the term conversion of the reference according to a given conversion

context (obtained by the toTerm() method of the context instance). We verify that this

time the queried person corresponds to the original person reference in line 6.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newRefTerm(person, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

5 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

6 assertTrue(mary == queriedPerson);

Listing 4. White Box and Identity Preservation

An example of a black box representation is shown in listing 5. Here, we assert a term

of the form student(serialisation), where the compound argument corresponds to the term

representation of the serialisation of a Person instance. No converter is passed to the query

in line 2. This is because the default conversion context (employed by the query if no

context is explicitly passed) includes a converter able to deserialize a Java object from

the term representation of its serialisation. Finally, we verify that our queried person is

equal to the original person (line 4) although having different identities (line 5).

Although in the context of this example we have presented this term reification as a

black box representation, note that in other contexts this may be considered as a white

box. This would be the case if the Prolog side is intended to interpret such representation

(e.g., if it reasons over the serialised bytes of the object (Calejo 2004)).

Customisable Handling of Java References in Prolog Programs 7

1 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(SerializedTerm.serialize(mary))));

2 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))));

3 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

4 assertEquals(mary, queriedPerson);

5 assertFalse(mary == queriedPerson);

Listing 5. Black Box without Identity Preservation

A programmer can also associate an automatically generated term to a reference. An

example is given in listing 6. This time we invoke the method newRefTerm() passing as

only argument the reference to reify as a term (line 2). A (black box) term representa-

tion is generated behind the curtains. Our library guarantees that such generated term

representations are identical for the same object even across different contexts.

1 Jpc ctx = JpcBuilder.create().build();

2 Term personTerm = ctx.newRefTerm(mary);

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

5 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

6 assertTrue(mary == queriedPerson);

Listing 6. Black Box and Identity Preservation

As discussed in section 2.4, a programmer should also be able to control the life span

of term–reference mappings. Listing 7 shows an example. We use the newRefTerm() method

(line 2) to associate a reference to its (context dependent) term reification. But after-

wards we delete this association using the forgetRefTerm() method (line 5). Thus, although

the queried person is equal to the original person (line 7) since the term is translated

according to the conversion context (line 1), they do not have the same identity (line 8)

as the association between the term and the original reference was eliminated.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newRefTerm(person, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 assertTrue(mary == prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))),

ctx).selectObject("Person").oneSolutionOrThrow());

5 ctx.forgetRefTerm((Compound)personTerm);

6 Person queriedPerson = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("Person"))), ctx).<Person>selectObject("Person").oneSolutionOrThrow();

7 assertEquals(mary, queriedPerson);

8 assertFalse(mary == queriedPerson);

Listing 7. Explicit Management of Associations Life Span

A programmer can also rely on the Java garbage collection mechanism for delimiting

the life span of an association as shown in listing 8. The newWeakRefTerm() method (line 2)

is equivalent to the newRefTerm() method discussed earlier. But in this case the association

between a term and a reference persists as long as the reference is not reclaimed in the

next garbage collection cycle. To prove it, we assign null to the only variable keeping a

reference to the person (line 4) and give a hint to the garbage collector to start a cycle

(line 5). Note that the query is not instantiated with a conversion context (line 7). Thus,

an exception is raised when we try to convert the term (bound to the variable Person) to an

object as no converter is found and no reference is associated to such term. Our framework

also provides the newSoftRefTerm() method with similar semantics than newWeakRefTerm(), with

8 Sergio Castro, Kim Mens and Paulo Moura

the only difference that an association between a term and a reference may persist some

time after a garbage collection cycle, and will be deleted only if the memory gets tight.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newWeakRefTerm(mary, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 mary = null;

5 System.gc();

6 try {

7 prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("Person")))).<Person>selectObject("Person").oneSolutionOrThrow();

8 fail();

9 } catch(ConversionException e) {}

Listing 8. Garbage Collection Management of Associations Life Span

4.2 Object Reference Representation

This section focuses on the properties of object references (identified by the second row

of figure 1). Although our library currently only has drivers for non-embedded Prolog

engines, as a proof of concept we implement the examples in this section using the

JPC embedded Prolog database described in section 3.1. With the exception of open

unification, all the other properties are supported by our implementation.

We start with an example of constant unification of references in listing 9. As mentioned

in section 3.1, a JPCJRef term wrapps an object reference. In our current version, they

are unified as constants (i.e., unifying tow JRef terms succeeds if their referred objects are

equal). In line 1 we assert that mary (wrapped in a JRef term) is a student. In line 2 we

query if a different person object with the same name is a student, which succeeds.

1 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(mary))));

2 assertTrue(prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(new

Person("mary"))))).hasSolution());

3 Solution solution = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("X")))).oneSolutionOrThrow();

4 JRef<Person> jRef = (JRef<Person>) solution.get("X");

5 assertTrue(mary == jRef.getReferent());

Listing 9. Constant Unification of JRef terms

Thanks to our embedded Prolog database, the identity of a reference is trivially pre-

served. To illustrate this, we execute a deterministic query (line 3) with goal student(X).

We verify that the obtained referent has the same identity as mary in line 5.

Listing 10 shows how to create JRef instances that may be garbage collected. We first

create two objects equal to mary and assert them, using two kind of references: strong

(line 3) and weak (line 4). When we query for students unifying with mary (line 5) using a

strong reference, we get two results instead of one. This is because the unification seman-

tics of JRef terms evaluates the referents, not the actual JRef term wrapper. Afterwards

we assign to null the variable person2 (line 6) and give a hint to the garbage collector to

execute a cycle (line 7). Since the referent of the JRef term asserted in line 4 has been

invalidated, the number of students unifying with mary is now only 1 (line 8). Note

that weak or soft references should be used with care: they may require non-monotonic

reasoning as the referent of a JRef term may be invalidated during the query execution.

Customisable Handling of Java References in Prolog Programs 9

1 Person person2 = new Person("Mary");

2 Person person3 = new Person("Mary");

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(mary))));

4 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.weakJRef(person2))));

5 assertEquals(2, prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(JRef.jRef(mary)))).allSolutions().size());

6 person2 = null;

7 System.gc();

8 assertEquals(1, prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(JRef.jRef(mary)))).allSolutions().size());

Listing 10. Life Span of JRef terms

The previous example motivates the need of a cleaning mechanism. Listing 11 illus-

trates such mechanism using a user-defined cleaning task. To keep our example simple,

this cleaning task retracts all the asserted students (lines 1–5) when a reference is inval-

idated. A more sophisticated example would retract only the invalidated reference. Our

cleaning task is associated with a weak reference in line 6. In line 9 we verify that no

students are in the database after the reference to mary has been invalidated (lines 7–8).

1 Runnable cleaningTask = new Runnable() {

2 @Override public void run() {

3 prologEngine.retractAll(new Compound(STUDENT_FUNCTOR_NAME, asList(Var.ANONYMOUS_VAR)));

4 }

5 };

6 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.weakJRef(mary, cleaningTask))));

7 mary = null;

8 System.gc();

9 assertFalse(prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(Var.ANONYMOUS_VAR))).hasSolution());

Listing 11. Cleaning Tasks

5 Related Work

Most related work has already been overviewed in sections 2 and 3.1 so we do not repeat

it here. InterProlog inspired the serialisation mechanism illustrated in listing 5. It

provides a more structured representation of a serialised object on the Prolog side using

a definite clause grammar. Currently we represent serialised bytes as an atom using

a raw base-64 encoding. InterProlog has limited support, however, for customising

the reification as a term of arbitrary Java objects (even not serialisable ones) as in our

approach. Concerning our mechanisms for custom two-way conversions between inter-

language artefacts, this was inspired by Google’s Gson library, which aims to provide a

high-level tool for conversions between Java objects and their JSON representation.

6 Conclusions and Future Work

This work discusses different dimensions that should be taken into consideration when

dealing with Java references in Prolog programs. These dimensions have been extracted

from many sources, including our own experience, a study of existing approaches, and

even existing solutions in other domains. At the moment, JPC does not implement a

mechanism for interacting with Java from the Prolog side. In line with our portability

goal, we plan to implement our Prolog side API using Logtalk (Moura 2003), a portable

object-oriented layer for Prolog. As in the current Java side API, we expect to prototype

10 Sergio Castro, Kim Mens and Paulo Moura

a first version by reusing existing bridge libraries. We will also continue improving our

embedded Prolog database so that it can be released as a stand-alone embedded Pro-

log engine. We hope that our work will benefit not only implementors of Java–Prolog

integration libraries, but also integrators of similar object-oriented and logic languages.

References

Brichau, J., De Roover, C., and Mens, K. 2007. Open Unification for Program Query
Languages. In Proceedings of the XXVI International Conference of the Chilean Computer
Science Society (SCCC 2007).

Calejo, M. 2004. InterProlog: Towards a Declarative Embedding of Logic Programming in
Java. In Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon,
Portugal, September 27-30, 2004, Proceedings, José Júlio Alferes and João Alexandre Leite,
Ed. Lecture Notes in Computer Science, vol. 3229. Springer, 714–717.

Carlsson, M. et al. 1995. SICStus Prolog User’s Manual , Release 3 ed. Swedish Institute of
Computer Science. ISBN 91-630-3648-7.

Castro, S., Mens, K., and Moura, P. 2013. JPC: A Library for Modularising Inter-Language
Conversion Concerns between Java and Prolog. In International Workshop on Advanced
Software Development Tools and Techniques (WASDeTT).

Denti, E., Omicini, A., and Ricci, A. 2005. Multi-paradigm Java–Prolog Integration in
tuProlog. Science of Computer Programming 57, 2, 217 – 250.

Google Inc. 2012. Gson 2.2.2: A Java library to convert JSON strings to Java objects and
vice-versa. http://code.google.com/p/google-gson/.

Gybels, K. 2003. SOUL and Smalltalk — Just Married: Evolution of the Interaction Between a
Logic and an Object-Oriented Language Towards Symbiosis. In Proceedings of the Workshop
on Declarative Programming in the Context of Object-Oriented Languages.

Kniesel, G., Hannemann, J., and Rho, T. 2007. A Comparison of Logic-Based Infrastruc-
tures for Concern Detection and Extraction. In Proceedings of the 3rd workshop on Linking
aspect technology and evolution. LATE’07. ACM, New York, NY, USA.

Mernik, M., Heering, J., and Sloane, A. M. 2005. When and How to Develop Domain-
specific Languages. ACM Comput. Surv. 37, 4 (Dec.), 316–344.

Moura, P. 2003. Logtalk – Design of an Object-Oriented Logic Programming Language. Ph.D.
thesis, Department of Computer Science, University of Beira Interior, Portugal.

Rho, T., Degener, L., Günter Kniesel, Frank Mühlschlegel, Eva Stöwe, Noth, F.,
Becker, A., and Alyiev, I. 2004. The Prolog Development Tool – A Prolog IDE for Eclipse.
http://sewiki.iai.uni-bonn.de/research/pdt/.

Roover, C. D., Noguera, C., Kellens, A., and Jonckers, V. 2011. The SOUL Tool Suite
for Querying Programs in Symbiosis with Eclipse. In International Conference on Principles
and Practices of Programming on the Java Platform. 71–80.

Singleton, P., Dushin, F., and Wielemaker, J. 2004. JPL 3.0: A Bidirectional Interface
Between Prolog and Java. http://www.swi-prolog.org/packages/jpl/java_api/.

Tarau, P. 2004. Agent Oriented Logic Programming Constructs in Jinni 2004. In Interna-
tional Conference of Logic Programming, B. Demoen and V. Lifschitz, Eds. Lecture Notes in
Computer Science, vol. 3132. Springer, 477–478.

Tarau, P. 2011. Integrated Symbol Table, Engine and Heap Memory Management in Multi-
engine Prolog. In Proceedings of the 10th International Symposium on Memory Management.
ACM, 129–138.

http://code.google.com/p/google-gson/
http://sewiki.iai.uni-bonn.de/research/pdt/
http://www.swi-prolog.org/packages/jpl/java_api/

	1 Introduction
	2 The Problem of Representing Java References in Prolog
	2.1 Reference Representation
	2.2 Opacity of the Representation
	2.3 Object Identity Preservation
	2.4 Reference Life Span
	2.5 Scope of the Inter-Language Conversion Policies

	3 Architecture
	3.1 Prolog VM Abstraction
	3.2 Embedded Prolog Database

	4 Reference Management with JPC
	4.1 Symbolic Representation
	4.2 Object Reference Representation

	5 Related Work
	6 Conclusions and Future Work
	References

