
EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 01-fm-i-iv-9780124159938 — 2012/6/6 — 22:40 — Page i — #1

Structured Parallel
Programming

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 01-fm-i-iv-9780124159938 — 2012/6/6 — 22:40 — Page iii — #3

Structured Parallel
Programming

Patterns for Efficient Computation

Michael McCool

Arch D. Robison

James Reinders

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 01-fm-i-iv-9780124159938 — 2012/6/6 — 22:40 — Page iv — #4

Acquiring Editor: Todd Green
Development Editor: Robyn Day
Project Manager: Paul Gottehrer
Designer: Joanne Blank

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

c© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely
on their own experience and knowledge in evaluating and using any information or methods described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-415993-8

For information on all MK publications
visit our website at http://store.elsevier.com

Printed in the United States of America
12 13 14 15 16 10 9 8 7 6 5 4 3 2 1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page v — #1

Contents

Listings . xv
Preface . xix
Preliminaries. xxiii

CHAPTER 1 Introduction . 1
1.1 Think Parallel . 2
1.2 Performance . 4
1.3 Motivation: Pervasive Parallelism . 7

1.3.1 Hardware Trends Encouraging Parallelism . 7
1.3.2 Observed Historical Trends in Parallelism . 11
1.3.3 Need for Explicit Parallel Programming . 14

1.4 Structured Pattern-Based Programming . 19
1.5 Parallel Programming Models . 21

1.5.1 Desired Properties . 21
1.5.2 Abstractions Instead of Mechanisms . 23
1.5.3 Expression of Regular Data Parallelism . 24
1.5.4 Composability . 27
1.5.5 Portability of Functionality . 28
1.5.6 Performance Portability . 28
1.5.7 Safety, Determinism, and Maintainability . 29
1.5.8 Overview of Programming Models Used . 29
1.5.9 When to Use Which Model? . 36

1.6 Organization of this Book . 37
1.7 Summary . 38

CHAPTER 2 Background . 39
2.1 Vocabulary and Notation . 39
2.2 Strategies . 40
2.3 Mechanisms . 41
2.4 Machine Models . 44

2.4.1 Machine Model . 44
2.4.2 Key Features for Performance . 50
2.4.3 Flynn’s Characterization . 51
2.4.4 Evolution . 53

2.5 Performance Theory . 54
2.5.1 Latency and Throughput . 55
2.5.2 Speedup, Efficiency, and Scalability. 56

v

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page vi — #2

vi Contents

2.5.3 Power. 57
2.5.4 Amdahl’s Law . 58
2.5.5 Gustafson-Barsis’ Law . 60
2.5.6 Work-Span Model . 62
2.5.7 Asymptotic Complexity . 65
2.5.8 Asymptotic Speedup and Efficiency . 67
2.5.9 Little’s Formula . 67

2.6 Pitfalls . 68
2.6.1 Race Conditions . 68
2.6.2 Mutual Exclusion and Locks . 70
2.6.3 Deadlock . 72
2.6.4 Strangled Scaling . 73
2.6.5 Lack of Locality . 73
2.6.6 Load Imbalance . 74
2.6.7 Overhead . 74

2.7 Summary . 75

PART I PATTERNS

CHAPTER 3 Patterns. 79
3.1 Nesting Pattern . 80
3.2 Structured Serial Control Flow Patterns . 82

3.2.1 Sequence . 82
3.2.2 Selection . 84
3.2.3 Iteration . 84
3.2.4 Recursion . 87

3.3 Parallel Control Patterns. 88
3.3.1 Fork–Join . 88
3.3.2 Map. 88
3.3.3 Stencil . 89
3.3.4 Reduction . 90
3.3.5 Scan . 92
3.3.6 Recurrence . 95

3.4 Serial Data Management Patterns . 95
3.4.1 Random Read and Write . 96
3.4.2 Stack Allocation . 96
3.4.3 Heap Allocation . 96
3.4.4 Closures . 97
3.4.5 Objects . 97

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page vii — #3

Contents vii

3.5 Parallel Data Management Patterns . 98
3.5.1 Pack . 98
3.5.2 Pipeline. 99
3.5.3 Geometric Decomposition . 100
3.5.4 Gather . 101
3.5.5 Scatter . 101

3.6 Other Parallel Patterns . 102
3.6.1 Superscalar Sequences . 102
3.6.2 Futures . 102
3.6.3 Speculative Selection . 104
3.6.4 Workpile . 105
3.6.5 Search . 105
3.6.6 Segmentation . 105
3.6.7 Expand . 106
3.6.8 Category Reduction . 106
3.6.9 Term Graph Rewriting . 107

3.7 Non-Deterministic Patterns . 108
3.7.1 Branch and Bound . 108
3.7.2 Transactions. 109

3.8 Programming Model Support for Patterns . 110
3.8.1 Cilk Plus . 112
3.8.2 Threading Building Blocks . 113
3.8.3 OpenMP. 114
3.8.4 Array Building Blocks . 115
3.8.5 OpenCL . 116

3.9 Summary . 118

CHAPTER 4 Map . 121
4.1 Map . 123
4.2 Scaled Vector Addition (SAXPY) . 124

4.2.1 Description of the Problem. 124
4.2.2 Serial Implementation . 125
4.2.3 TBB . 125
4.2.4 Cilk Plus . 127
4.2.5 Cilk Plus with Array Notation . 127
4.2.6 OpenMP. 128
4.2.7 ArBB Using Vector Operations . 128
4.2.8 ArBB Using Elemental Functions . 129
4.2.9 OpenCL . 130

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page viii — #4

viii Contents

4.3 Mandelbrot . 131
4.3.1 Description of the Problem. 131
4.3.2 Serial Implementation . 132
4.3.3 TBB . 132
4.3.4 Cilk Plus . 132
4.3.5 Cilk Plus with Array Notations . 134
4.3.6 OpenMP. 134
4.3.7 ArBB . 134
4.3.8 OpenCL . 138

4.4 Sequence of Maps versus Map of Sequence . 139
4.5 Comparison of Parallel Models . 141
4.6 Related Patterns . 141

4.6.1 Stencil . 141
4.6.2 Workpile . 142
4.6.3 Divide-and-conquer . 142

4.7 Summary . 143

CHAPTER 5 Collectives . 145
5.1 Reduce . 145

5.1.1 Reordering Computations . 146
5.1.2 Vectorization . 148
5.1.3 Tiling . 149
5.1.4 Precision . 150
5.1.5 Implementation . 151

5.2 Fusing Map and Reduce . 152
5.2.1 Explicit Fusion in TBB. 152
5.2.2 Explicit Fusion in Cilk Plus . 153
5.2.3 Automatic Fusion in ArBB. 153

5.3 Dot Product . 154
5.3.1 Description of the Problem. 154
5.3.2 Serial Implementation . 154
5.3.3 SSE Intrinsics . 155
5.3.4 TBB . 156
5.3.5 Cilk Plus . 158
5.3.6 OpenMP. 160
5.3.7 ArBB . 161

5.4 Scan . 162
5.4.1 Cilk Plus . 164
5.4.2 TBB . 165
5.4.3 ArBB . 165
5.4.4 OpenMP. 165

5.5 Fusing Map and Scan . 166

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page ix — #5

Contents ix

5.6 Integration . 169
5.6.1 Description of the Problem. 170
5.6.2 Serial Implementation . 170
5.6.3 Cilk Plus . 170
5.6.4 OpenMP. 170
5.6.5 TBB . 172
5.6.6 ArBB . 175

5.7 Summary . 177

CHAPTER 6 Data Reorganization . 179
6.1 Gather . 180

6.1.1 General Gather . 180
6.1.2 Shift . 182
6.1.3 Zip . 182

6.2 Scatter . 182
6.2.1 Atomic Scatter . 184
6.2.2 Permutation Scatter . 184
6.2.3 Merge Scatter . 185
6.2.4 Priority Scatter . 185

6.3 Converting Scatter to Gather . 186
6.4 Pack . 187
6.5 Fusing Map and Pack . 189
6.6 Geometric Decomposition and Partition. 191
6.7 Array of Structures vs. Structures of Arrays. 194
6.8 Summary . 197

CHAPTER 7 Stencil and Recurrence . 199
7.1 Stencil . 199
7.2 Implementing Stencil with Shift . 201
7.3 Tiling Stencils for Cache . 202
7.4 Optimizing Stencils for Communication . 203
7.5 Recurrence . 204
7.6 Summary . 207

CHAPTER 8 Fork–Join . 209
8.1 Definition. 210
8.2 Programming Model Support for Fork–Join . 211

8.2.1 Cilk Plus Support for Fork–Join . 212
8.2.2 TBB Support for Fork–Join . 213
8.2.3 OpenMP Support for Fork–Join . 214

8.3 Recursive Implementation of Map . 215
8.4 Choosing Base Cases . 217

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page x — #6

x Contents

8.5 Load Balancing . 218

8.6 Complexity of Parallel Divide-and-Conquer . 221

8.7 Karatsuba Multiplication of Polynomials . 224

8.7.1 Note on Allocating Scratch Space . 227

8.8 Cache Locality and Cache-Oblivious Algorithms . 227

8.9 Quicksort . 230

8.9.1 Cilk Quicksort . 231

8.9.2 TBB Quicksort . 233

8.9.3 Work and Span for Quicksort . 237

8.10 Reductions and Hyperobjects . 238

8.11 Implementing Scan with Fork–Join . 241

8.12 Applying Fork–Join to Recurrences . 246

8.12.1 Analysis . 250

8.12.2 Flat Fork–Join . 251

8.13 Summary . 251

CHAPTER 9 Pipeline. 253
9.1 Basic Pipeline . 253

9.2 Pipeline with Parallel Stages . 254

9.3 Implementation of a Pipeline. 255

9.4 Programming Model Support for Pipelines . 257

9.4.1 Pipeline in TBB. 257

9.4.2 Pipeline in Cilk Plus . 258

9.5 More General Topologies . 261

9.6 Mandatory versus Optional Parallelism . 261

9.7 Summary . 262

PART II EXAMPLES

CHAPTER 10 Forward Seismic Simulation . 265
10.1 Background . 265

10.2 Stencil Computation . 266

10.3 Impact of Caches on Arithmetic Intensity . 267

10.4 Raising Arithmetic Intensity with Space–Time Tiling . 270

10.5 Cilk Plus Code . 272

10.6 ArBB Implementation . 275

10.7 Summary . 277

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page xi — #7

Contents xi

CHAPTER 11 K-Means Clustering . 279
11.1 Algorithm . 279

11.2 K-Means with Cilk Plus . 281

11.2.1 Hyperobjects . 281

11.3 K-Means with TBB . 285

11.4 Summary . 289

CHAPTER 12 Bzip2 Data Compression . 291
12.1 The Bzip2 Algorithm . 291

12.2 Three-Stage Pipeline Using TBB . 292

12.3 Four-Stage Pipeline Using TBB . 296

12.4 Three-Stage Pipeline Using Cilk Plus . 296

12.5 Summary . 297

CHAPTER 13 Merge Sort . 299
13.1 Parallel Merge . 299

13.1.1 TBB Parallel Merge . 301

13.1.2 Work and Span of Parallel Merge. 301

13.2 Parallel Merge Sort . 303

13.2.1 Work and Span of Merge Sort . 304

13.3 Summary . 305

CHAPTER 14 Sample Sort . 307
14.1 Overall Structure . 307

14.2 Choosing the Number of Bins. 309

14.3 Binning . 309

14.3.1 TBB Implementation . 310

14.4 Repacking and Subsorting. 310

14.5 Performance Analysis of Sample Sort . 312

14.6 For C++ Experts . 313

14.7 Summary . 313

CHAPTER 15 Cholesky Factorization . 315
15.1 Fortran Rules! . 315

15.2 Recursive Cholesky Decomposition . 317

15.3 Triangular Solve . 318

15.4 Symmetric Rank Update . 319

15.5 Where Is the Time Spent? . 321

15.6 Summary . 322

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page xii — #8

xii Contents

APPENDICES

APPENDIX A Further Reading. 325
A.1 Parallel Algorithms and Patterns. 325
A.2 Computer Architecture Including Parallel Systems. 325
A.3 Parallel Programming Models . 326

APPENDIX B Cilk Plus . 329
B.1 Shared Design Principles with TBB . 329
B.2 Unique Characteristics . 329
B.3 Borrowing Components from TBB . 331
B.4 Keyword Spelling . 332
B.5 cilk for . 332
B.6 cilk spawn and cilk sync . 333
B.7 Reducers (Hyperobjects) . 334

B.7.1 C++ Syntax. 335
B.7.2 C Syntax . 337

B.8 Array Notation . 338
B.8.1 Specifying Array Sections . 339
B.8.2 Operations on Array Sections . 340
B.8.3 Reductions on Array Sections . 341
B.8.4 Implicit Index . 342
B.8.5 Avoid Partial Overlap of Array Sections . 342

B.9 #pragma simd . 343
B.10 Elemental Functions . 344

B.10.1 Attribute Syntax . 345
B.11 Note on C++11 . 345
B.12 Notes on Setup . 346
B.13 History . 346
B.14 Summary . 347

APPENDIX C TBB . 349
C.1 Unique Characteristics . 349
C.2 Using TBB . 350
C.3 parallel for . 351

C.3.1 blocked range . 351
C.3.2 Partitioners . 352

C.4 parallel reduce . 353
C.5 parallel deterministic reduce . 354
C.6 parallel pipeline . 354
C.7 parallel invoke . 354

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 02-toc-v-xiv-9780124159938 — 2012/6/6 — 12:37 — Page xiii — #9

Contents xiii

C.8 task group . 355
C.9 task . 355

C.9.1 empty task . 356
C.10 atomic . 356
C.11 enumerable thread specific . 358
C.12 Notes on C++11 . 358
C.13 History . 359
C.14 Summary . 360

APPENDIX D C++11 . 361
D.1 Declaring with auto . 361
D.2 Lambda Expressions . 361
D.3 std::move . 365

APPENDIX E Glossary . 367

Bibliography . 391
Index . 397

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 03-lol-xv-xviii-9780124159938 — 2012/6/6 — 12:54 — Page xv — #1

Listings

1.1 Add two vectors in C, with implied serial ordering . 17

1.2 Overlapping (aliased) arguments in C. 17

1.3 Add two vectors using Cilk Plus array notation . 17

1.4 An ordered sum creates a dependence in C . 18

1.5 A parallel sum, expressed as a reduction operation in Cilk Plus. 18

1.6 Function calls with step-by-step ordering specified in C . 18

1.7 Function calls with no required ordering in Cilk Plus . 19

1.8 Serial vector addition coded as a loop in C . 24

1.9 Parallel vector addition using Cilk Plus . 25

1.10 Parallel vector addition using ArBB . 25

1.11 Scalar function for addition in C . 26

1.12 Vectorized function for addition in Cilk Plus . 26

1.13 Serial Fibonacci computation in C . 31

1.14 Parallel Cilk Plus variant of Listing 1.13 . 31

1.15 Vector computation in ArBB . 34

1.16 Elemental function computation in ArBB . 35

3.1 Serial sequence in pseudocode . 82

3.2 Serial sequence, second example, in pseudocode . 83

3.3 Serial selection in pseudocode. 84

3.4 Iteration using a while loop in pseudocode . 85

3.5 Iteration using a for loop in pseudocode . 85

3.6 Demonstration of while/for equivalence in pseudocode . 86

3.7 A difficult example in C . 87

3.8 Another difficult example in C . 87

3.9 Serial implementation of reduction. 91

3.10 Serial implementation of scan . 93

3.11 Superscalar sequence in pseudocode . 103

4.1 Serial implementation of SAXPY in C . 126

4.2 Tiled implementation of SAXPY in TBB. 126

4.3 SAXPY in Cilk Plus using cilk_for . 127

4.4 SAXPY in Cilk Plus using cilk_for and array notation for explicit vectorization 127

4.5 SAXPY in OpenMP. 128

4.6 SAXPY in ArBB, using a vector expression. 129

xv

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 03-lol-xv-xviii-9780124159938 — 2012/6/6 — 12:54 — Page xvi — #2

xvi Listings

4.7 SAXPY in ArBB, using binding code for vector expression implementation 129

4.8 SAXPY in ArBB, using an elemental function . 130

4.9 SAXPY in ArBB, call operation . 130

4.10 SAXPY in OpenCL kernel language . 131

4.11 Serial implementation of Mandelbrot in C. 133

4.12 Tiled implementation of Mandelbrot in TBB . 133

4.13 Mandelbrot using cilk_for in Cilk Plus . 134

4.14 Mandelbrot in Cilk Plus using cilk_for and array notation for explicit vectorization 135

4.15 Mandelbrot in OpenMP . 136

4.16 Mandelbrot elemental function for ArBB map operation . 136

4.17 Mandelbrot call code for ArBB implementation . 137

4.18 Mandelbrot binding code for ArBB implementation . 137

4.19 Mandelbrot kernel code for OpenCL implementation. 138

5.1 Serial reduction in C++ for 0 or more elements . 146

5.2 Serial reduction in C++ for 1 or more elements . 147

5.3 Serial implementation of dot product in C++ . 155

5.4 Vectorized dot product implemented using SSE intrinsics . 156

5.5 Dot product implemented in TBB . 157

5.6 Modification of Listing 5.5 with double-precision operations . 158

5.7 Dot product implemented in Cilk Plus array notation . 159

5.8 Dot product implementation in Cilk Plus using explicit tiling . 159

5.9 Modification of Listing 5.8 with double-precision operations for multiplication
and accumulation. 160

5.10 Dot product implemented in OpenMP . 160

5.11 Dot product implemented in ArBB. 161

5.12 Dot product implementation in ArBB, wrapper code . 161

5.13 High-precision dot product implemented in ArBB . 162

5.14 Serial implementation of inclusive scan in C++ . 163

5.15 Serial implementation of exclusive scan in C++ . 164

5.16 Three-phase tiled implementation of a scan in OpenMP . 168

5.17 Serial integrated table preparation in C++ . 171

5.18 Generic test function for integration . 171

5.19 Concrete instantiation of test function for integration . 171

5.20 Serial implementation of integrated table lookup in C++ . 172

5.21 Integrated table preparation in Cilk Plus . 173

5.22 Integrated table preparation in TBB. 174

5.23 Integrated table preparation in ArBB . 175

5.24 Integrated table lookup in ArBB . 176

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 03-lol-xv-xviii-9780124159938 — 2012/6/6 — 12:54 — Page xvii — #3

Listings xvii

6.1 Serial implementation of gather in pseudocode . 180

6.2 Serial implementation of scatter in pseudocode . 186

6.3 Array of structures (AoS) data organization . 194

6.4 Structure of arrays (SoA) data organization . 195

7.1 Serial implementation of stencil . 200

7.2 Serial 2D recurrence . 205

8.1 Recursive implementation of the map pattern in Cilk Plus . 215

8.2 Modification of Listing 8.1 that changes tail call into a goto . 217

8.3 Cleaned-up semi-recursive map in Cilk Plus . 217

8.4 Three loop forms illustrating steal-continuation versus steal-child . 219

8.5 Flat algorithm for polynomial multiplication using Cilk Plus array notation 224

8.6 Karatsuba multiplication in Cilk Plus . 225

8.7 Type for scratch space . 227

8.8 Pseudocode for recursive matrix multiplication . 229

8.9 Code shared by Quicksort implementations . 232

8.10 Fully recursive parallel Quicksort using Cilk Plus . 233

8.11 Semi-recursive parallel Quicksort using Cilk Plus . 234

8.12 Semi-iterative parallel Quicksort using TBB . 235

8.13 Quicksort in TBB that achieves Cilk Plus space guarantee . 236

8.14 Recursive implementation of parallel reduction in Cilk Plus . 238

8.15 Using a hyperobject to avoid a race in Cilk Plus . 239

8.16 Using a local reducer in Cilk Plus . 241

8.17 Top-level code for tiled parallel scan. 243

8.18 Upsweep phase for tiled parallel scan in Cilk Plus . 244

8.19 Downsweep phase for tiled parallel scan in Cilk Plus. 244

8.20 Implementing pack pattern with cilk_scan from Listing 8.17 . 245

8.21 Base case for evaluating a diamond of lattice points . 249

8.22 Code for parallel recursive evaluation of binomial lattice in Cilk Plus. 250

8.23 Marching over diamonds in Cilk Plus. 251

9.1 Serial implementation of a pipeline . 257

9.2 Pipeline in TBB . 258

9.3 Pipeline in Cilk Plus equivalent to the serial pipeline in Listing 9.1 . 259

9.4 Defining a reducer for serializing consumption of items in Cilk Plus . 260

10.1 Serial code for simulating wavefield . 268

10.2 Code for one-dimensional iterated stencil . 271

10.3 Base case for applying stencil to space–time trapezoid . 273

10.4 Parallel cache-oblivious trapezoid decomposition in Cilk Plus . 274

10.5 ArBB code for simulating a wavefield . 276

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 03-lol-xv-xviii-9780124159938 — 2012/6/6 — 12:54 — Page xviii — #4

xviii Listings

11.1 K-means clustering in Cilk Plus . 282

11.2 Type sum_and_count for computing mean of points in a cluster . 283

11.3 Defining a hyperobject for summing an array elementwise in Cilk Plus . 284

11.4 Declaring a type tls_type for thread-local views in TBB . 285

11.5 Walking local views to detect changes . 286

11.6 Walking local views to accumulate a global sum. 286

11.7 Routine for finding index of centroid closest to a given point . 287

11.8 K-means clustering in TBB. 288

12.1 Declarations for bzip2 pipeline . 294

12.2 Use of TBB parallel_pipeline to coordinate bzip2 actions . 295

12.3 Sketch of bzip2 pipeline in Cilk Plus using a consumer reducer . 297

13.1 Serial merge . 300

13.2 Parallel merge in Cilk Plus . 301

13.3 Converting parallel merge from Cilk Plus to TBB . 302

13.4 Parallel merge sort in Cilk Plus. 304

14.1 Top-level code for parallel sample sort . 308

14.2 Code for mapping keys to bins . 310

14.3 Parallel binning of keys using Cilk Plus . 311

14.4 Repacking and subsorting using Cilk Plus . 312

14.5 Using Cilk Plus to move and destroy a sequence, without an explicit loop! 313

15.1 Recursive Cholesky decomposition . 318

15.2 Parallel triangular solve in Cilk Plus . 320

15.3 Parallel symmetric rank update in Cilk Plus . 321

15.4 Converting parallel symmetric rank update from Cilk Plus to TBB . 322

B.1 Simple example use of cilk_for . 332

B.2 Examples of using cilk_spawn and cilk_sync . 333

B.3 Serial reduction in C++ and equivalent Cilk Plus code . 336

B.4 Serial reduction in C and equivalent Cilk Plus code . 338

B.5 Example of using __sec_reduce to reduce over string concatenation . 342

B.6 Defining an elemental function . 344

B.7 Calling an elemental function from a vectorizable loop. 345

C.1 Example of affinity_partitioner . 353

C.2 Using task_group . 355

C.3 Example of using atomic<int> as a counter . 356

C.4 Using atomic operations on a list . 357

D.1 Using a manually written functor comparator . 362

D.2 Using a lambda expression lets Listing D.1 be rewritten more concisely . 363

D.3 Mixed capture with handwritten functor . 364

D.4 Mixed capture modes.. 364

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 04-pre-xix-xxii-9780124159938 — 2012/6/6 — 22:35 — Page xix — #1

Preface

All computers are now parallel computers, so we assert that all programmers are, or should be, parallel
programmers. With parallel programming now mainstream, it simply needs to be included in the def-
inition of “programming” and be part of the skill set of all software developers. Unfortunately, many
existing texts on parallel programming are overspecialized, with too much emphasis given to particular
programming models or particular computer architectures. At the other extreme, several existing texts
approach parallel computing as an abstract field of study and provide the reader with insufficient infor-
mation to actually write real applications. We saw a need for a text on parallel programming treating
the topic in a mainstream, pragmatic fashion, so that readers can immediately use it to write real appli-
cations, but at a level of abstraction that still spans multiple computer architectures and programming
models.

We feel that teaching parallel programming as an advanced topic, with serial programming as the
default basis, is not the best approach. Parallel programming should be taught from the beginning to
avoid over-learning of serial assumptions and thought patterns. Unfortunately, at present the default
teaching style is based on the serial code and algorithms. Serialization has become excessively woven
into our teaching, our programs, and even the tools of our trade: our programming languages. As a
result, for many programmers parallel programming seems more difficult than it should be. Many pro-
grams are serial not because it was natural to solve the problem serially, but because the programming
tools demanded it and the programmer was trained to think that way.

Despite the fact that computer hardware is naturally parallel, computer architects chose 40 years ago
to present a serial programming abstraction to programmers. Decades of work in computer architecture
have focused on maintaining the illusion of serial execution. Extensive efforts are made inside modern
processors to translate serial programs into a parallel form so they can execute efficiently using the
fine-grained parallel hardware inside the processor. Unfortunately, driven by the exponential increase
in the number of transistors provided by Moore’s Law, the need for parallelism is now so great that it
is no longer possible to maintain the serial illusion while continuing to scale performance. It is now
necessary for programmers to explicitly specify parallel algorithms if they want their performance to
scale. Parallelism is everywhere, and it is the path to performance on modern computer architectures.
Parallelism, even within a single desktop (or laptop!) computer, is available in many ways, including
vector (SIMD) instructions, multicore processors, GPUs, co-processors, and many-core processors.
Programming today needs to address all these forms of hardware parallelism in a manner that is abstract
enough to avoid limiting the implementation to a particular style of hardware.

We also saw a need for a structured approach to parallel programming. In this book, we explain and
illustrate essential strategies needed for writing efficient, scalable programs using a set of patterns. We
have found that patterns are highly effective both for learning this subject and for designing efficient,
structured, and maintainable programs. Using standard names for patterns is also a tremendous aid
to communication. Because vocabulary is important, we have assembled an extensive glossary. This
should help limit the need to read the book sequentially. The glossary also points to key discussions or
explanations of a term within a section of the book when appropriate.

To ensure that the book is useful in practice, we combine patterns with a set of examples showing
their use. Since there are many parallel programming models, the question arose: Which programming
model(s) should we use for examples? We wanted to show enough examples to allow the reader to write

xix

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 04-pre-xix-xxii-9780124159938 — 2012/6/6 — 12:43 — Page xx — #2

xx Preface

sophisticated applications without having to depend heavily on external references. That constraint
argued for sticking to one programming model or a small number of them. On the other hand, we
wanted to demonstrate that the patterns we are presenting are universal and span a large number of
programming models.

As a compromise, we decided to show a large number of examples focused on a couple of primary
models and a small number in other “secondary” models. For the primary models, we chose Intel
Threading Building Blocks (Intel TBB) and Intel Cilk Plus. These two models are efficient and well-
supported. Both are readily available, with both open source licenses and commercial support. TBB is
a C++ template library that works with many different ISO C++ compilers, while Cilk Plus is a C/C++
language extension, so they provide contrasting syntactic approaches. Together they are capable of
expressing all the patterns discussed in this book. Complete working code for all the examples in the
primary programming models, as well as a variety of other material, can be found online at

http://parallelbook.com

We feel a sufficient number of examples have been provided that, along with the standard documenta-
tion, this book can be used for learning how to program in both TBB and Cilk Plus.

However, the patterns we discuss apply to almost any parallel programming model; therefore, to
provide a broader perspective, we look at three secondary programming models: Intel Array Building
Blocks (ArBB), OpenCL, and OpenMP. ArBB uses a parallel virtual machine provided as a library.
The ArBB virtual machine (VM) supports explicit, programmer-directed runtime code generation
and is designed to be usable from multiple languages. In this book, we use the C++ front-end to
the ArBB VM, which embeds a parallel language syntax into C++ using normal C++ mechanisms
such as macros and operator overloading. We also show some examples in OpenCL and OpenMP.
Both OpenCL and OpenMP are standards, with OpenCL primarily designed to target GPU-like archi-
tectures, and OpenMP targeting shared-memory multicore CPU architectures. OpenCL is based on a
separately compiled kernel language which is provided as a string to an library interface. Like ArBB,
OpenCL supports dynamic compilation. In contrast, OpenMP is based on annotations in an existing
language and is designed to be statically compiled. These five programming models take different
syntactic approaches to the expression of parallelism, but as we will see, the patterns apply to all of
them. This reinforces the fact that patterns are universal, and that a study of patterns is useful not only
for today’s programming models but also for what may come in the future.

This book is neither a theory book nor a cookbook. It is a pragmatic strategic guide, with case
studies, that will allow you to understand how to implement efficient parallel applications. However,
this book is not aimed at supercomputing programmers, although it might be interesting to them. This
is a book for mainstream C and C++ programmers who may have no prior knowledge of parallel
programming and who are interested in improving the performance of their applications. To this end,
we also discuss performance models. In particular, we present the work-span model of parallel com-
plexity, which goes beyond the simplistic assumptions of Amdahl’s Law and allows better prediction of
an algorithm’s speedup potential, since it gives both upper and lower bounds on speedup and provides
a tighter upper bound.

We hope to provide you with the capacity to design and implement efficient, reliable, and maintain-
able parallel programs for modern computers. This book purposely approaches parallel programming
from a programmer’s point of view without relying on an overly detailed examination or prior knowl-
edge of parallel computer architecture. We have avoided the temptation to make this a computer

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 04-pre-xix-xxii-9780124159938 — 2012/6/6 — 22:35 — Page xxi — #3

Preface xxi

architecture book. However, we have still taken care to discuss important architecture constraints
and how to deal with them. The goal is to give you, as a programmer, precisely the understanding
of the computer architecture that you need to make informed decisions about how to structure your
applications for the best performance and scalability.

Our vision is that effective parallel programming can be learned by studying appropriate patterns
and examples. We present such a set of patterns, give them concrete names, and ground them in reality
with numerous examples. You should find that this approach directly enables you to produce effective
and efficient parallel programs and also allows you to communicate your designs to others. Indirectly,
it may spark interest in parallel computer architecture, parallel language design, and other related
topics. No book could possibly include information on all the topics of interest related to parallel
programming, so we have had to be selective. For those so inclined, we have included suggestions for
further reading in an appendix. Our web site at http://parallelbook.com also includes material that
goes beyond the basics presented here.

We hope you find this book to be effective at extending your definition of “programming” to include
“parallel programming.”

James Reinders
Portland, Oregon, USA

Arch Robison
Champaign, Illinois, USA

Michael McCool
Waterloo, Ontario, Canada

Tokyo, Japan

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 05-int-xxiii-xxvi-9780124159938 — 2012/6/6 — 12:45 — Page xxiii — #1

Preliminaries

ASSUMED KNOWLEDGE
This book assumes a working knowledge of C and/or C++, and many examples are presented in these
languages (primarily C++). To get the most out of the book these examples should be studied care-
fully. No knowledge of assembly language or systems programming is needed. No prior course on
algorithms is required. In particular, the basics of asymptotic complexity analysis, needed for parallel
performance analysis, are presented in this book in a self-contained way. Prior experience with these
concepts would be useful but is not necessary. Detailed knowledge of a specific operating system is not
required, although an operating systems course would be useful. We purposefully avoid programming
to operating-system-specific threading models and avoid locks in our examples, so prior experience
with these concepts is not necessary. Windows, Linux, and Mac OS X are all well supported by the
primary programming models used, TBB and Cilk Plus, which allow for a wide selection of oper-
ating system choices for practical application of the material in this book. No prior experience with
TBB and Cilk Plus is required and we provide enough background in appendices to make the book
self-contained. However, for practical application development it is recommended that this text be sup-
plemented with a reading of additional tutorial material and documentation on TBB and Cilk Plus. The
section on “Parallel Programming Models” in Appendix A makes specific recommendations for such
further reading. The secondary programming models, OpenMP, OpenCL, and ArBB, are not presented
in depth; however, these models support many operating systems as well.

FOR INSTRUCTORS
This book supports teaching parallel programming in any programming class using C or C++, or as
a focused topic in a semester-long class. If added to an existing course, and only one assignment for
parallel programming is to be used, we recommend teaching the map pattern, as that illustrates both
parallelism and the concept of patterns quite well. The remaining patterns are generally ordered from
simplest to most challenging, so following the chapter order is recommended. We have included a
summary chapter for all the patterns but it can be skipped on a first reading if necessary. We have
found that a pattern-based approach is an effective way to teach and learn parallel programming in a
structured manner.

Teaching material related to the book is available online, and may be used freely for courses taught
in conjunction with this book. This material includes slides and example code. This material can be
downloaded from

http://parallelbook.com/download

An explanation of the available teaching material, as well as additional information on using them
in courses, can be found at

http://parallelbook.com/instructor

In particular, this material includes suggested reading roadmaps for use of this text in courses of
different lengths and at different levels.

xxiii

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 05-int-xxiii-xxvi-9780124159938 — 2012/6/6 — 12:45 — Page xxiv — #2

xxiv Preliminaries

We invite you to share your own teaching insights when using our book and the online materials.
Suggestions for additional material, such as new patterns or examples, would also be welcome. This
book establishes a framework for “structured parallel programming,” but it is only the beginning of
what can be done in this area. In particular, it does not exhaust the space of examples. There are also
some useful patterns that are not included in this book or are mentioned only briefly, so we intend to
use online material to expand our discussion of both. Please contact us via our web site or email us at
authors@parallelbook.com.

FOR STUDENTS
You are encouraged to download supplemental material from our web site at

http://parallelbook.com/student

This material includes code for the examples used in this book and possibly additional material to be
used in conjunction with a course. Patterns are everywhere, but given the limited space in the book we
could only print a tiny representative set of examples. We hope to be able to add more examples online
over time, perhaps contributed by students like yourself.

We hope this book helps make “Thinking Parallel” an intuitive part of programming for you. Paral-
lelism is now essential for all computing, but due to its complexity it requires a structured, disciplined
approach.

We have chosen to organize this book around patterns to provide that structure. Patterns are the best
way to share good programming strategies. The patterns we discuss have, in practice, been shown to
lead to scalable, high-performance code while being implementable, understandable, and debuggable.
These patterns are not a provably perfect set of what you need to know. Rather, patterns represent
the best starting points that exist today. Opportunities to refine these patterns, and find more, are cer-
tainly there. We’re sure that once you understand the concept of patterns, you will begin to see them
everywhere and they will become an essential part of your vocabulary as a programmer.

FOR PROFESSIONAL PROGRAMMERS
Regardless of whether you have done some or no parallel programming, this book will help make
“Thinking Parallel” an intuitive part of programming for you. We also hope that you will gain an
appreciation for patterns as a way to structure your programs. Good patterns will also help you write
good programs, since they encapsulate best known methods for achieving scalable and efficient results.

Patterns are effective structures of computation and data access; however, patterns by themselves
are insufficient, since they are too abstact. Therefore, we also supply real example code to study. Part I
of this book covers the patterns and also has many examples, while Part II has several additional
examples.

We do not limit ourselves by using teaching languages in this book. We use proven programming
models that are already in serious industrial use by professional programmers around the world. Intel
Threading Building Blocks (TBB) and OpenMP are the two most popular models in use today, and are
heavily used in this book. Additionally, Intel Cilk Plus and OpenCL have gained sufficient recognition

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 05-int-xxiii-xxvi-9780124159938 — 2012/6/6 — 12:45 — Page xxv — #3

Preliminaries xxv

and usage to be worth exploring as well. You should also look at our web site—we hope to add addi-
tional examples there that would not fit in the book, and you can also download the source code for all
examples in the book from that site.

A deep knowledge of computer architecture is not needed to understand this book and use the
patterns we present. We have purposefully left out any in-depth discussion of parallel computer archi-
tecture, except for a short summary of some key points. Instead of teaching computer architecture
and then parallel programming, we use patterns to lead to programming styles that map well onto
real parallel hardware. Performance matters, so we make sure that our patterns and our discussion of
them include the information needed to get excellent results. We do not discourage learning computer
architecture, but we feel that it should not be a requirement to learn programming.

We know that vocabulary is important, so we have assembled a lengthy glossary that can be very
helpful to review in order to more quickly be able to decipher parallel programming jargon.

USING CODE EXAMPLES
While the book itself is copyrighted, all example programming code found in this book is provided
without any restrictions on reuse. You may use this code freely in your own projects, commercial or
otherwise. However, we do not provide any promise or warrantee of any kind. The examples can all
be downloaded at

http://parallelbook.com/download

where additional information on our code reuse policy can also be found.
We appreciate, but do not require, attribution. This is true of our teaching materials as well, which

are are also available on the same web site. An attribution usually includes the title, author, publisher,
and ISBN. For example:

Structured Parallel Programming by Michael McCool, Arch Robison, and James Reinders, copyright
2012, published by Morgan Kaufmann, ISBN 978-0-124-15993-8.

If you have any questions, feel free to contact us at

permissions@parallelbook.com

HOW TO CONTACT US
We invite you to share your own insights when using our book. We can be reached via our web site or
via email at

http://parallelbook.com
authors@parallelbook.com

This web site provides supplemental material including a list of errata, the ability to download all
examples, and additional teaching materials. It is also our intention to distribute additional examples at
this site, since limited space in this book did not permit us to include as many examples as we would
have liked.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 05-int-xxiii-xxvi-9780124159938 — 2012/6/6 — 12:45 — Page xxvi — #4

xxvi Preliminaries

To comment or ask technical questions about this book, send email to:

bookquestions@parallelbook.com

For more information from the publisher Morgan Kaufmann, please visit their web site at

http://mkp.com

ACKNOWLEDGMENTS
This book would not have been possible without the dedicated people at Intel who have tirelessly
worked to produce great technology and products. Their passion to help others also helped us produce
the best book we could.

Much of the discussion for best practices for OpenMP in the desktop environment was derived
from an analysis by Jay Hoeflinger and Brian Bliss of Intel.

The Bzip2 example code is derived from Julian Seward’s Bzip2 implementation, available at

http://bzip.org

The TBB code for Bzip2 descends from a port done by Hyojin Sung while she was an intern
at Intel. The cache-oblivious stencil code (Section 10.5) was adapted from code by Matteo Frigo
and Yuxiong He.

An early draft of this book was reviewed by Jim Cownie, Mark Davis, Michèle Delsol, Stefanus
Du Toit, Kathy A. Farrel, Balaji Iyer, Anton Malakhov, Tim Mattson, Priya Natarajan, John Pieper,
Krishna Ramkumar, Elizabeth Reinders, Jim Sukha, Peter Tang, Barry Tannenbaum, Michael Voss,
Bob Weems, Barry Wilkinson, and Terry Wilmarth. Their feedback was incredibly helpful and vastly
improved the book. We would like to especially thank Tim Mattson who provided some additional
OpenCL and OpenMP examples.

We all wish to thank our families and friends who put up with the wrinkles, early mornings, and
late nights, sometimes simultaneous, that book writing brought into our lives.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 1 — #1

CHAPTER

Introduction 1
All computers are now parallel. Specifically, all modern computers support parallelism in hardware
through at least one parallel feature, including vector instructions, multithreaded cores, multicore
processors, multiple processors, graphics engines, and parallel co-processors. This statement does
not apply only to supercomputers. Even the smallest modern computers, such as phones, support many
of these features. It is also necessary to use explicit parallel programming to get the most out of such
computers. Automatic approaches that attempt to parallelize serial code simply cannot deal with the
fundamental shifts in algorithm structure required for effective parallelization.

Since parallel programming is no longer a special topic applicable to only select computers, this
book is written with a simple premise: Parallel programming is programming. The evolution of com-
puters has made parallel programming mainstream. Recent advances in the implementation of efficient
parallel programs need to be applied to mainstream applications.

We explain how to design and implement efficient, reliable, and maintainable programs, in C and
C++, that scale performance for all computers. We build on skills you already have, but without
assuming prior knowledge of parallelism. Computer architecture issues are introduced where their
impact must be understood in order to design an efficient program. However, we remain consistently
focused on programming and the programmer’s perspective, not on the hardware. This book is for
programmers, not computer architects.

We approach the problem of practical parallel programming through a combination of patterns and
examples. Patterns are, for our purposes in this book, valuable algorithmic structures that are com-
monly seen in efficient parallel programs. The kinds of patterns we are interested in are also called
“algorithm skeletons” since they are often used as fundamental organizational principles for algo-
rithms. The patterns we will discuss are expressions of the “best known solutions” used in effective
and efficient parallel applications. We will discuss patterns both “from the outside,” as abstractions,
and “from the inside,” when we discuss efficient implementation strategies. Patterns also provide a
vocabulary to design new efficient parallel algorithms and to communicate these designs to others. We
also include many examples, since examples show how these patterns are used in practice. For each
example, we provide working code that solves a specific, practical problem.

Higher level programming models are used for examples rather than raw threading interfaces and
vector intrinsics. The task of programming (formerly known as “parallel programming”) is presented
in a manner that focuses on capturing algorithmic intent. In particular, we show examples that are
appropriately freed of unnecessary distortions to map algorithms to particular hardware. By focusing

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00001-3
c© 2012 Elsevier Inc. All rights reserved.

1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 2 — #2

2 CHAPTER 1 Introduction

on the most important factors for performance and expressing those using models with low-overhead
implementations, this book’s approach to programming can achieve efficiency and scalability on a
range of hardware.

The goal of a programmer in a modern computing environment is not just to take advantage of
processors with two or four cores. Instead, it must be to write scalable applications that can take
advantage of any amount of parallel hardware: all four cores on a quad-core processor, all eight cores
on octo-core processors, thirty-two cores in a multiprocessor machine, more than fifty cores on new
many-core processors, and beyond. As we will see, the quest for scaling requires attention to many
factors, including the minimization of data movement, serial bottlenecks (including locking), and other
forms of overhead. Patterns can help with this, but ultimately it is up to the diligence and intelligence
of the software developer to produce a good algorithm design.

The rest of this chapter first discusses why it is necessary to “Think Parallel” and presents recent
hardware trends that have led to the need for explicit parallel programming. The chapter then discusses
the structured, pattern-based approach to programming used throughout the book. An introduction to
the programming models used for examples and some discussion of the conventions and organization
of this book conclude the chapter.

1.1 THINK PARALLEL
Parallelism is an intuitive and common human experience. Everyone reading this book would expect
parallel checkout lanes in a grocery store when the number of customers wishing to buy groceries
is sufficiently large. Few of us would attempt construction of a major building alone. Programmers
naturally accept the concept of parallel work via a group of workers, often with specializations.

Serialization is the act of putting some set of operations into a specific order. Decades ago,
computer architects started designing computers using serial machine languages to simplify the pro-
gramming interface. Serial semantics were used even though the hardware was naturally parallel,
leading to something we will call the serial illusion: a mental model of the computer as a machine that
executes operations sequentially. This illusion has been successfully maintained over decades by com-
puter architects, even though processors have become more and more parallel internally. The problem
with the serial illusion, though, is that programmers came to depend on it too much.

Current programming practice, theory, languages, tools, data structures, and even most algorithms
focus almost exclusively on serial programs and assume that operations are serialized. Serialization
has been woven into the very fabric of the tools, models, and even concepts all programmers use.
However, frequently serialization is actually unnecessary, and in fact is a poor match to intrinsically
parallel computer hardware. Serialization is a learned skill that has been over-learned.

Up until the recent past, serialization was not a substantial problem. Mainstream computer archi-
tectures even in 2002 did not significantly penalize programmers for overconstraining algorithms with
serialization. But now—they do. Unparallelized applications leave significant performance on the table
for current processors. Furthermore, such serial applications will not improve in performance over
time. Efficiently parallelized applications, in contrast, will make good use of current processors and
should be able to scale automatically to even better performance on future processors. Over time, this
will lead to large and decisive differences in performance.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 3 — #3

1.1 Think Parallel 3

Serialization has its benefits. It is simple to reason about. You can read a piece of serial code
from top to bottom and understand the temporal order of operations from the structure of the source
code. It helps that modern programming languages have evolved to use structured control flow to
emphasize this aspect of serial semantics. Unless you intentionally inject randomness, serial programs
also always do the same operations in the same order, so they are naturally deterministic. This means
they give the same answer every time you run them with the same inputs. Determinism is useful for
debugging, verification, and testing. However, deterministic behavior is not a natural characteristic of
parallel programs. Generally speaking, the timing of task execution in parallel programs, in particular
the relative timing, is often non-deterministic. To the extent that timing affects the computation, parallel
programs can easily become non-deterministic.

Given that parallelism is necessary for performance, it would be useful to find an effective approach
to parallel programming that retains as many of the benefits of serialization as possible, yet is also
similar to existing practice.

In this book, we propose the use of structured patterns of parallelism. These are akin to the patterns
of structured control flow used in serial programming. Just as structured control flow replaced the use of
goto in most programs, these patterns have the potential to replace low-level and architecture-specific
parallel mechanisms such as threads and vector intrinsics. An introduction to the pattern concept and
a summary of the parallel patterns presented in this book are provided in Section 1.4. Patterns provide
structure but have an additional benefit: Many of these patterns avoid non-determinism, with a few
easily visible exceptions where it is unavoidable or necessary for performance. We carefully discuss
when and where non-determinism can occur and how to avoid it when necessary.

Even though we want to eliminate unnecessary serialization leading to poor performance, current
programming tools still have many serial traps built into them. Serial traps are constructs that make,
often unnecessary, serial assumptions. Serial traps can also exist in the design of algorithms and in the
abstractions used to estimate complexity and performance. As we proceed through this book, starting
in Section 1.3.3, we will describe several of these serial traps and how to avoid them. However, serial
semantics are still useful and should not be discarded in a rush to eliminate serial traps. As you will see,
several of the programming models to be discussed are designed around generalizations of the seman-
tics of serial programming models in useful directions. In particular, parallel programming models
often try to provide equivalent behavior to a particular serial ordering in their parallel constructs, and
many of the patterns we will discuss have serial equivalents. Using these models and patterns makes
it easier to reason about and debug parallel programs, since then at least some of the nice properties of
serial semantics can be retained.

Still, effective programming of modern computers demands that we regain the ability to “Think
Parallel.” Efficient programming will not come when parallelism is an afterthought. Fortunately, we
can get most of “Think Parallel” by doing two things: (1) learning to recognize serial traps, some of
which we examine throughout the remainder of this section, and (2) programming in terms of parallel
patterns that capture best practices and using efficient implementations of these patterns.

Perhaps the most difficult part of learning to program in parallel is recognizing and avoiding serial
traps—assumptions of serial ordering. These assumptions are so commonplace that often their exis-
tence goes unnoticed. Common programming idioms unnecessarily overconstrain execution order,
making parallel execution difficult. Because serialization had little effect in a serial world, serial
assumptions went unexamined for decades and many were even designed into our programming
languages and tools.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 4 — #4

4 CHAPTER 1 Introduction

We can motivate the map pattern (see Chapter 4) and illustrate the shift in thinking from serialized
coding styles to parallel by a simple but real example.

For example, searching content on the World Wide Web for a specific phrase could be looked at
as a serial problem or a parallel problem. A simplisitic approach would be to code such a search as
follows:

for (i = 0; i < number_web_sites; ++i) {
search(searchphrase, website[i]);

}

This uses a loop construct, which is used in serial programming as an idiom to “do something with a
number of objects.” However, what it actually means is “do something with a number of objects one
after the other.”

Searching the web as a parallel problem requires thinking more like

parallel_for (i = 0; i < number_web_sites; ++i) {
search(searchphrase, website[i]);

}

Here the intent is the same—“do something with a number of objects”—but the constraint that these
operations are done one after the other has been removed. Instead, they may be done simultaneously.

However, the serial semantics of the original for loop allows one search to leave information for
the next search to use if the programmer so chooses. Such temptation and opportunity are absent in
the parallel_for which requires each invocation of the search algorithm to be independent of other
searches. That fundamental shift in thinking, to using parallel patterns when appropriate, is critical
to harness the power of modern computers. Here, the parallel_for implements the map pattern
(described in Chapter 4). In fact, different uses of iteration (looping) with different kinds of dependen-
cies between iterations correspond to different parallel patterns. To parallelize serial programs written
using iteration constructs you need to recognize these idioms and convert them to the appropriate
parallel structure. Even better would be to design programs using the parallel structures in the first
place.

In summary, if you do not already approach every computer problem with parallelism in your
thoughts, we hope this book will be the start of a new way of thinking. Consider ways in which you
may be unnecessarily serializing computations. Start thinking about how to organize work to expose
parallelism and eliminate unnecessary ordering constraints, and begin to “Think Parallel.”

1.2 PERFORMANCE
Perhaps the most insidious serial trap is our affection for discussing algorithm performance with all
attention focused on the minimization of the total amount of computational work. There are two prob-
lems with this. First of all, computation may not be the bottleneck. Frequently, access to memory or
(equivalently) communication may constrain performance. Second, the potential for scaling perfor-
mance on a parallel computer is constrained by the algorithm’s span. The span is the time it takes to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 5 — #5

1.2 Performance 5

perform the longest chain of tasks that must be performed sequentially. Such a chain is known as a
critical path, and, because it is inherently sequential, it cannot be sped up with parallelism, no matter
how many parallel processors you have. The span is a crucial concept which will be used throughout
the book. Frequently, getting improved performance requires finding an alternative way to solve a
problem that shortens the span.

This book focuses on the shared memory machine model, in which all parts of application have
access to the same shared memory address space. This machine model makes communication implicit:
It happens automatically when one worker writes a value and another one reads it. Shared memory
is convenient but can hide communication and can also lead to unintended communication. Unfortu-
nately, communication is not free, nor is its cost uniform. The cost in time and energy of communication
varies depending upon the location of the worker. The cost is minimal for lanes of a vector unit (a few
instructions), relatively low for hardware threads on the same core, more for those sharing an on-chip
cache memory, and yet higher for those in different sockets.

Fortunately, there is a relatively simple abstraction, called locality, that captures most of these cost
differences. The locality model asserts that memory accesses close together in time and space (and
communication between processing units that are close to each other in space) are cheaper than those
that are far apart. This is not completely true—there are exceptions, and cost is non-linear with respect
to locality—but it is better than assuming that all memory accesses are uniform in cost. Several of
the data access patterns in this book are used to improve locality. We also describe several pitfalls in
memory usage that can hurt performance, especially in a parallel context.

The concept of span was previously mentioned. The span is the critical path or, equivalently, the
longest chain of operations. To achieve scaling, minimizing an algorithm’s span becomes critical.
Unsurprisingly, parallel programming is simplest when the tasks to be done are completely indepen-
dent. In such cases, the span is just the longest task and communication is usually negligible (not zero,
because we still have to check that all tasks are done). Parallel programming is much more challeng-
ing when tasks are not independent, because that requires communication between tasks, and the span
becomes less obvious.

Span determines a limit on how fast a parallel algorithm can run even given an infinite number of
cores and infinitely fast communication. As a simple example, if you make pizza from scratch, having
several cooks can speed up the process. Instead of preparing dough, sauce, and topping one at a time
(serially), multiple cooks can help by mixing the dough and preparing the toppings in parallel. But the
crust for any given pizza takes a certain amount of time to bake. That time contributes to the span of
making a single pizza. An infinite number of cooks cannot reduce the cooking time, even if they can
prepare the pizza faster and faster before baking. If you have heard of Amdahl’s Law giving an upper
bound on scalability, this may sound familiar. However, the concept of span is more precise, and gives
tighter bounds on achievable scaling. We will actually show that Amdahl was both an optimist and
a pessimist. Amdahl’s Law is a relatively loose upper bound on scaling. The use of the work-span
model provides a tighter bound and so is more realistic, showing that Amdahl was an optimist. On the
other hand, the scaling situation is usually much less pessimistic if the size of the problem is allowed
to grow with the number of cores.

When designing a parallel algorithm, it is actually important to pay attention to three things:

• The total amount of computational work.
• The span (the critical path).
• The total amount of communication (including that implicit in sharing memory).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 6 — #6

6 CHAPTER 1 Introduction

(a)

A

B

C

D

A

B

C

D

A B C D

8-way parallel

T
im

e
(b) (c) (d)

A A B
B

C
C D

D

FIGURE 1.1

Independent software tasks can be run in parallel on multiple workers. In theory, this can give a linear
speedup. In reality, this is a gross oversimplification. It may not be possible to uniformly subdivide an
application into independent tasks, and there may be additional overhead and communication resulting from
the subdivision.

(a)

A

B C

D A B C D

(b)

FIGURE 1.2

Tasks running in parallel: some more complex situations. (a) Tasks can be arranged to run in parallel as long
as dependencies are honored. (b) Tasks may take different amounts of time to execute. Both of these issues
can increase the span and reduce scalability.

In order for a program to scale, span and communication limitations are as important to understand and
minimize as the total computational work.

A few examples are probably helpful at this point. In Figure 1.1a, a serial program with no paral-
lelism simply performs tasks A, B, C, and D in sequence. As a convention, the passage of time will be
shown in our diagrams as going from top to bottom. We highlight this here with an arrow showing the
progress of time, but will generally just assume this convention elsewhere in the book.

A system with two parallel workers might divide up work so one worker performs tasks A and B
and the other performs tasks C and D, as shown in Figure 1.1b. Likewise, a four-way system might
perform tasks A, B, C, and D, each using separate resources as shown in Figure 1.1c. Maybe you could
even contemplate subdividing the tasks further as shown in Figure 1.1d for eight workers. However,
this simple model hides many challenges. What if the tasks depend on each other? What if some tasks
take longer to execute than others? What if subdividing the tasks into subtasks requires extra work?
What if some tasks cannot be subdivided? What about the costs for communicating between tasks?

If the tasks were not independent we might have to draw something like Figure 1.2a. This illustra-
tion shows that tasks A and D are independent of each other, but that tasks B and C have a dependency
on A completing first. Arrows such as these will be used to show dependencies in this book, whether
they are data or control dependencies. If the individual tasks cannot be subdivided further, then the
running time of the program will be at least the sum of the running time of tasks A and B or the
sum of the running time of tasks A and C, whichever is longer. This is the span of this parallel algo-
rithm. Adding more workers cannot make the program go faster than the time it takes to execute the
span.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 7 — #7

1.3 Motivation: Pervasive Parallelism 7

In most of this book, the illustrations usually show tasks as having equal size. We do not mean to
imply this is true; we do it only for ease of illustration. Considering again the example in Figure 1.1c,
even if the tasks are completely independent, suppose task A takes longer to run than the others. Then
the illustration might look like Figure 1.2b. Task A alone now determines the span.

We have not yet considered limitations due to communication. Suppose the tasks in a parallel pro-
gram all compute a partial result and they need to be combined to produce a final result. Suppose that
this combination is simple, such as a summation. In general, even such a simple form of communi-
cation, which is called a reduction, will have a span that is logarithmic in the number of workers
involved.

Effectively addressing the challenges of decomposing computation and managing communications
are essential to efficient parallel programming. Everything that is unique to parallel programming will
be related to one of these two concepts. Effective parallel programming requires effective management
of the distribution of work and control of the communication required. Patterns make it easier to reason
about both of these. Efficient programming models that support these patterns, that allow their efficient
implementation, are also essential.

For example, one such implementation issue is load balancing, the problem of ensuring that all pro-
cessors are doing their fair share of the work. A load imbalance can result in many processors idling
while others are working, which is obviously an inefficient use of resources. The primary program-
ming models used in this book, Cilk Plus and TBB, both include efficient work-stealing schedulers to
efficiently and automatically balance the load. Basically, when workers run out of things to do, they
actively find new work, without relying on a central manager. This decentralized approach is much
more scalable than the use of a centralized work-list. These programming models also provide mech-
anisms to subdivide work to an appropriate granularity on demand, so that tasks can be decomposed
when more workers are available.

1.3 MOTIVATION: PERVASIVE PARALLELISM
Parallel computers have been around for a long time, but several recent trends have led to increased
parallelism at the level of individual, mainstream personal computers. This section discusses these
trends. This section also discusses why taking advantage of parallel hardware now generally requires
explicit parallel programming.

1.3.1 Hardware Trends Encouraging Parallelism
In 1965, Gordon Moore observed that the number of transistors that could be integrated on silicon
chips were doubling about every 2 years, an observation that has become known as Moore’s Law.
Consider Figure 1.3, which shows a plot of transistor counts for Intel microprocessors. Two rough data
points at the extremes of this chart are on the order of 1000 (103) transistors in 1971 and about 1000
million (109) transistors in 2011. This gives an average slope of 6 orders of magnitude over 40 years,
a rate of 0.15 orders of magnitude every year. This is actually about 1.41× per year, or 1.995× every
2 years. The data shows that Moore’s original prediction of 2× per year has been amazingly accurate.
While we only give data for Intel processors, processors from other vendors have shown similar trends.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 8 — #8

8 CHAPTER 1 Introduction

10000

1000

100

10

1

0.1

0.01

0.001
19751970 1980 1985

Processor transistor counts

1990 1995 2000 2005 2010

Million transistors

FIGURE 1.3

Moore’s Law, which states roughly that the number of transistors that can be integrated on a chip will double
about every 2 years, continues to this day (log scale). The straight line on this graph, which is on a logarithmic
scale, demonstrates exponential growth in the total number of transistors in a processor from 1970 to the
present. In more recent times, with the advent of multicore processors, different versions of processors with
different cache sizes and core counts have led to a greater diversity in processor sizes in terms of transistor
counts.

This exponential growth has created opportunities for more and more complex designs for micro-
processors. Until 2004, there was also a rise in the switching speed of transistors, which translated
into an increase in the performance of microprocessors through a steady rise in the rate at which their
circuits could be clocked. Actually, this rise in clock rate was also partially due to architectural changes
such as instruction pipelining, which is one way to automatically take advantage of instruction-level
parallelism. An increase in clock rate, if the instruction set remains the same (as has mostly been
the case for the Intel architecture), translates roughly into an increase in the rate at which instruc-
tions are completed and therefore an increase in computational performance. This increase is shown
in Figure 1.4. Actually, many of the increases in processor complexity have also been to increase
performance, even on single-core processors, so the actual increase in performance has been greater
than this.

From 1973 to 2003, clock rates increased by three orders of magnitude (1000×), from about 1 MHz
in 1973 to 1 GHz in 2003. However, as is clear from this graph clock rates have now ceased to grow
and are now generally in the 3 GHz range. In 2005, three factors converged to limit the growth in
performance of single cores and shift new processor designs to the use of multiple cores. These are
known as the “three walls”:

Power wall: Unacceptable growth in power usage with clock rate.
Instruction-level parallelism (ILP) wall: Limits to available low-level parallelism.
Memory wall: A growing discrepancy of processor speeds relative to memory speeds.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 9 — #9

1.3 Motivation: Pervasive Parallelism 9

Processor clock rates

19751970

10

1

0.1

0.01

0.001

0.0001
1980 1985 1990 1995 2000 2005 2010

GHz

FIGURE 1.4

Growth of processor clock rates over time (log scale). This graph shows a dramatic halt by 2005 due to the
power wall, although current processors are available over a diverse range of clock frequencies.

The power wall results because power consumption (and heat generation) increases non-linearly as
the clock rate increases. Increasing clock rates any further will exceed the power density that can be
dealt with by air cooling, and also results in power-inefficient computation.

The second wall is the instruction-level parallelism (ILP) wall. Many programmers would like
parallelization to somehow be done automatically. The fact is that automatic parallelization is already
being done at the instruction level, and has been done for decades, but has reached its limits. Hardware
is naturally parallel, and modern processors typically include a large amount of circuitry to extract
available parallelism from serial instruction streams. For example, if two nearby instructions do not
depend on each other, modern processors can often start them both at the same time, a technique
called superscalar instruction issue. Some processors can issue up to six instructions at the same
time (an example being the POWER2 architecture), but this is about the useful limit for most pro-
grams on real processors. Analysis of large code bases show that on average there is not much more
available superscalar parallelism at the instruction level than this [BYP+91, JW89, RDN93, TEL95].
More specifically, more parallelism may be available, but it is bursty or otherwise hard to use in a
sustained way by real processors with finite resources. A related technique is Very Large Instruc-
tion Word (VLIW) processing, in which the analysis of which instructions to execute in parallel is
done in advance by the compiler. However, even with the help of offline program analysis, it is dif-
ficult to find significant sustained parallelism in most programs [HF99] without diminishing returns
on hardware investments. Modern processors also use pipelining, in which many operations are bro-
ken into a sequence of stages so that many instructions can be processed at once in an assembly-line
fashion, which can greatly increase the overall instruction processing throughput of a processor. How-
ever, pipelining is accomplished by reducing the amount of logic per stage to reduce the time between
clocked circuits, and there is a practical limit to the number of stages into which instruction processing

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 10 — #10

10 CHAPTER 1 Introduction

can be decomposed. Ten stages is about the maximum useful limit, although there have been processors
with 31 stages [DF90]. It is even possible for a processor to issue instructions speculatively, in order
to increase parallelism. However, since speculation results in wasted computation it can be expensive
from a power point of view. Modern processors do online program analysis, such as maintaining branch
history tables to try to increase the performance of speculative techniques such as branch prediction
and prefetching, which can be very effective, but they themselves take space and power, and programs
are by nature not completely predictable. In the end, ILP can only deliver constant factors of speedup
and cannot deliver continuously scaling performance over time.

Programming has long been done primarily as if computers were serial machines. Meanwhile,
computer architects (and compiler writers) worked diligently to find ways to automatically extract
parallelism, via ILP, from their code. For 40 years, it was possible to maintain this illusion of a serial
programming model and write reasonably efficient programs while largely ignoring the true parallel
nature of hardware. However, the point of decreasing returns has been passed with ILP techniques, and
most computer architects believe that these techniques have reached their limit. The ILP wall reflects
the fact that the automatically extractable low-level parallelism has already been used up.

The memory wall results because off-chip memory rates have not grown as fast as on-chip compu-
tation rates. This is due to several factors, including power and the number of pins that can be easily
incorporated into an integrated package. Despite recent advances, such as double-data-rate (DDR)
signaling, off-chip communication is still relatively slow and power-hungry. Many of the transistors
used in today’s processors are for cache, a form of on-chip memory that can help with this problem.
However, the performance of many applications is fundamentally bounded by memory performance,
not compute performance. Many programmers have been able to ignore this due to the effectiveness
of large caches for serial processors. However, for parallel processors, interprocessor communication
is also bounded by the memory wall, and this can severely limit scalability. Actually, there are two
problems with memory (and communication): latency and bandwidth. Bandwidth (overall data rate)
can still be scaled in several ways, such as optical interconnections, but latency (the time between
when a request is submitted and when it is satisfied) is subject to fundamental limits, such as the
speed of light. Fortunately, as discussed later in Section 2.5.9, latency can be hidden—given sufficient
additional parallelism, above and beyond that required to satisfy multiple computational units. So the
memory wall has two effects: Algorithms need to be structured to avoid memory access and commu-
nication as much as possible, and fundamental limits on latency create even more requirements for
parallelism.

In summary, in order to achieve increasing performance over time for each new processor generation,
you cannot depend on rising clock rates, due to the power wall. You also cannot depend on automatic
mechanisms to find (more) parallelism in naı̈ve serial code, due to the ILP wall. To achieve higher
performance, you now have to write explicitly parallel programs. And finally, when you write these
parallel programs, the memory wall means that you also have to seriously consider communication and
memory access costs and may even have to use additional parallelism to hide latency.

Instead of using the growing number of transistors predicted by Moore’s Law for ways to maintain
the ‘‘serial processor illusion,” architects of modern processor designs now provide multiple mecha-
nisms for explicit parallelism. However, you must use them, and use them well, in order to achieve
performance that will continue to scale over time.

The resulting trend in hardware is clear: More and more parallelism at a hardware level will
become available for any application that is written to utilize it. However, unlike rising clock rates,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 11 — #11

1.3 Motivation: Pervasive Parallelism 11

non-parallelized application performance will not change without active changes in programming.
The “free lunch” [Sut05] of automatically faster serial applications through faster microprocessors
has ended. The new “free lunch” requires scalable parallel programming. The good news is that if you
design a program for scalable parallelism, it will continue to scale as processors with more parallelism
become available.

1.3.2 Observed Historical Trends in Parallelism
Parallelism in hardware has been present since the earliest computers and reached a great deal of
sophistication in mainframe and vector supercomputers by the late 1980s. However, for mainstream
computation, miniaturization using integrated circuits started with designs that were largely devoid of
hardware parallelism in the 1970s. Microprocessors emerged first using simple single-threaded designs
that fit into an initially very limited transistor budget. In 1971, the Intel 4004 4-bit microprocessor
was introduced, designed to be used in an electronic calculator. It used only 2,300 transistors in its
design. The most recent Intel processors have enough transistors for well over a million Intel 4004
microprocessors. The Intel Xeon E7-8870 processor uses 2.6× 109 transistors, and the upcoming Intel
MIC architecture co-processor, known as Knights Corner, is expected to roughly double that. While a
processor with a few million cores is unlikely in the near future, this gives you an idea of the potential.

Hardware is naturally parallel, since each transistor can switch independently. As transistor counts
have been growing in accordance with Moore’s Law, as shown in Figure 1.3, hardware parallelism,
both implicit and explicit, gradually also appeared in microprocessors in many forms. Growth in
word sizes, superscalar capabilities, vector (SIMD) instructions, out-of-order execution, multithread-
ing (both on individual cores and on multiple cores), deep pipelines, parallel integer and floating point
arithmetic units, virtual memory controllers, memory prefetching, page table walking, caches, memory
access controllers, and graphics processing units are all examples of using additional transistors for
parallel capabilities.

Some variability in the number of transistors used for a processor can be seen in Figure 1.3, espe-
cially in recent years. Before multicore processors, different cache sizes were by far the driving factor
in this variability. Today, cache size, number of cores, and optional core features (such as vector units)
allow processors with a range of capabilities to be produced. This is an additional factor that we must
take into account when writing a program: Even at a single point in time, a program may need to run on
processors with different numbers of cores, different vector instruction sets and vector widths, different
cache sizes, and possibly different instruction latencies.

The extent to which software needed to change for each kind of additional hardware mechanism
using parallelism has varied a great deal. Automatic mechanisms requiring the least software change,
such as instruction-level parallelism (ILP), were generally introduced first. This worked well until
several issues converged to force a shift to explicit rather than implicit mechanisms in the multicore era.
The most significant of these issues was power. Figure 1.5 shows a graph of total power consumption
over time. After decades of steady increase in power consumption, the so-called power wall was hit
about 2004. Above around 130W, air cooling is no longer practical. Arresting power growth required
that clock rates stop climbing. From this chart we can see that modern processors now span a large
range of power consumption, with the availability of lower power parts driven by the growth of mobile
and embedded computing.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 12 — #12

12 CHAPTER 1 Introduction

The resulting trend toward explicit parallelism mechanisms is obvious looking at Figure 1.6, which
plots the sudden rise in the number of hardware threads1 after 2004. This date aligns with the halt in the

19751970 1980 1985 1990 1995 2000 2005 2010

1000

100

10

1

0.1

Processor power (Watts)

Watts

FIGURE 1.5

Graph of processor total power consumption (log scale). The maximum power consumption of processors saw
steady growth for nearly two decades before the multicore era. The inability to dissipate heat with air cooling
not only brought this growth to a halt but increased interest in reduced power consumption, greater
efficiencies, and mobile operation created more options at lower power as well.

1975

Threads

Processor core and thread counts

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Cores

1970 1980 1985 1990 1995 2000 2005 2010

FIGURE 1.6

The number of cores and hardware threads per processor was one until around 2004, when growth in
hardware threads emerged as the trend instead of growth in clock rate.

1It is common to refer to hardware parallelism as processor cores and to stress multicore. But it is more precise to speak of
hardware threads, since some cores can execute more than one thread at a time. We show both in the graph.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 13 — #13

1.3 Motivation: Pervasive Parallelism 13

growth in clock rate. The power problem was arrested by adding more cores and more threads in each
core rather than increasing the clock rate. This ushered in the multicore era, but using multiple hard-
ware threads requires more software changes than prior changes. During this time vector instructions
were added as well, and these provide an additional, multiplicative form of explicit parallelism. Vector
parallelism can be seen as an extension of data width parallelism, since both are related to the width
of hardware registers and the amount of data that can be processed with a single instruction. A measure
of the growth of data width parallelism is shown in Figure 1.7. While data width parallelism growth
predates the halt in the growth of clock rates, the forces driving multicore parallelism growth are also
adding motivation to increase data width. While some automatic parallelization (including vector-
ization) is possible, it has not been universally successful. Explicit parallel programming is generally
needed to fully exploit these two forms of hardware parallelism capabilities.

Additional hardware parallelism will continue to be motivated by Moore’s Law coupled with power
constraints. This will lead to processor designs that are increasingly complex and diverse. Proper
abstraction of parallel programming methods is necessary to be able to deal with this diversity and
to deal with the fact that Moore’s Law continues unabated, so the maximum number of cores (and the
diversity of processors) will continue to increase.

Counts of the number of hardware threads, vector widths, and clock rates are only indirect measures
of performance. To get a more accurate picture of how performance has increased over time, looking at

1

2

4

8

16

32

64

128

256

512

1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012

Width

FIGURE 1.7

Growth in data processing widths (log scale), measured as the number of bits in registers over time. At first the
width of scalar elements grew, but now the number of elements in a register is growing with the addition of
vector (SIMD) instructions that can specify the processing of multiple scalar elements at once.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 14 — #14

14 CHAPTER 1 Introduction

benchmarks can be helpful. Unfortunately, long-term trend analysis using benchmarks is difficult due
to changes in the benchmarks themselves over time.

We chose the industry standard CPU2006 SPEC benchmarks. Unfortunately, these are exclusively
from the multicore era as they only provide data from 2006 [Sub06]. In preparing the graphs in this
section of our book, we also choose to show only data related to Intel processors. Considering only one
vendor avoids a certain blurring effect that occurs when data from multiple vendors is included. Similar
trends are observable for processors from other vendors, but the trends are clearer when looking at data
from a single vendor.

Some discussion of the nature of the CPU2006 benchmarks is important so the results can be prop-
erly understood. First, these benchmarks are not explicitly parallelized, although autoparallelization
is allowed. Autoparallelization must be reported, however, and may include the use of already-
parallelized libraries. It is however not permitted to change the source code of these benchmarks,
which prohibits the use of new parallel programming models. In fact, even standardized OpenMP
directives, which would allow explicit parallelization, must be explicitly disabled by the SPEC run
rules. There are SPEC benchmarks that primarily stress floating point performance and other bench-
marks that primarily stress integer and control flow performance. The FP and INT designations indicate
the floating-point and integer subsets. INT benchmarks usually also include more complex control flow.
The “rate” designations indicate the use of multiple copies of the benchmarks on computers with mul-
tiple hardware threads in order to measure throughput. These “rate” (or throughput) results give some
idea of the potential for speedup from parallelism, but because the benchmark instances are completely
independent these measurements are optimistic.

Figures 1.8, 1.9, and 1.10 show SPEC2006 benchmark results that demonstrate what has happened
to processor performance during the multicore era (since 2006). Figure 1.8 shows that performance
per Watt has improved considerably for entire processors as the core count has grown. Further-
more, on multiprocessor computers with larger numbers of cores, Figure 1.9 shows that throughput
(the total performance of multiple independent applications) has continued to scale to considerably
higher performance. However, Figure 1.10 shows that the performance of individual benchmarks has
remained nearly flat, even though autoparallelization is allowed by the SPEC process. The inescapable
conclusion is that, while overall system performance is increasing, increased performance of single
applications requires explicit parallelism in software.

1.3.3 Need for Explicit Parallel Programming
Why can’t parallelization be done automatically? Sometimes it can be, but there are many difficul-
ties with automatically parallelizing code that was originally written under the assumption of serial
execution, and in languages designed under that assumption.

We will call unnecessary assumptions deriving from the assumption of serial execution serial traps.
The long-sustained serial illusion has caused numerous serial traps to become built into both our tools
and ways of thinking. Many of these force serialization due to over-specification of the computation.
It’s not that programmers wanted to force serialization; it was simply assumed. Since it was convenient
and there was no penalty at the time, serial assumptions have been incorporated into nearly everything.
We will give several examples in this section. We call these assumptions “traps” because they cause
modern systems to be unable to use parallelism even though the algorithm writer did not explicitly
intend to forbid it.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 15 — #15

1.3 Motivation: Pervasive Parallelism 15

2007 2008 2009 2010 20112006

250
Benchmarks per wattFP rate per watt

INT rate per watt

INT per watt

FP per watt
200

150

100

50

0

FIGURE 1.8

Performance per Watt using data derived from SPEC2006 benchmarks and processor (not system) power
ratings from Intel corporation. The FP per Watt and INT per Watt give single benchmark performance.
Autoparallelization is allowed but for the most part these benchmarks are not parallelized. The FP rate and INT
rate per Watt results are based on running multiple copies of the benchmark on a single processor and are
meant to measure throughput. The FP and INT results have not increased substantially over this time period,
but the FP rate and INT rate results have. This highlights the fact that performance gains in the multicore era
are dominated by throughput across cores, not from increased performance of a core.

2007 2008 2009 2010 20112006
0

10

20

30

40

50

60

70

80

90
FP rate per core

INT rate per core

INT

FP

Normalized benchmark ratings

FIGURE 1.9

Performance in the multicore era, on a per hardware thread basis, does not show a strong and obvious trend
as it did in the single-core megahertz era. Data derived from SPEC2006 benchmarks and processor (not
system) power ratings, but with rate results divided by the number of parallel benchmark instances (hardware
threads) used.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 16 — #16

16 CHAPTER 1 Introduction

2007 2008 2009 2010 20112006

20000

15000

10000

5000

FP rate per core

INT rate per core

INT

FP

Total INT rate

Total FP rate

0

Some benchmark ratings

FIGURE 1.10

SPEC2006 performance on multiprocessor computers in the multicore era. Large machines can yield overall
systems performance that dwarfs the per core performance numbers (note the two orders of magnitude shift in
Y-axis scale vs. Figure 1.9). Data derived from SPEC benchmark archives.

Accidents of language design can make it difficult for compilers to discover parallelism or prove
that it is safe to parallelize a region of code. Compilers are good at “packaging” parallelism they
see even if it takes many detailed steps to do so. Compilers are not reliable at discovering paral-
lelism opportunities. Frequently, the compiler cannot disprove some minor detail that (rarely) might
be true that would make parallelism impossible. Then, to be safe, in such a situation it cannot
parallelize.

Take, for example, the use of pointers. In C and C++, pointers allow the modification of any region
of memory, at any time. This is very convenient and maps directly onto the underlying machine lan-
guage mechanism (itself an abstraction of the hardware. . .) for memory access. With serial semantics,
even with this freedom it is still clear what the state of memory will be at any time. With parallel
hardware, this freedom becomes a nightmare. While great strides have been made in automatic pointer
analysis, it is still difficult for a compiler in many situations to determine that the data needed for par-
allel execution will not be modified by some other part of the application at an inconvenient time, or
that data references do not overlap in a way that would cause different orders of execution to produce
different results.

Parallelism can also be hidden because serial control constructs, in particular loops, over-specify
ordering. Listing 1.1 through Listing 1.7 show a few other examples of hiding parallelism that are
common practice in programming languages that were not initially designed to allow explicit parallel
programming. Parallel programming models often provide constructs that avoid some of these con-
straints. For concreteness, in this section we will show several solutions in Cilk Plus that remove these
serial constraints and allow parallelism.

The straightforward C code in Listing 1.1 cannot be parallelized by a compiler in general because
the arrays a, b, and c might partially overlap, as in Listing 1.2. The possibility of overlap adds a serial

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 17 — #17

1.3 Motivation: Pervasive Parallelism 17

1 void
2 addme(int n, double a[n], double b[n], double c[n]) {
3 int i;
4 for (i = 0; i < n; ++i)
5 a[i] = b[i] + c[i];
6 }

LISTING 1.1

Add two vectors in C, with implied serial ordering.

1 double a[10];
2 a[0] = 1;
3 addme(9, a+1, a, a); // pointer arithmetic causing aliasing

LISTING 1.2

Overlapping (aliased) arguments in C. By calling the serial addme with overlapping arguments, this code fills a
with powers of two. Such devious but legal usage is probably unintended by the author of addme, but the
compiler does not know that.

1 void
2 addme(int n, double a[n], double b[n], double c[n]) {
3 a[:] = b[:] + c[:];
4 }

LISTING 1.3

Add two vectors using Cilk Plus array notation.

constraint, even if the programmer never intended to exploit it. Parallelization requires reordering, but
usually you want all the different possible orders to produce the same result.

A syntax that treats arrays as a whole, as shown in Listing 1.3, makes the parallelism accessible to
the compiler by being explicit. This Cilk Plus array notation used here actually allows for simpler code
than the loop shown in Listing 1.1, as well. However, use of this syntax also requires that the arrays
not be partially overlapping (see Section B.8.5), unlike the code in Listing 1.1. This additional piece of
information allows the compiler to parallelize the code.

Loops can specify different kinds of computations that must be parallelized in different ways.
Consider Listing 1.4. This is a common way to sum the elements of an array in C.

Each loop iteration depends on the prior iteration, and thus the iterations cannot be done in parallel.
However, if reordering floating-point addition is acceptable here, this loop can be both parallelized
and vectorized, as explained in Section 5.1. But the compiler alone cannot tell whether the serial
dependency was deliberate or just convenient. Listing 1.5 shows a way to convey parallel intent, both
to the compiler and a human maintainer. It specifies a parallel loop and declares mysum in a way that

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 18 — #18

18 CHAPTER 1 Introduction

1 double summe(int n, double a[n]) {
2 double mysum = 0;
3 int i;
4 for (i = 0; i < n; ++i)
5 mysum += a[i];
6 return mysum;
7 }

LISTING 1.4

An ordered sum creates a dependency in C.

1 double summe(int n, double a[n]) {
2 sum_reducer<double> mysum (0);
3 cilk_for (int i = 0; i < n; ++i)
4 mysum += a[i];
5 return mysum.get_value();
6 }

LISTING 1.5

A parallel sum, expressed as a reduction operation in Cilk Plus.

1 void callme() {
2 foo();
3 bar();
4 }

LISTING 1.6

Function calls with step-by-step ordering specified in C.

says that ordering the individual operations making up the sum is okay. This additional freedom allows
the system to choose an order that gives the best performance.

As a final example, consider Listing 1.6, which executes foo and bar in exactly that order. Suppose
that foo and bar are separately compiled library functions, and the compiler does not have access to
their source code. Since foo might modify some global variable that bar might depend on, and the
compiler cannot prove this is not the case, the compiler has to execute them in the order specified in
the source code.

However, suppose you modify the code to explicitly state that foo and bar can be executed in
parallel, as shown in Listing 1.7. Now the programmer has given the compiler permission to execute
these functions in parallel. It does not mean the system will execute them in parallel, but it now has the
option, if it would improve performance.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 19 — #19

1.4 Structured Pattern-Based Programming 19

1 void callme() {
2 cilk_spawn foo();
3 bar();
4 }

LISTING 1.7

Function calls with no required ordering in Cilk Plus.

Later on we will discuss the difference between mandatory parallelism and optional paral-
lelism. Mandatory parallelism forces the system to execute operations in parallel but may lead to poor
performance—for example, in the case of a recursive program generating an exponential number of
threads. Mandatory parallelism also does not allow for hierarchical composition of parallel software
components, which has a similar problem as recursion. Instead, the Cilk Plus cilk_spawn notation
simply identifies tasks that are opportunities for parallelism. It is up to the system to decide when,
where, and whether to use that parallelism. Conversely, when you use this notation you should not
assume that the two tasks are necessarily active simultaneously. Writing portable parallel code means
writing code that can deal with any order of execution—including serial ordering.

Explicit parallel programming constructs allow algorithms to be expressed without specifying unin-
tended and unnecessary serial constraints. Avoiding specifying ordering and other constraints when
they are not required is fundamental. Explicit parallel constructs also provide additional information,
such as declarations of independence of data and operations, so that the system implementing the pro-
gramming model knows that it can safely execute the specified operations in parallel. However, the
programmer now has to ensure that these additional constraints are met.

1.4 STRUCTURED PATTERN-BASED PROGRAMMING
History does not repeat itself, but it rhymes.

(attributed to Mark Twain)

In this book, we are taking a structured approach to parallel programming, based on patterns.
Patterns can be loosely defined as commonly recurring strategies for dealing with particular

problems. Patterns have been used in architecture [Ale77], natural language learning [Kam05], object-
oriented programming [GHJV95], and software architecture [BMR+96, SSRB00]. Others have also
applied patterns specifically to parallel software design [MAB+02, MSM04, MMS05], as we do here.
One notable effort is the OUR pattern language, an ongoing project to collaboratively define a set of
parallel patterns [Par11].

We approach patterns as tools, and we emphasize patterns that have proven useful as tools. As
such, the patterns we present codify practices and distill experience in a way that is reusable. In this
book, we discuss several prerequisites for achieving parallel scalability, including good data locality
and avoidance of overhead. Fortunately, many good strategies have been developed for achieving these
objectives.

We will focus on algorithm strategy patterns, as opposed to the more general design patterns
or system-specific implementation patterns. Design patterns emphasize high-level design processes.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 20 — #20

20 CHAPTER 1 Introduction

These are important but rather abstract. Conversely, implementation patterns address low-level details
that are often specific to a particular machine architecture, although occasionally we will discuss
important low-level issues if they seriously impact performance. Algorithm strategy patterns lie
in between these two extremes. They affect how your algorithms are organized, and so are also known
as algorithmic skeletons [Col89, AD07].

Algorithm strategy patterns have two parts: semantics and implementation. The semantics describe
how the pattern is used as a building block of an algorithm, and consists of a certain arrangement of tasks
and data dependencies. The semantic view is an abstraction that intentionally hides some details, such
as whether the tasks making up the pattern will actually run in parallel in a particular implementation.
The semantic view of a pattern is used when an algorithm is designed. However, patterns also need to
be implemented well on real machines. We will discuss several issues related to the implementation
of patterns, including (for example) granularity control and good use of cache. The key point is that
different implementation choices may lead to different performances, but not to different semantics.
This separation makes it possible to reason about the high-level algorithm design and the low-level
(and often machine-specific) details separately. This separation is not perfect; sometimes you will want
to choose one pattern over another based on knowledge of differences in implementation. That’s all
right. Abstractions exist to simplify and structure programming, not to obscure important information.

Algorithm strategy patterns tend to map onto programming model features as well, and so are use-
ful in understanding programming models. However, algorithm strategy patterns transcend particular
languages or programming models. They do not have to map directly onto a programming language
feature to be usable. Just as it is possible to use structured control flow in FORTRAN 66 by follow-
ing conventions for disciplined use of goto, it is possible to employ the parallel patterns described in
this book even in systems that do not directly support them. The patterns we present, summarized in
Figure 1.11, will occur (or be usable) in almost any sufficiently powerful parallel programming model,
and if used well should lead to well-organized and efficient programs with good scaling properties.
Numerous examples in this book show these patterns in practice. Like the case with structured control
flow in serial programming, structured parallel patterns simplify code and make it more understandable,
leading to greater maintainability.

Three patterns deserve special mention: nesting, map, and fork–join. Nesting means that patterns
can be hierarchically composed. This is important for modular programming. Nesting is extensively
used in serial programming for composability and information hiding, but is a challenge to carry
over into parallel programming. The key to implementing nested parallelism is to specify optional,
not mandatory, parallelism. The map pattern divides a problem into a number of uniform parts and
represents a regular parallelization. This is also known as embarrassing parallelism. The map pattern
is worth using whenever possible since it allows for both efficient parallelization and efficient vec-
torization. The fork–join pattern recursively subdivides a problem into subparts and can be used for
both regular and irregular parallelization. It is useful for implementing a divide-and-conquer strategy.
These three patterns also emphasize that in order to achieve scalable parallelization we should focus on
data parallelism: the subdivision of the problem into subproblems, with the number of subproblems
able to grow with the overall problem size.

In summary, patterns provide a common vocabulary for discussing approaches to problem solving
and allow reuse of best practices. Patterns transcend languages, programming models, and even com-
puter architectures, and you can use patterns whether or not the programming system you are using
explicitly supports a given pattern with a specific feature.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 22 — #22

22 CHAPTER 1 Introduction

Productivity: Expressive, composable, debuggable, and maintainable. Programming models should
be complete and it should be possible to directly and clearly express efficient implementations for a
suitable range of algorithms. Observability and predictability should make it possible to debug and
maintain programs.
Portability: Functionality and performance, across operating systems and compilers. Parallel
programming models should work on a range of targets, now and into the future.

In this book, we constrain all our examples to C and C++, and we offer the most examples in C++, since
that is the language in which many new mainstream performance-oriented applications are written. We
consider programming models that add parallelism support to the C and C++ languages and attempt to
address the challenges of performance, productivity, and portability.

We also limit ourselves to programming models available from Intel, although, as shown in
Figure 1.12, Intel actually supports a wide range of parallel programming approaches, including
libraries and standards such as OpenCL, OpenMP, and MPI. The two primary shared-memory parallel
programming models available from Intel are also the primary models used in this book:

Intel Threading Building Blocks (TBB): A widely used template library for C++ programmers to
address most C++ needs for parallelism. TBB supports an efficient task model. TBB is available as
a free, community-supported, open source version, as well as a functionally identical version with
commercial support available from Intel.
Intel Cilk Plus (Cilk Plus): Compiler extensions for C and C++ to support parallelism. Cilk Plus
has an efficient task model and also supports the explicit specification of vector parallelism through
a set of array notations and elemental functions. Cilk Plus has both open source and commercially
supported product options.

In the following, we will first discuss some desirable properties of parallel programming models,
then introduce the programming models used in this book.

Intel
Cilk Plus

C/C++ language
extensions to
simplify parallelism

Open sourced.
Also an Intel product.

Intel
Threading
Building Blocks
Widely used C++
template library for
parallelism

Open sourced.
Also an Intel product.

Domain-Specific
Libraries

Intel Integrated
Performance
Primitives (IPP)

Intel Math Kernel
Library (MKL)

Established
Standards

Message Passing
Interface (MPI)

OpenMP

Coarray Fortan

OpenCL

Research and
Development

Intel Concurrent
Collections (CnC)

Offload Extensions

River Trail:
Parallel Javascript

Intel Array Building
Blocks (ArBB)

Intel SPMD Program
Compiler (ISPC)

FIGURE 1.12

Parallel programming models supported by Intel. A choice of approaches is available, including pre-optimized
parallel libraries; standards such as MPI, Coarray Fortran, OpenMP, and OpenCL; dynamic data-parallel virtual
machines such as ArBB; domain-specific languages targeting SPMD vector parallelism such as ISPC;
coordination languages such as CnC; and the primary programming models used in this book: Cilk Plus and
TBB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 23 — #23

1.5 Parallel Programming Models 23

1.5.2 Abstractions Instead of Mechanisms
To achieve portable parallel programming you should avoid directly using hardware mechanisms.
Instead, you should use abstractions that map onto those mechanisms. In particular, you should avoid
vector intrinsics that map directly onto vector instructions and instead use array operations. You should
also avoid using threads directly and program in terms of a task abstraction. Tasks identify only oppor-
tunities for parallelism, not the actual parallel execution mechanism. Programming should focus on the
decomposition of the problem and the design of the algorithm rather than the specific mechanisms by
which it will be parallelized.

There are three big reasons to avoid programming directly to specific parallel hardware mecha-
nisms:

1. Portability is impaired severely when programming “close to the hardware.”
2. Nested parallelism is important and nearly impossible to manage well using the mandatory

parallelism implied by specific mechanisms such as threads.
3. Other mechanisms for parallelism, such as vectorization, exist and need to be considered. In fact,

some implementations of a parallel algorithm might use threads on one machine and vectors on
another, or some combination of different mechanisms.

Using abstractions for specifying vectorization rather than vector intrinsics avoids dependencies
on the peculiarities of a particular vector instruction set, such as the number of elements in a vector.
Even within Intel’s processor product line, there are now different vector instruction set extensions
with 4, 8, and 16 single-precision floating point elements per SIMD register. Fortunately there are
good abstractions available to deal with these differences. For example, in both Cilk Plus and ArBB it
is also possible to use either array operations or elemental functions to specify vector parallelism in
a machine-independent way. OpenCL primarily depends on elemental functions. In these three cases,
easily vectorized code is specified using portable abstractions.

The reasons for avoiding direct threading are more subtle, but basically a task model has less
overhead, supports better composability, and gives the system more freedom to allocate resources.
In particular, tasks support the specification of optional parallelism. Optional (as opposed to manda-
tory) parallelism supports nesting and efficient distributed load balancing, and can better manage
converting potential to actual parallelism as needed. Nested parallelism is important for develop-
ing parallel libraries that can be used inside other parallel programs without exposing the internals
of the implementation of those libraries. Such composability is fundamental to software engi-
neering. If you want to understand more about the reasons for this shift to programming using
tasks, an excellent detailed explanation of the perils of direct threading is “The Problem with
Threads” [Lee06].

Tasks were the basis of an MIT research project that resulted in Cilk, the basis of Cilk Plus. This
research led to the efficient work-stealing schedulers and tasking models that are now considered the
best available solutions to scalable and low-overhead load balancing. TBB likewise offers an extensive
set of algorithms for managing tasks using efficient, scalable mechanisms.

Cilk Plus and TBB each offer both parallel loops and parallel function invocation. The data paral-
lel focus of ArBB generates task parallelism by allowing programmers to specify many independent
operations to be run in parallel. However, ArBB does not explicitly manage tasks, leaving that to the
mechanisms supplied by Cilk Plus and TBB. This also means that ArBB is composable with these
models.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 24 — #24

24 CHAPTER 1 Introduction

OpenCL is a standard based on a elemental function abstraction, and implementations vary. How-
ever, the most important pattern used by OpenCL the map pattern (the replicated execution of a single
function), and we will discuss how this can be implemented efficiently.

OpenMP has several features that make it difficult to implement a built-in load balancer. It is based
on loop parallelism, but unfortunately it directly exposes certain underlying aspects of its implementa-
tion. We will present some OpenMP examples in order to demonstrate that the patterns also apply to
the OpenMP standard, but we recommend that new software use one of Cilk Plus or TBB to benefit
from their superior composability and other advantages.

1.5.3 Expression of Regular Data Parallelism
Data parallelism is the key to achieving scalability. Merely dividing up the source code into tasks using
functional decomposition will not give more than a constant factor speedup. To continue to scale to
ever larger numbers of cores, it is crucial to generate more parallelism as the problem grows larger.
Data parallelism achieves this, and all programming models used for examples in this book support
data parallelism.

Data parallelism is a general term that actually applies to any form of parallelism in which the
amount of work grows with the size of the problem. Almost all of the patterns discussed in this book,
as well as the task models supported by TBB and Cilk Plus, can be used for data parallelism. However,
there is a subcategory of data parallelism, regular data parallelism, which can be mapped efficiently
onto vector instructions in the hardware, as well as to hardware threads. Use of vector instruction mech-
anisms can give a significant additional boost to performance. However, since vector instructions differ
from processor to processor, portability requires abstractions to express such forms of data parallelism.

Abstractions built into Cilk Plus, ArBB, and OpenCL make it natural to express regular data par-
allelism explicitly without having to rely on the compiler inferring it. By expressing regular data
parallelism explicitly, the ability of the programming model to exploit the inherent parallelism in an
algorithm is enhanced.

As previously discussed, reducing everything to a serially executed procedure is a learned skill.
However, such serial processing can in fact be quite unnatural for regular data-parallel problems. You
are probably so used to serial programming constructs such as loops that you may not notice anymore
how unnatural they can be, but the big problem for parallel programming systems is that a serial
ordering of operations is in fact unnecessary in many cases. By forcing ordering of operations in a serial
fashion, existing serial languages are actually removing opportunities for parallelism unnecessarily.

Consider again the simple loop shown in Listing 1.8 to add two vectors. The writer of the code
probably really just meant to say “add all of the corresponding elements in b and c and put the result in

1 for (i = 0; i < 10000; ++i) {
2 a[i] = b[i] + c[i];
3 }

LISTING 1.8

Serial vector addition coded as a loop in C.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 25 — #25

1.5 Parallel Programming Models 25

1 a[0:10000] = b[0:10000] + c[0:10000];

LISTING 1.9

Parallel vector addition using Cilk Plus.

1 a = b + c;

LISTING 1.10

Parallel vector addition using ArBB.

the corresponding element of a.” But this code implies more: It implies that the additions are done in
a certain order as well. It might be possible for the compiler to infer that these operations can be done
in parallel and do so, but it is not clear from the literal semantics of the code given that this is what
is meant. Also, languages such as C and C++ make it possible to use pointers for these arrays, so in
theory the data storage for a, b, and c could overlap or be misaligned, making it hard for the compiler
to automatically use the underlying vector mechanisms effectively. For example, see Listing 1.2, which
shows that unfortunately, the order does matter if the memory for the arrays in the above code could
overlap.

Cilk Plus has the ability to specify data-parallel operations explicitly with new array notation exten-
sions for C and C++. The array notations make it clear to the compiler that regular data parallelism is
being specified and avoids, by specification, the above difficulties. Using array notation, we can rewrite
the above loop as shown in Listing 1.9.

ArBB is even simpler, as long as the data is already stored in ArBB containers: If a, b, and c are
all ArBB containers, the vector addition simplifies to the code shown in Listing 1.10. ArBB containers
have the additional advantage that the actual data may be stored in a remote location, such as the local
memory of a co-processor.

You can use these notations when you just want to operate on the elements of two arrays, and you
do not care in what order the individual operations are done. This is exactly what the parallel constructs
of Cilk Plus and ArBB add to C and C++. Explicit array operations such as this are not only shorter but
they also get rid of the unnecessary assumption of serial ordering of operations, allowing for a more
efficient implementation.

Cilk Plus, ArBB, and OpenCL also allow the specification of regular data parallelism through ele-
mental functions. Elemental functions can be called in regular data parallel contexts—for example,
by being applied to all the elements of an array at once. Elemental functions allow for vectorization
by replication of the computation specified across vector lanes. In Cilk Plus, the internals of these
functions are given using normal C/C++ syntax, but marked with a pragma and called from inside
a vectorized context, such as a vectorized loop or an array slice. In ArBB, elemental functions are
defined over ArBB types and called from a map operation—but the concept is the same. In OpenCL,
elemental functions are specified in a separate C-like language. These “kernels” are then bound to
data and invoked using an application programming interface (API). Elemental functions are con-
sistent with leaving the semantics of existing serial code largely intact while adding the ability to take

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 26 — #26

26 CHAPTER 1 Introduction

advantage of vector mechanisms in the hardware. Both array expressions and elemental functions can
also simultaneously map computations over hardware thread parallelism mechanisms.

Consider the code in Listing 1.11. Suppose the function my_simple_add is compiled separately,
or perhaps accessed by a function pointer or virtual function call. Perhaps this function is passed in by
a user to a library, and it is the library that is doing the parallel execution. Normally it would be hard
for this case to be vectorized. However, by declaring my_simple_add as an elemental function, then
it is possible to vectorize it in many of these cases. Using ArBB, it is even possible to vectorize this
code in the case of function pointers or virtual function calls, since ArBB can dynamically inline code.

Getting at the parallelism in existing applications has traditionally required non-trivial rewriting,
sometimes referred to as refactoring. Compiler technology can provide a better solution.

For example, with Cilk Plus, Listing 1.12 shows two small additions (the __declspec(vector)
and the pragma) to Listing 1.11 that result in a program that can use either SSE or AVX instructions
to yield significant speedups from vector parallelism. This will be the case even if my_simple_add
is compiled separately and made available as a binary library. The compiler will create vectorized
versions of elemental functions and call them whenever it detects an opportunity, which in this case is
provided by the pragma to specify vectorization of the given loop. In the example shown, the number
of calls to the function can be reduced by a factor of 8 for AVX or a factor of 4 for SSE. This can result
in significant performance increases.

Another change that may be needed in order to support vectorization is conversion of data layouts
from array-of-structures to structure-of-arrays (see Section 6.7). This transformation can be auto-

1 float my_simple_add(float x1, float x2) {
2 return x1 + x2;
3 }

4 ...
5 for (int j = 0; j < N; ++j) {
6 outputx[j] = my_simple_add(inputa[j], inputb[j]);
7 }

LISTING 1.11

Scalar function for addition in C.

1 __declspec(vector)
2 float my_simple_add(float x1, float x2) {
3 return x1 + x2;
4 }

5 ...
6 #pragma simd
7 for (int j = 0; j < N; ++j) {
8 outputx[j] = my_simple_add(inputa[j], inputb[j]);
9 }

LISTING 1.12

Vectorized function for addition in Cilk Plus.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 27 — #27

1.5 Parallel Programming Models 27

mated by ArBB. So, while ArBB requires changes to the types used for scalar types, it can automate
larger scale code transformations once this low-level rewriting has been done.

These two mechanisms, array expressions and elemental functions, are actually alternative ways
to express one of the most basic parallel patterns: map. However, other regular data-parallel patterns,
such as the scan pattern and the reduce pattern (discussed in Chapter 5) are also important and can
also be expressed directly using the programming models discussed in this book. Some of these pat-
terns are harder for compilers to infer automatically and so are even more important to be explicitly
expressible.

1.5.4 Composability
Composability is the ability to use a feature without regard to other features being used elsewhere in
your program. Ideally, every feature in a programming language is composable with every other.

Imagine if this was not true and use of an if statement meant you could not use a for statement
anywhere else in an application. In such a case, linking in a library where any if statement was used
would mean for statements would be disallowed throughout the rest of the application. Sounds ridicu-
lous? Unfortunately, similar situations exist in some parallel programming models or combinations
of programming models. Alternatively, the composition may be allowed but might lead to such poor
performance that it is effectively useless.

There are two principal issues: incompatibility and inability to support hierarchical composition.
Incompatibility means that using two parallel programming models simultaneously may lead to failures
or possible failures. This can arise for many more-or-less subtle reasons, such as inconsistent use of
thread-local memory. Such incompatibility can lead to failure even if the parallel regions do not directly
invoke each other.

Even if two models are compatible, it may not be possible to use them in a nested or hierarchical
fashion. A common case of this is when a library function is called from a region parallelized by one
model, and the library itself is parallelized with a different model. Ideally a software developer should
not need to know that the library was parallelized, let alone with what programming model. Having
to know such details violates information hiding and separation of concerns, fundamental principles
of software engineering, and leads to many practical problems. For example, suppose the library was
originally serial but a new version of the library comes out that is parallelized. With models that are
not composable, upgrading to the new version of this library, even if the binary interface is the same,
might break the code with which it is combined.

A common failure mode in the case of nested parallelism is oversubscription, where each use of
parallelism creates a new set of threads. When parallel routines that do this are composed hierarchically
a very large number of threads can easily be created, causing inefficiencies and possibly exceeding the
number of threads that the system can handle. Such soft failures can be harder to deal with than hard
failures. The code might work when the system is quiet and not using a large number of threads, but
fail under heavy load or when other applications are running.

Cilk Plus and TBB, the two primary programming models discussed in this book, are fully com-
patible and composable. This means they can be combined with each other in a variety of situations
without causing failures or oversubscription. In particular, nested use of Cilk Plus with TBB is fine,
as is nested use of TBB with itself or Cilk Plus with itself. ArBB can also be used from inside TBB

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 28 — #28

28 CHAPTER 1 Introduction

or Cilk Plus since its implementation is based in turn on these models. In all these cases only a fixed
number of threads will be created and will be managed efficiently.

These three programming models are also, in practice, compatible with OpenMP, but generally
OpenMP routines should be used in a peer fashion, rather than in a nested fashion, in order to avoid
over-subscription, since OpenMP creates threads as part of its execution model.

Because composability is ultimately so important, it is reasonable to hope that non-composable
models will completely give way to composable models.

1.5.5 Portability of Functionality
Being able to run code on a wide variety of platforms, regardless of operating systems and processors,
is desirable. The most widely used programming languages such as C, C++, and Java are portable.

All the programming models used in this book are portable. In some cases, this is because a single
portable implementation is available; in other cases, it is because the programming model is a standard
with multiple implementations.

TBB has been ported to a wide variety of platforms, is implemented using standard C++, and is
available under an open source license. Cilk Plus is growing in adoption in compilers and is available
on the most popular platforms. The Cilk Plus extensions are available in both the Intel compiler and
are also being integrated into the GNU gcc compiler. Both TBB and Cilk Plus are available under
open source licenses. ArBB, like TBB, is a portable C++ library and has been tested with a variety of
C++ compilers. TBB and Cilk Plus are architecturally flexible and can work on a variety of modern
shared-memory systems.

OpenCL and OpenMP are standards rather than specific portable implementations. However,
OpenCL and OpenMP implementations are available for a variety of processors and compilers.
OpenCL provides the ability to write parallel programs for CPUs as well as GPUs and co-processors.

1.5.6 Performance Portability
Portability of performance is a serious concern. You want to know that the code you write today will
continue to perform well on new machines and on machines you may not have tested it on. Ideally, an
application that is tuned to run within 80% of the peak performance of a machine should not suddenly
run at 30% of the peak performance on another machine. However, performance portability is generally
only possible with more abstract programming models. Abstract models are removed enough from
the hardware design to allow programs to map to a wide variety of hardware without requiring code
changes, while delivering reasonable performance relative to the machine’s capability.

Of course, there are acceptable exceptions when hardware is considered exotic. However, in
general, the more flexible and abstract models can span a wider variety of hardware.

Cilk Plus, TBB, OpenMP, and ArBB are designed to offer strong performance portability. OpenCL
code tends to be fairly low level and as such is more closely tied to the hardware. Tuning OpenCL
code tends to strongly favor one hardware device over another. The code is (usually) still functionally
portable but may not perform well on devices for which it was not tuned.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 29 — #29

1.5 Parallel Programming Models 29

1.5.7 Safety, Determinism, and Maintainability
Parallel computation introduces several complications to programming, and one of those complica-
tions is non-determinism. Determinism means that every time the program runs, the answer is the
same. In serial computation, the order of operations is fixed and the result is naturally deterministic.
However, parallel programs are not naturally deterministic. The order of operation of different threads
may be interleaved in an arbitrary order. If those threads are modifying shared data, it is possible that
different runs of a program may produce different results even with the same input. This is known,
logically enough, as non-determinism. In practice, the randomness in non-deterministic parallel pro-
grams arises from the randomness of thread scheduling, which in turn arises from a number of factors
outside the control of the application.

Non-determinism is not necessarily bad. It is possible, in some situations, for non-deterministic
algorithms to outperform deterministic algorithms. However, many approaches to application testing
assume determinism. For example, for non-deterministic programs testing tools cannot simply compare
results to one known good solution. Instead, to test a non-deterministic application, it is necessary to
prove that the result is correct, since different but correct results may be produced on different runs.
This may be as simple as testing against a tolerance for numerical applications, but may be significantly
more involved in other cases. Determinism or repeatability may even be an application requirement
(for example, for legal reasons), in which case you will want to know how to achieve it.

Non-determinism may also be an error. Among the possible interleavings of threads acting on
shared data, some may be incorrect and lead to incorrect results or corrupted data structures. The
problem of safety is how to ensure that only correct orderings occur.

One interesting observation is that many of the parallel patterns used in this book are either deter-
ministic by nature or have deterministic variants. Therefore, one way to achieve complete determinism
is to use only the subset of these patterns that are deterministic. An algorithm based on a composition
of deterministic patterns will be deterministic. In fact, the (unique) result of each deterministic pattern
can be made equivalent to some serial ordering, so we can also say that such programs are serially
consistent—they always produce results equivalent to some serial program. This makes debugging
and reasoning about such programs much simpler.

Of the programming models used in this book, ArBB in particular emphasizes determinism. In the
other models, determinism can (usually) be achieved with some discipline. Some performance may be
lost by insisting on determinism, however. How much performance is lost will depend on the algorithm.
Whether a non-deterministic approach is acceptable will necessarily be decided on a case-by-case basis.

1.5.8 Overview of Programming Models Used
We now summarize the basic properties of the programming models used in this book.

Cilk Plus
The Cilk Plus programming model provides the following features:

• Fork–join to support irregular parallel programming patterns and nesting
• Parallel loops to support regular parallel programming patterns, such as map
• Support for explicit vectorization via array sections, pragma simd, and elemental functions

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 30 — #30

30 CHAPTER 1 Introduction

• Hyperobjects to support efficient reduction
• Serial semantics if keywords are ignored (also known as serial elision)
• Efficient load balancing via work-stealing

The Cilk Plus programming model is integrated with a C/C++ compiler and extends the language with
the addition of keywords and array section notation.

The Cilk (pronounced “silk”) project originated in the mid-1990s at M.I.T. under the guidance of
Professor Charles E. Leiserson. It has generated numerous papers, inspired a variety of “work stealing”
task-based schedulers (including TBB, Cilk Plus, TPL, PPL and GCD), has been used in teaching, and
is used in some university-level textbooks.

Cilk Plus evolved from Cilk and provides very simple but powerful ways to specify parallelism
in both C and C++. The simplicity and power come, in no small part, from being embedded in the
compiler. Being integrated into the compiler allows for a simple syntax that can be added to existing
programs. This syntax includes both array sections and a small set of keywords to manage fork–join
parallelism.

Cilk started with two keywords and a simple concept: the asynchronous function call. Such a call,
marked with the keyword cilk_spawn, is like a regular function call except that the caller can keep
going in parallel with the callee. The keyword cilk_sync causes the current function to wait for all
functions that it spawned to return. Every function has an implicit cilk_sync when it returns, thus
guaranteeing a property similar to plain calls: When a function returns, the entire call tree under it has
completed.

Listings 1.13 and 1.14 show how inserting a few of these keywords into serial code can make it
parallel. The classic recursive function to compute Fibonacci numbers serves as an illustration. The
addition of one cilk_spawn and one cilk_sync allows parallel execution of the two recursive calls,
waiting for them to complete, and then summing the results afterwards. Only the first recursive call is
spawned, since the caller can do the second recursive call.

This example highlights the key design principle of Cilk: A parallel Cilk program is a serial program
with keyword “annotations” indicating where parallelism is permitted (but not mandatory). Further-
more there is a strong guarantee of serial equivalence: In a well-defined Cilk program, the parallel
program computes the same answer as if the keywords are ignored. In fact, the Intel implementation of
Cilk Plus ensures that when the program runs on one processor, operations happen in the same order as
the equivalent serial program. Better yet, the serial program can be recovered using the preprocessor;
just #define cilk_spawn and cilk_sync to be whitespace. This property enables Cilk code to be
compiled by compilers that do not support the keywords.

Since the original design of Cilk, one more keyword was added: cilk_for. Transforming a loop
into a parallel loop by changing for to cilk_for is often possible and convenient. Not all serial
loops can be converted this way; the iterations must be independent and the loop bounds must not be
modified in the loop body. However, within these constraints, many serial loops can still be parallelized.
Conversely, cilk_for can always be replaced with for by the preprocessor when necessary to obtain
a serial program.

The implementation of cilk_for loops uses a recursive approach (Section 8.3) that spreads over-
head over multiple tasks and manages granularity appropriately. The alternative of writing a serial
for loop that spawns each iteration is usually much inferior, because it puts all the work of spawning
on a single task and bottlenecks the load balancing mechanism, and a single iteration may be too small
to justify spawning it as a separate task.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 31 — #31

1.5 Parallel Programming Models 31

1 int fib (int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x, y;
6 x = fib(n − 1);
7 y = fib(n − 2);
8 return x + y;
9 }

10 }

LISTING 1.13

Serial Fibonacci computation in C. It uses a terribly inefficient algorithm and is intended only for illustration of
syntax and semantics.

1 int fib (int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x, y;
6 x = cilk_spawn fib(n − 1);
7 y = fib(n − 2);
8 cilk_sync;
9 return x + y;

10 }

11 }

LISTING 1.14

Parallel Cilk Plus variant of Listing 1.13.

Threading Building Blocks (TBB)
The Threading Building Blocks (TBB) programming model supports parallelism based on a tasking
model. It provides the following features:

• Template library supporting both regular and irregular parallelism
• Direct support for a variety of parallel patterns, including map, fork–join, task graphs, reduction,

scan, and pipelines
• Efficient work-stealing load balancing
• A collection of thread-safe data structures
• Efficient low-level primitives for atomic operations and memory allocation

TBB is a library, not a language extension, and thus can be used with with any compiler supporting
ISO C++. Because of that, TBB uses C++ features to implement its “syntax.” TBB requires the use
of function objects (also known as functors) to specify blocks of code to run in parallel. These were

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 32 — #32

32 CHAPTER 1 Introduction

somewhat tedious to specify in C++98. However, the C++11 addition of lambda expressions (see
Appendix D) greatly simplifies specifying these blocks of code, so that is the style used in this book.

TBB relies on templates and generic programming. Generic programming means that algorithms
are written with the fewest possible assumptions about data structures, which maximizes potential for
reuse. The C++ Standard Template Library (STL) is a good example of generic programming in which
the interfaces are specified only by requirements on template types and work across a broad range of
types that meet those requirements. TBB follows a similar philosophy.

Like Cilk Plus, TBB is based on programming in terms of tasks, not threads. This allows it to reduce
overhead and to more efficiently manage resources. As with Cilk Plus, TBB implements a common
thread pool shared by all tasks and balances load via work-stealing. Use of this model allows for nested
parallelism while avoiding the problem of over-subscription.

The TBB implementation generally avoids global locks in its implementation. In particular, there
is no global task queue and the memory allocator is lock free. This allows for much more scalability.
As discussed later, global locks effectively serialize programs that could otherwise run in parallel.

Individual components of TBB may also be used with other parallel programming models. It is
common to see the TBB parallel memory allocator used with Cilk Plus or OpenMP programs, for
example.

OpenMP
The OpenMP programming model provides the following features:

• Creation of teams of threads that jointly execute a block of code
• Conversion of loops with bounded extents to parallel execution by a team of threads with a simple

annotation syntax
• A tasking model that supports execution by an explicit team of threads
• Support for atomic operations and locks
• Support for reductions, but only with a predefined set of operations

The OpenMP interface is based on a set of compiler directives or pragmas in Fortran, C and C++
combined with an API for thread management. In theory, if the API is replaced with a stub library
and the pragmas are ignored then a serial program will result. With care, this serial program will
produce a result that is the “same” as the parallel program, within numerical differences introduced by
reordering of floating-point operations. Such reordering, as we will describe later, is often required for
parallelization, regardless of the programming model.

OpenMP is a standard organized by an independent body called the OpenMP Architecture Review
Board. OpenMP is designed to simplify parallel programming for application programmers working
in high-performance computing (HPC), including the parallelization of existing serial codes. Prior to
OpenMP (first released in 1997), computer vendors had distinct directive-based systems. OpenMP
standardized common practice established by these directive-based systems. OpenMP is supported by
most compiler vendors including the GNU compilers and other open source compilers.

The most common usage of OpenMP is to parallelize loops within a program. The pragma syntax
allows the reinterpretation of loops as parallel operations, which is convenient since the code inside
the loop can still use normal Fortran, C, or C++ syntax and memory access. However, it should be
noted that (as with Cilk Plus) only loops that satisfy certain constraints can be annotated and converted
into parallel structures. In particular, iteration variable initialization, update, and termination tests must

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 33 — #33

1.5 Parallel Programming Models 33

be one of a small set of standard forms, it must be possible to compute the number of iterations in
advance, and the loop iterations must not depend on each other. In other words, a “parallel loop” in
OpenMP implements the map pattern, using the terminology of this book. In practice, the total number
of iterations is broken up into blocks and distributed to a team of threads.

OpenMP implementations do not, in general, check that loop iterations are independent or that race
conditions do not exist. As with Cilk Plus, TBB, and OpenCL, avoiding incorrect parallelizations is
the responsibility of the programmer.

The main problem with OpenMP for mainstream users is that OpenMP exposes the threads used
in a computation. Teams of threads are explicit and must be understood to understand the detailed
meaning of a program. This constrains the optimizations available from the OpenMP runtime system
and makes the tasking model within OpenMP both more complex to understand and more challenging
to implement.

The fact that threads are exposed encourages a programmer to think of the parallel computation
in terms of threads and how they map onto cores. This can be an advantage for algorithms explicitly
designed around a particular hardware platform’s memory hierarchy, which is common in HPC. How-
ever, in more mainstream applications, where a single application is used on a wide range of hardware
platforms, this can be counterproductive. Furthermore, by expressing the programming model in terms
of explicit threads, OpenMP encourages (but does not require) algorithm strategies based on explicit
control over the number of threads. On a dedicated HPC machine, having the computation depend
upon or control the number of threads may be desirable, but in a mainstream application it is better to
let the system decide how many threads are appropriate.

The most serious problem caused by the explicit threading model behind OpenMP is the fact that it
limits the ability of OpenMP to compose with itself. In particular, if an OpenMP parallel region creates
a team of threads and inside that region a library is called that also uses OpenMP to create a team of
threads, it is possible that n2 threads will be created. If repeated (for example, if recursion is used) this
can result in exponential oversubscription. The resulting explosion in the number of threads created
can easily exhaust the resources of the operating system and cause the program to fail. However,
this only happens if a particular OpenMP option is set: OMP_NESTED=TRUE. Fortunately the default
is OMP_NESTED=FALSE, and it should generally be left that way for mainstream applications. When
OpenMP and a model like TBB or Cilk Plus are nested and the default setting OMP_NESTED=FALSE is
used, at worst 2p workers will be created, where p is the number of cores. This can be easily managed
by the operating system.

It is also recommended to use OMP_WAIT_POLICY=ACTIVE and OMP_DYNAMIC=TRUE to enable
dynamic scheduling. Using static scheduling in OpenMP (OMP_DYNAMIC=FALSE) is not recommended
in a mainstream computing environment, since it assumes that a fixed number of threads will be used
from one parallel region to the next. This constrains optimizations the runtime system may carry out.

HPC programmers often use OpenMP to explicitly manage a team of threads using the thread
ID available through the OpenMP API and the number of threads to control how work is mapped
to threads. This also limits what the runtime system can do to optimize execution of the threads. In
particular, it limits the ability of the system to perform load balancing by moving work between threads.
TBB and Cilk Plus intentionally do not include these features.

In OpenMP, point-to-point synchronization is provided through low-level (and error-prone) locks.
Another common synchronization construct in OpenMP is the barrier. A classical barrier synchronizes
a large number of threads at once by having all threads wait on a lock until all other threads arrive at

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 34 — #34

34 CHAPTER 1 Introduction

the same point. In Cilk Plus and TBB, where similar constructs exist (for example, implicitly at the
end of a cilk_for), they are implemented as pairwise joins, which are more scalable.

Array Building Blocks (ArBB)
The Array Building Blocks (ArBB) programming model supports parallelization by the specification
of sequences of data-parallel operations. It provides the following features:

• High-level data parallel programming with both elemental functions and vector operations
• Efficient collective operations
• Automatic fusion of multiple operations into more intensive kernels
• Dynamic code generation under programmer control
• Offload to attached co-processors without change to source code
• Deterministic by default, safe by design

ArBB is compiler independent and, like TBB, in conjunction with its embedded C++ front-end can in
theory be used with any ISO C++ compiler. The vectorized code generation supported by its virtual
machine library is independent of the compiler it is used with.

Array Building Blocks is the most high level of the models used in this book. It does not explicitly
depend on tasks in its interface, although it does use them in its implementation. Instead of tasks,
parallel computations are expressed using a set of operations that can act over collections of data.
Computations can be expressed by using a sequence of parallel operations, by replicating elemental
functions over the elements of a collection, or by using a combination of both.

Listing 1.15 shows how a computation in ArBB can be expressed using a sequence of parallel oper-
ations, while Listing 1.16 shows how the same operation can be expressed by replicating a function
over a collection using the map operation. In addition to per-element vector operations, ArBB also sup-
ports a set of collective and data-reorganization operations, many of which map directly onto patterns
discussed in later chapters.

1 void arbb_vector (
2 dense<f32>& A,
3 dense<f32> B,
4 dense<f32> C,
5 dense<f32> D
6) {
7 A += B − C/D;
8 }

9

10 dense<f32> A, B, C, D;
11 // fill A, B, C, D with data ...
12

13 // invoke function over entire collections
14 call(arbb_vector)(A,B,C,D);

LISTING 1.15

Vector computation in ArBB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 35 — #35

1.5 Parallel Programming Models 35

1 void arbb_map (
2 f32& a, // input and output
3 f32 b, // input
4 f32 c, // input
5 f32 d // input
6) {
7 a += b − c/d;
8 }

9

10 void arbb_call (
11 dense<f32>& A, // input and output
12 dense<f32> B, // input
13 dense<f32> C, // input
14 f32 d // input (uniform; will be replicated)
15) {
16 map(arbb_map)(A,B,C,d);
17 }

LISTING 1.16

Elemental function computation in ArBB.

ArBB manages data as well as code. This has two benefits: Data can be laid out in memory for better
vectorization and data locality, and data and computation can be offloaded to attached co-processors
with no changes to the code. It has the disadvantage that extra code is required to move data in and out
of the data space managed by ArBB, and extra data movement may be required.

OpenCL
The OpenCL programming model provides the following features:

• Ability to offload computation and data to an attached co-processor with a separate memory space
• Invocation of a regular grid of parallel operations using a common kernel function
• Support of a task queue for managing asynchronous kernel invocations

The OpenCL programming model includes both a kernel language for specifying kernels and an API
for managing data transfer and execution of kernels from the host. The kernel language is both a
superset and a subset of C99, in that it omits certain features, such as goto, but includes certain other
features, such as a “swizzle” notation for reordering the elements of short vectors.

OpenCL is a standard organized by Khronos and supported by implementations from multiple ven-
dors. It was primarily designed to allow offload of computation to GPU-like devices, and its memory
and task grouping model in particular reflects this. In particular, there are explicit mechanisms for
allocating local on-chip memory and for sharing that memory between threads in a workgroup. How-
ever, this sharing and grouping are not arranged in an arbitrary hierarchy, but are only one level deep,
reflecting the hardware architecture of GPUs. However, OpenCL can also in theory be used for other
co-processors as well as CPUs.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 36 — #36

36 CHAPTER 1 Introduction

The kernel functions in OpenCL corresponds closely to what we call “elemental functions,” and
kernel invocation corresponds to the map pattern described in this book.

OpenCL is a relatively low-level interface and is meant for performance programming, where the
developer must specify computations in detail. OpenCL may also be used by higher level tools as a
target language. The patterns discussed in this book can be used with OpenCL but few of these patterns
are reflected directly in OpenCL features. Instead, the patterns must be reflected in algorithm structure
and conventions.

As a low-level language, OpenCL provides direct control over the host and the compute devices
attached to the host. This is required to support the extreme range of devices addressed by OpenCL:
from CPUs and GPUs to embedded processors and field-programmable gate arrays (FPGAs). However,
OpenCL places the burden for performance portability on the programmer’s shoulders. Performance
portability is possible in OpenCL, but it requires considerable work by the programmer, often to the
point of writing a different version of a single kernel for each class of device.

Also, OpenCL supports only a simple two-level memory model, and for this and other reasons (for
example, lack of support for nested parallelism) it lacks composability.

In placing OpenCL in context with the other programming models we have discussed, it is impor-
tant to appreciate the goals for the language. OpenCL was created to provide a low-level “hardware
abstraction layer” to support programmers needing full control over a heterogeneous platform. The
low-level nature of OpenCL was a strategic decision made by the group developing OpenCL. To best
support the emergence of high-level programming models for heterogeneous platforms, first a portable
hardware abstraction layer was needed.

OpenCL is not intended for mainstream programmers the way TBB, Cilk Plus, or OpenMP are.
Lacking high-level programming models for heterogeneous platforms, application programmers often
turn to OpenCL. However, over time, higher level models will likely emerge to support mainstream
application programmers and OpenCL will be restricted to specialists writing the runtimes for these
higher level models or for detailed performance-oriented libraries.

However, we have included it in this book since it provides an interesting point of comparison.

1.5.9 When to Use Which Model?
When multiple programming models are available, the question arises: When should which model
be used? As we will see, TBB and Cilk Plus overlap significantly in functionality, but do differ in
deployment model, support for vectorization, and other factors. OpenCL, OpenMP, and ArBB are each
appropriate in certain situations.

Cilk Plus can be used whenever a compiler supporting the Cilk Plus extensions, such as the Intel
C++ compiler or gcc, can be used. It targets both hardware thread and vector mechanisms in the
processor and is a good all-around solution. It currently supports both C and C++.

Threading Building Blocks (TBB) can be used whenever a compiler-portable solution is needed.
However, TBB does not, itself, do vectorization. Generation of vectorized code must be done by the
compiler TBB is used with. TBB does, however, support tiling (“blocking”) and other constructs so
that opportunities for vectorization are exposed to the underlying compiler.

TBB and Cilk Plus are good all-around models for C++. They differ mainly in whether a compiler
with the Cilk Plus extensions can be used. We also discuss several other models in this book, each of
which may be more appropriate in certain specific circumstances.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 37 — #37

1.6 Organization of this Book 37

OpenMP is nearly universally available in Fortran, C, and C++ compilers. It has proven both popu-
lar and effective with scientific code, where any shortcomings in composability tend to be unimportant
because of the dominance of intense computational loops as opposed to complex nested parallelism.
Also, the numerous options offered for OpenMP are highly regarded for the detailed control they afford
for the difficult task of tuning supercomputer code.

Array Building Blocks can be used whenever a high-level solution based on operations on collec-
tions of data is desired. It supports dynamic code generation, so it is compiler independent like TBB
but supports generation of vectorized code like Cilk Plus.

Because of its code generation capabilities, ArBB can also be used for the implementation of cus-
tom parallel languages, a topic not discussed at length in this book. If you are interested in this use
of ArBB, please see the online documentation for the ArBB Virtual Machine, which provides a more
suitable interface for this particular application of ArBB than the high-level C++ interface used in this
book. ArBB can also be used to offload computation to co-processors.

OpenCL provides a standard solution for offloading computation to GPUs, CPUs, and accelerators.
It is rather low level and does not directly support many of the patterns discussed in this book, but many
of them can still be implemented. OpenCL tends to use minimal abstraction on top of the physical
mechanisms.

OpenMP is also standard and is available in many compilers. It can be used when a solution is
needed that spans compilers from multiple vendors. However, OpenMP is not as composable as Cilk
Plus or TBB. If nested parallelism is needed, Cilk Plus or TBB would be a better choice.

1.6 ORGANIZATION OF THIS BOOK
This chapter has provided an introduction to some key concepts and described the motivation for
studying this book. It has also provided a basic introduction to the programming models that we will
use for examples.

Chapter 2 includes some additional background material on computer architecture and performance
analysis and introduces the terminology and conventions to be used throughout this book.

Chapters 3 to 9 address the most important and common parallel patterns. Gaining an intuitive
understanding of these is fundamental to effective parallel programming. Chapter 3 provides a general
overview of all the patterns and discusses serial patterns and the relationship of patterns to structured
programming. Chapter 4 explains map, the simplest and most scalable parallel pattern and one of
the first that should be considered. Chapter 5 discusses collective patterns such as reduce and scan.
Collectives address the need to combine results from map operations while maintaining the benefits
of parallelism. Chapter 6 discusses data reorganization. Effective data management is often the key
to efficient parallel algorithms. This chapter also discusses some memory-related optimizations, such
as conversion of array-of-structures to structures-of-arrays. Chapter 8 explains the fork–join pattern
and its relationship to tasks. This pattern provides a method to subdivide a problem recursively while
distributing overhead in an efficient fashion. This chapter includes many detailed examples, including
discussions of how to implement other patterns in terms of fork–join. Chapter 9 discusses the pipeline
pattern, where availability of data drives execution rather than control flow.

The remainder of the chapters in the book consist of examples to illustrate and extend the
fundamentals from earlier chapters.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 38 — #38

38 CHAPTER 1 Introduction

The appendices include a list of further reading and self-contained introductions to the primary
programming models used in this book.

1.7 SUMMARY
In this chapter, we have described recent trends in computer architecture that are driving a need for
explicit parallel programming. These trends include a continuation of Moore’s Law, which is leading
to an exponentially growing number of transistors on integrated devices. Three other factors are lim-
iting the potential for non-parallelized applications to take advantage of these transistors: the power
wall, the ILP (instruction-level-parallelism) wall, and the memory wall. The power wall means that
clock rates cannot continue to scale without exceeding the air-cooling limit. The ILP wall means that,
in fact, we are already taking advantage of most low-level parallelism in scalar code and do not expect
any major improvements in this area. We conclude that explicit parallel programming is likely neces-
sary due to the significant changes in approach needed to achieve scalability. Finally, the memory wall
limits performance since the bandwidth and latency of communication are improving more slowly than
the capability to do computation. The memory wall affects scalar performance but is also a major fac-
tor in the scalability of parallel computation, since communication between processors can introduce
overhead and latency. Because of this, it is useful to consider the memory and communication structure
of an algorithm even before the computational structure.

In this book, we take a structured approach to parallel computation. Specifically, we describe a set
of patterns from which parallel applications can be composed. Patterns provide a vocabulary and a set
of best practices for describing parallel applications. The patterns embody design principles that will
help you design efficient and scalable applications.

Throughout this book, we give many examples of parallel applications. We have chosen to use
multiple parallel programming models for these examples, but with an emphasis on TBB and Cilk
Plus. These models are portable and also provide high performance and portability. However, by using
multiple programming models, we seek to demonstrate that the patterns we describe can be used in a
variety of programming systems.

When designing an algorithm, it is useful as you consider various approaches to have some idea
of how each possible approach would perform. In the next chapter, we provide additional background
especially relevant for predicting performance and scalability. First, we describe modern computer
architectures at a level of detail sufficient for this book, with a focus on the key concepts needed for
predicting performance. Then, we describe some classic performance models, including Amdahl’s Law
and Gustafson-Barsis’ Law. These laws are quite limited in predictive power, so we introduce another
model, the work-span model, that is much more accurate at predicting scalability.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 39 — #39

CHAPTER

Background 2
Good parallel programming requires attention to both the theory and the reality of parallel computers.
This chapter covers background material applicable to most forms of parallel programming, includ-
ing a (short) review of relevant computer architecture and performance analysis topics. Section 2.1
introduces basic vocabulary and the graphical notation used in this book for patterns and algorithms.
Section 2.2 defines and names some general strategies for designing parallel algorithms. Section 2.3
describes some general mechanisms used in modern processors for executing parallel computations.
Section 2.4 discusses basic machine architecture with a focus on mechanisms for parallel computa-
tion and communication. The impact of these on parallel software design is emphasized. Section 2.5
explains performance issues from a theoretical perspective, in order to provide guidance on the design
of parallel algorithms. Section 2.6 discusses some common pitfalls of parallel programming and how
to avoid them. By the end of this chapter, you should have obtained a basic understanding of how mod-
ern processors execute parallel programs and understand some rules of thumb for scaling performance
of parallel applications.

2.1 VOCABULARY AND NOTATION
The two fundamental components of algorithms are tasks and data. A task operates on data, either
modifying it in place or creating new data. In a parallel computation multiple tasks need to be managed
and coordinated. In particular, dependencies between tasks need to be respected. Dependencies result
in a requirement that particular pairs of tasks be ordered. Dependencies are often but not always asso-
ciated with the transfer of data between tasks. In particular, a data dependency results when one task
cannot execute before some data it requires is generated by another task. Another kind of dependency,
usually called a control dependency, results when certain events or side effects, such as those due to
I/O operations, need to be ordered. We will not distinguish between these two kinds of dependency,
since in either case the fundamental requirement is that tasks be ordered in time.

For task management the fork–join pattern is often used in this book. In the fork–join pattern, new
serial control flows are created by splitting an existing serial control flow at a fork point. Conversely,
two separate serial control flows are synchronized by merging them together at a join point. Within a
single serial control flow, tasks are ordered according to the usual serial semantics. Due to the implicit
serial control flow before and after these points, control dependencies are also needed between fork
and join points and tasks that precede and follow them. In general, we will document all dependencies,
even those generated by serial control flows.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00002-5
c© 2012 Elsevier Inc. All rights reserved.

39

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 40 — #40

40 CHAPTER 2 Background

Task Data Fork Join Dependency

FIGURE 2.1

Our graphical notation for the fundamental components of algorithms: tasks and data. We use two additional
symbols to represent the splitting and merging of serial control flows via fork and join and arrows to represent
dependencies.

We use the graphical notation shown in Figure 2.1 to represent these fundamental concepts through-
out this book. These symbols represent tasks, data, fork and join points, and dependencies. They are
used in graphs representing each of the patterns we will present, and also to describe parallel algo-
rithms. This notation may be augmented from time to time with polygons representing subgraphs or
common serial control flow constructs from flow-charts, such as diamonds for selection.

2.2 STRATEGIES
The best overall strategy for scalable parallelism is data parallelism [HSJ86, Vis10]. Definitions
of data parallelism vary. Some narrow definitions permit only collection-oriented operations, such as
applying the same function to all elements of an array, or computing the sum of an array. We take
a wide view and define data parallelism as any kind of parallelism that grows as the data set grows
or, more generally, as the problem size grows. Typically the data is split into chunks and each chunk
processed with a separate task. Sometimes the splitting is flat; other times it is recursive. What matters
is that bigger data sets generate more tasks.

Whether similar or different operations are applied to the chunks is irrelevant to our definition. Data
parallelism can be applied whether or not a problem is regular or irregular. For example, the symmet-
ric rank update in Section 15.4 does different operations in parallel: two symmetric rank reductions
and one matrix multiplication. This is an example of an irregular computation, but the scalable data
parallelism comes from recursively applying this three-way decomposition.

In practice applying more than few different operations in parallel, at least at a given conceptual
level, can make a program hard to understand. However, whether operations are considered “different”
can depend on the level of detail. For example, consider a collection of source files to be compiled. At
a high level, this is matter of applying the same “compile a file” operation across all source files. But
each compilation may involve radically different control flow, because each source file may contain
radically different content. When considering these low-level details, the operations look different.
Still, since the amount of work grows with the number of input files, this is still data parallelism.

The opposite of data parallelism is functional decomposition, an approach that runs different pro-
gram functions in parallel. At best, functional decomposition improves performance by a constant
factor. For example, if a program has functions f , g, and h, running them in parallel at best triples
performance, but only if all three functions take exactly the same amount of time to execute and do not
depend on each other, and there is no overhead. Otherwise, the improvement will be less.

Sometimes functional decomposition can deliver an additional bit of parallelism required to meet a
performance target, but it should not be your primary strategy, because it does not scale. For example,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 41 — #41

2.3 Mechanisms 41

consider an interactive oil prospecting visualization application that simulates seismic wave propa-
gation, reservoir behavior, and seismogram generation [RJ10]. A functional decomposition that runs
these three simulations in parallel might yield enough speedup to reach a frame rate target otherwise
unobtainable on the target machine. However, for the application to scale, say for high-resolution dis-
plays, it needs to employ data parallelism, such as partitioning the simulation region into chunks and
simulating each chunk with a separate task.

We deliberately avoid the troublesome term task parallelism, because its meaning varies. Some
programmers use it to mean (unscalable) functional decomposition, others use it to mean (scalable)
recursive fork–join, and some just mean any kind of parallelism where the tasks differ in control flow.

A more useful distinction is the degree of regularity in the dependencies between tasks. We use the
following terminology for these:

• Regular parallelism: The tasks are similar and have predictable dependencies.
• Irregular parallelism: The tasks are dissimilar in a way that creates unpredictable dependencies.

Decomposing a dense matrix multiplication into a set of dot products is an example of a regular paral-
lelization. All of the dot products are similar and the data dependencies are predictable. Sparse matrix
multiplication may be less regular—any unpredictable zeros eliminate dependencies that were present
for the dense case. Even more irregular is a chess program involving parallel recursive search over
a decision tree. Branch and bound optimizations on this tree may dynamically cull some branches,
resulting in unpredictable dependencies between parallel branches of the tree.

Any real application tends to combine different approaches to parallelism and also may combine
parallel and serial strategies. For example, an application might use a (serial) sequence of parallelized
phases, each with its own parallel strategy. Within a parallel phase, the computations are ultimately
carried out by serial code, so efficient implementation of serial code remains important. Section 2.5.6
formalizes this intuition: You cannot neglect the performance of your serial code, hoping to make up
the difference with parallelism. You need both good serial code and a good parallelization strategy to
get good performance overall.

2.3 MECHANISMS
Various hardware mechanisms enable parallel computation. The two most important mechanisms are
thread parallelism and vector parallelism:

• Thread parallelism: A mechanism for implementing parallelism in hardware using a separate flow
of control for each worker. Thread parallelism supports both regular and irregular parallelism, as
well as functional decomposition.

• Vector parallelism: A mechanism for implementing parallelism in hardware using the same flow
of control on multiple data elements. Vector parallelism naturally supports regular parallelism but
also can be applied to irregular parallelism with some limitations.

A hardware thread is a hardware entity capable of independently executing a program (a flow
of instructions with data-dependent control flow) by itself. In particular it has its own “instruction
pointer” or “program counter.” Depending on the hardware, a core may have one or multiple hardware
threads. A software thread is a virtual hardware thread. An operating system typically enables many

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 42 — #42

42 CHAPTER 2 Background

more software threads to exist than there are actual hardware threads by mapping software threads
to hardware threads as necessary. A computation that employs multiple threads in parallel is called
thread parallel.

Vector parallelism refers to single operations replicated over collections of data. In mainstream
processors, this is done by vector instructions that act on vector registers. Each vector register holds
a small array of elements. For example, in the Intel Advanced Vector Extensions (Intel AVX) each
register can hold eight single-precision (32 bit) floating point values. On supercomputers, the vectors
may be much longer, and may involve streaming data to and from memory. We consider both of these
to be instances of vector parallelism, but we normally mean the use of vector instructions when we use
the term in this book.

The elements of vector units are sometimes called lanes. Vector parallelism using N lanes requires
less hardware than thread parallelism using N threads because in vector parallelism only the registers
and the functional units have to be replicated N times. In contrast, N-way thread parallelism requires
replicating the instruction fetch and decode logic and perhaps enlarging the instruction cache. Fur-
thermore, because there is a single flow of control, vector parallelism avoids the need for complex
synchronization mechanisms, thus enabling efficient fine-grained parallelism. All these factors can
also lead to greater power efficiency. However, when control flow must diverge, thread parallelism is
usually more appropriate.

Thread parallelism can easily emulate vector parallelism—just apply one thread per lane. However,
this approach can be inefficient since thread synchronization overhead will often dominate. Threads
also have different memory behavior than vector operations. In particular, in vector parallelism we
often want nearby vector lanes to access nearby memory locations, but if threads running on different
cores access nearby memory locations it can have a negative impact on performance (due to false
sharing in caches, which we discuss in Section 2.4). A simple way around both problems is to break
large vector operations into chunks and run each chunk on a thread, possibly also vectorizing within
each chunk.

Less obviously, vector hardware can emulate a limited form of thread parallelism, specifically
elemental functions including control flow. We call such pseudo-threads fibers.1 Two approaches to
implementing elemental functions with control flow are masking and packing. The latter implemen-
tation mechanism is also known as stream compaction [BOA09, Wal11, LLM08, HLJH09].

Masking conditionally executes some lanes. The illusion of independent flows of control can be
achieved by assigning one fiber per lane and executing all control-flow paths that any of the fibers
take. When executing code for paths not taken by a particular fiber, that fiber’s lane is masked to
not execute, or at least not update any memory or cause other side effects. For example, consider the
following code:

if (a&1)
a = 3*a + 1;

else
a = a/2;

1Warning: This definition of “fiber” should not be confused with the meaning on Microsoftr Windows, where it means an
application-scheduled software thread.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 43 — #43

2.3 Mechanisms 43

In the masking approach, the vector unit executes both both a=3∗a+1 and a=a/2. However, each
lane is masked off for one of the two statements, depending upon whether a&1 is zero or not. It is as if
the code were written:

p = (a&1);
t = 3*a + 1;
if (p) a = t;
t = a/2;
if (!p) a = t;

where if (...)a = t represents a single instruction that does conditional assignment, not a branch.
Emulation of control flow with masking does not have the same performance characteristics as true
threads for irregular computation. With masking, a vector unit executes both arms of the original if
statement but keeps only one of the results. A thread executes only the arm of interest. However, this
approach can be optimized by actually branching around code if all test results in the mask are either
true or false [Shi07]. This case, coherent masks, is the only case in which this approach actually avoids
computation when executing conditionals. This is often combined with using actual multiple threads
over vectorized chunks, so that the masks only have to be coherent within a chunk to avoid work.
Loops can be also be emulated. They are iterated until all lanes satisfy the exit conditions, but lanes
that have already satisfied their exit conditions continue to execute but don’t write back their results.

Packing is an alternative implementation approach that rearranges fibers so that those in the same
vector have similar control flow. Suppose many fibers execute the previous example. Packing first
evaluates the condition in parallel for all fibers. Then, fibers with (a&1)!= 0 are packed into a single
contiguous vector, and all elements of this vector execute a = 3*a + 1. All fibers with (a&1)== 0
are packed into another continguous vector and execute a = a/2. Note that packing can in theory
operate in place on a single vector in memory since we can pack the false and true values into opposite
ends of a single vector. This is sometimes also known as a split operation. Finally, after the divergent
computations are performed, the results are interleaved (unpacked) back into a single result vector in
their original order. Though packing retains the asymptotic performance characteristics of true threads,
it involves extra overhead that can become prohibitive when there are many branches. One option to
avoid the overhead is to only use packing for “large” blocks of code where the cost can be amortized,
and use masking otherwise.

Section 2.4.3 says more about the emulation of elemental functions (functions which act on all
elements of a collection at once) with control flow on vector hardware.

The process of compiling code to vector instructions is called vectorization. When applied
automatically to serial code it is called auto-vectorization. Auto-vectorization is fairly limited in
applicability so often explicit approaches are necessary to get the best performance.

Vector intrinsics are a low-level, direct approach to explicit vectorization. Intrinsics are special
data types and functions that map directly onto specific instructions. For example, on x86 processors
the intrinsic function mm addps(x,y) performs vector addition of vectors x and y. Both arguments
must be 4-element vectors declared as intrinsic type m128. Vector intrinsics are not the same as
assembly language since the compiler still handles register allocation and other matters. However,
intrinsics are definitely low level. Relatively simple mathematical formula become obscure when
expressed with intrinsics, and the resulting code becomes dependent on a particular instruction set

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 44 — #44

44 CHAPTER 2 Background

and hardware vector length. For example, code written with 4-element intrinsics becomes suboptimal
when 8-element vector units become available. This book stresses high-level machine-independent
approaches that enable portable, efficient vector code.

We use task to refer to a unit of potentially parallel work with a separate flow of control. Tasks
are executed by scheduling them onto software threads, which in turn the OS schedules onto hard-
ware threads. A single software thread may run many tasks, though it actively runs only one task
at a time. Scheduling of software threads onto hardware threads is usually preemptive—it can hap-
pen at any time. In contrast, scheduling of tasks onto software threads is typically non-preemptive
(cooperative)—a thread switches tasks only at predictable switch points. Non-preemptive scheduling
enables significantly lower overhead and stronger reasoning about space and time requirements than
threads. Hence, tasks are preferable to software threads as an abstraction for scalable parallelism.

In summary, threads and vectors are two hardware features for parallel execution. Threads deal with
all kinds of parallelism but pay the cost of replicating control-flow hardware whether the replication is
needed or not. Vectors are more efficient at regular computations when suitable vector instructions
exist but can emulate irregular computations with some limitations and inefficiencies. In the best
case, especially for large-scale regular computations, careful design can combine these mechanisms
multiplicatively.

2.4 MACHINE MODELS
In order to write efficient programs, it is important to have a clear mental model of the organization of
the hardware resources being used. We can do this without a deep dive into computer architecture. To
write portable programs, by necessity this model needs to be somewhat abstract. However, there are key
mechanisms shared by most modern computers that are likely to be in future computers. These concepts
include cores, vector units, cache, and non-uniform memory systems. In addition, heterogeneous
computing introduces the concept of an attached co-processor. We describe these key concepts
here so that the book is self-contained, and to define the terminology used throughout the rest of the
book.

2.4.1 Machine Model
Figure 2.2 is a sketch of a typical multicore processor. Inside every core there are multiple func-
tional units, each such functional unit being able to do a single arithmetic operation. By considering
functional units as the basic units of computation rather than cores, we can account for both thread
and vector parallelism. A cache memory hierarchy is typically used to manage the tradeoff between
memory performance and capacity.

Instruction Parallelism
Since cores usually have multiple functional units, multiple arithmetic operations can often be per-
formed in parallel, even in a single core. Parallel use of multiple functional units in a single core can be
done either implicitly, by superscalar execution of serial instructions, hardware multithreading, or by
explicit vector instructions. A single-core design may use all three. A superscalar processor analyzes

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 45 — #45

2.4 Machine Models 45

Functional units

Registers

L1 cache memory
(split instruction/data)

L2 cache memory

L3 cache memory

Point-to-point
interconnect

Point-to-point
interconnect

Point-to-point
interconnect

FIGURE 2.2

Multicore processor with hierarchical cache. Each core has multiple functional units and (typically) an
instruction cache and a data cache. Larger, slower caches are then shared between increasing numbers of
cores in a hierarchy.

an instruction stream and executes multiple instructions in parallel as long as they do not depend
on each other. A core with hardware multithreading supports running multiple hardware threads at
the same time. There are multiple implementation approaches to this, including simultaneous multi-
threading, where instructions from multiple streams feed into a superscalar scheduler [TEL95, KM03],
and switch-on-event multithreading, where the hardware switches rapidly to a different hardware
thread when a long-latency operation, such as a memory read, is encountered [ALKK90]. Vector
instructions enable explicit use of multiple functional units at once by specifying an operation on a
small collection of data elements. For example, on Intel architectures vector instructions in Streaming
SIMD Extension (SSE) allows specification of operations on 128-bit vectors, which can be two 64-bit
values, four 32-bit values, eight 16-bit values, or sixteen 8-bit values. The new Advanced Vector Exten-
sions (AVX) extends this feature to 256-bit vectors, and the Many Integrated Cores (MIC) architecture
extends it yet again to 512-bit vectors.

Memory Hierarchy
Processors also have a memory hierarchy. Closest to the functional units are small, very fast memories
known as registers. Functional units operate directly on values stored in registers. Next there are
instruction and data caches. Instructions are cached separately from data at this level since their usage
patterns are different. These caches are slightly slower than registers but have more space. Additional
levels of cache follow, each cache level being slower but more capacious than the one above it, typi-
cally by an order of magnitude in both respects. Access to main memory is typically two orders of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 46 — #46

46 CHAPTER 2 Background

magnitude slower than access to the last level of cache but is much more capacious, currently up to
hundreds of gigabytes on large servers. Currently, large on-chip cache memories are on the order of
10 MB, which is nonetheless a tiny sliver of the total physical memory typically available in a modern
machine.

Caches are organized into blocks of storage called cache lines. A cache line is typically much larger
than a single word and often (but not always) bigger than a vector. Some currently common sizes for
cache lines are 64 bytes and 128 bytes. Compared with a 128-bit SSE register, which is 16 bytes wide,
we see that these cache lines are 4 to 8 SSE vector registers wide. When data is read from memory,
the cache is populated with an entire cache line. This allows subsequent rapid access to nearby data in
the same cache line. Transferring the entire line from external memory makes it possible to amortize the
overhead for setting up the transfer. On-chip, wide buses can be used to increase bandwidth between
other levels of the memory hierarchy. However, if memory accesses jump around indiscriminately in
memory, the extra data read into the cache goes unused. Peak memory access performance is therefore
only obtained for coherent memory accesses, since that makes full use of the line transfers. Writes
are usually more expensive than reads. This is because writes actually require reading the line in,
modifying the written part, and (eventually) writing the line back out.

There are also two timing-related parameters to consider when discussing memory access: latency
and bandwidth. Bandwidth is the amount of data that can be transferred per unit time. Latency is
the amount of time that it takes to satisfy a transfer request. Latency can often be a crucial factor in
performance. Random reads, for example due to “pointer chasing,” can leave the processor spending
most of its time waiting for data to be returned from off-chip memory. This is a good case where
hardware multithreading on a single core be beneficial, since while one thread is waiting for a memory
read another can be doing computation.

Caches maintain copies of data stored elsewhere, typically in main memory. Since caches are
smaller than main memory, only a subset of the data in the memory (or in the next larger cache) can be
stored, and bookkeeping data needs to be maintained to keep track of where the data came from. This
is the other reason for using cache lines: to amortize the cost of the bookkeeping. When an address is
accessed, the caches need to be searched quickly to determine if that address’ data is in cache. A fully
associative cache allows any address’ data to be stored anywhere in the cache. It is the most flexible
kind of cache but expensive in hardware because the entire cache must be searched. To do this quickly,
a large number of parallel hardware comparators is required.

At the other extreme are direct-mapped caches. In a direct-mapped cache, data can be placed in
only one location in cache, typically using a modular function of the address. This is very simple.
However, if the program happens to access two different main memory locations that map to the same
location in the cache, data will get swapped into that same location repeatedly, defeating the cache.
This is called a cache conflict. In a direct-mapped cache, main memory locations with conflicts are
located far apart, so a conflict is theoretically rare. However, these locations are typically located at a
power of two separation, so certain operations (like accessing neighboring rows in a large image whose
dimensions are a power of two) can be pathological.

A set-associative cache is a common compromise between full associativity and direct mapping.
Each memory address maps to a set of locations in the cache; hence, searching the cache for an
address involves searching only the set it maps to, not the entire cache. Pathological cases where
many accesses hit the same set can occur, but they are less frequent than for direct-mapped caches.
Interestingly, a k-way set associative cache (one with k elements in each set) can be implemented

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 47 — #47

2.4 Machine Models 47

using k direct-mapped caches plus a small amount of additional external hardware. Usually k is a small
number, such as 4 or 8, although it is as large as 16 on some recent Intel processors.

Caches further down in the hierarchy are typically also shared among an increasing number of
cores. Special hardware keeps the contents of caches consistent with one another. When cores commu-
nicate using “shared memory,” they are often really just communicating through the cache coherence
mechanisms. Another pathological case can occur when two cores access data that happens to lie in
the same cache line. Normally, cache coherency protocols assign one core, the one that last modifies a
cache line, to be the “owner” of that cache line. If two cores write to the same cache line repeatedly,
they fight over ownership. Importantly, note that this can happen even if the cores are not writing to
the same part of the cache line. This problem is called false sharing and can significantly decrease
performance. In particular, as noted in Section 2.3, this leads to a significant difference in the benefit
of memory coherence in threads and vector mechanisms for parallelism.

Virtual Memory
Virtual memory lets each processor use its own logical address space, which the hardware maps to
the actual physical memory. The mapping is done per page, where pages are relatively large blocks of
memory, on the order of 4 KB to 16 KB. Virtual memory enables running programs with larger data
sets than would fit in physical memory. Parts of the virtual memory space not in active use are kept in a
disk file called a swap file so the physical memory can be remapped to other local addresses in use. In
a sense, the main memory acts as cache for the data stored on disk. However, since disk access latency
is literally millions of times slower than memory access latency, a page fault—an attempt to access
a location that is not in physical memory—can take a long time to resolve. If the page fault rate is
high, then performance can suffer. Originally, virtual memory was designed for the situation in which
many users were time-sharing a computer. In this case, applications would be “swapped out” when a
user was not active, and many processes would be available to hide latency. In other situations, virtual
memory may not be able to provide the illusion of a large memory space efficiently, but it is still useful
for providing isolation between processes and simplifying memory allocation.

Generally speaking, data locality is important at the level of virtual memory for two reasons. First,
good performance requires that the page fault rate be low. This means that the ordering of accesses to
data should be such that the working set of the process—the total amount of physical memory that
needs to be accessed within a time period that is short relative to the disk access time—should fit in the
set of physical memory pages that can be assigned to the process. Second, addresses must be translated
rapidly from virtual addresses to physical addresses. This is done by specialized hardware called a
Translation Lookaside Buffer (TLB). The TLB is a specialized cache that translates logical addresses
to physical addresses for a small set of active pages. Like ordinary caches, it may have hierarchical
levels and may be split for instructions versus data. If a memory access is made to a page not currently
in the TLB, then a TLB miss occurs. A TLB miss requires walking a page table in memory to find the
translation. The walk is done by either specialized hardware or a trap to the operating system. Since
the TLB is finite, updating the TLB typically requires the eviction of some other translation entry.

The important issue is that the number of page translation entries in the TLB is relatively small, on
the order of 8 to 128 entries for the first-level TLB, and TLB misses, while not as expensive as page
faults, are not cheap. Therefore, accessing a large number of pages in a short timeframe can cause TLB
thrashing, a high TLB miss rate that can significantly degrade performance.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 48 — #48

48 CHAPTER 2 Background

A typical case for this issue is a stencil on a large 3D array. Suppose a program sweeps through
the array in the obvious order—row, column, page—accessing a stencil of neighboring elements for
each location. If the number of pages touched by a single row sweep is larger than the size of the TLB,
this will tend to cause a high TLB miss rate. This will be true even if the page fault rate is low. Of
course, if the 3D array is big enough, then a high page fault rate might also result. Reordering the
stencil to improve locality (for example, as in Chapter 10) can lower the TLB miss rate and improve
performance. Another way to address this is to use large pages so that a given number of TLB entries
can cover a larger amount of physical memory. Some processors partition the TLB into portions for
small and large pages, so that large pages can be used where beneficial, and not where they would do
more harm than good.

Multiprocessor Systems
Processors may be combined together to form multiple-processor systems. In modern systems, this is
done by attaching memory directly to each processor and then connecting the processors (or actu-
ally, their caches) with fast point-to-point communications channels, as in Figure 2.3. The cache
coherency protocol is extended across these systems, and processors can access memory attached to
other processors across the communication channels.

However, access to memory attached to a remote processor is slower (has higher latency and also
typically reduced bandwidth) than access to a local memory. This results in non-uniform memory
access (NUMA). Ideally, threads should be placed on cores close to the data they should process,
or vice versa. The effect is not large for machines with a small number of processors but can be
pronounced for large-scale machines. Because NUMA also affects cache coherency, other problems,
such as false sharing, can be magnified in multiprocessor machines.

One basic theoretical model of parallel computation, the Parallel Random Access Machine
(PRAM), assumes uniform memory-access times for simplicity, and there have been attempts to build
real machines like this [Vis11]. However, both caching and NUMA invalidate this assumption. Caches
make access time depend on previous accesses, and NUMA makes access time depend on the location
of data. The constants involved are not small, either. Access to main memory can be hundreds of times
slower than access to cache. Designing algorithms to have good cache behavior is important for serial
programs, but becomes even more important for parallel programs.

Theoretical models that extend PRAM to quantify overhead of interprocessor communication
include the Synchronous Parallel (BSP) [Val90] and the LogP [CKP+96] models.

Attached Devices
Other devices are often attached to the processor. For example, a PCIe bus allows devices to be
installed by end users. A Network Interface Controller (NIC) is a typical PCIe device that pro-
vides access to the network. High-performance NICs can require high bandwidth and additionally the
overall system performance of a cluster can depend crucially on communication latency. The PCIe
bus protocol allows for such devices to perform direct memory access (DMA) and read or write data
directly to memory, without involving the main processor (except for coordination).

Other devices with high memory requirements may also use DMA. Such devices included attached
processing units such as graphics accelerators and many-core processors.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 49 — #49

2.4 Machine Models 49

Mem

Mem

Mem

Mem

Proc Proc

ProcProc

MemcoProcNIC

PCIe bus

Bridge

Network

DC Disk

FIGURE 2.3

Multiprocessor system organization. Each processor has its own memory bank(s), and processors are
interconnected using point-to-point communication channels. A processor can access its own memory directly
and other banks over the communication channels. A bridge chip connects the processors to other devices,
often through a bus such as a PCIe bus. Communication devices (Network Interface Controllers, or NICs) and
other processors (GPUs or attached co-processors) can be attached to the PCIe bus (actually, the PCIe bus is
not an actual shared bus but another set of point-to-point data links).

Such co-processors can be quite sophisticated systems in their own right. The Intel Many Inte-
grated Core (MIC) architecture, for example, is a high-performance processor with a large number of
simple cores (over 50) and its own cache and memory system. Each MIC core also has wide vector
units, 512 bits, which is twice as wide as AVX. These characteristics make it more suitable for highly
parallelizable and vectorizable workloads with regular data parallelism than multicore processors,
which are optimized for high scalar performance.

While the main function of graphics accelerators is the generation of images, they can also be used
to provide supplemental processing power, since they also have wide vector units and many cores.
Graphics accelerators used as computational engines are usually programmed using the SIMT model
discussed in Section 2.4.3 through a programming model such as OpenCL or (for graphics accelerators
from NVIDIA) CUDA.

However, while graphics accelerators must be programmed with a specialized programming model
such as OpenCL, the Intel MIC architecture runs a full operating system (Linux) and can be pro-
grammed with nearly any parallel programming model available on multicore processors. This includes
(but is not limited to) all the programming models discussed in this book.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 50 — #50

50 CHAPTER 2 Background

2.4.2 Key Features for Performance
Given the complexities of computer architecture, and the fact that different computers can vary
significantly, how can you optimize code for performance across a range of computer architectures?

The trick is to realize that modern computer architectures are designed around two key assumptions:
data locality and the availability of parallel operations. Get these right and good performance can be
achieved on a wide range of machines, although perhaps after some per-machine tuning. However, if
you violate these assumptions, you cannot expect good performance no matter how much low-level
tuning you do. In this section, we will also discuss some useful strategies for avoiding dependence on
particular machine configurations: cache oblivious algorithms and parameterized code.

Data Locality
Good use of memory bandwidth and good use of cache depends on good data locality, which is the
reuse of data from nearby locations in time or space. Therefore, you should design your algorithms to
have good data locality by using one or more of the following strategies:

• Break work up into chunks that can fit in cache. If the working set for a chunk of work does not fit
in cache, it will not run efficiently.

• Organize data structures and memory accesses to reuse data locally when possible. Avoid unneces-
sary accesses far apart in memory and especially simultaneous access to multiple memory locations
located a power of two apart. The last consideration is to avoid cache conflicts on caches with low
associativity.

• To avoid unnecessary TLB misses, avoid accessing too many pages at once.
• Align data with cache line boundaries. Avoid having unrelated data accesses from different cores

access the same cache lines, to avoid false sharing.

Some of these may require changes to data layout, including reordering items and adding padding
to achieve (or avoid) alignments with the hardware architecture. Not only is breaking up work into
chunks and getting good alignment with the cache good for parallelization but these optimizations can
also make a big difference to single-core performance.

However, these guidelines can be hard to follow when writing portable code, since then you have
no advance knowledge of the cache line sizes, the cache organization, or the total size of the caches.
In this case, use memory allocation routines that can be customized to the machine, and parameterize
your code so that the grain size (the size of a chunk of work) can be selected dynamically. If code is
parameterized in this way, then when porting to a new machine the tuning process will involve only
finding optimal values for these parameters rather than re-coding. If the search for optimal parameters
is done automatically it is known as autotuning, which may also involve searching over algorithm
variants as well.

Another approach to tuning grain size is to design algorithms so that they have locality at all scales,
using recursive decomposition. This so-called cache oblivious approach avoids the need to know the
size or organization of the cache to tune the algorithm. Section 8.8 says more about the cache oblivious
approach.

Another issue that affects the achievable performance of an algorithm is arithmetic intensity. This
is the ratio of computation to communication. Given the fact that on-chip compute performance is still
rising with the number of transistors, but off-chip bandwidth is not rising as fast, in order to achieve
scalability approaches to parallelism should be sought that give high arithmetic intensity. This ideally

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 51 — #51

2.4 Machine Models 51

means that a large number of on-chip compute operations should be performed for every off-chip
memory access. Throughout this book we discuss several optimizations that are aimed at increasing
arithmetic intensity, including fusion and tiling.

Sometimes there is conflict between small grain sizes (which give high parallelism) and high arith-
metic intensity. For example, in a 2D recurrence tiling (discussed in Chapter 7), the amount of work
in a tile might grow as 2(n2) while the communication grows as 2(n). In this case the arithmetic
intensity grows by 2(n)=2(n2)/2(n), which favors larger grain sizes. In practice, the largest grain
size that still fits in cache will likely give the best performance with the least overhead. However, a
large grain size may also reduce the available parallelism (“parallel slack”) since it will reduce the
total number of work units.

Parallel Slack
Parallel slack is the amount of “extra” parallelism available (Section 2.5.6) above the minimum
necessary to use the parallel hardware resources. Specifying a significant amount of potential paral-
lelism higher than the actual parallelism of the hardware gives the underlying software and hardware
schedulers more flexibility to exploit machine resources.

Normally you want to choose the smallest work units possible that reasonably amortize the over-
head of scheduling them and give good arithmetic intensity. Breaking down a problem into exactly
as many chunks of work as there are cores available on the machine is tempting, but not necessarily
optimal, even if you know the number of cores on the machine. If you only have one or a few tasks on
each core, then a delay on one core (perhaps due to an operating system interrupt) is likely to delay the
entire program.

Having lots of parallel slack works well with the Intel Cilk Plus and Intel TBB task schedulers
because they are designed to exploit slack. In contrast when using OS threading interfaces such as
POSIX threads, too much actual parallelism can be detrimental. This problem often does not happen
on purpose but due to nesting parallelism using direct threading. Suppose on a 16-core system that an
algorithm f creates 15 extra threads to assist its calling thread, and each thread calls a library routine g.
If the implementer of g applies the same logic, now there are 16× 15 threads running concurrently!
Because these threads have mandatory concurrency semantics (they must run in parallel), the OS
must time-slice execution among all 240 threads, incurring overhead for context switching and reload-
ing items into cache. Using tasks instead is better here, because tasks have semantics that make actual
parallelism optional. This enables the task scheduler to automatically match actual parallelism to the
hardware capability, even when parallelism is nested or irregular.

As mentioned earlier, having more potential parallelism than cores can also help performance
when the cores support hardware multithreading. For example, if pointer-chasing code using depen-
dent memory reads cannot be avoided, then additional parallelism can enable hardware-multithreading
to hide the latency of the memory reads. However, if additional parallelism is used for this purpose,
the total working set needs to be considered so that the cache size is not exceeded for all concurrently
active threads. If parallelism is increased for this purpose, the grain size might have to be reduced for
best performance.

2.4.3 Flynn’s Characterization
One way to coarsely characterize the parallelism available in processor types is by how they com-
bine control flow and data management. A classic categorization by Flynn [Fly72] divides parallel

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 52 — #52

52 CHAPTER 2 Background

processors into categories based on whether they have multiple flows of control, multiple streams of
data, or both.

• Single Instruction, Single Data (SISD): This is just a standard non-parallel processor. We usually
refer to this as a scalar processor. Due to Amdahl’s Law (discussed in Section 2.5.4), the
performance of scalar processing is important; if it is slow it can end up dominating performance.

• Single Instruction, Multiple Data (SIMD): A single operation (task) executes simultaneously on
multiple elements of data. The number of elements in a SIMD operation can vary from a small
number, such as the 4 to 16 elements in short vector instructions, to thousands, as in streaming
vector processors. SIMD processors are also known as array processors, since they consist of an
array of functional units with a shared controller.

• Multiple Instruction, Multiple Data (MIMD): Separate instruction streams, each with its own
flow of control, operate on separate data. This characterizes the use of multiple cores in a single
processor, multiple processors in a single computer, and multiple computers in a cluster. When
multiple processors using different architectures are present in the same computer system, we say
it is a heterogeneous computer. An example would be a host processor and a co-processor with
different instruction sets.

The last possible combination, MISD, is not particularly useful and is not used.
Another way often used to classify computers is by whether every processor can access a common

shared memory or if each processor can only access memory local to it. The latter case is called
distributed memory. Many distributed memory systems have local shared-memory subsystems. In
particular, clusters are large distributed-memory systems formed by connecting many shared-memory
computers (“nodes”) with a high-speed communication network. Clusters are formed by connecting
otherwise independent systems and so are almost always MIMD systems. Often shared-memory com-
puters really do have physically distributed memory systems; it’s just that the communication used to
create the illusion of shared memory is implicit.

There is another related classification used especially by GPU vendors: Single Instruction, Mul-
tiple Threads (SIMT). This corresponds to a tiled SIMD architecture consisting of multiple SIMD
processors, where each SIMD processor emulates multiple “threads” (fibers in our terminology) using
masking. SIMT processors may appear to have thousands of threads, but in fact blocks of these share
a control processor, and divergent control flow can significantly reduce efficiency within a block. On
the other hand, synchronization between fibers is basically free, because when control flow is emulated
with masking the fibers are always running synchronously.

Memory access patterns can also affect the performance of a processor using the SIMT model.
Typically each SIMD subprocessor in a SIMT machine is designed to use the data from a cache line. If
memory access from different fibers access completely different cache lines, then performance drops
since often the processor will require multiple memory cycles to resolve the memory access. These are
called divergent memory accesses. In contrast, if all fibers in a SIMD core access the same cache lines,
then the memory accesses can be coalesced and performance improved. It is important to note that this
is exactly the opposite of what we want to do if the fibers really were separate threads. If the fibers
were running on different cores, then we want to avoid having them access the same cache line. There-
fore, while code written to use fibers may be implemented using hardware threads on multiple cores,
code properly optimized for fibers will actually be suboptimal for threads when it comes to memory
access.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 53 — #53

2.4 Machine Models 53

2.4.4 Evolution
Predictions are very difficult, especially about the future.

(Niels Bohr)

Computers continue to evolve, although the fundamentals of parallelism and data locality will continue
to be important. An important recent trend is the development of attached processing such as graphics
accelerators and co-processors specialized for highly parallel workloads.

Graphics accelerators are also known as GPUs. While originally designed for graphics, GPUs have
become general-purpose enough to be used for other computational tasks.

In this book we discuss, relatively briefly, a standard language and application programming
interface (API) called OpenCL for programming many-core devices from multiple vendors, including
GPUs. GPUs from NVIDIA can also be programmed with a proprietary language called CUDA. For
the most part, OpenCL replicates the functionality of CUDA but provides the additional benefit of
portability. OpenCL generalizes the idea of computation on a GPU to computation on multiple types
of attached processing. With OpenCL, it is possible to write a parallel program that can run on the
main processor, on a co-processor, or on a GPU. However, the semantic limitations of the OpenCL
programming model reflect the limitations of GPUs.

Running computations on an accelerator or co-processor is commonly referred to as offload. As
an alternative to OpenCL or CUDA, several compilers (including the Intel compiler) now support
offload pragmas to move computations and data to an accelerator or co-processor with minimal code
changes. Offload pragmas allow annotating the original source code rather than rewriting the “kernels”
in a separate language, as with OpenCL. However, even with an offload pragma syntax, any code being
offloaded still has to fit within the semantic limitations of the accelerator or co-processor to which it
is being offloaded. Limitations of the target may force multiple versions of code. For example, if the
target processor does not support recursion or function pointers, then it will not be possible to offload
code that uses these language features to that processor. This is true even if the feature is being used
implicitly. For example, the “virtual functions” used to support C++ class inheritance use function
pointers in their implementation. Without function pointer support in the target hardware it is therefore
not possible to offload general C++ code.

Some tuning of offloaded code is also usually needed, even if there is a semantic match. For
example, GPUs are designed to handle large amounts of fine-grained parallelism with relatively small
working sets and high coherence. Unlike traditional general-purpose CPUs, they have relatively small
on-chip memories and depend on large numbers of active threads to hide latency, so that data can
be streamed in from off-chip memory. They also have wide vector units and simulate many fibers
(pseudo-threads) at once using masking to emulate control flow.

These architectural choices can be good tradeoffs for certain types of applications, which has given
rise to the term heterogeneous computing: the idea that different processor designs are suitable for
different kinds of workloads, so a computer should include multiple cores of different types. This
would allow the most efficient core for a given application, or stage of an application, to be used. This
concept can be extended to even more specialized hardware integrated into a processor, such as video
decoders, although usually it refers to multiple types of programmable processor.

GPUs are not the only offload device available. It is also possible to use programmable hardware
such as field programmable gate arrays (FPGAs) and co-processors made of many-core processors,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 54 — #54

54 CHAPTER 2 Background

such as the Intel MIC (Many Integrated Cores) architecture. While the MIC architecture can be pro-
grammed with OpenCL, it is also possible to use standard CPU programming models with it. However,
the MIC architecture has many more cores than most CPUs (over 50), and each core has wide vector
units (16 single-precision floats). This is similar in some ways to GPU architectures and enables high
peak floating point performance. The tradeoff is that cache size per core is reduced, so it is even more
important to have good data locality in implementations.

However, the main difference between MIC and GPUs is in the variety of programming models
supported: The MIC is a general-purpose processor running a standard operating system (Linux) with
full compiler support for C, C++, and Fortran. It also appears as a distributed-memory node on the
network. The MIC architecture is therefore not limited to OpenCL or CUDA but can use any program-
ming model (including, for instance, MPI) that would run on a mainstream processor. It also means that
offload pragma syntax does not have to be limited by semantic differences between the host processor
and the target processor.

Currently, GPUs are primarily available as discrete devices located on the PCIe bus and do not
share memory with the host. This is also the current model for the MIC co-processor. However, this
model has many inefficiencies, since data must be transferred across the PCIe bus to a memory local
to the device before it can be processed.

As another possible model for integrating accelerators or co-processors within a computer system,
GPUs cores with their wide vector units have been integrated into the same die as the main proces-
sor cores by both AMD and Intel. NVIDIA also makes integrated CPU/GPU processors using ARM
main cores for the embedded and mobile markets. For these, physical memory is shared by the GPU
and CPU processors. Recently, APIs and hardware support have been rapidly evolving to allow data
sharing without copying. This approach will allow much finer-grained heterogeneous computing, and
processors may in fact evolve so that there are simply multiple cores with various characteristics on
single die, not separate CPUs, GPUs, and co-processors.

Regardless of whether a parallel program is executed on a CPU, a GPU, or a many-core
co-processor, the basic requirements are the same: Software must be designed for a high level of par-
allelism and with good data locality. Ultimately, these processor types are not that different; they just
represent different points on a design spectrum that vary in the programming models they can support
most efficiently.

2.5 PERFORMANCE THEORY
The primary purpose of parallelization, as discussed in this book, is performance. So what is
performance? Usually it is about one of the following:

• Reducing the total time it takes to compute a single result (latency; Section 2.5.1)
• Increasing the rate at which a series of results can be computed (throughput; Section 2.5.1)
• Reducing the power consumption of a computation (Section 2.5.3)

All these valid interpretations of “performance” can be achieved by parallelization.
There is also a distinction between improving performance to reduce costs or to meet a deadline.

To reduce costs, you want to get more done within a fixed machine or power budget and usually are

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 55 — #55

2.5 Performance Theory 55

not willing to increase the total amount of computational work. Alternatively, to meet a deadline, you
might be willing to increase the total amount of work if it means the jobs gets done sooner. For instance,
in an interactive application, you might need to complete work fast enough to meet a certain frame rate
or response time. In this case, extra work such as redundant or speculative computation might help
meet the deadline. Choose such extra work with care, since it may actually decrease performance, as
discussed in Section 2.5.6.

Once you have defined a performance target, then generally you should iteratively modify an
application to improve its performance until the target is reached. It is important during this opti-
mization process to start from a working implementation and validate the results after every program
transformation. Fast computation of wrong answers is pointless, so continuous validation is strongly
recommended to avoid wasting time tuning a broken implementation.

Validation should be given careful thought, in light of the original purpose of the program. Obtain-
ing results “bit identical” to the serial program is sometimes unrealistic if the algorithm needs to be
modified to support parallelization. Indeed, the parallel program’s results, though different, may be as
as good for the overall purpose as the original serial program, or even better.

During the optimization process you should measure performance to see if you are making progress.
Performance can be measured empirically on real hardware or estimated using analytic models based
on ideal theoretical machines. Both approaches are valuable. Empirical measures account for real-
world effects but often give little insight into root causes and therefore offer little guidance as to how
performance could be improved or why it is limited. Analytic measures, particularly the work-span
model explained in Section 2.5.6, ignore some real-world effects but give insight into the fundamental
scaling limitations of a parallel algorithm. Analytic approaches also allow you to compare paralleliza-
tion strategies at a lower cost than actually doing an implementation. We recommend using analytic
measures to guide selection of an algorithm, accompanied by “back of the envelope” estimates of plau-
sibility. After an algorithm is implemented, use empirical measures to understand and deal with effects
ignored by the analytic model.

2.5.1 Latency and Throughput
The time it takes to complete a task is called latency. It has units of time. The scale can be anywhere
from nanoseconds to days. Lower latency is better.

The rate a which a series of tasks can be completed is called throughput. This has units of work per
unit time. Larger throughput is better. A related term is bandwidth, which refers to throughput rates
that have a frequency-domain interpretation, particularly when referring to memory or communication
transactions.

Some optimizations that improve throughput may increase the latency. For example, processing
of a series of tasks can be parallelized by pipelining, which overlaps different stages of processing.
However, pipelining adds overhead since the stages must now synchronize and communicate, so the
time it takes to get one complete task through the whole pipeline may take longer than with a simple
serial implementation.

Related to latency is response time. This measure is often used in transaction processing systems,
such as web servers, where many transactions from different sources need to be processed. To maintain
a given quality of service each transaction should be processed in a given amount of time. However,
some latency may be sacrificed even in this case in order to improve throughput. In particular, tasks

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 56 — #56

56 CHAPTER 2 Background

may be queued up, and time spent waiting in the queue increases each task’s latency. However, queuing
tasks improves the overall utilization of the computing resources and so improves throughput and
reduces costs.

“Extra” parallelism can also be used for latency hiding. Latency hiding does not actually reduce
latency; instead, it improves utilization and throughput by quickly switching to another task whenever
one task needs to wait for a high-latency activity. Section 2.5.9 says more about this.

2.5.2 Speedup, Efficiency, and Scalability
Two important metrics related to performance and parallelism are speedup and efficiency. Speedup
compares the latency for solving the identical computational problem on one hardware unit (“worker”)
versus on P hardware units:

speedup= SP =
T1

TP
(2.1)

where T1 is the latency of the program with one worker and TP is the latency on P workers.
Efficiency is speedup divided by the number of workers:

efficiency=
SP

P
=

T1

PTP
. (2.2)

Efficiency measures return on hardware investment. Ideal efficiency is 1 (often reported as 100%),
which corresponds to a linear speedup, but many factors can reduce efficiency below this ideal.

If T1 is the latency of the parallel program running with a single worker, Equation 2.1 is sometimes
called relative speedup, because it shows relative improvement from using P workers. This uses a
serialization of the parallel algorithm as the baseline. However, sometimes there is a better serial algo-
rithm that does not parallelize well. If so, it is fairer to use that algorithm for T1, and report absolute
speedup, as long as both algorithms are solving an identical computational problem. Otherwise, using
an unnecessarily poor baseline artificially inflates speedup and efficiency.

In some cases, it is also fair to use algorithms that produce numerically different answers, as long
as they solve the same problem according to the problem definition. In particular, reordering floating
point computations is sometimes unavoidable. Since floating point operations are not truly associative,
reordering can lead to differences in output, sometimes radically different if a floating point comparison
leads to a divergence in control flow. Whether the serial or parallel result is actually more accurate
depends on the circumstances.

Speedup, not efficiency, is what you see in advertisements for parallel computers, because speedups
can be large impressive numbers. Efficiencies, except in unusual circumstances, do not exceed 100%
and often sound depressingly low. A speedup of 100 sounds better than an efficiency of 10%, even if
both are for the same program and same machine with 1000 cores.

An algorithm that runs P times faster on P processors is said to exhibit linear speedup. Linear
speedup is rare in practice, since there is extra work involved in distributing work to processors and
coordinating them. In addition, an optimal serial algorithm may be able to do less work overall than an
optimal parallel algorithm for certain problems, so the achievable speedup may be sublinear in P, even
on theoretical ideal machines. Linear speedup is usually considered optimal since we can serialize

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 57 — #57

2.5 Performance Theory 57

the parallel algorithm, as noted above, and run it on a serial machine with a linear slowdown as a
worst-case baseline.

However, as exceptions that prove the rule, an occasional program will exhibit superlinear
speedup—an efficiency greater than 100%. Some common causes of superlinear speedup include:

• Restructuring a program for parallel execution can cause it to use cache memory better, even when
run on with a single worker! But if T1 from the old program is still used for the speedup calculation,
the speedup can appear to be superlinear. See Section 10.5 for an example of restructuring that often
reduces T1 significantly.

• The program’s performance is strongly dependent on having a sufficient amount of cache memory,
and no single worker has access to that amount. If multiple workers bring that amount to bear,
because they do not all share the same cache, absolute speedup really can be superlinear.

• The parallel algorithm may be more efficient than the equivalent serial algorithm, since it may be
able to avoid work that its serialization would be forced to do. For example, in search tree problems,
searching multiple branches in parallel sometimes permits chopping off branches (by using results
computed in sibling branches) sooner than would occur in the serial code.

However, for the most part, sublinear speedup is the norm.
Section 2.5.4 discusses an important limit on speedup: Amdahl’s Law. It considers speedup as P

varies and the problem size remains fixed. This is sometimes called strong scalability. Section 2.5.5
discusses an alternative, Gustafson-Barsis’ Law, which assumes the problem size grows with P.
This is sometimes called weak scalability. But before discussing speedup further, we discuss another
motivation for parallelism: power.

2.5.3 Power
Parallelization can reduce power consumption. CMOS is the dominant circuit technology for current
computer hardware. CMOS power consumption is the sum of dynamic power consumption and static
power consumption [VF05]. For a circuit supply voltage V and operating frequency f , CMOS dynamic
power dissipation is governed by the proportion

Pdynamic ∝ V2f .

The frequency dependence is actually more severe than the equation suggests, because the highest
frequency at which a CMOS circuit can operate is roughly proportional to the voltage. Thus dynamic
power varies as the cube of the maximum frequency. Static power consumption is nominally inde-
pendent of frequency but is dependent on voltage. The relation is more complex than for dynamic
power, but, for sake of argument, assume it varies cubically with voltage. Since the necessary volt-
age is proportional to the maximum frequency, the static power consumption varies as the cube of the
maximum frequency, too. Under this assumption we can use a simple overall model where the total
power consumption varies by the cube of the frequency.

Suppose that parallelization speeds up an application by 1.5× on two cores. You can use this
speedup either to reduce latency or reduce power. If your latency requirement is already met, then
reducing the clock rate of the cores by 1.5× will save a significant amount of power. Let P1 be the
power consumed by one core running the serial version of the application. Then the power consumed

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 58 — #58

58 CHAPTER 2 Background

Table 2.1 Running Fewer Cores Faster [Cor11c].
The table shows how the maximum core frequency for
an Intel core i5-2500T chip depends on the number
of active cores. The last column shows the parallel
efficiency over all four cores required to match the
speed of using only one active core.

Active Cores Maximum
Frequency (GHz)

Breakeven
Efficiency

4 2.4 34%
3 2.8 39%
2 3.2 52%
1 3.3 100%

by two cores running the parallel version of the application will be given by:

P2 = 2

(
1

1.5

)3

P1

≈ 0.6P1,

where the factor of 2 arises from having two cores. Using two cores running the parallelized version
of the application at the lower clock rate has the same latency but uses (in this case) 40% less power.

Unfortunately, reality is not so simple. Current chips have so many transistors that frequency and
voltage are already scaled down to near the lower limit just to avoid overheating, so there is not much
leeway for raising the frequency. For example, Intel Turbo Boost Technology enables cores to be put
to sleep so that the power can be devoted to the remaining cores while keeping the chip within its
thermal design power limits. Table 2.1 shows an example. Still, the table shows that even low parallel
efficiencies offer more performance on this chip than serial execution.

Another way to save power is to “race to sleep” [DHKC09]. In this strategy, we try to get the
computation done as fast as possible (with the lowest latency) so that all the cores can be put in a sleep
state that draws very little power. This approach is attractive if a significant fraction of the wakeful
power is fixed regardless of how many cores are running.

Especially in mobile devices, parallelism can be used to reduce latency. This reduces the time the
device, including its display and other components, is powered up. This not only improves the user
experience but also reduces the overall power consumption for performing a user’s task: a win-win.

2.5.4 Amdahl’s Law
. . . the effort expended on achieving high parallel processing rates is wasted unless it is accompanied
by achievements in sequential processing rates of very nearly the same magnitude.

(Gene Amdahl [Amd67])

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 =Wser+Wpar,

TP ≥Wser+Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP ≤
Wser+Wpar

Wser+Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1− f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP ≤
1

f + (1− f)/P
. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 60 — #60

60 CHAPTER 2 Background

Now consider what happens when P tends to infinity:

S∞ ≤
1

f
. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10×.
If 1% of the application cannot be parallelized, then the maximum speedup is 100×. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P= 2048, a program’s speedup is limited to 672×. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction

3

2

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup

0.1%

1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 61 — #61

2.5 Performance Theory 61

100%

80%

60%

40%

20%

0%
1 2 4 8 16 32 64

Number of workers

Serial
fraction

0.1%

1%

10%

30%

50%

128 256 512 1024 2048

Efficiency

FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000×. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T∞.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P= 1 and P=∞ are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T∞ is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 63 — #63

2.5 Performance Theory 63

FIGURE 2.8

Work and span. Arrows denote dependencies between tasks. Work is the total amount of computation, while
span is given by the critical path. In this example, if each task takes unit time, the work is 18 and the span is 6.

tasks that must be evaluated one after the other contains 6 tasks.
Work and span each put a limit on speedup. Superlinear speedup is impossible in the work-span

model:

SP =
T1

TP
≤

T1

T1/P
= P. (2.6)

On an ideal machine with greedy scheduling, adding processors never slows down an algorithm:

SP =
T1

TP
≤

T1

T∞
. (2.7)

Or more colloquially:

speedup≤
work

span
.

For example, the speedup for Figure 2.8 can never exceed 3, because T1/T∞ = 18/6= 3. Real
machines introduce synchronization overhead, not only for the synchronization constructs themselves,
but also for communication. A span that includes these overheads is called a burdened span [HLL10].

The span provides more than just an upper bound on speedup. It can also be used to estimate a lower
bound on speedup for an ideal machine. An inequality known as Brent’s Lemma [Bre74] bounds TP

in terms of the work T1 and the span T∞:

TP ≤ (T1−T∞)/P+T∞. (2.8)

Here is the argument behind the lemma. The total work T1 can be divided into two categories:
perfectly parallelizable work and imperfectly parallelizable work. The imperfectly parallelizable work
takes time T∞ no matter how many workers there are. The perfectly parallelizable work remaining
takes time T1−T∞ with a single worker, and since it is perfectly parallelizable it speeds up by P if

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 64 — #64

64 CHAPTER 2 Background

1

2

3

4

5

6

0 4 8 12 16

P (Number of workers)

Speedup bounds

P
T1/(T1/P+T∞)

T1/T∞

Amdahl

FIGURE 2.9

Amdahl was an optimist. Using the work and span of Figure 2.8, this graph illustrates that the upper bound by
Amdahl’s Law is often much higher than what work-span analysis reveals. Furthermore, work-span analysis
provides a lower bound for speedup, too, assuming greedy scheduling on an ideal machine.

all P workers are working on it. But if not all P workers are working on it, then at least one worker
is working on the T∞ component. The argument resembles Amdahl’s argument, but generalizes the
notion of an inherently serial portion of work to imperfectly parallelizable work.

Though the argument resembles Amdahl’s argument, it proves something quite different. Amdahl’s
argument put a lower bound on TP and is exact only if the parallelizable portion of a program is
perfectly parallelizable. Brent’s Lemma puts an upper bound on TP. It says what happens if the worst
possible assignment of tasks to workers is chosen.

In general, work-span analysis is a far better guide than Amdahl’s Law, because it usually provides
a tighter upper bound and also provides a lower bound. Figure 2.9 compares the bounds given by
Amdahl’s Law and work-span analysis for the task graph in Figure 2.8. There are 18 tasks. The first
and last tasks constitute serial work; the other tasks constitute parallelizable work. Hence, the fraction
of serial work is 2/18= 1/9. By Amdahl’s Law, the limit on speedup is 9. Work-span analysis says the
speedup is limited by the min(P,T1/T∞)=min(P,18/6), which is at most 3, a third of what Amdahl’s
law indicates. The difference is that the work-span analysis accounted for how parallelizable the par-
allel work really is. The bottom curve in the figure is the lower bound provided by Brent’s lemma.
It says, for example, that with 4 workers a speedup of 2 is guaranteed, no matter how the tasks are
assigned to workers.

Brent’s Lemma leads to a useful formula for estimating TP from the work T1 and span T∞. To get
much speedup, T1 must be significantly larger than T∞, In this case, T1−T∞ ≈ T1 and the right side
of 2.8 also turns out to be a good lower bound estimate on TP. So the following approximation works
well in practice for estimating running time:

TP ≈ T1/P+T∞ if T∞� T1. (2.9)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 65 — #65

2.5 Performance Theory 65

The approximation says a lot:

• Increasing the total work T1 hurts parallel execution proportionately.
• The span T∞ impacts scalability, even when P is finite.

When designing a parallel algorithm, avoid creating significantly more work for the sake of paral-
lelization, and focus on reducing the span, because the span is the fundamental asymptotic limit on
scalability. Increase the work only if it enables a drastic decrease in span. An example of this is the
scan pattern, where the span can be reduced from linear to logarithmic complexity by doubling the
work (Section 8.11).

Brent’s Lemma also leads to a formal motivation for overdecomposition. From Equation 2.8 the
following condition can be derived:

SP = T1/TP ≈ P if T1/T∞� P. (2.10)

It says that greedy scheduling achieves linear speedup if a problem is overdecomposed to create much
more potential parallelism than the hardware can use. The excess parallelism is called the parallel
slack, and is defined by:

parallel slack=
S∞
P
=

T1

PT∞
(2.11)

In practice, a parallel slack of at least 8 works well.
If you remember only one thing about time estimates for parallel programs, remember Equation 2.9.

From it, you can derive performance estimates just by knowing the work T1 and span T∞ of an
algorithm. However, this formula assumes the following three important qualifications:

• Memory bandwidth is not a limiting resource.
• There is no speculative work. In other words, the parallel code is doing T1 total work, period.
• The scheduler is greedy.

The task schedulers in Intel Cilk Plus and Intel TBB are close enough to greedy that you can use the
approximation as long as you avoid locks. Locks make scheduling non-greedy, because a worker can
get stuck waiting to acquire a contended lock while there is other work to do. Making performance
predictable by Equation 2.9 is another good reason to avoid locks. Another trait that can make a sched-
uler non-greedy is requiring that certain tasks run on certain cores. In a greedy scheduler, if a core is
free it should immediately be able to start work on any available task.

2.5.7 Asymptotic Complexity
Asymptotic complexity is the key to comparing algorithms. Comparing absolute times is not partic-
ularly meaningful, because they are specific to particular hardware. Asymptotic complexity reveals
deeper mathematical truths about algorithms that are independent of hardware.

In a serial setting, the time complexity of an algorithm summarizes how the execution time of
algorithm grows with the input size. The space complexity similarly summarizes how the amount of
memory an algorithm requires grows with the input size. Both these complexity measures ignore con-
stant factors, because those depend on machine details such as instruction set or clock rate. Complexity
measures instead focus on asymptotic growth, which is independent of the particular machine and thus

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 66 — #66

66 CHAPTER 2 Background

permit comparison of different algorithms without regard to particular hardware. For sufficiently large
inputs, asymptotic effects will dominate any constant factor advantage.

Asymptotic time complexity computed from the work-span model is not perfect as a tool for pre-
dicting performance. The standard work-span model considers only computation, not communication
or memory effects. Still, idealizations can be instructive, such as the ideal massless pulleys and fric-
tionless planes encountered in physics class. Asymptotic complexity is the equivalent idealization for
analyzing algorithms; it is a strong indicator of performance on large-enough problem sizes and reveals
an algorithm’s fundamental limits.

Here is a quick reminder of asymptotic complexity notation [Knu76]:

• The “big O notation” denotes a set of functions with an upper bound. O(f (N)) is the set of all
functions g(N) such that there exist positive constants c and N0 with |g(N)| ≤ c · f (N) for N ≥ N0.

• The “big Omega notation” denotes a set of functions with an lower bound. �(f (N)) is the set of
all functions g(N) such that there exist constants c and N0 with g(N)≥ c · f (N) for N ≥ N0.

• The “big Theta notation” denotes a set of functions with both upper and lower bounds. 2(f (N))
means the set of all functions g(N) such that there exist positive constants c1, c2, and N0 with
c1 · f (N)≤ g(N)≤ c2 · f (N) for N ≥ N0.

We follow the traditional abuse of “=” in complexity notation to mean, depending on context, set
membership or set inclusion. The “equality” T(N)= O(f (N)) really means the membership T(N) ∈
O(f (N)). That is equivalent to saying T(N) is bounded from above by c · f (N) for sufficiently large
c and N. Similarly, the “equality” O(f (N))= O(h(N)) really means the set inclusion O(f (N))⊆
O(h(N)). So when we write T(N)= O(N2)= O(N3), we really mean T(N) ∈ O(N2)⊆ O(N3), but the
latter would depart from tradition.

In asymptotic analysis of serial programs, “O” is most common, because the usual intent is to prove
an upper bound on a program’s time or space. For parallel programs, “2” is often more useful, because
you often need to prove that a ratio, such as a speedup, is above a lower bound, and this requires
computing a lower bound on the numerator and an upper bound on the denominator. For example,
you might need to prove that using P workers makes a parallel algorithm run at least

√
P times faster

than the serial version. That is, you want a lower bound (“�”) on the speedup. That requires proving a
lower bound (“�”) on the serial time and an upper bound (“O”) on the parallel time. When computing
speedup, the parallel time appears in the denominator and the serial time appears in the numerator.
A larger parallel time reduces speedup while a larger serial time increases speedup. However, instead
of dealing with separate bounds like this for each measure of interest, it is often easier to deal with the
“2” bound.

For a simple example of parallel asymptotic complexity, consider computing the dot product of two
vectors of length N with P workers. This can be done by partitioning the vectors among the P workers
so each computes a dot product of length N/P. These subproducts can be summed in a tree-like fashion,
with a tree height of lgP, assuming that P≤ N. Note that we use lg for the base 2 logarithm. Hence,
the asymptotic running time is:

TP(N)=2(N/P+ lgP). (2.12)

For now, consider what that equation says. As long as lgp is insignificant compared to N/P:

• For fixed P, doubling the input size doubles the time.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 67 — #67

2.5 Performance Theory 67

• For fixed N, doubling the number of workers halves the execution time.
• Doubling both the input size and workers keeps the execution time about the same. In other words,

the code exhibits weak scaling.

The equation also warns you that if lgP is not insignificant compared to N, doubling the workers will
not halve the execution time.

2.5.8 Asymptotic Speedup and Efficiency
Speedup and efficiency can be treated asymptotically as well, using a ratio of 2 complexities. For the
previous dot product example, the asymptotic speedup is:

T1

TP
=

2(N)

2(N/P+ lgP)

=2

(
N

N/P+ lgP

)
.

When lgP is insignificant compared to N, the asymptotic speedup is2(P). The asymptotic efficiency
is:

T1

P ·TP
=2

(
N

N+P lgP

)
. (2.13)

When N =2(P lgP), the asymptotic efficiency is 2(1). Note that extra lgP factor. Merely scaling up
the input by a factor of P is not enough to deliver 2(1) weak scaling as P grows.

Remember that if there is a better serial algorithm that does not parallelize well, it is fairer to use
that algorithm for T1 when comparing algorithms. Do not despair if a parallelized algorithm does not
get near 100% parallel efficiency, however. Few algorithms do. Indeed, an efficiency of 2(1/

√
P) is

“break even” in a sense. At the turn of the century, speed improvements from adding transistors were
diminishing, to the point where serial computer speed was growing as the square root of the number
of transistors on a chip. So if the transistors for P workers were all devoted to making a single super-
worker faster, that super-worker would speed up by about

√
P. That’s an efficiency of only 1/

√
P. So

if your efficiency is significantly better than 1/
√

P, your algorithm really is still benefitting from the
parallel revolution.

2.5.9 Little’s Formula
Little’s formula relates the throughput and latency of a system to its concurrency. Consider a system
in steady state that has items to be processed arriving at regular intervals, where the desired throughput
rate is R items per unit time, the latency to process each item is L units of time, and the number of
items concurrently in the system is C. Little’s formula states the following relation between these three
quantities:

C = R ·L. (2.14)

Concurrency is similar but not identical to parallelism. In parallelism, all work is going on at the same
time. Concurrency is the total number of tasks that are in progress at the same time, although they may

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 68 — #68

68 CHAPTER 2 Background

not all be running simultaneously. Concurrency is a more general term that includes actual parallelism
but also simulated parallelism, for example by time-slicing on a scalar processor.

Extra concurrency can be used to improve throughput when there are long latency operations in
each task. For example, memory reads that miss in cache can take a long time to complete, relative
to the speed at which the processor can execute instructions. While the processor is waiting for such
long-latency operations to complete, if there is other work to do, it can switch to other tasks instead
of just waiting. The same concept can be used to hide the latency of disk transactions, but since the
latency is so much higher for disk transactions correspondingly more parallelism is needed to hide it.

Suppose a core executes 1 operation per clock, and each operation waits on one memory access
with a latency L of 3 clocks. The latency is fully hidden when there are C = R ·L= 1 · 3 operations
in flight. To be in flight simultaneously, those operations need to be independent. Hardware often tries
to detect such opportunities in a single thread, but often there are not enough to reach the desired
concurrency C. Hardware multithreading can be used to increase the number of operations in flight, if
the programmer specifies sufficient parallelism to keep the hardware threads busy. Most famously, the
Tera MTA had 128 threads per processor, and each thread could have up to 8 memory references in
flight [SCB+98]. That allowed it to hide memory latency so well that its designers eliminated caches
altogether!

The bottom line is that parallelizing to hide latency and maximize throughput requires over-
decomposing a problem to generate extra concurrency per physical unit.

Be warned, however, that hardware multithreading can worsen latency in some cases. The problem
is that the multiple threads typically share a fixed-size cache. If n of these threads access disjoint sets
of memory locations, each gets a fraction 1/n of the cache. If the concurrency is insufficient to fully
hide the latency of the additional cache misses, running a single thread might be faster.

2.6 PITFALLS
Parallel programming entails additional pitfalls any time there are dependencies between parallel tasks.
Dependencies between parallel tasks require synchronization. Too little synchronization can lead to
non-deterministic behavior. Too much synchronization can unnecessarily limit scaling, or worse yet,
cause deadlock.

2.6.1 Race Conditions
A race condition occurs when concurrent tasks perform operations on the same memory location
without proper synchronization, and one of the memory operations is a write. Code with a race may
operate correctly sometimes but fail unpredictably at other times. Consider the code in Table 2.2, where
two tasks attempt to add 1 and 2 respectively to a shared variable X. The intended net effect is likely
to be X += 3. But because of the lack of synchronization, two other net effects are possible: X += 1
or X += 2. To see how one of the updates could be lost, consider what happens if both tasks read X
before either one writes to it. When the writes to X occur, the effect of the first write will be lost when
the second write happens. Eliminating temporary variables and writing X += 1 and Y += 1 does not
help, because the compiler might generate multiple instructions anyway, or the hardware might even
break += into multiple operations.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 69 — #69

2.6 Pitfalls 69

Table 2.2 Two tasks race to update
shared variable X. Interleaving can
cause one of the updates to be lost.

Task A Task B

a= X; b= X;

a += 1; b += 2;

X= a; X= b;

Table 2.3 Race not explainable by serial
interleaving. Assume that X and Y are initially
zero. After both tasks complete, both a and b

can be zero, even though such an outcome
is impossible by serial interleaving of the
instruction streams.

Task A Task B

X= 1; Y= 1;

a= Y; b= X;

Race conditions are pernicious because they do not necessarily produce obvious failures and yet
can lead to corrupted data [Adv10, Boe11]. If you are unlucky, a program with a race can work fine
during testing but fail once it is in the customer’s hands. Races are not limited to memory locations.
They can happen with files and I/O too. For example, if two tasks try to print Hello at the same time,
the output might look like HeHelllloo.

Surprisingly, analyzing all possible interleaving of instructions is not enough to predict the outcome
of a race, because different hardware threads may see the same events occur in different orders. The
cause is not relativistic physics, but the memory system. However, the effects can be equally counterin-
tuitive. Table 2.3 shows one such example. It is representative of the key part of certain synchronization
algorithms. Assume that X and Y are initially zero. After tasks A and B execute the code, what are the
possible values for a and b? A naive approach is to assume sequential consistency, which means that
the instructions behave as if they were interleaved in some serial order. Figure 2.10 summarizes the
possible interleavings. The first two graphs show two possible interleavings. The last graph shows a
partial ordering that accounts for four interleavings. Below each graph is the final outcome for a and b.

Yet when run on modern hardware, the set of all possible outcomes can also include a = 0 and
b = 0! Modern hardware is often not sequentially consistent. For example, the compiler or hardware
may reorder the operations so that Task A sees Task B read Y before it writes X. Task B may see Task A
similarly reordered. Each task sees that it executed instructions in the correct order and sees the other
task deviate. Table 2.4 shows what the two tasks might see. Both are correct, because there is no global
ordering of operations to different memory locations. There are system-specific ways to stop the com-
piler or hardware from reordering operations, called memory fences [AMSS10, Cor11a, TvPG06], but

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 70 — #70

70 CHAPTER 2 Background

x = 1

X = 1a = y

a = Y

b = X

b = X

a = 0, b = 1

X = 1

Y = 1

Y = 1

Y = 1

a = Y

b = X

a = 1, b = 0 a = 1, b = 1Outcome:

Interleaving:

FIGURE 2.10

All sequentially consistent outcomes of Table 2.3. The graphs summarize all possible interleavings of
instructions from Table 2.3, yet real hardware can deliver the outcome a= 0 and b= 0.

Table 2.4 No global ordering of operations to
different locations. The hardware might reorder the
operations from Table 2.3 so that different tasks
see the operations happen in different orders. In
each view, a task sees its own operations in the
order specified by the original program.

Viewpoint of Task B Viewpoint of Task A

a= Y b= X

b= X a= Y

Y= 1 X= 1

X= 1 Y= 1

these are beyond the scope of this book. Instead, we will emphasize machine-independent techniques
to avoid races altogether.

The discussion here should impress upon you that races are tricky. Fortunately, the patterns in this
book, as well as the programming models we will discuss, let you avoid races and not have to think
about tricky memory ordering issues. This is a good thing because memory ordering is exactly the
kind of thing that is likely to change with future hardware. Depending too much on the low-level
implementation of current memory systems will likely lead to code that will be difficult to port to
future processors.

2.6.2 Mutual Exclusion and Locks
Locks are a low-level way to eliminate races. This section explains what locks are and why they should
be a means of last resort. Perhaps surprisingly, none of the examples in the rest of this book requires a
lock. However, sometimes locks are the best way to synchronize part of a program.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 71 — #71

2.6 Pitfalls 71

Table 2.5 Mutex eliminates the race in Table 2.2.
The mutex M serializes updates of X, so neither update
corrupts the other one.

Task A Task B

extern tbb::mutex M; extern tbb::mutex M;

M.lock(); M.lock();

a= X; b= X;

a += 1; b += 2;

X= a; X= b;

M.unlock(); M.unlock();

The race in Table 2.2 can be eliminated by a mutual exclusion region. Using mutual exclusion,
the tasks can coordinate so they take turns updating X, rather than both trying to do it at once. Mutual
exclusion is typically implemented with a lock, often called a mutex. A mutex has two states, locked
and unlocked, and two operations:

Lock: Change the state from unlocked to locked.
Unlock: Change the state from locked to unlocked.

These operations are implemented atomically, meaning that they appear instantaneous to other tasks
and are sequentially consistent.

The lock operation on an already locked mutex must wait until it becomes unlocked. Once a task
completes a lock operation, it is said to own the mutex or hold a lock until it unlocks it. Table 2.5
shows how to use a mutex to remove the race in Table 2.2. Mutex M is presumed to be declared
where X is declared. The lock–unlock operations around the updates of X ensure that the threads take
their turn updating it. Furthermore, the lock–unlock pair of operations demarcate a “cage.” Instruction
reordering is prohibited from allowing instructions inside the cage to appear to execute outside the
cage, preventing counterintuitive surprises. However, be aware that other threads might see instructions
written outside the cage appear to execute inside the cage.

An important point about mutexes is that they should be used to protect logical invariants, not
memory locations. In our example, the invariant is “the value of X is the sum of the values added to it.”
What this means is that the invariant is true outside the mutual exclusion region, but within the region
we may have a sequence of operations that might temporarily violate it. However, the mutex groups
these operations together so they can be treated essentially as a single operation that does not violate
the invariant. Just using a mutex around each individual read or write would protect the memory loca-
tion, but not the invariant. In particular, such an arrangement might expose temporary states in which
the invariant is violated. In more complex examples, such as with data structures, a mutex protects an
invariant among multiple locations. For example, a mutex protecting a linked list might protect the
invariant “the next field of each element points to the next element in the list.” In such a scheme, any
time a task traverses the list, it must first lock the mutex; otherwise, it might walk next fields under
construction by another task.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 72 — #72

72 CHAPTER 2 Background

2.6.3 Deadlock
Deadlock occurs when at least two tasks wait for each other and each cannot resume until the other
task proceeds. This happens easily when code requires locking of multiple mutexes at once. If Task A
needs to lock mutexes M and N, it might lock M first and then try to lock N. Meanwhile, if Task B needs
the same two locks but locks N first and then tries to lock M, both A and B will wait forever if the timing
is such that each performs the first locking operation before attempting the second. This situation is
called deadlock. The impasse can be resolved only if one task releases the lock it is holding.

There are several ways to avoid deadlock arising from mutexes:

Avoid mutexes when possible. Consider replicating the resource protected by the mutex. Alterna-
tively, synchronize access to it using a higher-level pattern. For example, Section 12.2 shows
how to use tbb::pipeline to serialize access to input and output files without any mutexes.
In Intel Cilk Plus, hyperobjects (see Section 8.10) often eliminate the need for explicit mutual
exclusion by way of implicit replication. The Intel ArBB programming model uses determinis-
tic data-parallel patterns and manages without locks at all. In some cases, the TBB concurrent
collections, which are based on atomic operations rather than locks, can be used for shared data
structures.

Hold at most one lock at a time. An important corollary of this rule is never call other people’s code
while holding a lock unless you are certain that the other code never acquires a lock.

Always acquire locks on multiple mutexes in the same order. In the earlier example, deadlock is
avoided if Task A and Task B both always try to lock mutex X first before trying to lock mutex Y.

Some common tactics for achieving the “same order” strategy include:

Stratify the mutexes. Assign each mutex a level such that two mutexes on the same level are never
locked at the same time, then always acquire locks in level order. For example, in a tree where there
is a mutex for each tree node, the levels might correspond to levels in a tree.

Sort the mutexes to be locked. If you always know the entire set of locks to be acquired before
acquiring any of them, sort the mutex addresses and acquire the locks in that order. Note: if the
memory allocations are not the same from run to run of the program, which might be accidental
(non-deterministic memory allocation) or intentional (randomization of memory allocations for
increased security), then the order may be different on different runs, complicating debugging and
profiling.

Backoff. When acquiring a set of locks, if any lock cannot be acquired immediately, release all
locks already acquired. This approach requires that the mutex support a “try lock” operation that
immediately returns if the lock cannot be acquired.

Locks are not intrinsically evil. Sometimes they are the best solution to a synchronization problem.
Indeed, TBB provides several kinds of mutexes for use with it and other programming models. But
consider the alternatives to locks and avoid them if you can. If you must use locks, be careful to avoid
situations that can cause deadlock.

Locks are not the only way to stumble into deadlock. Any time you write code that involves “wait
until something happens,” you need to ensure that “something” is not dependent on the current task
doing anything else.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 73 — #73

2.6 Pitfalls 73

2.6.4 Strangled Scaling
Deadlock is not the only potential problem arising from synchronization. By definition, a mutex seri-
alizes execution and adds a potential Amdahl bottleneck. When tasks contend for the same mutex,
the impact on scaling can be severe, even worse than if the protected code was serial. Not only
does Amdahl bottleneck come into play, but the status of the protected memory locations must be
communicated between cores, thus adding communication costs not paid by the serial equivalent.

Sometimes when profiling a piece of parallel code, the profiler reports that most of the time is spent
in a lock operation. A common mistake is to blame the implementation of the mutex and say “if only
I had a faster mutex.” The real problem is using the mutex at all. It is just doing its job—serializing
execution.

A mutex is only a potential bottleneck. If tasks rarely contend for the same mutex, the impact of the
mutex on scaling is minor. Indeed, the technique of fine-grain locking replaces a single highly con-
tended lock with many uncontended locks, and this can improve scalability by reducing contention.
For example, each row of a matrix might be protected by a separate mutex, rather than a single
lock for the entire matrix, if there are no invariants across different rows. As long as tasks rarely
contend for the same row, the impact on scaling should be beneficial. Fine grain locking is tricky, how-
ever, and we do not discuss it further in this book. It is sometimes used inside the implementation of
Intel Cilk Plus and Intel TBB, but you do not have to know that. The point is that mutexes can limit
scalability if misused. The high-level patterns in the rest of this book let you avoid mutexes in most
cases.

As a final note, you can sometimes use atomic operations in place of mutexes if the logical invariant
involves a single memory location, and much of the synchronization constructs inside Intel Cilk Plus
and Intel TBB are built with atomic operations. Atomic operations are discussed briefly in Section C.10.

2.6.5 Lack of Locality
Locality is the other key to scaling. Remember that work, span, and communication are the three key
concerns. Locality refers to two bets on future memory accesses after a core accesses a location:

Temporal locality: The core is likely to access the same location again in the near future.
Spatial locality: The core is likely to access nearby locations in the near future.

Having good locality in a program means the hardware can win its bets since the above statements are
more likely to be true. Hardware based on these assumptions being true can reduce communication.
For example, as noted in Section 2.4.1, a memory access pulls an entire cache line (a small block of
memory) around that memory location onto the chip and into the cache. Using the data on that line
repeatedly while the cache line is resident is faster than pulling it in multiple times. To take advantage
of this, programs should be written so they process data thoroughly and completely before moving to
process other data. This increases the number of times the data will be found in cache, and will avoid
reading the same data multiple times from off-chip memory. Cache oblivious algorithms [ABF05]
(Section 8.8) are a formal way of exploiting this principle. Such algorithms are designed to have good
locality at multiple scales, so it does not matter what specific size the cache line is.

Communication is so expensive and computation so cheap that sometimes it pays to increase the
work in exchange for reducing communication. On current hardware, a cache miss can take up to the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 74 — #74

74 CHAPTER 2 Background

order of a hundred cycles. So it often pays to duplicate trivial calculations rather than try to do them in
one place and share, and there is nascent research into communication avoiding algorithms [GDX08].

2.6.6 Load Imbalance
A load imbalance is the uneven distribution of work across workers. Figure 2.11 shows how load
imbalance can impact scalability. In this figure, the parallel work was broken up into tasks, with one
task per worker. The time taken by the longest-running task contributes to the span, which limits how
fast the parallelized portion can run.

Load imbalance can be mitigated by over-decomposition, dividing the work into more tasks than
there are workers. Like packing suitcases, it is easier to spread out many small items evenly than a few
big items. This is shown in Figure 2.12. Some processors have fewer tasks than others. There is still a
possibility that a very long task will get scheduled at the end of a run, but the parallel slack nonetheless
improves the predictability of parallel execution times.

2.6.7 Overhead
Parallelization introduces additional overhead to launch and synchronize tasks, as shown in
Figure 2.13. This overhead increases both work and span. The additional tasks incurred by overde-
composition tends to increase this overhead, since there is usually a fixed amount of overhead for
managing every task. Making tasks too small can increase execution time and can also decrease arith-
metic intensity. Therefore, there is a tension between providing sufficient overdecomposition to allow
for balancing the load while still making tasks large enough to amortize synchronization overhead and
maximize arithmetic intensity.

Serial work

Parallelizable work

P = 8

Serial work

FIGURE 2.11

Load imbalance. Variation in the execution time of parallel tasks can reduce scalability.

Serial work

Parallelizable work

P = 8

FIGURE 2.12

Overdecomposition can improve load balancing. Subdividing the parallel work into more tasks than workers
permits the scheduler to pack tasks onto workers and improve load balance.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 75 — #75

2.7 Summary 75

P = 8
Serial work

Synchronization

Parallel work

FIGURE 2.13

Overhead can reduce scalability. Distributing tasks to workers, starting tasks, and synchronizing completion
adds to execution time. Tree-based schemes can reduce, but not eliminate, this overhead.

Careful synchronization design can reduce overhead, but cannot completely eliminate it. In the
example in Figure 2.13, the overhead for launching and synchronizing a large number of independent
tasks can use a tree structure, so that startup is logarithmic in the number of workers, instead of lin-
ear as would occur if all parallel tasks were launched from one task. This makes the launching and
synchronization time logarithmic in the number of workers rather than linear, but it nonetheless grows
with the number of workers.

2.7 SUMMARY
This chapter covered a lot of theoretical and practical background. Although we do not want to dwell on
computer architecture in this book, we have presented a simple summary of current trends in computer
architecture as a basis for later discussion.

We also discussed many factors related to performance and presented some key definitions, includ-
ing those of latency and throughput. Amdahl’s Law and Gustafson’s Law were presented and give
bounds on performance, but we highly recommend the use of the work-span model for more accuracy.
The work-span model not only accounts for imperfect parallelization but also gives a lower bound as
well as an upper bound on speedup.

We also discussed several pitfalls that can lead to problems in parallel programs, from poor scalabil-
ity to incorrect behavior. Race conditions and deadlock can be avoided with careful design. Assuming
you achieve a correct program, of course you then want it to scale in performance. Scalability can be
difficult to achieve, but here are some key rules of thumb:

• Make the available parallelism scale with the data.
• Keep the span short; avoid adding extra work for parallelism.
• Over-decompose to provide parallel slack.
• Minimize synchronization. Avoid locks.
• Use locality to minimize memory traffic. Be aware that the quantum of memory traffic is a

cache line.
• Exploit both vector and thread parallelism if possible.

The rest of this book is about structured ways to achieve these goals.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 77 — #77

PART

IPatterns

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 79 — #79

CHAPTER

Patterns 3
Patterns have become popular recently as a way of codifying best practices for software engineering
[GHJV95]. While patterns were originally applied to object-oriented software, the basic idea of
patterns—identifying themes and idioms that can be codified and reused to solve specific problems
in software engineering—also applies to parallel programming. In this book, we use the term parallel
pattern to mean a recurring combination of task distribution and data access that solves a specific
problem in parallel algorithm design.

A number of parallel patterns are described in this book. We will characterize and discuss various
algorithms in terms of them. We give each pattern a specific name, which makes it much easier to suc-
cinctly describe, discuss, and compare various parallel algorithms. Algorithms are typically designed
by composing patterns, so a study of patterns provides a high-level “vocabulary” for designing your
own algorithms and for understanding other people’s algorithms.

This chapter introduces all of the patterns discussed in this book in one place. We also introduce
a set of serial patterns for comparison because parallel patterns are often composed with, or gener-
alized from, these serial patterns. The serial patterns we discuss are the foundation of what is now
known as structured programming. This helps make clear that the pattern-based approach to parallel
programming used in this book can, to some extent, be considered an extension of the idea of structured
programming.

It should be emphasized that patterns are universal. They apply to and can be used in any par-
allel programming system. They are not tied to any particular hardware architecture, programming
language, or system. Patterns are, however, frequently embodied as mechanisms or features of partic-
ular systems. Systems, both hardware and software, can be characterized by the parallel patterns they
support. Even if a particular programming system does not directly support a particular pattern it can
usually, but not always, be implemented using other features.

In this book, we focus on patterns that lead to well-structured, maintainable, and efficient programs.
Many of these patterns are in fact also deterministic, which means they give the same result every
time they are executed. Determinism is a useful property since it leads to programs that are easier to
understand, debug, test, and maintain.

We do not claim that we have covered all possible parallel patterns in this book. However, the
patterns approach provides a framework into which you can fit additional patterns. We intend to docu-
ment additional patterns online as a complement to this book, and you might also discover some new
patterns on your own. In our experience many “new” patterns are in fact variations, combinations, or
extensions of the ones we introduce here. We have focused in this book on the most useful and basic
patterns in order to establish a solid foundation for further development.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00003-7
c© 2012 Elsevier Inc. All rights reserved.

79

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 80 — #80

80 CHAPTER 3 Patterns

We also focus on “algorithm strategy” patterns, sometimes called algorithmic skeletons [Col89,
AD07]. These patterns are specifically relevant to the design of algorithm kernels and often appear as
programming constructs in languages and other systems for expressing parallelism. Patterns have also
been referred to as motifs and idioms. In more comprehensive pattern languages [MSM04, ABC+06],
additional patterns and categories of patterns at both higher and lower levels of abstraction are
introduced. The OUR pattern language in particular is quite extensive [Par11].

We have focused on the class of algorithm strategy patterns because these are useful in the design
of machine-independent parallel algorithms. Algorithm strategy patterns actually have two parts, a
semantics, which is what they accomplish, and an implementation, which is how they accomplish
it. When designing an algorithm, you will often want to think only about the semantics of the pat-
tern. However, when implementing the algorithm, you have to be aware of how to implement the
pattern efficiently. The semantics are machine-independent but on different kinds of hardware there
may be different implementation approaches needed for some of the patterns. We will discuss some
of these low-level implementation issues in later chapters; in this chapter, we focus mostly on the
semantics.

This chapter may seem a little abstract. In order to keep this chapter compact we do not give many
examples of the use of each pattern here, since later chapters will provide many specific examples. If
you would like to see more concrete examples first, we recommend that you skip or skim this chapter
on first reading and come back to read it later.

3.1 NESTING PATTERN
The nesting pattern is the fundamental compositional pattern and appears in both serial and parallel
programs. Nesting refers to the ability to hierarchically compose patterns.

The nesting pattern simply means that all “task blocks” in our pattern diagrams are actually loca-
tions within which general code can be inserted. This code can in turn be composed of other patterns.
This concept is demonstrated in Figure 3.1.

Nesting allows other parallel patterns to be composed hierarchically, and possibly recursively. Ide-
ally, patterns can be nested to any depth and the containing pattern should not limit what other patterns
can be used inside it. Not all patterns support nesting. In this book, we focus on patterns that do
support nesting since it is important for creating structured, modular code. In particular, it is hard
to break code into libraries and then compose those libraries into larger programs unless nesting is
supported. Programming models that do not support nesting likewise will have difficulties supporting
modularity.

Figure 3.1 also demonstrates the graphical conventions we use to explain patterns generally. As
previously described in Figure 2.1, tasks, which describe computations, are shown as sharp-cornered
boxes, while data are indicated by round-cornered boxes. Grouped data is indicated by round-cornered
enclosures, and grouped tasks are indicated by sharp-cornered polygonal enclosures. For some patterns
we will introduce additional symbols in the form of various polygonal shapes.

Ordering dependencies are given by arrows. Time goes from top to bottom, and except when repre-
senting iteration we avoid having arrows go upward and therefore “backward” in time. In the absence of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 81 — #81

3.1 Nesting Pattern 81

FIGURE 3.1

Nesting pattern. This is a compositional pattern that allows other patterns to be composed in a hierarchy.
The definition of nesting is that any task block in a pattern can be replaced with a pattern with the same input
and output configuration and dependencies.

such upward arrows, the height of a pattern diagram is a rough indication of the span (see Section 2.5.7)
of a pattern. These graphical conventions are intentionally similar to those commonly associated with
flow-charts.

The nesting pattern basically states that the interior of any “task box” in this notation can be replaced
by any other pattern. Nesting can be static (related to the code structure) or dynamic (recursion, related
to the dynamic function call stack). To support dynamic data parallelism, the latter is preferred, since
we want the amount of parallelism to grow with problem size in order to achieve scalability. If static
nesting is used, then nesting is equivalent to functional decomposition. In that case, nesting is an
organizational structure for modularity but scaling will be achieved by the nested patterns, not by
nesting itself.

Structured serial programming is based on nesting the sequence, selection, iteration, and recur-
sion patterns. Likewise, we define structured parallel programming to be based on the composition
of nestable parallel patterns. In structured serial programming, goto is avoided, since it violates the
orderly arrangement of dependencies given by the nesting pattern. In particular, we want simple entry
and exit points for each subtask and want to avoid jumping out of or into the middle of a task. Likewise,
for “structured parallel programming” you should use only patterns that fit within the nesting pattern
and avoid additional dependencies, both data and control, that break this model.

Nesting, especially when combined with recursion, can lead to large amounts of potential paral-
lelism, also known as parallel slack. This can either be a good thing or a bad thing. For scalability, we
normally want a large amount of parallel slack, as discussed in Section 2.5.

However, hardware resources are finite. It is not a good idea to blindly create threads for all of
the potential parallelism in an application, since this will tend to oversubscribe the system. The imple-
mentation of a programming system that efficiently supports arbitrary nesting must intelligently map
potential parallelism to actual physical parallelism. Since this is difficult, several programming models

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 82 — #82

82 CHAPTER 3 Patterns

at present support only a fixed number of nesting levels and may even map these levels directly onto
hardware components.

This is unfortunate since composability enables the use of libraries of routines that can be reused in
different contexts. With a fixed hierarchy, you have to be aware at what level of the hierarchy any code
you write will be used. Mapping the hierarchy of the program directly onto the hardware hierarchy
also makes code less future-proofed. When new hardware comes out, it may be necessary to refactor
the hierarchy of patterns to fit the new hardware.

Still, many systems are designed this way, including OpenCL, CUDA, C++ AMP, and to some
extent OpenMP. Some of these programming systems even encode the physical hierarchy directly into
keywords in the language, making future extension to more flexible hierarchies difficult.

In contrast, both Cilk Plus and TBB, discussed in this book, can support arbitrary nesting. At
the same time, these systems can do a good job of mapping potential parallelism to actual physical
parallelism.

3.2 STRUCTURED SERIAL CONTROL FLOW PATTERNS
Structured serial programming is based on four control flow patterns: sequence, selection, iteration,
and recursion. Several parallel patterns are generalizations of these. In addition, these can be nested
hierarchically so the compositional “nesting” pattern is also used.

We discuss these in some detail, even though they are familiar, to point out the assumptions that
they make. It is important to understand these assumptions because when we attempt to parallelize
serial programs based on these patterns, we may have to violate these assumptions.

3.2.1 Sequence
A sequence is a ordered list of tasks that are executed in a specific order. Each task is completed before
the one after it starts. Suppose you are given the serial code shown in Listing 3.1. This code corresponds
to Figure 3.2. Function f in line 1 will execute before function g in line 2, which will execute before
function h in line 3. A basic assumption of the sequence pattern is that the program text ordering will
be followed, even if there are no data dependencies between the tasks, so that side effects of the tasks
such as output will also be ordered. For example, if task f outputs “He”, task g outputs “llo ” and
task h outputs “World”, then the above sequence will output “Hello World” even if there were no
explicit dependencies between the tasks.

1 T = f(A);
2 S = g(T);
3 B = h(S);

LISTING 3.1

Serial sequence in pseudocode.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 83 — #83

3.2 Structured Serial Control Flow Patterns 83

In Listing 3.2, data dependencies happen to restrict the order to be the same as the texture order.
However, if the code happened to be as shown in Listing 3.2, the sequence pattern would still require
executing g after f, as shown in Figure 3.3, even though there is no apparent reason to do so. This is
so side effects, such as output, will still be properly ordered.

A

f

g

h

B

FIGURE 3.2

Sequence pattern. A serial sequence orders operations in the sequence in which they appear in the
program text.

1 T = f(A);
2 S = g(A);
3 B = h(S,T);

LISTING 3.2

Serial sequence, second example, in pseudocode.

A

f

g

h

B

FIGURE 3.3

Sequence pattern, second example. A serial sequence orders operations in the sequence in which they
appear in the program text, even if there are no apparent dependencies between tasks. Here, since g comes
after f in the program text, the sequence pattern requires that they be executed in that order, even though
there is no explicit dependency.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 84 — #84

84 CHAPTER 3 Patterns

c
T F

ba

FIGURE 3.4

Selection pattern. One and only one of two alternatives a or b is executed based on a Boolean condition c.

1 if (c) {
2 a;
3 } else {
4 b;
5 }

LISTING 3.3

Serial selection in pseudocode.

There is a parallel generalization of sequence, the superscalar sequence discussed in Section 3.6.1,
which removes the “code text order” constraint of the sequence pattern and orders tasks only by data
dependencies. In fact, as discussed in Section 2.4, modern out-of-order processors do often reorder
operations and do not strictly follow the sequence pattern.

3.2.2 Selection
In the selection pattern, a condition c is first evaluated. If the condition is true, then some task a is
executed. If the condition is false, then task b is executed. There is a control-flow dependency between
the condition and the tasks so neither task a nor b is executed before the condition has been evaluated.
Also, exactly one of a or b will be executed, never both; this is another fundamental assumption of the
serial selection pattern. See Figure 3.4. In code, selection will often be expressed as shown in Listing 3.3.

There is a parallel generalization of selection, the speculative selection pattern, which is discussed
in Section 3.6.3. In speculative selection all of a, b, and c may be executed in parallel, but the results
of one of a or b are discarded based on the result of computing c.

3.2.3 Iteration
In the iteration pattern, a condition c is evaluated. If it is true, a task a is evaluated, then the condition
c is evaluated again, and the process repeats until the condition becomes false. This is diagrammed in
Figure 3.5.

Unlike our other pattern diagrams, for iteration we use arrows that go “backward” in time. Since
the number of iterations is data dependent, you cannot necessarily predict how many iterations will

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 85 — #85

3.2 Structured Serial Control Flow Patterns 85

c
T F

f

FIGURE 3.5

Serial iteration pattern. The task f is executed repeatedly as long as the condition c is true. When the condition
becomes false, the tasks following this pattern are executed.

1 while (c) {
2 a;
3 }

LISTING 3.4

Iteration using a while loop in pseudocode.

1 for (i = 0; i < n; ++i) {
2 a;
3 }

LISTING 3.5

Iteration using a for loop in pseudocode.

take place, or if the loop will even terminate. You cannot evaluate the span complexity of an algorithm
just by looking at the height of the diagram. Instead, you have to (conceptually) execute the program
and look at the height of the trace of the execution.

This particular form of loop (with the test at the top) is often known as a while loop. The while
loop can of course be expressed in code as shown in Listing 3.4.

There are various other forms of iteration but this is the most general. Other forms of looping can
be implemented in terms of the while loop and possibly other patterns such as sequence.

The loop body a and the condition c normally have data dependencies between them; otherwise,
the loop would never terminate. In particular, the loop body should modify some state that c uses for
termination testing.

One complication with parallelizing the iteration pattern is that the body task f may also depend on
previous invocations of itself. These are called loop-carried dependencies. Depending on the form of
the dependency, loops may be parallelized in various ways.

One common form of loop is the counted loop, sometimes referred to simply as a for loop, which
also generates a loop index, as shown in Listing 3.5.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 86 — #86

86 CHAPTER 3 Patterns

1 i = 0;
2 while (i < n) {
3 a;
4 ++i;
5 }

LISTING 3.6

Demonstration of while/for equivalence in pseudocode.

This is equivalent to the while loop shown in Listing 3.6. Note that the loop body now has a
loop-carried dependency on i. Even so, there are various ways to parallelize this specific form of loop,
based on the fact that we know all the loop indices for every iteration in advance and can compute
them in parallel. This particular loop form also has a termination condition based on a count n known
in advance, so we can actually compute its complexity as a function of n.

Many systems for parallelizing loops, including Cilk Plus and OpenMP, prohibit modifications to
i or n in the body of loops in the form of Listing 3.5; otherwise, the total number of iterations would
not be known in advance. Serial loops do not have this prohibition and allow more general forms of
termination condition and index iteration.

Several parallel patterns can be considered parallelizations of specific forms of loops include map,
reduction, scan, recurrence, scatter, gather, and pack. These correspond to different forms of loop
dependencies. You should be aware that there are some forms of loop dependencies that cannot be paral-
lelized. One of the biggest challenges of parallelizing algorithms is that a single serial construct, iteration,
actually maps onto many different kinds of parallelization strategies. Also, since data dependencies are
not as important in serial programming as in parallel programming, they can be hidden.

In particular, the combination of iteration with random memory access and pointers can create
complex hidden data dependencies. Consider the innocent-looking code in Listing 3.7. Can this code
be parallelized or not?

The answer is . . . maybe. In fact, the data dependencies are encoded in the arrays a, b, c, and d, so
the parallelization strategy will depend on what values are stored in these arrays.1 This code is, in fact,
an interpreter for a simple “programming language” and can do relatively arbitrary computation. You
have to decode the data dependency graph of the “program” stored in arrays a, b, c, and d before you
know if the code can be parallelized! Such “accidental interpreters” are surprisingly common.

Other complications can arise due to pointers. For example, suppose we used the slightly differ-
ent version of the code in Listing 3.8. The difference is that we output to a new argument y, in
an attempt to avoid the data dependencies of the previous example. Can this version of the code be
parallelized?

The answer is . . . maybe. The array inputs x and y are really pointers in C. The code can be par-
allelized if x does not point to the same location as y (or overlapping locations). If they do, we say

1 This is not a made-up example. One of the authors was once asked to parallelize code very similar to this . . . without being
provided with the input.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 87 — #87

3.2 Structured Serial Control Flow Patterns 87

1 void engine(
2 int n,
3 double x[],
4 int a[],
5 int b[],
6 int c[],
7 int d[],
8) {
9 for (int i = 0; i < n; ++i)

10 x[a[i]] = x[b[i]] ∗ x[c[i]] + x[d[i]];
11 }

LISTING 3.7

A difficult example in C. Can this code be parallelized?

1 void engine2(
2 int n,
3 double x[],
4 double y[],
5 int a[],
6 int b[],
7 int c[],
8 int d[],
9) {

10 for (int i = 0; i < n; ++i)
11 y[a[i]] = x[b[i]] ∗ x[c[i]] + x[d[i]];
12 }

LISTING 3.8

Another difficult example in C. Can this code be parallelized?

the inputs are aliased, and this example has effectively the same data dependencies as Listing 3.7. So,
now the parallelization of this function depends on how we call it. However, even if x and y point to
distinct regions of memory, we still may not be able to parallelize safely if there are duplicate values in
a, since race conditions can result from parallel writes to the same memory location. We will discuss
the problem of parallel random writes in Section 3.5.5.

3.2.4 Recursion
Recursion is a dynamic form of nesting which allows functions to call themselves, directly or indi-
rectly. It is usually associated with stack-based memory allocation or, if higher-order functions are
supported, closures (see Section 3.4.4) which are objects allocated on the heap. Tail recursion is a
special form of recursion that can be converted into iteration, a fact that is important in functional
languages which often do not support iteration directly. In tail recursion, the calling function returns

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 88 — #88

88 CHAPTER 3 Patterns

immediately after the recursive call and returns the value, if any, returned by the recursive call without
modification.

3.3 PARALLEL CONTROL PATTERNS
Parallel control patterns extend the serial control patterns presented in Section 3.2. Each parallel control
pattern is related to one or more of the serial patterns but relaxes the assumptions of the serial control
patterns in various ways, or is intended for parallelizing a particular configuration of some serial control
pattern.

3.3.1 Fork–Join
The fork–join pattern lets control flow fork into multiple parallel flows that rejoin later. Various parallel
frameworks abstract fork–join in different ways. Some treat fork–join as a parallel form of a compound
statement; instead of executing substatements one after the other, they are executed in parallel. Some
like OpenMP’s parallel region fork control into multiple threads that all execute the same statement
and use other constructs to determine which thread does what.

Another approach, used in Cilk Plus, generalizes serial call trees to parallel call trees, by letting
code spawn a function instead of calling it. A spawned call is like a normal call, except the caller
can keep going without waiting for the callee to return, hence forking control flow between caller and
callee. The caller later executes a join operation (called “sync” in Cilk Plus) to wait for the callee to
return, thus merging the control flow. This approach can be implemented with an efficient mechanism
that extends the stack-oriented call/return mechanism used for serial function calls.

Fork–join should not be confused with barriers. A barrier is a synchronization construct across
multiple threads. In a barrier, each thread must wait for all other threads to reach the barrier before
any of them leave. The difference is that after a barrier all threads continue, but after a join only one
does. Sometimes barriers are used to imitate joins, by making all threads execute identical code after
the barrier, until the next conceptual fork.

The fork–join pattern in Cilk Plus is structured in that the task graph generated is cleanly nested and
planar, so the program can be reasoned about in a hierarchical fashion. When we refer to the fork–join
pattern in this book we will be specifically referring to this structured form.

3.3.2 Map
As shown in Figure 3.6, the map pattern replicates a function over every element of an index set. The
index set may be abstract or associated with the elements of a collection. The function being replicated
is called an elemental function since it applies to the elements of an actual collection of input data.
The map pattern replaces one specific usage of iteration in serial programs: a loop in which every
iteration is independent, in which the number of iterations is known is advance, and in which every
computation depends only on the iteration count and data read using the iteration count as an index
into a collection. This form of loop is often used, like map, for processing every element of a collection
with an independent operation. The elemental function must be pure (that is, without side-effects) in

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 89 — #89

3.3 Parallel Control Patterns 89

FIGURE 3.6

Map pattern. In a map pattern, a function is applied to all elements of a collection, usually producing a new
collection with the same shape as the input.

order for the map to be implementable in parallel while achieving deterministic results. In particular,
elemental functions must not modify global data that other instances of that function depend on.

Examples of use of the map pattern include gamma correction and thresholding in images, color
space conversions, Monte Carlo sampling, and ray tracing.

3.3.3 Stencil
The stencil pattern is a generalization of the map pattern in which an elemental function can access
not only a single element in an input collection but also a set of “neighbors.” As shown in Figure 3.7,
neighborhoods are given by set of relative offsets.

Optimized implementation of the stencil uses tiling to allow data reuse, as is discussed in detail in
Section 7.3.

The stencil pattern is often combined with iteration. In this case, a stencil is repeated over and over
to evolve a system through time or to implement an iterative solver. The combined pattern is equivalent
to a space–time recurrence and can be analyzed and optimized using the techniques for the recurrence
pattern, as discussed in Sections 3.3.6 and 7.5.

For the stencil pattern, boundary conditions on array accesses need to be considered. The edges of
the input need require special handling either by modifying the indexing for out-of-bounds accesses
or by executing special-case versions of the elemental function. However, the implementation should
avoid using this special-case code in the interior of the index domain where no out-of-bounds accesses
are possible.

The stencil pattern is used for image filtering, including convolution, median filtering, motion esti-
mation in video encoding, and isotropic diffusion noise reduction. The stencil pattern is also used
in simulation, including fluid flow, electromagnetic and financial partial differential equation (PDE)
solvers, lattice quantum chromodynamics (QCD), and cellular automata (including lattice Boltzmann
flow flow solvers). Many linear algebra operations can also be seen as stencils.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 90 — #90

90 CHAPTER 3 Patterns

FIGURE 3.7

Stencil pattern. A collection of outputs is generated, each of which is a function of a set of neighbors in an
input collection. The locations of the neighbors are located in a set of fixed offsets from each output. Here, only
one neighborhood is shown, but in actuality the computation is done for all outputs in parallel, and different
stencils can use different neighborhoods. Elements along the boundaries require special handling.

3.3.4 Reduction
A reduction combines every element in a collection into a single element using an associative
combiner function. Given the associativity of the combiner function, many different orderings are
possible, but with different spans. If the combiner function is also commutative, additional orderings
are possible. A serial implementation of reduction, using addition as the combiner function and a
sequential ordering, is given in Listing 3.9. The ordering of operations used in this code corresponds to
Figure 3.8. Such a reduction can be used to find the sum of the elements of a collection, a very common
operation in numerical applications.

Although Listing 3.9 uses a loop with a data dependency, Figure 3.9 shows how a reduction can
be parallelized using a tree structure. The tree structure depends on a reordering of the combiner oper-
ations by associativity. Interestingly, tree parallelization of the reduction can be implemented using
exactly the same number of operations as the serial version. A naı̈ve tree reduction may require more
intermediate storage than the serial version but at worst this storage is proportional to the available
parallelism. In practice, it can be more efficient to perform local serial reductions over tiles and then
combine the results using additional tile reductions. In other words, an efficient implementation might

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 91 — #91

3.3 Parallel Control Patterns 91

1 double my_add_reduce(
2 const double a[], // input array
3 size_t n // number of elements
4) {
5 double r = 0.0; // initialize with the identity for addition
6 for (int i = 0; i < n; ++i)
7 r += a[i]; // each iteration depends on the previous one
8 return r;
9 }

LISTING 3.9

Serial implementation of reduction.

FIGURE 3.8

Serial reduction pattern. A reduction combines all the elements in a collection into a single element using
an associative combiner function. Because the combiner function is associative, many orderings are possible.
The serial ordering shown here corresponds to Listing 3.9. It has span n, so no parallel speedup is possible.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 92 — #92

92 CHAPTER 3 Patterns

FIGURE 3.9

Tree reduction pattern. This diagram shows a tree ordering that has a span of lgn, so a speedup of n/ lgn is
possible. Assuming the combiner function is associative, this ordering computes the same result as Figure 3.8
and Listing 3.9.

use relatively shallow trees with high fanouts and only use a tree to combine results from multiple
workers.

There are some variants of this pattern that arise from combination with partition and search such
as the category reduction pattern discussed in Section 3.6.8.

Applications of reduction are diverse, and include averaging of Monte Carlo (random) samples for
integration; convergence testing in iterative solution of systems of linear equations, such as conjugate
gradient; image comparison metrics as in video encoding; and dot products and row–column products
in matrix multiplication. Reductions can also use operations other than addition, such as maximum,
minimum, multiplication, and Boolean AND, OR, and XOR, and these also have numerous applica-
tions. However, you should be cautious of operations that are not truly associative, such as floating
point addition. In these cases, different orderings can give different results; this is discussed further in
Chapter 5.

3.3.5 Scan
Scan computes all partial reductions of a collection. In other words, for every output position, a reduc-
tion of the input up to that point is computed. Serial code implementing scan is shown in Listing 3.10.
The ordering used in this code corresponds to Figure 3.10. Scan, and in particular the code shown
in Listing 3.10, is not obviously parallelizable since each iteration of the loop depends on the output
of the previous iteration. In general, scan is a special case of a serial pattern called a fold. In a fold,
a successor function f is used to advance from the previous state to the current state, given some
additional input. If the successor function is not associative we cannot, in fact, generally parallelize a
fold. However, if the successor function is associative, we can reorder operations (and possibly add

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 93 — #93

3.3 Parallel Control Patterns 93

1 void my_add_iscan(
2 const float a[], // input array
3 float b[], // output array
4 size_t n // number of elements
5) {
6 if (n>0) b[0] = a[0]; // equivalent to assuming b[i−1] is zero
7 for (int i = 1; i < n; ++i)
8 b[i] = b[i−1] + a[i]; // each iteration depends on the previous one
9 }

LISTING 3.10

Serial implementation of scan.

FIGURE 3.10

Serial scan pattern. This is one way of many possible to implement scan, but has a span of order 2(n) and so
is not parallelizable. This implementation of scan corresponds to the code in Listing 3.10.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 94 — #94

94 CHAPTER 3 Patterns

some extra work) to reduce the span and allow for a parallel implementation. Associativity of the
successor function is what distinguishes the special case of a scan from the general case of a fold. A
parallelizable scan can be used in this example because the successor function is addition, which is
associative.

One possible parallel implementation of scan when the successor function f is associative is shown
in Figure 3.11. As you can see, parallelization of scan is less obvious than parallelization of reduc-
tion. We will consider various implementation alternatives in Section 5.4, but if the programming
model supports scan as a built-in operation it may not be necessary to consider the details of the
implementation.

However, it is worth noting that a parallel implementation of scan may require more work (evalu-
ations of f) than is necessary in the serial case, up to twice as many, and also at best only has 2(lgn)
span. Scan is a good example of an algorithm that is parallelizable but for which linear speedup is
not possible and for which the parallel algorithm is not as efficient in terms of the total number of

FIGURE 3.11

Parallel scan pattern. If the successor function is associative, many reorderings are possible with lower span.
This is one of many possible ways to implement scan using a span of order 2(lgn). It consists basically of a
reduction tree followed by some additional operations to compute additional intermediate partial reductions not
computed by the tree. Notice, however, that the total amount of work is more than the algorithm used in
Figure 3.10.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 95 — #95

3.4 Serial Data Management Patterns 95

operations required as the serial implementation. Because of this, use of scan can limit scaling and
alternative algorithms should be considered whenever possible.

Examples of the use of the scan pattern include integration, sequential decision simulations in
option pricing, and random number generation. However, use of scan in random number generation
is only necessary if one is forced to parallelize traditional sequential pseudorandom number genera-
tors, which are often based on successor functions. There are alternative approaches to pseudorandom
number generation based on hashing that require only the map pattern [SMDS11]. For greater
scalability, these should be used when possible.

Scan can also be used to implement pack in combination with scatter, but a pack operation is
intrinsically deterministic, unlike scatter. Therefore, we have included pack as a separate pattern.

3.3.6 Recurrence
The map pattern results when we parallelize a loop where the loop bodies are all independent. A
recurrence is also a generalization of iteration, but of the more complex case where loop iterations
can depend on one another. We consider only simple recurrences where the offsets between elements
are constant. In this case, recurrences look somewhat like stencils, but where the neighbor accesses can
be to both inputs and outputs. A recurrence is like a map but where elements can use the outputs of
adjacent elements as inputs.

There is a constraint that allows recurrences to be computable: They must be causal. That is, there
must be a serial ordering of the recurrence elements so that elements can be computed using previously
computed outputs. For recurrences that arise from loop nests, where output dependencies are really ref-
erences to values computed in previous loop iterations, a causal order is given. In fact, it turns out that
there are two cases where recurrences are parallelizable: (1) a 1D recurrence where the computation
in the element is associative, (2) and a multidimensional recurrence arising from a nested loop body.
The 1D case we have already seen: It is just the scan pattern in Section 3.3.5. In the nD case arising
from nested loops, surprisingly, recurrences are always parallelizable over n− 1 dimensions by sweep-
ing a hyperplane over the grid of dependencies [Lam74], an approach discussed in Section 7.5. This
can be implemented using a sequence of stencils. Conversely, iterated stencils can be reinterpreted as
recurrences over space–time.

Recurrences arise in many applications including matrix factorization, image processing, PDE
solvers, and sequence alignment. Partial differentiation equation (PDE) solvers using iterated sten-
cils, such as the one discussed in Chapter 10, are often converted into space–time recurrences to
apply space–time tiling. Space–time tiling is an optimization technique for recurrences discussed in
Section 7.5. Using this optimization can be more efficient than treating the stencil and the iteration
separately, but it does require computing several iterations at once.

3.4 SERIAL DATA MANAGEMENT PATTERNS
Data can be managed in various ways in serial programs. Data management includes how storage of
data is allocated and shared as well as how it is read, written, and copied.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 96 — #96

96 CHAPTER 3 Patterns

3.4.1 Random Read and Write
The simplest mechanism for managing data just relies directly on the underlying machine model, which
supplies a set of memory locations indexed by integers (“addresses”). Addresses can be represented in
higher-level programming languages using pointers.

Unfortunately, pointers can introduce all kinds of problems when a program is parallelized. For
example, it is often unclear whether two pointers refer to the same object or not, a problem known as
aliasing. In Listing 3.8, we show how this can happen when variables are passed as function arguments.
Aliasing can make vectorization and parallelization difficult, since straightforward approaches will
often fail if inputs are aliased. On the other hand, vectorization approaches that are safe in the presence
of aliasing may require extra data copies and may be considered unacceptably expensive. A common
approach is to forbid aliasing or to state that vectorized functions will have undefined results if inputs
are aliased. This puts the burden on the programmer to ensure that aliases do not occur.

Array indices are a slightly safer abstraction that still supports data structures based on indirection.
Array indices are related to pointers; specifically, they represent offsets from some base address. How-
ever, since array indices are restricted to the context of a particular collection of data they are slightly
safer. It is still possible to have aliases but at least the range of memory is restricted when you use array
indices rather than pointers. The other advantage of using array indices instead of pointers is that such
data structures can be easily moved to another address space, such as on a co-processor. Data structures
using raw pointers are tied to a particular address space.

3.4.2 Stack Allocation
Frequently, storage space for data needs to be allocated dynamically. If data is allocated in a nested last
in, first out (LIFO) fashion, such as local variables in function calls, then it can be allocated on a stack.
Not only is stack allocation efficient, since an arbitrary amount of data can be allocated in constant
time, but it is also locality preserving.

To parallelize this pattern, typically each thread of control will get its own stack so locality is
preserved. The function-calling conventions of Cilk Plus generalize stack allocation in the context of
function calls so the locality preserving properties of stack allocation are retained.

3.4.3 Heap Allocation
In many situations, it is not possible to allocate data in a LIFO fashion with a stack. In this case, data
is dynamically allocated from a pool of memory commonly called the heap. Heap allocation is con-
siderably slower and more complex than stack allocation and may also result in allocations scattered
all over memory. Such scattered allocations can lead to a loss in coherence and a reduction in mem-
ory access efficiency. Widely separated accesses are more expensive than contiguous allocations due
to memory subsystem components that make locality assumptions, including caches, memory banks,
and page tables. Depending on the algorithm used, heap allocation of large blocks of different sizes
can also lead to fragmented memory [WJNB95]. When memory is fragmented, contiguous regions of
address space may not be available even though enough unallocated memory is available in total. Frag-
mentation is less of a problem on machines with virtual memory because only the memory addresses
actually in use will occupy physical memory, at least at the granularity of a page.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 97 — #97

3.4 Serial Data Management Patterns 97

When parallelizing programs that use heap allocation, you should be aware that implicitly sharing
the data structure used to manage the heap can lead to scalability problems. A parallelized heap allo-
cator should be used when writing parallel programs that use dynamic memory allocation. Such an
allocator maintains separate memory pools on each worker, avoiding constant access to global locks.
Such a parallelized allocator is provided by TBB and can be used even if the other constructs of TBB
are not.

For efficiency, many programs use simple custom allocators rather than the more general heap. For
example, to manage the allocation of items that are all the same size, free items can be stored on a
linked list and allocated in constant time. This also has the advantage of reducing fragmentation since
elements of the same size are allocated from the same pool. However, if you implement your own
allocation data structures, when the code is parallelized even a simple construct like a linked list can
become a bottleneck if protected with a lock. Conversely, if it is not protected, it can be a race condition
hazard.

3.4.4 Closures
Closures are function objects that can be constructed and managed like data. Lambda functions (see
Appendix D.2) are simply unnamed closures that allow functions to be syntactically defined where
and when needed. As we will see, the new C++ standard includes lambda functions that are used
extensively by TBB. ArBB also allows closure objects to be constructed and compiled dynamically
but does not require that lambda functions be supported by the compiler.

When closures are built, they can often be used to “capture” the state of non-local variables that
they reference. This implicitly requires the use of dynamic memory allocation. Closures can also be
generated dynamically or statically. If they are statically implemented, then the implementation may
need to allow for a level of indirection so the code can access the data associated with the closure at the
point it is created. If the code for the closure is dynamically constructed, as in ArBB, then it is possible
to use the state of captured variables at the point of construction to optimize the generated code.

3.4.5 Objects
Objects are a language construct that associate data with the code to act on and manage that data.
Multiple functions may be associated with an object and these functions are called the methods or
member functions of that object. Objects are considered to be members of a class of objects, and
classes can be arranged in a hierarchy in which subclasses inherit and extend the features of super-
classes. All instances of a class have the same methods but have different state. The state of an object
may or may not be directly accessible; in many cases, access to an object’s state may only be permitted
through its methods.

In some languages, including C++, subclasses can override member functions in superclasses.
Overriding usually requires class and function pointers in the implementation, but function pointers in
particular may not be supported on all hardware targets (specifically older GPUs). Some programming
models, such as ArBB, partially avoid this problem by providing an additional stage of compilation
at which the function pointers can be resolved so they do not have to be resolved dynamically during
execution.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 98 — #98

98 CHAPTER 3 Patterns

In parallel programming models objects have been generalized in various ways. For example, in
Java, marking a method as synchronized adds a lock that protects an object’s state from being
modified by multiple methods at once. However, as discussed in Section 2.6.2, overuse of locks can be
detrimental to performance.

Closures and objects are closely related. Objects can be fully emulated using just closures, for exam-
ple, and the implementation of objects in Smalltalk [Kay96] was inspired in part by the implementation
of nested functions in Algol and Simula [Per81, Nau81, Coh96].

3.5 PARALLEL DATA MANAGEMENT PATTERNS
Several patterns are used to organize parallel access to data. In order to avoid problems such as race
conditions, it is necessary in parallel programs to understand when data is potentially shared by multi-
ple workers and when it is not. It is especially important to know when and how multiple workers can
modify the same data. For the most part the parallel data access patterns we will discuss in this book
avoid modification of shared data or only allow its modification in a structured fashion. The exception is
the scatter pattern, several variants of which can still be used to resolve or avoid race conditions. Some
of these patterns are also important for data locality optimizations, such as partition, although these
also have the affect of creating independent regions of memory that can safely be modified in parallel.

3.5.1 Pack
The pack pattern can be used to eliminate unused space in a collection. Elements of a collection are
each marked with a Boolean value. Pack discards elements in the data collection that are marked with
false. The remaining elements marked with true are placed together in a contiguous sequence, in
the same order they appeared in the input data collection. This can be done either for each element of
the output of a map or in a collective fashion, using a collection of Booleans that is the same shape as
the data collection and is provided as an additional input. See Figure 3.12 for an illustration of the pack
pattern with a specific set of input data.

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H

FIGURE 3.12

Pack pattern. Unused elements are discarded and the remainder packed together in a contiguous sequence.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 99 — #99

3.5 Parallel Data Management Patterns 99

Pack is especially useful when fused with map and other patterns to avoid unnecessary output from
those patterns. When properly implemented, a programming system can use pack to reduce memory
bandwidth. Pack can even be used as a way to emulate control flow on SIMD machines with good
asymptotic performance [LLM08, HLJH09], unlike the masking approach.

An inverse of the pack operation, unpack, is also useful. The unpack operation can place elements
back into a data collection at the same locations from which they were drawn with a pack. Both pack
and unpack are deterministic operations. Pack can also be implemented using a combination of scan
and scatter [Ble93].

Examples of the use of pack include narrow-phase collision detection pair testing when you only
want to report valid collisions and peak detection for template matching in computer vision.

3.5.2 Pipeline
A pipeline pattern connects tasks in a producer–consumer relationship. Conceptually, all stages of
the pipeline are active at once, and each stage can maintain state that can be updated as data flows
through them. See Figure 3.13 for an example of a pipeline. A linear pipeline is the basic pattern but

FIGURE 3.13

Pipeline pattern. Stages are connected in a producer–consumer relationship, and each stage can maintain
state so that later outputs can depend on earlier ones.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 100 — #100

100 CHAPTER 3 Patterns

more generally, a set of stages could be assembled in a directed acyclic graph. It is also possible to
have parallel stages, as will be discussed in Chapter 9.

Pipelines are useful for serially dependent tasks like codecs for encoding and decoding video and
audio streams. Stages of the pipeline can often be generated by using functional decomposition of tasks
in an application. However, typically this approach results in a fixed number of stages, so pipelines are
generally not arbitrarily scalable. Still, pipelines are useful when composed with other patterns since
they can provide a multiplier on the available parallelism.

Examples of the use of the pipeline pattern include codecs with variable-rate compression, video
processing and compositioning systems, and spam filtering.

3.5.3 Geometric Decomposition
The geometric decomposition pattern breaks data into a set of subcollections. In general these
subcollections can overlap. See the middle example in Figure 3.14. If the outputs are partitioned into
non-overlapping domains, then parallel tasks can operate on each subdomain independently without
fear of interfering with others. See the rightmost example in Figure 3.14. We will call the special case
of non-overlapping subregions the partition pattern.

The partition pattern is very useful for divide-and-conquer algorithms, and it can also be used in
efficient parallel implementations of the stencil pattern. For the stencil pattern, typically the input is
divided into a set of partially overlapping strips (a general geometric decomposition) so that neighbors
can be accessed. However, the output is divided into non-overlapping strips (that is, a partition) so that
outputs can be safely written independently. Generally speaking, if overlapping regions are used they
should be for input, while output should be partitioned into non-overlapping regions.

An issue that arises with geometric decomposition is how boundary conditions are handled when
the input or output domains are not evenly divisible into tiles of a consistent size.

A geometric decomposition does not necessarily move data. It often just provides an alternative
“view” of the organization. In the special case of the partition pattern, a geometric decomposition
makes sure that different tasks are modifying disjoint regions of the output.

FIGURE 3.14

Geometric decomposition and the partition pattern. In the geometric decomposition pattern, the data is divided
into potentially overlapping regions (middle, four 5× 5 regions). The partition pattern is a special case of
geometric decomposition where the domain is divided into non-overlapping regions (right, four 4× 4 regions).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 101 — #101

3.5 Parallel Data Management Patterns 101

We have shown diagrams where the data is regularly arranged in an array and the decomposi-
tion uses regular subarrays. It would also be possible to have subcollections of different sizes, or for
subcollections to be interleaved (for example, all the odd elements in one subcollection and all the even
ones in the other). It is also possible to apply this pattern to less regular data structures, such as graphs.
For example, a graph coloring might be used to divide the vertices of a graph into a subset of vertices
that are not directly connected, or a graph might be divided into components in other ways.

The implementation of stencil operations, which are used in both image processing and simula-
tion, are a good example of the use of geometric decomposition with overlapping input regions. When
iterated stencils are implemented on distributed memory computers such as clusters, often one sub-
domain is assigned to each processor, and then communication is limited to only the overlap regions.
Examples of the use of partition (with non-overlapping regions) include JPEG and other macroblock
compression, as well as divide-and-conquer matrix multiplication.

3.5.4 Gather
The gather pattern reads a collection of data from another data collection, given a collection of indices.
Gather can be considered a combination of map and random serial read operations. See Figure 3.15
for an example. The element type of the output collection is the same as the input data collection but
the shape of the output collection is that of the index collection. Various optimizations are possible if
the array of indices is fixed at code generation time or follows specific known patterns. For example,
shifting data left or right in an array is a special case of gather that is highly coherent and can be
accelerated using vector operations. The stencil pattern also performs a coherent form of gather in
each element of a map, and there are specific optimizations associated with the implementation of such
structured, local gathers.

Examples of gather include sparse matrix operations, ray tracing, volume rendering, proximity
queries, and collision detection.

3.5.5 Scatter
The scatter pattern is the inverse of the gather pattern: A set of input data and a set of indices is given,
but each element of the input is written at the given location, not read. The scatter can be considered
equivalent to a combination of the map and random serial write patterns. Figure 3.16 illustrates a
problem with scatter, however: What do we do if two writes go to the same location?

Unfortunately, in the naı̈ve definition of scatter, race conditions are possible when there are dupli-
cate write addresses. In general, we cannot even assume that either value is written properly. We will

0

0A

A

B

B

C

C C E

D E F

F

G H

1

1

2

2 2

3 4

4

5

5

6 7

FIGURE 3.15

Gather pattern. A collection of data is read from an input collection given a collection of indices.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 102 — #102

102 CHAPTER 3 Patterns

0

0

A

A

B

B

C

C

D E F

F

1

1

2

2 2

3 4

4

5

5

6 7

FIGURE 3.16

Scatter pattern. A collection of data is written to locations given by a collection of addresses. However, what do
we do when two addresses are the same?

call such duplicates collisions. To obtain a full definition of scatter, we need to define what to do
when such collisions occur. To obtain a deterministic scatter, we need rules to deterministically resolve
collisions.

There are several possible solutions to the problem of collisions, including using associative oper-
ators to combine values, choosing one of the multiple values non-deterministically, and assigning
priorities to values. These will be discussed in detail in Section 6.2.

3.6 OTHER PARALLEL PATTERNS
In this section we will discuss several additional patterns that often show up in practice, but for which
we unfortunately do not have any specific code examples in this book. Please check online, as more
details and examples for these patterns may be available there. Some of these patterns are extensions
or elaborations of already discussed patterns.

3.6.1 Superscalar Sequences
In the superscalar sequence pattern, you write a sequence of tasks, just as you would for an ordinary
serial sequence. As an example, consider the code shown in Listing 3.11. However, unlike the case with
the sequence pattern, in a superscalar sequence tasks only need to be ordered by data dependencies
[ERB+10, TBRG10, KLDB10]. As long as there are no side effects, the system is free to execute tasks
in parallel or in a different order than given in the source code. As long as the data dependencies are
satisfied, the result will be the same as if the tasks executed in the canonical order given by the source
code. See Figure 3.17.

The catch here is the phrase “as long as the data dependencies are satisfied.” In order to use this
pattern, all dependencies need to be visible to the task scheduler.

This pattern is related to futures, discussed in Section 3.6.2. However, unlike with futures, for
superscalar sequences you do not explicitly manage or wait on parallel tasks. Superscalar sequences
are meant to be serially consistent.

3.6.2 Futures
The futures pattern is like fork–join, but the tasks do not have to be nested hierarchically. Instead,
when a task is spawned, an object is returned—a future—which is used to manage the task. The most

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 103 — #103

3.6 Other Parallel Patterns 103

1 D = f(A);
2 E = g(D);
3 F = h(B,E);
4 G = r(E);
5 P = p(D);
6 Q = q(D);
7 H = s(F,G);
8 C = t(H,P,Q);

LISTING 3.11

Superscalar sequence in pseudocode.

C

C

t

t

s

s

q

q

p

p

r

rh h

B B

f

g g

f

A A

FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
pattern. However, if we interpret this graph as a superscalar sequence, we can potentially execute some of the
tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork–join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork–join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 104 — #104

104 CHAPTER 3 Patterns

3.6.3 Speculative Selection
Speculative selection generalizes selection so that the condition and both alternatives can run in par-
allel. Compare Figure 3.4 with Figure 3.18. When the condition completes, the unneeded branch of the
speculative selection is cancelled. Cancellation also needs to include the reversal of any side-effects.
In practice, the two branches will have to block at some point and wait for the condition to be evalu-
ated before they can commit any changes to state or cause any non-reversible side-effects. This pattern
is inherently wasteful, as it executes computations that will be discarded. This means that it always
increases the total amount of work.

It can be expensive to implement cancellation, especially if we have to worry about delaying
changes to memory or side-effects. To implement this pattern, the underlying programming model
needs to support task cancellation. Fortunately, TBB does support explicit task cancellation and so can
be used to implement this pattern.

Speculative selection is frequently used at the very finest scale of parallelism in compilers for hiding
instruction latency and for the simulation of multiple threads on SIMD machines.

In the first case, instructions have a certain number of cycles of latency before their results are
available. While the processor is executing the instructions for the condition in an if statement, we
might as well proceed with the first few instructions of one of the branches. In this case, the speculation
pattern might not actually be wasteful, since those instruction slots would have otherwise been idle;
however, we do not want to commit the results. Once we know the results of the condition, we may
have to discard the results of these speculatively executed instructions. You rarely have to worry about
the fine-scale use of this pattern, since it is typically implemented by the compiler or even the hardware.
In particular, out-of-order hardware makes extensive use of this pattern for higher performance, but at
some cost in power.

However, in the SIMT machine model, multiple threads of control flow are emulated on SIMD
machines using masking, which is related to speculative selection. In order to emulate if statements in
this model, the condition and both the true and false branches are all evaluated. However, the memory
state is updated using masked memory writes so that the results of executing the true branch are only
effective for the lanes where the condition was true and conversely for the false branch. This can be
optimized if we find the condition is all true or all false early enough, but, like speculative selection,
SIMT emulation of control flow is potentially wasteful since results are computed that are not used.
Unlike the case with filling in unused instruction slots, using masking to emulate selection like this
increases the total execution time, which is the sum of both branches, in addition to increasing the total
amount of work.

C bA
T F

FIGURE 3.18

Speculative selection pattern. The speculative selection pattern is like the serial selection pattern, but we can
start the condition evaluation and both sides of the selection at the same time. When the condition is finished
evaluating, the unneeded branch is “cancelled.”

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 105 — #105

3.6 Other Parallel Patterns 105

A similar approach can also be used to emulate iteration on SIMD machines, but in the case of
iteration the test for all-true or all-false is used to terminate the loop. In both cases, we may only use
the SIMD model over small blocks of a larger workload and use a threading model to manage the
blocks.

3.6.4 Workpile
The workpile pattern is a generalization of the map pattern where each instance of the elemental
function can generate more instances and add them to the “pile” of work to be done. This can be used,
for example, in a recursive tree search, where we might want to generate instances to process each of
the children of each node of the tree.

Unlike the case with the map pattern with the workpile pattern the total number of instances of the
elemental function is not known in advance, nor is the structure of the work regular. This makes the
workpile pattern harder to vectorize than the map pattern.

3.6.5 Search
Given a collection, the search pattern finds data that meets some criteria. The criteria can be simple,
as in an associative array, where typically the criteria is an exact match with some key. The criteria can
also be more complex, such as searching for a set of elements in a collection that satisfy a set of logical
and arithmetic constraints.

Searching is often associated with sorting, since to make searches more efficient we may want to
maintain the data in sorted order. However, this is not necessarily how efficient searches need to be
implemented.

Searching can be very powerful, and the relational database access language, SQL, can be consid-
ered a data-parallel programming model. The parallel embedded language LINQ from Microsoft uses
generalized searches as the basis of its programming model.

3.6.6 Segmentation
Operations on collections can be generalized to operate on segmented collections. Segmented col-
lections are 1D arrays that are subdivided into non-overlapping but non-uniformly sized partitions.
Operations such as scan and reduce can then be generalized to operate on each segment separately, and
map can also be generalized to operate on each segment as a whole (map-over-segments) or on every
element as usual. Although the lengths of segments can be non-uniform, segmented scans and reduc-
tions can be implemented in a regular fashion that is independent of the distribution of the lengths of
the segments [BHC+93]. Segmented collective operations are more expensive than regular reduction
and scan but are still easy to load balance and vectorize.

The segmentation pattern is interesting because it has been demonstrated that certain recursive algo-
rithms, such as quicksort [Ble90, Ble96], can be implemented using segmented collections to operate
in a breadth-first fashion. Such an implementation has advantages over the more obvious depth-first
parallel implementation because it is more regular and so can be vectorized. Segmented operations also
arise in time-series analysis when the input data is segmented for some reason. This frequently occurs
in financial, vision, and speech applications when the data is in fact segmented, such as into different
objects or phonemes.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 106 — #106

106 CHAPTER 3 Patterns

3.6.7 Expand
The expand pattern can be thought of as the pack pattern merged with map in that each element of
a map can selectively output elements. However, in the expand pattern, each element of the map can
output any number of elements—including zero. The elements are packed into the output collection in
the order in which they are produced by each element of the map and in segments that are ordered by
the spatial position of the map element that produced them. An example is shown in Figure 3.19.

Examples of the use of expand include broad-phase collision detection pair testing when reporting
potentially colliding pairs, and compression and decompression algorithms that use variable-rate output
on individually compressed blocks.

FIGURE 3.19

Expand pattern. Each element of a map can output zero or more elements, which are packed in the order
produced and organized into segments corresponding to the location of the elements in the map that
produced them.

3.6.8 Category Reduction
Given a collection of data elements each with an associated label, the category reduction pattern
finds all elements with the same label and reduces them to a single element using an associative (and
possibly commutative) operator. The category reduction pattern can be considered a combination of
search and segmented reduction. An example is provided in Figure 3.20.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 107 — #107

3.6 Other Parallel Patterns 107

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

FIGURE 3.20

Category reduction pattern. Given an input collection with labels, all elements with the same label are collected
and then reduced to a single element.

Searching and matching are fundamental capabilities and may depend indirectly on sorting or hash-
ing, which are relatively hard to parallelize. This operation may seem esoteric, but we mention it
because it is the form of “reduction” use in the Hadoop [Kon11, DG04] Map-Reduce programming
model used by Google and others for highly scalable distributed parallel computation. In this model,
a map generates output data and a set of labels, and a category reduction combines and organizes the
output from the map. It should be emphasized that they do not call the reduction used in their model a
category reduction. However, we apply that label to this pattern to avoid confusion with the more basic
reduction pattern used in this book.

Examples of use of category reduction include computation of metrics on segmented regions
in vision, computation of web analytics, and thousands of other applications implemented with
Map-Reduce.

3.6.9 Term Graph Rewriting
In this book we have primarily focused on parallel patterns for imperative languages, especially
C++. However, there is one very interesting pattern that is worth mentioning due to its utility in the
implementation of functional languages: term graph rewriting.

Term graph rewriting matches patterns in a directed acyclic graph, specifically “terms” given by
a head node and a sequence of children. It then replaces these terms with new subgraphs. This is
applied over and over again, evolving the graph from some initial state to some final state, until no
more substitutions are possible. It is worth noting that in this book we have used graphs to describe the
relationships between tasks and data. However, in term graph rewriting, graphs are the data, and it is
the evolution of these graphs over time that produces the computation.

Term graph rewriting is equivalent in power to the lambda calculus, which is usually used to define
the semantics of functional languages. However, term graph rewriting is more explicit about data shar-
ing since this is expressed directly in the graph, and this is important for reasoning about the memory
usage of a functional program. Term graph rewriting can take place in parallel in different parts of the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 108 — #108

108 CHAPTER 3 Patterns

graph, since under some well-defined conditions term graph rewriting is confluent: It does not matter in
which order the rewrites are done; the same result will be produced either way. A very interesting paral-
lel functional language called Concurrent Clean has been implemented using this idea [PvE93, PvE99].
Many other parallel languages, including hardware simulation and synthesis languages, have been
defined in terms of this pattern.

3.7 NON-DETERMINISTIC PATTERNS
Normally it is desirable to avoid non-determinism since it makes testing and debugging much more
difficult. However, there are some potentially useful non-deterministic patterns.

We will discuss two non-deterministic patterns in this section, branch and bound and transac-
tions. In some cases, such as search, the input–output behavior of the abstraction may be deterministic
but the implementation may be non-deterministic internally. It is useful to understand when non-
determinism can be contained inside some abstraction, and conversely when it affects the entire
program.

3.7.1 Branch and Bound
The branch and bound pattern is often used to implement search, where it is highly effective. It is,
however, a non-deterministic pattern and a good example of when non-determinism can be useful.

Suppose you have a set of items and you want to do an associative search over this set to find an
item that matches some criteria. To do a parallel search, the simplest approach is to partition the set and
search each subset in parallel. However, suppose we only need one result, and any data that satisfies
the search criteria is acceptable. In that case, once an item matching the search criteria is found, in any
one of the parallel subset searches, the searches in the other subsets can be cancelled.

The branch and bound strategy can actually lead to superlinear speedups, unlike many other parallel
algorithms. However, if there are multiple possible matches, this pattern is non-deterministic because
which match is returned depends on the timing of the searches over each subset. Since this form of non-
determinism is fundamental in the definition of the result (“return the first result found that matches the
criteria”), it is hard to remove this form of non-determinism. However, to get a superlinear speedup,
the cancellation of in-progress tasks needs to be implemented in an efficient manner.

This pattern is also used for mathematical optimization, but with a few additional features. In math-
ematical optimization, you are given an objective function, some constraint equations, and a domain.
The function depends on certain parameters. The domain and the constraint equations define legal
values for the parameters. Within the given domain, the goal of optimization is to find values of the
parameters that maximize (or minimize) the objective function.

Search and optimization are related in that in optimization we are searching for the location of the
optimum, so one way to approach the problem is exactly like with search: Break up the domain into
subdomains, search each region in parallel, and when a “good enough” value is found in one domain
cancel the other parallel searches. But what conditions, exactly, allow us to cancel other searches?

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 109 — #109

3.7 Non-Deterministic Patterns 109

We can cancel a search if we can prove that the optimum in a domain Y can be no better than y
but we have already found a solution x better than y. In this case we can cancel any search in Y .
Mathematically, we can compute bounds using techniques such as interval analysis [HW04] and often
apply the subdivide-and-bound approach recursively.

What is interesting about this is that the global optima are fixed by the mathematical problem;
therefore, they are unique. The code can be designed to return the same result every time it is run.
Even though the algorithm might be non-deterministic internally, the output can be deterministic if
implemented carefully.

The name “branch and bound” comes from the fact that we recursively divide the problem into
parts, then bound the solution in each part. Related techniques, such as alpha-beta pruning [GC94], are
also used in state-space search in artificial intelligence.

3.7.2 Transactions
Transactions are used when a central repository for data needs several different updates and we do
not care what order the updates are done in, as long as the repository is kept in a consistent state. An
example would be a database recording transactions on a bank account. We do not care too much in
what order the deposits and withdrawals are recorded, as long as the balance at the end of the day is
correct. In fact, in this special case, since deposits and withdrawals are using an associative operation
(addition), the result is in fact deterministic. However, in general, transaction operations will be non-
associative and in that case the outcome will not be deterministic if the order in which the individual
operations are performed is non-deterministic.

For a concrete example that illuminates where transactions might be useful, suppose you are using
a hash table. The kinds of operations you want to use on a hash table might involve inserting elements
and searching for elements. Suppose that the hash table is implemented using a set of buckets with
elements that map to the same bucket stored in a linked list. If multiple parallel tasks try to insert ele-
ments into the same bucket, we could use some implementation of the transaction pattern to make sure
the linked lists are updated consistently. The order in which the elements are inserted into the linked
lists may not be consistent from run to run. However, the overall program may still be deterministic
if the internal non-determinism is not exposed outside the implementation of the pattern itself—
that is, if hash table searches always return the same data no matter what the initial ordering of the
lists was.

Implementing a deterministic hash table using non-deterministic mechanisms may require some
additional effort, however. For example, suppose the same key is inserted twice with different data. In
this case, suppose only one of the two possible data elements should be retained. If we retain the last
element inserted, creating a dependency on timing, the hash table will be non-deterministic and this
has the potential to make the whole program non-deterministic. On the other hand, if we use a rule to
choose which of the two data elements to retain, such as picking the largest data element, then we can
make the output deterministic.

The implementation of transactions is important. Of course, they could be implemented with locks,
but a more scalable approach uses a commit and rollback protocol, as in a database transactions. When
the term “transactions” is used it generally refers to this form of implementation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 110 — #110

110 CHAPTER 3 Patterns

3.8 PROGRAMMING MODEL SUPPORT FOR PATTERNS
Many of the patterns discussed in this chapter are supported directly in one or more of the programming
models discussed in this book. By direct support, we mean that there is a language construct that
corresponds to the pattern. Even if a pattern is not directly supported by one of the programming
models we consider, it may be possible to implement it using other features.

In the following, we briefly describe the patterns supported by each of Cilk Plus, TBB, OpenMP,
ArBB, and OpenCL. Patterns can be supported directly by a feature of the programming model, or
they may be implementable using other features. A summary of serial pattern support is provided in
Table 3.1, and a summary of parallel pattern support is provided in Tables 3.2 and 3.3. These tables
use an F to indicate when a programming model includes an explicit feature supporting that pattern,
an I if the pattern is implementable with that model, or a blank if there is no straightforward way
to implement the pattern with that model. Some patterns are implementable with other patterns, and
when an example of this is given in the book it is indicated with a P. Table 3.2 also includes section
references to examples using or implementing that pattern. Table 3.3 indicates support for some addi-
tional patterns that are discussed in this book but for which, unfortunately, no suitable examples were
available.

We additionally provide section references when an example is given in this book of a particular
parallel pattern with a particular model. Unfortunately space does not permit us to give an example
of every parallel pattern with every programming model, even when a pattern is implementable with
that model. In other cases, common patterns (such as map) may show up in many different examples.
Please refer to the online site for the book. Some additional examples will be made available there that
can fill in some of these gaps.

Table 3.1 Summary of programming model support for the serial patterns discussed
in this book. Note that some of the parallel programming models we consider do not,
in fact, support all the common serial programming patterns. In particular, note that
recursion and memory allocation are limited on some model.

Serial Pattern TBB Cilk Plus OpenMP ArBB OpenCL

(Serial) Nesting F F F F F
Sequence F F F F F
Selection F F F F F
Iteration F F F F F
Recursion F F F ?

Random Read F F F F F
Random Write F F F F
Stack Allocation F F F ?
Heap Allocation F F F
Closures F F
Objects F F F(w/C++) F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 111 — #111

3.8 Programming Model Support for Patterns 111

Table 3.2 Summary of programming model support for the patterns discussed in this
book. F: Supported directly, with a special feature. I: Can be implemented easily and
efficiently using other features. P: Implementations of one pattern in terms of others,
listed under the pattern being implemented. Blank means the particular pattern cannot
be implemented in that programming model (or that an efficient implementation cannot
be implemented easily). When examples exist in this book of a particular pattern with a
particular model, section references are given.

Parallel Pattern TBB Cilk Plus OpenMP ArBB OpenCL

Parallel nesting F F
Map F 4.2.3; F

4.2.4;4.2.5;
F 4.2.6; F

4.2.7;4.2.8;
F 4.2.9;

4.3.3 4.3.4;4.3.5 4.3.6 4.3.7 4.3.8
11 11

Stencil I 10 I 10 I F 10 I
Workpile F I
Reduction F 5.3.4 F 5.3.5 F 5.3.6 F 5.3.7 I

11 11
Scan F 5.6.5 I 5.6.3 I 5.6.4 F 5.6.6 I

14 P 8.11 P 5.4.4
14

Fork–join F 8.9.2 F 8.7; I
13 8.9.1

13
Recurrence P 8.12
Superscalar sequence F
Futures
Speculative selection

Pack I 14 I 14 I F I
Expand I I I I I
Pipeline F 12 I 12 I
Geometric decomposition I 15 I 15 I I I
Search I I I I I
Category reduction I I I I I
Gather I F I F I
Atomic scatter F I I I
Permutation scatter F F F F F
Merge scatter I I I F I
Priority scatter

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 112 — #112

112 CHAPTER 3 Patterns

Table 3.3 Additional patterns discussed. F: Supported directly, with a special feature.
I: Can be implemented easily and efficiently using other features. Blank means the
particular pattern cannot be implemented in that programming model (or that an
efficient implementation cannot be implemented easily).

Parallel Pattern TBB Cilk Plus OpenMP ArBB OpenCL

Superscalar sequence I I I F
Futures I I I I
Speculative selection I
Workpile F I I I
Expand I I I I I
Search I I I I I
Category reduction I I I I I

Atomic scatter F I I I
Permutation scatter F F F F F
Merge scatter I I I F I
Priority scatter

3.8.1 Cilk Plus
The feature set of Cilk Plus is simple, based primarily on an efficient implementation of the fork–
join pattern, but general enough that many other patterns can also be implemented in terms of its basic
features. Cilk Plus also supports many of the other patterns discussed in this chapter as built-in features,
with implementations usually built around fork–join. For some patterns, however, it may be necessary
to combine Cilk Plus with components of TBB, such as if atomic operations or scalable parallel
dynamic memory allocation are required. Here are the patterns supported directly by Cilk Plus.

Nesting, Recursion, Fork–Join
Nesting to arbitrary depth is supported by cilk_spawn. Specifically, this construct supports fork–
join parallelism, which generalizes recursion. Support for other patterns in Cilk Plus are based on
this fundamental mechanism and so can also be nested. As discussed later, fork–join in Cilk Plus is
implemented in such a way that large amounts of parallel slack (the amount of potential parallelism)
can be expressed easily but can be mapped efficiently (and mostly automatically) onto finite hardware
resources. Specifically, the cilk_spawn keyword only marks opportunities for a parallel fork; it does
not mandate it. Such forks only result in parallel execution if some other core becomes idle and looks
for work to “steal.”

Reduction
The reduction pattern is supported in a very general way by hyperobjects in Cilk Plus. Hyperob-
jects can support reductions based on arbitrary commutative and associative operations. The semantics
of reduction hyperobjects are integrated with the fork–join model: new temporary accumulators are
created at spawn points, and the associative combiner operations are applied at joins.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 113 — #113

3.8 Programming Model Support for Patterns 113

Map, Workpile
The map pattern can be expressed in Cilk Plus using cilk_for. Although a loop syntax is used, not
all loops can be parallelized by converting them to cilk_for, since loops must not have loop-carried
dependencies. Only loops with independent bodies can be parallelized, so this construct is in fact a
map. This is not an uncommon constraint in programming models supporting “parallel for” constructs;
it is also true of the “for” constructs in TBB and OpenMP. The implementation of this construct in Cilk
Plus is based on recursive subdivision and fork–join, and so distributes the overhead of managing the
map over multiple threads.

The map pattern can also be expressed in Cilk Plus using elemental functions, which when invoked
inside an explicitly vectorized loop also give a “map” pattern. This form explicitly targets vector
instructions. Because of this, it is more constrained than the cilk_for mechanism. However, these
mechanisms can be composed.

The workpile pattern can be implemented in Cilk Plus directly on top of the basic fork–join model.

Scatter, Gather
The Cilk Plus array notations support scatter and gather patterns directly. The array notations also
allow sequences of primitive map operations (for example, the addition of two arrays) to be expressed.
Operations on entire arrays are supported with a special array slice syntax.

3.8.2 Threading Building Blocks
Threading Building Blocks (TBB) supports fork–join with a work-stealing load balancer as its basic
model. In contrast with Cilk Plus, TBB is a portable ISO C++ library, not a compiler extension.
Because TBB is not integrated into the compiler, its fork–join implementation is not quite as efficient
as Cilk Plus, and it cannot directly generate vectorized code. However, TBB also provides implemen-
tations of several patterns not available directly in Cilk Plus, such as pipelines. Because it is a portable
library, TBB is also available today for more platforms than Cilk Plus, although this may change over
time.

In addition to a basic work-stealing scheduler that supports the fork–join model of parallelism,
TBB also includes several other components useful in conjunction with other programming models,
including a scalable parallel dynamic memory allocator and an operating-system-independent interface
for atomic operations and locks. As previously discussed, locks should be used with caution and as a
last resort, since they are non-deterministic and can potentially cause deadlocks and race conditions.
Locks also make scheduling non-greedy, which results in sub-optimal scheduling.Here are the patterns
supported directly by TBB.

Nesting, Recursion, Fork–Join
TBB supports nesting of tasks to arbitrary depth via the fork–join model. Like Cilk Plus, TBB uses
work-stealing load balancing which is both scalable and locality-preserving. However, TBB can also
support more general task graph dependencies than the planar graphs generated by the Cilk Plus fork–
join implementation. These patterns are accessed by the parallel_invoke and task graph features
of TBB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 114 — #114

114 CHAPTER 3 Patterns

Map
The map patterns is implemented in TBB using the parallel_for and parallel_foreach func-
tions. Lambda functions can be used as arguments to these so that the required elemental function can
be described as part of the call rather than being separately declared. As is clear from the names, these
functions are useful for parallelizing for loops, but they do have some additional restrictions, so not
all for loops can be parallelized. In particular, each invocation of the elemental function body needs
to be independent, as we have described for the map pattern, and the number of iterations needs to be
fixed and known in advance.

Workpile
The workpile pattern can be accessed from TBB using the parallel_do construct. This is similar
to the parallel_for pattern, with the difference that the number of invocations does not need to
be known in advance. In fact, additional invocations can be generated from inside the “body” of this
construct.

Reduction
The reduction pattern can be accessed via the parallel_reduce construct. This construct allows the
specification of an arbitrary combiner function. However, in order for the result to be computed deter-
ministically the reduction function needs to be both associative and commutative (not just associative).
If a deterministic reduction is needed, a deterministic_parallel_reduce function is provided.

Scan
The scan pattern can be accessed via the parallel_scan construct. An arbitrary successor function
can be specified in order for the result to be deterministic. As with reduction, such a function must be
both fully associative and commutative in order for the scan to be deterministic. There is no built-in
deterministic scan in TBB but one can be implemented using other features of TBB.

Pipeline
The pipeline pattern can be specified directly with the parallel_pipeline construct, which can
support not only linear pipelines but also directed acyclic graphs of pipeline stages. TBB’s support for
pipelines is demonstrated at length in Chapter 9.

Speculative Selection, Branch and Bound
TBB supports task cancellation, which can be used to implement many other patterns, including non-
deterministic patterns such as branch and bound.

3.8.3 OpenMP
OpenMP is a standard interface for parallel programming based on annotating serial code so that certain
constructs, in particular loops, can be reinterpreted as parallel constructs. The basic patterns it supports
directly as features are map and reduce, although other patterns can also be implemented. In addition
to the data-parallel map pattern, which also supports vectorization, recent versions of OpenMP also
support a general task construct which allows other more irregular patterns to be implemented.

However, the implementation of OpenMP is usually based directly on threads, which raises various
practical issues. In particular, nested use of OpenMP can lead to overdecomposition and OpenMP does

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 115 — #115

3.8 Programming Model Support for Patterns 115

not include a load balancer. Therefore, nesting is not listed as a pattern supported by OpenMP. Also,
certain features in OpenMP that map units of work directly to threads preclude using an automatic
task-based load balancer. OpenMP does not include generalized reductions but does include locks.
Interestingly, a recent study [AF11] of OpenMP applications showed that the most common use of
locks was to implement generalized reductions and load balancing. Inclusion of these features into the
OpenMP standard would significantly reduce the need for locks.

One advantage of OpenMP over the other models discussed here is that it is also available for
Fortran, as well as C and C++. Cilk Plus is available for both C and C++, while TBB is only available
for C++.

Map, Workpile
OpenMP supports the map pattern by annotating a for loop (or DO loop in Fortran) to indicate to the
compiler that the annotated loop should be interpreted as a parallel construct. Each iteration of the loop
is executed in parallel in a different thread, and the end of the loop body implements a barrier.

The workpile pattern can also be implemented in OpenMP using its task model.

Reduction
When a loop body includes updates to variables declared outside the loop body with a predefined set
of associative (or semi-associative floating point) operators, the variable may be marked as a reduction
variable. In this case, OpenMP automatically implements a parallel reduction.

Fork–Join
OpenMP supports a general task model that can be used to implement the fork–join pattern. The task
model can also be used to implement various other patterns discussed in this book. OpenMP is not a
focus of this book, so we do not explore the OpenMP task model in depth, but the addition of tasks
adds significant power to the OpenMP programming model.

Stencil, Geometric Decomposition, Gather, Scatter
There is no built-in support for directly expressing stencil, geometric decomposition, gather, or scatter
in OpenMP, but many of the applications for which OpenMP is used also use these patterns. However,
except for reduction variables, OpenMP generally does not manage data, so data access patterns are
expressed through the base language functionality rather than through OpenMP itself.

3.8.4 Array Building Blocks
The basic building blocks of ArBB are based on many of the fundamental patterns discussed in this
book. ArBB also supports automatic fusion of these basic building blocks and can generate vectorized
code as well as code that runs on multiple cores. Unfortunately, ArBB at present does not support
nesting or recursion. The patterns directly supported by ArBB include the following.

Map
The map patterns is supported using elemental functions, which must be separately declared and then
invoked by a map operation over a collection or index set. Like the array notation of Cilk Plus, ArBB
also supports arithmetic operations over entire collections (in other words, the vector operation style of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 116 — #116

116 CHAPTER 3 Patterns

map) but implements optimizations so that a sequence of such operations is as efficient as a map with
an explicit elemental function.

Reduction, Scan
Reductions are supported but only over a set of known operators. Reductions over truly associative
operations, such as modular integer addition and minimum and maximum, are both deterministic and
repeatable.

The scan pattern is supported with collective operations scan and iscan, again for a fixed set of
operators. The scan operation supports both exclusive scan, in which every output does not include
the corresponding element of the input, and inclusive scan, in which every output does include the
corresponding element of the input.

Although the reduction and scan operations in ArBB do not support custom combiner functions,
the ArBB implementation supports automatic fusion of multiple map and reduction operations into a
single operation. In practice, this can replace many of the uses of custom reduction and scan functions.

Unfortunately, in the current implementations of reduction and scan in ArBB, the results are not
guaranteed to be deterministic if the combiner is not truly associative, in particular for floating-point
operations. It is, however, possible to implement deterministic reductions and scans for these operations
(as well as for custom combiner functions) using other features of ArBB.

Scatter, Gather
Random reads and writes can be implemented in ArBB using either scalar reads and writes inside maps,
or with the collective operations gather and scatter. The scatter implementation only supports the
permutation scatter pattern (see Section 6.2), which means it is only guaranteed to work correctly
when there are no duplicate addresses. However, duplicates are only checked in a debugging mode.
Whenever possible, scatter should be avoided since it is not checked in deployment mode and if used
incorrectly could potentially lead to incorrect output.

Pack
The pack pattern is supported directly in ArBB with a collective operation, pack. The inverse of pack
is also supported with unpack. Note that pack is a safe, deterministic operation that can be used in
place of scatter in many situations.

3.8.5 OpenCL
The OpenCL programming model was designed to allow the use of attached co-processors with
separate memories and using a tiled SIMD architecture, such as GPUs, to be accessed as computational
devices. It also maps reasonably well onto CPUs with vector instructions.

OpenCL does not support full nesting but does provide two explicit levels of parallelism. One level
(work-groups) maps onto the multiple cores in the devices; the other (work-items) maps onto SIMD
lanes and hyperthreads in each core.

The programming model of OpenCL is quite similar to that of CUDA, but since OpenCL is
standardized and CUDA is not, we only give OpenCL examples in this book.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 117 — #117

3.8 Programming Model Support for Patterns 117

Map
When a kernel function is written in OpenCL and then executed on a device, it implements the
map pattern. This is similar to the use of elemental functions in ArBB and Cilk Plus array notation.
Each execution of a kernel executes a set of instances. Each instance is called a work item. When
the map is executed, the work items are automatically tiled into sets of parallel work called work
groups. Within each work-group, the implementation typically emulates control flow over multiple
work items using masking over SIMD lanes. It is also possible to communicate using shared memory
within a work group, but not between work groups. Generally, communication requires the insertion
of a barrier, since a work group may be further decomposed into multiple chunks by the implemen-
tation that may run asynchronously. Barrier-free communication is possible within a single SIMD
“chunk” within a work group on specific hardware but this is not standardized, and hence it is not
advised.

Gather
Within an OpenCL kernel, random reads to memory can be performed. This can be done either to
on-chip local memory (very fast and shared within a work group) or to global memory. On some
processors supporting OpenCL, accesses to global memory are cached, but on others they are not.
In the latter case, the implementation may use software pipelining to hide memory access latency.
Hyperthreads may also be used on multicore processors that support it. The global memory is still
typically local to the co-processor, so OpenCL includes additional directives to do memory transfers
to and from the host.

Note that with OpenCL maximizing throughput rather than minimizing latency is the goal. Hyper-
threads and software pipelining overlap memory access latency with additional computation; they do
not eliminate the memory access latency. In fact, use of these techniques can increase latency overall.
This style of “throughput” computation may also be used with other throughput-oriented programming
models, such as ArBB and CUDA.

Scatter
Scatter is supported in OpenCL but some care is needed to deal with collisions (parallel writes to
the same address). Recent versions of OpenCL include standardized atomic operations, and many
processors targeted by OpenCL implementations support these efficiently in hardware.

Reduction, Scan, Pack, Expand
OpenCL does not support the reduction pattern directly as a feature but it is implementable. Typically,
the array to be reduced is divided into tiles, each tile reduced using SIMD parallelism in a single work
group, and then a final pass using a single work group is used to combine the results. However, there
are several possible implementations, and the most efficient implementation does tend to depend on the
device. The most efficient implementations use SIMD parallelism in a way that requires commutativity
[Inc09b, Cat10].

Scan is also not built in, but there are several possible ways to implement it efficiently [Inc09a].
Since scan and gather/scatter can be implemented, pack can also be implemented. For efficiency, like
scan and reduce, pack should be implemented directly in a tiled fashion. Likewise, with some overal-
location of memory, it should be possible to implement a limited form of expand. However, OpenCL
does not have dynamic memory allocation built-in. Dynamic memory allocation could be implemented

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 118 — #118

118 CHAPTER 3 Patterns

using atomics in the same way as workpile. In Table 3.2, have marked “expand” as being imple-
mentable although for efficiency it may have to be limited to finite expansion factors per element. It is
notable that vertex shaders, implemented in DirectX (an API for graphics) on the same GPUs targeted
by OpenCL, also implements the expand pattern, but limited to finite expansion factors.

Stencil
Stencil is not a built-in feature of OpenCL but can be implemented efficiently [Bor09]. Ideally, local
shared memory should be used explicitly to support data reuse on devices without cache.

Workpile
OpenCL does not support the workpile pattern directly but it is possible to implement a work queue
using atomics in CUDA, which has a similar programming model [GPM11]. Work queues are more
limited than fork–join, so we have not marked fork–join as being implementable with OpenCL,
although it might in theory be possible.

Superscalar Sequences
Multiple kernels can be queued up to execute asynchronously on OpenCL devices. Dependencies
between kernels can be given declaratively in the form of events. OpenCL itself does not track data
dependencies, but if appropriate events are created that correspond to data dependencies, then OpenCL
can implement the superscalar sequence pattern.

The event/task-queue model of OpenCL is similar to futures, although it does not support all fea-
tures that might be desirable in a futures implementation, such as cancellation. Therefore, we have
not listed futures under the patterns supported by OpenCL, although this could change as the standard
evolves.

Geometric Decomposition
Geometric decomposition is implementable on OpenCL, and in fact often necessary for performance.
However, usually geometric decompositions are limited to one level of decomposition in order to map
tiles onto shared local memory.

Closures
OpenCL is implemented using dynamic compilation so new kernels can in theory be implemented at
runtime. The interface to this feature, however, is not as convenient as ArBB, since strings are used to
define kernels.

Objects are not a built-in feature of OpenCL, since it is based on C. OpenCL also does not generally
support a stack and recursion. Although some implementations may allow this, it is non-standard.

3.9 SUMMARY
In this chapter, we introduced the concept of patterns and gave a survey of a set of patterns useful in
parallel programming. The types of patterns we focused on are also known as algorithmic skeletons, in
that they tend to arise in the implementation of algorithms. We also related these patterns to the patterns
of block control flow used in structured parallel programming. One very important pattern, nesting,
appears in combination with both serial and parallel pattern and allows for hierarchical composition.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 119 — #119

3.9 Summary 119

For serial patterns, the nesting pattern allows for nested control flow constructs, while in parallel
programming it allows for nested parallelism.

Programming models can also be characterized by the patterns they support, either directly with
a built-in feature or with other features that allow a straightforward and efficient implementation of a
pattern. We have summarized the patterns supported, directly or indirectly, by the parallel programming
models used in this book.

The remainder of this book goes into further detail on the most important patterns and gives many
examples of the use of these patterns.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 121 — #121

CHAPTER

Map 4
This chapter goes into depth on the map pattern, introduced in Section 3.3.2. Both serial and parallel
versions of this pattern are given in Figure 4.1. The map pattern compresses the time it takes to execute
a loop, but it only applies when all instances of the loop body are independent.

Map applies a function to every element of a collection of data in parallel. More generally, map
executes a set of function invocations, each of which accesses separate data elements. We will call the
functions used in map elemental functions. The elemental functions used in a map should have no side
effects to allow all the instances of the map to be able to execute in any order. This independence offers
maximum concurrency with no need to synchronize between separate elements of the map, except upon
completion. There is, however, no assumption or requirement that the instances of the map actually will
be run simultaneously, or in any particular order. This provides the maximum flexibility for scheduling
operations.

The map pattern is simple, being just a set of identical computations on different data, without
any communication. It is so simple it is sometimes called embarrassing parallelism. However, while
conceptually simple, map is the foundation of many important applications, and its importance should
not be underestimated. It is important to recognize when map can be used since it is often one of the
most efficient patterns. For example, if you do not have one problem to solve but many, your parallel
solution may be as simple as solving several unrelated problems at once. This trivial solution can be
seen as an instance of the map pattern.

Map is often combined with other patterns to make new patterns. For example, the gather pattern
is really a combination of a serial random read pattern and the map pattern. Chapter 5 discusses a set of
patterns that often combine with the map pattern, the collectives, including reduction and scan. Chap-
ter 6 discusses various patterns for data reorganization, which also often combine with map. Often map
is used for the basic parallel computation, and then it is combined with other patterns to represent any
needed communication or coordination. Chapter 7 also discusses the stencil and recurrence patterns,
which can be seen as generalizations of map to more complex input and output dependencies. Some
additional generalizations, such as workpile, are also briefly discussed in this chapter.

Patterns have both semantic and implementation aspects. The semantics of the map pattern are
simple, but achieving a scalable implementation often requires a surprising amount of care for best
performance. For example, invoking a separate thread for each function invocation in a map is not a
good idea if the amount of work each instance does is small. Threads provide mandatory parallelism,
which is unnecessary in the case of a map, and potentially too heavyweight—a tasking model, which is
lightweight but specifies only optional parallelism, is more suitable. It is also important to parallelize
the overhead of synchronization at the beginning and end of the map and to deal with the fact that
the functions invoked in each instance of the map may, in the general case, vary in the amount of

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00004-9
c© 2012 Elsevier Inc. All rights reserved.

121

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 122 — #122

122 CHAPTER 4 Map

FIGURE 4.1

Serial and parallel execution of a map pattern. In the map pattern, an elemental function is applied to all
elements of a collection, producing a new collection with the same shape as the input. In serial execution, a
map is often implemented as a loop (with each instance of the loop body consisting of one invocation of the
elemental function), but because there are no dependencies between loop iterations all instances can execute
at the same time, given enough processors.

work they consume. Fortunately, the parallel programming models we use in this book include good
implementations of the map pattern that take care of these details. For completeness we will discuss
such implementation issues, but if you use a good programming model it will probably be unnecessary
for you to worry about this yourself.

The map pattern is commonly used as the basis of vectorization as well as parallelization. To
support full nesting of patterns, it is important to be able to support serial control flow and data access
patterns inside a vectorized map. Again, these implementation details are (probably) not something
you have to worry about yourself, if you are using a programming model that supports them, but the
emulation of control flow in a vectorized map does have some performance implications.

In the following chapters, we will discuss some additional optimizations that are possible when
combinations of map with other parallel patterns are considered. One particular combination of pat-
terns, Map-Reduce, is at the heart of the success of Internet giant Google [DG04, Kon11]. Map-Reduce

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 123 — #123

4.1 Map 123

is used for thousands of computations on large distributed systems daily. This is a testament to the
power of parallelism to process enormous quantities of data efficiently. Even after discussing only a
small number of patterns it will be possible to understand the basis of such a system.

This is the first chapter where we will show code samples. We give examples demonstrating the
map pattern in various programming models, including TBB, Cilk Plus, OpenMP, ArBB, and OpenCL.
Unlike the cases in the later chapters, these code samples are not meant to showcase efficient imple-
mentations. Instead, these samples have been intentionally simplified to show the map pattern in its
purest form, so they can be used as templates for building up more complex programs. Also, it should
be noted that code samples in this book do not necessarily show all the wrapper code needed for a
full application. However, full application source code, including all of the necessary wrapper code
for each of the examples in this book, is available online. We also do not provide full documentation
for each of the programming models used in this book, since such documentation is available online.
However, for a summary of the features of the primary programming models used in this book and
pointers to further reading, please see the appendices.

4.1 MAP
In the comment pattern a function, which we will call an elemental function, is replicated and applied
to different data. We can think of either applying the elemental function to each element of a collection
of data or applying it to a set of indices that are then used to access different data for each of many
instances of the function. The second approach is often used in some systems because map operations
frequently access several sources of data and using a common set of indices is a convenient way to do
it. We will call each parallel invocation of the elemental function on a different set of data, or portion
of the index space, an instance of the elemental function.

The map pattern is closely associated with the SIMD model if there is no control flow in the
function or the SPMD model if there is control flow in the function. The map pattern is also used with
the SIMT model, which is just the SPMD model simulated on tiled SIMD hardware. These names
were explained in Section 2.4.3. They do not refer to the map pattern itself, but to specific mechanisms
for implementing it.

Instead of a single function, the map pattern may also be expressed indirectly as a sequence of
vector operations. We will show in Section 4.4 that this form is semantically equivalent to the standard
form using an elemental function. Since grouping operations is usually more efficient, implementations
may try to convert sequences of vector operations into elemental functions automatically.

The map pattern corresponds to a parallelization of the serial iteration pattern in the special case that
all iterations are independent. Therefore, the map pattern is often expressed in programming models
using a “parallel for” construct. This is also equivalent to the elemental function form. In the case of
the “parallel for,” the loop body is the elemental function and the index variable in the parallel for
construct generates an index space. Such “parallel for” constructs, being just alternative syntaxes for
the map pattern, are significantly more restricted than regular for loops.

The map pattern assumes elemental functions have certain properties. In particular, elemental
functions should not have side effects. Instances of elemental functions may read from other data
in memory, as long as that data is not being modified in parallel. When we address data reorganization

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 124 — #124

124 CHAPTER 4 Map

patterns in Chapter 6, we discuss the gather pattern. A gather is just a set of random reads inside a
map. It is also possible to combine random write with a map, giving the scatter pattern, although this
can cause non-determinism and race conditions. Therefore, we assume in a “pure” map that random
reads from memory are permitted but not random writes. Instead of writing to random locations in
memory, each element of a “pure” map can output a fixed number of results.

The map pattern is deterministic if side effects and hence interdependencies between elemental
function instances are avoided. In the correct use of map, the outcome of the map does not depend on
the order in which the various instances of the elemental function are executed.

As noted, the parameters to the instances of an elemental function can be either data itself or an
index that is then used to access data using a random memory read. In the case that data itself is the
input to a map, there are two kinds of arguments: data that is different for each instance of the map,
and data that is the same. At least some of the data fed into each instance of a map should be different,
of course; otherwise there would be no point in running multiple instances. However, it is frequently
useful to “broadcast” to all instances of the map some common data that is the same in all instances.
We will call data that is different for each instance of the map varying data, while data that is broadcast
to each instance and is the same for every instance we will call uniform data.

4.2 SCALED VECTOR ADDITION (SAXPY)
We begin our discussion of map with a simple example: scaled vector addition of single-precision
floating point data. This operation, called SAXPY, is an important primitive in many linear algebra
operations.

We emphasize that, since SAXPY does very little work relative to the amount of data it produces
and consumes, its scalability is limited. However, this example is useful for introducing map as well
as the concepts of uniform and varying parameters, and our code samples show how these concepts
are expressed in different parallel programming models.

4.2.1 Description of the Problem
The SAXPY operation scales a vector x by scalar value a and adds it to vector y, elementwise. Both
vectors have length n. This operation shows up frequently in linear algebra operations, such as for
row cancellation in Gaussian elimination. The name SAXPY is from the industry standard BLAS
(Basic Linear Algebra Subprograms) library for the single-precision version of this operation. Double
precision is DAXPY, complex is CAXPY, and double complex is ZAXPY.

The mathematical definition of SAXPY is:

y← ax+ y,

where vector x is used as an input and vector y is used for both input and output; that is, the old value
of y is destroyed. Overwriting an input like this is not a fundamental mathematical requirement but is
how it is defined in BLAS because it is the common use case. For our purposes, it lets us show how to
use the same variable for both input and output in different programming models.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 125 — #125

4.2 Scaled Vector Addition (SAXPY) 125

Alternatively, SAXPY operation can be described as a function acting over individual elements,
and applying this function to every element of the input data. Suppose the ith element of x is xi and the
ith element of y is yi. Then we can define

f (t,p,q)= tp+ q,

∀i : yi← f (a,xi,yi).

Function f is an example of an elemental function (Section 1.5.3). The variables t, p, and q are used here
in the definition of the elemental function to emphasize that these are formal arguments, to be bound to
individual elements of the input and output collections. The map pattern invokes the elemental function
as many times as there are elements in its input. We call each such invocation an instance of the map.

As discussed in the introduction, elemental functions have two kinds of arguments. There are argu-
ments like a that are the same in every invocation of the function, and those like xi and yi that are
different for every invocation. Parameters like a will be called uniform parameters, since they are
the same (uniform) in every invocation of the function. Those like xi and yi will be called varying
parameters.

Because the arithmetic intensity of SAXPY is low, it probably will not scale very well. This oper-
ation, called SAXPY in the single-precision case, is a Level 1 BLAS routine. Level 2 BLAS perform
matrix–vector operations, and Level 3 BLAS perform matrix–matrix operations. Higher level BLAS
routines offer more opportunity for parallelism and hence scale better. There is simply not enough
work in each unit of parallelism for most Level 1 BLAS routines relative to the cost of managing the
parallelism and accessing memory. For more complex operations that do more work, however, the map
pattern can scale very well, since there is no communication and synchronization only occurs at the
end of the map.

Although the SAXPY example is simple, it does give us an opportunity to talk about several key
concepts, and the examples can be used as a template for more complex applications of the map pattern.

We will demonstrate how to code the SAXPY example in both TBB and Cilk Plus, as well as
OpenMP, ArBB, and OpenCL. In some cases, we will give multiple versions if there is more than one
way to code the algorithm. The TBB version is explicitly tiled for better performance. We provide two
Cilk Plus versions: one written using a parallel cilk_for and another using Cilk array notation.

Both TBB and Cilk Plus support the map pattern by a “parallel for” construct. Additionally, in Cilk
Plus you can express the same operation using expressions over array sections. However, to start off
with, we will show a serial implementation in order to provide a baseline.

4.2.2 Serial Implementation
As a basis for comparison, a serial implementation of the SAXPY operation is shown in Listing 4.1.
The main algorithm is expressed as a loop that visits each element of the input and output arrays in turn
and performs an operation on each element. Note that all the loop iterations are independent, which is
what makes this algorithm a candidate for parallel implementation with the map pattern.

4.2.3 TBB
Listing 4.2 gives a TBB implementation of SAXPY. This implementation uses a lambda function, a
feature introduced by the C++11 standard and widely available in new C++ compilers. We use lambda

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 126 — #126

126 CHAPTER 4 Map

1 void saxpy_serial(
2 size_t n, // the number of elements in the vectors
3 float a, // scale factor
4 const float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 for (size_t i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.1

Serial implementation of SAXPY in C.

1 void saxpy_tbb(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 tbb::parallel_for(
8 tbb::blocked_range<int>(0, n),
9 [&](tbb::blocked_range<int> r) {

10 for (size_t i = r.begin(); i != r.end(); ++i)
11 y[i] = a * x[i] + y[i];
12 }

13);
14 }

LISTING 4.2

Tiled implementation of SAXPY in TBB. Tiling not only leads to better spatial locality but also exposes
opportunities for vectorization by the host compiler.

functions for brevity throughout the book, though they are not required for using TBB. Appendix D.2
discusses lambda functions and how to write the equivalent code by hand if you need to use an old
C++ compiler.

The TBB code exploits tiling. The parallel_for breaks the half-open range [0,n) into subranges
and processes each subrange r with a separate task. Hence, each subrange r acts as a tile, which
is processed by the serial for loop in the code. Here the range and subrange are implemented as
blocked_range objects. Appendix C.3 says more about the mechanics of parallel_for.

TBB uses thread parallelism but does not, by itself, vectorize the code. It depends on the underlying
C++ compiler to do that. On the other hand, tiling does expose opportunities for vectorization, so if
the basic serial algorithm can be vectorized then typically the TBB code can be, too. Generally, the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 127 — #127

4.2 Scaled Vector Addition (SAXPY) 127

performance of the serial code inside TBB tasks will depend on the performance of the code generated
by the C++ compiler with which it is used.

4.2.4 Cilk Plus
A basic Cilk Plus implementation of the SAXPY operation is given in Listing 4.3. The “parallel for”
syntax approach is used here, as with TBB, although the syntax is closer to a regular for loop. In fact,
an ordinary for loop can often be converted to a cilk_for construct if all iterations of the loop body
are independent—that is, if it is a map. As with TBB, the cilk_for is not explicitly vectorized but the
compiler may attempt to auto-vectorize. There are restrictions on the form of a cilk_for loop. See
Appendix B.5 for details.

4.2.5 Cilk Plus with Array Notation
It is also possible in Cilk Plus to explicitly specify vector operations using Cilk Plus array notation, as
in Listing 4.4. Here x[0:n] and y[0:n] refer to n consecutive elements of each array, starting with
x[0] and y[0]. A variant syntax allows specification of a stride between elements, using x[start:
length:stride]. Sections of the same length can be combined with operators. Note that there is no
cilk_for in Listing 4.4.

1 void saxpy_cilk(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 cilk_for (int i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.3

SAXPY in Cilk Plus using cilk_for.

1 void saxpy_array_notation(
2 int n, // the number of elements in the vectors

3 float a, // scale factor
4 float x[], // the input vector
5 float y[] // the output vector and offset
6) {
7 y[0:n] = a * x[0:n] + y[0:n];
8 }

LISTING 4.4

SAXPY in Cilk Plus using cilk_for and array notation for explicit vectorization.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 128 — #128

128 CHAPTER 4 Map

Uniform inputs are handled by scalar promotion: When a scalar and an array are combined with
an operator, the scalar is conceptually “promoted” to an array of the same length by replication.

4.2.6 OpenMP
Like TBB and Cilk Plus, the map pattern is expressed in OpenMP using a “parallel for” construct. This
is done by adding a pragma as in Listing 4.5 just before the loop to be parallelized. OpenMP uses a
“team” of threads and the work of the loop is distributed over the team when such a pragma is used.
How exactly the distribution of work is done is given by the current scheduling option.

The advantage of the OpenMP syntax is that the code inside the loop does not change, and the
annotations can usually be safely ignored and a correct serial program will result. However, as with the
equivalent Cilk Plus construct, the form of the for loop is more restricted than in the serial case. Also,
as with Cilk Plus and TBB, implementations of OpenMP generally do not check for incorrect paral-
lelizations that can arise from dependencies between loop iterations, which can lead to race conditions.
If these exist and are not correctly accounted for in the pragma, an incorrect parallelization will result.

4.2.7 ArBB Using Vector Operations
ArBB operates only over data stored in ArBB containers and requires using ArBB types to represent
elements of those containers. The ArBB dense container represents multidimensional arrays. It is
a template with the first argument being the element type and the second the dimensionality. The
dimensionality default is 1 so the second template argument can be omitted for 1D arrays.

The simplest way to implement SAXPY in ArBB is to use arithmetic operations directly over
dense containers, as in Listing 4.6. Actually, this gives a sequence of maps. However, as will be
explained in Section 4.4, ArBB automatically optimizes this into a map of a sequence.

In ArBB, we have to include some extra code to move data into “ArBB data space” and to invoke
the above function. Moving data into ArBB space is required for two reasons: safety and offload.
Data stored in ArBB containers can be managed in such a way that race conditions are avoided. For
example, if the same container is both an input and an output to a function, ArBB will make sure that

1 void saxpy_openmp(
2 int n, // the number of elements in the vectors

3 float a, // scale factor

4 float x[], // the first input vector
5 float y[] // the output vector and second input vector

6) {
7 #pragma omp parallel for
8 for (int i = 0; i < n; ++i)
9 y[i] = a * x[i] + y[i];

10 }

LISTING 4.5

SAXPY in OpenMP.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 129 — #129

4.2 Scaled Vector Addition (SAXPY) 129

1 void saxpy_call_arbb(
2 f32 t, // uniform input
3 dense<f32> p, // varying input
4 dense<f32>& q // uniform input and also output
5) {
6 q = t * p + q;
7 }

LISTING 4.6

SAXPY in ArBB, using a vector expression. One way the map pattern can be expressed in ArBB is by using a
sequence of vector operations over entire collections.

1 void saxpy_arbb(
2 size_t n, // number of elements
3 float a, // uniform input
4 const float x[], // varying input
5 float y[] // varying input and also output
6) {
7 f32 aa = a; // copy scalar to ArBB type
8 dense<f32> xx(n), yy(n); // ArBB storage for arrays
9 memcpy(&xx.write_only_range()[0], x, sizeof(float)*n);

10 memcpy(&yy.write_only_range()[0], y, sizeof(float)*n);
11 call(saxpy_call_arbb)(aa, xx, yy);
12 memcpy(y, &yy.read_only_range()[0], sizeof(float)*n);
13 }

LISTING 4.7

SAXPY in ArBB, using binding code for vector expression implementation. This code is necessary to move data
in and out of ArBB data space.

the “alias” does not cause problems with the parallelization. Second, data stored in ArBB containers
may in fact be maintained in a remote memory, such as on an attached co-processor, rather than in
the host memory. Keeping data in ArBB containers for a sequence of operations allows ArBB to avoid
copying data back to the host unnecessarily.

Listing 4.7 shows the necessary code to move data into ArBB space, to invoke the function given
in Listing 4.6, and to move the result back out of ArBB space.

4.2.8 ArBB Using Elemental Functions
It is also possible to specify an elemental function for the map pattern directly in ArBB. Replicas
of this function can then be applied in parallel to all elements of an ArBB collection using a map
operation. The map operation can only be invoked from inside an ArBB call, so we need to
define another function for the call. The call function, however, can have an entire sequence of map

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 130 — #130

130 CHAPTER 4 Map

1 void saxpy_map_arbb(
2 f32 t, // input
3 f32 p, // input
4 f32& q // input and output
5) {
6 q = t * p + q;
7 }

LISTING 4.8

SAXPY in ArBB, using an elemental function. The map pattern can also be expressed in ArBB using an
elemental function called through a map operation.

1 void saxpy_call2_arbb(
2 f32 a, // uniform input
3 dense<f32> x, // varying input
4 dense<f32>& y // varying input and also output
5) {
6 map(saxpy_map_arbb)(a,x,y);
7 }

LISTING 4.9

SAXPY in ArBB, call operation. A map operation in ArBB can only be invoked from inside an ArBB context, so
we have to use call first to open an ArBB context.

operations. It can also include vector operations and control flow, although we will not show that in
this example. Listing 4.8 shows the definition of the elemental function for SAXPY, and Listing 4.9
shows the necessary call function. The binding code is identical to the previous example except for a
change in the call function name.

When we define the elemental function used for the map in ArBB we do not have to decide at
the point of definition of the function which parameters are uniform and which are varying. In ArBB,
elemental functions are polymorphic and can be invoked with each parameter either being a scalar or
being a collection. All the collections do have to be the same shape (dimensionality and number of
elements), however.

4.2.9 OpenCL
Listing 4.10 gives kernel code for an OpenCL implementation of SAXPY. Kernels are equivalent
to what we have been calling elemental functions, except that in OpenCL they always operate on
the device and are given in a separate “kernel language” which is a superset (and a subset) of C99.
Three OpenCL-specific keywords are used in this example: __kernel, __global, __constant.
The __kernel keyword simply identifies a particular function as being invoked as an elemental

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 131 — #131

4.3 Mandelbrot 131

1 __kernel void
2 saxpy_opencl(
3 __constant float a,
4 __global float* x,
5 __global float* y
6) {
7 int i = get_global_id(0);
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.10

SAXPY in OpenCL kernel language.

function/kernel. The OpenCL programming model also includes multiple memory spaces, and
__global and __constant identify the use of those spaces. In PCIe-based coprocessor implementa-
tions of OpenCL devices, global data is stored in the device’s off-chip DRAM, while constant data is
stored in a small on-chip memory. Access to data elements in the arrays is done explicitly with ordi-
nary array indexing operations. In other programming models supporting elemental functions, such as
ArBB, this indexing is handled by the system. In OpenCL the addresses are computed directly from
the global ID, which is an element identifier for each instance of the kernel, with instances numbered
starting from zero.

The host code (not shown, but available online) takes care of transferring the data to the device,
invoking the computation, and transferring the data back. Since SAXPY is such a simple computation,
offloading it alone to a co-processor will not be performant. More likely, the SAXPY kernel will be
used as part of a larger computation. OpenCL provides a way to queue up a number of kernels to be
executed in sequence to make this mode of operation more efficient.

4.3 MANDELBROT
The computation of the Mandelbrot set is a simple example that shows how the map pattern can include
serial control flow and how elemental functions can be used to express this. It is also a good example
of the kind of calculation that can lead to a load imbalance.

4.3.1 Description of the Problem
The Mandelbrot set is the set of all points c in the complex plane that do not go to infinity when the
quadratic function z← z2

+ c is iterated. In practice, it is hard to prove that this recurrence will never
diverge so we iterate up to some maximum number of times. We can also prove that once z leaves a
circle of radius 2 it will be guaranteed to diverge. If this happens, we can terminate the computation
early. In practice, we will compute the following function, up to some maximum value of K. We can

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 132 — #132

132 CHAPTER 4 Map

then use a lookup table to map different counts to colors to generate an image.

z0 = 0,

zk−1 = z2
k + c,

count(c)= min
0≤k<K

(|zk| ≥ 2).

Computing the Mandelbrot set has little practical value. However, we are including it here because,
while it can be implemented using the map pattern, it includes data-dependent control flow. This leads
to a load imbalance: Different pixels in the computation can take different numbers of iterations to
diverge. In fact, different regions of the complex plane will have different behaviors, because some
regions are smooth while other regions require very different number of iterations for nearby pixels.

In other words, the SAXPY example in Section 4.2 could be implemented efficiently using
SIMD mechanisms, but the Mandelbrot example is best implemented using SPMD or tiled SIMD
mechanisms, including load balancing and early termination of finished tiles.

4.3.2 Serial Implementation
We provide a serial implementation of the Mandelbrot computation in Listing 4.11. We need to use
complex numbers, and there are two options: the C99 Complex, and the C++ std::complex. In this
section, we use Complex for the serial version, Cilk Plus, and TBB but will switch to std::complex
for ArBB. Note that in this listing we use separate variables for the iteration index and the count.

In some of the parallel versions we can remove this redundancy. We also break out the body of the
Mandelbrot computation as a separate function, since it is this function that we will convert to an
elemental function in the map pattern.

4.3.3 TBB
The TBB implementation of the Mandelbrot example follows exactly the same template as the exam-
ple in Section 4.2.3. We can invoke the elemental function for each element in a block given by the
blocked_range argument to the lambda function as shown in Listing 4.12.

4.3.4 Cilk Plus
Listing 4.13 gives a Cilk Plus implementation of the Mandelbrot example, using the cilk_for con-
struct. Note that only the outer loop is parallelized. We could parallelize both loops but in this case
parallelizing over only the rows will probably be sufficient, and leaving the inner loop serial will
reduce the task management overhead. In addition, in the case of Mandelbrot the execution times for
rows are more uniform than the execution times for pixels, making load balancing easier. However,
there certainly might be applications that use two nested loops where we would want to parallelize
both.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 133 — #133

4.3 Mandelbrot 133

1 int mandel(
2 Complex c,
3 int depth
4) {
5 int count = 0;
6 Complex z = 0;
7 for (int k = 0; k < depth; k++) {
8 if (abs(z) >= 2.0) {
9 break;

10 }

11 z = z*z + c;
12 count++;
13 }

14 return count;
15 }

16

17 void serial_mandel(
18 int p[][],
19 int max_row,
20 int max_col,
21 int depth
22) {
23 for (int i = 0; i < max_row; ++i) {
24 for (int j = 0; j < max_col; ++j)
25 p[i][j] = mandel(Complex(scale(i), scale(j)),
26 depth);
27 }

LISTING 4.11

Serial implementation of Mandelbrot in C.

1 parallel_for(blocked_range<int>(0, max_row),
2 [&](blocked_range<int> r) {
3 for (size_t i = r.begin(); i != r.end(); ++i)
4 for (int j = 0; j < max_col; ++j)
5 p[i][j] =
6 mandel(Complex(scale(i), scale(j)), depth);
7 }

8);

LISTING 4.12

Tiled implementation of Mandelbrot in TBB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 134 — #134

134 CHAPTER 4 Map

1 cilk_for (int i = 0; i < max_row; ++i)
2 for (int j = 0; j < max_col; ++j)
3 p[i][j] =
4 mandel(Complex(scale(i), scale(j)), depth);

LISTING 4.13

Mandelbrot using cilk_for in Cilk Plus.

4.3.5 Cilk Plus with Array Notations
The Mandelbrot set computation can also be implemented using Cilk Plus array notation. An imple-
mentation is shown in Listing 4.14. This actually combines thread parallelism over rows invoked with
cilk_for with vector parallelism within each row, invoked with array notation. Within each row, we
break the work up into chunks of 8 pixels.1 Then, within each chunk, we invoke the mandel function.
Within the mandel function, we now use an explicit SIMD implementation over the entire chunk,
using vector operations. The __sec_reduce_add function computes the sum of all the elements in an
array section—in this case, the results of the test. This is actually an instance of the reduction pattern,
covered in detail in the next chapter. Note that the break will only be taken when all the pixels in a
chunk have diverged. This implementation will therefore do more work than necessary, since all pixels
in the chunk will have to be updated if even one needs to continue to iterate. However, if the pixels in
a chunk have spatially coherent termination counts, this is often more efficient than serially computing
each pixel.

4.3.6 OpenMP
Listing 4.15 shows the OpenMP parallelization of the Mandelbrot example. As with SAXPY in
Section 4.2, in this case we are able to perform the parallelization with the addition of a single annota-
tion. However, here we add a collapse attribute to the pragma annotation to indicate that we want to
parallelize both loops at once. This allows OpenMP to parallelize the computation over the combined
iteration space. This gives OpenMP more potential parallelism to work with. On the other hand, for
systems with relatively small core counts, parallelizing over just the rows might be sufficient and might
even have higher performance, as we have argued for the Cilk Plus implementation. If this is desired,
the collapse clause can be omitted. To get the effect equivalent to the collapse clause in Cilk Plus,
we would simply nest cilk_for constructs.

4.3.7 ArBB
For the ArBB version of Mandelbrot, we will switch to using std::complex and also specify
the region of interest by giving two points in the complex plane. The implementation is given in
Listings 4.16, 4.17, and 4.18. Listing 4.16 gives the elemental function, Listing 4.17 gives the call

1For simplicity, we do not show the extra code to handle partial chunks when the row length is not a multiple of 8.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 135 — #135

4.3 Mandelbrot 135

1 void cilkplus_an_mandel(
2 int n,
3 std::complex c[n],
4 int count[n],
5 int max_count
6) {
7 std::complex z[n];
8 int test[n];
9 z[:] = 0;

10 for (int k = 0; k < max_count; k++) {
11 // test for divergence for all pixels in chunk
12 test[:] = (abs(z[:] < 2.0);
13 if (0 == __sec_reduce_add(test[:])) {
14 // terminates loop only if all have diverged
15 break;
16 }

17 // increment counts only for pixels that have not diverged
18 count[:] += test[:];
19 // unconditionally update state of iteration
20 z[:] = z[:]*z[:] + c[:];
21 }

22 }

23

24 void cilkplus_mandel(
25 int p[][],
26 int max_row,
27 int max_col,
28 int depth
29) {
30 // parallelize over rows
31 cilk_for (int i = 0; i < max_row; ++i)
32 // loop over the row in chunks of 8

33 for (int j = 0; j < max_col; j += 8)
34 // compute the Mandelbrot counts for a chunk
35 cilkplus_an_mandel(8, p[i]+j, points[i]+j, depth);
36 }

LISTING 4.14

Mandelbrot in Cilk Plus using cilk_for and array notation for explicit vectorization.

function (which also does a little bit of setup for the map), and Listing 4.18 invokes the call and
synchronizes the result with the host.

The overall organization of the Mandelbrot code is similar to the elemental function version of
SAXPY. However, control flow that depends on values computed by ArBB needs to be expressed in
a special way. This is because ArBB is really an API for expressing computation at runtime and will

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 136 — #136

136 CHAPTER 4 Map

1 #pragma omp parallel for collapse(2)
2 for (int i = 0; i < max_row; i++)
3 for (int j = 0; j < max_col; j++)
4 p[i][j] = mandel(Complex(scale(i), scale(j)),
5 depth);

LISTING 4.15

Mandelbrot in OpenMP.

1 void arbb_mandelbrot_map(
2 f64 x0, f64 y0, // lower left corner of region
3 f64 dx, f64 dy, // step size
4 i32 depth, // maximum number of iterations
5 i32& output // output : escape count
6) {
7 i32 i = 0;
8 // obtain stream index and cast from usize to f64
9 const array<f64, 2> pos = position<2>().as<f64>();

10 // use index to compute position of sample in the complex plane
11 const std::complex<f64> c(x0 + pos[0] * dx,
12 y0 + pos[1] * dy);
13 std::complex<f64> z = c;
14 // if the loop reaches depth
15 // assume c is an element of the Mandelbrot set
16 _while (i < depth) {
17 _if (norm(z) > 4.0) {
18 _break; // escaped from a circle of radius 2
19 } _end_if;
20 z = z * z + c; // Mandelbrot recurrence
21 ++i;
22 } _end_while;
23 // record the escape count

24 output = i;
25 }

LISTING 4.16

Mandelbrot elemental function for ArBB map operation.

compile computations specified using this API to machine language. We have to differentiate between
control flow used in the generation of the code from control flow meant to be included in the generated
code. The _for, _if, etc. keywords are there to tell ArBB to insert data-dependent control flow into
the code it generates. Other than this change in syntax, the logic of the ArBB elemental function is
quite similar to that of the original serial version. However, the internal implementation will, in fact,
be similar to that generated by the version given in Listing 4.14. ArBB will automatically block the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 137 — #137

4.3 Mandelbrot 137

1 void arbb_mandelbrot_call(
2 f64 x0, f64 y0, // lower left corner of region
3 f64 x1, f64 y1, // upper right corner of region
4 i32 depth, // maximum number of iterations
5 dense<i32, 2>& output // output image (scaled escape count)
6) {
7 usize width = output.num_cols();
8 usize height = output.num_rows();
9 // step size for width by height equally spaced samples

10 f64 dx = (x1 − x0) / f64(width);
11 f64 dy = (y1 − y0) / f64(height);
12 // apply the map
13 map(arbb_mandelbrot_map)(x0, y0, dx, dy,
14 depth, output);
15 }

LISTING 4.17

Mandelbrot call code for ArBB implementation. This code computes the pixel spacing and then maps
the elemental function to compute the escape count for each pixel.

1 void arbb_mandelbrot(
2 double x0, double y0,
3 double x1, double y1,
4 int depth,
5 int width, int height,
6 int* result
7) {
8 // allocate buffer for result
9 dense<i32,2> output(width, height);

10 // compute the Mandelbrot set

11 call(arbb_mandelbrot_call)(f64(x0), f64(y0),
12 f64(x1), f64(y1),
13 i32(depth), output);
14 // synchronize and read back output
15 memcpy(result, &output.read_only_range()[0],
16 width * height * sizeof(int));
17 }

LISTING 4.18

Mandelbrot binding code for ArBB implementation. This code performs the call, then synchronizes the output
with the host array.

work and emulate control flow using SIMD operations over chunks. It will also include any extra code
needed to handle data misalignments at the edges of the arrays, for example, due to rows that are not a
multiple of the hardware vector size.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 138 — #138

138 CHAPTER 4 Map

4.3.8 OpenCL
An OpenCL implementation of the Mandelbrot computation is given in Listing 4.19. In this code,
the necessary complex number operations are implemented manually. This kernel also includes an
optimization that we could have used in the other implementations: We test the square of the magnitude
of z for divergence, rather than the actual magnitude. This avoids a square root. Only the kernel code
is shown here, although a complete application also requires host code using the OpenCL API to set
up data, invoke the kernel, and read the results back.

The Mandelbrot computation allows for fine-grained 2D parallelization that is appropriate for the
device’s OpenCL targets. We do this here with a 2D kernel. Inside the kernel we can access the index
from the appropriate dimension using the argument to get_global_id to select the argument. This

1 int mandel(
2 float cx, float cy,
3 int depth
4) {
5 int count = 0;
6 float zx = cx;
7 float zy = cy;
8 while (count < depth) {
9 if (zx*zx + zy*zy > 4.0)

10 break;
11 float zsqx = zx*zx − zy*zy;
12 float zsqy = 2*zx*zy;
13 zx = zsqx + cx;
14 zy = zsqy + cy;
15 count++;
16 }

17 return count;
18 }

19

20 __kernel void
21 do_mandel(
22 __global int* p,
23 float x0, float y0, float dx, float dy
24) {
25 int i = get_global_id(0);
26 int j = get_global_id(1);
27 float cx = x0 + i * dx;
28 float cy = y0 + j * dy;
29 int count = mandel(cx, cy, max_count);
30 p[j*width+i] = count;
31 }

LISTING 4.19

Mandelbrot kernel code for OpenCL implementation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 139 — #139

4.4 Sequence of Maps versus Map of Sequence 139

particular interface (using a numerical value to select the index component desired) was chosen because
it provides a straightforward extension to higher dimensionalities.

4.4 SEQUENCE OF MAPS VERSUS MAP OF SEQUENCE
A sequence of map operations over collections of the same shape should be combined whenever
possible into a single larger operation. In particular, vector operations are really map operations using
very simple operations like addition and multiplication. Implementing these one by one, writing to and
from memory, would be inefficient, since it would have low arithmetic intensity. If this organization
was implemented literally, data would have to be read and written for each operation, and we would
consume memory bandwidth unnecessarily for intermediate results. Even worse, if the maps were big
enough, we might exceed the size of the cache and so each map operation would go directly to and
from main memory.

If we fuse the operations used in a sequence of maps into a sequence inside a single map, we can
load only the input data at the start of the map and keep intermediate results in registers rather than
wasting memory bandwidth on them. We will call this approach code fusion, and it can be applied to
other patterns as well. Code fusion is demonstrated in Figure 4.2.

FIGURE 4.2

Code fusion optimization: Convert a sequence of maps into a map of sequences, avoiding the need to write
intermediate results to memory. This can be done automatically by ArBB and explicitly in other programming
models.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 140 — #140

140 CHAPTER 4 Map

FIGURE 4.3

Cache fusion optimization: Process sequences of maps in small tiles sequentially. When code fusion is not
possible, a sequence of maps can be broken into small tiles and each tile processed sequentially. This avoids
the need for synchronization between each individual map, and, if the tiles are small enough, intermediate
data can be held in cache.

Another approach that is often almost as effective as code fusion is cache fusion, shown in
Figure 4.3. If the maps are broken into tiles and the entire sequence of smaller maps for one tile is
executed sequentially on one core, then if the aggregate size of the tiles is small enough interme-
diate data will be resident in cache. In this case at least it will be possible to avoid going to main
memory.

Both kinds of fusion also reduce the cost of synchronization, since when multiple maps are fused
only one synchronization is needed after all the tiles are processed, instead of after every map. How-
ever, code fusion is preferred when it is possible since registers are still faster than cache, and with
cache fusion there is still the “interpreter” overhead of managing the multiple passes. However, cache
fusion is useful when there is no access to the code inside the individual maps—for example, if they
are provided as precompiled user-defined functions without source access by the compiler. This is a
common pattern in, for example, image processing plugins.

In Cilk Plus, TBB, OpenMP, and OpenCL the reorganization needed for either kind of fusion must
generally be done by the programmer, with the following notable exceptions:

OpenMP: Cache fusion occurs when all of the following are true:

• A single parallel region executes all of the maps to be fused.
• The loop for each map has the same bounds and chunk size.
• Each loop uses the static scheduling mode, either as implied by the environment or explicitly

specified.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 141 — #141

4.6 Related Patterns 141

TBB: Cache fusion can be achieved using affinity_partitioner, as explained in
Appendix 3.2.
Cilk Plus: Sequences of vector operations expressed using array notation will generally be code-
fused into efficient elemental functions.

In ArBB, not only will vector operations be fused together whenever possible, but ArBB will also
code-fuse sequences of map operations using different elemental functions. This reorganization used
by code fusion can be seen as an application of associativity between map and sequence. This is one
of many possible high-level optimizations achieved by algebraically manipulating patterns. We will
discuss other such optimizations in later chapters.

4.5 COMPARISON OF PARALLEL MODELS
As we have seen, Cilk Plus, TBB, and OpenMP use parallel for loop constructs to implement the
map pattern, ArBB uses either vector operations or elemental functions, and OpenCL uses elemental
functions. Both TBB and Cilk Plus can also use elemental functions (in fact, the TBB syntax is really
implemented this way), but the need for separate declaration of these functions can be avoided through
use of lambda functions in C++. Cilk Plus also supports the map pattern through sequences of vector
operations. In ArBB and Cilk Plus, the fact that sequences of vector operations are automatically fused
together is important for performance.

4.6 RELATED PATTERNS
There are several patterns related to map. We discuss three of them here: stencil, workpile, and divide-
and-conquer. Stencil in particular is extremely common in practice. Chapter 7 discusses the stencil
pattern in more detail, and a detailed example is given in Chapter 10. Divide-and-conquer is the basis
of many recursive algorithms that can in turn be parallelized using the fork–join pattern.

4.6.1 Stencil
The stencil pattern is a map, except each instance of the elemental function accesses neighbors of
its input, offset from its usual input. A convolution uses the stencil pattern but combines elements
linearly using a set of weights. Convolutions are common, but generally the computation performed on
the set of neighbors gathered in the stencil pattern need not be linear. Many forms of non-linear stencil
exist—for example, the median filter for reducing impulse noise in images.

A stencil is still a map since the operations do not depend on each other. All that has been done is
generalize the way that input is read. However, the stencil pattern is worth calling out for two reasons:
It is common in imaging and PDE solvers, and many machine-dependent optimizations are possible
for it.

Efficient implementation of the stencil pattern seeks to take advantage of data reuse. Adjacent
invocations of the elemental function tend to reuse some number of inputs. The number of elements
reused depends on the exact set of neighbors specified by the stencil but generally it is beneficial to
tile the input domain into subdomains and slide a “window” across each subdomain so that data can

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 142 — #142

142 CHAPTER 4 Map

be reused. This is complicated to implement well in practice, and the optimal shape of the window can
be machine dependent, as well as being dependent on the stencil shape.

In Cilk Plus, TBB, and OpenMP the stencil pattern can be implemented using random access.
The sliding window optimization can be implemented as part of an overall tiling strategy. These three
systems would then depend on the cache and perhaps the hardware prefetcher to take advantage of
the spatial and temporal locality of the stencil. In OpenCL, the overall organization is the same, but
depending on the hardware it may be necessary to manage data in on-chip “shared” memory explic-
itly. In ArBB, stencils are specified declaratively: Neighbors of an input can be accessed using the
neighbor function inside a map. This allows ArBB to implement sliding windows internally, using a
strategy appropriate for the machine being targeted without complicating the user’s code.

4.6.2 Workpile
In the workpile pattern is an extension of the map pattern in which work items can be added to the
map while it is in progress, from inside elemental function instances. This allows work to grow and be
consumed by the map. The workpile pattern terminates when no more work is available.

The workpile pattern is supported natively in TBB, but not presently in ArBB, OpenMP, OpenCL,
or Cilk Plus. It could be implemented in OpenCL and OpenMP using explicit work queues. Its imple-
mentation in ArBB might be possible but would probably not be efficient enough to be useful at present.
In Cilk Plus, the implementation would be straightforward in terms of fork–join and work stealing.

4.6.3 Divide-and-conquer
The divide-and-conquer pattern is related to the partition pattern discussed in Chapter 6. Basically,
the divide-and-conquer pattern applies if a problem can be divided into smaller subproblems recur-
sively until a base case is reached that can be solved serially. Divide-and-conquer can be implemented
by combining the partition and map patterns: the problem is partitioned and then a map is applied to
compute solutions to each subproblem in the partition.

Recursive divide-and-conquer is extremely natural in Cilk Plus and TBB since they use the fork–
join pattern extensively, and this pattern is easy to implement with fork–join. The fork–join pattern
is discussed in Chapter 8. In OpenMP recursive divide-and-conquer can be implemented using the
tasking model. It is extremely difficult to implement recursive divide-and-conquer in OpenCL and
ArBB since these do not at present support nested parallelism, although it could probably (with great
difficulty and probably inefficiently) be emulated with work queues. However, non-recursive parti-
tioning is the basis of many algorithms implementable in OpenMP, OpenCL, and ArBB. In fact, the
partitioned memory model of OpenCL practically demands at least one level of partitioning for most
problems.

Recursive divide-and-conquer is used to implement map itself in Cilk Plus and TBB, and therefore
indirectly in ArBB, since the latter uses TBB for task management. When implementing a map, we do
not want to try and create all tasks from the task invoking the map since that would place all the task
creation overhead in the invoking task. Instead, we split the problem domain into a small number of
partitions and then recursively subdivide in each resulting task as needed.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 143 — #143

4.7 Summary 143

4.7 SUMMARY
This chapter has described the map pattern, which is the simplest parallel pattern. We have described
some important optimizations of the map pattern, including the fusion of a sequence of maps into a
map of sequences. In some cases, this optimization can be done automatically; in other cases, it must
be done manually. We have also introduced some patterns closely related to map: stencil, workpile,
and divide-and-conquer patterns.

Chapter 5 discusses collective operations, including reduction and scan, and Chapter 6 discusses
data reorganization patterns. These two classes of patterns either are often combined with map or, in
the case of data reorganization, result from the combination of specific serial data access patterns with
map. The stencil and recurrence patterns are important generalizations of the map pattern and are
discussed in Chapter 7. Divide-and-conquer is discussed in more detail in Chapter 8.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 145 — #145

CHAPTER

Collectives 5
In Chapter 4, we introduced the map pattern, which describes embarrassing parallelism: paral-
lel computations on a set of completely independent operations. However, obviously we need other
patterns to deal with problems that are not completely independent.

The collective operations are a set of patterns that deal with a collection of data as a whole rather
than as separate elements. The reduce pattern allows data to be summarized; it combines all the ele-
ments in a collection into a single element using some associative combiner operator. The scan pattern
is similar but reduces every subsequence of a collection up to every position in the input. The useful-
ness of reduce is easy to understand. One simple example is summation, which shows up frequently
in mathematical computations. The usefulness of scan is not so obvious, but partial summarizations
do show up frequently in serial algorithms, and the parallelization of such serial algorithms frequently
requires a scan. Scan can be thought of as a discrete version of integration, although in general it might
not be linear.

As we introduce the reduce and scan patterns, we will also discuss their implementations and
various optimizations particularly arising from their combination with the map pattern.

Not included in this chapter are operations that just reorganize data or that provide different ways
to view or isolate it, such as partitioning, scatter, and gather. When data is shared between tasks these
can also be used for communication and are will be discussed in Chapter 6.

5.1 REDUCE
In the reduce pattern, a combiner function f (a,b)= a⊗ b is used to combine all the elements of a
collection pairwise and create a summary value. It is assumed that pairs of elements can be com-
bined in any order, so multiple implementations are possible. Possible implementations of reduce are
diagrammed in Figure 5.1. The left side of this figure is equivalent to the usual naive serial implemen-
tation for reducing the elements of a collection. The code given in Listing 5.1 implements the serial
algorithm for a collection a with n elements.

The identity of the combiner function is required by this implementation. This is so that the reduc-
tion of an empty collection is meaningful, which is often useful for boundary conditions in algorithms.
In this implementation the identity value could also be interpreted as the initial value of the reduction,
although in general we should distinguish between initial values and identities. If we do not need to
worry about empty collections, we can define the reduce pattern using Listing 5.2.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.0000 -
c© 2012 Elsevier Inc. All rights reserved.

1455 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 146 — #146

146 CHAPTER 5 Collectives

FIGURE 5.1

Serial and tree implementations of the reduce pattern for 8 inputs.

1 template<typename T>
2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[], // input array
6 T identity // identity of combiner function
7) {
8 T accum = identity;
9 for (size_t i = 0; i < n; ++i) {

10 accum = f(accum, a[i]);
11 }

12 return accum;
13 }

LISTING 5.1

Serial reduction in C++ for 0 or more elements.

5.1.1 Reordering Computations
To parallelize reduction, we have to reorder the operations used in the serial algorithm. There are many
ways to do this but they depend on the combiner function having certain algebraic properties.

To review some basic algebra, a binary operator⊗ is considered to be associative or commutative
if it satisfies the following equations:

Associative: (a⊗ b)⊗ c= a⊗ (b⊗ c).
Commutative: a⊗ b= b⊗ a.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 147 — #147

5.1 Reduce 147

1 template<typename T>
2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[] // input array
6) {
7 assert(n > 0);
8 T accum = a[0];
9 for (size_t i = 1; i < n; i++) {

10 accum = f(accum, a[i]);
11 }

12 return accum;
13 }

LISTING 5.2

Serial reduction in C++ for 1 or more elements.

Associativity and commutativity are not equivalent. While there are common mathematical operations
that are both associative and commutative, including addition; multiplication; Boolean AND, OR, and
XOR; maximum; and minimum (among others), there are many useful operations that are associative
but not commutative. Examples of operations that are associative but not commutative include matrix
multiplication and quaternion multiplication (used to compose sequences of 3D rotations). There are
also operations that are commutative but not associative, an example being saturating addition on
signed numbers (used in image and signal processing). More seriously, although addition and multipli-
cation of real numbers are both associative and commutative, floating point addition and multiplication
are only approximately associative. Parallelization may require an unavoidable reordering of floating
point computations that will change the result.

To see that only associativity is required for parallelization, consider the following:

s= a0⊗ a1⊗ a2⊗ a3⊗ a4⊗ a5⊗ a6⊗ a7

= (((((((a0⊗ a1)⊗ a2)⊗ a3)⊗ a4)⊗ a5)⊗ a6)⊗ a7)

= (((a0⊗ a1)⊗ (a2⊗ a3))⊗ ((a4⊗ a5)⊗ (a6⊗ a7))).

The first grouping shown is equivalent to the left half of Figure 5.1, the second grouping to the right
right half of Figure 5.1. Another way to look at this is that associativity allows us to use any order
of pairwise combinations as long as “adjacent” elements are intermediate sequences. However, the
second “tree” grouping allows for parallel scaling, but the first does not.

A good example of a non-associative operation is integer arithmetic with saturation. In saturating
arithmetic, if the result of an operation is outside the representable range, the result is “clamped” to
the closest representable value rather than overflowing. While convenient in some applications, such
as image and signal processing, saturating addition is not associative for signed integers.

The following example shows that saturating addition is not associative for signed bytes. Let ⊕
be the saturating addition operation. A signed byte can represent an integer between −128 and 127

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 148 — #148

148 CHAPTER 5 Collectives

inclusive. Thus, a saturating addition operation 120⊕ 78 yields 127, not 198. Consider reduction with
⊕ of the sequence [120,78,−90,−50]. Serial left-to-right order yields:

s1 = (((120⊕ 77)⊕−90)⊕−50)

= ((127⊕−90)⊕−50)

= (37⊕−50)

=−13.

Tree order yields a different result:

s2 = ((120⊕ 77)⊕ (−90⊕−50))

= (127⊕−128)

=−1.

In contrast, modular integer addition, where overflow wraps around, is fully associative. A result
greater than 127 or −128 is brought in range by adding or subtracting 256, which is equivalent to
looking at only the low-order 8 bits of the binary representation of the algebraic result. Here is the
serial reduction with modular arithmetic on signed bytes:

s1 = (((120+ 77)+−90)+−50)

= ((−59+−90)+−50)

= (107+−50)

= 57.

Tree ordering gives the same result:

s2 = ((120+ 77)+ (−90+−50))

= (−59+ 116)

= 57.

5.1.2 Vectorization
There are useful reorderings that also require commutativity. For example, suppose we want to
vectorize a reduction on a processor with two-way SIMD instructions. Then we might want to combine
all the even elements and all the odd elements separately, as in Figure 5.2, then combine the results.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 149 — #149

5.1 Reduce 149

FIGURE 5.2

A reordering of serial reduction that requires commutativity. Commutativity of the combiner operator is not
required for parallelization but enables additional reorderings that may be useful for vectorization. This
example reduces eight inputs using two serial reductions over the even and odd elements of the inputs then
combines the results. This reordering is useful for vectorization on SIMD vector units with two lanes.

However, this reordering requires commutativity:

s= a0⊗ a1⊗ a2⊗ a3

= a0⊗ a2⊗ a1⊗ a3

= (a0⊗ a2)⊗ (a1⊗ a3).

Note that a1 and a2 had to be swapped before we could group the operations according to this pattern.

5.1.3 Tiling
In practice, we want to tile1 computations and use the serial algorithm for reduction when possible. In a
tiled algorithm, we break the work into chunks called tiles (or blocks), operate on each tile separately,
and then combine the results. In the case of reduce, we might want to use the simple serial reduce
algorithm within each tile rather than the tree ordering. This is because, while the tree and serial reduce
algorithms use the same number of applications of the combiner function, the simplest implementation
of the tree ordering requires O(n) storage for intermediate results while the serial ordering requires
only O(1) storage.

1This is also called “block,” but since that term can be confused with synchronization we avoid it here.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 150 — #150

150 CHAPTER 5 Collectives

FIGURE 5.3

A reordering of reduction using serial reductions on tiles and then reductions of the results of those
reductions. This can be generalized to a two-phase approach to implementing reduce in general.

This is shown in Figure 5.3 for 16 inputs with four tiles of four inputs each, followed by a “global
reduction” with four inputs. In practice, since synchronization is expensive, it is common for reductions
to have only two phases: a local phase over tiles and a global phase combining the results from each tile.
We may also use a vectorized implementation within the tiles as discussed in Section 5.1.2, although
this usually requires further reordering.

WARNING
The issues of associativity and commutativity matter mostly when the combiner function may be user defined.
Unfortunately, it is hard for an automated system to prove that an arbitrary function is associative or
commutative, although it is possible to do so in specific cases—for example, when forming expressions using
known associative operators [FG94]. Generally, though, these properties have to be asserted and validated by the
user. Therefore, you need to make sure that when using user-defined reductions the functions you are providing
satisfy the required properties for the implementation. If you violate the assumptions of the implementation it
may generate incorrect and/or non-deterministic results. It is also necessary for the implementor of a reduction
taking arbitrary combiner functions to document whether or not commutativity is assumed. The issue does not
arise when only built-in operations with known properties are provided by the reduction implementor.

5.1.4 Precision
Another issue can arise with large reductions: precision. Large summations in particular have a
tendency to run out of bits to represent intermediate results. Suppose you had an array with a million
single-precision floating point numbers and you wanted to add them up. Assume that they are all

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 151 — #151

5.1 Reduce 151

approximately the same magnitude. Single-precision floating point numbers only have about six or
seven digits of precision. What can happen in this scenario if the naı̈ve serial algorithm is used is that
the partial sum can grow very large relative to the new values to be added to it. If the partial sum
grows large enough, new values to it will be less than the smallest representable increment and their
summation will have no effect on the accumulator. The increments will be rounded to zero. This means
that part of the input will effectively be ignored and the result will of course be incorrect.

The tree algorithm fares better in this case. If all the inputs are about the same size, then all the
intermediate results will also be about the same size. This is a good example of how reassociating
floating point operations can change the result. Using a tiled tree will retain most of the advantages of
the tree algorithm if the tiles and the final pass are of reasonable sizes.

The tree algorithm is not perfect either, however. We can invent inputs that will break any specific
ordering of operations. A better solution is to use a larger precision accumulator than the input. Gen-
erally speaking, we should use double-precision accumulators to sum single-precision floating point
inputs. For integer data, we need to consider the largest possible intermediate value.

Converting input data to a higher-precision format and then doing a reduce can be considered a
combination of a map for the conversion and a reduce to achieve the higher-precision values. Fusion
of map and reduce for higher performance is discussed in Section 5.2.

5.1.5 Implementation
Most of the the programming models used in this book, except OpenCL, include various built-in
implementations of reduce. TBB and Cilk Plus in addition support reduce with user-defined combiner
functions. However, it your responsibility to ensure that the combiner function provided is associative.
If the combiner function is not fully associative (for example if it uses floating point operations), you
should be aware that many implementations reassociate operations non-deterministically. When used
with combiner functions that are not fully associative, this can change the result from run to run of the
program. At present, only TBB provides a guaranteed deterministic reduce operation that works with
user-defined combiner functions that are not fully associative.

OpenCL
Reduce is not a built-in operation, but it is possible to implement it using a sequence of two kernels.
The first reduces over blocks, and the second combines the results from each block. Such a reduction
would be deterministic, but optimizations for SIMD execution may also require commutativity.

TBB
Both deterministic and non-deterministic forms of reduce are supported as built-in operations.
The basic form of reduce is parallel_reduce. This is a fast implementation but may non-
deterministically reassociate operations. In particular, since floating point operations are not truly
associative, using this construct with floating point addition and multiplication may lead to non-
determinism. If determinism is required, then the parallel_deterministic_reduce construct
may be used. This may result in lower performance than the non-deterministic version. Neither of
these implementations commutes operations and so they can both safely be used with non-commutative
combiner functions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 152 — #152

152 CHAPTER 5 Collectives

Cilk Plus
Two forms of reduce are provided: __sec_reduce for array slices, and reducer hyperobjects. Both of
these support user-defined combiner functions and assume associativity. Neither form assumes com-
mutativity of a user-defined combiner. Either of these reductions may non-deterministically reassociate
operations and so may produce non-deterministic results for operations that are not truly associa-
tive, such as floating point operations. It is possible to implement a deterministic tree reduction in
a straightforward fashion in Cilk Plus using fork–join, although this may be slower than the built-in
implementations.

ArBB
Only reductions using specific associative and commutative built-in operations are provided. Float-
ing point addition and multiplication are included in this set. The implementation currently does not
guarantee that the results of floating point reductions will be deterministic. If a deterministic reduce
operation is required, it is possible to implement it using a sequence of map operations, exactly as with
OpenCL.

OpenMP
Only reductions with specific associative and commutative built-in operations are provided. More
specifically, when a variable is marked as a reduction variable, at the start of a parallel region a private
copy is created and initialized in each parallel context. At the end of the parallel region the values are
combined with the specified operator.

5.2 FUSING MAP AND REDUCE
A map followed by a reduce can be optimized by fusing the map computations with the initial stages
of a tree-oriented reduce computation. If the map is tiled, this requires that the reduction be tiled in the
same way. In other words, the initial reductions should be done over the results of each each map tile
and then the reduce completed with one or more additional stages. This is illustrated in Figure 5.4.

This optimization avoids the need for a synchronization after the map and before the reduce, and
it also avoids the need to write the output of the map to memory if it is not used elsewhere. If this
is the case, the amount of write bandwidth will be reduced by a factor equal to the tile size. The
synchronization can also be avoided in sophisticated systems that break the map and reduce into tiles
and only schedule dependencies between tiles. However, even such systems will have overhead, and
fusing the computations avoids this overhead.

5.2.1 Explicit Fusion in TBB
The map and reduce patterns can be fused together in TBB by combining their implementations and
basically combining the first step of the reduce implementation with some preprocessing (the map)
on the first pass. In practice, this can be accomplished through appropriate use of the tiled reduction
constructs in TBB, as we show in Section 5.3.4.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 153 — #153

5.2 Fusing Map and Reduce 153

FIGURE 5.4

Optimization of map and reduce by fusion. When a map feeds directly into a reduction, the combination can
be implemented more efficiently by combining the map with the initial stage of the reduce.

5.2.2 Explicit Fusion in Cilk Plus
In Cilk Plus map and reduce can be fused by combining their implementations. The map and initial
stages of the reduce can be done serially within a tile, and then the final stages of the reduce can be
done with hyperobjects. We show an example of this in Section 5.3.5.

5.2.3 Automatic Fusion in ArBB
A map followed by a reduce is fused automatically in ArBB. You do not have to do anything special,
except ensure that the operations are in the same call. Technically, ArBB does a code transformation
on the sequence of operations that within serial code generation is often called loop fusion. In ArBB,
however, it is applied to parallel operations rather than loop iterations.

The map and reduce operations do not have to be adjacent in the program text either, as opportuni-
ties for fusion are found by analyzing the computation’s data dependency graph. The system will also
find multiple fusion opportunities—for example, a map followed by multiple different reductions on
the same data. If the output of the map is the same shape as that used by the reduce operations, the
fusion will almost always happen. However, intermediate random-memory access operations such as
gather and scatter will inhibit fusion, so they should be used with this understanding.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 154 — #154

154 CHAPTER 5 Collectives

ArBB does not currently provide a facility to allow programmers to define their own arbitrary com-
biner functions for reductions. Instead, complex reductions are built up by fusing elementary reductions
based on basic arithmetic operations that are known to be associative and commutative.

5.3 DOT PRODUCT
As a simple example of the use of the different programming models, we will now present an imple-
mentation of the inner or “dot” product in TBB, Cilk Plus, SSE intrinsics, OpenMP, and ArBB. Note
that this is actually an example of a map combined with a reduction, not just a simple reduction. The
map is the initial pairwise multiplication, and the reduction is the summation of the results of that
multiplication.

5.3.1 Description of the Problem
Given two vectors (1D arrays) a and b each with n elements, the dot product a ·b is a scalar given by:

a ·b=
n−1∑
i=0

aibi.

where ai and bi denote the ith elements of a and b, respectively. Subscripts run from 0 to n− 1 as usual
in C and C++.

It is unlikely that a scalable speedup will be obtained when parallelizing such a simple computa-
tion. As with SAXPY in Section 4.2, a simple operation such as dot product is likely to be dominated
by memory access time. The dot product is also the kind of computation where calling a library rou-
tine would probably be the best solution in practice, and tuned implementations of the dot product
do indeed appear in BLAS libraries. However, dot product is simple and easy to understand and also
shows how a map can be combined with reduce in practice.

As map and reduce are a common combination, you can use these examples as templates for more
complex applications. We will also use this example to demonstrate some important optimizations of
this combination without getting caught up in the complexities of the computation itself.

5.3.2 Serial Implementation
For reference, a serial implementation of dot product is provided in Listing 5.3. There is nothing special
here. However, note that the usual serial expression of reduce results in loop-carried dependencies
and would not be parallelizable if implemented in exactly the order specified in this version of the
algorithm. You have to recognize, abstract, and extract the reduce operation to parallelize it. In this
case, the serial reduce pattern is easy to recognize, but when porting code you should be alert to
alternative expressions of the same pattern.

This example assumes that n is small, so the reduction accumulator can have type float. For
large reductions this is unwise since single-precision floating point values may not be able to represent
partial sums with sufficient precision as explained in Section 5.1.4. However, the same type for the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 155 — #155

5.3 Dot Product 155

1 float sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 float res = 0.0f;
7 for (size_t i = 0; i < n; i++) {
8 res += a[i] * b[i];
9 }

10 return res;
11 }

LISTING 5.3

Serial implementation of dot product in C++. The reduction in this example is based on a loop-carried
dependency and is not parallelizable without reordering the computation.

accumulator, the input, and the output has been used in order to simplify the example. In some of the
implementations we will show how to use a different type for performing the accumulations.

5.3.3 SSE Intrinsics
Listing 5.4 gives an explicitly vectorized version of the dot product computation. This example uses
SSE intrinsics. SSE stands for Streaming SIMD Extensions and is an instruction set extension sup-
ported by Intel and AMD processors for explicitly performing multiple operations in one instruction. It
is associated with a set of registers that can hold multiple values. For SSE, these registers are 128 bits
wide and can store two double-precision floating point values or four single-precision floating point
values.

When using SSE intrinsics, special types are used to express pairs or quadruples of values that may
be stored in SSE registers, and then functions are used to express operations performed on those values.
These functions are recognized by the compiler and translated directly into machine language.

Use of intrinsics is not quite as difficult as writing in assembly language since the compiler does
take care of some details like register allocation. However, intrinsics are definitely more complex than
the other programming models we will present and are not as portable to the future. In particular, SIMD
instruction sets are subject to change, and intrinsics are tied to specific instruction sets and machine
parameters such as the width of vector registers.

For (relative) simplicity we left out some complications so this example is not really a full solution.
In particular, this code does not handle input vectors that are not a multiple of four in length.

Some reordering has been done to improve parallelization. In particular, this code really does four
serial reductions at the same time using four SSE register “lanes”, and then combines them in the end.
This uses the implementation pattern for reduce discussed in Section 5.1.2, but with four lanes. Like
the other examples that parallelize reduce, some reordering of operations is required, since the exact
order given in the original serial implementation is not parallelizable. This particular ordering assumes
commutativity as well as associativity.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 156 — #156

156 CHAPTER 5 Collectives

1 float sse_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 assert(0 == n % 4); // only works for N, a multiple of 4
7 __m128 res, prd, ma, mb;
8 res = _mm_setzero_ps();
9 for (size_t i = 0; i < n; i += 4) {

10 ma = _mm_loadu_ps(&a[i]); // load 4 elements from a
11 mb = _mm_loadu_ps(&b[i]); // load 4 elements from b
12 prd = _mm_mul_ps(ma,mb); // multiple 4 values elementwise
13 res = _mm_add_ps(prd,res); // accumulate partial sums over 4−tuples
14 }

15 prd = _mm_setzero_ps();
16 res = _mm_hadd_ps(res, prd); // horizontal addition
17 res = _mm_hadd_ps(res, prd); // horizontal addition
18 float tmp;
19 _mm_store_ss(&tmp, res);
20 return tmp;
21 }

LISTING 5.4

Vectorized dot product implemented using SSE intrinsics. This code works only if the number of elements in
the input is a multiple of 4 and only on machines that support the SSE extensions. This code is not parallelized
over cores.

Other problems with the SSE code include the fact that it is machine dependent, verbose, hard
to maintain, and it only takes advantage of vector units, not multiple cores. It would be possible to
combine with code with a Cilk Plus or TBB implementation in order to target multiple cores, but that
would not address the other problems. In general, machine dependence is the biggest problem with this
code. In particular, new instruction set extensions such as AVX are being introduced that have wider
vector widths, so it is better to code in a way that avoids dependence on a particular vector width or
instruction set extension.

5.3.4 TBB
Listing 5.5 uses TBB’s algorithm template parallel_reduce. This template recursively decomposes
a reduction into smaller subreductions and reduces each base case using a functor provided by the user.
Here that functor uses std::inner_product to do serial reduction, which the compiler may be able
to automatically vectorize. The base case code can also be used for map–reduce fusion, as done here:
the std::inner_product call in the base case does both the multiplications and a reduction over the
tile it is given. The user must also provide a functor to combine the results of the base cases, which
here is the functor std::plus<float>.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 157 — #157

5.3 Dot Product 157

1 float tbb_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5) {
6 return tbb::parallel_reduce(
7 tbb::blocked_range<size_t>(0,n),
8 float(0),
9 [=](// lambda expression

10 tbb::blocked_range<size_t>& r,
11 float in
12) {
13 return std::inner_product(
14 a+r.begin(), a+r.end(),
15 b+r.begin(), in);
16 },
17 std::plus<float>()
18);
19 }

LISTING 5.5

Dot product implemented in TBB.

The template parallel_reduce also requires the identity of the combiner function. In this case,
the identity of floating point addition is float(0). Alternatively, it could be written as 0.f. The
f suffix imbues the constant with type float. It is important to get the type right, because the
template infers the type of the internal accumulators from the type of the identity. Writing just 0
would cause the accumulators to have the type of a literal 0, which is int, not the desired type
float.

The template parallel_reduce implements a flexible reduce pattern which can be instantiated
in a variety of ways. For example, Listing 5.6 shows an instantiation that does accumulation using
a precision higher than the type of the input, which is often important to avoid overflow in large
reductions. The type used for the multiplication is also changed, since this is a good example of a fused
map operation. These modifications change float in Listing 5.5 to double in several places:

1. The return type is double.
2. The identity element is double(0), so that the template uses double as the type to use for internal

accumulators.
3. The parameter in is declared as double, not only because it might hold a partial accumulation, but

because std::inner_product uses this type for its internal accumulator.
4. To force use of double-precision + and ∗ by std::inner_product, there are two more arguments,

std::plus<double>() and std::multiplies<double>(). An alternative is to write the
base case reduction with an explicit loop instead of std::inner_product.

5. The combining functor is std::plus<double>.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 158 — #158

158 CHAPTER 5 Collectives

1 double tbb_sprod2(
2 size_t n,
3 const float *a,
4 const float *b
5) {
6 return tbb::parallel_reduce(
7 tbb::blocked_range<size_t>(0,n),
8 double(0),
9 [=](// lambda expression

10 tbb::blocked_range<size_t>& r,
11 double in
12) {
13 return std::inner_product(
14 a+r.begin(), a+r.end(),
15 b+r.begin(), in,
16 std::plus<double>(),
17 std::multiplies<double>());
18 },
19 std::plus<double>()
20);
21 }

LISTING 5.6

Modification of Listing 5.5 with double-precision operations for multiplication and accumulation.

5.3.5 Cilk Plus
Listing 5.7 expresses the pairwise multiplication and reduction using Cilk Plus array notation. A good
compiler can generate code from it that is essentially equivalent to the hand-coded SSE in Listing 5.4,
except that the Cilk Plus version will correctly handle vector widths that are not a multiple of the
hardware vector width. In fact, it is not necessary to know the hardware vector width to write the Cilk
Plus code. The Cilk Plus code is not only shorter and easier to understand and maintain, it’s portable.

An explicitly thread parallel and vector parallel dot product can be expressed as shown in
Listing 5.8. The variable res has a special type called a reducer. Here the reducer res accumulates
the correct reduction value even though there may be multiple iterations of the cilk_for running in
parallel. Even though the code looks similar to serial code, the Cilk Plus runtime executes it using a
tree-like reduction pattern. The cilk_for does tree-like execution (Section 8.3) and parts of the tree
executing in parallel get different views of the reducer. These views are combined so at the end of the
cilk_for there is a single view with the whole reduction value. Section 8.10 explains the mechanics
of reducers in detail.

Our code declares res as a reducer_opadd<float> reducer. This indicates that the variable
will be used to perform + reduction over type float. The constructor argument (0) indicates the
variable’s initial value. Here it makes sense to initialize it with 0, though in general a reducer can be

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 159 — #159

5.3 Dot Product 159

1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n−i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }

12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 160 — #160

160 CHAPTER 5 Collectives

5.3.6 OpenMP
An OpenMP implementation of dot product is shown in Listing 5.10. In OpenMP, parallelization of this
example is accomplished by adding a single line annotation to the serial implementation. However, the
annotation must specify that res is a reduction variable. It is also necessary to specify the combiner
operator, which in this case is (floating point) addition.

What actually happens is that the scope of the loop specifies a parallel region. Within this region
local copies of the reduction variable are made and initialized with the identity associated with the
reduction operator. At the end of the parallel region, which in this case is the end of the loop’s scope, the
various local copies are combined with the specified combiner operator. This code implicitly does map–
reduce fusion since the base case code, included within the loop body, includes the extra computations
from the map.

1 double cilkplus_sprod_tiled2(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<double> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n−i);

10 res += __sec_reduce_add(double(a[i:m]) * double(b[i:m]));
11 }

12 return res.get_value();
13 }

LISTING 5.9

Modification of Listing 5.8 with double-precision operations for multiplication and accumulation.

1 float openmp_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5) {
6 float res = 0.0f;
7 #pragma omp parallel for reduction(+:res)
8 for (size_t i = 0; i < n; i++) {
9 res += a[i] * b[i];

10 }

11 return res;
12 }

LISTING 5.10

Dot product implemented in OpenMP.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 161 — #161

5.3 Dot Product 161

OpenMP implementations are not required to inform you if the loops you annotate have reductions
in them. In general, you have to identify them for yourself and correctly specify the reduction vari-
ables. OpenMP 3.1 provides reductions only for a small set of built-in associative and commutative
operators and intrinsic functions. User-defined reductions have to be implemented as combinations
of these operators or by using explicit parallel implementations. However, support for user-defined
reductions is expected in a future version of OpenMP, and in particular is being given a high priority
for OpenMP 4.0, since it is a frequently requested feature.

5.3.7 ArBB
Listing 5.11 gives the kernel of a dot product in ArBB. This function operates on ArBB data, so
the additional code in Listing 5.12 is required to move data into ArBB space, invoke the function in

1 void arbb_sprod_kernel(
2 dense<f32> a,
3 dense<f32> b,
4 f32 &res
5) {
6 res = sum(a * b);
7 }

LISTING 5.11

Dot product implemented in ArBB. Only the kernel is shown, not the binding and calling code, which is
given in Listing 5.12.

1 float arbb_sprod(
2 size_t n, // number of elements
3 const float x[], // varying input

4 const float y[] // varying input
5) {
6 dense<f32> xx(n), yy(n); // ArBB storage for arrays
7 memcpy(&xx.write_only_range()[0], // copy in data
8 x, sizeof(float)*n);
9 memcpy(&yy.write_only_range()[0], // copy in data

10 y, sizeof(float)*n);
11 f32 res;
12 call(arbb_sprod_kernel)(xx,yy,res);
13 return value(res); // convert result back to C++ value

14 }

LISTING 5.12

Dot product implementation in ArBB, using wrapper code to move data in and out of ArBB data space and
invoke the computation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 162 — #162

162 CHAPTER 5 Collectives

1 void arbb_sprod_kernel2(
2 dense<f32> a,
3 dense<f32> b,
4 f64 &res
5) {
6 dense<f64> aa = dense<f64>(a);
7 dense<f64> bb = dense<f64>(b);
8 res = sum(aa * bb);
9 }

LISTING 5.13

High-precision dot product implemented in ArBB. Only the kernel is shown.

Listing 5.11 with call, and retrieve the result with value. Internally, ArBB will generate tiled and
vectorized code roughly equivalent to the implementation given in Listing 5.8.

To avoid overflow in a very large dot product, intermediate results should be computed using double
precision. The alternative kernel in Listing 5.13 does this. The two extra data conversions are, in effect,
additional map pattern instances. Note that in ArBB multiple maps are fused together automatically as
are maps with reductions. This specification of the computation produces an efficient implementation
that does not write the intermediate converted high-precision input values to memory.

5.4 SCAN
The scan collective operation produces all partial reductions of an input sequence, resulting in a new
output sequence. There are two variants: inclusive scan and exclusive scan. For inclusive scan, the nth
output value is a reduction over the first n input values; a serial and one possible parallel implementa-
tion are shown in Figure 5.5. For exclusive scan, the nth output value is a reduction over the first n− 1
input values. In other words, exclusive scan excludes the nth output value. The C++ standard library
template std::partial_sum is an example of an inclusive scan. Listings 5.14 and 5.15 show serial
routines for inclusive scan and exclusive scan, respectively.

Each of the routines takes an initial value to be used as part of the reductions. There are two reasons
for this feature. First, it avoids the need to have an identity element when computing the first output
value of an exclusive scan. Second, it makes serial scan a useful building block for writing tiled parallel
scans.

At first glance, the two implementations look more different than they really are. They could be
almost identical, because another way to write an exclusive scan is to copy Listing 5.14 and swap lines
10 and 11. However, that version would invoke combine one more time than necessary.

Despite the loop-carried dependence, scan can be parallelized. Similar to the parallelization of
reduce, we can take advantage of the associativity of the combiner function to reorder operations.
However, unlike the case with reduce, parallelizing scan comes at the cost of redundant computations.
In exchange for reducing the span from O(N) to O(lgN), the work must be increased, and in many
algorithms nearly doubled. One very efficient approach to parallelizing scan is based on the fork–join

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 163 — #163

5.4 Scan 163

FIGURE 5.5

Serial and parallel implementations of the (inclusive) scan pattern.

1 template<typename T, typename C>
2 void inclusive_scan(
3 size_t n, // number of elements
4 const T a[], // input collection
5 T A[], // output collection
6 C combine, // combiner functor
7 T initial // initial value

8) {
9 for (size_t i=0; i<n; ++i) {

10 initial = combine(initial,a[i]);
11 A[i] = initial;
12 }

13 }

LISTING 5.14

Serial implementation of inclusive scan in C++, using a combiner functor and an initial value.

pattern. The fork–join pattern is covered in Chapter 8, and this approach is explained in Section 8.11
along with an implementation in Cilk Plus. Section 5.4 presents another implementation of scan using
a three-phase approach and an implementation using OpenMP.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 164 — #164

164 CHAPTER 5 Collectives

1 template<typename T, typename C>
2 void exclusive_scan(
3 size_t n, // number of elements
4 const T a[], // input collection
5 T A[], // output collection
6 C combine, // combiner functor
7 T initial // initial value
8) {
9 if(n>0) {

10 for (size_t i=0; i<n−1; ++i) {
11 A[i] = initial;
12 initial = combine(initial,a[i]);
13 }

14 A[n−1] = initial;
15 }

16 }

LISTING 5.15

Serial implementation of exclusive scan in C++. The arguments are similar to those in Listing 5.14.

Scan is a built-in pattern in both TBB and ArBB. Here is a summary of the characteristics of these
implementations at the point when this book was written. We also summarize the interface and charac-
teristics of the scan implementation we will present for Cilk Plus and give a three-phase implementation
of scan in OpenMP.

5.4.1 Cilk Plus
Cilk Plus has no built-in implementation of scan. Section 8.11 shows how to implement it using
the fork–join pattern. The interface to that implementation and its characteristics are explained here,
however, so we can use it in the example in Section 5.6.

Our Cilk Plus implementation performs a tiled scan. It abstracts scan as an operation over an index
space and thus makes no assumptions about data layout. The template interface is:

template<typename T, typename R, typename C, typename S>
void cilk_scan(size_t n, T initial, size_t tilesize,

R reduce, C combine, S scan);

The parameters are as follows:

• n is the size of the index space. The index space for the scan is the half-open interval [0,n).
• initial is the initial value for the scan.
• tilesize is the desired size of each tile in the iteration space.
• reduce is a functor such that reduce(i,size) returns a value for a reduction over indices in [i, i+

size).
• combine is a functor such that combine(x,y) returns x⊕ y.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 165 — #165

5.4 Scan 165

• scan is a functor such that scan(i,size,initial) does a scan over indices in [i, i+ size) starting with
the given initial value. It should do an exclusive or inclusive scan, whichever the call to cilk_scan
is intended to do.

The actual access to the data occurs in the reduce and scan functors. The implementation is
deterministic as long as all three functors are deterministic.

In principle, doing the reduction for the last tile is unnecessary, since the value is unused. However,
not invoking reduce on that tile would prevent executing a fused map with it, so we still invoke it.
Note that the results of such an “extra” map tile may be needed later, in particular in the final scan,
even if it is not needed for the initial reductions. Technically, the outputs of the map (which need to be
stored to memory for later use) is a side-effect, but the data dependencies are all accounted for in the
pattern. The Cilk Plus implementation of the integration example in Section 5.6.3 this.

5.4.2 TBB
TBB has a parallel_scan construct for doing either inclusive or exclusive scan. This construct may
non-deterministically reassociate operations, so for non-associative operations, such as floating point
addition, the result may be non-deterministic.

The TBB construct parallel_scan abstracts scan even more than cilk_scan. It takes two
arguments: a recursively splittable range and a body object.

template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body);

The range describes the index space. The body describes how to do the reduce, combine, and scan
operations in a way that is analogous to those described for the Cilk Plus interface.

5.4.3 ArBB
Built-in implementations of both inclusive and exclusive scans are supported, but over a fixed set of
associative operations. For the fully associative operations, the results are deterministic. However, for
floating point multiplication and addition, which are non-associative, the current implementation does
not guarantee the results are deterministic.

5.4.4 OpenMP
OpenMP has no built-in parallel scan; however, OpenMP 3.x tasking can be used to write a tree-
based scan similar to the fork–join Cilk Plus code in Section 8.11. In practice, users often write a
three-phase scan, which is what we present in this section. The three-phase scan has an asymptotic
running time of TP =2(N/P+P). When P� N, the N/P term dominates the P term and speedup
becomes practically linear. For fixed N, the value of N/P+P is minimized when P=

√
N.2 Thus,

2Proof: The arithmetic mean of two positive values is always greater than or equal to their geometic mean, and the means
are equal only when the two values are equal. The geometric mean of N/P and P is

√
N, and their arithmetic mean is N/P+P

2 .
Thus, the latter is minimized when N/P= P; that is, P=

√
N.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 166 — #166

166 CHAPTER 5 Collectives

the maximum asymptotic speedup is:

T1

TP
=2

(
N

N/P+P

)
=2

(
N

N/
√

N+
√

N

)
=2(

√
N).

Although this is not as asymptotically good as the tree-based scan that takes O(lgN) time, constant
factors may make the three-phase scan attractive. However, like other parallel scans, the three-phase
scan requires around twice as many invocations of the combiner function as the serial scan.

The phases are:

1. Break the input into tiles of equal size, except perhaps the last. Reduce each tile in parallel.
Although the reduction value for the last tile is unnecessary for step 2, the function containing
the tile reduction is often invoked anyway. This is because a map may be fused with with the
reduction function, and if so the outputs of this map are needed in step 3.

2. Perform an exclusive scan of the reduction values. This scan is always exclusive, even if the overall
parallel scan is inclusive.

3. Perform a scan on each of the tiles. For each tile, the initial value is the result of the exclusive scan
from phase 2. Each of these scans should be inclusive if the parallel scan is inclusive, and exclusive
if the parallel scan should be exclusive. Note that if the scan is fused with a map, it is the output of
the map that is scanned here.

Figure 5.6 diagrams the phases, and Listing 5.16 shows an OpenMP implementation.
Like many OpenMP programs, this code exploits knowing how many threads are available. The

code attempts to use one tile per thread. Outside the parallel region the code computes how many
threads to request. The clause num_threads(t) specifies this request. There is no guarantee that the
full request will be granted, so inside the parallel region the code recomputes the tile size and number of
tiles based on how many threads were granted. Our code would still be correct if it did not recompute
these quantities, but it might have a load imbalance and therefore be slower, because some threads
would execute more tiles than other threads.

Each phase waits for the previous phase to finish, but threads do not join between the phases. The
first and last phases run with one thread per tile, which contributes 2(N/P) to the asymptotic running
time. The middle phase, marked with omp single, runs on a single thread. This phase contributes
2(P) to the running time. During this phase, the other m threads just wait while this phase is running.
Making threads wait like this is both good and bad. The advantage is that the threads are ready to go
for the third phase, and the mapping from threads to tiles is preserved by the default scheduling of omp
for loops. This minimizes memory traffic. The disadvantage is that the worker threads are committed
when entering the parallel region. No additional workers can be added if they become available, and
no committed workers can be removed until the parallel region completes.

5.5 FUSING MAP AND SCAN
As with reduce, scan can be optimized by fusing it with adjacent operations.

Consider in particular the three-phase implementation of scan. Suppose such a scan is preceded
by a map and followed by another map. Then, as long as the tiles are the same size, the tiles in the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 167 — #167

5.5 Fusing Map and Scan 167

FIGURE 5.6

Three-phase tiled implementation of inclusive scan, including initial value.

first map can be combined with the serial reductions in the first phase of the scan, and the tiled scan
in the third phase can be combined with the following tiled map. This is shown in Figure 5.7. This
creates more arithmetically intense code blocks and can cut down significantly on memory traffic and
synchronization overhead.

It would also be possible to optimize a scan by fusing it with following reductions or three-phase
scans since the first part of a three-phase scan is a tile reduction. However, if a reduction follows a
scan, you can get rid of the reduction completely since it is available as an output of the scan, or it can
be made available with very little extra computation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 168 — #168

168 CHAPTER 5 Collectives

1 template<typename T, typename R, typename C, typename S>
2 void openmp_scan(
3 size_t n,
4 T initial,
5 size_t tilesize,
6 R reduce,
7 C combine,
8 S scan
9) {

10 if (n > 0) {
11 // Set t to the number of tiles that might be used, at most one tile
12 // per thread with no tile smaller than the requested tilesize
13 size_t t = std::min(size_t(omp_get_max_threads()), (n−1)/tilesize+1);
14 // Allocate space to hold the reduction value of each tile
15 temp_space<T> r(t);
16 // Request one thread per tile
17 #pragma omp parallel num_threads(t)
18 {

19 // Find out how threads were actually delivered, which may be
20 // fewer than the requested number
21 size_t p = omp_get_num_threads();
22 // Recompute tilesize so there is one tile per actual thread
23 tilesize = (n+p−1)/p;
24 // Set m to index of last tile
25 size_t m = p−1;
26 #pragma omp for
27 // Set r[i] to reduction of the ith tile
28 for (size_t i = 0; i <= m; ++i)
29 r[i] = reduce(i*tilesize, i==m ? n−m*tilesize : tilesize);
30 #pragma omp single
31 // Use single thread to do in-place exclusive scan on r

32 for (size_t i = 0; i <= m; ++i) {
33 T tmp = r[i];
34 r[i] = initial;
35 initial = combine(initial,tmp);
36 }

37 #pragma omp for
38 // Do scan over each tile, using r[i] as initial value
39 for (size_t i = 0; i <= m; ++i)
40 scan(i*tilesize, i==m ? n−m*tilesize : tilesize, r[i]);
41 }

42 }

43 }

LISTING 5.16

Three-phase tiled implementation of a scan in OpenMP. The interface is similar to the Cilk Plus implementation
explained in Section 5.4, except that tilesize may be internally adjusted upward so that the number of tiles
matches the number of threads. Listing 8.7 on page 227 has the code for template class temp_space.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 169 — #169

5.6 Integration 169

FIGURE 5.7

Optimization of map and three-phase scan by fusion. The initial and final phases of the scan can be combined
with maps appearing in sequence before and after the scan. There is also an opportunity to fuse an initial map
with the scan and final map of the last tile, but it is only a boundary case and may not always be worth doing.

5.6 INTEGRATION
Scan shows up in a variety of unexpected circumstances, and is often the key to parallelizing an “unpar-
allelizable” algorithm. However, here we show a simple application: integrating a function. The scan
of a tabulated function, sometimes known as the cumulation of that function, has several applications.
Once we have computed it, we can approximate integrals over any interval in constant time. This can
be used for fast, adjustable box filtering. A two-dimensional version of this can be used for antialiasing
textures in computer graphics rendering, an approach known as summed area tables [Cro84].

One disadvantage of summed-area tables in practice, which we do not really consider here, is that
extra precision is needed to make the original signal completely recoverable by differencing adjacent
values. If this extra precision is not used, the filtering can be inaccurate. In particular, in the limit as
the filter width becomes small we would like to recover the original signal.

As another important application, which we, however, do not discuss further in this book, you
can compute random numbers with the distribution of a given probability density by computing the
cumulation of the probability density distribution and inverting it. Mapping a uniform random number
through this inverted function results in a random number with the desired probability distribution.
Since the cumulation is always monotonic for positive functions, and probability distributions are
always positive, this inversion can be done with a binary search. Sampling according to arbitrary

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 170 — #170

170 CHAPTER 5 Collectives

probability density distributions can be important in Monte Carlo (random sampling) integration
methods [KTB11].

5.6.1 Description of the Problem
Given a function f and interval [a,b], we would like to precompute a table that will allow rapid com-
putation of the definite integral of f over any subinterval of [a,b]. Let 1x= (b− a)/(n− 1). The table
is a running sum of samples of f , scaled by 1x:

tablei =1x
i∑
0

f (a+ i1x).

The integral of f over [c,d] can be estimated by:

d∫
c

f (x)dx≈ interp(d)− interp(c),

where interp(x) denotes linear interpolation on the table.

5.6.2 Serial Implementation
Listing 5.17 shows a serial implementation of the sampling and summation computation. It has a
loop-carried dependence, as each iteration of the loop depends on the previous one.

Sometimes you will want to use a generic function defined in a function template as in Listing 5.18.
To pass such a function as an argument, it is helpful to first instantiate it with particular types as in
Listing 5.19.

Listing 5.20 shows how to compute the definite integral from two samples. It defines a helper
function serial_sample that does linearly interpolated lookup on the array. Out of bounds subscripts
are handled as if the original function is zero outside the bounds, which implies that the integral is zero
to the left of the table values and equal to table[n−1] to the right of the table.

5.6.3 Cilk Plus
Listing 5.21 shows the Cilk Plus code for preparing the integration table. The initial mapping of the
function is fused into the functor for doing tile reductions. The final scaling of the scan is fused in the
functor for doing tile scans.

Scan is not a built-in operation in Cilk Plus, but we discuss its interface in Section 5.4 and its
implementation in Section 8.11.

5.6.4 OpenMP
Listing 5.21 can be translated to OpenMP by making two changes:

• Replace cilk_scan with openmp_scan (Listing 5.16).
• Replace the array notation with a loop.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 171 — #171

5.6 Integration 171

1 template<typename X, typename Y, typename F>
2 void serial_prepare_integral_table(
3 X a, // start position of sampling
4 X b, // end position of sampling
5 size_t n, // number of samples to take
6 Y table[], // destination for table samples
7 F f // function parameter
8) {
9 // Handle empty request

10 if (n==0) return;
11 // Compute sample spacing
12 const X dx = (b−a)/X(n−1);
13 // Store scaled running sum of sample points in table [0:n]
14 Y sum = Y(0);
15 for (size_t i = 0; i < n; ++i) {
16 sum += f(a+dx*i); // f: X \maps to Y
17 table[i] = sum * dx;
18 }

19 }

LISTING 5.17

Serial integrated table preparation in C++. The code has a single loop that samples function f provided as an
argument, performs an inclusive scan, and scales the results of the scan by dx.

1 template <typename Y, typename X>
2 Y generic_f(X x) {
3 return Y(abs(sqrt(x) * sin(X(0.12) * x + x*x)));
4 }

LISTING 5.18

Generic test function for integration.

1 float f(float x) {
2 return generic_f<float,float>(x);
3 }

LISTING 5.19

Concrete instantiation of test function for integration.

The second change is optional, since OpenMP plus Cilk Plus array notation can be an effective way to
exploit both thread and vector parallelism. Of course, this requires a compiler that supports both.

Scan is not a built-in operation in OpenMP, but we discuss its implementation using a three-phase
approach in Section 5.4.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 172 — #172

172 CHAPTER 5 Collectives

1 template <typename Y, typename X>
2 Y serial_sample(
3 size_t n,
4 Y table[],
5 X x
6) {
7 // Compute integer part of sample position
8 X i = floor(x);
9 // Look up samples at i and i+1

10 // for out of bound indices, use 0 on left and table [n−1] on right
11 Y y0 = i < X(0) ? Y(0)
12 : table[i < X(n) ? size_t(i) : n−1];
13 Y y1 = i+1 < X(0) ? Y(0)
14 : table[i+1 < X(n) ? size_t(i+1) : n−1];
15 // Linearly interpolate between samples
16 return y0+(y1−y0)*(x−i);
17 }

18

19 template <typename X, typename Y>
20 Y serial_integrate(
21 size_t n, // number of samples in table
22 Y table[], // cumulative samples
23 X a, // lower bound of function domain
24 X b, // upper bound of function domain
25 X x0, // lower bound of integral
26 X x1 // upper bound of integral
27) {
28 // Compute scale for convering x0 and x1 to table indices
29 X scale = X(n−1)/(b−a);
30 // Look up interpolated values of indefinite integral
31 Y y0 = serial_sample(n, table, scale*(x0−a));
32 Y y1 = serial_sample(n, table, scale*(x1−a));
33 // Compute integral
34 return y1−y0;
35 }

LISTING 5.20

Serial implementation of integrated table lookup in C++. Two linearly interpolated samples of the table are
taken and interpolated. Out-of-bounds indices are handled as if the original function (not the integral) is zero
outside the bounds.

5.6.5 TBB
The TBB parallel_scan algorithm template has an internal optimization that lets it avoid call-
ing the combiner function twice for each element when no actual parallelism occurs. Unfortunately,
this optimization prevents fusing a map with the reduce portion of a scan. Consequently, the TBB
implementation of the integration example must compute each sample point on both passes through a
tile. The second pass has no easy way to know if the first pass occurred and, so there is no point in the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 173 — #173

5.6 Integration 173

1 template<typename X, typename Y, typename F>
2 void cilk_prepare_integral_table(
3 X a, // start position of sampling
4 X b, // end position of sampling
5 size_t n, // number of samples to take
6 Y table[], // destination for table samples
7 F f // function that maps X→ Y
8) {
9 // Handle empty request

10 if (n == 0) return;
11 // Compute sample spacing
12 const X dx = (b−a)/(n−1);
13 // Do parallel scan
14 cilk_scan(
15 n, Y(0),
16 1024, // tile size
17 [=,&table](size_t i, size_t m) −> Y {
18 Y sum = Y(0);
19 for (; m>0; −−m, ++i)
20 sum += (table[i] = f(a + dx*i));
21 return sum;
22 },
23 std::plus<Y>(),
24 [=,&table](size_t i, size_t m, Y initial) {
25 // Store running sum of sample points in table [i :m]
26 for (; m>0; −−m, ++i) {
27 initial += table[i];
28 table[i] = initial*dx;
29 }

30 }

31);
32 }

LISTING 5.21

Integrated table preparation in Cilk Plus. The code implements the interface discussed in Section 5.4.

first pass storing the samples. If the samples are expensive to compute, to avoid the extra computation
we can precompute the samples and store them in a table before calling the scan. Here we assume the
samples are relatively inexpensive to compute.

Listing 5.22 shows the code. In the TBB implementation a single templated operator() serves
as both a both tiled reduce and a tiled scan. The idea behind this is that the code may have full or
partial information about preceding iterations. The value of the expression tag.is_final_scan()
distinguishes these two cases:

true: The state of the Body is the same as if all iterations of the loop preceding subrange r. In this
case, operator() does a serial scan over the subrange. It leaves the Body in a state suitable for
continuing beyond the current subrange.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 174 — #174

174 CHAPTER 5 Collectives

1 template<typename X, typename Y, typename F>
2 struct Body {
3 const X a, dx;
4 Y* const table;
5 F f;
6 // Running sum
7 Y sum;
8 // Reduction or scan of a tile
9 template<typename Tag>

10 void operator()(tbb::blocked_range<size_t> r, Tag tag) {
11 for (size_t i = r.begin(); i != r.end(); ++i) {
12 sum += f(a + dx*i);
13 if (tag.is_final_scan())
14 table[i] = sum*dx;
15 }

16 }

17 // Initial body
18 Body(X a_, X dx_, Y* table_, F f_)
19 : a(a_), dx(dx_), table(table_), f(f_), sum(0) {}
20 // Body created for look-ahead reduction
21 Body(Body& body, tbb::split)
22 : a(body.a), dx(body.dx), table(body.table), f(body.f), sum(0) {}
23 // Merge bodies for two consecutive ranges .
24 void reverse_join(Body& body) {sum = body.sum + sum;}
25 // Assign *this = final body state from final tile
26 void assign(Body& body) {sum = body.sum;}
27 };
28

29 template<typename X, typename Y, typename F>
30 void tbb_prepare_integral_table(
31 X a, // start position of sampling

32 X b, // end position of sampling

33 size_t n, // number of samples to take
34 Y table[], // destination for table samples
35 F f // function that maps X→ Y

36) {
37 // Handle empty request
38 if (n==0) return;
39 // Compute sample spacing
40 const X dx = (b−a)/(n−1);
41 // Initialize body for scan

42 Body<X,Y,F> body(a,dx,table,f);
43 // Do the scan
44 tbb::parallel_scan(tbb::blocked_range<size_t>(0,n), body);
45 }

LISTING 5.22

Integrated table preparation in TBB. Class Body defines all the significant actions required to do a scan.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 175 — #175

5.6 Integration 175

false: The state of the Body represents the effect of zero or more consecutive iterations preceding
subrange r, but not all preceding iterations. In this case, operator() updates the state to include
reduction of the current subrange.

The second case occurs only if a thread actually steals work for the parallel_scan.
Method reverse_join merges two states of adjacent subranges. The “reverse” in its name comes

from the fact that ∗this is the state of the right subrange, and its argument is the left subrange. The
left subrange can be either a partial state or a full state remaining after a serial scan.

Method assign is used at the very end to update the original Body argument to tbb::
parallel_scan with the Body state after the last iteration.

5.6.6 ArBB
Listing 5.23 shows the ArBB code for generating the table and Listing 5.24 shows the ArBB code for
computing the integral by sampling this table.

1 // wrapper for test function

2 // instantiate template and modify interface :
3 // ArBB map functions need to return void
4 void arbb_f(
5 f32& y, // output
6 f32 x // input
7) {
8 y = generic_f<f32,f32>(x); // instantiate template
9 }

10

11 template <typename Y, typename X>
12 void arbb_precompute_table(
13 X a, // start position to sample
14 X b, // end position to sample

15 usize n, // number of samples

16 dense<Y>& table // accumulated samples
17) {
18 // compute scale factor to convert domains
19 X dx = (b−a)/X(n−1);
20 // generate sample positions

21 dense<X> positions =
22 a + dx * dense<X>(indices(usize(0),n,usize(1)));
23 // sample function (arbb˙f is a non-local)
24 dense<Y> samples;
25 map(arbb_f)(samples, positions);
26 // compute cumulative table
27 table = add_iscan(dx*samples);
28 }

LISTING 5.23

Integrated table preparation in ArBB. This simply invokes the built-in collective for inclusive scan using the
addition operator. Templating the code provides generality.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 176 — #176

176 CHAPTER 5 Collectives

1 template <typename Y, typename X>
2 void arbb_sample(
3 Y& y,
4 dense<Y> table,
5 X x
6) {
7 // get number of samples
8 isize n = isize(table.length());
9 // compute integer part of sample position

10 X i = floor(x);
11 // look up samples at i and i+1
12 // for out of bound indices, use 0 on left and table [n−1] on right.
13 Y y0 = select(i < X(0), Y(0),
14 table[select(i < X(n), isize(i), n−1)]);
15 Y y1 = select(i+X(1) < X(0), Y(0),
16 table[select(i+X(1) < X(n), isize(i)+1, n−1)]);
17 // Linearly interpolate between samples
18 y = y0+(y1−y0)*Y(x−X(i));
19 }

20

21 template <typename Y, typename X>
22 void arbb_integrate(
23 Y& integral,
24 dense<Y> table, // cumulative samples
25 X a, // lower bound of function domain
26 X b, // upper bound of function domain
27 X x0, // lower bound of integral
28 X x1 // upper bound of integral
29) {
30 // Compute scale for convering x0 and x1 to table indices.
31 usize n = table.length();
32 X scale = X(n−1)/(b−a);
33 // Look up interpolated values of indefinite integral
34 Y y0, y1;
35 arbb_sample(y0, table, scale*(x0−a));
36 arbb_sample(y1, table, scale*(x1−a));
37 // compute integral
38 integral = y1−y0;
39 }

LISTING 5.24

Integrated table lookup in ArBB. Two linearly interpolated samples of the table are taken and interpolated.
Various other operations are required to avoid reading out of bounds on the arrays. This code is similar to the
serial code, except for changes in types. The ? operator used in the serial code also has to be replaced with
select. Unfortunately, the ? operator is not overloadable in ISO C++.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 177 — #177

5.7 Summary 177

Listing 5.23 uses a special function to generate a set of integers. Vector arithmetic converts these
integers into sample positions and then uses a map to generate all the samples. Finally, a scan func-
tion computes the cumulative table. The ArBB implementation will actually fuse all these operations
together. In particular, the computation of sample positions, the sampling of the function, and the first
phase of the scan will be combined into a single parallel operation.

Given the table, the integral can be computed using the function given in Listing 5.24. This function
can be used to compute a single integral or an entire set if it is called from a map. This code is practically
identical to the serial code in Listing 5.20. The templates take care of most of the type substitutions so
the only difference is the use of an ArBB collection for the table.

5.7 SUMMARY
This chapter discussed the collective reduce and scan patterns and various options for their imple-
mentation and gave some simple examples of their use. More detailed examples are provided in later
chapters.

Generally speaking, if you use TBB or Cilk Plus, you will not have to concern yourself with many
of the implementation details for reduce discussed in this chapter. These details have been introduced
merely to make it clear why associative operations are needed in order to parallelize reduce and why
commutativity is also often useful.

Scan is built into TBB and ArBB but not Cilk Plus or OpenMP. However, we provide an efficient
implementation of scan in Cilk Plus in Section 8.11. This chapter also presented a simple three-phase
implementation of scan in OpenMP, although this implementation is not as scalable as the one we will
present later based on fork–join.

Reduce and scan are often found together with map, and they can be optimized by fusing their
implementations or parts of their implementation with an adjacent map, or by reversing the order of
map and reduce or scan. We discussed how to do this in TBB and Cilk Plus and provided several
examples, whereas ArBB does it automatically.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 179 — #179

CHAPTER

Data Reorganization 6
This chapter will discuss patterns for data organization and reorganization. The performance bottleneck
in many applications is just as likely, if not more likely, to be due to data movement as it is to be
computation. For data-intensive applications, it is often a good idea to design the data movement first
and the computation around the chosen data movements. Some common applications are in fact mostly
data reorganization: searching and sorting, for instance.

In a parallel computer, additional considerations arise. First, there may be additional costs for mov-
ing data between processors and for reorganizing data for vectorization. Changes to data layout for
vectorization may affect how data structures are declared and accessed. Second, scalability may depend
on cache blocking and avoidance of issues such as false sharing. These issues also have data layout
and possibly algorithmic implications.

Gather and scatter patterns arise from the combination of random read and write, respectively,
with the map pattern. For gather, there are some special cases that can be implemented more effi-
ciently than a completely random gather. Shifts are gathers where the data accesses are offset by fixed
distances. Shifts can sometimes be implemented using vector instructions more efficiently than com-
pletely random gathers. In Chapter 7 we will also discuss the special case of the stencil pattern, which
is a combination of map with a local gather over a fixed set of offsets and so can be implemented using
shifts.

Gather is usually less expensive than scatter, so in general scatters should be converted to gathers
when possible. This is usually only possible when the scatter addresses are known in advance for some
definition of “in advance.”

Scatter raises the possibility of a collision between write locations and, with it, race conditions.
We will discuss situations under which the potential for race conditions due to scatter can be avoided,
as well as some deterministic versions of scatter, extending the introduction to this topic in Chapter 3.

Scatter can also be combined with local reductions which leads to a form of scatter useful for
combining data that we will call merge scatter. Certain uses of scatter can also be replaced with
deterministic patterns such as pack and expand. Pack and expand are also good candidates for fusion
with the map pattern, since the fused versions can have significantly reduced write bandwidth. In fact,
it is easiest to understand the expand pattern as an extension of a map fused with pack.

Divide-and-conquer is a common strategy for designing algorithms and is especially important
in parallel algorithms, since it tends to lead to good data locality. Partitioning data, also known as
geometric decomposition, is a useful strategy for parallelization. Partitioning also maps nicely onto
memory hierarchies including non-uniform memory architectures. Partitioning is related to some of
the optimization strategies we will discuss for stencil in Chapter 7.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00006-2
c© 2012 Elsevier Inc. All rights reserved.

179

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 180 — #180

180 CHAPTER 6 Data Reorganization

Finally, we present some memory layout optimizations—in particular, the conversion of arrays
of structures into structures of arrays. This conversion is an important data layout optimization for
vectorization. The zip and unzip patterns are special cases of gather that can be used for such data
layout reorganization.

6.1 GATHER
The gather pattern, introduced in Section 3.5.4, results from the combination of a map with a random
read. Essentially, gather does a number of independent random reads in parallel.

6.1.1 General Gather
A defining serial implementation for a general gather is given in Listing 6.1. Given a collection of
locations (addresses or array indices) and a source array, gather collects all the data from the source
array at the given locations and places them into an output collection. The output data collection has
the same number of elements as the number of indices in the index collection, but the elements of the
output collection are the same type as the input data collection. If multidimensional index collections
are supported, generally the output collection has the same dimensionality as the index collection, as
well. A diagram showing an example of a specific gather on a 1D collection (using a 1D index) is given
in Figure 6.1.

The general gather pattern is simple but there are many special cases which can be implemented
more efficiently, especially on machines with vector instructions. Important special cases include shift
and zip, which are diagrammed in Figures 6.2 and 6.3. The inverse of zip, unzip, is also useful.

1 template<typename Data, typename Idx>
2 void gather(
3 size_t n, // number of elements in data collection
4 size_t m, // number of elements in index collection

5 Data a[], // input data collection (n elements)

6 Data A[], // output data collection (m elements)
7 Idx idx[] // input index collection (m elements)
8) {
9 for (size_t i = 0; i < m; ++i) {

10 size_t j = idx[i]; // get ith index

11 assert(0 <= j && j < n); // check array bounds
12 A[i] = a[j]; // perform random read
13 }

14 }

LISTING 6.1

Serial implementation of gather in pseudocode. This definition also includes bounds checking (assert) during
debugging as an optional but useful feature.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 181 — #181

6.1 Gather 181

0 1 2 3 4 5 6 7

AB F C C E

HGFEDCBA 422051

FIGURE 6.1

Gather pattern. A collection of data is read from an input collection given a collection of indices. This is
equivalent to a map combined with a random read in the map’s elemental function.

FIGURE 6.2

Shifts are special cases of gather. There are variants based on how boundary conditions are treated.
Boundaries can be duplicated, rotated, reflected, a default value can be used, or most generally some arbitrary
function can be used. Unlike a general gather, however, shifts can be efficiently implemented using vector
instructions since in the interior, the data access pattern is regular.

FIGURE 6.3

Zip and unzip (special cases of gather). These operations can be used to convert between array of structures
(AoS) and structure of arrays (SoA) data layouts.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 182 — #182

182 CHAPTER 6 Data Reorganization

6.1.2 Shift
In a 1D array, the shift pattern moves data to the left or right in memory or, equivalently, to lower
or higher locations, assuming we number locations from left to right. In higher dimensional arrays,
shift may offset data by different amounts in each dimension. There are a few variants of shift that
depend on how boundary conditions are handled, since by nature shift requires data that is “out of
bounds” at the edge of the array. This missing data can be replaced with a default value, the edge value
can be duplicated, or the data from the other side of the input array can be used. The last pattern is
often called a rotate. It is also possible to extend the shift pattern to higher-dimensional collections to
shift by larger amounts and to support additional boundary conditions, including arbitrary user-defined
boundary conditions. For example, the latter can be supported by allowing arbitrary code to be executed
to compute values for samples that are outside the index domain of the input collection.

Efficient implementations of shift are possible using vector operations. This is true even if com-
plex boundary conditions are supported, since away from the boundaries, shifts still use a regular data
access pattern. In this case, chunks of the input can be read into registers using vector loads, realigned
using vector instructions (typically combining two separate input chunks), and then written out. More
efficient implementations are typically possible if the shift amount is known at code generation time.
A vectorized implementation is not strictly necessary for efficiency. Since a shift has good data local-
ity, reading data from cache using normal read operations will still typically have good efficiency.
However, vectorizing the shift can reduce the number of instructions needed.

6.1.3 Zip
The zip pattern interleaves data. A good example arises in the manipulation of complex numbers.
Suppose you are given an array of real parts and an array of imaginary parts and want to combine
them into a sequence of real and imaginary pairs. The zip operation can accomplish this. It can also
be generalized to more elements—for example, forming triples from three input arrays. It can also be
generalized to zipping and unzipping data of unlike types, as long as arrays of structures are supported
in the programming model. The unzip pattern is also useful. Unzip simply reverses a zip, extracting
subarrays at certain offsets and strides from an input array. For example, given a sequence of complex
numbers organized as pairs, we could extract all the real parts and all the imaginary parts into separate
arrays. Zip and unzip are diagrammed in Figure 6.3.

Sometimes, as in Cilk Plus, “start” and “stride” arguments are available in array sectioning oper-
ations or views, or as part of the specification of a map pattern. These can be used to implement the
zip and unzip patterns, which, like shift, are often fused with the inputs and outputs of a map. Zip and
unzip are also related to the computation of transposes of multidimensional arrays. Accessing a col-
umn of a row-major array involves making a sequence of memory accesses with large strides, which
is just zip/unzip. The zip and unzip patterns also appear in the conversion of array of structures (AoS)
to structures of arrays (SoA), data layout options that are discussed in Section 6.7.

6.2 SCATTER
The scatter pattern was previously discussed in Section 3.5.5. Scatter is similar to gather, but write
locations rather than read locations are provided as input. A collection of input data is then written

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 183 — #183

6.2 Scatter 183

in parallel to the write locations specified. Unfortunately, unlike gather, scatter is ill-defined when
duplicates appear in the collection of locations. We will call such duplicates collisions. In the case of a
collision, it is unclear what the result should be since multiple output values are specified for a single
output location.

The problem is shown in Figure 6.4. Some rule is needed to resolve such collisions. There are at
least four solutions: permutation scatter, which makes collisions illegal (see Figure 6.6); atomic scat-
ter, which resolves collisions non-deterministically but atomically (see Figure 6.5); priority scatter,
which resolves collisions deterministically using priorities (see Figure 6.8); and merge scatter, which
resolves collisions by combining values (see Figure 6.7).

0 1 2 3 4 5 6 7

CA B D E F

BFAC 422051

FIGURE 6.4

Scatter pattern. Unfortunately, the result is undefined if two writes go to the same location.

or

0 1 2 3 4 5 6 7

CA B D E F

BFAC 422051

BFAC

D

E

FIGURE 6.5

Atomic scatter pattern.

0 1 2 3 4 5 6 7

CA B D E F

BFAC 432051D E

FIGURE 6.6

Permutation scatter pattern. Collisions are illegal.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 184 — #184

184 CHAPTER 6 Data Reorganization

0 1 2 3 4 5 6 7

12 3 1 5 6

3621 4220516

FIGURE 6.7

Merge scatter pattern. Associative and commutative operators are used to combine values upon collision.

0 1 2 3 4 5

0 1 2 3 4 5 6 7

CA B D E F

BFAC 422051E

FIGURE 6.8

Priority scatter pattern. Every element is assigned a priority, which is used to resolve collisions.

6.2.1 Atomic Scatter
The atomic scatter pattern is non-deterministic. Upon collision, in an atomic scatter one and only
one of the values written to a location will be written in its entirety. All other values written to the
same location will be discarded. See Figure 6.5 for an example. Note that we do not provide a rule
saying which of the input items will be retained. Typically, it is the last one written but in parallel
implementations of atomic scatter the timing of writes is non-deterministic.

This pattern resolves collisions atomically but non-deterministically. Use of this pattern may result
in non-deterministic programs. However, it is still useful and deterministic in the special case that all
input data elements written to the same location have the same value. A common example of this
is the writing of true Boolean flags into an output array that has initially been cleared to false.
In this case, there is an implicit OR merge between the written values, since only one of the writes
needs to update the output location to turn it into a true, and the result is the same whichever write
succeeds.

Examples of the use of atomic scatter include marking pairs in collision detection, and computing
set intersection or union as are used in text databases. Note that these are both examples where Boolean
values may be used.

6.2.2 Permutation Scatter
The permutation scatter pattern simply states that collisions are illegal; in other words, legal inputs
should not have duplicates. See Figure 6.6 for an example of a legal permutation scatter. Permutation
scatters can always be turned into gathers, so if the addresses are known in advance, this optimization

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 185 — #185

6.2 Scatter 185

should be done. Checking for collisions, to report them as errors, can be expensive but can be done in
a debugging-only mode if necessary.

The danger with permutation scatter is that programmers will use it when addresses do in fact have
collisions. The resulting program may work but would depend upon undefined behavior exhibited by
a particular implementation. Later on, when the implementation changes, this behavior may change
and the program will be “broken.” That is why it is better for implementations to actually check for
collisions and report them, at least in debug mode.

Of course this problem is true for any program that depends on any undefined behavior. The
issues with undefined behavior here are similar to the safety issues that arise with out-of-bounds array
accesses in some programming languages. A program with an out-of-bounds access may work fine
on some implementations but produce incorrect results on other implementations or simply crash.
Therefore, some languages introduce array-bounds checking, but this can be expensive.

Examples of use of the permutation scatter include FFT scrambling, matrix/image transpose, and
unpacking. Note that the first two of these could be (and usually should be) implemented with an
equivalent gather.

6.2.3 Merge Scatter
In the merge scatter pattern, associative and commutative operators are provided to merge elements
in case of a collision. Both properties are required, normally, since scatters to a particular loca-
tion could occur in any order. In Figure 6.7, an example is shown that uses addition as the merge
operator.

One problem with this pattern is that it, as with the reduction pattern, depends on the programmer
to define an operator with specific algebraic properties. However, the pattern could be extended to
support non-deterministic, but atomic, read–modify–write when used with non-associative operators.
Such an extension would be a simple form of the transaction pattern.

Merge scatter can be used to implement histograms in a straightforward way by using the addition
operation. Merge scatter can also be used for the computation of mutual information and entropy, as
well as for database updates. The examples given earlier for atomic scatter of Boolean values could be
interpreted as merge scatters with the OR operation.

6.2.4 Priority Scatter
In the priority scatter pattern, an example of which is given in Figure 6.8, every element in the input
array for a scatter is assigned a priority based on its position. This priority is used to decide which
element is written in case of a collision. By making the priorities higher for elements that would have
been written later in a serial ordering of the scatter, the scatter is made not only deterministic but also
consistent with serial semantics.

Consider the serial defining implementation of scatter in Listing 6.2. If there is a collision (two
addresses writing the to same location) in the serial implementation of scatter, this is not normally
considered a problem. Later writes will overwrite previous writes, giving a deterministic result.

Priorities for the priority scatter can be chosen to mimic this behavior, also discussed in Listing 6.2,
making it easier to convert serial scatters into parallel scatters.

Another interesting possibility is to combine merge and priority scatter so that writes to a given
location are guaranteed to be ordered.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 186 — #186

186 CHAPTER 6 Data Reorganization

1 template<typename Data, typename Idx>
2 void scatter(
3 size_t n, // number of elements in output data collection
4 size_t m, // number of elements in input data and index collection
5 Data a[], // input data collection (m elements)
6 Data A[], // output data collection (n elements)
7 Idx idx[] // input index collection (m elements)
8) {
9 for (size_t i = 0; i < m; ++i) {

10 size_t j = idx[i]; // get ith index
11 assert(0 <= j && j < n); // check output array bounds
12 A[j] = a[i]; // perform random write
13 }

14 }

LISTING 6.2

Serial implementation of scatter in pseudocode. Array bounds checking is included in this implementation for
clarity but is optional.

This combined priority merge pattern is, in fact, fundamental to a massively parallel system avail-
able on nearly every personal computer: 3D graphics rendering. The pixel “fragments” written to the
framebuffer are guaranteed to be in the same order that the primitives are submitted to the graphics
system and several operations are available for combining fragments into final pixel values.

6.3 CONVERTING SCATTER TO GATHER
Scatter is more expensive than gather for a number of reasons. For memory reads, the data only has to
be read into cache. For memory writes, due to cache line blocking, often a whole cache line has to be
read first, then the element to be modified is updated, and then the whole cache line is written back. So
a single write in your program may in fact result in both reads and writes to the memory system.

In addition, if different cores access the same cache line, then implicit communication and synchro-
nization between cores may be required for cache coherency. This needs to be done by the hardware
even if there are no actual collisions if writes from different cores go to the same cache line. This can
result in significant extra communication and reduced performance and is generally known as false
sharing.

These problems can be avoided if the addresses are available “in advance.” All forms of scatter
discussed in Section 6.2 can be converted to gathers if the addresses are known in advance. It is also
possible to convert the non-deterministic forms of scatter into deterministic ones by allocating cores to
each output location and by making sure the reads and processing for each output location are done in
a fixed serial order.

However, a significant amount of processing is needed to convert the addresses for a scatter into
those for a gather. One way to do it is to actually perform the scatter, but scatter the source addresses

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 187 — #187

6.4 Pack 187

rather than the data. This builds a table that can then be used for the gather. The values in such a
table will be deterministic if the original scatter was deterministic. Atomic scatters can be converted to
priority scatters in this step, which will affect only the process of building the table, not the performance
of the gather.

Since extra processing is involved, this approach is most useful if the same pattern of scatter
addresses will be used repeatedly so the cost can be amortized. Sometimes library functions include
an initialization or “planning” process in which the configuration and size of the input data are given.
This is a good place to include such computation.

6.4 PACK
The pack pattern is used to eliminate unused elements from a collection. The retained elements are
moved so that they are contiguous in memory which can improve the performance of later memory
accesses and vectorization. Many common uses of the scatter pattern can be converted to packs. One
advantage of a pack over a scatter is that a pack is deterministic by nature, unlike the case with scatter.

Pack can be implemented by combining scan and a conditional scatter. First, convert the input array
of Booleans into integer 0’s and 1’s, and then perform an exclusive scan of this array with an initial
value of 1 and the addition operation. This produces a set of offsets into an output array where each
data input to be kept should be written. This can be done with a permutation scatter since locations will
not be duplicated. Note, however, that the scatter should be conditional, since only the locations with
a true flag should result in a write. An example of the pack operation is diagrammed in Figure 6.9.

The inverse of the pack operation is unpack, which, given the same data on which elements were
kept and which were discarded, can place elements back in their original locations. Since the discarded
values are unknown, a default value can be used for these locations. An example of the unpack pattern
is diagrammed in Figure 6.10.

A generalization of the pack pattern is the split pattern. This pattern is shown in Figure 6.11.
Rather than discarding elements as with pack, in the split operation elements are moved to either the
upper or lower half of an output collection based on the value of some per-element predicate. Of

0 1 1 00 1 1

A B C D E F G H

C F G HB

1

FIGURE 6.9

Pack pattern.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 188 — #188

188 CHAPTER 6 Data Reorganization

0 1 1 0 0 1 1 1

B C F G H

B C F G H

FIGURE 6.10

Unpack pattern.

1 0 0 1 1 0 0 0

A B C D E F G H

D EAB C F G H

FIGURE 6.11

Split pattern.

1 0 0 1 1 0 0 0

A B C D E F G H

D EAB C F G H

FIGURE 6.12

Unsplit pattern.

course, split can be emulated with two packs using complementary conditions, but split can usually be
implemented more efficiently than two separate packs. Split also does not lose information like pack
does. The inverse of split, unsplit, is shown in Figure 6.12. There is some relationship between these
patterns and zip and unzip discussed in Section 6.1.3, but unpack are specific patterns that can usually
be implemented more efficiently than the more general split and unsplit patterns.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 189 — #189

6.5 Fusing Map and Pack 189

2 0 1 3 3 1 1 2

A B C D E F G H

D EAB C F G H

FIGURE 6.13

The bin pattern generalizes the split pattern to multiple categories.

Interestingly, control flow can be emulated on a SIMD machine given pack and unpack operations
or, better yet, split and unsplit operations [LLM08, HLJH09]. Unlike the case with masking, such
control flow actually avoids work and does not suffer from a reduction in coherency for divergent con-
trol flow. However, without hardware support it does have higher overhead, so most implementations
emulating control flow on SIMD machines use the masking approach.

Split can be generalized further by using multiple categories. The Boolean predicate can be consid-
ered as a classification of input elements into one of two categories. It is also reasonable to generalize
split to support more than two categories. Support for multiple categories leads to the bin pattern,
shown in Figure 6.13 for four categories. The bin pattern appears in such algorithms as radix sort and
pattern classification and can also be used to implement category reduction.

Note in the case of both the split and bin patterns that we would like to have, as a secondary output
from these operations, the number of elements in each category, some of which may be empty. This is
also useful for the pack pattern. In the case of pack this is the size of the output collection. Note that
the output of the pack pattern might be empty!

Normally we want both split and bin to be stable, so that they preserve the relative order of their
inputs. This allows these operations to be used to implement radix sort, among other applications.

One final generalization of pack, the expand pattern, is best understood in the context of a pack
fused with a map operation (see Figure 6.15). When pack is fused with map, each element can output
zero or one element. This can be generalized so that each element can output any number of elements,
and the results are fused together in order.

6.5 FUSING MAP AND PACK
Pack can be fused to the output of a map as shown in Figure 6.14. This is advantageous if most of the
elements of the map are discarded.

For example, consider the use of this pattern in a collision detection problem. In such a problem,
we have a large number of objects and want to detect which pairs overlap in space. We will call each
overlapping pair a collision, and the output of the algorithm is a list of all the collisions. We might
have a large number of potentially colliding pairs of objects, but only a few that actually collide.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 190 — #190

190 CHAPTER 6 Data Reorganization

C F G HB

FIGURE 6.14

Fusion of map and pack patterns.

FIGURE 6.15

Expand pattern. This permits the implementation of applications that result in data amplification. It also
provides a form of dynamic memory allocation.

Fusing a map to check pairs for collision, with a pack to store only actual collisions, will reduce the
total amount of output bandwidth to be proportional to the results reported and not the number of pairs
tested.

The expand pattern is best understood in the context of a pack fused with a map operation. Compare
Figure 6.14 with Figure 6.15. When pack is fused with map, each element can output zero or one
element. This is generalized in the expand pattern so that each element can output any number of
elements, and the results are output in order.

For example, suppose you wanted to create a parallel implementation of L-system substitution. In
L-system substitution, the input and output are strings of characters. Every element of the input string

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 191 — #191

6.6 Geometric Decomposition and Partition 191

might get expanded into a new string of characters, or deleted, according to a set of rules. Such a
pattern is often used in computer graphics modeling where the general approach is often called data
amplification. In fact, this pattern is supported in current graphics rendering pipelines in the form of
geometry shaders. To simplify implementation, the number of outputs might be bounded to allow for
static memory allocation, and this is, in fact, done in geometry shaders. This pattern can also be used
to implement variable-rate output from a map, for example, as required for lossless compression.

As with pack, fusing expand with map makes sense since unnecessary write bandwidth can then
be avoided. The expand pattern also corresponds to the use of push_back on C++ STL collections in
serial loops.

The implementation of expand is more complex than pack but can follow similar principles. If the
scan approach is used, we scan integers representing the number of outputs from each element rather
than only zeros and ones. In addition, we should tile the implementation so that, on a single processor,
a serial “local expand” is used which is trivial to implement.

6.6 GEOMETRIC DECOMPOSITION AND PARTITION
A common strategy to parallelize an algorithm is to divide up the computational domain into sections,
work on the sections individually, and then combine the results. Most generally, this strategy is known
as divide-and-conquer and is also used in the design of recursive serial algorithms. The parallelization
of the general form of divide-and-conquer is supported by the fork–join pattern, which is discussed
extensively in Chapter 8.

Frequently, the data for a problem can also be subdivided following a divide-and-conquer strategy.
This is obvious when the problem itself has a spatially regular organization, such as an image or a
regular grid, but it can also apply to more abstract problems such as sorting and graphs. When the
subdivision is spatially motivated, it is often also known as geometric decomposition.

As a special case of geometric decomposition, the data is subdivided into uniform non-overlapping
sections that cover the domain of computation. We will call this the partition pattern. An example of a
partition in 1D is shown in Figure 6.16. The partition pattern can also be applied in higher dimensions
as is shown in Figure 6.17.

The sections of a partition are non-overlapping. This is an important property to avoid write con-
flicts and race conditions. A partition is often followed by a map over the set of sections with each
instance of the elemental function in the map being given access to one of the sections. In this case, if
we ensure that the instance has exclusive access to that section, then within the partition serial scatter
patterns, such as random writes, can be used without problems with race conditions. It is also possible
to apply the pattern recursively, subdividing a section into subsections for nested parallelism. This can
be a good way to map a problem onto hierarchically organized parallel hardware.

FIGURE 6.16

Partitioning. Data is divided into non-overlapping, equal-sized regions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 192 — #192

192 CHAPTER 6 Data Reorganization

FIGURE 6.17

Partitioning in 2D. The partition pattern can be extended to multiple dimensions.

These diagrams show only the simplest case, where the sections of the partition fit exactly into the
domain. In practice, there may be boundary conditions where partial sections are required along the
edges. These may need to be treated with special-purpose code, but even in this case the majority of
the sections will be regular, which lends itself to vectorization. Ideally, to get good memory behavior
and to allow efficient vectorization, we also normally want to partition data, especially for writes, so
that it aligns with cache line and vectorization boundaries. You should be aware of how data is actually
laid out in memory when partitioning data. For example, in a multidimensional partitioning, typically
only one dimension of an array is contiguous in memory, so only this one benefits directly from spatial
locality. This is also the only dimension that benefits from alignment with cache lines and vectorization
unless the data will be transposed as part of the computation. Partitioning is related to strip-mining the
stencil pattern, which is discussed in Section 7.3.

Partitioning can be generalized to another pattern that we will call segmentation. Segmentation still
requires non-overlapping sections, but now the sections can vary in size. This is shown in Figure 6.18.
Various algorithms have been designed to operate on segmented data, including segmented versions
of scan and reduce that can operate on each segment of the array but in a perfectly load-balanced
fashion, regardless of the irregularities in the lengths of the segments [BHC+93]. These segmented
algorithms can actually be implemented in terms of the normal scan and reduce algorithms by using
a suitable combiner function and some auxiliary data. Other algorithms, such as quicksort [Ble90,
Ble96], can in turn be implemented in a vectorized fashion with a segmented data structure using these
primitives.

In order to represent a segmented collection, additional data is required to keep track of the bound-
aries between sections. The two most common representations are shown in Figure 6.19. Using an array

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 193 — #193

6.6 Geometric Decomposition and Partition 193

FIGURE 6.18

Segmentation. If data is divided into non-uniform non-overlapping regions, it can be referred to as
segmentation (a generalization of partitioning).

1 0 1 1 0 10 0

0 2 3 6

FIGURE 6.19

Segmentation representations. Various representations of segmented data are possible. The start of each
segment can be marked using an array of flags. Alternatively, the start point of each segment can be indicated
using an array of integers. The second approach allows zero-length segments; the first does not.

of Boolean flags to mark the start point of each segment is convenient and is useful for efficient imple-
mentation of segmented scans and reductions. The Boolean flags can be stored reasonably efficiently
using a packed representation. However, this representation does not allow zero-length segments which
are important for some algorithms. Also, it may be space inefficient if segments are very long on aver-
age. An alternative approach is to record the start position of every segment. This approach makes it
possible to represent empty segments. Note that differences of adjacent values also give the length of
each segment. The overall length of the collection can be included as an extra element in the length
array to make this regular and avoid a special case.

Many of the patterns we have discussed could output segmented collections. For example, the out-
put of the expand, split, and bin patterns, discussed in Section 6.4, could be represented as a segmented
collection. Of course it is always possible to discard the segment start data and so “flatten” a segmented
collection. It would also be possible to support nested segmentation, but this can always be represented,
for any given maximum nesting depth, using a set of segment-start auxiliary arrays [BHC+93, Ble90].
It is possible to map recursive algorithms, such as quicksort, onto such data representations [Ble96,
Ble90].

Various extensions to multidimensional segmentations are possible. For example, you could seg-
ment along each dimension. A kD-tree-like generalization is also possible, where a nested segmentation
rotates among dimensions. However, the 1D case is probably the most useful.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 194 — #194

194 CHAPTER 6 Data Reorganization

6.7 ARRAY OF STRUCTURES VS. STRUCTURES OF ARRAYS
For vectorization, data layout in memory may have to be modified for optimal performance.

The usual approach to data abstraction is to declare structures representing some object and then
create collections of that structure. For example, suppose we want to simulate a collection of particles.
Every particle will have a state with a collection of values, such as velocity, mass, color, etc. You
would normally declare a structure containing all the state variables needed for one particle. A particle
simulation evolves the state of a set of particles over time by applying a function to each particle’s
state, generating a new state. For such a simulation, you would need a collection holding the state of
the set of particles, which is most obviously represented by defining an array of structures. Code for
this data organization is shown in Listing 6.3. Conceptually, the data is organized as shown on the left
side of Figure 6.20.

However, the array of structures form has the problem that it does not align data well for vector-
ization or caching, especially if the elements of the structure are of different types or the overall length
of the structure does not lend itself to alignment to cache line boundaries.

In this case, an alternative approach is to use one collection for each element of state in the structure,
as on the right side of Figure 6.20. This is known as the structure of arrays, or SoA, layout. Now if we
apply the map pattern to this, vectorization of an elemental function is much easier, and we can also
cleanly break up the data to align to cache boundaries. It is also easier to deal with data elements that
vary in size.

Unfortunately, in languages like C and Fortran, changing the data layout from SoA to AoS results
in significant changes to data structures and also tends to break data encapsulation. Listing 6.4 shows
the reorganization required to convert the data structures declared in Listing 6.3 to SoA form.

Figure 6.21 shows how these two options lay out data in memory and how padding can be added
to help with cache alignment in both cases. For SoA form, we can add padding to each structure to
maintain cache alignment and avoid false sharing but this can add a significant amount of overhead to
each structure. If we do not add this padding, misalignments may significantly increase computation
time and will also complicate vectorization. In AoS form, padding is not really needed, but even if we
do include it, it tends to be only required at the boundaries. If the collections are large, then AoS form
has large internal regions of coherently organized data that can be efficiently vectorized even without
internal padding.

1 struct Particle {
2 float vel[3];
3 float pos[3];
4 float temp;
5 char color[3];
6 int type;
7 };
8 vector<Particle> particles(N);

LISTING 6.3

Array of structures (AoS) data organization.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 195 — #195

6.7 Array of Structures vs. Structures of Arrays 195

1 struct Particles {
2 float* vel[3];
3 float* pos[3];
4 float* temp;
5 char* color[3];
6 int* type[];
7 // constructor, allocates arrays for each component
8 Particles(int n) {
9 vel[0] = new float[n];

10 vel[1] = new float[n];
11 vel[2] = new float[n];
12 pos[0] = new float[n];
13 pos[1] = new float[n];
14 pos[2] = new float[n];
15 temp = new float[n];
16 color[0] = new char[n];
17 color[1] = new char[n];
18 color[2] = new char[n];
19 type = new int[n];
20 }

21 // destructor, deallocates arrays for each component
22 ˜Particles () {
23 delete[] vel[0];
24 delete[] vel[1];
25 delete[] vel[2];
26 delete[] pos[0];
27 delete[] pos[1];
28 delete[] pos[2];
29 delele[] temp;
30 delete[] color[0];
31 delete[] color[1];
32 delete[] color[2];
33 delete[] type;
34 }

35 };
36 Particles particles(N);

LISTING 6.4

Structure of arrays (SoA) data organization.

Unfortunately, the SoA form is not ideal in all circumstances. For random or incoherent circum-
stances, gathers are used to access the data and the SoA form can result in extra unneeded data being
read into cache, thus reducing performance. In this case, use of the AoS form instead will result
in a smaller working set and improved performance. Generally, though, if the computation is to be
vectorized, the SoA form is preferred.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 196 — #196

196 CHAPTER 6 Data Reorganization

FIGURE 6.20

Array of structures (AoS) versus structure of arrays (SoA). SoA form is typically better for vectorization and
avoidance of false sharing. However, if the data is accessed randomly, AOS may lead to better cache utilization.

Array of Structures (AoS), padding at end

Array of Structures (AoS), padding after each structure

Structure of Arrays (SoA), padding at end

Structure of Arrays (SoA), padding after each component

FIGURE 6.21

Data layout options for arrays of structures and structures of arrays. Data can be laid out structure-by-structure,
structure-by-structure with padding per structure, or, for structure of array, array-by-array or array-by-array
with padding. The structure of array form, either with or without padding, makes vectorization much easier.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 197 — #197

6.8 Summary 197

6.8 SUMMARY
We have presented some data reorganization patterns and discussed some important issues around data
layout.

Data reorganization patterns include scatter and gather, both of which have several special cases.
Gather is a pattern that supports a set of parallel reads, while scatter supports a set of parallel writes.
Shift and zip, as well as their inverses, unshift and unzip, are special cases of gather that can be more
efficiently vectorized. Scatter has a potential problem when multiple writes to the same location are
attempted. This problem can be resolved in several ways. Atomic scatters ensure that upon such colli-
sions correct data is written, but the order is still non-deterministic. Permutation scatters simply declare
collisions to be illegal and the result undefined, but it can be expensive to check for collisions, so this
is usually only supportable in a debug mode. Priority scatters order the writes by priority to mimic
the behavior of a random write in a loop, while merge scatters use an associative and commutative
operation to combine the values involved in a collision. All forms of scatter are more expensive than
gather, so scatters should normally be converted to gathers whenever possible. This is always possible
if the scatter locations are known in advance.

The pack pattern can replace many uses of scatter but has the advantage that it is deterministic. The
pack pattern has several generalizations, including the split, bin, and expand patterns.

A poor data layout can negatively impact performance and scalability, so it should be considered
carefully. Unfortunately, some of the optimizations considered in this chapter are not always applicable.
In particular, the effectiveness of the structure of arrays (SoA) form depends on how many operations
over the data can be vectorized versus how often the data is accessed randomly. Cache effects such as
false sharing can also dramatically affect performance, and many other computer architecture issues
come to play in practice. See Appendix A for suggestions of additional reading on this topic.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 199 — #199

CHAPTER

Stencil and Recurrence 7
In this chapter, we discuss a special case of the map pattern, the stencil pattern, which has a regular
data access pattern. We will also discuss the recurrence pattern, which is a generalization of the map
pattern that supports more complex data dependencies but which can still be efficiently parallelized.

The stencil pattern results when the inputs to every instance of a map pattern are based on regular
access to an input data collection using a fixed set of offsets. In other words, every output of a stencil
is a function of some neighborhood of elements in an input collection.

Stencils are common in practice. There are also several specific optimizations that can be applied
to their implementation. In particular, the neighborhood structure of stencils exposes opportunities
for data reuse and optimization of data locality. The regular structure of the memory reads also
means that vectorized elemental functions can use shifts, rather than general gathers, for access-
ing input data. Efficient implementation of multidimensional stencils also requires attention to cache
effects.

Stencils access a neighborhood of input data using a set of offsets. Recurrences are similar but
access a neighborhood of outputs. Unlike a map, instances of a recurrence can depend on the values
computed by other instances. In serial code, recurrences appear as loop-carried dependencies in which
iterations of a loop can depend on previous iterations. We limit our discussion to cases where the output
dependencies follow a regular pattern based on a set of offsets.

In Chapter 5, we discussed recurrences in one-dimensional loops, which can be parallelized as
scans, but only if the instance operations are associative. In this chapter, we show that n-dimensional
recurrences with n> 1 (those arising from loop nests) can always be parallelized over n− 1 dimensions
whether or not the operations are associative. In fact, you do not require any special properties for the
operations in the recurrence. All that matters is that the pattern of data dependencies is regular. In
this chapter, we discuss a simple way to parallelize recurrences based on hyperplane sweeps, while in
Chapter 8 we discuss another way to parallelize recurrences based on recursive divide-and-conquer.

7.1 STENCIL
A stencil is a map in which each output depends on a “neighborhood” of inputs specified using a set of
fixed offsets relative to the output position. A defining serial implementation is given in Listing 7.1 and
is diagrammed in Figure 7.1. The data access patterns of stencils are regular and can be implemented
either using a set of random reads in each elemental function or as a set of shifts, as discussed in
Section 7.2.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00007-4
c© 2012 Elsevier Inc. All rights reserved.

199

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 200 — #200

200 CHAPTER 7 Stencil and Recurrence

1 template<
2 int NumOff, // number of offsets
3 typename In, // type of input locations
4 typename Out, // type of output locations
5 typename F // type of function / functor
6 >

7 void stencil(
8 int n, // number of elements in data collection
9 const In a[], // input data collection (n elements)

10 Out r[], // output data collection (n elements)
11 In b, // boundary value
12 F func, // function / functor from neighborhood inputs to output
13 const int offsets[] // offsets (NumOffsets elements)
14) {
15 // array to hold neighbors
16 In neighborhood[NumOff];
17 // loop over all output locations
18 for (int i = 0; i < n; ++i) {
19 // loop over all offsets and gather neighborhood
20 for (int j = 0; j < NumOff; ++j) {
21 // get index of jth input location
22 int k = i+offsets[j];
23 if (0 <= k && k < n) {
24 // read input location
25 neighborhood[j] = a[k];
26 } else {
27 // handle boundary case
28 neighborhood[j] = b;
29 }

30 }

31 // compute output value from input neighborhood

32 r[i] = func(neighborhood);
33 }

34 }

LISTING 7.1

Serial implementation of stencil. This code is generic, so it calls func for doing the actual processing after
reading the neighborhood.

Stencils are important in many applications. In image and signal processing, the convolution oper-
ation is fundamental to many operations. In a convolution, the input samples are combined using a
weighted sum with specific fixed weights associated with each offset input. Convolution is a linear
operation but not all stencils are linear. Bilateral filtering is a powerful noise-reduction filter that uses
non-linear operations to avoid smoothing over edges [TM98]. It is non-linear but follows the stencil
pattern.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 201 — #201

7.2 Implementing Stencil with Shift 201

FIGURE 7.1

Stencil pattern. The stencil pattern combines a local, structured gather with a function to combine the results
into a single output for each input neighborhood.

Stencils also arise in solvers for partial differential equations (PDEs) over regular grids. PDE solvers
are important in many scientific simulations, in computer-aided engineering, and in imaging. Imag-
ing applications include photography, satellite imaging, medical imaging, and seismic reconstruction.
Seismic reconstruction is one of the major workloads in oil and gas exploration.

Stencils can be one dimensional, as shown in Figure 7.1, or multidimensional. Stencils also have
different kinds of neighborhoods from square compact neighborhoods to sparse neighborhoods. The
special case of a convolution using a square compact neighborhood with constant weights is known
as a box filter and there are specific optimizations for it similar to that for the scan pattern. However,
these optimizations do not apply to the general case. Stencils reuse samples required for neighbor-
ing elements, so stencils, especially multidimensional stencils, can be further optimized by taking
cache behavior into account as discussed in Section 7.3. Stencils, like shifts, also require considera-
tion of boundary conditions. When subdivided using the partition pattern, presented in Section 6.6,
boundary conditions can result in additional communication between cores, either implicit or
explicit.

7.2 IMPLEMENTING STENCIL WITH SHIFT
The regular data access pattern used by stencils can be implemented using shifts. For a group of ele-
mental functions, a vector of inputs for each offset in the stencil can be collected by shifting the input
by the amount of the offset. This is diagrammed in Figure 7.2.

Implementing a stencil in this way is really only beneficial for one-dimensional stencils or the
memory-contiguous dimension of a multidimensional stencil. Also, it does not reduce total memory
traffic to external memory since, if random scalar reads are used, data movement from external memory
will still be combined into block reads by the cache. Shifts, however, allow vectorization of the data
reads, and this can reduce the total number of instructions used. They may also place data in vector
registers ready for use by vectorized elemental functions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 202 — #202

202 CHAPTER 7 Stencil and Recurrence

FIGURE 7.2

Stencil pattern implemented with shifts. The offsets of a stencil can each be implemented with a shift and then
combined.

7.3 TILING STENCILS FOR CACHE
When parallelizing multidimensional stencils where the data is laid out in a row-by-row fashion, there
is a tension between optimizing for cache line data locality and minimizing the size of the working set.
Figure 7.3 demonstrates the approach used to optimize stencils for cache known as strip-mining.

Assume the data for a two-dimensional array is laid out in a row-by-row fashion so that all data
in a row is contiguous in memory. That means that horizontal offsets access data that is close by, but
vertical offsets access data that is far away. Therefore, horizontally accessed data will tend to be in the
same cache line, but vertically accessed data will tend to be in different cache lines.

When breaking up the work over multiple cores, rectangular regions are assigned to each core.
Assigning rows to each core would make good use of horizontal data locality. However, this approach
would tend to read data redundantly since each core will need data from adjacent rows, assuming there
are vertical offsets in the stencil. Conversely, assigning columns to each core would redundantly read
data in the same cache line. Even worse, multiple cores would then write to the same cache line and
cause false sharing and less than impressive performance.

If there are a significant number of vertical offsets, the right solution is often to assign a “strip” to
each core. The strip is a multiple of cache lines wide, to avoid false sharing on output and to avoid
significant redundancy on reads, and the height of the array vertically. Within each core, a strip is
processed serially, from top to bottom. This organization of the computation should give good temporal
coherence and reuse of data in the cache. The width of the strip should be small enough so that the
working set of the stencil for the strip will fit in the cache.

There are two other memory system effects that can occur with memory systems when processing
stencils. First, if the row size is a power of two, sometimes data from different rows can map to the
same “sets” in set-associative caches, causing false cache conflicts. Whether this happens depends on
a number of memory subsystem design issues including the number of sets in the cache and the size
of the cache lines. This pathological case, if it occurs, can usually be avoided by padding array rows
with unused elements to avoid row lengths that are powers of two. You should also take the strip
width and stencil height into account to determine a padding amount that avoids conflicts anywhere in
the working set. The second problem is TLB misses. For very large stencils, enough different pages
may have to be touched that there are not enough entries in the TLB cache to manage the virtual-
to-physical address translation. This can cause TLB cache thrashing, in which constant misses in the
TLB cache will severely degrade performance. If the TLB miss rate is high, the data may have to be

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 203 — #203

7.4 Optimizing Stencils for Communication 203

FIGURE 7.3

Tiling stencils for cache using strip-mining. Strips are assigned to each core. The strips are a multiple of a
cache line wide, wide enough to avoid too much unused data being read into cache, and the height of the
array. Processing goes top to bottom within a strip to minimize the working set and maximize reuse of the data
in the cache. The strip alignment with cache lines prevents false sharing between adjacent strips. Reads may
come from adjacent input strips, but writes are from separate cores and are always in separate strips.

reorganized into tiles and processing order changed to avoid needing to access more pages at once than
are supported by the memory system.

The partition and geometric decomposition patterns, discussed in Section 6.6, are related to strip-
mining. When strip-mining, the output partitions are non-overlapping but the input footprints of each
partition overlap. That is, the input is a more general geometric decomposition, not a partition.

7.4 OPTIMIZING STENCILS FOR COMMUNICATION
The stencil pattern is often used inside an iterative loop—for example, in partial differential equation
(PDE) solvers. The output of each stencil application is used as the input for the next iteration. In this
case, synchronization is required between iterations so that the overlapping regions can be updated.
These overlapping regions, often called “ghost cells” in this context, may have to be explicitly com-
municated between nodes when the pattern is used in a distributed system [KS10]. It is generally better
to replicate these ghost cells in each local memory and swap them at the end of each iteration when

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 204 — #204

204 CHAPTER 7 Stencil and Recurrence

using an iterated stencil than to try and share the memory for them at a fine-grained level. Fine-grained
sharing can lead to increased communication costs.

The set of all ghost cells is sometimes known as a halo. The halo needs to be large enough to
contain all the neighbors needed for at least one iteration. It is also possible to reduce communication
to only every nth iteration by using a “deep halo” that is n times larger than necessary. However, this
does require performing additional redundant computation in each node. This should be used only
when the limiting factor is latency of communication, not bandwidth or computation. Optimizations
that reduce communication, even when they increase computation, often prove very effective. General
trends in computing, toward more processing cores, increasingly favor such optimizations. However,
like any program transformation that increases the total amount of work to increase scalability, the code
should be carefully analyzed and tested for performance to determine if the transformation is actually
beneficial. Many other optimizations are possible in this pattern, including latency hiding, which can
be accomplished by doing the interior computations first while simultaneously waiting for ghost cell
updates.

In the context of iterative update of stencil computations, there is also the issue of double buffering
to consider. For most iterated stencils, it is necessary to make a copy of the input and generate a new
output buffer, rather than doing an update in place. However, for some stencils, namely, those that are
causal (the offsets to input values can be organized to always point “backward in time” to previously
processed samples, for some serial ordering), it is possible to do updates in place. This optimization
can reduce memory requirements considerably but assumes a serial processing order. When used with
geometric decomposition, ghost cells should still be used to decouple the computations, and some
additional memory will still be required for the ghost cells.

Iterated stencils are really a special case of recurrences, discussed in Section 7.5. Thinking about
iterated stencils as recurrences exposes the option of space-time blocking, which can significantly
improve arithmetic intensity, the ratio of computation to communication.

7.5 RECURRENCE
When several loops are nested and have data dependencies between them, even though the loop itera-
tions are not independent it is still possible to parallelize the entire loop nest. Consider Figure 7.4. In
this figure, the arrows represent data dependencies where each output b[i][j] depends on the outputs
from elements to the left and above. Such data dependencies result from the double loop nest shown
in Listing 7.2. In the diagram, inputs are only shown at the boundaries (implemented by initializing
appropriate elements of b) but in general there could be other inputs at every element, represented in
the code with array a, and we also actually have outputs at every element.

You can parallelize such a loop nest even if the function f has no special properties. The trick is
to find a plane that cuts through the grid of intermediate results so that all references to previously
computed values are on one side of the plane. Such a plane is called a separating hyperplane. You
can then sweep (iterate) through the data in a direction perpendicular to this plane and perform all
the operations on the plane at each iteration in parallel. This is equivalent to skewing the elements of
Figure 7.4 so that all dataflow arrows correctly point downward and forward in time. After you do this,
the implementation looks like the diagram in Figure 7.5, where we have also shown all data elements

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 205 — #205

7.5 Recurrence 205

FIGURE 7.4

Recurrence pattern, definition. A multiply nested loop can be parallelized if the data dependencies are
regular by finding a separating hyperplane and sweeping it through the lattice. Here, one possible separating
hyperplane sweep is shown using a sequence of dotted lines.

1 void my_recurrence(
2 size_t v, // number of elements vertically
3 size_t h, // number of elements horizontally
4 const float a[v][h], // input 2D array

5 float b[v][h] // output 2D array (boundaries already initialized)

6) {
7 for (int i=1; i<v; ++i)
8 for (int j=1; j<h; ++j)
9 b[i][j] = f(b[i−1][j], b[i][j−1], a[i][j]);

10 }

LISTING 7.2

Serial 2D recurrence. For syntactic simplicity, the code relies on the C99 feature of variable-length arrays.

consumed and computed for clarity. Leslie Lamport showed [Lam74] that a hyperplane can always
be found if the dependencies are constant offsets. Note that as the plane sweeps through the array,
the amount of parallelism is small at first, grows to a maximum value, and then shrinks again. This

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 206 — #206

206 CHAPTER 7 Stencil and Recurrence

FIGURE 7.5

Recurrence pattern, implementation. A hyperplane sweep can also be seen as a skew of the elements of the
recurrence so that all data dependencies are oriented forward in time.

approach to parallelization can be generalized to higher-dimensional loop nests as well as loop nests
whose inner loop bounds depend on indices of outer loops. This generalization is called polyhedral
theory [VBC06].

Such a parallelization can be challenging to implement, especially in higher dimensions, since the
transformation of the indices and proper handling of the boundary conditions can get quite complicated.
Different choices of the hyperplane can lead to different parallelizations with different performances
as well. In the above example, consider the case where the horizontal size h is large and the vertical
size v is small, and vice versa. You may want to “slant” the hyperplane in different directions to get
optimal performance in these two cases.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 207 — #207

7.6 Summary 207

Both parallel and serial implementations of recurrences are also often combined with tiling. Tiling
is especially beneficial for recurrences since it improves the ratio of data access to computation. In
this approach, the recurrence is broken into a grid of tiles, and the data dependencies between the tiles
lead to a new recurrence. Within the tiles, however, a serial implementation of the recurrence can be
used. Such tiling is often so beneficial that it is useful to convert iterated stencils to recurrences so
that this approach can be used. Tiling can be applied using either a static decomposition or a divide-
and-conquer strategy under programming models supporting fork–join. The fork–join approach is
discussed at greater length in Section 8.12.

Examples of the use of the recurrence pattern include infinite impulse response filters, dynamic
programming (such as that used for sequence alignment in the Smith–Waterman algorithm), option
pricing by the binomial lattice algorithm, and matrix factorization.

7.6 SUMMARY
In this chapter, we have discussed two related patterns, stencils and recurrences. These are very com-
mon in practice, in everything from simulation to image processing. What these two patterns have in
common is a regular pattern of communication and data access. To obtain high performance with these
patterns, this regularity needs to be used to improve efficiency both by reuse of data (reducing the
necessary bandwidth to off-chip memory) and by vectorization.

In both stencil and recurrence, it is possible to convert a set of offset memory accesses to shifts,
but this is really only useful if vectorization is also used. Stencils can also use strip-mining to make
effective use of the cache.

The other challenge with recurrences in particular (which also arise when stencils are iterated)
is implementing space-time tiling. While this is an effective technique, picking the right size of tile
involves a tradeoff between higher arithmetic intensity and working set. Chapter 8 introduces a recur-
sive approach to tiling a recurrence, which Chapter 10 elaborates upon in the context of a practical
example. The recursive approach tiles the recurrence at many different levels, so that at some level the
tiles become the right size to fit in cache.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 209 — #209

CHAPTER

Fork–Join 8
When you come to a fork in the road, take it.

(Yogi Berra, 1925–)

This chapter describes the fork–join pattern and gives several examples, including its use to imple-
ment other patterns such as map, reduce, recurrence, and scan. Applied recursively, fork–join can
generate a high degree of potential parallelism. This can, in turn, be efficiently scheduled onto actual
parallelism mechanisms by the Cilk Plus and Intel Threading Building Blocks (TBB) work-stealing
schedulers.

Many serial divide-and-conquer algorithms lend themselves to parallelization via fork–join. How-
ever, the limits on speedup noted in Section 2.5 need to be taken into account. In particular, most of
the work should be pushed as deep into the recursion as possible, where the parallelism is high.

This chapter starts with the basic concept of fork and join and introduces the Cilk Plus, TBB,
and OpenMP syntaxes for it. Section 8.3 shows how the map pattern can be implemented efficiently
using recursive fork–join, which is indeed how Cilk Plus and TBB implement it. Both Cilk Plus and
TBB use a parallel iteration idiom for expressing the map pattern, although the TBB interface can
also be thought of as using an elemental function syntax. The recursive approach to parallelism
needs split and merge operations as well as a base case. Section 8.4 covers how to select the base case
for parallel recursion. Section 8.5 explains how the work-stealing schedulers in Cilk Plus and TBB
automatically balance load. It also details the subtle differences in work-stealing semantics between
the two systems and the impact of this on program behavior—in particular, memory usage. Section 8.6
shows a common cookbook approach to analyzing the work and span of fork–join, particularly the
recursive case. To demonstrate this approach and to give a concrete example of recursive parallelism,
Section 8.7 presents an implementation of Karatsuba multiplication of polynomials. Section 8.8
touches on the subject of cache-oblivious algorithms. Cache-oblivious algorithms [ABF05] optimize
for the memory hierarchy without knowing the structure or size of that hierarchy by having data
locality at many different scales. Section 8.9 presents parallel Quicksort in detail, because it exposes
subtle implementation issues that sometimes arise in writing efficient parallel divide-and-conquer
algorithms. Parallel Quicksort also highlights the impact of the differences in Cilk Plus versus TBB
work-stealing semantics. Section 8.10 shows how Cilk Plus hyperobjects can simplify writing
reductions in the fork–join context. Section 8.11 shows how the scan pattern can be implemented
efficiently with fork–join. Section 8.12 shows how fork–join can be applied to recurrences and, in
particular, recursive tiled recurrences.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00008-6
c© 2012 Elsevier Inc. All rights reserved.

209

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 210 — #210

210 CHAPTER 8 Fork–Join

8.1 DEFINITION
In fork–join parallelism, control flow forks (divides) into multiple flows that join (combine) later. After
the fork, one flow turns into two separate flows. Each flow is independent, and they are not constrained
to do similar computation. After the join, only one flow continues.

For example, consider forking to execute B() and C() in parallel and then joining afterwards.
The execution of a fork–join can be pictured as a directed graph, as in Figure 8.1. This figure also
demonstrates the graphical notation we will use for the fork and join operations.

Often fork–join is used to implement recursive divide-and-conquer algorithms. The typical pattern
looks like this:

void DivideAndConquer(Problem P) {
if(P is base case) {

Solve P;
} else {

Divide P into K subproblems;
Fork to conquer each subproblem in parallel;
Join;
Combine subsolutions into final solution;

}

}

It is critical that the subproblems be independent, so that they can run in parallel. Nesting K-way fork–
join this way to N levels permits KN-way parallelism. Figure 8.2 shows three-level nesting, resulting
in eight parallel flows at the innermost level. The algorithm should be designed to put the vast majority
of work deep in the nest, where parallelism is high. Section 8.6 shows how to formally analyze the
speedup of fork–join.

B() C()

FIGURE 8.1

Fork–join control flow.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 211 — #211

8.2 Programming Model Support for Fork–Join 211

Divide

Base case

Combine

FIGURE 8.2

Nested fork–join control flow in a divide-and-conquer algorithm. For good speedup, it is important that most
of the work occur deep in the nesting (more darkly shaded boxes), where parallelism is high.

Selecting the size of the base case for parallel divide-and-conquer can be critical in practice. It
should allow the recursion to go deep enough to permit plenty of parallelism. However, the recursion
should not be too deep; in particular, it should not result in subproblems so fine grained that scheduling
overheads dominate. Section 8.4 offers more guidance on this point. Also, the problem division and
combine operations which appear before and after the fork and join operations should be as fast as
possible, so they do not dominate the asymptotic complexity and strangle speedup.

8.2 PROGRAMMING MODEL SUPPORT FOR FORK–JOIN
Programming model support for fork–join has to express where to fork and where to join. Cilk Plus,
TBB, and OpenMP express fork–join differently. Cilk Plus uses a syntactic extension, TBB uses a
library, and OpenMP uses pragma markup, but the fundamental parallel control flow is the same
for all. There are, however, subtle differences about which threads execute a particular part of the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 212 — #212

212 CHAPTER 8 Fork–Join

parallel control flow, as Section 8.5 will explain. As long as you do not rely on thread-local storage,
the difference is immaterial for now.

When reading the following subsections, pay attention not only to the different ways of express-
ing fork–join but also to how variables outside the fork–join are captured and referenced. This is
particularly relevant when there is an increment of an index variable, such as ++i in the example.

8.2.1 Cilk Plus Support for Fork–Join
Cilk Plus has keywords for marking fork and join points in a program. The control flow in Figure 8.1
can be written in Cilk Plus as:

cilk_spawn B();
C();
cilk_sync;

The cilk_spawn marks the fork. It indicates that the caller can continue asynchronously without
waiting for B() to return. The precise fork point occurs after evaluation of any actual arguments.
The cilk_sync marks an explicit join operation. It indicates that execution must wait until all calls
spawned up to that point by the current function have returned. In Cilk Plus there is also an explicit
join at the end of every function.

Note in our example above that there is not a cilk_spawn before C(). The example could also be
written as the following, which would work:

cilk_spawn B();
cilk_spawn C();
/∗ nil ∗/
cilk_sync;

However, this is redundant and considered bad style in Cilk Plus, because it specifies two forks, as in
Figure 8.3. The second fork is pointless overhead—it runs /∗ nil ∗/ (that is, nothing) in the spawning
task in parallel with C(). You should put some of the work in the spawned task and some in the
spawning task instead.

Multiway forks are possible. For example, the following code forks four ways:

cilk_spawn A();
cilk_spawn B();
cilk_spawn C();
D(); // Not spawned, executed in spawning task
cilk_sync; // Join

The matching of cilk_spawn and cilk_sync is dynamic, not lexical. A cilk_sync waits for all
spawned calls in the current function to return. Spawning within a loop, or conditional spawning, can
be handy on occasion. The following fragment does both: It spawns f(a[i]) for nonzero a[i]:

for (int i=0; i<n; ++i)
if (a[i]!=0)

cilk_spawn f(a[i]);
cilk_sync;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 213 — #213

8.2 Programming Model Support for Fork–Join 213

B() NilC()

FIGURE 8.3

Bad style for fork–join. Spawning every subtask in Cilk Plus is unnecessary overhead. In general, work should
also be computed by the spawning task.

Be warned, however, that spawning many tasks from a loop is often less efficient than using recursive
forking, because the loop itself may become a serial bottleneck. The cilk_for construct uses recur-
sive forking even though it looks like a loop. The cilk_sync can be conditional, too, although none
of the examples in this book uses that capability. As mentioned previously, there is always an implicit
cilk_sync (join) at the end of a function. Therefore, when a function returns, you can be sure that any
Cilk Plus parallelism created in it has finished. Note, too, that because forking occurs after evaluation
of any actual arguments, each spawned call receives the intended value of a[i] as an argument, even
as the loop continues to increment i.

8.2.2 TBB Support for Fork–Join
TBB has two high-level algorithm templates for fork–join, one for simple cases and one for more
complicated cases. For simple cases, the function template parallel_invoke does an n-way fork for
small n. It also waits for all tasks that it forks to complete; that is, it joins all the tasks before returning.
Here is an example for n= 2:

tbb::parallel_invoke(B, C);

In the current TBB implementation, the parallel_invoke template accepts up to 10 arguments.
The arguments should be function objects, sometimes called functors, each with a method void

operator()()const that takes no arguments. Passing parameters to the functor is done by captur-
ing them during construction. Typically the function objects are constructed by lambda expressions,
which give a more convenient syntax, especially for capturing parameters. For example, here is a
hypothetical fragment for walking two subtrees in parallel:

tbb::parallel_invoke([=]{Walk(node−>left);},
[=]{Walk(node−>right);});

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 214 — #214

214 CHAPTER 8 Fork–Join

The class tbb::task_group deals with more complicated cases, and in particular provides a more
explicit join operation. Here is a TBB fragment for spawning f(a[i]) for nonzero a[i]:

task_group g;
for (int i=0; i<n; ++i)

if (a[i] != 0)
g.run([=,&a]{f(a[i]);}); // Spawn f(a[i]) as child task

g.wait(); // Wait for all tasks spawned from g

Method run marks where a fork occurs; method wait marks a join. The wait is required before
destroying the task_group; otherwise, the destructor throws an exception missing_wait. Note that
i must be captured by value, not by reference, because the loop might increment the original variable
i before the functor actually runs. By-value capture makes a copy of non-local variable references at
the point where the lambda is constructed. By-reference allows the lambda to refer to the state of the
non-local variable when the lambda is actually executed. More details on this are given in Section D.2.
The general by-value capture given by the “=” argument to the lambda ensures that the value of i at
the point of the invocation of g.run is used for that task. The notation &a specifies that a is captured
by reference, since C++ does not allow capturing arrays by value.

8.2.3 OpenMP Support for Fork–Join
OpenMP 3.0 also has a fork–join construct. Here is an OpenMP fragment for the fork–join control flow
from Figure 8.1:

#pragma omp task
B();
C();
#pragma omp taskwait

The construct task indicates that the subsequent statement can be independently scheduled as a task.
In the example, the statement “B();” is run in parallel. The statement could also be a compound
statement—that is, a group of statements surrounded by braces. The work in C() is performed by the
spawning task, and finally the construct omp taskwait waits for all child tasks of the current task.

There is a catch peculiar to OpenMP: Parallelism happens only inside parallel regions. Thus, for
the example to actually fork there must be an enclosing OpenMP parallel construct, either in the
current routine or further up the call chain.

Variable capture needs attention. OpenMP tasks essentially capture global variables by reference and
local variables by value. In OpenMP parlance, these capture modes are respectively called shared and
firstprivate. Sometimes these defaults must be overridden, as the following fragment illustrates:

int foo(int i) {
int x, y;

#pragma omp task shared(x)
x = f(i);
++i;
y = g(i);

#pragma omp taskwait
return x+y;

}

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 215 — #215

8.3 Recursive Implementation of Map 215

The shared clause requests that x be captured by reference. Without it, x would be captured by
value, and the effect of the assignment x = f(i) would be lost.

8.3 RECURSIVE IMPLEMENTATION OF MAP
One of the simplest, but most useful, patterns to implement with fork–join is map. Although both
Intel TBB and Cilk Plus have concise ways to express map directly, the map pattern is nonetheless
a good starting example for parallel divide-and-conquer, because it implements a familiar pattern.
It also gives some insight into how Cilk Plus and TBB implement their map constructs. They really
do use the divide-and-conquer approach to be described, because it efficiently exploits the underlying
work-stealing mechanism explained in Section 8.5. Furthermore, you may eventually need to write a
version of the map pattern with features beyond the built-in capabilities—for example, when fusing it
with other patterns—so knowledge of how to implement map efficiently using fork–join is useful.

Consider the following Cilk Plus code:

cilk_for(unsigned i=lower; i<upper; ++i)
f(i);

The cilk_for construct can be implemented by a divide-and-conquer routine recursive_map,
which is called like this:

if(lower<upper)
recursive_map(lower,upper,grainsize,f)

The conditional eliminates needing to deal with the empty case inside the routine. Listing 8.1 shows
the recursive_map routine. The parameter grainsize controls the size of the base case. In Cilk
Plus, the compiler and runtime choose the size of the base case based on considerations that will be
discussed in Section 8.4.

1 template<typename Func>
2 void recursive_map(unsigned lower, unsigned upper, unsigned grainsize, Func f) {
3 if(upper−lower<=grainsize)
4 // Parallel base case
5 for(unsigned i=lower; i<upper; ++i)
6 f(i);
7 else {
8 // Divide and conquer
9 unsigned middle = lower+(upper−lower)/2u;

10 cilk_spawn recursive_map(lower, middle, grainsize, f);
11 recursive_map(middle, upper, grainsize, f);
12 }

13 // Implicit cilk sync when function returns
14 }

LISTING 8.1

Recursive implementation of the map pattern in Cilk Plus.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 216 — #216

216 CHAPTER 8 Fork–Join

[0,9)

[4,9)[0,4)

[0,2) [2,4) [4,6) [6,9)

[7,9)[6,7)

FIGURE 8.4

Execution of recursive_map(0,9,2,f) using the implemention in Listing 8.1.

Figure 8.4 illustrates the execution of recursive_map(0,9,2,f), which maps f over the half-
open interval [0,9) with no more than two iterations per grain. Arcs are labeled with [lower,upper)
to indicate the corresponding arguments to recursive_map.

Now consider an optimization. In Listing 8.1, no explicit cilk_sync is necessary because every
function with cilk_spawn performs an implicit cilk_sync when it returns. Except for this implicit
cilk_sync, the routine does nothing after its last call. Hence, the last call is what is known as a tail
call. In serial programming, as long as local variables can be overwritten before the last call, a tail call
can be optimized away by the following transformation:

1. Update the parameters to be the values required for the callee.
2. Jump to the top of the routine.

Applying these rules literally to the previous example yields the code in Listing 8.2. This code can be
cleaned up by removing redundant updates and structuring the goto as a while loop, resulting in the
concise code in Listing 8.3.

Similar tricks for converting tail calls to iteration applies to TBB, as will be shown in Listings 8.12
and 8.13 of Section 8.9.2.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 217 — #217

8.4 Choosing Base Cases 217

1 template<typename Func>
2 void recursive_map(unsigned lower, unsigned upper, unsigned grainsize, Func f) {
3 retry:
4 if(upper−lower<=grainsize)
5 for(unsigned i=lower; i<upper; ++i)
6 f(i);
7 else {
8 unsigned middle = lower+(upper−lower)/2u;
9 cilk_spawn recursive_map(lower, middle, grainsize, f);

10 // Set parameters to be values required for callee
11 lower = middle;
12 upper = upper;
13 grainsize = grainsize;
14 // Jump into the callee
15 goto retry;
16 }

17 // Implicit cilk sync when function returns

18 }

LISTING 8.2

Modification of Listing 8.1 that changes tail call into a goto.

1 template<typename Func>
2 void recursive_map(unsigned lower, unsigned upper, unsigned grainsize, Func f) {
3 while(upper−lower>grainsize) {
4 unsigned m = lower+(upper−lower)/2u;
5 cilk_spawn recursive_map(lower, m, grainsize, f);
6 lower = m;
7 }

8 for(unsigned i=lower; i<upper; ++i)
9 f(i);

10 // Implicit cilk sync when function returns
11 }

LISTING 8.3

Cleaned-up semi-recursive map in Cilk Plus.

8.4 CHOOSING BASE CASES
In parallel divide-and-conquer, there are often two distinct base cases to consider:

• A base case for stopping parallel recursion
• A base case for stopping serial recursion

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 218 — #218

218 CHAPTER 8 Fork–Join

They sometimes differ because they are guided by slightly different overhead considerations. The
alternative to parallel recursion is serial recursion, which avoids parallel scheduling overheads. The alter-
native to serial recursion is a serial iterative algorithm, which avoids calling overheads. However, these
two overheads are often at different scales so the optimal sizes for the base cases are often different.

For example, in the Quicksort example detailed later in Section 8.9, serial recursion continues only
until there are about 7 elements to sort. It stops at a relatively short sequence because the iterative
alternative is a quadratic sort, which has a higher asymptotic complexity but less overhead and a lower
constant factor. However, in the same example, parallel recursion stops at about 500 elements. The
parallel recursion stops for a much bigger base case problem size because the alternative is serial
recursive Quicksort, which is still quite efficient at this size but avoids parallel overheads.

Given a machine with P hardware threads, it is tempting to choose a parallel base case such that
there are exactly P leaves in the tree of spawned functions. However, doing so often results in poor
performance, because it gives the scheduler no flexibility to balance load, as noted in Section 2.6.6.
Even if the leaves have nominally equal work and processors are nominally equivalent, system effects
such as page faults, cache misses, and interrupts can destroy the balance. Thus, it is usually best to
overdecompose the problem to create parallel slack (Section 2.5.6). As the next section explains,
the underlying work-stealing scheduler in Cilk Plus and TBB makes unused parallel slack cheap for
fork–join parallelism.

Of course, overdecomposition can go too far, causing scheduling overheads to swamp useful work,
just as ordinary function calls can swamp useful work in serial programs. A rough rule of thumb is that
a cilk_spawn costs on the order of 10 non-inlined function calls, and a TBB spawn costs on the order
of 30 non-inlined function calls, excluding the cost of data transfer between workers if parallelism
actually occurs. Basic intuitions for amortizing call overhead still apply—only the relative expense of
the call has changed.

When the leaves dominate the work, you should also consider whether vector parallelism can be
applied, as in the Karatsuba multiplication example (Listing 8.6).

8.5 LOAD BALANCING
Cilk Plus and TBB efficiently balance the load for fork–join automatically, using a technique called
work stealing. Indeed, as remarked earlier, the work-stealing technique is so effective for load bal-
ancing that both frameworks implement their map operations (cilk_for and tbb::parallel_for)
using fork–join algorithms.

In a basic work-stealing scheduler, each thread is called a worker. Each worker maintains its own
double-ended queue (deque) of tasks. Call one end of the deque the “top” and the other end the
“bottom.” A worker treats its own deque like a stack. When a worker spawns a new task, it pushes
that task onto the top of its own deque. When a worker finishes its current task, it pops a task from the
top of its own deque, unless the deque is empty.

When a worker’s deque is empty, a worker chooses a random victim’s deque and steals a task from
the bottom of that deque. Because that is the last task that the owner of the deque would touch, this
approach has several benefits:

• The thief will be grabbing work toward the beginning of the call tree. This tends to be a big piece
of work that will keep the thief busy longer than a small piece would.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 219 — #219

8.5 Load Balancing 219

• In the case of recursive decomposition of an index space, the work stolen will have indices that are
consecutive but will tend to be distant from those that the victim is working on. This tends to avoid
cache conflicts when iterating over arrays.

Overall, the net effect is that workers operate serially depth-first by default, until more actual paral-
lelism is required. Each steal adds a bit of parallel breadth-first execution, just enough to keep the
workers busy. The “just enough” part is important. Always doing breadth-first execution leads to space
exponential in the spawning depth, and the worst spatial locality imaginable! Cilk Plus formalizes the
“just enough” notion into some strong guarantees about time and space behavior.

Before going into the Cilk Plus guarantees, it is worth understanding why they will not always
apply to TBB also. Cilk Plus and TBB differ in their concept of what is a stealable task. The code
fragments in Listing 8.4 will be used to show the difference. The Cilk Plus and TBB fragments show
poor style, because the code will probably perform much better if written as a map instead of a serial
loop that creates tasks. But it serves well to illustrate the stealing issue, and sometimes similar code has
to be written when access to the iteration space is inherently sequential, such as when a loop traverses
a linked list.

For each spawned f(i), there are two conceptual tasks:

• A child task f(i).
• Continuation of executing the caller. This task, which has no name, is naturally called a

continuation.

A key difference between Cilk Plus and TBB is that in Cilk Plus, thieves steal continuations. In TBB,
thieves steal children.

Figure 8.5 diagrams the difference, assuming there are plenty of workers to steal work. The left side
shows Cilk Plus execution, which uses steal-continuation semantics. The initial worker sets i=0 and
spawns f(0). The worker immediately starts executing f(0), leaving the continuation available to

1 // Serial
2 for(int i=0; i<n; ++i)
3 f(i);
4

5 // Cilk Plus
6 for(int i=0; i<n; ++i)
7 cilk_spawn f(i);
8 cilk_sync;
9

10 // TBB
11 tbb::task_group g;
12 for(int i=0; i<n; ++i)
13 g.run([=]{f(i);}); // Must capture i by value.

14 g.wait();

LISTING 8.4

Three loop forms illustrating steal-continuation versus steal-child semantics for work-stealing. This is
generally a poor way to parallelize a loop but is useful for discussing differences in stealing. Note that the TBB
code needs to capture i by value, before the next ++i happens.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 220 — #220

220 CHAPTER 8 Fork–Join

Steal continuation Steal child

++i++i

++i

++i

++i

++i

++i

++i

i=0i=0

f(n–1)f(n–1)

f(2)

f(0)f(0)

f(1)f(1)

f(2)

FIGURE 8.5

Steal continuation vs. steal child. The diagrams show the execution of the routines in Listing 8.4. Each task is
shaded according to which worker executes it if there are plenty of workers. In steal-continuation semantics, a
thief steals the continuation, and the original worker executes the child. Steal-child semantics are the other
way around.

steal. Then another worker steals that continuation and continues execution of the loop. It updates i
and executes f(1). The next worker steals the further continuation of the loop and executes f(2). The
key point is that the loop advances only when there is a worker ready to execute another iteration of it.

The right side shows TBB execution, which uses steal-child semantics. The initial worker sets i=0
and spawns f(0). It leaves f(0) available to steal and proceeds to go around the loop again. It thus
executes all iterations of the loop before attending to spawned work. Furthermore, if it does pick up an
iteration afterward, f(n−1) is topmost on its deque, so it executes f(n−1) first, the reverse order of
the serial code.

This difference has a major impact on stack space guarantees. In the Cilk Plus execution, each
worker is working on a call chain in a state that would have existed in the serial program. Thus, Cilk
Plus can guarantee that, if a program takes stack space S1 for serial execution, it takes no more than
stack space PS1 when executed by P workers.1 However, if run with a single worker, the TBB code
creates a state where the for loop completes, but none of the calls to f(i) has yet started, a nonsensical
state for the original program. Assuming each spawned call takes2(1) space to represent on the stack,
the TBB program takes 2(n) stack space, even if no parallelism is being exploited.

1 TBB cannot make the same guarantee unless the code is written in continuation-passing style, an example of which is
given in Section 8.9.2.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 221 — #221

8.6 Complexity of Parallel Divide-and-Conquer 221

The example also illustrates another difference. In the TBB code, the worker that enters the loop is
the worker that continutes execution after f(i) finishes. If that worker executes g.wait() and not all
f(i) are finished, it tries to execute some of the outstanding f(i) tasks. If none of those is available,
it either idly waits or goes off on an errand to find temporary work to keep it busy. If, in the meantime,
the other spawned f(i) finishes, further progress is blocked until the original worker returns from its
errand. Thus, TBB scheduling is not always greedy (Section 2.5.6), which in turn means that, strictly
speaking, the lower bound on speedup derived in Chapter 2 does not apply.

In the Cilk Plus code, workers never wait at a cilk_sync. The last worker to reach the cilk_sync
is the worker that continues execution afterwards. Any worker that reaches the cilk_sync earlier
abandons the computation entirely and tries to randomly steal work elsewhere. Though random stealing
deviates from ideal greediness, in practice as long as there is plenty of parallel slack the deviation is
insignificant and Cilk Plus achieves the time bound in Equation 2.9 (page 64).

TBB can implement steal-continuation semantics, and achieve the Cilk Plus space and time guar-
antees, if continuations are represented as explicit task objects. This is called continuation passing
style. Unfortunately, it requires some tricky coding, as Section 8.9.2 will show.

Cilk Plus and TBB have different semantics because they are designed with different tradeoffs
in mind. Cilk Plus has nicer properties but requires special compiler support to deal with stealing
continuations, and it is limited to a strict fork–join model. TBB is designed as a plain library that can
be run by any C++ compiler and supports a less strictly structured model.

The stealing semantics for OpenMP are complex and implementation dependent. The OpenMP
rules [Boa11] imply that steal-child must be the default but permits steal-continuation if a task is
annotated with an untied clause. However, the rules do not require continuation stealing, so the
benefits of these semantics are not guaranteed even for untied tasks in OpenMP.

8.6 COMPLEXITY OF PARALLEL DIVIDE-AND-CONQUER
Computing the work and span of the basic fork–join pattern is straightforward. Suppose execution
forks along multiple paths and rejoins. The total work T1 is the sum of the work along each path. The
span T∞ is the maximum span of any path.

More formally, let B‖C denote the fork–join composition of B and C, as introduced earlier in
Figure 8.1. The overall work and span are:

T1(B‖C)= T1(B)+T1(C),

T∞(B‖C)=max(T∞(B),T∞(C)).

Realistically, there will be some overhead for forking and joining. The burdened span (see
Section 2.5.6) includes this overhead, typically a small constant addition for the synchronization plus
the cost of communicating cache lines between hardware threads.

Since parallel divide-and-conquer is a recursive application of fork–join composition, analyzing the
work and span in a recursive divide-and-conquer algorithm is a matter of defining recurrence relations
for T1 and T∞ and solving them. Typically, the recurrences for T1 and T∞ have similar form but differ
in constant factors, which can cause them to have quite different asymptotic solutions. Though solving

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 222 — #222

222 CHAPTER 8 Fork–Join

arbitrary recurrence relations can be difficult, the relations for divide-and-conquer programs often have
a form for which a closed-form solution is already known.

The following discussion presents a simplified form of the Master method [CLRS09], which suf-
fices for the most common cases. It assumes that the problem to be solved has a size N and the recursion
has these properties:

• The recursion step solves a subproblems, each of size N/b.
• The divide and merge steps take time cNd.
• The base case is N = 1 and can be solved in time e.

Here time means either T1 or T∞, depending on context, so to explain the generic math an unadorned
T will be used.

Let T(N) denote the time required to execute a divide-and-conquer algorithm with the aforemen-
tioned properties. The recurrence relations will be:

T(N)= aT(N/b)+ cNd if N > 1,

T(1)= e.

There are three asymptotic solutions to this recurrence:

T(N)=2(Nlogb a) if logb a> d, (8.1)

T(N)=2(Nd lgN) if logb a= d, (8.2)

T(N)=2(Nd) if logb a< d. (8.3)

None of the solutions mentions c or e directly—those are scale factors that disappear in the2 notation.
What is important is the value of logb a relative to d.

The intuition behind these solutions is as follows. A full proof is given in Cormen et al. [CLRS09].
Start by partitioning the program’s recursive call tree level by level, with the levels labeled, from top
to bottom, as N, N/b, N/b2, N/b3, and so on. The three cases in the solution correspond to which
levels dominate the work. Let r be the work at level N/b divided by the work at level N. Each problem
has a subproblems that are proportionately smaller by 1/b. Each problem will require cNd work itself
and have a children requiring c(N/b)d work on the next level down. So, r = ac(N/b)d/(cNd)= bd/a.
Three distinct cases arise, as illustrated in the diagrams in Figure 8.6 for some specific values of a and
b, with c= d = e= 1. The general cases and their corresponding illustrations are:

Case 1. If logb a> d, then r > 1. The work at each level exponentially increases with depth, so
levels near the bottom dominate.
Case 2. If logb a= d, then r = 1. The work at each level is about the same, so the work is
proportional to the work at the top level times the number of levels.
Case 3. If logb a< d, then r < 1. The work at each level exponentially decreases with depth. So
levels near the top dominate.

A useful intuition for effective parallelization can be drawn from these general notions. Ideally,
the subproblems are independent and can be computed in parallel, so only one of the subproblems

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 223 — #223

8.6 Complexity of Parallel Divide-and-Conquer 223

Case 1 with a = 4, b =1.5

Case 2 with a = 2, b = 2
Case 3 with a = 2, b = 8

FIGURE 8.6

The three cases in the Master method. Each grid square represents a unit of work.

contributes to T∞. So a= 1 in the recurrences for T∞, and consequently logb a= 0. Since d ≥ 0 for
any real program, only two of the closed-form solutions apply to T∞:

T∞(N)=2(lgN) if d = 0,

T∞(N)=2(N
d) if d > 0.

Thus, for divide-and-conquer algorithms that fit our assumptions, T∞ can be logarithmic at best, and
only if the divide and combine steps take constant time.

Sometimes, as for the Merge Sort in Chapter 13, constant-time divide and combine is not practical,
but logarithmic time is. The recurrences for such algorithms replace the cNd term with a more compli-
cated term and are beyond the scope of this discussion. See Cormen et al. [CLRS09] for a more general
form of the recurrences and their closed-form solution, and Akra and Bazzi [AB98] for an even more
general form.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 224 — #224

224 CHAPTER 8 Fork–Join

8.7 KARATSUBA MULTIPLICATION OF POLYNOMIALS
Polynomial multiplication serves as an example of applying the the Master method to real code.
Before delving into the fork–join algorithm and its analysis, let’s consider the basic flat algorithm
for multiplying polynomials A and B, each with n coefficients. The flat algorithm is essentially grade-
school multiplication, except no carries propagate between terms. Listing 8.5 shows the flat algorithm
implemented with Cilk Plus array notation.

Input arrays a and b each hold n coefficients of polynomials A and B, respectively. Output array c
holds the 2n− 1 coefficients of the output polynomial C.

The flat algorithm is concise and highly parallel for large n, but unfortunately creates 2(n2) work.
Karatsuba’s multiplication algorithm is a fork–join alternative that creates much less work. A slightly
different form of it is sometimes used for multiplying numbers with hundreds of digits. Both forms are
based on the observation that (a1K+ a0) · (b1K+ b0) can be expanded to a1b1K2

+ (a1b0+ a0b1)K+
a0b0 using only three multiplications:

t0 = a0 · b0,

t1 = (a0+ a1) · (b0+ b1),

t2 = a1 · b1.

The final expansion can be calculated as t2K2
+ (t1− t0− t2)K+ t0. Each of the three multiplica-

tions can be done by recursive application of Karatsuba’s method. The recursion continues until the
multiplications become so small that the flat algorithm is more efficient.

The interpretation of K depends on the meaning of multiplication:

• For convolution, K is a shift.
• For multiplication of polynomials in x, K is a power of x.
• For multiplication of numerals, K is a power of the radix.

For example, to do the radix 10 multiplication problem 1234 · 5678, K is initially 100, so the problem
can be written as (12(100)+ 34) · 56(200)+ 78. The three requisite multiplications are:

t0 = 34 · 78,

t1 = (12+ 34) · (56+ 78),

t2 = 12 · 56.

1 void simple_mul(T c[], const T a[], const T b[], size_t n) {
2 c[0:2*n−1] = 0;
3 for (size_t i=0; i<n; ++i)
4 c[i:n] += a[i]*b[0:n];
5 }

LISTING 8.5

Flat algorithm for polynomial multiplication using Cilk Plus array notation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 225 — #225

8.7 Karatsuba Multiplication of Polynomials 225

1 void karatsuba(T c[], const T a[], const T b[], size_t n) {
2 if(n<=CutOff) {
3 simple_mul(c, a, b, n);
4 } else {
5 size_t m = n/2;
6 // Set c[0:n−1] = t0
7 cilk_spawn karatsuba(c, a, b, m);
8 // Set c[2∗m:n−1] = t2
9 cilk_spawn karatsuba(c+2*m, a+m, b+m, n−m);

10 temp_space<T> s(4*(n−m));
11 T *a_=s.data(), *b_=a_+(n−m), *t=b_+(n−m);
12 a_[0:m] = a[0:m]+a[m:m];
13 b_[0:m] = b[0:m]+b[m:m];
14 if(n&1) {
15 a_[m] = a[2*m];
16 b_[m] = b[2*m];
17 }

18 // Set t = t1
19 karatsuba(t, a_, b_, n−m);
20 cilk_sync;
21 // Set t = t1− t0− t2
22 t[0:2*m−1] −= c[0:2*m−1] + c[2*m:2*m−1];
23 // Add (t1− t0− t2)K into final product
24 c[2*m−1] = 0;
25 c[m:2*m−1] += t[0:2*m−1];
26 if(n&1)
27 c[3*m−1:2] += t[2*m−1:2] − c[4*m−1:2];
28 }

29 }

LISTING 8.6

Karatsuba multiplication in Cilk Plus.

Each of these can be done via Karatsuba’s method with K = 10. Carry propagation can be deferred to
the very end or done on the fly using carry-save addition.

Listing 8.6 shows Cilk Plus code for Karatsuba multiplication. Translation to TBB is a matter of
using task_group instead of cilk_spawn/cilk_sync, and it is possible to translate this code to
OpenMP using tasking constructs.

The parameters are similar to those in Listing 8.5. The type temp_space, described in more detail
in Section 8.7.1, holds scratch space for computing t1 = (a0+ a1) · (b0+ b1). The statements condi-
tional on n&1 do a little extra work required for odd-length sequences and can be ignored to get the
general idea of the algorithm.

A coding point worth mentioning is that t1− t0− t2 is computed separately before adjusting the
final product in c. The reason why is that t0 and t2 are stored in array c. It would be incorrect to merge
lines 22 and 25 into a single line like this:

c[m:2*m−1] += t[0:2*m−1] − c[0:2*m−1] − c[2*m:2*m−1]; // Wrong!

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 226 — #226

226 CHAPTER 8 Fork–Join

because then there would be partial overlap of the source and destination array sections. No overlap
or exact overlap is okay, but partial overlap causes undefined behavior as explained in Section B.8.5.
Line 27 avoids the partial overlap issue because m≥ 2; thus, the array sections c[3*m−1:2] and
c[4*m−1:2] never overlap.

To use the code for n-digit integer multiplication, make T an integral type large enough to hold
n products of digits. Do the convolution, and then normalize the resulting numeral by propagating
carries.

The extra work for when N is odd is insignificant, so assume N is even. Serial execution recurses
on three half-sized instances. The additions and subtractions take time linear in N. The relations for T1
are:

T1(N)= 3T1(N/2)+ cN,

T1(1)=2(1).

This is case 1 in the Master method. Plugging in the closed-form solution yields:

T1(N)=2(N
log2 3)≈2(N1.58...).

The recurrence relations for T∞ differ in the coefficient. There are three subproblems being solved
in parallel. Since they are all similar, T∞ is as if two of the subproblems disappeared, because their
execution overlaps solution of the other subproblem. So the recurrence is:

T∞(N)= T∞(N/2)+O(N),

T∞(1)=2(1).

This is case 3, with solution T∞(N)=2(N).
The speedup limit is T1/T∞ =2(N1.58...)/2(N)=2(N0.58...), so the speedup limit grows a little

faster than
√

N.
The formulae also enable a ballpark estimate for a good parallel base case. We want the base case

to have at least 1000 operations for Cilk Plus. Since the operation count grows as N1.58..., that indicates
that n= 100 is the right order of magnitude for the parallel base case.

The space complexity of Karatsuba multiplication can also be derived from recurrences. Let S1 be
the space for serial execution. The recurrence for S1 is

S1(N)= S1(N/2)+2(N),

S1(1)=2(1).

This is case 3, with solution S1(N)=2(N).
Finally, consider S∞, the space required if an infinite number of threads were available:

S∞(N)= 3S∞(N/2)+2(N),
S∞(1)=2(1),

which has the solution S∞(N)=2(Nlog2 3). Though a machine with an infinite number of threads is
theoretical, there is a real, practical lesson here: Parallelizing divide-and-conquer by creating a new

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 227 — #227

8.8 Cache Locality and Cache-Oblivious Algorithms 227

1 template<typename T>
2 class temp_space {
3 static const size_t n = 4096/sizeof(T);
4 T temp[n];
5 T* base;
6 public:
7 T* data() {return base;}
8 T& operator[](size_t k) {return base[k];}
9 temp_space(size_t size) {

10 base = size<=n ? temp : new T[size];
11 }

12 ˜temp_space() {
13 if(base!=temp)
14 delete[] base;
15 }

16 };

LISTING 8.7

Type for scratch space. It is optimized for allocating short arrays of a type T with a trivial constructor and
destructor.

thread for each spawn can result in an exponential space explosion. Fortunately, there is a better way.
As Section 8.5 shows, Cilk Plus work-stealing guarantees that Sp ≤ S1P, which enables Karatsuba
multiplication to run in space SP = O(NP), much better than exponential space.

8.7.1 Note on Allocating Scratch Space
The Karatsuba multiplication algorithm in Listing 8.6 could use a std::vector<T> for scratch
space. But that would introduce the overhead of dynamic memory allocation even for relatively short
arrays near the leaves of the computation, which dominate the execution time. Hence, the code uses
the class temp_space shown in Listing 8.7 for scratch space.

For simplicity, this class always allocates n elements in temp and hence is suboptimal if type T has
a non-trivial constructor or destructor. More complex implementations can remove this overhead.

At the time of this writing, C99 variable-length arrays or alloca cannot be used in a function that
has cilk_spawn. The reason why is because these features allocate space on the current stack. The
continuation after a cilk_spawn may be run on a stack different from the original stack of the caller,
and this new stack disappears after a cilk_sync. Hence, anything allocated on that stack would be
unsafe to access after the cilk_sync.

8.8 CACHE LOCALITY AND CACHE-OBLIVIOUS ALGORITHMS
Although work and span analysis often illuminates fundamental limits on speedup, it ignores memory
bandwidth constraints that often limit speedup. When memory bandwidth is the critical resource, it is
important to reuse data from cache as much as possible instead of fetching it from main memory.
Because the size of caches and the number of levels of cache vary between platforms, tailoring

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 228 — #228

228 CHAPTER 8 Fork–Join

algorithms to cache properties can be complicated. A solution is a technique called cache-oblivious
programming. It is really cache-paranoid programming because the code is written to work reason-
ably well regardless of the actual structure of the cache. In practice, there are possibly multiple levels
of cache, and when you write the code you are oblivious to their actual structure and size.

Optimizing for an unknown cache configuration sounds impossible at first. The trick is to apply
recursive divide-and-conquer, resulting in good data locality at multiple scales. As a problem is
chopped into finer and finer pieces, eventually a piece fits into outer-level cache. With further
subdivision, pieces may fit into a smaller and faster cache.

An example of cache-oblivious programming is dense matrix multiplication. The obvious non-
recursive code for such multiplication uses three nested loops. Although choosing the right loop order
can help somewhat, for sufficiently large matrices the three-loop approach will suffer when the matri-
ces do not fit in cache. The cache-oblivious algorithm divides a matrix multiplication into smaller
matrix multiplications, until at some point the matrices fit in cache. Better yet, the divide-and-conquer
structure gives us an obvious place to insert fork–join parallelism.

Assume that A, B, and C are matrices, and we want to compute C = C+A×B. A divide-and-
conquer strategy is:

• If the matrices are small, use serial matrix multiplication.
• If the matrices are large, divide into two matrix multiplication problems.

There are three ways to do the division, based on the following three identities:

[
A
]
×

[
B0 B1

]
=

[
A×B0 A×B1

]
, (8.4)[

A0

A1

]
×

[
B
]
=

[
A0×B

A1×B

]
, (8.5)

[
A0 A1

]
×

[
B0

B1

]
=

[
A0×B0+A1×B1

]
. (8.6)

Choosing the identity that splits the longest axis is a good choice, because then the submatrices will
tend toward being square. That tends to maximize cache locality during multiplication.2

To see this, suppose A has dimensions m× k, and B has dimensions k× n. The total work T1 to
multiply the matrices is O(mnk). The total space S to hold all three matrices is O(mk+ kn+mn). This
sum is minimal for a given product mnk when m= n= k. Hence, striving to make the matrices square
improves the chance that the result fits within some level of cache.

Listing 8.8 shows a pseudocode implementation. The informal notations rows(X) and cols(X)
denote the number of rows and columns, respectively, of a matrix X. The first two recursive pairs

2 Splits could be quantized to the cache line granularity, though then the code would no longer be completely cache
oblivous.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 229 — #229

8.8 Cache Locality and Cache-Oblivious Algorithms 229

1 void MultiplyAdd(Matrix& C, const Matrix& A, const Matrix& B) {
2 assert(cols(A)==rows(B));
3 if (less than M operations are required to compute C) {
4 Compute C+=A*B using non−recursive algorithm.
5 } else if (cols(B)>=max(rows(A),rows(B))) {

6 Partition C into
[

C0 C1
]
and B into

[
B0 B1

]
7 cilk_spawn MultiplyAdd(C0, A, B0);
8 MultiplyAdd(C1, A, B1); // No spawn
9 cilk_sync;

10 } else if (rows(A)>=rows(B)) {

11 Partition C into

[
C0

C1

]
and A into

[
A0

A1

]
12 cilk_spawn MultiplyAdd(C0, A0, B);
13 MultiplyAdd(C1, A1, B); // No spawn
14 cilk_sync;
15 } else {

16 Partition A into
[

A0 A1
]
and B into

[
B0

B1

]
17 MultiplyAdd(C, A0, B0);
18 MultiplyAdd(C, A1, B1);
19 }

20 }

LISTING 8.8

Pseudocode for recursive matrix multiplication.

of calls do parallel fork–join. They can be written in TBB using tbb::parallel_invoke. They are
safe to execute in parallel because they update separate parts of matrix C. But the last recursive pair
cannot execute in parallel, because both calls update the same matrix.

Since the last case is serial and equivalent to a single MultiplyAdd, it is tempting to write
MultiplyAdd in a way that uses only the first two of our splitting identities. Doing so would not
affect the parallelism but could seriously raise consumption of memory bandwidth. To see this, con-
sider what would happen in the base case: A and B would be very skinny, with A wide and B tall. In
extreme, A would be an m-element column matrix and B would be an n-element row matrix. Their
product would be an m× n matrix, requiring one store to memory for each multiplication.

The asymptotic complexity is:

T1 =2(rows(C) · rows(B) · cols(C)),

T∞ =2(lg rows(C)+ rows(B)+ lgcols(C)). (8.7)

For practical purposes, rows(B) is usually much larger than either of the lg factors, so the speedup limit
is 2(rows(C)cols(C)); that is, the speedup is proportional to the size of the output matrix. To see this

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 230 — #230

230 CHAPTER 8 Fork–Join

directly from the code, observe that the code is essentially doing a fork–join recursion over the output
matrix and computing inner products for each output element. Thus, it is asymptotically equivalent to
computing each element of C in parallel. But writing the code to directly do that would result in poor
cache behavior, because each inner product would be consuming an entire row of A and column of B
at once.

It is possible to raise the speedup limit by using temporary storage, so that the serial pair of recursive
calls can run in parallel, like this:

Matrix tmp = [0];
cilk_spawn MultiplyAdd(C, A0, B0);
MultiplyAdd(tmp, A1, B1); // No spawn
C += tmp;

Then T∞ =2(lg rows(C)+ lg rows(B)+ lgcols(C)), which is significantly lower than the bound in
Equation 8.7. However, in practice the extra operations and memory bandwidth consumed by the final
+= make it a losing strategy in typical cases, particularly if the other fork–join parts introduce suffi-
cient parallelism to keep the machine busy. In particular, the extra storage is significant. For example,
suppose the top-level matrices A and B are square N×N matrices. The temporary is allocated every
time the inner dimension splits. So the recurrences for the serial execution space S are:

S1(N)= S1(N/2)+2(N
2),

S1(1)= c,

which has the solution:

S1(N)=2(N
2).

Since Cilk Plus guarantees that SP ≤ PS1, the space is at worst O(PN2). That is far worse than the other
algorithm, which needs no temporary matrices and thus requires only O(lgN) space.

There are other recursive approaches to matrix multiplication that reduce T1 at the expense of
complexity or space. For example, Strassen’s method [Str69] recurses by dividing A, B, and C each
into quadrants and uses identities similar in spirit to Karatsuba multiplication, such that only 7 quad-
rant multiplications are required, instead of the obvious 8. Strassen’s algorithm runs in O(Nlg7)≈

O(N2.807...) for multiplying N×N matrices, and the quadrant multiplications can be computed in
parallel.

8.9 QUICKSORT
Quicksort is a good example for studying how to parallelize a non-trivial divide-and-conquer algo-
rithm. In its simplest form, it is naturally expressed as a recursive fork–join algorithm. More
sophisticated variants are only partially recursive. This section will show how parallel fork–join applies
to both the simple and sophisticated variants, demonstrating certain tradeoffs.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 231 — #231

8.9 Quicksort 231

Serial Quicksort sorts a sequence of keys by recursive partitioning. The following pseudocode
outlines the algorithm:

void Quicksort(sequence) {
if(sequence is short) {

Use a sort optimized for short sequences
} else {

// Divide
Choose a partition key K from the sequence.
Permute the sequence such that:

Keys to the left of K are less than K.
Keys to the right of K are greater than K.

// Conquer
Recursively sort the subsequence to the left of K.
Recursively sort the subsequence to the right of K.

}

}

The two subsorts are independent and can be done in parallel, thus achieving some speedup. As we
shall see, the speedup will be limited by the partitioning step.

The Quicksort examples all share the code shown in Listing 8.9, which defines the divide step.
Issues for writing a good serial Quicksort carry over into its parallel counterparts. Two points of the
code so far that are worth noting are:

1. A median of medians is used to choose the partition key, which greatly improves the probability
that the partition will not be grossly imbalanced [BM93].

2. The special case of equal keys is detected, so the Quicksort can quit early. Otherwise, Quicksort
takes quadratic time in this case, because the partition would be extremely imbalanced, with no
keys on the left side of the partition.

The Cilk Plus and TBB versions of Quicksort are largely similar. The difference is in the details of how
the parallel conquer part is specified.

8.9.1 Cilk Quicksort
Serial Quicksort can be parallelized with Cilk Plus by spawning one of the subsorts, as shown in
Listing 8.10. With the cilk_... keywords removed, the code is identical to a serial Quicksort, except
that the choice of a base case is different. Though the parallel code could use the same base case as for
serial Quicksort, it would result in very fine-grained tasks whose scheduling overhead would swamp
useful work. Thus, the base case for parallel recursion is much coarser than where a serial Quicksort
would stop. However, the serial base case is likely a serial recursive Quicksort, which will recurse
further on down to a serial base case.

There is no explicit cilk_sync here because there is nothing to do after the subsorts complete.
The implicit cilk_sync when the function returns suffices, just as it did in Listing 8.1.

Serial Quicksort is notorious for working well in the average case but having pathological behavior
in the worst case. These problems carry over into the parallel version, so they are worth attention. In

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 232 — #232

232 CHAPTER 8 Fork–Join

1 // Size of parallel base case
2 ptrdiff_t QUICKSORT_CUTOFF = 500;
3

4 // Choose median of three keys
5 T* median_of_three(T* x, T* y, T* z) {
6 return *x<*y ? *y<*z ? y : *x<*z ? z : x
7 : *z<*y ? y : *z<*x ? z : x;
8 }

9

10 // Choose a partition key as median of medians
11 T* choose_partition_key(T* first, T* last) {
12 size_t offset = (last−first)/8;
13 return median_of_three(
14 median_of_three(first, first+offset, first+offset*2),
15 median_of_three(first+offset*3, first+offset*4, last−(3*offset+1)),
16 median_of_three(last−(2*offset+1), last−(offset+1), last−1)
17);
18 }

19

20 // Choose a partition key and partition [first ... last) with it
21 // Returns pointer to where the partition key is in partitioned sequence
22 // Returns NULL if all keys in [first ... last) are equal
23 T* divide(T* first, T* last) {
24 // Move partition key to front
25 std::swap(*first, *choose_partition_key(first,last));
26 // Partition
27 T key = *first;
28 T* middle = std::partition(first+1, last, [=](const T& x) {return x<key;})

− 1;
29 if(middle!=first) {
30 // Move partition key to between the partitions

31 std::swap(*first, *middle);
32 } else {
33 // Check if all keys are equal
34 if(last==std::find_if(first+1, last, [=](const T& x) {return key<x;}))
35 return NULL;
36 }

37 return middle;
38 }

LISTING 8.9

Code shared by Quicksort implementations.

particular, even if the choice of partition key is made carefully, in the worst case sorting N keys will
cause recursing to depth N, possibly causing stack overflow. In serial Quicksort, a solution is to recurse
on the smaller subproblem and iterate on the bigger subproblem. The same technique applies to parallel

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 233 — #233

8.9 Quicksort 233

1 void parallel_quicksort(T* first, T* last) {
2 if(last−first<=QUICKSORT_CUTOFF) {
3 std::sort(first,last);
4 } else {
5 // Divide
6 if(T* middle = divide(first,last)) {
7 // Conquer subproblems in parallel
8 cilk_spawn parallel_quicksort(first, middle);
9 parallel_quicksort(middle+1, last);

10 // No cilk sync needed here because of implicit one later
11 }

12 }

13 // Implicit cilk sync when function returns
14 }

LISTING 8.10

Fully recursive parallel Quicksort using Cilk Plus.

Quicksort, as shown in Listing 8.11. The recursion depth is now bounded by lg N since each recursion
shrinks N by a factor of two or more.

8.9.2 TBB Quicksort
TBB versions of Quicksort can be coded similarly to the Cilk Plus versions, except that the mechanics
differ. A version similar to Listing 8.10 can be written using tbb::parallel_invoke to invoke pairs
of recursive calls. A version similar to Listing 8.11 can be written using tbb::task_group as shown
in Listing 8.12. Though in practice the code above has reasonable performance most of the time, it
has a a worst-case space problem. The problem is that the Cilk Plus guarantees on space and time
are not generally true in TBB, because TBB has steal-child semantics, and the guarantees depend on
steal-continuation semantics (Section 8.5). In particular, if the smaller problem is consistently a single
element, then2(N) tasks are added to task_group g, and none is executed until g.wait() executes.
Thus, the worst case space is 2(N), even though the algorithm recurses only O(lgN) deep. This is a
general problem with steal-child semantics: Many children may be generated before any are run.

The solution is to not generate a new child until it is needed. This can be done by simulating steal-
continuation semantics in TBB, by writing the code using continuation-passing style. There are two
common reasons to use continuation-passing style in TBB:

• Avoiding waiting—Instead of waiting for predecessors of a task to complete at a join point, the
code specifies a continuation task to run after the join point.

• Avoiding premature generation of tasks—Instead of generating a bunch of tasks and then execut-
ing them, the code generates one task and executes it, and leaves behind a continuation that will
generate the next task.

The rewritten example will have an example of each. The empty_task will represent execution after
a join point. The quicksort_task will leave behind a continuation of itself.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 234 — #234

234 CHAPTER 8 Fork–Join

1 void parallel_quicksort(T* first, T* last) {
2 while(last−first>QUICKSORT_CUTOFF) {
3 // Divide
4 T* middle = divide(first,last);
5 if(!middle) return;
6

7 // Now have two subproblems: [first .. middle) and (middle .. last)
8 if(middle−first < last−(middle+1)) {
9 // Left problem [first .. middle) is smaller , so spawn it

10 cilk_spawn parallel_quicksort(first, middle);
11 // Solve right subproblem in next iteration
12 first = middle+1;
13 } else {
14 // Right problem (middle .. last) is smaller , so spawn it
15 cilk_spawn parallel_quicksort(middle+1, last);
16 // Solve left subproblem in next iteration
17 last = middle;
18 }

19 }

20 // Base case
21 std::sort(first,last);
22 }

LISTING 8.11

Semi-recursive parallel Quicksort using Cilk Plus. There is no cilk_sync before the base case because the
base case is independent of the spawned subproblems.

Continuation-passing tasking requires using TBB’s low-level tasking interface, class tbb::task,
which is designed for efficient implementation of divide-and-conquer. An instance of class task has
the following information:

• A reference count of predecessor tasks that must complete before running this task. The count may
include an extra one if the task is explicitly waited on. The Quicksort example does not have the
wait, so the count will be exactly the number of predecessors.

• A virtual method that executes when the predecessors finish. The method may also specify the next
task to execute.

• A pointer to its successor. After the method executes, the scheduler decrements the successor’s
reference count. If the count becomes zero, the successor is automatically spawned.

The general steps for using it to write recursive fork–join are:

• Create a class D representing the divide/fork actions. Derive it from base class tbb::task.
• Override virtual method tbb::task::execute(). The definition should perform the divide/fork

actions. It should return NULL, or return a pointer to the next task to execute.
• Create a top-level wrapper function that creates a root task and executes it using tbb::task::

spawn_root_and_wait.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 235 — #235

8.9 Quicksort 235

1 void quicksort(T* first, T* last) {
2 tbb::task_group g;
3 while(last−first>QUICKSORT_CUTOFF) {
4 // Divide
5 T* middle = divide(first,last);
6 if(!middle) {
7 g.wait();
8 return;
9 }

10

11 // Now have two subproblems: [first .. middle) and [middle+1.. last)
12 if(middle−first < last−(middle+1)) {
13 // Left problem (first .. middle) is smaller , so spawn it .
14 g.run([=]{quicksort(first, middle);});
15 // Solve right subproblem in next iteration .
16 first = middle+1;
17 } else {
18 // Right problem (middle .. last) is smaller , so spawn it .
19 g.run([=]{quicksort(middle+1, last);});
20 // Solve left subproblem in next iteration .
21 last = middle;
22 }

23 }

24 // Base case
25 std::sort(first,last);
26 g.wait();
27 }

LISTING 8.12

Semi-iterative parallel Quicksort using TBB.

Because of the desire to lazily generate child tasks, the Quicksort code is a little trickier than TBB code
for typical fork–join situations. Listing 8.13 shows the code. Overall, the logic is similar to the Cilk
Plus version in Listing 8.11, but the parallel mechanics differ. These mechanics will now be explained
in detail.

The top-level routine is quicksort, which creates the root task and runs it. The root task can be
viewed as the gateway from normal calling to the continuation-passing world. Instances of class task
must always be allocated using an overloaded new, with an argument returned by one of the methods
beginning with tbb::task::allocate. There are several of these methods, each specific to certain
usages.

Class quicksort_task is a task for sorting. What were function parameters in the Cilk Plus
version become class members, so that the values can be remembered between the time the task is
created and when it actually runs. The override of task::execute() has the algorithm. If the task
represents a base case, it does a serial sort and returns NULL. The NULL indicates that the scheduler
should use its normal work-stealing algorithm for choosing the next task to execute.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 236 — #236

236 CHAPTER 8 Fork–Join

1 class quicksort_task: public tbb::task {
2 /∗ override ∗/tbb::task* execute();
3 T *first, *last;
4 bool has_local_join;
5 void prepare_self_as_stealable_continuation();
6 public:
7 quicksort_task(T* first_, T* last_) : first(first_), last(last_),

has_local_join(false) {}
8 };
9

10 void quicksort_task::prepare_self_as_stealable_continuation() {
11 if(!has_local_join) {
12 task* local_join = new(allocate_continuation()) tbb::empty_task();
13 local_join−>set_ref_count(1);
14 set_parent(local_join);
15 has_local_join = true;
16 }

17 recycle_to_reexecute();
18 }

19

20 tbb::task* quicksort_task::execute() {
21 if(last−first<=QUICKSORT_CUTOFF) {
22 std::sort(first,last);
23 // Return NULL continuation
24 return NULL;
25 } else {
26 // Divide
27 T* middle = divide(first,last);
28 if(!middle) return NULL;
29

30 // Now have two subproblems: [first .. middle) and [middle+1.. last)

31

32 // Set up current task object as continuation of itself
33 prepare_self_as_stealable_continuation();
34

35 // Now recurse on smaller subproblem

36 tbb::task* smaller;
37 if(middle−first < last−(middle+1)) {
38 // Left problem (first .. middle) is smaller
39 smaller = new(allocate_additional_child_of(*parent())) quicksort_task(

first, middle);
40 // Continuation will do larger subproblem
41 first = middle+1;
42 } else {
43 // Right problem (middle .. last) is smaller
44 smaller = new(allocate_additional_child_of(*parent())) quicksort_task(

middle+1, last);
45 // Continuation will do larger subproblem
46 last = middle;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 237 — #237

8.9 Quicksort 237

47 }

48 // Dive into smaller subproblem
49 return smaller;
50 }

51 }

52

53 void quicksort(T* first, T* last) {
54 // Create root task
55 tbb::task& t = *new(tbb::task::allocate_root())

quicksort_task(first, last);
56 // Run it
57 tbb::task::spawn_root_and_wait(t);
58 }

LISTING 8.13

Quicksort in TBB that achieves Cilk Plus space guarantee.

If the task represents a recursive case, then it operates much like the task_group example, except
that the while loop has been converted to continuation-passing style. The recursive part has been
turned into the return of task smaller. The scheduler will cause the current thread to execute that
task next. Sometimes this trick is used simply as an optimization to bypass the task scheduler, but
here it is doing more, by forcing the current thread to dive into the smaller subproblem, just as the
semi-recursive Cilk Plus version does. Meanwhile, the current task is destructively updated to become
the larger subproblem. The call recycle_to_reexecute() causes it to be visible to thieves after it
returns from method execute(). TBB restrictions require that this idiom be used instead of directly
respawning it, because the latter could cause it to be reentrantly executed by a second thread before the
first thread is done with it.

8.9.3 Work and Span for Quicksort
The average case is a bit tricky to analyze, but it turns out to be asymptotically the same as the ideal
case, so the ideal case is presented here. Though ideal, it will reveal a limitation of our parallelization.

The recurrences for the ideal case, where partitioning creates subproblems of equal size, are:

T1(N)= 1+ 2T1(N/2),

T∞(N)= N+T∞(N/2).

The closed form solutions from the Master method are:

T1(N)=2(N lgN),

T∞(N)= N.

Thus, the speedup limit in the ideal case is:

T1(N)/T∞ =2(N lgN)/2(N)= lg(N).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 238 — #238

238 CHAPTER 8 Fork–Join

So, the best we can expect is a logarithmic improvement in performance, no matter how many
processors we throw at it.

The limit on speedup arises from the partition steps near the top levels of the recursion. In particular,
the first partition step requires O(N) time. Therefore, even if the rest of the sort ran in zero time, the
total time would still be O(N). To do any better, we need to parallelize the partition step, as in Sample
Sort (Chapter 14), or choose a different kind of sort such as Merge Sort (Chapter 13).

However, Quicksort does have some advantages over the other sorts mentioned.

• Quicksort is an in-place algorithm. The other two sorts are not and thus have twice the cache
footprint.

• Quicksort spends most of its time in std::partition, which is friendly to cache and prefetch
mechanisms.

• Quicksort always moves keys via std::swap. It never copies keys. For some key types, such as
reference-counted objects, swapping keys can be far faster than moving keys.

Thus, even though the other sorts have higher scalability in theory, they sometimes perform worse
than Quicksort. For low core counts, parallel Quicksort may be a good choice.

8.10 REDUCTIONS AND HYPEROBJECTS
The recursive implementation of the map pattern can be extended to do reduction. Listing 8.14 shows
such an extension of Listing 8.1 for doing a sum reduction of f (i) for i from lower (inclusive) to
upper (exclusive).

1 template<typename T, typename Func>
2 T sum_of(unsigned lower, unsigned upper, unsigned grainsize, Func f) {
3 if(upper−lower<=grainsize) {
4 // Parallel base case

5 T sum = T();
6 for(unsigned i=lower; i<upper; ++i)
7 sum += f(i);
8 return sum;
9 } else {

10 // Divide and conquer
11 unsigned middle = lower+(upper−lower)/2u;
12 T sum1 = cilk_spawn sum_of<T>(lower, middle, grainsize, f);
13 T sum2 = sum_of<T>(middle, upper, grainsize, f);
14 cilk_sync;
15 return sum1+sum2;
16 }

17 }

LISTING 8.14

Recursive implementation of parallel reduction in Cilk Plus.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 239 — #239

8.10 Reductions and Hyperobjects 239

The approach extends to any operation that is associative, even if the operation is not commutative.
Using explicit fork–join for reduction is sometimes the best approach, but other times it can be a

nuisance on several counts:

• The partial reduction value has to be explicit in the function prototype, either as a return value or a
parameter specifying where to store it. It cannot be a global variable because that would introduce
races.

• It requires writing fork–join in cases where otherwise a cilk_for would do and be easier to read.

Cilk Plus hyperobjects are an elegant way to avoid these drawbacks. A hyperobject is an object for
which each Cilk Plus strand gets its own view. A strand is a portion of Cilk Plus execution with
no intervening fork or join points. The hyperobjects described here are called reducers because they
assist doing reductions. There are other kinds of hyperobjects, such as holders and splitters, that are
sometimes useful, too [FHLLB09]. Listing 8.15 shows a simple example of using a hyperobject to
avoid a race.

If sum were an ordinary variable of type float, the invocations of f(1) and f(2) could race
updating it and not have the correct net effect, but the code is safe because variable sum is declared as
a reducer. The calls f(1) and f(2) are on different strands and so each gets its own view of sum to
update.

The summation of the two views happens automatically at the cilk_sync. The Cilk Plus runtime
knows to add the views because sum was declared as a reducer_opadd. Method get_value gets
the value of the view. It is a method, and not an implicit conversion, so you have to be explicit about
getting the value. Be sure that all strands that contribute to the value are joined before getting the value;
otherwise, you may get only a partial sum.

1 #include <iostream>
2 #include <cilk/cilk.h>
3 #include <cilk/reducer_opadd.h>
4

5 cilk::reducer_opadd<float> sum(4);
6

7 void f(int m) {
8 sum += m;
9 }

10

11 int main() {
12 cilk_spawn f(1);
13 f(2);
14 cilk_sync;
15 std::cout << sum.get_value() << std::endl;
16 return 0;
17 }

LISTING 8.15

Using a hyperobject to avoid a race in Cilk Plus. Declaring sum as a reducer makes it safe to update it from
separate strands of execution. The cilk sync merges the updates, so the code always prints 7.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 240 — #240

240 CHAPTER 8 Fork–Join

There are other reducers built into Cilk Plus for other common reduction operations. For instance,
reducer_opxor performs exclusive OR reduction. Section B.7 lists the predefined reducers. You
can define your own reducer for any data type and operation that form a mathematical monoid, which
is to say:

• The operation is associative.
• The operation has an identity element.

For example, the data type of strings forms a monoid under concatenation, where the identity element is
the empty string. Cilk Plus provides such a reducer for C++ strings, called reducer_basic_string.
Section 11.2.1 walks through the steps of building your own reducer.

Generating many views would be inefficient, so there are internal optimizations that reduce the
number of views constructed. These optimizations guarantee that no more than 3P views of a hyper-
object exist at any one time, where P is the total number of workers. Furthermore, new views are
generated lazily, only when a steal occurs. Since steals are rare in properly written Cilk Plus code, the
number of views constructed tends to be low.

Figure 8.7 illustrates this point for the example from Listing 8.15. Views are distinguished by
subscripts. The left graph shows the stolen case and how only one new view has to be created. Initially
variable sum has a single view sum1. If the continuation that calls f(2) is stolen, Cilk Plus creates a
new view sum2 and initializes it to T(), which by convention is assumed to be the identity element.
The other strand after the fork uses sum1 instead of constructing a new view. Now f(1) and f(2)
can safely update their respective views. At the join point, sum2 is folded into sum1, and (not pictured)
destroyed. Afterwards, sum1 has the intended total.

The right graph shows the unstolen case, in which no new views have to be created. Since the
calls f(1) and f(2) run consecutively, not in parallel, a single view sum1 suffices. This is another

sum1

sum1

sum1

sum1

sum1+ =f(1)

sum2+ =T()

sum1+ =f(1)

sum1+ =sum2

sum1+ =f(2)sum2+ =f(2)

FIGURE 8.7

Hyperobject views in Cilk Plus. A hyperobject constructs extra view sum2 only if actual parallelism occurs.
The actions marked with stars are implicit and not written by the programmer.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 241 — #241

8.11 Implementing Scan with Fork–Join 241

1 #include <cilk/reducer_opadd.h>
2

3 template<typename T, typename Func>
4 T sum_of(unsigned lower, unsigned upper, unsigned grainsize, Func f) {
5 cilk::reducer_opadd<T> sum;
6 cilk_for(unsigned i=lower; i<upper; ++i)
7 sum += f(i);
8 return sum.get_value();
9 }

LISTING 8.16

Using a local reducer in Cilk Plus.

demonstration of a general principle behind Cilk Plus: Extra effort for parallelism is expended only if
the parallelism is real, not merely potential parallelism.

Hyperobjects are handy because they are not lexically bound to parallelism constructs. They can
be global variables that are updated by many different strands. The runtime will deal with reducing the
updates into final correct value.

Hyperobjects are also useful as local variables, as shown in Listing 8.16, which is another way to
implement the reduction from Listing 8.14.

It is important to remember that hyperobjects eliminate races between strands of Cilk Plus execu-
tion, not races between arbitrary threads. If multiple threads not created by the Cilk Plus runtime do
concurrently access a hyperobject, they will race and thus possibly introduce non-determinism.

8.11 IMPLEMENTING SCAN WITH FORK–JOIN
This section shows how to use fork–join to implement the scan pattern using the interface presented
in Section 5.4. The code examples are Cilk Plus. The TBB template parallel_scan uses a similar
implementation technique but with a twist described later.

The parallel scan algorithm [Ble93] operates as if the data are the leaves of a tree as shown in
Figure 8.8. In the picture, the input consists of the sequence r0,r1, . . . ,r7 and an initial value initial,
and the output sequence is an exclusive scan s0,s1, . . . ,s7. The algorithm makes two sweeps over the
tree, one upward and one downward. The upsweep computes a set of partial reductions of the input
over tiles. The downsweep computes the final scan by combining the partial reduction information.
Though the number of tiles in our tree illustration is a power of two, the example code works for any
number of tiles.

Figure 8.9 shows the internal structure of a tree node. Let ⊕ denote the combiner operation. The
term subscan here means a subsequence of the final scan sequence. The node shown computes val-
ues related to the subscan for ri,ri+1, . . . ,ri+m−1. The subsequence is split into two halves: a leading
subsequence of k elements and a trailing subsequence of m− k elements. Let ri:m denote a reduction
over m consecutive elements of the sequence, starting at index i. During the upsweep, the node com-
putes ri:m = ri:k⊕ ri+k:m−k. Let si denote the initial value required for computing the subscan starting

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 242 — #242

242 CHAPTER 8 Fork–Join

Input r0 r1 r2 r3 r4 r5 r6 r7

s0 s1 s2 s3 s4 s5 s6 s7

Initial

U
ps

w
ee

p

D
ow

ns
w

ee
p

Output

FIGURE 8.8

Tree for parallel scan. Parallel scan does two passes over the tree, one upward and one downward. See
Figure 8.9 for the internal structure of the pentagonal tree nodes.

D
ow

ns
w

ee
p

U
ps

w
ee

p

Si

Si Si+k

ri+k:m−k

ri:m

ri:k

FIGURE 8.9

Node in the parallel scan tree in Figure 8.8. Each operation costs one invocation of the combining functor. For
an n-ary tree, the node generalizes to performing an n-element reduction during the upsweep and a n-element
exclusive scan on the downsweep.

at index i. In other words, si = initial⊕ r0:i. During the downsweep, the node gets si from its par-
ent, passes it downward, and computes si+k = si⊕ ri:k. These are the initial values for computing the
subscans for the two half subsequences.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 243 — #243

8.11 Implementing Scan with Fork–Join 243

1 template<typename T, typename R, typename C, typename S>
2 void cilk_scan(size_t n, T initial, size_t tilesize,

R reduce, C combine, S scan) {
3 if(n>0) {
4 size_t m = (n−1)/tilesize;
5 temp_space<T> r(m+1);
6 upsweep(0, m+1, tilesize, r.data(),
7 n−m*tilesize, reduce, combine);
8 downsweep(0, m+1, tilesize, r.data(),
9 n−m*tilesize, initial, combine, scan);

10 }

11 }

LISTING 8.17

Top-level code for tiled parallel scan. This code is actually independent of the parallel framework. It allocates
temporary space for partial reductions and does an upsweep followed by a downsweep.

The tree computes an untiled exclusive scan. A tiled exclusive scan for an operation⊕ can be built
from it as follows. Label the tiles b1, b2, . . . , bN−1. Conceptually, the steps are:

1. Compute each rk as the ⊕ reduction of tile bk.
2. Do upsweep and downsweep to compute each sk.
3. Compute the exclusive scan of tile bk using sk as the initial value.

In practice, Steps 1 and 3 are not separate passes, but embedded into the upsweep and downsweep
passes, respectively. For an inclusive scan, change the last step to be an inclusive scan over each tile.

Listing 8.17 shows the top-level code for a tiled scan. The parameters are explained in Section 5.4
on page 164. As noted in that section, the reduction is done for the last tile even though its return value
is unnecessary in order to permit fusion optimization.

Listing 8.18 shows the code for routine upsweep. It performs the upsweep for the index range i:m.
The base case invokes the tile reduction functor reduce. The recursive case chooses where to split
the index space, using function split (not shown), which should return the greatest power of two less
than m:

split(m)= 2blgm−1c.

The function serves to embed an implicit binary tree onto the index space. The if at the end of routine
upsweep checks whether there is a tree node summarizing the index space. When m is not a power of
two, there is no such node. Conceptually the missing node is for summarizing an index space larger
than the requested space.

Listing 8.19 shows the code for routine downsweep. Most of the parameters are similar to those
in the other routines. Parameter lastsize is the size of the rightmost tile, which might be a partial
tile. Its structure closely resembles the structure of upsweep because it is walking the same tree, only
it does its real work before the fork, not after the join as in upsweep. Consequently, tail recursion
optimization (Section 8.3) can be applied to downsweep but not upsweep.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 244 — #244

244 CHAPTER 8 Fork–Join

1 template<typename T, typename R, typename C>
2 void upsweep(size_t i, size_t m, size_t tilesize, T r[], size_t lastsize,

R reduce, C combine) {
3 if(m==1) {
4 r[0] = reduce(i*tilesize, lastsize);
5 } else {
6 size_t k = split(m);
7 cilk_spawn upsweep(i, k, tilesize, r, tilesize, reduce, combine);
8 upsweep(i+k, m−k, tilesize, r+k, lastsize, reduce, combine);
9 cilk_sync;

10 if(m==2*k)
11 r[m−1] = combine(r[k−1], r[m−1]);
12 }

13 }

LISTING 8.18

Upsweep phase for tiled parallel scan in Cilk Plus.

1 template<typename T, typename C, typename S>
2 void downsweep(size_t i, size_t m, size_t tilesize, const T r[], size_t lastsize

, T initial, C combine, S scan) {
3 if(m==1) {
4 scan(i*tilesize, lastsize, initial);
5 } else {
6 size_t k = split(m);
7 cilk_spawn downsweep(i, k, tilesize, r, tilesize, initial, combine, scan);
8 initial = combine(initial, r[k−1]);
9 downsweep(i+k, m−k, tilesize, r+k, lastsize, initial, combine, scan);

10 // Implicit cilk sync;
11 }

12 }

LISTING 8.19

Downsweep phase for tiled parallel scan in Cilk Plus.

The work is proportional to the number of nodes in the tree, and the span is proportional to the
height of the tree. So the asymptotic work-span bounds are

T1 =2(n),

T∞ =2(lgn).

Unfortunately the asymptotic bounds hide a constant factor of 2 in the work, and in practice this
factor of 2 can undo much of the gains from parallelization. A serial scan makes a single pass over
the data, but a parallel scan makes two passes: upsweep and downsweep. Each pass requires reading
the data. Hence, for large scans where data does not fit in cache, the communication cost is double

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 245 — #245

8.11 Implementing Scan with Fork–Join 245

that for a serial scan. Therefore, when communication bandwidth is the limiting resource for a serial
scan, a parallel scan will run half as fast. Even if it does fit in the total aggregate cache, there is a
communication problem, because greedy scheduling arbitrarily assigns workers to the tile reductions
and scan reductions. Thus, each tile is often transferred from the cache of the worker who reduced it to
the cache of the worker who scans it.

The implementation of TBB’s tbb::parallel_scan attempts to mitigate this issue through a
trick that dynamically detects whether actual parallelism is available. The TBB interface requires
that each tile scan return a reduction value as well. This value is practically free since it is computed
during a scan anyway. During the upsweep pass, the TBB implementation uses the tile scan instead of a
reduction whenever it has already computed all reductions to the left of the tile. This enables skipping
the downsweep pass for all tiles to the left of all tiles processed by work-stealing thieves. In other
words, execution is equivalent to a tiled serial scan until the point is reached where actual parallelism
forks the control flow. This way, if two workers are available, typically only the right half of the tree
needs two passes, thus averaging 1.5 passes over the data. For more available workers, the benefit starts
to diminish. The trick is dynamic—tbb::parallel_scan pays the 2× overhead for parallelism only
if actual parallelism is being applied to the scan.

One elegant feature of our Cilk Plus interface for scan is that sometimes the scan values can be
consumed without actually storing them. For example, consider implementing the pack pattern using
a scan followed by a conditional scatter, as described in Section 6.4. Listing 8.20 shows the code.

1 template<typename T, typename Pred>
2 size_t pack(const T a[], size_t n, T b[], Pred p) {
3 size_t result;
4 cilk_scan(n, size_t(0), 10000,
5 [&](size_t i, size_t m) −> T {
6 size_t sum=0;
7 for(size_t j=i; j<i+m; ++j)
8 if(p(a[j]))
9 sum++;

10 return sum;
11 },
12 std::plus<T>(),
13 [&](size_t i, size_t m, T sum) {
14 for(size_t j=i; j<i+m; ++j)
15 if(p(a[j]))
16 b[sum++] = a[j];
17 if(i+m==n)
18 // Save result from last tile
19 result = sum;
20 }

21);
22 return result;
23 }

LISTING 8.20

Implementing pack pattern with cilk_scan from Listing 8.17.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 246 — #246

246 CHAPTER 8 Fork–Join

It fills an array b with the elements of array a that satisfy predicate p and returns the number
of such elements found. It calls parallel_scan to compute a running sum of how many elements
satisfy predicate p. A standalone scan of the sum operation would have to store the partial sums in an
array. That is not necessary here, because each partial sum is consumed immediately by the assignment
b[sum++] = a[j].

The scan tree in Figure 8.8 generalizes to trees of higher degree. For an N-ary scan tree, the node
performs an N-ary serial reduction during the upsweep and an N-element serial exclusive scan on the
downsweep. Indeed, some implementations do away with recursion altogether and use a single serial
scan, as was shown by the OpenMP implementation of scan in Section 5.4. That saves synchronization
overhead at the expense of increasing the span. If such a degenerate single-node tree is used for a tiled
scan with tiles of size

√
N, the span is 2(

√
N). Though not as good as the 2(lgN) span using a binary

tree, it is an improvement over the 2(N) time for a serial scan, and constant factors can put it ahead in
some circumstances.

8.12 APPLYING FORK–JOIN TO RECURRENCES
Recurrences, described in Section 7.5, result when a loop nest has loop-carried dependencies—that
is, data dependencies on outputs generated by earlier iterations in the serial execution of a loop. We
explained how this can always be parallelized with a hyperplane sweep. However, sometimes a recur-
rence can also be evaluated using fork–join by recursively partitioning the recurrence, an approach that
can have useful data locality properties. This section explores some tradeoffs for recursive partitioning.

For example, consider the “binomial lattice” recurrence in Figure 8.10. For the sake of a familiar
example, the values shown are binomial coefficients, organized as in Pascal’s triangle. However, this
particular pattern of dependencies shows up in far more sophisticated applications such as pricing mod-
els for stock options, infinite impulse response image processing filters, and in dynamic programming
problems. A good example of the last is the Smith–Waterman algorithm for sequence alignment, which
is used extensively in bioinformatics [SW81].

This data dependency graph is an obvious candidate for the superscalar or “fire when ready”
approach, but using this approach would give up the locality and space advantages of fork–join.

1

1 1

12

3 3 1

1

1

FIGURE 8.10

Directed acyclic data dependency graph for binomial lattice.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 247 — #247

8.12 Applying Fork–Join to Recurrences 247

D0

D1 D2

D3

FIGURE 8.11

Decomposing a diamond subgraph into subdiamonds.

A recursive fork–join decomposition of this recurrence will be explored as an alternative, and its
advantages and disadvantages analyzed.

Consider a diamond-shaped subgraph where the number of points along an edge is a power of two,
such as the example in Figure 8.11. The diamond can be decomposed into four subdiamonds, labeled
D0, D1, D2, and D3. Diamonds D2 and D3 can be evaluated in parallel. Furthermore, the same approach
can be applied recursively to the four subdiamonds.

The parallel base case occurs when the current diamond is so small that fork–join overheads become
significant. At that point, vector parallelism can be exploited by serially iterating over the diamond
from top to bottom and computing each row of points in parallel.

Here is a pseudocode sketch for the recursive pattern:

void recursive_diamond(diamond D) {
if(D is small) {

base_diamond(D);
} else {

divide D into subdiamonds D0, D1, D2, D3;
recursive_diamond(D0);
cilk_spawn recursive_diamond(D1);
/∗ nospawn ∗/recursive_diamond(D2);
cilk_sync;
recursive_diamond(D3)

}

}

The effort for turning this sketch into efficient code mostly concerns manipulation of memory.
There is a fundamental tradeoff between parallelism and worst-case memory space, because in order to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 248 — #248

248 CHAPTER 8 Fork–Join

avoid a race operations occurring in parallel must record their results into separate memory locations.
For the binomial lattice, one extreme is to use a separate memory location for each lattice point. This
is inefficient. For a diamond with a side of width w, it requires 2(w2) space.

At the other extreme, it is possible to minimize space by mapping an entire column of lattice points
to a single memory location. Unfortunately this mapping requires serial execution, to avoid overwriting
a location with a new value before all uses of its old value complete, as shown below:

void base_diamond(diamond D) {
for each row R in D do

for each column i in row R from right to left
A[i]=f(A[i−1],A[i]);

}

This serialization extends to the recursive formulation: Diamond D1 must be evaluated before D2, and
hence fork–join parallelism could not be used.

The solution is to double the space and have two locations for each lattice point. Organize the loca-
tions into two arrays, A and B. A location in array A corresponds to a column of the lattice. A location
in array B corresponds to a diagonal of the lattice. Subscripts for B start at zero and go downward for
the sake of improving vectorization of the base case, as explained later.

Figure 8.12 shows the parameterized description of a diamond subgraph:

• a points to the element of A holding the leftmost column value.
• b points to the element of B holding the topmost diagonal value.

B[0]
A[0]

1

1 1

1 2 1

13 3

4 6

10 10

20

4

1

A[1] A[2] A[3]

B[−1]

B[−2]

B[−3]

FIGURE 8.12

Parameters for diamond subgraph.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 249 — #249

8.12 Applying Fork–Join to Recurrences 249

1 template<typename T, typename F>
2 void base_diamond(T* a, T* b, size_t w, int s, size_t n, const F& f) {
3 size_t kfinish = std::min(2*w−1, n);
4 for(size_t k=s; k<kfinish; ++k) {
5 int m = std::min(k+1,2*w−1−k);
6 T* as = a+std::max(w,k+1)−w;
7 T* bs = b−std::min(k,w−1);
8 as[0:m] = f(bs[0:m], as[0:m]);
9 bs[0:m] = as[0:m];

10 }

11 }

LISTING 8.21

Base case for evaluating a diamond of lattice points.

• w is the number of points along a side of the diamond.
• s and n describe clipping limits on the diamond. The rows to be processed, relative to the top corner,

are rows with indices in the half-open interval [s,n).

Listing 8.21 shows the code for the row updates, using vector parallelism across each row. The two
vector updates can in theory be chained together. However, at the time of writing, Cilk Plus did not
allow chaining of such assignments, though they will be allowed in the future.

With a positive coordinate convention for B, the vector update would look something like:

as[0:m] = f(bs[0:m:−1], as[0:m]);
bs[0:m:−1] = as[0:m];

with pointer bs being calculated slightly differently. Though the code would work, it would be less
efficient because the compiler would have to insert permutation instructions to account for the fact that
as and bs have strides in different directions.

Listing 8.22 shows the rest of the code. It assumes that only the topmost diamond is clipped.
One final note: Additional performance can be gained by turning off denormalized floating point

(“denormals”) numbers. Their use can severely impact performance. Floating point numbers consist of
a mantissa and exponent; the normalized format has a mantissa that always has a leading one (value=
1.mantissaexponent), whereas a denormalized format has a leading zero (value= 0.mantisssaexponent).
Denormalized floating point numbers are so small (close to zero) that the exponent would underflow
in the normal representation without this additional “denormal” format. Denormalized numbers help
preserve important algebraic properties such as the equivalence of the equality tests x− y= 0 and
x= y. Alas, denormalized numbers often require extra cycles to process. A common case of f in our
example is a function that averages its inputs, which will result in the output being a bell curve. The
tails of the curve will have values that asymptotically approach zero and consequently contain many
denormalized floating-point values. Using options that flush denormalized numbers to zero, such as
/Qftz with the Intel compiler, can greatly improve the performance of this example. This is very
useful if the value of the extra numerical range is not worth the performance loss to your program. It
is common to use such flush-to-zero options in high-performance code.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 250 — #250

250 CHAPTER 8 Fork–Join

1 template<typename T, typename F>
2 void recursive_diamond(T* a, T* b, size_t w, int s, size_t n, const F& f) {
3 if(w<=CUT_OFF) {
4 base_diamond(a, b, w, s, n, f);
5 } else {
6 size_t h = w/2;
7 recursive_diamond(a, b, h, s, n, f);
8 if(h<n) {
9 cilk_spawn recursive_diamond(a+h, b, h, 0, n−h, f);

10 recursive_diamond(a, b−h, h, 0, n−h, f);
11 if(w<n) {
12 cilk_sync;
13 recursive_diamond(a+h, b−h, h, 0, n−2*h, f);
14 }

15 }

16 }

17 }

18

19 template<typename T, typename F>
20 void parallel_lattice(T* a, size_t n, F f) {
21 T* b = new T[n];
22 std::reverse_copy(a, a+n, b);
23 size_t w=1;
24 while(w<n) w*=2;
25 recursive_diamond(a, b+n−1, w, 1, n, f);
26 delete[] b;
27 }

LISTING 8.22

Code for parallel recursive evaluation of binomial lattice in Cilk Plus.

8.12.1 Analysis
The work T1 for the diamond lattice is 2(N2). The corresponding span T∞ for the same algorithm is
2(Nlg3)≈2(N1.585). Taking the ratio of these two results in a speedup of 2(N0.415). By inspection,
it is easy to see that if the recurrence was executed directly by following graph edges, then the span
is only 2(N) and speedup is 2(N). The point is that imposing the recursive diamond structure has
improved data locality but lengthened the asymptotic span. The practical impact will depend on the
number P of available processors. If P is significantly less than N0.415, the impact will be relatively
small; otherwise, it may be large compared to the direct solution. However, constant factors due to
the better arithmetic intensity (and therefore better cache behavior) of the tiled version may allow
it to perform better in practice. Unfortunately, which is better will depend on the magnitude of the
relevant constant factors on a particular architecture, so the best solution often involves selecting an
implementation and tuning its parameters by experimentation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 251 — #251

8.13 Summary 251

1 template<typename T, typename F>
2 void striped_lattice(T* a, size_t n, F f) {
3 T* b = new T[n];
4 std::reverse_copy(a, a+n, b);
5 size_t w=CUT_OFF;
6 for(size_t i=0; i<n; i+=w)
7 cilk_for(size_t j=0; j<=i; j+=w)
8 base_diamond(a+j, b+n−1−(i−j), w, i?0:1, n−i, f);
9 delete[] b;

10 }

LISTING 8.23

Marching over diamonds in Cilk Plus. This is an example of a hyperplane sweep parallelization of the binomial
lattice recurrence.

8.12.2 Flat Fork–Join
Another solution to consider is to march over the lattice from top to bottom and execute a row of
diamonds in parallel using a hyperplane sweep. This is row-by-row application of the map pattern,
and is discussed in Section 7.5. Listing 8.23 shows the code for this approach, which uses routine
base_diamond from Listing 8.21.

A cilk_for with K iterations takes time 2(lgK). Thus, T∞ =2(N lgN), which for large N is a
significant improvement over2(N0.415) and only a factor of lgN away from the optimal span of2(N).

8.13 SUMMARY
In this chapter we presented the fork–join pattern, which is a natural fit for parallel divide-and-conquer
algorithms. Parallel divide-and-conquer generates independent subproblems, solves them in parallel,
and then combines the results. Algorithms based on recursive divide-and-conquer often have very good
space behavior, locality, and load-balancing properties when executed by a fork–join implementation
that uses work-stealing. Speedup may, however, be limited by the speed of the divide or combine steps
or by uneven division of work.

We presented the Master method for computing the asymptotic complexity of the work and span.
These can be used to predict the speedup of a divide-and-conquer algorithm. Karatsuba polynomial
multiplication and Quicksort were given as examples, which also demonstrated practical issues with
memory allocation.

Cache-oblivious algorithms using matrix multiplication as an example were discussed, and we also
presented fork–join implementations of scan and the binomial lattice recurrence.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 253 — #253

CHAPTER

Pipeline 9
Online algorithms are important for modern computing. In an online algorithm, processing starts
before all the input is available, and the output starts to be written before all processing is complete.
In other words, computing and I/O take place concurrently. Often the input is coming from real-time
sources such as keyboards, pointing devices, and sensors. Even when all the input is available, it is
often on a file system, and overlapping the algorithm with input/output can yield significant improve-
ments in performance. A pipeline is one way to achieve this overlap, not only for I/O but also for
computations that are mostly parallel but require small sections of code that must be serial.

This chapter covers a simple pipeline model embodied in the TBB parallel_pipeline template.
It shows the mechanics of using that template, as well as how to imitate it in Cilk Plus in limited cir-
cumstances. This chapter also touches on the general issue of mandatory parallelism versus optional
parallelism, which becomes important when pipelines are generalized beyond the simple model. In
particular, care must be taken to avoid producer/consumer deadlock when using optional parallelism
to implement a pipeline.

9.1 BASIC PIPELINE
A pipeline is a linear sequence of stages. Data flows flows through the pipeline, from the first stage to
the last stage. Each stage performs a transform on the data. The data is partitioned into pieces that we
call items. A stage’s transformation of items may be one-to-one or may be more complicated. A serial
stage processes one item at a time, though different stages can run in parallel.

Pipelines are appealing for several reasons:

• Early items can flow all the way through the pipeline before later items are even available. This
property makes pipelines useful for soft real-time and online applications. In contrast, the map
pattern (Chapter 4) has stronger synchronization requirements: All input data must be ready at the
start, and no output data is ready until the map operation completes.

• Pipeline composition is straightforward. The output of a pipeline can be fed into the input of a
subsequent pipeline.

• A serial pipeline stage maps naturally to a serial I/O device. Even random-access devices such as
disks behave faster when access to them is serial. By having separate stages for computation and
I/O, a pipeline can be an effective means of overlapping computation and I/O.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00009-8
c© 2012 Elsevier Inc. All rights reserved.

253

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 254 — #254

254 CHAPTER 9 Pipeline

• Pipelines deal naturally with resource limits. The number of items in flight can be throttled to match
those limits. For example, it is possible for a pipeline to process large amounts of data using a fixed
amount of memory.

• The linear structure makes it it easy to reason about deadlock freedom, unlike topologies involving
cycles or merges.

• With some discipline, each stage can be analyzed and debugged separately.

A pipeline with only serial stages has a fundamental speedup limit similar to Amdahl’s law, but
expressed in terms of throughput. The throughput of the pipeline is limited to the throughput of the
slowest serial stage, because every item must pass through that stage one at a time. In asymptotic terms,
TP =2(T1), so pipelines provide no asymptotic speedup! Nonetheless, the hidden constant factor can
make such a pipeline worth the effort. For example, a pipeline with four perfectly balanced stages can
achieve a speedup of four. However, this speedup will not grow further with more processors: It is
limited by the number of serial stages, as well as the balance between them.

9.2 PIPELINE WITH PARALLEL STAGES
Introducing parallel stages can make a pipeline more scalable. A parallel stage processes more than
one item at a time. Typically it can do so because it has no mutable state. A parallel stage is different
from a serial stage with internal parallelism, because the parallel stage can process multiple input items
at once and can deliver the output items out of order.

The introduction of parallel stages introduces a complication to serial stages. In a pipeline with
only serial stages, each stage receives items in the same order. But when a parallel stage intervenes
between two serial stages, the later serial stage can receive items in a different order from the earlier
stage. Some applications require consistency in the order of items flowing through the serial stages,
and usually the requirement is that the final output order be consistent with the initial input order. The
data compression example in Chapter 12 is a good example of this requirement.

Intel TBB deals with the ordering issue by defining three kinds of stages:

• parallel: Processes incoming items in parallel
• serial out of order: Processes items one at a time, in arbitrary order
• serial in order: Processes items one at a time, in the same order as the other serial_in_

order stages in the pipeline

The difference in the two kinds of serial stages has no impact on asymptotic speedup. The through-
put of the pipeline is still limited by the throughput of the slowest stage. The advantage of the
serial_out_of_order kind of stage is that by relaxing the order of items, it can improve local-
ity and reduce latency in some scenarios by allowing an item to flow through that would otherwise
have to wait for its predecessor.

The simplest common sequence of stages for parallel_pipeline is serial–parallel–serial, where
the serial stages are in order. There are two ways to picture such a pipeline. The first is to draw each
stage as a vertex in a graph and draw edges indicating the flow of data. Figure 9.1 pictures a serial–
parallel–serial pipeline this way. The parallel stage is distinguished by not having a feedback loop like
the two serial stages do. This way of drawing a pipeline is concise and intuitive, though it departs from

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 255 — #255

9.3 Implementation of a Pipeline 255

FIGURE 9.1

Serial–parallel–serial pipeline. The two serial stages have feedback loops that represent updating their state.
The middle stage is stateless; thus multiple invocations of it can run in parallel.

the diagrams in other sections because a single vertex handles a sequence of data items and not a single
piece of data.

An alternative is to show one vertex per stage invocation, as in Figure 9.2. The parallel stage is
distinguished by not having any horizontal dependencies in the picture. It gives an intuitive analysis
of the work and span. For example, assume each serial task in the picture takes unit time, and each
parallel task takes four units of time. For n input items, the work T1 is 6n since each item requires two
serial tasks and one parallel task. The span T∞ is n+ 5, because the longest paths through the graph
pass through some combination of n+ 1 serial tasks before and after passing through one parallel task.
Speedup is thus limited to 6n

n+5 , which approaches 6 as n approaches ∞. This sort of picture is not
possible if the pipeline computation has serial_out_of_order stages, which are beyond the DAG
model of computation (Section 2.5.6).

9.3 IMPLEMENTATION OF A PIPELINE
There are two basic approaches to implementing a pipeline:

• A worker is bound to a stage and processes items as they arrive. If the stage is parallel, it may have
multiple workers bound to it.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 256 — #256

256 CHAPTER 9 Pipeline

• A worker is bound to an item and carries the item through the pipeline [MSS04]. When a worker
finishes the last stage, it goes to the first stage to pick up another item.

The difference can be viewed as whether items flow past stages or stages flow past items. In Figure 9.2,
the difference is whether a worker deals with tasks in a (slanted) row or tasks in a column.

The two approaches have different locality behavior. The bound-to-stage approach has good locality
for internal state of a stage, but poor locality for the item. Hence, it is better if the internal state is large
and item state is small. The bound-to-item approach is the other way around.

The current implementation of TBB’s parallel_pipeline uses a modified bind-to-item
approach. A worker picks up an available item and carries it through as many stages as possible. If
a stage is not ready to accept another item, the worker parks the item where another worker can pick
it up when the stage is ready to accept it. After a worker finishes applying a serial stage to an item, it
checks if there is a parked input item waiting at that state, and if so spawns a task that unparks that
item and continues carrying it through the pipeline. In this way, execution of a serial stage is serialized
without a mutex.

Serial

Parallel

Serial

FIGURE 9.2

DAG model of pipeline in Figure 9.1. This picture shows the DAG model of computation (Section 2.5.6) for
the pipeline in Figure 9.1, assuming there are five input items. To emphasize the opportunity for parallelism,
each box for a parallel task is scaled to show it taking four times as much time as a serial task.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 257 — #257

9.4 Programming Model Support for Pipelines 257

The parking trick enables greedy scheduling—no worker waits to run a stage while there is other
work ready to do. But it has the drawback of eliminating any implicit space bounds. Without the
parking trick, a pipeline with P workers uses at most about P more space than serial execution, since
the space is no worse than P copies of the serial program running. But the parking trick is equivalent
to creating suspended copies of the serial program, in addition to the P running copies. TBB addresses
the issue by having the user specify an upper bound on the number of items in flight.

9.4 PROGRAMMING MODEL SUPPORT FOR PIPELINES
Understanding the various syntaxes for pipelines is not only good for using them but also reveals some
design issues. Our running example is a series–parallel–series pipeline. The three stages run functors
f, g, and h, in that order. Listing 9.1 shows the serial code. Functions f and h are assumed to require
serial in-order stages, and g is assumed to be okay to run as a parallel stage.

9.4.1 Pipeline in TBB
The TBB parallel_pipeline template requires that a stage map one input item to one output item.
The overall steps for building a pipeline in TBB are:

• Construct a filter_t<X,Y> for each stage. Type X is the input type; type Y is the output type.
The first stage must have type filter_t<void,. . .>. The last stage must have type filter_t
<. . .,void>.

• Glue the stages together with operator&. The output type of a stage must match the input type of
the next stage. The type of a filter_t<X,Y> glued to a filter_t<Y,Z> is a filter_t<X,Z
>. From a type system perspective, the result acts just like a a big stage. The top-level glued result
must be a filter_t<void,void>.

• Invoke parallel_pipeline on the filter_t<void,void>. The call must also provide an
upper bound on the number of items in flight.

Listing 9.2 shows a TBB implementation of our running example. It illustrates the details of con-
structing stages. Function make_filter builds a filter_t object. Its arguments specify the kind of
stage and the mapping of items to items. For example, the middle stage is a parallel stage that uses
functor g to map input items of type T to output items of type U.

1 void serial_pipeline() {
2 while(T t = f()) {
3 U u = g(t);
4 h(u);
5 }

6 }

LISTING 9.1

Serial implementation of a pipeline, with stages f, g, and h.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 258 — #258

258 CHAPTER 9 Pipeline

1 void tbb_sps_pipeline(size_t ntoken) {
2 tbb::parallel_pipeline (
3 ntoken,
4 tbb::make_filter<void,T>(
5 tbb::filter::serial_in_order,
6 [&](tbb::flow_control& fc) −> T{
7 T item = f();
8 if(!item) fc.stop();
9 return item;

10 }

11) &
12 tbb::make_filter<T,U>(
13 tbb::filter::parallel,
14 g
15) &
16 tbb::make_filter<U,void>(
17 tbb::filter::serial_in_order,
18 h
19)
20);
21 }

LISTING 9.2

Pipeline in TBB. It is equivalent to the serial pipeline in Listing 9.1, except that the stages run in parallel and
the middle stage processes multiple items in parallel.

The first and last stages use side effects to communicate with the rest of the program, and the
corresponding input/output types are void. The last stage is declared as mapping items from U to
void and uses side effects to output items. Conversely, the first stage is declared as mapping items
from void to T and uses side effects to input items.

The first stage is also special because each time it is invoked it has to return an item or indicate that
there are no more items. The TBB convention is that it takes an argument of type flow_control&. If
it has no more items to output, it calls method stop on that argument, which indicates that there are
no more items, and the currently returned item should be ignored.

9.4.2 Pipeline in Cilk Plus
Pipelines with an arbitrary number of stages are not expressible in Cilk Plus. However, clever use
of a reducer enables expressing the common case of a serial–parallel–serial pipeline. The general
approach is:

1. Invoke the first stage inside a serial loop.
2. Spawn the second stage for each item produced by the first stage and feed its output to a consumer

reducer.
3. Invoke the third stage from inside the consumer reducer, which enforces the requisite serialization.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 259 — #259

9.4 Programming Model Support for Pipelines 259

1 // Function for third stage
2 extern void h_(HState*, U u);
3 // Mutable state for third stage
4 HState s;
5 // Reducer for third stage
6 reducer_consume<HState,U> sink(&s, h_);
7

8 void Stage2(T t) {
9 U u = g(t); // Second stage

10 sink.consume(u); // Feed item to third stage
11 }

12

13 void cilk_sps_pipeline() {
14 while(T t = f()) // First stage is serial
15 cilk_spawn Stage2(t); // Spawn second stage
16 cilk_sync;
17 }

LISTING 9.3

Pipeline in Cilk Plus equivalent to the serial pipeline in Listing 9.1. This version uses function h_ instead of
functor h for reasons explained in the text.

Though the template for the consumer reducer could be written for our functor h, doing so com-
plicates writing the template. So, to simplify exposition, we assume that the third stage is defined by
a function h_ that takes two arguments: a pointer to its mutable state and the value of an input item.
These assumptions work nicely for the bzip2 example (Section 12.4).

Listing 9.3 shows the mechanics of writing the pipeline. The intra-stage logic is close to that in
Listing 9.2. All that differs is how the stages communicate. Whereas in the TBB code stages commu-
nicate through arguments and return values, here the communication is ad hoc. The second stage of
the TBB version returned its result value u to send it on to the third stage. Its Cilk Plus equivalent
sends u to the third stage by invoking sink.consume(u). Unlike the TBB version, the first stage
does not really need any wrapper at all. It is just a serial loop that gets items and spawns the second
stage.

Now reducer_consume can be explained. Recall how Section 8.10 described reducers in terms
of algebraic monoids. The reducer here is manipulating side effects, namely updates to HState. At
first glance, this imperative nature seems contrary to a algebraic monoid, but there is a monoid lurking
behind reducer_consumer: list concatenation, or what mathematicians call the free monoid. Sup-
pose all processing by the third stage function h_ could be deferred until after the cilk_sync. Then
each view could be a list of U. Two views could be joined by concatenating their lists, and since con-
catenation is associative, the final list of U would be independent of whether execution really forked
or not.

The implementation described so far is mathematically clean but has two drawbacks:

• It loses potential parallelism by not overlapping invocations of h_ with invocations of the other
stages.

• The list of U might be prohibitively large to store.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 260 — #260

260 CHAPTER 9 Pipeline

Indeed, the latter objection is severe for the bzip2 example, because each item is a pointer to a
compressed block of data waiting to be written to disk. Retaining all those blocks in memory would
limit how big a file bzip2 can process. However, observe that the list in the leftmost view can be fed to
h_ immediately. There is no reason to build a list for the leftmost view. Only lists in other views need
to be deferred.

So reducer_consumer joins views using the following rules:

• If the left view is leftmost, its list is empty. Process the list of the right view.
• Otherwise, concatenate the lists.

Listing 9.4 shows the implementation. The list is non-empty only if actual parallelism occurs, since
only then is there is a non-leftmost view. Section 11.2.1 explains the general mechanics of creating a
View and Monoid for a cilk::reducer.

1 #include <cilk/reducer.h>
2 #include <list>
3 #include <cassert>
4

5 template<typename State, typename Item>
6 class reducer_consume {
7 public:
8 // Function that consumes an Item to update a State object
9 typedef void (*func_type)(State*,Item);

10 private:
11 struct View {
12 std::list<Item> items;
13 bool is_leftmost;
14 View(bool leftmost=false) : is_leftmost(leftmost) {}
15 ˜View() {}
16 };
17

18 struct Monoid: cilk::monoid_base<View> {
19 State* state;
20 func_type func;
21 void munch(const Item& item) const {
22 func(state,item);
23 }

24 void reduce(View* left, View* right) const {
25 assert(!right−>is_leftmost);
26 if(left−>is_leftmost)
27 while(!right−>items.empty()) {
28 munch(right−>items.front());
29 right−>items.pop_front();
30 }

31 else
32 left−>items.splice(left−>items.end(), right−>items);
33 }

34 Monoid(State* s, func_type f) : state(s), func(f) {}
35 };

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 261 — #261

9.6 Mandatory versus Optional Parallelism 261

36

37 cilk::reducer<Monoid> impl;
38

39 public:
40 reducer_consume(State* s, func_type f) :
41 impl(Monoid(s,f), /∗leftmost=∗/true)
42 {}

43

44 void consume(const Item& item) {
45 View& v = impl.view();
46 if(v.is_leftmost)
47 impl.monoid().munch(item);
48 else
49 v.items.push_back(item);
50 }

51 };

LISTING 9.4

Defining a reducer for serializing consumption of items in Cilk Plus.

From a mathematical perspective, the fields of View are monoid values:

• View::items is a value in a list concatenation monoid.
• View::is_leftmost is a value in a monoid over boolean values, with operation x⊗ y→ x.

Both of these operations are associative but not commutative.

9.5 MORE GENERAL TOPOLOGIES
Pipelines can be generalized to non-linear topologies, and stages with more complex rules. TBB 4.0
has such a framework, in namespace tbb::flow. This framework also lifts the restriction that each
stage map exactly one input item to one output item. With more complex topologies comes power, but
more programmer responsibility.

The additional power of the TBB 4.0 tbb::flow framework comes with additional responsibility.
The framework lifts most of the restrictions of parallel_pipeline while still using a modified
bound-to-item approach that avoids explicit waiting. It allows stages to perform one-to-many and
many-to-one mappings, and topologies can be non-linear and contain cycles. Consequently, design-
ing pipelines in that framework requires more attention to potential deadlock if cycles or bounded
buffers are involved.

9.6 MANDATORY VERSUS OPTIONAL PARALLELISM
Different potential implementations of a pipeline illustrate the difference between optional paral-
lelism and mandatory parallelism. Consider a two-stage pipeline where the producer puts items into
a bounded buffer and the consumer takes them out of the buffer. There is no problem if the producer

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 262 — #262

262 CHAPTER 9 Pipeline

and consumer run in parallel. But serial execution is tricky. If a serial implementation tries to run the
producer to completion before executing the consumer, the buffer can become full and block further
progress of the producer. Alternatively, trying to run the consumer to completion before executing the
producer will hang. The parallelism of the producer and consumer is mandatory: The producer and
consumer must interleave to guarantee forward progress. Programs with mandatory parallelism can be
much harder to debug than serial programs.

The TBB parallel_pipeline construct dodges the issue by restricting the kinds of pipelines
that can be built. There is no explicit waiting—a stage is invoked only when its input item is ready,
and must emit exactly one output item per invocation. Thus, serial operation of parallel_pipeline
works by carrying one item at a time through the entire pipeline. No buffering is required. Parallel
operation does require buffering where a parallel stage feeds into a serial stage and the serial stage is
busy. Because parallel_pipeline requires the user to specify its maximum number n of items in
flight level, the buffer can be safely bounded to n.

9.7 SUMMARY
The pipeline pattern enables parallel processing of data to commence without having all of the data
available, and it also allows data to be output before all processing is complete. Thus, it is a good fit
for soft real-time situations when data should be processed as soon as it becomes available. It also
allows overlap of computation with I/O and permits computations on data that may not fit in memory
in its entirety. The weakness of pipelines is scalability—the throughput of a pipeline is limited to the
throughput of its slowest serial stage. This can be addressed by using parallel pipeline stages instead
of serial stages to do work where possible. The TBB implementation uses a technique that enables
greedy scheduling, but the greed must be constrained in order to bound memory consumption. The
user specifies the constraint as a maximum number of items allowed to flow simultaneously through
the pipeline. Simple pipelines can be implemented in Cilk Plus by creative use of reducers.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 263 — #263

PART

IIExamples

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 265 — #265

CHAPTER

Forward Seismic
Simulation 10
Reflection seismology is the imaging of the Earth’s subsurface structure using sound waves. It is widely
used in the oil and gas industry to determine where to find hydrocarbons and most efficiently extract
them. Reverse time migration (RTM) is one approach to imaging that yields high quality images but
requires much computation, and hence is desirable to parallelize.

The example here is not the entire RTM algorithm, but the key part that dominates the compu-
tational burden. The obvious parallelization with the stencil pattern (Section 4.6.1) suffers from low
arithmetic intensity, even when using tiling for cache (Section 7.3). However, the arithmetic inten-
sity can be raised much further by recognizing that the problem involves not only a stencil in space but
also a recurrence (Section 7.5) in space–time, since the stencil is iterated. This is a common pattern
in solvers for partial differential equations. Using recursive subdivision on this space–time recurrence
results in an efficient cache-oblivious algorithm with good arithmetic intensity.

10.1 BACKGROUND
A reflection seismology survey consists of collecting data in the field and processing it to generate
a subsurface image. The collection step involves sending acoustic waves from sources into the Earth
and recording the echoes at receivers. Examples of land sources are explosives or trucks with massive
thumper/vibrator machinery. Water sources are typically devices called air guns that pop out com-
pressed air. Receivers are microphones staked into the ground or towed behind a boat. Often a line or
grid of receivers record the echoes from a single shot.

Reflection seismology works because different kinds of rock have different velocities and acoustical
impedances. Where sound crosses between rocks of varying impedance, some of the sound is reflected
from the boundary. The waveform recorded by the receiver is a superposition of reflections from the
shot, along many paths in the subsurface, including paths with multiple reflections. For further infor-
mation, see the program Seismic Duck (http://sourceforge.net/projects/seismic-duck/),
which provides an animated introduction to reflection seismology.

Reverse time migration is a way of generating a subsurface image from the source/receiver data.
RTM starts by modeling acoustic waves both forward and backward in time. Because of symmetries
in the underlying physics, the two directions are essentially the same computation and differ only in
boundary conditions:

• The forward model includes sources running forward in time as a boundary condition.
• The reverse model includes receivers running backward in time as boundary condition.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00010-4
c© 2012 Elsevier Inc. All rights reserved.

265

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 266 — #266

266 CHAPTER 10 Forward Seismic Simulation

Each model computes a time-varying acoustic signal at each point in the subsurface volume. RTM
generates an image such that the value of each point in the image is the time correlation of the sig-
nals at that point from the forward and reverse models. The intuition behind doing this is that a rock
transition reflects the signal from the source to the receiver. At a reflection point the signals from the
forward model and reverse model will match and generate a high correlation value. There may be
points where coincidental correlations happen. Summing images for many different shot and receiver
locations dilutes the effect of these coincidental matches.

Wavefield models vary in sophistication and computational burden. Our example will use a simple
model, the acoustic wave equation, which accounts only for pressure effects. More complex models,
such as the elastic wave equation, account for shear effects, at the cost of significantly more memory
and arithmetic operations. The physics for the acoustic wave equation involves two fields over points
(x,y,z) in the subsurface volume:

• At(x,y,z) is the pressure at point (x,y,z) at time t.
• V(x,y,z) is the velocity of sound at point (x,y,z).

Field V is independent of time, but precisely knowing it requires knowing the kind of rock at point
(x,y,z). For example, the value of V is much higher for salt than sandstone. This might seem like a
hopelessly circular problem—you need to know the rock structure before you can image it! Fortunately,
an iterative process works. Start with a rough initial guess for V and generate an approximate RTM
image. Use the resulting image to refine the estimate of V , and rerun RTM. This process can be repeated
until the image seems reasonable to a geophysicist.

10.2 STENCIL COMPUTATION
Our example code focuses on computing the forward and reverse models of the wavefield, because
those are the computationally intensive steps in RTM. The acoustic wave equation is:

∂2A

∂t2
= V2
∇

2A, (10.1)

where the Laplacian ∇2A is defined as:

∇
2A=

∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
. (10.2)

Our example code discretizes A and V into three-dimensional (3D) grids and approximates the
Laplacian ∇2A with a stencil. Here is the discretized version of the equations:

At+1 = 2At−At−1+V2(C ∗At), (10.3)

where t is a time index and C ∗At denotes the convolution of a stencil C with the value of field A at
time t. As a minor optimization, the code stores a field V2 instead of V in an array. The code stores field
A in a four-dimension array, with At,x,y,z stored in A[t&1][z][y][x]. The expression t&1 computes
t modulo two. Storing two snapshots of A in time suffices because at each time step, the value At+1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 267 — #267

10.3 Impact of Caches on Arithmetic Intensity 267

z

x

y

FIGURE 10.1

Structure of stencil for estimating Laplacian.

depends only upon At and At−1. Thus, the location of At−1(x,y,z) can be overwritten with the value of
At+1(x,y,z).

Figure 10.1 shows the structure of the stencil C. Each pair of opposite arms estimates the second
partial derivative in that direction. For example, the arms pointing in the+x and−x directions estimate
∂2A
∂x2 . The six arms differ only in direction and thus there are only five independent coefficients, which
the code stores in an array C. Listing 10.1 shows code for using the stencil serially.

10.3 IMPACT OF CACHES ON ARITHMETIC INTENSITY
One way to parallelize the code in Listing 10.1 is to use the geometric decomposition pattern
(Section 6.6). There is a large amount of available parallelism, because for a given value of t, the
inner three loops can all be parallel. Grids in RTM tend to be as big as memory will allow. For
exposition, assume that the spatial grid is 500× 500× 500, for a total of 125× 106 grid points. For
single-precision values, that works out to 1.0 GByte for A and 0.5 GByte for V. That is potential
125× 106-way parallelism! In fact, just changing the z loop to a cilk_for enables 500-way thread
parallelism, and marking the x loop with #pragma simd enables 500-way vector parallelism. Here is
what the changed code looks like:

...
// Apply stencil over [x0,x1)× [y0,y1)× [z0,z1)
cilk_for (int z=z0; z < z1; ++z)

for (int y=y0; y < y1; ++y)
#pragma simd

for (int x=x0; x < x1; ++x) {
...

}

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 268 — #268

268 CHAPTER 10 Forward Seismic Simulation

1 // Time−domain simulation of wavefield for t ∈ [t0, t1) over volume [x0,x1)× [y0,y1)× [z0,z1)
2 void serial_stencil(int t0, int t1,
3 int x0, int x1,
4 int y0, int y1,
5 int z0, int z1)
6 {

7 // Compute array strides for y and z directions
8 int sy = Nx;
9 int sz = Nx*Ny;

10 // March through time interval [t0, t1)
11 for(int t=t0; t<t1; ++t) {
12 // Apply stencil over [x0,x0)× [y0,y1)× [z0,z1)
13 for (int z=z0; z<z1; ++z)
14 for (int y=y0; y<y1; ++y)
15 for (int x=x0; x<x1; ++x) {
16 int s = z * sz + y * sy + x;
17 // a points to At(x,y,z)
18 float *a = &A[t&1][s];
19 // a flip points to At−1(x,y,z)
20 float *a_flip = &A[(t+1)&1][s];
21 // Estimate ∇2At(x,y,z)
22 float laplacian = C[0] * a[0]
23 + C[1] * ((a[1] + a[−1]) +
24 (a[sy] + a[−sy]) +
25 (a[sz] + a[−sz]))
26 + C[2] * ((a[2] + a[−2]) +
27 (a[2*sy] + a[−2*sy]) +
28 (a[2*sz] + a[−2*sz]))
29 + C[3] * ((a[3] + a[−3]) +
30 (a[3*sy] + a[−3*sy]) +
31 (a[3*sz] + a[−3*sz]))
32 + C[4] * ((a[4] + a[−4]) +
33 (a[4*sy] + a[−4*sy]) +
34 (a[4*sz] + a[−4*sz]));
35 // Compute At+1(x,y,z)
36 a_flip[0] = 2*a[0] − a_flip[0] + Vsquared[s] * laplacian;
37 }

38 }

39 }

LISTING 10.1

Serial code for simulating wavefield.

Though the changes usually speed up the code, they usually fall far short of the hardware capabilities.
The problem is arithmetic intensity, as defined in Section 2.4.2. Consider the floating-point arithmetic
and memory operations required for one point update:

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 269 — #269

10.3 Impact of Caches on Arithmetic Intensity 269

• 29 memory operations:
• 25 reads from a for the stencil.
• 1 read for a_flip[0].
• 1 write to A_flip[0].
• 1 read from Vsquared.
The duplicate read of a[0] does not count, since either the compiler or cache will turn it into a
single read.

• 33 floating-point operations:
• 25 additions
• 1 subtraction
• 7 multiplications

Hence, the arithmetic intensity is 33/29≈ 1.14. This intensity is about an order of magnitude lower
than what would keep arithmetic units busy on typical current hardware.

A cache hierarchy helps raise the intensity by eliminating some reads from main memory. This
effect happens along several axes. As the inner x loop advances, the stencil reads some locations that
were read by the previous iteration. Figure 10.2 visualizes this. Each x iteration moves the stencil
along the x axis, leaving the ghost of its former locations in cache. Any parts overlapping the ghost are
already in cache. Only the parts with exposed faces on the right side contribute to memory loads. So
the cache has automatically removed 8 loads, raising the arithmetic intensity to 33/(29− 8)≈ 1.57.

In fact, a similar thing happens on the y-arms. If the cache is big enough, then most of the loads for
the y-arm will be loads from cache because they overlap ghosts of former loads, except for the load
of a[4*sy]. The elimination of most of the loads along the x-arm and y-arms raises the arithmetic
intensity to 33/(29− 8− 7)≈ 2.36, about twice the uncached version.

Is caching of y-arm loads a reasonable assumption for Listing 10.1? To analyze this, consider what
one iteration of the y loop would load into cache:

• A row of a corresponding to each cube with a dark face in Figure 10.2. That is a total of 17 rows.
The rows corresponding to the z-arms do not really need to be kept in cache, but the hardware does
not know that.

++x

FIGURE 10.2

Reuse of memory when stencil steps along the x axis.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 270 — #270

270 CHAPTER 10 Forward Seismic Simulation

• A row of a_flip.
• A row of Vsquared.

That is 19 rows of 500 elements each, or 19× 500× 4bytes= 38 KBytes. Allowing for imperfect
associativity and imperfect approximations of least recently used (LRU), this will certainly fit in cache,
though perhaps not in the innermost cache.

WARNING
If the x and y grid dimensions are exactly powers of two, there is a risk that the y-arm and z-arm will all map to
the same associative set, possibly exceeding the size of the associative set of the cache and thus force
premature evictions, which can cause slowdown.

What about caching of the z-arms? If the z-arm loads could be cached long enough to be reused,
then each array element has to be loaded only once, and the arithmetic intensity increases significantly
to 33/4= 8.25. That requires about 198 KByte of ideal cache for our problem dimensions, for a single
thread. That is well within the size of caches on modern CPUs, though not the innermost and fastest
cache. Furthermore, if the cache is shared by multiple threads, there might not be enough cache to go
around. As coded, the problem is reaching the limits of the free benefit from caches.

10.4 RAISING ARITHMETIC INTENSITY WITH SPACE–TIME TILING
But there is another way to code the problem that raises the arithmetic intensity much higher. A fourth
dimension in the problem is a recurrence in time. Suppose the code runs for 10 timesteps. Imagine a
cache that is big enough to hold all of the arrays across all timesteps. Then the arithmetic intensity
grows by a factor of 10! Alas, that requires a 1.5× 109 byte cache, several orders of magnitude beyond
current offerings and surely not the innermost cache.

Fortunately, there is a trick that gets most of the benefit without a behemoth cache. Chop the
problem into cache-sized subproblems. Each subproblem will simulate the wavefield over a chunk
of space–time. This chunking is possible because for any value At(x,y,z), its influence on the rest of
the simulation propagates at a top speed of four grid units per time step, because the longest stencil
arm is four grid points. This upper limit on propagation of information acts as a “speed of light” for
the simulation.

By way of analogy, consider the impact of the real speed of light on a simulation of the Earth.
The Earth could be simulated for an 8-minute chunk of time, starting with the state of space within
8 light-minutes of Earth, without knowing the state of the rest of the universe. For example, the state
of the sun, even if it blew up, would be irrelevant for such a simulation time-frame because the sun is
8.3 light minutes away. The principle is similar for our simulation—the upper bound on the speed of
information propagation bounds what state information is necessary to know to model a region over
a limited time interval. The limit on information propagation in the seismic simulation has a similar
effect, though there is a slight geometric difference. The propagation of information in the code follows

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 271 — #271

10.4 Raising Arithmetic Intensity with Space–Time Tiling 271

1 for(int t=t0; t<t1; ++t)
2 for(int i=i0; i<i1; ++i) {
3 float* b = &B[t&1][i];
4 float* b_flip = &B[t+1 & 1][i];
5 b_flip[0] = f(b[−1],b[0],b[1],b_flip[0]).
6 }

LISTING 10.2

Code for one-dimensional iterated stencil. The code marches a one-dimensional field B through time, using a
flip-flop indexing scheme similar to the one in Listing 10.1.

x

t

FIGURE 10.3

Dependence of value in space–time for one-dimensional problem in Listing 10.2. Computing the value of
Bt+1,x requires knowing only four other values in space–time: Bt,x−1, Bt,x, Bt,x+1, and Bt−1,x.

“taxicab geometry”; thus, the set of points within a given distance forms an octohedron instead of a
sphere.

Space-time geometry is a bit tricky to visualize for four dimensions, so we explain the details
for a one-dimensional (1D) problem first, using a three-point stencil, and then extend it to multiple
dimensions. Listing 10.2 shows the code for the 1D problem, which abstracts the stencil as a function f.
Figure 10.3 shows the dependencies for each point in space–time. To update a point does not require
the value of all points for the previous timestep. It requires only the values of its neighbors in the
previous timestep. Thus, a subgrid cells can be updated multiple steps into the future without updating
the entire grid, as shown in Figure 10.4.

Choosing a trapezoid small enough to fit in cache raises arithmetic intensity, because:

• The arithmetic operations will be proportional to its area.
• The cache misses will be proportional to the length of its top or bottom, whichever is longer.

So tiling space-time with trapezoids can raise the arithmetic intensity significantly.
Explicitly choosing the tile size based on the cache size could be done but requires knowing the

cache size. Furthermore, there are typically multiple levels of cache. So a better approach is to adopt
a cache-oblivious strategy of recursive tiling. Trapezoids decompose into trapezoids, and some of the
subtrapezoids can be evaluated in parallel, similar to the way that diamonds were decomposed into

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 272 — #272

272 CHAPTER 10 Forward Seismic Simulation

x

t

FIGURE 10.4

Trapezoidal space–time region for one-dimensional stencil. All points in the trapezoid can be computed from
its top points, without knowing the value of any other points.

1

t

3 4 3

2 1

FIGURE 10.5

Decomposing a space–time trapezoid.

diamonds in Section 8.12. Figure 10.5 shows such a decomposition. Horizontal cuts are cuts in time;
slanted cuts are cuts in space. The first level of recursion did a time cut. The numerical labels indicate
order of evaluation. Trapezoids with the same label can be evaluated in parallel. Note that the triangles
are trapezoids with zero-length tops, so they can also be decomposed. Further recursive decomposition
of the triangles and trapezoids creates recursive parallelism.

10.5 CILK PLUS CODE
The trapezoid trick of the previous section works in multiple dimensions. The only change is that the
trapezoids are now four dimensional. Space cuts can be in any of the three spatial dimensions. It is
difficult to visualize, but not difficult to extrapolate from the 1D case. A space–time trapezoid in the
1D case can be represented by four integers: x0, x1, dx0, dx1, where:

• [x0,x1) is the half-open interval representing the top of the trapezoid.
• dx0 and dx1 are the corresponding slopes of the sides with respect to t.

In the 1D example where the stencil arms extend only one unit, the slopes are usually 1 or −1, and 0
at a boundary of the grid. For the 3D example, the arms extend four units, so the slopes are usually 4
or −4, and 0 at boundaries of the grid.

Listing 10.3 shows the base case code. It is almost identical to Listing 10.1, except that after each
time step it adjusts the boundaries of the spatial hyperplane by the corresponding slope values. It also
adds a #pragma simd that gives the compiler permission to vectorize the inner loop.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 273 — #273

10.5 Cilk Plus Code 273

1 void base_trapezoid(int t0, int t1,
2 int x0, int dx0, int x1, int dx1,
3 int y0, int dy0, int y1, int dy1,
4 int z0, int dz0, int z1, int dz1)
5 {

6 // Compute array strides for y and z directions
7 int sy = Nx;
8 int sz = Nx*Ny;
9 // March through time [t0, t1)

10 for (int t=t0; t < t1; ++t) {
11 // Apply stencil over [x0,x0)× [y0,y1)× [z0,z1)
12 for (int z=z0; z < z1; ++z)
13 for (int y=y0; y < y1; ++y)
14 #pragma simd
15 for (int x=x0; x < x1; ++x) {
16 // Update one point . The code here is the same as the

17 // body of the x loop in Listing 10.1 .

18 ...
19 }

20 // Slide down along the trapezoid

21 x0 += dx0; x1 += dx1;
22 y0 += dy0; y1 += dy1;
23 z0 += dz0; z1 += dz1;
24 }

25 }

LISTING 10.3

Base case for applying stencil to space–time trapezoid.

Listing 10.4 shows the recursive code. It biases cutting towards using the longest spatial axis that
permits a cut into K trapezoids. A value of K = 2 works well in practice. The three space cuts are
essentially the same logic, only reoriented along a different spatial axis. Time cuts are used as a last
resort, since they do not directly introduce parallelism, though they may open opportunities for more
space cuts of the resulting subtrapezoids. See Section 8.8 for a similar situation for the choice of cuts
in recursive matrix multiplication.

The strategy shown requires two synchronizations for each split along an axis, one after each
cilk_for loop. Thus, splitting each dimension once adds six synchronizations to the span. It turns
out that splitting all three dimensions at once enables using only four synchronizations [TCK+11], thus
enabling greater parallelism. The logic is substantially more complicated to code, so it seems like a
technique best left to “stencil compilers” such as Pochoir [TCK+11].

The gain from the space–time restructuring can help even sequential code. On one of the
author’s machines, just the cache-oblivious algorithm without #pragma simd yielded a 1.6× speed
improvement, using just a single thread!

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 274 — #274

274 CHAPTER 10 Forward Seismic Simulation

1 const int ds = 4; // Slant of a space cut (in grid units per time step)
2

3 #define TRAPEZOID(u0,u1) \
4 u0+i*w, / ∗ left side ∗ / \
5 ds, / ∗ left slope ∗ / \
6 i<K−1 ? u0+(i+1)*w : u1, / ∗ right side ∗ / \
7 −ds / ∗ right slope ∗ /
8

9 #define TRIANGLE(u0,du0,u1,du1) \
10 i<K ? u0+i*w : u1, / ∗ left side ∗ / \
11 i==0 ? du0 : −ds, / ∗ left slope ∗ / \
12 i<K ? u0+i*w : u1, / ∗ right side ∗ / \
13 i<K? ds : du1 / ∗ right slope ∗ /
14

15 void recursive_trapezoid(int t0, int t1,
16 int x0, int dx0, int x1, int dx1,
17 int y0, int dy0, int y1, int dy1,
18 int z0, int dz0, int z1, int dz1)
19 {

20 int dt = t1−t0;
21 if(dt>1) {
22 int dx = x1−x0, dy = y1−y0, dz v z1−z0;
23 if (dx >= dx_threshold && dx >= dy && dx >= dz && dx >= 2*ds*dt*K) {
24 int w = dx / K;
25 cilk_for (int i=0; i<K; ++i)
26 recursive_trapezoid(t0, t1,
27 TRAPEZOID(x0,x1),
28 y0, dy0, y1, dy1,
29 z0, dz0, z1, dz1);
30 cilk_for (int i=K; i>=0; −−i)
31 recursive_trapezoid(t0, t1,
32 TRIANGLE(x0,dx0,x1,dx1),
33 y0, dy0, y1, dy1,
34 z0, dz0, z1, dz1);
35 return;
36 }

37 if (dy >= dyz_threshold && dy >= dz && dy >= 2*ds*dt*K) {
38 int w = dy / K;
39 cilk_for (int i=0; i<K; ++i)
40 recursive_trapezoid(t0, t1,
41 x0, dx0, x1, dx1,
42 TRAPEZOID(y0,y1),
43 z0, dz0, z1, dz1);
44 cilk_for (int i=K; i>=0; −−i)
45 recursive_trapezoid(t0, t1,
46 x0, dx0, x1, dx1,
47 TRIANGLE(y0,dy0,y1,dy1),

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 275 — #275

10.6 ArBB Implementation 275

48 z0, dz0, z1, dz1);
49 return;
50 }

51 if (dz >= dyz_threshold && dz >= 2*ds*dt*K) {
52 int w = dz / K;
53 cilk_for (int i=0; i<K; ++i)
54 recursive_trapezoid(t0, t1,
55 x0, dx0, x1, dx1,
56 y0, dy0, y1, dy1,
57 TRAPEZOID(z0,z1));
58 cilk_for (int i=K; i>=0; −−i)
59 recursive_trapezoid(t0, t1,
60 x0, dx0, x1, dx1,
61 y0, dy0, y1, dy1,
62 TRIANGLE(z0,dz0,z1,dz1));
63 return;
64 }

65 if (dt > dt_threshold) {
66 int halfdt = dt / 2;
67 recursive_trapezoid(t0, t0 + halfdt,
68 x0, dx0, x1, dx1,
69 y0, dy0, y1, dy1,
70 z0, dz0, z1, dz1);
71 recursive_trapezoid(t0 + halfdt, t1,
72 x0 + dx0*halfdt, dx0, x1 + dx1*halfdt, dx1,
73 y0 + dy0*halfdt, dy0, y1 + dy1*halfdt, dy1,
74 z0 + dz0*halfdt, dz0, z1 + dz1*halfdt, dz1);
75 return;
76 }

77 }

78 base_trapezoid(t0, t1,
79 x0, dx0, x1, dx1,
80 y0, dy0, y1, dy1,
81 z0, dz0, z1, dz1);
82 }

LISTING 10.4

Parallel cache-oblivious trapezoid decomposition in Cilk Plus. The code applies a stencil to recursively
divide a space–time trapezoid.

10.6 ARBB IMPLEMENTATION
The discussion so far has focused on aggressive hand restructuring of the serial code. ArBB offers a
competitive approach based on the premise that if you specify the computation at a sufficiently high
level then the ArBB runtime can take care of the optimizations.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 276 — #276

276 CHAPTER 10 Forward Seismic Simulation

1 void rtm_stencil(arbb::dense<arbb::f32> Acoef,
2 arbb::f32 in, arbb::f32& out, arbb::f32 vsq)
3 {

4 using namespace arbb;
5 f32 laplacian = coef[0] * in;
6

7 for (int n = 1; n <= 4; ++n) {
8 laplacian += Acoef[n] *
9 (neighbor(in, −n, 0, 0) + neighbor(in, n, 0, 0) +

10 neighbor(in, 0, −n, 0) + neighbor(in, 0, n, 0) +
11 neighbor(in, 0, 0, −n) + neighbor(in, 0, 0, n));
12 }

13 out = 2 * in − out + vsq * laplacian;
14 }

15

16 void arbb_stencil(arbb::usize t0, arbb::usize t1, arbb::dense<arbb::f32> coef,
17 arbb::dense<arbb::f32, 3> Ac, arbb::dense<arbb::f32, 3>& An, arbb::dense<arbb

::f32, 3> vsq)
18 {

19 using namespace arbb;
20

21 _for (usize t = t0, t < t1, ++t) {
22 _if (t % 2 == 0) {
23 map(rtm_stencil)(coef, Ac, An, vsq);
24 }

25 _else {
26 map(rtm_stencil)(coef, An, Ac, vsq);
27 } _end_if;
28 } _end_for;
29 }

LISTING 10.5

ArBB code for simulating a wavefield.

The ArBB implementation of the stencil given in Listing 10.5 is simple because ArBB supports
stencils as a built-in pattern, internally implementing many of the stencil optimizations discussed in
Section 7.3, in particular strip mining. However, it does not currently implement the recursive space–
time trapezoid decomposition, discussed in the previous section.

Syntactically, in the elemental functions used for map operations in ArBB, not only can the current
element be used as an input but also offset inputs can be accessed using the neighbor function, which
takes an offset. The offset must be a normal C++ type, not an ArBB type, which means it can be
computed at ArBB function definition time, but not at runtime. As far as ArBB is concerned, neighbor
offsets are constants, and the stencil shape is a constant.

Using offsets means that at the boundaries of a collection, some offsets will be outside the bounds
of the input collection. In ArBB, such accesses always return 0. If a different treatment of boundaries is

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 277 — #277

10.7 Summary 277

needed, the current position can be found using a position call and the stencil computation modified
accordingly. There is no requirement that the stencil computation be linear or uniform, as it can be a
function of the position as well. However, the compiler for ArBB is smart enough that if conditional
statements are given that are linear functions of the position, which is the case when we only want to
modify the stencil within some fixed distance of the boundary, then these conditional statements will
only be evaluated near the boundaries of the input collection and not everywhere in the interior.

10.7 SUMMARY
Stencils are an effective approach to solving the wave equation in the time domain. Memory bandwidth,
not hardware threads, can easily become the limiting resource if the stencil is parallelized in the obvious
way, because the arithmetic intensity will be low. Caches ameliorate the problem somewhat, though
greater gains can be obtained by tiling. The problem is a stencil pattern in space and recurrence pattern
in time, so the tiles have a trapezoidal shape in space–time. The slopes of the sides relate to the stencil
dimensions. Tiling recursively enables a cache-oblivious algorithm, which optimizes for all possible
levels and sizes of cache while being oblivious to which really exist. Because the resulting code uses
cache more efficiently, it often runs faster, even when run with a single thread, than the original serial
code runs.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 279 — #279

CHAPTER

K-Means Clustering 11
The k-means algorithm [Mac67], also called Lloyd’s algorithm [Llo82], is a way of finding clusters in
a dataset. It is popular because it is simple to implement. Parallelizing it with the map (Chapter 4) and
reduce (Section 5.1) patterns is straightforward. However, a little cleverness can reduce the number of
synchronizations by manipulating the code so that the map and reduce patterns can be fused. The par-
allel k-means implementation involves a reduction over a “heavy” type. The Cilk Plus implementation
illustrates the mechanics of defining reducer hyperobjects for such reductions, when the predefined
reducers do not suffice. The TBB implementation shows how to use thread-local storage in TBB.

11.1 ALGORITHM
The standard algorithm for k-means [Mac67, Llo82] starts by creating initial clusters and then
iteratively updating them. Each update performs the two steps shown in Figure 11.1:

1. Compute the centroid of each cluster.
2. Reassign points to be in the cluster with the closest centroid.

In some situations, a cluster becomes empty. One common repair, which is used in the example, is to
assign the point farthest from its current cluster to the empty cluster.

Each of the two steps can be parallelized along two dimensions, across points or across clusters.
However, usually the number of points is large enough to provide sufficient parallel slack (Section 2.5.6),
and sometimes the clusters are few, so only the point dimension is used in the example.

Here are the choices for parallelizing each step in more detail. The centroid of a cluster is the sum
of points in it divided by the number of points. Each centroid can be computed separately, and each
sum can be computed using parallel reduction. However, if only a few centroids are being computed,
computing them independently has several problems:

• The number of clusters might be too few to provide enough parallel slack.
• The partitioning of points into clusters might be grossly imbalanced.
• If the points of a cluster are not kept compact in memory, there may be memory bandwidth issues,

because a fetch of a point will bring in its cache line with unrelated points.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00011-6
c© 2012 Elsevier Inc. All rights reserved.

279

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 280 — #280

280 CHAPTER 11 K-Means Clustering

Compute centroids

Reassign points

FIGURE 11.1

One iteration of the k-means algorithm with two clusters and six points. Each iteration of the algorithm
computes the centroid (+) of each cluster and then reassigns each point to the cluster with the closest
centroid.

The example provided here will use only the reduction parallelism approach. Typically, the number of
points is much larger than the number of processors and thus provides sufficient parallel slack.

The second step likewise has two possibilities for parallelism. Each point’s new cluster can be
computed independently, and the distances from it to each centroid can be computed separately. We
assume there are enough points to provide parallel slack, and the number of centroids might be small,
so the example uses only parallelism across points.

There is another efficiency issue to discuss. The algorithm alternates two patterns over points:
reduce to compute centroids and map to reassign points. As discussed in Section 5.2, it is often benefi-
cial to fuse these operations so that only one sweep of memory is required instead of two. Computing
a centroid actually involves two steps: computing the sum of its points and then dividing that sum by
the size of the cluster. So the iterated steps expand to:

• Sum: Compute the sum of the points in each cluster. This is a reduction.
• Divide: Divide each cluster sum by the number of points in that cluster.
• Reassign: Reassign points to the cluster with the closest centroid. This is a map.

We would like to optimize this using fusion. Alas, the reduction and map are in the wrong order to
fuse directly, and the divide step separates them. These obstacles are overcome by observing that the k-
means algorithm loops over these steps. The first Sum step can be peeled from the loop, which permits

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 281 — #281

11.2 K-Means with Cilk Plus 281

rotating the loop, so the algorithm looks like:

Sum
do {

Divide
Reassign
Sum

} while(any point moved to another cluster);

Now the map pattern for step Reassign can be fused with the reduction pattern for step Sum. The
transformed loop executes Sum one more time than the original loop executes it, which adds slight
overhead. The savings from fusing greatly outweigh this overhead.

11.2 K-MEANS WITH CILK PLUS
Listing 11.1 shows the top-level Cilk Plus code. Take a look at the overall structure. The input is an
array points of n points and a value k specifying the number of desired clusters. The routine fills
array centroid[0:k] with the centroids of the clusters, and fills array cluster id[0:n] with the
index of each point’s centroid in centroid[0:k]. The routine assumes that distance2(p,q) returns
the square of the Euclidean between points p and q.

The do-while loop spanning lines 14 to 34 uses the rotated step structure discussed in the previous
section to iterate the steps of Divide, Reassign, and Sum. The cilk_for on lines 23 to 33 does the fused
map/reduce for the Reassign and Sum steps. The Reassign step is expressed using an array notation
operation __sec_reduce_min_index(x), which returns the index of the minimum value in array
section x. In the code, x is the result of mapping distance2 over the section centroid[0:k] and
scalar value points[i]. The mapping of the scalar value treats it as a section of k copies of the
value. The array notation here is largely for notational convenience, not vectorization. The data is in
“array of structures” form, so it is unlikely to be profitably vectorized unless the hardware has gather
instructions. See Listing 11.7 (page 287) for equivalent serial code.

The variable sum is a hyperobject. In a serial version of the code, it would be an array of
sum_and_count objects. The jth object is used to record information about the jth cluster, specifically
the sum of its points and the number of points. Listing 11.2 shows the definition of sum_and_count.

The definition makes fairly minimal assumptions about what a point is. All it assumes is the
following:

• point() constructs an identity element for point addition.
• q+= p sets point q to the sum of points q and p.
• p/n returns a point q such that if n copies of q are added together the sum is p.

The last method, operator+=, is not necessary for a sequential k-means algorithm. It is there so the
parallel implementation can merge the information in two sum and count objects.

11.2.1 Hyperobjects
The code uses two hyperobjects:

• change counts changes in cluster assignments.
• sum accumulates the sum points in each cluster.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 282 — #282

282 CHAPTER 11 K-Means Clustering

1 void compute_k_means(size_t n, const point points[], size_t k, cluster_id id[],
point centroid[]) {

2

3 // Create initial clusters and compute their sums
4 elementwise_reducer<sum_and_count> sum(k);
5 sum.clear();
6 cilk_for(size_t i=0; i<n; ++i) {
7 id[i] = i % k;
8 // Peeled “Sum step”
9 sum[id[i]].tally(points[i]);

10 }

11

12 // Loop until clusters do not change
13 cilk::reducer_opadd<size_t> change;
14 do {
15 // Repair any empty clusters
16 repair_empty_clusters(n, points, id, k, centroid, sum);
17

18 // “Divide step”: Compute centroids from sums
19 centroid[0:k] = sum.get_array()[0:k].mean();
20

21 sum.clear();
22 change.set_value(0);
23 cilk_for(size_t i=0; i<n; ++i) {
24 // “Reassign step”: Find index of centroid closest to points [i]
25 cluster_id j = __sec_reduce_min_ind(distance2(centroid[0:k],points[i]));
26 if(j!=id[i]) {
27 // A different centroid is closer now.
28 id[i] = j;
29 ++change;
30 }

31 // “Sum step”

32 sum[j].tally(points[i]);
33 }

34 } while(change.get_value()!=0);
35 }

LISTING 11.1

K-means clustering in Cilk Plus.

Both change and sum must be hyperobjects because they are updated by concurrent iterations of the
cilk for loop. Object change is an instance of the Cilk Plus template class reducer opadd defined
in <cilk/reducer opadd.h> and performs the obvious addition reduction.

The other hyperobject sum requires more work to implement, because it requires a twist slightly
beyond the capabilities of the predefined hyperobjects. If k were a compile-time constant, then

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 283 — #283

11.2 K-Means with Cilk Plus 283

1 struct sum_and_count {
2 sum_and_count() : sum(), count(0) {}
3 point sum;
4 size_t count;
5 void clear() {
6 sum = point();
7 count = 0;
8 }

9 void tally(const point& p) {
10 sum += p;
11 ++count;
12 }

13 point mean() const {
14 return sum/count;
15 }

16 void operator+=(const sum_and_count& other) {
17 sum += other.sum;
18 count += other.count;
19 }

20 };

LISTING 11.2

Type sum_and_count for computing mean of points in a cluster.

reducer opadd could be used. We could define a fixed-length vector type, sum and count vec,
to hold an array of k sum and count objects, and define operator+= on it to do elementwise
operator+=. Then variable sum could be declared as a reducer opdd<sum and count vec> and
the program would work.

But k is a runtime value. The construction of the reducer needs to remember k and use it when
constructing thread-local views. The solution is to instantiate the predefined template cilk::reducer
with a monoid that remembers k. Listing 11.3 shows a complete implementation.

There are three parts to the reducer:

• A View that implements a view of the hyperobject
• A Monoid that defines operations views
• An elementwise_reducer wrapper around the mechanics that provides a nice public interface

Class View has an array of k sum_and_count objects. It has responsibility for construction and
destruction of the array. Because k is the same for all views, the code makes it part of the Monoid, not
the View.

Class Monoid defines operations on views. Its base class defines defaults for the signatures that
cilk::reducer expects of a monoid. For example, the Monoid uses the defaults for allocating/deal-
locating memory for a view and destroying a view. The Monoid overrides the default for constructing

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 284 — #284

284 CHAPTER 11 K-Means Clustering

1 template<typename T>
2 class elementwise_reducer {
3 struct View {
4 T* array;
5 View(size_t k) : array(new T[k]) {}
6 ˜View() {delete[] array;}
7 };
8

9 struct Monoid: cilk::monoid_base<View> {
10 const size_t k;
11 void identity(View* p) const {new(p) View(k);}
12 void reduce(View* left, View* right) const {
13 left−>array[0:k] += right−>array[0:k];
14 }

15 Monoid(size_t k_) : k(k_) {}
16 };
17 cilk::reducer<Monoid> impl;
18 public:
19 elementwise_reducer(size_t k) : impl(Monoid(k), k) {}
20 void clear() {impl.view().array[0:impl.monoid().k].clear();}
21 T* get_array() {return impl.view().array;}
22 operator sum_and_count*() {return get_array();}
23 };

LISTING 11.3

Defining a hyperobject for summing an array elementwise in Cilk Plus. The names of each struct can be
changed. The names of methods identity and reduce must not be changed, because they are used
internally by cilk::reducer<Monoid>.

a view initialized to an identity value, because it needs to pass k to the view constructor. The Monoid
also specifies how to reduce two views. As cilk::reducer requires, our method puts the reduction
into the left view. Note that k comes from the monoid, not the view. The array notation there provides
brevity.

Class elementwise_reducer has the actual reducer, as member elementwise_reducer::
impl. The public methods provide a nice public interface. For example, method clear, which applies
method clear() elementwise to each element in the view, hides the use of the two key methods on
impl:

• view() returns a reference to the current view.
• monoid() returns a reference to the monoid.

The constructor for impl takes two arguments. The first is the Monoid. The second is the argument
with which to construct the leftmost view. In the example, this argument is k, so that the reducer will
construct the leftmost view as View(k).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 285 — #285

11.3 K-Means with TBB 285

11.3 K-MEANS WITH TBB
The k-means algorithm has the same basic structure in TBB as it does in Cilk Plus. The primary
differences are:

• The array notation statements are written out as serial loops. Since the array notation was used for
brevity, not for vectorization, the loss is only of notational convenience, not performance.

• The hyperobjects are replaced by thread-local storage. Merging of local views into a global view is
done with an explicit loop.

• Tiling of iterations in the parallel loops is explicit, so that thread-local lookup can be done once
per tile.

Listing 11.4 shows the declarations for a type tls_type that will hold thread-local views of
the sum_and_count from Listing 11.2 (page 283). The thread-local storage is implemented using
an instance of template tbb::enumerable_thread_specific, which implements a collection of
thread-local views. The expression tls.local() returns the thread-local view for the calling thread.
If such a view does not yet exist, the method creates one.

The way a new view is created depends upon how the enumerable_thread_specific was
constructed. There are three ways, as shown in the following fragment:

enumerable_thread_specific<T> a;
enumerable_thread_specific<T> b(x); // x assumed to have type T

enumerable_thread_specific<T> c(f); // f assumed to be a functor

Local views for a will be default-constructed. Local views for b will be copy-constructed from
exemplar x, which must be of type T. Local views for c will be constructed using T(f()).

Our example uses the last way, where T is a view. The constructor for view expects k as an
argument. In the final code, k is a local variable in the surrounding context. So the code will use a
lambda expression as f when declaring an instance of tls_type, like this:

tls_type tls([&]{return k;});

1 class view {
2 view(const view& v); // Deny copy construction
3 void operator=(const view& v); // Deny assignment

4 public:
5 sum_and_count* array;
6 size_t change;
7 view(size_t k) : array(new sum_and_count[k]), change(0) {}
8 ˜view() {delete[] array;}
9 };

10

11 typedef tbb::enumerable_thread_specific<view> tls_type;

LISTING 11.4

Declaring a type tls_type for thread-local views in TBB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 286 — #286

286 CHAPTER 11 K-Means Clustering

A thread can access all of the views by using STL conventions, because a enumerable_
thread_specific acts like a STL container of views.

For example, Listing 11.5 accumulates the sum of change in all views into a global view and resets
the local values. Our k-means example will rely on that code and the similar code in Listing 11.6 that
accumulates sums of points. For compilers not supporting C++11 auto declarations (Section D.1),
replace the auto with tls_type:iterator.

Using thread local storage for reductions has two limitations compared to the Cilk Plus reducers:

• The reduction operation must be commutative as well as associative. Reducer hyperobjects merely
require associativity.

• Using a serial loop for reducing the local views can become a scalability bottleneck, since its span
is inherently �(P).

The latter limitation can be addressed by using TBB’s parallel_reduce template to reduce the
local views if the span becomes an issue. For our example, it is not worth the trouble as long as
there are many more points than hardware threads, because then the reduction of local views is a small
contributor to the total running time.

1 void reduce_local_counts_to_global_count(tls_type& tls, view& global) {
2 global.change = 0;
3 for(auto i=tls.begin(); i!=tls.end(); ++i) {
4 view& v = *i;
5 global.change += v.change;
6 v.change = 0;
7 }

8 }

LISTING 11.5

Walking local views to detect changes. The variable tls is a tbb::enumerable_thread_specific<view>,
by way of the typedef in Listing 11.4.

1 void reduce_local_sums_to_global_sum(size_t k, tls_type& tls, view& global) {
2 for(auto i=tls.begin(); i!=tls.end(); ++i) {
3 view& v = *i;
4 for(size_t j=0; j<k; ++j) {
5 global.array[j] += v.array[j];
6 v.array[j].clear();
7 }

8 }

9 }

LISTING 11.6

Walking local views to accumulate a global sum. Each local view is cleared in preparation for the next iteration
of the k-means algorithm.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 287 — #287

11.3 K-Means with TBB 287

Another feature of TBB used in the example that deserves comment is the explicitly tiled form of
tbb::parallel for. The following pattern will be used to iterate over all n points in parallel:

tbb::parallel_for(
blocked_range<size_t>(0,n),
[...](tbb::blocked_range<size_t> r) {

view& v = tls.local();
for(size_t i=r.begin(); i!=r.end(); ++i) {

...process point i...
}

}

);

The first argument to parallel for specifies a range over which to iterate. The parallel for splits
that range into subranges and applies the functor argument to each subrange. In the pattern, the functor
looks up its thread-local view and then processes each point in the subrange. The loop could be written
more concisely as:

tbb::parallel_for(0, n,
[...](size_t i) {

view& v = tls.local();
...process point i...

}

);

but at the cost of executing tls.local() for each point. The explicitly tiled form of parallel for
should be used when there is a profitable opportunity to optimize the inner loop.

TBB does not have reduction operators like __sec_reduce_min_ind in Cilk Plus, so the code
will use the auxiliary routine reduce_min_ind in Listing 11.7. Given that and the previous discussion,
the rest of k-means is straightforward to write. Listing 11.8 shows the TBB code.

1 int reduce_min_ind(const point centroid[], size_t k, point value) {
2 int min = −1;
3 float mind = std::numeric_limits<float>::max();
4 for(int j=0; j<k; ++j) {
5 float d = distance2(centroid[j],value);
6 if(d<mind) {
7 mind = d;
8 min = j;
9 }

10 }

11 return min;
12 }

LISTING 11.7

Routine for finding index of centroid closest to a given point. This routine is a serial equivalent of
the __sec_reduce_min_ind expression on line 25 in Listing 11.1.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 288 — #288

288 CHAPTER 11 K-Means Clustering

1 void compute_k_means(size_t n, const point points[], size_t k, cluster_id id[],
point centroid[]) {

2

3 tls_type tls([&]{return k;});
4 view global(k);
5

6 // Create initial clusters and compute their sums
7 tbb::parallel_for(
8 tbb::blocked_range<size_t>(0,n),
9 [=,&tls,&global](tbb::blocked_range<size_t> r) {

10 view& v = tls.local();
11 for(size_t i=r.begin(); i!=r.end(); ++i) {
12 id[i] = i % k;
13 // Peeled “Sum step”
14 v.array[id[i]].tally(points[i]);
15 }

16 }

17);
18

19 // Loop until ids do not change
20 size_t change;
21 do {
22 // Reduce local sums to global sum
23 reduce_local_sums_to_global_sum(k, tls, global);
24

25 // Repair any empty clusters
26 repair_empty_clusters(n, points, id, k, centroid, global.array);
27

28 // “Divide step”: Compute centroids from global sums
29 for(size_t j=0; j<k; ++j) {
30 centroid[j] = global.array[j].mean();
31 global.array[j].clear();
32 }

33

34 // Compute new clusters and their local sums

35 tbb::parallel_for(
36 tbb::blocked_range<size_t>(0,n),
37 [=,&tls,&global](tbb::blocked_range<size_t> r) {
38 view& v = tls.local();
39 for(size_t i=r.begin(); i!=r.end(); ++i) {
40 // “Reassign step”: Find index of centroid closest to points [i]

41 cluster_id j = reduce_min_ind(centroid, k , points[i]);
42 if(j!=id[i]) {
43 id[i] = j;
44 ++v.change;
45 }

46 // “Sum step”

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 289 — #289

11.4 Summary 289

47 v.array[j].tally(points[i]);
48 }

49 }

50);
51

52 // Reduce local counts to global count
53 reduce_local_counts_to_global_count(tls, global);
54 } while(global.change!=0);
55 }

LISTING 11.8

K-Means clustering in TBB.

11.4 SUMMARY
The k-means algorithm is a serial loop that iterates two fundamentally parallel steps: computing cen-
troids and reassigning points, until it converges. By peeling part of the first iteration, the two parallel
steps can become a single parallel sweep: map fused with reduction. The reduction type is somewhat
heavy in the sense that it is bigger and takes more time to copy than a scalar type. The Cilk Plus imple-
mentation shows how to define custom reducer hyperobjects for performing reductions when a suitable
built-in reducer is not available. The TBB implementation uses thread-local storage for the reduction,
which works when the reduction operation is both commutative and associative.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 291 — #291

CHAPTER

Bzip2 Data Compression 12
Bzip2 is a popular file compression program. We show it as a practical application of the pipeline
pattern. The pattern is more than a classic pipeline because for the sake of scalability some stages
process multiple items simultaneously. The TBB implementation shows parallel_pipeline in
action. The Cilk Plus implementation demonstrates how creative use of reducers can go far beyond
implementing mathematically pure reductions. Another point of the example is that, when designing
file formats, you should consider their impact on parallel processing.

12.1 THE BZIP2 ALGORITHM
Bzip2 chops its input stream into blocks, compresses each block separately, and writes the blocks to an
output stream. Two features of the output stream affect parallelization considerations:

• Each output block starts on the bit (not byte!) immediately following the previous block.
• A cyclic redundancy check (CRC) code is written after all blocks are written.

The overall steps of the algorithm are:

while(not at end of the input stream) {
Read a block from the input stream

Compress the block

Update CRC

Realign the block on a bit boundary

Write the block to the output stream

}

Output final CRC

In practice, the realignment and writing can be optimized by fusing them into a single operation that
realigns and writes a block, instead of realigning the entire block before writing any of it. Better yet, to
reduce the memory footprint of these two fused steps, the block can be treated as a sequence of chunks,
and each chunk can be aligned/written separately.

Compression of a block involves the following operations:

1. Run-length encoding, which cheaply compresses long runs of the same character.
2. Burrows–Wheeler transform [BW94], which permutes the block in a way that tends to put similar

substrings close to each other. The transform sorts all possible cyclic rotations of the block and,
using the sorted order, outputs the last letter of each rotation. It also outputs the index of where

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00012-8
c© 2012 Elsevier Inc. All rights reserved.

291

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 292 — #292

292 CHAPTER 12 Bzip2 Data Compression

the original block occurs in the sorted list of rotations. The original block can be reconstructed
from this information [BW94]. For an example of the forward transform, let the block be the string
LOGHOG. The result of the sort is:

Index Rotations Sorted Rotations

0 LOGHOG GHOGLO
1 OGHOGL GLOGHO
2 GHOGLO HOGLOG
3 HOGLOG LOGHOG
4 OGLOGH OGHOGL
5 GLOGHO OGLOGH

The output of the transform is the last letter of each entry in the sorted list: OOGGLH, and the index 3,
which is the index of LOGHOG in the sorted list. In practice, the block can be as long as 900 kilobytes,
so the sort can take significant time.

3. Move-to-front coding [BSTW86], which transforms the block so similar substrings that are close
to each other produce the same output symbol.

4. Another round of run-length encoding.
5. Huffman coding, which compresses the transformed block, which at this point tends to have high

redundancy of some symbols.

In principle, the run-length encoding can be parallelized by parallel scan, the Burrows–Wheeler trans-
form can use a parallel sort, and the Huffman transform is a parallelizable map pattern. However, the
move-to-front transform is serial. Hence, it is more practical to exploit parallelism across blocks, not
inside blocks.

Another consideration in favor of parallelizing across blocks is that reading and writing blocks
contribute a significant portion of the work. Hence, for good speedup it is critical to do reading,
compressing, and writing concurrently.

12.2 THREE-STAGE PIPELINE USING TBB
Figure 12.1 sketches a three-stage pipeline implementation that can be implemented using tbb::
parallel_pipline. The first and last stages are serial. They each process one block at a time. The
tbb::parallel_pipline template guarantees that each serial stage processes items in the same
order as the previous serial stage. The middle stage is parallel and does most of the compression work.

However, the initial run-length encoding is done in the serial stage. This is to maintain bitwise
compatibility with serial bzip2. In serial bzip2, the blocksize is the maximum size of a block after
the initial run-length encoding. So block boundaries are determined after run-length encoding. As
remarked earlier, parallel scan could be used inside the first stage to parallelize the encoding, though
given the low arithmetic intensity of run-length encoding it is unlikely to pay off anyway.

Bzip2 is a large application, so only a tiny fraction of the code is shown, specifically the frac-
tion needed to understand how it was parallelized using tbb::parallel_pipeline. In the serial

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 293 — #293

12.2 Three-Stage Pipeline Using TBB 293

Read block
Run-length encoding

Burrows–wheeler transform
Move-to-front coding
Run-length encoding
Huffman coding

Bit-align
Write block

FIGURE 12.1

Three-stage pipeline for bzip2.

version of bzip2, a data structure of type EState describes the current block being compressed. It has
many fields. For our purposes here, only the fields related to the initial run-length encoding need to be
understood.

struct EState {
...
UInt32 state_in_ch; // Most recently read byte
Int32 state_in_len; // Current run-length of state in char
...
Int32 nblock; // Number of input bytes in block
...

};

In the serial version, there is a single instance of EState. The parallel version needs to be reading
the next block, and compressing multiple blocks in parallel, so the parallel version needs one instance
of EState per block in flight. However, the two fields shown carry information between blocks. One
solution would be to move them to a different structure associated with only the input stage. However,
for the sake of minimizing changes to the serial code, a slightly different approach is employed. After
the initial pipeline stage reads a block, it remembers the two field values from the current EState, and
uses those values to initialize the EState instance for the next block.
Listing 12.1 declares the state for the input stage and the routine that gets a block.

The output stage has some similar information-carrying issues.

• Accumulate the total volume written.
• Create a a CRC that is the combination of the CRC values of each block.
• Concatenate compressed blocks on bit boundaries. When writing a block, any bits beyond the most

recent byte written must be included in the first byte written for the subsequence block.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 294 — #294

294 CHAPTER 12 Bzip2 Data Compression

1 class InputState {
2 public:
3 InputState() : prev_state_char(256), prev_state_len(0), nbytes_in(0),

buf_ptr(NULL), buf_end(NULL) {}
4 EState* getOneBlock(FILE* inputFile, EState* s);
5 // Volume of uncompressed data
6 off_t nbytes_in;
7 private:
8 // Values carried between instances of EState
9 UInt32 prev_state_char;

10 Int32 prev_state_len;
11 // Field and routine related to buffering input
12 UChar *buf_ptr;
13 UChar *buf_end;
14 UChar buf[8192];
15 void copy_input_until_stop(EState* s, FILE* infile);
16 };
17

18 void InputState::getOneBlock(FILE* inputFile, EState* s) {
19 // Carry information from previous EState
20 s−>state_in_ch = prev_state_char;
21 s−>state_in_len = prev_state_len;
22

23 copy_input_until_stop(s, inputFile);
24

25 // Remember information to be carried to next EState
26 prev_state_char = s−>state_in_ch;
27 prev_state_len = s−>state_in_len;
28

29 // Accumulate total input volume
30 nbytes_in += s−>nblock;
31 }

LISTING 12.1

Declarations for bzip2 pipeline.

This state is declared in a class OutputState. For brevity, a listing is not provided here, but it is
analogous to the way InputState was done.

The middle compression stage carries no information between blocks, so it needs no corresponding
state object. It just calls a function on the the Estate object passing through the stage.

Now the TBB syntactic mechanics for building and running the pipeline can be detailed. The routine
tbb::parallel_pipeline takes two parameters:

• A token limit, which is an upper bound on the number of items that are processed simultaneously.
Without this limit, a traffic jam behind a serial stage could pile up forever, eventually exhausting
memory. Here, a limit equal to the number of hardware threads is reasonable.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 295 — #295

12.2 Three-Stage Pipeline Using TBB 295

• A pipeline constructed by composing filter_t objects together with &. Each object is created by
function tbb::make_filter.

Listing 12.2 shows the key parts of the code. The template arguments to make_filter indicate the
type of input and output items for the filter. The ordinary arguments specify whether the filter_t is
parallel or not and specify a functor that maps an input item to an output item. For example, the middle
stage is parallel and maps a Estate∗ to an Estate∗ using CompressOneBlock. The last stage has
an output type of void since it is consuming items, not mapping them.

The functor in the first stage is a special case since it is producing items, not mapping items to
items. The argument to it is not an item, but a special object of type tbb::flow_control used to

1 int BZ2_compressFile(FILE *stream, FILE *zStream, int
blockSize100k, int verbosity, int workFactor) throw() {

2 ...
3 InputState in_state;
4 OutputState out_state(zStream);
5 tbb::parallel_pipeline(
6 ntoken,
7 tbb::make_filter<void,EState*>(tbb::filter::

serial_in_order, [&](tbb::flow_control& fc) −> EState* {
8 if(feof(stream) || ferror(stream)) {
9 fc.stop();

10 return NULL;
11 }

12 EState *s = BZ2_bzCompressInit(blockSize100k, verbosity, workFactor);
13 in_state.getOneBlock(stream,s);
14 return s;
15 }) &
16 tbb::make_filter<EState*,EState*>(tbb::filter::

parallel, [](EState*s) −> EState* {
17 if(s−>nblock)
18 CompressOneBlock(s);
19 return s;
20 }) &
21 tbb::make_filter<EState*,void>(tbb::filter::

serial_in_order, [&](EState* s) {
22 if(s−>nblock)
23 out_state.putOneBlock(s);
24 FreeEState(s);
25 })
26);
27 ...
28 }

LISTING 12.2

Use of TBB parallel pipeline to coordinate bzip2 actions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 296 — #296

296 CHAPTER 12 Bzip2 Data Compression

signal the end of input. Invocation of method stop() on it tells parallel_pipeline that no more
items will be produced and that the value returned from the functor should be ignored.

12.3 FOUR-STAGE PIPELINE USING TBB
Breaking the last stage into two stages, one serial and one parallel, can enable more parallelism. At the
time of this writing, it’s not worth the trouble because the output device is typically a disk that works
best when accessed serially; otherwise, time is wasted bouncing the disk head around. However, future
storage technologies such as solid-state disk might make the following scheme practical.

The scheme is to separate determining where to write an output block from the actual writing. The
“where” part is serial, because it relies on knowing how big the previous blocks are. But the actual
writing of an output blocks can be done in parallel, and physically in parallel on some output devices.
The scheme replaces the last stage of Figure 12.1 with the two stages shown in Figure 12.2. The top
stage is serial and does the operations that involve carrying information between blocks. The bottom
stage is parallel and does the realignment and writing.

12.4 THREE-STAGE PIPELINE USING CILK PLUS
As explained in Section 9.4.2, Cilk Plus does not support the general pipeline pattern but can syn-
thesize a serial–parallel–serial pipeline via a consumer reducer. Listing 12.3 shows the instance
of this approach for bzip2 using the same InputState and OutputState classes as for the TBB
implementation. The organization of routines mimics Listing 9.3 on page 259.

(from block compression stage)

Carry boundary bits
Compute file offset of block

Bit-align
Write block

FIGURE 12.2

Possible replacement for last stage of Figure 12.1 that permits parallel writing.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 297 — #297

12.5 Summary 297

1 void SecondStage(EState* s, reducer_consume<OutputState, EState*>& sink) {
2 if(s−>nblock)
3 CompressOneBlock(s);
4 sink.consume(s);
5 }

6

7 void ThirdStage(OutputState* out_state, EState* s) {
8 if(s−>nblock)
9 out_state−>putOneBlock(s);

10 FreeEState(s);
11 }

12

13 int BZ2_compressFile(FILE *stream, FILE *zStream, int
blockSize100k, int verbosity, int workFactor) throw()
{

14 @{\rm ...}
15 InputState in_state;
16 OutputState out_state(zStream);
17 reducer_consume<OutputState,EState*> sink(&out_state, ThirdStage);
18 while(!feof(stream) && !ferror(stream)) {
19 EState *s = BZ2_bzCompressInit(blockSize100k, verbosity, workFactor);
20 in_state.getOneBlock(stream,s);
21 cilk_spawn SecondStage(s, sink);
22 };
23 cilk_sync;
24 @{\rm ...}
25 }

LISTING 12.3

Sketch of bzip2 pipeline in Cilk Plus using a consumer reducer. The code uses the reducer_consume
template from Listing 9.4.

12.5 SUMMARY
The bzip2 program partitions a file into blocks and compresses each one separately. Initial and final
processing of each block is sequential. Hence, it is well suited to a serial–parallel–serial pipeline struc-
ture. The TBB template parallel_pipeline directly supports such a pipeline. Cilk Plus has no
direct support, but the application can be parallelized nonetheless by spawning tasks and assembling
the output in order with a consumer reducer.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 299 — #299

CHAPTER

Merge Sort 13
In a divide-and-conquer algorithm, either the divide or merge step can sometimes become a bottleneck
if done serially. Parallel merge sort demonstrates a case where the merge step can be parallelized
to avoid a bottleneck by using divide-and-conquer. The net effect is a divide-and-conquer algorithm
running inside a divide-and-conquer algorithm. This illustrates the practical importance of having a
parallel framework that supports efficient nested parallelism.

Serial merge sort has two desirable properties:

• It is stable (that is, the order of equal elements is not changed).
• It has guaranteed asymptotic running time O(N lgN).

Weighing against these desirable properties is the disadvantage that merge sort is an out-of-place sort,
and thus has a bigger memory and cache footprint than in-place sort algorithms. Conversely, Quicksort
is an in-place sort, but lacks the other two properties. In particular, though Quicksort’s expected time
is O(N lgN), its worst-case time is O(N2).

Serial merge sort is a divide-and-conquer algorithm where the basic recursive steps are:

1. Divide the sequence into two subsequences.
2. Sort each subsequence.
3. Merge the sorted subsequences.

The merge step has work 2(N) to merge N items. If done serially, it can become a bottleneck just as
serial partitioning can for Quicksort (Section 8.9.3). Indeed, there is a symmetry to their respective
bottlenecks. In Quicksort, a serial divide took time O(N). In merge sort, a serial merge takes time
O(N). The effect on the complexity analysis recurrence relations is similar, with similar consequences:
The asymptotic speedup for sorting N items is O(lgN). Though efficient for small core counts and big
sequences, it is not scalable.

13.1 PARALLEL MERGE
Improving the speedup requires parallelizing the merge step. How to do so is a good lesson in why it
is sometimes better to seek a new algorithm than parallelize the obvious serial algorithm. To see this,
consider two sorted sequences X and Y that must be merged. The usual serial algorithm inspects the
head items of the two sequences and moves the smaller head item to the output sequence. It repeats this
incremental inspection until either X or Y becomes empty. Any remaining items are appended to the
output. Listing 13.1 shows the code, where X and Y are represented by the half-open intervals [xs,xe)
and [ys,ye), respectively.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00013-X
c© 2012 Elsevier Inc. All rights reserved.

299X

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 300 — #300

300 CHAPTER 13 Merge Sort

1 void serial_merge(const T* xs, const T* xe, const T* ys, const T* ye, T* zs) {
2 while(xs!=xe && ys!=ye) {
3 bool which = *ys < *xs;
4 *zs++ = std::move(which ? *ys++ : *xs++);
5 }

6 std::move(xs, xe, zs);
7 std::move(ys, ye, zs);
8 }

LISTING 13.1

Serial merge. Appendix D.3 explains the meaning of std::move.

A subtle point worth attention is the test in the inner loop. If a key in X and a key in Y are equal,
the key in X comes first in the output. This rule for breaking ties ensures that if serial merge is used
for a merge sort then the sort is stable.

Trying to parallelize serial merge directly is hopeless. The algorithm is inherently serial, because
each iteration of the while loop depends upon the previous iteration. However, there is a remark-
ably simple divide-and-conquer alternative to the usual serial algorithm. Without loss of generality,
assume that sequence X is at least as long as sequence Y . The sequences can be merged recursively as
follows:

1. Split X into two contiguous subsequences X1 and X2 of approximately equal length. Let K be the
first key of X2.

2. Use binary search on Y to find the point where K could be inserted into Y . Split Y at that point into
two subsequences Y1 and Y2.

3. Recursively merge X1 and Y1 to form the first part of the output sequence. Recursively merge X2
and Y2 to form the second part of the output sequence.

The two sub-merges are independent and thus can be done in parallel. Listing 13.2 shows a Cilk Plus
implementation, using the same argument convention as for serial_merge. For clarity, the code has
been written using full recursion. It is a straightforward exercise to turn it into semi-iterative form as
in Quicksort (Listing 8.11 on page 234).

A point sometimes overlooked in implementing parallel merge is retaining the stability condition
so that if keys in X and Y are equal then X comes first in the output sequence. Doing so requires a slight
asymmetry in the binary search:

• If splitting Y at element *ym, then elements of X equal to *ym go in X1.
• If splitting X at element *xm, then elements of Y equal to *xm go in Y2.

The distinction between std::upper bound and std::lower bound achieves this asymmetry.
Let N be the total length of the two sequences being merged. The recursion depth never exceeds

about 2 lg(N/MERGE CUT OFF). The qualification “about” is there because when the sequences do not
divide evenly at every level of recursion the depth may be one deeper. The depth limit follows from the
observation that each two consecutive levels of recursion cut the problem size about in half or better.
Here is a sketch of the proof.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 301 — #301

13.1 Parallel Merge 301

1 void parallel_merge(const T* xs, const T* xe, const T* ys, const T* ye, T* zs) {
2 const size_t MERGE_CUT_OFF = 2000;
3 if(xe−xs + ye−ys <= MERGE_CUT_OFF) {
4 serial_merge(xs,xe,ys,ye,zs);
5 } else {
6 const T *xm, *ym;
7 if(xe−xs < ye−ys) {
8 ym = ys+(ye−ys)/2;
9 xm = std::upper_bound(xs,xe,*ym);

10 } else {
11 xm = xs+(xe−xs)/2;
12 ym = std::lower_bound(ys,ye,*xm);
13 }

14 T* zm = zs + (xm−xs) + (ym−ys);
15 cilk_spawn parallel_merge(xs, xm, ys, ym, zs);
16 /∗ nospawn ∗/ parallel_merge(xm, xe, ym, ye, zm);
17 // Implicit cilk sync

18 }

19 }

LISTING 13.2

Parallel merge in Cilk Plus.

Let N be the size of the initial problem and N′ be the size of the biggest subproblem after two levels
of recursion. For simplicity of exposition, only cases where sequences split evenly are considered. The
point is to prove N′ ≤ N/2.

Let |X| and |Y| denote the length of X and Y , respectively. Without loss of generality, assume
|X| ≥ |Y|. There are two cases:

• The first level of recursion splits X and the second level splits Y . Both sequences have been halved,
so N′ = N/2.

• Both levels split X. This can only happen when |X| ≥ 2|Y|. Since |X| + |Y| = N, we know |Y| ≤
N/3. Therefore, N′ = |X|/4+ |Y| = (N− |Y|)/4+ |Y| = N/4+ (3/4)|Y| ≤ N/4+ (3/4)(N/3)=
N/2.

13.1.1 TBB Parallel Merge
The parallel merge code can be translated to Intel TBB by implementing the parallel fork–join with
tbb::parallel invoke and lambda expressions instead of cilk spawn. Listing 13.3 shows the
rewritten lines.

13.1.2 Work and Span of Parallel Merge
The work and span for parallel merge cannot be found using the recurrence solutions given in
Section 8.6, because the recurrences have the wrong form. Instead, other methods have to be used. The

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 302 — #302

302 CHAPTER 13 Merge Sort

1 tbb::parallel_invoke(
2 [=]{parallel_merge(xs, xm, ys, ym, zs);},
3 [=]{parallel_merge(xm, xe, ym, ye, zm);});

LISTING 13.3

Converting parallel merge from Cilk Plus to TBB. The lines shown are the equivalent of the
cilk_spawn/cilk_sync portion of Listing 13.2.

span is analyzed first because it is simpler. In the worst case each two levels of recursion halve the
problem size. Each level performs a binary search, so there are two binary searches per halving of the
problem size. Hence, the span for parallel merge has the recurrence:

T∞(N)= 22(lgN)+T∞(N/2).

The 2 before the 2 can be immediately eliminated since it is mathematically swallowed by the 2.
Expanding the remaining recurrence and factoring the 2 yields:

T∞(N)=2[lg(N)+ lg(N/2)+ lg(N/4)+ lg(N/3)+ ·· ·+ 1],

which is equivalent to:

T∞(N)=2[(lgN)+ (lgN)− 1+ (lgN)− 2+ (lgN)− 3)+ ·· ·+ 1].

The right side is a decreasing arithmetic series starting at lgN and hence has the quadratic sum
2((lgN)2).

The recurrence for work is:

T1(N)=2(lgN)+ 2T1(N/2),

which after expanding the recurrence and factoring the 2 becomes:

T1(N)=2[lgN+ 2lg(N/2)+ 4lg(N/4)+ 8lg(N/8)+ ·· ·].

Substitute K = lgN to get:

T1(N)=2[K+ 2(K− 1)+ 4(K− 2)+ 8(K− 3)+ ·· ·+ 2K−1(1)].

A visual trick to solving this series is to note that the terms are the column sums of the following K×K
triangular matrix:

1

1 2

1 2 4

1 2 4 8
...

...
...

...
. . .

1 2 4 8 . . . 2K−1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 303 — #303

13.2 Parallel Merge Sort 303

Each row is a geometric series. The sum of the ith row is 2i
− 1. Summing all K rows is 2K+1

− 2− k.
Thus T1(N)=2(2K)=2(N).

Remarkably, both serial and parallel merging have the same asymptotic work! An intuition for
this is that the binary search time 2(lgN) is dominated by the �(N) time required to touch each
element in the sub-merges, and hence makes no additional contribution to the asymptotic work. How-
ever, the constant factors hiding behind 2 deserve some attention. If base case is as small as possible
(that is, MERGE CUT OFF= 1), then parallel merge requires about 50% more comparisons than
serial merge. The 50% tax, however, rapidly diminishes if MERGE CUT OFF is raised. Raising the
latter to 16 reduces the tax to about 6%. In practice, MERGE CUT OFF needs to be higher anyway to
amortize parallel scheduling overheads, and then the tax practically disappears. Indeed, a more signifi-
cant concern becomes the less cache-friendly behavior of the search-based merging compared to serial
merging, but this too is amortized away by a sufficiently large MERGE CUT OFF.

To summarize, the work and span for parallel merge are:

T1(N)=2(N), (13.4)

T∞(N)=2(lg
2 N), (13.5)

which indicates a theoretical speedup of 2
(

N
lg2 N

)
, assuming that memory bandwidth is not a

bottleneck.

13.2 PARALLEL MERGE SORT
Turning the sketch (at the chapter opening) of parallel merge sort into code is straightforward. How-
ever, merge sort is not an in-place sort because the merge step cannot easily be done in place.
Temporary storage is needed. Furthermore, to minimize copying, the merge steps should alternate
between merging from the original buffer into the temporary buffer and vice versa. One way to do this
is to define parallel merge sort with a flag argument inplace that controls the destination of the sorted
sequence:

• If inplace is true, the destination is the original input buffer.
• Otherwise, the destination is the temporary buffer.

In both cases, the non-destination buffer is used as scratch space.
Listing 13.4 shows a Cilk implementation. It sorts a sequence defined by the half-open interval

[xs,xe). Argument zs should point to a buffer of length xe–xs.
The parallel base case uses a stable sort in order to preserve stability of the overall sort. The flag

inplace flipflops at each recursion level. When sorting in place, the subsorts copy into the temporary
buffer, and the parallel merge operation copies the items back into the original buffer. When not
sorting in place, the subsorts are done in place, and the parallel merge copies the items into the
destination buffer.

A TBB implementation is similar, except that the fork–join is implemented with paral-
lel invoke instead of the Cilk keywords, similar as discussed for the TBB implementation of
parallel merge (Section 13.1).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 304 — #304

304 CHAPTER 13 Merge Sort

1 void parallel_merge_sort(T* xs, T* xe, T* zs, bool inplace) {
2 const size_t SORT_CUT_OFF = 500;
3 if(xe−xs<=SORT_CUT_OFF) {
4 std::stable_sort(xs, xe);
5 if(!inplace)
6 std::move(xs, xe, zs);
7 } else {
8 T* xm = xs + (xe−xs)/2;
9 T* zm = zs + (xm−xs);

10 T* ze = zs + (xe−xs);
11 cilk_spawn parallel_merge_sort(xs, xm, zs, !inplace);
12 /∗ nospawn ∗/ parallel_merge_sort(xm, xe, zm, !inplace);
13 cilk_sync;
14 if(inplace)
15 parallel_merge(zs, zm, zm, ze, xs);
16 else
17 parallel_merge(xs, xm, xm, xe, zs);
18 }

19 }

LISTING 13.4

Parallel merge sort in Cilk Plus.

13.2.1 Work and Span of Merge Sort
Let N be the length of the input sequence. The recurrences for work and span are:

T1(N)=2(N)+ 2T1(N/2),

T∞(N)=2(lg
2 N)+T∞(N/2).

The recurrence for T1 is case 2 of the Master method (see Section 8.6) and has the closed form solu-
tion T1(N)=2(N lgN). This is the same as for a serial merge sort, which is not surprising since the
constituent components of parallel merge sort have the same asymptotic work bounds as their
counterparts in the serial algorithm. The solution T∞ can be found by observing that if K = lgN, then
the recurrence expands to the series:

K2
+ (K− 1)2+ (K− 2)2+ ·· ·+ 1,

which has a cubic sum. Hence, T∞(N)=2(lg3 N).

Thus, the asymptotic speedup for parallel merge sort is2
(

N lgN
lg3 N

)
=2

(
N

lg2 N

)
. This suggests

that, given about a million keys, on the order of a thousand processors might be used profitably if
memory bandwidth does not become a constraint.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 305 — #305

13.3 Summary 305

13.3 SUMMARY
Merge sort is a classic divide-and-conquer algorithm that lends itself to the parallel fork–join pat-
tern and is easily written in Cilk or TBB. However, for good speedup, the merge step must also
be parallelized, because otherwise it takes linear time. The merge step can be parallelized by
divide-and-conquer, where the divide step generates two submerges that can be run in parallel.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 307 — #307

CHAPTER

Sample Sort 14
The sample sort example demonstrates a partitioning-based sort that overcomes the scaling limitation
of Quicksort described in Section 8.9.3, which arose because Quicksort’s partitioning operation is
serial. Sample sort overcomes this deficiency by parallelizing partitioning. The key patterns in the
example are binning and packing of data in parallel. Note that what we have defined as the partition
pattern just provides a different view of data, whereas what is commonly meant in the description of
sorting algorithms by “partitioning” actually reorganizes the data into bins. To avoid confusion we
call this data reorganization operation “binning” in this chapter. This algorithm is also an interesting
example of where a serial scan pays off as part of a practical parallel algorithm.

14.1 OVERALL STRUCTURE
Sample sort divides keys into m bins by building an m×m matrix of empty buckets and filling the
buckets with the keys. Each column corresponds to a bin. Separate rows can be filled concurrently.
Figure 14.1 shows the overall phases of the algorithm:

• Bin: Split the input into m chunks. Move the contents of each chunk to a separate row of the matrix,
dividing it among the buckets in that row.

• Repack: Move the contents of each column of buckets back to a contiguous section of the original
array.

• Subsort: Sort each section.

In the first phase, separate rows are processed in parallel. In the second phase, separate columns are pro-
cessed in parallel. There is some serial work before or after. The top-level code is shown in Listing 14.1.
A production-quality C++ version would be generalized as a template with iterator arguments and
a generic comparator and include extra code to ensure exception safety. These generalizations are
omitted for the sake of exposition to readers who are not C++ experts.

Furthermore, our analysis will assume that the constructor T() and destructor ˜T() are trivial
enough to generate no instructions, so that the construction and destruction of array y requires only
O(1) work. This is true of C-like types in C++ but generally not true if the constructor or destruc-
tor involves user-defined actions. In that case, the code shown has a �(N) bottleneck. Section 14.6
describes how a C++ expert can remove the bottleneck.

When the sequence is no longer than SAMPLE_SORT_CUT_OFF, the code calls Quicksort directly.
The best value for SAMPLE_SORT_CUT_OFF will depend on the platform, though it should be at least
big enough to subsume all cases where m= 1, since binning into a single bin is a waste of time and
memory.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00014-1
c© 2012 Elsevier Inc. All rights reserved.

307

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 308 — #308

308 CHAPTER 14 Sample Sort

12

12

12

12

4 4

44

1
1

11

15

15

19

19

19

6 6

66

17

17

3

3

3

3

9 9

9

8
8

8

14

14

16

1613 13

Subsort

Repack

Samples

18 18

15

16

15

17

14
16

19 13
18

2

2

2

2
5

0

0

0

0

11

11

119
8 17

14

8 13

13
18

11

5

5

5

Binning

7

7

7

7

10

10

10

10

FIGURE 14.1

Sample sort example using a 3 × 3 matrix of buckets, where the samples for binning are 8 and 13. The keys
are initially grouped into three rows of a matrix. The binning phase divides each row into buckets, one bucket
for each subrange [−∞,8), [8,13), and [13,∞). The repack phase copies the buckets in a way that transposes
the matrix, so that buckets for identical subranges become contiguous in memory. The subsort phase sorts
each row.

1 const size_t M_MAX = 32;
2

3 void parallel_sample_sort(T* xs, T* xe) {
4 if(xe−xs<=SAMPLE_SORT_CUT_OFF) {
5 parallel_quicksort(xs,xe);
6 } else {
7 size_t m = choose_number_of_bins(xe−xs);
8 size_t tally[M_MAX][M_MAX];
9 T∗ y = new T[xe−xs];

10 bin(xs, xe, m, y, tally);
11 repack_and_subsort(xs, xe, m, y, tally);
12 delete[] y;
13 }

14 }

LISTING 14.1

Top-level code for parallel sample sort. This code sequences the parallel phases and is independent of the
parallel programming model.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 309 — #309

14.3 Binning 309

14.2 CHOOSING THE NUMBER OF BINS
If the exact number of available hardware threads (workers) is known, then using one bin per
worker is best. However, in work-stealing frameworks like Cilk or TBB, the number of available
workers is unknown, since the sort might be called from a nested context. Instead, a strategy of
over-decomposition is used. The number of bins will be chosen so that each bin is large enough
to acceptably amortize per-bin overhead. Some of the logic in function bin requires that the number
of bins be a power of two. The code is shown below:

size_t choose_number_of_bins(size_t n) {
const size_t BIN_CUTOFF = 1024;
return std::min(M_MAX, size_t(1)<<floor_lg2(n/BIN_CUTOFF));

}

Function floor_lg2 is presumed to compute the function k→blgkc—that is, the position of the most
significant 1 in the binary numeral for k.

14.3 BINNING
The binning phase involves several steps:

1. Select sample keys to demarcate the bins.
2. Organize the samples so that a key can be mapped to its bin index quickly.
3. Compute the bin index of each key.
4. Compute the starting address of each bucket.
5. Scatter the keys into the buckets.

A poor choice of demarcation samples can lead to grossly unbalanced bins. Over-sampling
improves the odds against bad choices. An over-sampling factor o is chosen and om keys are selected
and sorted. Then m evenly spaced samples are extracted from the sorted sequence. A good way to
choose o is to make it proportional to the logarithm of the number of keys [BLM+98].

Given a linear array of sorted samples, the bin index of a key can be computed by binary search.
The code for the binary search can be tightened into branchless code by rearranging the array to be an
implicit binary tree. The root of the tree is stored at index 0. The children of a node with index k are
stored at indices 2k+ 1 and 2k+ 2. Listing 14.2 shows the technique.

The code uses an implicit binary tree tree with m-1 nodes to map n keys in x to their respective
bin indices. For i ∈ [0,n), the routine sets bindex[i] to the bin index of x[i]. Type bindex type is an
integral type big enough to hold an integer in the range [0,m). The routine also generates a histogram
tally of bin indexes, defined as tally[b], of the number of keys with bin index b. The histogram is
the sizes of the buckets in a row of our conceptual matrix.

Now the binning routine can be built. The routine divides keys in the interval [xs,xe) among m
bins, and copies the keys to buckets in y.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 310 — #310

310 CHAPTER 14 Sample Sort

1 void map_keys_to_bins(const T x[], size_t n, const T tree[], size_t m,
bindex_type bindex[], size_t freq[]) {

2 size_t d = floor_lg2(m);
3 freq[0:m] = 0;
4 for(size_t i=0; i<n; ++i) {
5 size_t k = 0;
6 for(size_t j=0; j<d; ++j)
7 k = 2*k+2 − (x[i] < tree[k]);
8 ++freq[bindex[i] = k−(m−1)];
9 }

10 }

LISTING 14.2

Code for mapping keys to bins.

The conceptual matrix of buckets is represented by y and tally. Each bucket of the matrix is stored
in y, ordered left-to-right and top-to-bottom, with the elements within a bucket stored consecutively.
Each row of tally is a running sum of bucket sizes; tally[i][j] is the sum of the sizes of buckets
0 · · · j in row i.

This information suffices to reconstitute pointer bounds of a bucket. The beginning of the leftmost
bucket for row i is y+i*block size. The beginning of any other bucket is the end of the previous
bucket. The end of bucket (i, j) is y+i*block size+tally[i][j].

14.3.1 TBB Implementation
Listing 14.3 can be translated to TBB by replacing the cilk for loop with a tbb::parallel for
and a lambda expression, so it looks like this:

tbb::parallel_for(size_t(0), m, [=,&tree](size_t i) {
...

});

The lambda captures all variables by value, except for array tree, which is captured by reference, to
avoid the overhead of copying an array. A subtle C++ technicality is that, although tally is captured
by value, its underlying array is not copied. This is because in C and C++, a formal parameter declared
as an array is treated as a pointer to its zeroth element. Hence, the lambda expression copies only the
address of the array, not the array itself.

14.4 REPACKING AND SUBSORTING
The final phase of sample sort has two subphases:

1. Compute where each bin should start in the original array.
2. Move the keys from buckets into their bins, and sort them.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 311 — #311

14.4 Repacking and Subsorting 311

1 void bin(const T* xs, const T* xe, size_t m, T* y, size_t tally[M_MAX]
[M_MAX]) {

2 T tree[M_MAX−1];
3 build_sample_tree(xs, xe, tree, m);
4

5 size_t block_size = ((xe−xs)+m−1)/m;
6 bindex_type* bindex = new bindex_type[xe−xs];
7 cilk_for(size_t i=0; i<m; ++i) {
8 size_t js = i*block_size;
9 size_t je = std::min(js+block_size, size_t(xe−xs));

10

11 // Map keys to bins
12 size_t freq[M_MAX];
13 map_keys_to_bins(xs+js, je−js, tree, m, bindex+js, freq);
14

15 // Compute where each bucket starts
16 T* dst[M_MAX];
17 size_t s = 0;
18 for(size_t j=0; j<m; ++j) {
19 dst[j] = y+js+s;
20 s += freq[j];
21 tally[i][j] = s;
22 }

23

24 // Scatter keys into their respective buckets
25 for(size_t j=js; j<je; ++j)
26 *dst[bindex[j]]++ = std::move(xs[j]);
27 }

28 delete[] bindex;
29 }

LISTING 14.3

Parallel binning of keys using Cilk Plus.

The first subphase is merely a matter of summing the columns of tally. Each row of tally is
a running sum of bucket sizes, so the sum of the columns yields a running sum of bin sizes. Since
the value of m is typically several orders of magnitude smaller than n, the quadratic time O(m2) for
computing the sums is not a major concern. It is typically too small for effective fork–join parallelism.
However, it does lend itself to vector parallelism, and the array notation to do so even simplifies the
source code slightly.

The second subphase does most of the work. Each parallel iteration copies a column of buckets into
a bin. The bucket boundaries are found via the formulae mentioned in the discussion of method bin.

Listing 14.4 shows a Cilk Plus routine implementation of both phases.
A TBB equivalent is a matter of replacing the cilk_for statement with tbb::parallel_for,

similar to the the translation in Section 14.3.1.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 312 — #312

312 CHAPTER 14 Sample Sort

1 void repack_and_subsort(T* xs, T* xe, size_t m, const T* y, const size_t
tally[M_MAX][M_MAX]) {

2 // Compute column sums of tally, forming the running sum of bin sizes
3 size_t col_sum[M_MAX];
4 col_sum[0:m] = 0;
5 for(size_t i=0; i<m; ++i)
6 col_sum[0:m] += tally[i][0:m];
7 assert(col_sum[m−1]==xe−xs);
8

9 // Copy buckets into their bins and do the subsorts
10 size_t block_size = ((xe−xs)+m−1)/m;
11 cilk_for(size_t j=0; j<m; ++j) {
12 T* x_bin = xs + (j==0 ? 0 : col_sum[j−1]);
13 T* x = x_bin;
14 for(size_t i=0; i<m; ++i) {
15 const T* src_row = y+i*block_size;
16 x = std::move(src_row+(j==0?0:tally[i][j−1]), src_row+tally[i][j],

x);
17 }

18 parallel_quicksort(x_bin,x);
19 }

20 }

LISTING 14.4

Repacking and subsorting using Cilk Plus. This is the final phase of sample sort.

14.5 PERFORMANCE ANALYSIS OF SAMPLE SORT
The asymptotic work for sample sort can be summarized as:

• 2(mo lgmo) work to sort the input samples, over-sampled by o, where o is 2(lgn).
• 2(n lgm) work to bin keys into buckets.
• 2(m2) work to compute bin sizes.
• 2(n lg(n/m)) work to repack/subsort, assuming a subsort of k keys takes time O(k lgk).

Keeping m sufficiently small ensures that the work is dominated by the binning and repack/sub-
sort phases, both of which scale linearly if m=2(p) and the logp startup time of a parallel map is
insignificant.

In practice, memory bandwidth is likely to become the bottleneck. The communication between
the binning and repack/subsort phases changes ownership of the bucket matrix from columns to rows.
Hence, there are inherently �(n) memory transfers required.

There is one other potential hardware-related problem of which to be aware. If m comes close to
the number of entries in the translation lookaside buffer, and each bucket is at least a page in size, then
the scattering of keys among the m buckets during the binning phase may incur a severe penalty from
TLB thrashing (Section 2.4.1, page 44).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 313 — #313

14.7 Summary 313

1 template<typename T>
2 T* destructive_move(T* first, T* last, T* output) {
3 size_t n = last−first;
4 [](T& in, T& out){
5 out = std::move(in);
6 in.˜T();
7 }(first[0:n], output[0:n]);
8 return output+n;
9 }

LISTING 14.5

Using Cilk Plus to move and destroy a sequence, without an explicit loop!

14.6 FOR C++ EXPERTS
As Section 14.1 remarked, our analysis assumes that new T[...] and delete[] take constant time.
This is true if the constructor T() and destructor ˜T() do nothing, as is the case for C-like types,
but not always true for types with non-trivial constructors or destructors. To handle those efficiently
requires rethinking the allocation/deallocation of y.

One solution is to construct the array elements in parallel and destroy them likewise. But doing so
adds two more parallel phases, adding to synchronization costs and memory traffic. A faster approach
is to allocate and deallocate array y as a raw memory buffer. The binning phase can copy–construct the
elements into the buffer directly. The repack phase can destroy the copies as it moves them back to the
original array.

A combination of array notation (Section B.8) and C++11 lambda expressions enables a concise
way to write the routine that destroys the copies after moving them back to the original array, without
writing any loop, as shown in Listing 14.5.

The lambda expression creates a functor that moves (Section D.3) the value of out to in, and then
explicitly invokes a destructor to revert the location referenced by in to raw memory. The code is
unusual in what it does with the functor. Instead of passing it to another routine, it immediately applies
the functor to some arguments. The trick here is that those arguments are array sections, so the compiler
has license to apply the functor in parallel.

14.7 SUMMARY
The sample sort example showed how to do binning and packing in parallel. The key to efficient
binning is over-sampling and not trying to do the binning in place as Quicksort does. The packing
relied on a serial prefix scan over a histogram to calculate where items should be packed. Most of the
work occurs in two parallel map operations, one for binning and one for packing. In both cases, the
work is over-decomposed to provide parallel slack (Section 2.5.6).

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 315 — #315

CHAPTER

Cholesky Factorization 15
Section 8.8 used matrix multiplication to introduce the notion of recursive linear algebra and cache-
oblivious algorithms, based on the fork–join pattern. The Cholesky decomposition example here
shows how the pattern applies to parallelizing other operations in dense linear algebra, even when the
matrices are triangular. The chapter also gives a brief introduction to the art of using Fortran-oriented
BLAS routines in C/C++. Though the algorithms apply to large matrices, all you have to know is
algebra on 2× 2 matrices to understand how they work.

15.1 FORTRAN RULES!
The matrix layout used in the Cholesky routine and subsidiary routines is column-major, just like
Fortran, not as usual in C/C++, so the layout will be compatible with common implementations of the
Basic Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK). This means each
column of the matrix is packed consecutively in memory, not each row as is usual in C/C++.

The reason for using a BLAS column-major layout is pragmatic:

• Several recursive routines require serial routines for base cases. Efficient implementations of these
serial routines are widely available (such as in Intel MKL) for Fortran array layout.

• Using the same layout enables our routines to be substituted for BLAS routines.

In both cases, the equivalence to BLAS routines may require some thin wrappers that reorder argu-
ments, take addresses of arguments, add implied arguments, or resolve overloading. For example, the
following wrapper defines a thin wrapper that implements a triangular solver for leaf cases, using Intel
MKL:

inline void leaf_trsm(int m, int n, const float b[], int
ldb, float a[], int lda, char side=‘L’, char transa=‘N
’, char diag=‘N’, float alpha=1) {
strsm(&side, "Lower", &transa, &diag, &m, &n, &alpha,

b, &ldb, a, &lda);
}

The wrapper demonstrates the convention for passing arrays. Here a represents a lower-triangular
m× n matrix A. The value lda is the stride in memory between columns, measured in array elements.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00015-3
c© 2012 Elsevier Inc. All rights reserved.

315

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 316 — #316

316 CHAPTER 15 Cholesky Factorization

The parameter’s name is an abbreviation for leading dimension of A. So array element Ai,j is accessed
as a[i+j*lda]. Likewise, there is a rectangular matrix B such that Bi,j is accessed as b[i+j*ldb].
Following Fortran conventions in C/C++ is a painful, but practical, concession to the reality that
production BLAS libraries cater to Fortran.

Routine leaf_trsm also illustrates the BLAS penchant for using characters where a C/C++ pro-
grammer would use an enum. The default values in the wrapper cause it to solve A×X = α ·B, and
overwrite A with X. Other values change the problem slightly, as follows:

Argument Mnemonic Meaning

side Left Solve op(A)×X = α ·B

Right Solve X× op(A)= α ·B

transa Transpose op is transpose
Not transpose op is identity

diag Unit Diagonal elements of A are one
Not unit Assuming nothing about diagonal

elements of A

The argument should be the first letter of the mnemonic, in either lower- or uppercase. For example,
passing side=‘R’ and transa=‘T’ to our wrapper asks it to solve X×AT

= α ·B. The wrapped
BLAS routine expects a pointer to the letter. That is why passing a C string for the mnemonic works,
too. The second argument to strsm could be "Lollipop" instead of "Lower" to trsm, and it would
not make any difference.

The examples also use a matrix multiply routine parallel_gemm, a parallel generic routine similar
to the BLAS routine sgemm. It is assumed to be parallelized using the techniques discussed for matrix
multiplication in Section 8.8. The usual BLAS version is quite general. It overwrites a matrix C with
α · op(A)× op(B)+βC, where op is either an identity or transpose operation. Our version has only 12
arguments, since β = 1 in all our examples. An invocation of our routine looks like:

parallel gemm(m, n, k, a, lda, b, ldb, c, ldc, transa, transb, α);

where parameter α is optional and defaults to 1. The rest of the parameters specify the three matrices
as follows:

Matrix Dimensions Base Stride Transpose?

op(A) m× k a lda transa
op(B) k× n b ldb transb
C m× n c ldc

The transpose arguments follow the conventions described for leaf_trsm.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 317 — #317

15.2 Recursive Cholesky Decomposition 317

Our brief introduction to BLAS omitted all possible argument options, such as for upper triangular
or complex matrices. Since the BLAS are widespread, searching the Internet for strsms, ssyrk, and
sgemm will tell you what you need to know about BLAS routines used in this chapter.

15.2 RECURSIVE CHOLESKY DECOMPOSITION
Our Cholesky decomposition factors a symmetric positive-definite matrix A into a lower triangular
matrix L such that A= LLT . The recursion is based on treating A and L as 2× 2 matrices of submatrices,
like this:

A=

[
A00 AT

10

A10 A11

]
L=

[
L00 0

L10 L11

]
.

The 0 represents a zero submatrix. Submatrices L00 and L11 are triangular. Submatrices A00 and A11 are
symmetric. Because of the symmetry, submatrix AT

10 is redundant. To reduce clutter, it will be omitted
from diagrams.

The equation A= LLT can be rewritten as:

[
A00

A10 A11

]
=

[
L00 0

L10 L11

][
LT

00 LT
10

0 LT
11

]
,

which yields the following equations:

A00 = L00LT
00, (15.1)

A10 = L10LT
00, (15.2)

A11 = L10LT
10+L11LT

11. (15.3)

A divide-and-conquer algorithm is a practical corollary of the equations:

1. Solve Equation 15.1 for L00. This step is a Cholesky decomposition of A00, which can be
done recursively, because the fact that A is positive semi-definite implies that A00 is positive
semi-definite.

2. Solve Equation 15.2 for L10. This step is called a triangular solve, because L00 is triangular.
3. Solve Equation 15.3 for L11 as follows:

a. Let A′11 = A11−L10LT
10. The computation can overwrite A11 with A′11. This step is called

symmetric rank update.
b. Solve A′11 = L11LT

11 for L11. This step is a Cholesky decomposition of A11.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 318 — #318

318 CHAPTER 15 Cholesky Factorization

1 template<typename T>
2 void parallel_potrf(int n, T a[], int lda) {
3 if(double(n)*n*n<=CUT) {
4 // Leaf case − solve with serial LAPACK
5 leaf_potf2(n, a, lda);
6 } else {
7 int n2=n/2;
8 // Solve A00 = L00LT

00 for L00 and set A00 = L00
9 parallel_potrf(n2, a, lda);

10 // Solve A10 = L10LT
00 for L10 and set A10 = L10

11 parallel_trsm(n−n2, n2, a, lda, a+n2, lda);
12 // Set A11 = A11−L10×LT

10
13 parallel_syrk(n−n2, n2, a+n2, lda, a+n2+n2*lda, lda);
14 // Solve AT

11 = L11LT
11 for L11

15 parallel_potrf(n−n2, a+n2+n2*lda, lda);
16 }

17 }

LISTING 15.1

Recursive Cholesky decomposition. The inscrutable name potrf follows LAPACK conventions [ABB+99].

Listing 15.1 shows code for the algorithm. The algorithm introduces no parallelism. However, it sets
up two subproblems where parallelism can be introduced.

15.3 TRIANGULAR SOLVE
The first subproblem that enables parallelism is the triangular solve. It solves for X in the equation
XBT
= A, where B is a lower triangular matrix. There are two different ways to split the matrices:

1. Split X and A horizontally, so the equation decomposes into:[
X0

X1

]
BT
=

[
A0

A1

]
,

which yields the equations:

X0BT
= A0

X1BT
= A1.

An opportunity for parallelism is introduced because X0 and X1 can be solved for independently.
2. Split X and A horizontally, and BT on both axes, so the equation decomposes into:[

X0 X1

][
BT

00 BT
10

0 BT
11

]
=

[
A0 A1

]
,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 319 — #319

15.4 Symmetric Rank Update 319

which yields the equations:

X0BT
00 = A0, (15.4)

X0BT
10+X1BT

11 = A1. (15.5)

No opportunity for parallelism is introduced, because Equation 15.4 must be solved first to find X0
before Equation 15.5 can be solved to find X1.

In the latter case, the steps are:

1. Solve the equation X0BT
00 = A0 for X0, which is a triangular solve.

2. Set A′1 = A1−X0BT
10. The computation can overwrite A′1 with A′.

3. Solve the equation X1BT
11 = A′ for X1, which is a triangular solve.

At first, using the second split seems useless. But, if the first split is applied exclusively, then X
and A in the leaf cases are long skinny row vectors, and each element of BT is used exactly once,
with no reuse. Consequently, consumption of memory bandwidth will be high. It is better to alternate
between splitting vertically and splitting horizontally, so the subproblems remain roughly square and to
encourage reuse of elements. Furthermore, the second split is not a complete loss, because the matrix
multiplication in step 2 can be parallelized.

Listing 15.2 shows a Cilk Plus incarnation of the algorithm. Translation to TBB is a matter of
rewriting the fork–join with tbb::parallel_invoke. The number of floating-point arithmetic oper-
ations is about m22n2/6. The recursion stops when this number is 6· CUT or less. The cast to double
in that calculation ensures that the estimate does not err from overflow.

The recursive decomposition into smaller matrices makes the algorithm into a cache-oblivious
algorithm (Section 8.8). Like the cache-oblivious matrix multiplication in Section 8.8, one of the
recursive splits does not introduce any parallelism. It is beneficial nonetheless because splitting on the
longest axis avoids creating long, skinny matrices, which improves cache behavior, as was explained
in Section 8.8 for the matrix multiplication example.

15.4 SYMMETRIC RANK UPDATE
The other subproblem with parallelism is the symmetric rank update, which computes A′ = A−CCT

and overwrites A with A′. This is similar to routine MultiplyAdd in Section 8.8, except that subtrac-
tion replaces addition, and only the lower triangular portion needs to be computed, because the result
is a symmetric matrix. As with the triangular solve, there are two ways to split the problem, one that
enables parallelism and the other that, though serial, helps keep the subproblem roughly “square.”

The equations for the two splits are:

1. [
A′00

A′10 A′11

]
=

[
A00

A10 A11

]
−

[
C0

C1

][
CT

0 CT
1

]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 320 — #320

320 CHAPTER 15 Cholesky Factorization

1 template<typename T>
2 void parallel_trsm(int m, int n, const T b[], int ldb, T a[], int lda) {
3 if(double(m)*m*n<=CUT) {
4 // Leaf case−solve with serial BLAS

5 leaf_trsm(m, n, b, ldb, a, lda, ‘R’, ‘T’, 'N’);
6 } else {
7 if(m>=n) {

8 // Partition A into

 A0

A1

9 int m2=m/2;

10 // Solve X0×BT
= A0, and set A0 = X0

11 cilk_spawn parallel_trsm(m2, n, b, ldb, a, lda);
12 // Solve X1×BT

= A1, and set A1 = X1
13 parallel_trsm(m−m2, n, b, ldb, a+m2, lda);
14 } else {

15 // Partition B into

[
BT

00 BT
10

0 BT
11

]
and A into

[
A0 A1

]
16 // where B00 and B11 are lower triangular matrices

17 int n2=n/2;
18 // Solve X0×BT

00 = A0, and set A0 = X0
19 parallel_trsm(m, n2, b, ldb, a, lda);
20 // Set A1−= A0 ∗BT

10
21 parallel_gemm(m, n−n2, n2,
22 a, lda, b+n2, ldb, a+n2*lda, lda,
23 ‘N’, ‘T’, T(−1), T(1));
24 // Solve X1×BT

11 = A1, and set A1 = X1
25 parallel_trsm(m, n−n2, b+n2+n2*ldb, ldb, a+n2*lda, lda);
26 }

27 }

28 // Implicit cilk sync

29 }

LISTING 15.2

Parallel triangular solve in Cilk Plus.

which yields the equations:

A′00 = A00−C0CT
0 , (15.6)

A′10 = A10−C1CT
0 , (15.7)

A′11 = A11−C1CT
1 . (15.8)

Equation 15.7 is a matrix multiplication, which can be parallelized as discussed in Section 8.8. The
other two equations are symmetric rank updates. All three can be computed in parallel.

‘

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 321 — #321

15.5 Where Is the Time Spent? 321

1 void parallel_syrk(int n, int k, const T c[], int ldc, T a[], int lda) {
2 if(double(n)*n*k<=CUT) {
3 leaf_syrk(n, k, c, ldc, a, lda);
4 } else if(n>=k) {
5 int n2=n/2;
6 cilk_spawn parallel_syrk(n2, k, c, ldc, a, lda);
7 cilk_spawn parallel_gemm(n−n2, n2, k,
8 c+n2, ldc, c, ldc, a+n2, lda,
9 ‘N’, ‘T’, T(−1), T(1));

10 parallel_syrk(n−n2, k, c+n2, ldc, a+n2+n2*lda, lda);
11 } else {
12 int k2=k/2;
13 parallel_syrk(n, k2, c, ldc, a, lda);
14 parallel_syrk(n, k−k2, c+k2*ldc, ldc, a, lda);
15 }

16 // Implicit cilk sync
17 }

LISTING 15.3

Parallel symmetric rank update in Cilk Plus.

2.

A′ = A−

[
C0 C1

][
CT

0

CT
1

]
,

which yields the equation:

A′ = A−C0CT
0 −C1CT

1 .

This is essentially two symmetric rank updates, using C0 and C1.

The second split enables parallel computation if temporary storage is allocated to compute C1CT
1 . How-

ever, doing so invites the same space and bandwidth problems as doing so for matrix multiplication, as
discussed in Section 8.8, so the code will do the two updates serially.

Listing 15.3 shows the Cilk Plus code. Translation to TBB is a matter of using tbb::parallel_
invoke to express the three-way fork, as shown in Listing 15.4.

15.5 WHERE IS THE TIME SPENT?
The Cholesky decomposition as described involves recursive calls among four algorithms, as shown
in Figure 15.1. Each algorithm’s base case is a serial version of that algorithm. Since the recursive
steps do practically no work, but merely choose submatrices, most of the work is done in the serial leaf
code. That leaves a question of how the work is apportioned across the three kinds of leaves. It turns
out that the leaf matrix multiplications dominate, because they apply to off-diagonal blocks, whereas

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 322 — #322

322 CHAPTER 15 Cholesky Factorization

1 tbb::parallel_invoke(
2 [=]{parallel_syrk(n2, k, c, ldc, a, lda);},
3 [=]{parallel_gemm(n−n2, n2, k,
4 c+n2, ldc, c, ldc, a+n2, lda,
5 ‘N’, ‘T’, T(−1), T(1));},
6 [=]{parallel_syrk(n−n2, k, c+n2, ldc, a+n2+n2*lda, lda);});

LISTING 15.4

Converting parallel symmetric rank update from Cilk Plus to TBB. The listing shows the TBB replacement for
lines 6 to 10 of Listing 15.3.

Cholesky
decomposition

Matrix
multiplication

Symmetric
rank update

Triangular
solve

FIGURE 15.1

Cholesky call graph. The call chains eventually reach matrix multiplication, which dominates the running time.

the leaf triangular solve and leaf symmetric rank update apply to diagonal blocks. There are 2(n2)

off-diagonal blocks but only 2(n) diagonal blocks.
Using fork–join for Cholesky decomposition does have a drawback—it artificially lengthens the

span, similar to how recursive decomposition lengthened the span of the binomial lattice problem
(Section 8.12.1). A system such as Intel Concurrent Collections avoids lengthening the span by
expressing only the dependencies necessary to solve the problem [CKV10]. There is no free lunch,
however. That reduction in span discards the simple call-tree reasoning of the Cilk Plus solution and the
cache-oblivious benefits, although sufficiently large leaf cases can take care of the memory bandwidth
issues. In that case, the concurrent collections approach can deliver superior performance.

15.6 SUMMARY
The Cholesky example demonstrates the power of being able to nest parallelism and think about it
locally in each routine. Every routine, though parallel, is called as if it were a serial routine. It also
demonstrates how linear algebra can often be done recursively.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 321 — #323

Appendices

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 325 — #325

APPENDIX

Further Reading A
We have carefully avoided diving into topics, no matter how interesting, that were not critical to teach-
ing the keys to structured (parallel) programming. In this appendix, we offer some recommendations
on where to learn more about closely associated topics. A deeper understanding of any of these will
strengthen your understanding of what is behind good structured programming.

A.1 PARALLEL ALGORITHMS AND PATTERNS
Much has been written on parallel algorithms. We recommend reading a landmark paper focused on
classifying algorithms, “The Landscape of Parallel Computing Research: A View from Berkeley”
[ABC+06]. This paper used dwarfs as the name for common recurring patterns found in applica-
tions. Later papers switched to calling these motifs. This is an excellent starting point, but we also
recommend the OUR pattern language [Par11]. This web site contains a set of collaboratively created
pattern definitions.

“Introduction to Algorithms” [CLRS09] is a good general introduction to algorithms which also
makes some usage of Cilk Plus.

A thorough and scholarly book specifically on parallel patterns is Patterns for Parallel Program-
ming [MSM04]. Even though we do not recommend it specifically for parallel programming, we will
note that the landmark book to promote patterns for software development is Design Patterns: Ele-
ments of Reusable Object-Oriented Software [GHJV95]. It is often affectionately called the “gang of
four” book.

The key conferences involved in parallel algorithm development would be Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), International Supercomputing in Europe (ISC), and Supercomputing in
North America (SC). PPoPP, ISC, and SC are known for notable training opportunities via tutorials
held in conjunction with their respective general conferences.

A.2 COMPUTER ARCHITECTURE INCLUDING PARALLEL SYSTEMS
The gold standard for teaching computer architecture is Computer Architecture: A Quantitative
Approach [HP07] by John L. Hennessy and David A. Patterson. A new book, often described
as very approachable and which caters to programmers, is Computer Systems: A Programmer’s

325

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 326 — #326

326 APPENDIX A Further Reading

Perspective [REB11] by Randal Bryant and Dave O’Hallaron. Both of these books explain the
fundamental concepts in computer architecture.

For those whose interest runs deep enough to want to engage others with a keen interest in com-
puter architecture, four long-standing conferences are particularly worth investigating: International
Symposium on Computer Architecture (ISCA), Architectural Support for Programming Languages
and Operating Systems (ASPLOS), International Symposium on High Performance Computer Archi-
tecture (HPCA), and International Conference on Parallel Architectures and Compilation Techniques
(PACT).

A.3 PARALLEL PROGRAMMING MODELS
Intel Threading Building Blocks [Rei07] is a book that introduces TBB and provides many examples.
The book predates lambda expression and a number of additional advanced features of TBB. The
documentation that accompanies TBB (http://threadingbuildingblocks.org) is exceptional
and a reliable source of current information on all the features of the latest TBB.

The original Cilk home at the Massachusetts Institute of Technology (MIT) continues to
maintain useful samples, tutorials, and papers about Cilk. Visiting it at http://supertech
.csail.mit.edu/cilk/ is recommended to learn more about Cilk. Intel and the related open source
project for Cilk Plus maintain the web site http://cilkplus.org.

Array Building Blocks, likewise, has a set of examples, tutorials, and downloads hosted by Intel at
http://intel.com/go/arbb.

The gold standard for learning MPI is Parallel Programming with MPI [Pac96]. A good book for
learning more about both Open MP and MPI is Parallel Programming in C with MPI and OpenMP
[Qui03].

If you have an interest in parallel programming for Java, we recommend reading Java Concurrency
in Practice [PGB+05]. Doug Lea, in particular, has published books on parallel programming for Java
that have been exceptionally useful for learning parallel programming concepts regardless of your
programming language of choice.

If you want to get a handle on a number of other approaches in programming languages for
parallelism, we recommend Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Pro-
gramming Languages [Tat10] by Bruce A. Tate, which examines Clojure, Haskell, Io, Prolog, Scala,
Erlang, and Ruby. It is not likely that you will use all seven, but you will gain an appreciation for the
many possibilities in designing support for concurrency into programming languages.

Finally, The Art of Multiprocessor Programming [HS08] covers a broad set of concerns for parallel
programming in an approachable manner with a gentle mix of fables and stories.

The key conferences to consider attending include PPoPP, ISC, and SC, which are spelled out in
Section A.1. All three are known for their tutorials, which are usually held just before the general
conferences.

We will also recommend Herb Sutter’s paper, “The Free Lunch Is Over: A Fundamental Turn
Towards Concurrency in Software” [Sut05] which is often cited for how effectively it called attention
to the shift to multicore parallelism and the challenge it represents.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 327 — #327

A.3 Parallel Programming Models 327

Finally, if you have any doubts about the need to abandon threads in programming in favor of
tasks, “The Problem with Threads” [Lee06] is recommended reading. We like to think of it as a mod-
ern version of the classic “Go To Statement Considered Harmful” [Dij68], which has come to be so
commonly accepted today that it is hard to recall the controversy it raised for more than a decade after
its publication. We are confident that programming with threads will go the way of Go To, and these
are the two key papers that are heralding the change.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 329 — #329

APPENDIX

Cilk Plus B
This appendix provides a concise introduction to the features of Intel Cilk Plus (Cilk Plus) with an
emphasis on portions used within this book. For more complete information, see the Intel Cilk Plus
Language Specification and Intel Cilk Plus Application Binary Interface Specification documents,
which are available from http://cilkplus.org.

Figure B.1 outlines the components of Cilk Plus, as well as the parts of TBB that are recommended
for use with it.

B.1 SHARED DESIGN PRINCIPLES WITH TBB
Cilk Plus and TBB purposefully share key attributes as parallel programming models: separation
of programmer/tool responsibilities, composability including interoperability with other parallel pro-
gramming models, support for current programming environments, readability by adhering to serial
semantics, and portability of source code.

The key design principle behind effective parallel programming abstractions is that the programmer
should identify elements that can be safely executed in parallel. Separately, the runtime environment,
particularly the scheduler, should decide during execution how to actually divide the work between pro-
cessors. This separation of responsibilities allows code to run efficiently on any number of processors,
including one processor, without customizing the source code to the number of processors.

B.2 UNIQUE CHARACTERISTICS
Cilk Plus is distinguished by its focus on minimal but sufficient support for parallelism in C and
C++. It is easy to learn, able to support sophisticated debugging tools, and provides guarantees that
bound memory usage. Cilk Plus does this all while also scaling to high degrees of thread and vector
parallelism.

Cilk Plus seeks to address shortcomings of a template library approach:

• Usability in C, not just C++
• Support for vector parallelism
• Serial elision, where a Cilk Plus program run with one thread behaves as if the Cilk Plus keywords

are replaced with standard C/C++, as will be explained in Section B.4
• Conveying parallel structure to the compiler at a higher level than a template library, which enables

more optimization opportunities

329

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 330 — #330

330 APPENDIX B Cilk Plus

Array notation
#pragma simd
Elemental functions

Optional

TBB
Threading building blocks

Timing

Parallel algorithms

Tasks
Atomic operations

Mutexes
Condition variables

Scalable memory allocator

Thread local storage
Threads

Concurrent containers

C and C++ language extension, implemented and optimized by compiler.
Specification is portable across platforms, operating systems, and processors.

Cilk Plus

cilk_for
cilk_spawn
cilk_sync

Control

Reducers (hyperobjects)

Data

FIGURE B.1

Overview of Cilk Plus. Parts of TBB can be borrowed for foundation functionality. Darkly shaded TBB
components are recommended for use with Cilk Plus. Lightly shaded TBB components interoperate with Cilk
Plus but may break determinism. Faded components also interoperate but are essentially alternatives to Cilk
Plus. Crossed-out portions carry risks. Section B.3 details our recommendations.

These items require compiler support and are therefore beyond the scope of a template library such
as TBB.

Because Cilk Plus requires implementation inside a compiler, it is not yet as widely portable as
TBB. Thus, to promote adoption of Cilk Plus and make it as widespread as TBB, Intel is making it
easy for compiler makers to implement it. Cilk Plus is published as an open language specification and
an open ABI specification. Furthermore, Intel is working on making all key components open source.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 331 — #331

B.3 Borrowing Components from TBB 331

Currently, a portable form of the runtime library is open source, along with a development branch
of the GCC compiler that supports cilk_spawn, cilk_sync, cilk_for, reducers, #pragma simd,
and array notation. The open source version is expected to eventually become a complete Cilk Plus
implementation.

B.3 BORROWING COMPONENTS FROM TBB
Cilk Plus does not duplicate functionality that can be borrowed from TBB. Indeed, we encourage Cilk
Plus programmers to use components of TBB that are orthogonal to expression of parallelism. These
components of TBB are:

• Scalable memory allocator
• tick_count timing facility

Some portions of TBB are all right to use but are not the Cilk Plus ideal because they break
determinism or greedy scheduling theory:

• Mutexes
• Atomic objects
• Concurrent containers

Consider using alternative solutions based on Cilk Plus hyperobjects if you can to reap the benefits of
determinism.

The parallel algorithms and tasks in TBB can interoperate with Cilk Plus, but using them instead
of Cilk Plus forgoes the key value proposition of Cilk Plus.

We discourage combining two of TBB’s features with Cilk Plus’s control-flow constructs. The
feature combinations to avoid are:

• Using condition variables with cilk_spawn or cilk_for. This is questionable since the purpose
of a condition variable is to wait for another thread to change state protected by a mutex. Since
Cilk Plus task constructs only permit thread parallelism, but do not mandate it, there might not be
another thread. The wait could last forever.

• Mixing thread-local storage with Cilk Plus’s cilk_spawn or cilk_for. This invites trouble. The
problem is that Cilk Plus is not about threads. It is about running parallel strands of execution,
where a strand (Section 8.10) is a segment of control flow with no intervening fork or join point.
However, the runtime maps strands to threads in ways that can surprise neophytes. For example,
when a worker thread created by the Cilk Plus runtime calls a function, the function can return on
a different thread.

Hyperobjects are usually an excellent alternative to thread-local storage. The k-means example
(Chapter 11) lets you compare these alternatives. The TBB code uses thread-local storage; the Cilk
Plus code uses two hyperobjects.

Borrowing can go the other way, too. The Cilk Plus features for vector parallelism (array notation
and #pragma simd) are an excellent way to exploit vector parallelism in a TBB program, even if the
tasking model supported by Cilk Plus is not used. Note that if you express vector parallelism using

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 332 — #332

332 APPENDIX B Cilk Plus

only elemental functions and the #pragma simd, the code will still be portable to other compilers,
since ignoring these constructs still gives the expected result.

B.4 KEYWORD SPELLING
This book’s spelling of the keywords requires inclusion of the header <cilk/cilk.h>, which has:

#define cilk_spawn _Cilk_spawn
#define cilk_sync _Cilk_sync
#define cilk_for _Cilk_for

The compiler recognizes only the keywords on the right. The reason is that the introduction of new
keywords by a compiler is limited, by convention and standards, to names beginning with an under-
score followed by an uppercase letter. Such symbols are reserved to compiler implementers and should
never cause a conflict with application code. The header provides more aesthetically pleasing spellings.

Including the <cilk/cilk_stub.h> header file converts a program to its serial elision by
defining:

#define _Cilk_spawn
#define _Cilk_sync
#define _Cilk_for for

These substitutions revert the program to a serial program that can be compiled by any C++ compiler.
The resulting code will behave just like a Cilk Plus program running on a single thread.

B.5 cilk for
The syntax for cilk_for is similar to for. It looks like:

cilk_for (initialization;condition; increment) body

The body can be a single statement or a block of code. Changing a for loop to a cilk_for loop
permits the iterations to run in parallel.

A cilk_for loop has the following constraints that do not exist for a for loop:

• Control may not be explicitly transferred out of the body or into it. In particular, return and break
are prohibited. A goto must not jump from inside the body to outside of it, or vice versa.

• Control may be implicitly transferred out of the body by an exception. In that case, which other
iterations execute depends on the implementation and might not be deterministic. The exception

1 cilk_for (int i=ivalue; i<limit; ++i) {
2 a[i] = foo(b[i],c[i]) * 3.0;
3 }

LISTING B.1

Simple example use of cilk_for.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 333 — #333

B.6 cilk_spawn and cilk_sync 333

thrown from the cilk_for is the same as the serial elision would have thrown, even if multiple
iterations throw.

• The initialization shall declare or initialize a single variable only. This is called the control variable.
In C, the control variable may be declared outside the cilk_for loop. In C++, the initialization
must declare the control variable. The variable cannot be declared const or volatile.

• The control variable may not be modified within the loop body.
• The increment must have one of the following forms:

i++
++i

i−−
−−i
i+=step
i−=step

where i stands for the control variable, and step can be any expression.
• The condition must consist of the control variable i compared with another expression, which we

will call the limit. The comparison can be =>, >, <=, <, !=, or ==.
• The step (if any) and limit expressions must not be affected by the loop body. This is so that the

number of iterations can be computed correctly before any iterations commence. For C programs,
the value of the control variable, if declared outside the loop, has the same value after a cilk_for
loop as it would have after a for loop.

The language extension specification [Cor11b] explains the details more precisely, with attention
to fine points and should be consulted for a complete definition.

B.6 cilk spawn AND cilk sync
The cilk_spawn keyword specifies that the caller of a function may continue to run without waiting
for the called function to return.

1 // Simple function call

2 cilk_spawn bar(1);
3 // Lambdas allowed
4 cilk_spawn []{ bar(2); }();
5 // Results allowed

6 result = cilk_spawn bar(4);
7 // Innermost call completes before spawn
8 result = cilk_spawn bar(bar(9));
9 // Spawn not used, no need, potentially wasteful

10 bar(5);
11 // Wait for all spawns
12 cilk_sync;

LISTING B.2

Examples of using cilk_spawn and cilk_sync.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 334 — #334

334 APPENDIX B Cilk Plus

Execution of a statement with the cilk_spawn keyword is called a spawn. The function, try
block, or cilk_for body that contains the spawn is called the spawning block. Note that compound
statements containing a spawn are not spawning blocks unless they fit one of the categories above.

Execution of a cilk_sync statement is called a sync. A sync waits only for spawns that have
occurred in the same spawning block and has no effect on spawns done by other tasks or, done by other
threads, nor those done prior to entering the current spawning block. An implicit sync occurs when
exiting the enclosing spawning block. Thus, when a spawning block completes, any parallelism that it
created is finished. This property simplifies reasoning about program composition and correspondence
with its serial elision.

The following snippet illustrates some of these points:

void foo() {
for (int i=0; i<3; ++i) {

cilk_spawn bar(i);
if (i%2) cilk_sync;

}

// Implicit cilk sync

The snippet has one spawning block: the function body. The body of the for loop is not a spawning
block because it is not the body of a function, try block, or cilk_for. The code operates as follows:

1. Spawn bar(0) and bar(1).
2. Execute a sync that waits for the spawned calls.
3. Spawn bar(2).
4. Execute the implicit cilk_sync.

The scope of the explicit sync is dynamic, not lexical. It applies to all prior spawns by the current
invocation of foo(), since that is the innermost spawning block.

Jumping into, or out of, a spawning block results in undefined behavior. This includes use of goto,
setjmp, and longjmp. “Undefined behavior” is a term of art in language specifications that means
anything could happen, including crashing your program or turning your computer into a frog. You
have been warned.

Behavior is defined if a spawned function throws an exception and does not catch it. The exception
is rethrown when execution leaves the corresponding sync. If there are multiple such exceptions for the
sync, the sync rethrows the exception that the serial elision would have thrown. The extra exceptions
are destroyed without being caught.

B.7 REDUCERS (HYPEROBJECTS)
A hyperobject enables multiple strands of execution to operate in parallel on the same logical object,
without locking, yet get the same result as the serial elision would get. Furthermore, a hyperobject
avoids contention bottlenecks, because parallel strands get separate local views of the logical object.
Section 8.10 discusses the theory of hyperobjects in more detail.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 335 — #335

B.7 Reducers (Hyperobjects) 335

A reducer is a hyperobject intended for doing reductions. Cilk Plus reducers work for any operation
that can be reassociated. Cilk Plus predefines reducers for common associative operations:

Operation Header

list accumulation <cilk/reducer_list.h>

min <cilk/reducer_min.h>

max <cilk/reducer_max.h>

addition and subtraction <cilk/reducer_opadd.h>

bitwise AND <cilk/reducer_opand.h>

bitwise OR <cilk/reducer_opor.h>

bitwise EXCLUSIVE OR <cilk/reducer_opxor.h>

string concatenation <cilk/reducer_string.h>

reducer version of std::ostream <cilk/reducer_ostream.h>

The last item might seem surprising, since output operations are not normally considered associative.
However, a reducer can change operations to reassociate them. For example:

(cout << x) << y

can be reassociated as:

cout << (TOSTRING(x) + TOSTRING(y))

where TOSTRING denotes conversion to a string and + denotes string concatenation. Section 9.4.2
explains this in more detail. One other reducer mentioned also changes operations: The reducer
reducer_opadd reassociates subtraction by rewriting a− b as a+ (−b).

Another kind of hyperobject is a holder. Cilk Plus predefines holders in header <cilk/holder
.h>. A holder is a kind of reducer where the reduction operation ⊗ does one of the following:

Policy Operation

Keep last x⊗ y= y

Keep indeterminate x⊗ y= arbitrary choice of x or y

A keep-last holder is useful for computing the last value the hyperobject would have after serial exe-
cution. It can be thought of as using the C/C++ “comma operator” for reduction. A keep-indeterminate
holder is useful for holding race-free temporary storage instead of reallocating/freeing it every time
a strand needs it. See comments in <cilk/holder.h> for more details, options, and examples for
holders.

B.7.1 C++ Syntax
Our example uses reducer_opadd and is illustrated in Listing B.3. To use a predefined reducer:

1. Include the appropriate reducer header file. Our example uses #include <cilk/reducer_
opadd.h>.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 336 — #336

336 APPENDIX B Cilk Plus

1 #include "cilk/reducer_opadd.h"
2 using namespace std;
3

4 void cpp_serial(int data[], size_t n) {
5 int result = 47;
6

7 cout << "C++ reduction with for" << endl;
8

9 for (size_t i = 0; i < n; ++i) {
10 result += data[i];
11 }

12

13 cout << "Result is: " << result << endl;
14 }

15

16 void cpp_parallel(int data[], size_t n) {
17 cilk::reducer_opadd<int> result(47);
18

19 cout << "C++ reduction with cilk_for" << endl;
20

21 cilk_for (size_t i = 0; i < n; ++i) {
22 result += data[i];
23 }

24

25 cout << "Result is: " << result.get_value() << endl;
26 }

LISTING B.3

Serial reduction in C++ and equivalent Cilk Plus code. See Listing B.4 for an equivalent example in C.

2. Declare the reduction variable as a reducer_kind<TYPE> rather than as a TYPE. The default
value is the identity element of the reduction operation. If you need a different initial value, use a
parenthetical expression, not = for the initializer. The = syntax will not work.1 Our example uses:

cilk::reducer_opadd<int> result(47);

not this:

cilk::reducer_opadd<int> result=47; // WRONG!

3. Introduce parallelism, such as changing a for loop to a cilk_for loop. Update the reduction
variable (in our example, result) just like before. It is not necessary to worry that the hyperobject
now provides a strand-local view of the variable. However, updates are restricted to the reduction

1Why? Because the C++ standard requires that to use the= syntax the class must have a public copy constructor, even if the
compiler optimizes it away. Hyperobjects generally have private copy constructors.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 337 — #337

B.7 Reducers (Hyperobjects) 337

operations supported by the hyperobject. For example, reducer_opadd allows only +=, −=, ++,
and −−.

4. Retrieve the reducer’s terminal value with method get_value() after all strands that update it
sync. In our example, this is result.get_value(), and the strands synced when the cilk_for
loop finished. Retrieving the reducer’s terminal value before all strands sync may return only a
partial result.

To illustrate these steps for C++, Listing B.3 shows routines for summing an array of integers. One
routine uses for and the other uses cilk_for with a reducer. Otherwise, they are identical C++ code
to illustrate equivalence.

The header <cilk/reducer.h> defines a generic reducer that you can use to define your own
custom reducer. Section 11.2.1 walks through the mechanics of defining a custom reducer.

B.7.2 C Syntax
Our example uses reducer_opadd and is illustrated in Listing B.4. The steps are:

1. #include the appropriate header for the reducer. Section B.7 lists the types and header files for
predefined reducers. Our example uses #include <cilk/reducer_opadd.h>.

2. Declare the reducer object using:

CILK_C_REDUCER_type(variable name,variable type, initial value);

For example, to declare an addition reducer variable result of type int initialized to zero, use:

CILK_C_REDUCER_OPADD(result, int, 0);

3. After the declaration of the reducer but before the first use, insert:

CILK_C_REGISTER_REDUCER(reducer name);

to register the variable with the Cilk Plus runtime. This provides for proper initialization and
memory clean-up. It is not strictly needed if the variable reducer name is a global variable.

4. To access the value in a serial region, use the member value of the reducer. In our example, this
is result.value. Operations on the member should be restricted to the appropriate operations
only, but, unlike in C++, this restriction cannot be enforced by the compiler. Failure to obey this
restriction can easily produce invalid results. The Cilk Plus documentation on reduction operations
lists the allowed operations. For instance, for OPADD the only allowed operations are +=, −=, ++,
and −−.

5. When accessing the value of the reducer from parallel strands, use REDUCER_VIEW(reducer name)
to access the value. In our example, this is REDUCER_VIEW(result).

6. When the reducer is no longer needed, insert

CILK_C_UNREGISTER_REDUCER(reducer name);

Just like the registration of the variable, this is not strictly needed if the variable is global.

To illustrate these steps for C, Listing B.4 adds an array of numbers together using for and
cilk_for with reducers in otherwise identical C code to illustrate equivalence in this C code.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 338 — #338

338 APPENDIX B Cilk Plus

1 #include "cilk/reducer_opadd.h"
2

3 void c_serial(int data[], size_t n) {
4 size_t i;
5 int result = 47;
6

7 printf("C reduction with for\n");
8

9 for (i = 0; i < n; ++i) {
10 result += data[i];
11 }

12 printf("Result is: %d\n", result);
13 }

14

15 void c_parallel(int data[], size_t n) {
16 size_t i;
17 CILK_C_REDUCER_OPADD(result, int, 47);
18 CILK_C_REGISTER_REDUCER(result);
19

20 printf("C reduction with cilk_for\n");
21

22 cilk_for (i = 0; i < n; ++i) {
23 result.value += data[i];
24 }

25 printf("Result is: %d\n", REDUCER_VIEW(result));
26 CILK_C_UNREGISTER_REDUCER(result);
27 }

LISTING B.4

Serial reduction in C and equivalent Cilk Plus code. See Listing B.3 for an equivalent example in C++.

The header<cilk/reducer.h> has macros to assist defining your own custom reducer. See that
header and the Cilk Plus documentation for details on how to use these macros.

B.8 ARRAY NOTATION
Cilk Plus extends C and C++ with array notation, which lets the programmer specify array sections and
operations on array sections. Programming with array notation achieves predictable performance based
on mapping parallel constructs to the underlying hardware vector parallelism, and possibly thread
parallelism in the future. The notation is explicit and easy to understand and enables compilers to
exploit vector and thread parallelism with less reliance on alias and dependence analysis. For example,

a[0:n] = b[10:n] ∗ c[20:n];

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 339 — #339

B.8 Array Notation 339

is an unordered equivalent of:

for (int i=0; i<n; ++i)
a[i] = b[10+i] + c[20+i]

Use array notation where your operations on arrays do not require a specific order of operations among
elements of the arrays.

B.8.1 Specifying Array Sections
An array section operator is written as one of the following:

[first:length:stride]
[first:length]
[:]

where:

first is the index of the first element in the section.
length is the number of elements in the section.
stride is the difference between successive indices. The stride is optional, and if omitted is
implicitly 1. The stride can be positive, zero, or negative.

All three of these values must be integers. The jth element of an array section a[i : n : k] is a[i+ j · k]
for j ∈ [0,n).2

The notation expr[:] is a shorthand for a whole array dimension if expr has array type before
decay (conversion to pointer type) and the size of the array is known. If either first or length is
specified, then both must be specified. Examples include:

float x[10];
x[0:5]; // First five elements of x

x[5:10]; // Last five elements of x
x[1:5:2]; // Elements of x with odd subscripts

x[:]; // All ten elements of x

A scalar or array section has a rank. A scalar has rank 0. The rank of an array section a[i : n : k] is
one more than the rank of a. The rank of a[i] is the sum of the ranks of a and i. The rank of i must not
exceed one. Successive array section operators behave analogously to multiple C/C++ subscripts. The
shape of a multidimensional section is a tuple of the section lengths. Examples:

int s;
int u[5], v[4];
int a[7][4];
int b[8][7][4];
x; // rank=0, shape=<>
v[0:4]; // rank=1, shape=<4>

2 Note to Fortran 90 programmers: The middle of the triplet is a length, not the last index.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 340 — #340

340 APPENDIX B Cilk Plus

a[0:7][0:4]; // rank=2, shape=<7,4>
a[0][0:4]; // rank=1, shape=<4>
a[0:7][0]; // rank=1, shape=<7>
b[0:5][0][0:3]; // rank=2, shape=<5,3>
u[v[0:4]]; // rank=1, shape=<4>

The last line subscripts array u (rank zero) with an array section (rank one), and the rank of the result
is the sum of those ranks.

B.8.2 Operations on Array Sections
Most C and C++ scalar operations act elementwise on array sections and return an elementwise result.
For example, the expression a[10:n]−b[20:n] returns an array section of length n where the jth
element is a[10+j]−b[20+j]. Each operand must have the same shape, unless it is a scalar operand.
Scalar operands are reshaped by replication to match the shape of the non-scalar operands. Function
calls are also applied elementwise. Examples include:

extern float x[8], y[8], z[8];
extern float a[8][8];
x[0:8] = x[0:8] + y[0:8]; // Vector addition
x[0:8] += y[0:8]; // Another vector addition
x[0:8] = (x[0:8]+y[0:8])/2; // Vector average
a[3][0:8] = x[0:8]; // Copy x to row 3 of a
a[0:8][3] = x[0:8]; // Copy x to column 3 of a
z[0:8] = pow(x[0:8],3.f); // Elementwise cubes of x
std::swap(x[0:8],y[0:8]); // Elementwise swap
x[0:8] = x[0:5]; // Error – mismatched shape
a[0:5][0:5] = x[0:5]; // Error – mismatched shape

The few operators that are not applied elementwise or have peculiar rank rules are:

• Comma operator: The rank of x,y is the rank of y.

• Array section operator: As described earlier, the rank of a[i : n : k] is one more than the rank of a.

• Subscript operator: As described earlier, the rank of the result of a[i] is the sum of the ranks of
a and i. The j element of a[k[0 : n]] is a[k[j]]. Trickier is the second subscript in b[0 : m][k[0 : n]].
Both b[0 : m] and k[0 : n] have rank one, so the result is a rank-two section where the element at
subscript i, j is b[i][k[j]].

Note that pointer arithmetic follows the elementwise rule just like other arithmetic. A consequence is
that a[i] is not always the same as ∗(a+ i) when array sections are involved. For example, if both a
and i have rank one, then a[i] has rank two, but ∗(a+ i) has rank one because it is elementwise unary
∗ applied to the result of elementwise +.

Historical note: In the design of array notation, an alternative was explored that preserved the
identity ∗(a+ i)≡ a[i], but it broke the identity (a+ i)+ j≡ a+ (i+ j) when a is a pointer type
and made the rank of a+ i dependent on the type (not just the rank) of a. It turns out that array

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 341 — #341

B.8 Array Notation 341

notation must break one of the two identities, and breaking associativity was deemed the worse of two
evils.

B.8.3 Reductions on Array Sections
There are built-in operations for efficient reductions of array sections. For example, __sec_reduce_
add(a[0:n]) sums the values of array section a[0:n]. Here is a summary of the built-in operations.
The last column shows the result of reducing a zero-length section.

Operation Result If Empty

__sec_reduce_add 6iai 0
__sec_reduce_mul 5iai 1
__sec_reduce_max maxi ai “−∞”
__sec_reduce_min mini ai “∞”
__sec_reduce_max_ind j such that ∀i : aj ≥ ai unspecified
__sec_reduce_min_ind j such that ∀i : aj ≤ ai unspecified
__sec_reduce_all_zero ∀i : ai = 0 ? 1 : 0 1
__sec_reduce_all_nonzero ∀i : ai 6= 0 ? 1 : 0 1
__sec_reduce_any_zero ∃i : ai = 0 ? 1 : 0 0
__sec_reduce_any_nonzero ∃i : ai 6= 0 ? 1 : 0 0

The “−∞” and “∞” are shorthands for the minimum and maximum representable values of the
type.

The result of a reduction is always a scalar. For most of these reduction, the rank of a can be
one or greater. The exception is that the rank of a must be one for __sec_reduce_max_ind and
__sec_reduce_min_ind. These return an index of type ptrdiff_t that is relative to the section.
For example, __sec_reduce_max_ind(x[40:10]) returns an index in the half-open interval [0,10),
not in [40,50).

Two general reduction operations let you do reduction over a section with type T using your own
combiner operation. Their signatures are:

T __sec_reduce(T initial, T section, T (*f)(T,T));
void __sec_reduce_mutating(T& dest, T section, U (*g(T*,T));

A summary of the arguments follows, with ⊗ denoting the combiner operation:

• initial is an initial value to use for the reduction.
• section is an array section.
• f(x,y) returns x⊗ y.
• dest is a location that contains the initial value for the reduction and is where the result is stored.
• g(x,y) sets ∗x= ∗x⊗ y. The function g can have any return type, because the return value of g is

irrelevant.

Listing B.5 shows an example using string concatenation as the reduction operation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 342 — #342

342 APPENDIX B Cilk Plus

1 #include <string>
2 #include <iostream>
3

4 using namespace std;
5

6 string concat(string x, string y) {
7 return x + " " + y;
8 }

9

10 int main() {
11 string a[] = {"there","was","a","vector."};
12 string b = __sec_reduce("Once", a[0:4], concat);
13 cout << b << endl;
14 return 0;
15 }

LISTING B.5

Example of using __sec_reduce to reduce over string concatenation. It prints “Once there was a vector.”

B.8.4 Implicit Index
The built-in function __sec_implicit_index(k) returns the index of each element along dimension
k in an array section implied by context. Examples include:

int a[5][8];
// Set ai,j = i-j
a[0:5][0:8] = __sec_implicit_index(0)−__sec_implicit_index(1);
int b[8];
// Set b2k = k
b[0:8:2] = __sec_implicit_index(0);
// Set b2k+1 = 10k

b[1:8:2] = 10*__sec_implicit_index(0);

The comments for the statements that set b show how the implicit indices are indices into the section,
not the arrays in the expression.

B.8.5 Avoid Partial Overlap of Array Sections
In C and C++, the effect of a structure assignment *p= *q is undefined if *p and *q point to structures
that partially overlap in memory. The assignment is well defined if *p and *q are either completely
disjointed or are aliases for exactly the same structure. Cilk Plus extends this rule to array sections.
Examples include:

extern float a[15];
a[0:4] = a[5:4]; // Okay, disjoint
a[0:5] = a[4:5]; // WRONG! Partial overlap
a[0:5] = a[0:5]+1: // Okay, exact overlap

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 343 — #343

B.9 #pragma simd 343

a[0:5:2] = a[1:5:2]; // Okay, disjoint, no locations shared
a[0:5:2] = a[1:5:3]; // WRONG! Partial overlap (both share a[4])
a[0:5] = a[5:5]+a[6:5]; // Okay, reads can partially overlap

The last example shows how partial overlap of reads is okay. It is partial overlap of a write with another
read or write that is undefined.

Historical note: The original specification of array notation made partial overlap well defined, as in
APL and Fortran 90. However, experience showed that doing so required a compiler to often generate
temporary arrays, so it could fully evaluate the right side of a statement before doing an assignment.
These temporary arrays hurt performance and caused unpredictable space consumption, both at odds
with the C++ philosophy of providing abstractions with minimal performance penalty. So the speci-
fication was changed to match the rules for structure assignment in C/C++. Perhaps future compilers
will offer to insert partial overlap checks into code for debugging.

B.9 #pragma simd
Analogously to how cilk_for gives permission to parallelize a loop, but does not require it, marking
a for loop with #pragma simd similarily gives a compiler permission to execute a loop with vec-
torization. Usually this vectorization will be performed in small chunks whose size will depend on the
vector width of the machine. For example, writing:

extern float a[];
#pragma simd
for (int i=0; i<1000; ++i)

a[i] = 2 * a[i+1];

grants the compiler permission to transform the code into:

extern float a[];
for (int i=0; i<1000; i+=4) {

float tmp[4];
tmp[0:4] = 2 * a[i+1:4];
a[i:4] = tmp[0:4];

}

There is a subtle difference in the parallelization permited by #pragma simd versus cilk_for. The
original loop in our example would not be legal to parallelize withcilk_for, because of the dependence
between iterations. A #pragma simd is okay in the example because the chunked reads of locations still
precede chunked writes of those locations. However, if the orginal loop body reversed the subscripts
and assigned a[i+1] = 2 * a[i], then the chunked loop would not preserve the original semantics,
because each iteration needs the value of the previous iteration. In general, #pragma simd is legal on
any loop for which cilk_for is legal, but not vice versa. In cases where only #pragma simd appears
to be legal, study dependencies carefully to be sure that it is really legal.

A #pragma simd can be modified by additional clauses, which control chunk size or allow
for some C/C++ programmers’ fondness for bumping pointers or indices inside the loop. Note that

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 344 — #344

344 APPENDIX B Cilk Plus

#pragma simd is not restricted to inner loops. For example, the following code grants the compiler
permission to vectorize the outer loop:

#pragma simd
for (int i=1; i<1000000; ++i) {

while (a[i]>1)
a[i] *= 0.5f;

}

In theory, a compiler can vectorize the outer loop by using masking (Section 2.3) to emulate the control
flow of the inner while loop. Whether a compiler actually does so depends on the implementation.

B.10 ELEMENTAL FUNCTIONS
An elemental function is a scalar function with markup that tells the compiler to generate extra ver-
sions of it optimized to evaluate multiple iterations in parallel. When you call an elemental function
from a parallel context, the compiler can call the parallel version instead of the serial version, even if
the function is defined in a different source file than the calling context.

The steps for using an elemental function are:

1. Write a function in scalar form using standard C/C++.
2. Add __declspec(vector), and perhaps with optional control clauses, to the function declaration

so that the compiler understands the intended parallel context(s) for calling it.3 Additional clauses
let you tell the compiler the expected nature of the parameters:

uniform(b) indicates that parameter b will be the same for all invocations from a parallel loop.
linear(a:k) indicates that parameter a will step by k in each successive invocation from
the original serial loop. For example, linear(p:4) says that parameter p steps by 4 on each
invocation. Omitting :k is the same as using :1.

3. Invoke the function from a loop marked with #pragma simd or with array section arguments.

Listings B.6 and B.7 show definition and use, respectively, of an elemental function. This code will
likely perform better than a program where the function is not marked as elemental, particulary when
the function is defined in a separate file. Writing in this manner exposes the opportunity explicitly

1 __declspec(vector(linear(a),uniform(b)))
2 void bar(float *a, float *b, int c, int d) {
3 if(*a>0)
4 *a = b[c+d];
5 }

LISTING B.6

Defining an elemental function. The declspec tells the compiler to generate, in addition to the usual code, a
specialized version for efficiently handling vectorized chunks where a has unit stride and b is invariant.

3 Section B.10.1 describes __attribute__ and C++11 attribute alternatives to __declspec.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 345 — #345

B.11 Note on C++11 345

1 __declspec(vector(linear(a),uniform(b)))
2 void bar(float *a, float *b, int c, int d);
3

4 void foo(float *a, float *b, int* c, int* d, int n) {
5 #pragma simd
6 for(int i=0; i<n; ++i)
7 bar(a+i, b, c[i], d[i]);
8 }

LISTING B.7

Calling an elemental function from a vectorizable loop. The declspec on the prototype tells the compiler that
the specialized version from Listing B.6 exists. As usual in C/C++, a separate prototype is unnecessary if the
function is defined first in the same file.

instead of hoping that a super optimizing compiler will discover the opportunity, which is particularly
important in examples less trivial than this one.

Alternatively, the caller could call the elemental function from array notation, like this:

bar(&a[0:n], b, c[0:n], d[0:n]);

B.10.1 Attribute Syntax
If the compiler recognizes GNU-style attributes, you can use __attribute__((vector)) to mark
the function. As of this writing, the Intel compiler recognized both __declspec and __attribute__
forms on Linux and Mac OS, but only the __declspec form on Windows.

Here are the first two lines of Listing B.6 written with the GNU-style attribute:

__attribute((vector(linear(a),uniform(b))))
void bar(float *a, float *b, int c, int d) {

Eventually elemental function markup will be expressible using C++11 attribute syntax.

B.11 NOTE ON C++11
C++11 lambda expressions (Section D.2) have a nifty application in Cilk Plus that in effect lets you
spawn a statement. Here is an example that spawns the statement while (foo())bar(baz);:

cilk_spawn [&]{
while (foo()) bar(baz);

}();

The code is really just spawning a functor created by the lambda. Do not forget the trailing
parentheses—they are part of the spawned call. See also Section 14.6 for a novel use of a lambda
expression with array notation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 346 — #346

346 APPENDIX B Cilk Plus

B.12 NOTES ON SETUP
Cilk Plus does not require explicit setup in the user code; all capabilities self-initialize as needed.
To compile code with Cilk Plus features, the inclusion of a number of Cilk Plus header files may be
required. We recommend always using the header <cilk/cilk.h>, so you do not have to write
“ugly” spellings like _Cilk_spawn. Other supplied header files are needed if you are using reducers
or the API calls.

The serialization described in Section B.4 can be achieved by including <cilk/cilk_stub.h>
or using the Intel compiler option cilk−serialize.

The Cilk Plus API, defined in<cilk/cilk_api.h>, provides some control over the runtime. By
default, the number of worker threads is set to the number of cores on the host system. In most cases,
the default value works well and should be used. However, you can increase or decrease the number
of workers under program control using the following API call:

__cilkrts_set_param("nworkers",n)

or via the environment variable CILK_NWORKERS. You may want to use fewer workers than the number
of processor cores available in order to run tests or to reserve resources for other programs. In some
cases, you may want to oversubscribe by creating more workers than the number of available processor
cores. This may be useful if you have workers waiting on locks, or if you want to test a parallel program
on a single-core computer.

There are additional detailed “under the hood” controls and information exposed in the Cilk Plus
API—for example:

__cilkrts_get_worker_number() Gets worker number.
__cilkrts_get_total_workers() Gets total number of workers.

Consult the Cilk Plus documentation for more information. We stress that using the two queries as part
of an algorithm is usually a sign of bad style in Cilk Plus. The whole point of Cilk Plus is to abstract
away the number of workers.

B.13 HISTORY
The Cilk language has been developed since 1994 at the MIT Laboratory for Computer Science. It is
based on ANSI C, with the addition of just a handful of Cilk-specific keywords.

Cilk is a faithful extension of C and the serial elision (Section B.4) of any well-defined Cilk program
is always a valid serial implementation in C that matches the semantics of the parallel Cilk program.
Despite several similarities, Cilk is not directly related to AT&T Bell Labs’ Concurrent C.

In the original MIT Cilk implementation, the first Cilk keyword was cilk, which identified a
function as written in Cilk. This keyword was needed to distinguish Cilk code from C code, because in
the original implementation Cilk procedures could call C procedures directly, but C procedures could
not directly call or spawn Cilk procedures.

A commercial version of Cilk, called Cilk++, that supported C++ and was compatible with both
GCC and Microsoft C++ compilers was developed by Cilk Arts, Inc. The cilk keyword morphed
into extern "cilk". Cilk++ introduced the notion of hyperobjects [FHLLB09], which elegantly
eliminated the need for several keywords in the original Cilk pertaining to reductions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 347 — #347

B.14 Summary 347

In July 2009, Intel Corporation acquired, from Cilk Arts, the Cilk++ technology and the Cilk trade-
mark. In 2010, Intel released a commercial implementation in its compilers combined with some data
parallel constructs, under the name Intel Cilk Plus. Intel has also released specifications, libraries, code,
and the ability to use the “Cilk Plus” name (trademark) with other compilers.

Intel Cilk Plus extends Cilk and Cilk++ by adding array extensions, being incorporated in a
commercial compiler (from Intel), and having compatibility with existing debuggers. Intel Cilk Plus
adopted a significant simplication proposed by Cilk++ team: Eliminate the need to distingush Cilk link-
age from C/C++ linkage. This was a major improvement in usability, particularly for highly templated
libraries, where linkage specifications can become confusing or impossible. Furthermore, erasing the
distinction between Cilk and C/C++ functions enabled C/C++ functions to be spawned directly.

Intel has published both a language specification and an ABI specification to enable other compilers
to implement Cilk Plus in a compatible way and to optionally utilize the Intel runtime. The Cilk Plus
extensions to C and C++ have also been implemented in a development branch version of the GCC
compiler.

Intel has stated its desire to refine Cilk Plus and to enable it to be implemented by other compilers
to gain industry-wide adoption.

B.14 SUMMARY
Cilk Plus is a language specification that provides for both thread and vector parallelism in C and C++
via keywords, syntax for array operations, elemental functions, and pragmas. Much more information
is available at http://cilkplus.org.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 349 — #349

APPENDIX

TBB C
This appendix provides a concise introduction to Intel Threading Building Blocks (Intel TBB). It covers
the subset used by this book. A good introduction is available in the O’Reilly Nutshell Book on TBB,
which covers the essentials of TBB [Rei07]. The book was published in 2007 when TBB version 2.0
appeared, so some newer features are not covered. It is nevertheless a solid introduction to TBB. For a
more complete guide, see the TBB Reference, Tutorial, and Design Patterns documents, which can be
downloaded from http://threadingbuildingblocks.org/.

TBB is a collection of components that outfits C++ for parallel programming. Figure C.1 illustrates
these components. At the heart of TBB is a task scheduler, which is most often used indirectly via the
parallel algorithms in TBB, such as tbb::parallel_for. The rest of TBB provides thread-aware
memory allocation, portable synchronization primitives, scalable containers, and a variety of useful
utilities. Each part is important for parallelism. Indeed the non-tasking features are intended for use
with other parallelism frameworks such as Cilk Plus, ArBB, and OpenMP, so that those frameworks
do not have to duplicate key functionality.

C.1 UNIQUE CHARACTERISTICS
TBB shares many of the key attributes of Cilk Plus as enumerated in Section B.1, but it differs form
Cilk Plus on several points:

• TBB is designed to work without any compiler changes, and thus be quickly portable to new plat-
forms. As a result, TBB has been ported to a multitude of key operating systems and processors,
and code written with TBB can likewise be easily ported.

• As a consequence of avoiding any need for compiler support, TBB does not have direct support for
vector parallelism. However, TBB combined with array notation or #pragma simd from Cilk Plus
or auto-vectorization can be an effective tool for exploiting both thread and vector parallelism.

• TBB is designed to provide comprehensive support for C++ developers in one package. It supports
multiple paradigms of parallel programming. It goes beyond the strict fork–join model of Cilk Plus
by supporting pipelines, dataflow, and unstructured task graphs. The additional power that these
features bring is sometimes worth the additional complexity they bring to a program.

• TBB is intended to provide low-level services such as memory allocation and atomic operations
that can be used by programs using other frameworks, including Cilk Plus.

349

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 350 — #350

350 APPENDIX C TBB

Concurrent containers

Scalable containers.
Includes vectors, hash
tables, and queues.

Utility
Cross-thread
accurate timers.

Memory

Scalable memory allocation,
plus false-sharing avoidance,
and thread-local storage.

Threads

Synchronization

Includes atomic ops,
mutexes, and
condition variables.

Tasks

Work-stealing task
scheduler.

Task groups.

Selective over- and
under-subscription
capability.

TBB

A C++ template library.
Implementation is portable across platforms, operating systems,
and processors.

Threading building blocks.

Parallel algorithms

Generic scalable algorithms.
Includes parallel for, reduction,
work pile, scan, pipeline,
flow graph...

FIGURE C.1

Overview of Threading Building Blocks.

TBB is an active open source project. It is widely adopted and often cited in articles about
parallelism in C++. It continues to grow as the parallel ecosystem evolves.

C.2 USING TBB
Include the header <tbb/tbb.h> to use TBB in a source file. All public identifiers are in namespace
tbb or tbb::flow. In the following descriptions, the phrase “in parallel” indicates that parallelism is
permitted if resources allow, but is not mandated. As with Cilk Plus, the license to ignore unnecessary
parallelism allows the TBB task scheduler to use parallelism efficiently.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 351 — #351

C.3 parallel for 351

C.3 parallel for
The function template parallel_for maps a functor across range of values. The template takes
several forms. The simplest is:

tbb::parallel_for(first,last,f)

where f is a functor. It evaluates the expression f (i) in parallel for all i in the half-open interval
[first,last), Both first and last must be of the same integral type. It is a parallel equivalent of:

for (auto i=first; i<last; ++i) f (i);

A slight variation specifies a stride:

tbb::parallel_for(first,last,stride,f)

It is like the previous version, except that the possible values of i step by stride, starting with first. This
form is a parallel equivalent of:

for (auto i=first; i<last; i+=stride) f (i);

Another form of parallel_for takes two arguments:

tbb::parallel_for(range,f)

It decomposes range into subranges and applies f to each subrange, in parallel. Hence, the programmer
has the opportunity to optimize f to operate on an entire subrange instead of a single index. This version
in effect exposes the tiled implementation of the map pattern used by TBB.

This form of parallel for also generalizes the parallel map pattern beyond one-dimensional ranges.
The argument range can be any recursively splittable range type. A type R is such a type if it has the
following methods:

R::R(const R&) Copy constructor.

R:: R() Destructor.

bool R::is divisible() const True if splitting constructor can be called, false
otherwise.

bool R::empty() const True if range is empty, false otherwise.

R::R(R& r, split) Splitting constructor. It splits range r into two
subranges. One of the subranges is the newly con-
structed range. The other subrange is overwritten
onto r.

The implementation of parallel_for uses these methods to implement a generic recursive map
in the spirit of Listing 8.1.

C.3.1 blocked range
The most commonly used recursive range is tbb::blocked_range. It is typically used with integral
types or random-access iterator types. For example, blocked_range<int>(0,8) represents the
index range {0,1,2,3,4,5,6,7}. An optional third argument called the grainsize specifies the maximum

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 352 — #352

352 APPENDIX C TBB

size for splitting. It defaults to 1. For example, the following snippet splits a range of size 30 with
grainsize 20 into two indivisible subranges of size 15:

// Construct half-open interval [0,30) with grainsize of 20
blocked_range<int> r(0,30,20);
assert(r.is_divisible());
// Call splitting constructor
blocked_range<int> s(r);
// Now r=[0,15) and s=[15,30) and both have a grainsize 20
// Inherited from the original value of r
assert(!r.is_divisible());
assert(!s.is_divisible());

Listing 4.2 on page 126 shows an example that uses blocked_range with parallel_for.
A two-dimensional variant is called tbb::blocked_range2d. It permits using a single

parallel_for to iterate over two dimensions at once, which sometimes yields better cache behavior
than nesting two one-dimensional instances of parallel_for.

C.3.2 Partitioners
The range form of parallel_for takes an optional partitioner argument, which lets the programmer
specify performance-related tactics [RVK08]. The argument can have one of three types:

• auto partitioner: The runtime will try to subdivide the range sufficiently to balance load, but
no further. This behavior is the same as when no partitioner is specified.

• simple partitioner: The runtime must subdivide the range into subranges as finely as possible;
that is, method is_divisible will be false for the final subranges.

• affinity partitioner: Request that the assignment of subranges to underlying threads be
similar to a previous invocation of parallel_for or parallel_reduce with the same
affinity_partitioner object.

These partitioners also work with parallel_reduce.
An invocation of parallel_for with a simple_partitioner looks like:

parallel_for(r,f,simple_partitioner());

This partitioner is useful in two scenarios:

• The functor f uses a fixed amount of memory for temporary storage, and hence cannot deal with
subranges of arbitrary size. For example, if r is a blocked_range, the partitioner guarantees that
f is invoked on subranges not exceeding the grainsize of r.

• The work for f (r) is highly unbalanced in a way that fools the auto_partitioner heuristic into
not dividing work finely enough to balance load.

An affinity_partitioner can be used for cache fusion (Section 4.4). Unlike the other two
partitioners, it carries state. The state holds information for replaying the assignment of subranges
to threads. Listing C.1 shows an example of its use in a common pattern: serially iterating a map.
In the listing, variable ap enables cache fusion of each map to the next map. Because it is carrying
information between serial iterations, it must be declared outside the serial loop.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 353 — #353

C.4 parallel reduce 353

1 void relax(
2 double* a, // Pointer to array of data
3 double* b, // Pointer to temporary storage
4 size_t n, // Number of data elements
5 int iterations // Number of serial iterations
6) {
7 assert(iterations%2==0);
8 // Partitioner should be declared outside the loop
9 tbb::affinity_partitioner ap;

10 // Serial loop around a parallel loop
11 for(size_t t=0; t<iterations; ++t) {
12 tbb::parallel_for(
13 tbb::blocked_range<size_t>(1,n−1),
14 [=](tbb::blocked_range<size_t> r) {
15 size_t e = r.end();
16 #pragma simd
17 for(size_t i=r.begin(); i<e; ++i)
18 b[i] = (a[i−1]+a[i]+a[i+1])*(1/3.0);
19 },
20 ap);
21 std::swap(a,b);
22 }

23 }

LISTING C.1

Example of affinity_partitioner. TBB uses the variable ap to remember on which threads ran which
subranges of the previous invocation of parallel_for and biases execution toward replaying that
assignment. The pragma simd is for showmanship. It makes the impact of the partitioner more dramatic by
raising arithmetic performance so that memory bandwidth becomes the limiting resource.

C.4 parallel reduce
Function template parallel_reduce performs a reduction over a recursive range. It has several
forms. The form used in this book is:

T result = tbb::parallel_reduce(
range,
identity,
subrange reduction,
combine);

where:

• range is a recursive range as for parallel_for, such as blocked_range.
• identity is the identity element of type T . The type of this argument determines the type used to

accumulate the reduction value, so be careful about what type it has.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 354 — #354

354 APPENDIX C TBB

• subrange_reduction is a functor such that subrange reduction(subrange,init) returns a reduc-
tion value over init and subrange. The type of subrange is the type of the range argument to
parallel_reduce. The type of init is T , and the returned reduction value must be convertible
to type T . Do not forget to include the contribution of init to the reduction value.

• combine is a functor such that combine(x,y) takes two arguments of type T and returns a reduction
value for them. This function must be associative but does not need to be commutative.

Listings 5.5 and 5.6 in Section 5.3.4 show example invocations. The latter listing demonstrates how to
do accumulation at higher precision than the values being reduced.

An alternative way to do reduction is via class tbb::enumerable_thread_specific, as
demonstrated in Section 11.3. General advice on which to use:

• If type T takes little space and is cheap to copy, or the combiner operation is non-commutative, use
parallel_reduce.

• If type T is large and expensive to copy and the combiner operation is commutative, use
enumerable_thread_specific.

C.5 parallel deterministic reduce
Template function parallel_deterministic_reduce is a variant of parallel_reduce that is
deterministic even when the combiner operation is non-associative. The result is not necessarily the
same as left-to-right serial reduction, even when executed with a single worker, because the template
uses a fixed tree-like reduction order for a given input.

As of this writing, parallel_deterministic_reduce is a “preview feature” that must be
enabled by setting the preprocessory symbol TBB_PREVIEW_DETERMINISTIC_REDUCE=1 either on
the compiler command line or before including TBB headers in a source file.

C.6 parallel pipeline
Template function parallel_pipeline is used for building a pipeline of serial and parallel stages.
See Section 9.4.1 for details and Listing 12.2 for an example.

C.7 parallel invoke
Template function parallel_invoke evaluates a fixed set of functors in parallel. For example,

tbb::parallel_invoke(f,g,h);

evaluates the expressions f(), g(), and h() in parallel and waits until they all complete. Anywhere
from 2 to 10 functors are currently supported. Listing 13.3 (page 302) and Listing 15.4 (page 322)
show uses of parallel_invoke. Both listings cross-reference similar code in Cilk Plus, so you can
compare the syntactic difference.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 355 — #355

C.9 task 355

C.8 task group
Class task_group runs an arbitrary number of functors in parallel. Listing C.2 shows an example.

In general, a single task_group should not be used to run a large number of tasks, because it can
become a sequential bottleneck. Consider using parallel_for for a large number of tasks.

If one of the functors throws an exception, the task group is cancelled. This means that any tasks in
the group that have not yet started will not start at all, but all currently running tasks will keep going.
After all running tasks in the group complete, one of the exceptions thrown by the tasks will be thrown
to the caller of wait. Hence, if nested parallelism is created by nesting task_group, the exception
propagates up the task tree until it is caught.

Listing 8.12 on page 235 shows a use of task_group.

C.9 task
Class tbb::task is the lowest-level representation of a task in TBB. It is designed primarily for
efficient execution, not convenience, because it serves as a foundation, and thus should impose min-
imal performance penalty. Higher level templates such as parallel_for and task_group provide

1 // Item in a linked list
2 class morsel {
3 public:
4 void munch();
5 morsel* next;
6 };
7

8 // Apply method munch to each item in a linked

9 // list rooted at p
10 void munch_list(morsel* p) {
11 tbb::task_group g;
12 while(p) {
13 // Call munch on an item
14 g.run([=]{p−>munch();});
15 // Advance to the next item

16 p = p−>next;
17 }

18 // Wait for all tasks to complete
19 g.wait();
20 }

LISTING C.2

Using task_group.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 356 — #356

356 APPENDIX C TBB

convenient interfaces. Tasks can be spawned explicitly, or implicitly when all of their predecessor tasks
complete. See the discussion of Listing 8.13 on pages 236–237 for how to use it.

C.9.1 empty task
A tbb::empty_task is a task that does nothing. It is sometimes used for synchronization purposes,
as in Listing 8.13 on pages 236–237.

C.10 atomic
Atomic objects have update operations that appear to happen instantaneously, as a single indivisible
task. They are often used for lock-free synchronization. Atomic objects can be declared as instances
of the class template tbb::atomic<T>, where T is an integral, enum, or pointer type. Listing C.3
shows an example use case.

1 float array[N];
2 tbb::atomic<int> count;
3

4 void append(float value) {
5 array[count++] = value;
6 }

LISTING C.3

Example of using atomic<int> as a counter.

If m threads execute count++ at the same time, and its initial value is k, each thread will get a distinct
result value drawn from the set k,k+ 1, . . . ,k+m− 1, and afterward count will have value k+m.
This, is true even if the threads do this simultaneously. Thus, despite the lack of mutexes, the code
correctly appends items to the array.

In the example it is critical to use the value returned by count++ and not reread count, because
another thread might intervene and cause the reread value to be different than the result of count++.

Here is a description of the atomic operations supported by a variable x declared as a tbb::atomic
<X>:

• read, write: Reads and writes on x are atomic. This property is not always true of non-atomic types.
For example, on hardware with a natural word size of 32 bits, often reads and writes of 64-bit values
are not atomic, even if executed by a single instruction.

• fetch-and-add: The operations x+=k, x−=k, ++x, x++, −−x, and x−− have the usual meaning,
but atomically update x. The expression x.fetch_and_add(k) is equivalent to (x+=k)−k.

• exchange: The operation x.fetch_and_store(y) atomically performs x=y and returns the
previous value of x.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 357 — #357

C.10 atomic 357

1 // Node in a linked list
2 struct node {
3 float data;
4 node* next;
5 };
6

7 // Root of a linked list
8 tbb::atomic<node*> root;
9

10 // Atomically prepend node a to the list
11 void add_to_list(node* a) {
12 for(;;) {
13 // Take snapshot of root
14 node* b = root;
15 // Use the snapshot as link for a
16 a−>next = b;
17 // Update root with a if root is still equal to b
18 if(root.compare_and_swap(a,b)==b) break;
19 // Otherwise start over and try again
20 }

21 }

22

23 // Atomically grab pointer to the entire list and reset root to NULL
24 node* grab_list() {
25 return root.fetch_and_store((node*)NULL);
26 }

LISTING C.4

Using atomic operations on a list.

• compare-and-swap: The operation x.compare_and_swap(y,z) atomically performs if(x==
z) x=y, and returns the original value of x. The operation is said to succeed if the assignment
happens. Code can check for success by testing whether the return value equals z.

Listing C.4 shows uses of compare-and-swap and exchange to manipulate a linked list.
Doing more complicated list operations atomically is beyond the scope of this appendix.
In particular, implementing pop with a compare-and-swap loop scheme similar to the one in

add_to_list requires special care to avoid a hazard called the ABA problem [Mic04]. The code
shown has a benign form of the ABA problem, which happens when:

1. A thread executes node* b=a, and a was NULL.
2. Another threads executes add_to_list and grab_list.
3. The thread in step 1 executes root.compare_and_swap(a,b). The compare-and-swap sees that

a== NULL and succeeds, just as if no other thread intervened.

The point is that a successful compare-and-swap does not mean that no thread intervened. Here, there
is no harm done because as long as root==a−>next when the compare-and-swap succeeds, the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 358 — #358

358 APPENDIX C TBB

resulting list is correct. But, in other operations on linked structures, the effects can corrupt the structure
or even cause invalid memory operations on freed memory.

Compare-and-swap loops also require care if there might be heavy contention. If P threads exe-
cute a compare-and-swap loop to update a location, P− 1 threads will fail and have to try again.
Then P− 2 threads will fail, and so forth. The net burden is 2(P2) attempts and corresponding
memory traffic, which can saturate the memory interconnect. One way to avoid the problem is expo-
nential backoff —wait after each compare-and-swap fails, and double the wait after each subsequent
failure.

C.11 enumerable thread specific
An object e of type enumerable_thread_specific<T> has a separate instance (or “local view”)
of T for each thread that accesses it. The expression e.local() returns a reference to the local view for
the calling thread. Thus, multiple threads can operate on a enumerable_thread_specific without
locking. The expression e.combine(combine) returns a reduction over the local view. See Section 11.3
for more details on how to use enumerable_thread_specific.

C.12 NOTES ON C++11
Though TBB works fine with C++98, it is simpler to use with C++11. In particular, C++11 introduces
lambda expressions (Section D.2) and auto declarations (Section D.1) that simplify use of TBB and
other template libraries. Lambda expressions are already implemented in the latest versions of major
C++ compilers. We strongly recommend using them to teach, learn, and use TBB, because once you
get past the novelty, they make TBB code easier to write and easier to read.

Additionally, TBB implements most of some C++11 features related to threading, thus providing
an immediate migration path for taking advantage of these features even before they are implemented
by C++ compilers. This path is further simplified by the way that TBB’s injection of these features into
namespace std is optional.

These features are:

• std::mutex: A mutex with a superset of the C++11 interface. The superset includes TBB’s
interface for mutexes.

• std::lock guard: C++11 support for exception-safe scoped locking.
• std::thread: A way to create a thread and wait for it to complete. Sometimes threads really are

a better solution than tasks, particularly if the “work” must be preemptively scheduled or mostly
involves waiting for something to happen. Also, note that threads provide mandatory parallelism,
which may be important when interacting with the outside world or in a user interface. Tasks
provide optional parallelism, which is better for efficient computation.

• std::condition variable: A way to wait until the state protected by a mutex meets a condition.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 359 — #359

C.13 History 359

The parts of the C++11 interface not implemented in TBB are those that involve time intervals,
since those would have involved implementing the C++11 time facilities. However, TBB does have
equivalents to this functionality, based on TBB’s existing tick_count interface for time.

A condition variable solves the problem of letting a thread wait until a state protected by a mutex
meets a condition. It is used when threads need to wait for some other thread to update some state
protected by a mutex. The waiting thread(s) acquire the mutex, check the state, and decide whether to
wait. They wait on an associated condition variable. The wait member function atomically releases
the mutex and starts the wait. Another thread acquires mutex associated with the condition, modifies
the state protected by the mutex, and then signals one or all of the waiter(s) when it is done. Once the
mutex is released, the waiters reacquire the mutex and can recheck the state to see if they can proceed
or need to continue waiting.

Condition variables should be the method of choice to have a thread wait until a condition changes.
TBB makes this method of choice portable to more operating systems.

C.13 HISTORY
The development of TBB was done at Intel and with the involvement of one of the authors of this
book, Arch Robison. We can therefore recount the history of TBB from a personal perspective.

TBB was first available as a commercial library from Intel in the summer of 2006, not long after
Intel shipped its first dual-core processors. It provided a much needed comprehensive answer to the
question, “What must be fixed or added to C++ for parallel programming?” TBB’s key programming
abstractions for parallelism focused on logical specification of parallelism via algorithm templates. By
also including a task-stealing scheduler, a thread-aware memory allocator, portable mutexes, global
timestamps, and concurrent containers, TBB provided what was needed to program for parallelism in
C++. The first release was primarily focused on strict fork–join or loop-type data parallelism.

The success of Intel TBB would, however, have been limited if it had remained a proprietary
solution. Even during the release of version 1.0, Intel was in discussions with early customers on
the future direction of TBB in both features and licensing.

Watching and listening to early adopters, such as Autodesk Maya, highlighted that much of the
value of TBB was not only for data parallelism but also for more general parallelism using tasks,
pipelines, scalable memory allocation, and lower-level constructs like synchronization primitives. Intel
also received encouragement to make TBB portable by creating and supporting it via an open source
project.

This customer feedback and encouragement led, only a year later, to version 2.0, which included a
GPL v2 with the runtime exception version of both the source and binaries, as well as maintaining the
availability of non-GPL binaries. Intel’s customers had said that this would maximize adoption, and
the results have definitely shown they were right.

Intel increased the staffing on TBB, worked proactively to build a community to support the project,
and continued to innovate with new usage models and features over the next few years. We have been
amazed and humbled by the response of such users as Adobe Systems, Avid, Epic Games, Dream-
Works, and many others, along with that of other community members. TBB now has a very large
user community and has had contributions that have led to Intel TBB being ported to many operating

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 360 — #360

360 APPENDIX C TBB

systems, platforms, and processors. We appreciate Intel’s willingness to let us prove that an open source
project initiated by Intel, yet supporting non-x86 processors, not only made sense—but would be very
popular with developers. We’ve definitely proven that!

Through the involvement of customers and community, TBB has grown to be the most feature-rich
and comprehensive solution for parallel application development available today. It has also become
the most popular!

The TBB project was grown by a steady addition of ports to a wide variety of machines and operat-
ing systems and the addition of numerous new features that have added to the applicability and power
of TBB.

TBB was one of the inspirations for Microsoft’s Task Parallel Library (TPL) for .NET and
Microsoft’s Parallel Patterns Library (PPL) for C++. Intel and Microsoft have worked jointly to spec-
ify and implement a common subset of functionality shared by TBB and Microsoft’s Parallel Patterns
Library (PPL). In some cases, Intel and Microsoft have exchanged implementations and tests to ensure
compatibility. An appendix of The TBB Reference Manual summarizes the common subset.

The most recent version of TBB, version 4.0, adds a powerful capability for expressing parallelism
as data flowing through a graph. Use of TBB continues to grow, and the open source project enjoys
serious support from Intel and others.

The Intel Cilk Plus project complements TBB by supplying C interfaces, simpler syntax, better
opportunity for compiler optimization, and data parallel operations that lead to effective vectoriza-
tion. None of these would be possible without direct compiler support. Intel briefly considered calling
Cilk Plus simply “compiled TBB.” While this conveyed the desire to extend TBB for the objectives
mentioned, it proved complicated to explain the name so the name Cilk Plus was introduced. The full
interoperability between TBB and Cilk Plus increases the number of options for software developers
without adding complications. Like TBB, Intel has open sourced Cilk Plus to help encourage adoption
and contribution to the project. TBB and Cilk Plus are sister projects at Intel.

C.14 SUMMARY
Intel Threading Building Blocks is a widely used and highly portable template library that pro-
vides a comprehensive set of solutions to programs using tasks in C++. It also provides a set
of supporting functionality that can be used with or without the tasking infrastructure, such as
concurrency-safe STL-compatible data structures, memory allocation, and portable atomics. Although
we focus on tasks in this book due to their increased machine independence, safety, and scalabil-
ity over threads, TBB also implements a significant subset of the C++11 standard’s thread support,
including platform-independent mutexes and condition variables. Much more information is available
at http://threadingbuildingblocks.org.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 361 — #361

APPENDIX

C++11 D
This appendix explains new features in the C++ 2011 standard, informally called C++11, that are used
in this book. These features are available in several widely used C++ compilers. This is not intended
to be a full tutorial on these features, but should provide enough information to enable understanding
of the examples. It also explains suitable substitutes for use with C++ 1998 compilers.

D.1 DECLARING WITH auto
C++11 permits the auto keyword to be used in place of a type in some contexts where the type can be
deduced by the compiler. Here is an example:

std::vector<double> v;
...
for (auto i = v.begin(); i != v.end(); ++i) {

auto& x = *i;
...

}

The C++98 equivalent would be:

std::vector<double> v;
...
for (std::vector<double>::iterator i = v.begin(); i != v.end(); ++i) {

double& x = *i;
...

}

C++11 introduces a range-based for statement that can make this example even shorter, but it was not
widely available at the time of this writing.

D.2 LAMBDA EXPRESSIONS
Lambda expressions are a C++11 feature already supported by several compilers, such as Intel C++
12.0, GCC 4.5, and Microsoft Visual Studio 2010. Lambda expressions are important because they
greatly simplify using templates to implement control structures, including parallel ones. A key point

361

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 362 — #362

362 APPENDIX D C++11

1 #include <algorithm>
2

3 class comparator {
4 const float key;
5 public:
6 comparator(float key_) : key(key_) { }
7 bool operator()(const float& x) const {
8 return (x < key);
9 }

10 };
11

12 // Return number of keys in [first , last) that are less than given key
13 size_t count_less_than_key(
14 float* first,
15 float* last,
16 float key
17) {
18 return std::count_if(first, last, comparator(key));
19 }

LISTING D.1

Using a manually written functor comparator.

to understand is there is nothing magic about lambda expressions. A lambda expression is simply a
concise way to create a function object that could otherwise be written manually.

For example, consider the standard library template std::count(first,last,pred). It counts the
number of elements in the half-open interval [first,last) for which predicate pred holds. Listing D.1
shows an example that counts how many elements are less than a key of type float.

Class comparator is called a function object, or functor. It has three parts:

• A field for storing the key
• A constructor that captures the key
• A definition of what to do when the class is applied like a function

For example, the following fragment constructs a comparator that compares against 0 and applies it
as a function to −1.

comparator c(0); // Calls constructor for comparator

bool is_negative = c(−1); // Calls comparator::operator()

As the counting example shows, writing functor objects can be a lot of work. Lambda expressions
make the compiler do this work for you. Listing D.2 shows the counting example rewritten with a
lambda expression.

The explicit class definition has completely disappeared. The lambda expression builds the
equivalent for you.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 363 — #363

D.2 Lambda Expressions 363

1 // Return number of keys in [first , last) that are less than given key
2 size_t count_less_than_key(
3 float* first,
4 float* last,
5 float key
6) {
7 return std::count_if(first, last,
8 [=](const float& x) {
9 return x < key;

10 }

11);
12 }

LISTING D.2

Using a lambda expression lets Listing D.1 be rewritten more concisely.

The lambda expression here has three parts:

• A part [=] that describes how to capture local variables outside the lambda
• A parameter list (const float& x), which can be omitted if there are no parameters
• A definition {return key;}

For the sake of exposition, these parts will be discussed in reverse order, from simplest to most subtle.
The definition is a compound statement that becomes the body of the operator() that the com-

piler will generate. The argument list for a lambda expression becomes the argument list of the
operator(). A lambda expression can optionally specify a return type after the argument list. The
notation is −>return-type. Here is the lambda expression from the example, rewritten with an
explicit return type:

[=](const float& x)−>bool {return x < key;}

Often the return type does not need to be specified, because if omitted it is inferred by the following
rules:

• If the definition is a single statement return expr, the return type is the type of expr.
• Otherwise, the return type is void.

The capture part describes how to capture local variables. Global variables are never captured since
they can be globally referenced. A local variable can be captured by value or by reference. Capture
by value copies the variable into the function object. Capture by reference creates a reference in the
function object back to the local variable; the corresponding field in the function object becomes a
reference. A lambda expression can specify the kind of capture or none at all:

[=] capture by value

[&] capture by reference

[] capture nothing

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 364 — #364

364 APPENDIX D C++11

1 class assign {
2 float &x, &y;
3 float a, b;
4 public:
5 assign(float& x_, float& y_, float a_, float b_) :
6 x(x_), y(y_), a(a_), b(b_) {}
7 void operator()() {x=a; y=b;}
8 };
9

10 float foo(float& x, float b) {
11 float a=2;
12 float y;
13 auto op = assign(x,y,a,b);
14 op();
15 return y;
16 }

LISTING D.3

Mixed capture with handwritten functor. The code is equivalent to Listing D.4.

1 float foo(float& x, float b) {
2 float a=2;
3 float y;
4 auto op = [=,&x,&y] {x = a; y = b;};
5 op();
6 return y;
7 }

LISTING D.4

Mixed capture modes. The lambda expression captures x and y by reference and a and b by value.

The same lambda can capture different variables differently. The initial = or & specifies a default,
which can be overridden for specific variables. Here are some examples:

[=,&x,&y] capture by value, except that x and y are captured by reference

[&,x,y] capture by reference, except that x and y are captured by value

Listing D.4 shows mixed capture modes. The auto in the listing is more than a convenience—lambda
expressions have anonymous type and hence it is impossible to name that type in the declaration.
Listing D.4 shows that an equivalent functor can be written by hand.

For parallel programming, choosing the proper capture mode can be critical. Capture by value
incurs the cost of making a private copy of the captured object. Capture by reference incurs the cost of
an extra level of indirection when the object is accessed. In general, use capture by value if the object is
small and quick to copy and does not need to be modified. Doing so avoids the extra level of indirection
incurred for capture by reference and avoids potential for races. In particular, pointers are small objects.
They should be captured by value if they are not going to be modified, even if they point to objects that

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 365 — #365

D.3 std::move 365

are going to be modified. Otherwise, use capture by reference, and think carefully about whether there
could be races on the local variable being referenced. And, remember, a lambda expression is just a
convenience. The object it generates can be reasoned about like a handcrafted function object.

D.3 std::move
The C++11 notation y= std::move(x) is similar to y= x, except that it gives license to change
the value of x. For example, if x is an instance of std::vector, the move may set x to empty. The
advantage is that the license permits significant optimizations in some cases. For example, suppose y is
an empty vector and x is a vector with N elements. Assignment takes2(N) time, because each element
must be copied. Moving can be done in2(1) time, because it only needs to move internal pointers and
size information from x to y, and not copy the vector’s contents. In other words, moving is allowed to
transfer resources from x to y.

C++11 also adds a “move” counterpart of std::copy. Given iterators first, last, and result,
a call

std::move(first,last,result)

moves items in the range [first,last) to [result,result+(last-first)). Afterward, items
in the range [first,last) have unspecified values.

For old compilers that do not support std::move, you can use one of two replacements for y =
std::move(x):

• assignment: The assignment y= x is a valid replacement and, for C-like types, has performance
similar to that of y=std::move(x). However, for more complicated types, assignment may intro-
duce additional copying overhead that moving can avoid. For example, if y and x are instances of
std::vector, assignment copies the vector elements, whereas moving does not.

• swap: The expression swap(y,x) is a valid replacement and, for some object types such as STL
containers, may be faster than y=x. The reason is that STL containers often implement swap in a
way that swaps a few internal pointers instead of copying full state. However, swap introduces an
unnecessary update of x and thus may be slower for C-like types.

You can replace std::move(first,last,result) with std::copy(first,last,result),
possibly adding additional copying overhead that moving avoids.

The std::move feature is based on a language feature called rvalue references [HSK08].

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 367 — #367

APPENDIX

Glossary E
The specialized vocabulary used in this book is defined here. In some cases, where existing terminology
is ambiguous, we have given all meanings but note which meaning we primarily use in this book.

absolute speedup: Speedup in which the best parallel solution to a problem is compared to the best
serial solution to the same problem, even if they use different algorithms. See relative speedup.

access controls: Any mechanism to regulate access to something, but for parallel programs this term
generally applies to shared memory. The term is sometimes extended to I/O devices as well. For
parallel programming, the objective is generally to provide deterministic results by preventing an
object from being modified by multiple tasks simultaneously. Most often this is referred to as
mutual exclusion, which includes locks, mutexes, atomic operations, and transactional memory
models. This may also require some control on reading access to prevent viewing of an object in a
partially modified state.

actual parallelism: The number of physical workers available to execute a parallel program.
algorithmic skeleton: Synonym for pattern, specifically the subclass of patterns having to do with

algorithms.
algorithm strategy pattern: A class of patterns that emphasize the parallelization of the internal

workings of algorithms.
aliasing: Refers to when two distinct program identifiers or expressions refer to overlapping memory

locations. For example, if two pointers p and q point to the same location, then p[0] and q[0]
are said to alias each other. The potential for aliasing can severely restrict a compiler’s ability to
optimize a program, even when there is no actual aliasing.

Amdahl’s Law: Speedup is limited by the non-parallelizable serial portion of the work. Compare with
other attempts to characterize the bounds of parallelism: span complexity and Gustafson–Barsis’
Law. See Section 2.5.4.

application binary interface (ABI): A set of binary entry points corresponding to an application pro-
gramming interface. Fixed ABIs are useful to allow relinking to different implementations of a
library module.

application programming interface (API): An interface (set of function calls, operators, variables,
and/or classes) by which an application developer uses a module. The implementation details of
a module are ideally hidden from the application developer and the functionality is only defined
through the API.

arithmetic intensity: The ratio of computational (typically arithmetic) operations to communication,
where communication includes memory operations. Comparing this ratio for an algorithm with
the hardware’s ratio gives a hint of whether computation or communication will be the limiting
resource. See Section 10.3.

367

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 368 — #368

368 APPENDIX E Glossary

array operations: See vector operations.
array processors: See vector processor.
array-of-structures (AoS): A data layout for collections of heterogeneous data where all the data for

each element is stored in adjacent physical locations, even if the data are of different types. Compare
with structure-of-arrays.

associative cache: A cache organization where copies of data in main memory can be stored anywhere
in the cache.

associative operation: An operation ⊗ is associative if (a⊗ b)⊗ c= a⊗ (b⊗ c). Modular integer
arithmetic is associative. Real addition is associative, but floating-point addition is not. However,
sometimes the roundoff differences from reassociating floating-point addition are small enough to
be ignored, in which case floating-point operations can be considered approximately associative.

asymptotic complexity: Algebraic limit on behavior, including time and space but also ratios such as
speedup and efficiency. See big O notation, big Omega notation, and big Theta notation.

asymptotic efficiency: An asymptotic complexity measure for efficiency.
asymptotic speedup: An asymptotic complexity measure for speedup.
atomic operation: An operation guaranteed to appear as if it occurred indivisibly without interference

from other threads. For example, a processor might provide a memory increment operation. This
operation needs to read a value from memory, increment it, and write it back to memory. An atomic
increment guarantees that the final memory value is the same as would have occurred if no other
operations on that memory location were allowed to happen between the read and the write. See
Section C.10, and lock and mutual exclusion.

atomic scatter pattern: A non-deterministic data pattern in which multiple writers to a single storage
location result in exactly one value being written and all others being discarded. The value written
is chosen non-deterministically from the multiple sources. The only guarantee is that the resulting
value in the target memory locations will be one of the values being written by at least one of the
writers. See Section 6.2.

attached co-processor: A separate processor, often on an add-in card (such as a PCIe card), usually
with its own physical memory, which may or may not be in a separate address space from the host
processor. Often also known as an accelerator (although it may only accelerate specific workloads).

auto-vectorization: Automatically generating vectorized code from programs expressed using serial
programming languages.

autotuning: The process of automatically adjusting parameters in parameterized code in order to
achieve optimal performance.

available parallelism: See potential parallelism.
bandwidth: The rate at which information is transferred, either from memory or over a communica-

tions channel. This term is used when the process being measured can be given a frequency-domain
interpretation. When applied to computation, it can be seen as being equivalent to throughput.

barrier: When a computation is broken into phases, it is often necessary to ensure that all threads
complete all the work in one phase before any thread moves onto another phase. A barrier is a
form of synchronization that ensures this. Threads arriving at a barrier wait there until the last
thread arrives, then all threads continue. A barrier can be implemented using an atomic operation.
For example, all threads might try to increment a shared variable, then block if the value of that
variable does not equal the number of threads that need to synchronize at the barrier. The last thread
to arrive can then reset the barrier to zero and release all the blocked threads.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 369 — #369

APPENDIX E Glossary 369

big O notation: Complexity notation that denotes an upper bound; written as O(f (n)). Big O notation
is useful for classification of algorithm efficiency. In particular, big O notation is used to classify
algorithms based on how they respond to changes in their input set in terms of processing time or
other characteristics of interest.

For instance, a bubble sort routine may be described as taking O(n2) time because the time to
run a bubble sort routine is proportional to the square of the size of the data set to sort. Since big O
notation is about asymptotic growth, it may neglect significant constant factors. A pair of algorithms
with running times of n2

+ 100n+ 1019 and 5n2
+ n+ 2, respectively, are both generally described

as O(n2), despite significant differences in performance for most values of n.
For characterizing the suitability of an algorithm for parallel execution, big O analysis applies

to both the work complexity and the span complexity, but typically big Theta notation is preferred.
See Section 2.5.7.

big Omega notation: Complexity notation that denotes a lower bound; written as �(f (N)). See
Section 2.5.7.

big Theta notation: Complexity notation that denotes an upper and a lower bound; written as
2(f (N)). See Section 2.5.7.

binning: The process of subdividing labeled data in a collection into separate sub-collections, each
with a unique label. See bin pattern.

bin pattern: A generalized version of the split pattern, which is in turn a generalization of the pack
pattern, the bin pattern takes as input a collection of data and a collection of labels to go with every
element of that collection, and reorganizes the data into a category (a bin) for every unique label in
the input. The determinisitic version of this pattern is stable, in that it preserves the original order
of the input collection. One major application of this pattern is in radix sort. It can also be used to
implement the category reduction pattern. See Section 6.4.

BLAS: The Basic Linear Algebra Subprograms are routines that provide standard building blocks
for basic vector and matrix operations. The Level 1 BLAS perform scalar, vector, and vector–
vector operations; the Level 2 BLAS perform matrix–vector operations; and the Level 3 BLAS
perform matrix–matrix operations. Because the BLAS are efficient, portable, and widely available,
they are commonly used in the development of high-quality linear algebra software (LAPACK, for
example). A sophisticated and generic implementation of BLAS has been maintained for decades
at http://netlib.org/blas. Vendor-specific implementations of BLAS are common, includ-
ing the Intel Math Kernel Library (MKL), which is a highly efficient version of BLAS and other
standard routines for Intel architecture.

block: Block can be used in two senses: (1) a state in which a thread is unable to proceed while it waits
for some synchronization event, or (2) a region of memory. The second meaning is also used in the
sense of dividing a loop into a set of parallel tasks of a suitable granularity. To avoid confusion
in this book, the term tile is generally used for the second meaning, and likewise the term tiling is
preferred over “blocking.”

branch and bound pattern: A non-deterministic pattern designated to find one satisfactory answer
when many may be possible. Branch refers to using concurrency, and bound refers to limiting
the computation in some manner—for example, by using an upper bound (perhaps the best result
found so far). This pattern is often used to implement search, where it is highly effective. See
Section 3.7.1.

burdened span: The span augmented with overhead costs.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 370 — #370

370 APPENDIX E Glossary

by reference: A parameter to a function that acts exactly as if it were the original location passed to
the function.

by value: A parameter to a function that is a copy of the original value passed to the function.
cache: A part of memory system that stores copies of data temporarily in a fast memory so that future

uses for that data can be handled more quickly than if the request had to be fetched again from
a more distant storage. Caches are generally automatic and are designed to enhance programs
with temporal locality and/or spatial locality. Caching systems in modern computers are usually
multileveled.

cache coherence: A mechanism for keeping multiple copies of the same data in different caches
consistent.

cache conflict: When multiple locations in memory are mapped to the same location in a cache only a
subset of them can be kept in cache.

cache fusion: An optimization for a sequence of /vector operations/ where the vector operations are
broken into tiles and the entire sequence executed on each tile, so that the intermediate values can
be kept in cache.

cache line: The units in which data retrieved and held by a cache; in order to exploit spatial locality,
they are generally larger than a word. The general trend is for increasing cache line sizes, which are
generally large enough to hold at least two double-precision floating-point numbers, but unlikely
to hold more than eight on any current design. Larger cache lines allow for more efficient bulk
transfers from main memory but worsen certain issues, including false sharing which generally
degrades performance.

cache-oblivious programming: Refers to designing an algorithm to have good cache behavior with-
out knowing the size or design of the cache system in advance. This is usually accomplished by
using recursive patterns of data locality so that locality is present at all scales. See Section 8.8, as
well as [ABF05] and [Vit08].

cancellation: The ability to stop a running (or ready to run) task from another task. Used in the
speculative selection pattern discussed in Section 3.6.3.

category reduction pattern: A combination of search and segmented reduction, this is the form of
reduction used in the map–reduce programming model. Each input has a label, and reduction occurs
only between elements with the same label. The output is a set of reduction results for each unique
label. See Section 3.6.8.

circuit complexity: See span complexity.
closures: Objects that consist of a function definition and a copy of the environment (that is, the values

of all variables referenced by the function) in effect at the time and visible from the scope in which
the function was defined. See lambda function and Section 3.4.4.

cloud: A set of computers, typically maintained in a data center, that can be allocated dynamically and
accessed remotely. Unlike a cluster, cloud computers are typically managed by a third party and
may host multiple applications from different, unrelated users.

cluster: A set of computers with distributed memory communicating over a high-speed interconnect.
The individual computers are often called nodes.

codec: An abbreviation for coder–decoder, a module that implements a data compression and decom-
pression algorithm in order to reduce memory storage or communication bandwidth. For example,
codecs that compress to/from MPEG4 are common for video.

code fusion: An optimization for a sequence of vector operations that combines the operations into a
single elemental function.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 371 — #371

APPENDIX E Glossary 371

coherent masks: When the SPMD programming model is emulated on SIMD machines using
masking, the situation where the masks contain all 0’s or all 1’s.

collective operation: An operation, such as a reduction or a scan, that acts on a collection of data as
a whole. See Chapter 5.

collision: In the scatter pattern, or when using random writes from parallel tasks, a collision occurs
when two items try to write to the same location. The result is typically non-deterministic since it
depends on the timing of the writes. In the worst case, a collision results in garbage being written
to the location if the writes are not atomic and are not protected with locks. See Sections 3.5.5
and 6.2.

combiner operation: The (ideally) associative and (possibly) commutative operation used in the
definition of collective operations such as reduction and scan. See Chapter 5.

communication: Any exchange of data or synchronization between software tasks or threads. Under-
standing that communication costs are often a limiting factor in scaling is a critical concept for
parallel programming.

communication avoiding algorithm: An algorithm that avoids communication, even if it results in
additional or redundant computation.

commutative operation: A commutative operation⊕ satisfies the equation a⊕ b= b⊕ a for all a and
b in its domain. Some techniques for vectorizing reductions require commutativity.

composability: The ability to use two components with each other. Can refer to system features,
programming models, or software components. See Section 1.5.4.

concurrent: Logically happening simultaneously. Two tasks that are both logically active at some
point in time are considered to be concurrent. Contrast with parallel.

continuation: The state necessary to continue a program from a certain logical location in that pro-
gram. A well-known example is the statement following a subroutine call, which will be where
a program continues after a subroutine finishes (returns). The continuation is more than just the
location; it also includes the state of data, variable declarations, and so forth at that point.

continuation passing style: A style of programming in which the continuations of operations are
explicitly created and managed.

control dependency: A dependency between two tasks where whether or not a task executes depends
on the result computed by another task.

convergent memory access: When memory accesses in adjacent SIMD lanes access adjacent memory
locations.

cooperative scheduling: A thread scheduling system that allows thread to switch tasks only at
predictable switch points.

core: A separate subprocessor on a multicore processor. A core should be able to support (at least one)
separate and divergent flow of control from other cores on the same processor. Note that there is
some inconsistency in the use of this term. For example, some graphic processor vendors use the
term as well for SIMD lanes supporting fibers. However, the separate flows of control in fibers
are simulated with masking on these devices, so there is a performance penalty for divergence.
We will restrict the use of the term core to the case where control flow divergence can be done
without penalty.

critical path: The longest chain of tasks ordered by dependencies in a program.
DAG: See directed acyclic graph.
data dependency: A dependency between two tasks where one task requires as input data the output

of another task.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 372 — #372

372 APPENDIX E Glossary

data locality: See locality.
data parallelism: An attempt to an approach to parallelism that is more oriented around data rather

than tasks. However, in reality, successful strategies in parallel algorithm development tend to focus
on exploiting the parallelism in data, because data decomposition (generating tasks for different
units of data) scales, but functional decomposition (generation of hetereogeneous tasks for different
functions) does not. See Amdahl’s Law, Gustafson–Barsis’ Law, and Section 2.2.

deadlock: A programming error that occurs when at least two tasks wait for each other and each
will not resume until the other task proceeds. This happens easily when code requires locking
multiple mutexes; for example, each task can be holding a mutex required by the other task.
See Section 2.6.3.

dependencies: A relationship among tasks that results in an ordering constraint. See data dependency
and control dependency.

depth: See span complexity.
deque: A double-ended queue.
design pattern: A general term for pattern that includes not only algorithmic strategy patterns but

also patterns related to overall code organization.
deterministic: A deterministic algorithm is an algorithm that behaves predictably. Given a particular

input, a deterministic algorithm will always produce the same output. The definition of what is
the “same” may be important due to limited precision in mathematical operations and the likeli-
hood that optimizations including parallelization will rearrange the order of operations. These are
often referred to as “rounding” differences, which result when the order of mathematical operations
to compute answers differs between the original program and the final concurrent program. Con-
currency is not the only factor that can lead to non-deterministic algorithms but in practice it is
often the cause. Use of programming models with sequential semantics and eliminating data races
with proper access controls will generally eliminate non-determinism other than the “rounding”
differences.

directed acyclic graph: A graph that defines a partial order so that nodes can be sorted into a linear
sequence with references only going in one direction. A directed acyclic graph has, as its name
suggests, directed edges and no cycles.

direct memory access (DMA): The ability of one processing unit to access another processing unit’s
memory without the involvement of the other processing unit.

direct-mapped cache: A cache in which every location in memory can be stored in only one location
in the cache, typically using a modular function of the address.

distributed memory: Memory which is located in multiple physical locations. Accessing data from
more remote locations typically has higher latency and possibly lower bandwidth than accessing
local memory.

distributed memory: Memory that is physically located in separate computers. An indirect interface,
such as message passing, is required to access memory on remote computers, while local memory
can be accessed directly. Distributed memory is typically supported by clusters, which, for purposes
of this definition, we are considering to be a collection of computers. Since the memory on attached
co-processors also cannot typically be addressed directly from the host, it can be considered, for
functional purposes, to be a form of distributed memory.

divergent memory access: When memory accesses in adjacent SIMD lanes access non-adjacent
memory locations. See convergent memory access.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 373 — #373

APPENDIX E Glossary 373

divide-and-conquer pattern: Recursive decomposition of a problem. Can often be parallelized with
the fork–join parallel pattern. See Section 8.1.

domain-specific language (DSL): A language with specialized features suitable for a specific appli-
cation domain, along with (typically) some restrictions to make optimization for that domain easier.
For instance, an image processing language might support direct specification of the stencil pattern
but restrict the use of general pointers. Domain-specific languages are often embedded languages,
in which case they are called embedded domain-specific languages, or EDSLs.

dwarf: A workload is which typical of some class of workloads. Sometimes used as a synonym for
pattern.

efficiency: Efficiency measures the return on investment in using additional hardware to operate in
parallel. See Section 2.5.2.

elemental function: A function used in a map pattern. An elemental function syntactically is defined
as acting on single item inputs, but in fact is applied in parallel to all the elements of a collection.
An elemental function can be vectorized by replicating the computation it specifies across multiple
SIMD lanes. See Sections 4.1 and B.10.

embarrassing parallelism: Refers to an algorithm that can be decomposed into a large number
of independent tasks with little or no synchronization or communication required. See map
pattern.

embedded language: A programming system whose syntax is supported using another language; for
example, ArBB supports an embedded interface in C++. The computations specified using this
interface are not, however, performed by C++. Instead, ArBB supports a set of types and opera-
tions in C++. Sequences of these operations can be recorded by ArBB and are then dynamically
recompiled to machine language. See Section B.10.

expand pattern: A pattern in which each element of a map pattern can output zero or more data
elements, which are then assembled into a single (possibly segmented) array. Related to the pack
pattern. See Sections 3.6.7 and 6.4.

false sharing: Two separate tasks in two separate cores may write to separate locations in memory, but
if those memory locations happened to be allocated in the same cache line, the cache coherence
hardware will attempt to keep the cache lines coherent, resulting in extra interprocessor com-
munication and reduced performance, even though the tasks are not actually sharing data. See
Section 2.4.2.

fiber: A very lightweight unit of parallelism that (conceptually) has its own flow of control but is
mapped onto a single lane of a SIMD processor. Divergent control flow between fibers on a sin-
gle SIMD processor is simulated by masking updates to registers and memory. See Section 2.3.
A masked implementation has implications for performance. In particular, divergent control flow
reduces lane utilization. There may also be limitations on control flow; for example, GOTO may
not be supported, only nested control flow. Note that the term fiber is not universally accepted. In
particular, on GPUs, fibers are often called threads and what we call threads are called work groups
in OpenCL.

Fibonacci numbers: The Fibonacci numbers are defined by linear recurrence relationship and suffer
from overuse in computer science as examples of recursion as a result. Fibonacci numbers are
defined as F(0)= 0 and F(1)= 1 plus the relationship defined by F(N)= F(N− 1)+F(N− 2).

fine-grain locking: Locks that are used to protect parts of a larger data structure from race conditions.
Such locks avoid locking the entirety of a large data structure during parallel accesses.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 374 — #374

374 APPENDIX E Glossary

fine scale: A level of parallelism with very small units of parallel work. Reduction of overhead is very
important for fine-scale parallelism to be effective, since otherwise the overhead will dominate the
computation.

Flynn’s characterization: A classic categorization of parallel processors by Flynn [Fly72] based on
whether they have multiple flows of control or multiple streams of data. See Section 2.4.3.

fold: A collective operation in which every output is a function of all previous outputs and all inputs
up to the current output point. A fold is based on a successor function that computes a new output
value and a new state for the fold for each new input value. A scan is a special, parallelizable case
of a fold where the successor function is associative.

fork: The creation of a new thread or task. The original thread or task continues in parallel with the
forked thread or task. See spawn.

fork–join pattern: A pattern of computation in which new (potential) parallel flows of control are
created/split with forks and terminated/merged with joins. See Sections 3.3.1 and 8.1.

fork point: A point in the code where a fork takes place.
fully associative cache: See associative cache.
functional decomposition: An approach to parallelization of existing serial code where modules are

run on different threads. This approach does not give more than a constant factor of speedup at best
since the number of modules in a program is fixed.

functional unit: A hardware processing element that can do a simple operation, such as a single
arithmetic operation.

functor: A class which supports a function-call interface. Unlike functions in C and C++ however,
functors can also hold state and can support additional interfaces to modify that state. See lambda
functions.

fusion: An optimization in which two or more things with similar forms are combined. See loop fusion,
cache fusion, and code fusion.

future: An approach to asynchronous computing in which a computation is specified but does not
necessarily begin immediately. Instead, construction of a future returns an object which can be
used to query the status of the computation or wait for its completion.

future-proofed: A computer program written in a manner so it will survive future computer architec-
ture changes without significant changes to the program itself being necessary. Generally, the more
abstract a programming method is, the more future-proof that program is. Lower-level program-
ming methods that in some way mirror computer architectural details will be less able to survive
the future without change. Writing in an abstract, more future-proof fashion may involve tradeoffs
in efficiency, however.

gather pattern: A set of parallel random reads from memory. A gather takes a collection of addresses
and an input collection and returns a collection of data drawn from the input collection at the given
locations. Gathers are equivalent to random reads inside a map pattern. See Sections 3.5.4 and 6.1.

geometric decomposition pattern: A pattern that decomposes the computational domain for an algo-
rithm into a set of possibly overlapping subdomains. A special case is the partition pattern, which
is when the subdomains do not overlap. See Sections 3.5.3 and 6.6.

GPU: A graphics processing unit is an attached graphics processor originally specialized for graphics
computations. GPUs are able to support arbitrary computation, but they are specialized for mas-
sively parallel, fine-grained computations. They typically use multithreading, hyperthreading, and
fibers and make extensive use of latency hiding. They are typically able to maintain the state for
many more threads in memory than CPUs, but each thread can have less total state.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 375 — #375

APPENDIX E Glossary 375

grain: A unit of work to be run serially. See granularity.
grain size: The amount of work in a grain.
granularity: The amount of decomposition applied to the parallelization of an algorithm, and the

grain size of that decomposition. If the granularity is too coarse, there are not enough parallel tasks
to effectively make use of all parallel hardware units and hide latency. If the granularity is too fine,
there are too many parallel tasks and overhead may dominate the computation.

graphics accelerators: A processor specialized for graphics workloads, usually in support of real-time
graphics APIs such as Direct3D and OpenGL. See GPU.

graph rewriting: A computational pattern where nodes of a graph are matched against templates and
substitutions made with other subgraphs. When applied to directed acyclic graphs (trees with shar-
ing), this is known as term graph rewriting and is equivalent to the lambda calculus, except that it
also explicitly represents sharing of memory. See Section 3.6.9.

greedy scheduling: A scheduling strategy in which no worker idles if there is work to be done.
grid: A distributed set of computers that can be allocated dynamically and accessed remotely. A grid is

distinguished from a cloud in that a grid may be supported by multiple organizations and is usually
more heterogeneous and physically distributed.

Gustafson–Barsis’ Law: A different view on Amdahl’s Law that factors in the fact that as problem
sizes grow the serial portion of computations tend to shrink as a percentage of the total work to
be done. Compare with other attempts to characterize the bounds of parallelism, such as Amdahl’s
Law and span complexity. See Section 2.5.5.

halo: In the implementation of the stencil pattern on distributed memory a set of elements surrounding
a partition that are replicated on different workers to allow each portion of the partition to be
computed in parallel.

hardware thread: A hardware implementation of a task with a separate flow of control. Multiple
hardware threads can be implemented using multiple cores, or they can run concurrently or simul-
taneously on one core in order to hide latency using methods such as hyperthreading of a processor
core. See Sections 1.2 and 2.5.9.

heap allocation: An allocation mechanism that supports unstructured memory allocations of different
sizes and at arbitrary times in the execution of a program. Compare with stack allocation.

heterogeneous computer: A computer which supports multiple processors each with special-
ized capabilities or performance characteristics.

holders: A form of /hyperobject/ useful for managing temporary task-local storage.
host processor: The main control processor in a system, as opposed to any graphics processors or

co-processors. The host processor is responsible for booting and running the operating system.
hyperobjects: A mechanism in Cilk Plus to support operations such as reduction that combine multiple

objects. See Section B.7. For examples using hyperobjects, see Sections 5.3.5, 8.10, and 11.2.1.
hyperthreading: Multithreading on a single processor core. With hyperthreading, also called simul-

taneous multithreading, multiple hardware threads may run on one core and share resources, but
some benefit is still obtained from parallelism or concurrency. For example, the processor may
draw instructions from multiple hyperthreads to fill superscalar instruction slots, or the processor
may switch between multiple hyperthreads in order to hide memory access latency. Typically each
hyperthread has, at least, its own register file and program counter, so that switching between
hyperthreads is relatively lightweight.

implementation pattern: A pattern that is specific to efficient implementation (usually of some other
pattern) using specific hardware mechanisms.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 376 — #376

376 APPENDIX E Glossary

instance: In a map pattern one invocation of an elemental function on one element of the map.
instruction-level parallelism (ILP) wall: The limits to automatic parallelism given by the amount of

parallelism naturally available at the instruction level in serial programs.
intrinsics: Intrinsics appear to be functions in a language but are supported by the compiler directly. In

the case of SSE or vector intrinsics, the intrinsic function may map directly to a small number, often
one, of machine instructions which the compiler inserts without the overhead of a real function call.
For a discussion of SSE intrinsics, see Section 5.3.3.

irregular parallelism: parallelism with disimiliar tasks with unpredictable dependencies.
iteration pattern: A serial pattern in which the same sequence of instructions is executed repeatedly

and in sequence.
join: When multiple flows of control meet and a single flow continues onwards. Not to be confused

with a barrier, in which all the incoming flows continue onwards.
join point: A point in the code where a join takes place.
kernel: A general term for a small section of code that (1) executes a large amount of computation

relative to other parts of the program (also known as a hotspot), and/or (2) is the key code sequence
for an algorithm.

lambda expression: an expression that returns a lambda function.
lambda function: A lambda function, for programmers, is an anonymous function. Long a staple

of languages such as LISP, it was only recently supported for C++ per the C++11 standard. A
lambda function enables a fragment of code to be passed to another function without having to
write a separate named function or functor. This ability is particularly handy for using TBB. See
Section D.2.

lane: An element of a SIMD register file and associated functional unit, considered as a unit of hardware
for performing parallel computation. SIMD instructions execute computations across multiple lanes.

latency: The time it takes to complete a task—that is, the time between when the task begins and when
it ends. Latency has units of time. The scale can be anywhere from nanoseconds to days. Lower
latency is better in general. See Section 2.5.1.

latency hiding: Schedules computations on a processing element while other tasks using that core are
waiting for long-latency operations to complete, such as memory or disk transfers. The latency is
not actually hidden, since each task still takes the same time to complete, but more tasks can be
completed in a given time since resources are shared more efficiently, so throughput is improved.
See Section 2.5.9.

latent parallelism: See potential parallelism.
linear speedup: Speedup in which the performance improves directly proportional to the physical

processing resources available. Considered to be optimal.
Little’s formula: A formula relating parallelism, concurrency, and latency.
livelock: A situation in which multiple workers are active, but are not doing useful work and are not

making forward progress. See deadlock.
load balancing: Distributing work across resources so that no resource idles while there is work to be

done.
load imbalance: A situation where uneven sizes of tasks assigned to workers results in some workers

finishing early and then idling while waiting for other workers to complete larger tasks. See load
balancing.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 377 — #377

APPENDIX E Glossary 377

locality: Refers to either spatial locality or temporal locality. Maintaining a high degree of locality of
reference is a key to scaling. See Section 2.6.5.

lock: A mechanism for implementing mutual exclusion. Before entering a mutual exclusion region, a
thread must first try to acquire a lock on that region. If the lock has already been acquired by another
thread, the current thread must block, which it may do by either suspending operation or spinning.
When the lock is released, then the current thread is free to acquire it. Locks can be implemented
using atomic operations, which are themselves a form of mutual exclusion on basic operations,
implemented in hardware. See Section 2.6.2.

loop-carried dependencies: A dependency that exists between multipleiterations of an iteration
pattern.

loop fusion: An optimization where two loops with the compatible indexing executed in sequence can
be combined into a single loop.

mandatory concurrency: See mandatory parallelism.
mandatory parallelism: Parallelism that is semantically required for program correctness. See

Section 9.6.
many-core processor: A multicore processor with so many cores that in practice we do not enumerate

them; there are just “lots.” The term has been generally used with processors with 32 or more cores,
but there is no precise definition.

map pattern: Replicates a function that is applied to all elements of a collection, producing a new
collection with the same shape as the input. The function being replicated is called an elemental
function since it applies to the elements of an actual collection of input data. See Sections 3.3.2
and Chapter 4.

masking: A technique for emulating SPMD control flow on SIMD machines in which elements that
are not active are prohibited from updating externally visible state.

megahertz era: A historical period of time during which processors doubled clock rates at a rate sim-
ilar to the doubling of transistors in a design, roughly every 2 years. Such rapid rise in processor
clock speeds ceased at just under 4 GHz (4,000 megahertz) in 2004. Designs shifted toward adding
more cores, marking the shift to the multicore era.

member function: A function associated with an object and which can access instance-specific object
state.

memory fences: A synchronization mechanism which can ensure that memory operations before the
fence are completed and are visible before memory operations after the fence.

memory hierarchy: See memory subsystem.
memory subsystem: The portion of a computer system responsible for moving code and data between

the main system memory and the computational units. The memory subsystem may include addi-
tional connections to I/O devices including graphics cards, disk drives, and network interfaces. A
modern memory subsystem will generally have many levels, including some levels of caching both
on and off the processor die. Coherent memory subsystems, which are used in most computers,
provide for a single view of the contents of the main system memory despite temporary copies in
caches and concurrency in the system. See Section 2.4.1.

memory wall: A limit to parallel scalability given by the fact that memory (and more gener-
ally, communication) bandwidth and in particular latency are not scaling at the same rate as
computation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 378 — #378

378 APPENDIX E Glossary

merge scatter pattern: In a merge scatter, results that collide while implementing a scatter pattern
are combined with an associative operator. The operator needs to be associative so the answer is
the same regardless of the order in which elements are combined. We might also want to use this
operator to combine scattered values with the previous contents of the target array. The merge
scatter pattern can be used to implement histograms, for example. See Section 6.2.

metaprogramming: The use of one program to generate or manipulate another, or itself. See also
template metaprogramming.

method: See member function.
MIC: The Intel Many Integrated Core architecture is designed for highly parallel workloads. The archi-

tecture emphasizes higher core counts on a single die, and simpler more efficient cores, than on a
traditional CPU. A prototype with up to 32 cores and based on 45-nm process technology, known
as Knight Ferry, was made available, but not sold, by Intel in 2010 and 2011. A product built on
22-nm process technology with more than 50 cores is expected in late 2012 or sometime in 2013.

MIMD: Multiple Instruction, Multiple Data, one of Flynn’s classes of computer that supports multiple
threads of control, each with its own data access. See SIMD and Section 2.4.3.

monoid: An associative operation that has an identity.
Moore’s Law: Describes a long-term trend that the number of transistors that can be incorporated

inexpensively on an integrated circuit chip doubles approximately every 2 years. It is named for
Intel co-founder Gordon Moore, who described the trend in his 1965 paper in Electronics Magazine.
This forecast of the pace of silicon technology has essentially described the basic business model
for the semiconductor industry as well as being a driving force of technological and social change
since the late 20th century.

motif: Sometimes used as a synonym for pattern.
multicore: A processor with multiple subprocessors, each subprocessor (known as a core) supporting

at least one hardware thread.
multicore era: Time after which processor designs shifted away from rapidly rising clock rates and

shifted toward adding more cores. This era began roughly in 2005.
multiple-processor systems: A system with two or more processors implemented on separate physical

dies.
mutex: Short for /mutual exclusion/, and also used as a synonym for lock.
mutual exclusion: A mechanism for protecting a set of data values so that while they are manipu-

lated by one parallel thread they cannot be manipulated by another. See lock and transactional
memory.

nesting pattern: Refers to the ability to hierarchically compose other patterns. The nesting pattern
simply means that all “tasks” in the pattern diagrams within this book are actually locations within
which general code can be inserted. This code can in turn be composed of other patterns.

Network interface controller (NIC): A specialized communication processor.
node (in a cluster): A shared memory computer, often on a single board with multiple processors, that

is connected with other nodes to form a cluster computer or supercomputer.
non-deterministic: Exhibiting a lack of deterministic behavior, so results can vary from run to run of

an algorithm. See more in the definition for deterministic.
non-uniform memory access (NUMA): A memory system in which certain banks of memory take

longer to access than others, even though all the memory uses a single address space. See also
distributed memory.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 379 — #379

APPENDIX E Glossary 379

objects: Objects are a language construct that associate data with the code to act on and manage that
data. Multiple functions may be associated with an object and these functions are called the methods
or member functions of that object. Objects are considered to be members of a class of objects,
and classes can be arranged in a hierarchy in which subclasses inherit and extend the features of
superclasses. The state of an object may or may not be directly accessible; in many cases, access to
an object’s state may only be permitted through its methods. See Section 3.4.5.

offload: Placing part of a computation on an attached device such as a GPU or co-processor.
online: An algorithm which can begin execution before all input data is read.
OpenCL: Open Computing Language, initiated by Apple Corporation, is now a standard defined by

the Khronos group for graphics processors and attached co-processors. However, OpenCL can also
be used to specify parallel and vectorized computations on multicore host processors.

optional parallelism: Parallelism that is specified by a programming model but is not semantically
necessary. Antonym is mandatory parallelism.

over-decomposition: A parallel programming style where many more tasks are specified than there are
physical workers for executing it. This can be beneficial for load balancing particularly in systems
that support optional parallelism.

over-subscription: More threads run on a system than it has physical workers, resulting in exces-
sive overhead for switching between multiple threads or exceeding the number of threads that can
be supported by the operating system. This can be avoided by using a programming model with
optional parallelism.

pack pattern: A data management pattern where certain elements of a collection are discarded and
the remaining elements are placed in a contiguous sequence, maintaining the order of the original
input. Related to the expand pattern.

page: The granularity at which virtual to physical address mapping is done. Within a page, the mapping
of virtual to physical memory addresses is continuous. See Section 2.4.1.

parallel: Physically happening simultaneously. Two tasks that are both actually doing work at some
point in time are considered to be operating in parallel. When a distinction is made between con-
current and parallel, the key is whether work can ever be done simultaneously. Multiplexing of
a single processor core, by multitasking operating systems, has allowed concurrency for decades
even when simultaneous execution was impossible because there was only one processing core.

parallel pattern: Patterns arising specifically in the specification of parallel applications. Examples
of parallel patterns include the map pattern, the reduction pattern, the fork–join pattern, and the
partition pattern.

parallel slack: The amount of “extra” parallelism available above the minimum necessary to use the
parallel hardware resources. See Sections 2.4.2 and 2.5.6.

parallelism: Doing more than one thing at a time. Attempts to classify types of parallelism are
numerous; read more about classifications of parallelism in Sections 2.2 and 2.3.

parallelization: The act of transforming code to enable simultaneous activities. The parallelization of
a program allows at least parts of it to execute in parallel.

partition pattern: A pattern that decomposes the computational domain for an algorithm into a set of
non-overlapping subdomains called tiles or blocks (although tile is the term preferred in this book).
See the geometric decomposition pattern, which is similar but allows overlap between subdomains.
The partition pattern is a special case of the geometric decomposition pattern that does not allow
overlap. See Section 6.6.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 380 — #380

380 APPENDIX E Glossary

pattern: A recurring combination of data and task management, separate from any specific algo-
rithm. Patterns are universal in that they apply to and can be used in any programming system.
Patterns have also been called dwarfs, motifs, and algorithmic skeletons. Patterns are not nec-
essarily tied to any particular hardware architecture or programming language or system. Exam-
ples of patterns include the sequence pattern and the object pattern. See parallel pattern and
Chapter 3.

PCIe bus: A peripheral bus supporting relatively high bandwidth and DMA, often used for attaching
specialized co-processors such as GPUs and NICs.

permutation scatter pattern: A form of the scatter pattern in which multiple writes to a single stor-
age location are illegal. This form of scatter is deterministic, but can only be considered safe if
collisions are checked for. See Section 6.2.

pipeline pattern: A set of data processing elements connected in series, generally so that the output
of one element is the input of the next one. The elements of a pipeline are often executed con-
currently. Describing many algorithms, including many signal processing problems, as pipelines is
generally quite natural and lends itself to parallel execution. However, in order to scale beyond the
number of pipeline stages, it is necessary to exploit parallelism within a single pipeline stage. See
Sections 3.5.2, 9.2, 12.2, and C.6.

potential parallelism: At a given point of time, the number of parallel tasks that could be used by a
parallel implementation of an algorithm, given sufficient hardware resources. Additional hardware
resources above the potential parallelism in an algorithm are not usable. If the potential paral-
lelism is larger than the physical parallelism, then the tasks will need to share physical resources by
serialization. Also known as latent parallelism and available parallelism.

power wall: A limit to the practical clock rate of serial processors given by thermal dissipation and the
non-linear relationship between power and switching speed.

pragma: A form of program markup used to give a hint to a compiler but not change the semantics of
a program. Also called a “compiler directive.”

precision: The detail in which a quantity is expressed. Lack of precision is the source of rounding
errors in computation. The finite number of bits used to store a number requires some approximation
of the true value. Errors accumulate when multiple computations are made to the data in operations
such as reductions. Precision is measured in terms of the number of digits that contain meaningful
data, known as significant digits. Since precision is most often considered in reference to floating-
point numbers, significant digits in computer science have often been measured in bits (binary
digits) because most floating-point arithmetic is done in radix-2. With the advent of IEEE-754-
2008, radix-10 arithmetic is once again popular and precision of such data would be expressed in
terms of decimal digits. See Section 5.1.4.

preemptive scheduling: A scheduling system that allows a thread to switch tasks at any time.
priority scatter pattern: A deterministic form of the scatter pattern in which an attempt to write

multiple values in parallel to a single storage location results in one value (and only one) value
being stored based on a priority function, while all other values are discarded. The unique priority
given to each parallel write in a priority scatter can be assigned in such a way that the result is
deterministic and equivalent to a serial implementation. See Section 6.2.

process: A application-level unit of parallel work. A process has its own thread of control and is
managed by the operating system. Usually, unless special provisions are made for shared memory,
a process cannot access the memory of another process.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 381 — #381

APPENDIX E Glossary 381

producer–consumer: A relationship in which the producer creates data that is passed to the consumer
to utilize or further process. If data is not consumed exactly when it is produced, it must be buffered.
Buffering introduces challenges of stalling the producer when the buffer is full, and stalling the
consumer when the buffer is empty.

pure function: A function whose output depends only on its input, and that does not modify any other
system state.

race condition: Non-deterministic behavior in a parallel program that is generally a programming
error. A race condition occurs when concurrent tasks perform operations on the same memory
location without proper synchronization and one of the memory operations is a write. Code with a
race may operate correctly sometimes and fail other times. See Section 2.6.1.

recurrence pattern: A sequence defined by a recursive equation. In a recursive equation, one or more
initial terms are given and each further term of the sequence is defined as a function of the preceding
terms. Implementing recurrences with recursion is often inefficient since it tends to recompute ele-
ments of the recurrence unnecessarily. Recurrences also occur in loops with dependencies between
iterations. In the case of a single loop, if the dependence is associative, it can be parallelized with
the scan pattern. If the dependence is inside a multidimensional loop nest, the entire nest can
always be parallelized over n− 1 dimensions using a hyperplane sweep, and it can also often be
parallelized with the fork–join pattern. See Sections 3.3.6, 7.5, and 8.12.

recursion: The act of a function being re-entered while an instance of the function is still active in the
same thread of execution. In the simplest and most common case, a function directly calls itself,
although recursion can also occur between multiple functions. Recursion is supported by storing the
state for the continuations of partially completed functions in dynamically allocated memory, such
as on a stack, although if higher-order functions are supported a more complex memory allocation
scheme may be required. Bounding the depth of recursion can be important to prevent excessive
use of memory.

reduce: Apply operation to merge a collection of values to a single value. An example is summing a
sequence of values. See reduction pattern.

reducers: Hyperobjects that can implement reduce operations.
reduction pattern: The most basic collective pattern, a reduction combines all the elements in a col-

lection into a single element using pairwise applications of a combiner operation. In order to
allow parallelization, the combiner operation should be associative. In order to allow for efficient
vectorization, it is useful if the combiner operation is also commutative. Many useful reduction
operations, such as maximum and (modular integer) addition, are both associative and commuta-
tive. Unfortunately, floating-point addition and multiplication are not, which can lead to potential
non-determinism. See Section 5.1.

reduction variable: A variable that appears in a loop for combining the results of many different loop
iterations.

refactoring: Reorganizing code to make it better suited for some purpose, such as parallelization.
registers: Very fast but usually very limited on-core storage for intermediate results.
regular parallelism: A class of algorithms in which the tasks and data dependencies are arranged in a

regular and predictable pattern.
relative speedup: Speedup in which a parallel solution to a problem is compared to a serialization of

the same solution, that is, using the same algorithm. See absolute speedup.
relaxed sequential semantics: See sequential semantics for an explanation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 382 — #382

382 APPENDIX E Glossary

response time: The time between when a request is made and when a response is received.
rotate pattern: A special case of the shift pattern that handles boundary conditions by moving data

from the other side of the collection. See Section 6.1.2.
safety: A system property that automatically guards against certain classes of programmer errors, such

as race conditions.
saturation: Saturation arithmetic has maximum and minimum values that are utilized when compu-

tation would logically arrive at higher or lower values if unbounded numerical representations
were utilized. Saturation arithmetic is needed only because numerical representations on computer
systems are almost always limited in precision and range. In floating-point arithmetic, the con-
cept of positive and negative infinity as uniquely represented numbers in the floating-point format
is utilized and is the default in instances of saturation. In integer arithmetic, wrap-around arith-
metic is generally the default. Special instructions for saturation arithmetic are available in modern
instruction sets (such as MMX), often originally motivated by graphics where the desire to make
a graphical pixel brighter and brighter by increasing the value of a pixel was frustrated by a sud-
den dimming of the pixel due to wrap-around arithmetic. In an 8-bit unsigned number format, the
addition of 254 with 9 will result in an answer of 7 in wrap-around or 255 in saturation arith-
metic. Likewise, the subtraction of 11 from 7 would result in 252 in wrap-around vs. 0 in saturation
arithmetic. Note, however, that saturation arithmetic for signed numbers is not associative.

scalability: A measure of the increase in performance as a function of the availability of more hardware
to use in parallel. See Section 2.5.2.

scalable: An application is scalable if its performance increases when additional parallel hardware
resources are added. See scalability.

scalar promotion: When a scalar and a vector are combined using a vector operation, the scalar is
automatically treated as a vector with all elements set to the same value.

scan pattern: Pattern arising from a one-dimensional recurrence relationship in the definition of a
computation. This often arises as a loop-carried dependency where the computation of one iteration
is dependent on the results of a prior iteration. Such loops are, surprisingly, still parallelizable if the
dependency can be expressed as an associative operation. See Section 5.4.

scatter pattern: A set of input data and a set of indices is given, and each element of the input is
written at the given location. Scatter can be considered the inverse of the gather pattern. A collision
in output occurs if the set of indices maps multiple input data to the same location. There are at
least four ways to resolve such collisions: permutation scatter, atomic scatter, priority scatter, and
merge scatter. See Section 3.5.5.

search pattern: A pattern that finds data that meets some criteria within a collection of data. See
Section 3.6.5.

segmentation: A representation of a collection divided into non-uniform non-overlapping subdo-
mains. Operations such as reduction and scan can be generalized to operate over the segments
of a collection independently while still being perfectly load balanced. See Section 3.6.6.

selection pattern: A serial pattern in which one of two flows of control are chosen based on a Boolean
control expression.

semantics: What a programming language construct does, as opposed to how it does it (pragmatics)
or how it is expressed (syntax).

separating hyperplane: A plane that can be used to determine the sweep order for executing a
multidimensional recurrence in parallel.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 383 — #383

APPENDIX E Glossary 383

sequence pattern: The most fundamental serial pattern in which tasks are executed one after the other,
with each task completing before the next one starts. See Section 3.2.1.

sequential bottlenecks: See serial bottlenecks.
sequential consistency: Sequential consistency is a memory consistency model where every task in a

concurrent system sees all memory writes (updates) happen in the exact same order, and a task’s
own writes occur in the order that the task specified. See Section 2.6.1.

sequential semantics: Refers to when a (parallel) program can be executed using a single thread of
control as an ordinary sequential program without changing the semantics of the program. Paral-
lel programming with sequential semantics has many advantages over programming in a manner
that precludes serial execution and is therefore strongly encouraged. Such programs are consid-
ered easier to understand, easier to debug, more efficient on sequential machines, and better at
supporting nested parallelism. Sequential semantics casts parallelism as an accelerator and not
as mandatory for correctness. This means that one does not need a conceptual parallel model to
understand or execute a program with sequential semantics. Examples of mandatory parallelism
include producer–consumer relationships with bounded buffers (hence, the producer cannot nec-
essarily be completely executed before the consumer because the producer can become blocked)
and message passing (e.g., MPI) programs with cyclic message passing. Due to timing, precision,
and other sources of inexactness, the results of a sequential execution may differ from the concur-
rent invocation of the same program. Sequential semantics solely means that any such variation
is not due to the semantics of the program. The term “relaxed sequential semantics” is sometimes
used to explicitly acknowledge the variations possible due to non-semantic differences in serial vs.
concurrent executions. See Section 1.1 See serial semantics.

serial: Neither concurrent nor parallel.
serial bottlenecks: A region of an otherwise parallel program that runs serially.
serial consistency: A parallel program that produces the same result as a specific serial ordering of its

tasks.
serial elision: The serial elision of a Cilk Plus program is generated by erasing occurrences of the

cilk_spawn and cilk_sync keywords and replacing cilk_for with for. Cilk Plus is a faith-
ful extension of C/C++ in the sense that the serial elision of any Cilk Plus program is both a
serial C/C++ program and a semantically valid implementation of the Cilk Plus program. The term
elision arose from earlier versions of Cilk that lacked cilk_for, so eliding (omitting) the two
other keywords sufficed. The term “C elision” is sometimes used, too, harking back to when Cilk
was an extension of C but not C++. See Section B.4.

serial illusion: The apparent serial execution order of machine language instructions in a computer.
In fact, hardware is naturally parallel, and many low-level optimizations and high-performance
implementation techniques can reorder operations.

serial semantics: Same as sequential semantics.
serial traps: A serial trap is a programming construct that semantically requires serial execution for

proper results in general even though common cases may be overconstrained with regard to con-
currency by such semantics. The term “trap” acknowledges how such constructs can easily escape
attention as barriers to parallelism, in part because they are so common and were not intentionally
designed to preclude parallelism. For instance, for, in the C language, has semantics that dictate
the order of iterations by allowing an iteration to assume that all prior iterations have been exe-
cuted. Many loops do not rely upon side-effects of prior iterations and would be natural candidates

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 384 — #384

384 APPENDIX E Glossary

for parallel execution, but they require analysis in order for a system to determine that parallel exe-
cution would not violate the program semantics. Use of cilk_for, for instance, has no such serial
semantics and therefore is not a serial trap. See examples in Section 1.3.3.

serialization: Refers to when the tasks in a potentially parallel algorithm are executed in a specific
serial order, typically due to resource constraints. The opposite of parallelization.

set associative cache: A cache architecture in which a particular location in main memory can be
stored in a (small) number of different locations in cache.

shared address space: Even if units of parallel work do not share a physical memory, they may agree
on conventions that allow a single unified set of addresses to be used. For example, one range
of addresses could refer to memory on the host, while another range could refer to memory on a
specific co-processor. The use of unified addresses simplifies memory management.

shared memory: Refers to when two units of parallel work can access data in the same location. Nor-
mally doing this safely requires synchronization. The units of parallel work—processes, threads,
tasks, and fibers—can all share data this way, if the physical memory system allows it. However,
processes do not share memory by default and special calls to the operating system are required to
set it up.

shift pattern: A special case of the gather pattern that translates (that is, offsets the location of) data
in a collection. There are a few variants based on how boundary conditions are handled. The basic
pattern fills in a default value at boundaries, while the rotate pattern moves data from the other side
of the collection. See Section 6.1.2.

SIMD: Single Instruction, Multiple Data, one of Flynn’s classes of computer that supports a single
operation over multiple data elements. See MIMD and Section 2.4.3.

simultaneous multithreading: A technique that supports the execution of multiple threads on a sin-
gle core by drawing instructions from multiple threads and scheduling them in each superscalar
instruction slot.

SIMT: Single Instruction, Multiple Threads, a variation on Flynn’s characterizations that is really a
collection of multiple SIMD processors, with control flow emulated on SIMD machines using a
mechanism such as masking. See Section 2.4.3.

software thread: A software thread is a virtual hardware thread—in other words, a single flow of
execution in software intended to map one for one to a hardware thread. An operating system
typically enables many more software threads to exist than there are actual hardware threads by
mapping software threads to hardware threads as necessary. See Section 2.3.

space complexity: A complexity measure for the amount of memory used by an algorithm as a
function of problem size.

span: How long a program would take to execute on an idealized machine with an infinite number of
processors. The span of an algorithm can also be seen as the critical path in its task dependency
graph. See span complexity.

span complexity: Span complexity is an asymptotic measure of complexity based on the span. In the
analysis of parallel algorithms and in particular in order to predict their scalability, this measure
is as important as work complexity. Other synonyms for span complexity in the literature are step
complexity, depth, or circuit complexity. Compare with other attempts to characterize the bounds
of parallelism: Amdahl’s Law and Gustafson-Barsis’ Law. See Section 2.5.6.

spatial locality: Nearby when measured in terms of distance (in memory address). Compare with tem-
poral locality. Spatial locality refers to a program behavior where the use of one data element

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 385 — #385

APPENDIX E Glossary 385

indicates that data nearby, often the next data element, will probably be used soon. Algorithms
exhibiting good spatial locality in data usage can benefit from cache line structures and prefetching
hardware, both common components in modern computers.

spawn: Generically, the creation of a new task. In terms of Cilk Plus, cilk_spawn creates a spawn,
but the new task created is actually the continuation and not the call that is the target of the spawn
keyword. See fork.

spawning block: The function, try block, or cilk_for body that contains the spawn. A sync
(cilk_sync) waits only for spawns that have occurred in the same spawning block and have no
effect on spawns done by other tasks or threads, nor those done prior to entering the current spawn-
ing block. A sync is always done, if there have been spawns, when exiting the enclosing spawning
block.

speedup: Speedup is the ratio between the latency for solving a problem with one processing unit
versus the latency for solving the same problem with multiple processing units in parallel. See
Section 2.5.2.

split pattern: A generalized version of the pack pattern that takes an input collection and a set of
Boolean labels to go with every element of that collection. It reorganizes the data so all the elements
marked with false are at one end of the output collection (rather than discarding them as with the
pack pattern), and all the elements marked with true are at the other end of the collection. The
determinisitic version of this pattern is stable, in that it preserves the original order of the input
collection in each output partition. One major application of this pattern is in base-2 radix sort. The
bin pattern is a generalization to more than two categories. See Section 6.4.

SPMD (Single Program, Multiple Data): A programming system that runs a single function on mul-
tiple programming elements, but allows each instance of the function to follow different control
flow paths. See also SIMD, MIMD, and SIMT.

stencil pattern: A regular input data access pattern based on a set of fixed offsets relative to an output
position. The stencil is repeated for every output position in a grid. This pattern combines the map
pattern with a local gather over a fixed set of relative offsets and can optionally be implemented
using the shift pattern. Stencil operations are common in algorithms that deal with regular grids of
data, such as image processing. For example, convolution is an image processing operation where
the inputs from a stencil are combined linearly using a weighted sum. See Chapter 7.

step complexity: See span complexity.
strand: In Cilk Plus, a serially executed sequence of instructions that does not contain a spawn or sync

point. In the directed acyclic graph model of Section 2.5.2, a strand is a vertex with at most one
outgoing and at most one incoming edge. A cilk_spawn ends the current strand and starts two
new strands, one for the callee and one for the continuation of the caller. A cilk_sync ends one
or more strands and starts a new strand for the continuation after the join.

strangled scaling: A programming error in which the performance of parallel code is poor due to high
contention or overhead, so much so that it may underperform the non-parallel (serial) code. See
Section 2.6.4.

strip-mining: When implementing a stencil or map, an optimization that groups instances in a way
that avoids unnecessary and redundant memory accesses and aligns memory accesses with vector
lanes.

strong scalability: A form of scalability that measures how performance increases when using
additional workers but with a fixed problem size. See Amdahl’s Law and weak scalability.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 386 — #386

386 APPENDIX E Glossary

structure-of-arrays (SoA): A data layout for collections of heterogeneous data where all the data for
each component of each element of the collection is stored in adjacent physical locations, so that
data of the same type is stored together. Compare with array-of-structures.

successor function: In a fold, the function that computes a new state given the old state and a new
input item.

superlinear speedup: Speedup where performance grows at a rate greater than the rate at which new
workers are added. Since linear scalability is technical optimal, superlinear speedup is typically the
result of cache effects, changes in the algorithm behavior, or speculative execution.

superscalar processor: A processor that can execute multiple instructions in a single clock cycle.
superscalar sequence pattern: A sequence of tasks ordered by data dependencies rather than being

ordered by a single sequential ordering. This allows parallel (superscalar) execution of tasks that
have no relative ordering relative to each other. See Sections 3.6.1.

switch-on-event multithreading: A technique that supports the execution of multiple threads on a
single core by switching to another thread on a long-latency event, such as a cache miss.

sync: In terms of Cilk Plus, cilk_sync creates a sync point. Control flow pauses at a sync point until
completion of all spawns issued by the spawning block that contains the sync point. A sync is
not affected by spawns done by other tasks or threads, nor those done prior to entering the current
spawning block. An sync is always done when exiting a spawning block that contained any spawns.
This is required for program composability.

synchronization: The coordination, of tasks or threads, in order to obtain the desired runtime order.
Commonly used to avoid undesired race conditions.

tail recursion: A form of recursion where a result of the recursive call is returned immediately without
modification to the parent function. Such uses of recursion can be converted to iteration.

target processor: A (typically specialized) processor to which work can be offloaded. See host
processor.

task: A lightweight unit of potential parallelism with its own control flow. Unlike threads, tasks usu-
ally do not imply mandatory parallelism. Threads are a mechanism for executing tasks in parallel,
whereas tasks are units of work that merely provide the opportunity for parallel execution; tasks
are not themselves a mechanism of parallel execution.

task parallelism: An attempt to classify parallelism as more oriented around tasks than data. We delib-
erately avoid use of this term because its meaning varies. In particular, elsewhere “task parallelism”
can refer to tasks generated by functional decomposition or to irregular tasks still generated by data
decomposition. In this book, any parallelism generated by data decomposition, regular or irregular,
is considered data parallelism. See Section 2.2.

template metaprogramming: The use of generic programming techniques to manipulate and
optimize source code before it is compiled. Specifically, the template rewriting rules in C++ can
be interpreted as a functional language for manipulating C++ source code. Some high-performance
libraries make use of this fact to automatically perform optimizations of C++ code by, for example,
fusing operations together. See the more general term metaprogramming.

temporal locality: Nearby when measured in terms of time; compare with spatial locality. Temporal
locality refers to a program behavior in which data is likely to be reused relatively soon. Algo-
rithms exhibiting good temporal locality in data usage can benefit from the data caching common
in modern computers. It is not unusual to be able to achieve both temporal and spatial locality in
data usage. Computer systems are generally more able to achieve optimal performance when both
are achieved, hence the interest in algorithm design to do so.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 387 — #387

APPENDIX E Glossary 387

thread: In general, a software thread is any software unit of parallel work with an independent flow of
control, and a hardware thread is any hardware unit capable of executing a single flow of control
(in particular, a hardware unit that maintains a single program counter). Threads are a mechanism
for implementing tasks. A multitasking or multithreading operating system will multiplex multi-
ple software threads onto a single hardware thread by interleaving execution via software-created
time-slices. A multicore or many-core processor consists of multiple cores to execute at least one
independent software thread per core through duplication of hardware. A multithreaded or hyper-
threaded processor core will multiplex a single core to execute multiple software threads through
interleaving of software threads via hardware mechanisms.

thread parallelism: A mechanism for implementing parallelism in hardware using a separate flow of
control for each task. See Section 2.3.

throughput: Given a set of tasks to be performed, the rate at which those tasks are completed.
Throughput measures the rate of computation, and it is given in units of tasks per unit time. See
bandwidth and latency and Section 2.5.1.

tile: A region of memory, typically a section of a larger collection, such as might result from the
application of the partition pattern. See granularity, block, and tiling.

tiled decomposition: See tiling.
tiled SIMD: Execution of an SPMD program using an array of SIMD processors, each such processor

with a separate thread of control.
tiling: Dividing a loop into a set of parallel tasks of a suitable granularity. In general, tiling con-

sists of applying multiple steps on a smaller part of a problem instead of running each step on
the whole problem one after the other. The purpose of tiling is to increase the reuse of data
in caches. Tiling can lead to dramatic performance increases when a whole problem does not
fit in cache. We prefer the term “tiling” to “blocking” and “tile” rather than “block.” Tiling
and tile have become the more common term in recent times. Sections 5.1.3 and 7.3 for more
discussion.

time complexity: A complexity measure for the amount of time used by an algorithm as a function of
problem size.

TLB: A Translation Lookaside Buffer is a specialized cache used to hold translations of virtual to
physical page addresses. The number of elements in the TLB determines how many pages of mem-
ory can be accessed simultaneously with good efficiency. Accessing a page not in the TLB will
cause a TLB miss. A TLB miss typically causes a trap to the operating system so that the page table
can be referenced and the TLB updated. See Section 2.4.1.

TLB miss: Occurs when a virtual memory access is made for which the page translation is not
available in the TLB.

TLB thrashing: The overhead caused by the high TLB miss rate that results when a program
frequently accesses more pages than can be covered by a TLB.

transaction: An atomic update to data, meaning that the results of the update either are not seen or
are seen in their entirety. Transactions satisfy the need for atomic data updates to a central reposi-
tory without requiring an ordering on the updates. Transactions are motivated by the need to have
updates be observed in an “all or nothing” fashion. Consider an update to a hotel reservation in an
online system, from an “economy room for $75/night” to a “penthouse suite for $9800/night.” We
do not want a separate task to see a partial update and bill us for $9800/night for an economy room.
In general, transaction operations will be non-associative and the outcome will not be determinis-
tic if the order in which the individual operations are performed is non-deterministic. The merge

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 388 — #388

388 APPENDIX E Glossary

scatter pattern with a non-associative operator can result in simple forms of the transaction pattern.
See Sections 3.7.2 and 6.2.

transactional memory: A way of accessing memory so that a collection of memory updates, called a
transaction, will be visible to other tasks or threads all at once. Additionally, for a transaction to
succeed, any data read during the transaction must not be modified during the transaction by other
tasks or threads. Transactions that fail are generally retried until they succeed. Transactional mem-
ory offers an alternative method of mutual exclusion from traditional locking that may enhance the
scalability of an algorithm in certain cases. Intel Transactional Support Extensions (TSX) support
is an example of hardware support for transactional memory.

Translation Lookaside Buffer: See TLB.
uniform parameter: A parameter that is broadcast to all the elements of a map and therefore is the

same for each instance of the map’s elemental function. See varying parameter.
unpack pattern: The inverse of the pack pattern, this operation scatters data back into its original

locations. It may optionally fill in a default value for missing data.
unsplit pattern: The inverse of the split pattern, this operation scatters data back into its original

locations. Unlike the case with the unpack pattern, there is no missing data to worry about.
unzip pattern: The inverse of the zip pattern, this operation deinterleaves data and can be used to

convert from array-of-structures to structure-of-arrays.
varying parameter: A parameter to a map pattern that delivers a different element to each instance

of the map’s elemental function. See uniform parameter.
vector intrinsics: An instrinsic used to specify a vector operation.
vector operation: A low-level operation that can act on multiple data elements at once in SIMD

fashion.
vector parallelism: A mechanism for implementing parallelism in hardware using the same flow of

control on multiple data elements. See Section 2.3.
vector processor: A form of SIMD processor in which large amounts of data are streamed to and from

external memory. True vector processors are rare today, so this term now is also used for processors
with SIMD instructions that can act on short, fixed-length vectors held in registers.

vectorization: The act of transforming code to enable simultaneous computations using vector
hardware. Instructions such as MMX, SSE, and AVX instructions utilize vector hardware. The
vectorization of code tends to enhance performance because more data is processed per instruction
than would be done otherwise. Vectorization is a specialized form of parallelism. See also vectorize.

vectorize: Converting a program from a scalar implementation to a vectorized implementation to
utilize vector hardware such as SIMD instructions (MMX, SSE, AVX, etc.).

vector units: functional units that can issue multiple operations of the same type in a single clock
cycle in SIMD fashion.

virtual memory: Virtual memory decouples the address used by software from the physical addresses
of real memory. The translation from virtual addresses to physical addresses is done in hardware
which is initialized and controlled by the operating system. See Section 2.4.1.

VLIW (Very Large Instruction Word): An processor architecture which supports instructions which
can explicitly issue multiple operations in a single clock cycle. See superscalar processor.

weak scalability: A form of scalability that measures how performance increases when using addi-
tional workers with a problem size that grows at the same rate. See Gustafson-Barsis’s Law and
strong scalability.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 389 — #389

APPENDIX E Glossary 389

work: The computational part of a program, as contrasted with communication or coordination. An
abstract unit of such computation.

work complexity: The asymptotic number of operations required by an algorithm to run on a single
thread. Work complexity is essentially the traditional asymptotic complexity for sequential running
time, although frequently, so speedup ratios can be computed, it is better to use big Theta notation
rather than big O notation. Related terms include span complexity.

worker: An abstract unit of actual parallelism, for example, a core or a SIMD lane.
working set: For an algorithm, the set of data that should be maintained in cache for good performance.
work-span: A model for parallel computation that can be used to compute both upper and lower

bounds on speedup. See Section 2.5.6. Related terms include span complexity and work complexity.
workpile pattern: An extension of the map pattern that allows new work items to be added during

execution from inside the elemental function. If the map pattern can be thought of as a paralleliza-
tion of a for loop, the workpile pattern can be thought of as a generalization of a while loop. See
Section 3.6.4.

work-stealing: A load balancing technique where /workers/ that become idle search for and “steal”
pending work from other, busy workers.

zip pattern: A special case of the gather pattern that interleaves elements from collections, converting
from structure-of-arrays to array-of-structures. See Section 6.1.3.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 391 — #391

Bibliography

[AB98] M. Akra and L. Bazzi. On the solution of linear recurrence equations. Computational Optimization
and Applications, 10(2):195–210, 1998.

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide, 3rd ed. SIAM, Philadelpha,
PA, 1999 (http://www.netlib.org/lapack/lug).

[ABC+06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley, Technical Report EECS-2006-183. EECS Department, University
of California, Berkeley, 2006.

[ABF05] L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures. In D. Mehta and S. Sahni,
Eds., Handbook of Data Structures and Applications. CRC Press, Boca Raton, FL, 2005,
Chapter 34, p. 27.

[AD07] M. Aldinucci and M. Danelutto. Skeleton-based parallel programming: functional and parallel
semantics in a single shot. Computer Languages, Systems, and Structures, 33(3–4):179–192, 2007.

[Adv10] S. Adve. Data races are evil with no exceptions: technical perspective. Communications of the
ACM, 53(11):84, 2010.

[AF11] A. Aviram and B. Ford. Deterministic OpenMP for race-free parallelism. In Proceedings of 3rd
USENIX Workshop on Hot Topics in Parallelism (HotPar ’11). USENIX Association, Berkeley,
CA, 2011.

[Ale77] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
Oxford, UK, 1977.

[ALKK90] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: a processor architecture for multi-
processing. In Proceedings of 17th Annual International Symposium on Computer Architecture,
IEEE Press, Piscataway, NJ, 1990, pp. 104–114.

[Amd67] G. M. Amdahl. Validity of the single-processor approach to achieving large scale computing
capabilities. In Proceedings of the American Federation of Information Processing Societies Spring
Joint Computer Conference. AFIPS Press, Montvale, NJ, 1967, pp. 483–485.

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models. In T. Touili,
B. Cook, and P. Jackson, Eds., Computer Aided Verification, Lecture Notes in Computer Science,
Vol. 6174. Springer, Berlin, 2010, pp. 258–272.

[BHC+93] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha. Implementation of a
portable nested data-parallel language. In PPOPP ’93: Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM Press, New York, 1993,
pp. 102–111.

[Ble90] G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge, MA, 1990.
[Ble93] G. E. Blelloch. Prefix sums and their applications. In J. H. Reif, Ed., Synthesis of Parallel Algo-

rithms. Morgan Kaufmann, San Francisco, CA, 1993.
[Ble96] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–97, 1996.
[BLM+98] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. An expe-

rimental analysis of parallel sorting algorithms. Theory of Computing Systems, 31:135–167, 1998.
[BM93] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software: Practice and Experience,

23:1249–1265, 1993.

391

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 392 — #392

392 Bibliography

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, New York, 1996.

[BOA09] M. Billeter, O. Olsson, and U. Assarson. Efficient stream compaction on wide SIMD many-core
architectures. High-Performance Graphics, August 2009, pp. 159–166.

[Boa11] OpenMP Architecture Review Board. OpenMP Application Program Interface: Version 3.1. July
2011.

[Boe11] H.-J. Boehm. How to miscompile programs with “benign” data races. In Proceedings of 3rd
USENIX Workshop on Hot Topics in Parallelism (HotPar ’11). USENIX Association, Berkeley,
CA, 2011.

[Bor09] U. Bordoloi. Image Convolution Using OpenCLTM—A Step-by-Step Tutorial. AMD Developer
Central, October 2009 (http://developer.amd.com/sdks/amdappsdk/documentation/imageconvolu-
tionopencl/pages/ImageConvolutionUsingOpenCL 3.aspx).

[Bre74] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the Association
for Computing Machinery, 21(2):201–206, 1974.

[BSTW86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compression
scheme. Communications of the ACM, 29:320–330, 1986.

[BW94] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm, Technical
Report 124. Digital Systems Research Center, Palo Alto, CA, 1994.

[BYP+91] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single instruction stream
parallelism is greater than two. In Proceedings of the 18th Annual International Symposium on
Computer Architecture (ISCA ’91). ACM Press, New York, 1991, pp. 276–286.

[Cat10] B. Catanzaro. OpenCLTM Optimization Case Study: Simple Reductions. AMD Developer Cen-
tral, August 2010 (http://developer.amd.com/documentation/articles/Pages/OpenCL-Optimization-
Case-Study-Simple-Reductions.aspx).

[CKP+96] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subramonian,
and T. von Eicken. LogP: a practical model of parallel computation. Communications of the ACM,
39:78–85, 1996.

[CKV10] A. Chandramowlishwaran, K. Knobe, and R. W. Vuduci. Performance evaluation of concur-
rent collections on high-performance multicore computing systems. In Proceedings of the IEEE
International Parallel & Distributed Processing Symposium (IPDPS). IEEE Press, Piscataway, NJ,
2010, pp. 1–12.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd ed. MIT
Press, Cambridge, MA, 2009.

[Coh96] J. Cohen. A History of ALGOL 68. ACM Press, New York, 1996, pp. 27–96.
[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman/MIT

Press, Cambridge, MA, 1989.
[Cor11a] Intel. Intelr 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation, Santa

Clara, CA, 2011.
[Cor11b] Intel. Intelr Cilk Plus Language Extension Specification, Version 1.1. Intel Corporation, Santa

Clara, CA, 2011.
[Cor11c] Intel. Intelr CoreTM i5 Desktop Processor Turbo Boost Frequency Table. Intel Corporation, Santa

Clara, CA, 2011 (http://www.intel.com/support/processors/corei5/sb/CS-032278.htm).
[Cro84] F. C. Crow. Summed-area tables for texture mapping. In SIGGRAPH ’84: Proceedings of the 11th

Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York,
1984, pp. 207–212.

[DF90] P. K. Dubey and Michael J. Flynn. Optimal pipelining. Journal of Parallel and Distributed
Computing, 8:10–19, 1990.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 393 — #393

Bibliography 393

[DG04] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proceedings
of the 6th Symposium on Operating Systems Design and Implementation. USENIX Association,
Berkeley, CA, 2004.

[DHKC09] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler. Power Optimization—A Reality Check,
Technical Report UCB/EECS-2009-140. EECS Department, University of California, Berkeley,
2009.

[Dij68] E. Dijkstra. Go To statement considered harmful. Communications of the ACM, 11(3):147–148,
1968.

[ERB+10] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task superscalar:
using processors as functional units. In Proceedings of 3rd USENIX Workshop on Hot Topics in
Parallelism (HotPar ’11). USENIX Association, Berkeley, CA, 2011.

[FG94] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans and reductions. In Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM Press,
New York, 1994, pp. 135–146.

[FHLLB09] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++ hyper-
objects. In Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’09). ACM Press, New York, 2009, pp. 79–90.

[Fly72] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Computers,
C-21(9):948–960, 1972.

[GC94] B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms: survey and synthesis.
Operations Research, 42(6):1042–1066, 1994.

[GDX08] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding Gaussian elimination. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE Press, Piscataway, NJ,
2008, pp. 29:1–29:12.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston, MA, 1995.

[GPM11] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH with work queues. High
Performance Graphics, August 2011, pp. 59–64.

[Gus88] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31:532–533, 1988.
[HF99] P. Hung and M. J. Flynn. Optimum Instruction-Level Parallelism (ILP) for Superscalar and VLIW

Processors, Technical Report CSL-TR-99-783. Stanford University, Stanford, CA, 1999.
[HLJH09] J. Hoberock, V. Lu, Y. Jia, and J. C. Hart. Stream compaction for deferred shading. In Pro-

ceedings of the Conference on High Performance Graphics 2009. ACM Press, New York, 2009,
pp. 173–180.

[HLL10] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer. In Proceedings
of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’10). ACM
Press, New York, 2010, pp. 145–156.

[HP07] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, San Francisco, CA, 2007.

[HS08] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, San
Francisco, CA, 2008.

[HSJ86] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Communications of the ACM, 29:1170–
1183, 1986.

[HSK08] H. E. Hinnant, B. Stroustrup, and B. Kozicki. A Brief Introduction to rvalue References. Artima
Developer, Walnut Creek, CA, 2008.

[HW04] E. R. Hansen and G. W. Walster, Eds. Global Optimization Using Interval Analysis. CRC Press,
Boca Raton, FL, 2004.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 394 — #394

394 Bibliography

[Inc09a] Apple. OpenCL Parallel Prefix Sum (aka Scan) Example. Mac OS X Developer Library, Apple,
Inc., Cupertino, CA, 2009.

[Inc09b] Apple. OpenCL Parallel Reduction Example. Mac OS X Developer Library, Apple, Inc., Cupertino,
CA, 2009.

[JW89] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar and super-
pipelined machines. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’89). ACM Press, New York, 1989, pp. 290–302.

[Kam05] T. Kamiya. Japanese Sentence Patterns for Effective Communication. Kodansha USA, New York,
2005.

[Kay96] A. Kay. The Early History of Smalltalk. ACM Press, New York, 1996, pp. 511–598.
[KLDB10] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia. Scheduling linear algebra operations on

multicore processors. Concurrency and Computation: Practice and Experience, 22(1):15–44,
2010.

[KM03] D. Koufaty and D. T. Marr. Hyperthreading technology in the netburst microarchitecture. IEEE
Micro, 23(2):56–65, 2003.

[Knu76] D. E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8:18–24, 1976.
[Kon11] S. V. Konstantin. Apache Hadoop: The scalability update. ;login:, The USENIX Magazine, 36(3):

7–13, 2011.
[KS10] F. B. Kjolstad and M. Snir. Ghost cell pattern. In Proceedings of the 2010 Workshop on Parallel

Programming Patterns (ParaPLoP ’10). ACM Press, New York, 2010, pp. 4:1–4:9.
[KTB11] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John Wiley & Sons,

New York, 2011.
[Lam74] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83–93, 1974.
[Lee06] E. A. Lee. The Problem with Threads, Technical Report UCB/EECS-2006-1. EECS Department,

University of California, Berkeley, 2006 (a published version of this paper is in IEEE Computer,
39(5):33–42, 2006).

[LLM08] G. Lashari, O. Lhoták, and M. McCool. Control flow emulation on tiled SIMD architectures.
In L. J. Hendren, Ed., Compiler Construction, 17th International Conference, Lecture Notes in
Computer Science, Vol. 4959. Springer, Berlin, 2008, pp. 100–115.

[Llo82] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[MAB+02] S. MacDonald, J. Anvik, S. Bromling, D. Szafron, J. Schaeffer, and K. Tan. From patterns to
frameworks to parallel programs. Parallel Computing, 28(12):1663–1683, 2002.

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. University
of California Press, Berkeley, 1967, pp. 281–297.

[Mic04] M. M. Michael. Hazard pointers: safe memory reclamation for lock-free objects. IEEE Transac-
tions on Parallel and Distributed Systems, 15:491–504, 2004.

[MMS05] B. L. Massingill, T. G. Mattson, and B. A. Sanders. Reengineering for parallelism: an entry point
for PLPP (Pattern Language for Parallel Programming) for legacy applications. In Proceedings of
the Twelfth Pattern Languages of Programs Workshop, 2005.

[MSM04] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel Programming. Addison
Wesley, Reading, MA, 2004.

[MSS04] S. MacDonald, D. Szfron, and J. Schaeffer. Rethinking the pipeline as object-oriented states
with transformations. In Proceedings of the Ninth International Workshop on High-Level Par-
allel Programming Models and Supportive Environments. IEEE Press, Piscataway, NJ, 2004,
pp. 12–21.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 395 — #395

Bibliography 395

[Nau81] P. Naur. The European Side of the Development of ALGOL. ACM Press, New York, 1981,
pp. 92–139.

[Pac96] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San Francisco, CA, 1996.
[Par11] Berkeley ParLab. A Pattern Language for Parallel Programming, Version 2.0. EECS Department,

University of California, Berkeley (http://parlab.eecs.berkeley.edu/wiki/patterns/patterns).
[Per81] A. J. Perlis. The American Side of the Development of ALGOL. ACM Press, New York, 1981,

pp. 75–91.
[PGB+05] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in Practice.

Addison-Wesley, Boston, MA, 2005.
[PvE93] M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, Boston, MA, 1993.
[PvE99] M. J. Plasmeijer and M. C. J. D. van Eekelen. Keep it CLEAN: a unique approach to functional

programming. SIGPLAN Notices, 34(6):23–31, 1999.
[Qui03] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New York, 2003.
[RDN93] L. Rauchwerger, P. K. Dubey, and R. Nair. Measuring limits of parallelism and characterizing its

vulnerability to resource constraints. In Proceedings of the 26th Annual International Symposium
on Microarchitecture. IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 105–117.

[REB11] D. R. O’Hallaron and R. E. Bryant. Computer Systems: A Programmer’s Perspective. Prentice Hall,
Upper Saddle River, NJ, 2011.

[Rei07] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol, CA, 2007.
[RJ10] A. D. Robison and R. E. Johnson. Three layer cake for shared-memory programming. In Pro-

ceedings of the 2010 Workshop on Parallel Programming Patterns (ParaPLoP ’10), ACM Press,
New York, 2010, pp. 5:1–5:8.

[RVK08] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work stealing in TBB. In
IEEE International Symposium on Parallel and Distributed Processing. IEEE Press, Piscataway,
NJ, 2008, pp. 1–8.

[SCB+98] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin, N. Mitchell, J. Feo, and B. Koblenz.
Multi-processor performance on the Tera MTA. In Supercomputer ’98: Proceedings of the 1998
ACM/IEEE Conference on Supercomputing (CDROM). IEEE Computer Society, Washington, DC,
1998, pp. 1–8.

[Shi07] J. Shin. Introducing control flow into vectorized code. In PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques. IEEE Computer
Society, Washington, DC, 2007, pp. 280–291.

[SMDS11] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as easy
as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM Press, New York, 2011, pp. 16:1–16:12.

[SSRB00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, Vol. 2. Wiley & Sons, New York, 2000.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14:354–356, 1969.
[Sub06] SPEC CPU Subcommittee. SPEC CPU2006 benchmark descriptions. Computer Architecture

News, 34(4):1–17, 2006 (http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf).
[Sut05] H. Sutter. The free lunch is over: a fundamental turn towards concurrency in software. Dr. Dobbs

Journal, 30(3), 2005.
[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of

Molecular Biology, 147:195–197, 1981.
[Tat10] B. A. Tate. Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Programming

Languages. Pragmatic Bookshelf, Flower Mound, TX, 2010.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 396 — #396

396 Bibliography

[TBRG10] E. Tejedor, R. M. Badia, R. Royo, and J. L. Gelpi. Enabling HMMER for the grid with COMP
superscalar. In Procedia Computer Science, 1(1):2629–2638, 2010.

[TCK+11] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The Pochoir
stencil compiler. In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’11). ACM Press, New York, 2011, pp. 117–128.

[TEL95] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maximizing on-chip
parallelism. SIGARCH Computer Architecture News, 23:392–403, 1995.

[TM98] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the
Sixth International Conference on Computer Vision. IEEE Press, New York, 1998, pp. 839–846.

[TvPG06] O. Trachsel, C. von Praun, and T. R. Gross. On the effectiveness of speculative and selective
memory fences. In Proceedings of the 20th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’06). IEEE Press, New York, 2006.

[Val90] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33:103–
111, 1990.

[VBC06] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral Code Generation in the Real World, Lecture
Notes in Computer Science, Vol. 3923. Springer, Berlin, 2006, pp. 185–201.

[VF05] V. Venkatachalam and M. Franz. Power reduction techniques for microprocessor systems. ACM
Computing Surveys, 37:195–237, 2005.

[Vis10] U. Vishkin. Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques. University
of Maryland, College Park, 2010 (http://www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/
classnotes.pdf).

[Vis11] U. Vishkin. Using simple abstraction to reinvent computing for parallelism. Communications of
the ACM, 54:75–85, 2011.

[Vit08] J. S. Vitter. Algorithms and Data Structures for External Memory, Foundations and Trends in
Theoretical Computer Science. Now Publishers, Boston, MA, 2008.

[Wal11] I. Wald. Active thread compaction for GPU path tracing. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics (HPG ’11). ACM Press, New York, 2011.

[WJNB95] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: a survey
and critical review. In Proceedings of the 1995 International Workshop on Memory Management
(IWMM ’95). Springer-Verlag, London, 1995, pp. 1–116.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 397 — #1

Index

Page numbers followed by “f ” indicates figures and “t” indicates tables.

A
Absolute speedup, 56
Acoustic wave equation, 266
Advanced Vector Extensions (AVX), 45
affinity_partitioner, 352
Algorithm strategy patterns, 80

programming, 19, 20
Algorithm’s span, 4, 5
Algorithmic skeletons, 1, 20
Aliased inputs, 87
Aliasing, 96
Amdahl’s Law, 5, 52, 59–60, 64, 254
AoS, see Array of structures
Application programming interface (API), 25, 32,

346
ArBB, see Array Building Blocks
Arithmetic intensity, 50, 74, 204, 250, 265

impact of caches on, 267–270
of SAXPY, 125
raising with space–time tiling, 270–272

Array Building Blocks (ArBB), 23, 25, 27, 97, 115–116
automatic fusion in, 153–154
dot product in, 161–162
using elemental functions, 129–130
features of, 34–35
implementation of, 152
implementation of stencil, 275–277
integration, 175–177
of Mandelbrot, 134–137
scan pattern, 165
use of, 26, 37
using vector operations, 128–129

Array expressions, 27
Array indices, 96
Array notation, 338

Cilk Plus with, 127–128, 134
array sections

avoid partial overlap of, 342–343
operations on, 340–341
reductions on, 341–342
specifying, 339–340

statements, 285
Array of structures (AoS), 194–195, 196f
Array section operator, 339, 340
Associative array, 105
Associative operations, 102, 106, 108, 185, 261, 286, 335
Asymptotic complexity, 65–67

Asymptotic speedup and efficiency, 67
atomic, 356–358
Atomic operations, 73, 112, 349, 356–357
Atomic scatter pattern, 183–184, 183f
Attached devices, 48–49
auto_partitioner, 352
Auto-vectorization, 349
Automatic fusion in ArBB, 153–154
Autoparallelization, 14
Autotuning, 50
AVX, see Advanced Vector Extensions

B
Bandwidth, 10, 46, 99, 139, 179, 190, 204, 227, 319
Barriers, 33, 88, 115
Basic Linear Algebra Subprograms (BLAS), 124, 125

column-major layout, 315
Big O notation, 66
Big Omega notation, 66
Big Theta notation, 66
Bilateral filtering, 200
Bin pattern, 189, 189f
Binary search, 302
bindex_type, 309
Binomial lattice recurrence, 246, 246f
Bins

choosing, 309
code for mapping keys to, 310

BLAS, see Basic Linear Algebra Subprograms
blocked_range, 351–352
Blocking, see Tiling
Bound-to-item approach, 256
Bound-to-stage approach, 256
Branch and bound pattern, 41, 103, 108–109, 114
Brent’s Lemma, 63–65
Built-in function, 342
Burdened span, 63
Burrows–Wheeler transform, 291, 292
By reference, 363, 364
By value, 363, 364
Bzip2

algorithm, 291–292
three-stage pipeline for, 293f

C
C language, example of, 87
C syntax, 337–338

397

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 398 — #2

398 Index

C++ compilers, 125
C++ syntax, 335–337
C++11, 358–359, 361

features, 358
lambda expressions, 313, 345, 361, 365
std::move, 365

C++98 equivalent, 361
Cilk++, 346–347
Cache, 5, 44, 46, 73

direct-mapped cache, 46
impact on arithmetic intensity, 267–270
set-associative cache, 46
tiling stencils for, 202–203, 203f

Cache fusion, 140–141, 140f
Cache lines, 46, 202
Cache locality, 227–230
Cache oblivious algorithms, 50, 73, 209, 227–230, 273, 315
call function, 129
Capture

by reference, 363, 364
by value, 363, 364

Category reduction, 92, 106–107, 107f, 189
Centroid of cluster, 279
Cholesky decomposition, 317–318, 322f
Cilk Plus, 19, 22, 23, 25, 27, 28, 112–113, 125, 311, 349, 360

array notation, 17, 224
binomial lattice in, 250
cache fusion, 141
code, 272–273, 275
dot product in, 158–159
explicit fusion in, 153
features of, 29–30, 245
for fork–join, 212–213, 213f
history, 346–347
hyperobjects, 239, 240f, 331
implementation of, 152
implementation of SAXPY operation, 127
integrated table preparation in, 173
for integration, 170
k-means algorithm with, 281–284
Karatsuba multiplication in, 225
Mandelbrot in, 132–134
map pattern in, 215–217, 216f
parallel merge in, 301, 304
parallel reduction in, 238
parallel scan in, 244
parallel symmetric rank update in, 321
parallel triangular solve in, 320
pipeline in, 258–261, 259, 261
predefined holders, 335
quicksort in TBB achieves, 237
reduction operation in, 18

repacking and subsorting using, 312
scan pattern, 164–165
semi-recursive parallel Quicksort using, 234
setup, 346
unique characteristics, 329–331, 330f
use of, 36
using local reducer in, 241
vectorized function for addition in, 26

Cilk Quicksort, 231–233
cilk_for, 30, 113, 158
cilk_for constructs, 127, 134, 332–333
cilk_forc, 213, 215
cilk_scan, 165
cilk_spawn keyword, 19, 20, 112, 212, 333–334
cilk_sync, 30, 212, 333–334
Class comparator, 362
Class View, 283
Closures, 87, 97, 118
Cluster, 52, 101

centroid of, 279
Code fusion, 139–140, 139f
Collective operations, 116, 145
Collisions, 102, 106, 183
Combiner function, 90, 145
Comma operator, 340
Communication, 39, 50, 73, 121

optimizing stencils for, 203–204
Commutative operations, 107, 185, 286
Commutativity of reduction, 148, 149f
Compare-and-swap loop, 357–358
Composability, 23, 27–28, 329
Compositional pattern, 81f
Computer architecture, 325–326
Concrete instantiation of test function, 171
Concurrency, 67
Concurrent Clean, 108
Condition variable, 359
Consumer, 261
Continuation, 219

passing style, 221, 233
passing tasking, 234

Control dependency, 39
Control flow, fork–join, 210f
CPU2006 SPEC benchmarks, 14, 16f
CUDA, 53
Cumulation, 169
Cyclic redundancy check (CRC) code, 291

D
DAG model of pipeline, 256f
Data, 39
Data amplification, 191

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 399 — #3

Index 399

Data dependencies, 83, 84, 86, 102
graph, 246

Data layout options for SoA and AoS, 196f
Data locality, 47, 50–51, 179, 182
Data organization

AoS, 194
SoA, 195

Data parallelism, 20, 40, 81, 359
expression of regular, 24–27

Data-dependent control flow, 136
Data-intensive applications, 179
Deadlocks, 72, 113, 254
Dependency, 39
Design patterns programming, 19
Determinism, 3, 29
Deterministic map pattern, 124
deterministic_parallel_reduce function, 114
Deterministic patterns, 79, 179
Deterministic reduction, 151
Diamond-shaped subgraph

decomposing, 247, 247f
parameters for, 248, 248f

Direct memory access (DMA), 48
Directed acyclic graph (DAG), 62, 107
Divide steps, 281
Divide-and-conquer algorithms, 179, 191,

209, 210
base cases selection of, 217–218
complexity of parallel, 221–223
implementation of, 234
nested fork–join control flow in, 211f

Divide-and-conquer pattern, 142, 317
Divide-and-conquer strategy, 20
DMA, see Direct memory access
do-while loop, 281
Dot product, 154

ArBB, 161–162
in Cilk Plus, 158–159
implementation of

OpenMP, 160–161
serial, 154–155

in SSE intrinsics, 155–156
in TBB, 156–158

Double-data-rate (DDR) signaling, 10
Dwarfs, 325

E
Efficiency, 56
Elastic wave equation, 266
Elemental functions, 22, 25, 27, 88, 121, 123, 181f, 191, 332,

344
ArBB using, 129–130
attribute syntax, 345

computation in ArBB, 35
Mandelbrot, 136

elementwise_reducer, 283, 284
Embarrassing parallelism, 20, 121, 145
empty_task, 233
enumerable_thread_specific, 354, 358
Expand pattern, 106, 106f, 117, 118, 179, 189, 190, 190f
Explicit fusion

in Cilk Plus, 153
in TBB, 152

Explicit parallel programming, 14–19

F
False sharing, 47, 179, 186, 202
Fibers, 42
Fibonacci computation in C, 31
Fibonacci numbers, 30
Field-programmable gate arrays (FPGAs), 36
Fine-grain locking, 73
Flat algorithm for polynomial multiplication, 224
Flat fork–join pattern, 251
Floating-point arithmetic operations, 269, 319
floor_lg2, 309
Flynn’s characterization, 51–52
Fold, 92
foo, 18
for loop, 123

demonstration of, 86
iteration using, 85

for statement, 4, 27
Fork–join model, 349
Fork–join pattern, 20, 39, 88, 103, 112–113, 115, 141, 142, 191,

207, 315
for Cholesky decomposition, 322
Cilk Plus for, 212–213, 213f
control flow, 211f
definition of, 210–211
flat, 251
implementing scan with, 241–246
OpenMP for, 214–215
programming model for, 211–212
to recurrences, applying, 246–250

analysis, 250–251
recursive, 234
TBB for, 213–214

Fortran rules, 315–317
Forward model, 266
Four-stage pipeline, using TBB, 296
Fragmented memory, 96
Free monoid, 259
Function object, 362
Functional decomposition, 40

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 400 — #4

400 Index

Functors, 213
Fusing map

and pack pattern, 189–191, 190f
and reduction, 152
and scan, 166–168

Futures pattern, 102–103

G
Gather pattern, 101, 101f, 113, 115–117, 179,

180, 181f
conversion to scatter pattern, 186–187

Gaussian elimination, 124
General gather pattern, 180
Generic test function for integration, 171
Geometric decomposition, 100–101, 100f, 115, 118, 179,

191–193
Geometry shaders, 191
Ghost cells, 203–204
Global memory, 117
goto, 20
Granularity, 7, 228
Graphics Processing Units (GPUs), 53
Gustafson-Barsis’ Law, 60–62

H
Hardware threads, 5, 41
Hardware trends encouraging parallelism, 7–11
Hash table, 109
Header files, 337, 346
Heap allocation, 96–97
Heterogeneous computing, 53
High-performance computing (HPC), 32, 33
Host processor, 54
HPC, see High-performance computing
Huffman coding, 292
Hyperobjects, 112, 238–241, 281–285, 331,

334–338
Hyperthreads, 117

I
Idioms, 80
if statement, 27
ILP wall, see Instruction-level parallelism wall
Implicit Index, 342
Instruction parallelism, 44–45
Instruction-level parallelism (ILP) wall, 8–11
Integration, 169–170

ArBB, 175–177
Cilk Plus for, 170
OpenMP, 170–172
serial implementation, 170
TBB, 172–175

Intel 4004 4-bit microprocessor, 11
Intel Cilk Plus, 22, 347
Intel Concurrent Collections, 322
Intel TBB, see Threading Building Blocks
Intel Xeon E7-8870 processor, 11
Intrinsics, 1
Irregular parallelism, 41
Iteration pattern, 84–87

K
k-means algorithm, 279–281, 280f

with Cilk Plus, 281–284
with TBB, 285–289

Karatsuba multiplication of polynomials, 224–227
Kernels, 117, 130, 138
Keyword spelling, 332
Knights Corner, 11

L
L-system substitution, 190
Lambda expression, 125, 213, 285, 310, 361–365

C++11, 313
Lambda functions, 97, 107
Lanes, 42
Last in first out (LIFO), 96
Latency, 10, 46, 53, 55, 104, 254

hiding, 56, 204
LIFO, see Last in first out
Linear Algebra Package (LAPACK), 315
Linear pipeline, 99
Linear speedup, 56
Linked list, 97
Little’s formula, 67–68
Lloyd’s algorithm, see k-means algorithm
Load balancing, 7, 132, 218–221
Load imbalance, 74
Locality, 5

lack of, 73–74
Lock, 70, 72, 73
Loop fusion, 153
Loop-carried dependencies, 85

M
Machine model, 44–49

attached devices, 48–49
evolution of, 53–54
Flynn’s characterization, 51–52
instruction parallelism, 44–45
key features for performance, 50–51

data locality, 50–51
parallel slack, 51

memory hierarchy, 45–47

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 401 — #5

Index 401

multiprocessor systems, 48
virtual memory, 47–48

Mainstream computer architectures, 2
Mandatory parallelism, 261–262
mandel function, 134
Mandelbrot set

ArBB implementation, 134–137
Cilk Plus implementation of, 132–134
description of problem, 131–132
OpenCL implementation of, 138–139, 138f
serial implementation of, 132, 133

Many Integrated Cores (MIC), 45, 49, 54
Many-core co-processor, 53
Many-core processors, 2
Map of sequence operations, 139–141
map operations, 129, 276
Map pattern, 88–89, 113–115, 117, 121, 123–124, 145, 199,

209, 253, 351
recursive implementation of, 215–217, 216f, 238
related patterns, 141–142
serial and parallel execution of, 122f

MapReduce, 122
Masking, 42–43
Matrix multiplication, 319–321
Matrix of buckets, 310
Member functions, 97
Memory bandwidth, 139, 227, 303, 312, 319
Memory fences , 69
Memory hierarchy, 45–47, 209
Memory operations, 269
Memory subsystem, 96, 202
Memory wall, 8

effects of, 10
Merge scatter pattern, 179, 183, 184f, 185
Merge sort

parallelizing, 299–301
TBB parallel merge, 301
work and span of parallel merge, 301–303

MIC, see Many Integrated Cores
Microprocessors, 11
Microsofts Parallel Patterns Library (PPL), 360
MIMD, see Multiple Instruction, Multiple Data
Mixed capture modes, 364
Monoid, 283
Moore’s Law, 7, 8f, 10, 11, 13
Motifs, 80, 325
Move-to-front coding, 292
Multicore era, 11, 13

performance in, 15f
Multicore processor, 11, 44, 45f
Multiple Instruction, Multiple Data (MIMD), 52
MultiplyAdd, 229

Multiply-nested loop, 205f
Multiprocessor systems, 48
Mutex, 71, 73, 358, 359
Mutual exclusion, 71
my_simple_add, 26

N
neighbor function, 142
Nested fork–join control flow, 211f
Nested parallelism, 23
Nesting, 20, 80–82, 81f, 112–113, 193
Network Interface Controller (NIC), 48
Non-associative operation, 147
Non-determinism, 29
Non-deterministic patterns, 108–109, 184
Non-deterministic program testing tools, 29
Non-scalar operands, 340
Non-uniform memory access (NUMA), 48

O
Objects, 97–98
Off-chip memory, 10
Offline program analysis, 9
Offload, 53
On-chip local memory, 117
One-dimensional stencil, 272f
Online algorithm, 253
OpenCL, 23–25, 28, 53

features of, 35–36
implementation of, 151
implementation of SAXPY, 130–131
Mandelbrot computation for, 138–139, 138f
programming model, 116–118
recursive divide-and-conquer in, 142
use of, 37

OpenMP, 24, 28
cache fusion, 140
directives, 14
features of, 32–34
for fork–join, 214–215
implementation of, 152

dot product, 160–161
for integration, 170–172
interface, 114–115
Mandelbrot in, 134, 136
recursive divide-and-conquer pattern, 142
SAXPY in, 128
scan pattern, 165–166
stealing semantics for, 221
use of, 37

operator+=, 281
Optimization of map, 153f, 169f

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 402 — #6

402 Index

Optional parallelism, 23, 261–262
Over-sampling, 309
Overhead, 74–75

P
Pack pattern, 98–99, 98f 116, 117, 179, 187–189, 187f, 245

fusing map and, 189–191, 190f
Packing, 43
Page fault rate, 47
Parallel algorithm

and patterns, 325
designing, 5

Parallel computation, 29, 39
Parallel control patterns

fork–join pattern, 88
map pattern, 88–89, 89f
recurrence pattern, 95
reduction pattern, 90–92, 91f
scan pattern, 92–95
stencil pattern, 89, 90f

Parallel data management patterns, 98–102
parallel_deterministic_reduce, 151, 354
parallel_do construct, 114
parallel_for functions, 4, 114, 352
parallel_foreach functions, 114
parallel_invoke, 213, 229, 354
Parallel merge, 299–301

sort, 303–304
TBB, 301
work and span of, 301–304

Parallel models, comparison of, 141
Parallel partitioning, 311
Parallel patterns, 21f, 79
parallel_pipeline construct, 114, 354
Parallel pipeline stages, 254–255
Parallel programming, 39, 349

machine model, 44–49
attached devices, 48–49
instruction parallelism, 44
memory hierarchy, 45–47
multiprocessor systems, 48
virtual memory, 47–48

mechanisms, 41–44
thread parallelism, 41, 42
vector parallelism, 41, 42

performance theory, 54–68
pitfalls, 68–75
strategies for, 40–41
vocabulary and notation, 39–40

Parallel programming models, 3, 21, 22f, 326–327, 329
abstractions, 23–24
composability, 27–28
expression of regular data parallelism, 24–27
portability of functionality, 28

properties, 21–22
safety, determinism, and maintainability, 29

Parallel Random Access Machine (PRAM), 48
parallel_reduce construct, 114, 151, 156, 157
Parallel scan, 94f, 242, 242f

algorithm, 241
top-level code for tiled, 243
upsweep and downsweep phase, 244

parallel_scan construct, 114, 165, 172
Parallel slack, 51
Parallel systems, 325–326
Parallel task, 255
Parallel thinking, 2–4
Parallelism, 2, 3, 209, 350, 359

hardware trends, 7–11
historical trends in, 11–14

Parallelization, 1, 9, 41, 50, 145, 179
Parallelized map, 122
Parallelizing algorithms, 85, 86
Parameterized code, 50
Partial differential equations (PDEs), 95, 201, 203
Partition pattern, 100, 100f, 191–193, 191f, 192f
Partitioners, 352–353
Partitioning, 307, 309–310

and repack/subsort phase, 312
Partitioning data, 179
Pattern, 39, 79

programming model supports, 110–112t
array building blocks, 115–116
Cilk Plus, 112–113
OpenCL programming model, 116–118
OpenMP interface, 114–115

Pattern-based programming, structured, 19–20
PDEs, see Partial differential equations
Performance of parellel programming, 4–7
Performance portability, 28
Performance theory, 54

Amdahl’s Law, 59–60
asymptotic complexity, 65–67
asymptotic speedup and efficiency, 67
efficiency, 56
Gustafson-Barsis’ Law, 60–62
latency and throughput, 55–56
Little’s formula, 67–68
power, 57–58
scalability, 57
speedup, 56–57
work-span model, 62–65

Permutation scatter pattern, 116, 183–185, 183f
Pervasive parallelsim, 7
Pipeline, 99–100, 99f, 114

basic, 253–254
four-stage, 296

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 403 — #7

Index 403

general topologies, 261
implementation of, 255–257
mandatory versus optional parallelism, 261–262
with parallel stages, 254–255
programming model supporting for, 257–261
three-stage

using Cilk Plus, 296–297
using TBB, 292–296

Pitfalls, 68–75
deadlock, 72
lack of locality, 73–74
load imbalance, 74
lock, 70
mutual exclusion, 70
overhead, 74–75
race condition, 68–70
strangled scaling, 73

Pochoir stencil compilers, 273
Point-to-point synchronization, 33
Pointers, 86, 96
Polyhedral theory, 206
Polynomials, Karatsuba multiplication of, 224–227
Portability, 23

of functionality, 28
Potential parallelism, 51, 81, 209
Power, 57–58
Power wall, 8, 9, 11
PPL, see Microsofts Parallel Patterns Library
Pragma, 53, 128
Pragma markup, 211
#pragma simd, 343–344
PRAM, see Parallel Random Access Machine
Priority scatter pattern, 183, 184f, 185–186
Producer, 261
Producer–consumer relationship, 99
Programmer, goal of, 2
Programming model

for fork–join, 211–212
supporting for pipelines, 257–261
supports pattern, 110–112t

Array building blocks, 115–116
Cilk plus, 112–113
OpenCL programming model, 116–118
OpenMP interface, 114–115
TBB, 113–114

Q
Quadratic function, 131
Quicksort, 105, 218, 230–231, 299, 307, 313

Cilk, 231–233
TBB, 233–237
work and span for, 237–238

quicksort_task, 233, 235

R
Race conditions, 68–70, 113, 179, 191
Random read and write, 96, 116
Reassign steps, 281
Recurrence pattern, 95, 113, 199, 204–207, 205f, 206f
Recurrence relations, 299
Recurrences

fork–join to, 246–250
for work, 302

and span, 304
Recursion, 87–88, 112, 209
Recursive Cholesky decomposition, 317–318
Recursive divide-and-conquer pattern, 142
Recursive fork–join, 234
Recursive linear algebra, 315
Recursive matrix multiplication, pseudocode for, 229
Recursive merge, 300
Recursive pattern, pseudocode for, 247
recursive_map, 215
recycle_to_reexecute(), 237
reducer_basic_string, 240
Reducers, 158, 239, 283, 334–338

in Cilk Plus, 241
Reduction operations, 341
Reduction pattern, 27, 90–92, 112, 114–117, 145–146,

146f
fusing map and, 152
implementation of, 151–152
precision, 150–151
reordering computations, 146–148, 149, 150, 150f
tiling, 149–150
vectorization, 148–149

Reductions, 7, 238–241
using thread local storage for, 286

Refactoring, 26
Reflection seismology survey, 265
Registers, 45
Regular parallelism, 41
Relative speedup, 56
Reordering computations, 146–148
Repacking, 307

and subsorting, 310–312
Reverse model, 266
Reverse time migration (RTM), 265

grids in, 267
Rotate pattern, 182
RTM, see Reverse time migration
Run-length encoding, 291, 292

S
Sample sort, 308f

parallel, top-level code for, 308
partitions, 307

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 404 — #8

404 Index

Sample sort (continued)
performance analysis, 312–313
structure, 307–308
subphases, 310–311

Scalability, 2, 56–57
Scalable parallelism, 40
Scalar function for addition in C, 26
Scalar operands, 340
Scaled vector addition (SAXPY)

ArBB using vector operations, 128–129
mathematical definition of, 124
OpenCL implementation, 130–131
serial implementation, 125

Scan pattern, 27, 92–95, 114, 116, 117, 162–164, 163f, 201
ArBB, 165
Cilk Plus, 164–165
fusing map and, 166–168
OpenMP, 165–166
TBB, 165

Scatter pattern, 101–102, 102f, 113, 115–117, 124, 179,
182–183, 183f

conversion to gather pattern, 186–187
Scattered allocations, 96
Scratch space, allocation of, 227
Search pattern, 105
__sec_reduce_add function, 134
Segmentation, 105, 192, 193f
Seismic Duck program, 265
Selection pattern, 84
Semantics, 80

of map pattern, 121
Separating hyperplane, 204
Sequence of map operations, 139–141
Sequence pattern, 82–84
Sequential consistency, 69
Sequential semantics, 3
Sequentially consistent programs, 29
Serial computation, 29
Serial data management patterns, 95–98
Serial elision, 30
Serial illusion, 2
Serial integrated table preparation in C, 171
Serial merge sort, 300, 304

properties, 299
Serial pattern, 79
Serial pipeline stage, 253
Serial processor illusion, 10
Serial Quicksort, 231
Serial reduction in C++, 146, 147
Serial scan pattern, 93f
Serial task, 255
Serial traps, 3, 14

Serial–parallel–serial pipeline, 255f
Serialization, 2, 3, 248
Shared design principles, with TBB, 329
Shared memory machine model, 5
Shared memory parallel programming models, 22
Shift, 179, 181f, 182

implementing stencil with, 201, 202f
SIMD, see Single Instruction, Multiple Data
simple_partitioner, 352
SIMT, see Single Instruction, Multiple Threads
Single Instruction, Multiple Data (SIMD), 52

machine, 105, 189
Single Instruction, Multiple Threads (SIMT), 52

machine model, 104
Single Instruction, Single Data (SISD), 52
Smith–Waterman algorithm, 207, 246
SoA, see Structures of arrays
Software thread, 41
Sorting, 107
Space–time tiling, 95, 270–272
Space-time geometry, 271
Span, 4, 5
Speculative selection, 84, 104–105, 104f, 114
Speedup, 5, 41, 56–57, 209
Split operation, see Packing
Split pattern, 187–188, 188f
SSE intrinsics, see Streaming SIMD Extensions intrinsics
Stack allocation, 96
std::count, 362
std::move, 365
Steal continuation

semantics, 221, 233
vs. steal child, 219, 220f

Stencil operations, 101
Stencil pattern, 89, 100, 115, 118, 141–142, 179, 192, 199

computation, 266–267, 267f
implementing with shift, 201, 202f
optimizing for communication, 203–204
serial implementation of, 200
tiling for cache, 202–203, 203f

Strand, 239
Strangled scaling, 73
Stream compaction, 42
Streaming SIMD Extensions (SSE) intrinsics, 45, 155–156
Strip-mining, 202
Structured parallel programming, 81
Structured serial control flow patterns

iteration pattern, 84–87, 85f
recursion pattern, 87–88
selection pattern, 84, 84f
sequence pattern, 82–84, 83f

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 405 — #9

Index 405

Structured serial programming, 81
Structures of arrays (SoA), 194–195, 196f
Subscript operator, 340
Subsorting, 307

repacking and, 310–312
Successor function, 92
sum_and_count objects, 281
Sum steps, 281
Summed area tables, 169
Superlinear speedup, 57
Superscalar instruction issue, 9
Superscalar sequence, 84, 102, 103f, 118
Swap expression, 365
Swap file, 47
Symmetric rank update, 317, 319–321

T
Tail call, 216, 217
Tail recursion, 87
Task, 39, 44
Task blocks, 80
Task cancellation, 103, 104, 114
Task Parallel Library (TPL), 360
Task parallelism, 41
task_group, 355
Taxicab geometry, 271
TBB, see Threading Building Blocks
Term graph rewriting, 107–108
Thread parallel, 42
Thread parallelism, 41, 42
Thread-local storage, 285, 331
Threading Building Blocks (TBB), 22, 27, 113, 209, 254, 310,

349, 359, 360
borrowing components from, 330f, 331–332
cache fusion, 141
dot product in, 156–158
equivalent, 311
explicit fusion in, 152
features of, 31–32
for fork–join, 213–214
four-stage pipeline using, 296
history of, 359–360
implementation of, 151, 245
integration, 172–175
k-means algorithm with, 285–289
Mandelbrot in, 132, 133
overview of, 350f
parallel merge, 301
pipeline in, 257–258, 262
quicksort, 233–237
SAXPY in, 125–127

scan pattern, 165
shared design principles with, 329
task, 355–356
empty_task, 356

three-stage pipeline using, 292–296
unique characteristics of, 349–350
use of, 36, 350

Threads, 3, 81, 211, 359
Three walls, 8
Three-stage pipeline using Cilk Plus, 296–297
Throughput, 55

of pipeline, 254
Tiles, 140
Tiling, 51, 149–150, 207, 265

space–time, 270–272
Time-varying acoustic signal, 266
TLB, see Translation Lookaside Buffer
TPL, see Task Parallel Library
Transaction pattern, 109, 185
Translation Lookaside Buffer (TLB), 47, 202
Transpose arguments, 316
Trapezoidal space–time region, 272f
Tree reduction pattern, 90–92, 92f
Triangular solve, 317–319
Two-stage pipeline, 261

U
Uniform data, 124
Uniform parameters, 124, 125
Unpack pattern, 99, 187, 188f
Unparallelizable algorithm, 169
Unsplit pattern, 188, 188f
Unzip pattern, 180, 181f, 182

V
Varying data, 124
Varying parameters, 124, 125
Vector computation in ArBB, 34
Vector intrinsics, 43
Vector parallelism, 41, 42, 218
Vector register, 42
Vectorization, 13, 43, 96, 148–149, 149f, 179, 192, 248, 343

of data, 201
Vectorized function for addition in Cilk Plus, 26
Vectorized map, 122
Very Large Instruction Word (VLIW) process, 9
Virtual memory, 47–48, 96
Vocabulary and notation, 39–40

data, 39
dependency, 39
fork–join pattern, 39
task, 39

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — 27-ind-397-406-9780124159938 — 2012/6/6 — 14:11 — Page 406 — #10

406 Index

W
Wavefield models, 266
while loop

demonstration of, 86
iteration using, 85

Work groups, 117
Work item, 117

Work stealing, 218
Work-span bounds, 244
Work-span model, 5, 62–65
Workpile pattern, 105, 113–115, 118, 142

Z
Zip pattern, 180, 181f, 182

	Front Cover
	Structured Parallel Programming: Patterns for Efficient Computation
	Copyright
	Table of Contents
	Listings
	Preface
	Preliminaries
	1 Introduction
	1.1 Think Parallel
	1.2 Performance
	1.3 Motivation: Pervasive Parallelism
	1.3.1 Hardware Trends Encouraging Parallelism
	1.3.2 Observed Historical Trends in Parallelism
	1.3.3 Need for Explicit Parallel Programming

	1.4 Structured Pattern-Based Programming
	1.5 Parallel Programming Models
	1.5.1 Desired Properties
	1.5.2 Abstractions Instead of Mechanisms
	1.5.3 Expression of Regular Data Parallelism
	1.5.4 Composability
	1.5.5 Portability of Functionality
	1.5.6 Performance Portability
	1.5.7 Safety, Determinism, and Maintainability
	1.5.8 Overview of Programming Models Used
	Cilk Plus
	Threading Building Blocks (TBB)
	OpenMP
	Array Building Blocks (ArBB)
	OpenCL

	1.5.9 When to Use Which Model?

	1.6 Organization of this Book
	1.7 Summary

	2 Background
	2.1 Vocabulary and Notation
	2.2 Strategies
	2.3 Mechanisms
	2.4 Machine Models
	2.4.1 Machine Model
	Instruction Parallelism
	Memory Hierarchy
	Virtual Memory
	Multiprocessor Systems
	Attached Devices

	2.4.2 Key Features for Performance
	Data Locality
	Parallel Slack

	2.4.3 Flynn's Characterization
	2.4.4 Evolution

	2.5 Performance Theory
	2.5.1 Latency and Throughput
	2.5.2 Speedup, Efficiency, and Scalability
	2.5.3 Power
	2.5.4 Amdahl's Law
	2.5.5 Gustafson-Barsis' Law
	2.5.6 Work-Span Model
	2.5.7 Asymptotic Complexity
	2.5.8 Asymptotic Speedup and Efficiency
	2.5.9 Little's Formula

	2.6 Pitfalls
	2.6.1 Race Conditions
	2.6.2 Mutual Exclusion and Locks
	2.6.3 Deadlock
	2.6.4 Strangled Scaling
	2.6.5 Lack of Locality
	2.6.6 Load Imbalance
	2.6.7 Overhead

	2.7 Summary

	I Patterns
	3 Patterns
	3.1 Nesting Pattern
	3.2 Structured Serial Control Flow Patterns
	3.2.1 Sequence
	3.2.2 Selection
	3.2.3 Iteration
	3.2.4 Recursion

	3.3 Parallel Control Patterns
	3.3.1 Fork–Join
	3.3.2 Map
	3.3.3 Stencil
	3.3.4 Reduction
	3.3.5 Scan
	3.3.6 Recurrence

	3.4 Serial Data Management Patterns
	3.4.1 Random Read and Write
	3.4.2 Stack Allocation
	3.4.3 Heap Allocation
	3.4.4 Closures
	3.4.5 Objects

	3.5 Parallel Data Management Patterns
	3.5.1 Pack
	3.5.2 Pipeline
	3.5.3 Geometric Decomposition
	3.5.4 Gather
	3.5.5 Scatter

	3.6 Other Parallel Patterns
	3.6.1 Superscalar Sequences
	3.6.2 Futures
	3.6.3 Speculative Selection
	3.6.4 Workpile
	3.6.5 Search
	3.6.6 Segmentation
	3.6.7 Expand
	3.6.8 Category Reduction
	3.6.9 Term Graph Rewriting

	3.7 Non-Deterministic Patterns
	3.7.1 Branch and Bound
	3.7.2 Transactions

	3.8 Programming Model Support for Patterns
	3.8.1 Cilk Plus
	Nesting, Recursion, Fork–Join
	Reduction
	Map, Workpile
	Scatter, Gather

	3.8.2 Threading Building Blocks
	Nesting, Recursion, Fork–Join
	Map
	Workpile
	Reduction
	Scan
	Pipeline
	Speculative Selection, Branch and Bound

	3.8.3 OpenMP
	Map, Workpile
	Reduction
	Fork–Join
	Stencil, Geometric Decomposition, Gather, Scatter

	3.8.4 Array Building Blocks
	Map
	Reduction, Scan
	Scatter, Gather
	Pack

	3.8.5 OpenCL
	Map
	Gather
	Scatter
	Reduction, Scan, Pack, Expand
	Stencil
	Workpile
	Superscalar Sequences
	Geometric Decomposition
	Closures

	3.9 Summary

	4 Map
	4.1 Map
	4.2 Scaled Vector Addition (SAXPY)
	4.2.1 Description of the Problem
	4.2.2 Serial Implementation
	4.2.3 TBB
	4.2.4 Cilk Plus
	4.2.5 Cilk Plus with Array Notation
	4.2.6 OpenMP
	4.2.7 ArBB Using Vector Operations
	4.2.8 ArBB Using Elemental Functions
	4.2.9 OpenCL

	4.3 Mandelbrot
	4.3.1 Description of the Problem
	4.3.2 Serial Implementation
	4.3.3 TBB
	4.3.4 Cilk Plus
	4.3.5 Cilk Plus with Array Notations
	4.3.6 OpenMP
	4.3.7 ArBB
	4.3.8 OpenCL

	4.4 Sequence of Maps versus Map of Sequence
	4.5 Comparison of Parallel Models
	4.6 Related Patterns
	4.6.1 Stencil
	4.6.2 Workpile
	4.6.3 Divide-and-conquer

	4.7 Summary

	5 Collectives
	5.1 Reduce
	5.1.1 Reordering Computations
	5.1.2 Vectorization
	5.1.3 Tiling
	5.1.4 Precision
	5.1.5 Implementation
	OpenCL
	TBB
	Cilk Plus
	ArBB
	OpenMP

	5.2 Fusing Map and Reduce
	5.2.1 Explicit Fusion in TBB
	5.2.2 Explicit Fusion in Cilk Plus
	5.2.3 Automatic Fusion in ArBB

	5.3 Dot Product
	5.3.1 Description of the Problem
	5.3.2 Serial Implementation
	5.3.3 SSE Intrinsics
	5.3.4 TBB
	5.3.5 Cilk Plus
	5.3.6 OpenMP
	5.3.7 ArBB

	5.4 Scan
	5.4.1 Cilk Plus
	5.4.2 TBB
	5.4.3 ArBB
	5.4.4 OpenMP

	5.5 Fusing Map and Scan
	5.6 Integration
	5.6.1 Description of the Problem
	5.6.2 Serial Implementation
	5.6.3 Cilk Plus
	5.6.4 OpenMP
	5.6.5 TBB
	5.6.6 ArBB

	5.7 Summary

	6 Data Reorganization
	6.1 Gather
	6.1.1 General Gather
	6.1.2 Shift
	6.1.3 Zip

	6.2 Scatter
	6.2.1 Atomic Scatter
	6.2.2 Permutation Scatter
	6.2.3 Merge Scatter
	6.2.4 Priority Scatter

	6.3 Converting Scatter to Gather
	6.4 Pack
	6.5 Fusing Map and Pack
	6.6 Geometric Decomposition and Partition
	6.7 Array of Structures vs. Structures of Arrays
	6.8 Summary

	7 Stencil and Recurrence
	7.1 Stencil
	7.2 Implementing Stencil with Shift
	7.3 Tiling Stencils for Cache
	7.4 Optimizing Stencils for Communication
	7.5 Recurrence
	7.6 Summary

	8 Fork–Join
	8.1 Definition
	8.2 Programming Model Support for Fork–Join
	8.2.1 Cilk Plus Support for Fork–Join
	8.2.2 TBB Support for Fork–Join
	8.2.3 OpenMP Support for Fork–Join

	8.3 Recursive Implementation of Map
	8.4 Choosing Base Cases
	8.5 Load Balancing
	8.6 Complexity of Parallel Divide-and-Conquer
	8.7 Karatsuba Multiplication of Polynomials
	8.7.1 Note on Allocating Scratch Space

	8.8 Cache Locality and Cache-Oblivious Algorithms
	8.9 Quicksort
	8.9.1 Cilk Quicksort
	8.9.2 TBB Quicksort
	8.9.3 Work and Span for Quicksort

	8.10 Reductions and Hyperobjects
	8.11 Implementing Scan with Fork–Join
	8.12 Applying Fork–Join to Recurrences
	8.12.1 Analysis
	8.12.2 Flat Fork–Join

	8.13 Summary

	9 Pipeline
	9.1 Basic Pipeline
	9.2 Pipeline with Parallel Stages
	9.3 Implementation of a Pipeline
	9.4 Programming Model Support for Pipelines
	9.4.1 Pipeline in TBB
	9.4.2 Pipeline in Cilk Plus

	9.5 More General Topologies
	9.6 Mandatory versus Optional Parallelism
	9.7 Summary

	II Examples
	10 Forward Seismic Simulation
	10.1 Background
	10.2 Stencil Computation
	10.3 Impact of Caches on Arithmetic Intensity
	10.4 Raising Arithmetic Intensity with Space–Time Tiling
	10.5 Cilk Plus Code
	10.6 ArBB Implementation
	10.7 Summary

	11 K-Means Clustering
	11.1 Algorithm
	11.2 K-Means with Cilk Plus
	11.2.1 Hyperobjects

	11.3 K-Means with TBB
	11.4 Summary

	12 Bzip2 Data Compression
	12.1 The Bzip2 Algorithm
	12.2 Three-Stage Pipeline Using TBB
	12.3 Four-Stage Pipeline Using TBB
	12.4 Three-Stage Pipeline Using Cilk Plus
	12.5 Summary

	13 Merge Sort
	13.1 Parallel Merge
	13.1.1 TBB Parallel Merge
	13.1.2 Work and Span of Parallel Merge

	13.2 Parallel Merge Sort
	13.2.1 Work and Span of Merge Sort

	13.3 Summary

	14 Sample Sort
	14.1 Overall Structure
	14.2 Choosing the Number of Bins
	14.3 Binning
	14.3.1 TBB Implementation

	14.4 Repacking and Subsorting
	14.5 Performance Analysis of Sample Sort
	14.6 For C++ Experts
	14.7 Summary

	15 Cholesky Factorization
	15.1 Fortran Rules!
	15.2 Recursive Cholesky Decomposition
	15.3 Triangular Solve
	15.4 Symmetric Rank Update
	15.5 Where Is the Time Spent?
	15.6 Summary

	Appendices
	Appendix A: Further Reading
	A.1 Parallel Algorithms and Patterns
	A.2 Computer Architecture Including Parallel Systems
	A.3 Parallel Programming Models

	Appendix B: Cilk Plus
	B.1 Shared Design Principles with TBB
	B.2 Unique Characteristics
	B.3 Borrowing Components from TBB
	B.4 Keyword Spelling
	B.5 cilk_for
	B.6 cilk_spawn and cilk_sync
	B.7 Reducers (Hyperobjects)
	B.7.1 C++ Syntax
	B.7.2 C Syntax

	B.8 Array Notation
	B.8.1 Specifying Array Sections
	B.8.2 Operations on Array Sections
	B.8.3 Reductions on Array Sections
	B.8.4 Implicit Index
	B.8.5 Avoid Partial Overlap of Array Sections

	B.9 #pragma simd
	B.10 Elemental Functions
	B.10.1 Attribute Syntax

	B.11 Note on C++11
	B.12 Notes on Setup
	B.13 History
	B.14 Summary

	Appendix C: TBB
	C.1 Unique Characteristics
	C.2 Using TBB
	C.3 parallel_for
	C.3.1 blocked_range
	C.3.2 Partitioners

	C.4 parallel_reduce
	C.5 parallel_deterministic_reduce
	C.6 parallel_pipeline
	C.7 parallel_invoke
	C.8 task_group
	C.9 task
	C.9.1 empty_task

	C.10 atomic
	C.11 enumerable_thread_specific
	C.12 Notes on C++11
	C.13 History
	C.14 Summary

	Appendix D: C++11
	D.1 Declaring with auto
	D.2 Lambda Expressions
	D.3 std::move

	Appendix E: Glossary

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

