

Distributed and
Parallel Systems

From Cluster to
Grid Computing

edited by

Péter Kacsuk
MTA SZTAKI

Computer and Automation Research Institute
Hungary

Thomas Fahringer
Universität Innsbruck

Austria
Zsolt Németh

MTA SZTAKI
Computer and Automation Research Institute

Hungary

Distributed and
Parallel Systems

From Cluster to
Grid Computing

Péter Kacsuk
MTA SZTAKI Research Institute
Lab. Parallel and Distributed Systems
Victor Hugo u. 18-22
1132 BUDAPEST
HUNGARY
kacsuk@sztaki.hu

Thomas Fahringer
Universität Innsbruck
Institut für Informatik
Technikerstr. 21a
6020 INNSBRUCK
AUSTRIA
Thomas.Fahringer@uibk.ac.at

Zsolt Németh
MTA SZTAKI Research Institute
Lab. Parallel and Distributed Systems
Victor Hugo u. 18-22
1132 BUDAPEST
HUNGARY
zsnemeth@sztaki.hu

Library of Congress Control Number: 2007922720

Distributed and Parallel Systems:
Cluster and Grid Computing
Edited by Péter Kacsuk, Thomas Fahringer, Zsolt Németh

ISBN-13: 978-0-387-69857-1 e-ISBN-13: 978-0-387-69858-8
ISBN-10: 0-387-69857-4 e-ISBN-10: 0-387-69858-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by

The use in this publication of trade names, trademarks, service marks and similar
terms, even if the are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

similar or dissimilar methodology now know or hereafter developed is forbidden.

Contents

Preface ix

Program Committee and Additional Reviewers xi

Part I: Parallel and distributed algorithms

The Wandering Token: Congestion Avoidance of a Shared Resource 3
Augusto Ciuffoletti

A Locality Optimizing Algorithm for Developing
Stream Programs in Imagine 13
Jing Du, Xuejun Yang, Canqun Yang, Xiaobo Yan, Yu Deng

Granular SSOR Preconditioning Placed on Dynamic SMP Clusters
with Communication on the Fly 23
Boguslaw Butrylo, Marek Tudruj, Lukasz Masko

Bulk Synchronous Parallel ML with Exceptions 33
Louis Gesbert, Frédéric Gava, Frédéric Loulergue, Frédéric Dabrowski

Part II: Networking and communication

A New Approach to MPI Collective Communication Implementations 45
Torsten Hoefler, Jeffrey M. Squyres, Graham Fagg, George Bosilca,
Wolfgang Rehm, Andrew Lumsdaine

Supporting MPI applications in P-GRADE Portal 55
Zoltán Farkas, Zoltán Balaton, Péter Kacsuk

Tuned: An Open MPI Collective Communications Component 65
Graham E. Fagg, George Bosilca, Jelena Pješivac-Grbović,
Thara Angskun, Jack J. Dongarra

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 73
Thara Angskun, Graham E. Fagg, George Bosilca,
Jelena Pješivac-Grbović, Jack J. Dongarra

Supporting Seamless Remote I/O Using a Parallel NetCDF Interface 81
Yuichi Tsujita

v

vi

Part III: Grid and web services

Generating Semantic Descriptions of Web and Grid Services 93
Marian Babik, Ladislav Hluchy, Jacek Kitowski, Bartosz Kryza

Legacy Code Support for Service-oriented Production Grids 103
Thierry Delaitre, Tamás Kiss, Gábor Terstyánszky,
Stephen Winter, Péter Kacsuk

Client-Side Task Support in Matlab for Concurrent Distributed Execution 113
Christian Hoge, Dan Keith, Allen D. Malony

Message Level Security For Grid Services Using S/MIME 123
Daniel Kouřil, Ondřej Krajı́ček, Martin Kuba, Michal Procházka

Part IV: Grid infrastructure

Fault Tolerant Grid Registry 135
Marek Kasztelnik, Marian Bubak, Cezary Górka,
Maciej Malawski, Tomasz Gubala

Secure application deployment in the Hierarchical Local Desktop Grid 145
Attila Marosi, Gábor Gombás, Zoltán Balaton

Designing Distributed Mediator Component for the
C-GMA Monitoring Architecture 155
Ondřej Krajı́ček, Andrea Ceccanti, Aleš Křenek,
Luděk Matyska, Miroslav Ruda

User Oriented Grid Testing 165
Miklós Kozlovszky, Krisztián Karóczkai, István Márton,
András Schnautigel, Péter Kacsuk, Gábor Hermann,
Ramon Harrington, Danielle Martin, Carsten Winsnes, Thomas Strodl

Part V: Advanced grid techniques

Application and Middleware Transparent Checkpointing
with TCKPT on Clustergrid 179
József Kovács, Rafal Mikolajczak,
Radoslaw Januszewski, Gracjan Jankowski

Contents

vii

UML based Grid Workflow Modeling under ASKALON 191
Jun Qin, Thomas Fahringer, Sabri Pllana

A Taxonomy of Grid Resource Brokers 201
Attila Kertész, Péter Kacsuk

Towards an Agent Integrated Speculative Scheduling Service 211
László Csaba Lőrincz, Attila Ulbert, Zoltán Horváth, Tamás Kozsi

Author Index 223

Contents

Preface

The sixth Austrian-Hungarian Workshop on Distributed and Parallel Systems
is organized jointly by University of Innsbruck and the MTA SZTAKI Computer
and Automation Research Institute. The series of workshops started as a small
regional meeting early in the nineties, and since then it evolved a lot and became
an acknowledged international scientific event. The scope of the workshop has
changed as well during the years following the new trends in technology. The
first workshop was dedicated to transputers whereas in recent years, just like
this year, it is tagged with cluster and grid computing.

This year the workshop attracted authors from Europe, North-America,
Africa and Asia. To continue the recent trends in improving the quality of
the workshop, around 52% of the submitted papers were accepted after a thor-
ough review process. These papers are presented in this volume and give a good
overview of recent advances in various aspects of parallel and distributed com-
puting. The proceedings is composed of five parts according to the major topics
of the workshop – albeit they cover a much broader range in this field. Part I
is devoted to general algorithmic aspects of parallel and distributed computing.
Communication is a fundamental issue in distributed computing addressed in
Part II. The rest of the papers are directly or indirectly related to grid computing:
Part III introduces its service oriented questions; Part IV raises various crucial
questions tied to the infrastructure whereas Part V presents the most abstract
papers introducing advanced problems and challenges of grid computing.

There were two invited talks at the workshop delivered by Leif Laaksonen
introducing grid computing in Finland and Nordic collaboration and by Peter
Coveney about attracting computational scientist to grid computing by middel-
wares that simplify user interaction.

ix

x

We would like to express our gratitude for the generous support of Hewlett-

und Kultur and University of Innsbruck.

We would like to thank the members of the Program Committee and the addi-
tional reviewers for their work in refereeing the submitted papers and ensuring
the high quality of DAPSYS 2006. Special thanks to those who helped us be-
yond their duties. We are grateful to Susan Lagerstrom-Fife and her assistant,
Sharon Palleschi at Springer for their endless patience and valuable support in
producing this volume. The conference could have never been realized without
the devoted work of the local organizers: Michaela Lechner, Wolfgang Kausch
and the tireless omnipresent almost-PC-chair Stefan Podlipnig. Special thanks
to the webmasters Attila Csaba Marosi and Csaba Kujbus and Philippe Rigaux
for providing the MyReview system.

Péter Kacsuk Thomas Fahringer Zsolt Németh
Workshop Chair Program Co-chair Program Co-chair

Preface

Packard, Intel,SunMicrosystems,Bundesministerium fürBildung, Wissenschaft

Program Committee and Additional Reviewers

Workshop Chair

Péter Kacsuk (MTA SZTAKI, Hungary)

Program Chairs

Thomas Fahringer (Univ. of Innsbruck)
Zsolt Németh (MTA SZTAKI, Hungary)

Program Committee Members

Artur Andrzejak (ZIB, Germany)
László Böszörményi (University Klagenfurt, Austria)
Marian Bubak (CYFRONET, Poland)
Alois Ferscha (Johannes Kepler University Linz, Austria)
Günter Haring (University of Vienna, Austria)
Ladislav Hluchy (II SAS, Slovakia)
Zoltán Juhász (University of Veszprem, Hungary)
Károly Kondorosi (Technical University of Budapest, Hungary)
Gabriele Kotsis (University of Vienna, Austria)
Dieter Kranzlmüller (Johannes Kepler University Linz, Austria)
Domenico Laforenza (CNUCE-CNR, Italy)
Erwin Laure (CERN, Switzerland)
Evangelos Markatos (FORTH-ICS, Greece)
Ludek Matyska (Univ. of Brno, Czech Rep.)
Jarek Nabrzyski (PSNC, Poland)
Thierry Priol (INRIA, France)
Radu Prodan (Univ. of Innsbruck)
Rizos Sakellariou (U. Manchester, UK)
Wolfgang Schreiner (University of Linz, Austria)
Domenico Talia (Univ. Calabria, Italy)
Gábor Terstyánszky (Westminster University, UK)
Marek Tudruj (IPI PAN / PJWSTK, Poland)
Jens Volkert (Johannes Kepler University Linz, Austria)
Ramin Yahyapour (U. Dortmund, Germany)

xi

xii

Additional Reviewers

Jan Astalos
Marian Babik
Zoltán Balaton
Mehmet Ceyran
Miroslav Dobrucky
Rubing Duan
Gianluigi Folino
Xaris Gikas
Christian Glasner
Balázs Goldschmidt
Gábor Hermann
Miklós Kozlovszky
Bartosz Kryza
Róbert Lovas
Attila Marosi
Carlo Mastroianni
Monika Moser
Farrukh Nadeem
Christos Papachristos
Christian Perez
Stefan Plantikow
Stefan Podlipnig
Christian v. Prollius
Jun Qin
Viera Sipkova
Gergely Sipos
Csongor Somogyi
Marek Wieczorek
Henan Zhao

Program Committee Additional Reviewers

I

PARALLEL AND DISTRIBUTED ALGORITHMS

THE WANDERING TOKEN: CONGESTION
AVOIDANCE OF A SHARED RESOURCE

Augusto Ciuffoletti
CoreGRID Institute of Grid Information, Resource and Workflow Monitoring Services
INFN/CNAF – Via Berti Pichat – 40127 Bologna

augusto@di.unipi.it

Abstract
In a distributed system where scalability is an issue, the problem of

enforcing mutual exclusion often arises in a soft form: the infrequent
failure of the mutual exclusion predicate is tolerated, without compro-
mising the consistent operation of the overall system. For instance
this occurs when the operation subject to mutual exclusion requires massive
use of a shared resource.

We introduce a scalable soft mutual exclusion algorithm, based on
token passing: one distinguished feature of our algorithm is that instead
of introducing an overlay topology we adopt a random walk approach.

The consistency of our proposal is evaluated by simulation, and we

bone based network.
This algorithm is studied in the frame of the CoreGRID Institute

of Grid Information, Resource and Workflow Monitoring Services, in
cooperation with the FORTH Institute, in Greece.

Keywords: congestion avoidance, random walk, token circulation, self-stabilization, soft
mutual exclusion.

1. Introduction
In an ideal distributed system all resources are equivalently able to

play any role. However, in practical applications, it is often the case
that the introduction of a centralized resource may be appropriate, in
order to reduce the cost, or to improve the performance. The loss of
scalability and fault tolerance, which is inherent to the introduction of
a centralized resource, is accepted as a tradeoff.

In order to avoid congestion, an appropriate access control mech-
anism must be provided. It is a well known fact that locating such

exemplify its use in the coordination of large data transfers in a back-

 4 Augusto Ciuffoletti

mechanism at resource-side exhibits several drawbacks: the resource must
be designed to negotiate services, using an appropriate protocol which
consumes a share of available resources, and clients should make appro-
priate use of such negotiation. Here we propose a client-side mechanism
especially suited for environments where resource and networking infra-
structure are legacy.

A congestion avoidance mechanism coordinates the access to the cen-
tralized resource. The basic requirement is that resource performance, as
observed by the client, must be nominal as long as the overall load
does not exceed resource capacity. When requests overtake the capacity
of the resource, it should reproduce at client side the effect of an
overload, but without stress for the resource. The mechanism must not
introduce bounds on system size, other than those enforced by resource
capacity: this excludes the adoption of centralized algorithms, that are
not scalable, as well as distributed algorithms based on deterministic
consensus, that have an heavy footprint.

As a case study, we consider a “Video on Demand” environment where
video streams at 650Kbps (appropriate for low resolution movies) are
delivered to a group of subscribers. The shared resource in a 200Mbps
backbone, which saturates with 300 subscribers. We want that sub-
scribers coordinate their access to the infrastructure in order to limit
their access to the stream source, thus keeping the overall used band-
width below 200Mbps. Only exceptionally such limit can be exceeded:
the Service Agreement states that bursts up to 400Mbps are delivered
with an additional cost, and that packet delivery is not guaranteed over
that further limit. This might justify a flexible control over the number
of subscribers, that might go over the theoretical maximum of 300
subscribers.

Summarizing, unlike traditional mutual exclusion modeled by a con-
current write on a shared register, our problem statement includes the
occasional occurrence of simultaneous access to the resource. This is
due to the nature of the resource whose performance may degrade (in
the case study, degradation is initially only financial) when many are
executed simultaneously, but without damage for the consistency of the
system. This is formally translated in the following definition:

REQUIREMENT 1 A soft mutual exclusion algorithm for the protected
operation A ensures that at any time, with high probability, there is just
one agent enabled to perform A. The probability that more than one
agent is enabled falls exponentially in the number of enabled agents.

We propose a distributed algorithm that implements soft mutual ex-
clusion. The algorithm falls into the peer to peer family, since there is no

The Wandering Token: Congestion Avoidance of a Shared Resource 5

centralized agent, and all participants run the same code. It is random-
ized, in the sense that the algorithm is controlled by decisions affected
by a random bias, injected in order to improve the performance, and
probabilistic, in the sense that the performance of the algorithm is itself
a random variable, with a favorable distribution.

The basic idea is the circulation of a token ensuring that, with high
probability, exactly one token is present in the system. The token will
visit each peer agent, granting exclusive access to the resource to the
agent that holds the token. This random process can be modeled using
the cover time of a random walk in the system graph: in Jonasson, 1998
the authors prove that the distribution of token interarrival time on a
peer is characterized by a small probability after a value that grows
with O (N log N), where N is the number of agents in the system. We
do not assume a fixed topology or a preliminary overlay design phase
(as in Kwon and Byers, 2003, aimed at multicast). We evaluate its
performance in a full mesh that represents the transport level of the
Internet. Formal results (see Jonasson, 1998) justify the claim that our
algorithm may be of interest also in networks with an average degree
comparable with log N.

The algorithm relies on the knowledge of the membership that can
execute the protected operation by each agent. Here we do not introduce
a solution for membership management, but propose a way to regulate
access to a shared resource once the membership is established. We
insist on the fact that, on each agent, the knowledge of the membership
may be limited to O (log N) other agents, randomly selected.

The relationships with (deterministic) self-stabilization in Dijkstra,
1974 are evident: however, instead of using the knowledge of neighbor’s
state, we enforce mutual exclusion using time constraints computed loc-
ally. We share with some randomized self-stabilizing algorithms the basic
idea of performing random moves in order to compensate lack of
information. Our approach may be regarded as an evolution of Israeli
and Jalfon, 1990: with respect to that work, we introduce a probabilistic
definition of closure, since the token management scheme may itself
induce divergence from the legal state.

Divergence is represented by two kinds of events: the loss of the to-
ken and the generation of spurious tokens. The former is induced by a
system failure, the second is an inappropriate response of our algorithm.
Both events occur with low probability, and the algorithm autonomously
recovers. We exclude token duplication (spurious tokens are distinct)
using a 3-way token passing protocol (see Ciuffoletti, 2006).

Although many topics discussed in this paper have been individually
treated in formal papers, here we prefer a simulation approach: this

6 Augusto Ciuffoletti

option is motivated by the fact that the solution we introduce uses a
combination of randomization techniques which makes unapproachable a
formal evaluation. Whenever appropriate, we indicate formal works that
motivate the framework of our approach. Simulation results are sum-
marized in section 3.

2. System model and the wandering token idea
The system is composed of a set of N peer agents, whose clocks are

loosely synchronized, interconnected by a complete mesh of links: for
each couple of agents (ci, cj) there is a link li,j that connects them, as in a
transport level view of the Internet.

The resource sharing problem is defined by two parameters: Nmax the
number of agents that saturates the resource and ∆op the time during
which access is granted to the resource, once the agent holds the token.

The algorithm, described in figure 1, is a probabilistic self-stabilizing
algorithm, according with Afek and Brown, 1993. Let us first examine
the stable behavior, that corresponds to the case where there is exactly
one circulating token.

In that case the behavior of the agent consists of receiving the token,
performing an action associated to the presence of the token, and passing
the token to a randomly selected peer. The associated action consists in
a simple delay of ∆skip time units in case the agent already performed
the protected operation less than ∆min time units ago; otherwise the agent
holds the token for a time ∆op, while the protected operation is performed.
We assume ∆skip to be significantly smaller than ∆op.

Given Nmax and ∆op we compute a reasonable value for ∆min as

2
∆

∆ = op max
min

* N

which is half the access period that would saturate the resource. Such
simple rule of thumb is appropriate in many cases.

A token loss event, which has a probability that is significantly reduced
by the 3-way token passing protocol, breaks the stable behavior. The
token regeneration rule is triggered when the agent does not receive one
within a timeout that is obtained incrementing ∆min of a random quantity.
A randomized rule guarantees the absence of synchronization effects
that might degrade the performance. To this purpose, the Poisson distri-
bution is regarded as a convenient candidate.

The γgenerate parameter corresponds to the γ parameter of such distri-
bution, and a reasonable value is:

2*
2

γ
∆

=∆ = op max
min max

N
generate * N

The Wandering Token: Congestion Avoidance of a Shared Resource 7

Figure 1. The Wandering token algorithm

If we rescale such distribution in order to have Nmax events per time
unit, we obtain a distribution with an interarrival time of ∆min time
units. Therefore, in our system, where Nmax agents run in parallel, the
timeouts will expire, on the average, every 2 * ∆min time units, which

comment: Compute algorithm parameters
∆min = ∆op ∗ Nmax/2
γgenerate = ∆min ∗ Nmax;
lasttoken = {timestamp = 0, id = NULL}
while (true)

do

comment: Receive token or trigger regeneration timeout
select(receive(token), ∆min + poisson(γgenerate))
if (defined(token))

then

comment: Apply sandwich token removal rule
if (∃i, j, i < j ∧

history(j). id = token.id ∧
history(i).timestamp < token.timestamp)
then

comment: Silently remove the token
discard(token)

fi

comment: Decide whether to execute the protected operation
if (time − (lastaccess.timestamp)) ≤ ∆min

then

comment: Just skip an early token
sleep(∆skip)
send(token)

else

comment: Execute protected operation
execute(A)
lastaccess = {timestamp = time, id = token.id}
send(token)

fi

else

comment: On timeout, generate a new token
token = {timestamp = localclock, id = newid()}
execute(A)
lastaccess = {timestamp = time, id = token.id}
send(token)

fi

push(history, token)
od

corresponds to the requested access period and is considered as a

8 Augusto Ciuffoletti

reasonable setup. Although the value of this parameter determines the
behavior of the algorithm, significant variations do not modify its basic
properties, and can be adjusted to tailor the system to specific en-
vironments.

The token generation rule does not exclude that a new token is created
even if the old one is not really lost: in that case, such rule may induce
the simultaneous presence of multiple, but distinct, tokens in the system.
Therefore the token generation rule, which is introduced in order to
recover from an unlikely token loss event, most times has the effect of
disrupting the stable property by introducing spurious tokens.

In order to remove spurious tokens, we apply to a token removal rule:
for this we require that tokens are timestamped when they are generated,
using a coarse grain clock. The agent discards a token with id x when
two conditions hold: i) the token was already received in the past at time
Tlast and ii) another token with lower timestamp was received after time
Tlast. Visually, the three tokens of which one is hold form a sandwich,
and the agent silently discards the token it holds.

Such rule is justified considering that if an agent receives a token with
a timestamp lower than a previously observed token y, it can conclude
that token y is spurious. It does not have any convenient way to remove
token y at once, since it has been already passed elsewhere, but, the
next time it observes token y, it will have a chance to remove it, and
nobody in the system might have removed token x as a consequence of
the existence of token y.

The timestamping of the token does not require accurately synchro-
nized clocks. In case two tokens have inconsistent timestamps, the appli-
cation of the sandwich rule will remove the one generated before, instead
of the other. This fact has no side effects on our protocol, so we conclude
that, in principle, timestamps could be generated randomly.

The sandwich rule has two minor weaknesses. One is that the removal
operation has a latency that corresponds to the a complete roundtrip,
which is of the order of 2 * ∆min: during that time the state of the
system is not legal, and multiple accesses can be executed concurrently.
The other is that token x, in the meanwhile, might be lost: in that case
token y, although generated as a spurious token, might have become the
new unique token. Such drawbacks have a minor impact on system
operation, and do not diminish the practical interest for the algorithm:
they indicate directions for its improvement.

The problem of token elimination is well studied in theory, and is
often referred as a solution to the leader election problem (see Bshouty
et al., 1999). However our setting disencourages a formal approach for
the validation of our proposal: a complex random process controls both

The Wandering Token: Congestion Avoidance of a Shared Resource 9

token generation, and token collision (or meeting). These two facts make
smart theoretical results, that are based on an initial population of to-
kens, and on exact collision of tokens for token elimination, useless for
our purpose. However, we note that, with respect to Israeli and Jalfon,
1990, the probability of collision is augmented by widening the collision
window so that recovery is substantially improved.

3. Simulation results
The simulation results summarized in this section reflect the case

study described in the introduction: agents of our algorithm correspond
to subscribers that require the availability of 650 Kbps over a 200 Mbps
channel, fairly distributed in time. From the definition of the problem we
derive that the system supports approximately 300 subscribers, which
corresponds to Nmax. We carried out a series of experiments using a
simple (a few hundreds Perl lines) ad hoc discrete event simulator,
which is available upon request. Each experiment lasted 105 time units,
corresponding to approximately one day operation in our case study. The
simulation takes into account token regeneration and token removal as
well as token loss, controlled by a parameter that represents token loss
interarrival. We do not simulate variable durations of the token passing
operation, which is assumed to be negligible with respect to ∆skip, the
minimum time a subscriber holds the token.

We assume each subscriber is granted exclusive access to the channel
for a time slot of a fixed size, that corresponds to ∆op: it is set to 4
seconds, considering that the subscriber application can cache infor-
mation locally.

To have a sort of reference, we introduce a simplistic solution to the
problem: each subscriber issues a service request randomly, without any
form of coordination. The interval between two successive requests is
4 * 300 = 1200 seconds, incremented by a random bias, chosen in the
interval [−600, +600], that breaks synchronous behaviors.

Observing simulation results summarized in figure 2 (dashed line
only) we understand that such algorithm is a low end solution to the soft
mutual exclusion problem: since the number of time units during which
more than one protected operation is running falls exponentially with
the number of simultaneous operations. However it is not applicable as a
solution to our case study: the share of time when the resource is idle is
40% (not shown in figure), while during 8% of the time three or more
subscribers are simultaneously active, thus falling in the “delivery not
guaranteed” region.

10 Augusto Ciuffoletti

Nmax 300 peer agents from case study
∆skip 0.1 time units from case study
∆op 4 time units from case study
∆min 600 time units (∆op * Nmax) / 2
γgenerate 180 * 103 time units ∆min * Nmax
γloss 10 * 103 time units mean time between packet loss events

Table 1. Parameters used in the simulation. One time unit correspond to one second in our
case study

The simulation of a system controlled using the wandering token
algorithm requires the definition of three further parameters: ∆skip, which
is required to be significantly less than ∆op, is set to 0.1secs, while ∆min
and γgenerate are set according to the formulas given previously. Their
values are summarized in table 1.

The comparison with the benchmark solution is clearly favorable, as
shown in figure 2: the system controlled with the wandering token
exhibits only 0.2% percent of the time with more than two subscribers
concurrently downloading a video chunk, and the extra-billing zone
(exactly 2 concurrent downloads) takes only 7% of the time.

Another relevant parameter to evaluate the quality of our solution is
the distribution of the time between successive accesses to the resource.

In the case of the benchmark algorithm this is uniformly distributed
between 600 and 1800 time units, and we may assume the time between
successive accesses is adapted so that the stream playback never expe-
riences buffer underruns (unless an high number of concurrent transfers
determines packet drops, which is an event that is likely to occur).

In the case of the wandering token algorithm the evaluation is more
complex, since the token interarrival time is ruled by a non-deterministic
law. In figure 4 we see that 80% of the times the token interarrival time
falls below 1200secs, which means in time to download the next chunk of
video. A moderate buffering can be appropriate to accommodate cases
when the interarrival time is longer.

It is interesting to see how this performance changes when the number
of subscribers does not correspond exactly to Nmax. In figure 3 and 4 we
observe that figures change smoothly varying the number of subscribers
from 70% to 120% of Nmax: the probability of concurrent access (in fig-
ure 3) does not exceed 10%, and the interarrival time (in figure 4) in
case of overbooking, tends to have a longer tail, although more than
50% of the interarrival times are below 1200 seconds.

Based on the above results, we can figure out the behavior of the
system. As long as the number of subscribers is Nmax or less, concurrent

The Wandering Token: Congestion Avoidance of a Shared Resource 11

Figure 2. Benchmark algorithm vs. wandering token: distribution of the number of concurrent
operations for memberships of 300 (full load) subscribers (simulation lasted 105 time units)

Figure 3. Wandering token: distribution of the number of concurrent operations on a shared
resource for membership size from 210 to 360 (simulation lasted 105 time units)

Figure 4. Wandering token: distribution of intervals between successive firing of the protected
operation (simulation lasted 105 time units)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4

pe
rc

en
t o

f t
im

e
un

its

n. of processed events

Number of processed events per time unit (concurrency)

wandering token
benchmark

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4

pe
rc

en
t o

f t
im

e
un

its

n. of processed events

Number of processed events per time unit (concurrency)

N=210
N=300
N=360

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 600 1200 1800 2400 3000 3600 4200 4800 5400

pe
rc

en
t o

f e
ve

nt
s

interarrival time

Distribution of interarrival times

N=210
N=300
N=360

12 Augusto Ciuffoletti

access of two subscribers occurs during less than one percent of the
time, and 80% of the times the applications have access to the backbone
within 2 * ∆min. When the number of subscribers grows over resource
saturation, the chance of concurrent execution increases, but the event
that more than 2 data transfers are occurring simultaneously is rare.
The application will be aware of the problem, since it is able to mea-
sure interarrival times, that will increase linearly with the number of
subscribers: this may induce the negotiation of lower quality of service,
reducing the stream bitrate.

4. Conclusions
The wandering token algorithm is proposed as a solution for an archi-

tecture where moderating the concurrent access to a shared resource can
improve performance. Its cost, in terms of communication and computation,
is negligible.

The algorithm is fully scalable: the algorithm does not induce any
bound on the number of agents exchanging the token. When such number
overtakes the capacity of the shared resource, the wandering token
algorithm gradually reduces the resource share granted to each agent,
thus shielding the shared resource from the consequences of the overload.

References
Afek, Y. and Brown, G. (1993). Self-stabilization over unreliable communication media.

Distributed Computing, 7(1):27–34.
Bshouty, N. H., Higham, L., and Warpechowska-Gruca, J. (1999). Meeting times of

random walks on graphs. Information Processing Letters, 69(5):259–265.
Ciuffoletti, A. (2006). Scalable accessibility of a recoverable database using a wan-

dering token. Technical Report TR-06-02, Università di Pisa, Largo Pontecorvo -
Pisa -ITALY.

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643–644.

Israeli, A. and Jalfon, M. (1990). Token management schemes and random walks yield
self stabilizing mutual exclusion. In Proceedings of the Ninth Annual ACM Symposium
on Distributed Computing, pages 119–129, Quebec City, Quebec, Canada.

Jonasson, J. (1998). On the cover time of random walks on random graphs. Combinatorics,
Probability and Computing, (7):265–279.

Kwon, G. and Byers, J. (2003). ROMA: Reliable overlay multicast with loosely coupled
TCP connections. Technical Report BU-CS-TR-2003-015, Boston University.

 A LOCALITY OPTIMIZING ALGORITHM FOR
DEVELOPING STREAM PROGRAMS IN
IMAGINE

Jing Du, Xuejun Yang, Canqun Yang, Xiaobo Yan, Yu Deng
School of Computer, National University of Defense Technology, Changsha 410073, China

Abstract: In this paper, we explore a novel locality optimizing algorithm for developing
stream programs in Imagine to sustain high computational ability. Our specific
contributions include that we formulate the relationship between streams and
kernels as a Data&Computation Matrix (D&C Matrix), and present the key
techniques for locality enhancement based on this matrix. The experimental
results on five representative scientific applications show that our algorithm
can effectively improve the computational intensiveness and avoid the
utilization of index streams to achieve high locality in LRF and SRF.

Key words: locality; Imagine; D&C Matrix; computational intensiveness; basic stream.

1. INTRODUCTION

Imagine is a programmable stream processor that implements an efficient
memory hierarchy including several local register files (LRFs) with a 256-
word scratchpad unit (SP), a 128 KB stream register file (SRF) and off-chip
DRAM to sustain high computations1,2. The stream applications on Imagine
are structured as some computation kernels that operate on sequences of data
records called streams3. Imagine achieve high performance when the stream
applications4,5 present the fine locality in LRF and SRF to fully utilize so
many ALUs. However, the straightforward coding of scientific programs
does not exhibit sufficient locality to effectively exploit the tremendous
processing power of Imagine. Therefore, in this paper, we explore a novel
locality optimizing algorithm for developing stream programs in Imagine to

14 Du, Yang, Yang, Yan, Deng

achieve high memory performance. Our specific contributions include that
we formulate the relationship between streams and kernels as the
Data&Computation Matrix (D&C Matrix), and present the key techniques
for locality enhancement based on this matrix. We implement our algorithm
to five representative scientific applications on the ISIM simulation of
Imagine. The results show that our algorithm can effectively improve the
computational intensiveness and avoid the utilization of index streams to
achieve high locality in Imagine.

2. D&C MATRIX

Loops and arrays are fundamental structures of most scientific
applications. Thus our approach is based on building a matrix called the
Data&Computation Matrix (D&C Matrix) for a given program shown in Fig.
1. Each raw of the D&C Matrix represents an array and each column of this
matrix describes the access pattern of a loop. The item in the ith row denoted
Di and the jth column denoted Lj position of the D&C Matrix corresponds to
a mapping denoted as mij: Di→Lj. We define the computation distance
Cdistance(x,y) as the number of iterations between x and y such that
Cdistance(x,y)=y-x and the data distance Ddistance(c,d) as the interval
between the two data layouts such that Ddistance(c,d)=d-c.

Data D

Computation
(Loop iteration)

The Mapping

x z y...

c d e...

Cdistance(x,y)

Ddistance(c,d)M

L

OM

MO

LL

iji

j

mD

mD
mmD

LLL

212

12111

21

Figure 1. The D&C Matrix and the mapping in the matrix

Furthermore, we treat loop iteration spaces unrolling as the stream
organization pattern. We formulate this approach as follows, where ORG(i,j)
denotes the stream organization, the symbol “ら+ ” denotes the connection of
different data sequences, max(x) is the maximum iteration of the loop body.

()j1
ij

)xmax(

0x

Lx|xm)j,i(ORG ∈= −

=

+∑

Thus, the layout of the basic stream6 is important for it affects the stream
organization. By analyzing the D&C Matrix, form the basic streams
according to the least common array region of the most time-consuming
loops. We formulate the basic stream layout of each array as follows, where

A Locality Optimizing Algorithm for Developing Stream Programs 15

f is the time-consuming factor that presents the importance of each loop for
basic stream layout.

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅∀=

f
1j,iORGjiBS I

3. PROGRAMMING OPTIMIZATION FOR
LOCALITY ENHANCEMENT

3.1 Improving LRF Locality

The enhancement of LRF locality can reduce wire delay between clusters,
improve computational intensiveness and increase the utilization of LRF7.
Thus we present the locality optimizations of LRF for shortening the
computation distances and the data distances in the D&C Matrix.

3.1.1 Enhancing temporal locality in LRF

Enhancing LRF temporal locality can increase the computational
intensiveness to sustain high computational ability. We provide the
following formula for the fine temporal locality in LRF.

() ()() () ()()KLLKDD|1xmxmLxji ji
1

ij
1

ijj ∈∈±=∈∀∀∀ −−
I

First, aiming at producing computational intensive kernels, we centralize
all the computations that perform on the same stream into a large kernel
based on the following formula, and yield a new computational intensive
matrix.

() ()()()()φ≠∈∃∈∀ amamDaLjj
21 ijijij21 I

Second, we consider reducing the computation distance in the new D&C
Matrix as follows.
1. Avoiding wire delay between clusters

Due to wire delay becoming increasingly important in locality
enhancement, we can’t assign the dependent data to different clusters but to
the same cluster. There is no influence of wire delay when the following
formula is satisfied, where clusteri denotes the records in the ith cluster.

()()() φ=≠=∀∀ − }xy&70y|cluster{clustermmji yxij
1

ij LI
2. Shortening the computation distance between loops

Data dependence tells us that two references point to the same LRF
location, thus the computation distance can be shortened by eliminating the
loop-carried dependence8. If the dependence can’t be eliminated, we
consider tiling the computation space9. Thus the dependences just exist
within inner loops. The left part of Fig. 2 shows the optimizations.

16 Du, Yang, Yang, Yan, Deng

3. Reducing the dependent threshold in the inner loop
To achieve fine-grained optimization, we need reduce the computation

distance in the innermost loop, that is, reduce the dependent threshold. We
can eliminate the intermediate variables to centralize the computations on
the same record as many as possible.

eliminate loop-carried dependence

tile the computation space

a b c a c b

computations

basic stream

computations

basic stream

data alignment

computations

basic stream

combining records
..

Figure 2. Enhancing temporal and spatial locality in LRF

3.1.2 Enhancing spatial locality in LRF

Since LRF can’t make random access, the spatial locality in LRF is
successive and limited to the LRF capacity and the overhead caused by SPs10.
We provide the following formula for fine kernel spatial locality.

() ()() () ()()KLLKDD|1amamDaji jiijiji ∈∈±=∈∀∀∀ I
1. Enhancing spatial locality of long stream

We must avoid the very latter part of a long stream reusing the previous
data due to the limited LRF capability and SPs. One side, the loop-carried
dependence need be eliminated for avoiding the LRF reuse11; on the other
side, tile the data space and restructure the data stream in LRF so that a
single strip length fits in LRF and reduce the utilization of SPs.
2. Shortening the data distance in the inner loop

The iterations of the inner loop need to be placed into a cluster to
enhance high spatial locality. First, we can align different records referenced
by the same computation or combine these records to a big record12, and
thereby the data distance can be reduced so that achieve fine spatial locality
in LRF, which is shown in the right part of Fig. 2. Second, we can apply
loop interchange to reduce the data distance according to the access pattern
of the basic stream. Last, we need to reduce the intermediate variables to

A Locality Optimizing Algorithm for Developing Stream Programs 17

utilize the fewest SPs. We formulize the number of SPs kept before iteration
y, where NUM(X) denotes the number of sequence X.

()() () () ()() ()()()KDDymzmzyzi|zmNUM i
1

ij
1

ij
1

ij ∈<∃>∀∀ −−−∑ I

3.2 Improving SRF Locality

The locality in SRF is exposed by forwarding the streams produced by
one kernel to subsequent kernels13.

3.2.1 Unifying streams between kernels

First, we alter the streams’ region to make the streams in successive
kernels uniform shown in the left of Fig. 3. Then we can transfer some
computations to the next kernel to reduce the intermediate results given in
the right of Fig. 3. Last if some parts of a long stream can be reused between
kernels, we consider strip-mining the stream to enhance SRF locality.

kernel 1

basic
stream

kernel 2

kernel 1

basic
stream

kernel 2

 kernel 1

basic
stream

kernel 2

kernel 1

basic
stream

kernel 2

Figure 3. Unifying streams between kernels

3.2.2 Make full use of the SRF capacity

Above all if some loops in the successive kernels exist data dependency,
we can transfer the loops in the previous kernel to the next kernel. This idea
can reduce the intermediate results to make full use of the SRF capacity and
enhance SRF reuse. Second, if some parts of a long stream can be reused
between multiple kernels, we consider strip-mining the stream to enhance
SRF locality and reduce off-chip memory access overhead.

3.2.3 Avoiding the utilization of index stream

The usage of index streams makes stream organization flexibly, but it
also loses the SRF locality owing to too much extra overhead of DRAM
reordering. So we must avoid using index stream as follows.

18 Du, Yang, Yang, Yan, Deng

1. Organizing streams as the basic stream
To avoid using index stream that reduces SRF locality, we need select

successive basic streams as operation objects of kernels by using loop
interchange etc. transformations.
2. Data-centric loop splitting

We bring forward a new transformation to avoid index stream for higher
locality, which is data-centric loop splitting. We can distill the computations
that reuse data with large temporal span as self-governed loop.

3.3 A locality optimizing algorithm

In this section, we develop a locality optimizing algorithm for stream
program generation denoted LOA shown in Fig. 4.

Figure 4. The LOA algorithm

∀

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∈∀= −

=

+∑
i

j
1

ij

)xmax(

0x f
1Lx|xmjiBS I

∀

∀

∀
∀

∀
∀

() ij
1

ij

)xmax(

0x
BSLx|xMif ≠∈−

=

+∑

ALGORITHM: KernelLocality(i(Mij))
INPUT: i(Mij)is the jth column of M
OUTPUT: the kernel with fine locality
for each i

avoid the utilization of index streams
 for each c, dˉDi

 if Mij(c) = Mij(d)
 put c and d on the same cluster

judge if the dependence can be eliminated
if success then
 eliminate the loop-carried dependence
 InnerLoopLocality(i(Mij))
else
 tiling the loop
 InnerLoopLocality(i(Mij))

ALGORITHM: InnerLoopLocality(i(Mij))
INPUT: i(Mij)is the jth column of M
OUTPUT: the loop with fine locality
for each i

for each c ˉDi then
reduce the intermediate variables

between two computations on c
for each d ˉDi & dΟc then begin
 if Mij(c) = Mij(d)
 combine c and d to a big record
 or data alignment

for each x, y ˉLj

if Mij
-1(x) = Mij

-1(y)
reduce Cdistance(x,y)

ALGORITHM: LOA
INPUT: The serial program P
OUTPUT: A stream program with fine locality
form the D&C Matrix of P, denoted M
ProgramLocality(M)
for each Lj
 KernelLocality(i(Mij))

ALGORITHM: ProgramLocality(M)
INPUT: The D&C Matrix of P, denoted M
OUTPUT: A new D&C Matrix
for each j
 for each c and d
 if McjΟ0 & MdjΟ0
 distribute(Lj)
for each i
 for each x and y
 if MixΟ0 & MiyΟ0
 merge(Lx, Ly)
for each j and i
 if output(Mij

-1(Lj))ˇinput(Mij+1
-1(Lj+1))Οれ

 schedule(Di, Lj+1)
for each j and i
 common= Mij

-1(Lj)ˇMij+1
-1(Lj+1)

 if commonΟれ then begin
 if common > T
 unify(Mij

-1(Lj), Mij+1
-1(Lj+1))

 else
 stripming(Mij

-1(Lj), common)
 stripming(Mij+1

-1(Lj+1), common)
for each i and j

A Locality Optimizing Algorithm for Developing Stream Programs 19

First, LOA algorithm forms the D&C Matrix of the program that need to
be expressed as stream program. Then apply ProgramLocality algorithm
for data-centric program restructuring to enhance the locality and
computational intensiveness between kernels. Afterward it employs the
routine KernelLocality to optimize the locality of each kernel.

ProgramLocality first analyze the profile information to find the most
time-consuming parts that need be streaming. And increase the computations
per words by loop distribution and loop fusion based on the D&C Matrix
transformations. Then schedule partial computations to the next kernel and
reuse the same data region between kernels by unifying stream or strip-
mining stream to enhance the SRF locality. Last, form the basic streams
according to least common array region of high access frequency by
profiling.

KernelLocality first avoids the utilization of index streams to enhance
the SRF locality. Then optimize the LRF locality. It assigns the dependent
data to the same cluster to avoid the wire delay between kernels. And
increase the locality of long streams by eliminating the loop-carried
dependence between loops or tiling the computation space. Finally, invoke
InnerLoopLocality to reduce the computation distance and data distance in
the inner loop by eliminating the intermediate variables, enlarging the
records, aligning different records and reducing the dependent threshold.

4. EXPERIMENTAL RESULTS AND ANALYSIS

Five representative scientific programs are used to evaluate our LOA
algorithm on ISIM simulator14 that is a cycle-accurate simulator of Imagine,
including Swim, Dfft, Transp, Vpenta and N-S. Swim is a weather prediction
program for comparing the performance of current supercomputers in
SPEC2000. Dfft and Transp are the most time-consuming subroutines in
Capao that is an application on the field of optics. Vpenta is one of the
kernels in nasa7. N-S is an application of solving partial differential equation
of fluid dynamics for the flow of an incompressible viscous fluid.

Fig. 5 shows the computational intensiveness that is a significant
representation of LRF locality by applying our LOA algorithm. Groups of
bars represent the original version (Orig) of each application and the version
optimized with LOA algorithm (LOA). We can observe the LOA
optimization improves the computations per memory accesses of the five
programs. However Swim and Transp achieve a little varying, because Swim
has too many data and irregular access pattern so that the loops are difficult
to be distributed or combined, and all the arrays in Transp are referenced
rarely leading a little variety of computational intensiveness compared with

20 Du, Yang, Yang, Yan, Deng

original stream program. The LOA optimization can centralize all
computations in Vpenta, Dfft and N-S to a kernel due to repetitive references
to each array in these programs.

Figure 5. Computational intensiveness Figure 6. The reduction of index streams

Fig. 6 shows the reduction of index streams by applying LOA to present
the variety of SRF locality. One of the key techniques in LOA is to form
appropriate basic streams so that the number of index streams can be
reduced. But in Swim, the choice of basic stream has little effect on stream
forming owing to complex data access pattern. Dfft has a few data in
original stream program, so the index streams are lessened a little too. The
index streams of Transp, Vpenta and N-S reduce observably for achieving
higher performance. In Transp, lessening the scale of original basic streams
at the beginning of this program can avoid a great deal of index streams. The
index stream can be eliminated in Vpenta by applying MBO when stream is
short due to regular data access pattern by using SPs in kernel. In N-S, the
basic stream reorganization plays an important role of reducing index
streams.

Fig. 7 presents the variety of computation rate of these applications
measured in the number of operations executed per second by applying LOA
optimization. Our LOA optimization assigns all dependent data to a cluster,
avoiding communication delay and memory access latency. However Swim
optimized by LOA still presents overfull index steams so that memory delay
can’t be overlapped, resulting in low computation rate. Despite Transp and
Vpenta both achieve higher LRF locality by eliminating loop-carried
dependence between inner loops and shortening dependent threshold in inner
loop, their computation rate are increased a little, because both low
computational intensiveness of Transp and the usage of index streams in
Vpenta when streams are long make overlapping memory latency difficultly.
N-S also presents high computational density by applying LOA optimization,
however the computation rate of N-S is slow because it invokes inefficient

A Locality Optimizing Algorithm for Developing Stream Programs 21

mathematical kernels for many times. The high computation rate of Dfft
indicates that the stream programming system delivers high computational
density on this application.

Figure 7. The variety of computation rate

Table 1 illustrates the efficiency of the program yielded by our
optimization (LOA) compared with original stream program (Orig). It is
obvious that our optimization provides high speedup of Dfft, Transp, Vpenta
and N-S due to fine locality. And compared with highly sensitive to memory
latency of general processor, these applications can hide latency to achieve
good performance. But for data intensive applications such as Swim, the
speedup is low due to irregular access pattern so that our optimization can’t
hide memory access latency. In conclusion, Swim is not well suited for the
Imagine architecture.

Table 1. Comparison of different scientific applications by applying LOA
 Swim Transp Vpenta Dfft N-S

Cycles(Orig) 8.10E+09 1.98E+07 4.97E+07 5.07E+11 1.68E+08
Cycles(LOA) 6.69E+09 9.28E+06 1.69E+07 9.71E+10 4.36E+08
Speedup 1.21 2.13 2.94 5.22 2.60

5. CONCLUSION AND FUTURE WORK

In this paper, we explore a novel locality optimizing algorithm for
developing stream programs in Imagine to fully sustain high computational
ability. Our specific contributions include that we formulate the relationship
between streams and kernels as the Data&Computation Matrix (D&C
Matrix), and present the key techniques for locality enhancement based on

22 Du, Yang, Yang, Yan, Deng

this matrix. The results show that our algorithm can achieve high locality in
LRF and SRF.

One future work is to research more programming optimizations to
exploit more architectural features of Imagine. Another is to search more
scientific applications suited for stream architecture by applying our
algorithm.

ACKNOWLEDGEMENTS.

We gratefully thank the Stanford Imagine team for the use of their
compilers and simulators and their generous help. We also acknowledge the
reviewers for their insightful comments.

REFERENCES

1. Saman Amarasinghe, William. Stream Architectures. In PACT03, September 27, 2003.
2. Brucek Khailany. The VLSI Implementation and Evaluation of Area-and Energy-Effcient

Streaming Media Processors. Ph.D. thesis, Stanford University, 2003.
3. Ola Johnsson, et al. Programming & Implementation of Streaming Applications. Master’s

thesis, Computer and Electrical Engineering Halmstad University, 2005.
4. B. Khailany et al. Imagine: Media processing with streams. IEEE Micro, 21(2):35–

46,March 2001.
5. Saman Amarasinghe et al. Stream Languages and Programming Models. In PACT03,

September 27, 2003.
6. Peter Raymond Mattson. A Programming System for the Imagine Media Processor. Dept.

of Electrical Engineering. Ph.D. thesis, Stanford University, 2002.
7. Nuwan S. Jayasena. Memory Hierarchy Design for Stream Computing. Ph.D. thesis,

Stanford University, 2005.
8. M. J.Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.
9. J. Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, Boston, 2000.
10. Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and Matthew C.

French. A Performance Analysis of PIM, Stream Processing, and Tiled Processing on
Memory-Intensive Signal Processing Kernels. In ISCA03, 2003.

11. M. E.Wolf and M. Lam. A loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452 –
471,October 1991.

12. Jing Du, Xuejun Yang, et al. Scientific Computing Applications on the Imagine Stream
Processor. In ACSAC06, September 6-8, 2006.

13. Jung Ho Ahn, William J. Dally, et al. Evaluating the Imagine Stream Architecture. In
ISCA04, 2004.

14. Abhishek Das, Peter Mattson, et al. Imagine Programming System User’s Guide 2.0. June
2004.

GRANULAR SSOR PRECONDITIONING
PLACED ON DYNAMIC SMP CLUSTERS WITH
COMMUNICATION ON THE FLY

Boguslaw Butrylo1, Marek Tudruj2,3, Lukasz Masko2
1Białystok Technical University, Faculty of Electrical Engineering, ul. Wiejska 45D,
15-351 Bialystok, Poland; 2Polish Academy of Sciences, Institute Of Computer Science, ul.
Ordona 21, 01-237 Warszawa, Poland; 3Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., 02-008 Warsaw, Poland

Abstract The paper presents a comparative analysis of parallel implementation of the
preconditioned conjugate gradient method with symmetric successive over
relaxation preconditioner. Two parallel implementations are compared. The
first one is a message passing version that turned out to be inefficient when
executed on a typical cluster of workstations. The other one is an efficient
version simulated on a novel architecture of dynamically reconfigurable shared
memory clusters with a new paradigm of inter-processor communication
called communication on the fly. The presented example shows high
suitability of the proposed architecture for fine grain numerical computations
what can be very useful in simulation of physical phenomena described as
numerical problems for fine grain parallel execution.

Key words: matrix computation; finite element method; distributed processing; cluster of
workstation; dynamically reconfigurable system.

1. Introduction

Modeling realistic devices with a finite element (FE) method requires
solution of a large either linear or nonlinear matrix equation, which arises
from the formulation of partial differential equations. The form and
properties of the matrix equation depend on type of implemented finite
elements (FE). Different kinds and mixed formulations of the FE method are

24 Butrylo, Tudruj, Masko

especially useful in computational electromagnetics (CEM) (Jin, 1993; Lee
et al., 1997). Spatial decomposition of the computational domain, as well as
inherent interdependencies between distributed threads are the hardest and
the most problematic constrains in high performance analysis of
electromagnetic fields.

An efficient formulation of the distributed, in core matrix subroutine is
extremely important in the time domain electromagnetic computations. The
principle, most significant constraints of the FE method is a sparse, positive
defined (e.g. time domain methods) or bad conditioned (e.g. some time-
harmonic problems), and diagonal dominant form of the matrix. A wide
spectrum of physical phenomena and various properties of materials in the
analyzed model require some smart, black-box solver, which can be easily
implemented in different problem formulation. It must be flexible and
adoptable to different problem formulation as well as hardware platform.
The conjugate gradient (CG) method with different, well-adopted
preconditioners (PCG) fulfils these requirements (Van der Vorst 2003). A
preconditioned conjugate gradient algorithm (PCG) with properly selected
preconditioner is one of the most suitable methods in CEM (Vollair et al.,
1998). Since the data (i.e. extremely large matrices) and task (e.g. dot
product, matrix-vector multiplication, vector updates) are partitioned in
parallel implementation, some specific properties of hardware platform
cannot be negligible.

The formulation of the SSOR preconditioner presented in the paper,
enables to tune the relation between calculation and data transfer operations.
Two steps domain and task decomposition paradigms are used in the SSOR
subroutines. The granulation of the algorithm can be flexible matched even
during execution. In this way performance of this stage can be adjusted to
current available computational power and specific properties of the
communication network. From the general point of view, this form of the
algorithm can be applied on any hardware multicomputer/multiprocessor
platform with distributed memory. The COW platform, as a common,
popular tool in practical, real simulation, was used to check the performance
of the elaborated algorithm. Next, the algorithm is ported to the system of
runtime configurable, shared memory multiprocessor clusters (SMP). The
multiprocessor platform with on the fly communication facilitates new class
of hardware. Its architecture, should be particularly helpful in
computationally and data transfer demanding algorithms. The idea of this
platform enables to overlap data processing and data access commands. In
this system, a new method for data exchange (communication on the fly) is
applied. It is based on a combination of porting data in caches of processors
switched between clusters with distribution of data in target clusters by
means of simultaneous reads into many processor data caches by snooping

Granular SSOR Preconditioning Placed on Dynamic SMP Clusters 25

data exposed on the cluster shared memory bus (Tudruj et al., 2004). Such
architecture can be used to build a dynamically configurable parallel
embedded subsystem aimed in speeding up time consuming numerical
computations in particular oriented to fine grain numerical simulation.
Specific rules of the platform coincide with the presented structure of the
SSOR preconditioner and the PCG algorithm. Simulation experiments with
implementation of the distributed SSOR preconditioner confirmed strong
advantages of the proposed architecture over a classical cluster of
workstations.

2. Numerical problem formulation

According to mathematical background of the finite element method
(FEM), the investigated model of electromagnetic phenomena is translated
to its discrete form. The spatial discretization of the analyzed model and the
unconditionally stable backward Euler time integration scheme lead to large
size matrix equation

() () 21
2 2 -- ×-×D+=×D+D+ ttt eTeRTeSRT ttt (1)

where et, e�
t-1, et-2 describe the investigated time dependent spatial

distributions of the electric field intensity in succeeding time steps t=nDt
(nÎ). By analogy to structural dynamics problems, the T, R and S are
called mass matrix, damping matrix, and stiffness matrix, respectively,
dim(T) = dim(R) = dim(S) = NDOF´NDOF.

The presented implementation of the distributed solver is based on the
domain decomposition paradigm. In natural way, the row-wise
decomposition of matrices A=T+DtR+Dt2S, B=2T+DtR, and C=-T is used.
The non-overlapped sub-matrices An, Bn, Cn are stored in the appropriate
computing units Pn (n=1,..., N), dim(An)=(NDOF/N)×NDOF. The geometrical
binding of the sub-matrices creates comprehensive and coherent
representation of the FEM model. According to mathematical formulation of
the problem, any analyzed model is decomposed into non-overlapping sub-
matrices Nn AAAA ÈÈÈÈ=1 .

The presented algorithm was executed for a three dimensional model
with sinusoidal high frequency wave (2GHz) propagated in an open space
(Butrylo et al., 2004). The implementation of the solver requires complete
representation of the common data structures both in the preconditioner and
in the conjugate gradient algorithm. The vectors of projection, displacement,
correction and others structures are decomposed, but they must be
exchanged and concatenated in each step of the PCG and the SSOR

26 Butrylo, Tudruj, Masko

algorithms. That decides on the fine grain character of the involved inter-
processor data exchange.

The development of distributed preconditioning algorithms is aimed at
decreasing communication cost as well as improving convergence of
iterative calculation. The diagonal (i.e. Jacobi) preconditioner is the simplest
preconditioner. Its implementation in parallel environments can reach ideal
speedup, since distributed form of this preconditioner is a set independent,
simple matrix-vector multiplications in each sub-domain. Unfortunately,
extremely simple structure of operations is not consonance with convergence
of CG algorithm with diagonal preconditioner. Therefore the SSOR
algorithm, taking into account number of iterations and absolute elapsed
time of CG algorithm, has better properties. This fact appears in sequential
form as well as in parallel formulation. The distributed version of the SSOR
lost some advantages, since the matrix-vector multiplication must be made in
each iteration. This is the main reason to propose new algorithms or some
modifications of this preconditioner.

The constraints related to the section of the algorithm critical in respect to
the excessive size of data were taken into account in the final, efficient
version of the parallel algorithms. Initial decomposition of the A, B, C
matrices and some related data structures are crucial for algorithm. The data
critical section consists of the operations on the largest data structures in the
PCG algorithm, i.e. sub-matrices An. In a distributed memory systems,
locally available sub-matrices cannot be efficiently transferred between
processors, because this task decreases performance of the algorithm.
Simultaneously, in a typical case, the size of the FEM model, and the
distributed sub-models are too large to create and copy some redundant data
structures in processors.

3. Message passing implementation

The construction and performance of the stages of conjugate gradient
algorithm are modified by the row-wise domain decomposition of the
matrices. The form and final properties of the forward calculation,
formulation of diagonal matrix, and backward substitution are changed in a
different way. The A matrix is processed by columns in the forward
calculation stage, while the backward substitution is made by rows. The
partial results of these stages, the u and v vectors respectively, are placed in
the separated memory spaces of computing units Pn. They are processed
separately, but finally the sub-vectors un and vn must be moved between the
computing nodes, and concatenated, e.g. u=u1È …È unÈ …È uN. The
backward and forward calculations (including calculation and transfer of un

Granular SSOR Preconditioning Placed on Dynamic SMP Clusters 27

and vn sub-vectors) consist of some inherently sequential parts. They limit
performance of the algorithm in the message-passing environment.

The formulation of the diagonal matrix does not require data transfers.
Thus, the second step of the preconditioner is fully parallel with no
communication. The forward and backward stages are only partially
distributed. The flexible adjustment of relation between sequential and
distributed parts of these stages enables the optimal and hardware
independent formulation of the preconditioner.

Figure 1. Efficiency of the SSOR for different G and N against G=1 with message passing.

Therefore, the second order domain decomposition is introduced in the

algorithm. The locally defined sub-matrices An are decomposed into some
column-wise sub-matrices. This decomposition results in varying the
computation grain in processors between subsequent data communications.
We call it granulation. The granulation degree is determined by granulation
coefficient G. For G>1, a computation sub-domain An in any processing
node is decomposed into G square sub-matrices. Reordering of some matrix
operations enables to overlap data transfers with distributed processing of
sub-matrices. In such a way, for G>1, processors obtain earlier input data for
their computations and more frequently than in the case G=1, when they stay
idle a longer period of time. Larger G corresponds to a finer-grain
decomposition of the algorithm into shorter computations and
communication, where a processor performs relatively few computations
between consecutive data transfers. In the forward calculation (stage 1) and
backward substitution (stage 3) the processors perform computations one
after another and distribute the results to other processors. With larger G, the
parallelism degree in phases (1) and (3) increases.

The algorithm was tested on the cluster of Xeon 2,6 GHz processors
interconnected by a Gigabit Ethernet network with MPI communication
library. This system did not provide any parallel speedup versus execution
on 1 processor for G=1. The speedup as a function of N and increasing G,

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4

Number of computing units N

G=1

G=2

G=4

G=8

Speedup

G =64

G =32

G =16

28 Butrylo, Tudruj, Masko

against execution with the same N but G=1, is presented in Figure 1. The
maximal speedup improvement (equal to 1.1) is obtained for N=2 and G=2.
Further increase of G and N produces bad results, since data transfer costs in
this typical message passing system eliminate potential speedup
improvement due to applied finer grain and more intensive parallelization.

4. Implementation in shared memory dynamic clusters

The presented formulation of the SSOR preconditioner has been ported to
a parallel system based on dynamic switching of processors between shared
memory clusters and data reads on the fly inside clusters (Tudruj et al.,
2004). The elementary module of the subsystem is composed of N processor
nodes PEn and N memory modules Mn. Processor nodes connected to a
memory bus under control of a bus arbiter constitute an SMP cluster. The
system can contain a number of such elementary modules connected by a
common global data network.

Communication on the fly eliminates shared data exchange through
multiple memory transactions. Processor nodes are switched between SMP
clusters with data in their data caches (DCn). The shared data brought by a
switched processor node are written to the target cluster memory module. At
the same time other processor nodes in the cluster simultaneously read on
the fly the data to their data caches by means of snooping the cluster
memory bus under control of their Bus Request Controllers (BRC). In this
way, multiple data reads (otherwise performed sequentially over the memory
bus) are overlapped with data writes, which speeds up communication. Such
data exchange takes place directly between processor data caches, which is
another source of communication speedup since it eliminates memory-data
cache transactions and transactions by the global bus that also exists in the
system to implement. Each processor’s Pi data cache is connected at the
same time to two memory modules: with one module permanently during
program execution and with another module that can be changed
dynamically according to the program needs. The permanent connection is
meant for communication with large data sets. In the case of the discussed
PCG-SSOR algorithm, this module is used to store sub-matrices An and the
results of An-relevant operations. All other processors that want to use the
results, have to get connected to the respective memory bus dynamically,
shortly before the relevant data will be sent by a producer to its permanent
memory module. While a processor - the producer of data writes them to the
memory module through the memory bus, other processors fetch the data
they need to their data caches.

Granular SSOR Preconditioning Placed on Dynamic SMP Clusters 29

W

R

R R

R R

R

R

R

R

R

R

R

R

R

R

R

R

W

W

W

R

A11,1u1,1

A11,2u1,2
ANu1,1

ANu1,2

ANu2,1

ANu2,2

A22,1u2,1

A22,2u2,2

A2u1,1

A2u1,2

ANN,1uN,1

ANN,2uN,2

B

B

B

B

S S

S

P1 P2 PN

Figure 2. The EMDFG graph of the distributed SSOR preconditioner (stage 1)
with reads on the fly commands.

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6

Number of computing units N

Speedup

Figure 3. SSOR preconditioner speedup (G=1) as a function of number of processors: in the
SMP dynamic SMP clusters (dotted line), in the message passing (COW) system (solid line).

30 Butrylo, Tudruj, Masko

 The elaborated SSOR algorithm with different degrees of granulation has been
analyzed by simulation of execution of program graphs expressed by an extended
macro data flow graph (EMDFG) (Tudruj et al., 2004). EMDFG (Figure 2) contains
special kinds of nodes: read nodes (R) from memory to processor's data cache, write
nodes (W) from data cache to memory, the processor switch nodes (crossed
rectangles with S) and barriers (B). The experiments that evaluated the efficiency of
SSOR preconditioner execution in the described system architecture were performed
using a simulator (written in C\C++) of symbolic program (EMDFG) graph
execution. In dynamic SMP clusters, parallel speedup versus execution on 1
processor was obtained even for G=1 with efficiency about 0,5 (Figure 3).
Increasing G (making computation grain finer) gives in this case positive results,
Figure 4. The algorithm is reasonably sensitive to the rise of G only in the range of
up to 10-15, giving the improvement of up to 1.35 for small number of processors.
Both mentioned characteristics are incomparably better than in the classic cluster of
workstations. The relatively low speedup improvement with G is due to the rather
sequential character of the preconditioner program, where processors have to wait
for results of directly preceding computations to start new ones.

1

1,1

1,2

1,3

1,4

1,5

0 10 20 30 40 50 60 70 80

Speedup (S G)

Granularity G

N =20

N =4
N =3

N =2

Figure 4. Changes of the speedup for SSOR in dynamic SMP clusters versus G=1 as a

5. Conclusions

The paper deals with parallel implementation of the PCG-SSOR
algorithm in two executive environments: classic cluster of workstations and
system of dynamic shared memory clusters with communication on the fly.

A classic cluster of workstations with MPI communication library
appeared to be inadequate for parallelization of the SSOR preconditioner.
Two level task decomposition and variable number of independently
processed sub-matrices applied in the forward calculations and the backward
substitution of the SSOR algorithm did not enable a noticeable speed up
improvement in the classical system.

function of granularity (G) and number of processors (N).

Granular SSOR Preconditioning Placed on Dynamic SMP Clusters 31

The proposed new architecture based on dynamic SMP clusters and
communication on the fly can be efficiently applied for the discussed PCG
algorithm in a parallel accelerator of the SSOR preconditioner. Simulation
experiments have shown that the new architecture provides good parallel
execution of the analyzed programs providing parallelization efficiency of
0,5. Dynamic reconfiguration of shared memory clusters enables adjusting
system structure to SSOR algorithm needs. The finer parallel computations
by decreasing the computations and communications size and increasing
their mutual overlapping in time can provide further improvement of
speedup.

The experiments presented in the paper show that the dynamic SMP
cluster architecture can be successfully employed in problem solving
including parallel simulation based on fine grain numerical problem
modeling. The described architecture can be fully implemented today and is
convergent with the emerging technology of systems on chip - SoC (Benini
et al., 2002).

6. References

Benini, L., and De Micheli, G., 2002, Networks on chips: a new SoC paradigm, IEEE
Computer, pp. 70-78.

Bertozzi, D. et al., 2005, NoC synthesis flow for customized domain specific multiprocessor
Systems-on-Chip, IEEE Trans. on Parallel and Distributed Systems, No.2, 16:113-129.

Butrylo, B., Vollaire, C., and Nicolas, L., 2004, Stability and fidelity of the finite element
time domain method with distorted mesh, IEEE Transactions on Magnetics, IEEE Press
(2004), no. 2, 40:1424-1427.

Jin, J., 1993, The Finite Element Method in Electromagnetics. John Wiley & Sons, New
York.

Lee, J. F., Lee, R., and Cangellaris, A., 1997, Time-domain finite-element methods, IEEE
Trans. Antennas Propagat., IEEE Press, no. 3, 45:430-441.

Tudruj, M., and Masko, L., 2004, Fine-grain numerical computations in dynamic smp clusters
with communication on the fly, Proceedings of International Conference on Parallel
Computing in Electrical Engineering, PARELEC 2004, Dresden, IEEE CS Press, pp. 386-
389.

Van der Vorst, H. A., and Chan, T. F., 1997, Linear system solvers: sparse iterative methods,
in Parallel numerical algorithms, ed. D. E. Keyes, A. Sameh, V. Venkatakrishnan,
Kluwer, pp. 91-118.

Van der Vorst, H. A., 2003, Iterative Krylov methods for large linear systems, Cambridge
University Press.

Vollaire, C., and Nicolas, L., 1998, Preconditioning techniques for the conjugate gradient
solver on a parallel distributed memory computer, IEEE Trans. on Magnetics, IEEE Press,
no. 5, 34:3347-3350.

BULK SYNCHRONOUS PARALLEL ML

WITH EXCEPTIONS

Louis Gesbert1, Frédéric Gava1, Frédéric Loulergue2

and Frédéric Dabrowski3

1Laboratory of Algorithms, Complexity and Logic, University Paris XII, France

2Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, France

3Institut de Recherche en Informatique et Automatique, Sophia-Antipolis, France

Abstract Bulk Synchronous Parallel ML is a high-level language for programming
parallel algorithms. Built upon OCaml and using the BSP model, it
provides a safe setting for their implementation, avoiding concurrency
related problems (deadlocks, indeterminism). Only a limited set of the
features of OCaml can be used in BSML to respect its properties of
safety: this paper describes a way to add exception handling to this set
by extending and adapting OCaml’s exceptions. The behaviour of these
new exceptions and the syntactic constructs to handle them, together
with their implementation, are described in detail, and results over an
example are given.

Keywords: Parallel programming, exception handling, functional programming,
BSP, syntax of languages

1. Introduction

The Bulk Synchronous Parallel ML (BSML) language [9] is a par-
allel extension of ML (a family of functional programming languages).
BSML aims at providing the right balance between the two opposite ap-
proaches to parallel programming, low-level and subject to concurrency
issues, and high-level with loss of flexibility and efficiency. In the former,
we find libraries such as MPI [12] generally used with Fortran or C; these
approaches are unsafe and leave the programmer responsible for dead-
lock or indeterminism issues. In the latter stand traditional algorithmic
skeletons [3] where programs are safe but limited to a restricted set of
algorithms.

BSML follows the BSP (Bulk Synchronous Parallel [1, 11]) paradigm
to structure the computation and communication between the processors

34 Gesbert, Gava, Loulergue, Dabrowski

in a data-parallel fashion. All communications in BSML are collective
(require all processes) and deadlocks are avoided by a strict distinction
between local and global computation; BSP also provides BSML with a
simple and efficient cost model.

Exception handling is a traditional and natural mechanism to man-
age errors and events that disrupt the normal flow of instructions of
a program. It can also be used purposefully to extract the results in
the course of some recursive algorithms. Widely used languages or li-
braries for data-parallel programming are mostly imperative like C or
Fortran [2, 7]. These languages do not provide exception mechanisms.
In the case of Java [6], the interaction of parallel constructions with ex-
ceptions is not studied. Exception handling is accordingly an issue in
parallel languages and efficient, simple and expressive solutions to this
problem are a current research topic [10]. To our knowledge, there exists
no related work on exception mechanisms for data-parallel languages.

BSML is implemented as a library for Objective Caml [8], which en-
ables it to benefit from the advanced, general-purpose features of this
language. A few of these features however, among which exception han-
dling, do not provide the desired safety when used in parallel. In this pa-
per, we adapt and extend the exception handling mechanism of OCaml
to respect the constraints of parallel programming in BSML. The ap-
proach we define is not specific to OCaml though, and it could be ap-
plied to any strict language with exceptions. In particular, Java behaves
very similarly to OCaml regarding exceptions and we think there would
be little work involved in adapting our system to this language.

In section 2, we introduce the BSP model and Bulk Synchronous
Parallel ML (BSML). In section 3 we study issues related to OCaml-style
exception handling in a parallel setting, and our solution is presented in
section 4. The implementation of this solution for BSML is described
in section 5, followed by an example of use and results in section 6. We
conclude and introduce future work in section 7.

2. Functional Bulk Synchronous Parallel
Programming

2.1 The BSP Model

In the BSP model, a computer is a set of uniform processor-memory

pairs, a communication network allowing inter-processor delivery of mes-
sages and a global synchronization unit which executes collective requests
for a synchronization barrier (for the sake of conciseness, we refer to [11]
for more details). A BSP program is executed as a sequence of super-

steps, each one divided into (at most) three successive and logically

BSML with exceptions 35

disjoint phases: (a) Each processor uses its local data (only) to perform
sequential computations and to request data transfers to/from other
nodes; (b) the network delivers the requested data transfers; (c) a global
synchronization barrier occurs, making the transferred data available for
the next super-step.

The performance of the machine is characterised by 3 parameters: p

is the number of processor-memory pairs, L is the time required for a
global synchronization and g denotes the speed of the network. Using
these and the structure of the execution, it is possible to predict the
performance of a program.

2.2 The BSML Language

bsp p: unit→int
bsp g: unit→float
bsp l: unit→float

mkpar: (int →α) →α par

apply: (α →β) par →α par →β par

put: (int→α option) par →(int→α option) par

proj: α option par →(int →α option)

Figure 1. Primitives

The BSML language is based on seven primitives, three of which are
used to access the physical parameters of the machine. A BSML program
is built as a sequential program on a parallel data structure called parallel
vector. Its type is α par, which expresses that it contains a value of type α

at each of the p processors, where type α may be any type not containing
an occurrence of par (this point is discussed in detail in [4]). We adopt
the notation 〈x0, . . . , xp−1〉 to denote the parallel vector with value xi

at processor i.
BSML programs use the four parallel primitives mkpar, apply, put and

proj for the creation and manipulation of parallel vectors. The asyn-
chronous computation phase is programmed using the two primitives
mkpar and apply.

mkpar creates a parallel vector from a sequential function.
mkpar: f 7→ 〈f 0, . . . , f (p − 1)〉

This primitive induces local computation that will be resolved dif-
ferently on each processor. We call in comparison replicated top-level
sequential execution, which is in fact replicated at every one of the pro-
cessors, and parallel execution that involves different values at different
processors (e.g. parallel vectors and primitives).

The primitive apply applies a parallel vector of functions to a parallel
vector of arguments:

apply:
〈f0, . . . , fp−1〉
〈x0, . . . , xp−1〉

7→ 〈f0 x0, . . . , fp−1 xp−1〉

36 Gesbert, Gava, Loulergue, Dabrowski

Unlike BSPlib [7] or PUB [2] we do not distinguish between commu-
nication phase and synchronization barrier. The two primitives put and
proj both end implicitly with a synchronization barrier, putting an end
to the current super-step.

put is the first communication primitive. It takes as argument a paral-
lel vector of functions which should return, when applied to i, the value
to be sent to processor i. put returns a parallel vector with the vector of
received values at each processor.

put: 〈f0, . . . , fp−1〉 7→

* f0 0 f0 (p − 1)
... , . . . ,

...
fp−1 0 fp−1 (p − 1)

+

The second communication primitive, proj, allows to get replicated
values back from locally computed ones. It projects a parallel vector to
a standard, replicated vector.

proj: 〈x0, . . . , xp−1〉 7→ x0 · · · xp−1

3. Exceptions and BSML

Exceptional situations and errors are handled in OCaml with a power-
ful system of exceptions. There are two major reasons to use exceptions:
first, as a way to quickly get out of a computation and return some pa-
rameters. This is specially useful when doing an in-depth search for
example, as it saves the trouble of returning the results manually at ev-
ery level while climbing back in the stack. In parallel, this is at least as
relevant since you get the trouble of gathering the results from the differ-
ent processors. The second reason is error recovery: an unexpected error
in OCaml raises an exception. If one processor triggers a Stack overflow

exception during the course of a parallel computation, BSML has to deal
with it, like OCaml would, and prevent a crash. This section describes
how OCaml handles exceptions and what could get wrong if OCaml
exceptions are used in BSML without special care.

exception Exc of τ declares a new OCaml exception Exc that encloses
data of type τ . Exceptions are considered an extensible variant type, e.g.
for matters of pattern-matching. The above-defined exception would be
triggered with the syntax raise (Exc x), where x is of type τ . Once an ex-
ception is raised, it is propagated up the stack until it meets an enclosing
try...with Exc x →t block that pattern-matches against the exception. The
exceptional behaviour t is then followed and returns a value of the type
expected for the expression without exception.

When using this scheme in parallel with BSML, we face three different
cases:

BSML with exceptions 37

1 If, during a parallel computation, a single processor raises an ex-
ception but catches it before the end of the local section, no global
operations or communications are hindered and the function that
catches the exception returns a result as expected.

2 Exceptions may be raised during a replicated section. In that
case, all processors follow the same path of execution and catch
the exception or fail together: no inconsistency appears either.

3 When an exception is raised locally, but not caught immediately,
however, the processor concerned is not going to execute any of the
replicated code that might occur until the end of the superstep:
the system gets into an inconsistent state. Worse, the concerned
processor is most likely not to meet the expected synchronisation
at the end of the superstep and cause a deadlock when the other
processors reach the barrier.

Let’s take a closer look at the last case with an example:

let f pid = if pid=0 then raise (Failure ”0”) else (fun →Some pid)
in let v = mkpar f
in put v

Evaluation at processor 0 Evaluation at processor 1

let v = <raise (Failure ”0”),..>
in put v

let v = <..,fun →Some 1,..>
in put v

*** Exception raised *** put: trying to send “Some 1” to 0

Here, an exception is raised locally on processor 0 but processor 1
continues to follow the main execution stream, until it is stopped by the
need for a synchronisation. Then, a deadlock occurs. If the same code
had been enclosed in a try...with Failure →..., processor 0 and 1 would have
branched into different global execution streams, the normal one and
the exceptional one, leading to a global inconsistency: they could have a
different number of super-steps which is not possible in the BSP model.

The solution we provide intends to stay as familiar as possible to the
programmer. We explain in the next parts how to extend it to manage
the problematic case.

4. An Exception Mechanism for BSML

4.1 Syntax

The missing piece to a parallel exception system is a way to catch
globally exceptions that are raised locally. Exceptions are defined and
raised in the usual way from the user side, using the keywords exception

and raise. Only the catching of local exceptions in a replicated setting is
changed. Below is an example of use of exceptions in BSML.

38 Gesbert, Gava, Loulergue, Dabrowski

trypar

let f pid = match pid with

| 0 →raise (Failure ”0”)
| x →x

in mkpar f

withpar

eset →Exception set.iter
(fun e →prerr endline

(Printexc.to string e.exc))
eset

The parallel execution of f in this example raises a local exception
on processor 0 only. The structure trypar...withpar, which is similar to
try...with in OCaml is then used to safely recover this local exception,
globally. Globalised local exceptions caught this way are implemented
as sets (of type Exception set.t) of records containing the standard OCaml
exceptions raised and their originating processor number. Here, withpar

binds the name eset to a set containing the Failure raised by processor 0.
The exceptional code provided after the arrow iterates on this set and
prints the exception on standard error.

The new structure trypar...withpar, somehow similar to the standard
one, is needed mainly for two reasons: first, a formerly-local exception
and a standard replicated exception may exist at the same time and
need to be distinguished. Second, it deals with sets of exceptions and
not with single exceptions.

4.2 A new mechanism

We will consider this two points carefully: (a) a local exception should
never prevent replicated code from being executed, or the system be-
comes inconsistent (replicated code is not executed by all the processors
anymore). (b) at the end of the super-step, a local exception has to be
treated replicatedly.

Since replicated and local code may be juxtaposed in the same super-
step, we need to get aside from the standard exception handling tech-
niques to ensure that replicated code is run normally even after a local
exception. During a super-step, there might be local and replicated
exceptions coexisting and they must be treated at different levels: a
replicated exception, since it is raised by all processors, is treated im-
mediately in the OCaml way. A local exception, on the other hand,
must not hinder the global behaviour of the processor yet, so it is kept
silent to replicated code until the end of the super-step. This means, in
particular, that a processor in a state of exception may not perform any
local computation until the next synchronisation.

At the end of a super-step (put or proj), the exception state is com-
municated to all processors to allow a global decision to be taken. In
such a situation, the local results obtained are partial, inconsistent or
nonexistent. Although we are discussing a way to enable the program
to recover them afterwards, we currently adopt the standard approach

BSML with exceptions 39

and discard them, switching to the exceptional treatment specified by
the user.

Local exceptions are thus deferred until the end of the super-step.
However, it is undesirable that an exception escapes the scope of the
trypar...withpar it was raised in. For this reason, communications (and
barrier) must be forced at the withpar.

This behaviour is described formally and in more detail in the seman-
tics presented in [5].

5. Implementation

Keeping local exceptions hidden from replicated execution is made
possible by the strict distinction between local and replicated execution
in BSML: by enclosing local execution in a try...with safety net in the
implementation of the parallel primitives, we are sure to catch every ex-
ception raised on a single processor. These exceptions can’t be ignored
in further local computation on that processor though, so they are re-
tained in a local variable status: (Fine | Stopped of int ∗ exn) ref. The second
role of the safety net is then to prevent any local operation on that pro-
cessor until the end of the super-step, since these operations may use
results that failed to compute; replicated code will continue to execute
normally.

At the end of the super-step, initiated by the put or proj primitives
or by withpar, the communication phase starts with an exchange of data
sizes. We take the opportunity to communicate processor states: in case
there is any exception, normal communication is replaced by a total
exchange of the exceptions and their parameters. We then get back
to a consistent replicated state with the same set of exceptions raised
everywhere. The propagation of exceptions drives out of the normal
execution flow and can’t be implemented in OCaml (without exceptions)
outside of the compiler, it is therefore piggy-backed onto the OCaml
exception Global exn of Exception set.t.

To implement the extension in the language, in particular the new
keywords trypar and withpar, we chose to use OCaml’s generic precompi-
ler, camlp4. The core of trypar...withpar is a try...with catching exceptions
of the kind Global exn, but several other problems must be taken into
account:

A barrier must be done before the with.
The super-step may end at an imbrication level different from the
one the exception was raised at.
Local exceptions and global exceptions may conflict. A native
global exception has to meet the withpar barrier before jumping
further in the stack.

40 Gesbert, Gava, Loulergue, Dabrowski

Our Global exn must be protected from being caught by the user
with a normal try...with.

6. Experiments

6.1 A generic parallel backtracking algorithm

Backtracking consists in searching for a solution by exploring a tree of
possibilities depth-first. If a recursive function doing this search raises
an exception whenever a solution is found, it can be caught directly
by the calling function without the need to switch cases and return a
solution if it exists, or continue exploring otherwise. The parallelisation
of this process explores the children of several different nodes at the same
time, making the gathering of solutions even more difficult without using
exceptions.

To assess the usability of exceptions in BSML, we present a simple
implementation of generic parallel backtracking. It takes as argument a
sequential function that returns all the children of a given node in the
tree and raises a specific exception on a solution. The function exploring
the tree proceeds in three steps:

1 the list of current nodes is split into a parallel vector
2 the function returning the children is run in parallel on a limited

amount of the nodes at each processor
3 the resulting children nodes are gathered globally, and these three

steps are processed recursively on them.

If no solution has been found at the third step (no exception raised),
new nodes from step 2 are tried. If there are none left, the algorithm
backtracks to the caller. This recursive function is enclosed into a
trypar. . . withpar that gathers and returns any solution found.

Another version, without any use of exceptions, was implemented.
The main descending function had to gather the results of all processors
and check if there was a solution at one of them. Accordingly, the size
of the core part of the algorithm was increased from 26 lines of code to
44 – exceptions made us save 40% in code size on that example.

6.2 Results

As an example of use, we implemented a brute-force sudoku solver.
Sudoku is a fashionable game that consists in filling a n2

× n2 grid with
integers from 1 to n2 according to constraints that ensure, given some
initial numbers, that only one solution is possible. We generate the
children by trying every possibility for each free square and checking for
validity. A mild optimisation consists in composing the children function

BSML with exceptions 41

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

a
n
ce

(s
−

1
)

Number of processors

with exn – 7 steps at a time

without exn – 7 steps at a time

with exn – 5 steps at a time

without exn – 5 steps at a time

Figure 2. Sudoku of dimension 9 solved with and without exceptions

several times to obtain enough nodes for an even distribution between
processors, which becomes mandatory when increasing the size of the
machine.

We solved a given grid of dimension 9 on a cluster of PC (using native-
code execution) linked with a gigabit network, for a number of processors
varying from one to ten. Figure 2 shows the performance in seconds−1

depending on the number of processors (so that a linear speedup would
be a straight line), for two different levels of the latter optimisation. This
results are the median of a large number of experiments. We notice
little impact on performance between the versions with and without
exceptions, which is sound since the algorithm is not changed; better,
the difference is very stable and in favor of the version with exceptions:
we explain it by the added checks that have to be made to extract the
possible results at every step of computation.

7. Conclusion and Future Work

Hardware is heading massively towards parallel architectures. Ad-
vanced programming paradigms, however, are still trying to find the
best expression for the adapted programs. In this paper, we tackled the
problem of exception handling for the functional, OCaml-based BSML
language, pushing it one step further to that goal.

We defined global sets of locally raised exceptions and dedicated han-
dlers which offer a natural way to deal with them. A realistic imple-
mentation was presented, together with a test program and promising
benchmarks.

42 Gesbert, Gava, Loulergue, Dabrowski

The work presented here is tightly related to the BSP model, but the
exception scheme it bases on is not specific to OCaml. Hence, we reckon
there would be little work involved in translating it to, for instance, Java.
Future work includes recovery of partial results, a full type system, and
automated performance prediction.

References

[1] R. Bisseling. Parallel Scientific Computation. A structured approach using BSP
and MPI. Oxford University Press, 2004.

[2] O. Bonorden, B. Juurlink, I. von Otte, and O. Rieping. The Paderborn Univer-
sity BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

[3] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. MIT Press, 1989.

[4] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML
to Avoid Parallel Nesting. Future Generation Computer Systems, 21(5):665–671,
2005.

[5] L. Gesbert and F. Loulergue. Semantics of bulk synchronous parallel ml with
exceptions. In Zoltán Horváth, editor, Draft proceedings of the 18th Interna-
tional Symposium on Implementation and Application of Functional Languages
(IFL’06). to appear, 2006.

[6] Yan Gu, Bu-Sung Lee, and Wentong Cai. JBSP: A BSP programming library in
Java. Journal of Parallel and Distributed Computing, 61(8):1126–1142, August
2001.

[7] J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library.
Parallel Computing, 24:1947–1980, 1998.

[8] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective
Caml System release 3.09, 2005. web pages at www.ocaml.org.

[9] F. Loulergue, F. Gava, and D. Billiet. Bulk Synchronous Parallel ML: Modular
Implementation and Performance Prediction. In Vaidy S. Sunderam, G. Dick
van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, International Con-
ference on Computational Science, Part II, number 3515 in LNCS, pages 1046–
1054. Springer, 2005.

[10] Alexander B. Romanovsky, Christophe Dony, Jørgen Lindskov Knudsen, and
Anand Tripathi, editors. Advances in Exception Handling Techniques (the book
grow out of a ECOOP 2000 workshop), volume 2022 of Lecture Notes in Com-
puter Science. Springer, 2001.

[11] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Scientific Programming, 6(3):249–274, 1997.

[12] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

II

NETWORKING AND COMMUNICATION

A NEW APPROACH TO MPI COLLECTIVE
COMMUNICATION IMPLEMENTATIONS

Torsten Hoe�er,1,4 Jeffrey M. Squyres,2 Graham Fagg,3 George Bosilca,3

Wolfgang Rehm,4 and Andrew Lumsdaine1

1Indiana University, Open Systems Lab, Bloomington, IN 47404 USA

{htor,lums}@cs.indiana.edu
2Cisco Systems, San Jose, CA 95134 USA

jsquyres@cisco.com
3University of Tennessee, Dept. of Computer Science, Knoxville, TN 37996 USA

{fagg,bosilca}@cs.utk.edu
4Technical University of Chemnitz, Dept. of Computer Science, Chemnitz 09107 Germany

{htor,rehm}@cs.tu-chemnitz.de

Abstract
Recent research into the optimization of collective MPI operations has resulted

in a wide variety of algorithms and corresponding implementations, each typi-
cally only applicable in a relatively narrow scope: on a specific architecture, on
a specific network, with a specific number of processes, with a specific data size
and/or data-type – or any combination of these (or other) factors. This situation
presents an enormous challenge to portable MPI implementations which are ex-
pected to provide optimized collective operation performance on all platforms.
Many portable implementations have attempted to provide a token number of
algorithms that are intended to realize good performance on most systems. How-
ever, many platform configurations are still left without well-tuned collective
operations. This paper presents a proposal for a framework that will allow a
wide variety of collective algorithm implementations and a flexible, multi-tiered
selection process for choosing which implementation to use when an application
invokes an MPI collective function.

Keywords: Collective Operation, Message Passing (MPI), Automatic Selection, Framework, Open MPI

1. Introduction
The performance of collective operations is crucial for the runtime and scal-
ability of many applications [Rabenseifner, R., 1999]. Decades of collective
communication research have yielded a wide variety of algorithms tuned for
specific architectures, networks, number of participants, and message sizes.
The choice of optimal algorithm to use therefore not only depends on the sys-

46 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

tem that the application is running on, but also the parameters of the collective
function that was invoked (e.g., number of peers, data size, data type). The
sheer number of algorithms available becomes a fundamental problem when
optimizing a portable Message Passing Interface (MPI) library – how should it
choose which algorithm to use at runtime?

Our work aims at providing the capability to automatically select the optimal
collective implementation for each system and MPI argument set. Such an
approach can potentially result in a large performance gain for each collective
function invocation [Pjesivac-Grbovic, J. et. al., 2005; Hoefler, T. et. al.,
2005; Mitra et al., 1995].

Predictive performance models of point to point communications (such as
LogP [Culler, D. et. al., 1993] or LogGP [Alexandrov, A. et. al., 1995]) can
return a reasonable approximation of collective communication performance
upon which we can base the selection of the collective implementation. Hence,
invoking modeling functions at runtime to estimate the algorithm performance
is one approach to determine which should be used.

However, such modeling techniques are not necessarily relevant for hardware-
assisted collective operations (or other implementations not based on point-to-
point operations). Indeed, hardware-based collectives typically outperform
even the best software-based algorithms; it is a reasonable optimization to di-
rectly invoke available hardware-based collectives and bypass any modeling
evaluation.

Based on these considerations and the ideas proposed in [Squyres, J. M. et.
al., 2004], we present the design of a next-generation collective framework with
the following goals:
1. Enable fine-grained algorithm selection such that a selection atom is an in-
dividual function.
2. Perform efficient run-time decisions based on the MPI function arguments.
3. Enable a “fast path” for trivial decisions (e.g., hardware implementations).
4. Enforce a modular approach, preserving the simplicity of adding (and re-
moving) algorithms – especially by third parties.
5. Enable all algorithms – even those added by third parties – to be automatically
used by user applications, testing, and benchmarking tools.

The rest of this paper is divided as follows: Section 2 discusses related work.
Section 3 describes the architecture of our approach. The logic for selecting
which algorithm to use is described in Section 4, followed by an analysis of
its applicability to a set of real world applications. The last section draws
conclusions and points out further work.

2. Related Work
Many research groups inherently limit the selection problem by implementing
only a subset of the standardized collective operations to fit their particular needs

MPI Collective Operation Implementation 47

and assume that those algorithms are globally applicable [Huse, 1999; Chan,
E.W. et. al., 2004]. Some MPI implementations (as MPICH [Gropp, W. et.
al., 1996], MPICH2 [MPICH2 Developers, 2006], LAM/MPI [Burns, 1994])
do their selection of the collective implementation to use either statically at
compile time or based on a limited number of arguments at runtime. The
selection decision is typically based on the communicator and/or data size and
does not take into account network characteristics (such as bandwidth and/or
latency) and ignores the physical network topology.

FT-MPI [Fagg, G.E. et. al., 2004] and current generations of Open MPI
[Gabriel and et al., 2004] base their decisions on an augmented set of parameters
which include the network characteristics. However, in order to make the right
selection, a decision table must be built prior to the execution by a benchmarking
tool. This input file has to be generated by an external tool after running
intensive set of benchmarks. The cost of building the decision table on the
full set of possible combination of arguments can be prohibitive (especially for
large clusters); a subset of all available nodes and/or algorithms may need to be
used, leading to the selection of a sub-optimal algorithm in some cases. Even
though this approach can provide an increase in performance, it is difficult to
add a new algorithm since both the decision function and the benchmark tool
have to be modified in order to include the new algorithm.

Similar modular approaches were described by Vadhiyar et. al. [Vadhiyar,
S.S. et. al., 2000] and Hartmann et. al. [Hartmann, O. et. al., 2006]. Both
propose methods and show the potential benefits of selecting between collec-
tive algorithms during runtime. However, these approaches are limited to a
small set of implemented algorithms and not easily extensible by third party
implementers.

3. Framework Architecture
We propose a hierarchical framework architecture composed of collective com-
ponents, collective modules and collective functions. A collective component
is the software entity which is provided by the module implementer and it
generates communicator specific modules on request (called query in the fol-
lowing). Each component is loaded, queried and unloaded by the framework.
A collective module is a software instance of a collective operation bound to a
specific communicator. A collective component may return an arbitrary num-
ber of collective modules during the query. A collective module may have one
or more (opaque) collective functions to perform the collective operation avail-
able. Additionally, each module defines an evaluation function which returns
a collective function pointer and an estimated time for each MPI argument set.

We divide the architecture into three main parts. The software architecture
defines the nesting of software entities. The usage and interaction of the soft-
ware entities during the program run is defined in the runtime architecture. The

48 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

decision architecture, which can be omitted with the “fast path”, defines the
decision logic used during function invocation and possible optimizations.

Software Architecture
The software architecture is explained by example in Fig. 1. This example
shows only a subset of all available collectives. However, a basic implemen-
tation of all collectives is provided with the framework, therefore at least one
collective function is available at any time. The example shows two avail-
able collective components, called “Component A” and “Component B”. Both
components are loaded by the framework during start-up and maintained on

Broadcast Module
*broadcast_fn_1
*broadcast_fn_2
*broadcast_eval_fn

Barrier Module
*barrier_fn
*barrier_eval_fn

Alltoall Module
*alltoall_fn_1
*alltoall_fn_2
*alltoall_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

...

Component A

Gather Module
*gather_fn_1
*gather_fn_2
*gather_eval_fn

...

Component B

Figure 1. Software Architecture

a list of active components. The initialization of the framework during start-
up (MPI INIT), where all available components are loaded and initialized, is
shown in Fig. 2. The user can select specific components via framework pa-

did
the user force

anything?

list
return component

component if it
wants to run

open no

unload it
close it and

yes

no

components
load all available load selected

components

Figure 2. Actions during MPI INIT

rameters. Each loaded component may disable itself during start-up if not all
requirements (e.g., special hardware) are met. Fig. 1 shows that implementa-
tions for MPI BCAST, MPI BARRIER, MPI GATHER, and MPI ALLTOALL

MPI Collective Operation Implementation 49

communicator during its construction, including the default communicators
MPI COMM WORLD and MPI COMM SELF. This procedure is shown in

to the avail_<op> array
add returned modules

are

left?

yes any components

no

query component
with comm

left?
no

yes

at the communicator
put the decision function

for each collective operation

is there
only one module

at the communicator
put it as direct callable

construct function list
unify module array

Figure 3. Actions during Communicator Construction

work which adds the modules to a list of runnable modules (avail_<op>) on
each communicator. A unification, typically represented by a global opera-
tion, of this list ensures that all selectable modules are available on all nodes
of this communicator (some of them may not have the right hardware require-
ments). Finally, the runtime architecture of this communicator is initialized by
the framework. This architecture is described in detail in the next section.

Runtime Architecture
Each instantiated module offers an evaluation function to the framework. This
evaluation function returns the function pointer to the fastest internal implemen-
tation. This means that more than one implementation may exist inside a single
module. Our example in Fig. 1 depicts a single MPI BCAST implementation
and two opaque MPI BCAST functions implemented in “Component A”. This
shows that the module is allowed to implement opaque functions and to select
between them independently of the framework. This offers the possibility to
implement a more sophisticated selection inside a single module if the module
implementer is able to simplify the decision. This reduces the number of mod-
ules, the memory footprint, and the decision costs which are discussed later.
However, the component is free to return any number of collective modules
for a single collective operation. So does “Component B” and offers two dis-
tinct MPI BCAST implementations which can be turned into two MPI BCAST
modules.

Fig. 3.

are available to the framework. All available components are queried with each

Each component returns an array of available modules to the frame-

50 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

Legend:

is initialized on
is implemented by

Communicator 1

...

Communicator 2
Barrier Module

Broadcast Decision

Broadcast Module

Broadcast Module

Broadcast Decision
Broadcast Module

Broadcast Module

...

Barrier Module

Barrier Module
Implementation

....

Implementation
Broadcast Module

Component A

Broadcast Module
Implementation

Broadcast Module
Implementation

....

Component B

Figure 4. Runtime Architecture

cator 1” and “Communicator 2”. All modules returned by queried components
are attached to communicator which was used to query the component. The
framework maintains a communicator-specific list of available modules per col-
lective operation. Each module implements a single collective operation which
meets the fine grained selection criterion in goal 1. The dashed arrows in Fig. 4
point to the collective implementation in the “Component A” or “Component
B” component which acts as a code-base for the collective module. This shows
that each component can create multiple modules which can be attached to dif-
ferent communicators. Each communicator can manage an arbitrary number
of collective modules to perform a collective operation. The module to process
a specific collective call is selected depending on the actual MPI arguments
during invocation. However, the collective function is called directly if there is
only a single module available, or a single module is enforced by the user (cf.
Fig. 3). This direct invocation is called “fast path” as it does not introduce any
additional overhead.

4. Selection Logic
The example in Fig. 4 shows that there is only a single MPI BARRIER and
MPI GATHER module available for “Communicator 1”. As a result, both op-
erations are called directly using the “fast path” without any selection overhead.
However, there are two MPI BCAST implementations available for this com-
municator which means that there has to be some intermediate layer to select
one of those depending on the arguments. This layer is called selection logic
and is implemented in a set of MPI operation specific decision functions. The
“fast path” enforces that the function arguments of these decision functions are

Fig. 4 shows the runtime architecture for two communicators, “Communi-

MPI Collective Operation Implementation 51

identical to the actual arguments of the collective functions because the upper
layer is not aware of the selection logic. This means that the call to the decision
function is completely transparent to the upper layer. The selection logic with
the MPI BCAST decision function is shown in Fig. 4 and the actions performed
during the invocation of a collective operation are shown in Fig. 5. The first

MPI
arguments in

cache?
but winner

put fastest to cache

call fastest

cleanup all modules

estimated running time
query module for

yes

no

untested
module left?

no

yes

Figure 5. Actions during a collective function call

action is to check if these arguments have already been issued and if the decision
result is in the cache. If this is true, the whole decision functionality and the
related overhead can be skipped and the fastest function is called directly via
its cached function pointer. However, if the arguments have not been called be-
fore (or have been evicted from the cache to free memory), the selection needs
to be performed for the particular argument set. This means that all runnable
modules (modules in the avail_<op> array at the communicator) are queried
for their estimated running time. The module that returns the lowest running
time is added to the cache for future calls and invoked to perform the collective
operation.

The decision function performs the MPI argument specific selection of col-
lective modules based on querying the evaluation function of each module. The
module’s evaluation function returns an estimated time in microseconds and a
function pointer to its fastest function. Absolute time was chosen as an evalu-
ation criterion because it denotes the least common denominator for our case.
This enables the component author to predict or benchmark the running time
of all possible collective implementations no matter if it is performed hard-
ware supported or simply on top of point-to-point messages. It is obvious that
querying all available modules each time a collective call occurs is extremely
costly and can have a catastrophic impact at the application performance. The
decision function implements an MPI-argument specific cache which stores the

52 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

collective function pointer to speed up the critical path to reduce the number
of the costly queries. The fastest collective function pointer is added to the
cache and called after each evaluation. This introduces two questions: How
much overhead does the evaluation add to the collective latency and how cache
friendly will an application really be. The overhead of the evaluation and the
cache friendliness of three MPI applications are analyzed in Section 5

For example, a direct call occurs to Component A’s Barrier Module if the ap-
plication calls MPI Barrier(Communicator 1). This shows the “fast path”
which is enabled for the barrier call on Communicator 1. The next MPI call of
the application is MPI Bcast(sbuf, 1, MPI INT, 0, Communicator 1)

which uses the decision function. This arguments are not yet in the cache (i.e.,
have not been called before). The decision function queries both Broadcast
Modules of Component A and Component B for their fastest function (-pointer)
and its estimated running time. The function pointer of the fastest function is
inserted into the cache and it is called to perform the collective. If another
call to MPI Bcast(sbuf, 1, MPI INT, 0, Communicator 1) occurs, we
already know the fastest function (in the cache) and call it without evaluat-
ing all modules. However, if a call to MPI Bcast(sbuf, 2, MPI INT, 0,

Communicator 1) occurs, we have to reevaluate all modules again.

Decision Overhead
The argument cache can be implemented as a collision-free hash-table which
has an ideal complexity of O(1). The costly part is if a cache miss occurs (i.e.,
the called argument set is not in the cache, has not been called before). This
results in a serial query to the evaluation functions of all available modules.
There are many different ways to implement this evaluation function, we will
discuss the costs of two approaches on detail.

Benchmark Based Implementation. The evaluation function could return a
time that is based on an actual benchmark which has previously been run on the
system. We assume that the benchmark data has a small memory demand and
was loaded during startup. The cost will be approximately a indirect function
call and several cache misses. The indirect function call costs has been evaluated
in [Barrett, B. et. al., 2005] and turns out to be between 2ns and 10ns. We
implemented a simple x86 RDTSC based micro benchmark to measure cache
miss penalty which was between 0.5µs and 1.5µs on all evaluated architectures
(Opteron 2.0 GHz, Xeon 2.4 GHz, Athlon MP 1.4 GHz). This shows that each
evaluation function call may take some microseconds for a benchmark based
implementation.

Model Based Implementation. The time to return could also be calculated
using a model function like LogP or LogGP. We can assume that the small set
of necessary model parameters are already in the cache. Our micro-benchmark

MPI Collective Operation Implementation 53

measures access times between 10ns and 50ns for cached items and a calcu-
lation time of 200ns up to 500ns for the evaluation of a 4th grade polynomial
(model function). The overall evaluation should take less than 1µs for this case.

This shows that well implemented evaluation functions may need up to 5µs
to return the result. This should not hurt the application performance to much,
because the expected benefits are higher (previous studies show differences
in the millisecond scale for several collective implementations). However,
the cache may even speed thing up for repeated arguments. The next section
analyzes the cache-friendliness of a small set of applications.

Analyzing the Cache Friendliness

The usage of the cache (i.e., hit and miss rates) are not easily predictable because
they depend entirely on the application. We measured two different applica-
tions to measure their cache friendliness. The first is ABINIT (http://www.-
abinit.org) which offers two distinct parallelization schemes, band par-
allelization and CG+FFT parallelization. The second application is CPMD
(http://www.cpmd.org/) which is used in its standard configuration. Both
applications have been run with a real-world input file and a special library
which logs collective calls using the MPI profiling interface. ABINIT issues
295 collective operation calls with 16 different parameter sets (hit rate: 94.6%)
for band parallelization. The CG+FFT parallelization uses 53887 collective
operations with 75 different argument sets (hit rate: 99.9%). CPMD issues
15428 collective operations with 85 different argument sets (hit rate: 99.4%).
Both applications utilize the cache very efficiently.

5. Conclusion and Future Work
We have shown that our new design to select collective implementations during
runtime is able to support all kinds of possible collective function implemen-
tations. We have also shown that the idea of the MPI argument cache to store
the optimal selection will work well with at least some real world application.
It is possible to disable the whole selection logic and call every operation via
the “fast path”. The selection logic enables scientists to add new collective
functionality easily and to use it also in productive environments. Next steps
will include the implementation and testing of the proposed approach and the
analysis of more real applications for their argument cache friendliness.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grant EIA-0202048.

54 Hoefler, Squyres, Fagg, Bosilca, Rehm, Lumsdaine

References
Alexandrov, A. et. al. (1995). LogGP: Incorporating Long Messages into the LogP Model.

Journal of Parallel and Distributed Computing, 44(1):71–79.
Barrett, B. et. al. (2005). Analysis of the Component Architecture Overhead in Open MPI. In

Proc., 12th European PVM/MPI Users’ Group Meeting.
Burns, G. et. al. (1994). LAM: An Open Cluster Environment for MPI. In Proc. of Supercom-

puting Symposium, pages 379–386.
Chan, E.W. et. al. (2004). On optimizing of collective communication. In Proc. of IEEE Inter-

national Conference on Cluster Computing, pages 145–155.
Culler, D. et. al. (1993). LogP: towards a realistic model of parallel computation. In Principles

Practice of Parallel Programming, pages 1–12.
Fagg, G.E. et. al. (2004). Extending the MPI specification for process fault tolerance on high per-

formance computing systems. In Proceedings of the International Supercomputer Conference
(ICS) 2004. Primeur.

Gabriel, Edgar and et al. (2004). Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary.

Gropp, W. et. al. (1996). A high-performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–828.

Hartmann, O. et. al. (2006). A decomposition approach for optimizing the performance of MPI
libraries. In Proc., 20th International Parallel and Distributed Processing Symposium IPDPS.

Hoefler, T. et. al. (2005). A practical Approach to the Rating of Barrier Algorithms using the LogP
Model and Open MPI. In Proc. of the 2005 International Conference on Parallel Processing
Workshops (ICPP’05), pages 562–569.

Huse, Lars Paul (1999). Collective communication on dedicated clusters of workstations. In
Proc. of the 6th European PVM/MPI Users’ Group Meeting on Recent Advances in PVM and
MPI, pages 469–476.

Mitra, Prasenjit, Payne, David, Shuler, Lance, van de Geijn, Robert, and Watts, Jerrell (1995).
Fast collective communication libraries, please. Technical report, Austin, TX, USA.

MPICH2 Developers (2006). http://www.mcs.anl.gov/mpi/mpich2/.
Pjesivac-Grbovic, J. et. al. (2005). Performance Analysis of MPI Collective Operations. In Proc.

of the 19th International Parallel and Distributed Processing Symposium.
Rabenseifner, R. (1999). Automatic MPI counter profiling of all users: First results on a CRAY

T3E 900-512. In Proc. of the Message Passing Interface Developer’s and User’s Conference,
pages 77–85.

Squyres, J. M. et. al. (2004). The component architecture of Open MPI: Enabling third-party
collective algorithms. In Proc. 18th ACM International Conference on Supercomputing, Work-
shop on Component Models and Systems for Grid Applications, pages 167–185.

Vadhiyar, S.S. et. al. (2000). Automatically tuned collective communications. In Proc. of the
ACM/IEEE conference on Supercomputing (CDROM), page 3.

SUPPORTING MPI APPLICATIONS
∗ †

Zoltán Farkas
MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary

zfarkas@sztaki.hu

Zoltán Balaton
MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary

balaton@sztaki.hu

Péter Kacsuk
MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary

kacsuk@sztaki.hu

Abstract P-GRADE portal is a multi-grid portal that can support GT2, LCG
and gLite based Grid systems. In order to enable MPI execution in a
transparent way in any of these grids we have developed a generic MPI
execution mechanism that can tolerate the lack of shared working direc-
tory and is able to work with local job managers unable to support MPI
jobs. The solution can support both direct job submission to selected
grid sites as well as broker-based job submission. In case of using the
EGEE broker the developed method enables the access of remote files
stored in storage elements even if the executable code can access only
local files.

Keywords: MPI, Grid, Portal, EGEE, Broker

∗This research work is carried out under the FP6 Network of Excellence CoreGRID funded
by the European Commission (Contract IST-2002-004265).
†SEE-GRID-2 South-Eastern European GRid-enabled eInfrastructure Development 2, Con-
tract Number 031775

GRADE PORTALIN P-

56 Farkas, Balaton, Kacsuk

1. Introduction

MPI became more and more important for EGEE, so there have been
serious efforts to make EGEE Grid resources capable of running MPI
jobs. This article is about the achievements of this work implemented
directly in P-GRADE Portal[1], that allows users to use grid resources
without detailed knowledge about the Grid. It supports running both
sequential and parallel applications through a graphical user environ-
ment.

EGEE does not support MPI applications officially yet, however, there
are some sites, that make this service available, to satisfy user require-
ments.

In the EGEE Grid users can connect to a resource broker (RB) that
accepts a file written in the Job Description Language (JDL[3]). The
purpose of this file is to describe the job itself and various requirements
set up by the user represented as attribute-value pairs. The possible
attributes include for example the executable name, the input files used
by the executable, or the number of nodes required by the job. By
using the values defined in this file and the information present in the
information system the resource broker can decide about the destination
resource of the job.

Besides the brokered method, Grid users have the possibility to access
the resources directly. In this case no broker is used to find a match-
ing resource: it is the user’s responsibility to send the job to a correct
resource. Direct usage can be achieved through standard GT-2 calls:
GRAM[4] and GridFTP.

P-GRADE Portal makes it possible for the user to use EGEE resources
in any of the above described ways, through a common graphical user
interface.

During the development of EGEE Grid support in P-GRADE Por-
tal, we have faced the following differences in EGEE infrastructure and
previously used Grid infrastructures: first, many jobmanagers create a
new working directory for each GRAM call. As a consequence, the job
should be started using only one GRAM call.

among worker nodes. This means, that input files need to be copied to
all of the worker nodes, because in case of MPI applications, all of the
processes may access the input files. However, it is possible to detect the
presence of shared working directories, in this case optimizations should
be considered.

Third, the jobmanager used may not be able to handle MPI jobs. In
order to make MPI jobs runnable on such resources, P-GRADE Portal
has to start the MPI application.

Second, there are resources, that do not share the working directory

Supporting MPI applications in P-GRADE Portal 57

Finally, there are some new services in EGEE: files may reside on Stor-
age Elements, which can not be used by legacy applications, the user has
to add support for them in his/her application. This is a serious prob-
lem, if the user does not have the possibility to modify the application.
Another important service is the EGEE broker.

The execution layer of P-GRADE Portal has to be able to handle
both traditional GT-2 Grid resources, and EGEE Grid resources, which
may differ from traditional resources in the ways described above.

There are HOWTOs describing the way MPI applications can be
started on EGEE resources. One of this HOWTOs is the INFN-GRID
mini-howto[2]. This HOWTO describes running MPI jobs on INFN-
GRID using pbs jobmanagers.

Section 2 will describe how direct MPI job submission is solved in the
P-GRADE portal. Section 3 addresses the main problem of the broker-
based MPI job submission of EGEE Grids and shows how to solve this
problem by the P-GRADE portal MPI execution mechanism. Section
4 describes the experiments we have gained with the described generic
MPI Grid execution mechanism.

2. Direct MPI job submission

In case of direct job submission, the specialties mentioned in the pre-
vious section have to be kept in mind during implementation.

It is important to write some words about the P-GRADE Portal ex-
ecution layer. As a workflow scheduler Condor DAGMan is used, which
can run scripts before and after the job is executed. These scripts are
called pre and post scripts. The task of the pre script is to prepare the
job execution (for example copy input files used by the job to the re-
quested resource). The post script is responsible for after-job tasks (for
example downloading output files from the resource). The actual job,
which is executing between the two scripts, is either a Globus universe
job or another script run in the Scheduler universe, depending on the
method used for job execution (brokered or direct). The scripts will be
described in detail, where required.

In order to make the execution layer work for both traditional and
EGEE-like resources, the following points must be considered.
As jobmanagers may not support MPI jobs, the job type should be spec-
ified as

’

single’, and not

’

mpi’, but the required number of nodes must
be specified for MPI jobs. This enables to start the application even if
the jobmanager does not support MPI applications, but the resource is
configured to do so.

58 Farkas, Balaton, Kacsuk

When the working directories are not shared, it is impossible to copy in-
put files to the worker nodes using GridFTP. Thus, files must be copied
to a temporary working directory instead on the frontend machine. A
GRAM call can be used to create this temporary working directory. The
requested jobmanager might be unusable for this, as the directory is cre-
ated on one of the worker nodes, and cannot be accessed using GridFTP.
So the

’

fork’ jobmanager must be used to create this working directory,
which runs the jobs on the frontend machine. In this case the job to be
run is a simple

’

create directory’ command. After the directory is cre-
ated, it is possible to copy input files to this directory using GridFTP.
P-GRADE Portal must not specify the working directory, where the job
is to be run, as it may be different for each GRAM call.

The jobmanager knows nothing about the input files used by the job
(there is no way to specify them), so moving the input files from the
frontend to the worker nodes has to be done by the job. As P-GRADE
Portal offers the possibility to submit grid un-aware jobs which do not
know anything about the infrastructure used, this task has to be done
by the execution layer. Not on the Portal machine, but on the resource,
after the job has been submitted, and before the job is started. The
trivial solution for this situation is to copy the executable to the fron-
tend machine just like an input file, and specify a wrapper script as the
executable in the Condor-G submit file. The wrapper script is described
below. The wrapper script can do all the necessary tasks which can
not be done before the job is submitted, or is not handled by the real
executable.

With all the above in view, the execution layer of P-GRADE Portal
is described on figure 1. The steps in detail are:

1 The pre script queries the HOME directory on the frontend node
using the fork jobmanager. Next, a temporary working directory
is created in the HOME directory also using the fork jobmanager.
The final step of the preparation is copying the input files and the
executable to this working directory.

2 The wrapper script is submitted to the requested jobmanager (pbs
on figure 1) using the Condor-G submit file. In case of MPI appli-
cations, the job is submitted as a

’

single’ job type, for which the
requested number of nodes to be allocated is also specified. This
step means setting the

’

jobType’ RSL[5] attribute to

’

single’, and
the

’

count’ and

’

hostCount’ attributes to the requested number
of nodes. The wrapper script requires the following parameters:
the fully qualified domain name (FQDN) of the frontend node,
the path of the temporary working directory on that machine, the

Supporting MPI applications in P-GRADE Portal 59

Figure 1. Direct MPI job submission using P-GRADE Portal

job name, and the real executable name. All these variables are
specified as environment variables in the wrapper script. These
variables are updated by the pre script.

3 In this step, the jobmanager script running on the frontend node
creates a submit file for the local resource management system
(LRMS, pbs on figure 1), and submits it to the LRMS. The LRMS
allocates the number of nodes requested, and starts the wrapper
script on one of the allocated nodes. We will refer to the node
where the wrapper is started as the master node.

4

command scp or rcp. If the job type is sequential, the executable
is simply started at this point. If it is an MPI job,

’

mpirun’ is
being searched for: first GLOBUS LOCATION/libexec/globus-sh-
tools.sh file is read, and if the GLOBUS SH MPIRUN environment
variable is defined, its value is used, otherwise

’

mpirun’ is used as-
suming it is in the PATH. The number of nodes is queried from the
job description file. If the PBS NODEFILE environment variable
is defined, its value is used as the machinefile for mpirun. In case

If yes, the selected
After the wrapper script is started, it checks if the temporary working
directory created by the pre script is present.
resource uses shared working directories. Otherwise the execut-
able and input files are copied from the frontend node using the

60 Farkas, Balaton, Kacsuk

PSB NODEFILE is defined and no shared working directories are
present on the resource, the wrapper script copies the executable,
and the input files to each node enumerated in the file. The target
directory is the current working directory, as MPI starts processes
in that directory. So the executable, and input files are distributed.

5 Next, the real executable is started using the found

’

mpirun’, the
specified process count, and the possibly found machinefile.

6 After the real executable has been run, and the PBS NODEFILE
environment variable is defined and no shared working directories
are present on the resource, the output files found in the job in-
put/output file description file are copied from the worker nodes
enumerated in the file referenced by PBS NODEFILE to the mas-
ter worker node using scp or rcp. If a file is not present, the error is
simply ignored. After this, output files are copied from the master
worker node to the frontend machine temporary working directory.
Finally the wrapper script exists with the return value of the real
executable.

7 After the Condor-G job has successfully finished, the post script
copies the output files from the temporary working directory on
the frontend to the the Portal machine using GridFTP.

Using the above method makes it possible for users to run both se-
quential and MPI applications, irrespective of the resource environment:
both shared and unshared HOME directories are supported. Moreover,
the jobmanager may create a separate context (working directory) for
each GRAM call.

In case of a non-pbs jobmanager, it is impossible to determine the
slave worker node hostnames. So input files can not be copied to the
worker nodes before the executable is started. MPI applications sent to
non-pbs jobmanagers should open input and output files in the master
process.

3. MPI job submission using the LCG broker

In the introduction we have mentioned, that in case of submitting a
job through the EGEE broker, users do not have the possibility to make
the broker copy their remote input files residing on a storage element
to the worker node where the job is run. It is possible to specify the

It is the

element as requested.
job’s responsibility to download the remote input files from the storage
the job close to a storage element, which has the requested files.
remote input files, but this is only a hint for the broker: it can place

Supporting MPI applications in P-GRADE Portal 61

Figure 2. Brokered MPI job submission using P-GRADE Portal

P-GRADE Portal offers the possibility to users to run their legacy
applications using remote input files, even if the application does not
support using storage elements. In order to achieve this, on the user
interface the input file type has to be set to Remote, and the file must
be specified using a Logical File Name (lfn) or a GUID.

The P-GRADE Portal brokered job submission is described on figure
2. The steps in detail are:

1 The Portal submits the job to the resource broker. A portal wrap-
per script (wrapperp), the real executable, and local input files are
sent with the job. wrapperp is used, as the executable to run.

2 The resource broker creates a submit file for the GRAM jobman-
ager requested. The job type is specified as single, and a new
script, the broker wrapper script (wrapperrb) is specified as the
executable to be run. wrapperp, the real executable and local in-
put files are sent as job input.

3 This step is the same as step 3 in case of direct MPI job submission.

4 wrapperrb starts wrapperp on the allocated nodes using

’

mpirun’.
The first instance of wrapperp starts on the master worker node.

5 wrapperp check if the requested remote input files are present. If
not, they are downloaded from the storage element. Next, the real

62 Farkas, Balaton, Kacsuk

executable is started. This step triggers the MPI Init function in
the MPI library.

6 MPI Init starts wrapperp on the other worker nodes. wrapperp

and not the real executable, because wrapperp has been specified
as the executable to

’

mpirun’.
wrapperp running on slave worker nodes behaves just like on the
master worker node: checks if the remote input files are present. If
yes (probably because working directories are shared), the real exe-
cutable is simply started. If not, remote input files are downloaded
from the storage element.

This method copies remote input files only in case of they are really
needed: for shared working directories only once, for unshared working
directories only if they are not present. The created portal wrapper
script is universal: works for both sequential and MPI applications.

As it can be seen, the main difference between direct and brokered
job submission implementation is, that in case of brokered submit the
implementation does not need to take care of running

’

mpirun’, as it
is done by the broker wrapper script. In case of direct job submission,
the portal wrapper script behaves just like the broker wrapper script
mentioned in this section.

4. Experimental results

In order to test the developed solutions, we have taken an EGEE VO,
and checked which resources are prepared to start MPI applications.
During the tests we have used the slightly modified

’

cpi’ example appli-
cation. The only modification is, that the executable tries to open an
input file. The started application used 2 processes.

We have checked the resources,
and created a list about the resources which successfully ran the mod-
ified application. For determining the list, for each resource a JDL file
has been created, in which the resource to use has been specified as a
requirement:

Requirements = other.GlueCEInfoHostname=="..."

where ... must be replaced with the fully qualified domain name of the
resource to run the job.

The computing elements capable of running the job are:

ce.ulakbim.gov.tr:2119/jobmanager-lcgpbs-seegrid

grid01.rcub.bg.ac.yu:2119/jobmanager-pbs-seegrid

The selected VO is SEEGRID [6].

Supporting MPI applications in P-GRADE Portal 63

seegrid2.fie.upt.al:2119/jobmanager-pbs-seegrid.

Using the P-GRADE Portal with the broker, jobs which finished suc-
cessfully ran exactly on the same computing elements, as without the
P-GRADE Portal.

Submitting the executable directly to the resources, job finished suc-
cessfully on the same computing elements, as in the brokered case, and
on one more resource: grid2.cs.bilkent.edu.tr:2119/jobmanager-lcgpbs-
seegrid. On this resource HOME directories are not shared among the
nodes. This is because in case of direct resource usage the P-GRADE
Portal wrapper script copies the executable and input files to the re-
quested nodes.

5. Conclusion

P-GRADE portal is already used for several types of Grids as produc-
tion service: UK NGS, VOCE, SEE-GRID, GILDA, EGRID, etc. The
UK NGS is a GT2 Grid, VOCE is an LCG Grid and GILDA has a gLite
version. In all these Grids we had to support the MPI job submission
both directly and through the broker. In order to achieve this we have
developed a generic MPI Grid execution mechanism. The advantage of
this new mechanism is that it does not require either shared working
directory of the MPI Grid sites or local job managers that can support
MPI execution.

The direct MPI job submission mechanism can be used in Grids with-
out brokers (e.g. UK NGS) but also useful in Grids where brokers avail-
able like in EGEE type Grids. Our experiments showed that in EGEE
Grids the direct MPI job submission could be very advantageous be-
cause more sites can be used for MPI job execution by the direct job
submission than by the broker. Furthermore, our solution improves the
usability of EGEE sites in case of MPI jobs by enabling their use for
MPI jobs that require the access of remote files without the capability
of handling Grid files.

References

[1] P. Kacsuk et al: P-GRADE: a Grid Programming Environment
Journal of Grid Computing, Vol. 1, No. 2, pp.

[2] G. Andronico, R. Barbera, G. Donvito. G. La Rocca, S. Dalla Fina: Running MPI
jobs on INFN-GRID mini-howto
http://grid-it.cnaf.infn.it/index.php?mpihowto&type=1

[3] F. Pacini: JDL Attributes
http://server11.infn.it/workload-grid/docs/DataGrid-01-TEN-0142-0 2.pdf

64 Farkas, Balaton, Kacsuk

[4] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S.
Tuecke: A Resource Management Architecture for Metacomputing Systems
The 4th Workshop on Job Scheduling Strategies for Parallel Processing
Springer-Verlag LNCS 1459, pages 62–82

[5] The Globus Resource Specification Language RSL v1.0
http://www-fp.globus.org/gram/rsl spec1.html

[6] South Eastern European GRid-enabled eInfrastructure Development
http://www.see-grid.org/

TUNED: AN OPEN MPI COLLECTIVE
COMMUNICATIONS COMPONENT

Graham E. Fagg, George Bosilca, Jelena Pješivac-Grbović,
Thara Angskun and Jack J. Dongarra
Dept. of Computer Science, 1122 Volunteer Blvd., Suite 413, The University of Ten-
nessee, Knoxville, TN 37996-3450, USA
fagg,bosilca,pjesa,angskun,dongarra@cs.utk.edu

Abstract Collective communications are invaluable to modern high performance
applications, although most users of these communication patterns do
not always want to know their inner most working. The implementation
of the collectives are often left to the middle-ware developer such as
those providing an MPI library. As many of these libraries are designed
to be both generic and portable the MPI developers commonly offer
internal tuning options suitable only for knowledgeable users that allow
some level of customization. The work presented in this paper aims not
only to provide a very efficient set of collective operations for use with
the Open MPI implementation but also to make the control and tuning
of them straightforward and flexible.

Keywords: Collective Communication, Communication Tuning, Runtime Selection

1. Introduction
Collective (group) communications are of paramount importance to

HPC users due to the extent on which developers rely on them for op-
timal performance[1]. In many cases obtaining optimal performance
requires deep internal knowledge of the collective algorithms and the
target architectures which many users may not either have access to or
have no understanding of. The reasons for these gaps are many. The
implementation of the collectives are often left to the middleware devel-
opers such as those providing an MPI library. As many of these libraries
are designed to be both generic and portable the MPI developers are
left in the difficuilt position of deciding just how to implement the basic
operations in such a way that they meet the needs of all possible users
without knowing just how they will be utilised.

66 Fagg et al.

Previous generations of collective implementations usually offered a
number of possibly optimal low level implementations and some kind
of a fixed decision on when to use one version or the other, in a hope
that this would cover most usage cases. Although much previous work
has focused on either measurement (instrumentation) or modelling to
make these decisions (ACCT/ATCC[2], OCC[3], LogGP, MagPIe[4] etc)
rather than on how to either incorporate them into a runtime system,
or make them more accessible.

In many cases making the underlying decisions accessible either di-
rectly to knowledgable users, or via automated tools is enough to correct
for any [performance] problems with the default decisions implemented
by the MPI implementors.

This paper describes current work on the tuned collectives module de-
veloped by the University of Tennessee for distribution within the Open
MPI 1.1 release. Some sections of the research shown here (i.e. dynamic
rule bases) are still however experimental and may never be officially
distributed with Open MPI. This paper is ordered as follows: Section 2
detailed related work in collective communications and control. Sec-
tion 3 details the Open MPI MCA architecture and Section 4 describes
the tuned collectives component design and performance, section 5 con-
cludes the paper and lists future work.

2. Related Work
All MPI implementations support MPI collective operations as de-

fined in the MPI 1.2 specification [5]. Many of the portable implementa-
tions support a static choice mechanism such as LAM/MPI, MPICH [6],
FT-MPI [7] and the basic collectives component [8] of Open MPI [9].
In many cases these implementations are tuned primarily for closely
coupled systems and clusters and the decision functions are buried deep
inside the implementations. System that are designed for Grid and wide-
area use also have to differentiate between various collective algorithms
but at a much higher level, such as when implementing hierarchical
topologies to hide latency effects. Systems such a Magpie [4], PACX-
MPI [10, 11] and MPICH-G2 all use various metrics to control which
algorithms are used. Although these systems do not explicitly export
control of these parameters to users, their code structure does allow
these points to be more easily found than with closely coupled systems.

Tuned: An Open MPI collective communications component 67

3. Open MPI collective framework and basic
components

The current Open MPI[9] architecture is a component based system,
and is called the Modular Component Architecture (MCA). The MCA
architecture was designed to allow for a customized (and optimized)
MPI implementation that is built from a range of possible components
at runtime, allowing for a well architect ed code base that is both easy
to test across multiple configurations and easy to integrate into a new
platform. The architectures design is a follow up to the SSI system
[12] originally developed for the LAM7. The system consists of a MCA
framework which loads components (shared objects) during MPI Init. If
any of these components can be utilized (they can disqualify themselves
via a query function) they become modules (a component instance cou-
pled with resources such as allocated memory). Many of the subsystems
within Open MPI such as low level point-to-point messaging, collective
communication, MPI-2 I/O, and topology support are all built as com-
ponents that can be requested by the user at mpirun time.

The Open MPI 1.0 release supplied a number of MPI components for
collective communication that each contained a complete set of MPI 1.2
collective operations. The components being: basic, shm and self.

The shm component contains collectives for use when Open MPI is
running completely on a shared memory system. The self component is
a special feature within MPI for use on the MPI COMM SELF commu-
nicator. The basic component is the default component used when not
using either shared memory or self. The basic component contains at
least one implementations per collective operation. For broadcast and
reduce it offers two implementations, one linear and the other using a
binary tree. Further details of the Open MPI collective framework can
be found in [8].

4. New tuned collectives and decision module
The tuned collectives module has a number of goals, and aims to sup-

port the following: 1: Multiple collective implementations, 2: Multiple
logical topologies, 3: Wide range of fully tunable parameters, 4: Efficient
default decisions, 5: Alternative user supplied compiled decision func-
tions, 6: User supplied selective decision parameter configuration files,
and 7: Provide a means to dynamically create/alter decision functions
at runtime.

Items (1-3) are paramount for any collective implementation to be able
to provide performance on an unknown system that the developer has
no direct access to. Item (4) is required to allow users to just download

68 Fagg et al.

and install Open MPI and get reasonable performance. Item (5) is for
more knowledgeable users who wish to change the default decision and
allow for the fastest use of that new decision without fully replacing the
current default rules. If a comprehensive benchmarking of the Open
MPI collectives module has been completed, then the output from this
could be feed back into the MPI runtime (item 6) and used instead of
the default rule base. The final item is quite unusual and allows for the
entire (or part of) the rule base to be changed during runtime. This
in effect allows for adaptive behavior of the decision functions, and has
been applied to dynamically tuning the MPI Alltoallv operation which
is obmitted due to space.

4.1 Collective algorithms and parameters
Previous studies of MPI collectives have shown that no single algo-

rithm or topology is optimal and that the variations in network topol-
ogy, interconnection technology, system buffering and so on, all effect
the performance of a collective operation [2]. Thus, the tuned module
supports a wide number of algorithms for performing MPI collective op-
erations. Some of these implementations rely on fixed communication
topologies such as the Bruck and recursive doubling, others are general
enough to handle almost any topology i.e. trees with varying fan-outs,
pipelines etc. Another additional parameter implemented in the tuned
collectives module is segmentation size. In an attempt to increase per-
formance by utilizing as many communication links as possible we have
modified most algorithms to segment the users data into smaller blocks
(segments). This allows the algorithm to effectively pipeline all trans-
fers. The segment size is however not a simple factor of network MTU,
sender overhead gap etc, and usually has to be benchmarked fully to
find optimal values.

4.2 Default tuned decision function
For the module to be named tuned implies that it is in fact tuned

for some system somewhere. In fact it has been tuned for a cluster of
AMD64 processors communicating across a Gigabit Ethernet intercon-
nect located at UTK. The tuning was performed using an exhaustive
benchmarking technique as part of the OCC[3] and Harness/FT-MPI
[7] projects. (The module shares almost the same decision functions
as FT-MPI although they both implement slightly different ranges of
algorithms).

A comparison of the tuned component compared to the basic collec-
tives module in Open MPI, MPICH2 and FT-MPI is shown in figures 1

Tuned: An Open MPI collective communications component 69

a & b. The first figure shows absolute performances and the second is
normalized to the optimal of the 4 systems (i.e. the Y-Axis shows how
much slower the others are compared to the best for that message size
and operation).

Figure 1. Absolute and Relative (compared to best) performance of 4 collective
implementations, Open MPI (basic,tuned), MPICH2 and FT-MPI

4.3 Architecture and calling sequence
The overall architecture of the tuned collectives component is gov-

erned by both the MCA framework and the structure of the commu-
nicator data structure. As the upper level MPI architecture calls the
function pointer in the communicator directly, this forces the first level
function in the component to have the same argument list as that of
the MPI API, i.e. no extra arguments. As discussed above many of
the backend implementations of the collectives require extra parame-
ters, such as topology and segment size. We resolve this issue by using
at a two level architecture. The first level takes normal MPI arguments,
decides which algorithm/implementation to use, creates any additional
parameters and then invokes it, passing any results or errors back to the
MPI layer. I.e. the first level function is both a decision function and
a dispatch function. The second or lower layer is the implementation
layer, and contains the actual algorithm themselves. Adding this addi-
tional layer of redirection allows the component complete flexibility in
how it handles requests, as all functions except the decision/dispatch are
hidden from the above layers. The component additionally implements
some support functions to create and manage virtual topologies. These
topologies are cached on either the component, or on each instance of
the module as configured by the user.

70 Fagg et al.

4.4 User overrides
One of the goals of the tuned module was to allow the user to com-

pletely control the collective algorithms used during runtime. From the
architecture it is clear that the upper level MPI API does not offer any
methods of informing the component of any changes (except through
MPI attributes) as the decision/dispatch function has the same argu-
ments as the collective calls. This issue is resolved by the MCA frame-
work, which allows for the passing of key:value pairs from the environ-
ment into the runtime. These values can then be looked up by name.

To avoid incurring any kind of performance penalty during normal
usage, these overrides are not checked for unless a special trigger value
known as mca coll tuned use dynamic rules is set. When this value is
set, the default compiled in decision routines are replaced by alternative
routines that check for all the possible collective control parameters.
To further reduce overheads, these parameters are only looked up at the
MCA level during communicator creation time, and their values are then
cached on each communicators collective module private data segment.

Forcing choices. The simplest choice that the user might want is
the ability to completely override the collective component and choose
a particular algorithm and its operating parameters (such as topology
and segmentation sizes) directly. In the tuned component this is known
as forcing a decision on the component, and it can be performed on as
many or as few MPI collectives as required. The following example illus-
trates how the user can force the use of a binomial tree based Broadcast
operation from the command line.

host% mpirun -np N -mca coll_tuned_use_dynamic_rules 1
-mca coll_tuned_bcast_algorithm 6 myapp.bin

The range of possible algorithms available for any collective can be
obtained from the system by running the Open MPI system utility
ompi info with the arguments -mca coll tuned use dynamic rules 1 -
param coll all. The possible algorithm choices for MPI Broadcast is:

MCA coll: information "coll_tuned_bcast_algorithm_count"
(value: "6") Number of bcast algorithms available

MCA coll: parameter "coll_tuned_bcast_algorithm"
(current value: "0") Which bcast algorithm is used.
Can be locked down to choice of:
0 ignore, 1 basic linear, 2 chain, 3: pipeline,
4: split binary tree, 5: binary tree, 6: BM tree.

Tuned: An Open MPI collective communications component 71

It is important to note that the value 0 forces the component to de-
fault to the built in compiled decision rules. Further control param-
eters exist that control both topology and message transfers such as

parameter names are common to most collective operations.

Selective file driven decision functions. Another alternative to
forcing complete collective operations is to force only parts of the decision
space in a semi-fixed manner. An example of such a usage scenario would
be in the case of a user having tuned an MPI collective for a range of
input parameters (message size, communicator size) either manually or
via an automated tool [3]. The user could then tell the MPI collective
component to use these values within a set range by supplying a file
that contains as many data points as the user knows. To decrease both
storage and evaluation time the file contents are stored using a run-
length technique that effectively only stores the switching points for
each algorithm. An example version for an MPI Alltoall operation is
shown below:

1 # num of collectives
3 # ID = 3 Alltoall collective (ID in coll_tuned.h)
2 # number of com sizes

comm sizes (1-first-1) use defaults automatically
8 # comm size 8
2 # number of msg sizes
0 1 0 0 # message size 0, linear 1, no topo or segmentation
32768 2 0 0 # 32k, pairwise 2, no topo or segmentation
9 # comm size 9-(onwards)
1 # message sizes
0 0 0 0 # for datasize 0 onwards use default decisions

end of collective 1, ID 3

5. Conclusions
The results presented in this paper show that the flexible control of

the current Open MPI tuned collectives component do not effect commu-
nication performance, and that the component is still competitive with
other MPI implementations such as LAM/MPI, FT-MPI and MPICH2.
The component allows multiple varied and concurrent methods for the
user or system administrator to control selectively the choice of backend
collective algorithm and its parameters. We are hoping to extend this
work in a number of ways. This includes adding more automated tools
for file based rule generation (application targeted tuning) and using

tuned bcast algorithm segmentsize, tree fanout/ chain fanout. Thesecoll

72 Fagg et al.

feedback from switch and network infrastructure to dynamically control
algorithm choices during runtime.

References
[1] Rabenseifner, R.: Automatic MPI counter profiling of all users: First results

on a CRAY T3E 900-512. In: Proceedings of the Message Passing Interface
Developer’s and User’s Conference. (1999) 77–85

[2] Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Performance modeling for self adapting
collective communications for mpi. In: Proceedings of the LACSI Symposium,
Los Alamos, NM, Los Alamos Computer Institute (2001)

[3] Pješivac-Grbović, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Don-
garra, J.J.: Performance analysis of mpi collective operations. In: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 15, Washington, DC, USA, IEEE Computer Society
(2005) 272.1

[4] Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Mag-
PIe: MPI’s collective communication operations for clustered wide area systems.
In: Proceedings of the seventh ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, ACM Press (1999) 131–140

[5] Forum, M.P.I.: Mpi: A message passing interface standard. http://www.mpi-
forum.org/ (1995)

[6] Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable
implementation of the mpi message passing interface standard. Parallel Comput.
22(6) (1996) 789–828

[7] Fagg, G.E., Bukovsky, A., Dongarra, J.J.: Harness and fault tolerant MPI.
Parallel Comput. 27(11) (2001) 1479–1495

[8] Squyres, J.M., Lumsdaine, A.: The component architecture of open MPI: En-
abling third-party collective algorithms. In Getov, V., Kielmann, T., eds.: Pro-
ceedings, 18th ACM International Conference on Supercomputing, Workshop
on Component Models and Systems for Grid Applications, St. Malo, France,
Springer-Verlag (2004) 167–185

[9] Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design
of a next generation MPI implementation. In: Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary (2004) 97–104

[10] Keller, R., Gabriel, E., Krammer, B., Müller, M.S., Resch, M.M.: Towards
efficient execution of MPI applications on the grid: Porting and optimization
issues. Journal of Grid Computing 1(2) (2003) 133–149

[11] Gabriel, E., Resch, M., Beisel, T., Keller, R.: Distributed computing in a
heterogeneous computing environment. In: Proceedings of the 5th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, London, UK, Springer-Verlag (1998) 180–
187

[12] Squyres, J.M., Lumsdaine, A.: A component architecture for LAM/MPI. In:
Proceedings, European PVM/MPI Users’ Group Meeting. (2003)

SELF-HEALING NETWORK
FOR SCALABLE FAULT TOLERANT
RUNTIME ENVIRONMENTS∗

Thara Angskun, Graham E. Fagg, George Bosilca,
Jelena Pješivac–Grbović, and Jack J. Dongarra
Dept. of Computer Science, The University of Tennessee, Knoxville, USA
angskun,fagg,bosilca,pjesa,dongarra@cs.utk.edu

Abstract
and adapt to the underlying libraries and hardware which require a high
degree of scalability in dynamic large-scale environments.

This paper presents a self-healing network (SHN) for supporting scal-
able and fault-tolerant runtime environments. The SHN is designed to
support transmission of messages across multiple nodes while also pro-
tecting against recursive node and process failures. It will automatically
recover itself after a failure occurs. SHN is implemented on top of a scal-
able fault-tolerant protocol (SFTP). The experimental results show that
both the latest multicast and broadcast routing algorithms used in SHN
are faster than the original SFTP routing algorithms.

Keywords: Fault tolerance, Routing, Runtime Environment, Scalability, Self-healing.

1. Introduction
Recently, several of high performance computing platforms have been

installed with more than 10,000 CPUs, such as Blue-Gene/L at LLNL,
BGW at IBM and Columbia at NASA [6]. However, as the number of
components increases, so does the probability of failure. To satisfy the
requirements of such a dynamic environment (where the available num-
ber of resources is fluctuating), a scalable and fault-tolerance framework
is needed. Many large-scale applications are implemented on top of

∗This material is based upon work supported by “Los Alamos Computer Science Institute
(LACSI)”, funded by Rice University Subcontract No. R7B127 under Regents of the Univer-
sity Subcontract No. 12783-001-05 49 and “Open MPI Derived Data Type Engine Enhance
and Optimization”, funded by the Regents of the University of California (LANL) Subcon-
tract No. 13877-001-05 under DoE/NNSA Prime Contract No. W-7405-ENG-36

Scalable and fault tolerant runtime environments are needed to support

74 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

message passing systems for which the de-facto standard is the Message
Passing Interface (MPI) [11]. MPI implementations require support of
parallel runtime environments, which are extensions of the operating
system services, and provide necessary functionalities (such as naming
resolution services) for both the message passing libraries and applica-
tions. However, currently available parallel runtime environments are
either not scalable or inefficient in dynamic environments. The lack
of scalable fault-tolerance parallel runtime environments motivates us to
design and implement such a system. A self-healing network (SHN) that
can be used as a basis for constructing a higher level fault-tolerant par-
allel runtime environment is described in this paper. SHN was designed
to support transferring messages across multiple nodes efficiently, while
protecting against recursive node or process failures. It was built on top
of a scalable and fault-tolerant protocol (SFTP) [1] and automatically
recovered itself after a failure occurs.

The structure of this paper is as follows. The next section discusses
previous and related work. Section 3 introduces the self-healing network
and its recovery algorithm, while the section 4 presents the routing al-
gorithm along with some experimental results, followed by conclusions
and future work in the section 5.

2. Previous and Related Work
Although there are several existing parallel runtime environments for

different types of systems, they do not meet some of the major re-
quirements for MPI implementations: scalability, portability and per-
formance. Typically, distributed OS and single system image systems
are not portable while the nature of Grid middle-wares has performance
problems.

The MPICH implementation [9] uses a parallel runtime environment
called Multi-Purposed Daemon (MPD) [4] to providing scalability and
fault-tolerance through a ring topology for some operations and a tree
topology for others. Runtime environments of other MPI implementa-
tions, such as Harness [2] of FT-MPI [7], Open RTE [5] of Open MPI [8]
and LAM of LAM/MPI [3], do not currently provide both scalable and
fault tolerance solutions for their internal communications.

The scalability and fault-tolerance issues have been addressed in sev-
eral networking areas. However, those approaches could not be used
or they are not efficient in the parallel runtime environments. Struc-
tured peer-to-peer networking based on distributed hash tables such as
CAN [12], Chord [15], Pastry [14] and Tapestry [16] was designed for
resource discovery. They are only optimized for unicast messages. Tech-

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 75

niques used in sensor or large scale ad-hoc networking based on gossiping
(or the epidemic algorithm) [10] [13] mainly focus on information aggre-
gation.

The scalable and fault-tolerant protocol (SFTP) [1] was introduced
to support parallel runtime environments. The protocol is based on a
k-ary sibling tree. The k-ary sibling tree topology is a k-ary tree, where
k is number of fan-out (k ≥ 2), and the nodes on the same level (same
depth on the tree) are linked together using a ring topology. The tree is
primarily designed to allow scalability for broadcast and multicast op-
erations, while the ring is used to provide a well understood secondary
path for transmission when the tree is damaged during failure conditions.
The protocol could be used to build a self-healing network which auto-
matically recovers itself to overcome the orphan situation, the situation
where nodes are unreachable because the tree becomes a bisection.

3. Self-Healing Network (SHN)

3.1 Overview
Although the self-healing network (SHN) is designed to support generic

runtime environments of MPI implementations, the current work is in a
progress to integrate it in a fault-tolerance implementation of message
passing interface called FT-MPI as well as in the modular MPI imple-
mentation called Open MPI. The network is designed to support various
operations needed by scalable and fault-tolerant MPI runtime environ-
ments. The example of those operations and the details of how SHN
could be used for the operations are as follows.

Distributed Directory Service Directory service is a storage which
maintains information used during running an MPI job such as contact
information of each process, coordinator of recovery algorithm in FT-
MPI etc. The SHN provides a possibility to use the network as a dis-
tributed directory service by mapping those information into the logical
node ID. Scalable and fault-tolerant information management (update,
query) could be done with unicast messages of SFTP routing (similar to
resource discovery in the structured peer-to-peer networking).

Standard I/O Redirection Although MPI standard did not de-
fine how an input and an output could be treated, most of the MPI
implementation redirect the standard output and the standard error to
the user terminal (if not run under the batch scheduling). This opera-
tion could be done using the k-ary tree as a main route to forward the
standard output/error and using the ring in case of failures.

Monitoring Framework A monitoring framework provides infor-
mation such as processes, nodes, messages for tool and application de-

76 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

Figure 1. (a) SHN after recovery [4 dies] (B) SHN after recovery [4,5 die]
(c) high possibility of orphan

velopment. Examples of those tools are parallel debuggers, runtime fault
detectors, runtime verification and load balancers etc. To build a scal-
able and fault-tolerant monitoring framework, all of the communication
underneath the framework can use multiple types of message transmis-
sions (unicast, multicast and broadcast) provided by the SHN.

In general, the SHN provides a capability to send unicast, multicast
and broadcast messages from any nodes while additionally protecting
against node and process failures, from effecting message delivery.

3.2 SHN Recovery
There are some situations where nodes do not die but become un-

reachable due to network bisectioning. This situation can be prevented
by self-recovery, when a node detects that its neighbor dies, it will send
a unicast message to establish the connection with the next neighbor in
the same direction of the dead node. If the next neighbor also dies, it
will continue trying to establish the connection with the next node and
so on until success or the next node in that direction is the node itself. If
two nodes try to establish a connection at the same time, the connection
which is initiated by higher ID will be dropped. Figure 1(a) illustrates
an example where logical node 4 dies. All neighbors of node 4 will begin
to recover the logical topology by reestablishing their connections in the
appropriate direction. If node 5 also dies, the same recovery procedure
will occur as shown in figure 1(b). However, there is an exception where
the number of node in the last level (highest depth) of the tree is less
than or equal to k, where k is fanout as shown in figure 1(c). In this case,
the grandparent of the last level needs to know the contact information
of the last level, because if the parent of the last level dies, those nodes
in the last level will become orphans before the self-recover procedure
can occur.

1

2 3

5 6 7

8 9 10

4

(a)

1

2 3

6 7

8 9 10

4 5

(b)

1

2 3

4 5 6 7

8 9
High possibility of orphan

(c)

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 77

Figure 2. (a) mcast (b) mcast-failure (c) bcast-updown (d) bcast-spanning tree

4. Routing Algorithm in SHN
The SHN routing algorithm is based on the SFTP routing algorithm [1].

The initialize system protocol, unicast message protocol and broadcast
from a specific root protocol are the same as the SFTP protocol. The
new multicast and broadcast routing algorithms from any nodes in the
network, which are an extension of the SFTP routing algorithm have
been added. They can be used both before (including some node failures)
and after recovery of the logical topology. The SHN routing algorithms
can be described as follows.

Multicast messages in SHN
The multicast from any nodes in the SHN is a capability to send

messages to several destinations (1 to m, where m < n). Unlike the
IP multicast, multicast group management (group creation and termi-
nation) is not required. The multicast group members are embedded
in the message header. Multicast messages in SFTP are delivered by a
sender to the first destination in the destination lists. Then, the first
destination will forward the message to the next destination and so on.
If an intermediate node is one of the nodes in the destination list, it will
remove itself from the list. The order of nodes in the destination list is
a descending order sorted by number of hop from a sender to those des-
tinations (i.e. the largest number of hop first). This routing algorithm
works fine if the destination nodes are consecutive or they are located
in the same area of the tree. The new multicast routing algorithm in
SHN is an enhancement of the SFTP multicast routing algorithm. The
multicast message can be splitted at an intermediate node, if the short-
est paths to those destination nodes are not in the same direction from
the intermediate node point of view. However, if there are more than
one shortest path to a destination, the intermediate node will choose the
next hop which can go along with other destinations. When a node re-
ceives a multicast message, it will first determine the header and choose
the next hop for each multicast destination according to the shortest
path to them. The node will recreate the header corresponding to the

1

2 3

4 5 6 7

8 9 10

7, 8, 9

78 9

(a)

1

2 3

5 6 7

8 9 10

4

7

78, 9

8, 9

8

9

(b)

1

2 3

4 5 6 7

8 9 10

S1

S2 S3

S2

S3

S3

S4 S5

S4
S# = Step#

(c)

1

2 3

4 5 6 7

8 9 10

S1

S4 S3

S2

S3

S4

S3

S# = Step#

S2

S5

(d)

78 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

direction of each next hop. Messages that contain the largest number
of hops will be forwarded first to increase network throughput by utilize
multiple links simultaneously. Figure 2(a) shows an example of node 2
sending a multicast message to nodes 7, 8 and 9 with the new routing
algorithm. In case of failure, if a node detects that the next hop for
the multicast messages has died, it automatically reroutes the multicast
messages using an alternate next hop as shown in Figure 2(b). Fig-
ure 3(a) depicts that the new multicast routing algorithm is faster than
the original algorithm used in the SFTP. The experiment results were
obtained from an average number of steps for sending multicast mes-
sages to 2 destinations with a dead node (fanout=2). The 2 destination
nodes (D) were obtained from combinations of all possible nodes (N) i.e.(N
D

)
, where a source node 6∈ D and the dead node was randomly selected.

Broadcast messages in SHN
Broadcast from any node routing protocol is an enhancement of broad-

cast routing in SFTP. In SFTP, the broadcast is done by sending mes-
sages to a root of the tree and it will forward the messages to the rest of
the tree. Only the tree portion of SFTP is used to prevent a broadcast
storm and duplicate messages. The ring is used only in the case of fail-
ure. The first obvious improvement of this routing protocol is to allow
a node between source and a root of the tree to send messages to their
children after they send the messages to their parent (called up-down) as
shown in 2(c) with node 4 as the root. The second improvement is using
a logical spanning tree from the source as shown in 2(d). When each
node receives broadcast messages, it will calculate the next hops using
spanning trees from the source node. There are two steps involving the
next hop calculation. The first step is to create a spanning tree using
a source node as the root node of the tree. The spanning tree creation
algorithm is based on a modified version of the breath first search with
a graph coloring algorithm. The second step is to calculate the next
hop. The next hop is chosen from children of each node according to
the spanning tree which has the highest cost among its children. The
cost is computed from the number of steps used to send a message to all
nodes in the children’s subtrees. In case of failure, a broadcast message
is encapsulated into a multicast message, and then the message is sent
from parent of the failure node to its children in the spanning tree. Fig-
ure 3(b) indicates that the up-down algorithm is a marginally faster than
the original SFTP, while the new spanning tree broadcast routing algo-
rithm is significant faster than the SFTP broadcast routing algorithm
due to increased parallelism. The experimental results were obtained
from an average number of steps for sending a broadcast message from
every node (fanout=2).

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 79

 2

 4

 6

 8

 10

 12

 14

 16

 18

 16 32 64 128 256

A
ve

ra
ge

 N
um

be
rs

 o
f

St
ep

s

Numbers of Nodes

Multicast Messages (to 2 destinations)

Original SFTP routing
New SHN routing

(a)

 5

 10

 15

 20

 25

 30

 35

 40

 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 N
um

be
rs

 o
f

St
ep

s

Numbers of Nodes

Broadcast Messages

SFTP
Up-Down

Spanning Tree

(b)

Figure 3. A comparison of routing protocols (a) multicast (b) broadcast

5. Conclusions and Future Work
The self-healing network (SHN) for parallel runtime environments was

designed and developed to support runtime environments of MPI imple-
mentations. The SHN is implemented on top of a scalable fault-tolerant
protocol (SFTP). Simulated performance results indicate that the new
routing algorithms of SHN are faster than the original SFTP routing
algorithms.

There are several improvements that we plan for the near future. Mak-
ing the protocol aware of the underlying network topology (in both the
LAN and WAN environments) will greatly improve the overall perfor-
mance for both the broadcast and multicast message distribution. This
is equivalent to adding a function cost on each possible path and inte-
grating this function cost to the computation of the shortest path. In
the longer term, we hope that the SHN will become the basic message
distribution of the runtime environment within the FT-MPI and Open
MPI runtime systems.

References

[1] T. Angskun, G. E. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra.
Scalable fault tolerant protocol for parallel runtime environments. In Proceedings
of the 13th European PVM/MPI User’s Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Bonn, Germany,
September 2006. Springer-Verlag.

[2] M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi,
K. Moore, T. Moore, P. Papadopoulous, S. L. Scott, and V. Sunderam. HAR-
NESS: A next generation distributed virtual machine. Future Generation Com-
puter Systems, 15(5–6):571–582, 1999.

80 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

[3] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for
MPI. In Proceedings Supercomputing Symposium, pages 379–386, 1994.

[4] R. Butler, W. Gropp, and E. L. Lusk. A scalable process-management environ-
ment for parallel program. In Proceedings of the 7th European PVM/MPI User’s
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 168–175, London, UK, 2000. Springer-Verlag.

[5] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G. E.
Fagg. The open run-time environment (openrte): A transparent multi-cluster
environment for high-performance computing. In Proceedings 12th European
PVM/MPI User’s Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, Sorrento(Naples), Italy, September 2005.
Springer-Verlag.

[6] J. J. Dongarra, H. Meuer, and E. Strohmaier. TOP500 supercomputer sites.
Supercomputer, 13(1):89–120, 1997.

[7] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic,
K. London, and J. Dongarra. Extending the mpi specification for process fault
tolerance on high performance computing systems. In Proceedings of the In-
ternational Supercomputer Conference (ICS) 2004, Heidelberg, Germany, June
2006. Primeur.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a
next generation MPI implementation. In Proceedings 11th European PVM/MPI
User’s Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 97–104, Budapest, Hungary, September 2004.
Springer-Verlag.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high - performance, portable
implementation of MPI message passing interface standard. Parallel Computing,
22(6):789–828, 1996.

[10] I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation
in large process groups. In Proceedings of The International Conference on
Dependable Systems and Networks (DSN), pages 433–442, 2001.

[11] MPI Forum. MPI: A message-passing interface standard. Technical report,
1994.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

[13] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection
service. Technical Report TR98-1687, 28, 1998.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–350, 2001.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, April 2001.

SUPPORTING SEAMLESS REMOTE I/O USING

Yuichi Tsujita
Department of Electronic Engineering and Computer Science,
Faculty of Engineering, Kinki University
1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan

tsujita@hiro.kindai.ac.jp

Abstract In scientific applications, netCDF was proposed for storing datasets created and
used by them to provide portable I/O operations on a wide variety of platforms.
Besides, its parallel I/O interface, parallel netCDF, was developed with the help
of an MPI-I/O library. To realize the same operations among computers which
have different MPI libraries, a remote I/O mechanism of a Stampi library, which
is a flexible intermediate library to realize seamless MPI operations both in-
side a computer and among computers, has been introduced in some of parallel
netCDF functions. This newly implemented mechanism has been evaluated on
interconnected PC clusters, and sufficient performance has been achieved with
huge amount of data.

Keywords: MPI, MPI-I/O, Stampi, MPI-I/O process, parallel netCDF

1. Introduction

NetCDF [Rew et al., 2006, Rew and Davis, 1990] is a popular package for
storing and retrieving data files in scientific computation application domains.
It provides a view of data as a collection of self-describing, portable, and array-
oriented objects that can be accessed through a simple interface on a wide vari-
ety of platforms. Atmospheric science applications, for example, use netCDF
to store a variety of data types that encompass single-point observations, time
series, regularly spaced grids, and satellite or radar images [Rew et al., 2006].
Its parallel I/O interface named parallel netCDF (hereafter PnetCDF) was de-
veloped with the help of an MPI-I/O library [Message Passing Interface Forum,
1997] such as ROMIO [Thakur et al., 1999], and the PnetCDF succeeded in
scientific computation [Li et al., 2003]. Although it supports parallel I/O op-
erations within the same MPI library, the same operations among computers
which have different MPI libraries each other have not been available. To real-
ize this mechanism, a remote MPI-I/O mechanism of a Stampi library [Tsujita

A PARALLEL NETCDF INTERFACE

82 Tsujita

 Computation nodes

 Server node (IP reachable node)

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Computation nodes

< Local computer > < Remote computer >

 TCP/IP

 MPI-I/O process
(Stampi)

 Intermediate library
(Stampi)

 Vendor
MPI UNIX I/O

 Vendor
MPI

 User process

 TCP/IP UNIX I/O

PnetCDF library
 Intermediate library

(Stampi)

Figure 1. Architecture of a seamless remote I/O system.

et al., 2005] has been implemented in a PnetCDF library as an underlying MPI-
I/O layer.

The Stampi library was originally developed to support seamless MPI com-
munications among different MPI libraries by deploying its wrapper interface
library between a user program and an underlying communication library [Ima-
mura et al., 2000]. It intermediates MPI communications among different MPI
libraries and hides complexity and heterogeneity in communication mecha-
nisms among different platforms. It also supports MPI-I/O operations not only
inside a computer using an underlying MPI library but also among comput-
ers which have different MPI libraries [Tsujita et al., 2005]. MPI-I/O calls in
a user program are switched to corresponding Stampi’s MPI-I/O functions in
the wrapper library, and it considers which I/O operation is appropriate, local
or remote I/O operations, automatically. A PnetCDF library has been linked
with the Stampi’s MPI-I/O functions to support seamless remote I/O opera-
tions through a PnetCDF interface without paying attention to complexity and
heterogeneity in underlying communication and I/O systems. In this paper,
architecture and execution mechanism of it are discussed in Section 2. Prelim-
inary performance results are reported in Section 3. Related work is discussed
in Section 4, followed by conclusions in Section 5.

2. Remote I/O with a PnetCDF Interface

In this section, details of architecture and execution mechanism of the re-
mote I/O system are explained and discussed.

Architecture

Architecture of the I/O system is illustrated in Figure 1. A target computer
name, file name, and so on are specified in an info object, and a Stampi li-
brary identifies which operation is requested, local or remote I/O operations,

Supporting Seamless Remote I/O Using a Parallel NetCDF Interface 83

Table 1. Typical PnetCDF functions and used MPI functions.

PnetCDF function Used MPI functions

ncmpi create() MPI File open(), MPI File delete(), etc.
ncmpi open() MPI File open(), MPI File delete(), etc.
ncmpi put var int() MPI Comm rank(), MPI File set view(), MPI Type hvector(),

MPI Type commit(), MPI Type free(), MPI File write(), etc.
ncmpi close() MPI Allreduce(), MPI File close(), etc.

according to them in the info object. Typical PnetCDF functions and their as-
sociated MPI functions are listed in Table 1. ncmpi create() creates a new
netCDF data file, while ncmpi open() opens an existing netCDF data file.
Basically both functions use almost the same MPI functions as shown in the
table. ncmpi put var int() writes data to a netCDF data file with a derived
data type in a non-collective manner. Therefore it uses MPI functions to make
a derived data type and MPI-I/O functions. ncmpi close() closes an opened
netCDF file with the help of MPI File close(). To realize seamless remote
I/O operations with a netCDF data format, Stampi’s MPI functions are used as
the MPI functions inside each PnetCDF function.

Inside a local computer, high performance MPI operations are realized using
vendor’s MPI library. When a PnetCDF function is called in a user program,
the I/O call is translated into associated Stampi’s MPI function calls. Later,
parallel I/O operations are carried out by using vendor’s MPI library through
the Stampi’s functions. If the vendor’s one is not available, UNIX I/O functions
are used instead of it.

On the other hand, an MPI-I/O process is invoked on a remote computer to
realize remote MPI-I/O operations by using a remote shell command (rsh or
ssh) when ncmpi create() or ncmpi open() is called, followed by a func-
tion call of MPI File open() inside them. Each I/O request from Stampi’s
MPI functions is transfered to the MPI-I/O process, and it plays requested I/O
operations. The I/O operations are carried out on a target computer by us-
ing vendor’s MPI-I/O library or UNIX I/O functions if the vendor’s one is not
available.

In the both operations, derived data types are created from primitive data
types to support a PnetCDF API. Associated parameters for the derived ones
such as an original data type and a stride length are stored in a linked list
based table in both user and MPI-I/O processes. Prior to I/O operations, the
parameters are retrieved from it to make the same derived data type and file
view among a user process and an MPI-I/O process.

84 Tsujita

 Server node

MPI-I/O
process

2. fork

3. start-up

: Router process

: Stampi starter (jmpirun)

9. fork 7. remote
 start-up

1. issue
 a start-up command

5. connect
6. spawn

10. connect
11. connect

12. ack

Computation nodes

user
process 8. start-up

: MPI starter (e.g. mpirun)

4. start-up

Local computer Remote computer

Disk

Figure 2. Execution mechanism of remote I/O operations.

Execution mechanism

Schematic diagram of an execution mechanism of the I/O system is depicted
in Figure 2. Firstly, user issues Stampi’s start-up command (Stampi starter;
jmpirun), then it calls a native MPI start-up command (MPI starter) such as
mpirun. The MPI starter invokes user processes. Besides, a router process is
also created by it if computation nodes are not able to communicate outside
directly. Once a function, ncmpi create() or ncmpi open(), is called, an-
other Stampi starter is invoked on the remote computer by the Stampi starter
or the router process on a local computer. The invoked Stampi starter kicks off
an MPI-I/O process. In addition, a router process is invoked by the starter if
computation nodes of the remote computer are not able to communicate out-
side directly. Finally, a communication path is established among the user
processes and the MPI-I/O process.

After I/O operations, the MPI-I/O process closes the specified file, and it
is terminated when ncmpi close() is called. Finally, whole I/O operation
finishes.

3. Performance Evaluation

To evaluate the newly implemented remote I/O system, its performance was
measured on two interconnected PC clusters. Specifications of the clusters are
summarized in Table 2. Each cluster had one server node and four computation
nodes. Interconnection between the clusters was made with 1 Gbps bandwidth
via Gigabit Ethernet switches of both clusters.

In a PC cluster-I, MPICH [Gropp et al., 1996] version 1.2.6 was installed,
and it was called from a Stampi library. In a PC cluster-II, an SCore cluster sys-
tem [PC Cluster Consortium,] was installed. Although its built-in MPI library,
MPICH-SCore, was available, it was not used in this test because an MPI-I/O

Supporting Seamless Remote I/O Using a Parallel NetCDF Interface 85

Table 2. Specifications of PC clusters which were used in performance evaluation, where
server and comp in bold font denote server node and computation nodes, respectively

PC cluster-I PC cluster-II

server DELL PowerEdge800 × 1 DELL PowerEdge1600SC × 1
comp DELL PowerEdge800 × 4 DELL PowerEdge1600SC × 4

CPU Intel Pentium-4 3.6 GHz × 1 Intel Xeon 2.4 GHz × 2
Chipset Intel E7221 ServerWorks GC-SL
Memory 1 GByte DDR2 533 SDRAM 2 GByte DDR 266 SDRAM
Disk system 80 GByte (Serial ATA) × 1 73 GByte (Ultra320 SCSI) × 1 (server)

(all nodes) 73 GByte (Ultra320 SCSI) × 2 (comp)
NIC Broadcom BCM5721 (on-board) Intel PRO/1000-XT (PCI-X card)
Switch 3Com SuperStack3 Switch 3812 3Com SuperStack3 Switch 4900

OS Fedora Core 3 RedHat Linux 7.3
kernel 2.6.11-1.14 FC3smp kernel 2.4.20-29.7smp (server)
(all nodes) kernel 2.4.21-2SCOREsmp (comp)

NIC driver Broadcom BCM5700 Linux Intel e1000 version 5.5.4
driver version 7.3.5

process used UNIX I/O. In addition, PVFS [Carns et al., 2000] version 1.6.3
was available on its server node by collecting disk spaces (73 GByte each) of
four computation nodes. Thus 292 GByte (4×73 GByte) was available for the
file system. During this test, default stripe size (64 KByte) of it was selected.

A user process was executed on the PC cluster-I and an MPI-I/O process was
invoked on the PC cluster-II. A router process was not invoked on both clusters
because each computation node was able to communicate outside directly.

PnetCDF functions were evaluated using three-dimensional data. The data
set with 16×16×16 (16 KByte), 64×64×64 (1 MByte), and 256×256×256
(64 MByte) were prepared with an integer data type. Sequence of function
calls in a test program is illustrated in Figure 3. In write operation which is
shown in Fig. 3 (a), information which was associated with the I/O opera-
tions was set in an info object by MPI Info set() prior to I/O operations.
ncmpi create() created a new netCDF file according to the information. Be-
sides, several kinds of parameters which were associated with the file were
stored in a record header of it in define mode by using several PnetCDF func-
tions. Independent I/O operation mode was set by ncmpi begin indep().
Real data were written to it by ncmpi put var int() with an integer data
type, and ncmpi end indep data() finished the mode. Finally the file was
closed by ncmpi close(), and all the I/O operations finished. Read oper-
ation which is illustrated in Fig. 3 (b) was made in the same manner ex-

86 Tsujita

ncmpi_create()

ncmpi_put_att_text()

MPI_Info_set()

ncmpi_def_var()

ncmpi_begin_indep_data()

ncmpi_def_dim()

ncmpi_put_var_int()

ncmpi_end_indep_data()

ncmpi_close()

set parameters in an info object

create a new file

write a text in a header
< attribute mode >

define dimension

define variables

beginning of independent
I/O mode

write data

end of independent
I/O mode

close a file

< define mode >

< data mode : I/O phase >
ncmpi_end_def() end of define mode

ncmpi_open()

MPI_Info_set()

ncmpi_inq_dimid()

ncmpi_begin_indep_data()

ncmpi_inq_varid()

ncmpi_get_var_int()

ncmpi_end_indep_data()

ncmpi_close()

ncmpi_inq_dimlen()

set parameters in an info object

open an existing file

get variable IDs

get dimension IDs

get dimension lengths

beginning of independent
I/O mode

read data

end of independent
I/O mode

close a file

< data mode : I/O phase >

(a) write operation (b) read operation

Figure 3. Sequence of function calls in a test program.

(a) integer (b) double

Figure 4. Total I/O times and pure I/O times for remote I/O operations using PnetCDF func-
tions with (a) integer and (b) double data types.

cept that inquiry of parameters from record header of a PnetCDF file and
reading data from it were done. Elapsed times from ncmpi create() or
ncmpi open() to ncmpi close() and times to issue ncmpi put var int()
or ncmpi get var int() were measured using MPI Wtime() in a test pro-
gram.

Firstly, execution times for remote I/O operations using integer and dou-
ble data types were measured. Figure 4 shows the times. In this figure,
“Pnetcdf-read” and “Pnetcdf-write” denote read and write operations
through PnetCDF functions, respectively. Besides, “total” in parentheses
denotes times from opening to closing a netCDF file (total I/O times). While
“pure I/O” in parentheses denotes times for real data I/O operations (pure
I/O times). With 16 × 16 × 16 and 64 × 64 × 64 for message data size in the

Supporting Seamless Remote I/O Using a Parallel NetCDF Interface 87

integer case, the pure I/O times were around a half of the total I/O times. The
same results were observed in the double data type case with 16 × 16 × 8 and
64 × 64 × 32 in message data size. It is also noticed that there was not signif-
icant difference in the pure I/O times with those data sizes although message
data size increased in both integer and double cases. On the other hand, the
total and pure I/O times became long with 256 × 256 × 256 for integer and
256 × 256 × 128 for double. In these situation, times for real data I/O became
dominant.

Times which had no relation with pure I/O operations (non-I/O times) were
roughly estimated as total I/O times minus pure I/O times. For example, the
times were about 0.2 s for 16 × 16 × 16 and 64 × 64 × 64 and 0.35 s for
256× 256× 256 in the write operations. Thus the times were almost the same
with respect to message data size although the times became slightly long with
an increase in message data size in the write operations. As MPI File open()
is called inside ncmpi create() and ncmpi open(), times to call the MPI
function was measured. The times was about 0.2 s in this setup, and it is
considered that the non-I/O times were almost the same with the times for
MPI File open(). Inside the function, creation of an MPI-I/O process on a
target remote computer and opening a target file were carried out. It is noticed
that this is not significant problem because ncmpi create() or ncmpi open()
are usually called once prior to I/O operations.

Secondly, the pure I/O times were compared with I/O times of Stampi’s
MPI-I/O functions in remote I/O operations to evaluate overhead introduced
by implementation of PnetCDF functions. In this test, an integer data type
was used for both functions. For the MPI-I/O functions, a primitive inte-
ger data type was used although the PnetCDF functions used a derived data
type which was prepared from an integer data type. 16 KByte, 1 MByte, and
64 MByte were selected as data size for the MPI-I/O functions so as to be
equal to message data size used in the PnetCDF I/O operations. Measured
times are shown in Figure 5. In this figure, “MPI-I/Oread (simple)” and
“MPI-I/Owrite (simple)” denote I/O times for Stampi’s MPI File read()
and MPI File write(), respectively, while “Pnetcdf-read(pureI/O)”
and “Pnetcdf-write(pureI/O)” denote pure I/O times for the previous
PnetCDF’s read and write functions, respectively. With small message data
size, the MPI-I/O functions outperformed the PnetCDF functions, whereas
times for the PnetCDF functions were comparable with those for the MPI-
I/O functions with 256 × 256 × 256 in message data size. In this case, they
are 12 % and 0.8 % longer than those for the MPI-I/O functions in read and
write operations, respectively. The differences in the times were due to calls of
several MPI functions to make a derived data type in the PnetCDF case. It is
noticed that data transfer among clusters in the functions was dominant in the

88 Tsujita

Figure 5. Pure I/O times for PnetCDF functions and I/O times for Stampi’s MPI-I/O functions
in remote I/O operations.

whole operation time. It is considered that the PnetCDF functions are able to
provide substantial performance with such huge amount of data.

4. Related Work

Providing a common data format makes data I/O operations not only portable
but also tolerate for application programmers. This kind of implementations
such as netCDF [Rew et al., 2006] and HDF5 [The National Center for Super-
computing Applications,] has been proposed.

NetCDF provides a common multi-dimensional data format which has a
portability among different computer architectures. Users are able to access
data via a netCDF API without paying attention to each computer architecture.
Parallel I/O operations have been realized as parallel netCDF (PnetCDF), as an
extension of the interface by introducing MPI-I/O functions as an underlying
parallel I/O library [Li et al., 2003].

On the other hand, HDF5 provides hierarchical data format so as to access
huge amount of data effectively. An HDF5 interface has two objects, one is
“Dataset” and another is “Group”. The Dataset manages multi-dimensional
array data, while the Group provides relational mechanisms among objects.
Parallel I/O operations are also available by introducing MPI-I/O functions as
an underlying parallel I/O interface library [Ross et al., 2001].

An MPI-I/O interface was proposed in the MPI-2 standard [Message Passing
Interface Forum, 1997] to realize parallel I/O operations in an MPI program.
The MPI-I/O interface is available in several kinds of implementations such as
ROMIO [Thakur et al., 1999]. Its MPI-I/O operations to many kinds of file
systems are realized through an ADIO interface [Thakur et al., 1996]. The
ADIO interface hides heterogeneity in architectures of each systems and pro-

Supporting Seamless Remote I/O Using a Parallel NetCDF Interface 89

vides a common interface to an upper MPI-I/O layer. Remote I/O operations
using ROMIO are available with the help of RFS [Lee et al., 2004]. An RFS
request handler on a remote computer receives I/O requests from client pro-
cesses and calls an appropriate ADIO library. On the other hand, Stampi itself
is not an MPI implementation, and it provides an intermediate library among
different MPI libraries by using TCP socket communications for seamless MPI
operations on heterogeneous environment. Stampi realizes MPI communica-
tions and MPI-I/O operations not only inside the same MPI library but also
among different libraries without any attention to heterogeneity in underlying
communication and I/O systems.

5. Summary

Remote I/O operations using a PnetCDF interface have been realized with
the help of Stampi’s remote I/O mechanism. Through performance measure-
ment, the more message data size became long, the more times to open a
PnetCDF file became negligible. With a huge amount of data, times for real
data I/O operations using PnetCDF functions were comparable with times for
I/O operations by using Stampi’s MPI-I/O functions with a primitive data type.
It is considered that the PnetCDF interface provides sufficient performance for
such huge amount of data with seamless I/O accesses.

Although the primitive PnetCDF functions provided sufficient I/O perfor-
mance, collective I/O operations have not been implemented yet. To expand
its functionality in data-intensive parallel computation, it is required to imple-
ment collective functions as future plan. Besides, implementation in several
kinds of applications is also planed to evaluate its performance in real applica-
tions.

Acknowledgments

The author would like to thank Genki Yagawa, director of Center for Com-
putational Science and Engineering (CCSE), Japan Atomic Energy Agency
(JAEA), for his continuous encouragement. The author would like to thank the
staff at CCSE, JAEA for providing a Stampi library and giving useful informa-
tion.

This research was partially supported by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Grant-in-Aid for Young Scientists
(B), 18700074 and by the CASIO Science Promotion Foundation.

References

[Carns et al., 2000] Carns, P. H., Ligon III, W. B., Ross, R. B., and Thakur, R. (2000). PVFS:
A parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux Showcase
and Conference, pages 317–327. USENIX Association.

90 Tsujita

[Gropp et al., 1996] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-
performance, portable implementation of the MPI Message-Passing Interface standard. Par-
allel Computing, 22(6):789–828.

[Imamura et al., 2000] Imamura, T., Tsujita, Y., Koide, H., and Takemiya, H. (2000). An archi-
tecture of Stampi: MPI library on a cluster of parallel computers. In Dongarra, J., Kacsuk,
P., and Podhorszki, N., editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 7th European PVM/MPI Users’ Group Meeting, Balatonf-ured, Hungary,
September 2000, Proceedings, volume 1908 of Lecture Notes in Computer Science, pages
200–207. Springer.

[Lee et al., 2004] Lee, J., Ma, X., Ross, R., Thakur, R., and Winslett, M. (2004). RFS: Efficient
and flexible remote file access for MPI-IO. In Proceedings of the 6th IEEE International
Conference on Cluster Computing (CLUSTER 2004), pages 71–81. IEEE Computer Society.

[Li et al., 2003] Li, J., Liao, W.-K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., and Zingale, M. (2003). Parallel netCDF: A high-performance
scientific I/O interface. In SC ’03: Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, page 39. IEEE Computer Society.

[Message Passing Interface Forum, 1997] Message Passing Interface Forum (1997). MPI-2:
Extensions to the Message-Passing Interface.

[PC Cluster Consortium,] PC Cluster Consortium. http://www.pccluster.org/.

[Rew et al., 2006] Rew, R., Davis, G., Emmerson, S., Davies, H., and Hart-
nett, E. (2006). NetCDF User’s Guide. Unidata Program Center.
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/.

[Rew and Davis, 1990] Rew, R. K. and Davis, G. P. (1990). The unidata netCDF: Software
for scientific data access. In Sixth International Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography, and Hydrology, pages 33–40. Ameri-
can Meteorology Society.

[Ross et al., 2001] Ross, R., Nurmi, D., Cheng, A., and Zingale, M. (2001). A case study in ap-
plication I/O on Linux clusters. In SC ’01: Proceedings of the 2001 ACM/IEEE Conference
on Supercomputing (CDROM), page 11. ACM Press.

[Thakur et al., 1996] Thakur, R., Gropp, W., and Lusk, E. (1996). An abstract-device interface
for implementing portable parallel-I/O interfaces. In Proceedings of the Sixth Symposium
on the Frontiers of Massively Parallel Computation, pages 180–187.

[Thakur et al., 1999] Thakur, R., Gropp, W., and Lusk, E. (1999). On implementing MPI-IO
portably and with high performance. In Proceedings of the Sixth Workshop on Input/Output
in Parallel and Distributed Systems, pages 23–32.

[The National Center for Supercomputing Applications,] The National Center for Supercom-
puting Applications. http://hdf.ncsa.uiuc.edu/HDF5/.

[Tsujita et al., 2005] Tsujita, Y., Imamura, T., Yamagishi, N., and Takemiya, H. (2005). Flexi-
ble message passing interface for a heterogeneous computing environment. In Guo, M. and
Yang, L. T., editors, New Horizons of Parallel and Distributed Computing, chapter 1, pages
3–19. Springer.

III

GRID AND WEB SERVICES

Marian Babik,1 Ladislav Hluchy,1 Jacek Kitowski,2 Bartosz Kryza,3
1Institute of Informatics, Slovak Academy of Sciences, Slovakia
2Institute of Computer Science, AGH University of Science and Technology, Poland
3ACK Cyfronet AGH, Poland

Abstract Web Service Resource Framework (WSRF) is a recent effort of the grid
community to facilitate modeling of the stateful services [11]. Design
and development of the WSRF service based systems is quite common
and there are several emerging WS initiatives, which tries to automate
the process of discovery, composition and invocation of such services.
The semantic web services are a typical example, showing the potential
of how ontological modeling can improve the shortcomings of the ser-
vice oriented computing. One of the major obstacles in the process is
the development of the ontologies, which describe web and grid services.
Although, there are numerous standards for modeling semantic services,
there are very few frameworks and tools, which can help automate the
process of generating the semantic descriptions of services. This arti-
cle presents a tool, which can semi-automatically generate the OWL-S
descriptions for both stateful and stateless services based on the Web
Service Description Language (WSDL) and corresponding annotations.
Such functionality is inevitable in the grid environment hosting a vast
number of services, which have to be semantically described in order to
enable automated discovery, composition and invocation.

Keywords: grid services, semantic grids, web services, wsrf, owl-s

1. Introduction

Recently, Web service (WS) technologies are gaining importance in
the implementation of distributed systems, especially grids. One such
example is the Web Service Resource Framework (WSRF) [11], which
extends the current WS technologies by modeling the stateful services.
Design and development of the service oriented distributed system is
quite common and there are several emerging WS initiatives, which tries
to automate the process of discovery, composition and invocation of
services. The semantic web services are a typical example, showing the

OF WEB AND GRID SERVICES

GENERATINGSEMANTICDESCRIPTIONS

94 Babik, Hluchy, Kitowski, Kryza

potential of how ontological modeling can improve the shortcomings of
service oriented computing.

In this paper we will introduce basic concepts of semantic web services
(OWL-S) and web service resource framework (WSRF). Further, we
will present the process of adding semantics to the stateful services and
highlight the major issues, that we have faced during the development
of the WSRF2OWL-S tool. We will also describe the corresponding
architecture of the system and provide an illustrating use case of its
functionality.

2. Web Ontology of Services (OWL-S)

OWL-S is an ontology-based approach to the semantic web services [5].
The structure of the ontology consists of a service profile for advertising
and discovering services, a process model which supports composition of
services, and a service grounding, which associates profile and process
concepts with underlying service interfaces (see Fig. 1). Service profile
(OWL-S profile) has functional and non-functional properties. The func-
tional properties describe the inputs, outputs, preconditions and effects
(IOPE) of the service. The non-functional properties describe the semi-
structured information intended for human users, e.g. service name, ser-
vice description, and service parameter. Service parameter incorporates
further requirements on the service capabilities, e.g. security, quality-of-
service, geographical scope, etc. Service grounding (OWL-S grounding)
enables the execution of the concrete Web service by binding the ab-
stract concepts of the OWL-S profile and process to concrete messages.
Although different message specifications can be supported by OWL-
S, the widely accepted Web Service Description Language (WSDL) is
preferred [9].

3. Adding Semantics to the Stateful Services

Service annotation is the process of generating the semantic descrip-
tions (i.e. OWL-S) of both stateless and stateful services from the web
service descriptions (i.e. WSDLs). In K-Wf Grid it has become crucial
in the process of providing application support and enabling semantics
for semantically unaware grid application areas [14]. In the following we
will present the issues that we have faced during the design of the ontolo-
gies for the stateful services and we will briefly describe the developed
annotation tool called WSRF2OWL-S.

Semantic Descriptions of Web and Grid Services 95

Resource

Service
Profile

Service
Process

Service
Grounding

Serviceprovides

presents

describedBy

supports

hasProcess

hasProfile

Atomic
Process

Composite
Process

hasGrounding

realizedBy

realizes

expands

expandedBy

Figure 1. OWL-S concepts.

WS-Resource semantics

In OWL-S, the service capabilities are described by the corresponding
IOPE (inputs, outputs, preconditions and effects). Such description can
be partly annotated from the WSDL description of the service and is suf-
ficient for the stateless service. Stateful services, i.e. WS-Resources, are,
however, composed of a service and a stateful resource [11]. A stateful
resource is defined by a single XML Global Element Declaration (GED)
in a given namespace. Such GED defines the type of the stateful resource
and is motivated by the modeling of complex objects for stateless ser-
vices. For modeling semantics of the stateful resources this means there
are no major differences between stateful and stateless services, i.e. the
domain concepts can be derived from the complex types definitions in
the service description. There are, however, few important issues, that
should be noted.

Resource properties (RP), as defined in the WSRF specification, can
be dynamic. This means that it is possible to create and destroy proper-
ties on the fly, i.e. if stateful service is providing access to the filesystem
and resource properties are listing the file attributes, it is possible to
add or remove a file attribute at any given time. In order to model
such dynamic behavior by corresponding semantics, it is necessary to
consider more advanced techniques for ontological mapping and concept
definition. Since such procedures can become quite complicated, we have
concentrated our work on the area of static resource properties, i.e. it is

96 Babik, Hluchy, Kitowski, Kryza

possible to change the values of the properties, but the set of properties
for given resource remains constant over time.

In the process of designing the stateful services it is possible to use
inheritance of the resource properties. Although explicit hierarchy of the
resource properties can help in the generation of the semantics, there is
no standard, which would describe in details how RP inheritance should
be implemented. This can cause major difficulties in parsing of the
services and it is necessary to introduce special parsers to extract the
RP hierarchies. Furthermore, resource properties can often be used to
model the actual inputs and outputs of the service, i.e. a service sub-
mitting specific jobs to the cluster can represent the inputs and outputs
as properties of the job, thus hiding the inputs/outputs in the resource
properties of the service. This has to be considered in the service com-
position.

Apart from the issues in the process of service discovery, there are
also slight differences in the process of service invocation. The WS-
Resource is composed of a service and a stateful resource, i.e. it is
identified by the so called EPR (end point reference), which describes
not only service address but also the identification of a resource. The
service identification in the OWL-S Grounding has to be then extended
to a more complex structure. For the grid services such extension can
also consider the possibility of having multiple instances of the same
service hosted by different servers. This can, however, be solved simply
by introducing multiple OWL-S Groundings.

Generating OWL-S from web service descriptions

We have designed and developed a tool for generating the OWL-S de-
scription for stateful and stateless services from the corresponding web
service descriptions (WSDLs) [9]. Such tool is inevitable in the grid
environment hosting a vast number of services, which have to be seman-
tically described in order to enable automated discovery, composition
and invocation. In the initial stage of the K-Wf Grid project we have
successfully used the tool to create semantic descriptions of the services
for the flood forecasting domain.

The architecture of the so called WSRF2OWL-S tool is shown in Fig. 2.
The main components of the architecture are WSRF2OWL-S engine,
translator and GOMOWL-S API. GOMOWL-S API is an extension of
the Mindswap’s OWL-S API [5]; it defines additional vocabulary, con-
verters and extensions needed by the WSRF (e.g. SimpleEffect, DataOb-
jectInput, etc.). The translation procedure is quite complex and covers

Semantic Descriptions of Web and Grid Services 97

OWL-S API WSDL APIs GT4 WS-CORE

WSRF2OWL-S Translator

GOMOWL-API

Extension Converters

OWL-S Extensions

Vocabulary

Configuration parser

WSRF2OWL-S
Engine

Jena API

WSRF Resource
Properties Parser

WSRF2OWL-S
API

GridSphere portlet

Figure 2. Architecture of the WSRF2OWL-S tool.

the areas already described in previous sections. The translation starts
with a configuration and an URL of the WSDL document. The trans-
lator parses the WSDL document extracting the operations, port-types,
inputs, outputs as well as resource properties. A combination of the
WSDL4J [22], Axis WSDL [23] and Globus Toolkit WSDL utilities [12]
are used in the process. The translator then generates for each WSDL
operation a skeleton of the OWL-S document. Then it creates the in-
puts, outputs, preconditions and effects and maps the elements to the
ontological concepts defined in the configuration. If needed, it will create
an ontology, which models the resource properties of the given services.
The GOMOWL-S API can be used to extend the OWL-S by the domain
dependent constructs, e.g. FloodForecastingWSRFProfile, DataObject-
Input, SimpleEffect, etc. The outcome of the process is OWL-S docu-
ment describing the web service operations, which are then be composed
into the workflow [19]. Additionally a GridSphere portlet was developed
to provide a graphical user interface for the tool [17]. It supports brows-
ing of the concepts for any given ontology, associating the concepts with
the WSDL elements and generation of the OWL-S documents. An au-
tomated annotation procedure based on the case-based reasoning is also
integrated.

98 Babik, Hluchy, Kitowski, Kryza

 <wsdl:portType name="MM5ServicePortType"
 wsrp:ResourceProperties="tns:MM5Properties">
 <wsdl:operation name="configureFromProperties">
 <wsdl:input message="tns:ConfigureInputMessage"/>
 <wsdl:output message="types:VoidOutputMessage"/>
 </wsdl:operation>
...
 <wsdl:service name="MM5Service">
 <wsdl:port name="MM5ServicePortTypePort"
 binding="binding:MM5ServicePortTypeSOAPBinding">
 <soap:address location="http://localhost:8080/wsrf/services/"/>
...

 <service:Service rdf:ID="configureFromProperties_MM5Service">
 <service:presents>
 <profile:Profile rdf:ID="configureFromProperties_MM5Profile"/>
 </service:presents>
 <service:describedBy>
 <process:AtomicProcess
rdf:ID="configureFromProperties_MM5AtomicProcess"/>
 </service:describedBy>
 <service:supports>
 <grounding:WsdlGrounding
rdf:ID="configureFromProperties_MM5Grounding"/>
 </service:supports>
 </service:Service>
…
<profile:Profile rdf:about="#configureFromProperties_MM5Profile">
<profile:hasInput>
 <process:Input rdf:ID="properties">
 <process:parameterType>http://gom.kwfgrid.net/gom/
ontology/DomainApplicationOntology/FFSC#MM5Properties
 </process:parameterType>
 </process:Input>
...

WSDL description

OWL-S description

MM5Service.configureFromProperties.properties=
http://gom.kwfgrid.net/gom/ontology/DomainApplicationOntology/
FFSC#MM5Properties
MM5Service.configureFromProperties.voidResponse=
effect|http://gom.kwfgrid.net/gom/ontology/DomainServiceOntology/
FFSC#MM5isConfigured

Configuration

Figure 3. Sample translation of the MM5 configureFromProperties method

4. Application Scenario

The flood forecasting application (FFSC) is based on a network of
loosely coupled, cooperating but independent services. It has been used
as a pilot application in the project K-WfGrid and CrossGrid [21, 13].
The application consists of three major components, namely, meteorol-

Semantic Descriptions of Web and Grid Services 99

ogy, hydrology and hydraulics. Each component has several possible
models of computation represented by the corresponding web or grid
services, e.g., meteorological methods Aladin, MM5; hydrological meth-
ods HSPF, NLC, etc.

The translation of the WSDL description of a sample meteorological
service MM5 is shown in Fig. 3. Since each service has multiple oper-
ations, the semantic descriptions are generated for each operation, thus
enabling the possibility to create workflows of service operations [19].
In the example a sample operation configureFromProperties is shown.
Apart from WSDL description the translation process also needs con-
figuration, which describes the mapping of the WSDL inputs/outputs
to the domain ontological concepts. These concepts can describe infor-
mation about service (e.g. service name, provider), but also complex
inputs and outputs of the service, such as geographical location, geo-
graphical information data, watershed, etc. Further they are used to
identify the HTML forms, which are presented to the user if additional
input is necessary.

Apart from flood forecasting simulations, WSRF2OWL-S was suc-
cessfully used in generating the semantic description of services for the
enterprise resource planning and coordinated traffic management appli-
cations [14]. In the future we would like to concentrate on improving
the configuration capabilities and broader WSRF support.

5. Related work

One of the challenges of the loosely coupled distributed systems is
the ability to dynamically discover and integrate the services needed by
the applications. Interoperability among services is especially important
in the distributed environments hosting a large number of services, i.e.
grids. Semantic descriptions facilitates the process by expressing the
characteristics of the service, which is one of the goals of the Semantic
Grid initiative [1]. There are many projects, which are trying to de-
velop an architecture for the Semantic Grid such as [2, 4, 3]. S-OGSA
is trying to extend OGSA based architecture and provide a reference
architecture with explicit handling of semantics as well as defining the
associated knowledge services. Guided by the set of design principles
it defines a model, the capabilities and mechanisms for the Semantic
Grid [2]. InteliGrid aims at developing a grid architecture based on
three layers, i.e. conceptual, software and basic resource [3]. Unlike
our approach the mentioned projects are trying to address the Grid se-
mantics by a top-down approach, creating reference architectures, which
should cover a broad range of applications and requirements. In contrary,

100 Babik, Hluchy, Kitowski, Kryza

WSRF2OWL-S can be seen as a bottom-up approach, which is trying
to leverage as much as possible from the existing Semantic Web Service
technologies. A similar approach can be seen in the myGrid, which is a
pioneering Semantic Grid project, providing a set of tools and services
to enable workflow composition in biological domain [4]. It is however
more focused on the support for the OGSA and OGSA-DAI, while we
aim at supporting WSRF and OWL-S, which have shown to be more
suited for the domain of the K-Wf Grid applications.

The actual transformation process for the stateless services is provided
by two WSDL2OWL-S tools [5, 7]. Both tools are based on the corre-
sponding OWL-S API libraries and provide either web-based or graphi-
cal user interface. WSRF2OWL-S extends these tools with support for
the WSRF service descriptions as well as possibility to use command
line tool for batch processing multiple descriptions at once. In terms of
service annotation, ASSAM is one of the existing automated semantic
web service annotators with machine learning capabilities [8].

In the domain of Semantic Web Services, the Web Service Model-
ing Framework (WSMF)[15] is an industry scale framework for semantic
web service discovery, execution and composition. It is a joint effort
of the European research projects on the Semantic Web and Seman-
tic Web Services. It has three development areas concerning conceptual
model (WSMO), the representation language (WSML) and the execution
framework (WSMX). Although WSMF approach is much more profound
and shows many significant contributions to modeling semantic web ser-
vices, the level of implementation and the development support at the
time of evaluation was unacceptable for our purposes. However, since
WSMF has gained an enormous momentum in the last year, it will be
considered in our future work.

The Internet Reasoning Service (IRS-III) [18] is a Java framework for
publishing, locating, composing and executing semantic web services.
IRS-II is modeling service based on the tasks, that need to be fulfilled
and the problem-solving-methods (PSM) that can be used to solve spe-
cific tasks. It utilizes a formal language called Operational Conceptual
Modeling Language (OCML). It supports the specification and opera-
tionalization of functions, relations, classes, instances and rules. This
appears to be more suitable for procedural knowledge representation
than OWL. One of the disadvantages of the system is the process of as-
signing services the corresponding tasks, which has to be done manually,
which introduces many possibilities for failure.

METEOR-S [16] attempts to add semantics to the basic stateless web
service descriptions by adding semantics to current industry standards.
It is an effort of the LSDIS Lab of the University of Georgia. The

Semantic Descriptions of Web and Grid Services 101

framework presents an interesting bottom-up approach to the semantic
descriptions, the service annotation and WSDL-S, semantic extension of
the WSDL.

Acknowledgments

Acknowledgments: The research reported in this paper has been par-
tially financed by the EU within the project IST-2004-511385 K-WfGrid
and Slovak national projects, APVT-51-024604; Tools for acquisition, or-
ganization and maintenance of knowledge in an environment of heteroge-
neous information resources, SPVV 1025/04 and VEGA No. 2/6103/6.

References

[1] Goble, C., De Roure, D.,

”

The Semantic Grid: Myth Busting and Bridge Build-
ing”, in Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI-2004), Valencia, Spain, 2004

[2] Alper, P., Corcho, O., Kotsiopoulos, I., Missier, P., Bechhofer, S., Goble, C.,
S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid,
GGF16 Semantic Grid Workshop. Athens, Greece. February 2006

[3] Turk, Z., Stankovski, V., Gehre, A., Katranuschkov, P., Kurowski, K., Balaton, E.,
Hyvarinen, J., Dolenc, M., Klinc, R., Kostanjsek, J. and Velkavrh J.,

”

Semantic
Grid Architecture,” 2004

[4] C. Wroe, C. A. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau,

”

Automating Experiments Using Semantic Data on a Bioinformatics
Grid,” IEEE Intelligent Systems, vol. 19, pp. 48-55, 2004

[5] A. Ankolekar et al, OWL-S: Semantic Markup for Web Service, 2003,
http://www.daml.org/services/owl-s/1.1

[6] Mindswap OWL-S API, http://www.mindswap.org/2004/owl-s/api/

[7] CMU OWL-S API, http://www.daml.ri.cmu.edu/wsdl2owls

[8] A. He and E. Johnston and N. Kushmerick, ASSAM: A tool for semi-
automatically annotating semantic web services, In proceedings of the 3rd In-
ternational Semantic Web Conference, 2004, Springer

[9] E. Christensen, F. Cubera, G. Meredith, S. Weerawarana, Web Services Descrip-
tion Language (WSDL) 1.1, Technical report, WWW Consortium, 2001

[10] Resource Description Framework, http://www.w3.org/RDF/

[11] Web Service Resource Framework, http://www.globus.org/wsrf/

[12] Globus Toolkit, http://www-unix.globus.org/toolkit/

[13] CrossGrid consortium, CrossGrid Technical Annex, 2004,
http://www.crossgrid.org

http://www.kwfgrid.net

[15] Fensel D. and Bussler C., The Web Service Modeling Framework WSMF,
Eletronic Commerce: Research and Applications, 1, 2002

[14] The Knowledge-based Workflow System for Grid Applications FP6 IST project,

102 Babik, Hluchy, Kitowski, Kryza

[16] P. Rajasekaran and J. Miller and K. Verma and A. Sheth, Enhancing Web Ser-

shop on Semantic Web Services and Web Process Composition, 2004

[17] GridSphere portal framework, http://www.gridsphere.org/gridsphere/gridsphere

[18] Motta E. and Domingue J. and Cabral L. and Gaspari M., IRS-II: A Framework

Conference (ISWC2003), Sundial Resort, Sanibel Island, Florida, USA, 2003

[19] Gubala, T., Bubak, M., Malawski, M., Rycerz, K., Semantic-based Grid Work-

Mathematics PPAM’2005, R.Wyrzykowski et al. eds., 2005, Springer-Verlag, Poz-
nan, Poland

[20] Hoheisel, A., User Tools and Languages for Graph-based Grid Workflows. In:

2005

[21] Hluchy, L., Tran, V.D., Habala, O., Simo, B., Gatial, E., Astalos, J., Dobrucky,
M., Flood Forecasting in CrossGrid project. In: Grid Computing, 2nd European
Across Grids Conference, Nicosia, Cyprus, January 28-30, 2004, LNCS 3165,
Springer-Verlag, 2004, pp. 51-60, ISSN 0302-9743, ISBN 3-540-22888-8.

[22]

[23] Apache WebServices - Axis Project, http://ws.apache.org/axis/

vices Description and Discovery to Facilitate Composition, International Work-

and Infrastructure for Semantic Web Services, 2nd International Semantic Web

flow Composition, In: Proc. of 6-th Intl. Conf. on Parallel Processing and Applied

Special Issue of Concurrency and Computation: Practice and Experience, Wiley,

IBM WSDL4J Project, http://oss.software.ibm.com/developerworks/projects/wsdl4j

ORIENTED PRODUCTION GRIDS

Thierry Delaitre1, Tamas Kiss1, GaborTerstyanszky1, Stephen Winter1, Peter Kacsuk2
1 Centre for Parallel Computing, Cavendish School of Computer Science, University of
Westminster, London, United Kingdom
2 MTA SZTAKI Lab. of Parallel and Distributed Systems, Budapest, Hungary

Abstract: Current production Grid systems are just before a transition period when they
are moving form resource-oriented to service-oriented Grid middleware.
However, only changing the underlying Grid middleware and the basic
services will prevent end-users to fully utilise the Grid. Users also require
higher level services that make access the Grid easier. This paper presents
how a higher level service like the GEMLCA legacy code solution can be
connected to service-oriented production Grids. It identifies dynamic account
management and automated resource testing as two main challenges to be
solved and offers solutions for these challenges.

Key words: legacy code, production Grid, dynamic account pooling, resource & service
monitoring, user support,

1. Introduction

There are several production Grid systems, like the TeraGrid [1] and the Open
Science Grid [2] in the US, or the EGEE Grid [3] and the UK National Grid Service
[4] in Europe, that already provide reliable production quality access to
computational and data resources for the scientific community. Most of these Grid
systems are just before a transition period. They were all set up as “traditional”
resource-oriented grids based on Globus toolkit version 2 (GT2) [5], but all of them
consider, in a shorter or longer term to move towards a service-oriented architecture.
The TeraGrid is already running GT4-based services since December 2005, and
plans to set up a full production GT4-based operation in early 2006. The EGEE Grid
will also change its underlying infrastructure form the Globus based LCG [6] to
gLite [7] in the first quarter of 2006, and other production Grids are also setting up
different GT4-based services.

Porting legacy applications onto these production Grid systems is one of the most
important tasks to be solved in order to support a more widespread scientific and
industrial take-up of Grid computing. There is a vast legacy of applications solving
scientific problems or supporting business critical functionalities. Institutions can ill-
afford to throw such applications away for the sake of a new technology, and there

LEGACY CODE SUPPORT FOR SERVICE-

104 T. Delaitre, T. Kiss, G. Terstyanszky, S. Winter, P. Kacsuk

is a clear business imperative for them to be migrated onto the Grid with the least
possible effort and cost.

The Grid Execution Management for Legacy Code Architecture (GEMLCA) [8]
enables legacy code programs written in any source language (Fortran, C, Java, etc.)
to be easily deployed as a Grid Service without significant user effort. The current
GEMLCA implementation is based on Globus Toolkit version 4 (GT4) but could
also be ported to any service-oriented Grid middleware with reasonable effort.
GEMLCA is also integrated with the P-GRADE Grid portal [9] providing a user
friendly Web interface to publish legacy codes as Grid services and to create,
execute and visualise the execution of complex Grid workflows from both legacy
components and Grid services.

The integrated GEMLCA P-GRADE portal solution can interface with current
GT2-based production Grids. It has already been running as a production level
service [10] on the UK National Grid Service (NGS) since September 2005, and has
also been successfully demonstrated on the EGEE Grid.

As GEMLCA is implemented as a GT4 Grid service it can be integrated with
GT4-based production Grids. Moreover, through the P-GRADE portal, even current
GT2-based Grids can be extended with GT4 GEMLCA resources bridging different
Grid generations. This way GT4 GEMLCA services can be set up for current GT2-
based production Grids assisting the transition of these Grid systems towards a
service-oriented architecture, and providing useful experiment for both Grid
operators and end users. However, before this extension two main problems have to
be solved:

- Firstly, GEMLCA has to be extended with workspace management and
dynamic account pooling support. In order to utilize GT4 GEMLCA services
in a production environment Grid certificates need to be mapped into
corresponding cluster accounts dynamically at run-time without manual
interaction.

- Secondly, because of the transient nature of the Grid, and because GEMLCA
relies on rather complex Grid middleware (like GT4) and local job manager
(like Condor [11]) solutions, it is very important that both system
administrators and end-users are aware of the failure of GEMLCA resources
and could act accordingly. The GEMLCA P-GRADE portal environment has
to be extended with a monitoring tool that reports automatically any failure to
system administrators, and that also allows users to select only tested and
working resources when mapping the execution of a newly created workflow,
or when rescuing a failed workflow component.

This paper presents how GEMLCA can be extended with the above features. A
unique solution is described for the integration of GEMLCA with the Workspace
Management Service (WMS) [12] in order to support the dynamic mapping of user
credentials to local accounts in a way that is totally transparent form the user’s point
of view. We also introduce the GEMLCA Monitoring Toolkit (GMT) [14] that
supports the dynamic testing of legacy code resources on the Grid, and propose an
architecture how the GMT can be extended and connected to existing Grid brokers
to be used for resource availability prediction based on a historical database.

As production Grids are moving towards service-oriented Grid middleware
solutions it will be extremely important to incorporate more and more user support
services into these Grids. The problems and their solutions presented in this paper

Legacy Code Support for Service-oriented Production Grids 105

go far beyond the GEMLCA architecture and could be adapted to other GT4-based
services offered for production Grid systems.

GEMLCA and the P-GRADE portal

GEMLCA [8] represents a general architecture for deploying legacy applications
as Grid services without re-engineering the code or even requiring access to the
source files. The novelty of the GEMLCA concept, compared to solutions with
similar aims like in [15], [16] and [17] is that it requires minimal effort from both
Compute Server administrators and end-users of the Grid providing a high-level
user-friendly environment to deploy and execute legacy codes on service-oriented
Grids. The deployment of a new legacy code service with GEMLCA means to
expose the functionalities of this legacy application as a Grid service that requires
the description of the program’s execution environment and input/output parameters
in an XML-based Legacy Code Interface Description (LCID) file. This file is used
by the GEMLCA Resource layer to handle the legacy application as a Grid service.

GEMLCA provides the capability to convert legacy codes into Grid services.
However, an end-user without specialist computing skills still requires a user-
friendly Web interface (portal) to access the GEMLCA functionalities: to deploy,
execute and retrieve results from legacy applications. Instead of developing a new
custom Grid portal, GEMLCA was integrated with the workflow-oriented P-
GRADE Grid portal [9] extending its functionalities with new portlets. The P-
GRADE portal enables the graphical development of workflows consisting of
various types of executable components (sequential, MPI or PVM programs),
execution of these workflows in Globus-based Grids relying on user credentials, and
finally the analysis of the correctness and performance of applications by the built-in
visualization facilities. The portal is based on the GridSphere [18] portal framework
and the workflow manager subsystem is currently implemented on top of Condor
DAGMan [19].

Following the integration of GEMLCA and the P-GRADE portal, end-users can
easily construct workflow applications also including legacy code services running
on different GEMLCA Grid resources. The workflow manager of the portal contacts
the selected GEMLCA resources, passes them the actual parameter values of the
legacy code, and then it is the task of the GEMLCA Resource to execute the legacy
code with these actual parameter values. The other important task of the GEMLCA
Resource is to deliver the results of the legacy code service back to the portal. For
more detailed description of GEMLCA and the P-GRADE portal please refer to [8]
and [9], respectively.

Dynamic Account Management for Legacy Code Services

As GEMLCA uses local job managers, like Condor or PBS, to execute legacy
code jobs through GT4 job submission, it requires a secure run-time environment. In
order to achieve this Grid certificates have to be mapped to local user accounts.
However, in case of a production Grid it is not scalable to create user accounts and

2.

3.

106 T. Delaitre, T. Kiss, G. Terstyanszky, S. Winter, P. Kacsuk

do the mapping manually whenever a new user is added. In a production Grid
environment user Grid credentials have to be mapped dynamically to local user
accounts in a completely user-transparent way. Current GT2-based production Grids
all tackles this problem. However, there are only limited solutions for GT4-based
grids. This section describes a unique architecture how dynamic mapping can be
integrated into GT4-based Grid services like GEMLCA, allowing the seamless
integration of these services into GT4-based production Grids.

Overview of Dynamic Account Management in Current Grid Systems

To access a Grid resource, the user’s global identity should be converted to a
local identity. This conversion may be based on either a permanent one-to-one
mapping or on temporary mapping. In Globus-based Grids the Globus gatekeeper
maps Grid identities, based on X.509 certificates, to local Unix user accounts using
the grid-mapfile, which allocates Grid identities to local accounts. The existing grid-
mapfile based solutions are not scalable because they require frequent manual
interaction to map identities. As a result, they are not suitable for production Grids
with a large number of users. To have a scalable solution production Grids require a
dynamic and flexible user management. As part of the user management, they need
a dynamic and fine-grained authorisation mechanism to control users’ access to
resources. This authorisation mechanism could be implemented through dynamic
account management and identity mapping.

There are several solutions, such as PRIMA [28], VOMS [26] and WMS [12] that
implement dynamic and flexible user management based on account pooling and
identity conversion used in GT2-based production Grids. All these solutions allocate
accounts for Grid users on-demand from an account pool, i.e. they dynamically map
global user identities to local accounts replacing the static mapping based on the
grid-mapfile. Different GT2-based production Grids have different user
management solutions.

The EGEE Grid uses VOMS with gridmapdir, LCMAPS and, LCAS. The Virtual
Organisation Membership Service (VOMS) extended the Globus Gatekeeper with
two new services to replace the grid-mapfile solution: the Local Credential Mapping
Service (LCMAPS) [27] and the Local Centre Authorisation Service (LCAS) [28].
LCMAPS maps global identities to local ones using proxy certificates and job
descriptions. It provides either pre-defined Unix accounts for permanent users or
accounts from a pool of temporary accounts for temporary users using the
gridmapdir mechanism. LCAS makes local authorisation by enforcing local security
policies using VO membership, roles and capabilities. Similarly to the EGEE Grid,
the UK NGS uses VOMS with gridmapdir, but it does not utilise LCMAPS and
LCAS. However, both the EGEE Grid and the NGS extended the Globus
Gatekeeper and Gridftp services with the gridmapdir patch. The patch maps Grid
users automatically to a local Unix account from an account pool located on the
compute node when Grid users issue requests for resources of this node.

The Open Science Grid uses VOMS with PRIMA. Authorisation in PRIMA
(Privilege Management and Authorization in Grid Computing Environments) is built
on privilege management using the minimum privilege access mechanism to give
access to resources. This solution creates, configures and manages users’ accounts
on-demand. Users submit their privileges and PRIMA tries to find existing accounts

Legacy Code Support for Service-oriented Production Grids 107

that match these privileges and maps users to the corresponding accounts. If
matching accounts are not found, it assigns a new account from the account pool.

EGEE, TeraGrid and Open Science Grid are all moving towards service-oriented
Grids. The first one will use gLite, while the others GT4 as Grid middleware. The
EGEE team has adapted VOMS with gridmapdir, LCMAPS and LCAS to G-lite.
The TeraGrid is using the grid-mapfile based authorisation requiring manual
intervention. The OpenScienceGrid set up a testbed to check the Edge Services
Framework where services are deployed dynamically using WMS (Workspace
Management Service). This service supports dynamic creation of workspaces and
account pooling using gridmapdir and LCMAPS. Workspaces are currently
implemented as Unix accounts on local nodes. They are represented by dynamic
accounts, which are either generated on-demand or allocated from an account pool.
Unfortunately, none of these solutions provide totally transparent and dynamic
mapping required by GT4 services like GEMLCA.

Dynamic Account Management for GEMLCA

To provide a scalable user management GEMLCA was integrated with the
Workspace Management Service using its identity mapping and dynamic account
pooling features. The first feature maps Grid certificates into local accounts at run-
time without manual intervention, while the second feature provides local accounts
on demand. The previous GEMLCA security implementation [24] used the grid-
mapfile to check authorization of Grid service requests. In the solution presented in
this paper, authorisation of GEMLCA services, such as GLCList, GLCProcess and
GLCAdmin, was adapted to the WMS Authorisation and Mapping Callout to make
GEMLCA scalable. To get a workspace, GLCProcess issues a request on the user’s
behalf to the WMS to create and lease a workspace for the user. Leased workspaces
allow Grid users to access GEMLCA resources and allow them to make subsequent
service requests. The GLCProcess can extend the lease as required, for example
until the service completes, during the execution of the legacy codes using a thread
associated with the GLCProcess environment.

The GEMLCA lifecycle with WMS incorporates the following steps (Figure 1)
(Please note that the original GEMLCA lifecycle and its detailed description are
available in [8]. Here we only concentrate on changes required by dynamic account
management):

1) The user signs its security certificates in order to create a Grid user proxy.
2) A Grid client creates a restricted Grid Legacy Code Process (GLCProcess)

instance with no defined workspace, using the GEMLCA file structure.
3) The GLCProcess instance forwards the Grid user credential to the

Workspace Management Service (WMS) that checks whether a workspace
has been previously assigned to the user. If has not been, WMS converts
global user identity to local one using the LCMAPS and selects a workspace
from the workspace pool assigning it to the user with a lease before creating
a GLCProcess environment. If the lease is about to expire GLCProcess
contacts the WMS in order to extend it. As these steps are programmed
within the GLCProcess, the dynamic creation and mapping of workspaces
are totally transparent from the users’ point of view.

108 T. Delaitre, T. Kiss, G. Terstyanszky, S. Winter, P. Kacsuk

4) Having a workspace allocated for the user, the Grid client sets and uploads

the input parameters needed by the legacy code program exposed by the
GLCProcess, deploys a GLCJob using the resource specification format of
the Grid middleware (a Resource Specification Language (RSL) file in case
of Globus), and creates a multi-user environment to handle input and output
data.

5) The Grid user credential is delegated by the GLCProcess from the client to
the underlying Grid Host Environment for the allocation of resources. For
example, in case of a Globus-based implementation the resource allocation is
the task of the Master Managed Job Factory Service (MMJFS). MMJFS
validates global user identity mapped to a workspace.

Service
6) The Grid middleware contacts the appropriate job manager (Condor, Fork,

PBS etc.) that allocates resources and executes the parallel or sequential
legacy code on the Compute Servers.

7) As long as the client credential has not expired and the GLCProcess is alive,
the client can contact GEMLCA for checking job status and retrieving partial
or final results at any time.

4. Dynamic Testing of Legacy Code Services

In order to offer GEMLCA legacy code services for production Grid systems,
automatic testing of these services is inevitable. Production Grids run thorough tests
on their available resources on a regular basis to offer a high quality of service. The

Figure 1. GEMLCA Lifecycle Management with Workspace Management

Legacy Code Support for Service-oriented Production Grids 109

UK NGS, for example, runs GITS (Grid Integration Test Script) tests to ensure the
setup of Grid services on the infrastructure. Other, more advanced monitoring
toolkits, like Inca [20], GRASP (Grid Assessment Probes) [21], or MonaLISA
(Monitoring Agents in a Large Integrated Services Architecture) [22] are also
available to test, monitor and verify the functionality of Grid resources by running a
set of probes. However, none of these solutions are integrated with GT4 at the
moment, and there are no probes that can directly test GT4-based services.

In order to overcome this problem the GEMLCA Monitoring Toolkit (GMT) was
developed to provide monitoring information based on probes concerning the status
of GEMLCA resources. Using the GMT, system administrators are automatically
alarmed when a test fails and can also request the execution of any test on-demand.
The GMT also assists P-GRADE portal users when mapping the execution of
workflow components to resources by offering only verified Grid resources when
creating a new workflow or when rescuing a failed one.

GMT tests GEMLCA resources in pre-defined regular intervals, and alarms and
supports system administrators in identifying any problems with GEMLCA
resources. It automates the validation of GEMLCA Grid services, and provide a
user-friendly interface for this task by integrating it into the P-GRADE portal. GMT
provides reliable and dependable environment for GEMLCA end-users by assuring
them that the GEMLCA resources where the tasks are mapped working properly. It
supports the further development of GEMLCA by collecting information regarding
resource availability.

GMT performs the tests of the following types of resources:
- The basic network connectivity verifying that the remote sites are accessible.
- Services of the underlying Grid middleware. The current GEMLCA

implementation is based on GT4 utilising the MyProxy, WS-GRAM and
GridFtp services.

- Functionality of the local job manager. GEMLCA is submitting the legacy
code as a batch job to a local job manager. Current GEMLCA
implementation is capable to submit to the Fork and Condor schedulers.

- The three Grid services, GLCAdmin, GLCList and GLCProcess [8]
providing the GEMLCA functionality.

Grid Monitoring Tool Implementation

The implementation of the GMT is based on MDS4 (Monitoring and Discovery
System) [23] that is part of the Globus distribution. MDS4 is capable to collect,
store and index information about resources, respond to queries concerning the
stored information using the XPath language, and control the execution of testing
and information retrieval tools built as part of the GEMLCA Monitoring Toolkit. It
can be extended and tailored to obtain specific information by means of polling
resources, subscription to obtain notifications regarding changes to the state of
specific resources, and execution of test and information collection scripts (probes).

As part of the GMT, several probes were implemented that collect information
concerning the state of basic Globus services, local job manager functionality, and
GEMLCA services. The probes can immediately be used as standalone tools
executed automatically from the MDS by implement these solutions and put them
into production level operation on the UK National Grid Service.

110 T. Delaitre, T. Kiss, G. Terstyanszky, S. Winter, P. Kacsuk

Site administrators can configure the MDS4 service to run the various probes at

pre-defined intervals. The results are collected by a portlet that is integrated into the
P-GRADE portal. Administrators can also select a specific probe from a drop-down
list displayed by a portlet and run it to verify the state of a specific service at a
specific site on demand (Figure 2).

Figure 2. GMT Probe Results in the P-GRADE portal

automatic execution mode

GMT probes can also be integrated into the workflow editor of the portal to assist
end-users when mapping a new workflow execution onto available Grid resources,
or when rescuing and re-mapping a failed workflow. In the latest P-GRADE portal
release mapping of workflow components to underlying resources happens either
manually by the end-user, or in case of LCG type Grids, by the LCG broker. The
GMT aims to support manual mapping (when no LCG type broker is available) by
dynamically querying the MDS4 during workflow creation time, and offering only
those GEMLCA resources for mapping where the latest GMT test results were
positive. Although, this does not guarantee that the resource will actually work when
executing the workflow, but the probability of a successful execution will
significantly be increased. Work is also undergoing to connect the GMT to the LCG
resource broker, as illustrated on Figure 3. GMT, as shown on the figure, runs
regular probes on the production Grid resources and, besides updating the MDS
indexing service, also creates a historical database. When the portal submits a
workflow, a classifier component runs data mining algorithms on this historical data
and determines which resources are “very likely to be alive”. This information can
be passed to the production Grid broker, for example in case of an LCG broker
within the JDL (Job Description Language) file. The broker then maps the execution
to the appropriate resources taking now the GMT provided information into
consideration too.

Legacy Code Support for Service-oriented Production Grids 111

Figure 3. GMT-based resource availability prediction

5. Summary

Providing additional services that support the users of large production Grids is
crucial for the more widespread take up of these Grid solutions. One example for
these user support services is GEMLCA that presents legacy code applications as a
Grid service with minimum user intervention. GEMLCA is already connected to
resource-oriented GT2-based Grid systems. However, offering GEMLCA resources
in service-oriented Grids requires dynamic account management and automated
resource testing. This paper presented how these problems can be solved in GT4
services using GEMLCA as an example. Work is currently undergoing to fully
implement these solutions and put them into production level operation on the UK
National Grid Service.

References

[1] The TeraGrid Website, http://www.teragrid.org
[2] The Open Science Grid Website, http://www.opensciencegrid.org/
[3] The EGEE Website, http://public.eu-egee.org/
[4] The UK National Grid Service Website, http://www.ngs.ac.uk/
[5] The Globus Project Website, http://www.globus.org/
[6] The LCG project Website, Worldwide LHC Computing Grid,

http://lcg.web.cern.ch/LCG/
[7] EGEE gLite version 1.5 Documentation, http://glite.web.cern.ch/glite/documentation

112 T. Delaitre, T. Kiss, G. Terstyanszky, S. Winter, P. Kacsuk

Running Legacy Code Applications as Grid Services, Journal of Grid Computing Vol. 3.
No. 1-2. June 2005, Springer Science+Business Media B.V., ISSN: 1570-7873, pp 75-90

[9] P. Kacsuk G. Sipos: Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal,
Journal of Grid Computing, , Springer Science + Business Media B.V., 25 January 2006,

[10] The P-GRADE NGS GEMLCA Portal Website, http://www.cpc.wmin.ac.uk/ngsportal/
[11] Condor Team, University of Wisconsin-Madison: Condor Version 6.4.7 Manual,

http://www.cs.wisc.edu/condor/manual/v6.4/
[12] K. Keahey, M. Ripeanu, K. Doering: Dynamic Creation and Management of Runtime

Environment in the Grid, Workshop on Designing and Building Web Services, GGF9,
Chicago, October 2003

[13] Martijn Steenbakkers, LCMAPS - A Local Credential Mapping Service,
http://www.dutchgrid.nl/DataGrid/wp4/lcmaps/

[14] L. Bitonti, T. Kiss, G. Terstyanszky, T. Delaitre, S. Winter, P. Kacsuk, Dynamic Testing
of Legacy Code Resources on the Grid, To appear in Conf. proc. of the ACM
International Conference on Computing Frontiers, Ischia, Italy, May 2-5, 2006.

Applications”, Proceedings of the 17th International Parallel and Distributed Processing
Symposium, workshop on Java for HPC), 22-26 April 2003, Nice, France.

[16] B. Balis, M. Bubak, M. Wegiel. A Solution for Adapting Legacy Code as Web Services.
In Proceedings of Workshop on Component Models and Systems for Grid Applications.

[17] D. Gannon, S. Krishnan, A. Slominski, G. Kandaswamy, L. Fang, “Building
Applications from a Web Service based Component Architecture, in “Component
Models and Systems for Grid Applications” edited by V. Getov and T. Kiellmann,
Springer, 2005, pp 3-17, ISBN 0-387-23351-2.

[18] J. Novotny, M. Russell, O. Wehrens: GridSphere, “An Advanced Portal Framework”,
Conf. Proc. of the 30th EUROMICRO Conference, August 31st - September 3rd 2004,
Rennes, France.

[19] James Frey, Condor DAGMan: Handling Inter-Job Dependencies,
http://www.bo.infn.it/calcolo/condor/dagman/

[20] Shava Smallen, Catherine Olschanowsky, Kate Ericson,, Pete Beckman, Jennifer M.
Schopf, The Inca Test Harness and Reporting Framework, Conf. proc of the
Supercomputing 2004 Conference, Pittsburgh, November 6-12, 2005.

[21] Greg Chun, Holly Daily, Henri Casanova, Allan Snavely, Benchmark Probes for Grid
Assessment, http://grail.sdsc.edu/projects/grasp/probes/grasp.pdf

MonaLISA: An Agent based, Dynamic Service System to Monitor, Control and
Optimize Grid Applications, CHEP 2004, Interlaken, Switzerland, September 2004,

[23] Globus Team, Globus Toolkit 4.0 Release Manuals,
http://www.globus.org/toolkit/docs/4.0/

Security Mechanisms for Legacy Code Applications in GT3 Environment, Conf. Proc. of
the 13th Euromicro Conference, Lugano, Switzerland, February 9-11, 2005

[25] XACML project, Microsoft, 2004, http://sunxamcl.sourceforge.net
[26] R. Alfieri et. al: Managing Dynamic User Communities in a Grid of Autonomous

[27] M. Steenbakkers: Guide to LCMAPS, 2003

Privilege Management, Authorisation and Enforcement in grid Environments

[8] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, P. Kacsuk: GEMLCA:

[15] Y. Huang, I. Taylor, D. W. Walker, “Wrapping Legacy Codes for Grid-Based

18th Annual ACM International Conference on Supercomputing, Saint-Malo, July 2004

[22] I.C. Legrand, H.B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, C. Dobre,

[24] G. Terstyansky, T. Delaitre, A. Goyeneche, T. Kiss, K. Sajadah, S.C. Winter, P. Kacsuk,

Resources, CHEP 2003, La Jolla, San Diego, March 24-28, 2003

[28] M. Lorch, D. Adams, D. Kafura. M. Koneni, A. Rathi, S. Shah: The PRIMA System for

CLIENT-SIDE TASK SUPPORT IN MATLAB FOR
CONCURRENT DISTRIBUTED EXECUTION

Christian Hoge1, Dan Keith1, Allen D. Malony1,2

Neuroinformatics Center1

Department of Computer and Information Science2

University of Oregon

{hoge,dkeith,malony}@cs.uoregon.edu

Abstract Matlab is a popular interactive computing environment that gives scientists a pow-
erful and easy to use set of analysis and visualization tools. However, Matlab has
been criticized for performance limitations on computationally and memory in-
tensive applications. In addition, because of Matlab’s single-threaded processing
model, long-running processes prevent a user from performing other tasks while
computation occurs. We discuss a framework for remote, concurrent execution
of tasks in the Matlab environment that address these shortcomings by asyn-
chronously distributing tasks to dedicated high-performance compute servers.
We employ a client-server model based on web-standards and Matlab’s built in
scripting and Java environment.

Keywords: Matlab, distributed, concurrent, context, high-performance

Introduction

Matlab is an integrated computational environment for scientists and engi-
neers with support for interactive analysis and visualization. The popularity of
Matlab comes from its integrated functionality and workstation platform ubiq-
uity, but it has been criticized for performance limitations on computationally
and memory intensive applications. In this respect, there has been significant
work on enhancing the Matlab environment with support for parallel and dis-
tributed execution [Kepner and Travinin, 2003].

One approach for parallel execution extends Matlab for message passing,
for instance, with an MPI interface [Kepner, 2001, MultiMatlab, 1995] . Other
projects allow Matlab to operate in a distributed system [Matlab DCET, 2005]
or computational grids [Matlab*G, 2003, A. Reuther, 2004]. In all of the above
cited cases, the entities inter-operating are Matlab processes only. Geodise
[Geodise, 2005] implements a grid computing toolbox for Matlab making it
possible to use Matlab for scripting grid work flows for engineering design

114 Hoge, Keith, Malony

optimization. Non-Matlab processes may be executed in Geodise work flows,
but all host machines must be grid-enabled for this purpose.

In addition to allowing execution on multiple processes, these toolkits at-
tempt to seamlessly integrate with the Matlab programming model. The above
projects do this by providing the same “look and feel” of Matlab procedure
calls to access message passing or grid computing functions. In contrast, the
pMatlab [Kepner and Travinin, 2003], Matlab*G [Matlab*G, 2003], and StarP
[StarP, 2006] systems apply syntax and function overloading to provide implicit
data and task parallelism. While effective at abstracting away low-level parallel
programming details, these approaches work only at the Matlab level, making
it harder to parallelize non-Matlab routines.

Our objective is to support concurrent task processing in a distributed client-
server environment where Matlab operates as a task generating client The tasks
represent procedures (services) that the servers provide. The servers publish the
procedure interfaces so that the Matlab client knows the calling parameters and
can automatically generate an object-oriented interface to the remote service. In
this manner, the operation between the Matlab client and the server is similar to a
remote procedure call (RPC) model. However, the RPC model normally blocks
the caller (the client), restricting the ability to have multiple tasks operating
concurrently. In addition to remote procedure invocation, we want the execution
of the tasks to be asynchronous to Matlab execution. Once this requirement is
specified, the problem becomes one of introducing task semantics in the Matlab
programming environment because it is reasonable to expect Matlab users to
want to generate multiple remote, possibly long-running, tasks to take advantage
of available computing resources. Our application is EEG data processing
where the ability to process multiple data sets simultaneously on parallel servers
is important.

Unfortunately, none of the methods above provide the necessary support
needed with Matlab. The following sections describe our solution approach:
the general model, the client design and implementation, and application to
EEG signal analysis. The result is a new toolkit for Matlab, called MC, that
task-based parallelism that we will distribute and extend in the future.

1. Model

Our concurrent distributed system is based on a standard client-server model
as shown in Figure 1. The client resides in MATLAB and generates multiple
tasks to execute on remote servers. The servers provide computational pro-
cedures that can be invoked by the clients. From the client’s perspective, it
creates tasks that are to be executed in a concurrent manner. This abstraction
is implemented in a library that interfaces with Matlab and its underlying Java

Client-side Task Support in Matlab for Concurrent Distributed Execution 115

Virtual Machine (JVM) and utilizes distributed system mechanisms to execute
the tasks on the servers.

Figure 1. Client-Server ModelW S D L R e q u e s tF u n c t i o n C a l l sF u n c t i o n R e t u r n s W o r kD i s t r i b u t i o n
We assume that the server provides a Simple Object Access Protocol (SOAP)

interface to its computational services with the interface published as a Web
Services Description Language (WSDL) file. In addition to computational
services, the server also provides methods for uploading files, requesting the
status of processes, and requesting the results of processes.

On the client side, our library requests a WSDL from available servers and
automatically generates a programatic interface to each service provided. When
a remote task execution is requested by the user, our system performs these
operations: it uploads large data sets to the server, makes a process request,
receives a task id, stores the Matlab context of the process call as an object, and
associates the task id with the context. We define a context to be a set of inputs,
environment state variables and outputs associated with a remote function call.

Control is then handed back to the user, and a background thread periodically
checks the state of the remote task. When the client receives notification that the
remote task is complete it notifies the user. At that point the user can request
that the results of the computation be fetched from the server, and that the
workspace context be restored. Figure 2 illustrates the interaction between the
client and sever components.

While a remote task is running other work can be done. Because we store
the context of the remote call, the user can continue to work in the Matlab
workspace without fear of overwriting data associated with the remote call.
The context can even be saved to disk or transmitted to a different machine, and
then restored at a later time at the convenience of the user.

Because the server implementation is independent of the client it is possible
to achieve several layers of parallelism. Obviously, the first is task parallelism,
where many client tasks can be run simultaneously on different severs. The
second is intra-task parallelism, handled on the server by interfaces such as
MPI, OpenMP, or pthreads. That is, remote tasks themselves can be parallelized,
and can be implemented in any programming language desired. Even remote

116 Hoge, Keith, Malony

Figure 2. Matlab-Task Manager-Server Interaction DiagramS e r v e r M a t l a b T a s k M a n a g e r M a t l a b C l i e n tW S D L R e q u e s t W S D Lr e m o t e _ c a l l ()r e m o t e c a l l i d r e m o t e _ c a l l ()s e r i a l i z ec o n t e x tj o b _ i dj o b d o n e ? n o j o b d o n e ? n oj o b d o n e ? n oj o b d o n e ? y e s c a l l b a c k ()g e t _ r e s u l t ()r e s u l t w i t hc o n t e x t

o t h e rw o r k . . .d i s t r i b u t e dr e m o t e c a l l . . .

r e s t o r ec o n t e x t

Client-side Task Support in Matlab for Concurrent Distributed Execution 117

Matlab tasks are possible, as long as the task interface registration and invocation
methods are followed.

The rest of the paper will focus on the implementation of the Matlab client.
The server can be viewed as a black box within the framework as long as it
provides the interface required by the client.

2. Client Design

There are two major components to the client design: the user interface to
the toolkit and the software to manage the remote tasks. Our goal in designing
the user interface was to provide an intuitive library of calls for executing and
managing remote tasks, while providing a useful library to integrate with other
Matlab-based applications. For task management we needed a lightweight yet
extensible system that could keep track of asynchronous tasks and manage
contexts, all without blocking the Matlab workbench.

The user interface layer is built upon existing Matlab functions and Java
classes available through Matlab’s JVM. Maintaining responsiveness and trans-
parency in the user environment is key. When a remote call is made, instead of
blocking and waiting for an answer to be computed, the function call returns
a Remote Task ID (RTID) that acts as a reference to the complete state of the
remote execution, much like a Matlab file id can be used as a pointer to a file.
In general all function calls will give immediate responses.

While the interface is intuitive enough for general interactive use, it also
provides an API for integration with applications that run inside of Matlab. For
example, one could build a graphic user interface where the state of the GUI
is associated with the context of the remote call. The application could then
restore the state of the work at a later time, freeing the user to shut down the
application to perform other work. We discuss this more below.

The responsiveness of the library is made possible by the Task Manager layer,
which runs as a background process. The Task Manager maintains contexts and
manages remote calls. It provides an interface to the Matlab environment for
user interaction. By applying interval timers and callbacks the Task Manager
can automatically perform scripted tasks such as checking the status of remote
tasks, freeing the user or applications from having to perform these tasks man-
ually.

3. Client Implementation

To meet the goals of the client design we used two different approaches for
the user API and the task manager. The interface is largely implemented using
Matlab’s m-script language. Since the task manager must run concurrently with
the Matlab workspace, we took advantage of the JVM that comes bundled with

118 Hoge, Keith, Malony

Table 1. User Functions Available in Matlab

Matlab function input output

makeServiceFromWsdl url service id (SID)
serviceHelp SID list of available methods
serviceHelp SID, function input and output for function
callFunction SID, inputs, context, call-back RTID
functionStatus RTID status of call
retreiveOutput RTID context with function output
saveContext RTID, filename success or failure
restoreContext filename RTID

Matlab and run the Task Manager as a Java thread. It can be called directly
from the Matlab workspace, and supports timed actions and scripting.

The implementation of the user interface models existing Matlab functions.
For example, Matlab provides a function for interfacing with web-services
called makeClassFromWsdl. In our implementation we wrap around this built-
in method with a function called makeServiceFromWsdl. This function will
automatically generate the interface necessary for running remote services asyn-
chronously, and returns a Service ID (SID) that is used as an identifier of the
remote service. Table 1 lists some of the functions available in the interface.

The Task Manager is implemented as a single background thread running
in the JVM, with the user interface specified in Table 2. It uses the Singleton
Pattern to ensure that only one Task Manager thread is running. The Task Man-
ager coordinates several components. File transfer is handled by the Ganymed
SSH2 implementation for Java [Alonso and Plattner, 2005], and interaction
with Matlab is through the MatlabControl class [Whitehouse, 2002]. Script-
ing is handled with Jython, which not only provides dynamic access to objects
in the JVM, but also allows scripting with Matlab m-script by interfacing with
the MatlabControl class. When executing Matlab code the Task Manager
will wait until the Matlab workbench has free cycles available for the task to
occur, reducing the likelihood of the user and the Task Manager contending
for resources. The Task Manager thread has a run loop that responds to user
or timer events. To ensure that no messages are lost due to race conditions or
synchronization problems, events are added to a queue that is maintained by
the Task Manager, which will execute every task in the queue once woken.

The Task Manager also keeps a list of tasks that it has launched. Each task
is associated with a state: running, stopped, and stopped-notified. The Task
Manager uses these states to query the server for job status, notifying the user
when a job is completed, and executing call-back functions attached to a remote
process. The task objects include the RTID, the SID, the context of the task,
and call-back functions.

Client-side Task Support in Matlab for Concurrent Distributed Execution 119

Table 2. Task Manager interface

Task Manager function input output

runPython python code string
runMatlab Matlab code string
startTimer period in milliseconds
stopTimer

instance the Task Manager object
matlabControl the MatlabControl object

4. Example 1:APECS and the HiPerSAT Server

As an example application, we consider analysis of electroencephalography
(EEG) data in the context of APECS [Frank and Frishkoff, 2006], an interac-
tive environment for evaluating the ability of independent component analysis
(ICA) algorithms to extract artifacts from EEG data. Ideally, ICA algorithms
separate EEG data into streams of independent activity (components), some of
which may capture unwanted artifacts (e.g., eye blinks or EKG [Frank et al.,
2006]) and brain activity. These components, along with their respective spatial
topographies, can be used to understand brain function. APECS, by using prior
knowledge of time and spatial properties, evaluates the ability of different ICA
methods to extract that activity based upon the performance of each algorithm’s
component separation.

Normally ICA is a time intensive process, with some algorithms growing in
time complexity as O(n2) in the number of channels, and O(n) in the number
of time samples. We are working with data sets up to 256 sensor channels and
hundreds of seconds of recording at 1 msec time intervals. ICA algorithms
in the EEGLAB [Delorme and Makeig, 2004] Matlab toolkit have performed
poorly with large EEG data because of single threaded execution and Matlab
memory management. We have implemented optimized and parallelized C++
implementations of ICA and other EEG signal analysis algorithms in a library
call HiPerSAT [D. Keith, 2006]. Clearly, there is an advantage in being able to
run ICA tasks in APECS (for different algorithms and data sets) externally on
a HiPerSAT server and concurrently with other APECS operations.

Using our framework the user can set up an experiment in APECS, start
several remote HiPerSAT jobs simultaneously, then checkpoint the experiment
using the context serialization feature of our framework. If the user chooses to
leave APECS running, the application can notify the user when every remote
job is complete. The user can also serialize the state of the experiment, shut the
APECS and Matlab environment down, and restore the application context at a
later time after the computation has been completed.

120 Hoge, Keith, Malony

We have demonstrated APECS with 20 simultaneous HiPerSAT servers run-
ning parallel ICA tasks. Compared to sequential ICA processing of 20 one-GB
EEG files in EEGLAB we see a 5x speedup for C++ optimization plus 2-way
parallel execution and 10x speedup from running 20 HiPerSAT tasks. We have
also demonstrated multiple APECS clients running on different workstations
and accessing the HiPerSAT servers. An high utilization of the servers was ob-
tained in one test case, but in general the overall throughput will be determined
by server configuration and network bandwidth.

5. Example 2:Dense Array EEG and Signal Discrimination

As a second example application, we again consider the analysis of EEG
data, this time in the context of building a functional discriminator to distin-
guish between target brain-wave activity and non-target brain-wave activity.
Experimental EEG data is collected by having a subject watch a sequence of
images, shown in rapid succession, with the subject instructed to distinguish
between images with a target feature and images without.

This data is used to build a model to differentiate between brain activity when
a target image is shown and brain activity when a non-target image is shown.
To improve robustness of the model and prevent over-training, we use various
permutations of the training data set to build a multitude of models. This set
of operations constitutes an embarrassingly parallel computation, which we
implemented using our system.

With a cluster running 83 heterogeneous computational nodes running Oc-
tave (a free software Matlab clone), we observed almost a 10x speedup over
the same serial computation in Matlab alone (Figure 3).

6. Conclusions and Future Work

Matlab is one of the most popular interactive computing environments, giving
scientists a powerful and easy to use set of analysis and visualization tools. Our
parallel execution framework compliments and enhances the environment by
providing support for asynchronous parallel computation. The Matlab user is
free to perform other actions while long running and computationally intensive
processes happen remotely. We leverage the strengths of Matlab’s interactive
environment, along with it’s integrated JVM, to access SOAP web-services.
By using open, widely available, and standard tools, we provide an easy to use
interface that can be easily integrated into existing projects and extended to
meet user’s needs.

We anticipate integrating the Matlab client software with the GEMINI soft-
ware being developed at the Neuroinformatics Center [GEMINI, 2006]. GEM-
INI (Grid Environment and Methods for Integrated Neuroimaging) is a middle-
ware system that implements a distributed storage and work-flow environment.

Client-side Task Support in Matlab for Concurrent Distributed Execution 121

Figure 3. Speedup of Signal Discrimination Model Generation

0 2 0 4 0 6 0 8 0N u m b e r o f p r o c e s s o r s02
4 681 0

S p eed up
M a t l a b7 7 8 9 s e c o n d s8 p r o c e s s o r s3 6 4 7 s e c o n d s1 6 p r o c e s s o r s2 1 9 6 s e c o n d s

3 2 p r o c e s s o r s1 3 2 5 s e c o n d s
6 4 p r o c e s s o r s8 4 8 s e c o n d s 8 3 p r o c e s s o r s8 0 0 s e c o n d s

122 Hoge, Keith, Malony

This middle-ware will integrate with existing problem-solving environments
and will support the development of powerful neuroimaging applications for
both research and clinical purposes. GEMINI is being built upon the Globus
Toolkit 4.0 [GLOBUS, 2006].

References

[A. Reuther, 2004] A. Reuther, et al. (2004). Llgrid: Enabling on-demand grid computing with
gridmatlab and pmatlab. In High Performance Embedded Computing.

[Alonso and Plattner, 2005] Alonso, G. and Plattner, C. (2005). Ganymed ssh2 library for java.
urlhttp://www.ganymed.ethz.ch/.

[D. Keith, 2006] D. Keith, et al. (2006). Parallel ica methods for eeg neuroimaging. In IEEE
International Parallel and Distributed Processing Symposium.

[Delorme and Makeig, 2004] Delorme, A. and Makeig, S. (2004). Eeglab: an open source
toolbox for analysis of single-trial eeg dynamics including independent component analysis.
Journal of Neuroscience Methods, pages 9–21.

[Frank and Frishkoff, 2006] Frank, R. and Frishkoff, G. (2006). Automated protocol for evalua-
tion of electromagnetic component separation (apecs). Clinical Neurophysiology. To appear.

[Frank et al., 2006] Frank, R., Frishkoff, G., M.Brown, Tucker, D., and Holmes, M. (2006).
Evaluation of two methods for separation of ekg artifacts from eeg recordings in patients
with interictal spiking activity. In Human Brain Mapping.

[GEMINI, 2006] GEMINI (2006). Gemini. http://www.nic.uoregon.edu/gemini/index.php.

[Geodise, 2005] Geodise (2005). Geodise. http://www.geodise.org/.

[GLOBUS, 2006] GLOBUS (2006). Globus toolkit. http://www.globus.org/toolkit/.

[Kepner, 2001] Kepner, J. (2001). Parallel programming with matlabmpi. In High Performance
Embedded Computing (HPEC) Workshop.

[Kepner and Travinin, 2003] Kepner, J. and Travinin, N. (2003). Parallel matlab: The next
generation. In High Performance Embedded Computing (HPEC) Workshop.

[Matlab DCET, 2005] Matlab DCET (2005). Matlab distributed computing engine and toolbox.
http://www.mathworks.com/products/distriben/.

[Matlab*G, 2003] Matlab*G (2003). Matlab*g. http://ntu-cg.ntu.edu.sg/Grid

competition/report/grid-9.pdf.

[MultiMatlab, 1995] MultiMatlab (1995). Multimatlab: Matlab on multiple processors. url-
http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html.

[StarP, 2006] StarP (2006). Starp. urlhttp://www.interactivesupercomputing.com.

[Whitehouse, 2002] Whitehouse, K. (2002). Matlab control. url-
http://www.cs.berkeley.edu/ kamin/matlab/JavaMatlab.html.

MESSAGE LEVEL SECURITY FOR GRID
SERVICES USING S/MIME

Daniel Kouřil, Ondřej Kraj́ıček, Martin Kuba, Michal Procházka
Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
{kouril,krajicek,makub,michalp}@ics.muni.cz

Abstract Message level security is essential in knowledge grids, where digital sign-
ing of messages is a natural requirement. XML-Signature based digital
signatures were reported to be very slow. We present an alternative,
based on long-established standard for signing e-mails, together with
performance measurements.

Keywords: grid, S/MIME, SOAP, web services

1. Introduction
The ability to digitally sign SOAP messages flowing among grid ser-

vices is essential in some types of grids. Some grid applications need to
be able to prove who has sent a message and thus who is responsible for
the provided data, even long time after the communication is finished.

We have found this ability to be a basic requirement in knowledge
grids for biomedicine, where the shared resource is medical knowledge
[1] and non-repudiation is an essential feature.

So far, reports of performance of web service security based on XML-
Signature and XML-Encryption, as detailed in [2, 4], found it to be very
slow when compared to SSL, mainly due to very expensive canonical-
ization of XML. However SSL has other shortcomings, namely it cannot
provide digital signatures and non-repudiation.

Message-level security (MLS) is very important, since it provides the
necessary granularity for access control in systems, where the messages
are routed in “networks” with complex topologies, i.e. where more so-
phisticated model than simple point-to-point (client/server) message ex-
change is used. We propose solutions which implements message-level
security. It is based on the observation that much of the MLS-related
overhead comes from the XML nature of the digital signatures and en-
cryption.

124 Kouřil, Kraj́ıček, Kuba, Procházka

However, there is a long-established and widely used solution for sign-
ing Internet e-mails, called S/MIME (Secure/Multipurpose Internet Mail
Extensions). The HTTP (Hyper Text Transfer Protocol) protocol, used
by web services for transferring messages, is based on MIME (Multipur-
pose Internet Mail Extensions) and thus is very similar in structure to
e-mails. So we got the idea of using S/MIME over HTTP for transferring
signed SOAP messages.

We implemented the S/MIME-over-HTTP solution twice as plugins
for two popular web service toolkits: gSOAP (C/C++) and Axis (Java).
This article presents speed measurements and experience gathered dur-
ing the implementation.

2. Message Level Security
Web service security can be dealt with on two levels, on the transport

level, or on the message level. The transport level security is usually
done using SSL/TLS (Secure Socket Layer/Transport Layer Security),
by encrypting all data using a temporary symmetric encryption key.
One or both ends of the communication can be authenticated using
X509 certificates. The SSL/TLS security is relatively fast, however it
has two principal disadvantages. First, it is two-point only, so a SOAP
message sent through intermediaries cannot be secured. Second, it does
not support signatures, so while one end of the communication knows
who is the other end, it cannot prove later that the data were really sent
by the communicating partner.

Message level security, on the other hand, can use an unsecured trans-
port, as it performs encryption and/or signatures on the message itself.
It has several advantages. A signed message can go from a sender to a
recipient through intermediaries that cannot change the message. The
messages can also be stored and used later for non-repudiation if some
disagreement arises.

The message level security is usually handled using signatures and/or
encryption in the XML content of SOAP messages, using W3C stan-
dards XML-Encryption and XML-Signature. However implementations
of such XML-based message level security were reported as very slow
when compared to SSL [2]. So we decided to try an alternative solution,
which does not involve manipulation of XML.

3. S/MIME
S/MIME (Secure/Multipurpose Internet Mail Extensions) is an estab-

lished and standard way for digitally signing and/or encrypting Internet
emails. S/MIME is implemented by many e-mail programs, including

Message Level Security For Grid Services Using S/MIME 125

Mozilla Suite, Mozilla Thunderbird, Microsoft Outlook, Microsoft Out-
look Express and others.

According to [9], S/MIME was originally developed by RSA Data
Security Inc. The current work on S/MIME is being done in the IETF’s
(Internet Engineering Task Force) S/MIME Working Group. S/MIME
v3 was made a standard in July, 1999, and is described by a group of
RFC (Request For Comments) documents, which are listed in [10].

S/MIME is layered on top of MIME, which defines structure for e-
mails containing other media than plain text, like images, video, audio
or arbitrary file attachments. Each MIME-compliant message contains
headers and a body, separated by an empty line. One of the head-
ers is Content-type:, which specifies the so called MIME type of the
body content. It can be text/plain for plain text, or image/gif for
a GIF image, but it can also describe more structured content using
multipart/*, where * can be mixed when the second and later parts
are attachments to the first part, or some other values.

S/MIME uses MIME type multipart/signed for signed content and
application/pkcs7-mime for encrypted content. For details see [8].
When an e-mail is signed using S/MIME, the signed content is in the
first part, followed by a binary attachment containing the signature and
information about the signer.

4. S/MIME and HTTP
The HTTP protocol used on web and also for web services shares

many constructs with MIME. A HTTP request or response also consists
of headers and a separating empty line, and (if the method is POST)
also a body content. One of the headers is Content-type: specifying a
MIME type of the body content. HTTP even uses multipart types, like
multipart/form-data for uploading files from HTML forms (see [5],[6]
section 19.4,[7]).

So it feels natural to use HTTP for transferring content with MIME
type multipart/signed, i.e. an S/MIME signed content.

The MIME type may be unusual for HTTP clients, but there is a
standard mechanism for dealing with it - each HTTP client should send
Accept: header ([6] section 14.1) indicating which MIME types it can
accept. So web service clients should use this Accept: header to indi-
cate whether they can accept multipart/signed responses. There is
no similar mechanism for indicating which MIME types a HTTP server
can accept in POST requests. WSDL description of a web service seems
to be the proper place for such indication, however there is no standard
binding defined for such description as of now.

126 Kouřil, Kraj́ıček, Kuba, Procházka

Public Key Distribution Problem for Message Level
Encryption

There is one principal problem with encryption and message level se-
curity. The sender must first have the public key of the recipient, before
the encryption can take place. But it means that some preliminary com-
munication must be done before the encrypted message can be sent. In
SSL, this happens behind the scenes on the transport level, when the
SSL channel is established. In message level security, it means some
special mechanism for key distribution must be established.

However encrypted communication between two parties is inherently
two-point only, and is better solved on the transport level. Message
level encryption may be useful when a message is encrypted and sent
for more than one recipient. Either the whole message may be read-
able by all recipients, or possibly only some parts may be readable for
some recipients. This scheme was used for example in the SET (Secure
Electronic Transactions) payment protocol, where one message had two
parts readable only by the merchant and only by the bank respectively.

5. Implementation of S/MIME based Message
Level Security

We created two proof-of-concept implementations of S/MIME-over-
HTTP message level security, one in C language for gSOAP toolkit,
and the other in Java language for Apache Axis toolkit. They are fully
interoperable, so a gSOAP client can be used with an Axis server and
vice versa.

Both implementations have separate client and server sides. Both
sides wrap outgoing SOAP message into an S/MIME structure, and un-
wrap a SOAP message from incoming S/MIME structure. For incoming
signed messages, the signature is verified (whether the content was not
changed), and the signer’s certificate is verified against a list of accepted
Certificate Authorities, stored in /etc/grid-security/certificates
folder by default.

Axis implementation
The Java implementation was created for Apache Axis version 1.4. For

S/MIME implementation, we used BouncyCastle 1.33 crypto provider
and S/MIME library. JavaMail 1.4 and Java Activation Framework 1.1
were used for MIME implementation.

On the client side, a new implementation of HTTP transport had to be
created, as the two implementations of HTTP transport provided with

Message Level Security For Grid Services Using S/MIME 127

Axis (one Commons HttpClient based and second Axis’s own) could not
be reused. It is using the standard java.net.HttpURLConnection class.
On the server side, a servlet Filter was created which intercepts requests
to the AxisServlet.

gSOAP implementation
The C implementation is a plugin for gSOAP 2.7.1. For S/MIME

implementation we used OpenSSL 0.9.7.

6. Evaluation
To evaluate the implementations, we created a benchmark web service,

with one operation called roundtrip, which gets and returns an array
of 10-character strings. We evaluated the role of SOAP message size by
using sizes of 1, 10, 100 and 1000 strings.

We measured the number of calls per second, it means two SOAP
messages for each call. The measurements were done on a machine with
dual core AMD Opteron 280 (2.4GHz) CPU, 512MB memory, running
64-bit SUSE Linux 10.0 operating system with kernel version 2.6.16.
For the Java implementation, SUN 64-bit server JVM was used, and the
server side was deployed in Tomcat 5.5.12 servlet container. For the C
implementation, GCC 4.0.2 compiler was used. Both client and server
were running on the same machine to minimize communication latencies.

Figure 1. Gradual increase in speed due to HotSpot Java Virtual Machine dynamic
optimizations.

There is a small problem with measuring performance of Java appli-
cations. The modern HotSpot virtual machine starts interpreting byte
codes, and then performs gradual compilation and dynamic optimiza-
tions of the most frequently used parts of code. So application perfor-

128 Kouřil, Kraj́ıček, Kuba, Procházka

mance is increasing over time, before it reaches a stable level, as can
be seen on figure 6. Also garbage collection is done in unpredictable
moments, which account for oscillations of the performance. A JVM
option -XX:CompileThreshold=1500 was used to suggest early compi-
lation of byte codes. And the performance was measured after each 500
calls, then average was computed from values after the stable level was
reached. The gSOAP implementation in C, on the other hand, has stable
performance over time.

calls per second string array length
1 10 100 1000

Axis pure AxisHttp 350 320 90 13
Axis pure CommonsHttp 210 190 84 13
Axis SMIME off 316 260 90 13
Axis SMIME signed 40 38 30 8
Axis WSS4J signed 33 32 23 5
gSOAP pure 5319 4717 2304 360
gSOAP SMIME signed 300 300 257 78

Table 1. Processing speed of the same web service roundtripping an array of 10-
character strings.

The results are summarized in table 1. The columns show number
of average calls per second for various message sizes. The rows show
various configurations.

The first three cases were measured to get comparison with configura-
tions with no security at all. They are represent Axis with three different
implementations of HTTP transport on the client side, the Axis’s own,
the one based on Commons HttpClient 3.0.1, and our S/MIME transport
with signing switched off.

The Axis SMIME signed line shows the results of our S/MIME trans-
port with signing enabled. It means that both SOAP messages for each
call were signed using S/MIME and the signature and signer were veri-
fied.

For comparison with XML-based security, the Axis WSS4J signed line
shows results for Axis with WSS4J plugin, which is an implementation
of OASIS WS-Security. The results are for signed messages with in-
cluded X509 certificate, so they are functionally adequate to S/MIME
signatures. WS-Security allows other modes of operation, by default
WSS4J does not include certificates, just DN of their signing CA and
serial number.

Lines titled gSOAP pure and gSOAP SMIME signed show results
for gSOAP without any plugin and with S/MIME plugin creating sig-

Message Level Security For Grid Services Using S/MIME 129

natures and verifying signatures and signers as described for the Java
implementation.

Figure 2. Processing speed of Axis with SMIME signatures, WSS4J signatures, and
without any signatures with various HTTP implementations.

Figure 3. Relative processing speed of Axis with SMIME signatures compared to
Axis with WSS4J signatures.

Discussion
Clearly, gSOAP is much faster than Axis. How much this can be

attributed to the difference between C and Java is an open question.
But according to [3], gSOAP is optimized for maximum performance
using clever tricks like schema-specific recursive-descent XML parsers,
while Axis uses general-purpose XML parser. We were surprised that
the WS-Security implementation of WSS4J was not two orders of mag-
nitude slower, as was reported in [2] for Globus Toolkit 3.2 implemen-

130 Kouřil, Kraj́ıček, Kuba, Procházka

tation of XML-Signature. It is about ten times slower than the same
service without any security overhead. The S/MIME implementation
provides slightly better results, as is shown in figure 2, and the dif-
ference is increasing with message size. The S/MIME implementation
was not optimized for performance though, so there is some room for
improvement.

7. Conclusion
We presented an alternative to XML-based web service message level

security. The alternative is based on S/MIME standard, which is used
for securing Internet e-mails, but due to similarities between HTTP and
MIME, it can be used for HTTP transfers without modifications. The
S/MIME-over-HTTP solution was implemented for gSOAP and Axis
toolkits.

8. Acknowledgments
This research is supported by a research intent “Optical Network of

National Research and Its New Applications” (MSM6383917201) and
research project “MediGrid – methods and tools for GRID application
in biomedicine” (Czech Academy of Sciences, grant T202090537)

References
[1] Kuba M., Kraj́ıček O., Lesný P., Vejvalka J. and Holeček Tomáš. “Grid Empow-

ered Sharing of Medical Expertise”, Proceedings of HealthGrid 2006, IOS Press,
Amsterdam, NL, 2006. ISBN: 1-58603-617-3

[2] Shirasuna S. et al., “Performance Comparison of Security Mechanisms for
Grid Services,” grid, pp. 360-364, Fifth IEEE/ACM International Workshop on
Grid Computing (associated with Supercomputing 2004), Pittsburgh, PA, 2004.
ISBN: 0-7695-2256-4. ISSN: 1550-5510. http://doi.ieeecomputersociety.org/
10.1109/GRID.2004.50

[3] Head M. et al., A Benchmark Suite for SOAP-based Communication in Grid
Web Services”, Proceedings of ACM/IEEE SC 2005 Conference (SC’05), p. 19,
2005.
http://doi.ieeecomputersociety.org/10.1109/SC.2005.2

[4] Liu H., Pallickara S.,Fox G.,

”

Performance of Web Services Security”, Proceed-
ings of the 13th Annual Mardi Gras Conference, February 2005, Baton Rouge,
Louisiana
http://grids.ucs.indiana.edu/ptliupages/publications/WSSPerf.pdf

[5] RFC 2388: Returning Values from Forms: multipart/form-data
http://www.ietf.org/rfc/rfc2388.txt

[6] RFC 2616: Hypertext Transfer Protocol – HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

[7] http://www.w3.org/Protocols/HTTP/Object_Headers.html#z16

“

Message Level Security For Grid Services Using S/MIME 131

[8] RFC 3851: Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1
Message Specification http://www.ietf.org/rfc/rfc3851.txt

[9] S/MIME and OpenPGP page on Internet Mail Consortium website
http://www.imc.org/smime-pgpmime.html

[10] IETF’s S/MIME Working Group charter
http://www.ietf.org/html.charters/smime-charter.html

IV

GRID INFRASTRUCTURE

FAULT TOLERANT GRID REGISTRY

Marek Kasztelnik2, Marian Bubak1,2, Cezary Górka, Maciej Malawski1,2 and
Tomasz Guba la2

1Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Kraków, Poland
2Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland
m.kasztelnik@cyfronet.pl, bubak@agh.edu.pl,

czgorka@o2.pl, malawski@agh.edu.pl, gubala@scienc e.uva.nl

Abstract Development of tools that assist efficient computing in a distributed environment
is a challenging problem in modern and future Grid systems. A registry that aids
searching for information about existing components of distributed applications
belongs to this class of tools. This work presents the Grid Registry, which is
a distributed, scalable and fault-tolerant facility that stores information about
structure and semantics of Grid/Web services. A set of performance tests that
present the behavior of the registry are also described.

Keywords: Distributed registry, Grid service, fault-tolerance, data synchronization, load bal-
ancing.

1. Introduction
Building applications using Web or Grid services is becoming more and more

popular. The appropriate usage of the service-oriented computing paradigm [1]
enables us to connect various resources into a workflow that performs the re-
quired computation. One of the most important functionalities for service-
oriented software development is the ability to find suitable services published
in the Grid and it may be accomplished by a registry which stores necessary in-
formation about services. If the registry operates in a Grid environment it has to
be scalable and resilient to failures and overloads. The Grid Registry [2, 4] is a
distributed system used to maintain information concerning semantic, syntactic
and human-readable descriptions of Web or Grid services.

The paper is organized as follows. First, an overview of existing registries
is presented. Next, the description of the structure of the registry is given.
The third section of the paper is focused on one of the most important aspects
of functionality in the registry - fault tolerance. Subsequently, descriptions
of algorithms that realize failure resiliency are presented. The fourth section

136 Kasztelnik, Bubak, Górka, Malawski, Guba la

includes some performance tests that present the behavior of the registry. The
last section describes the conclusions and the possible future work.

2. Overview of existing solutions
Searching Web or Grid services has become important problem. Information

about services should be available in one place so that the user can easily query
it. This issue is undertaken by Universal Description, Discovery and Integration
(UDDI) protocol [5]. A disadvantage of this solution, however, is that it does not
contain any information about service input and output semantics. Grimoires
Registry [6] address this issue. This registry adds metadata that give information
about existing entities. It is a considerable improvement but other disadvantages
still remain. If all data is stored on many places, this kind of solution is not very
scalable, and when the number of locations grows, keeping all information
copies up to date is very difficult. On the other hand, when the volume of
information about a service grows, every location presents more and more
demands (e.g. computer power). A solution to this problem is a registry that is
distributed across several hosts on the Internet. The Eco Grid Registry is this
kind of a system [7]. It is a distributed registry that contains information about
logical service names, URL of WSDL, type and service classification. Despite
many advantages, this system does not guarantee nontrivial quality of service
and thus another solution has to be proposed.

3. Overview of the Grid Registry

node A

node ABnode AA

Mathematics: Algebra Mathematics: Discrete Mathematics

Mathematics

e c h oec
ho

XML
DB

XML
DB

Figure 1. Simple Grid Registry structure

The Grid Registry is a distributed,
scalable, fault-tolerant, semantic-based,
Grid-enabled registry storing informa-
tion about Web or Grid services. There
are two kinds of registry users. An
administrator is a actor responsible for
configuring the registry and managing
information about the stored services
while a user can search for information
about services using semantic, syntactic
or human-readable descriptions.

The fundamental element of the reg-
istry is a single node. It is a computer
system that acts as a provider and makes all functionalities of the registry avail-
able for the user. The registry is built using these basic elements. It has a
hierarchical structure and it is based on the ancestor-descendant relation. A
simple configuration of the registry is shown in Figure 1. The “Mathematics”
node is a root of the registry and it has two children (descendants) “Algebra”

Fault Tolerant Grid Registry 137

nodes “Algebra” and “Discrete Mathematics” - of course these domains can
have sub-domains too. The information stored in the Grid Registry is con-
ceptually divided into domains and it is distributed throughout the nodes of
the registry topology. All nodes have a routing table that contains information
about all its ancestors and descendants. Therefore, a user can ask a selected
branch of the registry about a service that fulfils the specified conditions, and
there is no difference which node is used by the user to connect to the registry.

4. Fault-Tolerance and Data Synchronization
Introduction

Non fault-tolerance version of the Grid Registry [2, 3] allowed only for
service searching and it did not guarantee nontrivial quality of service. Every
node was a single point of failure and some of them could be overloaded.
When a domain node crashed, all the information stored there and in all its
sub-domains was inaccessible to the user. Still worse, when many queries were
sent to a specific domain node, this node may have become overloaded. These
disadvantages were the reason behind adding a fault-tolerance mechanisms to
the registry [4]. The implementation of a fault-tolerant registry has to provide
the following functionalities:

Fault-Tolerance. This mechanism ensures that the system can be used
by the user even when something goes wrong in one or more elements in
the software and hardware configuration. To fulfill this functionality, all
single points of failure have to be eliminated. Moreover, the mechanism
responsible for checking if a task is processed correctly has to be made
available. In case of a failure, the task has to be redirected to a backup
system.

Data Synchronization. Each fault-tolerant system must remain opera-
tional even if a part of it has crashed. To ensure high availability for such
a system, all information has to be backed up. A data synchronization
process ensures that all these backups are up to date even in case of a
failure of the system.

Load Balance. It is a technique to spread work between many computers
or other resources to get optimal resource utilization.

Concept
The main purpose of the Grid Registry fault tolerance mechanisms is to meet

all the presented requirements. All data in the registry can be duplicated and
stored in geographically distributed locations. In case of an error with delivering

and “Discrete Mathematics”. What is more, “Mathematics” is the ancestor of

138 Kasztelnik, Bubak, Górka, Malawski, Guba la

the message, the query is redirected to a backup system where computation can
be performed. When the system crashes and afterwards comes back online,
there is a mechanism responsible for data resynchronization. Another element
of functionality is a load balancing mechanism which checks if there are no
overloaded nodes. All these functionality elements are based on the “echo”
mechanism, as explained in the following subsection.

Fault-Tolerance scenarios
This part presents an expanded example of using the registry, both by an

administrator and by a user. All cases from this example were implemented
and tested, so it proves that the Grid Registry fulfills the requirements for a
fault-tolerant system.

node A

node ABnode AA

Mathematics: Algebra
Mathematics:

Discrete Mathematics

Mathematics

echo
e ch

o

XML
DB

XML
DB

node AA
new

Mathematics: Algebra

Administrator

1

XML
DB

2 3 4

Figure 2. An example of adding a new
node when all nodes work

node A

node ABnode AA
current provider

Mathematics: Algebra
Mathematics:

Discrete Mathematics

Mathematics

echo
tim

e o u
t

XML
DB

XML
DB

node AA

Mathematics: Algebra

User

XML
DB

2

echo 3

7

45

6

1

Figure 3. A sample user query; the mes-
sage can not be delivered to a broken node
and it is redirected to a backup node

Assume that we have following initial registry structure (see Figure 1): one
root node A (domain “Mathematics”), which has two children: AA (domain
“Mathematics : Algebra”) and AB (domain “Mathematics : Discrete Mathe-
matics”). This structure was configured by an administrator when starting the
system. Such a topology does not guarantee correct processing if a node fails.
To improve fault tolerance, the administrator of such a system should add some
backups. In Figure 2 an example of adding a new node AA is presented. In this
case an administrator, who is connected to the node A, sends request that adds
a new empty node to the registry.

New added node is not synchronized with other one and need to be updated.
It sends echo message to node A, which, after receiving all echo messages,
compares their time stamps. Node A observes that one of its children is not
updated, so it begins the synchronization process. During this operation the
new node AA receives all documents from most up-to-date AA node and stores
them in its own local database. When the operations of adding a node and

Fault Tolerant Grid Registry 139

synchronizing the data are completed, the fault tolerance of the whole system is
improved. Even if one of the nodes AA fails, the registry still works correctly.
To prove this, the next example is presented.

In the example in Figure 3 the user wants to find some service located in the
domain “Algebra”. He or she sends a query to the node A which redirects it to
the current provider AA. When this node does not respond, the node A sends
the same query to the second node AA. In this case, the operation is successful
so the user receives a response. Furthermore, the current provider of the domain
“Algebra” is internally changed because only the second node AA has sent an
echo message to its parent.

Implementation
Fault Tolerance. Thanks to the fault tolerance mechanism the registry with
some broken domains looks to a user like a fully functional system. To provide
that functionality, the domains are duplicated and there is a mechanism designed
to check if the connection between nodes is broken. When such a problem is
discovered, the system checks which messages have been sent to the broken
nodes (and are still waiting for an answer) so that alternative nodes can respond.
When the next message is sent, it avoids the broken node and is delivered to
a place where it can be processed. Another possible scenario occurs when a
message is sent to a node and it causes an error message with a code describing
the problem of delivering the query to the destination host (e.g. there are
connection problems or some technical issues with the machine where one of
the registry nodes is installed). In this situation, an alternative node where the
query should be sent is found.

Knowledge about node status can be reached by using a static link between
registry elements. This solution is very difficult in a dynamically changing
environment [10]. Another possibility is an “echo” mechanism. All nodes
send echo messages containing information about themselves to their ancestors.
When an ancestor receives this information, it sends back the response with the
required information. Through this mechanism, the registry obtains knowledge
about ancestors and descendants and in case of any error the Grid Registry can
properly react to it.

Data Synchronization. In the Grid Registry, even if one of its nodes breaks,
the whole system can continue to work correctly. However, this broken node
cannot respond to any kind of messages, such as adding or removing nodes or
services. When it returns to life, its database and routing table may not be up
to date. Therefore the data synchronization between nodes in the same domain
is added.

Each node in the registry stores information about the time of the last update
(global node time stamp). This time stamp is put into each “echo” message

140 Kasztelnik, Bubak, Górka, Malawski, Guba la

and is periodically sent to the ancestor. Therefore, each node knows the time
stamps of its children, so it can notice that some of them are out of date and
begin the synchronization process. In such a case, the most up to date node
inside one domain sends data to this unsynchronized node. The advantage is
that not the entire database and routing table data is transmitted but only the
needed documents and entries. This is possible because each document in the
database and each entry in the local routing table inside a node store their own
time stamp fields.

Load Balancing. A domain in a registry can occupy several nodes. If more
than one node exists in a domain (“Algebra” is such domain in Figure 3), the
current provider is specified. All queries are routed through the current provider,
whereas remaining nodes in that domain store backup information. In order to
provide load balancing in the registry the roles of nodes inside one domain must
change. Therefore, each node that has recently sent an echo message is chosen
as the current provider and, consequently, the numbr of overloaded nodes are
reduced.

5. Performance evaluation
All tests were performed on the local network, using hosts that had sim-

ilar hardware and software configurations (Athlon XP 2000+, 512M RAM,
100Mb LAN). Grid Registry Services (with and without fault tolerance mech-
anisms) were deployed in a GT3 (Globus Toolkit 3.x) [11] containers and the
Xindice [12] database – in Tomcat 5.0 [13] Application Server. The main goal
of these tests was to show the behavior of the registry and the comparison
between user’s query response time in two cases: with and without the fault
tolerance mechanisms. The tests also show some specific behavior of the Grid
Registry when some nodes are broken.

User

node A1 node A2 node A12

XML
DB

XML
DB

XML
DB

Figure 4. Performance test configuration of
the Grid Registry.

User

node A1 node A2 node A12

XML
DB

XML
DB

XML
DB

node A1 node A2 node A12

XML
DB

XML
DB

XML
DB

Figure 5. Performance test configuration of
the fault-tolerance version of the Grid Registry.

Fault Tolerant Grid Registry 141

The first test was conducted in order to measure the performance of the query
routing and processing messages by the query handlers. The configuration of the
registry that does not have any fault-tolerance mechanisms is shown in Figure 4,
and the fault-tolerant registry is presented in Figure 5. These configurations
were similar from the user’s point of view. In both cases the user was connected
to the first node in the hierarchy (A1 – the root node). Every query to the domain
A12 database had to pass all eleven nodes before it reached its destination. The
client program sends “ping” and “find service” queries to all domains in the
registry configuration and the time of the response is measured. The result can
be seen in Figure 6.

The system scales well with the length of query route and the communication
overhead is relatively large in simple queries such as “ping”, where the handling
mechanism only answers the message and does not perform any other compu-
tations. In the case of messages like “find service”, where an XML database
has to be queried, the time spent on communication is shorter than the time
required to answer specific queries.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

1 2 3 4 5 6 7 8 9 10 11 12

su
m

m
ar

y
re

sp
on

se
 ti

m
e

[s
]

ping (GR 2.0)

ping (GR 1.0)

search service (GR 2.0)

search service (GR 1.0)

number of nodes

`

Figure 6. Result of sending “ping” and “findSerivce” queries in both versions of the Grid
Registry.

One more characteristic can be observed in the registry with fault tolerance
mechanisms – every time a message arrives to a specific node necessary infor-
mation has to be stored in case of any error. This is why there are differences in
times between answering the queries in both version of the registry. A further
factor that influences the result of the test is that specific information providing
the fault tolerant behavior of the registry has to be sent periodically. What is

142 Kasztelnik, Bubak, Górka, Malawski, Guba la

more, when a crashed node “returns to life”, specific synchronization messages
are sent.

The second test was conducted with the same configuration as the previous
one (see Figure 5). This test presents the behavior of the system when some
nodes are out of order. The user was connected to node A1 and sent queries to
node A12. The crash of the node was simulated by shutting down the OGSI
container where it was installed. In the configuration of the registry, the time
of sending an “echo” message was set for ten seconds and queries were sent
after this period, when a node was unavailable. All the queries were sent
after the registry received all information about nodes, so the broken node
was not taken into account when the next hop of the message was chosen. If
every node from the domain was installed on one physical computer system,
significant differences in times of query response to “ping” and “find service”

User

node A1 node A2 node A6

Figure 7. Configuration of the fault-tolerance version of the Grid Registry used in the third
test.

Figure 8. Result of the query redirected to a
backup node test.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 10 20 30 40 50 60 70 80 90 100

number of items

sy
nc

hr
on

iz
at

io
n

tim
e

[s
]

synchronization of databases

synchronization of routing tables

The next test presents the behavior of the registry when it receives an error
return message. The structure of the registry was similar to the previous one but

messages in both cases were not observed (0.95s for “ping” queries and 1.59s
for “findService” queries).

table synchronization tests
Figure 9. Result of database and routing

0

1

2

3

4

5

6

7

0 1 2 3 4

su
m

m
ar

y
re

sp
on

se
 ti

m
e

[s
]

Fault Tolerant Grid Registry 143

there were only six domains (see Figure 7) and, in configuration of the registry,
a long period of time between sending “echo” messages was set. The user
was connected to node A1 and sent “ping” messages all the time to node A6.
As a result, the time between the error and sending information was relatively
short. Without any knowledge about broken node, the message was sent to that
node and generated an error message. Consequently, the initial query had to
be redirected to a backup node. The result of this test is shown in Figure 8.
It presents the time of response to the “ping” queries in a situation where one,
two, etc. errors were returned and the initial message had to be redirected to a
backup node.

As can be seen in the graph with the result of the test, there are marks-up
connected with received error responses, which redirect the initial message to
another working node. This test also shows another characteristic of the registry:
only one message can be sent to a broken node because after receiving an error
response all subsequent queries are sent to backup nodes. This is achieved by
setting proper information about the status of the node in the local routing table.
That is why the response times of the second and further queries are the same as
in the situation where all nodes work. In this way the knowledge about broken
nodes is propagated in the registry topology.

Finally, two tests concerning synchronization performance were conducted.
Figure 9 presents results of these tests with the same simple configuration: there
was one node A, which had two children B, and one of these children was not
updated. The first test shows times of database synchronization and the second
one presents routing table synchronization performance. As can be seen, time
was linearly increasing according to the number of items (database or routing
table entries) which needed synchronization. In the first case, synchronization
was longer because the size of the database entry was larger than the size of
routing table entry, so the document, which was sent from the first node B to
the second one, was also bigger. Nevertheless, as can be seen, even if one
hundred items required synchronization, the time needed for this process was
acceptable. However, this also depends on network quality – in the case of a
network with low-bandwidth connections the process may take much longer.

6. Summary and Future work
This work presents the design and implementation of a Grid Registry with

fault tolerance mechanisms such as load balancing, system backup and data syn-
chronization. The performance tests have shown that the overhead introduced
by implementing these features is low and acceptable. Future work will include
migration to the newest versions of Grid technologies, such as WSRF [14] or
component technologies, as well as a support for multiple standards for se-
mantic service descriptions. Fault-tolerance mechanisms should be separated

144 Kasztelnik, Bubak, Górka, Malawski, Guba la

from normal communication between user and nodes. The mechanisms of echo
sending and data synchronization should be developed as separate components
that can be plugged into the registry.

Aknowledgements This reserach was partially funded by the EU IST Project
ViroLab and SPUB-M. The authors are very grateful to Mr. Piotr Nowakowski
for his remarks.

References
[1] M.P. Singh, M.N. Huhns, Service-Oriented Computing: Semantics, Processes, Agents,

Wiley, 2005

[2] M. Kapa lka, M. Bubak (Supervisor). Distributed, Semantics-Based Workflow Composition
on a Grid. Master of Science Thesis, AGH University of Science and Technology, Faculty
of Electrical Engineering, Automatics, Computer Science and Electronics, Institute of
Computer Science, Kraków, Poland, June 2004.

[3] M. Bubak, T. Guba la, M. Kapa lka, M. Malawski, K. Rycerz Grid Service Registry for
Workflow Composition Framework. Computational Science - ICCS 2004. 4th International
Conference, Kraków, Poland June 2004 34-41

[4] M. Kasztelnik, C Górka, M. Bubak (Supervisor). Tools for development of workflow-based
grid applications. Master of Science Thesis, AGH University of Science and Technology,
Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Insti-
tute of Computer Science, Kraków, Poland, August 2005.

[5] Universal Description, Discovery and Integration protocol. http://www.uddi.org.

[6] Grimoires: Grid Registry with Metadata Oriented Interface: Robustness, Efficiency, Se-
curity http://www.ecs.soton.ac.uk/research/projects/grimoires

[7] S. Bowers, K. Lin, and B. Ludäscher On integrating scientific resources through semantic
registration. Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (SSDBM), IEEE Computer Society (2004).

[8] M. Bubak, T. Guba la, M. Kapa lka, M. Malawski, K. Rycerz: textitWorkflow composer
and service registry for grid applications. Future Generation Computer Systems 21(1)
(2005) 79–86

[9] Knowledge-based Workflow System for Grid Application. http://www.kwfgrid.net.

[10] Incorporating Fault Tolerance into an Autonomic-Computing Environment http://
csdl2.computer.org/comp/mags/ds/2004/02/o2003.pdf

[11] The Globus ToolkitTM Project. http://www.globus.org/toolkit.

[12] Apache Xindice, The Apache XML Project, http://xml.apache.org/xindice.

[13] The Apache Jakarta Project: Apache Tomcat. http://jakarta.apache.org/tomcat.

[14] Web Services Resource Framework (WSRF). http://www.globus.org/wsrf/.

HIERARCHICAL LOCAL DESKTOP GRID

Attila Csaba Marosi, Gábor Gombás and Zoltán Balaton
MTA SZTAKI
Laboratory of Parallel and Distributed Systems
atisu@sztaki.hu, gombasg@sztaki.hu, balaton@sztaki.hu

Abstract The Desktop Grid model harvests the unused CPU cycles of any computer con-
nected. In this paper we present a concept how the separated Desktop Grids can
be used as building blocks for larger scale grids by organizing them in a hier-
archical tree. We present a prototype implementation and show the challenges
and security considerations we discovered. We describe methods and give so-
lutions how security can be enhanced to satisfy the requirements for real-world
deployment.

Keywords: Public Resource Computing, Volunteer Computing, BOINC, Hierarchy, Local
Desktop Grid

1. Introduction
Contrary to traditional grid[11] systems where the maintainers of the grid

infrastructure provide resources where users of the infrastructure can run their
applications, desktop grids provide the applications and the users of the desktop
grid provide the resources. Thus, a major advantage of desktop grids is that
they are able to utilize a huge amount of resources that were not available for
traditional grid computing previously.

Users of scientific applications usually are concerned only about the amount
of computing power they can get and not about the details how a grid sys-
tem delivers this computing power. Therefore, they want to develop a single
application that in turn can run on any infrastructure that provides the most
appropriate resources at a given time. Unfortunately existing applications have
to be modified in order to run on desktop grid systems and this makes desktop
grids less attractive for application developers than traditional grid systems.

SECURE APPLICATION DEPLOYMENT IN THE

146 Marosi, Gombás, Balaton

2. Desktop Grids
The common architecture of desktop grids consists of one or more central

servers and a large number of clients. The central server provides the appli-
cations and their input data. Clients join the desktop grid voluntarily, offering
to download and run an application with a set of input data. When the appli-
cation has finished, the client uploads the results to the server. Based on the
environment where the desktop grid is deployed we must distinguish between
two different concepts.

Global Desktop Grids
Global Desktop Grids (also known as Public Desktop Grids) consist of a

publicly accessible server providing projects and the attached clients. There
are several unique aspects of this computing model compared to traditional grid
systems. First, clients may come and go at any time, and there is no guarantee
that a client that started a computation will indeed finish it. Furthermore, the
clients cannot be trusted to be free of either hardware or software defects,
meaning the server can never be sure that an uploaded result is in fact correct.
Therefore, redundancy is often used by giving the same piece of work to multiple
clients and comparing the results to filter out corrupt ones.

Local Desktop Grids
To fill the gap between the traditional grids and the desktop grids SZTAKI

introduced the concept of Local Desktop Grids. Local Desktop Grids are in-
tended for institutional or industrial use. Especially for businesses it is often
not acceptable to send out application code and data to untrusted third parties
(sometimes this is even forbidden by law). The project and clients are shielded
from the world by firewalls or any other means. This environment gives more
flexibility by allowing the clients to access local resources securely and since
the resources are not voluntarily offered the performance is more predictable.

SZTAKI Local Desktop Grid
As we can see there is a huge difference between traditional grids and desk-

top grids. We also have to make a distinction between the publicly used Global
Desktop Grids and the Local Desktop Grid concept. The SZTAKI Local Desk-
top Grid[4] (or SZTAKI LDG) implements the latter. It is based on BOINC[1]
technology and extends it according to the needs of institutional and business
users. BOINC is originating from the SETI@Home[3] project to provide an
open infrastructure for utilizing the computers of people interested in the out-
come of a project.

Secure Application Deployment in the Hierarchical Local Desktop Grid 147

We faced several possibilities when designing SZTAKI LDG: to develop
our own solution[15], to use other desktop grid systems and approaches like
Distributed.net[9], Legion[13], JXTA[8] or Entropia[10]. We decided to build
on BOINC, because it has a large user base, it’s open source, cross-platform
and has a clean design[2] and implementation making it the best target for (third
party) enhancements[5].

SZTAKI Desktop Grid has a Public Desktop Grid version[6] running cur-
rently with more than 12000 registered users.

3. Hierarchy
One of the enhancements of the SZTAKI Local Desktop Grid hierarchy.

Hierarchy allows the use of desktop grid projects as building blocks for larger
grids, for example divisions of a company or departments of a university can
form a company or faculty wide desktop grid. Every project has a classical
parent-child relationship with the others. They may request work from a project
above (consumer) or may provide work for a project below (producer). The
project server can enter a hierarchical mode, when one of it’s consumers require
more work than it has for disposal. It will then contact one of it’s producer nodes
and request more work.

I. level
BOINC Project

II. level
Hierarchical BOINC

Project

III. level
Hierarchical BOINC

Project

II. level

BOINC Project

Modified CoreClient

Master side

Client side

Figure 1. The split architecture of the Hierarchy prototype. Inside the CoreClient the Client
side is acting as a consumer by requesting work and the Master side as a producer by providing
work for the project.

It is allowed for a project to have more consumers and producers. We use the
simple layout in Figure 1 for presenting the enhancements of the architecture
only. The architecture consists of a modified BOINC CoreClient and a project.
The CoreClient is required normally for the clients to participate in any project,

148 Marosi, Gombás, Balaton

but now the CoreClient is running on the machine hosting the consumer project.
Originally it’s task is also to dynamically download the application of the project
which is doing the actual computation for the project.

BOINC terminology uses the platform expression for the specific combina-
tions of architectures and operating systems. We modified the CoreClient such
that we may specify what platform it should pretend to be using. This allows us
to query all the predefined platforms for applications however, the deployment
of the application on the lower levels is not handled by the CoreClient, it is the
task of the project administrator. When the number of unsent workunits runs
below a specified threshold the CoreClient will contact a producer for work. A
project may have more producers configured each with a priority assigned. First
the producer with the highest priority will be contacted for work, if it fails to
provide work then the next one is queried and so on. The modified CoreClient
has a split architecture, first it consumes work from a producer (Client side),
second it injects the requested work in the local consumer project, thus acts as
a provider (Master side).

To test our prototype we deployed a seven-level hierarchical environment
with clients attached to the lowest level. Six of the servers were running on
Debian Linux 3.1/Intel, one was using Mac OS/X 10.4/PowerPC. Six clients
were attached, three using Debian Linux 3.1/Intel, two Windows XP and one
Mac OS/X 10.4/PowerPC. We also created a simple application for all plat-
forms, with the only purpose to produce high load and run exactly for the time
given in the workunit. Our goal with this diverse environment was not to mea-
sure performance, simply to test the environment for possible problems and
bottlenecks. Using the prototype we were able to provide basic hierarchical
functionality without modifying existing projects. Only a modified CoreClient
was needed for work request and distribution. However, this method does
not solve issues with the automatic deployment of applications coming form a
higher level of the hierarchy, the exponentially growing number of workunits
caused by redundancy or any security considerations.

4. Challenges and solutions
We discovered various problems which the prototype described in the pre-

vious section could not solve. In order to be able to provide a model which is
mature enough for industrial or institutional deployment the following issues
need to be addressed.

Redundancy and deadline
Redundancy ensures every workunit will have a correct result by simply

sending the same piece of work to multiple clients and comparing the results to
filter out corrupt ones. Figure 2 shows a three level layout with the redundancy

Secure Application Deployment in the Hierarchical Local Desktop Grid 149

I.level workunit

II.level

III.

workunit

w

III.

w

III.

w

II.level

III.

workunit

w

III.

w

III.

w

II.level

III.

workunit

w

III.

w

III.

w

Figure 2. Growing number of redundant workunits in the hierarchy demonstrated with a simple
three level layout.

of three on each level. In this case each producer on each level creates three
copies of any workunit received. By the third level there will be nine redundant
ones. This means that nine clients will compute the same workunit instead of
the supposed three (which was the requested redundancy on the first level). If
more levels are added to the hierarchy this number will exponentially grow. It
can be solved easily by forcing redundancy to be disabled on all but the first
level. This way exactly the requested number of redundant workunits will be
distributed.

Deadline is to prohibit workunit-hijacking by clients. Set when the workunit
is downloaded, after it passes the workunit is considered invalid and resent to
another client. Since each level of hierarchy is recreating the workunits from its
producers for distribution, the deadline of the original workunit at the top level
is not propagated. The problem is requesting too many or too few workunits
in the hierarchy. In the first case the clients, may be normal or hierarchical,
won’t be able to upload them before the deadline passes, in the latter some of
the clients are left without work. Predicting the performance is not the subject
of this paper, but we needed a simple way to do it. We created a monitoring and
statistics tool, which monitors the performance, number of users, hosts, sent
and unsent workunits and many more. Since our main focus is on the Local
Desktop Grid environment, where the performance should be less fluctuating,
this enables us to have a good enough guess on the number of workunits to be
requested based on the recent events.

Trust
BOINC uses an asymmetric key pair for code and workunit signing. When

multiple clients interact with a single project the key pair is sufficient for au-
thentication and authorization. In case where multiple projects interact with

150 Marosi, Gombás, Balaton

each other additional information is required. We think it is also important
to identify the origin of the application the project is currently using, since it
may be from anywhere. This and the problems we describe in the following
two sections can be easy solved by introducing certificates and defining various
administrative units. We were considering GnuPG[16] and X.509[17]. GnuPG
has a good infrastructure for key-distribution, but since X.509 is widely used
and de facto standard for authentication and authorization[12, 14] we think it
will provide a better solution for us.

Currently BOINC has one administrative unit, the project itself with it’s key
pairs. It’s the task of the project to sign any application deployed and to sign
the workunits sent to clients (using another key pair).

We want to distinguish between the Application Developer, the Project, the
Server and the Client, each with a certificate assigned. The Application De-
veloper is an individual or group of individuals who develop and sign their
applications but she is often not involved in the management of the BOINC
project. We think the application itself should not be a separate administrative
unit, it can be identified among others with the signature of it’s developer. The
Server is the node hosting one or more Project. The Client is the BOINC Local
Client or CoreClient whose task is to run the application of the Project with
the given set of input data (Workunit).

Application representation
BOINC currently identifies the applications with a name and a version. This

does not provide information about the developer or the origin of the applica-
tion. We want to distribute them in the hierarchy, this requires a unique identifier
for each version of each application. We want to extend the definition of the
application by bundling the new signature and for the validation required cer-
tificates with it. This allows us to uniquely distinguish any application with the
combination of the name, version and it’s Application Developer’s signature.

Application registration
With the introduction of certificates and Application Developers the appli-

cation signing by the projects is not needed anymore. Instead, the project now
publishes the list of trusted Application Developers. Thus applications can be
distributed automatically in the hierarchy, but with security considerations.

Figure 3 shows the flow of the registration. Communication is always per-
formed via the HTTP over TLS protocol (HTTPS)[7]. First the Hierarchical
Client running on the consumer will contact the producer with the highest pri-
ority identifying itself with one of the defined platforms. Since both Projects
have a certificate assigned they will authenticate mutually, they also have a list
of the certificates of trusted Projects and Application Developers. This allows

Secure Application Deployment in the Hierarchical Local Desktop Grid 151

A
u

th
e

n
ti

c
a

ti
o

nHierarchy: Consumer Hierarchy: Producer
login with a specified

platform
send application

 verify the authenticity
of the application

deploy the
application

workunit request

login with another
specified platform

send application

...

Figure 3. Application registration

to perform authorization on both sides. After a successful authentication and
authorization the consumer will request the latest version of the application of
the producer. The producer sends the executable, the signature and any certifi-
cates needed to verify the signature. The consumer verifies the authenticity of
the application and check if its developer is authorized to deploy applications
to the consumer Project. If authorized then the normal BOINC application
deployment follows: copying the files to an HTTPS accessible directory and
registering the metadata in the backend database. Updating and signing the list
of trusted certificates is the responsibility of the project administrator.

The Hierarchical Client repeats this procedure for each platform defined.
After querying all platforms, since no new application version is available it
will start to request workunits.

The steps involved in the application registration process are presented in
Figure 4. All communication between projects and clients is via the HTTP
over TLS protocol. First step is for the Application Developer to sign her Ap-
plication, producing a signature (Sig). Second step is to Install the application
to Project 2. This initial installation is the task of the project administrator and is
done manually. The project administrator adds the certificates required to verify
the signature to the projects list of certificates (Cert List P2), runs the BOINC
application registration procedure by copying the signature and executable(s) to
the desired place and registers the metadata in the backend database. The project
may sign the application, thus certifying its origin. When a consumer (Project
1) runs out of work the Hierarchical Client belonging to the project contacts
a producer (Project 2). After mutual authentication the consumer downloads

152 Marosi, Gombás, Balaton

(3.)

(1.) SIGN

Server 1 Certificate

Project 1
Cert List P1Cert P1

Server 2Certificate

Project 2

Cert List P2 Cert P2

Application Developer

Certificate Key

Application

Executable

Application 1

C
lient S

1

(2.) INSTALL

Client L1

Application 2

Application 1

(6.) ATTACH

Certificate

(8.) WU QUERY

(4.)

(7.) DOWNLOAD
CERT, CALIST

Cert List

(5.) CONNECT

Sig

Figure 4. Application registration and work distribution

Application 1, verifies the signature, authorizes the developer and registers the
application (3. and 4. step). When the registration succeeds, the Hierarchical
Client will start requesting workunits from the producer and injecting them
in the consumer project. A Local Client contacts Project 2 by connecting to
the server first (5. step). After mutual authentication the client is authorized
either by a certificate belonging to the Client or by a BOINC account key (6.
step). In the first case the project’s list of certificates (Cert List P1) should
contain the client’s certificate, this is another task which is performed manually
by the project administrator. The client downloads the application, and adds
all certificates from the project to its list (Cert List, 7. step) and verifies the
application. The last step for the client is the downloading of workunits (8.).
After computing the result of a workunit, it is uploaded to Project 1 where the
Hierarchical Client notices it and uploads it to the producer of the project and
reports it as finished.

5. Conclusion and future work
SZTAKI Local Desktop Grid is based on BOINC, its main enhancement is

allowing hierarchical setups. Hierarchy allows to build larger desktop grids
by using existing projects as building elements. We have shown that it is
possible to have basic functionality for work distribution without modifying
already deployed projects. Our prototype implementation was tried in a test
environment revealing issues we need to address. We think security is crucial
for real-world deployment, and this increased security can be achieved by using

Secure Application Deployment in the Hierarchical Local Desktop Grid 153

already proven technologies, like X.509 certificates. With the introduction of
certificates, issues like application representation, distribution and registration
can be solved. In the future we will work on solving the remaining issues and
refining the security enhancements discussed. We want to work on estimating
the number of required workunits to be transfered between different levels of the
hierarchy. We also need to implement a better certificate distribution solution.
Currently we don’t have any certificate revocation implementation, so we want
to address this problem in the future too.

6. Acknowledgement
The work presented in this paper has been partially supported by the De-

velopment and Meteorological Application of New Generation Grid Technolo-
gies in the Environmental Protection and Building Energy Management Project
(NKFP2-00007/2005) and the CoreGRID (FP6-004265) Project.

References
[1] Berkeley Open Infrastructure For Network Computing. http://boinc.berkeley.edu
[2] D. P. Anderson: BOINC: A System for Public-Resource Computing and Storage. 5th

IEEE/ACM International Workshop on Grid Computing, November 8, 2004, Pittsburgh, USA.
[3] SETI@home: Search for Extraterrestrial Intelligence at Home. http://setiathome.berkeley.edu
[4] Peter Kacsuk, Norbert Podhorszki and Tamas Kiss. Scalable Desktop Grid System. Technical

report, TR-0006, Institute on System Architecture, CoreGRID - Network of Excellence, May
2005.

[5] Jakob Gregor Pedersen & Christian Ulrik Sottrup. Developing Distributed Computing Solu-
tions Combining Grid Computing and Public Computing. Master’s thesis from University of
Copenhagen, 2005.

[6] SZTAKI Desktop Grid. http://szdg.lpds.sztaki.hu/szdg.
[7] HTTP Over TLS. http://www.ietf.org/rfc/rfc2818.txt
[8] Sun Microsystems, JXTA. http://www.jxta.org.
[9] Distributed.net, The fastest computer on earth. http://www.distributed.net.
[10] Entropia, Inc. http://www.entropia.com.
[11] I. Foster, The Grid: Blueprint For a New Computing Infrastructure, Morgan Kaufmann, Los

Altos, CA, 1998.
[12] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable virtual

organizations, Internat. J. Supercomput. Appl. 15 (3) (2001) 200-222.
[13] A. Grimshaw, W. Wulf, The legion vision of a worldwide virtual computer, Comm. ACM

40, 1997, 39-45.
[14] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A Security Architecture for Computa-

tional Grids. In ACM Conference on Computers and Security, 83-91.
[15] Myers, D.S., and M. P. Cummings. Necessity is the mother of invention: a simple grid

computing system using commodity tools. Journal of Parallel and Distributed Computing,
Volume 63, Issue 5, May 2003, pp. 578-589.

[16] The GNU Privacy Guard. http://www.gnupg.org
[17] Internet X.509 Public Key Infrastructure Certificate and CRL Profile.

http://www.ietf.org/rfc/ rfc2459.txt

Ondřej Krajı́ček2, Andrea Ceccanti1, Aleš Křenek2,
Luděk Matyska2, Miroslav Ruda2

1 INFN-CNAF, Bologna, Italy
2 Institute of Computer Science, Masaryk University, Brno, Czech Republic

Abstract Grid Infrastructure Monitoring is distinguished as important technique for diag-
nosing, addressing and preventing problems which may occur in the grids. It
is also source of valuable information suitable for scheduling, load balancing
and other applications. Currently, infrastructure monitoring is done using spe-
cialised toolkits which provide complete solution for single infrastructure and
middleware. In large-scale grids, where it is necessary to comprise resources
from multiple virtual organisations, it may be necessary to integrate various plat-
forms into single ubiquitous monitored fabric. C-GMA provides tools for such
integrations. In this paper, we address the scalability of the C-GMA by proposing
a distributed design of C-GMA mediator component. In particular, we examine
the properties of Publish/Subscribe systems for this purpose.

Keywords: grid monitoring, C-GMA, content-based publish/subscribe systems

1. Introduction

Capability-based Grid Monitoring Architecture [3, 7] is an extension to the
original GGF-standardised Grid Monitoring Architecture [1]. The C-GMA ex-
tends the GMA model to provide monitoring framework for true interoperabil-
ity of various grid monitoring toolkits and infrastructures. One of the notable
extension to the original GMA model is introduction of additional compo-
nent, which encapsulates the GMA directory called the mediator. The purpose
of the mediator component is to proactively monitor component registrations
and notify producers and consumers of interesting and potentially compatible
counterparts. This paper focuses on designing the mediator component as a dis-
tributed system, based on the concept of Content-Based Networking, to ensure
scalability even in large-scale environment.

After a brief review of related work in the following section, we introduce
the main ideas of the C-GMA in Sect. 2 and Content-based Publish/Subscribe

COMPONENT FOR THE C-GMA MONITORING
ARCHITECTURE

DESIGNING A DISTRIBUTED MEDIATOR

156 Krajı́ček, Ceccanti, Křenek, Matyska, Ruda

Systems in Sect. 4. Sect. 3 presents the core design of the distributed mediator
service.

2. The C-GMA Architecture and Components

The GMA provides a general view of a monitoring system, which is based
on a model consisting of three components: producer, consumer, and directory
service. The monitoring data are transferred from producer to consumer in the
form of events. GMA does not specify any implementation details (such as
data presentation mechanisms or communication protocols) but states general
implementation requirements (such as scalability of all system components).

Currently, several different Grid monitoring infrastructure implementations
exist, e. g. Mercury [9] or R-GMA, Relational Grid Monitoring Architecture [8],
Ganglia, SCALEA-G and others. We briefly mention basic properties of two
of them. The Mercury system describes data types in terms of metrics. GMA
directory is not present at all—producers and consumers communicate with
each other only directly. R-GMA is based on the relational data model, using
a subset of the SQL language to describe both data and queries. Scalability is
addressed by R-GMA to some extent as well since The R-GMA Registry (the
specific incarnation of the GMA directory service) is replicated in the recent
releases.

Inherently, the generality of the GMA specification allows multiple GMA-
compliant but not interoperable implementations. The C-GMA is designed
to extend GMA with a framework that, besides GMA compliance, provides
another level of interoperability. The goal of the C-GMA is a framework for
co-existence and collaboration of components coming from diverse GMA im-
plementations rather then proposing a universal architecture. We base our effort
on the hypothesis that designing such a universal system is either not possible
or it would be too restrictive.

The component model of the C-GMA is illustrated in Fig. 1. It defines four
basic components:

Producer produces the monitoring data in the form of events.

Consumer consumes the monitoring data. Individual consumers are con-
nected directly to the appropriate producers.

Registry (Directory Service) is an information service which stores informa-
tion about available producers and consumers and also the data type
schema.

Mediator is used by consumers and producers to discover potential partners
(producers and consumers, resp.). The actual discovery process is de-
scribed later.

Distributed Mediator for the C-GMA 157

Figure 1. The C-GMA Component Model

Distinction between mediator and registry is important, since it presents sep-
aration of concepts of active discovery and storage of component registrations.
This allows for grater flexibility in implementations.

Besides the component model of C-GMA, another model is necessary for
the C-GMA to work. We denote this model as metadata model. The metadata
model defines two metadata layers:

the capability and attribute layer: describes properties, working condi-
tions and requirements of components and data they exchange; metadata
on this layer are further refined with scope, which specifies the range of
metadata application (e.g. whether the metadata apply to whole class of
components or just a single one, etc.);

the data definition layer: typically adopted from an existing GMA
implementations. In this layer, the metadata describe data types (e. g.
table names, metrics, etc.) of published and requested data, as well
as further data specifications (WHERE clause in R-GMA). This leads to
multi-criteria matching of producers with consumers;

A notable extension to the GMA model is the addition of the mediator com-
ponent. Mediator separates the concepts of producer/consumer discovery and
matching from the registration of producer/consumer components. The regis-
tration and storage of producer/consumer information is handled by the registry,
as in GMA. However, the discovery of producers and consumers is the respon-
sibility of the mediator component.

158 Krajı́ček, Ceccanti, Křenek, Matyska, Ruda

Capabilities and Attributes

Each particular GMA implementation represents a world, with its own data
schema. These worlds are often incompatible, the capabilities and attributes
describe the properties of components and data, respectively. With explicit
access to suchdescription, “gates” betweenworlds canbe created—components
with interfaces “speaking” languages (i. e. understanding the capabilities and
attributes) of two worlds.

Using capabilities, components declare any features that may affect either the
communication with other components or the ability to handle any particular
data. For instance, capabilities may define security mechanism, quality of
service offered, level of persistence, etc. Similar mechanism is used with data,
attributes describe the requirements that must be fulfilled by components to
process particular piece of data.

Neither data attributes nor component capabilities are related with event
data types. The data schema is managed according to the GMA, at the C-GMA
data-definition layer. Capabilities and attributes are properties orthogonal to
data types.

A capability language [4] is used to define capabilities and attributes. The
common language reflects the necessity to treat component capabilities and
data attributes in a symmetric way. This allows to express requirements on
capabilities via attribute description and vice versa. The capability language
must satisfy certain minimal requirements but no fixed language is prescribed.
Particularly, two operations must be supported by the capability language: ca-
pability matching and attribute matching. Both are essentially compatibility
checks on the sets of capabilities/attributes of two or more components.

Currently, we are evaluating twodifferent capability languages. One is XML-
based, using XPath expressions to refer from attributes to capabilities and vice
versa. The other uses the Classified Advertisements (ClassAds) language [5].

Mediator—Producer/Consumer Discovery

The mediator is responsible for discovery of appropriate producer or con-
sumer partner. It normally operates actively, by monitoring registrations in the
registry and continually evaluating them for potential possible matches between
producers and consumers.

As mentioned above, the matching is done along two axis—metadata must
match at both capability and data layers. Every time a potential matching pair of
component/producer is found, active mediator generates a proposal and sends
it to both potential parties. The main purpose of mediator component is thus to
aid the discovery process.

Distributed Mediator for the C-GMA 159

The active mode is complemented with the passive mode, in whichthe me-
diator can serve requests to discover potential parties based on provided char-
acteristics, i. e. to discover all suitable producers for a particular consumer.

Component Interaction

In the C-GMA compliant monitoring systems, the following component in-
teractions occur (naming is adopted from Condor Matchmaking [6]):

Advertising – registration of producers and consumers. Besides general infor-
mation like component identification and address the registration record
contains component capabilities and data attributes (if they are uniform
for all data) at the capability metadata layer, as well as data description
at the data-definition layer. Registration is soft-state, components must
renew registration before expiration.

Matching – based on registered metadata, mediator is looking for matching
pairs. When new pair is found, both parties are informed about the
potential pairing.

Claiming – direct communication between producer and consumer (occurs
when a component is notified about the potentially pairing component).
Mutual compatibility between components must be verified in this phase
by the components themselves.

Data transfer – data (events) are send directly between producer and con-
sumer. Starting from this phase, communication occurs only between
producer and consumer C-GMA architecture makes no assumptions re-
garding the involved communication strategy and protocol.

3. The Distributed Mediator

The C-GMA specification defines the mediator as a logically centralised
component. However, a central service implementation is a serious perfor-
mance bottleneck and a potential single point of failure. To provide a scalable
solution, a distributed implementation is necessary. The obvious objective of
our effort is to obtain a reliable, scalable and robust design for the mediator that
is free from the drawbacks of a centralised solution.

As introduced in previous sections, the C-GMA capabilities describe what
components can do, while attributes provide hints to the C-GMA components
on how the data itself should be handled. This information together with meta-
data of the data-definition layer is kept in a specific document—the C-GMA
registration. The C-GMA registrations are used to advertise components’ ca-
pabilities and attributes and provide the basis for the mediator matchmaking
process.

160 Krajı́ček, Ceccanti, Křenek, Matyska, Ruda

Figure 2. Interaction of C-GMA Components

A simple distributed implementation of the mediator can be based on the
replication of all the registrations on all the brokers. In this rather “naive” ap-
proach each broker manages the matchmaking for local clients and broadcasts
each C-GMA registration to all other brokers for further matchmaking. The
main advantage of this replication strategy is that it is simple to implement and
it provides good fault tolerance (in case of failures, little work has to be done to
ensure consistency between the replicas and to redirect orphaned C-GMA com-
ponents to other active brokers). However, this approach may have significant
scalability problems since it considerably wastes network and storage resources
by replicating information where it is not needed for the matchmaking process.
A more efficient approach can be built over the Content-base Publish/Subscribe
system.

The order of component interactions is shown in Fig. 2.

4. Content-based Publish/Subscribe Systems

Recently, the Publish/Subscribe (P/S) communication paradigm is receiv-
ing increasing attention due to its asynchronous, loosely-coupled and flexible
style of communication [14]. Applications that leverage this communication
paradigm exchange information asynchronously in the form of event notifi-
cations produced by publisher components that are dispatched to interested
subscriber components by the P/S middleware. The P/S middleware responsi-
bility is thus to match consumers’ subscriptions with published notifications in
order to convey messages only where it is explicitly requested.

Content-based P/S (CBPS) [2] systems extend the well known P/S interaction
scheme supporting fine-grained subscription languages that enable subscribers
to select very precisely the notification of their interests according to their
content.

Distributed Mediator for the C-GMA 161

Scalable CBPS systems (e. g. Siena [13]) are typically constructed out of a
network of brokers that cooperate in forwarding event notifications to remote
interested parties. In such distributed design, each broker acts as an access
point for the whole CBPS service, collecting subscriptions and dispatching no-
tification for local clients, that may be producers or consumers of information.
From an implementation point of view, each broker manages a forwarding table
that maps received subscriptions to outgoing interfaces (i.e., network connec-
tions towards other brokers or local clients); at forwarding time, notifications
are sent only towards local clients or remote destinations that match received
subscriptions. This scheme requires that received subscriptions at each broker
are broadcasted to all the other brokers in order to consistently establish the
routes that are to be followed by published events.

Two generic requirements drive the CBPS routing strategies: downstream
replication of event notifications and upstream evaluation of filters[13]. Down-
stream replication means that a notification should be routed in one copy as far
as possible and duplicated only as close as possible along the paths leading to
interested subscribers. Upstream evaluation implies that subscription filters are
applied on events as close as possible to publishers. The design goal underlying
these requirements is to minimise the usage of network resources when routing
events to large numbers of distributed subscribers.

The CBPS system seems to be an ideal candidate for design of a distributed
mediator component, alleviating this potential C-GMA bottleneck.

5. P/S Based Distributed Mediator

The mediator service can be built as an overlay network of distributed bro-
kers that implement a content-based P/S system. In particular, we leverage
CBPS so that each mediator broker receives information only regarding remote
consumer components that are compatible (i. e. whose capabilities and compo-
nent attributes match) with locally managed producer components. To do so,
each broker has a forwarding table built according to the registered C-GMA
registration and executes a routing strategy that satisfies the CBPS downstream
replication and upstream evaluation principles introduced in Sect. 4.

In the proposed scheme (see Figure 3), producers drive the interaction (a
consumer driven scenario is also possible). When a producer registers with a
mediator broker, two actions are performed:

1 locally managed matching consumers are notified of the producer exis-
tence,

2 the producer registration is broadcasted to the other brokers. This last
step is necessary to ensure consistency across all brokers and correctly es-
tablish the routes that C-GMA consumers’ registration will follow in the
CBPS overlay network. More specifically, whenever a mediator broker

162 Krajı́ček, Ceccanti, Křenek, Matyska, Ruda

Figure 3. The distributed mediator content-based replication strategy. Figure a) shows the
broadcasting of a producer C-GMA registration. In figure b), a C-GMA consumer registration
is forwarded by each broker towards the matching producer. Finally, in figure c), the last mile
broker performs the final matchmaking between component capabilities and data attributes and
types and sends a matching proposal to interested C-GMA components.

receives a producer’s registration from a neighbour, it updates its for-
warding table adding the received registration to the set of registrations
associated with that specific neighbour.

Consumer C-GMA registrations are treated differently. Whenever a con-
sumer component registers itself, the local mediator broker starts a matchmak-
ing process comparing its registration with:

locally managed producer registration, so that matching producers are
immediately notified of the newly arrived consumer;

producers registration appearing in the forwarding table. If a matching
registration is found, the received consumer registration is forwarded
towards the matching neighbours for further matchmaking by remote
brokers.

The main advantage of the CBPS replication strategy is that it limits the
spreading of consumer registration only where these are really needed for the
matchmaking process, allowing for better scalability. The immediate conse-
quence is a gain in scalability and performance of the infrastructure, since the
amount of administrative traffic introduced in the overlay is limited and the
distributed matchmaking function is ran only when strictly necessary (i. e. on
all the brokers appearing on the shortest path that connects the producer edge

Distributed Mediator for the C-GMA 163

broker with the consumer edge broker). In contrast, the naive replication ap-
proach states that all C-GMA registrations are broadcasted to all the brokers so
that the matchmaking process is executed on each broker even on registrations
that will not match locally managed C-GMA components.

The C-GMA matchmaking performed by the brokers may happen at different
levels. We assume here that only capabilities and attributes associated with the
components are taken into consideration, leaving the check of compatibility
between data attributes and components capabilities to the “last-mile” broker,
i.e., the broker that actively notifies producers and consumers of the existing
match (see Figure 3).

This approachhas several advantages. Firstly, we mayconfigure the mediator
network to provide a chain of C-GMA components that are compatible and
then entitle those components to exchange a specific data type in a second
time. Secondly, by limiting the matching at the component level, we reduce the
complexity of the matching function implemented at each broker thus keeping
the infrastructure lightweight and scalable.

6. Conclusions

The discussed C-GMA architecture offers a general approach to integrate
different GMA implementations. The distributed mediator improves the scal-
ability of the C-GMA matchmaking process by leveraging the CBPS commu-
nication paradigm. We believe that the resulting architecture could provide
highly scalable interoperability framework for various Grid monitoring tools.
Performance evaluation as well as exploring other mechanisms for implement-
ing distributed mediator service is subject of further research.

Moreover, the choice of propagating the producer descriptors through the
whole network and matching the consumer registrations can be symmetrically
replaced by propagating consumer descriptors and matching producer registra-
tions. Assessment of effectiveness of these two approaches should be a subject
of further evaluation.

Acknowledgement

The work described in this paper is the result of collaboration enabled through
the EU Network of Excellence European Research Network on Foundations,
Software Infrastructures and Applications for large scale distributed, GRID
and Peer-to-Peer Technologies, (CoreGRID, FP6-004265). Part of this work is
also supported by the MU Research Intent MSM0021622419.

References

[1] B. Tierney et al., “A Grid Monitoring Architecture”, Global Grid Forum Performance Work-
ing Group, January 2002.

164 Krajı́ček, Ceccanti, Křenek, Matyska, Ruda

http://www.gridforum.org/documents/GFD.7.pdf

[2] A. Ceccanti, F. Panzieri, “Content-based Monitoring in Grid Environments”, In Proc. of the
ETNGrid 2004.

[3] J. Sitera et al., “Capability and Attribute Based Grid Monitoring Architecture”, In Proc. of
Cracow Grid Workshop 2004.

[4] O. Krajı́ček et al., “Capability Languages in C-GMA”, In Proc. of Cracow Grid Workshop
2006.

[5] R. Raman, “Matchmaking Frameworks for Distributed Resource Management”, Disserta-
tion Thesis, University of Wisconsin – Madison, 2001.

[6] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. In Proc. of the Seventh IEEE International
Symposium on High Performance Distributed Computing, July 28-31, 1998, Chicago, IL.

[7] Křenek, A., et al. C-GMA – Capability-based Grid Monitoring Architecture. CESNET
technical report 6/2005. http://www.cesnet.cz/doc/techzpravy/2005/cgma/.

[8] S. Fisher: Relational Model for Information and Monitoring. Technical Report GWD-
Perf-7-1, Global Grid Forum. 2001. http://www-didc.lbl.gov/GGF-PERF/GMA-WG/
papers/GWD-GP-7-1.pdf

[9] Zoltan Balaton, Peter Kacsuk, Norbert Podhorszki and Ferenc Vajda. From Cluster Moni-
toring to Grid Monitoring Based on GRM. In proceedings 7th EuroPar2001 Parallel Pro-
cessings, Manchester, UK. pp. 874-881. 2001

[10] A. Ceccanti, G.P. Jesi, “Building latency-aware overlay topologies with QuickPeer”, In
Proc. of IEEE ICNS 2005.

[11] I. Stoica et al., “Chord: a scalable, peer-to-peer lookup protocol for Internet applications”,
in Proc. of ACM SIGCOMM’01, 2001.

[12] P.T. Eugster et al., “Lightweight Probabilistic Broadcast”, ACM Transactions on Computer
Systems, Vo. 21, 2003.

[13] Antonio Carzaniga et al., “Design and evaluation of a wide-area event notification service”,
ACM Transactions on Computer Systems Vol. 19, No. 3, August 2001, pp. 332-383.

[14] Patrick Th. Eugster et al., “The many faces of Publish/Subscribe”, ACM Computing Sur-
veys, Vol. 35, No. 2, June 2003, pp. 114-131.

USER ORIENTED GRID TESTING∗ †

1 1 1 1

Péter Kacsuk,1 Gábor Hermann,1 Ramon Harrington,2 Danielle Martin,2

Carsten Winsnes2 and Thomas Strodl3
1MTA SZTAKI Computer and Automation Research Institute, Hungary, 2Worcester Polytechnic
Institute, United States, 3Vienna University of Technology, Austria

Abstract Grid infrastructures are reaching their production phase but still we miss a well
defined and complete infrastructure testing system for such Grids to fulfill the
requirements of both end-users. In the beginning of the paper a short overview
of Grid infrastructure testing methods is given followed by a discussion about
the key issues of these approaches. Later on we are introducing a General Grid
Testing Model to show what sort of Grid tests would be very much required by
the grid end-users. In the second half of the paper we give an overview about
P-GRADE Grid Portal and we describe how can solve some user oriented Grid
testing services offered by the P-GRADE Portal.

Keywords: Grid portal, personalized, user oriented grid testing, functional test

1. Introduction

Grids consist of a very complex network of computers which can provide
service to a multitude of different usage scenarios. Nowadays there are many
methods and applications available for Grid testing like GridICE, Site map, Inca,
WS Core, Real Time Monitor, GStat, MonALISA, VisPerf, Mercury, MDS2
[3-8]. Most of the classical infrastructure status and functional monitoring uses
the so called active or automatic site functional tests like GStat, SFTs or SAM
[9,10,and 12]. Normal SFTs are working centralized, with a special certificate
and only able to test some basic Virtual Organization (VO) dependent func-
tionality. Standalone SFT [11] is using enhanced testing method, the modified
version of SFT client can be used to test sites without the need of a dedicated
SFT server. Such tests are intended to be used by site administrators or country

∗This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).
†SEE-GRID-2 South-Eastern European GRid-enabled eInfrastructure Development 2, Contract Number
031775

Miklós Kozlovszky, Krisztián Karóczkai, István Márton, András Schnautigel,

166 M. Kozlovszky et al.

representatives for manually checking their (new) sites. Grid (infrastructure)
testing is an active type model of Grid Infrastructure Monitoring. Other very
effective testing systems are also available like GridLab Testbed Status Moni-
toring Tool [13-15]. Grid testing is a real challenge because Grid infrastructure
is distributed, dynamic, unreliable, its software multilayered heterogeneous,
the technologies used are evolving rapidly, and large scale testing should be
executed always carefully, due the high risk of flooding. The main aim of this
work was to create and give a generalized and effective grid testing solution
for normal users, in a user-friendly easy-to-use manner. We have developed a
solution that would allow not only site administrators but normal Grid users to
explore and monitor the status of available grid infrastructure with the help of
the P-GRADE Portal.

2. General Grid Testing Model

We can use a layered model (Figure 1) to explore all the relevant error points
of the infrastructure from the user point of view. The main four layers in
the model are the following: Network layer, Service layer, Security Layer,
Application Layer. We can also enumerate the main actors in the Grid system
existing as sources and observers of errors:

Grids - Distributed large scale system with many potential problems

-Hardware

-Network Infrastructure

Portals - with many potential problems

-Software implementation

-Network infrastructure

-Expiration of host certificates

-Exhausting of own resources

Users - with many potential problems

-Buggy applications

-Lack of knowledge

We are interested in examining it from the user point of view, because in an
unacceptably high number of cases the user is unable to distinguish their own
errors from the ones of the Grid environment. From the users’ perspective the
four layers (with their sublayers) of the testing are transparent, and only the

-Software /technologies,blocking services(certificates,catalogues,IS)/

-“Hardware”

User oriented Grid testing 167

usability of the Grid infrastructure is important. Test scenarios should be able
to cover all the layers of the Testing Model, with maximum debugging power
and minimum complexity and resource consumption.

Figure 1. General testing Model of the Grid infrastructure

It is obviously a challenging task to define reliability indicators, and measure
such parameters, because these values can be different if we check the system
from different perspectives [14]. Even a fully working Grid infrastructure can
be seen malfunctioning from user point of view if the user has authentication
difficulties. From the usage of P-GRADE Portal by different large Grid com-
munities, we categorized the error frequency of the different layers (Table 1).

Layer Function ErrorFrequency

Application Launchability High
Application-Inter-app. comm. MPI, etc. Extremely high
Application-Job requirements CPU, Memory, Processor, SW High
Security Layer of User User cert., VO membership High
Security Layer of Middleware Infrastructure sec. issues Fairly low
Site Services Access of CE and SE High
Service (central) Myproxy, Broker, IS Rather high
Network Communication availability Low

Table 1. Error fequency distribution of layers measured from Portal

Regularly launched Site Functional Tests have been heavily used to capture
the status of the Grid infrastructure. The frequency of these tests depends on
many parameters, like: the size of the network, amount of resources, and the
resource consumption of the tester jobs. It is obvious that the submitted test
jobs should contain only the minimum amount of data, and it should not be data
or communication intensive application. The general problems with functional
tests are the following:

Centralized

- Functional test applications are using different entry points into the
Grid infrastructure as normal user

168 M. Kozlovszky et al.

Independent from the user

- Functional Test applications are using their own (different) certifi-
cates as normal users.

- Functional Tests are checking the system only up to the lower
Security Layer (I) usually.

Loosely coupled to services - poor complexity handling

- The tests are not covering the full complexity and functionality
(internal communication, inter-site communication, MPI applications,
storage usage, etc.) of the Grid infrastructure.

Problems with accessibility and user level documentation

- Site test results are difficult to locate by end users. The interpre-
tation of the test result is far from being easy by normal users in many
cases due to poor documentation and complex visualization methods.

- Internationalization - documentation is mostly in English

Error codes

- Huge amount of error codes and other feedback from Grid system
is informative only for advanced users [16].

We have extended the P-GRADE Portal user interface and inner architecture
to eliminate most of these problems mentioned above.

3. Description of the P-GRADE Portal

The P-GRADE Grid Portal [1] provides uniform access to underlying grid
resources. The Portal Server itself was developed using Gridsphere [2], a grid
portal development framework that is responsible for managing security, mon-
itoring and execution visualization. P-GRADE Portal breaks down the barri-
ers between incompatible Grid systems, helping the user to develop parallel
code that can be used on both supercomputers, clusters and in various Grids.
P-GRADE Portal hides the complexity of the Grid from the user, making it
transparent. It is the workflow-oriented Grid portal that enables the creation,
execution and monitoring workflows in grid environments through high-level,
graphical Web interface [1].Furthermore it can be used as a single access point
for a broad range of different Grid technologies, like LCG2, Glite, Nordugrid
or GLite3. Components of the workflows can be sequential and parallel (MPI,
PVM) jobs.

Users are accessing the Grid through the P-GRADE portal, where they can
submit jobs and see the progress of their workflow. PGRADE Portal’s main

User oriented Grid testing 169

advantages are the close connection to end users and the workflow based, user-
friendly interface. The visual feedback is the most important part of the inter-
action between user and portal. Instead of black-and-white error reports with
meaningless, poor documented error codes, users can evaluate the status of the
infrastructure simply with the graphical user interface. Users can:

Test the infrastructure and make decision where to submit the jobs.

Test their own certificates, or applications, against well defined, error free
testing applications.

Have understanding how the test is built up and functioning.

Have easy to understand visual feedback about the test results.

Reusable, standardized complex workflows can speed up the exploration of
complex Grid infrastructure problems. User oriented testing can help the users
to identify what is really wrong in the system from their perspective. Besides
the high level graphical visualization the user has the ability to see the error
codes and status messages coming from the Grid infrastructure. This feature
of the Portal can help to initiate proper action to fix the problem.

Grid protection

Nowadays the Grid does not have automated self protection mechanism

testing as well, because stressing the Grid infrastructure can produce potentially
high overhead. Portals (same situation as Grid) are not able to control fully the
submission of the users, they can submit a test workflow as many times as they
want. However P-GRADE Portal is offering some upper bounds to prevent
Grid systems from flooding: like maximum amount of parallel submitted jobs,
or the polling rate of the Portal, which can be setup by the Portal Administra-
tor. Besides these indirect protection, an easy to understand and informative
web page is shown on a common place of the Portal, offering a wide range of
test result done regularly by the portal itself and information of MDS2/LCG2
system. As future plan we would like to make intelligent resource availability
visualization based on both prompt and historical data.

4. Offered testing services by the P-GRADE Portal

P-GRADE Portal’s testing service is not simple another testing solution im-
plemented on a fancy web portal. The main aim of this development was to
cover a much broader testing range of the Grid infrastructure focusing on Grid
users. Grid administrators have their own SFTs and P-GRADE Portal can eas-
ily work as a platform for the high number of production level Grid tests [9,10],

against DOS attacks (flooding) or let’s say “grand data challenges” initiated
by “normal” users. This problem can emerge in the case of user initiated Grid

170 M. Kozlovszky et al.

however these tests are only partially suitable for end-users. P-GRADE Portal
is offering two main test categories for Grid/Portal Administrators, Application

Infrastructure Tests (IT)

- These tests are user specific. The user tests his certificate (and its validity
in a given Virtual Organization).

- The test can be modified by the user as the Infrastructure changes

- The test can be easily migrated by the user to a new Infrastructure (VO)

- The test can be submitted at any time by the user

- The test investigates the most relevant basic functionality features of
the Infrastructure (Security, Broker, CE, SE, Grid File Catalogue, Infor-
mation System)

Application Class Category Tests (ACCT)

- With its extendable knowledge base (Workflow repository) it may con-
tain a rich set of test workflows.

- Community specific workflow packages for various user groups.

(with the certificate of the Test user) and the success/failure of the tests
can be observed by all users.

- The workflows are submitted periodically finding a proper compro-
mise between the need to be up to date informed and the self restriction
refraining from flooding the Portal and Grid Infrastructure.

Both test categories based on workflows, and covering a full range of test
scenarios from simple one-job workflows (e.g.: Broker test), towards complex,
multi-site tests (e.g.: VO Site functionality test) and user specific application
tests. Some workflow templates with large Grid resource consumption are
available only for Portal Administrators, and launched on a predefined manner
(predefined timing & certificate). However the results are visualized in the
common user space of the Portal.

Infrastructure Tests (IT)

VO/Site functionality test. This in-house developed test is one of our key
examples from our infrastructure test suit. The aim of such testing is to check
the status of the infrastructure from numerous aspects with a single workflow.
The user can get visual feedback (by colour codes) how the whole VO is able

Developers and “normal” users:

- The content of the repository is submitted by a distinguished “Test user”

User oriented Grid testing 171

to serve him. The test workflow is running with the user’s certificate. The test

destination of the operation is a Storage Element) and job submissions for each
known VO site (executing the same simple mathematical operation) (Figure 2).

Figure 2. Complex VO/Site functionality test in starting (a) and in finishing state (b)

The following components are tested by the workflow:

all Computing Elements (CE) of the VO

the proper setting of the Grid file catalogue

the default access to the storage elements (SE)

the job submission process

For VO scale functional testing the predefined workflow is a great option to
speed up and make the testing procedure significantly easier. If every layer is
working properly in the VO the workflow terminates successfully. If errors are
present in the system, part of the workflow will fail, and the user can see from
colour codes which sites are working, and what sort of problems there are. In
this complex workflow three types of jobs are combined. Every job contains
one executable. The jobs inside the workflow are communicating with each
other by input/output files. The number of jobs within the test workflow can be
calculated by the number of sites+2 (for synchronization) [17].

Application Class Category Tests (ACCT). For the Application Class Cat-
egory test set we have extended P-GRADE Portal with the followings:

- Test Taxonomy - We have defined taxonomy of the possible test cate-
gories.

- Workflow Repository - We have created a portal specific central storage
where the set of tasks (implemented as workflows and uploaded by trained
administrators) belonging to these categories are maintained.

involves file transfers (“local” -via gsiftp - and “remote” where one the source /

172 M. Kozlovszky et al.

- Automatic Workflow Scheduling - We have implemented a scheduler
in the Portal to submit the tasks/workflows automatically

- Result Visualization - created the test result visualization part on the
Portal

Figure 3. Test Workflow Taxonomy used in P-GRADE Portal

Test Taxonomy. We have created a Test Taxonomy to define the different
application task categories (Figure 3). Simple test are usable to check simple
test cases. Complex tests can be built up from simple test modules, with special
test applications to examine special test scenarios on the Grid infrastructure.
Besides the predefined test building blocks users are able to create their own
test workflows in the Portal. For special job requirements (e.g.: CPU, memory,
OS) user needs only to change the appropriate parameters of the predefined
workflows. For user specific application testing; reusable predefined workflows
can help to create test probes (with changed executable) for the application, or
user should create and store his own full application test workflows.

Workflow Repository. There are many variables involved in defining a
VO independent workflow template, including virtual organization, resource,
storage and computing elements.

Regular grid testing. In the name of an in-build user the portal is regu-
larly submitting test jobs into the Grid infrastructure. The results of the
specialized test workflows are visualized on a common page of the portal,
accessible by all the portal users.

User oriented Grid testing 173

Personalized testing methods for given or specific users. Users are able
to download simple or complex (Personalized VO/Site functional test)
workflows from the workflow repository and can submit these workflows
in the Grid. The jobs are running in the name of the user.

A workflow repository is created with these various factors in mind, containing
specific workflow templates for all the various test scenarios, with standardized
naming conventions. From the VO independent workflow templates offline
application is creating automatically the VO dependent test workflows. These
test workflows are available both for portal administrators and normal users on
the P-GRADE portal and can be run through the portal normally as all other
workflow.

Automatic Workflow Scheduling. A large set of ACCT like workflows can
be submitted automatically into the Grid from the Portal at regular basis. The
maximum frequency of the automatic workflow submission is configurable only
by the Portal Administrator. Different frequency can be allocated for different
tests depending on the complexity. Simple and small workflows can have more
frequent submission, than large ones.

Naming Convention. In order to easily determine what the target of the test
workflow is, we are using workflow naming convention, based on the previously
described Test Taxonomy. The test workflow name encapsulates all the relevant
information about the test target. Each segment of the test workflow name be-
gins with a one-letter code, continued by an optional target name and delimited

There is a univocal connection between the one-letter codes
and the nodes or leafs of the test taxonomy tree (Table 2).

Short name Node in the Test Taxonomy
U Simple test (Single job)
X Complex test
B Broker test
D Direct test
C Predefined Computing Element
F Non-predefined Computing Element
S Predefined Storage Element
N Non-predefined Storage Element
Q Sequential
M MPI

Table 2. Used Naming Convention for test workflow names based on the Test Taxonomy

To provide an example, if we define a test workflow containing a single MPI

any Computing Element, we should use the following name for the workflow:

by “ ” character.

job, submitted by the broker, accessing dedicated SE “AAA” and running on

174 M. Kozlovszky et al.

U B F S AAA M . We created a java based offline application, which can
automatically create from VO independent (abstract) workflow templates and
manually created VO descriptor files VO specific test workflow packages. The
VO independent workflow template concept makes multi-VO testing an easy
task, and increases the portability of the test workflows.

Result Visualization. Generic tests are shown on a common page of the
Portal. On this page using predefined naming conventions, the portal creates
various visualizations for each type of test. The visualization tries to be as
simple and understandable as possible. It contains common information about
the workflows, such as time completed and status when finished, but also in-
formation specific to the type of test (Figure 4). The results of the personalized
tests are shown in the personalized user area.

Figure 4. Visualization of ACCT tests on the Portal

5. Summary

In this paper we showed a user oriented grid testing method offered by the
P-GRADE Portal. The extension of P-GRADE Portal is able to overcome
many testing problems of the available Grid infrastructure and it can cover all
layers of the General Grid Testing Model introduced in this paper. Beside the
regular site functional tests, it offers generalized testing methods for all the
complexity of the Grid (inter Grid communication, MPI support, etc). Due to
the high level workflow based technology used tests are reusable and easily

User oriented Grid testing 175

adopted to different VO-s. The user can use their own certificate for the tests,
and is informed with visual feedback about the status of the infrastructure. In
the future we are planning to connect the test results to an automated ticketing
system, improving the reliability of the grid infrastructure. This can enable the
support of grids and portals to operate on a higher quality level.

References
[1.] Cs. Nemeth, G. Dozsa, R. Lovas, P. Kacsuk: The P-GRADE Grid Portal. ICCSA 2004:

International Conference Assisi, Italy, LNCS 3044, pp. 10-19
[2.] J. Novotny: The Grid portal development kit. Grid Computing - Making the Global Infras-

tructure a Reality. Ed. F. Berman, A. Hey and G. Fox. John-Wiley and Sons, Ltd. Chapter 12.
2003, pp 657-674

[3.] MonALISA: An Agent based, Dynamic Service System to Monitor, Control and Opti-
mize Grid based Applications, I.C.Legrand, H.B.Newman, R.Voicu, C.Cirstoiu, C.Grigoras,
M.Toarta, C. Dobre, CHEP 2004, Interlaken, Switzerland, September 2004

[4.] GridICE: a Monitoring Service for Grid Systems. S. Andreozzi, N. De Bortoli, S. Fantinel, A.
Ghiselli, G.L. Rubini, G. Tortone and M.C. Vistoli. In Future Generation Computer Systems
Journal, Elsevier, 21(4):559-571, 2005.

[5.] Performance Analysis of the Globus Toolkit Monitoring and Discovery Service, MDS2. X.
Zhang and J. Schopf. Proceedings of the International Workshop on Middleware Performance
(MP 2004), part of the 23rd International Performance Computing and Communications
Workshop (IPCCC), April 2004.

[6.] D. Lee, J. Dongarra, and R. Ramakrishna. Visperf: Monitoring tool for grid computing. In
ICCS 2003, Lecture Notes in Computer Science, Springer Verlag, Heidelberg, Volume 2659,
pp. 233-243, 2003

[7.] Z. Balaton and G. Gombás. Resource and Job Monitoring in the Grid. In Proceedings of the
Euro-Par 2003 International Conference, 2003.

[8.] Matthew L. Massie, Brent N. Chun, and David E. Culler, The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience, Parallel Computing, Vol. 30, Issue 7, July
2004.

[9.] http://goc.grid.sinica.edu.tw/gstat/
[10.] http://lcg-sft.cern.ch:8083/sft/lastreport.cgi
[11.] http://wiki.egee-see.org/index.php/SEE-GRID standalone SFT
[12.] http://goc.grid.sinica.edu.tw/gocwiki/Service Availability Monitoring Environment
[13.] Grid Management and Monitoring, Matyska L., CGW03, Cracow, Poland, 2003
[14.] P. Holub, M. Kuba, L. Matyska, M. Ruda: GridLab Testbed Monitoring - Prototype Tool.

Deliverable 5.6, GridLab Project (IST-2001-32133), 2003.
[15.] P. Holub, M. Kuba, L. Matyska, M. Ruda:Grid Infrastructure Monitoring as Reliable In-

formation Service. In Grid Computing, Second European AcrossGrids Conference, AxGrids
2004. : Lecture Notes in Computer Science 3165, Springer-Verlag, 2004, ISBN 3-540-22888-
8. pp. 220-229.

[16.] http://www.cs.wisc.edu/
[17.] http://www.lpds.sztaki.hu/pgportal/v23/includes/VO functionality test.html

V

ADVANCED GRID TECHNIQUES

APPLICATION AND MIDDLEWARE
TRANSPARENT CHECKPOINTING WITH
TCKPT ON CLUSTERGRID
A novel checkpointing approach

József Kovács1, Rafal Mikolajczak2, Radoslaw Januszewski2 and
Gracjan Jankowski2

1 MTA SZTAKI, Parallel and Distributed Systems Laboratory,
1111 Budapest, Kende 13-17, Hungary,
smith@sztaki.hu

2 Poznan Supercomputing and Networking Center,
61-704 Poznan, Noskowskiego 12/14, Poland
{Rafal.Mikolajczak,radekj,gracjan}@man.poznan.pl

Abstract: This paper introduces a way to transform the existing parallel checkpointing
techniques to be applied for software-heterogeneous ClusterGrid
infrastructures. While existing solutions are aiming at providing application
transparency by building special middleware, this paper aims at targeting both
application and middleware transparency at the same time by inserting
checkpoint functionality into the application. The compatibility and integrity
requirements are identified and corresponding conditions are established.
Some of the available checkpointing systems are checked against the
conditions in order to examine their conformity. Based on the conditions, a
novel checkpointing method is defined and the TotalCheckpoint tool is
adapted for ClusterGrid.

Key words: cluster, grid, clustergrid, checkpoint, recovery, parallel, pvm, migration

1. INTRODUCTION

As the number of resources aggregated by various Grid[1] sites grows
very rapidly, there is a need for fault-tolerance and dynamic load balancing
support in order to increase the efficiency of resource usage. In a
continuously growing Grid the number of failures increases exponentially

180 J. Kovács, R. Mikolajczak, R. Januszewski, G. Jankowski

due to the increasing hardware and software complexity. In these
circumstances a job cannot even finish its execution without at least one
failure during the execution. Even if it succeeds the job suffers from low
performance because of the continuously changing load generated by the
calculation in various processes.

In case of a parallel application checkpointing support is even more
essential since the number of resources used by the application can be
several hundreds or even more at the same time. Therefore migration and
fault-tolerance support for these applications is a crucial task in a Grid
environment. The basis for both services is creating checkpoints of the
application periodically to support fault-tolerance and to provide migration
on demand.

Checkpoint is defined as a designated point in an application at which
normal processing is interrupted specifically to preserve the status
information necessary to allow resumption of processing at a later time.
Checkpointing is the process of saving the status information and migration
is a checkpoint/restart pair of activities on different resources. To provide
checkpoint saving for parallel applications various techniques have been
researched in the last few decades [2].

In the checkpointing area two main classes are defined: coordinated and
uncoordinated. In the first case a designated component controls the
checkpoint saving procedure to ensure the consistency of messages [3]
among the processes in the application to avoid message loss or duplication.
In the latter case consistency is ensured at time of restarting. During
execution, checkpoints must be stored from time to time for each process
without removing the ones created previously. At restart checkpoints for
each process are searched through and attempted to make a selection in a
way that they form a consistent state for the application and represent the
latest valid state. While the coordinated version forces the processes to
synchronise, uncoordinated checkpointing gives freedom for the processes to
create a checkpoint at any time. In coordinated checkpointing only one
checkpoint per process is enough to perform a successful resumption of the
application, while in uncoordinated version the likelihood of successful
resumption increases with the number of checkpoints per process since
consistency is not guaranteed when saving. In extreme cases when
consistency is not found the application must be started from the beginning
in the uncoordinated version. More details about the different checkpointing
techniques can be found in [2].

In a computational Grid various resources are collected where one or
more broker component performs the mapping of applications to resources
based on the application requirements and resource capabilities. In this paper
ClusterGrid is defined as a Grid that can contain clusters represented as one

Checkpointing with TCKPT on ClusterGrid 181

compound and undividable resource for the broker. Clusters can be
maintained by different organisations, so scheduling and execution policy as
well as software environment within a cluster can be different. On clusters
various schedulers can handle jobs and at the same time the cluster might be
served by different versions of operating systems or message-passing
environments. Additionally any kind of service can be installed to support
the requirements of the organisation owning and operating the cluster which
does not exist in the other ones.

As we can see, the homogeneity of middleware components in a
ClusterGrid cannot be expected. Therefore, we are facing a challenge when
building a parallel checkpointer that must be able to checkpoint and resume
a multiprocess application on different clusters without relying on any
support from the middleware running on the clusters. The aim of this paper
is to outline the design goals for portable parallel checkpointers operating in
a software heterogeneous ClusterGrid i.e. for both application and
middleware transparent checkpointers, to define a novel approach fitting to
the design goals and to introduce the essential implementation techniques of
a prototype called TotalCheckpoint (TCKPT) developed for this kind of
ClusterGrid.

The paper is organised as follows. Section 2 details the main
requirements a checkpointer tool is facing. Section 3 gives a short overview
of the most well-known checkpointing and migration tools while the
limitations of these tools are emphasised regarding the ClusterGrid usage.
Section 4 introduces an approach described by a set of checkpointing
methods and section 5 details the prototype fitting to the requirements. In
section 6 standardisation effort for checkpoint interfaces is introduced.
Finally, acknowledgement is in section 7 and section 8 concludes the paper.

2. CHECKPOINTING IN CLUSTERGRID

In case of ClusterGrid infrastructure where clusters can have different
software environments installed, the relevant design goals or requirements of
a parallel checkpoint tool are compatibility (with the encompassing software
components) and integrity (of the checkpoint information of the application).
While the first goal ensures the seamless operation of the checkpointer on
clusters with various middleware, the second one is a basis for application
migration among clusters.

In order to fulfil the compatibility requirement, we assume the following
conditions:

1. Operating system cannot provide checkpointing facility
2. Solution cannot rely on checkpoint support of the job manager

182 J. Kovács, R. Mikolajczak, R. Januszewski, G. Jankowski

3. Solution must rely on the native version of message-passing system
4. Dependence from external auxiliary process cannot exist
These 4 conditions correspond to compatible operation of checkpointing

frameworks. Following these conditions an application can be checkpointed
in a way which enables the application to be checkpointed in software
heterogeneous ClusterGrid environment, i.e. under the control of any kind of
execution environment. Moreover, the application will not be limited to be
resumed under the same execution environment where it was checkpointed
i.e. it is compatible with the different software environments installed on the
clusters.

Checkpointing can serve both fault-tolerance and migration for a parallel
application. Since migration itself does not require to checkpoint the state of
the entire application including all processes and messages, it might happen
that the checkpoint information is not enough to rebuild the application on a
different site of the ClusterGrid.

Migration facilities in most of the cases temporarily store checkpoint
information about the checkpointed/migrating processes only. In a
ClusterGrid infrastructure we assume that an application may not be allowed
to be executed using more than one site at the same time, i.e. its processes
can only be distributed on the nodes of the same cluster. Therefore, a
migration of the whole application from one site to another requires a correct
set of checkpoints of the entire application. It is called the integrity of
checkpoint.

Based on the previous theory a new requirement is defined as a
complementary to the previous 4 called integrity requirement. In order to
fulfil that the following condition must be satisfied:

5. Application-wide checkpoint saving must be realised
The 5 conditions together form a framework in which a checkpoint tool

must fit in order to provide parallel application checkpoint/restart support on
a general ClusterGrid infrastructure. By accomplishing these conditions
defined for the parallel checkpoint tools, applications are able to checkpoint
and migrate among the different nodes of a cluster and among the clusters.

3. RELATED WORK

The following short overview of the most well-known PVM checkpoint
tools addresses the characteristic of each approach that prevents the tool
from satisfying the requirements defined in Section 2.

CoCheck[4] is a research project that aims at providing consistent
checkpointing for various parallel programming environments like PVM and
MPI based on the Chandy-Lamport[3] algorithm. The checkpoint/restart

Checkpointing with TCKPT on ClusterGrid 183

capability of this tool is relying on the replacement of the default PVM
resource manager which is equivalent to the modification of PVM.
Modification of the message-passing middleware breaks condition no. 3 for
the compatibility requirement defined in Section 2.

The goal of the Condor[5] Project is to develop, implement, deploy, and
evaluate mechanisms and policies that support High Throughput Computing
(HTC) on large collections of distributively owned computing resources.
The model they follow is a fault-tolerant execution of Master-Worker (MW)
type applications. The user must define the code for the Master process, the
Worker processes and the system will distribute the work automatically
among the workers in a way defined by the programmer. When a worker
process aborts or fails, Condor automatically spawns a new worker with the
same workpackage, the failed worker originally owned. Condor does not
provide real checkpointing for parallel applications and fault-tolerant
execution is limited to a programming framework and a fixed topology.
Therefore, it breaks integrity requirement defined by condition no. 5 in
Section 2.

Fail-safe PVM[6] has been designed and implemented by the Carnegie
Mellon University in the United States of America. The main purpose of the
framework is to provide a fault-tolerant PVM environment regarding single-
node failures. The main strength of the system is to be capable of detecting
failed-nodes and of migrating application processes from the failed nodes to
the error-free ones. To do this, PVM daemons are modified which breaks
condition no. 3 defined in Section 2 for the compatibility requirement.

Table 1. Classification of existing PVM checkpointing tools based on applied techniques
 Restricted techniques to implement checkpointing/migration

Tools

T
ec

hn
iq

ue
s Replaced

PVM
Resource
Manager

Modified
PVM
Daemon

OS level
modification

Auxiliary
Process

Partial
checkpoint of
the Application

 Violates condition 1-4. Violates cond.5
CoCheck applied
Condor applied
Fail-safe PVM applied
Dynamite applied applied applied
MPVM/MIST applied
tmPVM applied applied applied
DamPVM applied applied applied
CHARM applied
TCKPT

Dynamite[7] aims to provide a complete integrated solution for dynamic

load balancing of parallel jobs on networks of workstations. It contains an

184 J. Kovács, R. Mikolajczak, R. Januszewski, G. Jankowski

integrated load-balancing and checkpointing support for PVM applications.
The initial tool focuses on migrating PVM processes but later versions are
able to checkpoint the whole application. Dynamite uses its own PVM
daemons to maintain routing tables for process communication, which
breaks condition no. 3 for the compatibility requirement defined in Section
2.

In Table 1 there is an overview of the examined tools. In the 5 horizontal
columns restricted techniques and features are listed. In case a tool is using
one of them, application and middleware transparent checkpointing cannot
be provided by the tool. Tools are listed horizontally, and for each one
applied techniques are signed in the table.

As a consequence, we can say that every examined checkpointing tool is
using at least one of the restricted techniques resulting in lack of
transparency for application and middleware at the same time. Most of the
tools are supporting application transparent checkpointing or migration.

Our purpose is to fulfil the requirements stated in the previous section;
therefore TCKPT is not using any of the restricted techniques listed above.

4. NOVEL APPROACH IN CHECKPOINTING

In this section the main cornerstones of a novel parallel checkpointing
approach are introduced. The following 7 key statements form a method
which meets the requirements defined in Section 2. The following approach
creates a tighter solution range than the compatibility and integrity
requirements allow.
1. Application source code is unmodified which provides a transparent

solution for the application programmer.
2. Library (system) level checkpointing technique is used. Alternatives are

application and kernel level checkpointing. The first solution conflicts
with the previous statement, while using kernel level checkpointing
causing incompatibility with clusters having no kernel checkpointer
installed.

3. Application wide checkpointing is performed in order to generate
checkpoints containing state information of every process of the
application. In case of partial checkpointing of the application, migration
among clusters is not possible due to insufficient checkpoint information
for rebuilding the entire application.

4. Checkpoint information is stored into files on a stable storage. There are
solutions where checkpoint data is temporarily stored in memory to
speed-up migration, but these solutions make the delivery of checkpoint
information to the targeted cluster impossible.

Checkpointing with TCKPT on ClusterGrid 185

5. Parallel checkpointing technique is coordinated in order to minimise the

checkpoint information to be stored i.e. only one checkpoint per process.
In case of uncoordinated checkpointing all the checkpoint information
generated during the application life-time must be stored (because of the
domino effect) until the application finishes its execution causing a huge
storage overhead.

6. Coordination process is part of the application which lets the application
maintain itself and avoids using auxiliary processes for performing the
checkpoint or restart mechanisms.

7. Processes migrate within a cluster without terminating the application,
which causes the checkpointing tool to implement migration within a
cluster in a more efficient way. The alternative way would be checkpoint
and restart of the entire application with a different resource mapping on
the same cluster.
As a summary, we can state that the checkpointer tool must be

implemented totally as part of the application, but in a way that the
programmer is not forced to change his/her application source code. It is a
conflict that must be resolved by using different implementation techniques.
A solution is introduced in section 5.

5. THE TOTALCHECKPOINT TOOL

TotalCheckpoint (TCKPT) is a tool to checkpoint, restart and migrate
message-passing PVM applications. It performs system (library) level
checkpointing providing transparent operation for the application by simply
modifying the behaviour of the relevant PVM functionalities.

Figure 1. First and second generations of TCKPT

TCKPT executes a consistent coordinated parallel checkpointing

algorithm where the coordination process can be an external daemon (first
generation) or an internal process (second generation) for the application
(see Figure 1).

application

coordinator

First generation Second generation

186 J. Kovács, R. Mikolajczak, R. Januszewski, G. Jankowski

5.1 First generation

The application is relinked with the tckpt library and all pvm calls in the
user code are redirected to those defined in tckpt lib by wrapping the original
ones. A start-up procedure is also inserted by the linker automatically before
the user code to initiate checkpoint related settings.

Since TCKPT tool is developed based on numerous techniques and
solutions the following few paragraphs attempt to point out some of the
cornerstones of the applied solutions.

During the execution client processes of the application are connected to
the coordinator (see Figure 2). At startup every client registers in the
coordinator and continues execution. Checkpoint is triggered by a signal
delivered to some clients, about which the coordinator is also notified by one
of the clients. Next step is to notify all clients and the checkpoint protocol
begins. Clients are synchronising message channels among every processes
to ensure consistency. The images of the clients are saved into checkpoint
files and finally clients terminate if necessary. The coordinator makes sure
that phases of the checkpointing protocol are executed appropriately and
distributes the actual pvm identifiers among the clients.

Figure 2. Structure of 1st generation TCKPT

At resumption after the first process of the application is resumed, each
process is spawned by its parent and resumption is guided by the coordinator
simultaneously. When the entire application is rebuilt, execution continues.

Checkpointing with TCKPT on ClusterGrid 187

To execute the synchronisation protocol among the clients the
coordinator needs to know the accurate number of clients. Clients are created
and terminated dynamically. To keep the registered number of clients
accurate each client at start-up first builds its own socket connection with the
coordinator which also provides the way for the coordinator to detect if a
client aborts. When the client is being rebuilt from checkpoint this
connection is kept alive.

Further details about the internals of TCKPT can be found in [8] which
introduce the various techniques applied by the first generation TCKPT.

5.2 Second generation

The fundamental change in the second generation is that the coordination
process became part of the application. While in the first version the
coordination daemon must be preinstalled on the cluster where the
checkpoint is created or the application is rebuilt, in the second version the
coordinator process is created by the application at startup. When the first
client process of the application is starting up, coordinator process is
spawned. It initiates and the client process attaches to it. Finally, the client
process performs necessary preparation and executes user code. All
functionalities are the same as it is in the first generation. When the last
instance of client processes has left the application the coordinator process
terminates.

Resumption of the application depends on the existence of checkpoint
descriptor files. In case they are stored in the working directory, a
resumption of the application is performed. When the coordinator has been
initiated and the first client is performing its start-up phase, the coordinator
loads the checkpoint descriptor file. The resumption is done process by
process until the entire application is successfully rebuilt.

6. INTERFACING SINGLE PROCESS
CHECKPOINTERS

TCKPT has been originally designed to be capable of integrating various
single process checkpointer (SPC) tools. Therefore, a simple API has been
defined through which the required functionalities of an SPC library can be
utilized by TCKPT. These functionalities are the followings:

· creation of a checkpoint file of the caller process
· resumption of the caller process based on a checkpoint file
· assigning signal for checkpoint activation

188 J. Kovács, R. Mikolajczak, R. Januszewski, G. Jankowski

· assignment of a callback to be activated before checkpoint
saving happens

· assignment of a callback to be activated after a checkpoint
saving happened

· assignment of a callback to be activated after a resumption has
been performed

· reassignment of filenames and file descriptors at resumption
mode

In case an SPC can support these functionalities, TCKPT can utilise that
tool. In rare cases it might happen that the operator of a grid infrastructure
sticks to use a given SPC. Irrespectively of the type of the checkpointer
(library-level or kernel-level) only the predefined SPC API must be
implemented.

There is an ongoing work in CoreGRID (FP6 Network of Excellence
Project under contract IST-2002-004265) in this direction, where a library-
level checkpointer called psncLibCkpt [9] and a kernel-level checkpointer
called AltixC/R [10] (both developed by PNSC) is about to be integrated
[11][12] with TCKPT. The aim is to create a proof of concept
implementation for generalising checkpoint interfaces and to introduce a
concept where high-level checkpointer tools are able to rely on low-level,
even kernel-level checkpointer tools.

In case a kernel-level checkpointer is integrated with TCKPT, of course,
the application can only migrate among those sites, where checkpointing and
recovery are performed in a way which is identical from kernel-level
checkpointing aspect.

7. ACKNOWLEDGEMENT

The work described in this paper has been partially supported by the FP6
Network of Excellence CoreGRID funded by the European Commission
(Contract IST-2002-004265).

8. CONCLUSION

ClusterGrid with heterogeneous middleware are not able to support
parallel checkpointing and migration among the clusters because of the
incompatible behaviour of the various tools running on clusters. The key
direction is to provide both application and middleware transparency by
library-level checkpointing. The necessary step is to insert all checkpoint and
resumption capabilities into the application itself. There are two alternatives.

Checkpointing with TCKPT on ClusterGrid 189

The first is to apply application-level checkpoint/restart mechanism which is
trivial but gives an extreme work for the programmer. The second one is to
integrate library-level checkpointer with the application using various
techniques which make the operation transparent for the application,
programmer and middleware.

This paper introduces TCKPT that follows the second way. As a
consequence the applied solution has led to a tool which can perform
automatic checkpoint/restart functions for the application and migration
among the clusters is also supported even if the source and target clusters
have different middleware (e.g. job scheduler) installed.

REFERENCES

[1] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid. Enabling Scalable
Virtual Organizations”, Intern. Journal of Supercomputer Applications, 15(3), 2001

[2] Elnozahy E N, Johnson D B, Wang Y M. “A Survey of Rollback Recovery Protocols in
Message-Passing System.” Technical Report. Pittsburgh, PA: CMU-CS-96-181.
Carnegie Mellon University, Oct 1996

[3] K.M. Chandy and L. Lamport. „Distributed snapshots: Determining global states of
distributed systems”, ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

[4] G. Stellner, “Consistent Checkpoints of PVM Applications”, In Proc. 1st Euro. PVM
Users Group Meeting, 1994

[5] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint and Migration of
UNIX Processes in the Condor Distributed Processing System”, Technical Report #1346,
Computer Sciences Department, University of Wisconsin, April 1997

[6] J. Léon, A. L. Fisher, and P. Steenkiste, “Fail-safe PVM: a portable package for
distributed programming with transparent recovery”. CMU-CS-93-124. February, 1993

[7] G.D. van Albada; J. Clinckemaillie; A.H.L. Emmen; J. Gehring; O. Heinz; F. van der
Linden; B.J. Overeinder; A. Reinefeld and P.M.A. Sloot: „Dynamite - blasting obstacles
to parallel cluster computing”, in P.M.A. Sloot; M. Bubak; A.G. Hoekstra and L.O.
Hertzberger, editors, High-Performance Computing and Networking (HPCN Europe
'99), Amsterdam, The Netherlands, in series Lecture Notes in Computer Science, nr 1593
pp. 300-310. Springer-Verlag, Berlin, April 1999. ISBN 3-540-65821-1.

[8] Jozsef Kovacs: “Making PVM applications checkpointable for the Grid” Proc. of the
Microcad 2005 Conference, Section N, pp. 223-228, Marcius 10-11, 2005, Miskolc

[9] http://checkpointing.psnc.pl/Progress/psncLibCkpt
[10] Gracjan Jankowski, Rafal Mikolajczak, Radoslaw Januszewski: “Checkpoint/Restart

mechanism for multiprocess applications implemented under SGIGrid Project”,
Proceedings of the Cracow GridWorkshop 2004, pp.142 149, ISBN: 83-911541-4-5,
2005.

[11] G. Jankowski, R. Januszewski, R. Mikolajczak, J. Kovacs: "Scalable multilevel
checkpointing for distributed applications - on the integration possibility of TCKPT and
psncLibCkpt ", CoreGRID Technical Report, TR-0019, March 2006

[12] G. Jankowski, R. Januszewski, R. Mikolajczak, J. Kovacs: "Scalable multilevel
checkpointing for distributed applications - on the possibility of integrating Total
Checkpoint and AltixC/R", CoreGRID Technical Report, TR-0035, March 2006

UML BASED GRID WORKFLOW

MODELING UNDER ASKALON∗

Jun Qin1, Thomas Fahringer1, and Sabri Pllana2

1Institute of Computer Science, University of Innsbruck

Technikerstr. 21a, 6020 Innsbruck, Austria

{Jun.Qin, Thomas.Fahringer}@uibk.ac.at

2Institute of Scientific Computing, University of Vienna

Nordbergstr. 15/C308, 1090 Vienna, Austria

pllana@par.univie.ac.at

Abstract Most existing Grid workflow modeling tools are based on user-defined
notations. Lack of standards hinders the collaboration among different
Grid-related projects. The work presented in this paper introduces a
graphical workflow editor Teuta, which has been implemented based on
the latest standard UML 2.0 notations and tailored for specifying Grid
workflows based on our Abstract Grid Workflow Language (AGWL).
In Teuta, Grid workflows are composed by combining predefined UML
modeling elements or user-defined constructs in a hierarchical fashion.
Teuta can generates the corresponding AGWL representations and sub-
mit them to the ASKALON Grid runtime system for execution. We
validate our approach for a real world hydrological application.

Keywords: Grid, workflow modeling, UML, ASKALON, AGWL

1. Introduction

In the recent years, significant research efforts have been involved in
the development of tools support for Grid workflow modeling. Compa-
red with textual-based modeling, graph-based modeling allows users to
graphically define a Grid workflow through dragging and dropping the
modeling elements of interest. However, most of the graph-based Grid
workflow modeling tools are based on user-defined notations, which hin-

∗This research has been partially supported by the Austrian Science Fund as part of the
Aurora project under the contract SFBF1104 and the Austrian Federal Ministry for Edu-
cation, Science and Culture as part of the Austrian Grid project under the contract GZ
4003/2-VI/4c/2004.

192 Qin, Fahringer, Pllana

ders the collaboration among different Grid-related projects. Much re-
mains to be done to streamline the task of Grid workflow modeling.

In this paper we present our graphical modeling tool Teuta. Compa-
red with our previous work [Pllana et al., 2004], we have customized
Teuta for the specification of scientific Grid workflows based on our Ab-
stract Grid Workflow Language (AGWL) [Fahringer et al., 2005b], and
integrated it with the ASKALON Grid environment [Fahringer et al.,
2005a]. In Teuta, Grid workflows are composed based on the Unified
Modeling Language (UML) 2.0 standard. Furthermore, in order to al-
leviate the complexity of composing large and complex Grid workflows,
Teuta supports hierarchical workflow composition. This enables a simple
view of the workflow being maintained at each level of abstraction. Teuta
has been used as the main user interface to ASKALON, and applied to
numerous real world applications.

The remainder of this paper is organized as follows. The related work
is described and compared against our approach in the next section. Sec-
tion 3 provides some background knowledge. Section 4 briefly describes
our approach of UML based Grid workflow modeling. Our tool Teuta for
modeling Grid workflow applications is introduced in Section 5. Section
6 applies Teuta for a real world application to evaluate our approach. In
the last section, we draw our conclusions and outline the future work.

2. Related Work

GridFlow [Cao et al., 2003] uses Petri Nets to model Grid workflow.
Fraunhofer Resource Grid (FhRG) [Hoheisel, 2004], which uses a hier-
archical graph definition to model Grid workflows, is also built on Petri
Nets. However, Petri Nets may be unable to model workflow activities
accurately without extending its semantics [Eshuis and Wieringa, 2003].
And this drawback has been addressed in UML activity diagrams. The
work presented in [Bastos et al., 2002] uses UML activity diagrams
to model Grid workflows. However, the UML they used is UML1.x, in
which the activity diagrams had several serious limitations in the types
of flows that could be represented. Many of these limitations were due
to the fact that activities were overlaid on top of the basic state machine
formalism, and consequently constrained to the semantics of state ma-
chines [Bran Selic, 2005]. Rather than following the standard syntax and
semantics of Petri Nets and UML, many Grid workflow editor tools crea-
te their own graphical representation of workflow components [Yu and
Buyya, 2005], e.g. Triana [Taylor et al., 2005] and Kepler [Altintas et al.,
2004]. However, lack of standards hinders the collaboration among diffe-

UML Based Grid Workflow Modeling under ASKALON 193

rent Grid-related projects. Much work is thus replicated such as different
user interfaces developed by different projects for the same functionality.

In a word, most of existing work suffers from one or several of the
following drawbacks: the use of self-defined notations, the use of old
UML 1.x activity diagrams, or no adequate tool support. In contrast,
we use the latest standard UML 2.0 activity diagram in Teuta to model
Grid workflow applications. Teuta can model graphically any Grid work-
flow application that can be expressed textually using AGWL [Fahringer
et al., 2005b]. Moreover, Teuta has been integrated with the ASKALON
Grid environment as a user interface for Grid workflow composition,
submission, controlling and monitoring.

3. Background

3.1 Abstract Grid Workflow Language (AGWL)

AGWL [Fahringer et al., 2005b] is an XML-based language for descri-
bing Grid workflow applications at a high level of abstraction. AGWL
allows a programmer to define a graph of activities that refer to compu-
tational tasks or user interactions. Activities are connected by control
and data flow links.

In AGWL, activities are described by activity types. An activity ty-
pe is an abstract description of a group of activity instances deployed
in the Grid which have the same input and output data structures.
Activity types shield the implementation details of activity instances
from the AGWL programmer. A rich set of control flow constructs is
provided in AGWL to simplify the specification of Grid workflow appli-
cations, for example, Sequence, If, Switch, While, For, ForEach, DAG,
Parallel, ParallelFor and ParallelForEach. AGWL also supports
sub-workflows. Properties and constraints can be defined in AGWL to
provide additional information for a workflow runtime environment to
optimize and steer the execution of workflow applications.

3.2 UML Activity Diagrams

The UML Activity Diagram is one of the 13 UML diagrams of the
UML 2.0 specification and it is used for flow modeling of various types
of systems independently from their implementation (software or hard-
ware). Hierarchical modeling capabilities of the UML Activity Diagram
support modeling at arbitrary levels of detail and complexity. An ac-

tivity is a flow graph, which consists of a set of nodes interconnected
by directed edges. There are three types of nodes: action nodes, control

nodes, and object nodes. Action nodes are basic units of the behavior

194 Qin, Fahringer, Pllana

1 n

Figure 1. A subset of modeling elements of UML Activity Diagram

specification (see Figure 1(a)). Actions may contain pins, which repre-
sent input and output. Control nodes steer the control and data along
the flow graph (see Figure 1(b,c,d,f,g,h,i)). Object nodes contain the da-
ta that flows through the graph. An edge of a UML Activity Diagram
indicates either a control flow or an object flow. A control flow edge

specifies the precedence relationship between two interconnected nodes
(see Figure 1(j)). An object flow edge specifies the flow of objects along
interconnected action nodes (see Figure 1(e)).

4. Modeling Grid Workflows with UML Activity
Diagram

A Grid workflow Ψ is a pair (A, D), where A is a finite set of activities
and D is a finite set of activity dependencies. Every activity dependency
di, di ∈ D, is associated with an ordered pair of activities (am, an), where
am ∈ A ∧ an ∈ A. An activity diagram Ω is a pair (N, E), where N is a
finite set of nodes and E is a finite set of directed edges. Every directed
edge is an ordered pair of nodes (nk, nj), where nk ∈ N ∧ nj ∈ N .
The relationship between a Grid workflow Ψ = (A, D) and an activity
diagram Ω = (N, E) is defined by relations R′ = {(ai, ni) | for all i, ai ∈

A∧ni ∈ N} and R′′ = {(dj , ej) | for all j, dj ∈ D∧ ej ∈ E}. This means
that each activity ai of a Grid workflow is associated with a node ni of
a UML Activity Diagram, and each dependency dj of a Grid workflow
is associated with an edge ej of a UML Activity Diagram.

In order to be able to model different types of systems, the UML spe-
cification provides several extension mechanisms to specialize semantics
of modeling elements for a particular domain. Based on these mecha-
nisms, we have extended the UML Activity Diagram by defining some
new stereotypes with associated tagged values based on existing elements
to model AGWL constructs (see Table 1). Figure 2 depicts an instance
of the procedure, where we defined a model element GridAction by ste-
reotyping the base class Action to model Grid workflow activities. The
tagged value type specifies the activity type (e.g., Fast Fourier Transform

UML Based Grid Workflow Modeling under ASKALON 195

Table 1. Extending the UML Activity Diagram to model AGWL constructs

Base class
Stereotype &
Tags

Description

Action

≪GridAction≫

type: string
Indicates that the Action represents
a fundmental computation unit in
the Grid

SequenceNode ≪Sequence≫

Indicates that the SequenceNode
represents a group of Grid acti-
ons/activities that are executed se-
quentially

ConditionalNode

≪If≫

condition: boolean
Indicates that the ConditionalNode
represents a conditional execution of
Grid actions/activities in the if-then-
else fashion

ConditionalNode

≪Switch≫

caseValue: integer
Indicates that the ConditionalNode
represents a conditional execution of
Grid actions/activities in the switch
fashion

LoopNode

≪While≫

loopCondition:
boolean

Indicates that the LoopNode repres-
ents a while loop. The loop body is
executed zero or more times.

LoopNode

≪For≫

from, to, step:
integer

Indicates that the LoopNode repres-
ents a for loop.

ExpansionRegion ≪ForEach≫

Indicates that the ExpansionRegion
represents a loop that iterates over
elements of a data collection sequen-
tially

StructuredActivityNode ≪DAG≫

Indicates that the StructuredActivi-
tyNode represents a group of Grid ac-
tions/activities that are executed ba-
sed on the order specified in the di-
rected acyclic graph

StructuredActivityNode ≪Parallel≫

Indicates that the StructuredActivi-
tyNode represents a group of Grid ac-
tions/activities that are executed in
parallel

LoopNode

≪ParallelFor≫

from, to, step:
integer

Indicates that the LoopNode repres-
ents a for loop whose iterations are
executed in parallel

ExpansionRegion ≪ParallelForEach≫

Indicates that the ExpansionRegion
represents a loop that iterates over
elements of a data collection in par-
allel

StructuredActivityNode ≪SubWorkflow≫

Indicates that the StructuredActivi-
tyNode represents a sub workflow
that is invoked at a point of the main
workflow

196 Qin, Fahringer, Pllana

Figure 2. The definition and usage of the stereotype GridAction

Figure 3. Modeling data flows

«While»

«SubWorkflow»

«ParallelFor»

«GridAction»

«GridAction»

«GridAction»

While While

SubWorkflow

ParallelFor

Figure 4. Modeling Grid workflow hierarchies

(FFT)), which is an abstract description of a group of activity instances
(concrete implementations of computational entities) implementing the
same functionality and having the same input and output data structure.

We use the object flow in UML Activity Diagrams to model the data
flow in Grid workflows and pins to model input and output data ports,
namely, dataIn and dataOut. Connecting one dataOut port of an activi-
ty to one dataIn port of another activity constitutes a data flow. Figure 3
illustrates three data flows. The output file file1 of the GridAction Wa-

simA and the output file file2 and the number n of GridAction WasimB

serves as the input of the GridAction WasimC.
Graphical representations of Grid workflows are very intuitive and can

be handled easily even by a non-expert user. However, the layout of work-

UML Based Grid Workflow Modeling under ASKALON 197

flow components on a display screen can become very large and beyond
the users control. Similar to [Hoheisel, 2004], our solution is to use hier-
archical graph definition. A Grid workflow can be composed through
several levels of abstraction, each of which is represented in a separa-
te graph. All AGWL control flow constructs like While, ParallelFor,
SubWorkflow, etc. can have lower level workflow graphs. Figure 4 shows
three levels of abstraction of a Grid workflow which are represented in
four graphs. The workflow contains a while loop While 1 in the hig-
hest level (Figure 4(a)). The While 1 loop contains two control flow
constructs in its loop body: SubWorkflow 1 and ParallelFor 1 (Figu-
re 4(b)). The SubWorkflow SubWorkflow 1 is represented in detail in
Figure 4(c), which contains two GridActions: GridAction 1 and Gri-

dAction 2. The parallel loop ParallelFor 1 contains a GridAction Gri-

dAction 3 in its loop body (Figure 4(d)). With the hierarchical graphical
definition, users can easily view and evaluate the structure of the entire
workflow or change the local part (e.g. a loop body) without being aware
of the details and complexity of other parts of the Grid workflow.

By AGWL constructs subWorkflow, the hierarchical graph definition
directly supports the sub-workflow definition and invocation. The main
workflow (caller) provides input data to sub-workflow and gets output
data from it. The input data is processed in sub-workflow (callee). The
sub-workflow can be saved and reused.

5. Teuta

Teuta is implemented as a platform independent tool in Java ba-
sed on Model-View-Controller (MVC) paradigm. Teuta comprises three
main components: Graphical User Interface (GUI), Model Traverser, and
Model Checker. The Model Traverser provides the possibility to walk
through the model, visit each modeling element, and access its proper-
ties. We use the model traverser for the generation of various model re-
presentations, e.g. an AGWL representation of a Grid workflow, which
serves as the input for the ASKALON Grid environment. The Model

Checker is responsible for the correctness of the model. Teuta serves
for ASKALON as a user interface for workflow composition, submission,
controlling and monitoring.

Figure 5 illustrates a Grid workflow model in Teuta which consists of
several diagrams. One of the diagrams is main diagram, which can be
compared to the main method in Java/C++ programs, the others are
sub-diagrams, e.g. the loop body of the parallel loop parallelFor1. These
diagrams constitute the hierarchy of the Grid workflow. As shown in
Figure 5, the activity types, dataIn ports, dataOut ports and AGWL

198 Qin, Fahringer, Pllana

Figure 5. A Grid workflow model and the activity setting dialog in Teuta

properties and constraints can be added through the setting dialog for
each modeling element. By specifying the source attributes of the data
ports, users can create data flows. The corresponding AGWL representa-
tion of the Grid workflow can be generated automatically via the Model

Traverser component.

6. Modeling a Real World Hydrological
Workflow with Teuta

Invmod [Peter Rutschmann Dieter Theiner, 2005] is a hydrological
application for river modeling. It has three levels of nested loops with
variable number of inner loop iterations that depends on the actual con-
vergence of the optimization process. Figure 6 illustrates the graphical
representation of the Invmod Grid workflow application in Teuta. Since
we adopt the hierarchical graph definition mechanism, the Invmod work-
flow looks very simple and can be easily understood: only one parallel
loop parallelFor1 and two atomic activities CalcParams and FindBest

are shown in the main diagram of the workflow, because all the other
activities are contained in the loop body of the while loop.

The code generation, implemented based on the Model Traverser, is
done in the following steps: (1) put the activities in the main diagram
into the object AGWLWorkflow as the workflow body; (2) put the acti-

UML Based Grid Workflow Modeling under ASKALON 199

Figure 6. UML based graphical representation of the Invmod Grid workflow

vities in the other diagrams into the associated parent control flow con-
structs like the parallel loop parallelFor1 ; (3) invoke the toXml() method
of the object AGWLWorkflow to generate the corresponding AGWL re-
presentation in XML. The workflow then is executed by the ASKALON
enactment engine service, which takes the AGWL representation of the
workflow and executes it based on the execution schedule made by the
ASKALON meta-scheduler service. While the workflow is being execu-
ted, the enactment engine returns the execution status (represented by
different background colors of activities) to Teuta for monitoring.

7. Conclusions and Future Work

There is a need for streamlining the process of Grid workflow mode-
ling. We have tailored our graphical editor Teuta for the composition
of Grid workflows based on the widely adopted standard UML 2.0. We
have demonstrated our approach for a real world hydrological applicati-
on, and showed that thanks to the hierarchical workflow composition a
simple view of the workflow is maintained at each level of abstraction.

To further simplifying the specification of Grid workflows, our future
work will focus on improving data flows modeling, e.g. to automatically
fill the source attributes of data ports based on the model checking. We
will also evaluate Teuta for large and complex Grid workflow applications
in the future work.

200 Qin, Fahringer, Pllana

References

[Altintas et al., 2004] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B.,
and Mock, S. (2004). Kepler: An Extensible System for Design and Execution
of Scientific Workflows. In 16th Intl. Conf. on Scientific and Statistical Databa-
se Management (SSDBM’04), Santorini Island, Greece. IEEE Computer Society
Press.

[Bastos et al., 2002] Bastos, R., Dubugras, D., and Ruiz, A. (2002). Extending UML
Activity Diagram for Workflow Modeling in Production Systems. In Proceedings
of 35th Annual Hawaii International Conference on System Sciences (HICSS02),
Big Island, Hawaii. IEEE Computer Society Press.

[Bran Selic, 2005] Bran Selic (2005). What’s New in UML 2.0. ftp://ftp.software.
ibm.com/software/rational/web/whitepapers/intro2uml2.pdf.

[Cao et al., 2003] Cao, J., Jarvis, S., Saini, S., and Nudd, G. (2003). GridFlow: Work-
flow Management for Grid Computing. In 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan. IEEE
Computer Society Press.

[Eshuis and Wieringa, 2003] Eshuis, R. and Wieringa, R. (2003). Comparing Petri
Net and Activity Diagram Variants for Workflow Modelling A Quest for Reactive
Petri Nets. In Advances in Petri Nets: Petri Net Technology for Communication
Based Systems; Lecture Notes in Computer Science (LNCS), volume 2472, pages
321–351, Heidelberg, Germany.

[Fahringer et al., 2005a] Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig,
S., Qin, J., Siddiqui, M., Truong, H.-L., Villazon, A., and Wieczorek, M. (2005a).
ASKALON: A Grid Application Development and Computing Environment. In
6th International Workshop on Grid Computing (Grid 2005), Seattle, USA. IEEE
Computer Society Press.

[Fahringer et al., 2005b] Fahringer, T., Qin, J., and Hainzer, S. (2005b). Specification
of Grid Workflow Applications with AGWL: An Abstract Grid Workflow Language.
In Proceedings of IEEE International Symposium on Cluster Computing and the
Grid 2005 (CCGrid 2005), Cardiff, UK. IEEE Computer Society Press.

[Hoheisel, 2004] Hoheisel, A. (2004). User Tools and Languages for Graph-based Grid
Workflows. In Grid Workflow Workshop, GGF10, Berlin, Germany.

[Peter Rutschmann Dieter Theiner, 2005] Peter Rutschmann Dieter Theiner (2005).
An Inverse Modelling Approach for the Estimation of Hydrological Model Para-
meters. Journal of Hydroinformatics.

[Pllana et al., 2004] Pllana, S., Fahringer, T., Testori, J., Benkner, S., and Brandic,
I. (2004). Towards an UML Based Graphical Representation of Grid Workflow
Applications. In The 2nd European Across Grids Conference, Nicosia, Cyprus.
ACM Press.

[Taylor et al., 2005] Taylor, I., Wang, I., Shields, M., and Majithia, S. (2005). Distri-
buted computing with Triana on the Grid. Concurrency and Computation: Practice
and Experience.

[Yu and Buyya, 2005] Yu, J. and Buyya, R. (2005). A Taxonomy of Workflow Mana-
gement Systems for Grid Computing. Technical Report Technical Report GRIDS-
TR-2005-1, Grid Computing and Distributed Systems Laboratory, University of
Melbourne, Australia. http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf.

A TAXONOMY OF GRID RESOURCE BROKERS*

Attila Kertész
Institute of Informatics, University of Szeged,
H-6721 Szeged, P. O. Box 652, Hungary
MTA SZTAKI Computer and Automation Research Institute,
H-1518 Budapest, P. O. Box 63, Hungary
CoreGRID Institute on Resource Management and Scheduling
keratt@inf.u-szeged.hu

Péter Kacsuk
MTA SZTAKI Computer and Automation Research Institute,
H-1518 Budapest, P. O. Box 63, Hungary
CoreGRID Institute on Resource Management and Scheduling
kacsuk@sztaki.hu

Abstract: Grid computing has gone through some generations and as a result only a few
widely used middleware architectures remain. Using the tools of these
middlewares, various resource brokers have been developed to automate job
submission over different grids. Most of the present brokers operate only on a
single grid infrastructure, where they have been developed. This taxonomy
helps identifying and categorizing the most important properties of brokers
within different Resource Management Systems. The result of this work
reveals the differences of the examined Resource Brokers, which can enhance
a more efficient grid usage and future development.

Keywords: Grid Computing, Taxonomy, Resource Broker, Scheduler, Grid Middleware

* This research work is carried out under the FP6 Network of Excellence CoreGRID funded

by the European Commission (Contract IST-2002-004265)

202 Kertész, Kacsuk

1. Introduction

The Grid was originally proposed as a global computational
infrastructure to solve grand-challenge, computational intensive problems
that cannot be handled within reasonable time [1]. The first decade of grid
research aimed at creating relatively reliable infrastructures to serve
researchers and attract users. These attempts have led to the present grid
middlewares, and now development is focusing on user requirements.

Executing a job in a grid environment requires special skills such as how
to find out the actual state of the grid, how to reach the resources, etc. As the
number of the users is growing and grid services have started to become
commercial, resource brokers are needed to free the users from the
cumbersome work of job handling. Though most of the existing grid
middlewares give the opportunity to choose the environment for the user’s
task to run, originally they are lacking such a tool that automates the
discovery and selection. Brokers meant to solve this problem [2]. As
resource management is a key component of current grid middlewares, many
solutions have been developed up till now. To enhance the manageability of
grid resources and users, Virtual Organizations were founded. This kind of
grouping started an isolation process in grid development, too.
Interoperability among these “islands” will play an important role in grid
research. This paper gives a classification of the present Grid Resource
Brokers by the most relevant properties and functionalities. Identifying the
key features and mapping them to user needs will open a new way for
enhancing interoperability among different grids. Although the same
services are available in different middlewares, they have been implemented
in different ways. This taxonomy reflects the various ways how these
brokers are built up and can be accessed. We believe that this paper helps
researchers to have a better understanding of the current trends of resource
brokerage.

2. Related work

Regarding taxonomies in Grid Computing, two main papers have been
published about resource management systems [3] and workflow
management systems [4]. As resource brokers are usually parts of some
resource management systems, the first one is closer to our work. That
taxonomy introduces an abstract model of resource management in different
Grid Systems, then describes and compares the existing architectures. In this
paper we are focusing more on smaller entities responsible for brokerage;
these can be considered as higher-level tools of resource management

A Taxonomy of Grid Resource Brokers 203

systems. While each RMS operates on one middleware, Grid Resource
Brokers move towards nearly independent entities and several able to access
resources of different middlewares. This taxonomy is needed to clarify the
role and usage of these brokers, and to gather and present also those ones
that were out of the scope of the RMS taxonomy. We examine the interface
and the implementation of these brokers to reveal their main properties.

3. Taxonomy of Resource Brokers

The aim of this taxonomy is to gather the recent Grid Brokers used in
Grid Communities, highlighting their main properties and examining the
differences and similarities regarding their architecture and operation. We
classify the revealed properties to 7 major categories and split into 3 groups.
The following subsections comment the categories of these groups.

The first group is middleware oriented (Middleware Support), the second
explains the mainly job related categories (Interface, Job Model, QoS and
Data Movement), finally the third deals with scheduling features
(Information System Support and Scheduling Model).

3.1 Grid Middlewares

The first main category – on Figure 1 – shows the underlying
infrastructures of the overviewed brokers.

Figure 1. Categories of the Taxonomy: Grid Middlewares group

They usually rely on one of these middlewares [5][6][7][8] and use their

functions to discover resources and submit user jobs. We can distinguish
between service-based and non-service-based ones. Generally this property

204 Kertész, Kacsuk

determines the architecture of the broker. It can be stated that the most
widespread middleware is the Globus Toolkit, since LCG-2 is built upon
Globus services and the NorduGrid ARC also uses and extends some of
them.

3.2 Job handling

This group contains the mainly user and job related properties and can be
seen in Figure 2.

Figure 2. Categories of the Taxonomy: Job handling group

The first thing the user faces is the interface of the broker. Early solutions

provided only command-line access, while APIs are important for higher
level utilization and management by other applications. Some brokers even
have Graphical User Interfaces to facilitate user usage. Service-based
brokers offer service access, which is an advanced method and needed by the
latest developments. This function can enhance interoperability and provide
platform-independent access.

The job model of the broker is also important for users and applications.
These properties tell how to describe a user job and what types can the
broker handle. There are several non-XML language descriptions, but the
latest developments follow the XML syntax. It would be reasonable for the
brokers to accept and use XML job descriptions, even if they access
middlewares supporting different languages [5][6][7][8]. In this case they
would need to translate the request, but this approach leads to better

A Taxonomy of Grid Resource Brokers 205

interoperability. The rest of the properties in this subcategory show what
type of jobs can be submitted with a specific broker: only sequential or
parallel; in the second case co-allocation and advance reservation are
handled or not. Brokers can support other special job-handling
functionalities such as parameter study and interactive jobs.

Fulfilling user requirements is a critical task of the broker. Quality of
Service is the collective expression of the properties to accomplish this task.
Accounting is used for the administration of the users and tracking their grid
utilization, and billing serves grid economy. Agreements are used to
guarantee some level of service during brokering. User requirements can
contain special requests, which are crucial for the job or application. On the
other hand resource providers would protect sites from flooding by user jobs.
In order to find a balance and fulfill requirements these policies appear in the
agreements, which are taken into account in scheduling decisions. Various
solutions can be developed to make these service level agreements, but this
functionality is still an open issue. Basically two types are used: the WS
Agreement [9] and the USLA [10]. The third part of QoS is fault tolerance.
The dynamic nature of grids lowers the number of successful job
submissions. To ensure a higher level of quality, brokers should be fault
tolerant. Rescheduling and replication are the basic functionalities, and
checkpointing can provide a more reliable brokering, though this is rarely
supported, yet. Rescheduling can be event-driven or periodic, and usually
choosing a different resource makes sense, retry only time consuming.

Most of the brokers provide automatic centralized data movement for
input and output file staging. User-directed utilization can also be supported,
when the user copies files to storage elements and tells the broker to use
them.

3.3 Scheduling

The third group gathers properties related to resource information,
discovery and scheduling. The properties of this group are shown on Figure
3. Several resource brokers use the information system of the underlying

the data store and query. The two main subcategories are the directory-based
and service-based implementations. These properties tell us how the brokers
access resource data and what kind of information they can use for resource
mapping – since this is determined by the information system of the
middleware. Some brokers use additional information about the grid
gathered by an own information system. Examining historical data (resource
availability, job failures, etc.) is one of these approaches. The other type of

middleware. In this case the relevant information from the broker’s view is

206 Kertész, Kacsuk

gathering relies on agents, which provide information about specific
elements of the grid.

Figure 3. Categories of the Taxonomy: Scheduling group

Matchmaking is the major task of Grid Brokers. The scheduling

properties can qualify brokers and determine the goodness of their decisions.
In smaller scope of resources like VOs, usually a centralized scheduler
component is used to make decisions. In decentralized schedulers the
matchmaking process can be split up and queues can be utilized for job
requests, or more components can collaborate to utilize a wider range of
resources. The first solution is rather used in hierarchical and the second in
peer-to-peer architectural models. The decision making can be static and
dynamic. When a user fixes a resource for its job, or the scheduler
component of the broker uses only static historical information, we are
talking about static matchmaking. In a dynamic decision the broker has an
up-to-date information about the resources and makes a just-in-time
matching, or uses up some additional prediction-based information. The
schedulers can take into account specific policies that affect decision
making. These methods usually favor the users, but the provider
expectations or the balanced state of the grid can also be observed. User
policies can tell the broker to submit the job to a resource that completes the
request in the shortest time or for the less cost possible. Reliable resource
selection can also be a point of view, where less error can occur, or a secure
one that ensures the safety of the job. Providers may expect from the broker

A Taxonomy of Grid Resource Brokers 207

to utilize more or less a specific resource, or gain as much as they could
from the resource utilization. An alternative method is to serve the user
requests as to keep the balance of the load on the grid.

4. Survey of the Resource Brokers

The properties of the taxonomy were gathered from 14 Grid Brokers.
Table 1. shows the examined brokers, and gives a short description of their
architecture and operation. The columns correspond with the groups of
categories described in section 3. This survey displays the main properties of
the brokers. It indicates how the categories of the taxonomy are implemented
and used in different solutions.

Table 1. Survey of Grid Brokers

Grid
Broker

Middleware
Support Job handling Scheduling

AliEn RB
[11] Alice File transfer optimization, fault

tolerance by multithreading
Push and pull task

assignment

Apples [12] GT 2 Parameter study support,
event-driven rescheduling

Centralized adaptive
scheduling with heuristics,
self-scheduled workqueues

EZ-GRID
Broker [13] GT 2, 3 GUI for job handling,

transparent file transfer

Own information service
with dynamic and historical

data, Policy Engine
Framework for provider

policies

GRIDBUS
Grid Service
Broker [14]

GT, Unicore,
Alchemi

Failure management and
application recovery,

parameter study, API support
(XPML description file)

Economy-based and data-
aware scheduling

GridWay [15] GT
Job migration support

(checkpointing, resubmission),
API support

Decentralized (or
centralized) scheduler,

adaptive scheduling

GRIP Broker
[16]

GT 2, 3,
Unicore

Ontology Engine for
translating different job

description

Ontology Engine for
translating different

information service data

GRUBER
[10] GT 3, 4

SLA-based resource sharing in
multi-VO environment, disk

qouta considerations

Internal site monitoring
feature, various user-

oriented policies

GTbroker
[17] GT 2, 3

Periodic and event-driven
rescheduling, automated file

staging

User-oriented policies,
additional dynamic

information

JSS RB [18]
GT 4,

NorduGrid
ARC

WS-Agreement for advance
reservations, resource filtering

by user requirements, file
staging and replication support

Scheduling algorithms with
benchmark-based

execution time and transfer
time estimation

KOALA [19] GT 2, 3

Periodic and event-driven
rescheduling, parallel co-
allocated job handling,
automated file staging

Processor and data co-
allocation, own information

service, hierarchical
scheduling with queues,

incremental claming policy

208 Kertész, Kacsuk

LCG-2 /gLite
Broker [6] LCG-2/gLite

Periodic and event-driven
rescheduling, interactive job

support

Eager or lazy policies, push
and pull models for task
assignments, provider-
oriented policy support

NIMROD/G
[20] GT 2, Legion

Application level accounting,
parameter study support,

periodic rescheduling
(Nimrod/G plan file)

Deadline and budget-based
constrained scheduling,

hierarchical and
decentralized agent-based

scheduler

OGSI Broker
[21] GT 3 User defined ranking in

resource selection

User-oriented and
provider-oriented resource

owner policies, internal
agent-based information

system

5. Open issues and future work

From the survey and the taxonomy we can clearly identify, which
properties are rarely used and which ones are highly supported. Regarding
the whole taxonomy we saw that the Globus Toolkit is used by most of the
brokers, therefore the RSL language is still the most widespread. The
command-line interface is usual, and most of the brokers use a central
scheduling architecture with just-in-time matchmaking optimized for
minimal completion time. Rescheduling is widely used for fault tolerance.

On the contrary, the JSDL, which is a uniform standardized language, is
rarely supported, yet. APIs, co-allocation, advance reservation and
interactive job support should be provided by more brokers. A decentralized
architecture could be a better solution in several cases, and own information
systems should be built to gather more dynamic data and perform prediction-
based matchmaking. As grids are heading towards the markets, provider-

need to be considered. This solution requires QoS, so agreements must be
supported by future brokers. To enhance reliability checkpointing and job
migration should be targeted by future developments. Finally the most
important thing to do is to provide all these broker properties to the users,
making available more services, more middlewares and more resources in a
transparent way. Interoperability is the key to achieve this vision.

Utilizing the existing, widely used and reliable resource brokers and
managing interoperability among them could be new point of view in
resource management. Our future work aims at developing a Meta-Broker
that enables the users to access resources of different grids through their own
brokers. Designing such an interoperable Meta-Broker, the following

development, the interfaces must provide standard access. The architecture
must be ‘plug-in based’ – the components should be easily extended by all

guidelines are essential: As standards play an important role of today’s grid

oriented policies should be more supported, and economy-based scheduling

A Taxonomy of Grid Resource Brokers 209

means. The properties of the underlying components are also important; we
need to be aware of the recent Grid Resource Brokers. The presented
taxonomy and survey will provide the necessary information: how to interact
with these brokers and which broker would provide the best service for a
user task.

6. Conclusions

The presented taxonomy helps identifying and categorizing the most
important properties of Grid Resource Brokers in various grid environments.
We revealed the interfaces and relevant functionalities of the currently used
brokers, which can enhance better user utilization and future development.
With the presented survey users and scientists can have a better
understanding of the operation and utilization of the current brokers.
Developers should target issues that missing or rarely used in these
solutions, but there is a definite need for them – to achieve this, the

interoperability among Virtual Organizations and grids, which will be the
main issue of future generation grids.

7. References

[1]

[2]
Southeast regional conference, 2004.

[3]

32, 2, 2002, pp. 135-164.
[4]

SIGMOD Rec., ACM Press, 2005, pp. 44-49.
[5] Globus Toolkit Homepage: http://www.globus.org/toolkit/
[6] EGEE Project Homepage: http://www.eu-egee.org/

Lecture Notes in Computer Science, volume 2150, Springer, 2001, pp. 825-834.

[9]

https://forge.gridforum.org/projects/graapwg/document/WS-AgreementSpecification/
[10] C. Dumitrescu, I. Foster, “GRUBER: A Grid Resource Usage SLA Broker”, 11th

International Euro-Par Conference, LNCS 3648, 2005, pp. 465-474

properties of the taxonomy give the guidelines. Furthermore, mapping
the user needs and these broker categories, meta-brokers can solve the

[7]

Infrastructure”, Morgan Kaufmann, 1998. pp. 15-52.
I. Foster, C. Kesselman, “Computational Grids, The Grid: Blueprint for a New Computing

E. Afgan, “Role of the Resource Broker in the Grid”, Proceedings of the 42nd annual

management systems for distributed computing”, Software: Practice and Experience. vol.
 K. Krauter, R. Buyya, M. Maheswaran, “A taxonomy and survey of grid resource

 J. Yu, R. Buyya, “A taxonomy of scientific workflow systems for grid computing”,

Applications”, Springer-Verlag, LNCS 2657, 2003.

 D. W. Erwin and D. F. Snelling., “UNICORE: A Grid Computing Environment”, In

[8] O.Smirnova et al., “The NorduGrid Architecture And Middleware for Scientific

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, J. Pruyne, J. Rofrano, S. Tuecke, and M.
Xu, “Web Services Agreement Specification” (WS-Agreement), Internet, 2004,

210 Kertész, Kacsuk

Conference on Supercomputing, IEEE Computer Society.

Experience, Volume 18, Issue 6, 2006, pp. 685-699
[15] E. Huedo, R. S. Montero, I. M. Llorente, “A framework for adaptive execution in grids”,

Software: Practice and Experience. vol. 34, 7, 2004, pp. 631-651.

[17] A. Kertész, “Brokering solutions for Grid middlewares”, in Pre-proc. of 1st Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science, 2005.

[18] E. Elmroth and J. Tordsson, “An Interoperable Standards-based Grid Resource Broker

IEEE Computer Society Press, 2005, pp. 212-220.

[20] R. Buyya, D. Abramson, J. Giddy, “Nimrod/G: An Architecture for a Resource

Asia 2000), IEEE Computer Society Press, 2000.
[21] Y. Kim, J. Yu, J. Hahm, J. Kim, et al., “Design and Implementation of an OGSI-

Compliant Grid Broker Service”, Proc. of CCGrid, 2004.

and Job Submission Service”, First IEEE Conference on e-Science and Grid Computing,

Management and Scheduling System in a Global Computational Grid”, The 4th
International Conference on High Performance Computing in Asia-Pacific Region (HPC

[14] S. Venugopal, R. Buyya, L. Winton, “A Grid Service Broker for Scheduling e-Science
Applications on Global Data Grids”, Concurrency and Computation: Practice and

template: user-level middleware for the grid”, In Proceedings of the 2000 ACM/IEEE

[16] J. Brooke, D. Fellows, K. Garwood, C. Goble, “Semantic matching of Grid resource

[19] H.H. Mohamed, D.H.J. Epema, “The Design and Implementation of the KOALA Co-
Allocating Grid Scheduler”, European Grid Conference, Amsterdam, 2005.

descriptions”, UoM. 2nd European Across-Grids Conference (AxGrids 2004), 2004.

[12] H. Casanova, G. Obertelli, F. Berman, R. Wolski, “The AppLeS parameter sweep

[13] B. Sundaram and B. M. Chapman, “XML-Based Policy Engine Framework for Usage

Grid Computing, LNCS vol. 2536, Springer-Verlag, 2002, pp. 194-198.

[11] P. Saiz, A. Buncic, J. Peters, “AliEn Resource Brokers”, Conference for Computing

Policy Management in Grids”, In Proceedings of the Third international Workshop on

in High-Energy and Nuclear Physics (CHEP 03), 2003.

László Csaba Lőrincz, Attila Ulbert, Zoltán Horváth and Tamás Kozsik
Eötvös Loránd University, Department of Programming Languages and Compilers∗

Pázmány Péter sétány 1/c., 1117 Budapest, Hungary

{lesliel|mormota|hz|kto}@inf.elte.hu

Abstract The optimization of data access will largely influence the performance of the
current and next generation Data Grid systems. Job finishing times are an im-
portant factor in the characterization of Grid performance, as the earlier a newly
submitted job is finished, the more the submitter is satisfied.

Our focus in this paper is mainly on how the introduction of agents can improve
job finishing time on the Data Grid systems. The strategy takes into account the
way applications access their data and extend the Grid middleware so that earlier
job finishing times can be achieved. The success of this strategy is due mainly to
the following two reasons: (i) the scheduler takes into account the job’s behaviour,
(ii) the proposed agents deliver the necessary files earlier, so the job has to wait
less before the execution.

Keywords: DataGrid, scheduling, file replication, agents

1. Introduction

The scheduling and execution of applications executed several times for
similar input values on the same or similar data files (called parameter sweep
applications) is one of the typical tasks of the (Data) Grid systems. The system
must complete several tasks that determine how soon the execution of the job
can be finished: (i) select the appropriate Computing Element, (ii) prepare the
necessary data files, (iii) execute the job, (iv) deliver the execution results.

In [3] we have already discussed the scheduling of parameter sweep appli-
cations in the context of the current Data Grid [8]. The proposed scheduling
strategy is based on the prediction of job finishing times estimated using the
job’s behaviour description and the current status of Grid. The job behaviour

¤This work was supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK, the National Office for Re-
search and Technology under grant no. RET14/2005, the Bolyai Research Fellowship, and Alvicom Ltd.
(www.alvicom.hu).

SPECULATIVE SCHEDULING SERVICE
TOWARDS AN AGENT INTEGRATED

212 Lőrincz, Ulbert, Horváth, Kozsik

description is generated automatically after monitoring an execution of the job.
As a continuation of our work the main focus in this paper is still on secondary
storage and data access. Based on our previous experiences in this work we
extend the Data Grid [8] system with agents providing file pre- and postpro-
cessing support, the overall goal being to further optimize the finishing times
of data intensive jobs.

Although our ultimate goal is to design and develop services and agents
for the next generation Grid, we have opted for an extension of the nodes of
the current Grid, with agent host functionality using the JADE (Java Agent
DEvelopment Framework) [4] framework. Taking as a basis the current Grid
systems, our job scheduling method is composed of the following major steps:

1 The user submits a new job to the system.

2 Based on the predicted finishing time , the Resource Brokerselects the
“best” Computing Element for its execution and the Storage Element(s)
(if the chosen Computing Element does not provide enough disk space
for the input files) the input files must be replicated to.

3 Agents are sent to every source Storage Element, and one to every desti-
nation node.

4 The agents will run on the nodes in the background as daemons (the
environment for this will be assured by the agent hosts) and copy the
files prior to the execution queue reaching the job requiring them.

The rest of this paper is organized as follows. Section 2 presents the process
of automatic generation of job behaviour description. Section 3 presents two
scheduling algorithms: the static data feeder scheduler and the agent integrated
scheduler and its implementation in Condor-G. Simulation results are presented
in Section 4. Finally, Section 5 summarizes the results and contribution of this
paper and gives a short overview of related work.

2. Describing job behaviour

According to our idea, the jobs submitted to the Grid are scheduled based on
their estimated termination time, which is calculated by using a description of
their behaviour. The description tells the scheduler how the submitted job ac-
cesses the resources (files and CPU). The job behaviour description is generated
automatically after monitoring the job during execution.

Monitoring

The monitoring component is responsible for monitoring the jobs’ resource
access. It intercepts the IO function calls and their actual parameters (dispatches

Towards an agent integrated speculative scheduling service 213

the IO request to the original IO library function thereafter) and logs the CPU
and memory consumption.

The monitoring component is implemented as a shared library which must be
installed on the Computing Element nodes and the LD PRELOAD environment
variable must be set properly. This is a minimal intrusion, however, platform-
dependent solution: it can be used on Linux and Solaris systems, porting them to
other operating systems requires further work. After the monitoring component
is installed on a Computing Element node it works transparently without any
further assistance from the system administrator or the application programmer.
Besides, the component does not monitor those applications which are not
dynamically linked, therefore the system can be configured to affect (monitor)
only the required applications.

The analyser

The data collected by the monitoring component is further processed in order
to get the desired compact description of the job’s resource consumption. The
resulting (behavioural) descriptions are utilized by the proposed Grid middle-
ware services to perform scheduling and replication optimization.

...

StrategyDetector

FileAccessDescription

FileAreaAccessDescription

FileAreaAccessDescription

JobResourceAccessDescription
...

file1 file2

Parse

read

read

write

write

write

write

log

Job description

Figure 1. The Analyser

The job behaviour description generated by the analyser (see Figure 1) con-
tains information about the input and, additionally, output file usage of the job.
This information is called the Data Access Pattern of the application, and it is
composed of:

Type of the file (input or output).

What fraction of the file is used (access ratio).

The file usage redundancy (intersection ratio). This value will describe
the average overlapping that exists between the data accessed by a prede-

214 Lőrincz, Ulbert, Horváth, Kozsik

fined (and configurable) number of consecutive read or write operations
on this file.

A list of the datablock information. Each datablock contains:

– The file access method (sequentialor random) used in the section.

– The starting and ending positions defining the current datablock
through four values (two of them representing the absolute and two
of them the relative file positions).

– The distance (step) between starting positions of two successive
data access operations (in the case of sequential file access). This
number can also be negative if the job steps backward between these
operations.

– The size (in bytes) of the data processed in a single operation.

– The frequency of the data access operations: the minimum and
the average system time (in milliseconds) and CPU time (in mips)
between two consecutive operations.

The following example depicts the behaviour description of the gzip pro-
gram compressing file test.avi. According to the description, gzip read
16384 byte-length chunks from test.avi sequentially, and wrote 65536 byte-
length blocks to file test.avi.gz:

<file_out name="test.avi.gz" access_ratio="1" intersection_ratio="0">

<sequential>

<datablock min_pos_absolute="0" max_pos_absolute="116162560"

min_pos_relative="0" max_pos_relative="0.999894"

step="16384" size="16384" />

<timing op_time="0" op_mips="0"

avg_op_time="0.00334029" avg_op_mips="6.35532" />

</sequential>

</file_out>

<file_in name="test.avi" access_ratio="1" intersection_ratio="0">

<sequential>

<datablock min_pos_absolute="0" max_pos_absolute="117440512"

min_pos_relative="0" max_pos_relative="0.999634"

step="65536" size="65536" />

<timing op_time="0" op_mips="0"

avg_op_time="0.00659522" avg_op_mips="17.5861" />

</sequential>

</file_in>

3. Scheduling strategies

This section presents two scheduling strategies: the static data feeder [3] and
the agent integrated scheduler. The scheduling decision of both schedulers is

Towards an agent integrated speculative scheduling service 215

based on the job finishing time estimate: the scheduler takes a trial run through
the suitable Computing Elements and estimates the time the job would finish its
execution if it ran on the selected Grid component. The scheduling strategies
presented differ in two aspects: the estimation of job finishing time and the
used data delivery/replication service.

Static data feeder scheduler

The output of this strategy is a list of Computing Elements the job can be run
on, ordered by the estimated termination time of the job and optional commands
for the Replica Manager [7] specifying those files that need to be copied to or
in the vicinity of the Grid element on which the job will run.

The finishing time estimate of a job running on a given Computing Element
is calculated as the sum of the following:

1 The estimated termination time (which includes the delivery of output
files) of the last job in the Computing Element queue.

2 The estimated input file transfer time, which is a function of the size of
the files and the average network bandwidth.

3 The estimated job execution time calculated based on the extended job
description (see Section 2).

4 The estimated output file transfer time calculated similarly as in the case
of input files.

After calculating the ordered list of jobs, the scheduler will try to schedule the
actual job to that Computing Element on which its execution would be finished
as early as possible.

The agent integrated scheduler

According to the static data feeder scheduler, a job cannot be started until the
output files of the previously executed job are copied to the desired destination.
The agent integrated scheduler introduces - and as a result considers - agents
that allow the jobs to be executed earlier by copying files during the running of
a job.

Introducing agents. In order to improve the job finishing time, we have in-
troduced agents, called FileAccessAgents, transferring files among Storage
Elements and the hosts of the Computing Elements in such a way that allows
the jobs to be started earlier. The FileAccessAgents provide additional func-
tionalities over the Replica Manager: a) they execute the copy operations taking
into account the status of multiple jobs; b) they can duplicate files also to CE-s;

216 Lőrincz, Ulbert, Horváth, Kozsik

c) and they can be enabled to support filtered data transfer copying only the
required parts of the files. The FileAccessAgents run on the agent hosts on
every Storage and Computing Element, and interact with each other in order
to implement the required functionalities. The source agents (agents sending
files) are always located on Storage Elements. A source agent can serve sev-
eral destination agents (agents receiving files), and every destination agent can
collect the required files from several sources.

The execution of a job on a CE is managed by a JobManagementAgent.
For each job these agents coordinate the destination FileAccessAgents re-
quired by the job associated to them: start the FileAccessAgents according
to the queue order of the jobs; collect status information from them; inform
other JobManagementAgents about the termination of the copy operations.
Currently JobManagementAgents are implemented only in the OptorSim sim-
ulation (see Section 4).

The agent integrated scheduler. The FileAccessAgent implements file
sending and the file receiving functionalities. This simplifies the process of job
data resource management, since at the end of their execution some jobs could
require the copying of some files back to a given server.

The termination time of a job is estimated as the sum of its execution time
(which is calculated based on its behaviour description) and the time when its
execution can be started on the given CE. By using FileAccessAgents, the
job’s execution can be started earlier, as the agents copy the necessary input
files of the jobs waiting in a CE queue parallel to each other, therefore a job does
not have to wait until all the previous jobs have been processed. Besides, the
FileAccessAgent can transfer files in parallel on a CE node after the execution
of a given job is terminated. While the output files of the terminated job are
being copied to the destination node, the corresponding FileAccessAgent

prepares the input files for the next job scheduled on the given node. This
allows the next job to be started, and therefore to be finished earlier than in the
case of the static data feeder strategy.

The new scheduling method integrates the static data feeder-based scheduler
(see Section 3) with the FileAccessAgent (see Figure 2). The following
scenario describes the life-cycle:

1 The user submits the job and its description. The job description file can
contain the description of the job behaviour.

2 If the user had provided the job behaviour description, the scheduler uses
the proposed scheduling algorithm, which calculates the estimated job
finishing time for every Computing Element (CE) and schedules the job
to that CE where the job would be finished the earliest (according to the
job behaviour description and the current state of the Grid reported by

Towards an agent integrated speculative scheduling service 217

Grid Information
Service

Computing Element

Resource Broker

schedule

2

Source SE

FAA

FAA

FAA

descriptor
Generate job

Execute and
monitor job

3

4

job

1

6

5

7

7

job descriptor

8

description

Storage Element

Figure 2. Scheduling and Agents

the Grid Information Service). If no behaviour description is provided,
then another (default) scheduling algorithm is used.

3 If the chosen Computing Element does not provide enough disk space for
the input files, the scheduler will also collect the best Storage Element
(or Elements if disk space requirements cannot be satisfied by a single
SE) to which the input files should be mirrored (if no replica of the files
exists there already).

4 The scheduler will send FileAccessAgents to every source SE and
one to every destination node. If there is already a FileAccessAgent

on the targeted node, the system can either mirror it and send only the
information about the claimed copy operation there, or it can send the
whole agent with the mirroring information (note that compared to the
input files, the size of the agent itself is negligible).

5 Upon arrival at its destination node, if another FileAccessAgent is
running, the new agent will be placed into a queue. Once started, it will
run in the background (the environment for this will be assured by the
agent hosts) and will start copying the required input files. If the job
the FileAccessAgents are connected to is started before the agents can
finish their operation (e.g. there is no other job in the execution queue of
the CE) it will wait until all of the files have been copied to the specified
destination.

6 The job is executed on a computer belonging to the chosen CE. The job’s
resource consumption is monitored, and after the job is terminated a new
re-fined job description is created.

218 Lőrincz, Ulbert, Horváth, Kozsik

7 The FileAccessAgent starts copying back the result (output) files (if
any) of the job execution (and the behaviour description) to the specified
SE-s. This operation is also performed in the background, so the next
job from the queue of the CE can be started without having to wait for
the file copy operation to finish.

8 The new behaviour description of the job is copied to the specified target
node.

Note that the introduction of FileAccessAgents does not increase the ex-
ecution time of the jobs, even if the jobs are suspended until the agents finish
their copying operation, since these duplications would have been done either
way, the only difference is the source requesting them (e.g Replica Manager,
the job execution environment).

Implementation in Condor-G

Since the next generation Grid systems are only in development phase [9],
we have opted for an extension of a Condor-G based system with agent host
functionality. The JADE [4] framework provides a suitable platform for our
goals:

it can be distributed across machines,

it is implemented in Java language and it is platform independent, thus
allowing easy installation on almost any type of grid node,

its communication model complies with the FIPA [5] specifications,

and its transport mechanism has built-in support for the HTTP protocol.

Running agents in the JADE framework over multiple computers is possi-
ble through the usage of containers. Once the Main Container is active, the
FileAccessAgents can be inserted into the system by adding them to con-
tainers that are connected to the Main Container (the Main Container can be
identified by the address of the host it is running on).

The agents are submitted by Condor jobs to the desired Computing and
Storage Elements as an attachment (or more precisely, as an input file) of the
given job along with a simple shell script. Once the job arrives at its target,
the underlying Condor system executes the shell script that will start the JADE
environment (providing the agent host functionality), and will run the specified
agents inside this environment.

Since the agents should be executed in the background as daemons without
hindering the given Condor node in running other jobs, all of the jobs used to
submit them in the system should start the containers in the background, and
then exit. The closure of the containers must be assured then by their agents.

Towards an agent integrated speculative scheduling service 219

The necessary JADE libraries as well as the jar files containing the classes of
the agents are specified as input files to be transferred upon job submission. The
following Condor submit file creates a new container on node n02 containing
an instance of agent A1 with the name a1. The Main Container is running on
host n01:

universe = vanilla

executable = runjade

output = jadesend.out

error = jadesend.err

log = jadesend.log

arguments = -host n01 -container a1:A1

transfer_input_files = agent.jar,jade.jar,jadeTools.jar,iiop.jar, \\

commons-codec-1.3.jar

WhenTOTransferOutput = ON_EXIT

requirements = (machine == "n02")

queue

The agents are using the integrated FIPA [5] communication model along
with a well defined ontology that validates the information to be converted
from a semantic point of view. The Content Manager transforms the objects
representing the information in the source agent into a machine-readable byte
sequence according to the syntactic rules of the related content language. There-
after the generated byte sequence is transported to the destination agent over
the HTTP protocol. Upon arrival the Content Manager (using the same codec)
converts the byte sequence back into objects representing the given information
for the destination agent (the representation of this information can differ from
one agent to another).

The agent communication is completely transparent. In order to fulfill their
security requisites the only requirements are to implement the chosen (secure)
protocol in the agent host framework and select it as the default protocol for
inter-domain data-exchange. Besides, the standard FIPA communication model
along with the defined ontology allows the actual implementation of the agents
to be changed at any time without the need to redesign and rewrite the entire
model.

4. Simulation results

In order to evaluate the efficiency of the presented approach simulations were
performed. OptorSim v2.0 [2] was extended with the addition of the static data
feeder scheduler and the agent integrated scheduler implementation. Besides
the new scheduling strategies, the simulation environment was also extended
with FileAccessAgents running on every Storage Element of the Grid (the
Computing Elements in the simulation do not have their own disk storage), and
with JobManagementAgents running at every Computing Element.

220 Lőrincz, Ulbert, Horváth, Kozsik

The simulation follows the proposed scheduling and file management strate-
gies closely: if the agent integrated scheduler is used, the Resource Broker
selects the best CE for running the job (based on the estimated CE queue and
job finishing time) and also the best SE (or SE-s if disk space requirements can
not be satisfied by a single SE) to which the input files should be transferred
(if no replica exists there already). The job is started after all preceding jobs
in the CE queue have been terminated and the input file copy operations have
been finished.

Figure 3. Simulation results

The extended OptorSim was configured to use the EDG topology specified by
the configuration file shipped with the simulator. The CEs of the configuration
were extended with MIPS values. The group of jobs submitted to the Grid
was extended with further test jobs that simulate the single source shortest
path searching algorithm in a graph. The job first parses the graph description
loaded from a 300 MB input file then it starts to calculate the shortest path from
the given parameter node to every other node in the graph. After monitoring
multiple executions of the application, two job descriptions have been chosen
for further testing, the main difference between them being the consumed CPU
time. The jobs provided by OptorSim are using input files of 10 GB each.

For each job description 2-2 simulation groups were performed: in one
simulation group 1

6
of the jobs submitted to the Grid had a job description,

in the other simulation group 4

6
of the jobs had a behaviour description. Each

simulation group was executed with different job numbers: 100, 500, and 1000.

Towards an agent integrated speculative scheduling service 221

According to the simulation results (see Figure 3), using the static data
feeder scheduler (Static DF) the mean job time of all jobs on Grid is about 29%
lower than in the case of the scheduler which considered the file access cost
and the job queue access cost (FAC + JQAC). The static data feeder strategy
outperforms the random (Rnd), the queue length (QL) and the file access cost
(FAC) strategies as well.

Due to the more sophisticated file transferring approach, using the agent
integrated (Agent) scheduler leads to even better (about 16% lower) mean job
times. Besides, compared to the FAC + JQAC scheduler, the jobs scheduled by
Agent are finished 39% sooner.

5. Summary and related work

This paper presented a new approach in scheduling regarding job execution
optimization on Data Grid systems. The goal is to optimize the finishing time
of data intensive jobs [10]. The basic idea is mainly to take into account the
job’s behaviour (file and CPU access) and reduce the time the jobs have to wait
for data related operations. The former is done through scheduling using the
job behaviour description in order to estimate the job completion time. The
latter is achieved through the introduction of FileAccessAgents, that will run
on an agent host on every SE and CE. These agents add support for file pre-
and postprocessing functionalities, all of which include additional possibilities
over those provided by the Replica Manager.

Many different scheduling and data replication algorithms exist and are used
by the Data Grid systems. Nabrzyski et al. [12] gives an excellent overview of
Grid resource management presenting state of the art research and experiences.
Kunszt et al. [11] focuses on the data replication, and presents the replica
management middleware developed within European DataGrid Project [8].

Similar to our approach, Y. Gao et al. [6] introduces models for estimating
the completion time of jobs in a service Grid and proposes scheduling algo-
rithms minimizing the average completion time of all jobs. The prediction of
the completion time of an impending job is partially based on the number of
jobs running on the Grid nodes and historical execution time of already com-
pleted jobs. Bell et al. [1] make use of sophisticated economy-based decision
algorithms. The file replication strategy presented here does not, however, take
into account the behaviour of the submitted job.

The major weakness of the current solution is that the proposed services
cannot consider different behaviours of a given job. For example, if a job
processes large files once with little CPU consumption and another time the
job completes computation intensive tasks the generated behaviour description
reflects only one of the operation modes. As a result, the scheduler cannot
consider the actual complex job behaviour. The introduction of complex job

222 Lőrincz, Ulbert, Horváth, Kozsik

behaviour descriptions and the adaptation of the scheduling algorithms will be
the subject of our future research.

We performed simulations using OptorSim v2.0 [2]. The simulation results
show that the introduction of the FileAccessAgent agent lead to earlier job
finishing times compared to the “pure” static data feeder strategy [3] and the
other replica management and scheduling strategies presented in [2]. Besides
the simulations, we also implemented a prototype of the FileAccessAgent in
a Condor-G based system.

Acknowledgement

We would like to express our thanks for the work of the following students:
Csaba Kós for implementing the new scheduling algorithm in OptorSim, and
Zoltán Takács for his work in testing the agent host capabilities.

References

[1] William H. Bell, David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Kurt
Stockinger, Floriano Zini: Evaluation of an Economy-Based File Replication Strategy for
a Data Grid. In: International Workshop on Agent based Cluster and Grid Computing at
CCGrid 2003, Tokyo, Japan, May 2003. IEEE Computer Society Press.

[2] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Caitriana Nicholson, Kurt
Stockinger, Floriano Zini. Analysis of Scheduling and Replica Optimisation Strategies for
Data Grids using OptorSim, International Journal of Grid Computing, 2(1): 57-69, 2004.

[3] László Csaba Lőrincz, Tamás Kozsik, Attila Ulbert and Zoltán Horváth: A method for job
scheduling in Grid based on job execution status.
Multiagent and Grid Systems - An International Journal 4 (MAGS) Volume 1, Number 2,
pp. 197-208, ISSN: 1574-1702/05, 2005.

[4] Java Agent DEvelopment Framework. http://jade.tilab.com/index.html

[5] FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/

[6] Yang Gao, Hongqiang Rong, Joshua Zhexue Huang: Adaptive grid job scheduling with
genetic algorithms. Future Generation Computer Systems 21, pp. 151-161, 2005.

[7] Foster, I.: The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann,
July 1998.

[8] The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid/

[9] Foster, I., Kesselman, C., Nick, J. and Tuecke, S., The Physiology of the Grid: Open Grid
Services Architecture for Distributed Systems Integration, presented at GGF4, Feb. 2002.

[10] Balázs Ugron, Szabolcs Hajdara, and László Kozma, Synthesis of the synchronization of
general pipeline systems, Acta Cybernetica, 17, pp. 123-151, 2005.

[11] Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger. File-based Replica
Management, Future Generation Computer Systems, 22(1):115-123, 2005, Elsevier.

[12] Jarek Nabrzyski (ed.), Jennifer M. Schopf (ed.), Jan Weglarz (ed.). Grid Resource Man-
agement : State of the Art and Future Trends, 2003.

[13] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall PTR, ISBN 0-13-185858-0, August 2, 2005.

Author Index

Angskun, T. 65, 73
Babik, M. 93
Balaton, Z. 55, 145
Bosilca, G. 45, 65, 73
Bubak, M. 135
Butrylo, B. 23
Ceccanti, A. 155
Ciuffoletti, A. 3
Dabrowski, F. 33
Delaitre, T. 103
Deng, Y. 13
Dongarra, J.J. 65, 73
Du, J. 13
Fagg, G. E. 45, 65, 73
Fahringer, T. 191
Farkas, Z. 55
Gava, F. 33
Gesbert, L. 33
Gombás, G. 145
Górka, C. 135
Gubala, T. 135
Harrington, R. 165
Hermann, G. 165
Hluchy, L. 93
Hoefler, T. 45
Hoge, C. 113
Horváth, Z. 211
Jankowski, G. 179
Januszewski, R. 179
Kacsuk, P. 55, 103, 165, 201
Karóczkai, K. 165
Kasztelnik, M. 135
Keith, D. 113
Kertész, A. 201
Kiss, T. 103
Kitowski, J. 93
Kovács, J. 179

Kouřil, D. 123
Kozlovszky, M. 165
Kozsi, T. 211
Krajı́ček, O. 123, 155
Křenek, A. 155
Kryza, B. 93
Kuba, M. 123
Loulergue, F. 33
Lumsdaine, A. 45
Lőrincz, L. Cs. 211
Malawski, M. 135
Malony, A. D. 113
Marosi, A. 145
Martin, D. 165
Márton, I. 165
Masko, L. 23
Matyska, L. 155
Mikolajczak, R. 179
Pješivac-Grbović, J. 65, 73
Pllana, S. 191
Procházka, M. 123
Qin, J. 191
Rehm, W. 45
Ruda, M. 155
Schnautigel, A. 165
Strodl, T. 165
Squyres, J.M. 45
Terstyánszky, G. 103
Tsujita, Y. 81
Tudruj, M. 23
Ulbert, A. 211
Winsnes, C. 165
Winter, S. 103
Yan, X. 13
Yang, C. 13
Yang, X. 13

223

