

Touch of Class

Bertrand Meyer

Touch of Class

Learning to Program Well
with Objects and Contracts

123

ISBN 978-3-540-92144-8
DOI 10.1007/978-3-540-92145-5

e-ISBN 978-3-540-92145-5

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009927650

c© 2009 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm
or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under
the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer.Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Prof. Dr. Bertrand Meyer
ETH Zürich
Department of Computer Science
Clausiusstrasse 59
8092 Zürich
Switzerland
Bertrand.Meyer@inf.ethz.ch
http://se.ethz.ch/~meyer
http://eiffel.com

Short contents

The full table of contents appears on page xlix.

Community resources vii
Dedication ix
Prefaces xi
Student_preface xiii
Instructor_preface xxiii
Note to instructors: what to cover? xlvii
Contents xlix

PART I: BASICS 1

1 The industry of pure ideas 3
2 Dealing with objects 15
3 Program structure basics 35
4 The interface of a class 47
5 Just Enough Logic 71
6 Creating objects and executing systems107
7 Control structures 139
8 Routines, functional abstraction and

information hiding 211
9 Variables, assignment and references 227

PART II: HOW THINGS WORK 271

10 Just enough hardware 273
11 Describing syntax 295
12 Programming languages and tools 321

PART III: ALGORITHMS AND
DATA STRUCTURES 361

13 Fundamental data structures,
genericity, and algorithm complexity 363

14 Recursion and trees 435

15 Devising and engineering an algorithm:
Topological Sort 505

PART IV: OBJECT-ORIENTED
TECHNIQUES 549

16 Inheritance 551

17 Operations as objects: agents and
lambda calculus 619

18 Event-driven design 663

PART V: TOWARDS SOFTWARE
ENGINEERING 699

19 Introduction to software engineering 701

PART VI: APPENDICES 747

A An introduction to Java
(from material by Marco Piccioni) 749

B An introduction to C#
(from material by Benjamin Morandi) 777

C An introduction to C++
(from material by Nadia Polikarpova) 807

D From C++ to C 841

E Using the EiffelStudio environment 845

Picture credits 849

Index 851

Community resources

Touch of Class rests (at the time of publication) on six years of teaching the “Introduction
to Programming” course at ETH Zurich, taken by all entering computer science students.
In connection with the course and the book we have developed a considerable amount of
pedagogical material. Instructors are welcome to use this material for their own teaching.
On the Web page for both this book and the course

http://touch.ethz.ch

you will find links to:
� The full set of our course slides (PowerPoint + PDF) in its latest version.
� Streamable and downloadable video recordings of our lectures.
� Supplementary material.
� Exercises.
� Slides for exercise sessions (tutorials).
� Mailing list and Wiki page for instructors using Touch of Class as their textbook.
� Traffic software for download (Windows, Linux, ...)
� Published articles and technical reports on our pedagogical work in connection with

the course, and our other work on computer science education including the
TrucStudio course development framework.

� Information about courses using the textbook in other universities.
� Errata.
� An instructor’s corner (requiring registration), for instructors of courses having

adopted the book, with suggestions for homeworks and exams and some solutions.
All this material is freely available for academic use in connection with the present
textbook (see license terms on the site). For other uses please contact us.
Most of the material, in particular the course slides and video recordings, is in English.
German versions are available for some of the exercise session slides. We expect to add
material in other languages as it becomes available; if you translate slides or other
elements into another language, we will be happy to include the translations.
More generally we welcome all community contributions.

http://touch.ethz.ch

Dedication

This book is dedicated to two pioneers of computer science, as thanks for their
unending influence and in recognition of their many brilliant insights:

C.A.R. Hoare, on the occasion of his 75th birthday.
Niklaus Wirth, with special gratitude for his development of computing
science (informatics) at ETH.

Prefaces

note

description:"[
This book has two prefaces, one for instructors and one for students, as stated
here through a contrived but correct use of its own programming notation.

]"
class PREFACING inherit

KIND_OF_READER

create

choose

feature -- Initialization
choose

-- Get the preface that’s right for you.
do

if is_student then

student_preface.read

elseif is_instructor then

instructor_preface.read

else

pick_one_or_both

end

check

-- You learn about dynamic binding
note

why: "You will express this more elegantly"
end

end

end

Student_preface * ∗The preface for inst-
ructors is on page
xxiii.

Programming is fun. Where else can you spend your days devising machines of
your own imagination, build them without ever touching a hammer or staining
your clothes, make them run as by magic, and get paid — not too bad, thanks
for asking — at the end of the month?

Programming is tough. Where else do products from the most prestigious
companies fail even in ordinary use? Where else does one find so many users
complaining so loudly? Where else do engineers routinely work for hours or
days trying to understand why something that should work doesn’t?

Get ready for the mastery of programming and its professional form,
software engineering; get ready for both the toughness and the fun.

SOFTWARE EVERYWHERE

By going into computing science you have chosen one of the most exciting and
fast-moving topics in science and technology. Fifty years ago it was not even
recognized as a scientific subject; today hardly a university in the world is
without a CS department. Thousands of books, journals, magazines and
conferences cover the field. The global revenues of its industry — called
information technology or IT — are in the trillions. No other field, in the history
of technology, has undergone growth of either such magnitude or such speed.

And we have made a difference. Without software there would be no
large-scale plane travel, and in fact no modern planes (or modern cars, or
high-speed trains) since their design requires sophisticated “Computer-Aided
Design” software. To pay its workers, any large corporation would employ
hundreds of people just to write the paychecks. A phone would still be a device
tied to the wall by a cable. After taking a picture, you still could not see the result
until the roll of film came back from processing. There would be no video
games, no camcorders, no iPods and no iPhones, no Skype, no GPS to guide you
to your destination even when there is no one around to ask. To produce a report
you would still hand-write a draft, give it to a typist, and go through rounds of

STUDENT_PREFACExiv

correction requests. A sudden itch to know the name of the captain in The Grand

Illusion, or the population of Cape Town, or the author of a familiar citation,
would require (rather than typing a couple of search words and getting the
answer in a blink) a trip to the library. The list goes on; at the heart of countless
practices that now pervade our daily life lie programs — increasingly
sophisticated programs.

All this does not happen by itself. While computers may have become a
commodity, programs — without which computers would be useless —
definitely are not. Programming, the task of constructing new programs or
improving existing ones, is a challenging intellectual pursuit that requires
programmers possessing creativity and experience. Through this book you will
become familiar with the world of programs and programming, with a view to
becoming a professional in the field.

CASUAL AND PROFESSIONAL SOFTWARE DEVELOPMENT

Although more and more people are acquiring basic computing proficiency,
being able to program at a professional level is another matter, and is what a
curriculum in computing science will bring you.

For comparison, consider mathematics. A few centuries ago, just being able
to add and subtract 5-digit numbers required a university education, and in
return provided qualifications for such good jobs as accountant. Nowadays
these skills are taught in grade school; if you want to become an engineer or a
physicist, or just a stock trader, you need to study more advanced mathematical
topics, such as calculus, in a university. The boundary between basic training
and university-level education has moved up.

Computing is following the same evolution, only much faster — the scale
is in decades, not centuries. Not so long ago, being able somehow to program a
computer was enough to land a job. Do not expect this today; an employer will
not be much more impressed if your résumé states “I have written programs”
than if you say you can add numbers.

What increasingly counts is the difference between having some basic
programming experience and being a software engineer. The former skill will
soon be available to anyone who has gone through a basic education; but the
latter is a professional qualification, just like advanced mathematics. Studying
this book is a step towards becoming a computing professional.

PRIOR EXPERIENCE — OR NOT xv

Factors that distinguish professional software development from casual
programming include size, duration and change. In professional software
development, you may become involved in programs that reach into the
millions of lines of program text, must remain in operation for years or decades,
and will undergo many changes and extensions in response to new
circumstances. Many an issue that seems trivial or irrelevant when you are
working on a medium-size program, meant only to solve a problem of
immediate interest, becomes critical when you move to the scale of professional
development.

With this book I’ll try to prepare you for the real world of software, where
systems are complex, solve serious problems (often affecting human life or
property), stay around for a long time, and must lend themselves gracefully to
requests for change.

PRIOR EXPERIENCE — OR NOT

This book does not assume any prior programming knowledge.

If you did program before, that experience will help you master the concepts
faster. You will recognize some of the ideas, but you should also expect to be
surprised at times, since the professional study of any topic is different from its
use by the general public. Once in a while, for example, you may find that I
belabor a seemingly simple matter. If so, you will (I think) discover after a while
that the topic is not as simple as it seems at first, just as addition is more
challenging to the mathematician than to the accountant. While you must be
prepared to question some of your previous practices if they do not match the
professional software engineering principles developed here, you can and
should take advantage of everything you know. Learning to program well takes
a lot of effort: every bit — every angle from which you can approach the
problem — helps. In particular, the discussion relies, as explained below, on a
supporting software system, Traffic. If you are familiar with programming and
some programming languages, you will be able to discover some of Traffic by
yourself, perhaps ahead of the official assignments. Do not hesitate to do so: one
learns programming in part by reading existing programs for inspiration and
imitation. You may have to do some guessing for elements of Traffic that rely
on techniques and language constructs you have not formally studied yet, but
this is where your experience will help you move faster.

STUDENT_PREFACExvi

On the other hand, if you have not done any programming, you’re OK too.
You might progress more slowly at the beginning, but should just study all the
material carefully and do all the exercises. In particular, even though this book
includes little actual mathematics, you will feel more comfortable if you have a
mathematical mindset and the practice of logical reasoning. This is just as
beneficial as programming experience, and will compensate for any handicap
you feel relative to those fellow students in the back row who look like they
typed their first program before they lost their baby teeth.

Programming, like the rest of computing science, is at the confluence of
engineering and science. Success requires both a hands-on attitude (the
“hacker” side, in the positive sense of the word), useful in technology-oriented
work, and an ability to perform abstract, logical reasoning, required in
mathematics and other sciences. Experience with programming helps you with
the first goal; a logical mind helps you with the second. Wherever your strength
lies, take advantage of it, and use this book to make up for any initial deficiency
on the other side.

MODERN SOFTWARE TECHNOLOGY

Becoming a software professional requires more than one course or one book:
it takes a multi-year curriculum in which — in addition to mathematical
foundations such as logic and statistics — you will learn about software
engineering, theory of computation, data structures, algorithms, operating
systems, artificial intelligence, databases, hardware, networking, project
management, software metrics, numerical computation, graphics and many
other topics. But to prepare for these other computer science courses it is
essential to use the best of what is known in software technology.

In recent years two major ideas, holding the potential for producing
software of much better quality than was available before, have made their way
into the software field: object-oriented software construction and formal

methods. Both of these ideas, but especially the first, can be used to make the
introductory study of computing more exciting and more profitable. Along with
other concepts from modern software technology, they play a major role in this
book. Let’s have a quick advance look at both.

OBJECT-ORIENTED SOFTWARE CONSTRUCTION xvii

OBJECT-ORIENTED SOFTWARE CONSTRUCTION

Object-oriented (“O-O”) software construction follows from the realization that
proper systems engineering must rely on a large inventory of high-quality
reusable components, as in the electronic or construction industries. The O-O
approach defines what form these components should have: each of them must
be based on a certain type of objects. The term “object”, which gives its name
to the method, does not just refer to objects of the application domain, such as
circles or polygons in a graphics program, but also to objects that are purely
internal to the software, such as a list. If you do not quite see what this all means,
that’s normal; I hope that if you read this preface again in a few months it will
all be crystal-clear!

Object technology (the shorter name for object-oriented software
construction) is quickly changing the software industry. Becoming familiar with
it from the very beginning of your computing studies is an excellent insurance
policy against technical obsolescence.

FORMAL METHODS

Formal methods are the application of systematic reasoning techniques, based
on mathematical logic, to the construction of reliable software. Reliability, or
rather the lack of it, is a vexing problem in software; errors, or the fear of error,
are the programmer’s constant companion. Anyone who uses computers has
some anecdote about bugs.

Formal methods can help improve this situation. Learning formal methods
in their full extent requires more knowledge than is available at the beginning
of a university education. But the approach used in this book shows a significant
influence of formal methods, in particular through the idea of Design by

Contract, which considers the construction of software systems as the
implementation of a number of individual contractual relations between
modules, each characterized by a precise specification of obligations and
benefits. I hope that you will understand the importance of these ideas and
remember them for the rest of your career. In industry, everyone knows the
difference between a programmer who just “hacks code” and one who is able to
produce correct, robust and durable software elements.

A previous book
(“Object-Oriented
Software Construc-
tion”, 2nd edition,
Prentice Hall,1997)
covers object technol-
ogy in depth and at a
more advanced level.

STUDENT_PREFACExviii

LEARNING BY DOING

This book is not a theoretical presentation; it assumes that as you go along you
practice what you learn on a computing system. The associated Web site
provides links to the necessary software, in versions for Windows, Linux and
other platforms, which you can download. Your school may also have the
equivalent facilities available on its computers. In fact, the text prompts you, in
some cases, to do the practical work with the software before learning the
theoretical concepts.

The system that you will use for this course is an advanced object-oriented
environment: EiffelStudio, an implementation of the Eiffel analysis, design and
programming language. Eiffel is a simple, modern language, used worldwide in
large, mission-critical industrial projects (banking and finance, health care,
networking, aerospace etc.) as well as for teaching and research in universities.
The EiffelStudio version that you will use is exactly the same as the professional
version, with the same graphical development environment and fundamental
reusable components such as the EiffelBase, EiffelVision and EiffelMedia
libraries. Your school may also have an academic license providing for
maintenance and support.

Appendices present an introduction to four other languages widely used in
industry: Java, C#, C++ and C. Any good software engineer must be fluent in
several programming languages, including at least some of these; learning Eiffel
will be a plus on your résumé (a mark of professionalism) and will help you
master other object-oriented languages.

FROM THE CONSUMER TO THE PRODUCER

Because from day one of the course you will have the whole power of
EiffelStudio at your fingertips, you will be able to skip many of the “baby”
exercises that have traditionally been used to learn programming. The approach
of this book is based on the observation that to learn a technique or a trade it is
best to start by looking at the example of excellent work produced by
professionals, and taking advantage of it by (in order) using that work,
understanding its internal construction, extending it, improving it — and
starting to build your own. This is the time-honored method of apprenticeship,
which places newcomers under the guidance of experts.

touch.ethz.ch.

http://touch.ethz.ch

ABSTRACTION xix

The expertise is represented here by software, more specifically library

classes: software elements from the Traffic library, specially developed for this
book. As you write your first software examples, you will use these classes to
produce results which are already impressive even though you have not had
much to write; you will simply be relying on the mechanisms defined by the
classes, acting, through your own software, as a consumer of existing
components. Then, as someone who knows how to drive but is studying to
become an automobile engineer, you will be encouraged to lift the hood and see
how these classes are made, so that you can later on write extensions to the
classes, improve them perhaps, and write your own classes.

The Traffic library, as its name suggests, provides mechanisms for dealing
with traffic in a city — cars, pedestrians, metros, trams, taxis … — with
graphical visualization, simulations, route computation, route animation etc. It
is a rich reservoir of applications and extensions: you can build on it to write
video games, solve optimization problems and try out many new algorithms.

The built-in examples use Paris as the sample city, because it is a popular
tourist destination; you can easily adapt them to another city without touching
the Traffic software, since all the location information is provided separately in
a file (using a standard format, XML). It suffices to provide such a file
representing your chosen city. For example, the course as taught at ETH Zurich
uses the Zurich tram system, replacing the Paris metro.

ABSTRACTION

Basing your work on existing components has another important consequence
for your education as a professional software engineer. The program modules
that you reuse are a substantial piece of software, embodying a lot of
knowledge. It would be very difficult to use them for your own applications if
you had to read the full program text of each one you need. Instead, you will
rely on a description of their abstract interfaces, which are extracted from
their text (by automatic software mechanisms, part of EiffelStudio) but retain
only the essential information that you need as a consumer. An abstract
interface is a description of the purpose of a software module that only states
its functions, not how the module’s code realizes these functions. In software
terminology it is also called the specification of the module, excluding the
module’s implementation.

STUDENT_PREFACExx

This technique will help you learn one of the professional software
developer’s key skills: abstraction, meaning here the ability to distinguish the
purpose of any piece of software from the details, often numerous, of its
implementation. Every software development professor and textbook preaches
the virtues of abstraction, and for good reason; here you will get the occasional
bit of preaching too, but mostly you will be encouraged to learn abstraction by
example, experiencing its benefits through the reuse of existing components.
When you get to build your own software, you should apply the same principles;
that is the only way to tame the ogre of software complexity.

The benefits of abstraction are quite concrete; you will experience them
right from the beginning. The first program you will write is only a few lines
long, but already produces a significant result (an animated itinerary on a city
map). It can do this only by using modules from Traffic; and it can use them only
because they are available through an abstract specification. If you had to
examine the text of these modules (their source code), then the text of the
modules they rely on themselves, directly or indirectly, you would quickly
drown in an ocean of details and could not produce anything.

Throughout your work with software, abstraction is the lifevest that will
save you from drowning in the sea of complexity.

DESTINATION: QUALITY

This book teaches not only techniques but methodology. Throughout the
presentation you will encounter design principles and rules on programming
style. Sometimes you may think that I am being fussy and that you could write
the program just as well without the rules. Well, often you could. But the
methodological rules make the difference between an amateurish program,
which sometimes works, sometimes not, and the kind of production-quality
software that you will want to produce. You should apply these rules not just
because this book and your teachers say so, but because the power and speed of
computers magnify any deficiency, however small, and require that the
programmer pay attention to both the big picture and every detail. They are also
good job insurance for your future career: there are many programmers around,
and what really differentiates them in the eyes of an employer is the long-term
quality of the software they produce.

Do not fool yourself with the excuse that “this is only an exercise” or “this
is only a small program”:

→ “A class text”, 2.1,
page 15.

DESTINATION: QUALITY xxi

� Exercises are precisely where you need to learn the best possible
techniques; when Airbus hires you to write the control software for their
next plane, it will be too late.

� Calling a program “small” is often more hope than guarantee. In industry,
many big programs are small programs that grew, since a good program
tends to give its users endless ideas for requesting new functionalities.

So you should apply the same methodological principles to all the programs you
develop, whether small or large, educational or operational.

Such is the goal of this book: not just to take you through the basics of
software engineering and to let you experience the fun and thrill of producing
software that works, but also to develop — along with a sense of beauty for the
principles, methods, algorithms, data structures and other techniques that define
the discipline — a sense for what makes good software stand out, and a
determination to produce programs of the highest possible quality.

BM
Zurich / Santa Barbara, April 2009

Instructor_preface * ∗The preface for stu-
dents is on page xiii.

Right from its subtitle, this book shows its colors: it is not just about learning to
program but about “Learning to Program Well”. I am trying to get the students
started on the right track so that they can enjoy programming — without
enjoyment one does not go very far — and have a successful career; not just a
first job, but a lifelong ability to tackle new challenges.

To help them reach this goal, the book applies innovative ideas detailed in
the rest of this preface:

� Inverted curriculum, also known as the “outside-in” approach, relying on
a large library of reusable components.

� Pervasive use of object-oriented and model-driven techniques.

� Eiffel and Design by Contract.

� A moderate dose of formal methods.

� Inclusion, from the very beginning, of software engineering concerns.

These techniques have for several years been applied to the “Introduction to
Programming” course at ETH Zurich, taken by all entering Computer Science
students. Touch of Class builds on this course and draws from its lessons. This
also means that teachers using it as a textbook can rely on the teaching material
developed for the course: slides, lecture schedules, exercises, self-study
tutorials, student projects, even video recordings of our lectures.

THE CHALLENGES OF A FIRST COURSE

Many computer science departments around the world are wondering today
how best to teach introductory programming. This has always been a difficult
task, but new challenges have added themselves to the traditional ones:

� Adapting to ever higher stakes.

� Identifying the key knowledge and skills to teach.

� Coping with fads and outside pressures.

� Addressing a broad diversity of initial student backgrounds and abilities.

� Meeting high expectations for examples and exercises.

� Introducing the real challenges of professional software development.

� Teaching methodology and formal techniques without scaring off students.

← See “Community
resources”, page vii.

This section is based
on reference [12].

http://se.ethz.ch/touch

INSTRUCTOR_PREFACExxiv

The stakes are getting ever higher. When educating future software
professionals, we must teach durable skills. It is not enough to present
immediately applicable technology, for which in our globalized industry a
cheaper programmer will always be available somewhere.

We must identify the key knowledge and skills to teach. Programming is no
longer a rare, specialized ability; a large proportion of the population gets exposed
to computers, software and some rudimentary form of programming, for example
through spreadsheet macros or Web site development with Python, Ruby on Rails
or ASP.NET. Software engineers need more than the ability to program; they must
master software development as a professional endeavor, and by this distinguish
themselves from the masses of occasional or amateur programmers.

It is important to keep a cool head in the presence of fads and outside

pressures. Fads are a given of our field, and they are not always bad —
structured programming, object technology and design patterns were all fads
once — but we must make sure an idea has proved its mettle before inflicting it
on our students. Outside pressures can be more delicate to handle. Student
families have more say nowadays; this too is not necessarily bad, but sometimes
results in inappropriate demands that we teach the specific technologies
required in the job advertisements of the moment. What this attitude misses is
that four years later some of the fashionable acronyms will be different, and that
competent industry recruiters look for problem-solving skills, not narrow
knowledge. It is our duty to serve the very interests of the students and their
families by teaching them the fundamental matters, which will give them not
just a first job but a rewarding career.

This obsession with learning the right résumé-filling buzzwords for fear of not
landing a job is silly anyway. It is a worldwide phenomenon, likely to last for decades,
that a decent software developer has no trouble finding a good job. For all the gloom
that the media have spread after the “burst of the Internet bubble”, and the fears that
“all the jobs have gone to Bangalore”, no end is in sight to the challenges and
excitement of our field, including of course for our colleagues in Bangalore. But there
is a qualification: people who get and keep good jobs are not the narrow-minded
specialists having been taught whatever filled the headlines of the day; they are the
competent developers possessing a wide and deep understanding of computing
science, and mastery of many complementary technologies.

The broad diversity of student backgrounds complicates the task. Among the
students in the lecture hall on the first day of the introductory course, you will
find some who have barely touched a computer, some who have already built an
e-commerce site, and the full range in-between. What can the teacher do?

THE CHALLENGES OF A FIRST COURSE xxv

� It is tempting to assume a fair amount of prior programming experience and
teach to the most advanced students only; but this shuts out students who
simply have not had the opportunity or inclination to work with computers
yet. In my experience, they include some who can later turn out to be
excellent computer scientists thanks to excellent abstraction skills, which
they have so far applied to topics such as mathematics rather than
computing. The nerdy image still widely associated with computers may
have prevented them from realizing that it is not about late-night video
game sessions fueled by home-delivery pizza (a picture which, in particular,
turns off many girls with excellent computer science potential) but about
cogent thinking applied to solving some of the most exciting intellectual
challenges open to humankind.

� We must not either — at the other extreme — bring everyone down to the
lowest level: we need a way to catch and retain the attention of the more
experienced students, letting them use and expand the insights they have
already gained.

Reliance on reusable components, discussed below, is a central part of this
book’s solution to the issue. By giving students access to high-quality libraries,
we let the novices take advantage of their functionality through abstract
interfaces without needing at first to understand what’s inside. The more
advanced and curious students can, ahead of the others, start to peek into the
internals of the components and use them as guidance for their own programs.

For this to work we need high-quality examples. Students today, having
lived most of their lives in a world awash in the visual and auditory marvels of
software-powered multimedia, expect to see and build more than small
academic programs of the “Compute the 7-th Fibonacci number” kind. We must
meet these expectations of the “Nintendo Generation” [3], without of course
letting technological dazzle push aside the teaching of timeless skills.

A variant of this issue is what we may call the “Google-and-paste” phenomenon,
the name I use for what colleagues (generally using Java or C++ as their teaching
language) report as follows: you give an exercise that calls for, say, a 100-line
program solution. Internet-savvy students quickly find on the Web some Java code
that does the job, except that it does much more as part of, maybe, a 10,000-line
program. Now it does not take long for beginners to hit upon a key piece of
programming wisdom from the ages: that if you see a program that works you mess
with it as little as you can. You hold your breath when coming anywhere close to it.
Following this insight, the student will just switch off (rather than remove) the parts
he or she does not need, through a minimal set of changes. So the teacher gets a
10,000-line solution to an elementary question. Of course one may impose, if not a
full prohibition of Web use (which in a computer science curriculum would be
bizarre), precise rules that would exclude such a “solution”. But how exactly?
“Google-and-paste” is, after all, a form of reuse, even if not exactly the kind
advocated by software engineering textbooks.

INSTRUCTOR_PREFACExxvi

The approach of this book goes one step further. Not only do we encourage reuse,
we actually provide a large amount of code (150,000 lines of Eiffel at the time of
writing) for reuse, and also for imitation since it is available in source form and
explicitly designed as a model of good design and implementation. Reuse is one of
the “best practices” promoted by the course from the beginning; but it is a form of
reuse in line with principles of software engineering, based on abstract interfaces
and contracts.

These questions contribute to the next issue on our list: introducing the real

challenges of professional software development. In a university-level
computer science or software engineering program, we cannot just teach
programming in the small. We have to prepare students for what matters to
professionals: programming in the large. Not all techniques that work well for
small programs will scale up. The very nature of an academic environment,
especially at an introductory level, makes it hard to introduce students to the
actual challenges of today’s industrial software: software developed by many
people, expanding to many lines of code, adapted to many categories of uses and
users, maintained over many years, and undergoing many changes.

This concern for scalability gives particular urgency to the last issue:
introducing methodology and formal reasoning without disconnecting from

the students. Methodological advice — injunctions to use information hiding,
contracts and software engineering principles in general — can sound preachy
and futile to beginners. Introducing some formal (mathematically-based)
techniques, such as axiomatic semantics, can widen this potential gap between
teacher and student. Paradoxically, the students who have already programmed
a bit and stand to benefit most from such admonitions and techniques may be
most tempted to discard them since they know from experience that it is possible
— at least for small programs — to reach an acceptable result without strict rules.
The best way to instill a methodological principle is pragmatic: by showing that
it empowers you to do something that would otherwise be unthinkable, such as
building impressive programs with graphics and animation. Our reliance on
powerful libraries of reusable components is an example: right from the
beginning of the course, students can produce significant applications, visual
and all, thanks to these components; but they would never proceed beyond a few
classes if as a prerequisite they had to read the code. The only reuse that works
here is through abstract interfaces.

Rather than pontificating on abstraction, information hiding and contracts,
it is better to let the students use these techniques and discover that they work.
If an idea has saved you from drowning, you will not discard it as sterile
theoretical advice.

OUTSIDE-IN: THE INVERTED CURRICULUM xxvii

OUTSIDE-IN: THE INVERTED CURRICULUM

The order of topics in programming courses has traditionally been bottom-up:
start with the building blocks of programs such as variables and assignment;
continue with control and data structures; move on if time permits — which it
often does not in an introductory course — to principles of modular design and
techniques for structuring large programs.

This approach gives the students a good practical understanding of the
fabric of programs. But it fails to teach the system construction concepts that
software engineers must master to be successful in professional development.
Being able to produce programs is no longer sufficient; many non-professional
software developers can do this honorably. What distinguishes the genuine
professional is the mastery of system skills for the development and
maintenance of possibly large and complex programs, open for adaptation to
new needs and for reuse of some of their components. Starting from the nuts and
bolts, as in the traditional “CS1” curriculum, may not be the best way to teach
these skills.

Rather than bottom-up — or top-down — the order of this book is
outside-in. It relies on the assumption that the most effective way to learn
programming is to use good existing software, where “good” covers both the
quality of the code — since so much learning happens through imitation of
proven models — and, almost more importantly, the quality of its program
interfaces (APIs).

From the outset we provide the student with powerful software: a set of
libraries, called Traffic, where the top layers have been produced specifically for
this book, and the basic layers on which they rely (data structures, graphics,
GUI, time and date, multimedia, animation…) are widely used in commercial
applications. All this library code is available in source form, providing a
repository of high-quality models to imitate; but in practice the only way to use
them for one’s own programs, especially at the beginning, is through API
specifications, also known as contract views, which provide the essential
information abstracted from the actual code. By relying on contract views,
students are right from the start able to produce interesting applications, even if
the part they write originally consists of just a few calls to library routines. As
they progress, they learn to build more elaborate programs, and to understand
the libraries from the inside: to “open up the black boxes”. By the end of the
course they should be able, if needed, to produce such libraries by themselves.

INSTRUCTOR_PREFACExxviii

This Outside-In strategy results in an “Inverted Curriculum” where the
student starts as a consumer of reusable components and learns to become a
producer. It does not ignore the teaching of standard low-level concepts and
skills, since in the end we want students who can take care of everything a
program requires, from the big picture to the lowest details. What differs is the
order of topics and particularly the emphasis on architectural skills, often
neglected in the bottom-up curriculum.

The approach is intended to educate students so that they will master the key
concepts of software engineering, in particular abstraction. In my career in
industry I have repeatedly observed that the main quality that distinguishes good
software developers is their ability to abstract: to separate the essential from the
accessory, the durable from the temporary, the specification from the
implementation. All good introductory textbooks duly advocate abstraction, but
the result of such exhortations is limited if all the student knows of
programming is the usual collection of small algorithmic examples. I can lecture
on abstraction too, but in the end, as noted earlier, the most effective way to
convey the concepts is by example; by showing to the student how he or she can
produce impressive applications through the reuse of existing software. That
software is large at least by academic standards; trying to reuse it by reading the
source code would take months of study. Yet students can, in the first week of
the course, produce impressive results by reusing it through the contract views.

Here abstraction is not just a nice idea that we ask our students to heed,
another parental incitation to be good and do right. It is the only way to survive
when faced with an ambitious goal which you can only reach by standing on
someone else’s shoulders. Students who have gone early and often through this
experience of building a powerful application through contract-based reuse of
libraries do not need much more haranguing about abstraction and reuse; for
them these concepts become a second nature.

Teaching is better than preaching, and if something is better than teaching it
must be the demonstration — carried out by the students themselves — of the
principles at work, and the resulting “Wow!”.

The supporting software

Central to the Outside-In approach of this book is the accompanying Traffic
software, available for free download. The choice of application area for the
library required some care:

� The topic should be immediately familiar to all students, so that we can spend
our time studying software issues and solutions, not the problem domain. (It
might be fun to take, say, astronomy, but we would end up discussing comets
and galaxies rather than inheritance structures and class invariants.)

From touch.ethz.ch.

http://touch.ethz.ch

OUTSIDE-IN: THE INVERTED CURRICULUM xxix

� The area should provide a large stock of interesting algorithm and data
structure examples, applications of fundamental computer science concepts,
and new exercises that each instructor can devise beyond those in the book.
This should extend beyond the introductory course, to enable our colleagues
teaching algorithms, distributed systems, artificial intelligence and other
computer science topics to take advantage of the software if they wish.

� The chosen theme should call for graphics and multimedia development as
well as advanced graphical user interfaces.

� Unlike many video games, it must not involve violence and aggression,
which would be inappropriate in a university setting (and also would not
help correct the gender imbalance which plagues our field).

The application area that we retained is transportation in a city: modeling,
planning, simulation, display, statistics. The supporting Traffic software is not
just an application, doing a particular job, but a library, providing reusable
components from which students and instructors can build applications.
Although still modest, it has the basic elements of a Geographical Information
System and the supporting graphical display mechanisms.

For its examples the book uses Paris, with its streets and transportation
system; since the city’s description comes from XML files, it is possible to
retarget the example to any other city. (In the second week of the first session of
the course at ETH a few students spontaneously provided a file representing the
Zurich transportation network, which we have been using ever since.)

The very first application that the student produces takes up twelve lines. Its
execution displays a map, highlights the Paris Metro network on the map,
retrieves a predefined route, and shows a visitor traveling that route through
video-game-style graphical animation. The code is:

class PREVIEW inherit
TOURISM

feature
explore

-- Show city info and route.
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

INSTRUCTOR_PREFACExxx

The algorithm includes only four instructions, and yet its effect is impressive
thanks to the underlying Traffic mechanisms.

In spite of the reliance on an extensive body of existing software, I stay
away from giving any impression of “magic”. It is indeed possible to explain
everything, at an appropriate level of abstraction. We should never say “just do

as you are told, you’ll understand when you grow up”. This attitude is no better
at educating students than it is at raising one’s own children. In the first example
as shown above, even the inherit clause can be explained in a simple fashion: I
do not go into the theory of inheritance, of course, but simply tell the students
that class TOURISM is a helper class introducing predefined objects such as
Paris, Louvre, Metro and Route1, and that a new class can “inherit” from such
an existing class to gain access to its features. They are also told that they do not
need to look up the details of class TOURISM, but may do so if they feel the born
engineer’s urge to find out “how things work”.

The rule, allowing our students to approach the topics progressively, is
always to abstract and never to lie.

From programming to software engineering

Programming is at the heart of software engineering, but is not all of it. Software
engineering concerns itself with the production of systems that may be large, are
developed over a long time, undergo many changes, and meet strong constraints
of quality, timeliness and cost. Although the corresponding techniques are usually
not taught to beginners, it is important to provide at least a first introduction,
which appears in the last chapter. The topics include requirements analysis (the
programmers we educate should not just be techies focused on the machinery but
should also be able to talk to customers and understand their needs), facets of
software quality, an introduction to lifecycle models, the concept of agile
development, quality assurance techniques and Capability Maturity Models.

An earlier chapter complements this overview by presenting software
engineering tools, including compilers, interpreters and configuration
management systems.

Terminology

Lucid thinking includes lucid use of words. I have devoted particular attention
to consistent and precisely defined terminology. The most important definitions
appear in call-out boxes, others in the main body of the text.

At the end of each chapter a “New vocabulary” section lists all the terms
introduced, and the first exercise asks the student to provide precise definitions
of each. This is an opportunity to test one’s understanding of the ideas
introduced in the chapter.

TECHNOLOGY CHOICES xxxi

TECHNOLOGY CHOICES

The book relies on a combination of technologies: an object-oriented approach,
Design by Contract, Eiffel as the design and programming language. It is
important to justify these choices and explain why some others, such as Java as
the main programming language, were not retained.

Object technology

Many introductory courses now use an object-oriented language, but not
necessarily in an object-oriented way; few people have managed to blend
genuine O-O thinking into the elementary part of the curriculum. Too often, for
example, the first programs rely on static functions (in the C++ and Java sense
of routines not needing a target object). There sometimes seems to be an implicit
view that before being admitted to the inner chambers of modern technology
students must suffer through the same set of steps that their teachers had to
travel in their time. This approach retains the traditional bottom-up order, only
reaching classes and objects as a reward to the students for having patiently
climbed the Gradus ad Parnassum of classical programming constructs.

There is no good reason for being so fussy about O-O. After all, part of the
pitch for the method is that it lets us build software systems as clear and natural
models of the concepts and objects with which they deal. If it is so good, it
should be good for everyone, beginners included. Or to borrow a slogan from
the waiters’ T-shirts at Anna’s Bakery in Santa Barbara, whose coffee played its
part in fueling the writing of this book: Life is uncertain — Eat dessert first!

Classes and objects appear at the very outset and serve as the basis for the
entire book. I have found that beginners adopt object technology
enthusiastically if the concepts are introduced, without any reservations or
excuses, as the normal, modern way to program.

One of the principal consequences of the central role of object technology
in this presentation is that the notion of model guides the student throughout.
The emergence of “model-driven architecture” reflects the growing recognition
of an idea central to object technology: that successful software development
relies on the construction of models of physical and conceptual systems.
Classes, objects, inheritance and the associated techniques provide an excellent
basis to teach effective modeling techniques.

INSTRUCTOR_PREFACExxxii

Object technology is not exclusive of the traditional approach. Rather, it
subsumes it, much as relativity yields classical mechanics as a special case: an
O-O program is made of classes, and its execution operates on objects, but the
classes contain routines, and the objects contain fields on which programs may
operate as they would with traditional variables. So both the static architecture
of programs and the dynamic structure of computations cover the traditional
concepts. We absolutely want the students to master the traditional techniques
such as algorithmic reasoning, variables and assignment, control structures,
pointer manipulation (whose coverage here includes algorithms to reverse a
linked list, a tricky task seldom covered in introductory courses), procedures
and recursion; they must also be able to build entire programs from scratch.

Eiffel and Design by Contract

We rely on Eiffel and the EiffelStudio environment which students can
download for free from www.eiffel.com. Universities can also install this free
version (and purchase support if desired). This choice directly supports the
pedagogical concepts of this book:

� The Eiffel language is uncompromisingly object-oriented.

� Eiffel provides a strong basis to learn other programming languages such as
Java, C#, C++ and Smalltalk (as demonstrated by appendices which
introduce the essentials of the first three of these languages, in about 30
pages each, by building on the concepts developed in the rest of the book).

� Eiffel is easy for beginners to learn. The concepts can be introduced
progressively, without interference between basic constructs and those not
yet studied.

� The EiffelStudio development environment uses a modern, intuitive GUI,
with advanced facilities including sophisticated browsing, editing, a debugger
with unique reverse execution capabilities, automatic documentation (HTML
or otherwise), software metrics, and leading-edge automatic testing
mechanisms. It produces architectural diagrams automatically from the code;
the other way around, it lets a user draw diagrams from which the environment
will produce the code, with round-trip capabilities.

� EiffelStudio is available on many platforms including Windows, Linux,
Solaris and Microsoft .NET.

� EiffelStudio includes a set of carefully written libraries, which support the
reuse concepts of this book, and serve as the basis of the Traffic library. The
most relevant are: EiffelBase, which by implementing the fundamental
structures of computer science supports the study of algorithms and data
structures in part III: EiffelTime for date and time; EiffelVision, for portable
graphics; and EiffelMedia for multimedia and animation.

→ Appendices A (Java),
B (C#), C (C++).

http://www.eiffel.com

TECHNOLOGY CHOICES xxxiii

� Unlike tools designed exclusively for education, Eiffel is used commercially
for mission-critical applications handling tens of billions of dollars in
investments, managing health care systems, performing civil and military
simulations, and tackling other problems across a broad range of application
areas. This is in my opinion essential to effective teaching of programming; a
tool that is really good should be good for professionals as well as for novices.

� The Eiffel language is specified by a standard of the International Standards
Organization. For the teacher relying on a programming language, an
international standard, especially an ISO standard, is a guarantee of
sustainability and precise definition.

� Eiffel is not just a programming language but a method whose primary aim
— beyond expressing algorithms for the computer — is to support thinking

about problems and their solutions. It enables us to teach a seamless

approach that extends across the software lifecycle, from analysis and
design to implementation and maintenance. This concept of seamless
development, supported by the round-trip Diagram Tool of EiffelStudio, is
in line with the modeling benefits of object technology.

To support these goals, Eiffel directly implements the concepts of Design by

Contract, which were developed together with Eiffel and are closely tied to
both the method and the language. By equipping classes with preconditions,
postconditions and class invariants, we let students use a much more systematic
approach than is currently the norm, and prepare them to become successful
professional developers able to deliver bug-free systems.

One should also not underestimate the role of syntax, for beginners as well as
for experienced programmers. Eiffel’s syntax — illustrated by the earlier short
example — facilitates learning, enhances program readability, and fights mistakes:

� The language avoids cryptic symbols.

� Every reserved word is a simple English word, unabbreviated (INTEGER,
not int).

� The equal sign =, rather than doing violence to hundreds of years of
mathematical tradition, means the same as in math.

� Semicolons are not needed. In most of today’s languages, program texts are
peppered with semicolons terminating declarations and instructions. Most
of the time there is no reason for these pockmarks; even when not
consciously noticed, they affect readability. Being required in some places
and illegal in others, for reasons obscure to beginners, they can be a source
of errors. In Eiffel the semicolon as separator is optional, regardless of
program layout. This leads to a neat program appearance, as you may see by
picking any example in the book.

For the text of the stan-
dard see tinyurl.com/
y5abdx or the ECMA
version (same con-
tents, free access) at
tinyurl.com/cq8gw.

← Class PREVIEW,
page xxix.

http://tinyurl.com/y5abdx
http://tinyurl.com/y5abdx
http://tinyurl.com/cq8gw

INSTRUCTOR_PREFACExxxiv

Encouraging such cleanliness in program texts should be part of the teacher’s
pedagogical goals. Eiffel includes precise style rules, explained along the way
to show students that good programming requires attention to both the
high-level concepts of architecture and the low-level details of syntax and style:
quality in the large and quality in the small.

More generally, a good language should let its users focus on the concepts
rather than the notation. This is one of the goals of using Eiffel for teaching: that
students should think about their problems, not about Eiffel

Why not Java?

Since courses in recent years have often used Java, or a Java variant such as C#,
it is useful to explain why we do not follow this practice. Java is important for
a computer scientist to know — indeed, as mentioned, the book provides an
appendix describing Java, along with others on C#, C++ and C — but not
suitable as a first teaching language. There is simply too much baggage to be
learned before the student can start to think about the problems. This is apparent
from the first program attempts; a Java “Hello World” reads

This is full of irrelevant concepts, each an obstacle to learning. Why “public”,
“static”, “void”? (Sure, I’ll make my program public if you insist, but do you
mean my efforts are void of any value?) These keywords have nothing to do with
the purpose of the program, and the student won’t begin to understand what they
mean for a few months at least, yet he or she must include them, like magic
incantations, for their programs to work. For the teacher this means repeatedly
engaging in injunctions to use certain constructions without understanding what
they mean. As noted earlier, this “You’ll understand when you grow up” style is
not good pedagogy. Eiffel protects us from it: we can explain every programming
language construct that we use, right from the first example.

The object-oriented nature of Eiffel and the simplicity of the language play
a role. It is ironic that every Java program, starting with the simplest example as
shown above, uses a static function as its main program, departing from the
object-oriented style of programming. There are of course people who do not
like the idea of using O-O for the first course; but if you do choose objects, you
should be consistent. At some point the students will realize that this
fundamental scheme — the one you told them to use, from the first example to
every subsequent one — is not object-oriented after all; how can you answer
their inevitable question with a straight face?

class First {
 public static void main(String args[])
 { System.out.println("Hello World!"); } }

TECHNOLOGY CHOICES xxxv

Syntax, as noted, matters. In this first example the student must master
strange symbol accumulations, like the final “"); } }”, disconcerting to the eye
and with no obvious role. In this accumulation the precise order of the symbols
is essential, but is hard to explain and to remember. (Why a semicolon between
a closing parenthesis and a brace? Is there a space after that semicolon, and if so
how important is it?) Such aspects are troubling to beginners; inevitably, much
time and effort are consumed learning them and recovering from trivial
mistakes causing mysterious results, just when the student should be
concentrating on the concepts of programming.

Another source of confusion is the use of “=” for assignment, inherited from
Fortran through C and hard to justify in the twenty-first century. How many
students starting with Java have wondered what value a must have for a = a + 1
to make sense, and, as noted by Wirth [14], why a = b does not mean the same
as b = a ?

Inconsistencies are troubling: why, along with full words like “static”, use
abbreviations such as “args” and “println”? Students will retain from that first
exposure to programming that it is not necessary to be consistent, and that
saving keystrokes is more important than choosing clear names. (In the basic
Eiffel library the operation to go to the next line is called put_new_line.) If
indeed we later introduce methodological advice urging students to choose clear
and consistent names, we can hardly expect them to take us seriously. “Do as I

say, not as I do” is another dubious pedagogical technique.

To cite another example: when describing the need for a mechanism for
treating operations as objects, like Eiffel’s agents or the closures of other
languages, I had to explain how one addresses the issue in a language such as
Java that does not have these mechanisms. Since I used iterators as one of the
motivating examples, I was at first happy to find that the original Sun page
describing Java’s “inner classes” also had code for an iterator design, which it
would have been nice to use as a model. But then it includes declarations such as

I can perhaps try to justify this to seasoned programmers, but there is no way I can
explain it to beginning students — and I admire anyone who can. Why does
StepThrough appear three times? Does it denote the same thing each time? Is the
change of letter case (StepThrough vs stepThrough) relevant? What does the
whole thing mean anyway? Very quickly the introductory programming course

public StepThrough stepThrough() {
 return new StepThrough();
 }

→ Chapter 17.

See tinyurl.com/c4oprq
(archive of java.sun.
com/docs/ books/tuto-
rial/java/ javaOO/
innerclasses.html, Oct.
2007; the page now uses
a different example).

http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://tinyurl.com/c4oprq

INSTRUCTOR_PREFACExxxvi

turns into painful exegesis of the programming language, with little time left for
real concepts. In Alan Perlis’s words, “A programming language is low-level when

its programs require attention to the irrelevant”.

Also contributing to the difficulties of using Java in an introductory course
are the liberties that the language takes with object-oriented principles.
For example:

� If x denotes an object and a one of the attributes of the corresponding class,
you may by default write the assignment x.a = v to assign a new value to
the a field of the object. This violates information hiding and other design
principles. To rule it out, you must shadow every attribute with a “getter”
function. For the teacher, the choice is between forcing students early on to
add such noise to their programs, or let them acquire bad design habits
which are then hard to unlearn.

� Java strictly distinguishes fully abstract modules, called interfaces, from
fully implemented ones — classes. One of the benefits of the class
mechanism, available as early as Simula 67, is to offer a full range of
possibilities between these extremes. This idea is at the core of teaching the
object-oriented method, in particular teaching design: you can express a
notion, when you first identify it, as a fully deferred (abstract) class; then
you refine it progressively, through inheritance, into a fully effective class.
Classes at intermediate levels in this process are partially deferred and
partially effective. Java does not let you use this approach if you may need
to combine two or more abstractions through inheritance: all but at most one
of the combined modules must be interfaces.

There are many more examples of such influences of Java on the teaching
process; a new Eiffel user expressed a typical reaction by writing on a mailing
list that “I have written a lot of C++ and Java; all my brain power went on

learning loads of nerdy computer stuff. With Eiffel I do not notice the

programming and spend my time thinking about the problem.”

A reason often invoked for using Java or C++ in introductory programming
is the market demand for programmers in these languages. This is a valid
concern, but it applies to the computer science curriculum as a whole, not to the
first course. Programming at the level required of a CS graduate today is hard
enough; we should use the best pedagogical tools. If market demand had been
the determinant, we would never in the past have used Pascal (for many years
the introductory language of choice), even less Scheme. Following the trends
reflected in the latest ads for programmers we would in turn have imposed
Fortran, Cobol, PL/I, Visual Basic, maybe C — and trained programmers who,
a few years after graduation, would have found their skills obsolete when the
great wheel of fashion turned. Our duty is to train problem-solvers who can
quickly adapt to the evolutions of our discipline.

Epigram #8, available
at www-pu.informa-
tik.uni-tuebin-
gen.de/users/klaeren/
epigrams.html.

http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html

TECHNOLOGY CHOICES xxxvii

We should not let short-term market considerations damage pedagogical
principles. In other words: if you think Java or C++ are ideal teaching tools, use
them; you probably will not like this book very much anyway. But if you agree
with its approach, do not let yourself be scared that some student or parent will
complain that you use an “academic” approach. Explain to them that you are
teaching programming in the best way you know, that someone who understands
programming will retain that skill for life, and that any half-decent software
engineer can pick up a new programming language at breakfast — in case he or
she has not already picked it up from other courses of your curriculum. As to the
“academic” qualification (assuming that in a university context, it is meant as
derogatory!), point them to eiffel.com and its long list of mission-critical systems
in Eiffel in the financial industry, aerospace, defense, networking,
computer-aided design, health care and other areas, successfully deployed by
major companies, often after attempts in other languages had failed.

Java, C#, C++ and C are, for the next few years, an important part of any
software engineer’s baggage; it is important, as reflected by this book’s four
language-specific appendices, to ensure that the students know them. This goal
is, however, unrelated to the question of what techniques to use in the
introductory course. Students will most likely be exposed to these languages at
some point; it would be a rare curriculum these days where no course uses at
least one of them. In any case, no introductory course that I know covers all of
them, so students need to learn more regardless of the initial teaching language.

Programming languages and the programming culture associated with each
of them are interesting objects of study. Our group at ETH, which teaches
introductory programming in Eiffel, has introduced courses for the third year
and beyond, devoted to specific languages: “Java in Depth”, “C# in Depth” etc.

Once you understand the concepts of programming, you are well prepared
to master diverse languages. Eiffel is a benefit here too: as many people have
noted, having learned Eiffel and its object model helps you become a better C++
or Java programmer.

As a potential employer in both academia and industry I see dozens of CVs every
month. They all boast of the same skills, including C++ and Java. Other than as
checkboxes to be ticked, this will not impress anyone. What recruiters do watch for
is any skill that sets out an applicant from the hordes of others with similar
backgrounds. An example of such a distinctive advantage is that the applicant
knows a fully object-oriented approach with support for software engineering, as
evidenced by a curriculum using Eiffel and Design by Contract. It is possible to
survive a C++-based curriculum without ever understanding O-O concepts in any
depth; with Eiffel that is less likely. Competent employers know that what counts,
beyond immediate skills, is depth of understanding of software issues and aptitude
for long-term professional development. All the effort deployed through this book
and its use of Eiffel is directed at these goals.

It may be appropriate here to cite Alan Perlis again: A language that doesn’t

affect the way you think about programming is not worth knowing.

In our surveys [13],
about 50% of students
have used Java or C++
before they reach the
introductory course.

Epigram #19.

http://eiffel.com

INSTRUCTOR_PREFACExxxviii

HOW FORMAL?

One of the benefits of the Design by Contract approach is to expose the
students to a gentle dose of “formal” (mathematics-based) methods of
software development.

The software world needs, among other advances, more use of formal
methods. Any serious software curriculum should devote at least one course
entirely to mathematics-based software development, based on a mathematical
specification language. In addition — although not as a substitute for such a
course — the ideas should influence the entire software curriculum, even
though as discussed below it is not desirable today to subject beginners to a fully
formal approach. The challenge is not only to include an introduction to formal
reasoning along with practical skills, but to present the two aspects as
complementary, closely related, and both indispensable. The techniques of
Design by Contract, tightly woven into the fabric of object-oriented software
architecture, permit this.

Teaching Design by Contract awakens students to the idea of
mathematics-based software development. Almost from the first examples of
interface specifications, routines possess preconditions and postconditions, and
classes possess invariants. These concepts are introduced in the proper context,
treated — as they should, although many programmers still fear them, and most
programming languages offer no support for contracts — as the normal, obvious
way to reason about programs. Without intimidating students with a heavy-duty
formal approach, we open the way for the introduction of formal methods, which
they will fully appreciate when they have acquired more experience with
programming.

In no way does the use of a mathematical basis imply a stiff or intimidating
manner. Some formality in the concepts goes well with a practical, hands-on
approach. For example the text introduces loops as an approximation

mechanism, to compute a solution on successively larger subsets of the data; in
this view the notion of loop invariant comes naturally, at the very beginning of
the discussion of loops, as a key property stating the approximation obtained at
every stage.

This emphasis on practicality distinguishes Design by Contract from the
fully formal approaches used in some introductory courses, whose teachers hold
that students should first learn programming as a mathematical discipline.
Sometimes they go so far as to keep them away from the computer for a
semester or a full year. The risk of such dogmatism is that it may produce the
reverse of its intended effect.

→ In chapter 4.

HOW FORMAL? xxxix

Students, in particular those who have programmed before, realize that they
can produce a program — not a perfect program, but a program — without a
heavy mathematical apparatus; if you tell them that it’s not possible they will
just disconnect: they may from then on reject any formal technique as irrelevant,
including both simple ideas which can help them now and more advanced ones
later. As Leslie Lamport — not someone to be suspected of underestimating the
value of formal methods — points out [6]:

[In American universities] there is a complete separation between

mathematics and engineering. I know of one highly regarded

American university in which students in their first programming

course must prove the correctness of every tiny program they write. In

their second programming course, mathematics is completely

forgotten and they just learn how to write C programs. There is no

attempt to apply what they learned in the first course to the writing of

real programs.

Our experience confirms this. First-year students, who react well to Design by
Contract, are not ready for a fully formal approach. To develop a real
appreciation for its benefits you must have encountered the difficulties of
industrial software development. On the other hand, it also does not work to let
students develop a totally informal approach first and, years later, suddenly
reveal that there is more to programming than hacking. The appropriate
technique, I believe, is incremental: introduce Design by Contract techniques
right from the start, with the associated idea that programming is based on a
mathematical style of reasoning, but without overwhelming students with
concepts beyond their reach; let them master the practice of software
development on the basis of this moderately formal approach; later in the
curriculum, bring in courses on such topics as formal development and
programming language semantics. This cycle can be repeated, as theory and
practice reinforce each other.

Such an approach helps turn out students for whom correctness concerns are
not an academic chimera but a natural, ever-present component of the software
construction process.

In the same spirit, the discussion of high-level functional objects (agents, chapter
17, and their application to event-driven programming in chapter 18) provides the
opportunity of a simple introduction to lambda calculus, including currying —
mathematical topics that are seldom broached in introductory courses but have
applications throughout the study of programming.

INSTRUCTOR_PREFACExl

OTHER APPROACHES

Looking around at university curricula, talking to teachers and examining
textbooks leads to the observation that four main approaches exist today for
introductory programming:

1 Language-focused.

2 Functional (in the sense of functional programming).

3 Formal.

4 Structured, Pascal or Ada-style.

It is important to understand the benefits of these various styles — indeed we
retain something from each of them — and their limitations.

The first approach is probably the most common nowadays. It focuses on a
particular programming language, often Java or C++. This has the advantage of
practicality, and of easily produced exercises (subject to the Google-and-Paste
risk), but gives too much weight to the study of the chosen language at the
expense of fundamental conceptual skills. Relying on Eiffel helps us teach the
concepts, not the specifics of a language.

The second approach is illustrated in particular by the famous MIT course
based on the Scheme functional programming language [1], which has set the
standard for ambitious curricula; there also have been attempts using Haskell,
ML or OCaml. This method is strong on teaching the logical reasoning skills
essential to a programmer. We strive to retain these benefits, as well as the
relationship to mathematics, present here through logic and Design by Contract.
But in my opinion object technology provides students with a better grasp of the
issues of program construction. Not only is an O-O approach in line with the
practices of the modern software industry, which has shown little interest in
functional programming; more importantly for our pedagogical goals, it
emphasizes system building skills and software architecture, which should be at
the center of computer science education.

While, as noted, the curriculum should not be a slave to the dominant
technologies just because they are dominant, using techniques too far removed
from practice subjects us to the previously mentioned risk of disconnecting from
the students, especially the most advanced ones, if they see no connection
between what they are being taught and what their incipient knowledge of the
discipline tells them. (Alan Perlis put this less diplomatically: Purely

applicative languages are poorly applicable.)
Epigram #108.

TOPICS COVERED xli

I would argue further that the operational, imperative aspects of software
development, downplayed by functional programming, are not just an
implementation nuisance but a fundamental component of the discipline of
programming, without which many of the most difficult issues disappear. If this
view is correct, we are not particularly helping students by protecting them from
these aspects at the beginning of their education, presumably abandoning them
to their own resources when they encounter them later. (Put in a different way:
functional programming seems to require monads these days and, given a
choice, I’d rather teach assignment than category theory.)

It is useful to point out that O-O programming is as mathematically respectable —
through the theory of abstract data types on which it rests and, in Eiffel, the reliance
on contracts — and as full of intellectual challenges as any other approach.
Recursion, one of the most fascinating tools of functional programming, receives
extensive coverage in the present book.

Some of the comments on functional programming also apply to the third
approach, reliance on formal methods. As discussed above, a fully formal
approach is, at the introductory programming level, premature. The practical
effect may be to convince students that academic computer science has nothing
to do with the practice of software engineering, and lead them to a jaded,
method-less approach to programming.

The fourth commonly used approach, pioneered at ETH, draws its roots in
the structured programming work of the seventies, and is still widespread. It
emphasizes program structure and systematic development, often top-down.
The supporting programming language is typically Pascal, or one of its
successors such as Modula-2, Oberon or Ada. The approach of this book is heir
to that tradition, with object technology viewed as a natural extension of
structured programming, and a focus on programming-in-the-large to meet the
challenges of programming in the new century.

TOPICS COVERED

The book is divided into five parts.

Part I introduces the basics. It defines the building blocks of programs, from
objects and classes to interfaces, control structures and assignment. It puts a
particular emphasis on the notion of contract, teaching students to rely on
abstract yet precise descriptions of the modules they use, and to apply the same
care to defining the interface of the modules they will produce. A chapter on
“Just Enough Logic” introduces the key elements of propositional calculus and
predicate calculus, both essential for the rest of the discussion. Back to
programming, subsequent chapters deal with object creation and the object

→ Chapter 14.

→ Chapter 5.

INSTRUCTOR_PREFACExlii

structure; they emphasize the modeling power of objects and the need for our
object models to reflect the structure of the external systems being modeled.
Assignment is introduced, together with references and the tricky issues of
working with linked structures, only after program structuring concepts.

Part II, entitled “How things work”, presents the internal perspective. It
starts with the basics of computer organization (covered from the viewpoint of
a programmer and including essential concepts only), syntax description
methods (BNF and its applications), programming languages and programming
tools. The two chapters that follow cover core topics: syntax and how to
describe it, including BNF and an introduction to the theory of finite automata;
and an overview of programming languages, programming tools and software
development environments.

Part III examines fundamental data structure and algorithm techniques. It is
made of three chapters:

� Fundamental data structures — not a substitute for the “Data Structures and
Algorithms” course which often follows the introductory course, but
introducing genericity, algorithm complexity, and several important data
structures such as arrays, lists of various kinds and hash tables.

� Recursion, including binary trees (in particular binary search trees), an
introduction to fixpoint interpretations, and a presentation of techniques for
implementing recursion.

� A detailed exploration of one interesting algorithm family, topological sort,
chosen for its many instructive properties affecting both algorithm design
and software engineering. The discussion covers the mathematical
background, the progressive development of the algorithm for efficient
execution, and the engineering of the API for convenient practical use.

Part IV goes into the depth of object-oriented techniques. Its first chapter covers
inheritance, addressing many details seldom addressed in introductory courses,
such as the Visitor pattern (which complements basic inheritance mechanisms
for the case of adding operations to existing types). The next chapter addresses
a technique that is increasingly accepted as a required part of modern
object-oriented frameworks: function objects, also known as closures, delegates
and agents (the term used here). It includes an introduction to lambda calculus.
The final chapter in this part applies agent techniques to an important style of
programming: event-driven computation. This is the opportunity to review
another design pattern, Observer, and analyze its limitations.

Part V adds the final dimension, beyond mere programming, by introducing
concepts of software engineering for large, long-term projects.

Appendices, already mentioned, provide an introduction to programming
languages with which students should be familiar: Java, C#, C++ — a bridge
between the C and O-O worlds — and C itself.

ACKNOWLEDGMENTS xliii

ACKNOWLEDGMENTS

A number of elements of this Instructor’s Preface are taken from earlier
publications: [7], [8], [9], [10], [12].

This book has its source, as noted, in the “Introduction to Programming”
course at ETH Zurich and would not have been possible without the outstanding
environment provided by ETH. Both the course and the book exist as a result of
Olaf Kübler’s trust (or wager) that in addition to entrepreneur I could also be a
professor. Specific thanks go to the Rectorate (which financed the initial
development of the Traffic library), to the Rector himself, Konrad Osterwalder,
and to the computer science department, particularly Peter Widmayer who, as
then department head, first asked me whether I would like to teach introductory
programming, and made the effort of coordinating his own course with mine.

I have taught the course every Fall since 2003 and am indebted to the
outstanding assistant team that has built an effective operation for handling
exercise sessions, supporting students, devising exercises and exams, grading
them, organizing student projects, writing supplementary documents and
teaching aids, and on the odd occasion substituting for me in lectures. This has
enabled me to concentrate on developing the pedagogical concepts and the core
material, reassured that the logistics would work. I am also grateful to the
hundreds of students who have taken this course, put up with my trials and
errors, and provided feedback, including the best kind of feedback one can hope
for: excellent software projects.

The course assistants, 2003-2008, have been: Volkan Arslan, Stephanie
Balzer, Till Bay, Karine Bezault (Karine Arnout), Benno Baumgartner, Rolf
Bruderer, Ursina Caluori, Robert Carnecky, Susanne Cech Previtali, Stephan
Classen, Jörg Derungs, Ilinca Ciupa, Ivo Colombo, Adam Darvás, Peter Farkas,
Michael Gomez, Sebastian Gruber, Beat Herlig, Matthias Konrad, Philipp
Krähenbühl, Hermann Lehner, Andreas Leitner, Raphael Mack, Benjamin
Morandi, Yann Müller, Marie-Hélène Nienaltowski (Marie-Hélène Ng Cheong
Vee), Piotr Nienaltowski, Michela Pedroni, Marco Piccioni, Conrado Plano,
Nadia Polikarpova, Matthias Sala, Bernd Schoeller, Wolfgang Schwedler, Gabor
Szabo, Sébastien Vaucouleur, Yi (Jason) Wei and Tobias Widmer. While I should
cite virtually all members of the ETH Chair of Software Engineering for their
support and ideas I must at least single out Manuel Oriol for his participation in
our education research, Till Bay (for his development of the EiffelMedia library,
the basis for so many student projects, of the EiffelVision drawables of Traffic in
his diploma thesis, and of the Origo project hosting site at origo.ethz.ch as part of
his PhD thesis), Karine Bezault, Ilinca Ciupa, Andreas Leitner, Michela Pedroni
and Marco Piccioni (all of them head assistants at some point and helpful in many
other ways). Claudia Günthart provided excellent administrative support.

See e.g. games.ethz.ch.

http://games.ethz.ch
http://origo.ethz.ch

INSTRUCTOR_PREFACExliv

The Traffic software has a particularly important role in the approach of this
book. The current version was developed over several years by Michela
Pedroni, starting from an original version written by Patrick Schönbach under
the management of Susanne Cech Previtali; a number of students contributed to
the software, supervised by Michela in various semester and master’s projects,
in particular (in approximate chronological order) Marcel Kessler, Rolf
Bruderer, Sibylle Aregger, Valentin Wüstholz, Stefan Daniel, Ursina Caluori,
Roger Küng, Fabian Wüest, Florian Geldmacher, Susanne Kasper, Lars Krapf,
Hans-Hermann Jonas, Michael Käser, Nicola Bizirianis, Adrian Helfenstein,
Sarah Hauser, Michele Croci, Alan Fehr, Franziska Fritschi, Roger Imbach,
Matthias Loeu, Florian Hotz, Matthias Bühlmann, Etienne Reichenbach and
Maria Husmann. Their role was essential in bringing the user perspective to the
product, as most of them had previously taken the introductory course with early
versions of Traffic. Michela Pedroni was also instrumental in reconciling the
software with the book and the other way around and, more generally, in helping
develop the underlying pedagogical approach — inverted curriculum,
outside-in, tool support (see trucstudio.origo.ethz.ch). Marie-Hélène
Nienaltowski also participated in our pedagogical work, provided the TOOTOR
system to help students master the material, and tried out the approach at
Birkbeck College, University of London.

I am grateful to my colleagues in the Computer Science Department
(Departement Informatik) at ETH for many spirited discussions about the
teaching of programming; I should acknowledge in particular the criticism and
suggestions of Walter Gander (who also helped me improve an important
numerical example), Gustavo Alonso, Ueli Maurer, Jürg Gutknecht, Thomas
Gross, Peter Müller and Peter Widmayer. Beyond ETH, I benefited from many
discussions with educators including Christine Mingins, Jonathan Ostroff, John
Potter, Richard E. Pattis, Jean-Marc Jézéquel, Vladimir Billig, Anatoly Shalyto,
Andrey Terekhov and Judith Bishop.

Like all my work of recent years, this book has a huge debt to the
outstanding work of developing the EiffelStudio environment and libraries at
Eiffel Software under the leadership of Emmanuel Stapf and with the
participation of the entire development team. I am also grateful to the
willingness of the ECMA International TC49-TG4 standard committee, in
charge of the ISO Eiffel standard, to take into consideration the needs of
beginning students when discussing improvements and extensions to the
language design; the debt here is to Emmanuel Stapf again, Mark Howard, Éric
Bezault, Kim Waldén, Zoran Simic, Paul-Georges Crismer, Roger Osmond,
Paul Cohen, Christine Mingins and Dominique Colnet. Discussions on the
Eiffel Software user list have also been most enlightening. groups.eiffel.com.

http://trucstudio.origo.ethz.ch
http://groups.eiffel.com

BIBLIOGRAPHY xlv

Listing even a subset of the people whose work has influenced the present
one would take many pages. Many are cited in the text itself but one is not: the
presentation of recursion owes some of its ideas to the online record of Andries
van Dam’s lectures at Brown.

Many people provided comments on drafts of the book; I should in
particular note Bernie Cohen (although his principal influence on this book
occurred many years earlier, when he proposed the concept of inverted
curriculum), Philippe Cordel, Éric Bezault, Ognian Pishev and Mohamed
Abd-El-Razik, as well as ETH students and assistants Karine Bezault, Jörg
Derungs, Werner Dietl, Moritz Dietsche, Luchin Doblies, Marc Egg, Oliver
Jeger, Ernst Leisi, Hannes Röst, Raphael Schweizer and Elias Yousefi. Hermann
Lehner contributed several exercises. Trygve Reenskaug contributed important
and perceptive comments on the event-driven design chapter. I am particularly
grateful for the extensive reading and error reporting that Marco Piccioni and
Stephan van Staden performed on chapters of the last drafts.

Special thanks are due to the originators of the material from which the
language-specific appendices is drawn: Marco Piccioni (Java, appendix A),
Benjamin Morandi (C#, appendix B) and Nadia Polikarpova (C++, appendix C).
I obviously remain responsible for any deficiency in the resulting presentations.

I cannot find strong enough words to describe the value of the extremely
diligent proofreading of the final version by Annie Meyer and Raphaël Meyer,
resulting in hundreds (actually thousands) of corrections and improvements.

Since so many people have helped I am afraid I am forgetting some, and will
keep a version of this section online, correcting any omissions. I do want to end,
however, by acknowledging the help and advice of Monika Riepl, from le-tex
publishing services in Leipzig, on typesetting issues, and the warm and efficient
support, throughout the publishing process, of Hermann Engesser and Dorothea
Glaunsinger from Springer Verlag.

BM
Santa Barbara / Zurich, April 2009

BIBLIOGRAPHY

[1] Harold Abelson and Gerald Sussman: Structure and Interpretation of Computer

Programs, 2nd edition, MIT Press, 1996.

[2] Bernard Cohen: The Inverted Curriculum, Report, National Economic
Development Council, London, 1991.

[3] Mark Guzdial and Elliot Soloway: Teaching the Nintendo Generation to Program,
in Communications of the ACM, vol. 45, no. 4, April 2002, pages 17-21.

[4] Joint Task Force on Computing Curricula: Computing curricula 2001 (final report).
December 2001, tinyurl.com/d4uand.

See touch.ethz.ch/
acknowledgments.

http://touch.ethz.ch/ acknowledgments
http://tinyurl.com/d4uand

INSTRUCTOR_PREFACExlvi

[5] Joint Task Force for Computing Curricula 2005: Computing Curricula 2005, 30
September 2005, www.acm.org/education/curric_vols/CC2005-March06Final.pdf.

[6] Leslie Lamport: The Future of Computing: Logic or Biology; text of a talk given at
Christian Albrechts University, Kiel on 11 July 2003, research.microsoft.com/users/
lamport/pubs/future-of-computing.pdf.

[7] Bertrand Meyer: Towards an Object-Oriented Curriculum, in Journal of

Object-Oriented Programming, vol. 6, no. 2, May 1993, pages 76-81. Revised version
in TOOLS 11 (Technology of Object-Oriented Languages and Systems), eds. R. Ege, M.
Singh and B. Meyer, Prentice Hall, Englewood Cliffs (N.J.), 1993, pages 585-594.

[8] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice
Hall, 1997, especially chapter 29, “Teaching the Method”.

[9] Bertrand Meyer: Software Engineering in the Academy, in Computer (IEEE), vol. 34, no.
5, May 2001, pages 28-35,se.ethz.ch/~meyer/publications/computer/academy.pdf.

[10] Bertrand Meyer: The Outside-In Method of Teaching Introductory Programming,
in Manfred Broy and Alexandre V. Zamulin, eds., Ershov Memorial Conference,
volume 2890 of Lecture Notes in Computer Science, pages 66-78. Springer, 2003.

[11] Christine Mingins, Jan Miller, Martin Dick, Margot Postema: How We Teach

Software Engineering, in Journal of Object-Oriented Programming (JOOP), vol. 11,
no. 9, 1999, pages 64-66 and 74.

[12] Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, in
Proceedings of SIGCSE 2006 (Houston, 1-5 March 2006), ACM, se.ethz.ch/~meyer/
publications/teaching/sigcse2006.pdf.

[13] Michela Pedroni, Manuel Oriol and Bertrand Meyer: What do Beginning CS

students know?, submitted for publication, 2009.

[14] Raymond Lister: After the Gold Rush: Toward Sustainable Scholarship in

Computing, in Proceedings of Tenth Australasian ComputingEducation Conference

(ACE2008), Wollongong, January 2008), crpit.com/confpapers/CRPITV78Lister.pdf.

[15] Niklaus Wirth: Computer Science Education: The Road Not Taken, opening
address at ITiCSE conference, Aarhus, Denmark, June 2002, www.inr.ac.ru/~info21/
texts/2002-06-Aarhus/en.htm.

Web addresses come and go. All URLs appearing in this bibliography and the rest
of the book were operational on April 19, 2009.

http://research.microsoft.com/users/lamport/pubs/future-of-computing.pdf
http://research.microsoft.com/users/lamport/pubs/future-of-computing.pdf
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://se.ethz.ch/~meyer/publications/computer/academy.pdf
http://se.ethz.ch/~meyer/publications/teaching/sigcse2006.pdf
http://se.ethz.ch/~meyer/publications/teaching/sigcse2006.pdf
http://www.inr.ac.ru/~info21/texts/2002-06-Aarhus/en.htm
http://www.inr.ac.ru/~info21/texts/2002-06-Aarhus/en.htm
http://crpit.com/confpapers/CRPITV78Lister.pdf

Note to instructors: what to cover?

To provide flexibility for the instructor, the book has more material than will typically be
covered in a one-semester course. The following is my view of what constitutes essential
material and what can be viewed as optional. It is based on my experience and will naturally
need to be adapted to every course’s specifics and every instructor’s taste.

� Chapters 1 to 4 should probably be covered in their entirety, as they introduce
fundamental concepts.

� Chapter 5 on logic introduces fundamental concepts. If students are also taking a logic
course the material can be covered briefly, with a focus on relating computer scientists’
and logicians’ notations and conventions. I find it useful to insist on the properties of
implication, initially counter-intuitive to many students (“Getting a practical feeling for
implication”, page 86); also, the course should discuss semistrict boolean operators

(5.3), which logicians usually do not cover.

� Chapter 6 on object creation is necessary for the rest of the presentation.

� So is chapter 7 on control structures up to 7.6; the remaining sections present details of
the low-level branching structure and some language variants. You should mention
structured programming (7.8).

� Chapter 8 on routines should in my view be included in its entirety; in particular it is
useful to provide a simple proof of the undecidability of the Halting Problem.

� In chapter 9, sections up to 9.5 cover fundamental concepts. 9.6, discussing the diffi-
culty of programming with references, with the example of list reversal, is important
but more advanced. The last subsection, on dynamic aliasing, is optional material.

� How much to cover chapter 10 on computers depends on what students are learning
elsewhere about computer architecture. The chapter is not deep but provides basic points
of reference for programmers.

� Chapter 11 on syntax is important material but not absolutely required for the rest of the
book. I suggest covering at least the sections up to 11.4 (if only because students need
to understand the concept of abstract syntax). If most students will not take a course on
language and compilers, they will benefit from the basic concepts in subsequent sections.

� Chapters 12 on programming languages and tools is background material; I do not cover
it explicitly in my class but provide it as a resource.

� Chapter 13 introduces fundamental concepts on data structures, genericity, static typing
and algorithm complexity. It is possible to skip 13.8 (list variants) and 13.13 (iteration).

NOTE TO INSTRUCTORS: WHAT TO COVER?xlviii

� Chapter 14 discusses recursion in some depth — more depth than is customary in an
introductory presentation, because I feel it is useful to remove the potential mystery of
recursive algorithms and show the importance of recursion beyond algorithms: recursive
definitions, recursive data structures, recursive syntax productions and recursive proofs.
The core material is the beginning of the chapter: 14.1 to 14.4, including the discussion
of binary trees. The other sections may be viewed as supplementary; backtracking and
alpha-beta (14.5) are a useful illustration of the applications of recursion. If the course
is strongly implementation-oriented, consider 14.9 (implementing recursion); if you
think that contracts are important, direct the students to 14.8 (contracts and recursion).

� Chapter 15 is a detailed discussion of an important application, topological sort. It
introduces no new programming construct and so you can skip it, or replace it with one
of your own examples, without damage. I cover it in some depth because it describes the
complete progression from mathematics to algorithms to choice of optimal data
structures to proper engineering of the API.

� In chapter 16, on inheritance, the essential sections are 16.1 to 16.7, plus 16.9 on the role
of contracts, which illuminates the whole concept of inheritance. It is also useful to
explain the connection to genericity in 16.12. The end of the chapter, in particular 16.14
about the Visitor pattern, is more advanced material that most courses probably will not
have the time to cover, but which can be given as a reading assignment or as preparation
for later courses.

� Chapter 17 on agents (closures, delegates) again goes beyond the usual scope of
introductory courses. This is so important to modern programming that in my opinion it
should be covered at least up to 17.4 (including illustrations through numerical
programming and iteration). I usually do not have the time to cover 17.6, a gentle
introduction to lambda calculus, but it should interest the more mathematically-oriented
students, if only as extra reading material.

� If you do cover agents, you should then reap the benefits by covering the application to
event-driven programming and especially GUI design (of interest to many students) in
chapter 18. This is a good opportunity to learn an important pattern, Observer. Our course
covers this and the previous chapter together, in four 45-minute lectures.

� Chapter 19 (introduction to software engineering) is not critical to an introductory
course and I have not had time so far to cover it (but we do have “software architecture”
and “software engineering” courses later in the curriculum). It is appropriate for an
audience that needs to be exposed to the issues of production-quality software
development in industry.

� The appendices are background material and I do not cover them, although some
instructors might want to devote some time to a language such as Java or C++ (we do
this, as noted, in specialized courses focusing on these languages).

A final note: while the course and the book were developed together, I always make a point
of devoting a couple of lectures in the course to a topic not covered in the book — to
introduce some spontaneity and avoid limiting the course to pre-packaged material. I like for
example to present the algorithm for Levenshtein distance (edit distance between two
strings), as it provides an outstanding example of the usefulness of loop invariants: without
the invariant the algorithm looks like magic, with the introduction of the invariant it becomes
limpid. Some of the extra material is available from the book site, touch.ethz.ch. (In the same
vein, I have found that the textbook is sufficiently detailed to allow me to use a “Socratic”
style for a couple of lectures in the semester: I ask the students to read a chapter in advance;
then I do not cover the material sequentially in class but just come and wait for questions.
Maybe this can work for other instructors as well.)

touch.ethz.ch

Contents

Community resources vii
Dedication ix
Prefaces xi
Student_preface xiii

Software everywhere xiii
Casual and professional software development xiv
Prior experience — or not xv
Modern software technology xvi
Object-oriented software construction xvii
Formal methods xvii
Learning by doing xviii
From the consumer to the producer xviii
Abstraction xix
Destination: quality xx

Instructor_preface xxiii
The challenges of a first course xxiii
Outside-in: the inverted curriculum xxvii

The supporting software xxviii
From programming to software engineering xxx
Terminology xxx

Technology choices xxxi
Object technology xxxi
Eiffel and Design by Contract xxxii
Why not Java? xxxiv

How formal? xxxviii
Other approaches xl
Topics covered xli
Acknowledgments xliii
Bibliography xlv

Note to instructors: what to cover? xlvii
Contents xlix

PART I: BASICS 1

1 The industry of pure ideas 3

1.1 Their machines and ours 3
1.2 The overall setup 6

The tasks of computers 6
General organization 7
Information and data 8
Computers everywhere 9
The stored-program computer 10

CONTENTSl

1.3 Key concepts learned in this chapter 12
New vocabulary 13

1-E Exercises 13
2 Dealing with objects 15

2.1 A class text 15
2.2 Objects and calls 18

Editing the text 18
Running your first program 20
Dissecting the program 23

2.3 What is an object? 25
Objects you can and cannot kick 25
Features, commands and queries 26
Objects as machines 28
Objects: a definition 29

2.4 Features with arguments 30
2.5 Key concepts learned in this chapter 32

New vocabulary 32
2-E Exercises 32

3 Program structure basics 35

3.1 Instructions and expressions 35
3.2 Syntax and semantics 36
3.3 Programming languages, natural languages 37
3.4 Grammar, constructs and specimens 39
3.5 Nesting and the syntax structure 40
3.6 Abstract syntax trees 41
3.7 Tokens and the lexical structure 43

Token categories 43
Levels of language description 44
Identifiers 44
Breaks and indentation 45

3.8 Key concepts learned in this chapter 46
3-E Exercises 46

4 The interface of a class 47

4.1 Interfaces 47
4.2 Classes 49
4.3 Using a class 51

Defining what makes a good class 51
A mini-requirements document 52
Initial ideas for classes 52
What characterizes a metro line 53

4.4 Queries 55
How long is this line? 55
Experimenting with queries 56
The stations of a line 57
Properties of start and end lines 59

4.5 Commands 59
Building a line 59

CONTENTS li

4.6 Contracts 61
Preconditions 61
Contracts for debugging 64
Contracts for interface documentation 65
Postconditions 65
Class invariants 67
Contracts: a definition 68

4.7 Key concepts learned in this chapter 68
4-E Exercises 69

5 Just Enough Logic 71

5.1 Boolean operations 72
Boolean values, variables, operators and expressions 72
Negation 73
Disjunction 74
Conjunction 75
Complex expressions 76
Truth assignment 77
Tautologies 78
Equivalence 79
De Morgan’s laws 81
Simplifying the notation 82

5.2 Implication 84
Definition 84
Relating to inference 85
Getting a practical feeling for implication 86
Reversing an implication 88

5.3 Semistrict boolean operators 89
Semistrict implication 94

5.4 Predicate calculus 94
Generalizing “or” and “and” 95
Precise definition: existentially quantified expression 96
Precise definition: universally quantified expression 97
The case of empty sets 99

5.5 Further reading 100
5.6 Key concepts learned in this chapter 101

New vocabulary 101
5-E Exercises 102

6 Creating objects and executing systems 107

6.1 Overall setup 108
6.2 Entities and objects 109
6.3 Void references 111

The initial state of a reference 111
The trouble with void references 112
Not every declaration should create an object 114
The role of void references 115
Calls in expressions: overcoming your fear of void 116

6.4 Creating simple objects 118
6.5 Creation procedures 122
6.6 Correctness of a creation instruction 126

CONTENTSlii

6.7 Memory management and garbage collection 128
6.8 System execution 130

Starting it all 130
The root class, the system and the design process 130
Specifying the root 131
The current object and general relativity 132
The ubiquity of calls: operator aliases 134
Object-oriented programming is relative programming 135

6.9 Appendix: getting rid of void calls 136
6.10 Key concepts learned in this chapter 137

New vocabulary 138
6-E Exercises 138

7 Control structures 139

7.1 Problem-solving structures 139
7.2 The notion of algorithm 141

Example 141
Precision and explicitness: algorithms vs recipes 142
Properties of an algorithm 143
Algorithms vs programs 144

7.3 Control structure basics 146
7.4 Sequence (compound instruction) 147

Examples 147
Compound: syntax 149
Compound: semantics 150
Order overspecification 151
Compound: correctness 152

7.5 Loops 153
Loops as approximations 154
The loop strategy 155
Loop instruction: basic syntax 157
Including the invariant 158
Loop instruction: correctness 159
Loop termination and the halting problem 161
Animating a metro line 166
Understanding and verifying the loop 169
The cursor and where it will go 173

7.6 Conditional instructions 174
Conditional: an example 175
Conditional structure and variations 176
Conditional: syntax 180
Conditional: semantics 181
Conditional: correctness 181

7.7 The lower level: branching instructions 181
Conditional and unconditional branching 182
The goto instruction 183
Flowcharts 184

7.8 Goto elimination and structured programming 185
Goto harmful? 185
Avoiding the goto 187
Structured programming 188

CONTENTS liii

The goto puts on a mask 189
7.9 Variations on basic control structures 191

Loop initialization 191
Other forms of loop 192
Multi-branch 195

7.10 An introduction to exception handling 200
The role of exceptions 200
A precise framework to discuss failures and exceptions 201
Retrying 202
Exception details 204
The try-catch style of exception handling 204
Two views of exceptions 204

7.11 Appendix: an example of goto removal 205
7.12 Further reading 207
7.13 Key concepts learned in this chapter 207

New vocabulary 208
7-E Exercises 208

8 Routines, functional abstraction and information hiding 211

8.1 Bottom-up and top-down reasoning 211
8.2 Routines as features 213
8.3 Encapsulating a functional abstraction 214
8.4 Anatomy of a routine declaration 215

Interface vs implementation 217
8.5 Information hiding 218
8.6 Procedures vs functions 219
8.7 Functional abstraction 220
8.8 Using routines 222
8.9 An application: proving the undecidability of the halting problem 223
8.10 Further reading 224
8.11 Key concepts learned in this chapter 225

New vocabulary 225
8-E Exercises 225

9 Variables, assignment and references 227

9.1 Assignment 228
Summing travel times 228
Local variables 231
Function results 234
Swapping two values 235
The power of assignment 235

9.2 Attributes 238
Fields, features, queries, functions, attributes 238
Assigning to an attribute 239
Information hiding: modifying fields 240
Information hiding: accessing fields 243

9.3 Kinds of feature 244
The client’s view 244
The supplier’s view 247
Setters and getters 248

CONTENTSliv

9.4 Entities and variables 249
Basic definitions 249
Variable and constant attributes 250

9.5 Reference assignment 252
Building metro stops 252
Building a metro line 254

9.6 Programming with references 256
References as a modeling tool 256
Using references for building linked structures 256
Void references 258
Reversing a linked structure 259
Making lists explicit 262
Where to use reference operations? 263
Dynamic aliasing 265

9.7 Key concepts learned in this chapter 268
New vocabulary 269
Precise feature terminology 269

9-E Exercises 269

PART II: HOW THINGS WORK 271

10 Just enough hardware 273

10.1 Encoding data 273
The binary number system 274
Binary basics 275
Basic representations and addresses 276
Powers of two 277
From cherries to bytes 277
Computing with numbers 279

10.2 More on memory 283
Persistence 283
Transient memory 284
Varieties of persistent memory 284
Registers and the memory hierarchy 287
Virtual memory 288

10.3 Computer instructions 288
10.4 Moore’s “law” and the evolution of computers 290
10.5 Further reading 291
10.6 Key concepts learned in this chapter 292

New vocabulary 293
10-E Exercises 293

11 Describing syntax 295

11.1 The role of BNF 295
Languages and their grammars 296
BNF basics 297
Distinguishing language from metalanguage 299

11.2 Productions 300
Concatenation 300
Choice 301
Repetition 301
Rules on grammars 303

CONTENTS lv

11.3 Using BNF 305
Applications of BNF 305
Language generated by a grammar 306
Recursive grammars 307

11.4 Describing abstract syntax 310
11.5 Turning a grammar into a parser 311
11.6 The lexical level and regular automata 311

Lexical constructs in BNF 311
Regular grammars 312
Finite automata 314
Context-free properties 316

11.7 Further reading 318
11.8 Key concepts learned in this chapter 318

New vocabulary 319
11-E Exercises 319

12 Programming languages and tools 321

12.1 programming language styles 322
Classification criteria 322
Functional programming and functional languages 324
Object-oriented languages 327

12.2 Compilation vs interpretation 330
Basic schemes 330
Combining compilation and interpretation 332
Virtual machines, bytecode and jitting 333

12.3 The essentials of a compiler 335
Compiler tasks 336
Fundamental data structures 337
Passes 337
The compiler as verification tool 338
Loading and linking 338
The runtime 339
Debuggers and execution tools 340

12.4 Verification and validation 341
12.5 Text, program and design editors 342
12.6 Configuration management 344

Varieties of configuration management 344
Build tools: from Make to automatic dependency analysis 345
Version control 347

12.7 Total project repositories 351
12.8 Browsing and documentation 352
12.9 Metrics 352
12.10 Integrated development environments 353
12.11 An IDE: EiffelStudio 353

Overall structure 354
Browsing and documentation 355
The melting ice technology 357

12.12 Key concepts introduced in this chapter 359
New vocabulary 360

12-E Exercises 360

CONTENTSlvi

PART III: ALGORITHMS AND DATA STRUCTURES 361

13 Fundamental data structures, genericity, and algorithm complexity 363

13.1 Static typing and genericity 363
Static typing 364
Static typing for container classes 364
Generic classes 365
Validity vs correctness 368
Classes vs types 369
Nesting generic derivations 370

13.2 Container operations 371
Queries 371
Commands 372
Standardizing feature names for basic operations 374
Automatic resizing 375

13.3 Estimating algorithm complexity 376
Measuring orders of magnitude 376
Mathematical basis 377
Making the best use of your lottery winnings 378
Abstract complexity in practice 379
Presenting data structures 379

13.4 Arrays 380
Bounds and indexes 381
Creating an array 382
Accessing and modifying array items 383
Bracket notation and assigner commands 384
Resizing an array 386
Using arrays 388
Performance of array operations 388

13.5 Tuples 389
13.6 Lists 391

Cursor queries 392
Cursor movement 395
Iterating over a list 396
Adding and removing items 398

13.7 Linked lists 400
Linked list basics 400
Insertion and removal 401
Reversing a linked list 403
Performance of linked list operations 406

13.8 Other list variants 408
Two-way lists 408
Abstraction and consequences 408
Arrayed lists 409
Multi-array lists 410

13.9 Hash tables 411
13.10 Dispensers 418
13.11 Stacks 420

Stack basics 420
Using stacks 421
Implementing stacks 424

CONTENTS lvii

13.12 Queues 428
13.13 Iterating on data structures 431
13.14 Other structures 432
13.15 Further reading 432
13.16 Key concepts learned in this chapter 433

New vocabulary 434
13-E Exercises 434

14 Recursion and trees 435

14.1 Basic examples 436
Recursive definitions 436
Recursively defined grammars 437
Recursively defined data structures 437
Recursively defined algorithms and routines 438

14.2 The tower of Hanoi 441
14.3 Recursion as a problem-solving strategy 446
14.4 Binary trees 447

A recursive routine on a recursive data structure 448
Children and parents 449
Recursive proofs 449
A binary tree of executions 450
More binary tree properties and terminology 451
Binary tree operations 452
Traversals 453
Binary search trees 454
Performance 455
Inserting, searching, deleting 456

14.5 Backtracking and alpha-beta 459
The plight of the shy tourist 459
Getting backtracking right 462
Backtracking and trees 463
Minimax 464
Alpha-beta 468

14.6 From loops to recursion 471
14.7 Making sense of recursion 473

Vicious circle? 473
Boutique cases of recursion 476
Keeping definitions non-creative 478
The bottom-up view of recursive definitions 479
Bottom-up interpretation of a construct definition 482
The towers, bottom-up 483
Grammars as recursively defined functions 484

14.8 Contracts for recursive routines 485
14.9 Implementation of recursive routines 486

A recursive scheme 487
Routines and their execution instances 487
Preserving and restoring the context 488
Using an explicit call stack 489
Recursion elimination essentials 491
Simplifying the iterative version 494
Tail recursion 496

CONTENTSlviii

Taking advantage of invertible functions 497
14.10 Key concepts learned in this chapter 500

New vocabulary 500
14-E Exercises 500

15 Devising and engineering an algorithm: Topological Sort 505

15.1 The problem 505
Example applications 506
Points in a plane 507

15.2 The basis for topological sort 509
Binary relations 509
Acyclic relations 510
Order relations 511
Order relations vs acyclic relations 512
Total orders 514
Acyclic relations have a topological sort 516

15.3 Practical considerations 517
Performance requirements 517
Class framework 518
Input and output 518
Overall form of the algorithm 519
Cycles in the constraints 520
Overall class organization 523

15.4 Basic algorithm 526
The loop 526
A “natural” choice of data structures 527
Performance analysis of the natural solution 528
Duplicating the information 529
Spicing up the class invariant 530
Numbering the elements 531
Basic operations 532
The candidates 533
The loop, final form 536
Initializations and their time performance 538
Putting everything together 541

15.5 Lessons 542
Interpretation vs compilation 542
Time-space tradeoffs 544
Algorithms vs systems and components 544

15.6 Key concepts learned in this chapter 545
New vocabulary 545

15.7 Appendix: terminology note on order relations 546
15-E Exercises 546

PART IV: OBJECT-ORIENTED TECHNIQUES 549

16 Inheritance 551

16.1 Taxis are vehicles 552
Inheriting features 552
Inheritance terms 554
Features from a higher authority 555
The flat view 556

CONTENTS lix

16.2 Polymorphism 557
Definitions 558
Polymorphism is not conversion 559
Polymorphic data structures 560

16.3 Dynamic binding 562
16.4 Typing and inheritance 563
16.5 Deferred classes and features 565
16.6 Redefinition 570
16.7 Beyond information hiding 573

Beware of choices bearing many cases 574
16.8 A peek at the implementation 575
16.9 What happens to contracts? 580

Invariant accumulation 581
Precondition weakening and postcondition strengthening 582
Contracts in deferred classes 585
Contracts tame inheritance 586

16.10 Overall inheritance structure 586
16.11 Multiple inheritance 588

Using multiple inheritance 588
Renaming features 590
From multiple to repeated inheritance 592

16.12 Genericity plus inheritance 594
Polymorphic data structures 594
Constrained genericity 596

16.13 Uncovering the actual type 599
The object test 602
Assignment attempt 604
Using dynamic casts wisely 605

16.14 Reversing the structure: visitors and agents 606
The dirty little secret 606
The Visitor pattern 608
Improving on Visitor 613

16.15 Further reading 613
16.16 Key concepts learned in this chapter 614

New vocabulary 615
16-E Exercises 616

17 Operations as objects: agents and lambda calculus 619

17.1 Beyond the duality 619
17.2 Why objectify operations? 621

Four applications of agents 621
A world without agents 623

17.3 Agents for iteration 627
Basic iterating schemes 627
Iterating for predicate calculus 628
Agent types 629
A home for fundamental iterators 631
Writing an iterator 631

17.4 Agents for numerical programming 634

CONTENTSlx

17.5 Open operands 636
Open arguments 636
Open targets 638

17.6 Lambda calculus 640
Operations on functions 640
Lambda expressions 641
Currying 643
Generalized currying 645
Currying in practice 645
The calculus 646
Lambda calculus and agents 651

17.7 Inline agents 652
17.8 Other language constructs 654

Agent-like mechanisms 655
Routines as arguments 656
Function pointers 656
Many Little Wrappers and nested classes 657

17.9 Further reading 658
17.10 Key concepts learned in this chapter 658

New vocabulary 659
17-E Exercises 660

18 Event-driven design 663

18.1 Event-driven GUI programming 664
Good old input 664
Modern interfaces 664

18.2 Terminology 666
Events, publishers and subscribers 666
Arguments and event types 668
Keeping the distinction clear 671
Contexts 673

18.3 Publish-subscribe requirements 674
Publishers and subscribers 674
The model and the view 675
Model-View-Controller 677

18.4 The observer pattern 678
About design patterns 678
Observer basics 679
The publisher side 679
The subscriber side 681
Publishing an event 684
Assessing the Observer pattern 684

18.5 Using agents: the event library 686
Basic API 686
Using event types 687
Event type implementation 689

18.6 Subscriber discipline 690
18.7 Software architecture lessons 691

Choosing the right abstractions 691
MVC revisited 692
The model as publisher 693

CONTENTS lxi

Invest then enjoy 694
Assessing software architectures 694

18.8 Further reading 695
18.9 Key concepts learned in this chapter 696

New vocabulary 697
18-E Exercises 697

PART V: TOWARDS SOFTWARE ENGINEERING 699

19 Introduction to software engineering 701

19.1 Basic definitions 702
19.2 The DIAMO view of software engineering 704
19.3 Components of quality 705

Process and product 705
Immediate product quality 707
Long-term product quality 708
Process quality 710
Tradeoffs 712

19.4 Major software development activities 712
19.5 Lifecycle models and agile development 714

The waterfall 714
The spiral model 715
The cluster model 716
Agile development 717

19.6 Requirements analysis 718
Products of the requirements phase 719
The IEEE standard 719
Scope of requirements 720
Obtaining requirements 720
The glossary 722
Machine properties and domain engineering 723
Fifteen properties of good requirements 724

19.7 Verification and validation 727
Varieties of quality assurance 728
Testing 728
Static techniques 732

19.8 Capability maturity models 735
CMMI scope 735
CMMI disciplines 736
Goals, practices and process areas 737
Two models 737
Assessment levels 738

19.9 Further reading 740
19.10 Key concepts learned in this chapter 742

New vocabulary 743
Acronym collection 743

19-E Exercises 743

PART VI: APPENDICES 745

A An introduction to Java (from material by Marco Piccioni) 747
A.1 Language background and style 747

CONTENTSlxii

A.2 Overall program structure 748
The Java Virtual Machine 748
Packages 748
Program execution 749

A.3 Basic object-oriented model 750
The Java type system 750
Classes and members 751
Information hiding 752
Static members 753
Abstract classes and interfaces 753
Overloading 754
Run-time model, object creation and initialization 755
Arrays 757
Exception handling 758

A.4 Inheritance and genericity 760
Inheritance 760
Redefinition 760
Polymorphism, dynamic binding and casts 761
Genericity 762

A.5 Further program structuring mechanisms 763
Conditional and branching instructions 763
Loops 765

A.6 Absent elements 766
Design by Contract 766
Multiple inheritance 766
Agents 766

A.7 Specific language features 767
Nested and anonymous classes 767
Type conversions 771
Enumerated types 771
Varargs 772
Annotations 772

A.8 Lexical and syntactic aspects 773
Keywords 774
Operators 774

A.9 Bibliography 774
B An introduction to C# (from material by Benjamin Morandi) 775

B.1 Language background and style 776
.NET, the CLI and language interoperability 776
The favorite son 777

B.2 Overall program structure 777
Classes and structs 777
Program execution 778

B.3 Basic object-oriented model 778
Static members and classes 778
Export status 779
Fields 779
Basic types 780
References and values 780
Constants 781
Methods 781

CONTENTS lxiii

Overloading 782
Properties 782
Constructors 783
Destructors 784
Operators 785
Arrays and indexers 786
Genericity 788
Basic statements 788
Control structures 789
Exception handling 790
Delegates and events 791

B.4 Inheritance 794
Inheriting from a class 794
You may only specify one parent class, here K. 794
Abstract members and classes 794
Interfaces 795
Accessibility and inheritance 796
Overriding and dynamic binding 796
Inheritance and creation 798
Run-Time Type Identification 798

B.5 Further program structuring mechanisms 799
Namespaces 799
Extension methods 800
Attributes 801

B.6 Absent elements 802
B.7 Specific language features 803

Unsafe code 803
Enumeration types 803
Linq 804

B.8 Lexical aspects 804
B.9 Bibliography 804

C An introduction to C++ (from material by Nadia Polikarpova) 805
C.1 Language background and style 805
C.2 Overall program organization 806
C.3 Basic object-oriented model 808

Built-in types 808
Derived types 808
Combining derived type mechanisms 812
User-defined types 812
Classes 813
Information hiding 816
Scoping 817
Operators 818
Overloading 818
Static declarations 818
Object lifetime 819
Initialization 821
Exception handling 822
Templates 823

C.4 Inheritance 825
Overriding 825

CONTENTSlxiv

Export status and inheritance 825
Precursor access 826
Static and dynamic binding 826
Pure virtual functions 827
Multiple inheritance 827
Inheritance and object creation 828

C.5 Further program structuring mechanisms 829
C.6 Absent elements 829

Contracts 829
Agents 830
Constrained genericity 830
Overall inheritance structure 831

C.7 Specific language features 831
Argument defaults 831
Nested classes 831

C.8 Libraries 831
C.9 Syntactic and lexical aspects 832

Instructions as expressions 832
Control structures 833
Assignment and assignment-like instructions 835
Expressions and operators 836
Identifiers 837
Literals 837
Keywords 838

C.10 Further reading 838
D From C++ to C 839

D.1 Absent elements 839
D.2 Language background and style 840
D.3 Further reading 842

E Using the EiffelStudio environment 843
E.1 Eiffelstudio basics 843
E.2 Setting up a project 844
E.3 Bringing up classes and views 845
E.4 Specifying a root class and creation procedure 845
E.5 Contract monitoring 846
E.6 Controlling execution and inspecting objects 846
E.7 Panic mode (not!) 846
E.8 To know more 846

Picture credits 847

Index 849

1

The industry of pure ideas

1.1 THEIR MACHINES AND OURS

Engineers design and build machines. A car is a machine for traveling; an
electronic circuit is a machine for transforming signals; a bridge is a machine
for crossing a river. Programmers — “software engineers” — design and build
machines too. We call our machines programs or systems.

There is a difference between our machines and theirs. If you drop one of
their machines, it will hurt your feet. Ours won’t.

Programs are immaterial. This makes them closer, in some respects, to a
mathematician’s theorems or a philosopher’s propositions than to an airplane or
a vacuum cleaner. And yet, unlike theorems and propositions, they are
engineering devices: you can operate a program, like you operate vacuum
cleaners or planes, and get results.

Since one cannot operate a pure idea you will need some tangible, material
support to operate programs or, using the more common terms, to run or execute

them. That support is another machine: a computer. Computers and related
devices are called hardware, indicating that — although they are getting ever
lighter — computers are the kind of machine that will hurt your feet. Programs
and all that relates to them are by contrast called software, a word made up in
the 1950s when programs emerged as topic of interest.

Here is how things work. You dream up a machine, big or small, and describe
your dream in the form of a program. The program can then be fed into a
computer for execution. The computer by itself is a general-purpose machine, but
when equipped with your program it becomes a specialized machine, a material
realization of the immaterial machine that you defined through your program.

THE INDUSTRY OF PURE IDEAS §1.14

The person who writes the program — “you” in the previous paragraph —
is predictably called a programmer. Others, known as users, can then run your
program on your computer, or theirs.

If you have used a computer, you have already run some programs, for example
to browse the Web or play a DVD, so you already are a user. This book should
help you make it to the next step: programmer.

Cynics in the software industry pronounce “user” as “loser”. It’s one of the goals of
this book that users of your programs will pronounce themselves winners.

The immaterial nature of the machines we build is part of what makes
programming so fascinating. Given a powerful enough computer you can define
any machine you want, whose operation will require billion upon billion of
individual steps; and the computer will run it for you. You do not need wood or
clay or iron or a hammer or anything that could wear you out carrying it up the
stairs, burn you, or damage your clothes. State what you want, and you will
receive it. The only limit is your imagination.

All right, it is one of two limits; we avoid mentioning the other in genteel
company, but you will likely encounter it before long; it is your own fallibility.
Nothing personal: if you are like me and the rest of us, you make mistakes. Lots
of mistakes. In ordinary life they are not all harmful, as most human activities
are remarkably error-tolerant. You can press your fork a little too intensely,
swallow water a little too fast, push the accelerator a little too hard, use the
wrong word; this happens all the time and in most cases does not prevent you

Computer.

A writes a
Program

User

which a

runs on a

programmer

From idea to

results

§1.1 THEIR MACHINES AND OURS 5

from achieving what you wanted: eat, drink, drive, communicate. But
programming is different! At a dazzling speed — hundreds of millions of basic
operations per second — the computer will run your machine description, your
program, exactly as you prepared it. The computer does not “understand” your
program, it just runs it; the slightest mistake will be faithfully carried out by the
machinery. What you wrote is what you get.

As you learn about programming in the following chapters, this is perhaps
the most important property of computers to keep in mind. You might still
believe otherwise: because computer programs do things that seem so
sophisticated — like finding, in less than a second, your ideal vacation deal from
millions of offers available on the World-Wide Web — you may easily succumb
to the impression that computers are smart. Wrong. Although some programs
embody considerable human intelligence, the computer that runs them is like a
devoted and insufferable servant: infinitely faithful, almost infinitely fast, and
definitely stupid. It will carry out your instructions exactly as you give them,
never taking any initiative to correct mistakes, even those a human being would
find obvious and benign. The challenge for you, the programmer, is to feed this
obedient brute with flawless instructions representing — in an execution of any
significant program — billions of elementary operations.

In any experience you may have had with computers, you will have noticed
that they do not always react the way you like. It does not take very long to
experience a “crash”, that state in which everything seems to disappear and
execution stops. But except for the rare case of a hardware malfunction it wasn’t
the computer that crashed; it was a program that did not do the right thing, and
behind the program it was a programmer who did not foresee all possible
execution scenarios.

You cannot learn programming without going through this experience of
programs — yours or someone else’s — that do not work as they should; and
you cannot become a professional programmer without learning the techniques
that will let you build programs that do work as you want.

The good news is that it is possible to produce such programs, provided you
use the proper tools and maintain discipline, attention to the big picture as well
as the details, and dedication.

Helping you acquire this discipline is one of the main tasks of this book,
which is an introduction not just to programming but to programming well. Note
in particular, starting in the next chapter, the boxes labeled “Touch of
Methodology” and “Touch of Style”, where I have collected advice — learned
over the years, sometimes the hard way — which will help you write software
that works as you want it to.

THE INDUSTRY OF PURE IDEAS §1.26

1.2 THE OVERALL SETUP

In the next chapters we will jump straight into program development. We will
not need much detailed knowledge about computers, but let us take a look at
their fundamental properties, since they set the context for the construction
of software.

The tasks of computers

Computers — automatic stored-program digital computers to be precise — are
machines that can store and retrieve information, perform operations on that
information, and exchange information with other devices.

This definition highlights the major capabilities of computers:

Storage and retrieval capabilities are a prerequisite for everything else:
computers must be able to keep information somewhere before they can apply
operations to it, or communicate it. Such a “somewhere” is called a memory.

Operations include comparisons (“Are these two values the same?”),
replacement (“Replace this value by that one”), arithmetic (“Compute the sum
of these two values”) and others. These operations are primitive; what makes
computers able to perform amazing feats is not the intrinsic power of their basic
mechanisms, but the speed at which they can carry them out and the ingenuity
of the humans — you! — who write programs that will execute millions of them.

Communication allows us to enter information into computers, and retrieve
information from them (the original information, or information that has been
produced or modified by the computer’s operations). It also enables computers
to communicate with other computers and with devices such as sensors, phones,
displays and many others.

What computers do

� Storage and retrieval

� Operations

� Communication

→ Chapter 10, “Just
enough hardware”, has
more about computers.

→ A more precise defini-
tion of “memory”
appears below: page 10.

§1.2 THE OVERALL SETUP 7

General organization

The previous definition yields the basic schematic diagram for computers:

The memories hold the information. We talk of memories in the plural because
most computers have more than one storage device, of more than one kind,
differing by size, speed of access to information and persistence (affecting
whether a memory retains information when power is switched off).

The processors perform the operations. Again there usually are several of
them. Occasionally you will see a processor called a CPU, an acronym for the
older term Central Processing Unit.

The communication devices provide means of interacting with the rest of
the world. The figure shows the communication devices as interfacing with the
processors rather than the memories; indeed, when exchanging information
between a memory and the outside world, you will usually need to go through
some operations of a processor. A communication device supports input

(outside world to computer), output (the other way around), or sometimes both.
Examples include:

� A keyboard, through which a person enters text (input).

� A video display or “terminal” (output).

� A mouse or joystick, enabling you to designate points on the terminal
screen (input).

� A sensor, regularly sending measurements of temperature or humidity to a
computer in a factory (input).

� A network connection to communicate with other computers and devices
(input and output).

The abbreviation I/O covers both input and output. The words “input” and
“output” are also used as verbs, as in “you must input this text”.

Processors

Memories

Communication

Rest

world

devices
Components of

a computer

systemof the

THE INDUSTRY OF PURE IDEAS §1.28

Information and data

The key word in the above definition of computers is “information”: what you
would like to store into memories and retrieve from them, process with the
processors’ operations, and exchange through the communication devices.

This is the human view. Strictly speaking, computers do not directly
manipulate information; they manipulate data representing that information:

Some supercilious people will tell you that “data” should only be used in the plural,
because it is originally the plural of “datum”. Thank them for the kindness of their
advice and disregard it cheerfully. Unless they intend to continue the conversation
in Latin, their grammatical data is obsolete.

Information is what you want: the day’s headlines, a friend’s picture,
background on the speaker in today’s seminar. Data is how it is encoded for
the computer.

As an example, the MP3 audio format, which you may have used to listen
to music with the help of a computer, is a set of rules for encoding information

about a piece of music into data that can be stored in a computer, exchanged
across a network, and sent to an audio device so that it will replay the music.

The data will be stored in memory. The task of the communication devices
is to produce data from information coming from the world, store it in memory,
and when the processors transform this data, or produce new data, send it out to
the world so that it will understand it as information. Adapted to show the
functions performed, the original picture becomes this:

The right-to-left arrow suggests that the process is not just one-way but repetitive,
with information being fed back to yield new results.

Definitions: Data, information

Collections of symbols held in a computer are called data.
Any interpretation of data for human purposes is called information.

Process

Output

Information

and data

processing
Input

Information

Data

Information

Data Data

§1.2 THE OVERALL SETUP 9

Computers everywhere

The familiar picture of a computer is the “desktop” or “laptop” computer, whose
processor and memory components are hosted in a box of a size somewhere
between a textbook like this one and a big dictionary; the terminal is often the
biggest part. All this is at human size. At hand size we find such devices as
mobile phones, which today are essentially pocket computers with extended
telecommunication capabilities. At the higher end, computers used for large
scientific computations (physics, weather prediction...) can reach room size.
This is of course nothing compared to computers of a generation ago, which
took up building size for much more modest capabilities.

Reduced to their central processor and memory components, computers can be
much smaller than any of this. Increasingly, “the computer” is a device included
— the technical term is embedded — in products or other devices. Today’s cars
include dozens of small computers, controlling fuel delivery, braking, even
windows. The printer connected to your desktop computer is not just a printing
engine, it is itself a computer, able to produce fonts, smooth out images, restart
with the first unprocessed page after a paper jam. Electric razors include
computers; manual razors might include one some day. (The more expensive
razor blades already contain electronic tracking tags to fight theft.) Washing
machines contain computers, and in the future clothes may embed their own tiny
computers, helping to tune the washing process.

Computers:

(a) desktop;

(b) laptop; (c)

iPhone (Apple);

(d) GPS naviga-

tion system;

(e) processor to

be embedded.

(a) (b)

(c) (e)(d)

THE INDUSTRY OF PURE IDEAS §1.210

The computers you will use for the exercises of this book are still of the
keyboard-mouse-terminal kind, but keep in mind that software techniques have
to cover a broader scope. Software for embedded systems must satisfy very high
quality requirements: malfunctions in (for example) brake-control software can
have terrible consequences, and you cannot fix them — as you would for a
program running on your laptop — by stopping execution, correcting the error,
and starting again.

The stored-program computer

A computer, as noted, is a universal machine: it can execute any program that
you input into it.

For this input process you will use communication devices, typically a keyboard
and mouse. Text will appear on your screen as you type it, seemingly as a direct
result, but this is an illusion. The keyboard is an input device, the terminal a distinct
output device; echoing the input text on the screen requires a special program, such
as a text editor, to obtain this input, process it and display it. Thanks to the speed of
computers, this usually happens fast enough to give the illusion of a direct
keyboard-screen connection; but if the computer responds more slowly, perhaps
because it is running too many computation-intensive programs at the same time,
you may notice a delay between typing characters and seeing them displayed.

When you input the program, where does it go? Memories are available to host
it. This is why we talk of stored-program computers: to become a specific
machine ready to carry out the specific tasks that you (as the programmer) have
assigned to it, the computer will read its orders from its own memory.

The stored-program property of computers explains why we have not seen
a proper definition of “memory” yet. It could have said that a memory is a
device for storing and retrieving data; but this would require extending the
notion of data to cover programs. It is clearer to keep the two notions separate:

The ability of computers to treat programs as data — executable data —
explains their remarkable flexibility. At the dawn of the computer age, it led to
visions of self-modifying programs (since a program can modify data, it can
modify programs, including itself) and to some grand philosophizing about how
programs would, through repeated self-modification, become ever more
“intelligent” and take over the world. Closer to us but more prosaically and
annoyingly, it is also the reason why email users are told to be careful about
opening an email attachment, since the data it contains could be a maliciously
written program whose execution might destroy other data.

Definition: Memory

A memory is a device for storing and retrieving data and programs.

§1.2 THE OVERALL SETUP 11

For programmers, the stored-program property has a more immediate
consequence: it makes programs amenable, like data of any other kind, to
various transformations, performed by other programs. In particular, the

program you write is usually not the program you run. The operations that a
processor can execute are designed for machines, not humans; using them
directly to construct your programs would be tedious and error-prone. Instead
you will:

� Write programs in notations designed for human consumption, called
programming languages. This form of a program is called its source text (or
source form, or just source).

� Rely on special programs called compilers to transform such
human-readable program texts into a format (their target form) appropriate
for processor execution.

We will often encounter the following terms reflecting this division of tasks:

The details of all this — processor codes, programming languages, compilers,
examples of static and dynamic properties — appear in later chapters. What
matters for the moment is knowing that the programs you are going to write,
starting with the next chapter, are meant for people as well as for computers.

This human aspect of programming is central to the engineering of
software. When you program you are talking not just to your computer but also
to fellow humans: whoever will be reading the program later, for example to add
functions or correct a mistake. This is a good reason to worry about program
readability; and it is not just a matter of being nice to others, since that
“whoever” might be you, a few months older, trying to decipher what in the
world you had in mind when writing the original version.

Throughout this book, the emphasis is not only on practices that make your
programs good for the computer (such as efficiency techniques ensuring they
run fast enough), but also on practices that make programs good for human
readers. Program texts should be understandable; programs should be
extendible (easy to change); program elements should be reusable, so that when
later on you are faced with a similar problem you do not have to reinvent the
solution; programs should be robust, protecting themselves against unexpected
input; most importantly, they should be correct, producing the expected results.

Definitions: Static, Dynamic

Static properties of a program are properties of its source text, which can be
analyzed by a compiler.
Dynamic properties are those characterizing its individual executions.

→ Or “machine code”,
or “object form”.

→ The final chapter
contains a more
detailed discussion of
quality factors: “Com-
ponents of quality”,
19.3, page 705.

THE INDUSTRY OF PURE IDEAS §1.312

1.3 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Computers are general-purpose machines. Providing a computer with a
program turns it into a special-purpose machine.

� Computer programs process, store and communicate data representing
information of interest to people.

� A computer consists of processors, memories and communication devices.
Together these material devices make up hardware.

� Programs and associated intellectual value are called software. Software is
an engineering product of a purely intellectual nature.

� Programs must be stored in memory prior to execution. They may have
several forms, some readable and intended for human use, others directly
processable for execution by computers.

Touch of folk history:
It’s all in the holes

Aerospace industry old-timers tell the story of the staff engineer who, in an
early rocket project, was in charge of tracking the weight of everything that
would get on board. He kept pestering the programmers about how much the
control software would weigh. The reply, invariably, was that the software
would weigh nothing at all; but he was not convinced.
One day he came into the head programmers’ office, waving a deck of
punched cards (the input medium of the time, see the picture): “This is the
software”, he said, “Didn’t I tell you it had a weight like everything else!”.
This did not deter the programmer: “See the holes? They are the software.”

(Possibly apocryphal,
but a good story still.)

A deck of

punched cards

§1-E EXERCISES 13

� Computers appear in many different guises; many are embedded in products
and devices.

� Programs must be written to facilitate understanding, extension and reuse.
They must be correct and robust.

New vocabulary

At the end of every chapter you will find such a list. Check (this is the first exercise
in the chapter) that you know the meaning of each term listed; if not, find its
definition, as you will need the terms in subsequent chapters. To find a definition,
look up the index, where definition pages appear in bold.

1-E EXERCISES

1-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

1-E.2 Data and information

For each of the following statements, say whether it characterizes data,
information or both (explain):

1 “You can find the flight details on the Web.”

2 “When typing into that field, use no more than 60 characters per line.”

3 “Your password must be at least 6 characters long.”

4 “We have no trace of your payment.”

5 “You can’t really appreciate her site without the Flash plug-in.”

6 “It was nice to point me to your Web page, but I can’t read Italian!”

7 “It was nice to point me to your Web page and I’d like to read the part in
Russian, but my browser displays Cyrillic as garbage.”

Communication device Compiler Computer

Correct CPU Data

Dynamic Embedded Extendible

Hardware Information Input

Memory Output Persistence

Processor Programmer Programming language

Reusable Robust Software

Source Static Target

Terminal User

→ Page 849.

THE INDUSTRY OF PURE IDEAS §1-E14

1-E.3 Defining precisely something you have known all along

You know about alphabetical order: the order in which words are listed in a
dictionary or other “alphabetical” list. Alphabetical order specifies, of two
different words, which is “before” the other. For example the word sofa is
before soft, which itself is before software.

The question you are asked in this exercise is simply:

That is to say, define alphabetical order. This is a notion that you undoubtedly
know how to apply in practice, for example to look up your name in a list; what
the exercise requests is a precise definition of this intuitive knowledge, of the
kind you might need for a mathematical notion — or for a concept to be
implemented in a program.

To construct your definition you may assume that:
� A word is a sequence of one or more letters. (It is also OK to use “zero or

more letters”, accepting the possibility of empty words, if you find this more
convenient. Say which convention you are using.)

� A letter is one among a finite number of possibilities.
� The exact set of letters does not matter, but for any two letters it is known

which one is “smaller” than the other. For example, with letters of the
Roman alphabet, a is smaller than b, b is smaller than c and so on.
If you prefer a fully specified set of letters, just take it to include the twenty-six used
in common English words, lower-case only, no accents or other diacritical marks:
a b c d e f g h i j k l m n o p q r s t u v w x y z, each “smaller” than the next.

The problem calls for a definition, not a recipe. For example, an answer of the
form “You first compare the first letters of the two words; if the first word’s first
letter is smaller than the second word’s first letter then the first word is before
the second, otherwise...” is not acceptable since it is the beginning of a recipe,
not a definition. A proper answer may start: “A word w1 is before a word w2 if

and only if any of the following conditions holds: …”.

Make sure that your definition covers all possible cases, and respects the
intuitive properties of alphabetical ordering; for example it is not possible to
have both w1 before w2 and w2 before w1.

About this exercise: The purpose is to apply the kind of precise, non-operational
reasoning essential in good software construction. The idea is borrowed from a
comment of Edsger Dijkstra, a famous Dutch computer scientist.

1-E.4 Anthropomorphism

Match the components and functions of a computer system to a human’s body
parts and their functions; discuss similarities and differences.

Define under what exact conditions a word is alphabetically “before” another.

← “The overall
setup”, 1.2, page 6.

2

Dealing with objects

You are now going to write, execute and modify your first program.

Prerequisites: you must be able to use the basic functions of a computer and
find your way through its directories and files; EiffelStudio must have been
installed on your computer; and you must have downloaded the Traffic
software. Everything else you will learn here and on the supporting Web site.

2.1 A CLASS TEXT

Each of the first few chapters relies on a different “system” (a collection of files
making up a program) included in the Traffic delivery. The name of the system
is reminiscent of the chapter’s title: objects, interfaces, creation… In the
example directory of the delivery, each system appears in a subdirectory, whose
name also includes the chapter number so that they appear in order: 02_object,
04_interfaces and so on.

Start EiffelStudio and open the “system” called objects. The precise details
of how to do this are given in the EiffelStudio appendix:

In case something goes wrong at any time, remember this:

Touch of practice: Using EiffelStudio

Since this book focuses on principles of software construction, the details of
how to use the EiffelStudio tools to run the examples appear separately in
appendix E: “Using the EiffelStudio environment”, page 843 and the
associated Web page. To set up and run any example, read that appendix.

Touch of practice: If you mess up

It is possible, especially if you are not too experienced with computers, to
make a mistake that will take you off the track carefully charted below. Try to
avoid getting into that situation (by following the instructions precisely) but if
it happens don’t panic; just check the EiffelStudio appendix.

To download Traffic:
traffic.origo.ethz.ch.
Book site: touch.ethz.ch.

→ See “Setting up a
project”, E.2, page 844.

http://touch.ethz.ch
http://traffic.origo.ethz.ch

DEALING WITH OBJECTS §2.116

You will be looking at program texts both throughout this book and on your
screen. The book applies systematic typesetting conventions:

These typesetting conventions are standardized. So are the conventions for
displaying software texts in EiffelStudio; they are very similar, but you will
notice a few differences since paper and screen have different constraints.

You are going to work on a program element, or “class”, called PREVIEW,
which will be the core of your first program. Bring up the text of class
PREVIEW. The initial display will look like this:

The first line says you are looking at a “class”, one of those immaterial machines
out of which we build programs; it calls it PREVIEW, as indeed the class
describes a small preview of a city tour.

The first two lines also state that PREVIEW will inherit from an existing
class called (second line) TOURISM; this means that PREVIEW extends
TOURISM, which already has lots of useful facilities, so all you have to do is
include your own programming ideas in the new class PREVIEW. The class
names reflect this relationship: TOURISM describes a general notion of touring
the city; PREVIEW covers a particular kind of tour, not a real visit but a preview
from the comfort of your desk.

Touch of style:
Program text and explanation text

In this book, anything that is part of a program text appears in this blue
(sometimes bold or italics according to precise rules specified below).
Everything else is the book’s explanations. This way you will never confuse
elements of the programs with observations about these programs.

end

→ See again : E.2,
page 844 on how to
bring up the class.

class PREVIEW inherit

TOURISM

feature

explore

-- Show city info and route.
do

end

The part you will fill in

Declaration of
the feature explore

§2.1 A CLASS TEXT 17

The text of a class describes a set of operations, called features. Here there is
only one, called explore. The part of the class that describes it is called the
declaration of the feature. It consists of:

� The feature’s name, here explore.

� “- - Show city info and route.”, a comment.

� The actual content of the feature, enclosed in the keywords do and end, but
empty for the moment: this is what you are going to fill in.

A keyword is a special word that has a reserved meaning; you may not use it
for naming your own classes and features. To make keywords stand out we
always show them in bold (blue, since they are part of program text). Here the
keywords are class, inherit, feature, do and end. (With just these five you can
already go quite a way.)

A comment, such as - - Show city info and route, is explanatory text that
has no effect on the program execution but helps people understand the program
text. Wherever you see “- -” (two consecutive “minus” signs), it signals a
comment, extending to the rest of the line. When you write a feature declaration
you should always, as a matter of good style, include a comment after the first
line as here, explaining what the feature is about.

Touch of Magic?

Class TOURISM is part of supporting software prepared specifically for this
book. By piggybacking on these predefined facilities, rather than building
everything from scratch, you can immediately learn the most commonly
useful programming concepts, and practice them right away by writing and
running example programs.
So if it seems like magic that your first programs will work at all, it is not: the
supporting software — the apparent “magic” — uses the same techniques that
you will be learning throughout the book. Little by little we will be removing
pieces of the magic, and at the end there will not be any left; you will be able
to reconstruct everything by yourself if you wish.
Even now, nothing prevents you from looking at the supporting software, for
example class TOURISM; it is all in the open. Just do not expect to understand
everything yet.

DEALING WITH OBJECTS §2.218

2.2 OBJECTS AND CALLS

Your first program will let you prepare a trip through a city that looks
remarkably like Paris, which may be the reason why the program text calls it
Paris. As this is your first trip let’s play it safe. All we want the program to do
is display some information on the screen:

� First, display a map of Paris, including a map of the Metro (the underground
train network).

� Next, spotlight, on the map, the position of the Louvre museum (you have
heard about it, or maybe it’s the only local name that you can pronounce at
the moment).

� Next, highlight, on the Metro map, one of the metro lines — Line 8.

� Finally, since your ever thoughtful travel agent has prepared a route for your
first trip through the city, animate that route by showing a small picture of a
traveler hopping through the stops.

Editing the text

Here is what you should do. Edit the text of the class PREVIEW and modify the
feature explore so that it reads like this:

To make the process smoother and avoid any confusion, note the following
about how to “input” (type in) the text:

Programming time!
Your first program

In this section you are asked to fill in your first program text, then to run
the program.

explore

-- Show some city info.
do

Paris.display

Louvre.spotlight

Line8.highlight

Route1.animate

end

The text you should type in

§2.2 OBJECTS AND CALLS 19

� The text of each line starts some distance away from the left margin; this is
known as indentation and serves to show the structure of the text. As it has
no effect on program execution, you could write everything left-aligned if
you wanted to; but it does have an effect on program understandability (and
probably on your grade when you submit programs), so please observe it
carefully. We will see the indentation rules as we go.

� To achieve the indentation, do not use repeated spaces, which could make it
messy to align text; use the character marked Tab on your keyboard. Tabs
automatically align to equally spaced positions.

� In Paris.display and similar notations on subsequent lines, you see a period
“.” between successive words. Unlike the period that terminates a sentence
in written English, it is not followed by a space. Since it is an important
element of program texts this book shows it as a big blue dot, “.”, but on
your keyboard it is just the plain period character.

� More generally, the typographical variations — boldface, italics, color … —
do not affect how you type the text, only how you read it, in this book and
on the screen as displayed by EiffelStudio.

Also note that you do not actually need to type everything; EiffelStudio has a
“completion” mechanism which suggests possibilities for continuing any initial
text that you have typed. For example, if you type Paris., EiffelStudio displays,
immediately after you type the dot, a menu of possibilities, corresponding to the
various features applicable to Paris. You could scroll down to find display, but
this is not so convenient because the list is still too long, so type one more letter,
the d of display; the menu gets updated to list those features whose name starts
with a d:

Completion menu

DEALING WITH OBJECTS §2.220

Here you see display as one of the possibilities and can choose it either by
clicking it or by moving through menu entries with the up and down arrow keys
of the keyboard (here, press the down arrow twice) and pressing the Enter key.
The completion menu automatically appears under certain contexts, such as
when you typed a period after Paris; if at any point you are looking for help with
possible completions and the menu does not show up, just type CTRL-Space
(hold down the Control key while pressing the space bar) to get it.

If you are not interested in automatic completion, just continue typing and ignore
the completion menu, except possibly as suggestions of what you may type. Typing
the ESC key will dismiss the menu.

After typing the changes to the text you may save them (to make sure they are
recorded for good); you can use the Save entry of the File menu, or just type
Control-S (pressing S while holding the Control key down). You need not worry
about forgetting to save; EiffelStudio will tell you if needed.

Running your first program

So much for the “cosmetics”, as programmers say — superficial aspects of a
program’s textual appearance.

You will now run (execute) the program. The following describes the basic
process; you will find more details of how to interact with EiffelStudio in the
corresponding appendix.

Click the Run button (it is towards the right at the top of the window and
looks like this). The first time you do this, you will actually get the
following message (“dialog box”):

“Compiling” a system means transforming it into a form that can be directly
processed by the computer, as opposed to the original, or “source” form in
which you wrote it.

This is a completely automatic process. Some people prefer to forget about
it, and pretend that they just run the program directly after a change; hence the
checkbox (“Do not show again…”), which will avoid being bothered in the
future. Personally I do not check the box as I prefer to start my compilations
explicitly (by clicking the “compile” button , or just hitting the F7
function key). You can decide your own preference later; for the moment just
click Yes.

→ “Setting up a
project”, E.2, page 844.

You must

compile before

executing

§2.2 OBJECTS AND CALLS 21

If you have forgotten to save your changes EiffelStudio will detect it and bring up a
similar message. Again there is a “Do not show again” checkbox; here I prefer not to
save my files explicitly, letting EiffelStudio do it. In any case, save now if you need to.

The compilation starts. EiffelStudio must compile not just your class PREVIEW

with its single feature explore but everything else that it needs — the entire
Traffic software, and the supporting libraries. Depending on your initial setup
— whether or not you have a precompiled version of this software — this might
take a while, but only the first time; later compilations will only process your
latest changes, so they will be almost instantaneous, even if the overall program
is very large.

Unless you mistyped something — in which case you will get an error
message so that you can correct the mistake and restart the process —
compilation will proceed to the end and execution will start.

The first screen of the system appears. In this screen, click ; you
will see the following sequence of events:

1 As a result of executing the first line, Paris.display, of our explore feature,
the city map including the metro network appears in the window:

DEALING WITH OBJECTS §2.222

2 Nothing happens for five seconds, then as a result of the second line
Louvre.spotlight the position of the Louvre museum (next to the Palais
Royal metro station) shows up spotlighted on the map:

3 After another five seconds, Line 8 of the metro network comes up
highlighted as a result of the third line Line8.highlight:

4 After another short delay, the fourth line Route1.animate causes the map to
show a figurine representing a person and move it through the successive
stops along the chosen route.

Once ready, a program can of course be executed as many times as you like, so
you can repeat the above execution by pressing again the button of
EiffelStudio. If you have not changed the program this will simply run it again.
If you changed it, EiffelStudio will recompile it (after asking for your
confirmation unless you changed the settings to start a compilation
automatically) before running it again.

Line 8

§2.2 OBJECTS AND CALLS 23

Dissecting the program

The execution just described is the effect of the four lines that you inserted into
the text of the feature explore. Let us look at what they mean. The techniques
used in this simple program are fundamental; make sure that you understand
everything in the following explanation.

The first line,

uses an object, known to the program as Paris, and a feature, known as display.
An object is a unit of data (the next section explains this notion in more detail);
a feature is an operation applicable to such data. Paris.display is an example of
a fundamental program construct known as a feature call:

where x denotes an object and f a feature (an operation). This has a
well-defined effect:

Previous rules addressed the form, or syntax, of programs. This the first rule
defining semantics — the execution-time behavior of programs. We will study these
concepts in detail in later chapters.

Feature call is the basis of computation: over and again, that is what our
programs do during their execution.

In our example the target object is called Paris. As the name suggests, it
represents a city. How much of the real city “Paris” does it really describe? You
need not worry since Paris has been predefined for us. Pretty soon you will learn
to define your own objects, but for the moment you have to rely on those
prepared for this exercise. A standard convention facilitates recognizing them:

Paris.display

x.f

Touch of Semantics:

Feature call

The execution-time effect of a feature call x.f is to apply the feature of name
f, from the corresponding class, to the object that x denotes at that moment
in execution.

Touch of style:

Names of predefined objects

Names of predefined objects always start with an upper-case letter, as in Paris,
Louvre, Line8 and Route1.
New names, corresponding to the objects that you define, will by default start
with a lower-case letter.

DEALING WITH OBJECTS §2.224

Where are these “predefined” objects defined? You guessed it: in the class
TOURISM, which your class PREVIEW inherits. This is where we put the “magic”
through which your program, simple as it is, can produce significant results.

One of the features applicable to an object representing a city, such as Paris, is
display, which shows the current state of the city on the screen.

After applying display to the object Paris, the program performs another
feature call:

The target object here is Louvre, another predefined object (name starting with
a capital letter) denoting the Louvre museum. The feature is spotlight which will
spotlight the corresponding place on the map.

Then to highlight Line 8 we execute

using a feature highlight that highlights the target object, here Line8 denoting an
object that represents line number 8 of the underground system.

The final step, again a feature call, is

where the target object is Route1, representing a predefined route — we assume,
as noted, that it was all prepared by your travel agent — and the feature is
animate which will showcase the route by moving a figurine along it.

For the program to work as expected, the features used in this program —
display, spotlight, highlight, animate — must all do a little more than just
displaying something on the screen. The reason is that computers are fast, very fast.
So if the only effect of the first operation, Paris.display, were to display the map
of Paris, the next operation, Louvre.spotlight, would follow a fraction of a second
later; when you run the program you would never see the first display, the one that
shows the map without the Louvre. To avoid this, the features all make sure, after
displaying what they need to display, to pause execution for five seconds.

This is all taken care of in the text of these features, which we are not
showing you yet (although you can look at them if you want to).

Congratulations! You have now written and run your first program, and you
even understand what it does.

Louvre.spotlight

Line8.highlight

Route1.animate

§2.3 WHAT IS AN OBJECT? 25

2.3 WHAT IS AN OBJECT?

Our example program works with objects — four of them, called Paris, Louvre,
Line8 and Route1. Working with objects is what all our programs will do; this
notion of object is so fundamental that it gives its name to a whole style of
programming, used in this book and widely applied in the software industry
today: Object-Oriented, often abbreviated as “O-O”.

Objects you can and cannot kick

What exactly should we understand from the word “object”? Here we are using
for technical purposes a term from ordinary language — very ordinary language,
since it is hard to think of a more general notion than objects. Anyone can
immediately relate to this word; this is both appealing and potentially confusing:
� It is appealing because using “objects” for your programs lets you organize

them as models of real systems using real objects. If you do go to Paris you
will see that the Louvre is a real object; if its sight is not enough to convince
you of its reality, try kicking it with your fist. (Buying this book does not
entitle you to a refund of medical expenses.) Our second software object so
far, Paris, also corresponds to a real object, an even bigger one, the whole city.

� But this convenience of using software “objects” to represent physical ones
should not lead you to confuse the two kinds. The reality of a software
object does not extend beyond an immaterial collection of data stored in
your computer; your program may have set it up so that operations on it
represent operations on a physical object — like Bus48.start, representing
the operation of making a bus move — but the connection is all in your
mind. Even though our program uses an object called Paris, it is not the real
Paris. (“One cannot put Paris into a bottle”, says, more or less, an old French
proverb, and you cannot put Paris into a program either.)

Never forget that the word “object” as used in this book denotes a software
notion. Some software objects represent things from the world out there, like the
Louvre, but as we move to more sophisticated programming techniques that will
not always be the case. For example, the last object we used, called Route1

represents a route — a travel plan. The particular plan represented by Route1

enables you to go by metro (underground) from the Louvre station (also known
as Palais Royal) to Saint-Michel. As the black line shows in the figure, this route
has three parts, or “legs”:

Line RER-1

A metro route
Line 7

Louvre

Châtelet

Saint-Michel

Line
change

Châtelet

DEALING WITH OBJECTS §2.326

� Go from the “Louvre” station to “Châtelet” on line 7 (3 stops).
� Change lines.
� Go from Châtelet to “Saint-Michel” on line RER-1 (1 stop).
The “route” is this sequence of legs. It is not a physical object that you can kick,
like the Louvre or your little brother; but it is an object all the same.

Features, commands and queries

What makes an object is not that it has a physical counterpart, but that we can
manipulate it with our program through a set of well-defined operations, which
we call features.

Some of the features applicable to a “route” object include questions that we
may ask; for example:
� What is the starting point? What is the ending point? (For our example

Route1, as described above: Louvre and Saint-Michel.)
� What kind of route is it: walking, by bus, by car, by metro, or some

combination of these? (For Route1 the answer is: a metro route.)
� How many legs does it use? (For Route1, three: metro from Louvre to

Châtelet, line change at Châtelet, metro from Châtelet to Saint-Michel.)
� What metro lines, if any, does it use? (For Route1: lines 7 and RER-1.)
� How many metro stations does it go through? (Here: three altogether.)
Such features, allowing us to obtain properties of an object, are called queries.

There is a second kind of feature, called a command; a command enables
the program to change the properties of some objects. We already used
commands: in our first program, Paris.display changes the image shown on the
screen, so display is a command. In fact all four operations of our first program
were commands. As another set of examples, we may want to define the
following commands on routes:
� Remove the first leg of the route, or the last leg, or any other.
� “Append” (add at the end) a new leg; it must start at the current destination.

Here we can append to Route1 a new leg provided it starts at Saint-Michel,
for example a metro leg from Saint-Michel to Port Royal (1 station on the
simplified map); the route will be changed to involve 4 legs, 3 metro lines,
and 4 stations; the result now starts at Louvre and ends at Port Royal.

� “Prepend” (add at the beginning) a new leg; it must end at the current origin.
For example we can make Route1 start with a leg going from Opéra to
Louvre; this changes the number of stations but not the set of metro lines
since Opéra is already on line 7.

All these operations change the route, and hence are commands.
We can, by the way, define precisely what it means for a command to

“change” an object: it changes the visible properties of the object — visible, that

← The map was on
page 22.

§2.3 WHAT IS AN OBJECT? 27

is, through the queries. For example if you ask for the number of legs in a route
(a query), then append a leg (a command), then ask again, the new answer will
be one more than the original. If the command is to remove a leg, the query’s
result afterwards will be one less than it was before the command.

The tunnel signs that one encounters on German Autobahnen (freeways) are
a good illustration of the command-query distinction. The sign at the entrance
to a tunnel looks like this:

“Licht!”, you are told in no uncertain terms. Switch on your lights!
Unmistakably a command.

When you exit the tone is more gentle:

“Licht?”: did you remember to switch off your lights? Just a query.
This query is a nice example of “user interface design”, resulting from careful
research and intended to avoid common mistakes — as should also be the case for
the user interface of software systems. Apparently, before it went into effect, the
exit sign was a command, “Switch off your lights!”, which disciplined drivers
would mechanically obey — including at night. Nothing like a good query to keep
the audience awake.

Command upon

entering a

tunnel

Query upon

leaving a tunnel

DEALING WITH OBJECTS §2.328

Objects as machines

The first thing we learned about programs is that they are machines. Like any
complex machine, a program during its execution is made of many smaller
machines. Our objects are those machines.

Perhaps you find this hard to visualize: how can we see a travel route across
the metro as a machine? But in fact we just saw the answer: what characterizes
a machine is the set of operations — commands and queries — that it provides
to its users. Think of a DVD player, with commands to start playing, move to
the next track and stop playing, and queries to show the number of the track
being played, the time elapsed etc. To our programs, the Route1 object is exactly
like the DVD player: a machine with commands and queries.

The figure evokes this correspondence: blue rectangular buttons on the left
represent commands; yellow elliptical buttons on the right represent queries.

When thinking about objects — such as the one denoted by Route1 — we now
have two perspectives:

1 The object covers a certain collection of data in memory, describing, in this
case, all the information associated with a certain route — it has three legs,
it starts at the station “Louvre” etc.

2 The object is a machine, providing certain commands and queries.

These two views are not contradictory, but easy to reconcile: the operations that
the machine provides (view 2) access and modify the data collected in the object
(view 1).

← “The industry of
pure ideas”, 1, page 3.

A “route” object

pictured as a

machine
animate

append

prepend

first last

count stations

§2.3 WHAT IS AN OBJECT? 29

Objects: a definition

Summarizing this discussion of objects, here is the precise definition that serves
throughout this book:

In this definition and the rest of the discussion, to “access” data is to obtain the
answer to a question about the data, without modifying it. (We could also say
“consult” the data.)

The words “access” and “modify” reflect the already encountered
distinction between two fundamental kinds of operation:

Examples of commands were display for a city such as Paris and spotlight for
a location such as Louvre. Queries have been mentioned, for example the
starting point of a route, but we have not yet used one in a software text yet.

Queries and commands work on existing objects. This means we need a
third kind of operation: creation operations, to give us objects in the first place.
You do not need to worry about this for the moment because all the objects you
need in this chapter — Paris, Louvre, Route1 … — are created for you as part
of the “magic” of class TOURISM, and at execution time they will be created
when your program needs to use them. Soon you will learn how to create your
own objects as you please.

This will also explain why the notion of “machine” characterizes not only objects
but also classes.

Definition: Object

An object is a software machine allowing programs to access and modify a
collection of data.

Definitions: Feature, Query, Command

An operation that programs may apply to an object is called a feature, and:
� A feature that accesses an object is called a query.
� A feature that may change an object is called a command.

→ Chapter 6.

DEALING WITH OBJECTS §2.430

2.4 FEATURES WITH ARGUMENTS

Queries are just as important as commands. We will now look at some examples
of how to use them. We may for example want to know the starting point — the
origin — of a route. It is given by a query origin, applicable to routes; its value
for our example route Route1 is written

This is a feature call, like the calls to commands such as Route1. animate and
the others we have seen. In this case, since the feature is a query, the call does
not “do” anything; it simply yields a value, the origin of Route1. We could use
this value in various ways, like printing it on a piece of paper; let us instead
display it on the screen.

You will have noticed at the bottom of the display a little window
(rectangular area) marked “Console”; it is used to show information about the
state of our city-modeling system. In our program it is — guess what — an
object. You can manipulate it through the feature Console; it is one of those
predefined features, like Paris and Route1, that our example class PREVIEW

inherits from TOURISM.

One of the commands applicable to Console is called show; its effect is to
output (display) a certain text in the console. Here we may use it to show the
name of the starting point of the route.

There are only two changes, as highlighted below: an update to the comment —
for explanation purposes only — and a new operation at the end:

Route1.origin

Programming time!
Displaying specific information

You will now modify the previous program to make it display new information.

class PREVIEW inherit

end

← See class PRE-
VIEW, page 16.

TOURISM
feature

explore
-- Show city info, a route, and the route’s origin.

do
Paris.display
Louvre.spotlight
Line8.highlight
Route1.animate
Console.show (Route1.origin)

end

§2.4 FEATURES WITH ARGUMENTS 31

Execute the resulting program; the origin of the route, Louvre (formally: Palais

Royal Musée du Louvre), shows up in the console window:

This is the effect of our new feature call, Console.show (Route1.origin).
Previous feature calls were all of the form some_object.some_feature, but the
form of this one is new:

where some_argument is a value that we pass to the feature because it needs that
value to do its job. Feature show, for example, needs to know what to “show”,
so we give it the corresponding value.

Such a value is known as an argument to the feature; the concept is the
same as for arguments to functions in mathematics, where cos (x) denotes the
cosine of x — the function cos applied to the argument x.

Some features will have more than one argument (separated by commas),
although in well-designed software the majority of features typically have zero
or one argument.

The notion of argument completes our panoply of basic program elements,
which serves as the basis for all the discussions in subsequent chapters: classes,
features, commands, queries, objects and arguments.

some_object.some_feature

Message in console

(some_argument)

DEALING WITH OBJECTS §2.532

2.5 KEY CONCEPTS LEARNED IN THIS CHAPTER

� A software system is a set of mechanisms to create, access and change
collections of information called objects.

� An object is a machine controlling a certain collection of data, providing the
program, at run time, with a set of operations, called features, applicable to
this data.

� Features are of two kinds: queries, which return information about an object;
and commands, which can change the object. Applying a command to an
object may change the results of applying queries to that object later on.

� Some objects are software models of things from the physical world, like a
building; others are software models of concepts from the physical world,
like a travel route; yet others collect information meaningful to the
software only.

� The basic operations performed by programs are feature calls, each of
which applies a certain feature to a certain target object.

� A feature may have arguments, representing information it needs.

New vocabulary

“Class” awaits a more complete definition in the chapter on interfaces.

2-E EXERCISES

2-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

2-E.2 Concept map

This exercise will run through subsequent chapters where you will be invited to
extend the results first developed here. The goal is to create a conceptual map
of the terms defined in vocabulary lists. To this effect, put the terms of the above
list in boxes on a piece of paper, distributed over the page. Then connect them
with arrows labeled by relation names to reflect the relation between the
corresponding notions.

If you prefer an electronic medium, use a computer diagramming tool, but a single
page of plain paper suffices for the terms of this chapter.

Argument Class Command

Declaration Feature Feature call

Indentation Object Query

Chapter 4.

The definition of
“class” may be less
precise than the others
as we have not yet seen
the concept in full.

§2-E EXERCISES 33

You may use a variety of relation names, but in any case consider the following
fundamental ones:

� “Is a more specific kind of”. For example, in a domain of knowledge having
nothing to do with programming: journal “is a more specific kind of”
publication; so is book.

� “Is an instance of”. For example: Australia “is an instance of” country. Do
not confuse with the previous relation: Australia is not a kind of country, it
is a country.

� “Relies on” (as applied to concepts). For example, in mathematics, division

“relies on” multiplication, since you cannot really understand division
without first understanding multiplication. If either of the previous two
relations holds between two terms, “relies on” also holds; so you should
reserve it for cases in which the dependency is weaker (the second concept
is neither a more specific kind nor an instance of the first).

� “Contains” (applied to instances of two concepts). For example, every
country “contains” a city. You may instead consider the inverse relation, “is
a part of”.

You may add other kinds of relations as long as you provide a precise definition
for each.

2-E.3 Commands and queries

In software for creating, modifying and accessing documents, assume a class
WORD that describes a notion of word, and a class PARAGRAPH that describes
a notion of paragraph. For each of the following possible features of class
PARAGRAPH, state whether it should be a command or a query:

1 A feature word_count, used under the form my_paragraph.word_count,
which gives the number of words in a paragraph.

2 A feature remove_last_word, used as my_paragraph.remove_last_word,
which removes the last word of a paragraph.

3 A feature justify, used as my_paragraph.justify, which “justifies” a
paragraph (makes sure it is aligned to both the left and right margins, like
the present paragraph and most others in this book, but not the margin notes
such as the one adjacent to exercise 2-E.1).

4 A feature extend, used as my_paragraph.extend (my_word), which takes an
argument representing a word and adds it at the end of the paragraph.

5 A feature word_length, used as my_paragraph.word_length (i), which
takes an integer argument representing the index of a word in a paragraph
(i = 1 for the first word, i = 2 for the second word etc.) and gives the number
of characters in the corresponding word (the word of index i) in
the paragraph.

DEALING WITH OBJECTS §2-E34

2-E.4 Designing an interface

Assume that you are building the software for an MP3 player.
1 List the main classes that you would use.
2 For each such class, list applicable features, indicating for each whether it

is a command or a query and what arguments, if any, it should have.

3

Program structure basics

The previous chapter brought us our first brush with programs. We are ready to
move on to new concepts of software design; to make this experience more
productive, we pause briefly to take a closer look at some of the program parts
we have been using, so far without having names for them.

3.1 INSTRUCTIONS AND EXPRESSIONS

The basic operations that we instruct our computer to execute, like the five we
had in the latest version

are, naturally enough, called instructions. It is customary to write just one
instruction per line, as here, for program readability.

All of the instructions seen so far are feature calls. In subsequent chapters
we will encounter other kinds.

To do its work, an instruction will need some values, in the same way that
the mathematical function “cosine”, as in cos (x), can only give you a result if it
knows the value of x. For a feature call the needed values are:

� The target, an object, expressed as Paris, Louvre etc.

� The arguments, if any, such as Route1.origin in the last example.

Paris.display

Louvre.spotlight

Line8.highlight

Route1.animate

Console.show (Route1.origin)

PROGRAM STRUCTURE BASICS §3.236

Such program elements denoting values are called expressions. Apart from the
forms illustrated here we will also encounter expressions of the standard
mathematical forms, such as a + b.

3.2 SYNTAX AND SEMANTICS

In the above definitions of “instruction” and “expression” the word “denotes” is
important. An expression such as Route1.origin or a + b is not a value: it is a
sequence of words in the program text. It denotes a value that may exist during
the program’s execution.

Similarly, an instruction such as Paris.display is a certain sequence of
words, combined according to certain structural rules; it denotes a certain
operation that will happen during execution.

This term denotes reflects the distinction between two complementary
aspects of programs:

� The way you write a program, with certain words themselves made of
certain characters typed on a keyboard: for example the instruction
Paris.display consists of three parts, a word made of five characters P, a, r,
i, s, then a period, then a word made of seven characters.

� The effect you expect the elements of these programs to have at execution:
the feature call Paris.display will display a map on the screen.

The first kind of property characterizes the syntax of programs, the second their
semantics. Here are the precise definitions:

It is fine to use “semantics” as a singular, like other similar words: “Economics was

a big part of the minister’s speech, but while the politics was obvious the semantics

was tortuous”.

Definitions: Instruction, Expression

In program texts:
� An instruction denotes a basic operation to be performed during the

program’s execution.
� An expression denotes a value used by an instruction for its execution.

Definitions: Syntax, Semantics

The syntax of a program is the structure and form of its text.
The semantics of a program is the set of properties of its potential executions.

§3.3 PROGRAMMING LANGUAGES, NATURAL LANGUAGES 37

Since we write programs to execute them and obtain certain effects, it is the
semantics that counts in the end; but without syntax there would be no program
texts, hence no program execution and no semantics. So we must devote our
attention to both aspects.

Earlier on, we had another distinction: commands versus queries.
Commands are prescriptive: they instruct the computer, when executing the
program, to perform some actions, which may change objects. Queries are
descriptive: they tell the computer to give the program some information about
its objects, without changing these objects. Combining this distinction with the
syntax-semantics division yields four cases:

In the bottom-right entry we have two semantic concepts: a query is a program
mechanism to obtain some information; that information itself, obtained by the
program by executing queries, is made of values.

3.3 PROGRAMMING LANGUAGES, NATURAL LANGUAGES

The notation that defines the syntax and semantics of programs is a
programming language. Many programming languages exist, serving
different purposes; the one we use in this book is Eiffel.

Programming languages are artificial notations. Calling them “languages”
suggests a comparison with the natural languages, like English, that we use for
ordinary communication. Programming languages do share some
characteristics with their natural cousins:

� The overall organization of a text as a sequence of words and symbols: a
period “.” is a symbol in both Eiffel and English; PREVIEW in Eiffel and
“the” in English are words.

� The distinction between syntax, defining the structure of texts, and
semantics, defining their meaning.

� The availability both of words with a predefined meaning, such as “the” in
English and do in Eiffel, and of ways to define your own words — as Lewis
Carroll did in Alice in Wonderland: “Twas brillig, and the slithy toves…”,
and also as we just did by calling our first class PREVIEW, a name that
means nothing special in Eiffel.

Syntax Semantics

Prescriptive Instruction Command

Descriptive Expression Query
Value

→ A synonym for
“prescriptive” is
“imperative”. For
more on this matter,
see “Functional pro-
gramming and func-
tional languages”,
page 324.

→ For a brief review of
major programming
languages see “pro-
gramming language
styles”, 12.1, page 322.

PROGRAM STRUCTURE BASICS §3.338

Word creation is far more common and open-ended with programming languages
than with human ones. In natural languages you do not invent new words all the
time, unless you are a poet, a little child or an Amazonian botanist. In programming,
people who have never seen a flower, even less one from South America, and
outwardly appear adult, might on a good day make up several dozen new names.

� Eiffel reinforces the human language flavor by drawing its keywords from
English; every keyword of Eiffel is in fact a single and commonly used
English word.

Some other programming languages use abbreviations, such as int for INTEGER,
but we prefer full words for clarity.

� It is also recommended that, whenever possible, you use words from
English or your own language for the names you define, as we did in the
examples so far: PREVIEW, display, or Route1 (with a digit).

All these similarities between programming languages and human languages are
good, because they help people understand programs. But they should not fool
us: programming languages are different from human languages. They are
artificial notations, designed for a specific purpose. This is both a loss and a gain:

� The power of expression of a programming language is ridiculously poor
compared to the realm of possibilities available in any human language,
even to a four-year old child. Programming languages cannot express
feelings or even thoughts: they define objects to be represented on a
computer and tasks to be performed on these objects.

� What they miss in expressiveness, programming languages make up for in
precision. Human texts are notorious for their ambiguity and their openness
to many interpretations, which are even part of their charm; when telling
computers what to do, we cannot afford approximation. The syntax and
semantics of a programming language must indeed be defined very precisely.

Touch of Style:

Putting some English into your programs

Natural language has a place in programs: in comments. We saw that any
program text element that starts with two dashes “- -” is, up to the end of the line,
a comment. Unlike the rest of program texts, comments do not follow any precise
rules of syntax, but that is because they have no effect on execution — no
semantics. They are just explanations, helping people understand your programs.

In addition, natural language serves as the basis for identifiers, in particular
class and feature names. The methodological advice is to use full, clear names,
such as METRO_LINE for a class (rather than abbreviations, except if they are
already accepted in natural language).

There is one exception:
the keyword elseif
combines two words.
See page 179.

For “English”, substi-
tute your own natural
language if different.

§3.4 GRAMMAR, CONSTRUCTS AND SPECIMENS 39

In the end, to call our notations “languages” is to confer on them an honor they
do not entirely deserve. Rather than scaled-down versions of the languages that
people use to address each other, they are scaled-up versions of the
mathematical notations that scientists and engineers use to express formulas.

The term code, meaning “text in some programming language”, reflects this. It is
used in the expression “Line of code”, as in “Windows Vista contains over 50

million lines of code”. It is also used as a verb: “to code” means to program, often
with an emphasis on the lower-level aspects rather than the design effort, as in “they

think all the ideas are there and all there remains to do is coding”. “Coder” is a
somewhat derogatory term for “programmer”.

Still, programming languages have a beauty of their own, which I hope you will
learn to appreciate. When you start thinking of your love life as
relationship.is_durable, or sending your mother an SMS that reads
Me.account.wire (month.allowance + (month+1).allowance + 1500, Immediately), it
will be a sign that either or both: (1) the concepts are starting to seep in; (2) it is
time to put this book aside and take the week-end off.

3.4 GRAMMAR, CONSTRUCTS AND SPECIMENS

To describe the syntax of a human language — meaning, as we have just seen,
the structure of the corresponding texts — a linguist will propose a grammar for
that language. For the simple English sentence

a typical grammar would tell us that this is a case (we say a specimen) of a
certain “construct”, maybe called “Simple_verbal_sentence” in the grammar,
with three components, each a specimen of some construct:

� The subject of the action: Isabelle, a specimen of the construct “Noun“.

� The action described by the sentence: calls, a specimen of “Verb”.

� The object of the action: friends, another specimen of Noun.

Exactly the same concepts will apply to the syntax description of programming
languages. For example:

� A construct of the Eiffel grammar is Class, describing all the class texts that
anyone can possibly write.

� A particular class text, such as the text of class PREVIEW or class
TOURISM, is a specimen of the construct Class.

Isabelle calls friends

PROGRAM STRUCTURE BASICS §3.540

A future chapter discusses in detail how to describe syntax. For the moment we
only need the basic definitions:

Be sure to note the relationship between constructs and specimens. A construct
is a type of syntax element; a specimen is an instance — a specific example —
of that type. So:

� In a grammar for English, we may have the constructs Noun and Verb; then
Isabelle is a specimen of Noun and calls is a specimen of Verb.

� The standard grammar of Eiffel has the constructs Class and Feature; a
particular class text is a specimen of Class, and any particular feature text is
a specimen of Feature.

As these examples illustrate, construct names will always appear in This_green,
with an upper-case first letter. They are not program elements, but ways to
describe certain categories of program elements, for example classes and
features. Specimens are program elements, and so will appear, like all program
text, in this_blue.

3.5 NESTING AND THE SYNTAX STRUCTURE

The syntax structure of a software text can involve several levels of specimens
(syntax elements). A class is a specimen; so is an instruction, or a feature name
like display.

Interesting languages support embedding specimens within other
specimens; the technical term is nesting. For example a class may contain
features, features may contain instructions, and instructions may contain
expressions and other instructions. Here is the nesting structure of specimens in
our example class (retaining only two instructions for simplicity, and with a new
name PREVIEW1 to distinguish it from the full version):

Definitions: Grammar, Construct, Specimen

A grammar for a programming language is a description of its syntax.
A construct is an element of a grammar describing a certain category of
possible syntax elements in the corresponding language.
A specimen of a construct is a syntax element.

→ Chapter 11.

→ “Grammar” will
have a more detailed
definition on page 296.
A justification for
using the term “speci-
men” appears on
page 300.

§3.6 ABSTRACT SYNTAX TREES 41

The embedding of the colored rectangles highlights the nesting of the
specimens: the outermost rectangle covers the class declaration; the class
declaration contains, among other specimens, a feature declaration; the feature
declaration contains a “feature body” (the part that appears between the
keywords do and end); the feature body contains two instructions; and so on.

Some elements of the syntax — keywords like class, do, end, and the period
in feature calls — serve purely as delimiters and do not carry any semantic value
of their own. We do not consider them specimens.

Make sure you understand the syntactic structure as illustrated above.

3.6 ABSTRACT SYNTAX TREES

For larger program texts, another representation of such a structure is more
convenient. It relies on the notion of tree, as used for example to represent the
organizational chart of a company — and inspired from nature’s own trees with
their branches and leaves, although our trees tend to grow top-down or
left-to-right. A tree has a “root” which branches out to other “nodes” that may
branch further. Trees serve to represent hierarchical structures as here:

class inherit

feature

-- Show city info including a monument.

do

Paris

end

end

display

Louvre spotlight

TOURISM

Two feature names

A comment

PREVIEW1

Two feature names (denoting predefined objects)

A feature
declaration

A class
declaration

Two
instructions

explore

A feature name

Two class names

A feature body

An example

syntax structure

.
.

PROGRAM STRUCTURE BASICS §3.642

This is known as an abstract syntax tree; it is “abstract” because it does not
include the elements playing a delimiting role only, like the keywords do and
end. We could also draw a “concrete syntax tree” that retains them.

A tree includes nodes and branches. Each branch connects a node to
another. From a given node, they may be any number of outgoing branches; but
at most one branch may lead into the node. A node with no incoming branch is
a root; a node with no outgoing branch is a leaf; a node that is neither a root nor
a leaf is an internal node.

A non-empty tree has exactly one root. (A structure made of zero, one or
more disjoint trees, having any number of roots, is called a forest.)

Trees are important structures of computer science and you will encounter
them in many contexts. Here we are looking at a tree representing the syntax
structure of a program element, a class. It represents the nesting of specimens,
with the three kinds of node:

� The root represents the overall structure — the outermost rectangle in the
earlier figure.

� Internal nodes represent substructures that contain further specimens; for
example a feature call contains a target and a feature name. In the earlier
figure, these were the internal rectangles containing other rectangles.

� Leaves represent specimens with no further nesting, such as the name of a
feature or class.

Class declaration

Class
name Inheritance Features of the class

Feature declaration

Feature
name

Header
comment

Feature
body

InstructionInstruction
(feature call) (feature call)

Target Feature Target Feature

Paris display Louvre spotlight

explore Show city info ...

PREVIEW1

Class
name

TOURISM

An abstract

syntax tree

Root
Internal node
(Nonterminal)
Leaf
(Terminal)

Often abbreviated as
“AST”.

→ Chapter 11 dis-
cusses concrete syntax.

→ See in particular
“Binary trees”, 14.4,
page 447..

← Page 41.

§3.7 TOKENS AND THE LEXICAL STRUCTURE 43

For an abstract syntax tree, the leaves are also called terminals; a root or
internal node is called a nonterminal.

Every specimen is of a specific kind: the topmost node represents a class;
others represent a class name, an “inheritance” clause, a set of feature
declarations etc. Each such kind of specimen is a construct. The above syntax
tree shows, for each node, the corresponding construct name. Depending on the
specimens it represents, a construct is either a “terminal construct” or a
“nonterminal construct”: the figure shows “Feature declaration” as a
nonterminal and “Feature name” as a terminal.

A construct defines a general syntax notion, for example the notion of class
text; a particular instance of that notion — for example the text of a particular
class, such as the text of class PREVIEW1 as given — is a specimen of that
construct. As another example, the particular feature call Paris.display is a
specimen of the construct “feature call”.

The syntax of a programming language is defined by a set of constructs and
the structure of these constructs.

3.7 TOKENS AND THE LEXICAL STRUCTURE

The basic constituents of the syntax structure include terminals, keywords, and
special symbols such as the period “.” of feature calls. These basic elements are
called tokens.

Tokens are similar to the words and symbols of ordinary languages. For example
the sentence in the margin has nine words (“This”, “is” etc.) and three symbols (two
hyphens and the final period)

Token categories

Tokens are of two kinds:

� Terminals correspond, as we have seen, to leaves of the abstract syntax
tree; each carries some semantic information. They include names such as
Paris or display, called identifiers, and chosen by each programmer to
represent semantic elements such as objects (Paris) and features (display).
Other examples are operators such as + and <= which will appear in
expressions such as a + b , and manifest constants denoting
self-explanatory values, such as the integer 34.

� Delimiters serve a purely syntactic role and do not carry any semantics.
They include the 65 or so keywords of the language, such as class, inherit,
feature, and special symbols such as the period “.” of feature calls and the
colon “:”. They do not appear in abstract syntax trees (but would figure, as
leaves, in a concrete syntax tree).

This is a nine-word and
three-symbol sentence.

PROGRAM STRUCTURE BASICS §3.744

Levels of language description

The form of tokens defines the lexical structure of the language. The syntax
level comes above the lexical level, and semantics above syntax:

� Lexical rules define how to make up tokens out of characters.

� Syntax rules define how to make up specimens out of tokens satisfying the
lexical rules.

� Semantic rules define the effect of programs satisfying the syntax rules.

An important property of this hierarchy is that properties at any level are only
defined if the constraints on earlier levels hold: syntax is only defined for
lexically legal texts, and semantics for syntactically legal texts.

We will encounter an extra level between syntax and semantics: validity, defining
non-syntax rules such as type constraints.

Identifiers

For the moment we need only one lexical rule, governing identifiers:

Route1 was an example of an identifier including a digit.

You may define your own identifiers as you please based on this rule, except
that you may not pick a keyword since it is already reserved for a specific
purpose. (Of course you only know a few keywords so far. But if you mistakenly
reuse a keyword that you did not know existed you will get a clear error message.)

Syntax:

Identifiers

An identifier starts with a letter, followed by zero or more characters, each of
which may be:
� A letter.
� A digit (0 to 9).
� An underscore character “_”.

Lexical rules

Syntax rules

Semantic rules

Rely on

Rely on

class C inherit ...

Levels of

language

description

→ “Definitions:
Validity, correctness”,
page 368.

§3.7 TOKENS AND THE LEXICAL STRUCTURE 45

In some programs, although usually not Eiffel ones, you may encounter for
multi-word identifiers the use of an upper-case letter in the middle of a name:
myRoute, PublicTransport. This convention is called “camel case” because of the
humps. Better stay away from it, asItIsFarLessReadableThan underscores, which
retain_perfect_clarity_even_with_very_long_identifiers.

Breaks and indentation

The lexical structure consists of successive tokens. To separate adjacent tokens
you may use a break, which is a sequence of one or more of the following:
� Space.
� Tab character (which shows up as a sequence of spaces to reach aligned

positions, but internally is just one character).
� Return to the next line.
Breaks only serve to separate tokens. It makes no difference to the syntax and
semantics whether you go to the next line or use one space, one or more tabs
(typically at the start of a line, for indentation), or several spaces (seldom useful),
or any combination of these. Such a flexible structure, known as “free format”, lets
you devise the text layout that best reflects the program’s structure — especially
by highlighting its syntax nesting — to help readability, as in this book’s examples.

Your program is stored in a file, which contains a sequence of characters such as
letters, digits, tabs and special symbols. In such files a return to the next line is —
in most file formats used today — simply represented by a particular character,
known as “New Line”. You will also encounter mentions of the “Carriage Return”
character. The “carriages” in question are not the horse-and-buggy kind, although
today they seems almost as old — a delightful and nostalgic reminder of the time
when we typed our programs on typewriters. The print head was lodged in a little
mechanical “carriage”, which at the end of a line we would “return” to the leftmost
position to start typing the next line.

A break is usually not required between an identifier and a symbol: you may
write a+b without spaces, since this is not ambiguous. The style rules suggest
including the break anyway for clarity: a + b.

Touch of Style:
Choosing your identifiers

For program readability, always choose identifiers that clearly identify the
intended role; except in special cases (which we will see), use full names, not
abbreviations: Route1, not R1 or Rte1.
There is no tax on keystrokes; the few seconds that you might save by omitting
a few letters will be more than offset by the time that you or someone else trying
to understand your program will waste, later on, figuring out what you meant.
For identifiers denoting complex notions, use underscores to separate
successive words, as in My_route or bus_station. This also works for class
names, always in upper case: PUBLIC_TRANSPORT. Don’t overdo it: for
most identifiers, a single word, or two words separated by an underscore, are
enough. Clear does not mean verbose.

On the Windows oper-
ating system, a line
return is actually
encoded by two char-
acters, a Carriage
Return followed by a
New Line.

PROGRAM STRUCTURE BASICS §3.846

3.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Programs are expressed in a programming language.
� A program has a lexical structure, defining the form of a program’s basic

elements (tokens separated by breaks such as spaces, tabs and line returns);
a syntax structure, defining its hierarchical decomposition into elements
(specimens) built out of tokens; and a semantics defining the execution-time
effect of each specimen and of the whole program.

� The syntax structure usually involves nesting and may be described as a
tree, known as an abstract syntax tree.

3-E.9 New vocabulary

3-E EXERCISES

3-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

3-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapter.

3-E.3 Syntax and semantics

For each of the following statements, say whether it characterizes syntax,
semantics, both, or neither (explain):
1 “In a feature call, you must separate the target object from the feature name

by a period.”
2 “In a feature call x.f, there is no need to put spaces before or after the period,

although they wouldn’t hurt.”
3 “Every feature call applies a feature to a certain object, the ‘target’ of the call.”
4 “If there is an argument, it must be in parentheses.”
5 “Separate two or more arguments of a given type by commas.”
6 “Instructions separated by a semicolon will be executed one after the other”.
7 “Eiffel and Smalltalk are object-oriented programming languages”.

Abstract syntax tree (AST) Break Carriage return
Code Construct Delimiter
Expression Free format language Grammar
Identifier Instruction Internal node
Leaf Lexical Natural language
Nesting New line Node
Nonterminal Operator Root
Semantics Special symbol Specimen
Syntax Terminal Token
Tree Value

← Exercise “Concept
map”, 2-E.2, page 32.

4

The interface of a class

In the previous chapters we have started to build some software relying on
existing elements. We are going to do more of this now by seeing how we can
use previously written classes. This will also be an opportunity to gain new
insights into this notion of class, fundamental to everything we do in
programming, and to discover the concepts of interface and contract.

Per the convention defined earlier, the system containing the examples of
this chapter is in the subdirectory 04_interface of the Traffic examples directory.

4.1 INTERFACES

Many of the key decisions about building and using software systems involve
the notion of interface. We may define it in relation to the notions, of client and
supplier, also useful on their own:

Informally, then, an interface for a piece of software is the description of how
the rest of the world may “talk to” the software.

The definition speaks of “an interface”, not “the interface”. There are indeed
several kinds of interface, and a software element may offer more than one
interface, of the same or different kinds. The two principal kinds are:

� A user interface, whose intended clients are people using a software system.

� A program interface, for clients that are themselves software elements.

Definitions: Client, Supplier, Interface

A client of a software mechanism is a system of any kind — such as a software
element, a non-software system, or a human user — that uses it. For its clients,
the mechanism is a supplier.
An interface of a set of software mechanisms is the description of techniques
enabling clients to use these mechanisms.

← Page 15.

THE INTERFACE OF A CLASS §4.148

As an example of a user interface, consider a Web browser as shown (top part
only) below. Its user interface is the description of what people can do with the
browser; it includes:
� The specifications of the fields into which users may type their own texts,

such as the address field at the top.
� The properties of buttons (“Back” etc.) that users may click to obtain

certain effects.
� The conventions for hyperlinks (left-click will lead to a new page,

right-click brings up a menu etc.).
� More generally the set of rules that govern the interaction between the

browser and its users.

Such a user interface is graphical, meaning that it involves pictures and other
visual dialog elements such as buttons and menus. The computing profession,
with its crush on acronyms, calls this a GUI, for Graphical User Interface,
pronounced “Gooey” (or, increasingly, just UI — “You-I ” — as we take the
graphical aspect for granted).

Other user interfaces involve no graphics but only text, as on older mobile
phones; they are called “text interfaces” or “command-line interfaces”.

A user interface

§4.2 CLASSES 49

I f in deal ings with computer systems you have encountered
less-than-perfectly-friendly user interfaces, you will probably agree that GUI
design is an important part of software design. More fundamental for the present
discussion is the second kind of interface cited, program interfaces. Here too
you have to get used to a three-letter acronym: API, for “Abstract Program
Interface” (an older expansion of the A is “Application”).

In the rest of this chapter we will learn how APIs look for a particularly
important kind of software element: the class. Since for the moment we are not
concerned any more with user interfaces, we will indifferently say “API”,
“program interface” or even just “interface” to mean the same thing.

4.2 CLASSES

A previous discussion defined an object as “a software machine allowing
programs to access and modify a collection of data”. Such collections of data
might represent, to stick to the examples we have seen:

� A city, where the “access and modify” operations may include finding out
about current traffic conditions and adding some vehicles to the traffic. We
have used Paris as an example, although we may obtain objects
representing any other city provided we have the relevant data.

� A travel route. Again we may have many such routes, not just Route1 as
used in the original example.

� A list of cars waiting at a red light. Many possible objects again.

� Closer to the computer, an element of the GUI such as a button or a window
on the screen. Of these too we will have many.

Within any such category of objects, for example all city objects, a strong
similarity exists: the operations applicable to a city object such as Paris would
also apply to other city objects, say New_York or Tokyo. They do not apply to
objects of another category, such as the route object Route1; but operations
applicable to Route1, such as adding a new leg to a route, would also apply to
other routes.

What this tells us is that the objects manipulated by our programs classify
themselves naturally into certain classes: the class of objects representing cities,
the class of objects representing travel routes, the class of objects representing
buttons on the screen, and so on.

“Class” is indeed the technical term. What characterizes objects of a given
class is a common set of applicable operations — or features in the terminology
introduced in the discussion of objects. Hence the definition:

Three-Letter Acronyms
are affectionately
called “TLAs”.

← Page 29.

THE INTERFACE OF A CLASS §4.250

In program texts, classes will stand out by always having names all in upper
case, such as CITY, ROUTE, CAR_LIST, WINDOW. The names representing
objects are in lower case, or, for predefined objects such as Paris, with only the
first letter in upper case.

A class represents a category of things; an object represents one of these
things. The following terms express precisely this relationship between classes
and objects:

CITY is a class, representing all possible cities (as we have decided to model
them in our program); Paris denotes an object, an instance of that class.

This relationship between classes and objects is the usual one between a
category and members of that category: “Human” is a category, “Socrates” is
one of its members. If these were software notions we would say there’s a class
HUMAN and one of its instances is the object called Socrates.

In software the difference goes further. Classes are static and objects
are dynamic:

� Classes exist only in the software text. As the definition of “class” says, a
class is a description; it will be given by a class text, a software element
describing the properties of the associated objects (instances of the class). A
program is a collection of class texts.

� Objects — “collections of data” — exist only during the software’s
execution; you do not see them in the program text, although you will see
there names such as Paris and Route1 denoting objects that will appear
during execution.

As a consequence, the term “run-time object” appearing in the definition of “class”
above includes a redundancy, since objects by definition can only exist during
program execution (“run time”). From now on we will just say “object”.

Finding appropriate classes is a central part of the task of software design,
devoted to organizing the essential structure, or architecture, of a program — as
opposed to writing down the details, or implementation.

Definition: Class

A class is the description of a set of possible run-time objects to which the
same features are applicable.

Definitions: Instance, Generating class

If an object O is one of the objects described by a class C, then O is an instance

of C, and C is the generating class of O.

← The terminology
was introduced in
“Definitions: Static,
Dynamic”, page 11.

§4.3 USING A CLASS 51

4.3 USING A CLASS

You are now going to learn what a class looks like and how you can use it to
build new classes — client classes — for your own programs.

The classes that we will examine have been written to cover properties and
operations relative to a transportation network like the Paris metro. We use
Paris, as you know, because it is one of the world’s top tourist destinations, but
of course it is only an example; the software knows nothing about a particular
location, it simply reads in a file describing a city and transportation network,
so you can tailor it to any ones you choose. (At ETH we use Zurich and its tram
network.) Below for reference is the metro plan (the simplified version taken
from Traffic, omitting some stations).

Defining what makes a good class

Assume we are asked to devise a software model for the metro as seen by actual
and prospective passengers. As in any software design problem, the key
question will be: What are the classes? To find good classes answering this
question, we search the problem domain for concepts that:
� Describe sets of objects (their future instances).
� Can be explained clearly.
� Can be characterized in terms of clearly defined features, including both

queries and commands, applicable to the corresponding objects.

The description in the
file is in XML, a stan-
dard format for struc-
tured data.

Metro plan

← “Features, com-
mands and queries”,
page 26.

THE INTERFACE OF A CLASS §4.352

A mini-requirements document

Can we find classes and their features to build a software model of the metro?
Often a first step to design is simply to express in clear, simple language what
the problem domain is about. Let’s try:

This description is far more formal, pedantic even, than what you would probably
tell a visitor who has not used the metro before — but still far less precise and
complete than what we expect to find in the “requirements document” of a software
project in industry (a topic discussed in the chapter on software engineering). The
text is good enough for our current purpose of discovering a few classes.

Initial ideas for classes

As usual in requirements documents, some details are irrelevant for our
immediate need, for example that the network runs “mostly underground”. The
word “network” itself is not that useful. But without much hesitation we can
spot four concepts likely to yield classes:

� STATION. The metro is made of stations; people travel from a station to a
station, going through other stations. This seems like an inevitable notion
for our software.

� LINE: the metro consists of a set of lines, each connecting a number of
stations that the line traverses in a set order.

� ROUTE: a description of how to go from a given station to another.

� LEG: a set of contiguous stations on a line.

Touch of Paris: Welcome to the Metro

The Metro is a train network, mostly underground, enabling people to travel
across the city quickly and conveniently.
The network is made of “lines”; each line connects a set of “stations”, two of
which are its “end stations”. Trains on a line travel from one of the end
stations to the other, stopping at each station along the way, and then back in
the same manner.
Some stations belong to two or more lines; they are called “exchanges” and
allow passengers to connect from one line to another.
To go to a certain destination using the Metro you should first identify the stations
closest to where you are and to where you want to go, then construct a Metro
route between them. The route is made of a number of legs, each consisting of
successive stations on a single line; successive legs connect through exchange
stations. It is a property of the Metro network that such a route always exists
between any two stations (in mathematical terms, the graph is connected).

→ “Requirements anal-
ysis”, 19.6, page 718.

§4.3 USING A CLASS 53

Close relations exist between these notions: a line is made of stations; a leg, also
made of stations, is part of a line; a route is made of legs from different lines.

You indeed have at your disposal, in the Traffic software, a set of classes
covering these notions, and we now take a look at some of their properties. More
precisely, Traffic is a library: a collection of software elements that do not by
themselves constitute a program, but provide important functionalities useful to
many programs (each of which will add its own specific elements). Even though
the Traffic library is available as part of the material for this book, we will work
in this chapter as if we had to design the corresponding classes, starting from the
basic concepts of line, leg, station and route. You are as usual welcome to look
up the classes in the software. If you do so note the following convention:

This only applies to library classes; names of example classes such as TOURISM

and PREVIEW in the previous chapter do not use the prefix.

What characterizes a metro line

Let us start by understanding the interface (in the sense of program interface, or
API) of a class representing metro lines. You can use the EiffelStudio
environment to see the interface of any available class.

We first look at a simplified form of class LINE, called SIMPLE_LINE.
With EiffelStudio you can bring up the class text, but this is not what I would
like you to do right now. Other than the class text, EiffelStudio can display
various other views of a class, each highlighting different properties. The view
you should bring up now is known — for reasons that will become clear as we
go — as its contract view.

To get it, enter the class name in the corresponding field, then click the
contract view button towards the right of the top row of buttons — you can

find it easily by moving the cursor over the buttons and watching for the tooltip
that reads “Contract view”. (See the EiffelStudio appendix for more detailed
instructions.) The result looks as follows (overleaf):

Convention: Traffic library class names

For clarity, and to avoid clashes with other libraries, all classes in the Traffic
library have names starting with the TRAFFIC_ prefix, for example
TRAFFIC_STATION, TRAFFIC_LINE, TRAFFIC_ROUTE, TRAFFIC_LEG.
For brevity, the discussions in this book ignore the prefix, talking instead of
classes such as STATION and LINE. You must use the prefix if looking for the
library classes in EiffelStudio.

← We have already
extended the notion of
leg to cover a change of
lines within a station;
see the figure “A metro
route”, page 25.

← “API” was defined
on page 49.

Actually TRAFFIC_
SIMPLE_LINE per the
convention above.

→ “Bringing up
classes and views”,
E.3, page 845.

THE INTERFACE OF A CLASS §4.354

The contract view shows the features — commands and queries — applicable
to an instance of a class SIMPLE_LINE, representing a line of the metro. The
next sections study these features.

Once you have read the discussion of these features, go back to the preceding
picture (or display again the corresponding contract view on your computer) and
make sure you understand all their details as given in the contract view.

To follow the discussion of queries and commands you need to remember that
the class describes a set of possible objects, its instances (each representing a
metro line). The features are declared in the class; each defines an operation
applicable to any such object. For example the class will have a query south_end

giving one of its two end stations (the one to the south of the other); this means
that we may apply this query to any of its instance. If Line8 denotes an instance
of SIMPLE_LINE, then Line8.south_end denotes its end station. We commonly
say things like “a SIMPLE_LINE” to talk about a typical instance of the class,
representing a typical line.

SIMPLE_LINE represents a slightly simplified version of the final class
LINE; the discussion applies to both classes. We look at the queries first, then
the commands.

← “Definitions:
Instance, Generating
class”, page 50.

§4.4 QUERIES 55

4.4 QUERIES

Class SIMPLE_LINE offers a number of queries about metro lines.

How long is this line?

One of the first things we may need to know about a line is the number of its
stations. This is provided by a query count (taken, as an English word, to refer
not to the verb as in “Count up to 10!”, but to the noun as in “head count”). The
specification of that feature appears in the contract view as

The second line is, as you know, a comment, more precisely a header comment

that should come with every feature. It is always useful to give a plain language
explanation of what a feature is about. Among other things this avoids
misunderstandings. Here for example, we could have chosen, as measure of
size, the number of segments (elementary legs, those from a station to the next)
rather than stations; the result would always be one fewer, as illustrated on this
little line with four stations and three segments:

The comment clarifies our convention: for class SIMPLE_LINE the count of a
line is the number of its stations.

In the comment, note the expression “in this line”. The class describes the
general notion of line, but when a feature like count is applied to a particular
line, as in the feature call Line8.count, it will give us the station count of that
line, Line8 in this example. So in the end the class always talks about a particular
line, even though in the class we do not know what it is. That’s what “this line”
means: whatever line object to which we will apply the feature count.

The query declaration starts with count : INTEGER. This introduces the
name of the query, count, and the type of the result it will return, INTEGER. A
query provides information on an object (here an instance of SIMPLE_LINE),
so the class interface must say what type of information that is.

count: INTEGER

-- Number of stations in this line.

Four stations,

three segments

Station1

Station2

Station3

Station4
Section1 Section2

Section3

THE INTERFACE OF A CLASS §4.456

INTEGER is such a type, denoting integer values, zero: positive or negative.
The names of types, like classes, will always be written all in upper case. Other
types encountered later in this chapter include:

� STRING, for values that are sequences of characters, such as "ABCDE".

� BOOLEAN, for “truth values” that can only be either True or False.

� Classes themselves, such as STATION or LEG.

More on types soon. For the moment INTEGER suffices.

Experimenting with queries

As you encounter features in this chapter, you can try them out.

A system called interface has been set up (in the subdirectory 04_interface) as
part of the Traffic software. Start EiffelStudio now on that system and bring up
the text of its class QUERIES_AND_COMMANDS (see instructions in the
EiffelStudio appendix):

This class is just a playground for trying out the concepts of this chapter; to
achieve this you can, as you go along, fill in with various feature calls the part
highlighted above. You will be able to execute the resulting system and see the
effects in each case.

The metro Line 8 is defined, in the context set up for you by class
TOURISM, by a feature called Line8. Enter, into the “fill-in” part, the instruction

Programming time!
Length of a line

The first programming exercise of this chapter, detailed below, asks you to
find the length of Line 8 of the metro.

class QUERIES_AND_COMMANDS inherit

end

Console.show (Line8.count)

The actual name (with-
out TRAFFIC_) as it is
just an example class,
not part of the library.

TOURISM

feature

tryout

-- Try out queries and commands on lines.
do

end

The part you will fill in

§4.4 QUERIES 57

This calls the just described feature count on Line8, and then uses the command
show on Console to display the result in the console window. Now you know
how many stations Line 8 has.

As in the chapter on objects some “magic” remains involved since you are relying
on Console and on Line8 (denoting an instance of SIMPLE_LINE), both prebuilt in
TOURISM. There will be a little more such magic in this chapter; we need it to let
you concentrate on the new concepts you are learning. Pretty soon the magic will
go away and you will be able to define everything you need.

From the terminology of the previous chapter, you will remember that
Line8.count, denoting the result of applying a query to an object, is an
expression. Every expression has a type; here, because the query count has been
declared to return an INTEGER result, the type of the expression is also
INTEGER, as appropriate since it denotes a number of stations.

The stations of a line

Our next queries tell us exactly what stations are on a line. Remember the
explanation in our little requirements statement:

Although we need to complement this imperfect specification with our intuitive
understanding of a transportation network, it clearly implies that a line contains
a sequence of stations: one of the end stations; a station; another station; and so
on up to the other end station. A simple way to represent this is the following
query of class SIMPLE_LINE:

The name i_th comes from the common way of referring to an item by its position
in a series: “the i-th element”, as in “the 25-th element”. We cannot call the query
i-th because hyphens “-” are not permitted in identifiers, but underscores “_” are.

The query i_th, like show for Console, takes an argument, representing the
number, or “index” of the stop we want, starting at 1 for the first end station,
then 2 for the first stop after it and so on. So if we again take Line 8 as an
example, and refer to this map extract:

Each line connects a set of “stations”, two of which are its “end stations” ...

i_th (i: INTEGER): STATION

-- The station of index i on this line.

← “Definitions:
Instruction, Expres-
sion”, page 36.

← “Syntax: Identifi-
ers”, page 44.

← “Features with argu-
ments”, 2.4, page 30.

THE INTERFACE OF A CLASS §4.458

we may use, in our program text, the expression

representing the station called “Balard” on the above map); Line8.i_th (2) is
“La Motte” and so on. Line8 has been predefined for us as part of the “magic”.
To make our life easier we will follow two conventions:

The reference to empty lines sounds strange if you think of the actual lines of the
metro. But we are playing with the abstract notion of line, for which an empty line
is possible. Later in this chapter we will build a (virtual) metro line, starting with an
empty line and adding stations.

Class SIMPLE_LINE has the following two queries denoting the ends of a line:

Line8. i_th (1)

Conventions: Line numbering

� A line always has at least one station, even if it is empty. (In that case it
has zero segments.)

� The numbering of stations on a line always starts from the south end.
Query south_end will denote that station, north_end the other end. For an
empty line (and a circular one) they denote the same station. In the rare
case that the two ends are different but at the same latitude, south_end

denotes the one to the west of the other.

south_end: STATION

-- End station on south side.

north_end: STATION

-- End station on north side.

Start of line 8

(main stations

only, some names

shortened)

To know all about Line
8 of the Metro:
jefx.chez.com/lignes/
ligne8.htm.

Concorde

La Motte

Balard

Invalides

Line end

← Query south_end
was mentioned on
page 54.

http://jefx.chez.com/lignes/ligne8.htm
http://jefx.chez.com/lignes/ligne8.htm

§4.5 COMMANDS 59

Properties of start and end lines

To express more precisely our decision to start numbering at the south end, we
note that any line l will satisfy the following properties:

Do not even think of reading any further unless you understand these two program
lines perfectly. Each states a property of l, an equality, similar to equalities you
have seen in mathematics, such as cos2 (x) + sin2 (x) = 1 for any number x:
� The first equality says that the query south_end will always return the same

result as the query i_th applied to the same metro line with the argument 1;
in other words, it states our convention that station numbering on a line
starts at the south end.

� The second equality gives the corresponding equality at the other end. Since
l.count denotes the number of stations on the line, the expression
l.i_th (l.count) denotes the last station.

The convention that a line always has a station, even if it is empty, is also
essential here: otherwise l. i_th (1) would not always be meaningful.

This also gives us the answer to the little quiz above: to obtain the second
end station of Line 8 you may use the expression Line8.i_th (Line8.count) —
or the simpler one l.north_end.

4.5 COMMANDS

So far we have accessed properties of existing lines, using queries. It is time
now to look at the other category of features: commands, which enable us to
change an object.

Building a line

What can we do to a line to change it? The most obvious operation is to add a
station to it, for example at one of its ends.

Quiz time: The other end

Line8.i_th (1) is an expression of type STATION denoting the station at the
south end of Line 8. Without looking up the number of stations on that line or
the names of individual stations (or the answer to this quiz, which appears
below), write another expression that denotes in the same style the object
representing the station at the other end of the line. Hint: use another query
already introduced.

l.south_end = l. i_th (1)
l.north_end = l. i_th (l.count)

THE INTERFACE OF A CLASS §4.560

If you are thinking: “This is nonsense: a program cannot create a metro

station, and the Metro lines already exist anyway!”, you should probably read
again the section that explained that our objects are software artifacts, not the
real thing. We will need the ability to change lines, if only to set up our object
structure at the beginning of an execution, once we get rid of the magic of class
TOURISM which at the moment creates the structure for us.

To set up the object structure ourselves we might get the information from some
external description of the metro structure (in a file or database), then use it to create
all the objects we need, such as stations and lines.

Let us indeed rebuild line 8. From class TOUR we may assume the following:
predefined features such as Station_Balard, Station_La_Motte etc. are available
for every station; the name of the feature for station “xxx” is Station_Xxx;
multiple words, as with the station “La Motte” of Line 8, are separated by
underscores in the identifier (here giving Station_La_Motte).

Of course Line8 is itself predefined from TOUR, so the first thing we need
to do is to empty it out of its stations. In the contract view of class
SIMPLE_LINE you may note the following command, which will do the job:

Our program will use it under the form

Remember that by convention our lines always have at least one station; when
it is the only one, for example after a call to remove_all_segments (which, as
indicated by the header comment, retains the south end), it will be the value of
both south_end and north_end.

Now we are ready to add stations. Again you can see the relevant command
in the contract view:

This means that if li denotes a line you may add a station st at its end through

Indeed, you may now start filling in the text of this chapter’s example class:

remove_all_segments

-- Remove all stations except the south end.

Line8.remove_all_segments

extend (s: STATION)
-- Add s at end of line.

li.extend (st)

← “Objects you can
and cannot kick”,
page 25.

← From page 56.

§4.6 CONTRACTS 61

To check that your reasoning is correct, run this example now.

4.6 CONTRACTS

One of the reasons that the “line” class SIMPLE_LINE used so far is not the final
LINE class is that it misses a fundamental property which we cannot ignore if
we are to write serious software: that not all features are applicable to every
possible argument and instance. Interfaces will need to be more precise about
what is permitted.

Preconditions

The interface for the query i_th in class SIMPLE_LINE, as shown earlier

class QUERIES_AND_COMMANDS inherit

TOURISM

feature

tryout

-- Recreate a partial version of Line 8.
do

Line8.remove_all_segments

-- No need to add Station_Balard, since
-- remove_all_segments retains the south end.

Line8.extend (Station_La_Motte)
Line8.extend (Station_Concorde)
Line8.extend (Station_Invalides)

-- We stop adding stations, to display some results:
Console.show (Line8.count)
Console.show (Line8.north_end.name)

end

end

Quiz time: The last name shown

As you may guess from the last instruction, class STATION (the type of
north_end) has a query name, which gives the name of a station. What name
should this last instruction display in the console window?

i_th (i: INTEGER): STATION

-- The i-th station on this line.

THE INTERFACE OF A CLASS §4.662

does not mention that only certain values for i makes sense: the value must be
between 1 and the number of stations on the line, count. If Line 8 has 20 stations
then it would be wrong to use Line8.i_th (300), or Line8.i_th (0), or Line8.i_th (–1).

You may try such an out-of-bounds value on the computer if you wish: edit the
class, execute the program under EiffelStudio, and see what happens.

A programmer who is trying to understand what the class is about — a potential
“client programmer” — needs this kind of information. This is precisely what
interfaces are about: telling client programmers what a given class can do for them.

We could of course add the information to the header comment, as in

which is better than nothing, but not good enough. Such usage properties are so
common, and so critical for the proper use of classes and their features, that they
must be treated as an integral part of the program, at the same level as the
instructions and expressions. They will be called contracts. For i_th we have
our first contract element, a precondition. A precondition is a property that a
feature imposes on all its clients; here, the property that the argument must be
within a certain range.

The interface of a feature will show the contract using the keyword require.
So the contract view of class LINE actually describes i_th in this way:

The precondition clause is made of two separate elements called assertions.
Each expresses a property: i ≥ 1 in the first assertion and i ≤ count in the second
one. Note that because of the limitations of computer keyboards we cannot use
the mathematician’s symbols ≥ and ≤; programming languages let us instead use
the 2-character symbols >= and <=. Also, the names not_too_small and
not_too_big, called assertion tags, serve to clarify the purpose of the assertions,
but the actual meaning (the semantics) is in the expressions that follow, i >= 1
and i <= count. We may omit the assertion tags and colons, as in

i_th (i: INTEGER): STATION

-- The i-th station on this line

i_th (i: INTEGER): STATION

-- The i-th station on this line

→ Exercise “Violating
a contract”, 4-E.3,
page 69.

Warning: not recom-
mended style, see next.

-- (Warning: use only with i between 1 and count, inclusive.)

require

not_too_small: i >= 1
not_too_big: i <= count

§4.6 CONTRACTS 63

without changing the meaning of the precondition, but tags make things clearer,
so you should include them as a matter of good style. When present, the tags
appear in roman to stand out from the program elements in italics.

Expressions like i >= 1 and i <= count denote conditions which, at any time
during program execution, may be either true or false. Earlier examples
involved equality, as l.south_end = l.i_th (1) for a line l. An expression that can
take the values true and false — written in Eiffel as True and False, with a
capital first letter since they are predefined values — is known as boolean:

The corresponding type is called BOOLEAN; it is one of the types we have at
our disposal, along with INTEGER, STRING and names of classes you define.
Most other types have many values — we will see for example that typically the
representation for an integer value on a computer supports some billions of
possibilities — but BOOLEAN provides only two. The purpose is to represent
conditions; as in non-programming uses of this concepts (“there is enough
snow”, as in a condition to decide whether you can go skiing) a condition is
either true or false. As usual, our boolean expressions in software must be more
precisely defined, like in mathematics: i >= 1 is unambiguously true or false
once we know the value of the integer i, whereas how much snow is “enough
snow” is in the eyes of the would-be skier.

Boolean values and boolean expressions lie at the heart of logic, the art of
precise reasoning; the next chapter is devoted to this topic.

Preconditions and the other forms of contract will use boolean expressions
to state conditions that clients and suppliers must satisfy. Here the precondition
of i_th, as it appears in the interface

is essential information for the client.

require

Definition: Boolean value

A boolean value is one of: True and False.

require

not_too_small: i >= 1
not_too_big: i <= count

i >= 1
i <= count

← Page 59.

← The notion of type
was introduced in
“How long is this
line?”, page 55.

THE INTERFACE OF A CLASS §4.664

A client that does not satisfy that property, for example if it has a call

is faulty software, or buggy according to habitual terminology, where a “bug” is
simply a mistake.

We may express this observation as a general principle:

Whenever you consider using a feature, you will see its specification in the
contract view of the corresponding class, including its precondition if any, as in
the example of i_th above. It is then your responsibility, as the client
programmer, to make sure that any call to the feature satisfies the precondition.

Some features are always applicable; they do not have a require clause. By
convention this means the same as if they had one of the form

defining a precondition that is always satisfied.

Contracts for debugging

One way that preconditions and other contracts will help you during software
development is that the tools will check them when you execute your program.
So if one of the contracts does not hold, revealing a bug, you will get a precise
message telling you what happened; the message lists the tag (such as
not_too_small) of the violated assertion, so that you know what exactly
went wrong.

When a program is ready for distribution, you should have corrected all the
bugs, and can change the options to stop checking contracts at run time.

A section of the EiffelStudio appendix tells you how to tune the
environment parameters defining whether (and which) contracts should be
monitored during execution.

Line8.i_th (1000)

Touch of Methodology:

Precondition Principle

A client calling a feature must make sure that the precondition holds before
the call.

require

always_OK: True

→ We will see a more
precise terminology in
“Varieties of quality
assurance”, page 728.

→ Try this with the
exercise “Violating a
contract”, 4-E.3,
page 69.

→ “Contract monitor-
ing”, E.5, page 846.

§4.6 CONTRACTS 65

Contracts for interface documentation

The better approach to software correctness is, of course, to avoid bugs in the
first place (rather than make mistakes and then correct them); systematic use of
contracts helps. In particular, the documentation of a software mechanism, as
given by its interface, should always list the complete precondition that defines
under what circumstances it is legitimate to use the mechanism.

This style — illustrated by the interface for i_th as shown above — will be
the standard form of interface description for the rest of this book. It is also what
you get in EiffelStudio’s standard view for presenting the interface of the class
— correspondingly called, as we have seen, the contract view.

Postconditions

In describing the interface that a feature presents to its potential clients,
preconditions address only one side: what a feature expects from the clients
before a call. For the clients, a precondition is an obligation. As in any good
relationship, the clients will want to know what benefits they will get after a call.
The feature’s interface can express this through a postcondition.

Unlike with preconditions, we will not always be able in postconditions to
express all relevant properties, but often we can say something interesting
anyway. Here for example is the interface for remove_all_segments in class LINE:

There is no precondition here since remove_all_segments is always applicable
to a route. The keyword ensure introduces a postcondition. Here the feature
guarantees two things to its client when it has done its job:

� The number of stations, count, is equal to 1.

� The two end stations, south_end and north_end, are now the same station.
Remember that this is the convention we take: an empty line has no
segments but one station, serving as both south and north ends.

Similarly, here is the interface (precondition omitted) for extend, the command
that adds a station at the end of a line:

remove_all_segments

-- Remove all stations except south end.
ensure

only_one_left: count = 1
both_ends_same: south_end = north_end

← “Conventions: Line
numbering”, page 58.

THE INTERFACE OF A CLASS §4.666

The first postcondition clause uses the query i_th: it states that after a call to
extend, if we ask what is the station at position count, that is to say the last
station, the answer will be s, the station that we have asked the command extend

to add. This expresses precisely the intent of extend: if the command does its job
properly — that is, if its program text does not have any bugs — this property
will always hold as a result of an execution of the command.

The second clause expresses that north_end will also be equal to s. From the
invariant, to be seen in the next section, we will learn that north_end must be
equal to i_th (count); so this clause is in fact redundant, but it does not hurt.

The third clause tells us that the routine increases count by one. It uses a
keyword that we have not yet encountered, old. A postcondition clause states a
property that will hold when a routine call terminates; it often needs to relate the
value that an expression will have at that time to the value it had on entry to the
procedure. Hence the usefulness of an “Old expression”, of the form

which means: “The value of some_expression, captured at the beginning of the
routine’s execution”. Here the postcondition clause

tells us that the routine must increase the number of stations, count, by one.

Old expressions, and the old keyword, may only appear in postconditions.

When you write a feature in a class, you may assume that the precondition
holds at the beginning — as we have seen, this is the client’s job — but it is your
responsibility to ensure that the postcondition holds when the feature terminates
its execution:

extend (s: STATION)
-- Add s at end of line.

old some_expression

count = old count + 1

Touch of Methodology:
Postcondition Principle

A feature must make sure that, if its precondition held at the beginning of its
execution, its postcondition will hold at the end.

ensure

new_station_added: i_th (count) = s

added_at_north: north_end = s

one_more: count = old count + 1

§4.6 CONTRACTS 67

Class invariants

Preconditions and postconditions are logical properties of your software, each
associated with a particular feature, such as i_th, remove_all_segments and
extend in the examples so far.

We also use logical properties to characterize an entire class, above the level
of its individual features. Such a property, known as a class invariant, expresses
relationships between the different queries of a class.

We have encountered such properties in the example of metro lines:

� The convention that a line always has at least one station.

� The observation that if l is a line then l.south_end = l.i_th (1) and
l.north_end = l.i_th (l.count).

These are properties not of any particular l but of all lines. In other words they
characterize the class LINE as a whole. This is what the invariant of a class is
about. It appears as a clause at the end of the class text:

The last assertion uses the implies operator of logic, studied in the next chapter:
a implies b states that b has value True whenever a has value True.

This example is typical of the role of class invariants: expressing consistency
requirements between the queries of a class. Here these requirements reflect that
some redundancy exists between the queries of class LINE: south_end and
north_end provide information also available through i_th, applied to
arguments 1 and count.

Another example would be a class CAR_TRIP providing queries such as
i n i t i a l _od ome te r_rea d ing , t r i p _ t i me , a ve r a g e _ s p e e d a n d
final_odometer_reading, with roles implied by their names (“odometer
reading” is the total number of kilometers or miles traveled). There is again a
certain redundancy between them, which you may capture through a class
invariant (where the symbol “∗”denotes multiplication):

invariant

at_least_one_station: count >= 1
south_is_first: south_end = i_th (1)
north_is_last: north_end = i_th (count)
identical_ends_if_empty: (count = 1) implies (south_end = north_end)

invariant

consistent: final_odometer_reading = initial_odometer_reading +
trip_time ∗ average_speed

← “Conventions: Line
numbering”, page 58;
“Properties of start and
end lines”, page 59.

→ “Implication”, 5.2,
page 84.

THE INTERFACE OF A CLASS §4.768

There is nothing wrong in principle with including such redundant queries when
you design a class: they may all be relevant to the clients, even if they are
derived from some of the same internal information about the corresponding
objects. But without the invariant, the redundancy might cause confusion or
errors. The invariant expresses clearly and precisely how the different queries
may relate to each other.

We saw earlier that a precondition must hold at the beginning of a feature
call, and a postcondition at the end. An invariant — which applies to all the
features of a class, not just a specific one — must hold at both points:

Contracts: a definition

We have seen various kinds of contract — preconditions, postconditions, class
invariants — from which a general definition now emerges:

We will use contracts throughout the software to make it clear what each
element — class or feature — is about. As noted, they serve for documenting
software, especially libraries of components meant (like Traffic) for reuse by
many different applications; they help in debugging; and they help us avoid
bugs in the first place by writing correct software.

4.7 KEY CONCEPTS LEARNED IN THIS CHAPTER

� A software element presents one or more interface to the rest of the world.

� Classes exist only in the software text; objects exist only during the
execution of the software.

� A class describes a category of possible objects.

� Every query returns a result of a type specified in the query’s declaration.

� We may specify the interface of a class through a “contract view” which lists
all the features of the class — commands and queries — and, for each of
them, the properties relevant to clients (other classes that use it).

Touch of Methodology: Class Invariant Principle

A class invariant must hold as soon as an object is created, then before and
after the execution of any of the class features available to clients.

Definition: Contract

A contract is a specification of properties of a software element that affect its
use by potential clients.

§4-E EXERCISES 69

� A feature may have a precondition, specifying initial properties under which
it is legitimate to call the feature, and a postcondition, specifying final
properties that it guarantees when it terminates.

� A class may have a class invariant, specifying consistency conditions that
connect the values of its queries.

� Preconditions, postconditions and class invariants are examples of contracts.

� Among other applications, contracts help for software design,
documentation, and debugging.

4-E.8 New vocabulary

4-E EXERCISES

4-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

4-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

4-E.3 Violating a contract

1 Write a simple program (starting for example from the system of this
chapter) that uses the query i_th of class LINE. Run it, using a known LINE

object, for example Line8.

2 Change the argument passed to i_th so that it is out of bounds (less than one,
or larger than the number of stations). Run the program again. What
happens? Explain the messages that you get.

API Assertion Assertion tag

Boolean Bug Class invariant

Client Client Programmer Contract

Generating class GUI Implementation

Instance Interface Library

Postcondition Precondition Program interface

Software design Supplier Type

User interface

← Exercise “Concept
map”, 3-E.2, page 46.

THE INTERFACE OF A CLASS §4-E70

4-E.4 Breaking the invariant

An invariant must be satisfied on object creation, then before and after
execution of features by clients. This does not require the invariant to be
satisfied during the execution of such a feature. Can you think of examples in
which it is appropriate for a feature to perform operations that might invalidate
the invariant, then other operations that restore it?

4-E.5 Postcondition vs invariant

You are not sure whether to include a certain property in a routine’s
postcondition or in the class invariant. What criteria would help you decide?

4-E.6 When to write contracts

The example contracts of this chapter were added to program elements —
features and classes — after a first version of these elements was already
available. Can you think of circumstances in which it is preferable to write the
contracts before the implementation of the corresponding program elements?

← “Touch of Method-
ology: Class Invariant
Principle”, page 68.

5

Just Enough Logic

Programming is, for a large part, reasoning. We use computers to perform
certain combinations of basic tasks, executed at rates beyond direct human
comprehension; to get the results that we need, we must be able to understand
the program’s possible run-time behaviors, which are nothing but consequences
and ramifications of the effects prescribed by our programs, if often very
indirect consequences and myriad ramifications. All can, in principle, be
deduced from the program text through mere reasoning. It would help us
considerably if there were a science of reasoning.

We are in luck, because there is such a science: Logic. Logic is the
machinery behind the human aptitude to reason. The laws of logic enable us,
when told that Socrates is human, and that all humans are mortal, to deduce
without blinking that Socrates, then, must be mortal. When someone announces
that whenever the temperature in the city rises above 30 degrees a pollution alert
will result, so because the temperature today is only 28 degrees there will not be
a pollution alert, you will say that his logic is flawed.

Logic is the basis of mathematics; mathematicians will believe a five-line
or sixty-page proof only because they accept that each step proceeds according
to the rules of logic.

Logic is also at the basis of software development. Already in the last
chapter we encountered conditions in the contracts associated with our classes
and features, for example the precondition “i must be between 1 and count”. We
will also use conditions in expressing the actions of a program, for example “If
i is positive, then execute this instruction”.

JUST ENOUGH LOGIC §5.172

We have seen in the study of contracts how such conditions appear in our
programs in the form of “boolean expressions”. A boolean expression may be
complex, involving operators such as “not”, “and”, “or”, “implies”; this
mirrors modes of reasoning familiar in ordinary language: “If it’s already 20
minutes past the time for our date and she did not call or send an SMS, it implies

she will not show up at all”. We all intuitively understand what this means, and
so far this informal understanding has been good enough for our software
conditions too.

No longer. Software development requires precise reasoning, and precise
reasoning requires the laws of logic. So before we rush back to the delights of
objects and classes we must familiarize ourselves with these laws.

Logic — mathematical logic as it is more precisely called —is a discipline
of its own, and even just “Logic for Computer Science” is the topic of many
textbooks and courses; I hope that you will take such a course or have already
taken it. This chapter introduces some essential elements of logic needed to
understand programming. More precisely, even though logic in its full glory is
the science of reasoning, we need it, just now, for a more limited goal:
understanding the part of reasoning having to do with conditions. Logic will
give us a solid basis for expressing and understanding conditions as they appear
in contracts and elsewhere in programs.

The first part of the chapter introduces boolean algebra, a form of
“propositional calculus” dealing with basic propositions involving specified
variables. The second part extends the discussion to predicate calculus, which
expresses properties of arbitrary sets of values.

5.1 BOOLEAN OPERATIONS

A condition in boolean algebra as well as in programming languages is
expressed as a boolean expression, built out of boolean variables and operators,
and representing possible boolean values.

Boolean values, variables, operators and expressions

There are two boolean constants, also called “boolean values” and “truth
values”; we write them True and False for compatibility with our programming
language, although logicians use just T and F. Electrical engineers, who rely on
logic for circuit design, often call them 1 and 0.

A boolean variable is an identifier denoting a boolean value. Typically we
use a boolean variable to express a property that might be either true or false: to
talk about the weather we might have the boolean variable rain_today to stand
for the property that we think rain will fall today.

→ True and False are
“reserved words” of
the programming lan-
guage; see page 234.

§5.1 BOOLEAN OPERATIONS 73

Starting from boolean constants and boolean variables we may use boolean

operators to make up a boolean expression. For example, if rain_today and
cuckoo_sang_last_night are boolean variables, then the following will be
boolean expressions according to the rules studied next:

� rain_today
-- A boolean variable, without operators: already a boolean
-- expression (the simplest form, along with boolean constants).

� not rain_today
-- Using the boolean operator not.

� (not cuckoo_sang_last_night) implies rain_today
-- Using the operators not and implies, and parentheses
-- to delimit a subexpression.

Each boolean operator — such as not, or, and, =, implies as defined below —
comes with rules defining the value of the resulting expression from the values
of the variables making it up.

We express the boolean operators, like the two boolean constants, through
programming language keywords. In mathematical textbooks you will see them
expressed as symbols, most of which you could not directly type on your
keyboard. Here is the correspondence:

In Eiffel, boolean constants, variables and expressions have the type
BOOLEAN, defined from a class like all types. BOOLEAN is a library class,
which you may look up in EiffelStudio; you will see all the boolean operators
discussed in this chapter.

Negation

The first operator is not. To form a boolean expression with not, write the
operator followed by another expression. That expression can be a single
boolean variable, as in not your_variable; or it can itself be a composite
expression (enclosed in parentheses to dispel any ambiguity), as in the
following examples where a and b are boolean variables:

� not (a or b).

� not (not a)

Eiffel keyword Common mathematical symbol

not ¬ or ~

or ∨

and ∧

= ⇔ or =

implies

JUST ENOUGH LOGIC §5.174

For an arbitrary boolean variable a, the value of not a is False if the value
of a is True, and True if the value of a is False. We may also express this, the
defining property of not, through the following table:

This is called a truth table and is a standard way of specifying the meaning of
a boolean operator: in the first columns (here just one), list all the possible
values for the variables involved in an expression that uses the operator; in the
last column, list the corresponding value of the expression in each case.

The operator not represents negation: replacing every boolean value by its
opposite, where True is the opposite of False and conversely.

From the truth table we note interesting properties of this operator:

Proof: by definition of a boolean expression, e can only have value True or
False. The truth table shows that if e has value True, then not e has value False;
all four properties are consequences of this (and the last two directly of the first).

Disjunction

The operator or uses two operands (instead of one for not). If a and b are
boolean expressions, the boolean expression a or b has value True if and only
if at least one of a and b has that value. Equivalently, it has value False if and
only if both of the operands have that value. The truth table expresses this:

a not a

True False

False True

Theorems: Negation properties

For any boolean expression e and any values of its variables:
1 Exactly one of e and not e has value True.
2 Exactly one of e and not e has value False.
3 One of e and not e has value True. (Principle of the Excluded Middle.)
4 Not both of e and not e have value True. (Principle of

Non-Contradiction.)

§5.1 BOOLEAN OPERATIONS 75

The first two columns list all four possible combinations of values for a and b.

The word “or” is taken here from ordinary language in its non-exclusive

sense, as in “Whoever made up this regulation must have been stupid or asleep”,
which does not rule out that he might have been both.

Ordinary language frequently uses “or” in an exclusive sense, meaning that
the result will hold if one of the conditions holds but not both: “Shall we order

red or white?”. This corresponds to a different operator, “exclusive or” — xor

in Eiffel — whose properties you are invited to study by yourself.

The or operator, non-exclusive, is called disjunction. That is not such a
good name, because it may suggest an exclusive operator; but it has the benefit
of symmetry with “conjunction”, the name for our next operator, and.

A disjunction has value False in only one case out of the four possible value
combinations: the last row in the table. This provides an alternative, often useful
form of the definition:

The truth table shows that the operator or is commutative: for any a and b, the
value of a or b is the same as that of b or a. This is also a consequence of the
Disjunction Principle.

Conjunction

Like or, the operator and takes two operands. If a and b are boolean
expressions, then the boolean expression a and b has value True if and only if
both a and b have that value. Equivalently, it has value False if and only if at
least one of the operands has that value. In truth table form:

a b a or b

True True True

True False True

False True True

False False False

Theorem: Disjunction Principle

An or disjunction has value True except if both operands have value False.

→ See exercise 5-E.12,
page 104.

JUST ENOUGH LOGIC §5.176

The application of and to two values is known as their conjunction, as in the
conjunction of two events: “Only the conjunction of a full moon and Saturn’s

low orbit can bring true romance to a Sagittarius” (perhaps not the kind of
example that directly influences mathematical logicians).

Studying and and or reveals a close correspondence, or duality, between
the two operators: many interesting properties of either operator yield a property
of the other if we swap True and False. For example the Disjunction Principle
has a dual that applies to conjunction:

Like or, the operator and is commutative: for any a and b, a and b has the same
value as b and a. This property can be seen on the truth table; it is also a
consequence of the Conjunction Principle.

Complex expressions

You may use boolean operators — the three already introduced, not, or and
and, and the other two described next — to build a more complex boolean
expression, and deduce the truth table of the expression from the truth tables
defining the operators. Here for example is the truth table for the boolean
expression a and (not b):

To derive this truth table, it suffices to replace, in the truth table for and, each
value of b by the value of not b as obtained from the truth table for not; a third
column has been added to show not b.

a b a and b

True True True

True False False

False True False

False False False

Theorem: Conjunction Principle

An and conjunction has value False except if both operands have value True.

a b not b a and (not b)

True True False False

True False True True

False True False False

False False True False

← Page 75.

§5.1 BOOLEAN OPERATIONS 77

Truth assignment

A boolean variable represents a value that may be either True or False. The
value of a boolean expression depends on the value of its variables. For example
by building the truth table for a and (b and (not c)) you would see that this
expression has:

� Value True if a has value True, b also, and c has value False.

� Value False in all other cases.

The following notion helps express such properties:

So we can say that a and (b and (not c)) has value True for exactly one truth
assignment of its variables (the one that chooses True for a, True for b, and
False for c) and False for all other truth assignments.

Each row of the truth table for an expression corresponds, one to one, to a
truth assignment of its variables.

It is easy to see that for an expression involving n variables there are 2n

possible truth assignments and hence 2n rows in the truth table. For example the

table for not, with one operand, had 21 = 2 rows; the table for or, with two

operands, had 22 = 4 rows. The number of columns is n + 1:

� The first n columns of each row list the values of each of the variables for
the corresponding truth assignment.

� The last column gives the expression’s value for that truth assignment.

(For explanatory purposes the last example added a column for not b.)

If an expression has value True for a certain truth assignment, as reflected
in the last column for the corresponding row, we say that the truth assignment
satisfies the expression. For example the truth assignment cited — True for a,
True for b, False for c — satisfies a and (b and (not c)); all others don’t.

Definition: Truth assignment

A truth assignment for a set of variables is a particular choice of values, True

or False, for each one of the variables.

JUST ENOUGH LOGIC §5.178

Tautologies

We are often interested in expressions that have value True for every truth
assignment of their variables. Consider

This states that for a variable a either (or both, although that is not possible):

� a has value True

� not a has value True.

This is only an informal interpretation; to study the value of this expression we
may build its truth table, deduced from those for or and for not:

The second column is not strictly part of the truth table but gives the value of
not a, coming from the table for not. Combining this with the truth table for or

(which tells us that both True or False and False or True have value True)
yields the third column.

From that column we see that any truth assignment — meaning here, since
there’s only one variable, any value of a, True or False — satisfies the
expression. Such expressions have a name:

The property that a or (not a) is a tautology was expressed earlier as the Principle

of the Excluded Middle.

Other simple tautologies, which you should now prove by writing their truth
tables, are:

� not (a and (not a)), expressing the Principle of Non-Contradiction.

� (a and b) or ((not a) or (not b))

a or (not a)

a not a a or (not a)

True False True

False True True

Definition: Tautology

A tautology is a boolean expression that has value True for every possible
truth assignment of its variables.

← Page 74.

← Also page 74.

§5.1 BOOLEAN OPERATIONS 79

Sometimes it is also interesting to exhibit a property that is never true:

For example (check the truth table again), a and (not a) is a contradiction; this
restates, more simply, the Principle of Non-Contradiction.

From these definitions and the truth table for not it follows that a is a
tautology if and only if not a is a contradiction, and conversely.

An expression that has value True for at least one truth assignment of its
variables is said to be satisfiable. Obviously:

� Any tautology is satisfiable.

� No contradiction is satisfiable.

There exist, however, satisfiable expressions that are neither tautologies nor
contradictions: they have value True for at least one truth assignment, and value
False for at least one other truth assignment. This is the case, for example, with
a and b and with a or b.

“a is not a tautology” is not the same as “not a is a tautology”. The second property
states that no truth assignment satisfies a or, as just seen, that a is a contradiction.
The first property states that at least one truth assignment does not satisfy a; but then
some other truth assignments might still satisfy a, in which case a is satisfiable but
neither a tautology nor a contradiction.

Equivalence

To prove or disprove tautologies, contradictions and satisfiability, we are soon
going to get fed up with writing truth tables. With 2n rows for n variables, this
is tedious; to find that a and (b and (not c)) is satisfiable but neither a tautology
nor a contradiction we would have to consider eight cases. We need a better
way. For example, you may have resented being asked to use a truth table to
show that a and (not a) is a contradiction if previously you had proved that
not (a and (not a)) is a tautology. It’s time for more general rules.

Definition: Contradiction

A contradiction is a boolean expression that has value False for every
possible truth assignment of its variables.

JUST ENOUGH LOGIC §5.180

The equivalence operator helps define such rules. It uses the equals symbol,
=, and has the following table (the truth table to end all truth tables!) stating that
a = b has value True if and only if a and b either have both the value True or
both the value False:

This operator is commutative (a = b always has the same value as b = a). It is
also reflexive, that is to say, a = a is a tautology for any a.

Although logicians generally use the symbol ⇔ for equivalence, the
equality symbol = is also appropriate because a = b expresses equality in the
usual sense, denoting an expression that has value True if and only if a and b
have the same value. The following property extends this observation:

Proof sketch: if u does not occur in e, then e’ is the same expression as e, and we
have seen (reflexivity of =) that e = e is a tautology. If u does occur in e, we note
that the value of a boolean expression under any particular truth assignment is
entirely determined by the value of its subexpressions under that assignment. Here
e’ differs from e only by having occurrences of the subexpression u replaced by v.
Under any particular truth assignment, since u = v is a tautology, these
subexpressions will have the same value in e and e’; because the rest of the
expression is the same, the value of the entire expression will be the same, implying
that the truth assignment satisfies e = e’. Since this is the case for any truth
assignment, e = e’ is a tautology.

This rule is the key to proofs of non-trivial boolean properties. We do proofs by
truth tables for the basic expressions only; then we use equivalences to replace
expressions by simpler ones. For example, to prove that

a b a = b

True True True

True False False

False True False

False False True

Theorem: Substitution

For any boolean expressions u, v and e, if u = v is a tautology and e’ is the
expression obtained from e by replacing every occurence of u by v, then e = e’

is a tautology.

(a and (not (not b))) = (a and b) -- GOAL

→ See exercise 5-E.3,
page 102.

§5.1 BOOLEAN OPERATIONS 81

is a tautology, you do not need to write its truth table; first you prove that for any
expression x the following general properties are both tautologies:

T2 is the reflexivity of =, proved from the truth table; T1 is easily proved in the
same way. You may then use T1, applied to the expression b, and the
Substitution theorem, to replace not (not b) by just b on the left-hand side of the
property GOAL; then applying T2 to a and b yields the desired result.

To express that two boolean values are not equal, we use /= (the best
approximation, with two characters available on all keyboards, of the
mathematical symbol ≠). Its definition is that a /= b has the same value as
not (a = b).

De Morgan’s laws

Two tautologies are of particular interest in using and, or and not:

Proof: either write the truth tables, or better combine the Non-Contradiction,
Excluded Middle, Disjunction and Conjunction principles.

These properties make the and-or duality even more remarkable, by expressing
that if you negate either of the two operators you get the other by negating
the operands.

Informally interpreting — for example — the first one: “if we say that it’s
not true that a or b holds, that is exactly the same as if we were saying that
neither a nor b holds”. Of course we are already at a stage where formal
notations such as those of logic, with their precision and concision, are vastly
superior to such natural-language statements.

not (not x) = x -- T1
x = x -- T2

Theorems: De Morgan’s Laws

The following two properties are tautologies:
� (not (a or b)) = ((not a) and (not b))
� (not (a and b)) = ((not a) or (not b))

JUST ENOUGH LOGIC §5.182

Another aspect of the close association between the or and and operators is
that each is distributive with respect to the other, meaning that the following
two properties are tautologies:

Compare to the distributivity of multiplication with respect to addition in
arithmetic: if + is addition and ∗ is multiplication, then m ∗ (p + q) is the same as
(m ∗ p) + (m ∗ q) for any numbers m, p, q.

Distributivity is easy to prove, for example from truth tables. It helps simplify
complex boolean expressions.

Simplifying the notation

To avoid the accumulation of parentheses, it is customary to accept some
precedence rules that give a standard understanding for boolean expressions,
removing ambiguity even if some parentheses are missing. This is the same idea
that enables us to understand m + p ∗ q , in arithmetic and in programming
languages, as meaning m + (p ∗ q) rather than the other possible grouping. We
say that the operator ∗ binds tighter, or has higher precedence, than the
operator +: it “attracts” the neighboring operands before + gets its chance.

For boolean operators we may use the same precedence as used by the
syntax of Eiffel; the order from highest precedence to lowest is:

� not binds tightest.

� Then comes equivalence: =.

� Then comes and.

� Then or.

� Then implies (studied below).

Under these rules, the expression a = b or c and not d = e, with no parentheses,
is legal and means

It is desirable, however, to retain some parentheses to protect readers of your
programs from misunderstandings which might lead to errors.

Theorems: Distributivity of boolean operators

The following two properties are tautologies:
� (a and (b or c)) = ((a and b) or (a and c))
� (a or (b and c)) = ((a or b) and (a or c))

(a = b) or (c and ((not d) = e))

§5.1 BOOLEAN OPERATIONS 83

In the recommended style you should not drop the parentheses that separate
or and and expressions since the precedence rule making and bind tighter than
or is arbitrary. It is also better to keep the parentheses around a not

subexpression used as operand of an equivalence, to avoid confusing (not a) = b

with not (a = b). You may, however, drop the parentheses around a
subexpression of the form x = y where x and y are single variables. So for the
last example you would just write

Another property that simplifies the notation is the associativity of certain
operators. In arithmetic we commonly write m + p + q even though it could
mean m + (p + q) or (m + p) + q, because the choice does not matter: these two
expressions have equal values, reflecting that addition is an associative

operation. Multiplication is also associative: m ∗ (p ∗ q) always has the same
value as (m ∗ p) ∗ q. In boolean logic both operators and and or are associative,
as expressed by the following tautologies:

For the proofs: you may write truth tables but it is easier to use previous rules. In
the first example, the left side is true, from the Conjunction Principle, if and only if
both a and b and c are true, that is to say — applying that Principle again — if and
only if all three of a, b and c are true; but from the same reasoning this is also the
case with the right-hand side, so the two sides are equivalent (satisfied under exactly
the same truth assignments). For the second line the reasoning is the same, using the
Disjunction Principle.

This enables us to write expressions of the form a and b and c, or a or b or c,
without risk of confusion. To summarize:

a = b or (c and (not d) = e)

(a and (b and c)) = ((a and b) and c)
(a or (b or c) = ((a or b) or c)

Touch of Style:

Parentheses for boolean expressions

In writing subexpressions of a boolean expression, drop the parentheses:
� Around “a = b” if a and b are single variables.
� Around successive terms if they each involve a single boolean variable

and are separated by the same associative operators.
For clarity and to help avoid errors, retain other parentheses, without taking
advantage of precedence rules.

JUST ENOUGH LOGIC §5.284

5.2 IMPLICATION

One more basic operator — along with not, or, and and equivalence — belongs
to the basic repertoire: implication. Although similar to the others, and in fact
close to or, it requires some attention because its precise properties initially
seem, for some people, to contradict intuitive views of the concept of
implication in ordinary language.

Definition

The simplest way to define the implies operator is in terms of or and not:

This gives the truth table (which could serve as an alternative definition):

It is the same as the table for or if we switch True and False values for a. The
result of a implies b is true for all truth assignments except in one case, the
highlighted entry: when a is true and b false.

In a implies b the first operand a is called the antecedent of the implication,
and the second operand b is called its consequent.

The principles we saw for conjunction and especially disjunction have a
direct counterpart for implication:

Definition: Implication

The value of a implies b, for any boolean values a and b, is the value of
(not a) or b

a b a implies b

True True True

True False False

False True True

False False True

Theorem: Implication Principle

An implication has value True except if its antecedent has value True and its
consequent has value False.
As a consequence, it has value True whenever one of the following holds:
I1 The antecedent has value False.
I2 The consequent has value True.

→ This temporary def-
inition will be slightly
revised on page 94.

← Page 75.

§5.2 IMPLICATION 85

Relating to inference

The name “implies” suggests that we can use the implication operator to infer
properties from others. This is indeed permitted by the following theorem:

Proof : To prove I3, consider a truth assignment TA that satisfies a. If TA also
satisfies a implies b, then it must satisfy b, since otherwise under row 2 of the
truth table for implies the value of a implies b would be False. To prove I4, note
that if a and a implies b are tautologies this reasoning is valid for any truth
assignment TA.

This property legitimates the usual practice, when we want to prove a
property b, to identify a possibly “stronger” property a, and prove separately that

� a holds.

� a implies b holds.

Then we may deduce that b holds.

The term “stronger” used here is useful in the practice of reasoning with
contracts of programs, and deserves a precise definition:

The definitions assume a and b to be non-equivalent because it could be confusing
to say that a is stronger than b if they might be the same. In such cases we will use
“stronger than or equal to” and “weaker than or equal to” (as with relations between
numbers: “greater than”, “greater than or equal to”).

Theorem: Implication And Inference

I3 If a truth assignment satisfies both a and a implies b, it satisfies b.
I4 If both a and a implies b are tautologies, b is a tautology.

Definitions: Stronger, weaker

For two non-equivalent expressions a and b, we say that:
� “a is stronger than b” if and only if a implies b is a tautology.
� “a is weaker than b” if and only if b is stronger than a.

← The highlighted
entry on page 84. This
property is also a con-
sequence of the Impli-
cation Principle.

JUST ENOUGH LOGIC §5.286

Getting a practical feeling for implication

How does the definition of implies relate to the usual notion of implication,
expressed in ordinary language by such locutions as “If … then …”?

In such everyday use, implication often indicates causality: “If we get any
more sun, then this will be a vintage year for Bourgogne” suggests that one
event causes another. The implies of logic does not connote causality, it simply
states that whenever a certain property is true another one must be too. The
example just given can also be interpreted this way if we ignore any hint
of causality.

Another typical example is (at the Los Angeles airport, trying to check in
for Santa Barbara): “If your ticket says Flight 3035, then you are not flying
tonight”, perhaps because the plane is grounded for mechanical problems and
this was the last flight. There is no causality here: what is printed on the ticket
did not cause the plane to malfunction. It’s simply that for anyone to whom the
property “Reserved flight is 3035” applies, the property “can fly today” does not
hold. Logic’s implies operator covers such scenarios.

What — surprisingly — surprises many people is property I1 of the
Implication Principle, resulting from the last two rows of the truth table: that
whenever a is false the implication a implies b is true, regardless of the value
of b. In fact this does correspond to the usual idea of implication:

1 “If I am the governor of California, two plus two equals five”

2 “If two plus two equals five, then I am the governor”

3 “If two plus two equals five, then I am not the governor”

4 “If I am the governor, two plus two equals four”

5 “If I am the governor, it will rain today”

6 “If it rains today, I will not be elected governor before the end of the year”

Given that I am not the governor and do not expect to run for the job, all these
implications are true — regardless, for the last two, of today’s weather.

The little argument between Captain Haddock and the detectives Thomson
and Thompson in the Tintin extract on the facing page provides a good
opportunity to examine implication arguments (which ones are correct and
which ones are flawed?).

All that “If a, then b” tells us is that whenever the antecedent a holds, the
consequent b must hold too. So the only possibility for this implication to be
false is (second row, with highlighted entry, in the truth table) for a to be true
and b false. Cases in which the antecedent does not hold (I1), and cases in which
the consequent holds (I2), do not suffice to determine the truth of the implication
as a whole.

← Page 84.

← Exercise “Police
logic”, 5-E.9, page 103.

§5.2 IMPLICATION 87

© Hergé/
Moulinsart
2008. Full
credits:
page 847.

See the
exercise
“Police
logic”,
5-E.9,
page 103

JUST ENOUGH LOGIC §5.288

Beginners sometimes have trouble with accepting that “a implies b” can be
true if a is false; most of that trouble, I guess, comes from the case (I1) in which
a is false and b is true — such as 1, 2 and possibly 5 and 6 above — although
there is nothing wrong with it. In fact, the misunderstanding may be due to a
common distortion of reasoning which leads some people, equipped with the
knowledge that a implies b, to infer happily that if a does not hold then b must
not hold either! Typical examples:

1 “All professional politicians are corrupt. I am not a professional politician, so
I am not corrupt and you must vote for me”. If the premise is true, it tells us
something about professional politicians, but nothing at all about anyone else!

2 “Whenever I take my umbrella it doesn’t rain, so I will leave my umbrella
at home as we badly need some rain right now.” Joke of course, but
suggesting the same flawed reasoning.

3 “All recent buildings in this area have bad thermal isolation. This is an older
building, so it must be more comfortable in hot summers”.

Each of these cases involves a property a that implies another b, and an
erroneous deduction that the negation of a implies the negation of b. We cannot
deduce any such thing. All we know is that if a holds then b will hold; if a does
not hold, knowledge of the implication tells us nothing interesting. Couched in
the language of logic, the flaw is to believe that

is a tautology. Or perhaps it’s just to imagine the slightly less powerful
(a implies b) ((not a) implies (not b)). Neither is a tautology, as
they both have value False when a has value False and b has value True.

Reversing an implication

Although the last two properties are not tautologies, there is an interesting
tautology of the same general style:

Proof: we just expand the definition of implies. For the left side, it gives
(not a) or b; for the right side, (not (not b)) or (not a). From a previous
tautology, we know that (not (not b)) is b; from the commutativity of or, the
right side has the same value as the left side for any truth assignment.

Alternatively, we may note in the truth table for implies that swapping a and b then
negating both yields back the original table.

(a implies b) = ((not a) implies (not b))

(a implies b) = ((not) implies (not a)) -- REVERSE

Warning: not a tautol-
ogy (see exercise
“Implication and
negation”, 5-E.10,
page 103).

implies

b

← T1, page 81.

§5.3 SEMISTRICT BOOLEAN OPERATORS 89

This property, REVERSE, states that if b holds whenever a does, then from
the knowledge that b does not hold we may infer that a also doesn’t. (The
informal justification is clear, using reasoning by contradiction: if a were true,
then the implication tells us that b would be true; but we are precisely assuming
that b does not hold.)

Using this rule, we may replace the earlier flawed examples by logically
sound deductions:

1 “All professional politicians are corrupt. She is not corrupt, so she cannot be
a professional politician.”

2 “Whenever I take my umbrella it doesn’t rain: since weather.com says it is
going to rain, I might just as well leave my umbrella at home.”

3 “Since all recent buildings in this area have bad isolation and this room
remains cool in spite of the heat outside, the house must be older.”

5.3 SEMISTRICT BOOLEAN OPERATORS

Computer programming fundamentally relies on mathematical logic, to the
point that some people consider programming to be just an extension of logic.
This is all the more remarkable given that modern logic was established in the
first few decades of the twentieth century, before there was any hint of
computers in today’s sense.

Applying logic to programming brings up some issues often overlooked in
purely mathematical uses of logic. An example, important in programming
practice, is the need for non-commutative variants of and and or.

Consider the following question, given a metro line l and an integer n:

Touch of history:
The road to modern logic

Logic goes back to the Ancients, Aristotle in particular, who defined the rules
of “Rhetorics”, fixing some forms of deduction. In the eighteenth century
Leibniz stated that reasoning was just a form of mathematics. In the nineteenth
century, the English mathematician George Boole defined the calculus of truth
values (hence “boolean”). The big push for logic in the following century was
the realization that mathematics as practiced until then was shaky and could
lead to contradictions; the goal pursued by the creators of modern
mathematical logic was to correct this situation by giving mathematics a solid,
rigorous foundation.

“Is the n-th station of line l an exchange?”

http://www.weather.com

JUST ENOUGH LOGIC §5.390

We might express it as the boolean-valued expression

where is_exchange is a boolean-valued query of class STATION, indicating

whether a station is an exchange; the query i_th, seen in the previous chapter,

delivers the stations of a line, each identified by an index, here n.

The expression above, [S1], appears to do the job: l denotes a line;

l.i_th (n), denotes its n-th station, an instance of class STATION; so

l.i_th (n).is_exchange, applying the query is_exchange to this station, tells us,

through a boolean value, whether it is an exchange station.

But we have not said anything about the value of n. So l.i_th (n) may not be

defined, since the query i_th had a precondition:

In the absence of further information on n, it is incorrect to use the expression

[S1] since its result is not defined for n < 1 or n > l.count.

How can we write a correct expression with the intended meaning? If n < 1

or n > l.count, it is reasonable to consider that the answer to our informal

question, “Is the n-th station of line l an exchange?”, cannot be “Yes”, as this

would imply that we certify that a certain station is an exchange, and we cannot

do this if no such station exists. Since in the boolean world there are only two

possibilities, the answer has to be “No!”, meaning formally that the boolean

expression should have value False. To get this behavior we might try to express

the desired property not as [S1] but as

l.i_th (n).is_exchange [S1]

i_th (i: INTEGER): STATION

-- The i-th station on this line

(n >= 1) and (n <= count) and l.i_th (n).is_exchange [S2]

Not the correct form
(see [S3] on page
93 below).

← “The stations of a
line”, page 57.

← Page 62.

require

not_too_small: i >= 1
not_too_big: i <= count

Still not right (see [S3]).

§5.3 SEMISTRICT BOOLEAN OPERATORS 91

But this is still not good enough. The problem is that if n is out of bounds, for
example n = 0, the last term l.i_th (n).is_exchange is not defined. If we are only
interested in the value of [S2], we might not care, because the Conjunction
Principle that tells us this value can only be False since the first term, n >= 1,
has value False; the second and third terms do not affect the result.

Assume, however, that the expression appears in a program and gets
evaluated during the program’s execution. The operator and, as we have seen,
is commutative; it is legitimate for the execution, when it needs to compute
a and b, to compute both operands a and b and then combine their values using
the truth table for and. But then the computation of [S2] will fail when it tries
to evaluate the last term.

If that evaluation were conceptually required, we could do nothing: a
computation that tries to evaluate an expression with undefined value should
fail. It’s like trying to evaluate the numerical expression 1 / 0. But in this case
we may prefer that when the first term has value False the evaluation will,
instead of failing, return the value False, consistent with the definition of and.

This is not achievable with the usual commutative boolean operators: we
cannot prevent their computer versions from evaluating both operands and
thereby risking failure.

The case illustrated by this example — evaluating a condition that only
makes sense if another condition is also satisfied — occurs so frequently in
practice that we need a solution. There are three possible ways to go.

The first would be to try to recover from the failure. If an operand to a
boolean expression is undefined, so that its evaluation leads to failure, we could
have a mechanism that “catches” the failure and tries to see if other terms suffice
to determine a value for the expression as a whole. Such a mechanism means
that failure is not like real death but more like death in video games, where you
can get new lives (as long as you continue paying). The mechanism exists: it is
called exception handling and enables you to plan for accidents of execution
and try to recover. In the present case, however, it would be (if one dares use the
term) overkill. It requires far too much special programming for what is, after
all, a simple and common situation.

→ Exceptions are dis-
cussed in a later chap-
ter: “An introduction
to exception han-
dling”, 7.10, page 200.

JUST ENOUGH LOGIC §5.392

The second way would be to decide that and, as we understand it in
programming, is not commutative any more (the same would, for duality, hold
of or). In computing a and b, we would have the guarantee that b will not be
evaluated if a has been evaluated to False, the result in that case being False.
The problem with this approach is that it is unpleasant to make the software
version of a well-accepted mathematical concept depart from its mathematical
meaning. More pragmatically, the commutativity of and and or when both
operands are defined can help make the computation faster, as it may be
advantageous to evaluate the second expression first, or even, if the hardware
includes several processors, to evaluate them in parallel.

Such improvement of execution speed, known as optimization, is generally carried
out not by programmers but by compilers (the tools that translate your programs to
machine code).

The third way — the one we retain — is to accept the usefulness of
non-commutative boolean operators but give them different names to avoid any
semantic confusion. The new variant of and will be written and then; by duality
we also have a variant of or, called or else. In each case it is a double keyword,
written with a space between the two constituent words. The semantics follows
from the previous discussion:

If you are wondering about the name: we say that an operator is strict (as in “My
mom is strict about having everyone at the table before any of us starts eating”) if
it insists, to produce its result, on having all operand values available, even those
that the evaluation may turn out not to need. An operator is “non-strict” on an
operand if it may in some cases yield a meaningful result even when that operand
does not have a defined value. We call and then and or else semistrict because they
are strict on their first operand and non-strict on the second.

Saying “non-commutative” would be acceptable for the operators seen so far, but
we will need semistrict variants of operators such as implies, which is not
commutative in the first place.

Another way to define the semantics of the semistrict operators is to introduce
a variant of truth tables where every operand and result may have three values
rather than just two: True, False and Undefined.

Touch of Semantics:
Semistrict boolean operators

Consider two expressions a and b which may be defined or not, and if defined
have boolean values. Then:
� a and then b has the same value as a and b if both a and b are defined,

and in addition has value False whenever a is defined and has value False.
� a or else b has the same value as a or b if both a and b are defined, and in

addition has value True whenever a is defined and has value True.

→ “Compiler tasks”,
page 336.

→ Exercise 5-E.15,
page 106.

§5.3 SEMISTRICT BOOLEAN OPERATORS 93

Whenever a and b is defined, a and then b is defined and has the same
value, but the converse is not true. The same holds for or else relative to or.

With this notation the correct way to express our example condition is

The previous version [S2] had two and operators, but only the second one needs
to be turned into an and then; between the first two terms, grouped here in
parentheses for clarity, a plain and is good enough since both will always be
defined. This is a general advice:

Our example, [S3], corresponds to the last case.

In the first case it would not be wrong to use the semistrict version, but this would
needlessly prescribe a particular evaluation order; it is preferable to avoid such
“overspecification” and stick instead to the operators with standard mathematical
properties. This also leaves compilers free to optimize the order of operand evaluation.

The notion of semistrict operator is applicable to more than mathematical logic
and software:

((n >= 1) and (n <= count)) l.i_th (n).is_exchange [S3]

Touch of Methodology:
Choosing between ordinary and semistrict boolean operators

In expressing contracts and other conditions:
� Use the ordinary boolean operators, or and and, when you can guarantee

that both operands are defined whenever the execution needs to evaluate
the condition.

� If a condition only makes sense when another is false, use or else.
� If a condition only makes sense when another is true, use and then.

Touch of Practice:
Semistrict operators and you

The semistrict operators reflect modes of reasoning that are common in daily life.
Wherever you see the phrase “if any” you may suspect that semistrictness is
involved. A credit application form might stipulate that the spouse, if any,
must be a co-signer; we may understand this as is_single or else

spouse_must_sign or, in more explicit programming terms:
(spouse = Void) or else spouse.must_sign

where Void denotes the absence of an object. In either form the second
operand of the or else would not make sense with a strict or, since when the
first operand has value False the notion of spouse is not defined.

and then

→ “Void references”,
6.3, page 111.

JUST ENOUGH LOGIC §5.494

Semistrict implication

Implication also has a semistrict variant. A routine with arguments l: LINE and
i: INTEGER might use the precondition

meaning: apply the routine only if the i-th station of line l, assuming it exists, is
an exchange.

This makes sense only with a semistrict interpretation of implies. Such a
scheme — an expression of the form a implies b where b is defined only when
a is true — occurs so frequently that for this operator, which is not commutative,
the semistrict version seems appropriate in all cases. Such a convention is also
consistent with the Implication Principle and its insistence (clause I1) that
a implies b has value True, regardless of b, whenever a has value False.

So we take the semistrict version as the definition of implies:

The ordinary life example of semistrictness cited above falls in this category; we
may now write it with semistrict implies as

Many uses of “if any”, for example in legal documents, follow this pattern.

5.4 PREDICATE CALCULUS

The concepts discussed so far belong to a part of logic called propositional

calculus, meaning that it deals with basic propositions, each stating a single
property p that might be true or false: n has a positive value, I am the governor
of California, it is full moon tonight. “Single property”, in these examples,
means that p characterizes a single object — the number n, me, the current night
— or a finite set of explicitly listed objects, as in “I am not the governor and it
is not a full moon tonight”.

((i >= 1) and (i <= count)) l.i_th (i).is_exchange

Definition: Implication with possible undefinedness

The value of a implies b, for any a and b where b may not be defined, is the
value of

(not a) or else b

(spouse /= Void) implies spouse.must_sign

implies

← “Theorem: Impli-
cation Principle”,
page 84.

← This supersedes the
temporary definition of
page 84.

§5.4 PREDICATE CALCULUS 95

Another theory is directly useful in programs and discussions of programs:
predicate calculus, which considers whether a property holds for the elements,
not individually specified, of a set of objects.

Generalizing “or” and “and”

Given a set of objects E and a property p of objects, predicate calculus deals with
two basic questions, generalizing “or” and “and”:

1 Does at least one of the objects in E satisfy p?

2 Does every one of the objects in E satisfy p?

For example, we have seen that any metro line contains stations, and that
stations may be exchanges. We may ask, about a particular line:

A1 Is at least one of the stations of Line 8 an exchange?

A2 Are all of the stations of Line 8 exchanges?

If you know all the stations by name you can express these questions as boolean
expressions. A1 is an or expression and A2 is an and expression:

Both use the boolean-valued query is_exchange of class STATION to tell us if a
station is an exchange. You would have to complete the expressions by
including a term for each station of the line.

You can avoid naming individual stations by using the query i_th of class
LINE which, as seen in the preceding chapter, gives us the i-th station of a line
for any applicable i:

but that is still inconvenient as you must explicitly list all stations. In particular
you cannot write, for either question, an expression that would make sense for
any line, since different lines have different numbers of stations.

L1 Station_Balard.is_exchange Station_La_Motte.is_exchange
Station_Concorde.is_exchange … [Include all stations on line] …

L2 Station_Balard.is_exchange Station_La_Motte.is_exchange
Station_Concorde.is_exchange … [Include all stations on line] …

M1 Line8.i_th .is_exchange or Line8.i_th .is_exchange or
… [Include all numbers from 1 to Line8.count]

M2 Line8.i_th .is_exchange and Line8.i_th .is_exchange and
… [Include all numbers from 1 to Line8.count]

or ← List of stations from
figure on page 58.

or

or

and and

and

← “The stations of a
line”, page 57.

(1) (2)

(1) (2)

JUST ENOUGH LOGIC §5.496

Predicate calculus addresses such cases by introducing quantifier

expressions that describe the application of a property to a set of objects, letting
you mention only that set, for example a metro Line, rather than individually
listing every object — every station. There are two quantifiers:

� The existential quantifier, exists, or in mathematical notation, to state
that at least one member of the set satisfies the property.

� The universal quantifier, for_all, or in mathematical notation, to state
that every member of the set satisfies the property.

When you would need boolean operations on an arbitrary number of operands,
exists generalizes or, and for_all generalizes and. If Line8_stations denotes a
list of stations, the mathematical notations are:

which you may read aloud respectively as:

� There exists an s in Line8_stations such that s.is_exchange is true.

� For all s in Line8_stations, then s.is_exchange is true.

Rather than using a bar “|” as above to separate the property, here s.is_exchange,
from the specification of the set of objects across which it will range,
mathematicians often use a period “.” or a comma “,”; but for us this would be
ambiguous since, as you know, we need these symbols for other purposes.

Q1 and Q2 are mathematical notations, not programming notations. We will
shortly see how to express such properties in a program.

Precise definition: existentially quantified expression

The notations using existential and universal quantifiers, as just illustrated, are
new forms of (mathematical) boolean expression, complementing the
expressions of propositional calculus seen earlier in this chapter.

The definition of the existential quantifier is straightforward:

Q1 ∃ s: Line8_stations | s.is_exchange

Q2 ∀ s: Line8_stations | s.is_exchange

Definition: Existentially quantified expression

The value of the expression
 s: SOME_SET | s.some_property

is True if and only if at least one member of the given set SOME_SET satisfies
the given property some_property.

∃

∀

∃

§5.4 PREDICATE CALCULUS 97

For example let X be the set of integers {3, 7, 9, 11, 13, 15} (that is to say, the
set consisting of the integers listed between braces) and for any integer n let
n.is_odd be the property that n is odd, n.is_even the property that it is even, and
n.is_prime the property that it is a prime number. Then:

� ∃ n: X | n.is_odd means that at least one member of X is odd; the expression
has value True since we can take, for example, 3 as evidence that there is
one such member. In this case we may take any other member of the set as
evidence since they are all odd.

� ∃ n: X | n.is_prime means that at least one member of X is prime; this
expression also has value True since we may again take 3, for example, as
evidence. It does not matter that some other member or members, such as 9,
do not satisfy the property, since the truth of an existentially quantified
expression only requires one example.

� ∃ n: X | n.is_even means that at least one member of X is even; this
expression has value False since no element of X is even.

These examples illustrate how you may prove or disprove an existentially
quantified expression ∃ s: SOME_SET | s.some_property:

E1 To prove that it is true, it suffices to exhibit one element of SOME_SET that
satisfies the property. Once you have found such an element, others have no
influence on the result. This means in particular that you may not need to
investigate all elements of the set.

E2 To prove that it is false, you must prove that no element of SOME_SET

satisfies the property. That some do not satisfy it is not enough to determine
the result. This means in particular that you must consider all the elements.

Precise definition: universally quantified expression

For an expression using a universal quantifier

 s: SOME_SET | s.some_property∀

JUST ENOUGH LOGIC §5.498

the informal definition of its value is that it is True if and only if every element
of SOME_SET satisfies some_property. This is not quite precise enough,
however, because of the case of an empty set (discussed next). A better approach
is to base the definition on what has just been specified for existentially

quantified expressions:

This says that the ∀ expression has value True if and only if there is no member
of the given set that does not satisfy the given property. It sounds like a contorted
way of expressing what we want: that every element satisfies the property. In
your writing classes you were probably told to avoid double negation, replacing
“There’s no course I don’t like in this great university!” by “I like all courses
here”. The reason for the double negation is that we must be careful about the
case of empty sets. Before examining this case, let us consider again our
example set of integers X defined as {3, 7, 9. 11, 13, 15}:
� ∀ n: X | n.is_odd means that all members of X are odd; the expression has

value True since 3, 7, 9, 11, 13 and 15 are all odd numbers.
� ∀ n: X | n.is_prime means that all members of x are prime numbers; this

expression has value False since we can take 9, for example, as evidence
that at least one member is not prime. We could also use another non-prime
member as evidence — the other possibility is 15 — but one is enough to
prove that the universally quantified expression is false.

� ∀ n: X | n.is_even means that all members of X are even; this expression has
value False since, for example, 3 is not even. Here any other member of the
set could serve as evidence since none is even, but again one is enough.

These examples illustrate how you may prove or disprove a universally
quantified expression ∀ s: SOME_SET | s.some_property (compare with those
for existential quantification, E2 and E1 on the previous page):
U1 To prove that it is true, you must prove that every element of SOME_SET, if

any, satisfies the property. That some satisfy it is not enough to determine
the result. This means in particular that you must consider all the elements.

U2 To prove that it is false, it suffices to exhibit one element of SOME_SET that
does not satisfy the property. Once you have found such an element, others
have no influence on the result. This means in particular that you may not
need to investigate all elements of the set.

Definition: Universally quantified expression

The value of the expression
 s: SOME_SET | s.some_property

is the value of
 (s: SOME_SET | s.some_property)

→ “The case of empty
sets”, page 99.

∀

not ∃ not

§5.4 PREDICATE CALCULUS 99

The relationship between the existential and universal quantifiers generalizes
the duality between or and and. In particular the following two properties
generalize De Morgan’s Laws:

The first property follows from the definition of ∀; the second property follows
from applying the first to not P and negating both sides.

The case of empty sets

The set SOME_SET of possible values considered in a quantified expression
might be empty. The effect on the two quantifiers reflects their duality:

� ∃ s: SOME_SET | s.some_property is true, according to its definition, if and
only if some member of SOME_SET satisfies some_property. If
SOME_SET is empty, it has no member, and hence no member satisfying
the property. So the value of the expression in this case, regardless of
some_property, is always False.

� ∀ s: SOME_SET | s.some_property is false if and only if some member of
SOME_SET does not satisfy some_property. If SOME_SET is empty, there
will not be any such “counter-example” member since there is no member
at all. So the value of the expression in this case is True.

We may also view the second case as a consequence of the definition of the
universally quantified expression ∀ s: SOME_SET | s.some_property in terms
of the existentially quantified one, as

By the previous convention, the whole (∃ s: SOME_SET | …) expression in
parentheses has value False if SOME_SET is empty, so the ∀ expression,
deduced from it by applying not, has value True.

Concretely, this simply means that we may consider every statement of the
form “Every object of such-and-such a kind satisfies this property” as true if
there is no object of the given kind. So I can say “I promise to you that every
blond student in this room will be elected governor before the end of the year”,
and even back it with “if not, I will pay every one of you a million euros on
January 1st”, if I have (carefully) checked that everyone in the room has black
hair. The statement “Every blond student in this room will be elected governor”
is indeed true because it is of the form ∀ s: SOME_SET | … for an empty
SOME_SET, which is true regardless of what comes after the “|”.

not (∃ s: E | P) = ∀ s: E | not P

not (∀ s: E | P) = ∃ s: E | not P

not (∃ s: SOME_SET | not s.some_property)

← Page 81.

← Page 98.

JUST ENOUGH LOGIC §5.5100

Having studied logic, however, you should never promise anything like “A
blond student in this room will be elected governor” because it makes you
responsible for identifying a fair-haired student and rigging the election.

As a result of these observations, the official name of the universal
quantifier, “For all”, is not so good because “all” suggests, at least informally,
that there are some elements to be talked about. Better names would be “For all,

if any”, or just “For any”. (It would be nice indeed to call the two quantifiers ∃
and ∀, symmetrically, “For some” and “For any”.) This would not absolutely
preclude confusion anyway, so we will continue saying “For all” (and “There

exists”) like everyone else, but you have to remember that this is just an informal
name and that the mathematical interpretation of For all gives a True answer —
just as Exists gives False — if there are no elements to be probed for the
given condition.

Another way to express this property is that if we consider an existential
quantification on a set of values to mean a1 or a2 or … or an, and the universal
quantification to mean a1 and a2 and … and an, then as n goes to zero the
disjunction will yield false and the conjunction will yield true. This is in line with
earlier observations that a or b is true if and only if at least one of a and b is true,
and a and b is false if and only if at least one of a and b is false.

Yet another informal interpretation relates this property to the earlier discussion of
how “implies” always yields True when the antecedent is False. We might
understand ∀ x: SOME_SET | x.some_property as a way of saying that “x is a
member of SOME_SET” implies x.some_property. If SOME_SET is empty the
antecedent is False for every possible x, so the implication is true.

5.5 FURTHER READING

The material in this chapter is introductory; as part of a computer science
curriculum you will most likely take a course specifically devoted to logic. A
standard textbook on the topic, which requires a solid background in general
mathematics but defines all the concepts it uses, is

Elliot Mendelson: Introduction to Mathematical Logic, fourth edition,
Chapman & Hall/CRC, 1997.

The following are directly intended for computer scientists:

Zohar Manna and Richard Waldinger: The Deductive Foundations of

Computer Programming, Addison-Wesley, 1993.

Mordechai Ben-Ari: Mathematical Logic for Computer Science, 2nd
edition (2001), Springer-Verlag, third corrected printing, 2008.

§5.6 KEY CONCEPTS LEARNED IN THIS CHAPTER 101

5.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Logic defines the techniques for reasoning in a precise and rigorous way. It
provides the basis of both mathematics and programming.

� Propositional calculus defines operations on “boolean variables” that can
take either of the values True and False. The basic “boolean operations” are
negation (not), non-exclusive disjunction (or) and conjunction (and).

� Disjunction and conjunction are dual of each other: replacing either of them
by the other one, negating the operands and negating the result yields a
property of the other. This is expressed in particular by “De Morgan’s Laws”.

� Disjunction and conjunction can be generalized to any number of operands
through the quantifiers ∃ (existential) and ∀ (universal) of predicate

calculus, which apply to the members of a given set.

� For an empty set, regardless of the condition being probed, the existential
quantifier yields False and the universal quantifier yields True.

� Implication can be defined simply in terms of disjunction: a implies b is the
same as (not a) or b. Implication can be used to deduce new properties from
previously proven ones; it does not connote causality. False implies True.

� In their application to programming, the boolean operations have semistrict

versions that yield a value even in some cases for which the second operand
is not defined. The semistrict variants of or and and are or else and
and then; implies is best defined as semistrict.

New vocabulary

Antecedent Boolean value Boolean expression

Boolean operator Boolean variable Conjunction

Consequent Contradiction Disjunction

Existential quantifier Implication Logic

Negation Opposite Predicate calculus

Propositional calculus Quantifier Satisfiable

Satisfies Strict Stronger

Tautology Truth assignment Truth table

Universal quantifier Weaker

JUST ENOUGH LOGIC §5-E102

5-E EXERCISES

5-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

5-E.2 Concept map

1 Devise a conceptual map for the terms of the above vocabulary list.

2 Combine the result with the map obtained for the previous chapters.

5-E.3 Properties of boolean operators

(Prove your answers.)

1 Is and reflexive?

2 Is or reflexive?

3 Is equivalence associative?

5-E.4 Twisted logic

“Whenever the temperature in the city raises above 30 degrees a pollution alert

will result, so because the temperature today is only 28 degrees there won’t be

a pollution alert.”

1 Informally, what is wrong with this statement?

2 Introducing the appropriate boolean variables, express this statement as a
boolean expression.

3 Prove that it is not a tautology. (Hint: give a truth assignment that makes
it false).

4 Is it a contradiction? (Prove your answer.)

5-E.5 Appropriate warning?

A sign at the entrance to a computer center once read: “Entrance is prohibited

to people who are not authorized or accompanied.” We accept that there is no
ambiguity as to what “authorized” means (someone who has been granted the
appropriate credentials), and that “accompanied” means “accompanied by an
authorized person”.

← Exercise “Concept
map”, 4-E.2, page 69.

§5-E EXERCISES 103

1 Introducing appropriate boolean variables, express this rule as a
boolean expression.

2 Explain why the expression does not capture the interdiction that the sign’s
author probably intended. (Hint : Use De Morgan’s Laws.)

3 Write the expression reflecting the rule that was most likely intended.

4 Using this expression as a guide, propose an improved rewrite of the
English text for the sign.

5-E.6 Inequality

Write the truth table for the inequality operator /=.

5-E.7 Associativity and implication

Is the implies operator associative? (Prove your answer.)

5-E.8 Signs of strength

We say that a is “stronger than or equal” to b if a implies b. Prove that a and b
is stronger than or equal to a, and that a is stronger than or equal to a or b.

5-E.9 Police logic

Are Thomson and Thompson, the two policemen in the Tintin extract, justified
in accepting Captain Haddock’s final explanation?

5-E.10 Implication and negation

The discussion of implication noted that

is not a tautology. By simplifying this expression — through theorems
introduced in this chapter, not truth tables — show under what conditions (for
example which truth assignments) it holds.

(a implies b) = ((not a) implies (not b))

← Introduced on
page 81.

→ Property used by the
inheritance mecha-
nism, see “Precondi-
tion weakening and
postcondition strength-
ening”, page 582.

← Page 87.

← Page 88.

JUST ENOUGH LOGIC §5-E104

5-E.11 Implication

1 Prove that for any boolean expressions a and b the following is a tautology:

2 The sign shown on the right, spotted in Zurich near the ETH,
reads: “Reasonable drivers don’t park here. For others, it’s

forbidden!”. Using appropriate boolean variables, including
is_reasonable, parks_here, parking_prohibited, express this
injunction as one boolean expression.

3 Prove that if this expression is a tautology, and drivers obey
parking prohibitions, then parks_here is false.

5-E.12 “Exclusive or” as a germ of all things boolean

“Exclusive or”, written xor, is a boolean operator of two
operands such that a xor b is true if and only if either a or b, but not both, is true.
We may state this property by defining a xor b as

1 Write the truth table for xor.
2 If a is a boolean variable, what is the value of a xor a? (Prove your answer

from either the definition or the truth table.)
3 Prove that a xor b always has the same value as not (a = b)

For each of the following boolean expressions (with zero, one or two operands),
give another boolean expression that for any value of the operands yields the
same value as the given expression, and involves nothing else than the operands,
True and xor (in particular, no other operator); prove your answers.

4 False
5 not a
6 a = b
7 a and b
8 a or b
9 a implies b

(The existence of an xor equivalent for every boolean operation makes xor a
particularly interesting operator, holding the germ of all others. Designers of
electronic circuits based on boolean logic have taken advantage of
this property.)

((a implies b) and ((not a) implies b)) implies b

(a or b) and (not (a and b)) [X1]

§5-E EXERCISES 105

5-E.13 Properties of “exclusive or”

Based on the above definition [X1] of xor, the “exclusive or” operator, prove or
disprove the following properties:

1 xor is commutative.

2 xor is associative.

3 x xor (a xor x) = x for any a and x.

5-E.14 The blue hats and the red hats

A hundred persons are standing in line, each wearing a hat that is either blue or
red. They can each see the hat colors of those ahead in the line, but neither their
own nor those of people behind.

Starting with the back of the line — the person who sees all others — they
will each, in turn, shout a color name, “Red!” or “Blue!”, which all can hear.

You are asked to devise a strategy, which they will all adopt beforehand,
to maximize the number of people who are guaranteed to shout the color of
their own hats — regardless of the distribution of hat colors, about which you
know nothing.

Noting the following properties will help:

� A simple strategy is for the first person, the third, the fifth and so on to shout
the color of the person immediately ahead (the second, the fourth, the sixth
and so on), who then repeats that color, guaranteed to be correct. This gives
a lower bound: a good strategy should guarantee at least 50 correct results.

� No strategy can guarantee that the first shouter, who does not see his or her
color, will be correct. This gives an upper bound: a strategy can guarantee
at most 99 correct results. We may restate the problem as asking how close
we can get to this theoretical maximum.

� There is nothing probabilistic about the problem. Even if we had some
information about the distribution of colors, it would not help since the
strategy must maximize the number of answers guaranteed correct, not
some probability of correct answers.

Hint: the preceding exercise helps.

JUST ENOUGH LOGIC §5-E106

5-E.15 Truth tables with undefinedness: semistrict boolean operators

Assume an extension of propositional calculus with three values instead of two:
True, False, and Undefined. For example l.i_th (i) has value Undefined if i does
not satisfy the precondition of i_th.

Considering that each of a, b and the resulting expression may take on any
of these three values, write the truth tables (each with nine entries) for:
1 a or else b
2 a and then b

5-E.16 Truth tables with undefinedness: ordinary boolean operators

As in the preceding exercise, assume that boolean values include True, False,
and Undefined. Explaining the reason for your answer, propose truth tables for:
1 a or b
2 a and b
(Here more than one set of truth tables may make sense, so what’s interesting is
how you justify your proposed solution.)

6

Creating objects and executing

systems

After our excursion into the mathematical foundations we are back to the
techniques of programming.

In earlier examples we have used names such as Paris, and Route1 to access
objects that someone else creates for us — mysteriously so far. It is time to see
how we can, in our own programs, create our own objects ourselves. Object
creation, the central topic of this chapter, is an interesting mechanism with
several ramifications. It will lead us to the overall picture of system execution:
how programs start, run and terminate.

To learn about these techniques, we will create a fictitious line of the metro,
fancy_line, connecting some real stations. Contrary to our previous examples
such as Line8, the line fancy_line is not predefined; we have to build it
ourselves. This process will require that we create other objects, for example to
represent stops on the line.

Three lines of the Paris metro terminate in the same general area on the
south side, but too far to walk, and people living there would really like a
connection other than through the city center and back. The purpose of
fancy_line is to console them, if not in the real city at least in a virtual one:

Fancy line

CREATING OBJECTS AND EXECUTING SYSTEMS §6.1108

6.1 OVERALL SETUP

Our system for this chapter is called creation. Open it now, using the same
techniques as in previous chapters. Bring up the class of interest for the present
discussion, LINE_BUILDING, which initially looks just like this:

The line -- “Create new line, fill in its stations and add it to Paris”, and the line
that follows it, start with two hyphens and hence are comments, but of a special
kind known as pseudocode, meaning that they stand for actual program text
(also known as “code”) that we intend to fill in later as we develop the program:

Indispensable note based on my experience of teaching non-native English speakers
and drawing blank stares when I utter the word “pseudocode”: the “p” and the first
“e” are not pronounced. Say “SUDOKU”, only replacing the final “U” by “ODE”.
Do not blame me, I did not design the phonetics of English.

It is useful to rely on pseudocode (rather than a margin note such as “The part

you will fill in”) whenever we need to give an informal English description of
program elements that we are not yet expressing as actual program text — either
because we cannot, or because this would force us to dive into a particular
corner of the program and lose track of the bigger picture.

The process of progressively replacing pseudocode elements by actual code is
called refinement. This technique will become ever more useful as we start writing
more complex software. It is part of top-down design discussed in a later chapter.

Pseudocode will use the convention illustrated by the example:

class LINE_BUILDING inherit

end

Definition: Pseudocode

Pseudocode is informal text standing for program elements to be added later.

In directory
06_creation.

TOURISM

feature

build_a_line

-- Build an imaginary line and highlight it on the map.
do

Paris.display

-- “Create new line, fill in its stations and add it to Paris”
-- “Highlight the new line on the map”

end

← Page 39.

← As in the example
on page 16.

→ “Bottom-up and
top-down reasoning”,
8.1, page 211.

§6.2 ENTITIES AND OBJECTS 109

Any actual program elements cited in such pseudocode, such as Paris, appear in
their usual blue to signal that there is nothing “pseudo” about them.

By using comments for pseudocode you ensure that your program, even if not
complete, is syntactically correct; it may not be interesting yet to execute it, but
you can compile it, so that the compiler will find any errors that you let slip
through, such as incorrect use of types. It is a basic methodological rule that
programs should be compilable at all stages of their development. Routines,
introduced in a later chapter, will provide a complementary technique (generally
superior to pseudocode) towards this goal.

Marking pseudocode comments in a special way (quotes and, in printed
text, color) reminds you that they are not just ordinary comments annotating
existing code, but placeholders for code that you must add at some point.

6.2 ENTITIES AND OBJECTS

Our class needs a feature (a query) representing the line to be built. We call it
fancy_line. This is also an opportunity to start the refinement process, by turning
part of the pseudocode (some of the first line and the entire second line) into
actual code and making the remainder more precise:

We are down to one line of pseudocode. The instruction after that line refines the
original pseudocode text “add it to Paris”; it uses a command put_line, available
on “city” objects to add a line, with its stations, to a city. The following instruction
uses the command highlight to refine the second line of the original pseudocode.

Touch of Style: Highlighting pseudocode

Write pseudocode elements as comments, with their text enclosed in quotes
and (if color is available) appearing in red.

class LINE_BUILDING inherit

→ “Functional
abstraction”, 8.7,
page 220.

TOURISM

feature

build_a_line

-- Build an imaginary line and highlight it on the map.
do

Paris.display

-- “Create fancy_line and fill in its stations”
Paris.put_line (fancy_line)
fancy_line.highlight

end

fancy_line: LINE

-- An imaginary (but desirable) line of the Paris Metro
end

CREATING OBJECTS AND EXECUTING SYSTEMS §6.2110

Once the procedure build_a_line has been executed, fancy_line will denote
an instance of class LINE, representing a metro line.

Identifiers may denote many things: they can be names of classes, like
STATION, or of features, like i_th. An identifier such as fancy_line whose role
is to denote run-time values, such as objects, is called an entity.

If you have programmed before you may be familiar with another important term:
variable, denoting entities whose value may change. “Entity” is more general since
some of our entities must have constant values. A later chapter studies variables
in detail.

In this case the entity fancy_line is the name of a feature, but we will encounter
other kinds of entity.

If, at some instant of the execution (“run time”), the value of an entity
represents an object, we say that the entity is attached to the object.

The following picture, depicting a run-time situation, helps visualize the
notion of entity and attached run-time object:

This shows the relationship:

� The entity is a name in the program which at run time will denote, through
a “reference”, an object in memory. The notion of reference expresses the
association and will be defined more precisely in a later chapter.

� The object, as defined earlier, is a collection of data; it is made more
precisely, as suggested by the picture, of a set of fields each holding a data
unit (for example an integer or boolean value). The data that our programs
manipulate during execution is entirely made of such objects, each with its
fields. The fields of a STATION object might, for example, include the
station’s coordinates on the map, the name of the station etc.

Note the conventions in diagrams such as the above giving a snapshot of the
object structure, or part of it, during execution:

� An object is represented as a rectangle, with its fields represented as
sub-rectangles.

� Next to each object, usually below, you will see in parentheses the name of
its generating class — the class of which it is an instance, here (LINE).

→ Chapter 9.

OBJECT During

execution:

entity and

attached object

ENTITY

fancy_line

(LINE)

reference

Fields

→ “Reference assign-
ment”, 9.5, page 252.

← Definition of
“object”: page 29.

← Definition of
“generating class”:
page 50.

§6.3 VOID REFERENCES 111

6.3 VOID REFERENCES

In considering the execution of build_a_line and the value of fancy_line, we
must pay particular attention to references and their relation to objects.

The initial state of a reference

Assume we have an instance of LINE_BUILDING. You might think that because
the class declares a query fancy_line of type LINE, we may always assume that
its instance contains a reference to an instance of LINE as suggested above:

Not so. We do have one object, the one on the left in the figure, an instance of
LINE_BUILDING, with only one field corresponding to the query fancy_line.
Let’s assume this object has just been created; this is the result of a “creation
instruction”, which we will shortly see how to write. The instruction only gives
us the LINE_BUILDING object. If you need any other, your program will have
to create it explicitly. So the true state of program execution after creation of an
instance of LINE_BUILDING looks like this:

The field for fancy_line contains a reference. But because no instruction has
been executed yet to create other objects, that reference is void, meaning that it
is not attached to any object; the figure shows the convention for void
references, reminiscent of the “grounded” symbol in electricity.

This is one of the two possible states for a reference:

Definition: States of a reference

At any time during execution, the value of an entity denoting a reference is one of:
� Attached to a certain object.
� Void.

OBJECT Line entity and

attached

TOURISM

object

OBJECT

(LINE)

referencefancy_line

(LINE_BUILDING)

Object structure

at the beginning

of execution

(LINE_BUILDING)

void referencefancy_line

OBJECT

CREATING OBJECTS AND EXECUTING SYSTEMS §6.3112

The predefined feature Void denotes a void reference. So at any time during
execution, if x denotes a reference, the condition

has value True if and only if the value of x is a void reference, and

if and only if it is attached to an object.

The trouble with void references

The basic mechanism of computation was introduced as feature call, of the form
x.f or, with arguments, x.f (…). It applies feature f to the object to which x is
attached. But now with void references we have the possibility that, at some
time during execution, if x = Void holds, the reference that x denotes will not be
attached to any object. The feature call is erroneous in that case.

To see the effect of such a bug, try to execute the system in the following form:

As shown, you should temporarily “comment out” (turn into a comment) the
line after Paris.put_line (fancy_line); the reason is that it would already
produce an error, but not the one we want.

To comment out a sequence of line in EiffelStudio, you may type two hyphens “--”
at the beginning of each line, or simply select them all and type Control-K. To
remove them (“uncomment” the line), use Control-Shift-K.

After the initial call (Paris.display) execution stops abruptly, displaying a
message in EiffelStudio stating that an exception has occurred:

x = Void

x /= Void

class LINE_BUILDING inherit

← /= is inequality; see
page 81.

← “Dissecting the
program”, page 23.

TOURISM

feature

build_a_line

-- Build an imaginary line and highlight it on the map.
do

Paris.display

-- Paris.put_line (fancy_line)
-- The next line should have been replaced by code!

-- “Create fancy_line and fill in its stations”
fancy_line.highlight

end

fancy_line: LINE

end

§6.3 VOID REFERENCES 113

What happened is a void call, or attempt to call a feature on a void target,
meaning an object that does not exist. Such an attempt will never succeed:

A void call causes an exception: an abnormal event occurring during program
execution. Here the result of the exception is to cause the entire program
execution to fail. The EiffelStudio message indicates the name of the exception
in this case: “Feature call on void reference” (the full name of void calls).

As we will see when we study exceptions, it is possible to avoid failure by
providing exception handling code which will attempt to recover. But this is only
a technique of last resort; prevention is better than cure. The general rule,
whenever your program includes a call x.f (…) and there is a risk that x might
be void, is to protect the call so that it will only be executed if x is attached. In
library code you will see many tests such as if x /= Void then …, and
preconditions of the form x /= Void where x is an argument. It is your
responsibility to ensure that the targets of all calls are attached in every execution.

This situation is improving. The Appendix to this chapter describes recent
evolutions that will entirely remove the risk of void calls.

If you now uncomment the line Paris.put_line (fancy_line), recompile and
execute, you will see the program fail in another way: it violates the precondition
of put_line, which states that its argument must be non-void. (The reason for
commenting it out was that we wanted to see a void-call exception first.)

Touch of Semantics: Attached Target Principle

A call of the form x.f (…) can only execute properly if, at the time of
execution, x is attached (not void).

Abnormal

termination

Exception message

→ Known as “quali-
fied”; see “Defini-
tions: Qualified and
unqualified call”,
page 134.

→ “An introduction to
exception handling”,
7.10, page 200.

→ Relying on Condi-
tional (if) instruc-
tions studied in the
next chapter.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.3114

Not every declaration should create an object

To avoid the void call and the exception in the last example, we may change the
creation procedure build_a_line so that before the call fancy_line.highlight it
will have created an object and attached it to fancy_line. We will do this shortly.
You may, however, question the behavior. Why have void references at all and
hence create the resulting risk of void calls at run time? Should not we be able
to assume that a declaration such as

will at run time have the effect of creating an object — an instance of LINE —
and attach it to fancy_line?

The answer is no. Several reasons justify the convention that references are
initialized to void, and that you get objects only by creating them explicitly
through your program.

The basic reason is that some objects simply do not exist. This is also true
in the non-software world: a person may have a spouse, but not everyone is
married. Software that models that world should retain such properties: in a
class PERSON, appearing for example in tax management software, you may
want to include a feature

for which the possibility of a void reference is useful: it will represent the case
of an unmarried person. Even if we assumed everyone is married, it would still
make no sense to create an object for spouse every time we create an object of
type PERSON: then it too would have its spouse reference, for which we would
have to create another instance of the class, starting an infinite chain. So the
reasonable solution is to initialize the field to a void reference, and let the
program create an object when appropriate.

Consider the example a little more in depth. When a person does have a
spouse, there is a constraint: the spouse is also married, and has, as a spouse, the
original person. A picture shows this better than words:

fancy_line: LINE

spouse: PERSON

Monogamy

(PERSON)(PERSON)

spouse spouse

§6.3 VOID REFERENCES 115

and a formula says it even better than a picture: the invariant of class PERSON

should have a clause that reads

Current, used in relation to an object, denotes the object itself. The clause says
that if a person has a spouse, then that spouse’s spouse is the original person.

Current is never void since it denotes an object. So from this invariant clause we
may deduce another: (spouse /= Void) implies (spouse.spouse /= Void): if you are
a married person, your spouse is married too. Do not dismiss the benefit of
expressing such seeming banalities: software development involves clarifying the
intuitive knowledge that we may have about a problem domain, and then
formalizing it using the tools of logic, for example in class invariants.

Another observation on the above invariant clause: if you have carefully followed
the discussion of semistrict boolean operators, you will have noticed that this clause
requires the semistrict version of implies, since the second operand would
otherwise not be defined for a void spouse.

This shows further why we shouldn’t jump to create an object every time there
is an entity declaration. Both objects on the preceding figure should probably
start their lives celibate, with void spouse references:

Later on, some instructions — for example a call to a command marry — will
attach the spouse reference of each object to the other, yielding the state shown
in the earlier figure. Such reattachment instructions do not create any new
objects; they simply attach references to existing objects. We will study them in
a later chapter.

The role of void references

Consider a reference appearing in a field of an object, such as the spouse field
of a person object. If itself attached to an object, it indicates the presence of
certain information, represented by that object. If it is void, it indicates that such
information does not exist. This is particularly useful when we use references to
link objects in a more complex structure. Many interesting data structures, such
as linked lists which will play a prominent role in our discussions, rely on this
concept of linking.

monogamy: (spouse /= Void) implies (spouse.spouse = Current)

→ Current will be
seen more formally in
“Definition: Current
object”, page 132.

← “Semistrict impli-
cation”, page 94.

Double celibacy

(PERSON)(PERSON)

spouse spouse

→ Chapter 9.

→ “Using references
for building linked
structures”, page 256
and “Linked lists”,
13.7, page 400.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.3116

Here is a simple example from Traffic. We may decide to represent a metro
line (any instance of class LINE) by one or more instances of a class STOP, each
representing a stop on the line. One possible technique (we will see many
others) is to have, in every instance of STOP, a field right indicating the next
stop on the route. So an instance of STOP will look like this:

where the solid part represents fields providing other information on the stop.
Then a full line will be a set of such objects, each but the last linked to the next
one by a right reference:

Note how the last object uses a void right reference to indicate that there is no
right object in this case. Terminating such structures is one of the principal uses
for void references.

The name right, for the field containing a reference to the next object, comes
from the standard way of picturing such lists, with list items appearing left to
right as above.

Calls in expressions: overcoming your fear of void

Before we come back to creation —which makes references non-void — we
must look at a common scheme for using references in expressions and avoiding
any fear of void call.

Because a feature call is only defined for a non-void target, you may wonder
how to express conditions so that they are always defined even if they involve
a call. A conditional instruction (after the if) or a class invariant might need a
condition of the form

fancy_line.count >= 6

A stop

(provisional)

(STOP)

right

A linked line

(STOP)

right

(STOP) (STOP)

rightright

§6.3 VOID REFERENCES 117

stating — as an example — that a line has at least six stations. But this is only
defined if fancy_line is attached. If you do not know for sure, you need a way to
state the condition that, in informal terms, holds if and only if

You know the solution (I hope the use of “and then” rang a bell): semistrict

operators are precisely designed for conditions of which one part makes sense
only if the other has value True (with and then), or False (with or else).

You may write the example condition correctly as

This ensures that the condition is always defined:

� If fancy_line is void, the result is False; the evaluation of the expression is
guaranteed not to use the second operand, which would cause an exception.

� If fancy_line is attached, the second operand is defined and will be
evaluated, yielding the result of the expression as a whole.

A variant of this pattern uses implies, which we have defined as a nonstrict
operator (along with and then and or else). A condition of the form

expresses a slightly different property:

implying “if it is not defined I don’t care, so it is fine too”: the condition should
yield True in that case, where the and then form yielded False. Such a pattern
is frequently useful in class invariants; it figured in the clause that we included
in our PERSON class:

This stated that if you are married your spouse’s spouse is yourself. But if you
are not married the condition should also yield True; otherwise unmarried
persons would violate the invariant, for no good reason. The implies operator
achieves this, since False implies True. Semistrictness guarantees that no
improper evaluation will occur in this case.

“fancy_line is defined, and then it has at least 6 stations”

(fancy_line /= Void) (fancy_line.count >= 6)

(fancy_line /= Void) (fancy_line.count >= 6)

“If fancy_line is defined, then it has at least 6 stations”

monogamy: (spouse /= Void) implies (spouse.spouse = Current)

← “Semistrict bool-
ean operators”, 5.3,
page 89.

and then

← “Semistrict impli-
cation”, page 94.

implies

← “Theorem: Impli-
cation Principle”,
page 84.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.4118

6.4 CREATING SIMPLE OBJECTS

I hope you have not lost track of our goal in this chapter, which is to create our
fancy_line as pictured at the very beginning, with three stations. We are almost
there, but first we need to create the objects representing the stops on the line.

These auxiliary objects will be instances of the class STOP just mentioned.
By the way, can you see why we need such a class?

The last figure gives a clue. A stop on a line is associated with a station, but it
is a different object because it represents the station as belonging to the line.

A query such as “What is the next station?” is not a feature of the station; it
is a feature of the station as belonging to the line. The reason is that, in the words
of our little requirements document, “Some stations belong to two or more lines;

they are called ‘exchanges’”. On the following figure, the next (right) station
for Gambetta (going as usual from South to North) depends on which of its two
lines you take.

A STOP object will be very simple. It contains a reference to a station, another
to the line to which the stop belongs, and a reference to the next object:

Quiz time!

The stops of a metro line are more than metro stations

To model a metro line, why do we need a new class STOP and not just
instances of the class STATION?

← “Touch of Paris:
Welcome to the
Metro”, page 52.

More than one

“next” station

A stop (final)

(STOP)
station

right (Void, or to other
STOP object)

(STATION)

(LINE)

line

§6.4 CREATING SIMPLE OBJECTS 119

It makes no sense to have a stop without a station and a line, so we will require
station and line always to be attached (non-void); the class invariant should state
this. The right reference may be void, to indicate that a stop is the last in its line.

We do not worry here with creating STATION objects, since the only ones
we need come to us predefined from TOURISM through features called
Station_X for the appropriate X : Station_Montrouge, Station_Issy and others. So
we will learn about creation by creating instances of STOP.

A first version of class STOP, called SIMPLE_STOP, has the following
interface (bring it up under EiffelStudio):

The query station yields the associated station and line yields the line to which
the stop belongs; the query right yields the next stop. Associated commands are
set_station_and_line to give the stop (in one sweep) both a station and line, and
link to link it to another stop on the same line. Such commands, having as their
main purpose to set the value of associated queries (although they may do
more), are called setters.

Here is how to create an instance of this class. Assume that (along with
fancy_line: LINE) we have declared

class SIMPLE_STOP feature

station: STATION
-- Station which this stop represents

right: SIMPLE_STOP

-- Next stop on same line.

set_station_and_line (s: STATION; l: LINE)
-- Associate this stop with s and l.

require

station_exists: s /= Void

line_exists: l /= Void

ensure

station_set: station = s

line_set: line = l

link (s: SIMPLE_STOP)
-- Make s the next stop on the line.

ensure

right_set: right = s

-- Missing invariant clauses: station /= Void and line /= Void; see discussion
end

stop1: SIMPLE_STOP

→ More in “Setters and
getters”, page 248.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.4120

Then in procedure build_a_line we may create a stop:

The remaining pseudocode has been refined into two parts: initially, create the line;
at the end, create more stops and link them.

The instruction create stop1 is a creation instruction. This is the basic
operation to produce objects at run time. Its effect is exactly as the keyword
create suggests: create an object, and attach the listed entity, here stop1, to that
new object. In pictures: starting from a state in which stop1 is void

executing create stop1 attaches it to an object created for this purpose:

The create instruction does not need to specify the type of object to be created,
since every entity such as stop1 is declared with a type; here the declaration was
stop1: SIMPLE_STOP. The type of the object to be created is the type declared
for the corresponding entity, here SIMPLE_STOP.

As a consequence of the earlier discussion, all reference fields of the new
object are set to Void. We can attach them to actual objects using the commands
set_station_and_line and link. This enables us to build all the stops of fancy_line

(the LINE object itself will follow). We declare the three stops:

Note the syntax enabling you to declare several entities of the same type
together, rather than writing a declaration for each. You will just separate the
entities by commas and write the type once after the colon.

build_a_line

-- Build an imaginary line and highlight it on the map.
do

Paris.display

-- “Create fancy_line”
Paris.put_line (fancy_line)

-- “Create more stops and finish building fancy_line”
fancy_line.highlight

end

stop1, stop2, stop3: SIMPLE_STOP

create stop1

Before creation

instruction
stop1

After creation

instruction

(SIMPLE_STOP) station

right

line

§6.4 CREATING SIMPLE OBJECTS 121

The numbers correspond to the order on our line:

This allows us to write the next version of build_a_line:

Note how pseudocode progressively shrinks as we add instructions — real code, not
“pseudo” — to realize its intent. In the end we must have removed all of it.

The two highlighted calls to link chain the first stop to the second and the second
to the third. The third stop is not chained to anything; its right reference, set to
void on creation, will remain void. This is what we want since it represents the
last stop on the line.

The calls to set_station_and_line must satisfy the precondition of this
feature, which requires its arguments to be attached:

� Station_Montrouge and other stations come from class TOURISM, which
indeed takes care of creating the necessary objects.

� fancy_line will be attached if the remaining pseudocode element does its
advertised job of creating an object. That element will be refined below into
another create instruction.

build_a_line

Station_Montrouge

Station_La_Motte

2

Three stops on
a line

Station_Issy

1

3

-- Build an imaginary line and highlight it on the map.
do

Paris.display

-- “Create fancy_line”
Paris.put_line (fancy_line)

-- Create the stops and associate each to its station:
create stop1

stop1.set_station_and_line (Station_Montrouge, fancy_line)
create stop2

stop2.set_station_and_line (Station_Issy, fancy_line)
create stop3

stop3.set_station_and_line (Station_Balard, fancy_line)
-- Link each applicable stop to the next:

stop1.link (stop2)
stop2.link (stop3)

fancy_line.highlight

end

← “Touch of Method-
ology: Precondition
Principle”, page 64.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.5122

6.5 CREATION PROCEDURES

Procedure build_a_line uses the simplest form of creation:

for stop of type SIMPLE_STOP. This does the job but deserves an improvement.
As the last version of the procedure indicates, the typical scheme for creating a
stop associated with a station existing_station is in fact

which requires calling a feature, immediately after the creation instruction, to
link the new object to a station and to a line. The object resulting from the first
instruction is useless because, as noted, it makes no sense to have a “stop”
object without an associated station and line. We would like to express this
through an invariant

but then the class becomes incorrect since every instance must satisfy the
invariant on creation, which will not be the case after a plain create in [2].

So we have two separate reasons leading us to merge the two instructions
above, the creation and the call to set_station_and_line, into one:

� A reason of convenience: with the class as it stands, any client needing to
create a stop must use both instructions; forgetting the second one will result
in incorrect software and run-time failures. It is a general rule of software
design that we should avoid producing elements that require specific
prescriptions for use — “When you do A, never forget to do B as well!” —
as it is all too easy for client programmers to miss the instructions. (Do you
always read the manuals of the devices you use?) Better provide an
operation that does everything, removing the need to learn a tricky interface.

� A reason of correctness: we would like to ensure that instances of the class,
straight from their creation, are consistent — here, have a station and line.

To address both concerns, we may declare the class with one or more creation

procedures. A creation procedure is a command that clients must call whenever
they create an instance of the class, ensuring that the instance is properly
initialized and, in particular, satisfies the invariant.

With a creation procedure, here set_station_and_line, and the stops now
declared as

create stop [2]

create stop [3]

stop.set_station_and_line (existing_station, existing_line)

invariant

station_exists: station /= Void

line_exists: line /= Void

← “Touch of Method-
ology: Class Invariant
Principle”, page 68.

§6.5 CREATION PROCEDURES 123

(rather than SIMPLE_STOP as before), the creation instruction as executed by
clients is no longer just create stop1 [2] but

which has the effect achieved earlier by two separate instructions [3]:

The only difference between STOP and its predecessor is that STOP has the
desired invariant station /= Void and declares set_station_and_line as a creation
procedure. Here is how the class interface will look; other than the class name,
only the highlighted parts have changed:

stop1, stop2, stop3: STOP

create stop1 [4]

class STOP

.set_station_and_line (Station_Montrouge, fancy_line)

After creation

instruction

using a creation

procedure

(STATION)
Station_

Montrouge

(STOP)
station

right

(LINE)

linefancy_
line

The class as it appears
in Traffic, under the
name TRAFFIC_
STOP per usual con-
ventions, has all these
features and a few
more which you will
see under EiffelStudio.

create

set_station_and_line

feature
station: STATION

-- Station which this stop represents.
right: STOP

-- Next stop on associated line.
set_station_and_line (s: STATION; l: LINE)

-- Associate this stop with s and l.
require

station_exists: s /= Void

line_exists: l /= Void
ensure

station_set: station = s

line_set: line = l

link (s: STOP)
-- Make s the next stop on associated line.

ensure
right_set: right = s

invariant

station_exists: station /= Void

line_exists: line /= Void

end

Same as before,

now also serves as
creation procedure

CREATING OBJECTS AND EXECUTING SYSTEMS §6.5124

At the top of the class interface we have a new clause

using again the keyword create, and listing one of the commands of the class,
set_station_and_line. This tells the client programmer that the class admits
set_station_and_line as a creation procedure. This clause lists one creation
procedure; it could also list none, or several (since there may be more than one
way to initialize a newly created object).

The consequence of including such a clause in the interface of the class is
that a client may no longer create an object using the basic form of the creation
instruction, create stop [2]; because the class specifies creation procedures, you
must use one of them, through form [4].

This rule enables the author of a class to force proper initialization of all
instances that clients will create. It is closely connected with the notion of
invariant: the requirement is that every object will satisfy, immediately after
creation, the desired invariant; in our example the invariant is

which is in turn ensured by the precondition of set_station_and_line. This is a
general principle:

“Non-trivial invariant” means any invariant other than True (which is usually
omitted) or any property that would be ensured by letting all the fields take the
default values ensured by the initialization rules (zero for numbers, False for
booleans, Void for references).

Even in the absence of a strong invariant, it may be useful to provide
creation procedures to enable clients to combine creation with initialization. A
class POINT describing points in a two-dimensional space may provide creation
procedures make_cartesian and make_polar, each with two arguments denoting
coordinates, enabling clients to create points identified by their cartesian or
polar coordinates.

In some cases — POINT is an example — you may want to allow both
forms, [2] and [4]. The technique then is to use

create

set_station_and_line

station_exists: station /= Void

line_exists: line /= Void

Touch of Methodology: Creation Principle

If a class has a non-trivial invariant, it must list one or more creation
procedures, whose purpose is to ensure that every instance, upon execution of
a creation instruction, will satisfy the invariant.

→ The class does
deserve an invariant;
see the exercise
“Invariant for points”,
6-E.3, page 138.

§6.5 CREATION PROCEDURES 125

where default_create is the name of a feature (inherited by all classes from a
common parent) with no arguments, which by default does nothing. To use this
procedure you would normally write

but this can be abbreviated into form [2], here

which the create clause makes valid along with the other two forms

The general abbreviation rule is that:

� If a class has no create clause, it is as if it had one of the form
create

default_create
listing default_create as the single creation procedure.

� Correspondingly, a creation instruction of the simplified form [2], create x
with no creation procedure, is an abbreviation for the explicit form

create x.default_create.
So conceptually you may always consider that a creation procedure is involved.

To complete build_a_line, we only need to refine the last remaining
pseudocode line: -- “Create fancy_line”. It is just another creation instruction:

using make_metro, one of the creation procedures of class LINE, which creates
the line as a metro line (rather than a bus line, a tram line etc.), taking as
argument the name of the line, a string.

Since all this is available as part of the predefined examples, it is a good idea
to go and read its final form:

class POINT create
, make_cartesian, make_polar

feature
...

end

create your_point.default_create

create your_point

create your_point.make_cartesian (x, y)
create your_point.make_polar (r, t)

create fancy_line.make_metro ("FANCY")

Program reading time!
Creating and initializing a line

Look up the text of build_a_line in class LINE_BUILDING and make sure you
understand all that it does.

default_create

→ The common parent
is the library class
ANY, as we will see in
“Overall inheritance
structure”, 16.10,
page 586.

← In the latest version,
page 121.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.6126

As a consequence of the preceding discussion, it is easy to remember what you
must do to create an object:

6.6 CORRECTNESS OF A CREATION INSTRUCTION

For every instruction that we study, we must know precisely, in line with the
principles of Design by Contract sketched in earlier chapters:

� How to use the instruction correctly: its precondition.

� What we are getting in return: its postcondition.

In addition, classes (and, as we will see, loops) have invariants describing
properties that some operations will maintain.

Together, these contract properties define the correctness of any
programming mechanism.

Here is the rule for the creation mechanism:

The form without a creation procedure, create x, trivially satisfies clauses 1 and
3 since there is no applicable precondition or postcondition.

Creating an instance of a class

� If the class has no create clause, use the basic form, create x [2].
� If the class has a create clause listing one or more creation procedures, use

create x.make (...) -- [4]

where make is one of the creation procedures, and “(...)” stands for
appropriate arguments for make, if any; there must be the right number of
arguments, with the right types, satisfying the precondition of make if any.

Touch of Methodology:

Creation Instruction Correctness Rule

For a creation instruction to be correct, the following property (precondition)
must hold before any execution of the instruction:
1 The precondition of its creation procedure.
The following properties (postconditions) will hold after a creation instruction
with target x of type C:
2 x /= Void.
3 The postcondition of the creation procedure, if any.
4 The invariant of C, as applied to the object attached to x.

§6.6 CORRECTNESS OF A CREATION INSTRUCTION 127

The precondition rule (clause 1) does not require x to be void. It is indeed
not a mistake to create two objects successively for the same target x:

even though this specific example is wasteful since the object created by the first
instruction will be forgotten immediately afterwards:

The second creation instruction reattaches the reference x to the second object,
so that the first object is now useless. (We will see shortly what happens to such
orphaned objects.)

Although two successive creation instructions of the exact form shown
make no sense, variants of this scheme can be useful. For example there could
be other instructions between the two create x, doing something interesting with
the first object. Or if a creation procedure is involved, as in create x.make (...),
it may record the first object somewhere.

Clauses 2 to 4 define the effect of executing a creation instruction:

� Whether or not x was void before the creation instruction, it will not be void
afterwards (clause 2) since the instruction attaches it to an object.

� If there is a creation procedure, its postcondition will hold for the newly
created object (clause 3).

� In addition, that object will satisfy the class invariant (clause 4). Already
stated in the Invariant Principle, this requirement is essential for any
creation instruction: it ensures that any object, when it starts out in life,
satisfies the consistency condition that its class imposes on all instances, as
expressed by the invariant.

If the default initializations do not establish the invariant, it is then the duty of
creation procedures to correct the situation by producing an initial state that
satisfies that invariant.

create x

-- Here as a result x is not void (see clause 2)
create x

Creating two

objects in a rowx First created object

Second created object

← “Touch of Method-
ology: Class Invariant
Principle”, page 68.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.7128

6.7 MEMORY MANAGEMENT AND GARBAGE COLLECTION

In the situation pictured in the last figure, a reference that was attached to an
object (the “First created object”) gets reattached to another. What, you may
wonder, happens to the first object? While the particular example (two
successive create x for the same x) was unrealistic, useful reference
reattachments are common and may raise the same question; in a while we will
study reference assignments such as x := y, whose effect we may picture as:

The instruction reattaches x to the object to which y is attached. What happens
to “Object 1”? More generally, we must ask ourselves, to complement this
chapter’s discussion of how to create objects, whether and how objects can ever
be deleted.

Since there could be other references attached to “First created object” or
“Object 1”, the question of real interest is: when a reference to an object is
removed, as in these examples, what happens to the object if there remains no

other reference attached to it? There is no trivial answer since finding out whether
some other object retains a reference to a given object, such as “Object 1” in the
above figure, requires a deep understanding of the entire program and its possible
executions. Three approaches are possible: casual; manual; automatic.

The casual approach simply ignores the problem, letting unused objects
linger. It can cause memory waste to grow uncontrolled. Such memory leaks are
unacceptable for continuously running systems such as those on embedded
devices — a memory leak on your cell phone would eventually bring it to a halt
— and, more generally, any system which creates and forgets many objects. The
casual approach is inadequate for any non-trivial application.

The manual approach provides programmers with explicit facilities to
return objects to the operating system. A C++ programmer may, for example,
precede the reattachment of x (through create x or x := y) with the routine call
free (x), which signals that the object attached to x is no longer needed so that
the operating system can reuse its memory area for any future object creation.

The automatic approach frees programmers from free by entrusting a
mechanism, the garbage collector (“GC” for short), with the responsibility of
reclaiming unreachable objects. The GC runs as part of your program; more

→ Chapter 9.

Reference

reattachmentx Object 1

Object 2y

§6.7 MEMORY MANAGEMENT AND GARBAGE COLLECTION 129

specifically it is part of the run-time system, a set of mechanisms supporting the
execution of programs. Think of the program as a parade that goes around town,
horses and all, and of the GC as the cleanup brigade that respectfully and
efficiently follows the same route, a few hundred meters behind.

C++ implementations, as noted, generally rely on the manual approach
(because of problems with the language’s type system), but other modern
programming languages generally use the automatic model, relying on
sophisticated garbage collectors. This is the case with Eiffel but also with Java
and with .NET languages such as C#. There are two main reasons for the
dominance of this approach:

� Convenience: putting programmers in control of free operations
considerably complicates the program, forcing it to perform extensive
bookkeeping to determine whether objects are still referenced. With the
automatic approach this is the task of a universal program, the garbage
collector, available as part of the language implementation.

� Correctness: because the bookkeeping is delicate, the manual approach is a
source of nasty bugs, resulting from wrongly applying a free to an object
even though some reference is still attached to it; if execution of some other
part of the program later tries to follow that reference, it will cause incorrect
and usually fatal behavior, typically a crash. With a general-purpose
garbage collector, the matter is treated professionally and efficiently, not for
one particular program but for all programs.

The only serious argument against garbage collection is the possible
performance overhead. More precisely, since reclaiming objects would cost
some time anyway (except in the unrealistic “casual” approach), the concern is
that a GC will interrupt execution, causing bursts in response time. Today’s GC
technology is, however, sophisticated; good GCs are incremental, meaning that
instead of stopping execution for a full collection cycle (like the cleaners
stopping the parade to sweep the streets) they collect some of the garbage some

of the time. The resulting interruptions are invisible in most applications. The
only ones that still justify concerns about garbage collection are “hard real-time”
systems, such as those embedded in transportation or military devices, which
require guaranteed response times a the millisecond level of faster. Such
systems, however, must also renounce many of the other benefits of modern
environments, such as dynamic object creation and even virtual memory.

In ordinary environments where you rely on garbage collection, its
availability is not an excuse to ignore memory performance; you can still cause
leaks and fill up memory through inconsiderate usage, or by forgetting to reset
references. The data structure and algorithm techniques of subsequent chapters
help you avoid this pitfall.

→ “The runtime”,
page 339.

→ “Virtual memory”,
page 288.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.8130

6.8 SYSTEM EXECUTION

A final consequence of the creation mechanism is that we can now find out what
the process is for executing a system (an entire program).

Starting it all

With object creation, execution is in fact a simple concept:

The reason this suffices is that the root creation procedure (also called root

procedure for short) may perform any actions that you have specified; in
general it will itself create new objects and call other features, which may in turn
do the same and so on. So you may think of your system — a collection of
classes — as a set of balls on a billiards table; the creation procedures kicks the
first ball, which will hit other balls that in turn will kick more.

What is special about our billiards tables (our systems) is that a ball, when
kicked, can create new balls to be kicked, and that we may end up in a single
execution with millions of balls rather than a dozen or so.

The root class, the system and the design process

The root class and root procedure are there to start a process that relies on
mechanisms found in the classes of the system and their features. It is important
to think of these classes as interesting on their own, independently of any
particular system and of its choice of root class and root procedure. As we have
repeatedly seen, the classes are machines, each with its own role. A system is a

Definitions:
System execution, root object, root class,

root creation procedure

Executing a system consists of creating an instance — the root object — of a
designated class from the system, called its root class, using a designated
creation procedure of that class, called its root creation procedure.

System

execution as a

pool game

§6.8 SYSTEM EXECUTION 131

particular assembly of such machines, where we have chosen one of them to start
execution. But the classes exist beyond that system; a class may, for example
appear in several systems, combined in each case with different other classes.

A class that provides features of general interest, enabling it to appear in many
different systems, is said to be reusable; classes designed for reusability will be
grouped into libraries. Even when designing specific applications rather than
libraries, you should always strive to make your classes as reusable as possible,
since the potential always exists that you will again run into a similar need.

In older views of software engineering, a program was conceived as a
monolithic construction consisting of a “main program” divided into
“subprograms”. This approach made it difficult to reuse some of the elements
for new purposes, since they had all been produced as part of the fulfillment of
one specific overall goal; it also hampered efforts to change the program if that
particular goal changed, as it often does in practice.

More modern techniques of software architecture, based on the
object-oriented ideas that we use in this book, fight these deficiencies by
dividing the software into classes (a more general concept than subprogram) and
encouraging the designer to give proper attention to each individual class,
making it as complete and useful as possible.

To obtain an actual system that handles a certain computer application, you
must select and combine a number of classes, then devise a root class and root
procedure to kick off the execution process. In this role the root procedure
resembles the traditional main program. The difference is methodological:
unlike a main program, the root class and root procedure are not a fundamental
element of the system’s design; they are just a particular way to start off a
particular execution process based on a set of classes that you have decided to
combine in a particular way. The set of classes remains the center of attention.

These observations reflect some of the key concerns of professional
software engineering (as opposed to amateur programming): extendibility, the
ease with which it will be possible to adapt a system when user needs change
over time; and reusability, the ease of reusing existing software for the needs of
new applications.

Specifying the root

After this short foray into design principles, we come back to more mundane
issues. One immediate question is how you will specify the root class and root
creation procedure of a system.

The development environment — EiffelStudio — is there to let you define
such properties of a system. They are just part of the “Project Settings” of a
system, which you can access through the File → Project Settings menu. A
section of the EiffelStudio appendix gives the details.

→ “Specifying a root
class and creation pro-
cedure”, E.4, page 845

CREATING OBJECTS AND EXECUTING SYSTEMS §6.8132

The current object and general relativity

The perspective we have now gained on system execution enables us to
understand a fundamental property of the object-oriented form of computation,
which it might be tempting to call general relativity if the phrase had not already
been preempted, a while ago, by an ETH graduate. The question is very basic:
when you see a name in a class, for example the attribute name station in class
SIMPLE_STOP, what does it really mean?

In principle we know, if only through the declaration and header comment:

But what stop is “this stop”? In an instruction using the attribute, such as
station.set_name ("Louvre"), of which station are we changing the name?

The answer can only be relative. The attribute refers to the current object at
applicable times during execution. We have already encountered this concept
informally; here is a precise definition:

So if you follow the execution of a system: the root object gets created; after
possibly some other operations, in particular to create objects, it may perform a
call using as its target one of these objects, which becomes current; it may again
perform a call on another target, which will become current; and so on.
Whenever a call terminates the previous current object resumes its role.

station: STATION

-- Station which this stop represents.

Definition: Current object

At any time during the execution of a system, there is a current object
determined as follows:
1 The root object is, at the start of execution, the first current object.
2 At the start of a qualified call x.f (…), where x denotes an object, that

object becomes the new current object.
3 When such a call terminates, the previous current object becomes

current again.
4 No other operation causes a change of current object.
To denote the current object, you may use the reserved word Current.

← Current appeared
in “Not every declara-
tion should create an
object”, page 114

“Qualified” calls are
the only kind we have
seen so far. See the fol-
lowing definition.

§6.8 SYSTEM EXECUTION 133

This answers the question of what a feature name means when it appears in an
instruction or expression (other than after a dot, as f in x.f (…)): it denotes the

feature applied to the current object.

In class SIMPLE_STOP, any use of station — such as Console.show

(station.name) to display the name of a stop’s station — denotes the “station”
field of the current SIMPLE_STOP object; this also explains “this” in header
comments, as in “Station which this stop represents”.

This convention is central to the object-oriented style of programming. A
class describes the properties and behavior of a certain category of objects. It
achieves this goal by describing the properties and behavior of a typical
representative of the category: the current object.

These observations lead us to generalize the notion of call. We know that an
instruction or expression with a period, such as

is a feature call, applied, like all calls, to a target object: the object denoted by
Console in the first example and station in the second. But what about the status
of Console and station themselves? They are calls too, with a target that is the
current object. In fact you might also write them as

where, as noted above, Current denotes the current object. You do not need,
however, to use this qualified form in such cases; the unqualified forms Console

and station have the same meaning. The definitions are as follows:

Console.show (station.name) -- An instruction
station.name -- An expression

Current.Console

Current.station

Scheme for

system

execution

CREATING OBJECTS AND EXECUTING SYSTEMS §6.8134

It is important to realize here that many expressions of whose status you may
not have been quite sure until now are actually calls — unqualified. Examples
as diverse (in the discussions so far) as uses of

belong to this category. When the invariant of LINE stated

it meant that the south end of the current metro line is the same as the first station
of that same line.

In the above definition of “current object”, case 4 tells us that operations
other than qualified calls and returns do not change the current object. This is
true of unqualified calls: while x.f (args) makes the object attached to x the new
current object for the duration of the call, the unqualified form f (args) does not
cause a change of current object. This is consistent with the above observation
that you may also write it Current.f (args).

The ubiquity of calls: operator aliases

The preceding observations show how fundamental and ubiquitous calls are in
our programs. Along with qualified calls in dot notation, which clearly stand out
as calls, simple notations like Console or Paris are calls too, unqualified.

Calls are actually present in even more deceptive guises and disguises.
Take, for example, an innocuous-looking arithmetic expression, like a + b.
Certainly (you might think) this cannot be a call! Those object-oriented folks do
not respect anything, but there has to be limits; some things are sacred.

They are not. The notation a + b is, formally, just special syntax — in
programming language jargon, “syntactic sugar” — for a qualified call a.plus (b).

The convention is simple. In the classes representing basic numerical types
— bring up for example class INTEGER_32 under EiffelStudio — you can see
that features such as addition are declared in the following style:

Definitions: Qualified and unqualified call

A feature call is qualified if it explicitly lists the target object, for example
with dot notation, as in x.f (args).
A call is unqualified if it does not list its target, which is then taken to be the
current object, as in f (args).

Paris, Louvre, Line8 -- In our original class PREVIEW (chapter 2)
south_end, north_end, i_th -- In the invariant of LINE (chapter 4)
fancy_line -- In the present chapter

south_end = i_th (1)

← “Class invariants”,
page 67.

← Page 132.

§6.8 SYSTEM EXECUTION 135

The alias specification provides the necessary syntactic sugar by allowing the
form a + b, known as infix notation, as a synonym for a.plus (b), the usual
object-oriented dot notation.

This is by no means restricted to integers and other classes describing basic
types; you can add an alias clause to the declaration of:
� Any query with one argument, such as plus, allowing calls in infix notation

(so named because the operator comes in-between the two operands).
� Any query with no argument, such as unary_minus alias "–", allowing calls

in prefix notation, such as – a as a synonym for a.unary_minus.
It is permitted for the same operator to appear in aliases for both binary and
unary operators; this is indeed the case for "–", which is also an alias for the
binary query minus so that you may write a – b for a.minus (b).

The operators that you can use for an alias are not limited to the usual
arithmetic (+, –, ∗, / etc.), boolean (and etc.) and relational (<, <= etc.)
operators, but may be multi-character sequences not involving letters, digits and
underscores and not conflicting with predefined language elements. This
mechanism is particularly useful if you are writing classes representing
mathematical or scientific concepts, and want to provide operator notations
familiar to experts in the relevant field.

In a later chapter we will see another example of how object-oriented
mechanisms swallow traditional notations, sweetened by syntactic sugar:
bracket notation to express access to an element of a structure in an array or
dictionary (hash table), as in your_matrix [i, j] or phone_book_entry ["Jane"],
as just an abbreviation for query calls: your_matrix.item (i, j), and similarly
phone_book_entry.item ("Jane"). It suffices for this purpose to declare the
feature, called item in both of these examples, with the “bracket alias”, similar
to operator aliases: item alias "[]".

Object-oriented programming is relative programming

The “general relativity” nature of object-oriented programming can make you a
bit dizzy at first — maybe it did until the preceding explanations — since it
prevents you from understanding program elements entirely by themselves: you
must interpret them in terms of the enclosing class.

I hope that by now you understand both the big picture and its influence on
the writing of individual classes. They result from the modularity of the
approach: its rejection of monolithic, all-in-one program architectures in favor
of highly decentralized systems made of components to be developed
autonomously and combined in many different ways.

plus (other: INTEGER_32): INTEGER_32

… Rest of declaration …
alias "+"

→ “Bracket notation
and assigner com-
mands”, page 384.

← Page 132.← Page 132.

CREATING OBJECTS AND EXECUTING SYSTEMS §6.9136

6.9 APPENDIX: GETTING RID OF VOID CALLS

This is supplementary material, describing recent developments in the process of
being deployed at the time of publication.

The “plague” of void calls, discussed in this chapter, is not inevitable. Recent
evolution of programming languages, notably Spec# (from Microsoft Research)
and Eiffel, are in the process of relegating this problem to the past.

The ISO-standard version of Eiffel is indeed void-safe; this means that a
compiler can guarantee that no system it accepts can produce any void call in
any of its executions. Because the implementation is still very recent at the time
of writing, we are not using void-safe Eiffel in this book. Here are a few
elementary notions about the void-safe variant in case you are curious.

In ISO-standard Eiffel a type declared in the normal way, say CITY, is called
an attached type and guaranteed to prevent void references. With the declaration
c: CITY, the reference denoted by c will, by construction, always be attached at
run time. A type only allows void references if it is used with the detachable

keyword, as in s: STOP.
Both examples are representative:

� Types representing objects from the application domain
usually should be attached and hence exclude void: there
is no such thing as a void city.

� Types representing linked data structures generally must
support void values. Here we wanted to chain STOP

instances to make up a line, where the last stop is chained
to void.

Guaranteeing the absence of void calls relies on two complementary techniques:
� If an entity x is of an attached type, it must have an associated initialization

mechanism — not Void, the default initialization cited for references earlier
in this chapter — so that before its first use in a call x.f (…) it will have been
attached to an object.

� If x is of a detachable type, any call x.f (…) must occur in a context where
x is guaranteed to be non-void, for example if x /= Void then x.f (…) end.
There are only a small number of such recognized safe possibilities,
described in the language standard and known as Certified Attachment
Patterns or CAPs.

The design of this mechanism favors both compatibility and safety: the compiler
will in many cases accept ordinary code — especially older code — as it is,
except for the addition of detachable where a type should support void values;
when it does reject code, this generally reflects a real problem: the code did
carry a risk of void call at run time. In such cases, removing the problem means
correcting a bug, not just causing a nuisance for the programmer.

detachable

A linked line

(From original figure on page 116.)

(STOP)

right

(STOP) (STOP)

rightright

§6.10 KEY CONCEPTS LEARNED IN THIS CHAPTER 137

6.10 KEY CONCEPTS LEARNED IN THIS CHAPTER

� A reference is either attached to an object, or void.

� A feature call on an entity, such as x.f (...), will only execute properly if the
value of x is attached to an object.

� Every reference is initially void, and remains void in the absence of any
operation such as creation that explicitly attaches it to an object.

� Void references serve to indicate missing information, and to terminate
linked structures.

� A creation instruction of target x creates a new object and attaches x to it.

� The form of the creation instruction is create x, or — using a creation
procedure p specified in the class — create x. p (arguments).

� Prior to the execution of a creation procedure if any, the fields of a newly
created object are initialized to standard default values, including zero for
numbers and void for references.

� A creation instruction must ensure the invariant of the corresponding class.
If the default initializations do not achieve this, the instruction must use a
creation procedure that corrects the problem.

� Executing a system consists of creating an instance of a specified “root”
class, with an associated root creation procedure.

� At any time of execution there is a current object: the object on which the
routine last started operates.

� Calls can be qualified, applied to a target named explicitly, or unqualified,
applied to the current object.

� Every unqualified mention of a feature must be understood (“general
relativity” principle of O-O programming) as applying to an implicit object
— the current object, a typical representative of the class.

� Calls cover many traditional operations, some of which do not need to use dot
notation. Operator expressions, in particular, are special cases of calls, with an
infix or prefix notation, achieved by giving features an “operator alias”.

� New “void-safety” mechanisms make it possible, through static checks
performed by the compiler, to guarantee the absence of void calls at run time.

CREATING OBJECTS AND EXECUTING SYSTEMS §6-E138

New vocabulary

6-E EXERCISES

6-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

6-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

6-E.3 Invariant for points

Consider a class POINT with queries x and y representing cartesian coordinates,
ro and theta representing polar coordinates. Write the part of the invariant
involving these queries. You may assume exact arithmetic, and the availability
of appropriate mathematical functions (such as trigonometry functions).

6-E.4 Current and Void

Can Current have the value Void?

6-E.5 Attached and detachable

The appendix to this chapter describes the new void-safety mechanism based on
defining every type as either attached or detachable. Examine the example
classes of this chapter (and chapters 2 to 4) and state whether they should in your
view be used as always attached, always detachable, or either variant depending
on the context.

Alias Attached Creation procedure

Current object Detachable Entity

Exception Extendibility Failure

Library Main program Operator alias

Pseudocode Qualified call Reference

Reusable Reusability Root class

Root creation procedure (= Root procedure) Root_object

Unqualified call Void reference Void-safe

← Exercise “Concept
map”, 4-E.2, page 69.

← “Appendix: getting
rid of void calls”, 6.9,
page 136.

7

Control structures

We by now have a first grasp of the data structure of program executions, made
of objects connected by references. It is time to look at the control structure,
which determines the order in which an execution will apply instructions to
these objects.

7.1 PROBLEM-SOLVING STRUCTURES

You may have heard this satire of the reasoning skills supposedly taught
to engineers:

As a water-boiling technique it may not be the most efficient, but it provides an
example of combining some of the fundamental control structures:

� The conditional: “if this condition holds then do this, else do that”.

� The sequence: “do this and then do that”.

� The routine, which enables us to name a previously identified
problem-solving technique (possibly parameterized), and reuse it in any
applicable context.

Remembering the discussion of contracts in earlier chapters, we also note that
the throwback to case 1 in case 2 is only possible — as explicitly mentioned in
the phrasing of case 2 — because the first step of case 2 guarantees the
precondition of case 1 (water is cold). Preconditions and other contract
techniques will indeed play a large role in getting our control structures right.

How to boil a pot of water

1 If the water is cold: put the pot on the fire, and wait until it boils.
2 If the water is hot: wait until it cools down. Then — as the appropriate

condition is now met — apply case 1.

CONTROL STRUCTURES §7.1140

In its own light-hearted way, this example sets the proper context for our study
of control structures: they are problem-solving techniques. To program is to
solve a problem; each kind of control structure reflects a particular strategy for
finding a solution to a problem.

The problem will always be expressed as: starting from known properties
K, reach a certain goal G. In the example, K is the property that we have a pot of
water and G that the water in the pot is boiling. The “strategies” provided by
control structures are ways of reducing the problem to easier problems of that
kind. For example:

� You may apply the sequence control structure if you find an intermediate
goal I such that both of the following new problems are easier than the
original (achieving G directly from K): achieve I from K; achieve G from I.
Given a solution to the first new problem and a solution to the second one,
the sequence control structure will apply them one after the other.

� The conditional control structure is the strategy of partitioning the set of
possible initial situations, K, into two or more disjoint domains, so that it is
easier to solve the problem separately on each of these domains.

� The loop structure, of which we have yet to see an example, is the strategy
of solving the problem on a subset (possibly trivial) of its domain and
extending the solution repeatedly until it covers the whole domain.

� The routine control structure is the strategy of solving a problem by
recognizing that it matches another problem — often of a more general
nature — to which you already know a solution.

The recursion technique, important enough to occupy a chapter of its own, is
applicable if you demonstrate that you can derive a solution by assuming a solution
to the same problem applied to one or more smaller data structures.

Since programming is about solving problems, it will be particularly useful to
study these and other control structures in this light.

For each of the control structures we will successively explore:

� The general idea, through examples.

� The syntax of the corresponding language construct.

� Its semantics: the run-time effect, in this case how the control structure
governs the order of execution of the instructions it contains.

� Correctness rules based on Design by Contract principles, ensuring that
the semantics is what we want — that executing the control structure
produces a meaningful result rather than a program crash or some other
unpleasant consequence.

→ Routines are the topic
of the next chapter.

→ Chapter 14.

§7.2 THE NOTION OF ALGORITHM 141

7.2 THE NOTION OF ALGORITHM

Control structures take care of scheduling the operations in the processes carried
out by computers. Such processes are called algorithms; this is one of the
fundamental concepts of computing science. You may have seen the term
already, even in the popular press which nowadays discusses things like
“cryptographic algorithms” in reporting security issues. For the study of control
structures we need a precise understanding of the concept.

Example

In general terms an algorithm is a description of a computational process,
sufficient to enable a machine — for our interests, a computer — to carry out
the process on any input data without further instructions.

You already know many algorithms. To add two integers, as in

you apply the following rules (probably without thinking of them explicitly):

 687
+ 42

= 729

Touch of Elementary Math:
Adding two decimal numbers

The process consists of a number of steps, each working on a position in the
numbers. The position for the first step is the position of the rightmost digit of
both numbers; for every subsequent step, it is the position immediately to the
left of the previous one.
At every step, there is a carry. The initial carry is 0.
At every step, let m be the digit from the first number at the step’s position and
n the corresponding digit from the second number, with the convention that if
either number has no digit at that position the corresponding value (m or n) is 0.
At every step, the process performs the following:
1 Compute s as the sum of three values: m, n and the carry.
2 If s is less than 10, write s at the step’s position in the result line, and let

the carry for the next step be 0.

CONTROL STRUCTURES §7.2142

Operation 3 relies on an assumption: “s cannot be more than 19”. Without it, the
process would not make sense, since we want to write single digits. To guarantee the
correctness of the algorithm, we have to prove that the property holds at every step.
Indeed, m and n are at most 9 each, so their sum is at most 18; at the first step the
carry is 0, and at every following step it can only (as a result of that same operation
3) be either 0 or 1, so its sum with m and n will at most be 19. This is an example of
an invariant property, a concept that we will study in more detail with loops.

Precision and explicitness: algorithms vs recipes

Although less precise than the standard for publishing algorithms, the preceding
specification is more punctilious than most of the prescriptions we are used to
following — with, it must be said, varying degrees of success — in ordinary life.
Here is for example a trilingual set of directions on a bag of (excellent)
ready-to-cook minestrone:

3 If s is 10 or more, write s – 10 (which is a single digit, as s cannot be more
than 19) at the step’s position in the result line, and let the carry for the
next step be 1.

The process stops when there are no digits at the step’s position on either line
and the carry is 0.

→ “Including the
invariant”, page 158.

Not an algorithm
(see English

translation in

text)

Credits: page 847.

§7.2 THE NOTION OF ALGORITHM 143

In German and French the instructions state: “Pour the frozen vegetables into

one liter of cold water, add two tablespoonfuls of oil and salt”. What’s striking
is not so much the lack of precision (“tablespoonful” can be given an exact
conventional value, and anyway the idea of using such a general term is that it
does not matter too much whether you take a slightly bigger or smaller
tablespoon) as the absence of the key instruction: if you want to get an edible
result, you’d better heat the thing up at some point. Only the Italian version
mentions this detail — “cook according to the times given” — which makes the
pictures meaningful.

For such instructions intended for human interpretation, lack of explicitness
is not an issue; it will be immediately clear to most readers that they cannot
prepare such food without heating it, and that the pictures indicate cooking
times (even I succeeded!). But what works for a cooking recipe would not
suffice for an algorithm. You must specify every operation, every detail of the
process; and you must specify them in a form that leaves no room for ambiguity.

Properties of an algorithm

For algorithms, as opposed to informal recipes, we expect a number of
properties captured by the following definition:

The above method for adding two numbers possesses the required properties:

Definition: Algorithm

An algorithm is the specification of a process acting on a (possibly empty) set
of data, satisfying the following five rules:
A1 The specification defines the applicable sets of data.
A2 The specification defines a set of elementary actions, from which all steps

of the process are drawn.
A3 The specification defines the possible order or orders in which the process

may carry out these steps.
A4 The specification of the elementary actions (rule A2) and of the permitted

orderings (rule A3) relies on precisely defined conventions, allowing the
process to be carried out by an automaton (such as a computer) without
human intervention, with results for the same set of data guaranteed to be
the same on two different automata following the same conventions.

A5 For any set of data to which the process is applicable (as per rule A1), the
process is guaranteed to terminate after executing a finite number of the
algorithm’s steps.

CONTROL STRUCTURES §7.2144

A1 It describes a process to be applied to some data, and specifies the kind of
data: two integers expressed in decimal notation.

A2 The process relies on well-defined basic actions: set a value to zero or to a
known number, add three numbers, compare a number to 10.

A3 The description specifies in what order to apply such actions.

A4 It is precise. That precision should be enough for any two people to
understand and apply the algorithm in the same way, although, as noted, it
may not suffice for other goals.

A5 For any applicable data — two numbers in decimal notation — the process
will terminate after a finite number of steps. This is intuitively clear but
must be ascertained rigorously; we will see how to do this by showing that
the quantity M – step + 1 is a variant.

Rule A3 of the definition mentions the possible “order or orders” of the steps.
A sequential and deterministic algorithm defines a single order of steps for any
possible execution. This is not the only possibility:

� Non-deterministic algorithms specify for certain steps a set of actions of
which one will be executed, but do not specify which; a probabilistic

algorithm, as a special case, defines a random strategy for these choices.

� Concurrent algorithms specify for certain steps a set of actions to be
executed in parallel, as appropriate for networks and multicore computers.

In this book we need only consider sequential, deterministic algorithms.

Algorithms vs programs

You may wonder, in light of the preceding definition, what distinguishes an
algorithm from a program. The basic concept is indeed the same.

It is sometimes said that the difference is the abstraction level: that a
program is meant to execute on a particular machine, whereas an algorithm is
an abstract definition of a computing process, independent of any computing
devices. This made sense a few decades ago, when programs were expressed in
low-level codes for specific computers. Algorithms then served to express the
essence of programs: the computing process described independently of any
computer. But that view is no longer applicable today:

� To express programs, we can use clear, high-level notations, defined at a
level of abstraction far above the details of any particular computer. The
Eiffel notation used in this book is an example.

� To express an algorithm in a way that fully meets the definition’s
requirements, in particular the requirement of precision — condition A4 —,
we will need a notation with rigorously defined syntax and semantics,
making it in the end equivalent to a programming language.

→ “Loop termination
and the halting prob-
lem”, page 161.

§7.2 THE NOTION OF ALGORITHM 145

It is true that practical descriptions of algorithms often refrain from specifying
some details, such as choices of data structures, which a program cannot omit
since it wouldn’t then compile and execute. This practice does seem to suggest
that algorithms are more abstract than programs. But it is only a useful
convention to facilitate publication; for that purpose, it renounces some of the
precision that true algorithms require (condition A4 again), and every reader of
the description understands that to get an algorithm in the official sense one
would need to bring the missing details back in.

So we cannot rely on the level of abstraction to distinguish algorithms from
programs. Two differences — or nuances — are more significant:

� An algorithm describes a single computing process. Decades ago this was
also the goal of a typical program — “Compute the monthly payroll!” — but
programs today involve lots of algorithms. We have already seen several in
the Traffic system (display a line, animate a line, display a route…) and
there are hundreds more. The same observation would apply to any
significant software product. It is the reason why this book tends to use,
rather than “program” (which may still suggest the idea of doing just one
task), the word system.

� As important to a program as the description of the processing steps is the
description of the data structure — in the object-oriented approach of this
book, the object structure — to which they apply. This criterion is not
absolute either, since you cannot really separate the algorithmic steps from
the structure they manipulate. But in describing programming concepts we
may sometimes want to emphasize the processing aspect — the algorithm
in a narrow sense of the term — and sometimes the data aspect. This
explains the title of a classic programming book by Niklaus Wirth
(published in 1976):

Algorithms + Data Structures = Programs.

The object-oriented approach to software construction gives the central role
to the data, more specifically to the object types: the classes. Every algorithm
is then attached to a particular class. Eiffel applies this rule without exception:
every algorithm that you write will appear as a feature of some class. This
approach is justified by considerations of software quality that we will explore
in later chapters. It implies, for this book, that we will study the algorithm and
data aspects in close connection.

Control structures, as reviewed in this chapter, are one example of an
algorithmic concept not directly related to a particular kind of data structure.

 Wirth (2005)

CONTROL STRUCTURES §7.3146

7.3 CONTROL STRUCTURE BASICS

The specification of an algorithm must include items of two kinds:

� The elementary steps to execute (clause A2 of the definition of “algorithm”).

� The order of their execution (clause A3).

Control structures handle the second of these needs. Precisely:

There are, as previewed, three fundamental forms of control structure:

� The sequence, consisting of instructions listed in a certain order; its
execution consists of executing these instructions in the same order.
It is the control structure we have been using implicitly in all the examples so far,
since we have been writing instructions under the assumption that they would be
executed in the order given.

� The loop, containing a sequence of instructions to be executed repeatedly.

� The conditional, consisting of a condition and two sequences of
instructions; its execution consists of executing one or the other of these
sequences depending on whether the condition — a boolean expression —
evaluates to True or False. It can be generalized to a choice between more
than two possibilities.

These are mechanisms for scheduling the execution of our programs’
instructions, taking advantage of three fundamental capabilities of computers:

� Executing all of a set of specified actions, in a specified order.

� Executing a single specified action, or some variants of it, many times.

� Executing one of a set of specified actions, depending on a specified condition.

Such control structures assume that the program’s execution will be doing at
most one thing at a time. With several computers, or a single computer sharing
its time between different programs, you can have parallel (or concurrent)
execution, leading to new control structures that we will not study here.

Our basic control structures can be combined without restriction, so that you
may for example write a conditional involving two sequences of instructions,
some of which are in turn loops or conditionals, themselves involving further
substructures. Such a description of a computing process, consisting of
instructions grouped into control structures describing their run-time
scheduling, constitutes an algorithm.

Definitions: Control flow, control structure

The scheduling of a program’s operations during execution is called its
control flow.
A control structure is a program construct affecting the control flow.

← Page 143.

Or “flow of control”.

§7.4 SEQUENCE (COMPOUND INSTRUCTION) 147

These notions are the subject of the following sections. In addition we will
review two other forms of control structuring:

� The branching instruction, also known as goto (“Go to” written as one
word), which has fallen from grace as a tool for programmers — we will see
why — but still plays a role in computer instruction codes.

� Exception handling, providing ways to recover from abnormal run-time
events (such as a void call) that interrupt the usual flow of control.

When you have defined an algorithm, you will often want to wrap it into a
program unit with a name, which you can then use through that name. Such a
grouping is known as a routine, a fundamental form of program structuring,
achieving on the control side what classes give us on the data side. Routines
enable you in effect to add new control structures to the available repertoire, by
abstracting particular combinations of existing structures. They are the topic of
the next chapter.

7.4 SEQUENCE (COMPOUND INSTRUCTION)

The sequence control structure applies a problem-solving pattern familiar to
everyone: identify one or more intermediate goals, so that we can proceed in
steps. If there is only one intermediate goal we will solve two separate problems:

� Achieve the intermediate goal from the hypothesis.

� Achieve the final goal from the intermediate goal.

More generally, with n intermediate goals we will have n + 1 steps, where step i
(for 2 ≤ i ≤ n) has to achieve the i-th intermediate goal from the preceding one.

Examples

In our application domain of city travel, a typical example of sequence is a
possible strategy going from a place a to a place b:

1 On the map, find the metro station ma closest to a.

2 On the map, find the metro station mb closest to b.

3 Walk from a to ma.

4 Take the metro from ma to mb.

5 Walk from mb to b.

Reaching a goal

through an

intermediate step

A CB

CONTROL STRUCTURES §7.4148

This is a human strategy, not a program. A program might build a route from a
to b. A route, as you remember, is made of legs. Using declarations for the route
and its legs

you may build the route through the sequence of instructions

This takes advantage of the following creation procedures of class LEG:

� make_walk, producing a walking leg from one place to another.

� make_metro, producing a metro leg from one place to another (with a
precondition requiring existence of a line that goes through both places,
since a leg of metro route must all be on one line).

and the following features of class ROUTE:

� The creation procedure make_empty, producing an empty route.

� The command extend, adding a leg at the end of a route.

For this and future programming exercises, you will no longer be given a
step-by-step description of how to write, compile and run the example, unless this
involves some EiffelStudio mechanism that we have not seen yet. All the necessary
techniques have been seen before; if you have any hesitation consult the
EiffelStudio appendix or go back to the earlier examples.

full: ROUTE

walking_1, walking_2, metro_1: LEG

-- Version 1
create walking_1.make_walk (a, ma)
create walking_2.make_walk (mb, b)
create metro_1.make_metro (ma, mb)
create full.make_empty

full.extend (walking_1)
full.extend (metro_1)
full.extend (walking_2)

Programming time!
Creating and animating a route

Using the above scheme, write and execute a routine that will create a route
from Elysee_palace to Eiffel_tower (both place names are defined as features
in class TOURISM), and animate the route.
Put the corresponding software elements, and the remaining ones for this
chapter, in a new class called ROUTES. The name of the system for the
examples and exercises of this system is control.

← “Objects you can
and cannot kick”,
page 25.

With a condition on ma
and mb, see below.

← Taken as usual from
the chapter name; the
directory is
07_control. The con-
ventions were given in
2.1, page 15.

→ E, page 843.

§7.4 SEQUENCE (COMPOUND INSTRUCTION) 149

Compound: syntax

As the above example shows, the sequence control structure is not new with this
chapter: we have seen it many times before — in fact, ever since our very first
program example — without having a name for it. We simply wrote several
instructions in the intended order of execution, as in

Since it is often useful to consider such a sequence of instructions as a single
instruction — for example to make it part of a bigger control structure — it is
also called a compound instruction, or just “compound”.

The syntax rule is very simple:

We have not used semicolons so far. The style rule indeed suggests not to bother
with them:

So if you will be printing out the above “Version 1” example and are down to
your last roll of paper (or have a very environmentally-conscious boss), you
might write the last three instructions as

Paris.display

Louvre.spotlight

Metro.highlight

Route1.animate

Syntax:
Compound instruction

To specify a sequence, or compound, of zero or more instructions, write them
one after the other in the desired order of execution, optionally separated
by semicolons.

Touch of Style:

Semicolons between instructions

� If (as should almost always be the case) successive instructions appear on
separate lines, omit the semicolon.

� In the occasional case of two instructions appearing on the same line (to
be used only for very short instructions and if there is a good reason to
save on the number of lines), always separate them by a semicolon.

full.extend (walking_1) ; full.extend (metro_1) ; full.extend (walking_2)

← Feature explore,
page 18.

CONTROL STRUCTURES §7.4150

but there is seldom a reason to do so. Instead, you will usually have one line per
instruction; then you can just forget the semicolons.

It is important to remember that the separation into lines does not by itself
carry any semantic value; line return is just a “break” character, which has the
same effect as a space or a tab. So nothing prevents you from writing

Nothing, that is, except good taste, elementary common sense, the official style
rules, and any hint of a trace of a shadow of a tinge of concern for whoever is
going to try to read your program later, including two readers of particular
interest: the instructor (if you are taking a course); and — after a few days,
weeks or months — yourself.

Even on separate lines, some people are initially nervous about omitting the
semicolons, perhaps because many commonly used programming languages
have strict rules requiring them in many places and prohibiting them in others.
To get over semicolon addiction, a simple test suffices: put two versions of the
same program side by side, both with a single instruction per line, but one with
semicolons and the other without; you will see right away that the second one is
cleaner and more readable.

If you do use semicolons, mistakenly including an extra one will be
harmless, because instruction_1 ; ; instruction_2 is formally understood as three

instructions, of which the second is an empty instruction whose semantics is to
do nothing. So this will not cause any trouble. All the same, it is better to clean
up your code and remove any unneeded element.

Compound: semantics

The run-time behavior of a sequence is what the name of this control structure
and the earlier informal discussion suggest:

Note that the syntax description talks of “zero or more” instructions (not one or
more) and hence permits an empty sequence, whose semantics is the same as for
an empty instruction: do nothing. Not a very exciting case, but sometimes useful
for a sequence that is part of a larger structure.

 full.extend (walking_1) full.extend (metro_1) full.extend (walking_2)

Semantics:
Compound instruction

Executing a sequence of instructions consists of executing each instruction in
turn, in the order given.

← From “Breaks and
indentation”, page 45.

Ugly!

§7.4 SEQUENCE (COMPOUND INSTRUCTION) 151

Order overspecification

You may have noticed that in the above example (“Version 1”) the chosen order
is only one of a number of possibilities. For example we could add each leg to
the full route as soon as we have created it:

Many other orders are possible; the only constraints for this example are that
any instruction using an object (route or leg) must come after the creation
instruction for that object, and that we add legs in the right order.

Using the sequence control structure often creates such cases of
overspecification, that is to say, of a solution that is not the most general
possible one. This does not directly harm the software, but one must be
conscious that the solution is only one of a set of possibilities.

When execution speed is a concern, it is sometimes possible to obtain faster
execution by executing some group of instructions concurrently (in parallel)
with others. The four initial creation instructions of the above example can, for
example, be executed concurrently without affecting the result. Concurrency,
however, is a delicate matter; programmers usually do not explicitly prescribe it
for such elementary cases, but good compilers may be able to produce
concurrent code if the underlying computer architecture supports concurrency,
as with modern “multicore” computer systems.

-- Version 2

-- Create the route:
create full.make_empty

-- Create and add the first leg:
create walking_1.make_walk (a, ma)
full.extend (walking_1)

-- Create and add the second leg:
create metro_1.make_metro (ma, mb)
full.extend (metro_1)]

-- Create and add the third leg:
create walking_2.make_walk (mb, b)
full.extend (walking_2)

← Page 148.

CONTROL STRUCTURES §7.4152

Compound: correctness

We have seen that a feature may have a contract including a precondition and a
postcondition. These properties govern calls to the feature, such as the above
call full.extend (walking_1). The precondition tells the client (the calling
feature) what it must guarantee to be correctly serviced. The postcondition tells
the client what it may assume on termination of such a correct call.

Similarly, every control structure reviewed in this chapter has an associated
correctness rule, which puts some conditions on the contracts (preconditions and
postconditions) of its constituent instructions, and defines the resulting contract
for the structure as a whole. For Compound, the correctness rule reflects the
property that the constituent instructions will be executed in the order given:

Special case: an empty Compound is by itself always correct, but achieves no
new postcondition.

In our example, you may check the contract for the feature extend of class
ROUTE by bringing up the class in EiffelStudio. With some postcondition
clauses omitted, it reads

Every creation instruction of the form create x or create x.make (…) ensures
that the condition x /= Void will hold after its execution. So our example satisfies
the correctness rule for compound instructions; this is true in both “Version 1”
and “Version 2”, but would not hold any more if we changed the order of the
instructions to start with

Correctness:
Compound instruction

For a Compound instruction to be correct:
� The program must ensure that the precondition of the Compound’s first

instruction, if any, holds prior to any execution.
� The postcondition of every instruction in the Compound must imply the

precondition of the following one if any.
� The postcondition of the last instruction must imply the postcondition

desired for the entire Compound.

extend (l: LEG)
require

leg_exists: l /= Void

ensure

lengths_added: count = old count + 1

← Clause 2 of “Touch of
Methodology: Creation
Instruction Correctness
Rule”, page 126.

§7.5 LOOPS 153

where walking_1, at the place of use, denotes a non-existent LEG object that the
extract mistakenly attempts to add to the route.

7.5 LOOPS

Our second control structure, the loop, taps into one of the most amazing
features of computers: their ability to repeat an operation, or variants of that
operation, many times — very many times by human standards.

A typical example of a loop is an animation scheme to highlight a metro line
by displaying a red dot on each of its stations in turn, for half a second. The
system Show_line in the Traffic delivery does this. You can execute it now if you
wish; the effect at one of the intermediate steps is this:

Here is a loop that achieves this effect. It uses show_spot (p) to display a red spot
at point p on the screen for half a second (the value predefined for Spot_time).
To understand the details we need concepts introduced later in this discussion,
so you should just take this example as an introduction to how a loop looks:

-- Version 3
-- Create the route:

create full.make_empty

-- Create and add the first leg:
full.extend ()
create walking_1.make_walk (a, ma)

walking_1

Highlighting a

station

CONTROL STRUCTURES §7.5154

The loop moves a “cursor” (a virtual marker) to the beginning of the line (start);
then until the cursor is beyond the last position (is_after) it performs the
following for each successive station (item): display the red spot at the location

of the station, and advance the cursor to the next station through command forth.

Each such execution of the loop body is called an iteration of the loop.

This shows some of the key ingredients of a loop: initialization (from), exit
condition (until), and actions to be repeatedly executed (loop). To get a full
understanding of this loop we must first explore some of the underlying concepts.

Loops as approximations

As a problem-solving technique, the loop is the method of approximating the
result on successive, ever bigger subsets of the problem space.

In the metro line animation example, the problem is to display a red dot on
each station of the line. Successive approximations are: display a dot on no
station at all; display it on the first station; display it successively on the first two
stations; and so on.

Here is another example. Assume you want to know the maximum of a set
of one or more values N1, N2, …, Nn. The following strategy, described
informally, will work:

I1 Define max to be N1. It is then true, trivially, that max is the maximum of
the set of values containing just one value, N1.

I2 Then for every successive i = 2, …, n do the following: if Ni is greater than
the current max, redefine max to be Ni.

from

Programming time!
Animating Line 8

Put the preceding loop in a feature traverse of class ROUTES (the example
class for this chapter). For this example and subsequent variations, update the
class and run the system to observe the results.

Line8.start

until

Line8.is_after

loop

show_spot (Line8.item.location)
Line8.forth

end

The loop body

→ In “Animating a
metro line”, page 166.

§7.5 LOOPS 155

This ensures that at the i-th step (where the first step corresponds to case I1 and
the subsequent steps to case I2 for i = 2, i = 3 etc.) the following property, called
a loop invariant of the loop, holds:

Stating this invariant for the n-th step, case I2 for i = n, gives

“max is the maximum of N1, N2, …, Nn”

which is the desired result.

The following picture illustrates the loop strategy in this case:

The loop establishes the invariant property “max is the maximum of the first i
values” for a trivial value: i = 1; then it repeatedly extends the subset of the data
on which the invariant holds.

In the metro line animation example, the invariant would be: “A red dot has
been displayed on all the stations visited so far”.

The notion of invariant is not new, since we have already encountered class

invariants. The two forms of invariant are related, since both describe a property
that certain operations must preserve. But their roles are different: a class invariant
applies to an entire class and must be maintained by the execution of features of the
class; a loop invariant applies to a single loop and must be maintained by every
iteration of the loop body.

The loop strategy

Although many loops are more sophisticated, the “maximum” example
illustrates the general form of loops as a problem-solving strategy.

The strategy is useful when a problem consists, starting from some initial
property Pre, of establishing a certain goal Post characterizing some set of data
DS. This set is finite, although it might be very large.

Loop invariant of the “maximum” strategy, at step i

max is the maximum of N1, N2, …, Ni

N1 Nn

Successive, growing subsets of the data
on which the invariant will hold

Data elements

Ni

Finding a

maximum by

successive

approximations

N2

← “Class invariants”,
page 67.

CONTROL STRUCTURES §7.5156

To use a loop is to find a weaker (more general) form of the goal Post: a
property INV (s) — the loop’s invariant — defined on subsets s of DS (not just
DS itself), with the following properties:

L1 You know an initial subset Init of DS such that the initial condition Pre

implies INV (Init); in other words, the invariant holds for the initial subset.

L2 INV (DS) (that is to say INV applied to the whole set) implies your goal Post.

L3 You know a technique, applicable when INV (s) holds for a set s that is not
yet all of DS, to make INV (s’) hold for a larger subset s’ of DS.

The “maximum” example has all these ingredients: DS is the set of numbers
{N1, N2, …, Nn}; the precondition Pre is the property that DS has at least one
element; the goal Post is the property that we have found the maximum of these
numbers; and the invariant INV (s), where s is a subset N1, N2, …, Ni of DS,
states that we have found the maximum of s. Then:

M1 If Pre is satisfied, meaning that there is at least one number, we know an
initial subset Init such that INV (Init) holds: just take the set consisting of
only the first number N1.

M2 INV (DS) — the invariant applied to the whole set {N1, N2, …, Nn} — does
imply the goal Post; actually, it is identical.

M3 When INV (s) holds for a set s = {N1, N2, …, Ni} which is not all of DS

— in other words, i < n — then we can establish INV (s’) for a larger subset
s’ of DS: we just take s’ to be {N1, N2, …, Ni, }, and the new maximum

to be the greater of the previous maximum and Ni+1.

Note — in the general case — how carefully the invariant is devised to fit our
general strategy of solving a problem by successive approximation:

� INV is sufficiently weak that we can establish it easily for some initial
subset, usually very small, of the whole data set.

� It is sufficiently strong to give us the entire desired goal, Post, when applied
to the whole set.

� It is sufficiently flexible to let us extend it from any applicable subset to a
slightly larger one.

By repeatedly performing this extension, having started by establishing the
invariant on the initial subset, we will get to the desired result. This strategy of
successive approximations of the goal, on progressively larger sets, might take
many iterations; but computers are fast, and they do not go on strike to complain
of repetitive work.

Ni+1

§7.5 LOOPS 157

These observations define how the loop works as a control structure. Its
execution will:

X1 Establish INV (Init), taking advantage of L1. This gives you Init as a first
subset s on which INV holds.

X2 As long as s is not the complete set DS, apply the technique of L3 to
establish INV on a new, larger s.

X3 As soon as s is the whole of DS, stop: you have established INV on DS,
which thanks to L2 establishes your goal Post.

This process is guaranteed to terminate because we always assume DS to be a
finite set; since s remains a subset of DS, and grows by at least one element at
every step, it has to reach the full DS after a finite number of iterations of step
X2. In some cases, however, establishing termination will require more care.

Loop instruction: basic syntax

To express the loop strategy as a program text we will use, in the “maximum”
example, the following general structure:

For the moment, all the constituent instructions are still in pseudocode. The
example illustrates the three required parts of a loop construct (to be
complemented later by two optional parts):

� The from clause introduces the initialization instructions (X1).

� The loop clause introduces the instructions to be executed in each of the
successive iterations (X2).

� The until clause introduces the exit condition: the condition under which
the iterations will terminate (X3).

from

-- “Define max to be N1”
-- “Define i to be 1”

until

i = n

loop

-- “Redefine max as the greater of the current maximum and Ni+1”
-- “Increase i by one”

end

← Page 155.

→ “Loop termination
and the halting prob-
lem”, page 161.

← Remember that com-
ments in red are
pseudocode: “Touch of
Style: Highlighting
pseudocode”, page 109.

CONTROL STRUCTURES §7.5158

The run-time effect of this construct, suggested by the keywords (from, until,
loop), is in line with the previous discussion:

� First, execute the instructions in the from clause (initialization).

� Then execute the instructions (body) in the loop clause until the condition
stated in the until clause (exit condition) holds.

The last point means more precisely that after the initialization the body will
be executed:

� Not at all, if the exit condition holds immediately after the initialization.

� Once, if one execution of the body leads to the exit condition being true.

� More generally: i times for some i, if the exit condition will be false after j
executions of the body for 1 ≤ j < i, and true after i executions.

Syntactically, the from and loop clauses each contain a compound instruction.
You may as a consequence include any number of instructions, including zero.
It indeed happens that a loop does not need an explicit initialization instruction
(in cases when the context before the loop already implies the invariant); then
the from clause will be empty:

This does not apply to the loop clause, since it must make some progress in the
approximation (bring at least one new element to the subset s of the previous
discussion); otherwise the loop process would never terminate. So in a realistic
program you will never write an empty loop clause.

Including the invariant

The basic form of loop, as just seen, does not show the loop invariant. This is
regrettable since the invariant is essential to understanding what the loop is
about. The optional but recommended invariant clause takes care of this. With
this clause our example becomes:

until

“Exit condition”
loop

-- “Loop body”
end

from

Nothing here

§7.5 LOOPS 159

The invariant in this example is still pseudocode, but useful nonetheless to
convey essential information about the loop.

Loop instruction: correctness

The invariant of a loop has two characteristic properties:

An instruction “preserves” a property if its execution, started with that property
satisfied, terminates with the property satisfied again. This preservation
property explains the name “invariant”, applied here to loop invariants (as
earlier to class invariant, which must similarly be ensured upon instance
creation and preserved by features of the class).

As we have seen, the purpose of a loop is to achieve a certain outcome by
successive approximations. The steps towards this goal are the initialization and
then successive executions of the body. After each of these steps, a property
holds that is an approximation of the final desired outcome; it is the invariant.
In our two examples the invariants, in pseudocode, are:

� “max is the maximum of {N1, N2, …, Ni}”, as the i-th approximation, for
1 ≤ i ≤ n, of the final property “max is the maximum of {N1, N2, …, Nn}”.

� “A red spot has been displayed on all stations visited so far, in their order on
the line”, as an approximation of the final property that the spot has been
displayed on all stations in order.

from

-- “Define max to be N1”
-- “Define i to be 1”

until

i = n

loop

-- “Redefine max as the greater of the current maximum and Ni+1”
-- “Increase i by one”

end

Correctness:
Loop Invariant Principle

The invariant of a loop must be:
I1 Ensured by the initialization (from clause)
I2 Preserved by the body (loop clause) whenever this body is executed with

the exit condition not satisfied.

invariant

-- “max is the maximum of {N1, N2, …, Ni}”

← “Class invariants”,
page 67.

CONTROL STRUCTURES §7.5160

Let Loop_invariant be the invariant. When the loop execution terminates, the
invariant will still hold because of properties I1 and I2 of the Loop Invariant
Principle. In addition, the exit condition Loop_exit will hold: otherwise the loop
would not have terminated yet. So the final condition produced by the loop is

This is the outcome achieved by the loop:

The syntax highlights the Loop Postcondition Principle by putting the invariant

and until clauses next to each other. So if you see a loop with its invariant and
want to know what it achieves, just look at the two clauses together:

The effect of the loop is their conjunction (their and).

In the metro line animation example, the exit condition is, informally, “all
stations have been visited”; conjoined with the invariant stated above, this tells
us that a red dot has been displayed on all stations, in the order of the line.

The Loop Postcondition Principle is of course the direct consequence of
how loops were defined in the first place, as an approximation mechanism.
Quoting from that earlier discussion, the idea was to choose as invariant a
generalization of the final goal, choosing it so that it is:

Loop_invariant and Loop_exit

Correctness:
Loop Postcondition Principle

The condition achieved by the execution of a loop is the conjunction of its
invariant and its exit condition.

from

-- “Define max to be N1”
-- “Define i to be 1”

loop

-- “Redefine max as the greater of the current maximum and Ni+1”
-- “Increase i by one”

end

invariant

“max is the maximum of {N1, N2, …, Ni}”
until

i = n

and
Final condition

← Page 156.

§7.5 LOOPS 161

� “Sufficiently weak that we can establish it easily for some initial subset of

the whole data set ”: this is the role of the initialization.

� “Sufficiently flexible to let us extend it from any applicable subset to a

slightly larger one”: this is the role of the body, executed when the invariant
is satisfied and the exit condition is not satisfied; it then yields a state where
the invariant is satisfied again.

� “Sufficiently strong to give us the entire desired goal when applied to the

whole set ”: this is achieved on exit, as per the Loop Postcondition Principle,
by the conjunction of the exit condition and the invariant.

Loop termination and the halting problem

The loop execution scheme, as described, repeatedly performs the loop body
until the exit condition is satisfied. If the loop derives from a well-devised
approximation strategy as above, its execution will terminate after a finite
number of iterations: since the set being approximated is finite and each
iteration adds a new element to its approximation, the process cannot go forever.
But the loop syntax permits an arbitrary initialization, exit condition and loop
body, so it could in principle execute forever, like

In this extreme example the exit condition — which of course you may also
write as just False — can never be satisfied, so the loop cannot ever terminate.
If you execute the corresponding program, you will be sitting at the terminal
with nothing happening; after a while you will probably realize that something’s
wrong, so you will interrupt the program (EiffelStudio has a button for that
purpose). But you have no way to know — if you are just a user of the program,
and have no access to its text — whether the program is really looping forever
or just taking a long time to execute.

from

“Any instruction here (or none at all)”

loop

“Any instruction here (or none at all)”
end

← As noted on page 157.

until

0 /= 0

CONTROL STRUCTURES §7.5162

The failure of a program to terminate is not always, mind you, erroneous
behavior: some programs are expressly designed to run forever or until
explicitly stopped. An example is the “operating system” (OS) that runs a
computer: as I am typing the text of this paragraph, I would be very upset if the
OS terminated, which could only mean that my system has crashed or that I
kicked the power switch with my foot. Same story with many “embedded
systems” (programs running on devices): you do not want your cell phone’s
program to terminate while you are talking.

On the other hand ordinary programs — in particular most of the programs
we discuss in this book — are expected to process some input, then yield a result
after a finite time.

When writing such programs you may inadvertently produce a
non-terminating loop, which makes the whole program also non-terminating. To
avoid this unpleasant result the best technique is to make sure you define, for
each loop that you write and that is meant to terminate, a loop variant:

If indeed you can find such an expression, then you have shown that the loop
will terminate after a finite number of iterations: it is not possible for a
non-negative integer value to decrease forever while remaining non-negative. In
fact, if we know the original value V of the variant after initialization, we can
tell that the loop will terminate after at most V iterations, since each iteration
decreases the variant by at least 1.

For this reasoning to hold, the variant must indeed be an integer. Real numbers
would not work, since it is perfectly possible (in mathematics, if not on a
computer) for an infinite sequence of real numbers, such as the sequence 1, 1/2,
1/3, …, 1/n, …, to consist of ever decreasing values.

If you know a variant, the syntax lets you specify it in a variant clause after the
loop body (loop clause). For example we may add a specification of the loop
variant to our computation of the maximum:

Definition: Loop variant

A variant for a loop is an integer expression possessing these properties:
V1 After execution of the loop initialization (from clause), the variant has a

non-negative value.
V2 Every execution of the body (loop clause), when the exit condition is not

satisfied and the invariant satisfied, decreases the value of the variant.
V3 Every such execution also keeps the variant non-negative.

§7.5 LOOPS 163

The variant identified here is n – i. It indeed satisfies the conditions:

V1 The initialization sets i to 1. The program assumes that n ≥ 1. So the variant
is initially non-negative.

V2 The loop body increases i by one, therefore decreases the variant by one.

V3 When the exit condition is not satisfied, i will be less than n (i < n, not just
i <= n), and hence n – i, when decreased by one, will remain non-negative.

For the last point V3, it is not sufficient to consider the negation of the exit
condition, which only tells us that i /= n: we need to be sure that i < n. But note
the new invariant properties added above: 1 <= i and i <= n. These are ensured
by the initialization and preserved by the body when executed with i /= n, so
they are indeed invariant. Then when the exit condition is not satisfied, that is
to say, i /= n, we know from the invariant property i <= n that in fact i < n.

You may well feel at this point that I am splitting hairs and that the loop as
given is evidently correct — that it will always terminate, having computed the
maximum of the given set of values. But in practice it is a common mistake to
write a loop that will not terminate. If you have ever tried to use a program only
to see it “hang”, it might very well have been the result of such a mistake on the
part of its author. Maybe the problem did not appear in the program tests; tests
can only capture a small part of all possible cases. Only through the kind of
reasoning illustrated above can you guarantee — for your own programs — that
a loop will always terminate, regardless of the program’s inputs.

from

-- “Define max to be N1”
-- “Define i to be 1”

until

i = n

loop

-- “Redefine max as the greater of the current maximum and Ni+1”
-- “Increase i by one”

end

invariant

1 <= i

i <= n

-- “max is the maximum of {N1, N2, …, Ni}”

variant

n – i

CONTROL STRUCTURES §7.5164

Considering the possibility of non-termination leads to important notions
which you will study in more detail in a course on the theory of computation:

We will be able to prove the theorem asserting the undecidability of the Halting
Problem once we have studied routines.

Touch of Theory:
The Halting Problem and undecidability

The prospect of a loop that runs forever is disturbing. Isn’t there some
automatic way, given a program, to check that every loop in it will terminate?
Compilers already perform some other verifications for us, in particular type

checks (if x is of type STATION and you write a feature call x.f, the compiler
will issue an error message and refuse to compile your program unless f is a
feature of class STATION). Perhaps they could also check loop termination?

The answer to this general question is no. A theorem states that — assuming
a programming language powerful enough for practical needs — it is
impossible to write a program (such as a compiler) that will correctly report,
when fed any program text, whether that program will always terminate. This
is known as the undecidability of the Halting Problem:

� The Halting Problem is whether a program will terminate (halt).
� A problem is undecidable if no effective technique exists that will yield a

correct solution in every case.

The Halting Problem is the most famous undecidability result in the theory of
computation, although not the only one.

Depressing as it sounds, this result does not prevent you in practice, when you
write a program, from guaranteeing — as you should! — that it will terminate.
The undecidability theorem rules out any general automatic mechanism that
would ascertain termination for any program, but not specific techniques for
demonstrating that some programs will terminate. The use of an explicit loop
variant is such a practical technique — a very effective one. If you can prove
that an integer expression has the variant properties V1 to V3 (initially
non-negative, decreased, and maintained non-negative by every iteration),
then you have the guarantee that the loop will terminate.

Commercial-grade compilers are not yet able to perform such proofs, so you
will have to do them manually by inspecting the program, and, if there is any
doubt, let EiffelStudio check at run time that the variant decreases on each
iteration. Unlike the general Halting Problem, this is not a fundamental
impossibility but a limitation of current technology.

→ “An application:
proving the undecid-
ability of the halting
problem”, page 223.

§7.5 LOOPS 165

The undecidability of the Halting Problem belongs to a series of negative results
that burst into one science after another in the early 1900s, crashing the great
science party that the new century had appeared to herald:

� Mathematicians saw the validity of set theory — and, as it turned out, of the basic
techniques of logical reasoning — put into question by the emergence of apparent
paradoxes; then just as an enormous 30-year effort to repair the foundations, by such
mathematicians as Bertrand Russell and David Hilbert, seemed to have a chance of
succeeding, Kurt Gödel proved that in any axiomatic system powerful enough to
describe ordinary mathematics there will be properties that can be neither proved nor
disproved. This incompleteness theorem is one of the most striking examples of the
limitations on our ability to reason.

� At about the same time, physics had to accept the Heisenberg uncertainty principle and
other results of quantum mechanics that put limits on our ability to observe.

Undecidability results, for the Halting Problem in particular, are the computing
science version of such seemingly absolute limitations.

The theoretical undecidability of the Halting Problem should not directly affect
— except for the emotional trauma of coming to terms with our intellectual
limitations, but I trust you will recover — your practice of programming. Yet
non-terminating programs are not just a theoretical possibility but a very real
threat. To avoid its unpleasant occurrence, the advice is clear:

Touch of History:
Tackling the Halting Problem

The Halting Problem was described — as a special case of the “decision
problem”, or Entscheidungsproblem, a general question going back to Leibniz
in the 17th-18th century and Hilbert in the early 20th —, and its undecidability
proved, a decade before the appearance of actual stored-program computers,
in a famous mathematical paper of 1936, “On Computable Numbers, with an

Application to the Entscheidungsproblem”.

The author, the British mathematician Alan Turing, relied on an abstract
model for a computing machine, known today as the Turing machine. The
Turing machine — a mathematical concept, not a physical device — is still
actively used to discuss general properties of computation, independent of any
particular computer architecture or programming language.

Turing did not stop at mathematical machines. He went on during the second
World War to lead the successful effort to decrypt the German cryptographic
machine, the Enigma, and afterwards to build several of the world’s first actual
computers. (The end of his life was marred by — let us be polite —
insufficient recognition of his achievements by the authorities of his country.)

Alan Turing introduced many of the seminal ideas of computing science. The
highest distinction in the field, the Turing Award, honors his memory.

CONTROL STRUCTURES §7.5166

Animating a metro line

As a simple loop example, we come back to the problem sketched at the
beginning of this section: “animating” Line 8 by having a red dot move through
its stations. We may use:

� From class STATION, a query location, indicating the station’s place on the
map; the result is of type POINT, representing the notion of point in a
2-dimensional space.

� A command show_spot from class TOURISM; show_spot (p), for p of type
POINT, will display a red spot at location p.

� Spot_time, also from TOURISM, a predefined value for the time to leave the
red spot on each station; it is set to 0.5 seconds.

The task of the loop will be to call show_spot at the location of every station of
the line, in sequence.

To get to the successive stations we could (with the help of operations on
variables studied in the chapter after next) use the query i_th which gives us the
i-th element of a line, through the call some_line.i_th (i), for any applicable i;
the loop would have to perform

for successive values of i, ranging from 1 to Line8.count. Let us instead use this
opportunity to discover a typical form of loop used for iterating over object
structures such as lists. To “iterate” over a data structure is to perform an
operation on each one of its elements, or on a subset of its elements selected by
an explicit criterion. Here the operation consists of calling show_spot on the
location of each selected station.

Touch of Methodology:
Loop termination

Whenever you write a loop, examine the question of its termination. Convince
yourself — by identifying a suitable variant — that it will always execute a
finite number of iterations. If you can’t, rework the loop until you can equip it
with a variant.

show_spot (Line8.i_th (i).location)

← Page 153.

← Remember that the
actual class names are
TRAFFIC_STATION
and TRAFFIC_POINT;
see “Convention: Traf-
fic library class names”,
page 53.

→ Assignment:
chapter 9.

→ Chapter 13 has
more on iteration, par-
ticularly “Iterating on
data structures”,
13.13, page 431

§7.5 LOOPS 167

Classes such as LINE, and in general classes describing ordered lists of
objects, support iteration by letting you move a cursor (a marker) to successive
places in the list. The cursor does not have to be an actual object, simply an
abstract notion denoting, at any point in time, a position in the list:

In the state shown, the cursor is on the third station. LINE and other list classes
include the following four key features — two commands and two queries —
for iterating over the corresponding object structures:

� The command start, which brings the cursor to the first item. (An “item” is
an element of the list, in this example a metro station.)

� The command forth, which advances the cursor to the next item.

� The query item, which yields the item, if any, at cursor position.

� The boolean query is_after, yielding True if and only if the cursor is at the
extreme right, past the last element if any. For symmetry there’s also
is_before, although we do not need it now.

Also useful is the query index which, as illustrated, gives the index of the current
cursor position. It is 1 for the first item and count for the last.

This is enough to give us the general iteration scheme for lists, and its
application to our example:

Balard

Cursor position

La_Motte Concorde Inva_
lides

... A list and its

cursor

Basic list

features

1 count

start

item

is_afteris_before

forth

index

CONTROL STRUCTURES §7.5168

This scheme using start, forth, item and is_after to iterate over a list occurs so
frequently that you must make sure to understand its details and convince
yourself of its correctness. Informally, its effect in this example is clear:

� Bring the cursor to the first item of the list, if any, through the call to start

in the initialization.

� At each step through the loop, display for Spot_time seconds a spot on the
station Line8.item at cursor position.

� Also at each step, after displaying the spot, advance the cursor by one
position, through forth.

� Stop when the cursor is_after, that is to say, past the last item.

To avoid any confusion (I hope the previous discussion does not leave room for any,
but just in case): there is no connection between the position of a station on the map
or, as we have called it, its location, and the notion of cursor position:

� A station has a geographical location in the city, determined by its coordinates.

� The cursor exists only in our imagination and in our program, not in the world
out there. It is an internal marker enabling the program to iterate over a list of
stations, remembering from one iteration step to the next which item it last visited.

from

Line8.start

invariant

-- “For all stations before cursor position, a spot has been displayed”
-- “More invariant clauses (see below)”

until

Line8.is_after

loop

show_spot (Line8.item.location)
Line8.forth

variant

Line8.count – Line8.index + 1
end

Programming time!
Terminating and non-terminating loop

Update the loop in feature traverse of class ROUTES to read as the last
version, with the variant and (informal) invariant. Run it.
Now remove the instruction Line8.forth, introducing an error. Run the system
again and observe what happens.
(Then restore the missing line for future exercises.)

To stop execution from
EiffelStudio, you have a
button at your disposal.

§7.5 LOOPS 169

Let us now consider the loop constituents in more detail. The initialization uses
start to bring the cursor to the first position. In the Contract View of class LINE

(and of any similar class based on the notion of list) you may see that the
specification of start reads:

The boolean query is_empty indicates whether the list is empty. For the moment,
consider only the case of a non-empty list (like Line8). The first postcondition
clause at_first of start indicates that after initialization the cursor is on the first
element (index = 1), as we would expect.

The loop’s exit condition is Line8.is_after. For a non-empty list it will not
hold after initialization; you can in fact check this through the clause in the class
invariant that reads

Since this is an equality (equivalence) between two boolean values, it means
that is_after is true if and only if index = count + 1; for a non-empty list count

will be at least 1, so after the initialization, when index = 1, it is impossible for
is_after to hold. In this case the loop body will be executed at least once.

Each execution of the loop body performs

which displays a red spot at the geographical location of the item at the current
cursor position in the list.

Understanding and verifying the loop

Let us gain a deeper understanding of our loop example by verifying that it is
correct — that is to say, performs as expected in all cases. It is a good idea, as
you read, to use the debugger to examine the objects involved at various stages
of the execution.

start

-- Bring cursor to first element
-- (No effect if empty)

ensure

at_first: (not is_empty) implies (index = 1)
empty_convention: is_empty implies is_after

is_after = (index = count + 1)

show_spot (.location)Line8.item

CONTROL STRUCTURES §7.5170

For ease of reference here is the loop again:

Programming time!

Using the debugger

As you read through the complementary explanations of this example, and in
particular its correctness arguments, it is useful to get a concrete picture by
following what happens at run time. The EiffelStudio debugger provides this
capability. Use it to execute the program as a whole, or instruction by
instruction in the feature traverse of class ROUTES, and to stop it at any time,
then traverse the object structure and examine the contents of relevant objects.

For example you can see the instance of LINE and check that the results of
queries such as is_before and is_after agree with the expected values as
deduced from the analysis of the program carried out below.

Such a run-time inspection tool is not a substitute for systematic reasoning
about programs. Reasoning yields the properties that will hold in all
executions of the program; run-time inspection can only tell you that a
particular property holds at one point of one execution. But it is still very
helpful as a way to gain a practical understanding of what is going on; it lets
you, literally, see your program as it executes.

As its name indicates, the debugger helps, when a program does not function
as expected, to find out what the error — the bug — is. But its scope is
broader; bug or no bug, it gives you a direct window into program execution.
Do not wait until something goes wrong to take advantage of it.

A section of the EiffelStudio appendix (actually a link to an online document)
tells you how to run the debugger to examine the execution of a program.

from [5]

Line8.start

invariant

-- “For all stations before cursor position, a spot has been displayed”
-- “More invariant clauses (see below)”

until

Line8.is_after

loop

show_spot (Line8.item.location)
Line8.forth

variant

Line8.count – Line8.index + 1
end

→ “Controlling execu-
tion and inspecting
objects”, E.6, page 846.

§7.5 LOOPS 171

We may deal first with the case of an empty list. As noted, the postcondition of
the command start reads

so that — by “convention” — an empty list will, after a call to start, satisfy
is_after. Of course this convention is not there by accident, but intended
precisely to ensure that the typical iteration scheme on a list, using the form
illustrated by our example — start with start, exit on is_after, and each time
through the loop do something with item and then move on with forth — stops
immediately, having produced no visible effect, when applied to an empty list.
This is indeed the case for our loop.

You may run the example on an empty line (class TOURISM defines a feature
Empty_line for that purpose) and use the debugger to follow what happens.

So the loop does the right thing in the case of an empty list. For the rest of
this discussion of correctness we assume that the list is not empty.

Bring up the specification for item. You will see that it has a precondition,
stating that the query is only applicable if the cursor is on a list element:

as suggested by the following figure:

ensure

at_first: (not is_empty) implies (index = 1)
empty_convention: is_empty implies is_after

Touch of Methodology:
Beware of the border cases!

Extreme cases, such as an empty list, are a frequent source of errors. It is all
too easy, when you design your program, to think only of non-empty cases
(and test it only on those). Then once in a while the execution of the program
might use an empty structure, and fail. The issue arises not only for empty
structures but for extreme cases in general. Another example is a structure
sized for a limited number of items only: it might cause problems when full.

When designing a program and reasoning about its correctness, make sure to
think of the extreme cases, and to verify that your reasoning holds for these
cases as well as the more ordinary ones. This also applies to testing: always
include extreme cases in your program tests.

item: STATION

-- Current item
require

not_off: not (is_after or is_before)

CONTROL STRUCTURES §7.5172

Since the loop body calls item — in the call to show_spot — we must verify that
prior to the execution of this call the precondition will always hold.

Note first that the exit condition is not is_after, so is_after is not true when
show_spot is called (if it were, the loop body would not be executed). Next,
is_before must also not be true. To check this, we may add the following
property to the loop invariant:

Let us check that this is indeed a loop-invariant property. As noted, we only consider
non-empty lists (if is_empty is true, [6] trivially holds), so we only need to check that
not is_before satisfies loop invariance. We note in the class invariant that

In other words, is_before is true if and only if the cursor’s index position is zero.
After initialization, the postcondition of start — clause at_first as given above
— indicates that index is one, so is_before is False and not is_before holds. Next
we must check that every execution of the loop body preserves not is_before.
The specification of forth reads

Since index is never negative and has been increased by one, it cannot be zero,
therefore is_before cannot hold. So [6] is indeed a loop-invariant property.

You should track the properties just seen on an actual execution of the loop;
use the debugger to execute the loop iterations one by one, and explore the
object structure at each step.

not_before_unless_empty: (not is_empty) implies (not is_before) [6]

is_before = (index = 0)
index >= 0
index <= count + 1

forth

-- Move cursor to next position
require

not_after: not is_after

ensure

moved_forth: index = old index + 1

Where a list item

exists

1 count20 … count+1

Here item is defined
 item not defined item not defined

is_afteris_before

← Page 169.

§7.5 LOOPS 173

The cursor and where it will go

To complete our understanding of loops and of this example, it is useful to check
a little further into the class invariant of LINE. If you bring it up you will see the
following two clauses, also appearing in all the library classes having to do with
list structures of any kind:

This expresses, as illustrated below, that we allow the cursor to be:

� On an item if any (if the list is empty there are no items)

� One position left of the first item, but no further to the left.

� One position right of the last, but no further right.

Being able to go off by one position is useful for the general loop scheme
illustrated by our spot-moving example:

After the loop has processed the last item, the highlighted call to forth will move
past that item. This will cause is_after to be true, so that there will be no further
iteration; but it is essential that the call to forth be possible even though it leads
to a position (at count + 1) where there is no list item. The invariant permits this;
it is matched by the precondition of forth, cited above:

non_negative_index: index >= 0
index_small_enough: index <= count + 1

from

some_list.start

invariant

-- “All items left of cursor, if any, have been processed”
until

some_list.is_after

loop

-- “Process item at cursor position”

variant

some_list.count – some_list.index + 1
end

Permitted cursor

positions

1 count20 … count+1

Possible cursor positions

some_list.forth

CONTROL STRUCTURES §7.6174

This observation concludes our review of the essential properties of loops and
of how to ensure that loops are correct.

7.6 CONDITIONAL INSTRUCTIONS

The next control structure, the conditional instruction, does not raise as many
issues as the loop, but is also a fundamental program building block.

A conditional instruction (or just “conditional”) involves a condition and (in
the basic form) two instructions; it will execute one of these instructions if the
condition holds, the other one if not.

As a problem-solving technique, the conditional corresponds to separating

cases: divide the problem space into two (or more) parts such that it is easier to
solve the problem separately in each part. For example, when trying to get from
the Eiffel Tower to the Louvre:

� If the weather is good and you are not too tired, then walk to the nearest
station and take the metro.

� Else try to catch a taxi.

Or, in elementary mathematics, if you are asked for real roots of the quadratic
equation ax2 + bx + c = 0:

� If the discriminant δ, defined as b2 – 4 ac, is positive, then you can derive

the two solutions (–b ±) / 2a.

� Else, if δ is zero, then you can derive the single solution –b / 2a.

� Else, there is no real solution (only complex ones).

You may picture the use of a conditional, as a problem-solving strategy, in terms
of a partition of the set of cases to handle:

require

not_after: not is_after

δ

REGION 2:

condition does not hold
REGION 1:

condition holds

Conditional as a

partition of the

problem space

§7.6 CONDITIONAL INSTRUCTIONS 175

You have found a partition of the problem space into two parts, characterized by
a certain condition that holds on one and not in the other, such that it is easier to
find a separate solution for each part than to find a global solution directly. The
basic form of the construct will be:

which we will soon generalize to partitions involving more than two cases.

Conditional: an example

As a typical example of conditional instruction, we may adapt our last loop
example. The loop was displaying a red spot on each station. We refine this by
stopping a little longer, with a yellow spot that blinks, on exchanges. Class
TO URI SM o b l i g i ng l y p rov i de s fo r t ha t pu rp ose a c om m a nd
show_blinking_spot, complementing show_stop used so far.

We can achieve the result through this variation of the previous loop, where
the only change is the highlighted part:

The example conditional instruction uses three times the expression Line8.item, a
query call. It is more elegant to compute the result once, give it a name, and then
reuse that name whenever needed. We will soon learn how to do this.

if condition then

“Produce Region 1 solution”
else

“Produce Region 2 solution
end

from [7]

Line8.start

invariant

not_before_unless_empty: (not is_empty) implies (not is_before)
-- “For all stations before cursor position, a spot has been displayed”

until

Line8.is_after

loop

Line8.forth

variant

Line8.count – Line8.index + 1

end

← [5], page 170.

if Line8.item.is_exchange then

show_blinking_spot (Line8.item.location)
else

show_spot (Line8.item.location)
end

→ Assignment:
chapter 9.

CONTROL STRUCTURES §7.6176

For the conditional instruction we need no less than four new keywords: if, then

and else, as well as elseif which will appear next. The basic structure
is straightforward:

where condition is a boolean expression and Compound_1 and Compound_2 are
compound instructions — sequences of zero or more instructions.

Conditional structure and variations

Being sequences of zero or more instructions, both Compound_1 and
Compound_2 may be empty, so that you may write

with nothing in the else part. This corresponds to the frequent case of an
instruction or sequence of instructions that you want to execute only if a certain
condition holds, doing nothing otherwise. Rather than including an else clause
with no instructions, you may in this case omit the clause altogether. You will
just write:

Programming time!

Using a conditional

Update the preceding example — feature traverse in class ROUTES — to take
into account the conditional instruction above. Run the result.

if condition then

Compound_1

else

Compound_2

end

if condition then

Compound_1

end

if condition then

Compound_1

end

← “Sequence (com-
pound instruction)”,
7.4, page 147.

Not the recommended
style (see next).

else
Nothing here

Recommended style.

No else clause

§7.6 CONDITIONAL INSTRUCTIONS 177

In either form — with or without an else clause — any of the instructions
making up the compounds can itself be a control structure, for example a loop
or another conditional.

Assume for example that you want to do something different — yet — for
a metro station that connects to the railway network. You may use this scheme
as a replacement for the previous loop:

Such inclusion of program structures within others is, as you know, called
nesting. Here we have a conditional instruction nested in another conditional
instruction, itself nested in a loop.

from … invariant … until … loop [8]

 -- The omitted loop clauses are as in [7] above

Line8.forth

variant … end

Touch of Style:
How deep a nest?

There are no theoretical limits on how deeply you may nest control structures.
The limits are practical: good taste, and the desire to keep your programs readable.
The last example [8] has a depth of four: basic instructions appearing within a
control structure, itself within a structure, itself within another. It is about the
maximum that you should use in ordinary programming. This is not an
absolute rule: some algorithms genuinely require a higher depth of nesting.
But when you reach such a level you should ask yourself whether you can
avoid the extra nesting.
The alternative is usually to carve out a significant part of the structure and
give it an independent status as a routine, replacing its original occurrence by
a call to that routine. We will meet routines soon.

Not the recommended
style; see [11], page 180.

if Line8.item.is_exchange then

show_blinking_spot (Line8.item.location)
else

if Line8.item.is_railway_connection then

show_big_blue_spot (Line8.item.location)
else

show_spot (Line8.item.location)
end

end

← “Nesting and the
syntax structure”, 3.5,
page 40.

→ Chapter 8; see in
particular “Encapsu-
lating a functional
abstraction”, 8.3,
page 214.

CONTROL STRUCTURES §7.6178

In examples such as the last one [8], the depth of nesting makes the structure
appear more complex than it needs to be, and we can simplify it without
recourse to routines. This simplification is applicable to conditionals repeatedly
nested in the else part of other conditionals:

In this structure the nesting gives a deceptive impression of complexity, whereas
in fact the decision structure is sequential:
� If condition1 holds, execute the first then part, and nothing else.
� For i > 1, if conditioni holds but none of the conditionj does for j < i, execute

the i-th then part, and nothing else.
� If no conditioni holds, execute the innermost else part, and nothing else.
The keyword elseif enables you to remove the unnecessary nesting in this case
by writing the successive cases at the same level:

if condition1 then [9]
…

else

if condition2 then

…
else

if condition3 then

…
else

…
… More nested occurrences of if … then… else… end …
…

end

end

end

if condition1 then [10]

…
elseif condition2 then

…
elseif condition3 then

…
elseif … More conditions if needed … then

…

else -- As before, the else part is optional
…

end

§7.6 CONDITIONAL INSTRUCTIONS 179

This replaces a Matryoshka-like structure

by a comb-like structure, less ambitious but easier to understand:

The keyword is elseif as a single word, not to be confused with else followed by
if — two keywords — as used in the previous form, which calls for more nesting
since every if must have its very own matching then and end.

A piece of trivia, useful in TV contests and in cocktail parties when the conversation
dries up: elseif is the only Eiffel keyword made of two English words. Every other
reserved word of the language is made of a single English word, unabbreviated, and
chosen from everyday vocabulary. “Else if” is a simple notion, but no single English
word exists to describe it.

Matryoshki

(Russian dolls)if c1 then

...

end

else

if c2 then

...
else

end

...

condition1

Instructions1

…

else

elseif

elseif

if

then

then

end

Instructions2

Instructions0

condition1

…

Comb-like

structure

CONTROL STRUCTURES §7.6180

With elseif we may rewrite the last metro line example [8] as a single
conditional instruction with no further nesting:

Conditional: syntax

Here is a summary of the form of conditional instructions:

If, by the way, you find this form of syntax description too verbose and at the
same time not rigorous enough (for example we have to understand that each
condition denotes a distinct boolean expression), you are right. The better
technique for describing such non-trivial syntax constructs — such as the
control structures of this chapter — is a mathematical notation known as BNF.
We will learn it in the chapter on syntax. The informal specifications of the
present chapter, aided by examples, will suffice in the meantime.

from … invariant … until … loop [11]

 -- Omitted loop clauses as in [7]

Line8.forth

variant … end

Syntax:
Conditional

A conditional instruction consists, in order, of:

� An “If part”, of the form if condition.

� A “Then part” of the form then compound.

� Zero or more “Else_if parts”, each of the form
elseif condition then compound.

� Zero or one “Else part” of the form else compound

� The keyword end.

Here each condition is a boolean expression, and each compound is a
compound instruction.

→ We will obtain a
better version, avoid-
ing the repetition of
Line8.item, in
“Encapsulating a
functional abstrac-
tion”, 8.3, page 214.

if Line8.item.is_exchange then

show_blinking_spot (Line8.item.location)
elseif Line8.item.is_railway_connection then

show_spot (Line8.item.location)
else

show_spot (Line8.item.location)
end

→ Chapter 11.

§7.7 THE LOWER LEVEL: BRANCHING INSTRUCTIONS 181

Conditional: semantics

The effect of the conditional instruction reflects the preceding discussions.

Conditional: correctness

The correctness of a conditional instruction is the separate correctness of both
of its branches under the respective assumptions that the condition holds and
that it does not:

You may easily generalize this rule, given here for the basic if … then … else …
form, to the full form with elseif clauses.

7.7 THE LOWER LEVEL: BRANCHING INSTRUCTIONS

The combination of our three fundamental mechanisms — sequence, loop and
conditional — provides the appropriate basis (when complemented by routines)
to build the control structures that we need to write our programs.

Semantics:
Conditional

The execution of a conditional instruction consists of executing at most one of
the compound instructions appearing in its “Then part”, “Else If” parts if any
and “Else part” if any, determined as follows:
� If the condition following if has value True: the compound in the

Then part.
� If that condition has value False: the first compound in an Else_if part, if

any, such that the corresponding condition has value True.
� If none of the above applies and there is an Else part: its compound.
� If none of the above applies: no compound (the conditional has no effect).

Correctness:
Conditional instruction

For a conditional instruction if c then a else b end to be correct, the program
must ensure that prior to the conditional’s execution:
� If c holds, the precondition of a holds.
� If c does not hold, the precondition of b holds.
The postconditions of a and b — each executed under these conditions —
must imply the postcondition desired for the conditional instruction.

CONTROL STRUCTURES §7.7182

These programming-language mechanisms have counterparts in machine
code, which in most computer architectures are far more rudimentary. Normally
you will not use them directly, as compilers are responsible for the mapping
between the two levels. It is important, however, to be aware of the mechanisms
actually available in the hardware to handle your programs’ final flow of control.

Conditional and unconditional branching

Machine-language control mechanisms typically include:

� Unconditional branch: an instruction that transfers control to the
instruction found at a given location in memory. In the example below, this
instruction will appear as BR Address where Address is the location of the
target instruction.

� Conditional branch: transfer control to a specified location if two specified
values are equal, otherwise proceed to the next instruction. We may write it
BEQ Value1 Value2 Address. The name stands for “Branch if EQual”.

The notion of “instruction found at a given location in memory” follows from the
principle of the stored-program computer: the program, along with data, resides in
memory. A branch instruction that mistakenly uses an address that does not hold an
instruction would cause an abnormal condition, typically caught by the hardware
and leading to program termination.

With these hardware-level branching mechanisms the equivalent of

looks like this:

if a = b then

Compound_1

else

Compount_2

end

100 BEQ loc_a loc_b 104
101 … Code for Compound_2
102 …
103 BR 106
104 … Code for Compound_1 …
105 …
106 … Code for continuation of program …

← “The stored-pro-
gram computer”,
page 10.

A conditional in

machine code

§7.7 THE LOWER LEVEL: BRANCHING INSTRUCTIONS 183

Here loc_a and loc_b stand for memory locations holding the values of a and b
The numbers on the left are instruction locations; starting at 100 is just an
example, and so are the numbers that the example uses for the locations of
successive instructions. Determining the exact space taken up by machine
instructions associated with every program element, and laying out everything
in memory, can be a tricky task; since almost no one writes application at the
machine-language level, this task is the responsibility of compilers (that is to say
of compiler writers) rather than application programmers.

From this conditional example, you can infer the code structure that a
compiler would generate for a loop. This is the subject of an exercise.

The goto instruction

Branching instructions, conditional and non-conditional, reflect basic
operations that computers are able to perform: test certain boolean conditions
such as the equality of two values held in memory; transfer control to an
instruction stored at a specified location. So it is natural that we should find
these instructions in machine code. But they were not always confined there. All
programming languages used to have, and many still offer, a goto instruction,
whose name comes from “go to” written as a single word. In such languages you
may give a label to any instruction, as in

where some_label is a name — an identifier — of your choice. It is common for
such languages to use a colon : between the label and the instruction it labels,
but other conventions are possible. These labels correspond to the location
numbers (100, 101, …) appearing in our machine-language example, but they
are chosen by the programmer, who lets the compiler map them to memory
locations. The language then includes an instruction of the form

whose effect is to transfer control — which would otherwise flow to the
instruction appearing next — to the instruction with the given label.

Instead of an if condition then Compound_1 else Compound_2 end

conditional, older programming languages have a more primitive choice
instruction test condition simple_instruction , which executes the

some_label: some_instruction

goto label

→ Values on which
machine instructions
operate directly are
usually held in special
locations called regis-
ters. See “Registers
and the memory hier-
archy”, page 287.

→ 7-E.3, page 208.

The keyword is usually
if in such languages;
test is used here to
avoid confusion with
the full-blown condi-
tional instruction.

CONTROL STRUCTURES §7.7184

simple_instruction if the condition is true, otherwise proceeds sequentially. This
closely reflects machine-level instructions such as BEQ. To express the
equivalent of the conditional in such a language you would write:

This is less clear than the conditional instruction, with its hierarchical,
symmetric structure.

The comparison is even less favorable for a loop which, ignoring the from

part, would be represented as:

with its control flow involving two goto branches going in opposite directions:

Flowcharts

The last figure uses a representation of the control flow called a program

flowchart or just flowchart. The box shapes are standardized: diamond for a test
node, here with two outgoing branches for True and False; rectangle for a
processing block, here for the Body. You may check your understanding of the
concept by drawing a flowchart for the Conditional construct.

test condition goto else_part
Compound_2

goto continue
else_part: Compound_1

continue: … Continuation of program…

start: test exit_condition goto continue
Body

goto start
continue: … Continuation of program…

Flowchart for a

loop

exit_
condition

Body

True

False

→ Exercise 7-E.4,
page 209.

§7.8 GOTO ELIMINATION AND STRUCTURED PROGRAMMING 185

Flowcharts used to be a popular way of expressing the control structure of
a program. Nowadays you may still encounter them in descriptions of
non-software processes, but for programming they have fallen into disrepute (to
the point that some authors call them “flaw charts”). It is easy to understand
why. When programming languages gave you, as control structures, the
unconditional goto and a conditional branching instruction such as
test condition goto label, flowcharts provided a welcome higher-level view of
the run-time flow of control, clearer than what could be inferred from reading
the program text with its succession of branching and non-branching
instructions. But this is obsolete for two reasons:

� Our programs do more complicated things. We nest compounds within
loops within conditionals; big flowcharts quickly become messy.

� The mechanisms of this chapter — compound, loop, conditional — provide
a higher form of expression for the control structure. A neatly formatted
program text, with indentation clearly reflecting the nesting, carries a better
representation of the run-time scheduling of instructions.

The move from flowcharts to carefully chosen and properly nested control
structures belies the cliché that “a picture is worth a thousand words”. In
software we need many thousands or indeed millions of “words”, but it is
critical that they be the right words. For precise, unambiguous descriptions
pictures lose their appeal.

The correctness of a program may depend on fine details such as using a condition
i <= n rather than i < n; the best pictures in the world are largely helpless when it
comes to getting such aspects right.

7.8 GOTO ELIMINATION AND STRUCTURED PROGRAMMING

Flowcharts are not the only casualty of the reexamination of control structure
specification which occurred as software engineering was growing into a
mature discipline: the goto instruction also lost favor.

Goto harmful?

The reasons for distrusting the goto are pretty much the same as those behind
the demise of flowcharts. The mechanisms that we have studied offer better
control over execution. This comment actually contains two separate arguments:

� The first observation is that loop and conditional constructs (Compound
does not express explicit transfer of control) are more readable — especially
for complex structures that nest several such constructs within each other —
than goto. This does not take much convincing; a simple look at the original
structures and their goto variants suffices.

CONTROL STRUCTURES §7.8186

� That is not, however, the full story. By sticking to the three mechanisms
listed, we are restricting ourselves as compared to a programmer who would
be using arbitrary goto instructions — or, equivalently, arbitrary flowcharts
with arrows, possibly crossing each other, from any decision box to any
other box. The nickname for such contorted control structures is spaghetti

bowl; the figure below shows an example, still small. The high-level control
structures are clearly better for program readability, but that is only a
methodological argument. Could it be that by restricting ourselves to our
three control structures and excluding the goto we lose something essential?
In other words, are there important algorithms that one cannot express
without full goto power?

The answer, remarkably enough, is no. A theorem proved in 1966 by two Italian
computer scientists, Corrado Böhm and Giuseppe Jacopini, states that every
flowchart of interest in the theory of computation has an equivalent expression
using only sequences and loops (the conditional is not even needed).

The general transformation rules from arbitrary flowcharts to goto-less
programs, as derived from their article, can be complex. For cases arising in
practice, it is often possible to remove the gotos through an informal and fairly
straightforward process. As this is a more specialized topic (and uses concepts
such as assignment that we have not yet seen formally), its discussion on a
specific example appears in an appendix at the end of this chapter. An exercise,
which assumes you have read the appendix, asks you to produce a goto-less
equivalent of another example structure.

The implied slander
on one of humankind’s
most creative culinary
inventions is regretta-
ble. On the other
hand, real program-
mers mostly run on
cold pizza.

Spaghetti bowl

Corrado Böhm and
Giuseppe Jacopini:
Flow diagrams, Turing
machines and languages
with only two formation
rules. Comm. of the
ACM, vol. 9, no. 5, pages
366-371, May 1966.
(Requires computation
theory background.)

→ “Appendix: an
example of goto
removal”, 7.11, page
205. For another
example do exercise
7-E.4, page 209.

§7.8 GOTO ELIMINATION AND STRUCTURED PROGRAMMING 187

Avoiding the goto

The reason we can relegate goto removal to an appendix is that it is not a task
you will have to perform in ordinary circumstances. There is no need to use
gotos and then remove them. You should build your program directly with the
high-level control structures, which have amply proved their adequacy to
express algorithms, simple and complex, in a clear way.

Dijkstra’s short paper, which every programmer must read, explained the
challenge that we face when devising a program:

No one, then or later, has said this better. A program, even a simple one, is a
static view of a wide range of possible dynamic computations, determined by
the wide range of possible inputs. So wide indeed is the range — in many cases,

Touch of History:
Quashing the goto

Today “Go to” is almost a dirty word in programming, but that was not always
so. Once upon a time, branch instructions were the basic control structure.
And then without warning appeared in the Communications of the ACM of
March 1968 — the year, throughout the Western world, of youthful
questioning of the established order — an article entitled “Goto considered

harmful” by Edsger W. Dijkstra. To avoid delaying its publication, the editor
at the time, Niklaus Wirth, had decided to run it as a “Letter to the Editor”.
Through careful reasoning, Dijkstra argued that unrestricted branching was
detrimental to program quality.
This led to the mother of all programming polemics — then as now,
programmers do not like their habits questioned — which still resurfaces once
in a while. But no one would seriously argue any more for unrestrained gotos.

Touch of the Masters:
Dijkstra on the program and its execution

Our intellectual powers are rather geared to master static relations and our

powers to visualize processes evolving in time are relatively poorly

developed. For that reason we should do (as wise programmers aware of

our limitations) our utmost to shorten the conceptual gap between the static

program and the dynamic process, to make the correspondence between the

program (spread out in text space) and the process (spread out in time) as

trivial as possible.
Edsger W. Dijkstra, 1968

→ See reference &
URL in “Further read-
ing”, 7.12, page 207.

Dijkstra

CONTROL STRUCTURES §7.8188

potentially infinite — that we cannot even picture it to ourselves; but to ensure
the correctness of our program we must somehow infer the dynamic properties
from the static view. The discipline of using a nested structure of clear,
well-understood mechanisms such as the sequence, the loop and the conditional
helps; accepting the unrestricted goto would defeat this goal.

Structured programming

The revolution in views of programming started by Dijkstra’s iconoclasm led to
a movement known as structured programming, which advocated a
systematic, rational approach to program construction. Structured programming
is the basis for all that has been done since in programming methodology,
including object-oriented programming.

As the first book on the topic shows, structured programming is about much
more than control structures and the goto. Its principal message is that
programming should be considered a scientific discipline based on
mathematical rigor. (Dijkstra went further, describing programming as “one of

the most difficult branches of applied mathematics”.)

What stuck in the mind of the programming masses, however, is the
elimination of the goto and the restriction of control structures to the three kinds
seen in this chapter: sequence, loop and conditional, often called “the control

structures of structured programming”.

These control structures all have one-entry, one-exit flowcharts:

In contrast, arbitrary control structures — see the blocks of our earlier spaghetti
bowl — may have any number of entries and exits. Restricting ourselves to
building blocks with one entry and one exit means that we can construct
arbitrarily ambitious algorithms through three simple mechanisms:

→ “Structured Pro-
gramming”, reference
on page 207.

Three kinds of

one-entry,

one-exit

structure

(Compound) (Loop) (Conditional)
The loop is shown
without its initializa-
tion (from clause).

← “Spaghetti bowl”,
page 186.

§7.8 GOTO ELIMINATION AND STRUCTURED PROGRAMMING 189

� Serial connection: use the exit of one unit as the entry of another, as an
electrical engineer connects the output of a resistance to the input of
a capacitor.

� Nesting: use a unit as one of the blocks within another.

� Functional abstraction: turn a unit, possibly with sub-units, into a routine,
also characterized by one-entry, one-exit control flow.

The Böhm-Jacopini theorem tells us that we are not losing any expressive power
by limiting ourselves to these mechanisms. The gains in program simplicity and
readability — and hence in guaranteeing that the programs are correct,
extending them, reusing them — are considerable.

The goto puts on a mask

While few people would argue for a return to the general goto, the battle for
simple control structures is not over. In particular, many programming
languages support a form of loop that permits a “break” away from the middle.
(There are also break instructions for “multi-branch” variants of the conditional,
studied below.) The loop break instruction gives possibilities such as

meaning: if other_condition holds during an execution of the loop body,
execution will terminate prematurely, skipping the Other_instructions, any
further testing of exit_condition and any further iteration.

Other constructs of a similar nature include an instruction continue that stops the
current loop iteration to start the next one immediately.

Such instructions are just the old goto in sheep’s clothing. Treat them the same
way as the original:

from … until exit_condition loop

Some_instructions

if other_condition then end

Other_instructions

end

Touch of Methodology:
Sticking to one-entry, one-exit building blocks

Stay away from any “break” or similar control mechanism.

→ Chapter 8 covers
routines.

Warning: Illustration
only. Not an Eiffel pro-
gram text.

break

→ See e.g. “Condi-
tional and branching
instructions”, page
763 (about Java).

CONTROL STRUCTURES §7.8190

It is easy to apply the advice to examples such as the above: just rewrite it as

Other examples may require more rework but they do not affect the general rule.

The basic argument for that rule is the same one as against the general goto:
the clarity and simplicity of one-entry, one-exit structures. There is also a
fundamental criterion: our ability to reason about the semantics of programs; in
Dijkstra’s terms, to “shorten the conceptual gap between the static program and

the dynamic process”. With loops as we have seen them, a key technique for
such reasoning is the Loop Postcondition Principle: to understand what a loop
does, it suffices to combine its invariant (even if informal) with its exit
condition. For example we devised the loop computing the maximum of a set of
values to have the invariant

and the exit condition

making it easy to ascertain the correctness of the loop by visual inspection: we
simply check that the initialization succeeds in establishing the invariant, that
the body succeeds in maintaining it, and that the loop terminates. The
combination of these properties immediately implies that max is the maximum
of N1, N2, …, . If we introduce break instructions or any other way to disrupt
the basic control flow of the loop, such reasoning is no longer possible; the very
notion of loop invariant goes away, at least in the simple, directly
understandable form that we have studied. Another reason to stick to the
one-entry, one-exit scheme.

The risk of misusing such goto-like constructs is not just theoretical. A major AT&T
network failure in 1990, which cut off telephone service in the entire United States,
was traced to a fault in the C code: a break that broke out of a switch but was
intended for the enclosing structure.

from … until exit_condition loop

Some_instructions

end

“max is the maximum of N1, N2, …, ”

i = n

← “Flowchart for a
loop”, page 184.

if not other_condition then

Other_instructions

end

← Page 160.

Ni

Nn

See contemporary com-
ments by Peter Neumann
and others in Software
Engineering Notes,
tinyurl.com/d9j6dy, and
Risks forum entries start-
ing with www.risks.org/
9.61.html#subj2.

http://tinyurl.com/d9j6dy
http://www.risks.org/9.61.html#subj2
http://www.risks.org/9.61.html#subj2

§7.9 VARIATIONS ON BASIC CONTROL STRUCTURES 191

7.9 VARIATIONS ON BASIC CONTROL STRUCTURES

Sequence, loop, conditional: the “structured programming” triad makes up the
basis of structuring control flow. (By now you might have got the message.)
They have some interesting variants, deserving a quick peek.

Since the Böhm-Jacopini theorem tells us that the triad is enough to express
all meaningful algorithms, none of the extensions below is theoretically

necessary; they can all be expressed, in a simple way, as combinations of
sequences, loops and conditionals. But that does not disqualify them as useful
tools for the programmer, since they may give us a more effective mode of
expression in particular cases. Based on this criterion we may divide them into
two categories:

1 Constructs that provide a welcome improvement over the basic ones,
applicable to important practical cases.

2 Mechanisms that you need to know since they are present in some common
programming languages, although no compelling argument exists for using
them.

This difference is partly a matter of opinion, and you will be able to form
your own.

Loop initialization

The from clause of our loop construct is a way to specify the control flow. It is
of course redundant, since instead of

you may combine the “sequence” control structure with the loop, writing

This achieves exactly the same effect. The loop constructs of some
programming languages indeed start at the until or its local equivalent.

from

Initialization_instructions

until condition loop

Body

end

from

-- Nothing here!
until condition loop

Body

end

Initialization_instructions

CONTROL STRUCTURES §7.9192

The rationale for including the from clause in the syntax is that most loop
processes, like most approximation processes, need an initialization, without
which the loop would not work properly. The initialization is not just a bunch of
instructions that happen to be executed just before the loop, but an integral part
of the loop. The loop correctness rules reflect this by assigning a precise role to
the initialization: ensuring the initial validity of the loop invariant prior to
any iterations of the loop body, which must then preserve that invariant.

In languages whose loops do not have a from clause, you will write the
initialization as a separate compound, perhaps with a comment explaining why
it is there.

In Eiffel, this discussion gives us an answer to the question that you may
have been asking yourself: if some operations are executed before a loop, should
they appear in preceding instructions or in the loop’s own from clause?
Depending on the role of those operations, they might be in either place, or split
across the two:

Other forms of loop

Many programming languages propose a form of loop, usually with the
keyword while, highlighting the continuation rather than the exit condition:

The semantics is: evaluate Continuation_condition; if it is false, do nothing; if
it is true, execute Body and start again. This is equivalent, in our style, to using

or until Exit_condit ion where Exit_condit ion is the negation of
Continuation_condition.

The difference is one of viewpoint:

Touch of Methodology:
Where to place pre-loop actions

If an instruction executed before a loop serves to initialize the loop process, in
particular to establish its invariant, put it in the loop’s from clause.
If it is part of a set of operations that simply happen to be executed before the
loop in the algorithm of the enclosing routine, put it before the loop.

while Continuation_condition loop

Body

end

until Continuation_condition

← In particular:
“Correctness: Loop
Invariant Princi-
ple”, page 159.

Warning: Sample syn-
tax; not valid Eiffel.

Valid in Pascal if loop
is replaced by do.

not

§7.9 VARIATIONS ON BASIC CONTROL STRUCTURES 193

� The while form emphasizes execution: it reflects that at run time the loop
will execute its body as long as the Continuation_condition holds.

� The until form emphasizes reasoning about the program, its correctness
and its effect: it reflects that the loop will yield a result that, together with
the invariant property, satisfies Exit_condition.

Another from of loop should not be confused with from… until… loop … end

even though it generally uses the keyword until, but at the end of the construct
rather than the beginning. It typically appears as:

The semantics is: execute Body; then if Exit_condition evaluates to true, stop;
otherwise start again. Here the Body is always executed at least once, whereas
the previous variants (from … until … and while) will not execute it at all if
the exit condition is true (or the continuation condition false) on start.

Expressing the equivalent of a repeat loop in our notation is easy:

This has the disadvantage of repeating the Body, whereas we should generally
try to avoid code replication. We can minimize the replication by turning Body,
if it includes several instructions, into a routine.

Here we reach the realm of opinions. Some people prefer the flexibility of
having two constructs at their disposal: one for loops with zero or more
iterations, another for the one-or-more case. I prefer to have a single loop
construct, with its carefully defined semantics and its simple notion of invariant
(whose counterpart in the repeat form is more complicated). I am willing to pay
the occasional price of repeating a line of code or adding a routine.

The need is indeed occasional; in practice, programs need the zero-or-more
kind of loop more often than the one-or-more variety.

repeat

Body

until

Exit_condition

end

from

Body

until

Exit_condition

loop

Body

end

Warning: Sample syn-
tax; not valid Eiffel.

This form is actually
valid in Pascal.

CONTROL STRUCTURES §7.9194

Yet another common kind of loop, the “for loop”, has a form such as

with the semantics of executing Body, whose instructions generally use i,
successively for all values of i in the given interval: here 1, then 2, and so on up
to 10. The boundary values 1 and 10 are just an example, and generally you can
choose variable values rather than constants.

In the C language and its successors such as C++, the form is

The first element in parentheses is the initialization of i. The second one is the
continuation condition. The last one is the incrementation operation to be
performed after each execution of the Body; the notation i++ means “increase i
by one”. Ignoring the very visible differences of syntactical style — rather than
keywords, C tends to use symbols such as braces, parentheses, semicolons —
this implies a fine degree of control over the behavior at execution that is
characteristic of this style of programming.

Loop forms relying on an explicit index are also known as “do loops” from the
corresponding keyword in Fortran, which had a similar mechanism from early on.

The from construct of this chapter expresses such a loop as:

using the assignment instruction a := b (“Give to a the current value of b”)
studied in detail in a forthcoming chapter.

for i: 1 .. 10 loop

Body

end

for (i=1; i <= 10; i++) {
Body

}

from

i := 1
until

i > n

loop

Body

i := i + 1
end

Warning: Sample syn-
tax; not valid Eiffel.

Warning: This is C or
C++ code, also valid
in Java and C#.
It uses the = symbol (:=
in Eiffel) for assign-
ment; see chapter 9.

→ Appendix D pre-
sents the C language,
based on appendix C
presenting C++.

→ Chapter 9.

§7.9 VARIATIONS ON BASIC CONTROL STRUCTURES 195

This is not the end of the story about the for style of loop. The from … until

… loop equivalent does not do as good a job of immediately showing that the
loop iterates over a certain interval, 1 .. 10 in our example; that property is
buried in the operations on i: initialization, test, incrementation. This is a strong
argument for having a higher-level form of loop that simply prescribes: “apply

this operation to all elements of that set”.

The for style goes in this direction; here “that set” is a contiguous integer
range. We need iterations on more general sets, for example lists such as a metro
line seen as a list of stations; a general mechanism should enable us to ask, in
high-level terms, “apply this operation to all the stations on that line”.

Such a mechanism has a name: iterator. In the discussion of data structures
we will see that it is possible, without new control constructs, to define powerful
iterators applicable to a wide range of object structures.

Multi-branch

Conditional instructions, as we have seen, solve a problem by partitioning the
problem domain into disjoint subsets and using a separate solution for each of
them. The basic if … then … else form uses two subsets; by including elseif

clauses you may add any number of subsets to the partition.

Many programming languages offer another conditional construct for the
case of a partition defined by a set of simple values such as integers or
characters. A simple application is to let the user of an interactive program
select a value from a set of visual alternatives:

Assume the graphics software enables you to get an integer choice that has value
1 to 4 depending on which of the four boxes the user has clicked. To process that
answer you may use a standard conditional:

→ “Iterating on data
structures”, 13.13,
page 431.

Selecting from
a list

English Deutsch Français Italiano

Choose your language:

CONTROL STRUCTURES §7.9196

A slightly more compact notation, “Multi-branch”, is available in this case:

So far the simplification is modest, but you can see the general idea: if all the
conditions used in a Conditional are of the form choice = vali for the same

expression choice and different constant values vali — here 1, 2, 3 and 4 — you

do not have to repeat the “choice =” part; instead, you simply list the constants
in successive when clauses.

This is the Eiffel notation. Pascal and Ada have a similar construct with the
case … of … keywords. C and its successors (C++, Java, C#) have a switch

instruction, not exactly a Multi-branch but a goto with multiple targets
depending on the value of an expression; it can be used to obtain the equivalent
of a Multi-branch.

Multi-branch is only available for expressions of specific types. In Eiffel
you may use it for integers, as in this example, and characters. In both cases:

� There is a simple notation for the selection values (the vali), such as 1 for
an integer and ′A′ for a character.

� The values are ordered. As a consequence it is possible to define intervals:
of integers, such as 1 .. 10; of characters, such as ′A′ .. ′Z′.

if choice = 1 then [12]

… Bring up English interface …
elseif choice = 2 then

…
elseif choice = 4 then

… Bring up Italian interface …
else

… This case should not occur (see below) …
end

inspect [13]

choice

when 1 then

… Bring up English interface …
when 2 then

…
º

when 4 then

… Bring up Italian interface …
else

…
end

See for example the
discussion of the C++
switch in “Control
structures”, page 833.

A few other types are
also supported.

§7.9 VARIATIONS ON BASIC CONTROL STRUCTURES 197

You may use the interval notation in a when clause, as in

In a when clause you can also list several values or several intervals, or a mix,
using commas as separators:

With these possibilities, the notational advantage over writing a plain
Conditional becomes more significant. In addition, as you may have gathered
from the examples, the Multi-branch enforces a disjointness rule: no value may
appear (either explicitly, or as part of an interval) in two different when

branches. Compilers check this, after expanding intervals if any, and will reject
the program in the case of such an ambiguity.

This property sets the Multi-branch further apart from a Conditional: in if c1

then … elseif c2 then … elseif c3 then … end it is possible for two or more of
the conditions c1, c2, c3, … to hold; as the order of evaluation is explicitly
sequential, the Conditional will execute the first branch whose condition is true.
With a Multi-branch at most one of the conditions may hold.

inspect

last_character -- Representing for example a user-entered character
when ′a′ .. ′z′ then

… Operations for a user entry that is a lower-case ASCII letter …
when ′A′ .. ′Z′ then

… Operations for a user entry that is an upper-case ASCII letter …
when ′0′ .. ′9′ then

… Operations for a user entry that is a digit …
else

… Operations for a user entry that is not an ASCII letter or digit …
end

inspect [14]

booking code -- For an airline reservation
when ′A′, ′F′, ′P′, ′R′ then

… Operations for a first-class booking …
when ′C′ .. ′D′, ′I′ .. ′J′, then

… Operations for a business-class booking …
when ′B′, ′H′, ′K′ .. ′N′, ′Q′, ′S′ .. ′W′, ′Y′ then

… Operations for an economy-class booking …
else

… Handle the case of a non-standard booking code …
end

ASCII is the character
subset covering basic
English (no accents or
other diacritics).

Information from
“Travel class” article
on Wikipedia, as of
June 2008.

CONTROL STRUCTURES §7.9198

The different cases of a Conditional are still mutually exclusive, in line with the
“partitioning” strategy recalled at the beginning of this section: the i-th branch of a
Conditional covers the case in which its i-th condition holds and none of the
preceding conditions holds. This leads to disjoint cases, even if the conditions
themselves are not disjoint. With a Multi-branch conditions are disjoint by design.

This semantic difference opens the way to a different implementation for
Multi-branch, which may yield better run-time performance. Because
conditions do not have to be evaluated in sequence, and thanks to the
stored-program principle, a technique known as jump tables is available. More
precisely it is available to compiler writers, so you generally do not need to use
it directly, but it is useful to know the idea.

Assume a simple Multi-branch discriminating between consecutive integers,
such as our first example using the values 1 to 4, extended for more realism to a
larger number n of values. If the compiler implements this in the same way as a
Conditional, the execution will perform successive comparisons: is choice equal
to 1? If not, is it equal to 2? and so on — up to n comparisons in the worst case.

Relying instead on the knowledge that the choice is between adjacent values
in an integer interval, and that the various program elements to be executed for
each case are stored in memory, we may introduce a data structure, the jump
table, to find the right such element directly in each case:

The jump table is a set of contiguous locations in memory. (Soon we will study
the corresponding high-level data structure: the array.) Each one of these
locations contains the address of the code for the corresponding branch of the
inspect, represented in the figure by an arrow pointing to a box denoting that
code. (Again this has a counterpart in higher-level languages: the notion of
reference or pointer.) Then the implementation of the Multi-branch, as
translated into machine code by the compiler, is simple: use the value of the
choice expression to find the corresponding location in the jump table; that
location contains an address; execute the code at that address.

The important property of this scheme is that it does not require successive
tests, only an access to a memory location based on an index (the value of
choice) and an “indirection”, that is to say, branching to an address obtained
from a memory location. Both of these operations take constant time,

← [13], page 196.

Characters are also
handled as integers,
through their codes.

Using a jump

table for

Multi-branch

implementation1 ni

Code for
operation i

choice

The jump table

Code for
operation n

Code for
operation 1

→ “Arrays”, 13.4,
page 380.

→ “Reference assign-
ment”, 9.5, page 252.

→ The choice is
“O (1)” rather than
“O (n)”; see “Estimat-
ing algorithm complex-
ity”, 13.3, page 376.

§7.9 VARIATIONS ON BASIC CONTROL STRUCTURES 199

independent of the number of branches. Previewing techniques that we will
encounter in the study of data structures, we see that the approach involves a
space-time tradeoff: we hope to get faster execution (time) by sacrificing some
memory (space) to store the jump table.

This example makes the jump table technique shine, especially for large n,
since all values are in a contiguous integer interval. For more complex
Multi-branch instructions with scattered values and intervals, such as the
booking code example [14], the advantage over successive tests may not be so
clear; it is the job of the compiler writer to devise the best combination of the
two techniques for every particular case.

Any design for a Multi-branch must decide what to do if the expression’s value
matches none of the constants. Eiffel’s inspect instruction may include, as you
have seen, an else clause taking care of this case. The else clause is optional, as it
is for Conditionals. If it is absent, the two instructions react differently:

� In the execution of a Conditional, if none of the conditions listed in an if or
elseif holds and there is no else clause, the instruction does nothing.

� For an inspect, the instruction is considered erroneous and produces a
run-time error (an exception).

This policy may appear surprising at first; the rationale is that a Multi-branch
explicitly lists a set of expected cases and their desired treatment. If other values
are possible, you should write an else clause to deal with them. Not including this
clause states your expectation that for any execution the expression will always
have one of the listed values, such as 1, 2, 3 and 4 in the first example. If an
execution violates this expectation, it is generally not the right idea to do nothing,
as this can only lead to an incorrect computation and to other problems down the
road. Better catch the anomaly closer to the source by triggering an exception.

This rationale does not apply to the Conditional, which simply performs
certain operations if certain conditions are satisfied, examining the various
conditions in sequence.

Touch of History:
When implementation techniques influence language design

Historically, multi-branch instructions came from the jump table technique
rather than the other way around. Early on, the Fortran language had a
“Computed Goto” instruction of the form GOTO (L1, …, Ln), CHOICE

which branches to the label Li if the integer expression CHOICE has value
i. The switch instruction of C and its successors is similar. Such constructs
directly reflects the jump table technique.
C.A.R. Hoare proposed a goto-free case instruction, included in Wirth’s Algol
W and Pascal languages; it is the origin of modern forms of Multi-branch.

 Hoare (2007)

→ Exceptions are
studied next.

← [13], page 196.

CONTROL STRUCTURES §7.10200

7.10 AN INTRODUCTION TO EXCEPTION HANDLING

Happy families, as everyone knows from the first lines of Anna Karenina, are
all alike; every unhappy family is unhappy in its own way. Happy program
executions all use the same control structures; unhappy program executions are
unhappy for many different reasons, called exceptions.

Exceptions complement the control structures of this chapter by providing
a way to handle special cases without tampering with the default flow of control.
As we will not need exceptions for the data structure and algorithm examples in
this book — indeed they should be reserved for exceptional cases — this section
will only introduce the basic ideas.

You may consider it as supplementary material and skip it (together with the last
remaining section, an appendix) on first reading.

The role of exceptions

What is a “special” or “exceptional” case? We will see that it is possible to define
this notion fairly precisely, but for now let us just rely on the intuition that it is
an event that should not happen. Here are some of the kinds of event that can,
each in its own way, shatter the bliss of a normal program execution:
� A division by zero, or some other arithmetic misfortune.
� An attempt to create an object after running out of memory.
� A void call, which we defined as an attempt to call a feature on an object

that does not exist (x.f where x has a void value).
� A contract violation, if you have enabled the mechanisms for monitoring

preconditions, postconditions and invariants at run time.
� An execution of an instruction that signals an abnormal situation.
Such events will trigger an exception. In all cases but the last it will be a system

exception, caused by external circumstances rather than explicitly by the
program. The last example is a case of programmer-defined exception. This
distinction illustrates the two possible roles of exception handling:
� You can use exception handling as a technique of last resort to handle

unexpected events for which the normal control structures let you down. It
is unrealistic to protect every division by a test that the denominator is not
too close to zero, and every create instruction by a test that there is enough
memory left. It would be even harder to plan for some of the other cases: a
hardware failure or user interruption can happen at any time during
execution. In this role, exceptions allow an entire program unit, for example
a routine, to attempt recovery or at least graceful exit when any one of its
instructions gets interrupted by an unexpected event. “Unexpected” means
that the instruction has not set up its own protection against such events.

� The case of programmer-defined exceptions is different: here exception
handling becomes a control structure, to be added to our previous catalog.

← “The trouble with
void references”,
page 112.

§7.10 AN INTRODUCTION TO EXCEPTION HANDLING 201

A precise framework to discuss failures and exceptions

To devise a proper strategy for using exceptions — in particular, define what is
“normal” and “abnormal” — we may rely on the Design by Contract framework
defined in previous discussions. We know that every routine, independently of
its concrete implementation, has an abstract role defined by:

� A precondition: what it assumes from its callers.

� A postcondition: what it must deliver to its callers at the end of its execution.

� The invariant of the enclosing class: what properties it must maintain for the
common benefit of all the routines of the class.

We may extend this rule to operations other than routines; a floating-point
addition, for example, assumes that the operands are not too large, so that their sum
can be approximately represented on the hardware; and it must in return deliver
such an approximation. A create x instruction assumes that enough memory is
available to allocate space for an object of the type of x; and it must in return update
the memory with one more object, without affecting existing objects.

In a perfect world all families would be happy and all operations would
meet their contracts. In the real world an operation will occasionally be unable
to satisfy its contract. If you are the memory allocator and all available space
has been used up, you cannot perform a create. If you are a routine and have
been programmed incorrectly, you might not always satisfy your postcondition.
These observations are sufficient to yield the precise definitions we seek:

“Failure” is the primary notion and applies to operations of any kind: routines
but also basic operations such as object creation. “Exception” is a derived notion
and applies only to routines: a routine receives an exception if it executes an
operation (a basic operation or a call to another routine) that fails.

Why is an exception not the same as a failure? Often it will cause its
recipient to fail, but not always: this is where exception handling steps in. A
routine may include “rescue code” that will attempt to recover from the
exception and may be able to restart the execution on a better footing.

If a routine does not include exception handling, or includes it but is unable to
recover, the routine execution will fail. In this case it triggers an exception in its
caller, where the same two possibilities arise again: fail or recover. Exceptions, as
a result, propagate up the call chain; if no routine along the way is able to recover,

Definitions: Failure, exception, recipient

A failure is the inability of an operation to fulfill its contract.
An exception is a failure of one of the operations in a routine execution. The
routine is the recipient of the exception.

CONTROL STRUCTURES §7.10202

program execution will stop, an event known as “abnormal termination”. We saw
an example, caused by a “call on void reference” exception.

We now know what failure means for routines: being the recipient of an
exception, and not being able to recover from it.

Retrying

How is it possible for exception handling to “recover” from an exception? The
idea is to have an alternate strategy, executing a new set of instructions if the
original sequence has failed.

Sometimes we might even reapply the same strategy, disregarding a possible
accusation of insanity in the definition attributed to Einstein (“repeating the same
thing and expecting different results”). Insane or not, this method can work in the
case of exceptions caused by intermittent hardware failures.

To illustrate the idea, let us see how it works in the Eiffel exception mechanism,
based on two keywords, rescue and Retry. The first introduces an optional
clause in a routine, to be executed whenever an execution of that routine
becomes the recipient of an exception. The second is a predefined boolean
variable which, if true at the end of a rescue, will cause the body to be executed
again; if Retry is false, the routine will fail. Here is an example:

The assumption is that the call send_to_transmitter (m, i) attempts to send m
through the i-th transmitter. We have count transmitters at our disposal; the ones
with the lowest numbers are the fastest, so we want to try them first, but they
have a higher likelihood of failing.

Like any other local variable of type INTEGER, i is initialized to zero on
routine entry. If an exception occurs, as a result of a failed call to
send_to_transmitter, the routine executes its rescue clause, which increases i by
one. If more transmitters are available, Retry will be set to true; this causes a
new execution of the routine body (the do clause) to try the next transmitter. If,
however, i has passed count, the value of Retry is false and transmit fails,
causing an exception in its caller.

This exception mechanism emphatically separates two roles:

transmit (m: MESSAGE)
-- Transmit m, if possible.

local
i: INTEGER

do
send_to_transmitter (m, i)

rescue
i := i + 1
Retry := (i <= count)

end

← See the figure
“Abnormal termina-
tion”, page 113.

This subsection uses
the concepts of vari-
able and assignment,
introduced in chapter
9; skip it on first read-
ing if you are new
to programming.

Retry is a keyword,
denoting a local vari-
able available in any
routine. Like any bool-
ean variable, it is ini-
tialized to false on
routine entry.

§7.10 AN INTRODUCTION TO EXCEPTION HANDLING 203

E1 The normal routine body — the do clause — does not directly handle
exceptions; it tries to fulfill the contract.

E2 The exception handler — the rescue clause — does not try to fulfill the
contract; it handles exceptions. Like an emergency worker, it is only there to
clean up the rubble and enable normal operation to resume if at all possible.

A routine that fails signals that it is unable to fulfill its contract. Unless it is the
root procedure (the top level in the execution), this does not immediately cause
the entire execution to fail; rather, the routine passes the problem up the chain
in the form of an exception, which some higher-up may be able to handle
through the Retry mechanism.

A consequence is that execution could come back, some time after a routine
call x.r (…) has failed, to the object that was attached to x. A new call on that
object can only work properly if it finds the object in a consistent state — a state
satisfying the class invariant. As part of the exception rules, then, a rescue clause
that leaves Retry false should restore the invariant. This is what “cleaning up
the rubble” means in case E2, as expressed by the following principle:

The principle helps define what will happen if an exception’s recipient does not
include a rescue clause. This is the case with the vast majority of routines; most
programs include only a few rescue clauses located at strategic points high in
the call chain, to enable recovery or graceful termination in the case of
unexpected events. If an exception occurs in any routine with no rescue, the
routine’s execution will fail, passing on the exception to the caller. This is as if
the routine had a rescue clause of the form

where default_rescue is a library routine that by default does nothing. It is good
practice to provide a new version of default_rescue in every class, with a simple
implementation that establishes the class invariant in any available way.

default_rescue is inherited from the top-level class ANY, so that any class can
redefine its implementation. These concepts will be part of the study of inheritance.

Touch of Methodology:
Failure Principle

A routine execution that fails should establish the class invariant, then cause
an exception in its caller if any.

rescue
default_rescue

→ “Starting it all”,
page 130.

→ Chapter 16.

CONTROL STRUCTURES §7.10204

Exception details

In the transmit example, only one kind of exception can arise. Sometimes you
may want to treat different kinds in different ways. All exception handling
mechanisms allow you to access the details of the last exception, such as the
exact exception type. In object-oriented languages such as Eiffel, Java, C# and
C++, this information is accessible through an exception object, created
automatically when an exception occurs.

In Eiffel, the object is available through the query last_exception; its type is
a descendant of the library class EXCEPTION. To trigger a programmer-defined
exception, use the library procedure raise, which creates an exception object.

The try-catch style of exception handling

Rather than the rescue-retry style based on Design by Contract principles, C++
uses a “try-catch” style which Java and C# also adopted with a few differences.
The basic idea (you can see the details in the corresponding language
appendices) is to write any exception-prone code in a try instruction, and
process any resulting exceptions in one of its catch clauses:

with specific processing for exceptions of every expected type. The throw

instruction triggers a programmer-defined exception, creating an exception
object. Unlike a rescue, a catch clause does not just “clear the rubble” but handles
the exceptional case fully. The mechanism does not directly support the “retry”
scheme, but you can program it by enclosing the try block in a loop (or, in C++,
by using a goto if the preceding sections have not weaned you off the habit).

Two views of exceptions

As language mechanisms, try-catch and rescue-retry are in the end equivalent:
each will let you do, more or less conveniently, anything you can do with the
other. Their spirits, however, reflect two different views of exceptions. At one
extreme, exceptions are just another control structure, a generalized goto,
handling any case that departs from the most common ones. At the other end,
exceptions only address cases, particularly system errors, that no other
technique can handle. There are also solutions in-between these extremes; as
you start writing complex software and addressing its error-processing needs,
you will find the style that suits you best.

try
… Process the most common case, possibly triggering an exception …

catch (e : T1, T2)
… Process cases resulting from an exception of type T1 or T2 …

catch (e : T3, T4, T5)
… Process cases resulting from an exception of type T3, T4 or T5 …

…
end

→ last_exception is
also a feature inherited
from class ANY; see
“Overall inheritance
structure”, 16.10,
page 586.

→ Java: “Exception
handling”, page 758;
C#: “Exception han-
dling”, page 790;
C++: “Exception han-
dling”, page 822.

→ This emulation is the
topic of an exercise:
“Emulating retry in a
try-catch language”,
7-E.8, page 210.

→ The exercise cited
above explores emula-
tion in one direction, for
the reverse emulation,
see the exercise “Emu-
lating try-catch in a res-
cue-retry language”,
7-E.9, page 210.

§7.11 APPENDIX: AN EXAMPLE OF GOTO REMOVAL 205

7.11 APPENDIX: AN EXAMPLE OF GOTO REMOVAL

This last section is an opportunity to practice goto removal on a specific
example, reasonably simple but not trivial. This is supplementary material,
which you may skip on first reading, although a section (also supplementary) of
the chapter on recursion relies on it.

It uses the concepts of variable and assignment which we have not formally
studied yet; so if this book is your first encounter with programming you should
come back here after reading the corresponding chapter.

If you do not want to wait just make sure you understand the following, which is all
you need of chapter 9 material for the moment: a variable is a program entity that
can take on different values during execution; attributes are variables, but you may
also use local variables meaningful only during the execution of a routine. The way
for a variable x to receive a new value, given by an expression e, is through the
assignment instruction x := e.

Our target for goto removal is not an artificial example but a scheme that we will
encounter in the discussion of the “Tower of Hanoi” program. It already
includes a couple of higher-level if … then …else … end structures, which in a
more elementary version would be represented in terms of test … goto …
instructions. It does not matter for the present discussion what the basic
operations — instructions I0, I1, I2, I3 and conditions C0, C1, C2 — are about,
as long as we know that they do not themselves include any branching.

The arrows on the right show the control structure; with its intertwined loops, it
looks rather messy — another spaghetti bowl — and hard to modularize into a
goto-less structure.

I0

start: if C0 then

I1

goto start

end

after_2: if C1 then

I3

if C2 then
goto after_2

else

goto after_1

end

end

→ Chapter 14.

→ Chapter 9.

→ “Simplifying the
iterative version”,
page 494.

after_1: I2

goto start

CONTROL STRUCTURES §7.11206

Note, however, that this intertwining is an artifact of the order of
instructions (coming from the original recursive code given in the later
discussion) and that we can easily get rid of it: since the whole after_1 block,
highlighted, is only reachable through a goto (the instruction that precedes it in
the code being itself a goto targeting another address), we may move it to any
place we like outside of the other blocks, for example to the end:

The spaghetti have been untangled: we see three loops with proper nesting.
There remains the goto after_1, but since it branches to the immediately
following instruction it is superfluous; we may just include the whole after_1

block in the else clause. So we can rewrite the entire structure without any labels
or gotos, using instead two loops nested in another:

Since two of the loops have non-elementary exit conditions (the second inner
loop needs not C1 before its first iteration, then not C1 and not C2), this form
of the program uses boolean variables over and stop to represent the conditions.
This is a standard technique in goto elimination.

I0

start: if C0 then

I1

goto start
end

after_2: if C1 then

I3

if C2 then
goto after_2

else goto after_1 end

end

from I0 until over loop -- Formerly “start” position
from until not C0 loop

I1

end

from stop := not C1 until stop loop -- Formerly “after_2” position
I3

stop := ((not C1) or (not C2))
end

over := ((not C1) and C2)
if not over then I2 end -- Formerly “after_1 position”

end

after_1: I2

goto start

over is initialized to
False as usual through
default initialization.

§7.12 FURTHER READING 207

7.12 FURTHER READING

George Polya: How to Solve It, 2nd edition; Princeton University Press, 1957.

The acknowledged reference on becoming better at mathematical problem
solving. Do not be put off by the publication date, this book is still a
best-seller in its paperback edition.

Edsger W. Dijkstra: Goto Statement Considered Harmful, Letter to the Editor,
in Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.
Available online at www.acm.org/classics/oct95/.

A famous short paper that started the programming methodology
revolution of the seventies and Structured Programming. Explains why the
“Goto” is inappropriate for good programming but, even more
importantly, illuminates the process of program construction, concisely
(two pages) and effectively. Decades later, still a must-read.

Ole-Johan Dahl, Edsger W. Dijkstra, C.A.R Hoare: Structured Programming,
Academic Press, 1972.

A classic. Consists of three monographs, the first of which, Dijkstra’s
Notes on Structured Programming is the most famous; but the other two
are just as interesting: Hoare’s cogent description of the complementary
need for data structuring, and Dahl’s presentation (with Hoare) of the
Simula 67 concepts now known as object-oriented programming. Few
software books have had such an influence on the history of the field.

C.A.R. Hoare and D.C.S Allison: Incomputability, in ACM Computing Surveys,
vol. 4, no. 3, September 1972, pages 169-178. Available online (with
subscription) at portal.acm.org/citation.cfm?id=356606.

Short, simple, clear and thought-provoking explanation of why certain
functions — such as one to find out if a program terminates — can never
be programmed on a computer.

7.13 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Control structures define the sequencing of actions in program execution.

� Control structures can be viewed as problem-solving techniques, reducing
a possibly complex problem to a set of simpler problems.

� The main control structures are the compound, prescribing sequential
execution of a specified list of actions; the conditional, prescribing execution
of one among a specified list of actions, based on certain conditions; and the
loop, prescribing repeated execution of a specified action.

← “Goto harmful?”,
page 185

← “Loop termination
and the halting prob-
lem”, page 161

http://portal.acm.org/citation.cfm?id=356606
http://www.acm.org/classics/oct95/

CONTROL STRUCTURES §7-E208

� Correctness concerns are central to the proper use of control structures. A
loop is characterized by an invariant, stating a condition maintained
throughout, and a variant, an integer value that decreases on each iteration,
ensuring termination.

� Lower-level structures such as the goto are important at the machine level
but spurned in modern programming languages. Any program using them
has an equivalent expressed in terms of the standard control structures.

New vocabulary

7-E EXERCISES

7-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

7-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

7-E.3 Loops in machine language

Consider a loop of the form

Algorithm Branching instruction Compound

Concurrent Conditional Conditional branching

Control structure Cursor Flowchart

Indirection Iterate Iteration of a loop

Jump table Loop Loop invariant

Loop variant Overspecification Parallel

Preserve Sequence Space-time tradeoff

Unconditional branching

from

Compound_1

until

i = n

loop

Compound_2

end

← Exercise “Concept
map”, 6-E.2, page 138.

§7-E EXERCISES 209

Using the machine instructions BR and BEQ assumed in the discussion of
branching, write the corresponding machine-language code.

7-E.4 Flowchart for a conditional

Following the conventions of the flowchart for a loop, draw a flowchart for the
conditional instruction if Condition then Compound_1 else Compound_2 end.

7-E.5 Böhm-Jacopini in practice

Consider the following goto-based program extract relying on conditional goto

instructions:

1 Draw the corresponding flowchart.

2 Propose a program extract that has exactly the same run-time effect but uses
only compound, loop and conditional as control structures, without any
goto instruction.

7-E.6 Forms of loop

Considering variants of the basic form of loop, show how to express:

1 A repeat … until … loop as a while …loop.

2 A while … loop as a repeat … until loop.

3 The basic form (from … until … as in Eiffel) as a while … loop.

4 The basic form as a repeat … until … loop.

7-E.7 Emulating the variant

The loop variant provides the basis for demonstrating that a loop terminates.
Assume that the loop syntax did not include a variant clause, but still had
invariant. Using the example of the loop that computes the maximum of a set
of values, and adapting the reasoning used for the variant, show how to
demonstrate that a loop terminates. (Hint: introduce a variable to keep track of
the previous value of the variant expression, and rely on the invariant.)

Instruction_1

test c1 goto t3
t2 Instruction_2

t3 Instruction_3

test c2 goto t2
Instruction_4

← “The lower level:
branching instruc-
tions”, 7.7, page 181.

← “Flowchart for a
loop”, page 184.

← “Other forms of
loop”, page 192.

← Page 163.

CONTROL STRUCTURES §7-E210

7-E.8 Emulating retry in a try-catch language

Consider the rescue-retry scheme for handling exception cases, such as the
transmit example, that may cause zero to count re-executions of the main
algorithm. Show how to program it in a programming language offering an
exception handling mechanism of the try-catch style.

You may use the specific try-catch construct of any of the languages
discussed in appendices: Java, C# or C++.

7-E.9 Emulating try-catch in a rescue-retry language

Consider a try-catch style for exception handling, as sketched in this chapter.
Show how to emulate it, or one of its specific variants (such as the Java form
with a finally clause) using Eiffel’s rescue-retry mechanism.

To find out the type of the last exception, use last_exception.type. The
notation {T} denotes an object representing the type T, which can be an
exception type.

← The code of transmit
appears on page 202.

→ Java: “Exception
handling”, page 758;
C#: “Exception han-
dling”, page 790;
C++: “Exception han-
dling”, page 822.

← “The try-catch style
of exception han-
dling”, page 204.

8

Routines, functional abstraction and

information hiding

The control structures of the previous chapter — compound, loop, conditional
and their variants — give us basic mechanisms for scheduling instructions. If
they were our only tools, we would always have to express the flow of control
in full detail. For complex programs, the depth of nesting would soon
defy understanding.

To keep that complexity under control, we resort to another time-honored
problem-solving technique: identify subproblems. A subproblem is simply a
problem whose solution may help solve other problems. If we are able to solve
the subproblem and turn the solution into a control structure element, simple or
complex, we can give that solution a name and use it through that name. This is
known as functional abstraction; the corresponding programming mechanism
is known as the routine.

8.1 BOTTOM-UP AND TOP-DOWN REASONING

Why can it be useful to identify subproblems? Two complementary answers
suggest themselves:

� In solving a problem, we may identify a subproblem to which we already
know a solution. Then we will just plug that solution back into the solution
of the larger problem. This is a bottom-up use of subproblems: work from
what we already know to build solutions to bigger problems. Such a style of
reasoning is, for example, fundamental in physics and engineering: an
engineer will analyze an electrical system and model it in terms of some
differential equation of a known type, then use known techniques to solve
that equation and deduce properties of the system.

� In other cases we realize that part of a problem by itself constitutes a
problem of its own — a subproblem — which we hope will be easier to
solve than the overall problem. This insight may be useful even if we do not
already have a solution to the subproblem, because it enables us to deal
separately with various parts of the task. You may assume that there is a
solution to the subproblem and use it to solve the larger problem; once you

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.1212

have that larger solution, you will return to the subproblem and take care of
its own solution. This is a top-down use of subproblems: work on the
overall goal, and divide it into a set of smaller goals, to be solved separately.
Top-down development is also known as “Divide and conquer” (or “Divide
and rule”). We have already encountered a top-down technique:
pseudocode, which lets us refer in an informal way to program parts that we
intend to expand later through a refinement process.

Whether in a bottom-up or top-down spirit, the use of subproblems is a form of
abstraction: ignore the specifics of a particular situation to recognize it as an
instance of a general scheme.

In programming, the corresponding construct, capturing the solution to a
subproblem, is known as a routine.

Routines appear in both bottom-up and top-down development. In their
bottom-up role, they support reuse: you can take advantage, for your program,
of some algorithmic scheme that you or someone else has previously
encountered and turned into a routine. In the top-down mode, you can use calls
to routines that represent well-identified elements of the processing, and
postpone the writing of the routines themselves. This is similar to using
pseudocode, but more structured since you have to decide on a precise name and
interface for the routine.

Touch of Terminology:
Routines by any other name

Routines have several other names. You may encounter the synonyms
subprogram (suitably reminiscent of “subproblem”); also subroutine, out of
fashion except for the Fortran programming language.
Routines may return a result, and are then called functions; a routine that does
not return a result is called a procedure. Both of these terms are, however,
sometimes used in reference to routines of the general kind; in particular, C
and C-based languages use “function” for all routines.
As if this were not enough, you will also notice, for object-oriented languages,
the word method, which means the same thing as “routine” but introduces
confusions with the usual sense of “method”, as in “he writes his methods

without any method ”, or “there is madness to her methods”.

← Page 108.

← “Definition:
Pseudocode”, page 108.

§8.2 ROUTINES AS FEATURES 213

8.2 ROUTINES AS FEATURES

A routine captures an algorithm that is applicable to all instances of a class. As
such it is one of the two kinds of feature of a class. The other kind, to be studied
in the next chapter, is the attribute.

Like any other feature, a routine has:

� A declaration, which appears in the text of the feature’s class, and
describes all the properties of the routine; the declaration of a routine is also
called its implementation.

� An interface, which retains only a subset of the properties of the routine,
those interesting to clients that will use the feature; you can see routine
interfaces in the Contract View of a class.

We have already encountered many routines, even though we knew them only
as features. For example:

� Our very first feature, explore in class PREVIEW, was already a routine. So
is the feature traverse that you have been asked to write, under successive
variants, in the previous chapter.

� In studying how to use a class through its interface, we relied on a number
of features from class STATION, some of which were routines, such as the
command remove_all_segments and the query i_th. (Some others, such as
south_end and count, are not routines but attributes.)

In the first case you had to write the entire routine declaration, but in the second
case you only knew the routines through their interfaces, for example:

You can see the full routine text by looking up class STATION. You will now
learn how to write your own routine declarations.

remove_all_segments

-- Remove all stations except the South-West end.

← The definition of
“feature” was on
page 29.

← We studied Con-
tract Views in “What
characterizes a metro
line”, page 53.

← “A class text”, 2.1,
page 15.

← “Commands”, 4.5,
page 59 and subse-
quent sections.

ensure

only_one_left: count = 1
both_ends_same: south_end = north_end

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.3214

8.3 ENCAPSULATING A FUNCTIONAL ABSTRACTION

The last example of our study of conditionals provides a good case for defining
a “functional abstraction” in the form of a routine. The overall loop, appearing
in the routine traverse of our example class ROUTES, read:

What’s disturbing is not just the repetition, but the lack of recognition that the
operations within the conditional all apply to the same object: the object denoted
by Line8.item. This property will stand out much more clearly if we abstract the
conditional structure into a routine. The loop then becomes:

relying on a new routine show_station whose declaration will appear in the
same class ROUTES:

from … invariant … variant … until … loop [1]

Line8.forth

end

from … invariant … variant … until … loop [2]

Line8.forth

end

show_station (s: STATION)
-- Highlight s in a form adapted to its status.

require

station_exists: s /= Void

do

end

← Originally on page
180, repeated here.

if Line8.item .is_exchange then

show_blinking_spot (Line8.item .location)
elseif Line8.item.is_railway_connection then

show_big_red_spot (Line8.item .location)
else

show_spot (Line8.item .location)
end

show_station (Line8.item)

if s.is_exchange then

show_blinking_spot (s.location)
elseif s.is_railway_connection then

show_big_blue_spot (s.location)
else

show_spot (s.location)
end

§8.4 ANATOMY OF A ROUTINE DECLARATION 215

8.4 ANATOMY OF A ROUTINE DECLARATION

The declaration of show_station shows the typical form of a routine. Many of
its elements are already familiar.

A routine is a software element denoting a certain set of operations to be
performed on behalf of other software elements, said to call the routine. So far we
only have one caller to show_station: our example loop [2], where the call reads

Such a call usually appears in a routine; here we have assumed that the call is in
the routine traverse of the same class ROUTES. Routine traverse is said to be a
caller of routine show_station.

If a routine of a class C is a caller of a routine of a class S, this makes C a
client of S. Here the presence of the call makes ROUTES its own client.

In the overall system, a routine may be the target of zero, one or more calls,
but it always has one declaration, which defines the routine’s algorithm and
appears in a class. Let us analyze the declaration of show_station as it appears
on the previous page. The first line

gives the name of the routine, as well as its signature: the list of its formal

arguments, if any, and their types. Formal arguments represent values on which
the routine will operate; each caller will pass these values through actual

arguments, one for each formal argument.

An actual argument is an expression; its type must match the type of the
corresponding formal argument.

The original definition of “argument” covered both formal and actual arguments.

The signature of show_station involves one formal argument, s, of type
STATION; in the example call in [2], the actual argument is Line8.item. The type
of this expression is indeed STATION, since the query item of class LINE returns
a station. If the types were incompatible, EiffelStudio would produce an error
message when you attempt to compile the system:

show_station (Line8.item)

show_station (s: STATION)

It could also appear in
a contract clause.

← “Client” was
defined on page 47.

Strictly speaking, this
is the argument signa-
ture; we will see (page
220) that the signature
of a function also
includes a result type.

← “Features with argu-
ments”, 2.4, page 30.

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.4216

In this example we have passed an actual argument of some arbitrary type
WRONG_TYPE to a routine show_station that has a formal argument of type
METRO_STATION. The error message explains what went wrong.

Within the routine show_station, we use the formal argument s as an
expression denoting a station. The operations performed on s will, in any call,
apply to the corresponding actual argument; in the example call, this is the
station denoted by Line8.item.

Not all routines have arguments; remove_all_segments was an example without any.

The remainder of the declara t ion of show_stat ion contains the
following elements:

The actual argument

Error message

with context
information

Type of the formal argument

Type of the actual argument

← Page 214.

§8.4 ANATOMY OF A ROUTINE DECLARATION 217

� Like any feature, a routine should have a header comment explaining what
it does. Here it is -- Highlight s in a form adapted to its status. Good practice
for header comments requires mentioning all the formal arguments (here s)
by name, so that client readers know the role of each, and not including
redundant information (for example we say just “s”, not “the station s”,
since the previous line declares s: STATION).

� A precondition, here s /= Void, states that we only want to work on actual
arguments that are attached (not void).

� The do clause is called the body of the routine. It consists of a sequence of
instructions — a Compound — defining the algorithm that the routine
will execute.

� There could also be a postcondition, although none appears here.

Interface vs implementation

EiffelStudio lets you see both the implementation and the interface of a routine
such as show_station:

� The implementation (declaration) appears in the default view for the class,
known as the “Text View”. It is the full declaration of the routine as we have
seen it.

� The interface appears if you request the “Contract View” by clicking the
corresponding button. The result, of a form familiar to us from our earlier
study of interfaces of features of class LINE, contains just:

The interface of a routine is intended for programmers of client classes; of the
routine’s elements listed above, it retains the signature, header comment,
precondition and postcondition; but it discards the body, which describes how
the routine is implemented. The interface of the routine should only describe
what the routine does, not how it does it. The signature and contracts,
complemented by the natural-language explanation that the header comment
provides, suffice to express this “what”.

The Contract View also differs from the Text View by omitting some syntactical
details, such as the end keyword, that are necessary to avoid ambiguity in programs
but not required in interface descriptions.

show_station (s: STATION)
-- Highlight s in a form adapted to its status.

require

station_exists: s /= Void

Or “Basic Text View”.

← “What character-
izes a metro line”,
page 53.

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.5218

8.5 INFORMATION HIDING

The technique of presenting client programmers with an interface that includes
only a subset of the properties of a software element — here a routine, but more
generally a class or any other module — is called information hiding.

Information hiding is one of the key tools enabling you to build large
software systems and cope with their complexity: provide the users of each
element with just what they need to use it.

In spite of its name, information hiding is not about preventing client
programmers from seeing the implementation of the mechanisms they use
(classes, routines and other features): since Traffic and other Eiffel libraries are
available in source form, you can use EiffelStudio to peek into the
implementations of all the features of LINE and other Traffic classes. The actual
purpose of information hiding is the converse: not requiring client programmers
to look into the implementation of a software element, when all they need is to
reuse it (as opposed, for example, to modifying or extending it).

If you had to read the full text of every routine you want to reuse, the amount
of information to digest would quickly become enormous. Information hiding
enables you to use software by reading only a small part of that information. It
is our best ally in the programmer’s constant effort to avoid getting swallowed
by complexity.

Not all libraries are available in source form; a library supplier may elect to provide
interfaces only, usually to preserve proprietary know-how contained in the
implementations. Whether to make the implementation available is a commercial or
political decision; information hiding is a technical device, unrelated to that decision,
for protecting programmers against having to learn heaps of irrelevant details.

Information hiding is a weapon not only against complexity but also against
instability. One of the main characteristics of programs as developed in practice
is the amount of change they undergo; there is a reason the field is called software.
Any change to a software element has the potential to affect every one of its
clients, triggering a chain reaction of changes throughout the system. But if the
elements have been well designed, with good choices of what goes into the
interface and what remains an implementation decision, many changes will touch
the implementation only. Clients will not be affected, since they only rely on the
interface. This is an invaluable tool for keeping software projects under control.

Advanced object-oriented techniques of inheritance and dynamic binding
will enable us to take information hiding one step further by letting clients
ignore not only the internal details of operations they apply to objects, but also
the exact types of these objects. We are not there yet; for now you should use
EiffelStudio to discover what information hiding means concretely:

→ “Beyond informa-
tion hiding”, 16.7,
page 573.

§8.6 PROCEDURES VS FUNCTIONS 219

8.6 PROCEDURES VS FUNCTIONS

There are two kinds of routine:

� A procedure performs certain actions; a call to a procedure is, in the calling
routine, an instruction. The preceding examples, such as traverse and
show_station, are procedures. So are creation procedures, studied in an
earlier chapter and serving to initialize class instances on creation.

� A function computes a certain value (usually by performing actions too); a
call to a function is, in the caller, an expression. We have not seen any
function implementation yet, but several of the features that we used
through their interfaces, such as i_th in class LINE, are functions.

Programming time!

Experimenting with EiffelStudio and information hiding

When you hit the “Compile” button, EiffelStudio does not recompile the entire
system, which could take too long. It only recompiles the classes that you have
modified since the last compilation, plus any others that depend on them,
directly or indirectly. This is known as incremental compilation.
EiffelStudio’s incremental compilation is automatic: you do not need to list
the modified classes; EiffelStudio will detect them automatically, and will find
out what other classes depend on them.
In this dependency analysis, information hiding is essential: if you change
only the implementation of a class, EiffelStudio will spot this, and will not
recompile its clients. If your change affects the interface, EiffelStudio will
recompile the clients. You may observe this now as follows:
1 Add a routine, say r, to LINE. It does not matter what the routine does,

but give it an argument and a precondition.
2 In the routine traverse from ROUTES, add a call to r. Make sure the call

is valid: it must use an argument of the right type.
3 Recompile the system. Notice what classes are being compiled. (To see

the compilation messages, select the “Output” tab at the bottom.)
4 Change an element of the body of r, without touching the interface.

Recompile, and observe what classes the compilation processes.
5 Now add a precondition clause to r ; this changes its interface.

Recompile, and notice how the compilation processes ROUTES.
6 To bring back the system to its previous state, remove r from LINE and

the call to r from traverse. Recompile and execute to check that
everything is back to what it was.

→ See also “The melt-
ing ice technology”,
page 357.

→ “Creation proce-
dures”, 6.5, page 122.

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.7220

The difference is closely related to one we already know:

� A procedure implements a command feature.

� A function implements a query feature.

Commands can only be implemented by procedures, but for queries the next chapter
will describe another possible implementation: through an attribute.

We saw how the signature of a procedure is characterized by a list of formal
arguments types, as in the beginning of the declaration of show_station:

The signature of a function must, in addition, list the type of the value to be
returned by the function. We saw this in the interface for functions such as i_th

in LINE, which returns a result of type STATION, as expressed by the beginning
of its declaration:

The rest of the declaration has the same elements as for a procedure: header
comment, pre- and postcondition, do clause (body). In the body and the
postcondition, we will need a name for the value to be returned by the function;
it will be the reserved word Result, introduced in the next chapter.

8.7 FUNCTIONAL ABSTRACTION

Routines are the basic algorithmic blocks making up our classes and, through
them, our systems.

Use routines as an algorithmic abstraction mechanism. To abstract means
to concentrate on the essence rather than the circumstances, on the general
concept rather than its instances. Abstracting almost always implies naming:
once you have isolated a useful abstraction, you give it a name for ease of future
reference. In programming we encounter two fundamental forms of abstraction:

� Data abstraction, which gives us the notion of class to describe the
abstraction behind our program’s data — objects.

� Algorithm abstraction, also called functional abstraction, to describe the
abstractions behind our algorithms.

In “functional abstraction” (the accepted term for this concept), the word “function”
is taken in opposition to “data”, rather than in its precise technical meaning defined
above. “Routine abstraction” would be more accurate.

To keep your systems manageable even if their algorithms involve many details,
you may rely on routines. Both the bottom-up and top-down views are attractive:

show_station (s: STATION)

i_th (i: INTEGER)

← “Features, com-
mands and queries”,
page 26.

← “Attributes”, 9.2,
page 238.

: STATION

§8.7 FUNCTIONAL ABSTRACTION 221

� When you have written an algorithmic element that covers a significant
processing step, turning it into a routine enables you to give it a name and a
precise specification (signature, header comment and contract); this makes
it a well-defined software element and, among other benefits, facilitates the
later reuse of the element. This is the bottom-up view.

� In the top-down view, you may use a routine to capture a step of the
processing that you have identified while building a larger algorithm, but for
which you have not yet written the details — and perhaps do not want to
write the details yet as they would detract you from your main goal.

In this second role, routines are often a superior alternative to pseudocode. We
saw the use of pseudocode, in a top-down development process, to capture
elements of the algorithm that you don’t yet want to develop. The example was
a pseudocode comment

which we could replace by a call to a placeholder routine, here a procedure
create_fancy_line. For the system to compile, the routine must exist, even if it
does nothing:

Note the postcondition stating part of the contract: the routine must create an
object for fancy_line.

-- “Create line and fill in its stations”

create_fancy_line

-- Create fancy_line and fill in its stations
do

-- To be completed (your name, today’s date)
ensure

line_exists: fancy_line /= Void

end

Touch of Methodology:
Placeholder routines

If you use a placeholder routine, always include information about your name

and today’s date, as well as a full header comment and any other explanation
of what you intend to do, so that the purpose does not get lost if some time
passes before the implementation gets written.

← “Overall setup”,
6.1, page 108.

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.8222

8.8 USING ROUTINES

Routines — algorithmic abstraction — are one of your best tools in taming the
beast of complexity. Use them generously to capture meaningful algorithmic
elements. Use them bottom-up, to prepare existing elements for later reuse; use
them top-down, to prepare for elements that you know you will need but do not
yet want to write in full.

Programmers concerned with efficiency, in particular execution speed, are
sometimes wary of using too many routines, since the machinery of calling a
routine almost always means that a call to a routine takes longer than just
executing the routine’s instructions. A good programmer will, of course, pay
attention to efficiency, as to all other qualities of software. But this is seldom a
reason to limit the use of routines, for three reasons:
� Modern computer architectures have drastically decreased the time penalty

of routine calls.
� Except in the case of a routine call appearing in the body of an “inner loop”

executed many times, any remaining penalty will remain proportionally
small, at least for a program performing extensive computations. (If the
program does not perform extensive computation, all this does not matter
anyway.) There will typically be only a few such inner loops, making up a
small part of the program, even if they account for a substantial proportion
of its execution time. Then you should only worry about these elements, once
you have identified them. The rest of the system, where such small-scale
performance considerations have little effect, should be left alone.

� For those program elements where it does matter to avoid the price of a
routine call, you do not always have to do the job yourself. The EiffelStudio
compiler will, in its optimized (“finalization”) mode, perform automatic
routine inlining. This means that it will expand your routine calls to be
executed as if the instructions had been written directly — “in line” — at
the place of each call. The advantage of this approach is that you do not need
to damage the structure of your program and risk introducing bugs. The
inlining process is automatic, although you may change some parameters
such as the largest size of routines to be inlined.
Studying algorithm complexity will give us a better framework to talk about
efficiency, emphasizing overall performance as a function of the size of the data set.

Also, ask yourself if the routine needs a contract (precondition and
postcondition); if so, write it from the start, in the placeholder version. Such a
contract is part of the routine’s specification, helping you ensure that you
understand what you need it for, and will provide precious guidance when the
time comes to implement it.

→ On general issues
of software quality, see
“Components of qual-
ity”, 19.3, page 705.

→ “The melting ice
technology”, page 357.

← “Estimating algo-
rithm complexity”,
13.3, page 376.

§8.9 AN APPLICATION: PROVING THE UNDECIDABILITY OF THE HALTING PROBLEM 223

8.9 AN APPLICATION: PROVING THE UNDECIDABILITY OF THE HALTING PROBLEM

An earlier comment stated that it is impossible to devise an algorithm (“effective
procedure”) to determine whether an arbitrary program will halt. Let us prove
this result, under the observation that if such a general algorithm existed we
could write an Eiffel routine that implements it.

Specifically, we would be able to write a function

The argument, root_directory, is the name of a directory assumed to contain the
system’s “ECF”, that is to say the description of the system’s setup, giving
access to all its classes and specifying the root class and the root creation
procedure. We assume for simplicity that the ECF will be a file called
system.ecf in that directory. Being able to solve the Halting Problem then
implies that we can complete the “appropriate algorithm” so that terminates (r)
will return True if and only if there is indeed such a file in r and execution of
the corresponding system will terminate.

You may change the conventions or adapt them to another programming language;
instead of an ECF, the argument could simply be the name of a file containing the
texts of all classes in the system, plus the names of the root class and root procedure.
What matters is that it is possible, through arguments to the function terminates, to
pass information allowing the function to obtain the text of the system. The
function’s job is then to decide (as in “Decision Problem”, Entscheidungsproblem
in German) whether the system terminates.

All this assumes that the system needs no run-time input. A more general form
of the function would handle possible input:

We stay with the first form, but the reasoning applies just as well to the second one.

That reasoning is simple. If we had an implementation of terminates, we
could use it to write a one-class system with the following root procedure:

terminates (root_directory: STRING): BOOLEAN

-- Does execution of the system available in root_directory,
-- if any, terminate?

do

… An appropriate algorithm …
end

terminates_on_input (root_directory: STRING;): BOOLEAN

-- Does execution of the system available in root_directory,
-- if any, terminate when applied to input?

do

… An appropriate algorithm …
end

← “Touch of Theory:
The Halting Problem
and undecidability”,
page 164.

An ECF (Eiffel Control
File) is generated auto-
matically from the set-
tings you select in
EiffelStudio. The format
is XML.

input: STRING

ROUTINES, FUNCTIONAL ABSTRACTION AND INFORMATION HIDING §8.10224

C:\your_project is just an arbitrary directory name; it is a Windows-style
directory (folder) name, so on another operating system you would use
something else, for example /usr/home/your_project on Unix. What matters is
that we use the name of the actual directory where we will store the ECF file for
our “paradox” system itself. Then the call to terminates decides whether that
system terminates. Now consider what the creation procedure does:

� If the function terminates determines by analysis of the system’s program
text that its execution will not terminate, the loop’s exit condition
not terminates ("C:\your_project") will already hold the first time around,
and the loop will terminate immediately; so will the entire system since it
does nothing else. This is a contradiction.

� If the function determines that execution will terminate, the exit condition
will never be true, so the (empty) loop body will execute forever, and the
system will not terminate — contradiction again.

This shows that it is impossible to write a general-purpose terminates function
that would ascertain termination for an arbitrary program.

We will see a more concise version of the argument, using recursion, in a later
chapter; an exercise will ask you to devise an even shorter one, ignoring files and
directories, using agents.

8.10 FURTHER READING

David Parnas: A Technique for Software Specification with Examples, in
Communications of the ACM, vol. 15, no. 5, 1972, pages 330-336, and On the

Criteria to be Used in Decomposing Systems into Modules, ibid, vol. 15, no. 12,
1972, pages 1053-1058.

Two classic papers, which introduced the notion of information hiding.
Still excellent reading.

paradox

-- Terminate if and only if not.
do

from

until

not terminates ("C:\your_project")
loop

end

end

Note empty loop body.

→ “From loops to
recursion”, 14.6, page
471; and “The Halting
Problem with agents”,
17-E.8, page 661.

Parnas (2007)

§8.11 KEY CONCEPTS LEARNED IN THIS CHAPTER 225

8.11 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Routines provide functional abstraction: the ability to give a name to a
possibly parameterized algorithm.

� Routines may be used top-down, as placeholders for algorithms to be
refined later in the design process, or bottom-up, to capture useful
algorithms for reuse in several projects.

� In an object-oriented context, routines are one of the kinds of feature. They
themselves have two categories: functions, which return a result, and
procedures, which do not.

� Routines may have arguments, enabling callers to pass specific information
to every call.

� A routine has a name, a signature defining the types of arguments and result
if any, a contract, and a body describing its algorithm.

� The name, signature and contract define the interface of the routine, as
available to authors of client modules.

� Information hiding is the mechanism separating interface information from
implementation details, and enabling clients to use routines and other
software elements on the basis of the interface only.

� Information hiding facilitates the writing of large systems, the reuse of
software elements, and the smooth evolution of software.

New vocabulary

8-E EXERCISES

8-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

8-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

Actual argument Body Data abstraction

Declaration Formal argument Function

Functional abstraction Implementation Incremental compilation

Information hiding Placeholder routine Procedure

Routine Signature

← Exercise “Concept
map”, 7-E.2, page 208.

9

Variables, assignment and

references

Programs use names or “entities”, to denote run-time values. A distinctive

property of most programs is that some of their entities, called “variable

entities” or just variables, can denote different successive values during

execution. The previous examples have implicitly relied on such changes of

values, but we have not yet seen the basic change operation, assignment.

It is a fascinating concept, deceptively simple when you first see it, and full

of surprising consequences. We will study it in this chapter together with a

number of related techniques, in particular references, which define the

run-time object structure.

Math is static, software is dynamic

The ability of a program to change its own environment is the most significant
difference between software construction and mathematical reasoning, two
activities that are similar in so many other respects.

Mathematics uses transformations, but they are mechanisms to describe
certain values in terms of others, not to change any value that existed before.
If I write “Let y = cos (x)”, I am not changing or even creating anything, just
giving a name to a value, the cosine of x, that existed all along, whether or not
anyone had bothered to talk about it. In particular I am not changing x.

Even if after talking about this y I want to contrast the properties of the sine
and cosine functions, and continue “Let’s now assume instead that y is sin (x),
then…”, I am reusing the name y for convenience but talking about another
mathematical object. If in describing a sequence I say “Let f1 and f2 be 1, and

fi+2 = fi + fi+1 for every i > 0” I am speaking of an infinite sequence of values,

not a value that changes as i increases.

→ The Fibonacci
sequence: “Recur-
sively defined algo-
rithms and routines”,
page 438.

VARIABLES, ASSIGNMENT AND REFERENCES §9.1228

Not everyone accepts this distinction. Functional programming, and the supporting
“functional languages”, bring software construction closer to mathematical
reasoning by eliminating or strictly limiting the amount of change, or side effects,
that programs can explicitly perform. The basic construct is the function, in the
mathematical sense, without side effects. Most programming languages are
imperative (they allow side effects). A later chapter explores this issue further and
presents some of the essential concepts of functional languages.

Eiffel belongs to the class of imperative languages, although the Command-Query
Separation Principle confines side effects to procedures, facili tating
mathematical-like reasoning about programs.

9.1 ASSIGNMENT

Assignment is the instruction that allows us to change the value of a variable.

For the examples and exercises of this chapter, you will use a new class
called ASSIGNMENTS.

Summing travel times

The following simple problem will serve as example: knowing the average time
between adjacent stops on a Metro line, compute the average total time for
traveling the full line. We will add to class LINE a function total_time taking
care of this.

The principle of the algorithm is straightforward: follow the stops on the
line in sequence, and add at each step the time from the previous stop. The basic
information comes from a query of class STOP:

The software perspective is different. We do not just describe results by the
properties they must satisfy: we must compute them through algorithms
whose implementation uses a computer and its memory.
The execution of these algorithms proceeds by storing successively computed
values into memory. If memories were infinitely large and infinitely cheap, the
execution might choose a different cell for every new value to be stored, such
as successive fi . But memory, however large, is finite: we must reuse cells
when we do not need their values any more.

So in programming we will have variables which, unlike their counterparts in
mathematics, deserve their names, as they change value during execution. The
presence of such change is one of the major challenges in efforts to reason
about programs using the basic tools at our disposal: the tools of logic and,
more generally, of mathematics.

→ “Functional pro-
gramming and func-
tional languages”,
page 324.

§9.1 ASSIGNMENT 229

where is_linked tells whether the metro stop is linked to a successor. The type
REAL is used for the computer approximation of the real numbers
of mathematics.

Our desired function total_time will have the following general form:

Result, a variable, denotes the result to be returned by the function. The two
pseudocode instructions will be replaced by assignments.

The boolean-valued function is_last tells us whether the cursor is on the last
element. Note the difference with the loop schemes of the previous chapter,
which stopped on after rather than is_last.

time_to_next: REAL

-- Estimated travel time to next stop (departure to departure,
-- except for next-to-last stop: departure to arrival).

require

has_next: is_linked

total_time: REAL

-- Estimated travel time for full line.
do

from

start

-- “Set Result to zero”
invariant

-- “The value of Result is the time to travel from first station
-- to station at cursor position”

until

is_last

loop

-- “Increase Result by the time to the next station”
forth

variant

count – index

end

end

← Elements in red are
pseudocode; see “Def-
inition: Pseudocode”,
page 108.

Basic list queries

1 count

item

afteris_last

VARIABLES, ASSIGNMENT AND REFERENCES §9.1230

(Hint: compare the number of stops with the number of intervals between
successive stops. Also, compare the variant with the earlier one.)

The two instructions still in pseudocode must update the value of Result.
This is what assignments are good for.

An assignment instruction has the form

where source is an expression, and target is a variable such as Result. The
run-time effect is to change the value of target to that of the source. To be precise:

If you programmed before reading this book and view assignment as an old
friend, you may find this definition pedantic. But precision matters; and it seems
that some people intuitively understand, the first time around, that in x := y, where
y is a variable, the value of y somehow “flows” to x, and y reverts to a default
value. Nothing of the sort occurs; y is unaffected. (Don’t laugh. Programming is
a strange world for a novice; it is this book’s job to dispel any potential
confusions, and indeed bring you to the stage where you could laugh about them.)

An expression such as source usually involves variables; “evaluating” it
(A1) will use their values, as set by previously executed assignments.

Quiz time:

When to exit from the loop

Why does the loop for total_time use is_last, rather than the usual after, as exit
condition?

target source

Touch of Semantics:

The effect of an assignment

The execution of an assignment instruction target := source consists of:

A1 Evaluating (that is to say, computing the value of) the expression source.

A2 Causing the variable target to denote that value from now on (and to
retain it until the execution of any later assignment to target.)

This is the only effect of the instruction. In particular, there is no consequence
(aside from the evaluation) on source and its components.

:=

§9.1 ASSIGNMENT 231

We can make good use of assignment to complete our example function:

Each time through the loop, we add to the current Result the time to the next

station. Since we also perform a forth, this preserves the invariant. On exit from

the loop, that invariant tells us that Result denotes the time to travel to the

station at cursor position; since is_last is now true, the cursor is on the last

station, so Result gives us the total traveling time.

Local variables

In a previous chapter we saw an algorithm scheme for computing the maximum

of a set of values. In the absence of assignment, it resorted to pseudocode

elements of the form

total_time: REAL
-- Estimated travel time for full line.

do
from

start

invariant
-- “The value of Result is the time to travel from first station
-- to station at cursor position”

until
is_last

loop

forth
variant

count – index
end

end

Programming time!
Estimating the time to travel a metro line

Write a function total_time8 to compute and display the travel time on the
Metro Line 8. Use the above model, but avoid modifying LINE: make the
function part of ASSIGNMENTS, the class for this chapter, adapting it to use
Line8.start instead of start, Line8.count instead of count and so on.

Result := 0.0

Result := Result + item.time_to_next

← See e.g. page 163.

VARIABLES, ASSIGNMENT AND REFERENCES §9.1232

We may now express the algorithm fully using assignment. Let us write it as a
function that computes the greatest name, alphabetically, of all the station names
on a line:

We have indulged in a little orgy of assignments. The from clause initializes
Result to the name of the first station, south_end, and the integer i to one. Then
in the loop we find out if the name of the current station, denoted by new, is
greater than the name of the current maximum, and if so we replace the value of
Result by the value of new (if not, we leave Result unchanged, as there is no
else clause to the if). The correctness of this algorithm depends on two
properties expressed by the invariants of the corresponding classes:
� A LINE always has at least one station, accessible as south_end or,

equivalently, i_th (1).
� Every metro station has a non-void name.

-- “Define max to be N1”
-- “Define i to be 1”
-- “Redefine max as the greater of the current maximum and Ni+1”
-- “Increase i by one”

highest_name (line: LINE): STRING

-- Alphabetically last of names of stations on line.
require

line_exists: line /= Void

end

local

i: INTEGER

new: STRING

do

from

Result := line.south_end.name

i := 1
invariant … --- As before
until

i = line.count

loop

new := i_th (i).name

if new > Result then

Result := new

end

i := i + 1

§9.1 ASSIGNMENT 233

Also note that order comparison for strings uses alphabetical order: s2 > s1 has
value True if and only if s2 is after s1 alphabetically.

The principal novelty of this example is its use of local variables. The
declarations

introduce two entities, i and new, which the routine may use to store
intermediate results that its algorithm may need. “Local variables” are such
entities, local to a routine and introduced by the keyword local. You could do
without local variables, declaring i and new (in this example) as features of the
class, more precisely attributes as studied next. But this would be giving them
a status they do not claim: a feature is a property of the class, applicable to every
one of its instances; here we only need i and new temporarily for each execution
of the routine. When such an execution terminates, i and new can go away.

You can choose names of local variables freely as long as they do not cause
any ambiguity:

In principle it would be possible to allow the reuse of feature names as names
of local variables, with the convention that within the function the name denotes
the local variable; but this would be foolish language design, inviting confusion
and errors. Names are cheap; when you need a new variable, choose a new name.

Nothing prevents you from using the same names for local variables of
different routines, in the same way that different classes may use the same
feature names (some names such as item, count, put … occur in many different
classes). Such cases do not cause any risk of ambiguity since the homonyms
appear in different contexts (or “scopes”).

Programming time!
Alphabetically highest station name

Add the function highest_name to the example class for this chapter,
ASSIGNMENTS, and use it to display the alphabetically highest name of
stations on Line 8 of the Metro.

local

i: INTEGER

new: STRING

Local Variable Rule

A local variable may not have the same name as a feature of the enclosing
class or as an argument of the enclosing routine.

VARIABLES, ASSIGNMENT AND REFERENCES §9.1234

Function results

Result, as used in the last two examples, may appear in a function, where it
denotes the result being computed by the function. Remember that functions are
one of the two kinds of routine; procedures, the other kind, can change objects
but do not return a result. A function returns a value. Result serves to denote,
within the function’s text, that future result as computed so far. (Obviously, you
may not use Result in a procedure.)

As a consequence, the instruction (in a routine of class ASSIGNMENTS)

will call highest_name and display its value, which is the last value of Result as
computed by the function’s body just before its execution terminates. You will
have seen this if you took the last “Programming time”.

Result is, formally, a local variable. Its only distinction is that you do not
declare it as you do with your own local variables (in declarations of the form
i: INTEGER); it is automatically available in any function, and implicitly
declared for you with the return type you specified for the function: REAL for
total_time, STRING for highest_name.

This also means that Result is a reserved word of the language: you may
not use it for any of your own identifiers.

Reserved words generalize the notion of keyword introduced earlier. The
example of Result illustrates why keywords are only one of two kinds of
reserved words:

� Keywords — such as class, do… — play a syntactic role only, as markers;
they do not denote any run-time value.

� Other reserved words, such as Result, directly carry a semantic value. True

and False, which denote boolean values, are also examples of non-keyword
reserved words.

Console.show (highest_name (Line8))

Definition: reserved word

A reserved word is an identifier that has a special role in the programming
language, and as a consequence may not be used to denote elements (such as
class names, feature names, variables) specific to a particular program.

← “Procedures vs
functions”, 8.6, page
219.

← Page 17.

← “Boolean values,
variables, operators
and expressions”,
page 72.

§9.1 ASSIGNMENT 235

Swapping two values

Here is a typical use of assignment and local variables. Assume two variables
var1 and var2 of the same type T. The following three instructions will swap
their values:

This requires a third variable, swap, typically declared in the enclosing routine
as a local variable, also of type T. The scheme is:

� The first assignment stores the initial value of var1 into swap.

� The second assignment changes the value of var1 to the initial value of var2.

� The third assignment changes the value of var2 to the value of swap, which
had recorded the initial value of swap1.

This completes the desired swap: after execution of these three instructions,
var1 has the value that was initially var2’s value, and conversely.

It is clear why we need swap: we must have a place to store away the value
of one of the other two variables before overriding it. Also note the importance
of the execution order in this example: the first assignment must execute before
the second, since we would not otherwise be able to record the initial value of
var1. There is, however, more than one correct execution order: reversing the
order of the last two instructions is harmless; and we could reverse the roles of
var1 and var2.

A variable such as swap, used only for a narrow, immediate purpose, is
known as a temporary variable. A temporary variable is typically declared as
a local variable of the enclosing routine.

The power of assignment

The symbol for assignment is . You may read it aloud as “receives”, for
example “i receives i plus one” for i := i + 1.

Some people say “becomes”, but “receives” is better: i is just i and does not “become”
i + 1, unless this is meant as in the story of the native German speaker getting tired
of waiting in a London restaurant: “Waiter! I want to become a potato NOW!”.

The effect is to replace the value of the target by that of the source expression.
The earlier value of the target is lost — and lost forever: no one is keeping any
record. Assignment is the counterpart, in high-level programming languages, of
a basic operation permitted by computers: replace the content of a given
memory cell by a given value. So if you will need a value again, make sure to
record it yourself — through another assignment! — into a variable.

swap := var1 ; var1 := var2 ; var2 := swap

← Exercise 9-E.5, page
270 asks you to achieve
the same result without
local variables.

:=

VARIABLES, ASSIGNMENT AND REFERENCES §9.1236

A common pattern in assignments is to use the previous value of a variable
in the source of an assignment that has the same variable as its target. This
appeared in instructions of both of the routines we have seen:

The goal is to update the value of a variable on the basis of its previous value
and new information. The scheme is very close to the standard mathematical
technique of defining a sequence of values, as in a slightly simplified version of
the example cited at the beginning of this chapter:

where f is some function (in the Fibonacci sequence example f was a function
of two values rather than one). To compute sn for some n >= 0 with a computer
you may use the loop

This scheme is only applicable if you do not need to retain the successive values,
only the last one si at each step. Both of our routines used it.

Be sure to remember the difference between the mathematical property
si+1 = f (si) and the software instruction x := f (x), which reflects the change

mechanism of software. This mechanism is foreign to mathematics and
complicates reasoning about programs. Note in particular the difference
between the instruction

Result := + item.time_to_next

i := + 1

“Let s0 be given, and then si+1 = f (si) for every i ≥ 0”

from

Result := “The given initial value s0”
i := 0

invariant

“Result = si”
until

i = n

variant

n – i

loop

end

x y

Result

i

i := i + 1
Result := f (Result)

:=

§9.1 ASSIGNMENT 237

and the boolean expression

as used for example in a Conditional if x = y then … The boolean expression
has the same characteristics as an equality in mathematics; it is descriptive,
presenting a possible property (true or false) of two values x and y. The
Assignment instruction is prescriptive (or imperative): it tells the computation
to change the value of a variable. In addition it is destructive, obliterating the
previous value of that variable.

A striking example of the difference is the instruction

frequently encountered in loops, using an integer variable i. The boolean
expression i i + 1, while legal, would be useless since it always has value
false: no integer may be equal to the integer that follows it.

x y

i i + 1

Touch of Syntax:
Confusing assignment and equality

The first widely used programming language, Fortran (from the 1950s), used
the equality symbol = for assignment. This was clearly an oversight;
subsequent languages such as Algol and its successors introduced := for
assignment, reverting = to its standard role of equality operator.
For unknown reasons, the C language, in the late sixties, brought back = for
assignment, using = = for equality. Not only does this convention contradict
well-established mathematical properties (for example, a = b in mathematics
means the same as b = a), but it introduces a frequent source of errors; if
instead of if (x = = y) … you mistakenly write if (x = y) …, the result is actually
legal in C, but has an unexpected effect: assign the value of y to x; then yield
a boolean value (as if the assignment were also a boolean expression), which
is False if the resulting value of x — the previous value of y — is zero or
equivalent, and True otherwise! If you use C you must be careful about this
source of confusion, which plagues even experienced C developers, and has
caused bugs and security attacks in important programs.
Such recent languages as C++, Java and C# have retained the C convention
for assignment and equality, with (in the last two cases) stricter type rules to
avoid such bugs.

=

:=

=

→ Appendix D.

→ Appendices A to C.

VARIABLES, ASSIGNMENT AND REFERENCES §9.2238

9.2 ATTRIBUTES

There are two kinds of variables (entities to which we may assign a value). We
have now seen the first kind: local variables, including Result. The second, to
be studied now, is attributes. It is not completely new: we have seen it implicitly,
under the guise of object fields, when learning about object creation. But we can
now complete our understanding of this concept, and find its place among
entities, features and other creatures of our object-oriented bestiary.

Fields, features, queries, functions, attributes

We saw in the discussion of creation that an object, as it exists at run time in the
memory of your computer, consists of a number of fields, some of them
references, others of basic (“expanded”) types:

Like any other property of the object, these fields must come from the
specification of its generating class. Each field indeed comes from a feature of
the class, more precisely a query, and even more precisely an attribute.

To restart from the beginning, a feature is, as you know, either a command
or a query. A query, unlike a command, returns a result. A query can in turn be
either a function or an attribute. It is a function if it obtains its result by
computing it. For example, class LINE had this query:

This is a function. On the other hand, we find, in the same class, the following
query without an algorithm (a do … end part):

south_end: STATION

-- End station on South side
do

if not is_empty then

Result := metro_stops.first.station

end

end

index: INTEGER

-- Index of currently considered station in line

An object and its

fields

(LINE)

§9.2 ATTRIBUTES 239

This is an attribute. Including it in the class means stipulating that every instance
of the class will have a field of the given type — INTEGER — containing the
current value of the index for the station:

Assigning to an attribute

As the comment indicates, index in class LINE is the index of the “cursor”
position; the cursor is an abstract mechanism allowing clients to explore
successive stations of a line by going back and forth. One of the commands for
manipulating the cursor is start, which sets the cursor to the first station (the one
known as south_end):

A client may call this feature on a particular line, as in

The effect is to set the value of index for the corresponding instance of LINE. If
that object previously had its index field set to 8, as in the preceding figure, the
call will reset it to 1, with no change to other fields:

Line8.start is a qualified call to start, from a client. As usual, it is also possible
to call start unqualified from another routine of LINE.

start

-- Bring station cursor to first element.
do

ensure

on_first: index = 1
end

Line8.start

An object and its

fields

(LINE)

index 8

index := 1
… Other instructions …

“Line” object

after a start

(LINE)

index 1

VARIABLES, ASSIGNMENT AND REFERENCES §9.2240

Information hiding: modifying fields

Two other procedures of the class also set index:

All three procedures let clients set the index field of any particular LINE object,
as in

Just as importantly, such procedure calls are the only way for a client to modify
this field. You will not be permitted — try it if you wish, and see the compiler
message — to write an assignment

forth

-- Move station cursor to next item.
require

not_after: not after

do

index := index + 1
ensure

moved_right: index = old index + 1
end

go_ith (i: INTEGER)
-- Move station cursor to item at position i.

require

not_over_left: i >= 0

not_over_right: i <= count + 1
do

index := i

ensure

set: index = i

end

Line8.start

Line8.forth

Line8.go_ith (5) [3]

Line8.index := 98 [4]

Warning: syntacti-
cally illegal. For dis-
cussion only.

The syntax may be
legal as an “assigner
call”. See below.

§9.2 ATTRIBUTES 241

As an assignment this is simply illegal syntax: the target of an assignment may
must be a variable, and a variable consists of a single identifier, such as index in
the previous assignment examples. Line8.index is an expression, not a variable.

The reason for this prohibition is easy to understand. Letting clients directly
modify fields of supplier objects would bypass the safeguards of information
hiding and good design. Remember the general view, illustrated by an earlier
picture reproduced below, of an object as a machine that clients may only
manipulate through the operations of its official interface, illustrated as
command and que ry bu t t ons . Pe r fo rming a d i r ec t a s s ignmen t
your_machine.your_field := my_value would be the software equivalent of
unscrewing the casing to reveal the innards of the machine, and starting to
rewire the connections with a soldering iron. With an electronic device this
would void the warranty; with a software machine, it would void the interface
and the associated contracts.

Note in particular a key difference between the illegal assignment [4] and the
procedure call [3]. The call is bound by the precondition of go_ith, stating

The assignment, if permitted, would ignore that precondition.

Any operation that may access or modify object fields must go through the
interface provided by the features of the corresponding classes. When you
design a class, it is both your privilege and your responsibility to decide what
you let clients do with its instances. For any of the attributes, say a of type T,
you may allow clients to set the corresponding field values directly; then you
should provide a procedure — called a setter — of the form

require

not_over_left: i >= 0

not_over_right: i <= count + 1

← “Information hid-
ing”, page 218; see
figure page 28.

“Line” object as

machine

start

forth

go_ith

item index

count south_end

VARIABLES, ASSIGNMENT AND REFERENCES §9.2242

through which clients may use their_object.set_a (their_value) without
restriction. Or you may introduce a precondition, as in go_ith, which restricts
the permitted values. Or you might limit clients to more specific ways of setting
the value, as would be the case if LINE did not have go_ith but provided only
start and forth as operations that affect the index field. Finally, you might decide
not to give clients any way at all to modify index, by not providing them any
procedure that assigns to index.

In the first case — where the class design has granted clients full modification
privileges, with a procedure such as set_a, or go_ith in the example — some people
find the assignment syntax [4] more attractive than the procedure call [3]. Hence a
natural idea: could we not offer [4], not as an assignment but simply as a notational
convenience, a shorthand for the procedure call [3]?

This is indeed possible if you declare the setter procedure, set_a, or go_ith, as an
assigner command for the associated query, a or index. Simply change the
declaration of the query to a: T or index: INTEGER .
Then obj.a := v is valid but is not an assignment; it is simply a different syntax for
the (also valid) call obj.set_a (v). More details in a later discussion.

Regardless of the syntax, the static semantic rule is the same: the only way to
modify an object from the outside is through a setter procedure. To realize how
fundamental this is to the proper engineering of software, consider the following
two events in the evolution of a system:

� You decide at some point that — even though this was not included in the
original concept for the software — every modification of a certain attribute
should be logged, for example by writing a record into a database (“At 7:55
on May 1st, the temperature was changed to 22° C”).

� Adding a constraint to the attribute, for example that any setting of the
temperature must use a value between -5° C and +30° C. This can take the
form of an extra clause in the class invariant.

set_a (x: T)
-- Set the value of a to x.

do

a := x

ensure

set: a = x

end

assign set_a assign go_ith

→ “Bracket notation
and assigner com-
mands”, page 384.

§9.2 ATTRIBUTES 243

To achieve the first change, it suffices to add an instruction (updating the

database) to the setter procedure. The second change is more delicate since it
implies adding a precondition clause to the setter and may affect every client
that sets the field; but since every such client goes through the setter it is easy to
trace those clients and update them to satisfy the new precondition. If, on the
other hand, direct [4]-like field assignments were permitted, you would have a
hard time tracing all field-modifying clients; worse, it would be impossible to
enforce the new policy — update the database after setting the field, or check
that the value is within the new bounds — on future clients.

We may summarize the discussion through a simple principle:

This key rule of modern design and programming methodology is an immediate
consequence of information hiding principles. When you program in Eiffel it is
automatically enforced. It needs emphasis, however, because of the different
attribute export policies of other programming languages, which turn it into a
methodology rule for programmers.

Information hiding: accessing fields

The preceding discussion addresses how to modify object fields, corresponding
to class attributes. The rules do not prevent you from letting clients access

object fields such as index. With the class as given, a client may use the
expression Line8.index; try for example

which will display the value 2 in the Console window.

Touch of Methodology:
Attribute Modification Principle

The sole way of setting a foreign object’s fields should be through calls (of any
syntactic form) to exported setter procedures.

Line8.start

Line8.forth

Console.show (Line8.index)

The “callers” view of
EiffelStudio gives the
list of all client instruc-
tions that call a given
feature, either explic-
itly or through the
assigner command

→ As discussed below:
see “Setters and get-
ters”, page 248.

VARIABLES, ASSIGNMENT AND REFERENCES §9.3244

In other cases you may wish — for full information hiding — to remove an
attribute completely from the clients’ reach, for access as well as modification.
For example LINE has a feature id_generator; it uses that feature for its own
implementation purposes and does not make it available to clients in any form.
It suffices for the class to include a feature clause starting with
feature {NONE}; all the features of that clause are kept away from clients. You
can indeed see at the end of LINE, just before the invariant, the clause

This implies that an expression such as Line8.id_generator is invalid in any client
(try to use it in a class, and see the compiler message). Accordingly, it will not
feature in the class documentation as produced by the environment: bring up the
Contract View of class LINE now; you will not see any mention of id_generator.
You may only use this feature, unqualified, within class LINE itself. For example
procedure extend uses (again check this for yourself) the assignment

NONE is the name of a special class. When studying inheritance we will see its
place in the larger order of things.

9.3 KINDS OF FEATURE

We have now seen all feature categories and are in a position to understand the
overall classification.

The client’s view

Viewed from the client’s perspective, a feature of a class may either:

� Return a result: then it is a query.

� Return no result, but be able to modify the target object: then it is a command.

In the first case, there are two possibilities depending on how the class author
has chosen to implement the query:

� You may choose to store, for every instance of the class, the value of the
query in one of the instance’s fields. This means implementing the query as
an attribute of the class. It is then the responsibility of every command of
the class to update the value of that field if it needs to — as, for example
forth changes index.

feature {NONE} -- Initialization
id_generator: ID_GENERATOR

-- Internal identification for current line

i := id_generator.generated_id

← “Definitions: Qual-
ified and unqualified
call”, page 134.

→ “Overall inherit-
ance structure”,
16.10, page 586.

§9.3 KINDS OF FEATURE 245

� You may choose instead to compute the value of the query whenever
requested, using an appropriate algorithm. Then you implement the query
as a function. A recent example was the function south_end.

The following figure represents this classification:

“Memory” means that the value is stored, rather than computed. Note that the
word “procedure” appears redundant at this stage, being synonymous
with “command”.

The notion of query is particularly important as a common category for
attributes and functions. From the client’s perspective, it does not matter that a
query is implemented by storage or by computation. Although the difference
between the two categories appears in the class text, it does not appear in the
class interface. Bring up indeed the Contract View for LINE again; you can see,
next to each other, one in the -- Access feature clause and the other in the
-- Measurement clause, the interfaces for

and

index: INTEGER

-- Index of currently considered station in line.

count: INTEGER

-- Number of stations of this line.

← Page 238.

Feature

Command

Query

Attribute

Function

Procedure

No
result

Compu-

Memory

Returns
result

tation

Feature

categories

(client’s view)

VARIABLES, ASSIGNMENT AND REFERENCES §9.3246

They appear similar. But if you now look up these features in the actual class
text (not the Contract View) you will see that the declaration of index appears as
above, since it is an attribute, while the full declaration of count reveals it to be
a function:

Nothing in the Contract View suggests this difference. For the client, both
feature are just queries.

The policy that treats attributes and functions identically in the Contract
View of a class reflects a principle of software development:

“Storage” covers attributes and “computation” covers functions. “No logical
difference” means no difference of functionality; there might still be a
difference of execution efficiency, as an attribute implementation takes up
space, while a function does not but usually requires longer to execute than a
simple field access.

The choice between the two solutions indeed involves space-time tradeoffs,
explaining the importance of the Uniform Access Principle: it is very difficult
to know ahead of time what solution will be best; during the course of a project
you may have to reverse such decisions several times as a result of time and
space measurements. The principle shields client software from these changes:
the notation some_object.some_query will remain applicable throughout, so
that you may try out various solutions without penalty. If access to attributes and
functions used different syntax, you would each time have to update a much
larger part of the software than necessary.

The principle further justifies the information hiding policy discussed:
� It is OK to make an attribute available to clients, as in Line8.index,

especially since we make it available not as an attribute but more generally
as a query: the client has no way to know, from the official interface
description of the class, whether it is an attribute or a function.

count: INTEGER

-- Number of stations of this line.
do

Result := metro_stops.count

end

Touch of Methodology:

The Uniform Access Principle

It must make no logical difference to clients of a class, when they use one of
its features, whether the class implements it by storage or by computation.

§9.3 KINDS OF FEATURE 247

� It is not OK, however, to let clients assign directly to it, as in the illegal
Line8.index := new_value, since (among other problems) this would reveal
that it is an attribute.

The supplier’s view

If we take the viewpoint not of the client but of the supplier class, in other words
the implementer’s internal perspective, we get the following categories:

The only addition to the previous figure’s terminology is the notion of Routine,
covering both procedures (the term appears more justified now) and functions.

Putting the two views together, we get the complete picture:

You must know the precise definition of all the terms listed on this figure, and
their role in building classes and making them usable by clients.

Feature

Attribute

Function

Procedure

Returns
result

No
result

Compu-

Memory

tation

Feature

categories

(supplier’s view)

Routine

Feature

Command

Query

Feature

Routine

Returns

No
result

result

No
result

Compu-

Memory

Compu-

Memory

Returns
result

tation

tation

Feature

categories

(full view)

Attribute

Function

Procedure

→ “Precise feature
terminology”, page
269 and exercise
9-E.1, page 269.

VARIABLES, ASSIGNMENT AND REFERENCES §9.3248

Setters and getters

A procedure such as set_a or go_ith, which has as its principal effect to set the
value of an attribute, is called a setter procedure (or setter command).

In some programming languages it is also useful to write a getter function

whose sole purpose is to return the value of an attribute:

Why would we ever need something like this since clients can simply use index

is the attribute is exported?

Indeed there is no need for getter functions in the framework that we have
seen. As we have seen, exporting an attribute such as index makes it available
to clients in read-only mode: it lets clients use the value of index (as in
Line8.index), not change it as this requires a setter procedure. So exporting a
function current_index achieves exactly the same effect as exporting the
attribute index in the first place.

Getter functions only become meaningful in languages such as C++, Java
and C# where exporting an attribute means something else: the effect is to allow
clients both to access and to change the variable, so that the assignment
Line8.index := 98 [4] becomes valid. This mechanism is risky for the reasons
analyzed earlier — it destroys information hiding — and should never be used.
Hence the standard advice in methodology-conscious textbooks about these
languages: do not export attributes; instead, if you want to let clients access
them, shadow each attribute by a getter function, and export the getter function
only. The C# language has a notion of “property” that provides standard syntax
to achieve this.

Requiring programmers to use getter functions achieves information hiding
in languages that do not fully enforce this principle. The disadvantage is that
programmers discover a language mechanism (here the read-write mode of
exporting attributes) together with standard advice not to use it; this casts
aspersions on the language design. They can forget the advice and mistakenly
break information hiding. If they do apply the advice, writing getter functions
can be tedious and makes the code needlessly bigger.

current_index: INTEGER

-- Position of cursor.
do

Result := index

ensure

same_as_attribute: Result = index

end

Warning: not neces-
sary in Eiffel.

→ “Properties”,
page 782.

§9.4 ENTITIES AND VARIABLES 249

It seems preferable to rely on the language design described previously,
with the following property summarizing this discussion:

9.4 ENTITIES AND VARIABLES

A bit of terminology cleanup will help finalize our understanding of the
fundamental concepts associated with objects and classes. Everything regarding
features should now be clear, but we have also encountered the terms entity and
variable; let us make sure the concepts and terminology are entirely clear.

Basic definitions

We know what an entity is: an identifier that denotes possible run-time values.
We are now in a position to list all possible variants of this notion:

So if you were puzzled that index from LINE was sometimes referred to as a
feature and sometimes as an entity, E1 is the explanation: it is both. To be
precise, the identifier index is an entity; it denotes a feature. The feature called
index is, more specifically, a query, and even more specifically an attribute.

Touch of Methodology:

Attribute Exporting property

Exporting an attribute is legitimate and lets clients access (but not modify) the
corresponding field values.
The interface of a class does not distinguish (in the absence of arguments)
between an exported attribute and an exported function. To client authors,
both kinds simply appear as queries.
As a consequence of this policy, there is no need for getter functions.

Definition: Kinds of entity

An entity is one of:
E1 �An attribute.
E2 �A local variable of a routine, including the predefined local variable Result.
E3 �A formal argument of a routine.
E4 �Current, denoting the current object.

← In “Entities and
objects”, 6.2, page
109.

VARIABLES, ASSIGNMENT AND REFERENCES §9.4250

As an entity, index is one more thing: a variable. Entities are indeed of
two kinds:

� Some entities may change value during execution by serving as targets of
assignments; they are called variables,. This includes local variables (E2)
and one kind of attribute (E1), “variable attributes”.

� Others will retain a single value throughout execution and are called
constant entities. They include formal arguments (E3), Current (E4), and
the second kind of attribute, “constant attributes”.

The notion of variable deserves a definition of its own:

As usual, local variables include Result.

Variable and constant attributes

Attributes may be either variable, as in all the examples seen so far, or constant.

Attributes declared in the usual form are variable, for example index in

You recognize a constant attribute by its declaration including the = symbol
followed by a value. In LINE you may see (in a feature {NONE} clause towards
the end) the declaration

This introduces the constant integer attribute First_id. Note the convention:

This style is also common for strings, as in

Definitions: variable, variable entity

A variable entity, or just variable, is an entity whose associated value may
change during execution.
Variables include local variables and attributes.

index: INTEGER

First_id: INTEGER = 1000

Touch of Style:
Constants

For names of constant attributes, as for predefined objects, start with an
upper-case letter, writing the rest in lower case.

§9.4 ENTITIES AND VARIABLES 251

known as a manifest string.

Not being variables, constant attributes of any type a may not serve as
assignment targets: First_id := 2 or Map_title := "Something else" are invalid
assignments (try them and watch for the compiler messages).

Constant attributes serve to give names to values that your program may
need. You should systematically use this technique:

So if you need a string for an error message, or a physical constant, do not use
it directly in the instructions that need them, as in

but declare

and write the instructions as

Two arguments supporting this rule are:

� Readability: the rule encourages you to give to each constant a name
explaining its role in the software.

Map_title: STRING = "Plan of the metro"

Touch of Methodology:
Symbolic Constant Principle

When you need any specific values in a program — other than very simple
values such as the integers 0 or 1 to start a loop or increment an index — do
not use manifest values directly in the corresponding instructions; declare
constant attributes with these values, and then use these attributes
everywhere else.

display ("Could not send message in allotted time")

length := 2.54 ∗ length_in_inches

Timeout_message: STRING = "Could not send message in allotted time"

Inches_to_centimeters: REAL = 2.54

display (Timeout_message)

length := Inches_to_centimeters ∗ length_in_inches

Warning: Not the rec-
ommended style.

VARIABLES, ASSIGNMENT AND REFERENCES §9.5252

� Facilitating program evolution: the values of such constants may (although
not in the second example) change during program evolution; you will only
have to update the corresponding declarations. It is common to group all the
important manifest constants of a program — for example, error messages
such as “Could not send …” above — in specific classes intended solely for
this purpose; this further helps limit the scope of changes.

Directly using manifest values in instructions would be a particularly bad idea for
strings, such as this example, since a successful program often requires
internationalized versions for various countries. In that case the actual strings
typically come from external “resource files”, making it possible to select the
appropriate language version based on user preferences. Even then, it is generally
desirable to retain default versions in the program as manifest strings; at run time
the internationalization mechanism looks up the resource file for the
language-specific version of any particular string and, if it does not find one,
retreats to the default.

9.5 REFERENCE ASSIGNMENT

The values we manipulate — in particular object fields, corresponding to
attributes of their classes — may be basic values such as integers and booleans,
or references. So far we have applied assignment to basic values only; but we
also need to assign references. That is in particular how we will build linked data
structures, such as a list of metro stops where each stop contains references to
the associated station and to the next stop on the line.

Building metro stops

Implementing the class STOP will require such reference assignments. The
class interface included the following feature specifications

indicating that the implementations must set the attributes station and right

respectively. To provide these implementations we need assignment. Here are
the routine texts (no longer just their interfaces):

set_station (ms: STATION)
-- Associate this stop with s.

require
station_exists: ms /= Void

ensure
station_set:

link (s: STOP)
-- Make s the next stop on the line.

ensure
next_set:

← See the full specifi-
cation on page 119.

station = ms

right = s

§9.5 REFERENCE ASSIGNMENT 253

A reference assignment reattaches the reference to a new object. It may
previously have been void (attached to no object) or attached to another object
(or to the same object, in which case the assignment changes nothing). To
illustrate these possibilities, consider variables s1 and s2 of type STOP and two
creation instructions

both using set_station as creation procedure; this is necessary since we had
written the class STOP as

The creation instructions produce two objects:

set_station (ms: STATION)
-- Associate this stop with ms.

require
station_exists: ms /= Void

ensure
station_set: station = ms

end

link (s: STOP)
-- Make s the next stop on the line.

ensure
next_set: right = s

end

create s1.set_station (Station_Balard)
create s2.set_station (Station_Issy)

class STOP

feature
station: STATION

right: STOP

set_station (s: STATION) … As above …
link (s: STOP) … As above …

invariant

station_exists: station /= Void

end

do
station := ms

do
right := s

← “Creation proce-
dures”, 6.5, page 122.

create

set_station

VARIABLES, ASSIGNMENT AND REFERENCES §9.5254

with station references attached (thanks to the creation procedure set_station) to
two pre-existing STATION objects. The right references are void, since all
reference attributes start out void and here set_station does nothing about right.

Building a metro line

To chain the two stops, you may use the instruction

which updates the right reference of the first object

as a consequence of the assignment instruction in procedure link :

This is an example of a reference assignment, which attaches a reference. Here
the reference (the right field of the STOP object on the left) was initially void,
and we assign to it a non-void reference s2; the effect is to attach right to an
object, the second STOP object. We can also use reference assignment to make
a reference void, for example by adding the following procedure to STOP:

s1.link (s2)

link (s: STOP)
-- Make s the next stop on the line.

do

ensure

right_set: right = s

end

Creating two

stops

s1

(STOP)
station

right

(STATION)

Station_
Balard

s2

(STOP)
station

right

(STATION)

Station_
Issy

Chaining two

stops
(Rest of structure
unchanged from previ-
ous figure)

station

right

station

right

(STOP)(STOP)

right := s

§9.5 REFERENCE ASSIGNMENT 255

This uses the value Void, always denoting a void reference. The following three
calls have the same effect (assuming that the value of v is void):

For more illustration of playing with references, here is the previous example
again but with three stations rather than two (the additions are highlighted):

The result is the following completion of the earlier figure, showing a metro
mini-line:

make_last

-- Make this stop the last one on the line.
do

ensure

no_right: right = Void

end

s1.make_last s1.link (Void) s1.link (v)

create s1.set_station (Station_Balard)
create s2.set_station (Station_Issy)

s1.link (s2)

right := Void

create s3.set_station (Station_Montrouge)

s2.link (s3)
s3.make_last

Creating a small

metro line

s1

(STOP)
station

right

(STATION)

Station_
Balard

s2

(STOP)
station

right

(STATION)

Station_
Issy

s3

(STOP)
station

right

(STATION)

Station_
Montrouge

VARIABLES, ASSIGNMENT AND REFERENCES §9.6256

9.6 PROGRAMMING WITH REFERENCES

A reference is a value that identifies an object. Using references has several
benefits, to be examined now: modeling the “knows about” relationship;
supporting linked structures; providing a notion of Void to terminate such
structures. We will also discover the darker side: how dynamic aliasing makes
dealing with references a delicate proposition.

References as a modeling tool

An object may include a reference to another object to represent the concept of
“knowing about” that object, which you may compare with the concept of
containing another object. Contrast for example two uses of the verb “to have”
about cars:

� A car has a brand.

� A car has an engine.

The key difference is sharing: two cars may have the same brand (say they are
both Nissans); but no self-respecting car would consent to sharing an engine
with another. With object-oriented techniques we may model the first case
through a subobject, the second through a reference to another object.

(Expanded types help model subobjects.) Such modeling flexibility is important
in building programs that model complex systems.

Using references for building linked structures

Another application of references, highlighted in the examples of the previous
section, is to represent collections of objects, also known as “containers”, in a
linked implementation made of cells where each cell may contain references to
other cells. An example is a linked list, such as our metro line, a sequential
structure where each cell but the last contains a reference (right in the figure on
the preceding page) to the next element.

Subobject and

reference

(CAR)

(ENGINE)

(BRAND)

→ Linked lists are
studied in detail in
“Linked lists”, 13.7,
page 400.

§9.6 PROGRAMMING WITH REFERENCES 257

Linked structures facilitate insertion and deletion operations; for example
removing the second element of the mini-line structure involves reattaching a
right reference. The effect on the earlier figure (reduced to its relevant elements)
may be illustrated as follows:

If this is to be an feature of class STOP — representing the operation to remove
the next stop on the line — it will appear as the following procedure:

An alternative design would be to remove the precondition and change the
comment to “Remove following stop on line, if any”. Then the routine body
should become

Similarly, we may want to insert another stop between the current one and the
next one if any:

remove_right
-- Remove following stop on line.

require
not_last: right /= Void

do

ensure
skipped_one: right = old right.right

end

if right /= Void then right := right.right end

(STOP)
station

right

(STOP)
station

right

(STOP)
station

right

Removing a cell

to a linked

structure

Cut link

→ For a sketch of a
more general version
see “Linked lists”,
page 400.

right := right.right

right right right

Adding a cell
to a linked

structure

s

station

right

Operation 1

Operation 2

station station station

VARIABLES, ASSIGNMENT AND REFERENCES §9.6258

Here is the corresponding routine (again meant to be added to class STOP):

In this case the routine works whether right is initially void (the current stop was
the last on the line) or attached. The new cell, s, has to be non-void; its previous
right reference, void or attached, is lost through the application of link, but its
station remains.

As in the algorithm for swapping the values of two variables, the order of
the assignments is essential: when we link s to its new neighbor (Operation 1 in
the figure), this neighbor is represented by right which must have its original
value, not the value reset by Operation 2.

Procedures remove_right and put_right illustrate common schemes in
manipulating linked structures.

In most practical cases, the interface will be slightly different: an insertion operation
will not take an existing list cell, such as a STOP here, as its argument. Instead its
argument will be a list element, such as a STATION in this example; the operation
will first create a list cell containing that element, then insert the cell into the
structure. We will study such operations, including a more general insertion routine,
in the discussion of linked lists.

Void references

The third benefit of references is the Void value, used in particular to terminate
linked structures, as represented by the symbols in the last figures.

As you know, this is a mixed blessing: the prospect that a variable v might
have a void value at some steps of some executions complicates programming
since it means we have to check every feature call v.f (…) for a guarantee that v
will never be void for any execution of this call.

This is the price to pay for the flexibility of describing linked data structures.
It comes with methodological advice:

put_right (s: STOP)
-- Add s as stop on line after current stop, retaining any later stops.

require

exists: s /= Void

do

ensure

linked_to_new: right = s

retained_others: right.right = old right

end

→ For a more general
(and more tricky) ver-
sion see put_right,
page 402.

s.link (right) -- Operation 1
right := s -- Operation 2

← The text of link
appears on page 254.

← Page 235.

→ “Linked lists”,
page 400.

← “The trouble with
void references”,
page 112.

§9.6 PROGRAMMING WITH REFERENCES 259

This means in particular that when you are dealing with special values of a type,
not with a linked structure, void values are generally not the right solution. Say
you have a class ACCOUNT in a financial program, and you need to represent
accounts that have no known properties. Void is not the solution; simply use a
special object, “Unknown account”. This removes the risk of applying a feature
of ACCOUNT to a void reference, causing a run-time error. Of course you also do
not want a feature call that executes but produce an incorrect result, so you must
make sure that the features produce a meaningful effect on such special objects.

Reversing a linked structure

Procedures remove_right and put_right provide good examples of simple
reference-manipulating operations on linked structures. Simple, but already not
trivial; note in particular the constant need to worry about the possibility of
void values.

To acquaint ourselves further with reference algorithms, let us move up one
rung in sophistication and devise an algorithm for reversing a list. More
precisely, to keep things still not too hard, we want to leave the original list
unchanged and produce another list that has the same elements in the
reverse order:

We start from s, a reference to a metro stop. Since every metro stop includes a
reference to the next one, we can use s to access a full metro line by repeatedly
applying right. We do not want to modify this structure in any way, but produce
another one, which will be accessible through the Result of our function
(bottom part of the figure); it contains the same elements but chained in the
reverse order. To illustrate this, the figure shows the information associated with
each STOP object (a station, itself a reference as illustrated in earlier figures)
just as a number, 1 to 5.

As often, it is a good idea to try to devise the corresponding algorithm for yourself
before reading the following solution.

Touch of Methodology:

Using void values

Reserve void references to the termination of linked structures.

right right Producing a

reversed version

of a linked list

right right right

rightrightright

s

Result

1 2 3 4 5

1 2 3

rightright

4 5

VARIABLES, ASSIGNMENT AND REFERENCES §9.6260

Performance is important in such algorithms. The first element of the new list
will be the last element (marked 5 in the figure) of the original one; we can get
to it only by traversing the full list. But then to get the second element of the new
list, the next-to-last one of the original list, we would need to traverse it once
more. This is very bad (it will give a total number of operations proportional to
n2, where n is the number of elements). Instead we want to traverse the list
just once.

As with any iterative algorithm, the key to designing the algorithm right —
or to understanding it if the algorithm already exists — is to get the right loop

invariant, specifying the properties of any intermediate situation. The figure
below, a truncated version of the figure on the previous page, illustrates the
situation we will obtain after a typical iteration of the (yet to be written) loop.

What we will have done at this stage of the algorithm is to produce a reversed
form of part of the original list. Two variables — they will be local variables of
the routine — tell us how far we have proceeded in that original list:

� previous points to the last cell that has been included in the reversed list.

� pivot point to the first cell not yet processed. It will be void on the last
iteration, when we have processed all cells; indeed pivot = Void will be our
signal that we are done — the loop’s exit condition,

These two properties make up the loop invariant. The scheme is clear: at every
iteration of the loop, process the next cell, known through pivot, by cloning it,
chaining the result to previous, and attaching Result to it; then update previous

and pivot by attaching each to the cell to the right of the cell it currently
represents. This will re-establish the invariant. Here is the routine:

→ We will learn to be
more precise in “Esti-
mating algorithm
complexity”, 13.3,
page 376.

right

Producing a

reversed version

of a linked list:

intermediate

state

right right right

rightrightright

s

Result

1 2 3 4 5

1 2 3

pivotprevious

§9.6 PROGRAMMING WITH REFERENCES 261

We need the local variable previous to retain the previous pivot while creating a
new cell; note its initalization to Void. The function call a.cloned gives us a new
object (as with a creation instruction), duplicated field-by-field from a.

Depending on the library version you are using, you might have to use twin, the
older name for cloned.

Here is a picture of what happens in the highlighted step:

You should check that the algorithm will always apply the qualified feature calls
in the loop body, pivot.cloned and pivot.right, to a non-void pivot.

An interesting exercise, when we have studied recursion, will be to rewrite the
routine reversed so that it uses recursion rather than a loop.

reversed (s: STOP): STOP
-- New stop, the first in a new line that has the same stations
-- as s but in the reverse order.
-- (No precondition, will work for void s representing empty list.)

local
previous, pivot: STOP

do
from

previous := Void ; pivot := s
invariant

-- The list starting at Result contains all cells of the original,
-- up to and including previous ; pivot denotes the next cell if any.

until
pivot = Void

loop

previous := pivot ; pivot := pivot.right
variant

-- See below.
end

end

Result := pivot.cloned ; Result.link (previous)

Producing a

reversed version

of a linked list:

adding a cell

rightrightright

Result
4

1 2 3

right

pivot

previous

4

Removed link
Added link

Cloning

4

→ “Recursive rever-
sal”, 14-E.6, page 502.

VARIABLES, ASSIGNMENT AND REFERENCES §9.6262

Making lists explicit

A later chapter will come back to linked lists to cover them more systematically.
In particular, we will build a list reversal procedure to reverse an existing list in
place, rather than a function such as reversed which creates a new list without
affecting the original. Clearly such a procedure is more delicate to write, since
while traversing a data structure it must modify the references in it, without
messing up the remainder of the traversal.

No new mechanisms are involved, so it is a good idea to try your hand now at
writing such a procedure.

This will also be the opportunity to provide a more general framework for linked
structures than the one assumed, for simplicity, in the last few examples. We
have worked on the class STOP whose instances each contain a link right to the
next instance:

Access to a stop s gives us access, through successive applications of right, to
the list structure of its successors; but the structure itself remains implicit. One
of the consequences is the difficulty of expressing the loop variant of the above
version: while the variant is intuitively clear — at step i we have produced a
reversed version of the first i positions of the original — we have no simple way
to refer to such global properties of the list since all we have is individual items.
In a more systematic approach the list itself is an object:

→ “Linked lists”,
page 400.

→ “Reversal proce-
dure”, 9-E.6, page 270.

right right Implicit list

structure
right right right

s

(STOP)
station

right

(STOP)
station

right

(STOP)
station

right

A linked list

(LINE)

active
first_element

count...

§9.6 PROGRAMMING WITH REFERENCES 263

The list object is the instance of LINE at the top. It only serves as a “list header”,
containing no list values (this is the role of instances of STOP) but general
information about the list, such as count (number of elements) and first_element,
a reference to the first STOP, from which you can access all others.

To implement the notion of list with cursors, which we have often used as it
facilitates iteration, it suffices to include another reference in the list header: active,
indicating the current cursor position.

This is the setup for the list structures of the EiffelBase library, where the list
cells (STOP instances above) are instances of library classes such as
LINKABLE, distinct from the list header classes such as LINKED_LIST.

It is a good exercise to rewrite the preceding examples — remove_right,
put_right and reversed — as routines of the class LINE, where they belong more
properly than in STOP. You should be particularly careful about void values and
border cases (empty lines, insertion or removal at either end).

Where to use reference operations?

Even though we have made our job easier by working on list cells directly rather
than both lists and cells, and by avoiding the more delicate variants such as
in-place reversal, the preceding examples provide a good idea of what it means
to work with references.

This is, clearly, tricky business. You must take into account all possible
cases including empty or almost-empty structures, track the state of the cursor
if present, and pay special attention to the ever-lurking possibility of void
references, as they may not be targets of feature calls. The more general issue,
which we will look at next, is “dynamic aliasing”, through which references
make it harder to reason about programs.

To be a good computer scientist or software engineer you must master these
delicate techniques fully; several other presentations of reference-heavy
algorithms in this book will help you towards that goal.

In the architecture of a system, such stuff is not for application modules:

Touch of Methodology:
Reference Programming Principle

Non-trivial manipulations of references, typically, for inserting and removing
items to and from object structures, should appear not in the
application-oriented parts of programs but in library classes expressly devised
to implement such structures, or (if no library is available to cover a specific
need) in specialized clusters of an application program.

→ “List of stops as a
class”, 9-E.8, page 270.

← As studied in “The
trouble with void refer-
ences”, page 112.

VARIABLES, ASSIGNMENT AND REFERENCES §9.6264

The “application-oriented parts of a program” are those dealing directly with
the program’s intent: processing calls (in the software running your cell phone),
selling securities, typesetting text… This seldom directly involves tricky
reference manipulations of the kind just seen, although they are often useful for
the implementation of application-oriented concepts. Your text-processing
system may use a linked list of paragraphs, but — unless there is something
really special about lists of paragraphs as compared to lists of anything else —
juggling with references to enter a new paragraph into the list is not a
text-processing issue; it is a list issue, and should be handled in classes that deal
with object structures in general.

If you must implement such manipulations yourself, the Reference
Programming Principle directs you to separate them from the application
proper, putting them into special “supporting technology” clusters.

Fortunately, modern development environments provide libraries of
components dealing with the basic kinds of object structures; EiffelBase is an
example, developed by many people over many years. Others are the Java and
C# “collection” libraries, and the Standard Template Library (STL) for C++. A
consequence of the above advice is an encouragement to use such libraries:

If you need a list, or a tree, or a stack, or a queue or any of the fundamental
structures (many of them studied in the next chapter), check first whether a
library mechanism is available and matches your needs. If so, do not reprogram
it: use the library.

This advice extends beyond the specific issue of algorithms manipulating
references: why redo when you can reuse?

You will occasionally find that you need a different interface from what a
library class provides; then you have to provide your own variant. Just check
that your needs are really different; you may be able to use the library by
studying it more carefully and perhaps adapting your application software.

If you do have to write your own implementations, the library can still help
you. Rather than starting from scratch, you may be able to start from an existing
class and modify it. Remember, however, this book’s general advice about code
duplication. Copy-paste is a terrible idea in software development.

Touch of Methodology:
Fundamental Data Structure Library Principle

For fundamental data structures and algorithms, use components from a basic
library, if applicable, rather than developing your own implementations.

§9.6 PROGRAMMING WITH REFERENCES 265

Inheritance often allows you to take an existing class, or several, and build
a new one that extends, refines or adapts them, without modifying their own
code and without copying that code. This is an interesting form of reuse, specific
to the object-oriented approach; different from the form we have seen so far, in
which you just become a client of a class and use it through its interface (its
API); more delicate too, but powerful and often rewarding.

Dynamic aliasing

Let us come back to what makes references tricky. (You may treat this last
subsection as supplementary material, not indispensable on first reading.)

In addition to the issue of voidness, references introduce the possibility of
having more than one program name to refer to a single object. This is known
as aliasing, as in the case of a person known through an alias (such as Mark
Twain, an alias for Samuel Langhorne Clemens). Reference assignment gives
us dynamic aliasing, determined by run-time events: assuming the reference r
may be attached to some object O, the assignment

causes aliasing, with a and b ending up attached to the same object as illustrated
below; but we cannot even reliably assume this information, since the
assignment could take place in some executions and not in others, depending on
the control structure.

What’s wrong with dynamic aliasing? The issue is the added difficulty of
reasoning about programs. We can express an operation on the object in terms
of a only; we can express a property of the object in terms of b only. The
operation may affect the property, but we might miss this in reading the program
since the operation does not even cite b.

Such a combination of events disturbingly departs from a common and
reassuring mode of reasoning. Consider the following scheme:

In programming, if a and b are distinct variables of basic types such as
INTEGER, the answer to the last question is yes: nothing you do to a (say an
assignment such as a := a + 1) can affect b.

b := a

-- Here you know some property of : P (b) [5]

OP () -- An operation involving a, and not naming b
-- Can you assume that P (b) still holds here?

→ Chapter 16.

Aliasing

resulting from a

reference

assignment

a

b

O

b

a

VARIABLES, ASSIGNMENT AND REFERENCES §9.6266

With references and aliasing, this is no longer the case! Assume that their
type is a class STUDENT and a procedure raise in that class increases the grade
point average (query gpa) by .01; the precondition of raise should state this
property. Now apply the above scheme

which we can make into a routine with an explicit contract:

The answer to the final question depends on whether b is aliased to a. If not,
executing the routine leaves b.gpa and all other properties of b untouched. But if b
was aliased to a, the minute change to the GPA may have invalidated the property
stated in the precondition, which then is not part of the postcondition. If .gpa < 4
is part of the class invariant, whether dubious preserves it also depends on aliasing.

The issue is not semantic ambiguity. There is no doubt as to what will
happen, depending on whether aliasing holds between a and b. The difficulty is
how we reason about programs. In considering the effect of an instruction,
especially scheme [5], we have to determine whether aliasing could hold; this
prevents us from concluding, when we see that an operation does not name a
variable, that it cannot affect any property associated with the variable.

What compounds the difficulty is that it does not know any borders; it
extends across the modules of your program, and potentially the entire program.
As long as aliasing only results from assignments as above, you can pretty much
see what is going on in a small scope, a routine or at worst a class. But any
passing of an argument to a routine, as in r (b) with r (a : T), introduces aliasing
between a and b, just like assignment does in the case of variables. So as soon
as you pass any of your references to a routine, which can pass it further, you
have the possibility that a call in a remote part of the software will affect one of
the objects that you think as being yours only.

-- Here you know that .gpa is less than 4
.raise

-- What can you assume about b.gpa here?

dubious

-- Illustrate the perils of aliasing.
require

low_gpa: .gpa < 4
do

… Possibly other instructions …
.raise

ensure

end

b

a

As before, the example
assumes that 4 is the
passing grade.

b

a

-- What about b.gpa?

b

§9.6 PROGRAMMING WITH REFERENCES 267

This possibility of remote modification is often desired. The problem is to
know precisely what is going on. We may note that the issue is largely one of
specification. The earlier procedure would probably have been written, with a
more specific expression of the actual intent, as

where Increment is the value added by raise (we assumed 0.1). This is the effect
on a, as expected. What this specification does not say is what should not

happen, such as an effect on b. You can of course add to every postcondition
clauses of the form

but that is not attractive.

The question is how to write practical contracts that not only specify how some
properties will change but also list all the properties that do not change. The latter
are known as frame properties, and the general issue as the frame problem.

This is still in part a research problem. There is no consensus on how to
express frame properties — unlike the partial consensus, modulo differences of
notations and scope, that applies to the expression of ordinary contract
properties such as preconditions, postconditions and invariants.

A general discussion of the frame problem would extend far beyond this
presentation, but you should remember that dynamic aliasing introduces
significant difficulty in reasoning about programs, and consequently exercise
great care in dealing with references and especially passing them around in your
programs. This is one of the main reasons why, as discussed, non-trivial
operations on references are best left to specialized libraries and clusters. You
now know more precisely what “non-trivial” covers: any manipulations that
could cause sneaky aliasing and produce surprising effects.

dubious

-- Illustrate the perils of aliasing.
require

low_gpa: .gpa < 4
do

… Possibly other instructions …
.raise

ensure

end

b = old b

c = old c

 … and so on for every attribute of the class …

b

a

a.gpa = old a.gpa +Increment

VARIABLES, ASSIGNMENT AND REFERENCES §9.7268

As a general note, it may be tempting to lay the blame specifically on the
notion of reference and suggest we should do away with this mechanism. But
the effect would probably be worse, as can be attested by the techniques
programmers used in older languages (such as Fortran) which did not have
references; they would simply put all their data in large memory structures
(arrays as studied in a later chapter) and use integer indexes, pointing to
positions in these structures, in lieu of references. The effect and the risks are
the same, worsened by the need to work at a lower level of abstraction.

Aliasing, in fact, is not just a programming concept or a consequence of using
references in modern programming languages. It is a by-product of the human
ability to name things, and to give more than one name to one thing. The Beautiful

Daughter of Leda, Poor Menelaus’s spouse and Paris’s lover are all references to
the same person, also known as Helen of Troy. Traditional rhetorics had a rich
classification for such “tropes” (metaphor, metonymy, synecdoche, allegory…).

As an example of their consequences, imagine that at the cafeteria a friend
tells you that “Judy is worried: her GPA is 3.96 — so close!”. From a
conversation at a neighboring table you overhear: “The jogging partner of my

cousin’s roommate did very well in the last exam. But because this is already in

the last year it can at most raise the overall GPA by four tenths of a point!”.
Does the thought occur to you that this might refer to Judy? Dubious, but with
aliasing one never knows. Maybe you think you know Judy’s jogging partner,
and even the partner’s roommate, but then there could be dynamic aliasing:
while the people involved are unlikely to have a new student cousin since you
last met them, they could have acquired new roommates or new jogging
partners. So maybe Judy is all right after all, but it’s hard to know.

For once we cannot just blame programmers for their twisted minds; they
both benefit and suffer, like everyone else, from the sophistication of human
reasoning patterns.

9.7 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Except in functional languages, programs need to change the values of some
of their entities, or variables. The primary technique is assignment.

� Assignment applies to both basic values, which it copies, and references, for
which it copies only a reference, not the associated object.

� Reference assignment introduces dynamic aliasing: an object may become
accessible through several names. This complicates reasoning about programs.

� Variables include attributes, representing fields of objects, and local
variables, used only by a particular routine.

� References make it possible to describe and manipulate linked data
structures, and perform sophisticated operations such as reversal.

Assuming numerical
grades, where the
passing grade is 4.

§9-E EXERCISES 269

New vocabulary

Precise feature terminology

9-E EXERCISES

9-E.1 Vocabulary

Give a precise definition of each of the seven terms in “Precise feature
terminology” above.

9-E.2 vocabulary

Give a precise definition of all the terms in the above “New vocabulary” list.

9-E.3 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

9-E.4 Terminology

1 Is every function an entity?
2 Is every function a query?
3 Can a function be a query?
4 Is Result an attribute?
5 Is Result a feature?
6 Is Result an entity?
7 Is Result a variable?
8 Are all variables local?
9 Is every attribute an entity?
10 Is every routine a query?
11 Is every query an entity?
12 Is every attribute a variable?
13 Is every function a variable?
14 Is every entity a variable?
15 Can a query be a variable?
16 Can a function be a variable?
17 Is every variable an entity?

Assignment Attribute Local variable Variable

Temporary variable Variable entity

Attribute Command Feature

Function Procedure Query Routine

← Exercise “Vocabu-
lary”, 8-E.1, page 225.

VARIABLES, ASSIGNMENT AND REFERENCES §9-E270

9-E.5 Swapping values

Assume variables var1 and var2 of type INTEGER, with the ordinary arithmetic
operations. Can you write instructions that will swap their values, without using
any local variables or any other entity? (The answer is an old programming
trick; can you think of any limitation?)

9-E.6 Reversal procedure

In a class C, let the attribute s denote a reference to the first STOP object in a
metro line. Write a procedure reverse in C that reverses the order of the stops in
the line, so that s will upon completion denote the first stop in the modified line
(the last one in the original). The procedure takes no argument. (Making s an
argument of reverse would make things harder, since you cannot assign to a
formal routine argument, although you can modify the corresponding object.)
Hint: use the function reversed for inspiration.

9-E.7 Chaining stops both ways

This exercise asks you to update the class STOP of this chapter so that every
stop is linked to its left neighbor (if any) as well as its right neighbor. For
example link should be called link_right and complemented by link_left.

1 Add put_left to complement put_right and remove_left to complement
remove_right.

2 Update reversed.

9-E.8 List of stops as a class

Rewrite the linked-structure-manipulation routines of this chapter
(remove_right, put_right, reversed, as well as reverse if you have also done the
previous exercise) as features of class LINE rather than STOP.

9-E.9 Language rules

In an assignment var := exp, var must be a variable; it cannot be an expression
involving a qualified call, such as some_object.one_of_its_fields. What is the
justification for this rule? (Hint: refresh your knowledge of the information
hiding principle and class invariants.)

← As in “Swapping
two values”, page 235.

← Page 261.

← Page 254.

← Pages 257 and 258.

← Page 261.

← See “Making lists
explicit”, page 262.

10

Just enough hardware

There would be no software without computers. To understand what it takes to
develop good programs, we must have a basic understanding of the underlying
machinery — the hardware — on which they will run. In this chapter we take a
look at some of the essentials of what you must know about that hardware,
detailing some elements of our earlier overall picture:

In particular, we will get a feel for the order of magnitude of hardware
phenomena: how much information you can represent through computer data,
how fast you can access such data and execute operations on it.

We limit ourselves to properties of direct relevance to programmers and to
the topics in the rest of this book. Along with learning to program, you should
at some point take a course on a topic such as “Introduction to Computer
Architecture”, which will go far deeper into the details.

10.1 ENCODING DATA

The data that we store in our computers’ memories represents information of
very diverse nature, from employee records, images and sounds, texts in human
languages with formatting information (fonts, layout), to numerical values used
in scientific computation — not to forget programs. We need a general way to
represent this information and interpret the corresponding data.

Processors

Memories

Communication

Rest

world

devices
Components of

a computer

systemof the

(Figure from page 7.)

JUST ENOUGH HARDWARE §10.1274

The binary number system

Part of what made the computer revolution possible was the discovery of a
simple and general way to represent information as data: the binary system.

The basis of the binary system is a set of two values (hence “binary”). These
values have no intrinsic meaning, so we might call them Black and White, Tom
and Jerry or maybe Isis and Osiris. What matters is that they must be
unambiguously different. In fact we call them 0 and 1 (zero and one).

The term bit denotes a mathematical variable whose possible values are just
these two. The word was made up by engineers in the late 1940s as a contraction
of binary digit, to indicate that a bit is like a digit of ordinary arithmetic
(0, 1, … 9) but with 0 and 1 the only possible values.

“Bit” also denotes, by extension, a physical device that has two possible states,
and hence can be used to represent a mathematical bit once we agree on which
will be one and which zero. A cardboard sign on your door with a little flag that
you can move to alternative messages “The doctor is IN” and “The doctor is
OUT” is a bit. More relevant to the computer industry are electronic bits
(obtained for example by transistors), where the two states correspond to two
different voltages, and magnetic bits, for example small areas of magnetic tape
or disk, where the states are “magnetized” and “demagnetized”.

The reason why the binary system works so well is that today’s electronics
technology makes it possible to:

� Build such physical bit representations and pack many of them in a small
area. To be more precise: pack very many of them in a very small area. We
will see some numbers below.

� “Write” these bits (change their values) and “read” them (obtain their
values) quickly. Very quickly.

� Build many such collections of bits, cheaply. Very cheaply.

A bit (low-tech

version)

The doctor is

OUTIN

Peanut Medical Inc

§10.1 ENCODING DATA 275

These properties have ensured the success of the binary system. Some early
computers used a decimal system; this seemed more natural since computers
were then largely seen as counting machines, and when people count they will
continue — computers or not — to use a decimal system for a long time, if only
because we have ten fingers, not two or eight or sixteen. (The word digit itself
comes from the Latin for “finger”.) But for automatic computers built with the
devices of electronics, the binary system long ago displaced its competitors.

To what extent is this relevant to programmers? More than you might think.
True, we work on source programs expressed in a pleasant programming
language, where the connection to information is clear, so that we write
numbers, for example, in the usual decimal notation: 10, or –1, or
3.1415926524. But as soon as we consider how data is represented in memory,
in particular where it is stored, we must remember that the binary numbering
system is the one that is natural for computers even if strange to people at first.

This justifies taking a look at some of the properties of the binary system
and its associates, although this is not a substitute for the more detailed
knowledge you will gain from courses on logic and digital design.

Binary basics

Unless all the information you ever deal with is the result of a single toss of a
coin, two possibilities isn’t much. The basic combinations, out of which you can
encode finite data of any size, are:
� The byte, or sequence of eight bits.
� The word, which on newer computers increasingly means a sequence of

eight bytes, or sixty-four bits. In the past two decades “word” usually meant
four bytes, or thirty-two bits (hence “32-bit architecture” and
“64-bit architecture”).
Early on, the definition of “word” was not so standardized; computers used many
different word lengths. You can still encounter outliers, but they are rare. Bytes have
always been 8 bits and are also called octets.

How many possible values can such a sequence of bits represent? One bit has
two possible values, 0 and 1. With two bits there are four possibilities:

More generally, for a sequence of n bits for any integer n > 0 there are 2n (two
to the power n) possibilities.

0 0

0 1

1 0

1 1

JUST ENOUGH HARDWARE §10.1276

Basic representations and addresses

For the basic units:

� A byte, with eight bits, has 256 (28) possible values.

� A collection of 32 bits has 232 possible values; that number, given in the
table below, is on the order of four billion.

If, for example, we want to store characters making up a text, a possibility is to
use one byte for each character. 256 possibilities might seem a luxury, but in fact
it is just about what we need once we have included the ten digits, special
symbols on your keyboard (such as ~, !, @ etc.), the 26 lower-case and 26
upper-case letters of the Roman alphabet, and the most common accented letters
of Western languages (é, Ä and so on). The standard assignment of each possible
8-bit configuration to represent each one of these characters is known as
extended ASCII. The original ASCII used only 7 bits (128 possibilities) and had
no support for accented letters.

Extended ASCII has several variants, but the most popular, known as ISO 8859-1,
covers the characters used by the most widespread European languages.

For languages such as Cyrillic with other character sets, or ideograms as in
Chinese, extended ASCII is not sufficient; the standard there is Unicode, which
uses up to four bytes for a character, supporting a large set of possibilities that
cover the most important written languages.

To declare character entities, you can use the type CHARACTER_8 for
extended ASCII or CHARACTER_32 for Unicode. The more common solution
is to use the type CHARACTER, which means one or the other depending on a
configurable setting; this is what we will do in examples involving characters.

For numeric information, the common practice is to use a word to represent
an integer variable. The mathematical set of integers is infinite, but in the
memory of a computer we have room for only a finite set of values; using a
32-bit word, we can represent about two billion negative values and two billion
positive ones, which is often enough. With 64 bits these limits are squared. The
type for such data, in our programs, will be written INTEGER; in the same spirit
as for characters, this can be set to mean either INTEGER_32 or INTEGER_64.
Types INTEGER_8 and INTEGER_16 are also available. If you are dealing with
integer values that can only be non-negative, it is better not to use INTEGER and
its variants but NATURAL, which covers integers from zero up and has the
corresponding variants, from NATURAL_8 to NATURAL_64.

“American Standard
Code for Information
Interchange”. You may
see the ASCII byte
code assignments at
www.asciitable.com.

The table appearing
next on page 278 gives
exact values.

http://www.asciitable.com

§10.1 ENCODING DATA 277

A word can also serve to represent non-integer numerical values,
mathematically corresponding to rationals, such as 3/2, and other reals, such as
π. Such values are particularly useful in “scientific computation”, the use of
computers for solving problems with a strong numerical component in physics,
biology, engineering or even finance. The corresponding types in our programs
are REAL_32, REAL_64 as well as plain REAL which, again with the same
convention, stands for one of the previous two. Unlike with integers, 232

possible values often does not give enough precision; the 64-bit variant is
usually the one you need for serious numerical computation.

The starting position at which a data element appears in memory is called
its address. Examples of data types such as CHARACTER_8, INTEGER_32 and
REAL_64 indicate that data elements may be of different sizes (in these cases
one byte, four bytes and eight bytes). To provide a uniform way of denoting
addresses, the convention is always to count in bytes, and to start at zero (rather
than one). So if the memory starts with a thousand values of type INTEGER_64

on a computer with 8-byte words, the first element that follows them will be at
address 8000.

Powers of two

If only because of the property just seen (n bits can have 2n values), the powers
of 2 are important to the binary system.

The table on the next page lists the first ten values and other important ones
in this sequence. You need to remember the first ten values, the order of
magnitude of the others listed, and the “common” abbreviations (kilo etc.).

From cherries to bytes

In the ordinary, decimal way of counting things, abbreviations like “kilo”

represent powers of ten, more precisely the powers of 103 which serve as natural

milestones: a kilogram of cherries at the market is one thousand grams (103),

one million dollars (106) will hardly buy you anything decent in Southern

California, one billion dollars from the taxpayer (109) might prolong the life of
a failing bank by a few hours.

JUST ENOUGH HARDWARE §10.1278

This also applies to computer-related measurements other than memory:

� A transmission line functioning at 1 Mbps (Megabit per second) can
transmit one million bits each second.

� A CPU with a speed of 1GHz (one Gigahertz) can execute one billion basic
processor instructions per second. “Hertz”, number of events per second, is
a frequency measure borrowed from physics.

While memory sizes and addresses are expressed in bytes (abbreviation B),
transmission speeds are usually given in bits per second or bps, where the
abbreviation for “bit” is b. So a “56K modem” — if functioning at its highest rate,
which it usually does not — would transmit 56,000 bits each second.

n 2n Approximation by
power of 10

Common name
(abbreviation)

Official name
(abbreviation)

0 0

1 1

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024 103 (thousand) Kilo (K) Kibi (Ki)

16 65536

20 1,048,576 106 (million) Mega (M) Mebi (Mi)

30 1,073,741,824 109 (billion) Giga (G) Gibi (Gi)

32 4,294,967,296 4 x 109 (4 billion)

40 1,099,511,627,776 1012 (trillion) Tera (T) Tebi (Ti)

50 1,125,899,906,842,624 1015 Peta (T) Pebi (Pi)

64 18,446,744,073,709,551,616 1.8 x 1019

§10.1 ENCODING DATA 279

To express memory size, computer engineers prefer to use the powers of two.
This is where the mess begins; to be precise it began when someone (in whose
honor no statues have been erected, as his or her name is lost to history) made
the clever observation that the tenth power of two, 210, is 1024, slightly over 103

— a thousand — and the truly brilliant decision, as a consequence, to reuse
decimal abbreviations shown in the highlighted entries of the table: kilo for a
near-thousand (220), mega for a near-million (220, about 106), and giga for a
near-billion, (230, about 109), although the approximation is less and less “near”
as we go on; see the exact values in the table.

Having a binary interpretation of “thousand” and its multiples along with
the traditional decimal one can be quite confusing, especially since the two are
sometimes used together: the standard capacity of a “floppy disk”, an older
memory medium, is specified as 1.44 megabytes (MB), but means 1440 (1.44
times one decimal thousand) times 1024 (one binary thousand) bytes!

To end this confusion, which has led to lawsuits accusing manufacturers of
misrepresenting memory capacities, the relevant standards organization
prescribes retaining the older names — kilo, mega, giga … — in their traditional
decimal meanings only, and using new names, shown in the last column of the
table, for their binary neighbors; kibi, mebi, gibi… These names have not,
however, gained widespread use.

This is putting it politely. A more frank assessment as of 2009 is that no one uses
them. While a Google search for “gigabyte” leads to countless ordinary uses, the
first few hundred links for “gibibyte” are all to discussions of the term itself.

To avoid confusion, remember that binary interpretations are only used for
memory measurements. For anything else, the usual decimal meanings apply. If
the ad for that 1-GHz laptop, which executes a billion operations per second,
also says it has 1 GB of memory, you will actually be getting more than a billion
bytes; about 73 million more.

In most practical cases the difference does not matter: between friends,
what’s a few million?

Computing with numbers

The good side of the standard representation of integers on a computer is that
they are exact: the integers that your programs can manipulate directly represent
integers as we know them from mathematics. The bad side is that they are
partial: they only cover a finite subset of mathematical integers. For a 64-bit
computer the highest and lowest representable integers are in the neighborhood
of 263 and 2–63.

The exact values of these extremes depend on the computer’s number system, in
particular how it encodes negative integers. A common system is two’s complement,
where the binary representation of –n is that of n with every binary digit reversed

(0 for 1 and 1 for 0). Then the extremes, for M bits, are 2M–1-1 and –2M–1.

The organization is the
BIPM (Bureau Inter-
national des Poids et
Mesures), which
defines the interna-
tional system of units,
or SI.

JUST ENOUGH HARDWARE §10.1280

For applicable integers, not only is the representation exact: arithmetic
operations give the same results as their mathematical counterparts — as long
as that result fits. Writing a + b in your program, for integers a and b, will give
the correct result, except if it would be over the maximum or under the
minimum. Such a case is known as an arithmetic overflow.

Like the representation of integers, the representation of real numbers — the
type is generally called either REAL, as in Eiffel, or float — is finite and hence
partial; unlike for integers, it is not exact for most values. This would be
impossible since there is an infinity of mathematical reals between any two
distinct ones, for example in the interval [0, 1]. In fact the rational numbers
(values of fractions of which the numerator and denominator are both integers)
already have that property, even though they are a much smaller subset of the
reals; so even the rationals cannot all be represented exactly. This is a typical
example of the distinction between information and data.

The standard representation of reals uses three parts stored in a word: a bit s
representing the sign; an exponent, representing an integer n; and a fraction f,
representing a real number whose leftmost digit is not zero (the fraction is
“normalized”). This represents the number f × 2n, of sign s.

These properties affect your programs in three important ways:

� When you specify a real value x explicitly in the source text, or the program
reads x at run time from a file, a sensor or another source, the value actually
used is one of the representable floating-point values, very close to x but not
guaranteed to be identical.

� Arithmetic operations — addition, multiplication, division, exponentiation
— may fail even when their result is mathematically well-defined.
Overflow, mentioned earlier for integers, can also occur here: if x and y are
two mathematical reals both representable in the computer’s number system
(and assumed positive for these examples), x + y or x × y may be too large
to be representable. Another example, specific to real numbers, is the
division x / y, where y is not zero, so that the operation is mathematically
defined, but very small, making the result too large to fit in the number
system. Real numbers also introduce the risk of underflow: with y very
large, x / y may be too small in absolute value to be represented,

� Even in the absence of overflow and underflow, arithmetic operations can
cause errors. If x’ and y’ are the representable values of x and y, the
programming language notation x + y does not denote the mathematical
sum of x and y; it may not even represent the exact value of the
mathematical sum x’ + y’, which is not guaranteed to be representable. Any
algorithm that deals with floating-point numbers must take this risk into
account, lest it produce grossly erroneous results.

← “Definitions: Data,
information”, page 8.

§10.1 ENCODING DATA 281

This is an important concern in “scientific computations”, applied not only to
science and engineering but also, for example, to financial modeling, with heavy
use of real numbers and numerical algorithms. The error in each individual
operation is generally acceptable, since it is so small, affecting for example the
least significant digit. The risk arises in computations performing millions or
billions of elementary operations: small errors may accumulate to the point where
they seriously affect the validity of the results.

Numerical programming requires careful techniques to avoid numerical
disasters. Here is a simple example. In a later chapter we will encounter the

example of an integration routine that approximates the integral

o f a func t i on f ove r a g iven i n t e rva l [l ow..h igh] by the sum

 of the areas of rectangles of fixed width step,

with n = (high – low) / step:

We can implement this through a loop (reduced to its simplest elements, see the
full context in the later discussion), using the local variable x of type REAL:

In principle this does the job, but note how the highlighted instruction updates
x on each iteration by adding step. This introduces a small error which,
accumulated over a very large number of iterations, could cause a significant
drift of the value of x and a seriously wrong result for the overall computation.

from x := low until x >= high loop

Result := Result + f.item ([x]) -- f.item ([x]) is the value of f at x.
[1]

end

→ “Agents for numer-
ical programming”,
17.4, page 634.

low

high
f (x) dx

Σ
i = 0

n – 1
f (low + i × step) × step

Integration by

finite

approximation

low high

f

x x + step

f (x)

Warning: initial ver-
sion, numerically bad.

x := x + step

JUST ENOUGH HARDWARE §10.1282

Some programmers instinctively use forms such as [1] because of the
expectation that additions will be faster than multiplications, but this is not
necessarily true and the effect on numerical precision is damaging. A direct
implementation of the above Σ formula, with an integer local variable i,
uses multiplication:

Recomputing x from scratch each time removes the drift: for each value, we get
at worst the error of a single addition and multiplication.

There is a general principle here:

A shorter form of this advice is “study numerical analysis” — the part of applied
mathematics that deals with computing with actual numerical values (as
opposed to symbolic computation), taking into account the properties and
limitations of number representation and operations on actual computers.

In the treacherous land of numerical programming there is one beacon of
comfort: standardization. Preventing mathematically correct algorithms from
numerically misbehaving used to be a machine-specific task, as each computer
architecture had its own number system. This situation has largely come to an
end with the wide adoption of the IEEE Standard for Floating-Point Arithmetic.
The standard defines a single framework for computer number systems, with
both 32-bit and 64-bit variants. Most of today’s computer architectures
implement it; so when you need to check that an algorithm does not cause
unacceptable numerical errors you can at least expect to do this work only once.

from x := low until x >= high loop

Result := Result + f.item ([x])-- f.item ([x]) is the value of f at x.
i := i + 1 ; -- [2]

end

Touch of Methodology:

Computing with real numbers

In software that deals with computer representations of real numbers, be
aware of the approximations involved, and devise the algorithms so that they
will avoid accumulation of approximation errors.

x := low + (i ∗ step)

→ Reference under
“Further reading”,
10.5, page 291.

§10.2 MORE ON MEMORY 283

10.2 MORE ON MEMORY

Memory is where we put and access the data. At the most elementary level it
holds basic data elements such as characters and integers, but to our programs
it will be the place where we create and find objects. Let us see what memory
can do for us.

Persistence

The diagram of computer organization shows two symbols for memories, and

, to emphasize that some kinds are transient and others persistent, supporting
data with different requirements:

� Transient data is created and manipulated by a program’s execution, but is
not guaranteed to survive that execution. With some memory technologies,
powering off the memory unit will result in loss of data.

� Persistent data remains forever unless expressly deleted; switching power
off has no effect on this property.

Why have transient data at all? It might be simpler to make all data persistent
by default, and delete what we do not need any more. The answer is
technological and economic. Memories that processors can access at an
appropriate speed for their data-processing operations are transient and
expensive; persistent memories are cheaper, so that we can (thankfully) use
them to store large amounts of data — representing text, images, music, flight
tables, personal information … — which we have to access more slowly.

Words like “appropriate” or “slower” speed, “large” or smaller amounts of
data, “cheap” or not, should be put in context. Here are some rough estimates in
current technology (at the time of writing):

� A computer suitable for software development, possibly a laptop, might
have a transient memory capable of holding a few GB (gigabytes) at a cost
of a few hundred dollars or euros for the memory. The time to access a
character might be around 50 nanoseconds, meaning 20 million accesses per
second. (A nanosecond or ns is 10–9 seconds.)

� The computer might have a disk (persistent memory) that is a hundred times
as big (a few hundred GB), costs half as much ($100), and has an average
access time on the order of 5 milliseconds — two hundred accesses per second.

The ratio of access times is remarkable, and directly relevant to the programmer.
Programs that manipulate large amounts of data cannot ignore the issue of their
distribution between transient and persistent memory; they must keep transfer
times under control, for fear of damaging execution speed.

← Page 273.

→ See below a trans-
position to the human
level in “Registers and
the memory hierar-
chy”, page 287.

JUST ENOUGH HARDWARE §10.2284

Transient memory

Processor operations, as noted, will access data in transient memory. This key
component of any computation has several names:

� Main memory.

� Primary memory.

� RAM, for Random Access Memory.
The term has a historical origin: initially, non-primary memory was implemented
with technologies such as magnetic tape or, even earlier, punched tape (paper tape
with holes to represent bits, where the presence of a hole can mean 1 and its absence
0; in such cases data access is sequential in the sense that elements are accessed one
after the other, in the order of their appearance on the tape. Starting from the
beginning, the time to access an element is proportional to its address (since you
must first go over all the ones before it). In contrast, main memory is “random”,
meaning that it takes the same time to access any element, regardless of its address.
Many non-primary memories, such as the disks presented below, are now random
as well, but “RAM” has stuck.

� Core memory, or just “core”. This term points back to an older technology,
the little magnetic elements or “ferrite cores” of many years ago, but you
will still hear that a certain set of data is “in core”. Just understand “core” as
meaning central, as in “core competence”.

The photograph below shows a main memory “chip” containing 2 GB; its
“DDR2-800” technology ensures 5 nanoseconds cycle time and 800 million
transfers per second, with a peak transfer rate of 6.4 gigabytes per second.

Varieties of persistent memory

Persistent memory really consists of two kinds:

� Some elements are intended to remain attached to a computer during its
operation. They are called secondary memory to emphasize that they really
serve as extension of the primary memory. On the plus side (in addition to
the benefit of persistence), the access cost per gigabyte is lower, making it
possible to offer much more space, starting in the hundreds of gigabytes; the
drawbacks are that access is slower and processors cannot directly get to the
data: any transfer must go through primary memory.

→ See also the discus-
sion of sequential and
random-access struc-
tures in chapter 13,
including the figure
“Sequential and ran-
dom access”, page 380.

A memory chip

§10.2 MORE ON MEMORY 285

� Others are meant to be connected to a computer only episodically, so that
data can be copied onto them; then they can be removed, and later on
connected again to the same computer or to another, to read the data back.
They serve as devices for data “backup” (long-term preservation and
storage) and interchange. They are called removable memory, or
removable storage devices. (“Storage” is just a synonym for memory.)

The most common form of secondary memory is the disk. A more correct term
is “disk device” since “the disk” on your computer is actually a pile of
magnetized disks, all rotating at a speed of 4,000 to 12,000 runs per minute, with
reading heads that can move back and forth over disk surfaces to access the data,
a bit being represented by the magnetized or demagnetized state of a tiny area.
If power is switched off, the heads obviously will not work but magnetization is
preserved, making disks suitable for persistent data.

The device shown above has two disks, although we see only one, and can store
8 gigabytes. (If this sounds underwhelming that is because it is a 1999 model —
I was not going to rip apart my newest disk drive just to take a picture. At the
time of writing you can get a disk of several hundred gigabytes for something
like $50, and terabyte disks are available in consumer shops.) It turns at a rate
of 5400 RPM (rotations per minute) with an access rate of 9 ms (milliseconds)
and a maximum transfer rate of 33 MB (megabytes) per second. The access time
and transfer rates are only an approximation; one of the characteristics of disk
access is that a latency time is necessary to get the head to the right position;
after that, you can access even a large amount of data much faster if it is all
contiguous. When writing programs that make heavy use of disk data, you may
have to take this property into consideration to optimize performance.

While disk drives remain the dominant kind of persistent memory, they are
increasingly challenged by “solid-state drives” (SSDs) using flash memory.
Unlike disks, SSDs are purely electronic (not electro-mechanical) and do not
include any movable parts; they are not subject to the “disk crashes” of

A disk

JUST ENOUGH HARDWARE §10.2286

traditional disk technology, which without warning will lose all your data. A
disadvantage of flash memory is that it supports only a set number of rewrites,
although a number of techniques are available to cope with this limitation.
Around late 2008, SSDs became an attractive alternative to disks, even for
laptops, thanks to the fast increase in capacity and decrease in price.

The MIT Media Lab’s XO laptop, introduced in 2007 as part of the “One
Laptop Per Child” (OLPC) project, was one of the first computers destined for
wide availability and using flash memory rather than a disk.

Following in the tradition of paper tapes mentioned earlier, some memory
devices are removable. Among the most popular are USB memory sticks, so
called because they connect to the standardized “Universal Serial Bus” of a
computer and use flash memory technology; capacities of 2 to 16 GB are now
common. USB disks — normal disks as described earlier, but connecting
through a USB port rather than internal wiring and hence removable — start
around 100 GB.

An earlier device connection technology still supported by many laptops is
mostly notable for its acronym: “PCMCIA”.

“One Laptop

Per Child”,

running

EiffelStudio

Memory stick

and USB disk

For “Personal Com-
puter Memory Card
International Associa-
tion” although you may
prefer the unofficial
version: “People Can’t
Memorize Computer
Industry Acronyms”.

§10.2 MORE ON MEMORY 287

Registers and the memory hierarchy

Computer operations such as addition generally require their operands, or at
least some of them, to be in special locations called registers. Most architectures
offer at most a few dozen registers. To perform an operation on operands stored
in ordinary memory, for example a and b in the assignment

you may need the following sequence of hardware instructions: transfer the
values of a and b from ordinary memory to registers; apply the operation (here
an addition); transfer the result to ordinary memory, here back to the word
dedicated to a.

The basic memory hierarchy has, as a result, three levels:

� Registers, very few in number, but accessible at the speed of the CPU clock.

� Core memory, typically a few gigabytes today, slower.

� Disk or equivalent, into the hundreds of gigabytes or terabytes, again slower.

The orders of magnitude of typical access times at the time of writing are: 0.5
nanoseconds; 50 nanoseconds; 5 milliseconds. While all this may appear very
fast, the ratios are significant. Consider in particular that the ratio between the
last two, disk and memory is around 100,000. Transposing to the human level,
imagine a worker with:

� Operations (the processor instructions) to process materials, if available for
processing (meaning, in the registers), in 0.01 seconds.

� Space (the main memory) to hold a large but limited amount of materials
available within 1 meter (taking one second to grasp any item), but stored
away at the end of any working session.

� Space (the disks) to store permanently an essentially unlimited amount of
materials, but a hundred kilometers (and one day of transport) away!

For actual hardware the times should be divided by about twenty million but the
ratios remain the same. The memory policy — what remains in main memory and
what has to be fetched from disk — obviously has a major effect on performance.

a := a + b

JUST ENOUGH HARDWARE §10.3288

Virtual memory

In practice the distinction between main memory and disk is blurred by the
availability of virtual memory, a facility that operating systems provide to let
you pretend that you have more core memory than you paid for.

Virtual memory allows you to use an address space much bigger than the
available core memory through behind-the-scenes management of the physical
placement of your data, keeping some of it in core and the rest on disk. For this
purpose, it splits the address space into units called pages, each typically a few
kilobytes. Actual data access requires that the data be in core; if it is not, the
access causes a page fault: the virtual memory system loads the corresponding
page from disk, an operation called page-in. This also requires, if no room is left
in core memory, moving one or more pages to disk: a page-out.

The reason this policy can work efficiently is that programs typically use,
over extended periods of their execution, a small subset, the working set, of their
potential address space. Only under extreme circumstances does execution enter
a degraded mode, known as thrashing, where page-ins and page-outs come to
dominate execution.

Virtual memory also facilitates sharing a computer between many different
programs: each program sees a single, continuous (and large) address space,
which in reality is mapped onto a set of pages, interspersed in core and disk
memories with the address spaces of other programs.

All this, of course, makes it more difficult to estimate the performance of
programs, since you do not really know when a seemingly innocuous memory
access might suddenly cause a page fault; it is as if once in a while our
metaphorical worker, while reaching out for a piece of material, suddenly
realized that none remains and he has to travel the hundred kilometers to the
depot. In most practical cases, however, the working set properties of programs
enable you to ignore this concern, and pretend that you really have (say) 20 GB
of memory even if you only installed 4 GB.

10.3 COMPUTER INSTRUCTIONS

In ordinary situations the instructions of concern to programmers are those of
higher-level programming languages. It is useful, however, to have an idea of
the actual instructions into which they will be translated, the only ones that
computers can actually execute.

§10.3 COMPUTER INSTRUCTIONS 289

A typical computer instruction is stored into a word, or occasionally several
words. It contains an instruction code, determining the type of the instructions,
and zero or more arguments, which can be addresses or other values. Here for
example is an instruction for the 32-bit PowerPC instruction set architecture; the
instruction occupies a word, with bits indexed from 0:

The instruction code is the combination of a primary code 31 (binary 11111) in
bits 0 to 5 and a secondary code 266 (binary 100001010) in bits 22 to 31. The
result (bits 6 to 10) will go into register 5 (binary 101); the operands (bits 11 to
15 and 16 to 20) are in registers 3 and 4 (binary 11 and 100).

The bit-by-bit representation, as used here, is inconvenient for practical
manipulations of binary numbers. The customary notations are hexadecimal (base
16, collecting bits by groups of 4) and octal (base 8, groups of 3). The above binary
number 01111100101000110010000100001010 is 7CA3210A in hexadecimal
(where A to F are the hexadecimal digits for decimal 10 to 15).

Computers offer instructions of three main kinds:

� Computation: arithmetic operations such as addition (as in this example),
subtraction, multiplication, division, usually in both integer and
floating-point variants; comparisons; bitwise operations (like boolean
operations, but applied to entire words, for example by “and”-ing the bits at
matching positions in two words). Usually such operations take their
operands in registers.

� Load and store: transfer values from memory to a register, or the other way
around; exchange values to and from hardware devices.

� Program flow: divert execution to a specific location, either conditionally or
unconditionally. We saw examples in the discussion of control structures:
branch unconditionally, branch on equal.

Each instruction has a numerical code, such as 31 in the above example. A more
convenient way of referring to instructions is through mnemonic codes; the
addition instruction for PowerPC has the code add. More generally, the final
form of machine-code programs, expressed in binary, is not suitable for human
communication. Assembly languages provide a human-readable form of such
programs. In PowerPC assembly language, the example instruction reads

0 6 11 16 21 22 31

0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0

Instruction code Result Operand 1 Operand 2 Secondary code (266)

add r5, r3, r4

Bit position

Bit value

Role

← “Boolean opera-
tions”, 5.1, page 72.

← “Conditional and
unconditional branch-
ing”, page 182.

JUST ENOUGH HARDWARE §10.4290

An assembly language resembles programming languages in its use of symbolic
names: register names such as r5, instruction codes such as add, as well as
identifiers used to denote addresses and constants. The translation from
assembly language to binary machine code is the responsibility of a system
program called an assembler, a kind of elementary compiler. But assembly
language remains in direct correspondence with machine code, unlike
programming languages which offer advanced constructs at a much higher level
of abstraction. Also note that an assembly language is applicable to just one type
of computer architecture — Intel “x86”, PowerPC or any other — whereas
modern programming languages are portable (platform-independent). Rather
than a programming language in the full sense of the term, an assembly
language is just a tool removing the most tedious aspects of writing
machine-level programs. Correspondingly, assemblers are much simpler
programs than compilers.

The observation to remember here is, once again, the crudeness of the basic
computer instructions: how remote they are from any useful task for which we
wish to use computers. This gap justifies the need for programming languages
and explains the difficulty of programming.

10.4 MOORE’S “LAW” AND THE EVOLUTION OF COMPUTERS

In considering the influence of hardware performance on programming, it is
impossible to take a timeless view. The extraordinary characteristic of
information technology has been the constant progress of hardware power. A
1965 article by Gordon E. Moore, co-founder of Intel Corporation, described
this phenomenon in a particularly vivid way. The most common formulation of
what came to be known as Moore’s law is that the number of components
crammed into integrated circuits at a constant cost doubles every 18 months
(although Moore himself mentioned two years). There are a number of variants,
which all point to exponential progress. They do not reflect an actual “law” of
nature such as those of Newton, Maxwell or Einstein, but an observation about
the industry’s progress over several decades — an observation that has proved
prescient and remains remarkably applicable. No other area of technology has
ever experienced even remotely comparable growth. (Cars today are not 1000
times faster than cars twenty years ago; US cars, specifically, get about the same
gas mileage in 2009 as in 1909.)

While the original Moore’s law characterizes component integration and its
immediate effect is on processing speed, variants of the phenomenon have
governed the evolution of many aspects of computing power — memory size
and access speed, disks, costs of various devices — at different speeds of

§10.5 FURTHER READING 291

evolution. I remember being amazed (little more than a decade ago) when the
price of a megabyte of disk storage went below one dollar. Today few people
would accept paying a buck for a gigabyte.

The basic Moore’s law cannot be sustained indefinitely, as the packaging of
ever more components into a fixed space raises issues of heat generation and
approaches physical limits of signal transmission speed. This has resulted in a
situation where (as some computer architects put it) “the number of people

declaring the demise of Moore’s law doubles every eighteen months”. In fact the
end is not coming just now, but the industry consensus is that the only viable
long-term solution is to continue increasing concurrency: speeding up
computation not just by making the processors faster but by using several
processors in parallel. “Multicore” and “manycore” architectures are already
pervasive. The problem, however, is that no satisfactory solution has emerged for
programming these concurrent architectures. Not one more word on this topic (or,
in this chapter, any other, as this is the last section): it is fodder for some other book.

10.5 FURTHER READING

IEEE Standard for Floating Point Arithmetic (754-2008), available at
ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935.

“Specifies interchange and arithmetic formats and methods for binary and
decimal floating-point arithmetic in computer programming environments”.

John Markoff: Faster Chips Are Leaving Programmers in Their Dust, in New
York Times, December 2007, available at tinyurl.com/5cstbq.

A newspaper article, not a scientific publication; presents a clear
description of the need to rely on concurrent architectures to sustain
Moore’s law and the difficulty of concurrent programming. John
Markoff has for many years covered Silicon Valley for the NY Times and
is a well-known figure in the industry.

John L. Hennessy and David Patterson; Computer Architecture, Fourth
Edition: A Quantitative Approach, Morgan Kauffmann, 2006.

Classic textbook on software architecture, updated to reflect the latest
trends, in particular the move to parallel architectures.

But see the article by
John Markoff in “Fur-
ther reading” and, for
a taste of current
research, se.ethz.ch/
research/scoop.

Full URL: www.nytimes.
com/2007/12/17/
technology/17chip.html?
scp=1&sq=john%20ma
rkoff%20intel%20concu
rrency&st=cse

Patterson (2007)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935
http://www.nytimes.com/2007/12/17/technology/17chip.html? scp=1&sq=john%20markoff%20intel%20concurrency&st=cse
http://www.nytimes.com/2007/12/17/technology/17chip.html? scp=1&sq=john%20markoff%20intel%20concurrency&st=cse
http://tinyurl.com/5cstbq
http://se.ethz.ch/ research/scoop
http://se.ethz.ch/ research/scoop

JUST ENOUGH HARDWARE §10.6292

10.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Internal representations of data on a computer use the binary system.

� The basic unit of data is the bit, with two possible values, 0 and 1. Bits are
grouped into bytes, of 8 bits, and words, generally of 8 or 4 bytes (64-bit and
32-bit architectures). Addresses are measured in bytes. An integer or real
number is commonly stored in a word; more compact variants (one or two
bytes) also exist. A character occupies a byte (extended ASCII) or, with
increasing prevalence, two or four bytes (Unicode).

� Measurements of quantities other than memory, for example speed, always
use decimal units, with standard prefixes of the international system of
measures such as kilo (thousands), mega (millions), giga (billions), tera
(1012) and peta (1015). For memory size and addresses the common
practice, departing from official standards, is to use the same prefixes for
neighboring powers of two, starting with 210 (1024, close to 103 = 1000).

� Integer representation on a computer is exact, but only on a finite interval.

� Real number representation is approximate. Arithmetic operations usually
cause an approximation error; the implementation of numerical algorithms
must avoid accumulating these errors.

� The memory hierarchy includes registers, core memory and persistent
devices such as disks or flash memory. Processor operations apply to
operands in registers. Register access is the fastest (less than a nanosecond),
but only a small number of registers are available. Core memory is (today)
typically on the order of gygabites, with access time about 100 times slower,
and is transient (turning off the computer results in a loss of values).
External memories — disks, flash — are again about 100 times slower than
core memory, but support higher capacities (hundreds of gigabytes to
terabytes and more) and provide persistence (values are retained).

� Machine code provides low-level instructions: simple operations on values
in registers; transfer between memory levels; and transfer of control.

� The computer industry has benefited from an exponential increase in
computer power, expressed as “Moore’s law”. Sustaining this development
increasingly requires multiple processors and concurrent programming.

§10-E EXERCISES 293

New vocabulary

10-E EXERCISES

10-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

10-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

10-E.3 Measurements

How many bytes exactly is:

� One kilobyte

� One megabyte

� One megaword (1 word = 4 bytes)

� One gigabyte?

10-E.4 Your new laptop

The computer catalog advertises a laptop with 1.3 GB of memory:

� How many bytes, exactly, does the memory contain?

� How many bits, exactly, does the memory contain?

� Assume you use the entire memory to represent a single variable. How
many possible values can that variable have? You are not asked to write
down the exact number (hint: do not try unless you own a paper factory) but
the best approximation you can of the form 10n for some n.

� If you did want to write the number on paper, 100 digits per line and 60 lines
per page, how many pages would you need?

Address Bit Byte

Core Disk Flash memory

Kilo Giga Hexadecimal

Mega Multicore (and manycore) Moore’s Law

Octal Persistent Primary memory

RAM Read Register

Removable memory Secondary memory Storage

Transient Word Write

← Exercise “Concept
map”, 9-E.3, page 269.

JUST ENOUGH HARDWARE §10-E294

10-E.5 Size and transmission speed

You must transmit 128MB of data using a 128-Mb modem working at full
capacity. How many seconds will it take?

10-E.6 Octal arithmetic

Octal arithmetic uses base 8, with digits 0 to 7.
� What is the octal representation of the decimal number 300000?
� What decimal number does the octal number 74223 represent?
� Compute the sum of these two numbers using octal arithmetic (decimal

addition rules transposed to octal). Give the result in both octal and decimal.

10-E.7 Hexadecimal arithmetic

Hexadecimal arithmetic uses base 16, with digits 0 to 9 and A to F.
� What is the hexadecimal representation of the decimal number 300000?
� What decimal number does the hexadecimal number A42D3 represent?
� Compute the sum of these two numbers using hexadecimal arithmetic

(decimal addition rules transposed to hexa). Give the result in both
hexadecimal and decimal.

On the Web you will
find converters
between decimal, octal
and (next exercise)
hexadecimal arith-
metic. Do not use them
to do these exercises,
but do use them to
check your results.

11

Describing syntax

With the study of control structures and assignment we have started to encounter
language constructs with an elaborate syntax structure, which programmers can
nest within one another. Other syntactically interesting concepts will follow.

To reason about such constructs, we need to define their syntax. The
presentation of control structures relied on informal English descriptions: “A
Conditional consists of the keyword if followed by...”. Such a style, useful for
introductory explanations, cannot give us as a general specification technique:
it is too verbose and at the same time not precise enough. We need the reverse:
conciseness and mathematical rigor.

BNF (Backus-Naur Form) satisfies these requirements and is the main focus
of this chapter. Other topics include: related techniques for describing abstract

syntax; a sketch of how to develop a parser from a syntax description; some
historical background; and an introduction to the theory of finite automata.

11.1 THE ROLE OF BNF

We saw that the full description of a language includes several levels: lexical,
syntactic and semantic. BNF only addresses the specification of syntax.

Before proceeding, make sure the basic syntax concepts introduced in that
earlier discussion are fresh in your mind: construct, terminal, nonterminal,
specimen, syntax tree.

Touch of history:
The original BNF

The history of programming languages starts in the nineteen-fifties. The
first language to achieve widespread recognition was Fortran (originally
FORTRAN, for FORmula TRANslator), intended for scientific
computation and designed by a team led by John Backus at IBM in 1954,
with the compiler shipping in 1956. This success sparked the design of
many new programming languages.

← For example “Syn-
tax: Conditional”,
page 180.

← Chapter 3..

Backus

DESCRIBING SYNTAX §11.1296

Languages and their grammars

For our purposes a language is simply a set of “phrases”, where each phrase is
a finite sequence of tokens from a certain “vocabulary”. For example in the
Eiffel language a phrase is a class text, such as

the simplest one we can produce, made of just three tokens (two keywords and
an identifier). The phrases encountered in practice — texts of useful classes —
have many more tokens.

Not every sequence of tokens from the vocabulary of a language is a phrase
of that language: end A class class is not a class text. To define the syntax of a
language is to specify which token sequences are phrases, and which are not.
Such a specification is called a grammar:

Soon American and European groups joined forces to design an
international standard language which became known in 1958 as Algol
58. (The name stands for ALGOrithmic Language, and was ALGOL in
upper case.) Its most influential version was the next one, Algol 60.
The preparation of the Algol 60 specification uncovered the need for
better ways of describing syntax than the largely informal techniques
used thus far. John Backus, by then a member of the Algol committee,
proposed a notation for describing the language, which became known as
Backus Normal Form, the original BNF.
A 1964 letter to the Communications of the ACM from Donald Knuth (a
professor of computer science at Stanford) suggested acknowledging the
contributions of another committee member, Peter Naur from Denmark,
by retaining the acronym but making it stand for “Backus-Naur Form”.
Many variants of BNF have been proposed since then. In the
specification of his Pascal programming language (a descendant of
Algol, first published in 1960) Niklaus Wirth devised a graphical variant
which has also been widely used.

class A end

Grammar

A grammar for a language is a finite set of rules for producing, from the
language’s vocabulary, sequences of tokens such that:
1 Any sequence obtained by a finite number of applications of the rules is a

phrase of the language.
2 Any phrase of the language can be obtained by a finite number of

applications of the rules.

Naur (1995),

portrait by Duo

Duo Zhuang

← This is a more
detailed version of the
original definition on
page 40.

§11.1 THE ROLE OF BNF 297

So by applying the rules we get all of the desired language (clause 2 of this
definition) and only the desired language (clause 1).

Most languages of interest are potentially infinite; for example there is an
infinite set of possible Eiffel class texts. But that theoretical possibility does not
cause any practical problem, first because in our lifetime we will only deal with
a finite set of programs, but more importantly because every phrase — here
every class text — is itself a finite sequence of terminals. The sequence might
be very long, but it cannot be infinite.

With a finite set of rules and an infinite language, we would have to keep
applying the rules forever to produce all possible phrases, for example all Eiffel
class texts. That again need not bother us. We do not need all classes; we only
need those of interest to us — once we know that the rules are capable in
principle of describing every possible class.

BNF is a notation for defining grammars. It is an example of a
metalanguage: a language serving to describe other languages, such as
programming languages.

BNF and the other techniques of this chapter apply not only to programming
languages but to all formal languages: artificial notations with a rigorously defined
structure. HTML, the format of Web page texts, and XML, a general-purpose
format for structured data, are examples of formal languages that are not
programming languages in the usual sense. In fact the original research was directed
at understanding natural languages — whose complexity and irregularity exceed,
however, the modeling power of BNF.

BNF basics

To describe grammars we will use a form of BNF called BNF-E, which serves
in particular for the standard description of Eiffel. There are many other
variants, such as Extended BNF (EBNF) defined by the International Standards
Organization. “BNF” in the rest of this discussion means any BNF variant; any
property specific to BNF-E is signaled as such. The differences are matters of
style rather than substance.

BNF enables us to define a grammar for a language. A grammar, not the

grammar, since different grammars may yield the same language.

A BNF grammar consists of the following parts, each a finite set:

� A finite set of delimiters; as we have seen these are the basic, fixed tokens
of the language’s vocabulary, such as keywords (class, if …) and special
symbols (period, colon, …).

→ See at the end of
this chapter: “Touch of
History: Classes of
languages and gram-
mars”, page 318.

→ We’ll see an exam-
ple in “Recursive
grammars”, page 307.

← “Tokens and the
lexical structure”,
page 43.

DESCRIBING SYNTAX §11.1298

� A finite set of constructs representing structures of the language. Examples
include Class, representing class texts, and Conditional, representing
conditional instructions. The BNF-E convention is to start construct names
with an upper-case letter and write them in Green. As you will remember, a
particular instance of a construct is called a specimen of the construct; for
example any conditional instruction is a specimen of Conditional.

� A finite set of productions, each associated with a particular construct and
specifying the form of its specimens. A production for Conditional, for
example, defines the form of any conditional instruction: first the keyword
if, then a specimen of Boolean_expression and so on.

Each production defines the syntax of specimens of a particular construct, in
terms of other constructs and delimiters. Here for example is the production
for Conditional:

This says that any specimen of Conditional — any conditional instruction —
consists of the keyword if, a delimiter, followed by a specimen of the construct
Then_part_list, followed optionally (the brackets signal an optional component)
by a specimen of the construct Else_part, followed by the keyword end. The
constructs Then_part_list and Else_part have their own productions.

Every production defines a single construct, here Conditional, appearing to

the left of the symbol , read “is defined as”; the BNF expression on the right
specifies the structure of the construct’s specimen. This use of productions
enables us to distinguish between the two kinds of construct:

� A construct defined by a production of the grammar is a nonterminal.

� Other constructs are terminals, for example (in a grammar for Eiffel)
Identifier, whose specimens are identifiers such as PREVIEW, and Integer,
whose specimens are natural integers such as 34. The grammar does not
define terminal constructs, so we must look elsewhere for their syntax; it is
described at the lexical level.

The notions of terminal and nonterminal construct are not new; we saw them earlier
in relation to abstract syntax trees, where terminals represent leaves and
nonterminal represent internal nodes.

Conditional =Δ if Then_part_list [Else_part] end

← Page 40.

=Δ

← “Levels of lan-
guage description”,
page 44.

← “Abstract syntax
trees”, page 41.

§11.1 THE ROLE OF BNF 299

The reason for treating certain constructs as terminals and defining their
properties outside of BNF is pragmatic: these constructs have a simple structure
for which the full power of BNF (aimed at the description of potentially nested
and complex structures such as those of classes and instructions) would be
overkill. An identifier, for example, is simply a sequence of one or more
characters, of which the first has to be a letter and any subsequent ones are
letters, digits or underscores. This can be expressed easily by lexical techniques
studied in a later section of this chapter.

Viewed from the syntax level (the BNF grammar), specimens of terminal
constructs are just lexical tokens, like delimiters. Unlike delimiters, each of
which defines a fixed single token such as a keyword or special symbol, most
terminal constructs, such as Identifier and Integer, have an infinite set of
possible specimens; this makes no difference to the BNF grammar, which does
not concern itself with the contents of tokens but treats them as atomic units.
The role of the grammar is to define, for every nonterminal construct, the form
of the construct’s specimens, as a combination of terminals and delimiters.

Of particular interest for any particular language will be the nonterminal
describing the top-level structures, such as classes in Eiffel. Such a nonterminal,
Class in this example, is called the top construct of the language. The phrases

of the language — here class texts — are the specimens of the top construct.

Distinguishing language from metalanguage

The production for Conditional illustrates that a BNF grammar includes
symbols of three distinct kinds:

� Metalanguage symbols: those of BNF itself, serving to express the
productions. In the Conditional example they are and the brackets []
signaling an optional part.

� Language elements, directly belonging to the language being described, for
example — if the language is Eiffel — the keywords if and end in a production
for Conditional and delimiters such as := in a production for Assignment.

� Names of constructs, both terminal and nonterminal; they belong to the
metalanguage where they denote elements from the programming language.
Terminals, as noted, denote tokens. Nonterminals denote syntactic structures;
for example every specimen of Conditional is a syntactic structure, itself
containing substructures such as a specimen of Then_part_list.

Because of this mix of symbols from language and metalanguage, we must be
careful to avoid confusion. Typographical conventions help:

� Metalanguage elements (the symbols of BNF-E itself) appear in black.

� Names of constructs, such as Conditional (nonterminal) and Identifier
(terminal), appear in green.

→ “The lexical level
and regular autom-
ata”, 11.6, page 311.

← Tokens are the basic
lexical units, as
recalled above: “Lan-
guages and their gram-
mars”, page 296.

=Δ

DESCRIBING SYNTAX §11.2300

� Special symbols appear — like all programming language elements in this
book — in blue. But this is not quite enough for symbols like brackets
which would be easy to mistake for a metalanguage symbol. So they will be
enclosed in straight quotes: for example ":" denotes a colon as it will appear
in the Eiffel text; and a production for any Eiffel construct that uses an
opening bracket will denote it as "[" to avoid any confusion with the
metalanguage bracket introducing an optional part.

� For delimiters of the other kind, keywords such as if and then, we do not
need quotes because keywords are always written in boldface blue,
avoiding any confusion. So we just let the keywords stand for themselves.

The term specimen, which may have surprised you the first time around, is similarly
intended to avoid confusion. A specimen of a construct is a language structure that
satisfies the properties of the construct, for example a particular conditional
instruction. The word “instance” would capture this notion, but it is already used to
denote run-time objects corresponding to a class. An instance of a class is not the
same thing as an instance of the construct Class! (One is a run-time object, the other
a program text.) Using “specimen” for constructs avoids the ambiguity.

11.2 PRODUCTIONS

A production defines the syntax of specimens of one construct. It is of the form

where the left-side Construct states the construct being defined, and Definition

specifies the syntax, in terms of constructs — terminals and nonterminals — and
delimiters. Depending on the form of the Definition there are three kinds of
production: Concatenation, Choice and Repetition.

Concatenation

A Concatenation production lists zero or more constructs in a certain order,
some possibly enclosed in brackets [...] and then said to be optional. Our first
production, Conditional, was an example:

Construct =Δ Definition

Conditional =Δ if Then_part_list [Else_part] end

← “Grammar, con-
structs and speci-
mens”, page 39.

§11.2 PRODUCTIONS 301

Such a production specifies that every specimen of the construct on the left of
the consists of a sequence (“concatenation”) of specimens of each of the
constructs listed on the right, in the order given, except that the specimens of
any of the optional constructs may be missing. In the example, every specimen
of Conditional consists of the concatenation of: the keyword if (a terminal); a
specimen of Then_part_list; optionally, a specimen of Else_part; and the
keyword end.

“Concatenation” simply means the linking of two or more elements as in a chain —
catena in Latin. The word is often used in programming: to concatenate two
character strings is to join them into a single string. Its use for BNF is a bit
pretentious, as we could talk of “sequence productions”. But in the programming
language we also have sequences of instructions, our first control structure. Again
to avoid confusion between language and metalanguage, we use “Sequence” for the
Eiffel construct and “Concatenation” for BNF productions. In a similar way the
Choice productions evoke conditionals, and the Repetition productions evoke
loops, but the terminology is distinct to avoid confusion. The analogies are,
however, significant, and will be explored further below.

Choice

A Choice production lists one or more constructs, separated by vertical bars |.
An example is the production defining instructions:

A Choice production specifies that every specimen of the construct on the left
of the consists of exactly one specimen of one of the constructs on the right.
(Unlike for Concatenation productions, the order of their listing is irrelevant.)
In the example, a specimen of Instruction is a specimen of either Conditional,
or Loop etc. In ordinary language, we would say “An instruction is one of: a
conditional, a loop, a compound, an assignment, a call”.

We may indeed from now on say “An X”, for some construct name X, as an
abbreviation for “A specimen of X”; for example: “A Conditional”.

Repetition

Finally, a Repetition production lists two constructs on the right of the : one
a nonterminal to be repeated; the other, usually a terminal, serving as separator.
We may for example specify compound instructions (instruction sequences) as

Instruction =Δ Conditional | Loop | Compound |
Assignment | Call

Compound =Δ {Instruction ";" …}*

=Δ

→ “Turning a gram-
mar into a parser”,
11.5, page 311.

=Δ

→ This is only an
example, omitting a
few of the kinds of
instructions available
in Eiffel.

=Δ

← “Sequence (com-
pound instruction)”,
7.4, page 147.

DESCRIBING SYNTAX §11.2302

meaning: a specimen of Compound is made of a succession of zero or more
specimens of Instruction, each separated from the next, if any, by a semicolon.
According to this rule, possible specimens of Compound are of the forms:

� Nothing at all (Repetition of zero Instruction specimens)

� inst1

� inst1 ; inst2

� inst1 ; inst2 ; inst3

� etc.

where inst1, inst2, inst3 are instructions.

We saw that in Eiffel the semicolon is optional. Although this property can be
expressed through the grammar, it is more convenient to use the above production
and add a non-BNF tolerance rule stating that a missing semicolon is harmless.

The asterisk — a well-established symbol from the mathematical theory of
formal languages — means “zero or more”; the three dots suggest repetition; the
braces { } are just for grouping.

With this production, the repetition may be empty; Eiffel syntax indeed
allows for an empty Compound. This is convenient for such cases as

where the empty then part is legal since syntactically it is a just an empty
Compound. (In terms of programming style this is not a tidy structure and if it
is to persist you should clean it up, for example to

but the first form can be useful when you are moving instructions around, in the
process of updating your program, and a Compound like the then part of [S1],
previously containing instructions, temporarily finds itself empty.)

if some_condition then [S1]

else

instruction_1

instruction_2

end

if then [S2]

instruction_1

instruction_2

end

← “Compound: syn-
tax”, page 149.

not some_condition

§11.2 PRODUCTIONS 303

For some constructs an empty repetition is not desirable. Then you will use
a variant of the Repetition that instead of the asterisk “∗” uses a “+”, also a
standard symbol from mathematical language theory, meaning “one or more”.
Here for example is the production for Then_part_list, given with the other
constructs related to conditional instructions (which we can now see in full since
all types of production have been introduced):

The Repetition production for Then_part_list indicates that a specimen of this
construct — a more complete name would be “Then and possibly Elseif part
list” — is of one of the forms

� cond1 then inst1
-- One specimen of Then_part

� cond1 then inst1 elseif cond2 then inst2
-- Two specimens of Then_part

� cond1 then inst1 elseif cond2 then inst2 elseif cond3 then inst3
-- Three specimens of Then_part

and so on, for boolean expressions cond1, … and instructions inst1, … Note that
the Then_part_list is not optional in the Concatenation production for
Conditional, so there will always be at least one Then_part, of the form
some_condition then some_compound; if there are two or more, they will be
separated by elseif as shown.

Rules on grammars

In BNF — any variant — an obvious rule on productions is that every
component appearing on the right side (the Definition of a construct) must be
one of: a delimiter; a terminal construct; a nonterminal construct.

This corresponds to the three sets involved in a BNF grammar: delimiters,
terminals, nonterminals. To write a grammar in practice it suffices to list the
productions, which define these three sets through simple conventions:

Conditional =Δ if Then_part_list [Else_part] end

Then_part_list =Δ {Then_part elseif …}+

Then_part =Δ Boolean_expression then Compound

Else_part =Δ else Compound

← “BNF basics”,
page 297.

DESCRIBING SYNTAX §11.2304

1 Delimiters are self-describing, with the conventions defined: keywords
stand out, special symbols appear "in quotes".

2 Any other identifier appearing in a production denotes a construct.

3 If such a construct appears on the left side of at least one production, it is a
nonterminal (since the production defines a structure for its specimens, in
terms of other elements).

4 Otherwise the construct is a terminal. In that case its definition must appear
in the lexical part of the language specification.

Case 3 assumes that a given nonterminal may appear on the left of more than
one production. This is permitted by most BNF variants other than BNF-E, with
the convention that two separate productions for the same construct

� A =Δ Def1

� A =Δ Def2

are to be interpreted as a single production involving a Choice:

Alternatively or in addition, such BNF variants allow mixing the various
production mechanisms — Concatenation, Choice, Repetition — in a single
production, as in

BNF-E disallows such mixing of production styles:

So for the example given you must use three productions:

A =Δ Def1 | Def2

A =Δ B | C [D] {E ";" …}*

Touch of Methodology:

BNF-E rule

� Every nonterminal must appear on the left side of exactly one production,
called its defining production.

� Every production must be of one kind: Concatenation, Choice or
Repetition, following the rules defined above.

A =Δ B | Concat

Concat =Δ C [D] Repet

Repet =Δ {E ";" …}*

← “Distinguishing
language from meta-
language”, page 299.

Warning: Not in
BNF-E. See next.

The correct form.

§11.3 USING BNF 305

Along with a few notational conventions, this rule is the specificity of BNF-E
among BNF variants.

In writing language definitions, I have found that while the rule leads to
introducing more nonterminals — such as Concat and Repet here, and
Then_part_list in the earlier example — it yields more understandable
language descriptions.

It also permits a better assessment of language size. If you can stuff different
mechanisms into a single production, you might give the impression of a small
language whereas the language is actually quite complex. Since you cannot do that
with BNF-E, the number of productions is a good indicator of actual syntactical
complexity, since the extra nonterminals do represent real concepts.

11.3 USING BNF

We have now seen all of BNF. The following pragmatic observations will help
you apply the techniques effectively.

Applications of BNF

BNF descriptions enable you to:

� Understand the syntax of existing languages, in particular (but not only)
programming languages.

� Define the syntax of languages you need to design.

� Write syntax analyzers, or parsers.

The second application is not as far-fetched as it sounds. Although you may not
have to design a general-purpose programming language — a competitor to C,
Java or Eiffel — as part of your first job, programmers have to define “little

languages” all the time. Whenever you write a program that will process some
data, the format of the data is a language, and if that format is not trivial BNF is
often the right way to define it. Exercises in this chapter ask you to write the
BNF specifications of such examples.

The third application, parsing, is useful for writing compilers and other
tools that process programs and, more generally, structured texts. One of the
first tasks of such a tool is to reconstruct the structure of the text — in the form
of an abstract syntax tree — from the external appearance of the text. This is
what the parser does, as we will see in the next chapter. Any parser needs a
formal description of the syntax of the language it is supposed to parse; it will
get that description from a BNF grammar.

→ “Compiler tasks”,
page 336.

DESCRIBING SYNTAX §11.3306

Language generated by a grammar

We may see a BNF grammar in two complementary ways, following from the
two clauses in the definition of the notion of grammar:

� It is a recognition mechanism, making it possible to determine whether a
certain sequence of terminal specimens and delimiters is a phrase of the
language, and if so to reconstruct its syntactic structure. This is the view of
interest when you are, for example, writing a parser.

� The grammar is also a generation mechanism: by applying its rules you may
produce, one after the other, all the phrases of the language.

The second view is less often useful in practice but important all the same. Let
us explore it a bit further. To produce all the possible specimens of any
nonterminal — in particular the top symbol — it suffices to look up the
production defining it (remember that in BNF-E there is only one):

P1 For a Concatenation, produce all possible sequences of specimens of the
constructs listed, plus those where optional ones are ignored.

P2 For a Repetition, produce all sequences of zero or more (one or more in the
case of “+”) specimens of the construct listed, with the given separator
in-between.

P3 If at any of the previous steps you encounter a nonterminal, apply the same
process to it so as to produce its own specimens.

P4 For a Choice, apply the previous steps to all the constructs listed, and collect
all the specimens that you have produced from any of them.

These four phrase-generation mechanisms, carried out as long as at least one of
them is applicable, will eventually yield all the phrases of the language. The
process is generally non-terminating since, as we have seen, most languages of
practical interest are infinite.

In carrying out this process for a nonterminal A whose production uses B,
you may have to apply the same rules — in steps P3 and P4 — to
other constructs.

← “Grammar”,
page 296.

§11.3 USING BNF 307

Recursive grammars

The last observation may cause some alarm. What if, applying the process to A,
we have to apply it to another construct B and in so doing we encounter A again?

The production for Compound provides a good example. It reads:

involving the construct Instruction; but that construct is itself defined as

involving Compound, as well as Conditional whose definition also uses
Compound. If we try to understand Compound by looking for its specimens
according to the rules given above, we will need to determine the specimens of
Instruction; but this will require us, by the same rules, to look for specimens of
Compound. This seems like circular, meaningless reasoning.

Such a definition, appearing to define a concept in terms of itself (directly
or, as here, indirectly) is said to be recursive. Recursion — the use of recursive
definitions — pops its head in almost all areas of programming and we will have
an entire chapter devoted to it. But since there is almost no useful grammar
without recursion we should already convince ourselves that such grammars can
actually make perfect sense.

We can study this on a small example. Consider a mini-language with three
keywords heads, tails and stop, no other terminals, and Game as its top
construct defined by the following grammar involving one Choice and two
Concatenation productions:

This is similar to the situation with Compound, Instruction and Conditional:
three nonterminal constructs defined in terms of each other.

Compound =Δ {Instruction ";" …}*

Instruction =Δ Conditional | Compound | …Other choices …

Game =Δ Head_start | Tail_start | stop

Head_start =Δ heads Game

Tail_start =Δ tails Game

Quiz time!

Can you devise examples of specimens of Game in the language defined by
the above grammar? What are the specimens of Head_start and Tail_start?
(Do the quiz before turning the page, since the answer appears overleaf.)

→ Chapter 14.

DESCRIBING SYNTAX §11.3308

Because of the recursion the grammar might seem meaningless. But let us take
a pragmatic view by asking if we can use the grammar, through the construction
process described above, to generate specimens. Notice that in the production
for Game one of the branches, stop, is a terminal. So we can generate a first
phrase (a first specimen of Game):

� stop

But now since both Head_start and Tail_start are defined in terms of Game, we
can use the information just gained about Game to get a specimen of each of
these constructs: the productions tell us that heads stop is a specimen of the
first, and tails stop of the second. Now we bring this information back into the
production for Game, which has these two constructs among its choices, to get
two new specimens of Game:

� heads stop

� tails stop

Applying the same process again, by using these results in the productions for
Head_start and Tail_start then coming back to Game, gives us four more specimens:

� heads heads stop

� heads tails stop

� tails heads stop

� tails tails stop

And so on. We see the pattern: a specimen of Game is any sequence of zero or
more occurrences of heads and tails (arbitrarily intermixed), followed by stop.
More precisely: from what we have seen it is easy to prove that any such
sequence is a specimen; a slightly more delicate question is whether, conversely,
these are the only possible specimens.

The very simple language defined by this grammar for the top construct
Game might represent all the possible coin-tossing sequences by a player who
gives up at some point, crying “stop!”. The non-recursive grammar

generates the same language through three productions, one each of
Concatenation, Repetition (with empty separator) and Choice.

This example illustrates the earlier remark that it makes no sense to talk of the

grammar for a language, since any non-trivial language, even one as simple as this
example, can be generated by many possible grammars. The other way around, of
course, a grammar defines just one language.

Game1 =Δ Throw_sequence stop

Throw_sequence =Δ {Throw …}+

Throw =Δ heads | tails

← P1 to P4, page 306.

→ Exercise 11-E.4,
page 320.

← “BNF basics”,
page 297.

§11.3 USING BNF 309

In applying the production rules to generate the language, we have used a
strategy that favored terminals (here delimiters stop, heads and tails, but other
terminals would play the same role) over nonterminals. By choosing a different
policy, we would get into an infinite cycle without ever producing a phrase: start
by choosing the first possibility, Head_start for Game; for Head_start, we get
heads Game; for Game, choose again Head_start; and so on forever. This
produces an infinitely growing sequence of heads keywords without ever
generating a phrase.

To avoid such situations, a language generation process needs strategies, or
heuristics; a possible one is, for a Choice, always to start (at step P4) with a
production using terminals only, if there is one, and otherwise with a production
that starts with a token.

Even with such heuristics the process will not yield anything if a grammar
is entirely recursive. To get the process started it needs at least some choices
involving tokens. Grammars such as

or

are useless. These issues will be discussed further in the chapter on recursion.

A more delicate case is a grammar that does have tokens but is
left-recursive, as in

where for simplicity we take Assignment as a terminal (meaning we assume it
is defined somewhere else, with no reference to the other nonterminals listed).
This grammar is meaningful, since it permits instructions of the form

� assignment_1

� assignment_1 ; assignment_2

and so on. To obtain a constructive view of such recursive definitions, we need
a general theory of recursive definitions, sketched later.

A =Δ A

A =Δ B

B =Δ A

Instruction =Δ Compound | Assignment

Compound =Δ Instruction ";" Instruction

→ On the notion of
heuristics see also
“Interpretation vs com-
pilation”, page 542.

→ Chapter 14.

→ “Making sense of
recursion”, 14.7,
page 473.

DESCRIBING SYNTAX §11.4310

One form of grammar that avoids these complications and makes it possible to write
simple parsers is known as LL (1), characterized by the property that the first
terminal starting a phrase is enough to choose between variants of any nonterminal.
Eiffel is close to LL (1): restricting ourselves to instructions, we know that we have
a C on d i t i o na l i f t h e f i r s t t ok e n i s i f , a Lo op i f i t i s f ro m an d
so on.

11.4 DESCRIBING ABSTRACT SYNTAX

The syntax that we have studied so far in this chapter is the concrete syntax of
a program: it describes the full structure of program texts, including keywords
— if, do, class … — and other delimiters that serve a purely syntactic role: they
avoid syntactic ambiguity but do not carry any semantics of their own.

Earlier we had encountered abstract syntax, which discards these elements
and retains the structurally meaningful ones only.

We saw how to describe the resulting
syntactic structures through abstract syntax

trees (ASTs for short), such as the one
representing our example PREVIEW1 class,
reproduced on the right.

As noted then, it is easy to deduce a notion
of concrete syntax tree, which returns all the
symbols of the input text. Some compilers
indeed construct such a tree, but this is usually
not necessary: in subsequent phases of
compiling, such as semantic analysis, code
generation and optimization, the syntactic
markers do not play any role; all we need is a
representation of the program’s structure,
exactly what an AST provides.

If our goal is to describe the abstract syntax
of a language, without going through concrete
syntax, we do not need a new formalism. It suffices to use BNF, omitting all
tokens that are not constructs of the lexical grammar, in particular keywords.
For the last production on the preceding page, specifying Compound, the right
side would now be just Instruction Compound.

Such a grammar is not useful for applications such as parsing and compiling
input texts — which obviously require a concrete grammar similar to those
discussed so far — but can help capture the structural properties of texts,
unaffected by details of their textual appearance.

← “Abstract syntax
trees”, page 41.

Class declaration

Class
name Inheritance Features of the class

Feature declaration

Feature
name Header

comment
Feature
body

InstructionInstruction
(feature call) (feature call)

Target
Feature

Target
Feature

Paris display Louvre spotlight

explore Show city and ...

PREVIEW1 Class
name

TOURISM

Root

Internal node
(Nonterminal)
Leaf
(Terminal)

(From the figure on page 42.)

§11.5 TURNING A GRAMMAR INTO A PARSER 311

11.5 TURNING A GRAMMAR INTO A PARSER

One of the applications of BNF is, as noted, to guide the construction of
compilers, starting with the parsing phase. Compilers are usually
syntax-driven: the parser constructs an AST, and subsequent compilation
phases continue to work on this data structure, repeatedly adding semantic
information (this is known as decorating the tree).

A detailed discussion of how to build such a syntax-driven compiler, or just
a parser, is beyond our scope here, but to get an idea of possible techniques you
may wish to look at the EiffelParse library. EiffelParse is not the most efficient
parsing mechanism available (for a widely used Eiffel parsing tool based on
more traditional techniques, look up the “Gobo” library), but it provides a clear,
practical illustration of how to apply the object-oriented principles of this book
in full to parsing and compiling.

The idea behind EiffelParse is to turn a BNF-E grammar directly into a set
of classes. For each construct of the grammar, you will write a small class that
inherits from one of the EiffelParse classes AGGREGATE (for concatenation
productions), CHOICE and REPETITION. In the AGGREGATE case, for
example, the class will simply list the various components of the production’s
right side, each associated with a class similarly describing a construct. You
have to be a bit careful about left recursion, but otherwise the classes are a
mirror image of the BNF-E productions; a translator, YOOC, developed by
Christine Mingins, can produce the classes directly from the grammar.

To parse an input text, it then suffices to call the EiffelParse procedure parse

on the construct of interest. This produces an abstract syntax tree. You can then
add semantic processing of any kind through procedures of the syntax classes.
The process shows the power and elegance of object-oriented modeling for
language processing.

11.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA

For terminal constructs such as Identifier and Integer, the BNF grammar does
not provide a production, leaving the specification instead to the lexical level.
For that reason the terminal constructs are also called lexical constructs. Their
specification appears in a “lexical grammar” complementing the BNF grammar.

Lexical constructs in BNF

At the syntax level, covered by BNF, tokens (terminals and delimiters) are
atoms with no further structure of interest. At the lexical level, we become
interested in their internal makeup. For example (using Eiffel conventions):

docs.eiffel.com/book/s
olutions/eiffel-
parse-tutorial

http://docs.eiffel.com/book/solutions/eiffelparse-tutorial

DESCRIBING SYNTAX §11.6312

� An Identifier is a sequence of one or more characters, of which the first is a
letter (upper or lower case) and any subsequent one is a letter, digit or
underscore “_”.

� An Integer is a sequence of one or more decimal digits (0 to 9), which may
also contain underscore characters to separate groups of digits for
readability in long numbers: 123_456_789.

� An Integer_constant is an Integer optionally preceded by a sign, + or –.

It is in fact possible — as an exercise invites you to check for yourself — to
specify such terminal constructs in BNF. That is not, however, the usual
practice. For such simple constructs, language definitions generally take
advantage of specific lexical techniques, which we will now study. This avoids
loading the grammar with productions for basic structures that can be described
more simply, and reserves the BNF grammar for specifying the higher-level
structures of the language, in particular those permitting nesting.

Correspondingly, compilers do not use the parser to decode specimens of terminals,
but a simpler tool known as a lexical analyzer.

Regular grammars

To define the structure of lexical constructs such as the examples above, we may
use a regular grammar, a toned-down version of BNF.

The nonterminals of such a grammar are constructs such as Identifier and
Integer_constant, which will be used as terminals in the BNF. To express their
structure the regular grammar has its own more elementary terminals, usually
character categories such as

each expressed as a Choice between single characters, shown in single quotes.
Such constructs are really terminal (atomic): we cannot decompose them
any further.

It is common to provide a special notation for consecutive characters, so that
we may rewrite the production for Letter as

using this opportunity to add the upper-case variant. We may similarly define
Decimal_digit as '0 '..'9'

Letter =Δ 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i ' | 'j ' | 'k ' | 'l ' | 'm' |
 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't ' | 'u' | 'v' | 'w' | 'x' | 'y' |'z'

Decimal_digit =Δ '0 ' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Underscore =Δ '_'

Letter =Δ 'a' ..'z' | 'A' ..'Z'

→ “BNF for lexical
grammars”, 11-E.3,
page 319.

Letter and Decimal_
digit have a simpler
definition, see below.

§11.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA 313

A regular grammar may have the same kinds of production as in BNF, but
with slightly different conventions and significant restrictions:

� You may use a Choice as just seen, possibly with character intervals.

� You may define a lexical construct by Concatenation, but this does not
assume breaks (spaces, new lines etc.) between the concatenated elements.
If you define a construct as A B, any of its specimens will be made of a
specimen of A followed by a specimen of B with nothing in-between. If the
language needs a notion of break you may define it explicitly in the regular
grammar as one of the lexical constructs.

� A Repetition will take a simpler form: just A* or A+ where A is a
previously defined construct. These two forms denote “zero or more
specimens of A” and “one or more specimens of A”, with no notion of
delimiter and again no intervening break.

� No recursion is permitted in the grammar, either directly (the definition of
A uses A) or indirectly (the definition of A uses B while the definition of B
uses A, or a similar scheme with any number of intermediaries). A simple
way to enforce this prohibition is to make the order of the rules significant
— in BNF it is not — and add the rule that the definition of a construct may
only refer to constructs whose definitions appear before it.

Unlike BNF-E, a regular grammar allows you to mix the different kinds of
production (since the formalism is much more restricted). Parenthesizing
removes any ambiguity, as in Letter (Letter | Digit | Underscore)* which
indicates the concatenation of Letter and a repetition, itself based on a choice.

With such a regular grammar we can give a precise definition of the lexical
notions of identifier and integer constant:

The expressions permitted by the rules just defined are called regular

expressions. A language that can be described by a construct of a regular
grammar is a regular language. We may note the following property:

Identifier =Δ Letter (Letter | Digit | Underscore)*

Integer_constant =Δ Decimal_digit+

Theorem:
Canonical form of a regular language

Any regular language can be described by a regular grammar whose
production right sides do not include any nonterminal.

← “Touch of Method-
ology: BNF-E rule”,
page 304.

DESCRIBING SYNTAX §11.6314

Proof: this is a simple consequence of the prohibition of recursive definitions.
Starting from a regular grammar, order the productions as discussed above, so
that any nonterminal appearing on the right side of any production has been
defined by a previous production. Then for every production in that order, if the
right side has a nonterminal N, replace it by the right side for N. Since the same
process has already been applied to N, you get terminals only.

For example with

this process yields the alternative — not necessarily clearer — definition

which generates the same language. Another way of stating the theorem is that
any regular language can be described by a single regular expression; in the
example it is the right side for C in the last production.

The theorem illuminates the principal restriction of regular languages: they
do not support recursive nesting. We saw that programming languages such as
Eiffel have Conditional instructions that may contain other instructions of the
same kind, or of different kinds such as Loop which in turn can contain
conditionals, allowing nesting up to any desired depth. With BNF we can
describe this through recursively defined productions (keeping the description
finite); with regular grammars we cannot.

Regular grammars are well suited, however, for defining the usually simple
tokens that make up the elementary fabric of programs. To express that a certain
kind of token has specimens made up (say) of one or more character of a certain
kind, followed by any of three specified characters, followed optionally by
characters of another kind, regular expressions are just the ticket.

Finite automata

Behind regular expressions stands the mathematical theory of finite automata.
Let us take a glimpse at it, if only for the visual illustration that it provides.
(There is much more to the theory than appears in this brief introduction.)

A finite automaton is a graph with nodes representing states and edges
labeled by elements of some basic set, here characters or character categories.

A =Δ T1 | T2 | T3*

B =Δ T4+| A

C =Δ A B

A =Δ T1 | T2 | T3* -- No change

B =Δ T4+| T1 | T2 | T3* -- Obtained by replacing A

C =Δ (T1 | T2 | T3*) (T4+| T1 | T2 | T3*)

→ Exercise “Sin-
gle-production regular
grammar”, 11-E.5,
page 320.

One “automaton”, two
or more “automata”
(this was our English
lesson for today).

§11.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA 315

The following example corresponds to the structure of qualified feature
calls in Eiffel, possibly with arguments, as in Line8.extend (new_station):

As the name suggests, we can view a finite automaton as a machine to process
input strings. The automaton will start from the state marked initial and then, at
each step, follow an edge, if any, labeled by the next symbol from the input. This
is called a transition. For the input x9.f_g(a,a), the above automaton starts in
state 1; the input symbol x causes a transition to state 2; then 9 causes a transition
from state 2 to itself; the period takes us to state 3, then f to 4, where it stays for
_ and g; the argument list then causes successive transitions to 5, 6, 5 again for
the comma, 6 again for the second a, and 7, marked as a final state.

The language recognized by a finite automaton is the set of strings which
— like Line8.extend (new_station) and x9.f_g(a,a) in this example — will take
the automaton, starting from the initial state, through a sequence of transitions
ending in a final state. A string does not belong to that language if, in an attempt
to apply this process to the string:

� Either the automaton reaches a state that has no transition matching the next
input symbol (as with the input string a.b.c, where a.b takes the automaton
to state 4, from which there is no edge labeled with a period).

� Or, having consumed all symbols from the input, it reaches a non-final state
(as with the input string a.b (, taking us to state 5 which is not final).

Without spaces, for
simplicity.

Finite

automaton for

recognizing

feature calls
Letter

Letter

Digit'_'

'.'

Digit'_'

Letter

Letter '('

Digit

'_'

Letter

Letter

','

')'

States:

Initial

Final

other

1 2 3 4 5

67

Actually legal Eiffel, but
not included in this
mini-language of fea-
ture calls where we only
accept single-dot calls.

DESCRIBING SYNTAX §11.6316

A basic theorem states that any language described by a regular grammar is
recognized by a finite automaton, and conversely. Without proving the theorem,
we may illustrate it by noting that the language recognized by the above
automaton is also the language generated by the last construct of the following
regular grammar:

The feature calls recognized by this grammar are only a subset of those possible
in Eiffel, where expressions, like instructions, can be nested: a feature argument
can be an expression, as in x.f (y.h (z.i)), which the above lexical grammar and
the associated finite automaton cannot handle since they limit any argument to a
single identifier. As soon as you venture beyond tokens, you need the full power
of BNF. (Note also how the BNF-E convention for repetitions, with its provision
for a separator, is more convenient: to define the equivalent of the above
Argument_list it needs a single production, with the right side {Identifier "," …}+.)

The above automaton is deterministic in the following sense: it has a single initial
state, and from any state there is at most one edge for any given character; as a result,
the recognition process illustrated above can take, at any step, at most one transition.
Nondeterministic finite automata are not subject to these constraints. It turns out,
however, that they recognize the same class of languages.

Finite automata provide the basis for lexical analyzers, the part of compilers that
takes care of recognizing tokens. It is indeed not hard to see how to define a
finite automaton from a regular expression and, from that definition, build a
program that will recognize tokens through the process just illustrated. This is
the scheme behind all lexical analyzers.

Context-free properties

The theory of formal languages distinguishes a number of levels including, from
simplest to most sophisticated:

� Regular languages, which can be described by a regular grammar.

� Context-free languages, which can be described by a grammar made of
production rules with possible recursion, as in BNF.

� Context-sensitive languages, for which such production rules are no
longer sufficient.

Identifier =Δ Letter (Letter | Digit | Underscore)*

Another_argument =Δ "," Identifier

Argument_list =Δ "(" Identifier Another_argument* ")"

Feature_call =Δ Identifier "." Identifier [Argument_list]

§11.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA 317

As an example of why context-free languages are not enough, consider the type

rules that govern many programming languages. Eiffel requires that whenever
you use an entity x, in an expression such as some_function (x) or an instruction
such as x.some_procedure, there must exist, in an enclosing program unit — the
enclosing routine, or the enclosing class — a declaration of the form

specifying x as a formal argument or local variable of the routine, or a query of
the class; SOME_TYPE must be a type suitable for an argument to
some_function or for the target of some_procedure. Otherwise your program is
invalid and compilers must reject it. But this is different from an error such as

which violates the BNF grammar (since the relevant production specifies an
Instruction after then, whereas a + b is an Expression).

There are many more examples of construct specimens that satisfy the
grammar but are not acceptable, such as an assignment a := b where the type of
b does not conform to the type of a.

Context-free grammars and BNF cannot capture such type rules; a grammar
to handle them would have to be context-sensitive. Where BNF rules define a
nonterminal A as a sequence γ of terminals and nonterminals, a
context-sensitive grammar has rules allowing replacement of α A β by α γ β;
here α and β are the “context” around A.

In practice, no context-sensitive grammar formalism exists that matches the
simplicity and practicality of BNF. Because programming languages need type
rules and other context-sensitive properties, what compiler writers do in
practice is to:

� Rely on a regular grammar to describe the language’s lexical properties and
build a lexical analyzer.

� Rely on BNF or equivalent to handle the context-free aspects of the
language — the overall, usually nested, structure of programs — and on
associated techniques for parsing that structure.

� Enforce all other checks — the context-sensitive aspects, such as type rules
— through additional mechanisms, either based on formalisms for the
description of context-sensitive aspects (such as “attribute grammars”) or
programmed in an ad hoc way in the compiler.

x: SOME_TYPE

if c then enda + b

DESCRIBING SYNTAX §11.7318

11.7 FURTHER READING

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman:
Compilers: Principles, Techniques and Tools, Addison-Wesley, 2006.

The newest edition of a famous compiler textbook, going back
several decades and still a standard reference.

Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs and Koen G. Langendoen:
Modern Compiler Design; Wiley, 2000.

A good description of current compiler technology.

Steven S. Muchnick: Advanced Compiler Design and Implementation;
Morgan Kaufmann, 1997.

Another recent text, up to date on many important compiler techniques.

11.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

� A formal language, such as a programming language, is a set of phrases

built from a basic vocabulary according to precise rules.
� Most interesting formal languages are infinite.
� BNF is a formalism for describing a formal language from a finite set of

rules called “productions”.
� Each production of a BNF grammar describes the structure of a certain

construct, or “nonterminal”, from other nonterminals as well as atomic
constructs or “terminals”.

� A production defines a construct by one of: concatenation of other
constructs, possibly with optional components; choice between other
constructs; or repetition of another construct.

Touch of History:
Classes of languages and grammars

The classification of languages into regular (Type 3), context-free (Type 2),
context-sensitive (Type 1) and unrestricted (Type 0, recognizable by any
general automaton or “Turing machine”), comes from articles published
in 1956 and 1959 by Noam Chomsky, then as now a professor at MIT, and
Marco Schützenberger from the University of Paris. Chomsky, also
famous as a political activist, was interested in the structures of human

languages, for which his work started a whole new school of linguistics;
but it proved seminal as well for the understanding of programming
languages and other artificial notations.

Chomsky (2005)

 Sethi (2008)

 Lam (2008)

§11-E EXERCISES 319

� Compilers and other language analysis tools use grammars for decoding, or
“parsing”, the structure of input texts.

� BNF can also describe abstract syntax which (unlike “concrete” syntax)
discards keywords and other elements that do not directly carry a semantic
value of their own.

� For the elementary components of input texts, such as identifiers and
constants, BNF is usually overkill; simpler descriptions can be obtained
through regular grammars, where productions may not be recursive and as
a result do not support nesting. Regular expressions are closely associated
with mathematical devices known as finite automata.

� BNF covers the class of “context-free” languages but does not capture
“context-sensitive” aspects such as type rules.

New vocabulary

(Also remember, from the presentation of basic syntax concepts: Abstract
syntax tree (AST), Construct, Grammar, Lexical, Nonterminal, Specimen,
Syntax, Terminal.)

11-E EXERCISES

11-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

11-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

11-E.3 BNF for lexical grammars

Write a BNF grammar that fully describes the Eiffel forms of Identifier, Integer
and Integer_constant.

BNF Choice production Concatenation production

Defining production Grammar Lexical construct

Lexical grammar Metalanguage Phrase

Production Recursive grammar Repetition production

Top construct Vocabulary

← 3.4, page 39 and
3.6, page 41.

← Exercise “Concept
map”, 10-E.2, page 293.

← “Lexical constructs
in BNF”, page 311.

DESCRIBING SYNTAX §11-E320

11-E.4 Language defined by a recursive grammar

Consider the language defined by the grammar with top construct Game:
1 Prove that any specimen of Game1 in the non-recursive grammar, that is to

say any sequence of one or more heads or tails followed by a single stop,
is a specimen of Game.

2 Conversely, is any specimen of Game a specimen of Game1? Prove
your answer.

11-E.5 Single-production regular grammar

Devise a single regular expression that describes the entire language generated
by the Game construct.

← In “Recursive gram-
mars”, page 307.

← In “Recursive gram-
mars”, page 307.

12

Programming languages and tools

Over the past four decades software tools have profoundly changed how people
from all industries design their products, from cars to pharmaceutical drugs,
newspapers, bridges and buildings — the list goes on. This is known as
Computer-Aided Design (CAD, complemented by CAM, Computer-Aided
Manufacturing). Software construction is design too; disproving the old saying
about the cobbler’s children, software engineers have developed CAD tools for
themselves, from fairly simple programs such as text editors to entire tool suites
known as integrated development environments or IDEs.

Software engineering tools are an integral part of the professional culture of
any software engineer, who should know what kinds of tools are available to
support the software development process and what they can and cannot do. This
chapter gives an overview of the most important concepts.

We start with conceptual tools, programming languages, and continue with
software tools — computer programs that help build other programs.

Programming languages are the programmer’s primary means of
expression. They have a long history, and a number of distinctive programming
language styles have emerged. We will discover a bit of the history of the style
used in this book, object-oriented programming, and the basic concepts of
another, functional programming.

Software tools offer a rich set of possibilities, starting with the tools most
directly related to programming languages: compilers, a familiar figure from
previous chapters, but also their sister tools, interpreters; we will particularly
examine how compilation and interpretation complement each other. Other tool
categories reviewed in this chapter are: program preparation tools such as editor
and graphical CASE (Computer-Aided Software Engineering) tools; debuggers,
static analyzers and testing tools, which allow us to assess and improve program
reliability; configuration management tools, which help us keep track of the
many components of a software system; browsing and documentation tools,

PROGRAMMING LANGUAGES AND TOOLS §12.1322

which help us understand software at various levels of abstraction and navigate
through its complexity; metric tools, which give us a quantitative views of a
software system. We end with Integrated Development Environments, which
collect many tools to present the developer with a unified framework; the last
section sketches one IDE, EiffelStudio, and its approach to compilation
(Melting Ice Technology).

The discussion in this chapter is more general and less detailed than in its
predecessors. Compilation and interpretation, in particular, are highly technical
topics deserving courses and textbooks of their own; here you will only find a
survey. Take this chapter as a leisurely walk, a warm-up for the next climbs
starting with recursion in the next chapter.

12.1 PROGRAMMING LANGUAGE STYLES

Programming languages play a central role in software development. The core
of this book uses a programming language, Eiffel, but downplays its role, since
it focuses on programming concepts rather than the specifics of a particular
language. Appendices describe the specifics of four important languages: Java,
C#, C++ and, briefly, C. Here we will review some general criteria to classify
programming languages, learn a little more about the object-oriented family of
languages (which includes all the languages cited above except C), and get a
glimpse of another family with its own unmistakable traits.

Classification criteria

Programming languages can be classified along several criteria. Here are the
most important:

� Application. Some programming languages are general-purpose; others
address a specific application area, such as Web site development, business
data processing or real-time. The term domain-specific language or DSL
refers to this second category.

Such a characterization by application area is always subject to revision,
since successful languages frequently outgrow their original targets. Two
examples are Fortran, the first widely used programming language, which
was intended for mathematical computation (“FORmula TRANslation”) but
became a general-purpose language; and Java, devised for programming
set-top boxes, then presented as a tool for writing Internet “applets” and soon
thereafter generalized to many more areas.

Appendices A to D.

Appendix A.

§12.1 PROGRAMMING LANGUAGE STYLES 323

� Program scope. Some languages are intended for developments that may
become large-scale (large code size, many developers, development and
operation over many years); others target smaller developments and
prototypes that may be discarded after fulfilling an immediate need or
testing a conjecture. Scripting languages are generally of the latter kind.
There is of course no guarantee that a program that starts small will remain
small, and as a consequence successful languages of the second category
often end up being applied to large developments.

� Verifiability. Some languages are designed to ensure that compilers and other
tools (as discussed in the rest of this chapter) can find out potential flaws —
or, inversely, guarantee specific properties of the execution — through
program analysis, before any execution; usually this puts a higher burden on
the programmer, since verification may require adding information (for
example, extensive type declarations) to the program. Other languages favor
ease of expression and lighten the requirements on programmers, with the
consequence that errors may not become visible until run time.

� Abstraction level. Some languages rely on direct use of machine-level
concepts; others provide a more abstract model of computation.

� Lifecycle role. Some languages address implementation only; others can
also help, beyond programming in a restricted sense, for system modeling,
analysis and design.

� Imperativeness vs descriptiveness. In imperative languages, programs are
made of commands that modify the program state. Other languages are
descriptive in the spirit of mathematics, leading to programs that specify
properties of the intended results but not the precise sequence of steps for
obtaining these results.

� Architectural style. This defines the main criterion for decomposing
systems into modules. The two main possibilities are to organize the
modules around units of the software’s functions, or around the types of

objects it manipulates. The corresponding language styles are called
procedural (“functional language” means something else, as we will see)
and object-oriented.

Almost every combination of these various choices is possible (and many are
represented in practice). The style of the programs in this book, illustrated by
Eiffel but also broadly representative of Java and C#, is: general-purpose
(although specializable to application areas through libraries); suitable for large
developments; designed for thorough compile-time verification; at a high level
of abstraction (while providing access to machine-level mechanisms, particularly
through libraries); wide lifecycle role (this is particularly true of Eiffel, which is
routinely used for specification and design); imperative; object-oriented.

→ Some descriptive
languages are “appli-
cative”. See the more
precise definition of
“imperative” on the
next page.

→ See appendices A
about Java and B
about C#.

1

PROGRAMMING LANGUAGES AND TOOLS §12.1324

The widely used C language, as another example, is imperative but not
object-oriented; it remains at a rather low level of abstraction to ensure direct,
almost machine-level execution control. C++ adds an object-oriented layer to C.

The rest of this programming language discussion covers two important
complements to the rest of this book:

� An introduction to a style of programming languages belonging to the
“descriptive” category: functional languages, which radically depart from
today’s dominant practices.

� Some background on object-oriented programming languages.

Functional programming and functional languages

An earlier chapter — please read that short discussion again! — emphasized a
fundamental distinction between the concepts of programming and mathematics:

� Programs work on a state (think of it as a more abstract notion of computer
memory) which they repeatedly change through such instructions as
assignment, which updates the value of a variable in a state, and more
generally through commands. State changes are also known as side effects.

� Mathematical discourse is purely descriptive; it does not change anything,
but talks about values and relations between these values.

Not everyone is happy with this distinction. The programming style known as
functional programming seeks to bring programming as close as possible to
mathematical reasoning, often by rejecting the notion of state; the basic concept
is that of a function, in the mathematical sense of a mechanism that defines how
to obtain results from arguments without any notion of side effect. Expected
benefits include making programs simpler and being able to reason clearly and
rigorously about them through standard mathematical techniques.

The following terminology is useful:

Most programming languages, including Eiffel, support an imperative style
(tempered, in the Eiffel case, by a strict distinction between commands and
queries, where queries are expected to be applicative). Functional languages are
essentially applicative; “essentially” because many of them provide a few
imperative escape routes for operations that are by nature imperative, such as
database manipulation and I/O.

Definitions: imperative, applicative

A programming style that relies on state changes is imperative. A synonym for
non-imperative is applicative.

→ Appendix C
describes the C++
language , and appen-
dix D its C subset.

← “Math is static,
software is dynamic”,
page 227.

§12.1 PROGRAMMING LANGUAGE STYLES 325

The first functional language (retaining some imperative characteristics)
was Lisp, a breakthrough development by John McCarthy, introduced as
early as 1959.

The central concept of Lisp is the list, written in parentheses, as in

Note that Lisp uses the term “list” in a special sense, different from the usual
computer science concept of list as used in other chapters. Lisp’s lists are in fact
closer to the binary trees which we will study in the data structure chapter.

Lists are data structures (in fact the only ones in Lisp, general enough to
cover a wide variety of applications); but they also serve as program
structures: if A denotes a function, the example list above denotes the
application of that function to the argument list given by the rest of the
elements, what in more ordinary notation would be written A (B, C). The
power, simplicity and elegance of the ideas seduced many people, and much
of the early work in Artificial Intelligence was carried out in Lisp. The
language continues to be actively used and developed, in particular through
one of its descendants, Scheme, which retains the essential concepts.

Even without any further detail of Lisp mechanisms, the basic idea
immediately suggests a possibility that all functional languages offer: the ability
to use higher-level functionals — functions that take functions as argument or
return functions as a result. Consider

This is a list of three elements, of which the first is itself a list with three
elements, and the second a list of two elements. F may be a function of two
arguments, which returns as its result a function of two arguments; call H the
function that results from applying F to arguments A and B. If G is a function
of one argument, call E the result of applying G to C. Then the expression as a
whole denotes (H E D), the result of applying function H to arguments E and D.
This is a remarkably powerful and general mechanism.

In a later chapter we will see a mechanism, agents, that achieves similar aims in an
object-oriented framework, and the basic ideas of the underlying theory, lambda

calculus, which also serves as the theoretical foundation for Lisp and much of
functional programming.

To get a closer look at the functional programming style let us move from Lisp
to a more recent design, Haskell, which has become one of the most popular
functional languages. We will only consider one example; it illustrates
functional programming ideas well and is also an excellent preparation for our
forthcoming study of recursive reasoning.

(A B C)

((F A B) (G C) D)

McCarthy

→ Chapter 17 intro-
duces agents and
lambda calculus.

→ Chapter 14 covers
recursion.

PROGRAMMING LANGUAGES AND TOOLS §12.1326

Remember the algorithm to reverse a linked structure. It involved delicate
pointer manipulations. Isn’t there a way to obtain the result — after all, the
notion of reversal is conceptually simple — without all these details? In
functional programming there is, if you are willing to ignore performance issues
(or trust that a very smart compiler will solve them from you).

A list in Haskell is written in square brackets […]. The following definition
specifies a function that reverses a list:

This is all you need to write. The first line is a type declaration, stating that
reverse is a function that for any list of values of type T (written [T]) will return
a list of elements of the same type; this applies to any type T. The definition of
the function, in the next two lines, is by cases:
� Case [1] covers the case of the empty list []: the result is also empty.
� Case [2] covers the case of a non-empty list. Such a list can always be

written first:remainder, a notation that represents a list starting with a
first element first (which must exist since the list is not empty) and
continuing with a list remainder containing the remaining elements;
remainder could be empty. In this case the result is the reverse of
remainder, obtained by applying the function itself (this is a case of
recursive call as studied in detail in the corresponding chapter) and
appending the element first to it, through the operator ++. Note that
function application in Haskell is written without parentheses, so that
reversed remainder means the application of the function reversed to
the argument remainder; since function application binds more tightly
than the ++ operator, the right side of [2] would be written
(reversed (remainder)) ++ [first] in ordinary mathematical notation.

In contrast with the imperative style, such definitions are descriptive; they
specify the properties of the result rather than a precise sequence of
computational steps that produce it. The above definition is in fact close to
how you might explain the notion of “reverse of a list”, without necessarily
thinking of a computer implementation: if the list is empty, it is its own
reverse; if not, you may obtain reverse as the reverse of its tail part (the list
without its first element) followed by its first element.

The definition is applicative, making no reference to state changes and
indeed using no notion of state in the sense of a set of variables to which the
program may assign new values.

reverse :: [T] –> [T]
reversed [] = [] [1]

reversed (first:remainder) = reversed remainder ++ [first] [2]

← “Reversing a linked
structure”, page 259..

→ Such a definition
applying to an arbi-
trary type is known as
generic. We will study
this concept in “Static
typing and generic-
ity”, 13.1, page 363.

Simon Peyton Jones

Phil Wadler
(Two of the principal
designers of Haskell;

2008 photographs.)

§12.1 PROGRAMMING LANGUAGE STYLES 327

Although (as you may guess) there is much more to functional programming
in Haskell, Lisp and other functional languages, this small example conveys the
simplicity and elegance of functional programming concepts.

Why then hasn’t everyone switched to functional programming? This is a
controversial issue — proponents of functional programming think the world
should switch — but we may note three significant problems:

� Performance. The simplicity of solutions such as the one above may result
in considerable time or space overheads. It is instructive to note that
documentation of functional programming languages typically starts with
examples in the above style and then recommends using more complicated
variants to achieve better efficiency.

� Scalability. For structuring large systems, the notion of class present in
object-oriented languages is more effective than the notion of function. It
should be noted, however, that many functional languages have added some
object-oriented constructs.

� Statelessness. While a purely applicative language may considerably
simplify algorithms of the kind illustrated above, working on possibly
complex data structures, some aspects of computing fundamentally require
the notion of state; think for example of input and output (which rely on
changes in the program’s environment), or real-time systems. Functional
languages, Haskell in particular, have added special mechanisms to handle
such stateful (imperative) aspects of programming, but they are not as
simple as the basic functional model.

In the eyes of many software development practitioners, imperative object
technology — used in this book and implemented with some variants by many
of today’s most popular programming languages — provides a better answer to
the critical challenges of software development. But not everyone is of this
opinion, and in any case it is important to understand the concepts and
applications of functional programming.

It is possible to emulate part of the functional programming style in an imperative
object-oriented language by using recursive functions and avoiding side effects. An
exercise in the recursion chapter asks you to write the equivalent of the Haskell
reversed function using plain imperative O-O mechanisms.

Object-oriented languages

Before we leave the topic of programming languages, let us take a few moments
to understand the background of the language style that underlies this book and
has also, over the past two decades, become dominant in the software industry
(at least the part of the industry that is not just concerned about maintaining
older, “legacy” code): object-oriented languages.

PROGRAMMING LANGUAGES AND TOOLS §12.1328

It is easy to trace the precise origin and originators of the technology: the
place was Oslo (Norway), the time was the early- and mid-sixties, and the
creators were two computer scientists, Ole-Johan Dahl and Kristen Nygaard,
from the University of Oslo and the more industry-oriented Norwegian
Computing Center.

Together they designed a language for discrete-event simulation:
applications that use the computer to model processes of interest, such as the
running of a factory, not through mathematical analysis but by executing
sequences of computer operations that emulate the actual events. The first
version, Simula 1, was specifically tailored to this application area. The next
one, Simula 67, the topic of their 1967 paper in Communications of the ACM,
was a general-purpose language, and introduced the key object-oriented ideas.
It is indeed amazing, more than 40 years later, to see how much was there:
classes, objects, dynamic allocation with garbage collection, inheritance (single
only), polymorphism, dynamic binding.

The mainstream academic community remained strangely uninterested.
Only a few years later would some theory become available to understand
object technology: information hiding (Parnas’s 1972 work) and abstract data

types, presented in a short 1974 paper by Barbara Liskov and Stephen Zilles,
then given a firm mathematical basis by John Guttag’s 1975 PhD thesis.

Simula’s origins as a simulation language are telling. At the heart of the O-O
method lies the idea that programs are not just for talking to your computer; they
are modeling tools. In his talks, Nygaard often used the slogan “To program is

to understand” and was proud that the first ever Simula report was entitled “A
Language for Programming and Modeling”. Discrete-event simulation, with its
emphasis on describing external processes, is the ideal target area to develop
such a view; but the evolution from the specialized Simula 1 to the
general-purpose Simula 67 showed the general applicability of that view. Much
of programming, aside from strictly technical implementation issues, concerns
itself with understanding systems of various kinds — a company’s accounting
process, a digital camera, a document preparation system… — and devising
suitable models of them. O-O concepts are successful because they effectively
support this modeling process: we describe the system through object types
(ACCOUNT, IMAGE, PARAGRAPH), organize them in inheritance hierarchies
(an INTERNAL_ACCOUNT is a special case of an ACCOUNT), apply
information hiding to make sure we can develop them separately, and specify
them through contracts. These ideas (except for the last one) were present in
Simula; its creators clearly understood the potential.

So did an enthusiastic community of Simula users, the majority of which
was in Europe. There was, however, no industrial power behind Simula, and to
many people the whole approach seemed exotic. For many years, Simula
remained the best-kept secret of the software industry.

 Nygaard

Dahl

Liskov (2007)

(with Don Knuth)

§12.1 PROGRAMMING LANGUAGE STYLES 329

But the ideas were gaining ground. At the university of Utah, a
powerhouse of graphics research, Alan Kay combined ideas from Simula
and from Lisp for his PhD thesis. When he moved to the Xerox Palo Alto
Research Center in California (PARC), the birthplace of many modern ideas
in hardware and software, he produced the first versions of the Smalltalk
language and programming environment, starting with Smalltalk-71; the
other two key members of the group were Dan Ingalls and Adele Goldberg.

Smalltalk is a dynamically typed language: you will not find in it any of
the type declarations used throughout this book and, correspondingly, any of
the various protections that such declarations afford when the compiler detects
a type inconsistency. In fact, the first versions of Smalltalk did not have a
compiler; they were purely interpreted (the distinction is explained in detail later
in this chapter). Smalltalk was notable not only for its application of
object-oriented ideas at the language level, but also for a wonderful graphical
development environment, ahead of anything that existed at the time. What
dynamic typing lacked for guaranteeing reliability, it made up for by providing
developers with a remarkable degree of freedom in trying things out and even
experimenting with the environment itself.

With successive versions, in particular Smalltalk-76 and Smalltalk-80,
interest in the language grew; but the devotees were still, like those of Simula,
a small club. Then in 1981 Byte magazine, then the battleship of the rapidly
growing community of personal computer enthusiasts, decided to publish a
special issue on Smalltalk, even though it was not available on the machines its
readers typically used. The August 1981 issue (today a collectors’ item), edited
by Adele Goldberg, opened the floodgates, allowing a new generation to
discover object-oriented programming; when in 1986 the ACM organized a
conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA, since then a yearly fixture), expecting a hundred
attendees, a thousand people showed up. New languages started to appear; both
Brad Cox, who had used Smalltalk at ITT (then a large telecommunications
company), and Bjarne Stroustrup from AT&T, who had used Simula for his PhD
at Cambridge, had the idea of extending C, by then a lingua franca of
programming, with object-oriented concepts. The results were Objective-C and
C++. The Eiffel language also dates back to that period.

In just a few years object-oriented languages overcame industry’s initial
suspicions and some of their own limitations (affecting in particular performance)
to become significant players at first, and the dominant ones soon thereafter. New
languages appeared, notably Java in 1995 and C# four years later.

Ever since the first OOPSLA, critics have been predicting the “end of
objects”. There has never been any sign of such a phenomenon. Objects
continue to thrive; as one observer put it, there is no other game in town.

 Kay (2007)

Goldberg (2002)

PROGRAMMING LANGUAGES AND TOOLS §12.2330

12.2 COMPILATION VS INTERPRETATION

The rest of this chapter explores software tools supporting software development.

We write our programs not in the form that computers can directly execute,
machine code, but in a higher-level notation meaningful to humans — a
programming language. A programming language can be viewed as machine
code too: machine code for a fictitious brand of computer, more abstract than
actual processors. We talk of an abstract machine, or virtual machine.

The purpose of compiling is to enable execution by the actual machine of
code written for the abstract machine. Compiling is, however, only one of two
basic techniques available for this purpose.

Basic schemes

Instead of compiling a program, we may interpret it. The following figure —
ignoring the role of input data — illustrates the difference.

Both compilers and interpreters are programs, whose inputs are arbitrary
programs written in a programming language. A compiler (see the green path,
down then right) translates its input program into a target form which, being in
machine code, can directly be executed by the computer, leading to output
results. Processing the same program, an interpreter (red path, right then down)
does not produce another program but directly computes the program’s output.

The interpreter must be able to determine the effect of executing every kind
of construct in the programming language. As an example of how interpreters
do this, consider interpreting an assignment x := x + 1. The interpreter must keep
a table of all variables and their associated values. It evaluates the expression
x + 1 by looking up the current value of x in the table and adding 1 to it. Then it
carries out the assignment by replacing the value in the entry for x by the newly
computed value.

Source Compilation &

interpretation

(without input

data)

program

Target
program Output

Compiler

Interpretation

Interpreter

Compilation

Execution

→ The table will typi-
cally be a “hash
table”, as studied in
“Hash tables”, 13.9,
page 411 .

§12.2 COMPILATION VS INTERPRETATION 331

A compiler would generate machine code that produces the same effect,
using machine instructions for the operations and memory addresses (rather
than a high-level data structure such as a table) for the data.

Complementary exercises ask you to write both an interpreter and a compiler for a
small language, applying these ideas.

In the view of a programming language as the machine code for an abstract
machine, the interpreter is a program that simulates execution of this machine;
the machine’s memory is abstract too, represented by data structures such as the
interpreter’s variable-value table.

The full picture of compiling vs interpreting includes input data:

This highlights another difference: while the input of a compiler is just a source
program, an interpreter needs two sources of input, the program and its data. A
later discussion will express this observation mathematically.

The basic distinction between compilers and interpreters — whether to
process information as it is, or transform it first into a more convenient form —
is an important concept of computer science and has applications beyond
program processing, as we will see in studying advanced algorithms.

Compilation and interpretation have complementary strengths. Several
criteria are involved. On run-time performance compilers win:

� With compilation, the output is machine code, which the computer executes
directly. In addition, compilers can perform optimizations to tune the
generated code for performance.

� Interpreted code requires further processing by a program, the interpreter,
typically slower by one or more orders of magnitude than direct execution
by the hardware.

→ 16-E.3, page 616 to
16-E.6 (part of a
later chapter as they
benefit from recursion
and inheritance).

Source

Compilation &

Interpretation

program

Target
program

Input

Output

Compiler

Execution

Interpretation

Interpreter

Compilation

→ “Currying in prac-
tice”, page 645.

→ “Interpretation vs
compilation”, page
542 and “Invest then
enjoy”, page 694.

PROGRAMMING LANGUAGES AND TOOLS §12.2332

The advantage changes sides if we switch to the perspective of development
speed and convenience. The compiler stands between you and the realization
of your latest idea: before seeing the result of a change, you must wait for the
compiler to compile your program — and also to link it as discussed below.
With interpretation you can start executing immediately.

In modern development environments this disadvantage of compilation may not
be critical, thanks to incremental compilation techniques which, after a change,
only recompile the parts of the program that have changed or are directly affected
by the change. At the end of this chapter we will see how EiffelStudio applies
such techniques.

The last criterion, bringing the advantage back to compilation, is program
reliability. Compilers do not just translate source code into another
representation; in the process they also perform various validity analyses, such
as type checks in a statically typed language. This roots out many errors which,
in a purely interpreted solution, would only manifest themselves at run time.

In principle an interpreter can also perform some of these checks before
executing the program. It is then no longer a pure interpreter, but already a mix
of interpretation and compilation.

Combining compilation and interpretation

The pure compilation and pure interpretation schemes are extremes; many
practical solutions use a combination. This is the case with the EiffelStudio
compilation process studied later in this chapter.

We may note that a 100%-interpreted scheme makes little sense: every time
the interpreter executes an instruction, for example as part of a loop, it would
have to go back to its source code — the actual sequence of characters — and
parse it again. Any realistic solution avoids such a waste of resources; practical
interpreters start instead with a step that turns the input into a form more directly
suitable for interpretation, for example an abstract syntax tree. In the process
they may also, as just noted, perform some consistency controls such as type
checks. Even when you read that a language implementation uses an interpreter
this is usually the meaning.

Combining interpretation and compilation goes further than this basic idea.
In the general compilation scheme the output does not have to be machine code
but may be subject to further processing:

→ “The melting ice
technology”, page 357.

§12.2 COMPILATION VS INTERPRETATION 333

This mixed strategy, involving compilation to an intermediate virtual machine
— “VM” in the figure —, can be tuned to reconcile the advantages of
compilation and interpretation. Through a careful design of the virtual machine
it is possible to get:
� Portability, since the VM code can be independent of physical processors.

� A reasonable level of efficiency, if the code is chosen to be low-level
enough for fast interpretation.

Virtual machines, bytecode and jitting

Both Java and .NET implementations commonly rely on a mixed solution as just
described, where the intermediate code is known as a bytecode. The term
emphasizes that such virtual machines use compact instructions, similar to those
of actual processors, where each instruction contains an instruction code —
typically fitting in a byte — followed by 0, 1 or 2 arguments.

An alternative to bytecode would be to use, as the target of the compilation, a set of
data structures, for example an abstract syntax tree to represent the program structure
and a hash table to store properties of variables. With such a structure it is easier to
write both the compiler and the interpreter, but bytecode gives better run-time
efficiency, both in space (as the code is tighter than data structures) and in time.

This technique, relying on compilation to a bytecode-based virtual machine
then interpretation, was already used by Pascal implementations in the
seventies. It came to renewed prominence with the spread of the Internet since
it lends itself to distributing code for local execution by Web clients: the
provider of a small program, or applet, can compile it into bytecode and deliver
it in that form; in addition to the compactness of bytecode the portability benefit
is particularly interesting here since the alternative would be to generate binaries

Source Compilation

plus

interpretation
program

VM

Output

Compiler

Interpretation

Interpreter

Compilation

Input

PROGRAMMING LANGUAGES AND TOOLS §12.2334

for every possible target platform. To run the applet, users only need a bytecode
interpreter. They do not even have to know that the interpreter exists if it is
embodied in their Web browser. Because the approach raises potential security
risks — rogue applets could invade your system — it requires the use of trusted
interpreters; this is the case with established Web browsers, which strictly limit
the scope of the operations applets can perform.

Program delivery through applets has achieved some success but has not become
the primary means of software distribution as some had predicted at the time Java
was introduced. Apart from security concerns, the main reason is the loss of
efficiency inherent in any solution involving interpretation. Most successful applets
are small programs intended to run on a Web page, often with a strong visual
component, for which the performance penalty is tolerable.

To improve run-time efficiency without reintroducing the full overhead of
compilation, some implementations of the bytecode-virtual-machine scheme
add a technique known as Just-In-Time compiling or JIT. The idea is to produce
machine code for some modules on the fly, the first time they get called during
execution. This is known as “jitting” and the compiler from bytecode to
machine code is a “jitter” (I will spare you the “jitter bug” jokes). We can picture
it as a refinement of the previous figures; the addition is at the bottom left:

Source Compilation

plus

interpretation

and jitting

program

Bytecode

Output

Compiler

Interpretation

Interpreter

Compilation

Input

Machine
code

Execution

Jitter

Jitting

§12.3 THE ESSENTIALS OF A COMPILER 335

Usually, as the figure suggests, the option remains of interpreting the bytecode
rather than jitting it.

Jitting normally takes place, if at all, on the first use of a particular module
(a feature, or the entire class); since this will only occur for code that is actually
used during execution, the technique often saves space over a traditional
compiler which would generate code for the entire program. It also saves some
compilation time but, more importantly, spreads compilation overhead over
execution (as opposed to executing a traditional compilation step before
execution starts). The disadvantage is that execution can be penalized by
on-the-fly jitting; in particular, execution time is less predictable.

It seems at first sight unnecessary with this approach to perform type checks
and other consistency controls at the jitting stage: who would want to start
execution and suddenly, as the corresponding module gets jitted, discover a type
error? This would take us back to the problems of dynamically typed languages.
Rather, we may feel entitled to expect that the first compilation step has
performed all the necessary checks, so that any code passed to the jitter is
type-safe.

Unfortunately these reassuring assumptions are unrealistic in a distributed
setting, because security concerns pop back up again. If you download bytecode
from a site, how do you know it passed the type checks? In general you do not.
But then type violations do not just cause reliability violations, such as crashes;
attackers may be able to turn them into security violations.

From a security engineer’s viewpoint, a security violation is worse than a crash:
with a crash everything stops; with a security violation execution seems to continue,
or to terminate normally, but systems may have been compromised or confidential
information leaked.

As a consequence, practical jitting solutions perform type checking anyway.
The performance penalty can remain reasonable since the type system of a
bytecode-based virtual machine is generally simpler than those of high-level
programming languages.

The compilation strategy of EiffelStudio also involves a bytecode, but as we
shall see below it relies on a different way of combining interpretation
and compilation.

12.3 THE ESSENTIALS OF A COMPILER

Today’s compilers (and interpreters) are sophisticated tools, resulting from a
half-century of research and development. The principal task of a compiler is to
generate some target code from a source programming language, but as we have
seen it is not the only one: on the way, compilers check program validity.

→ “The melting ice
technology”, page 357.

PROGRAMMING LANGUAGES AND TOOLS §12.3336

Compiler tasks

The details of compilers vary considerably, but the general tasks tend to be
common to all variants. We look at them in the rough order in which the
compiler must apply them when processing a source text.

Lexical analysis turns the text into a sequence of tokens representing
identifiers, keywords and symbols. We have seen the basic techniques used for
this task: finite automata and regular grammars.

Parsing reconstructs the syntax structure of the program.

Validity checking includes type checking and other consistency
verifications. Eiffel, for example, has some 90 “validity rules” such as “in an
attachment (assignment or argument passing), the type of the source must
conform to the type of the target” (a type rule, setting the limits on
polymorphism) and “a class B may not list a class A among its parents if B lists
an ancestor of A among is own parents” (to prohibit cycles in inheritance).

Semantic analysis includes processing the result of the parsing step — data
structures described next, such as an abstract syntax tree and a symbol table —
to discover important semantic information useful for the next steps.

Code generation produces target code from source code. There may be
more than one code generation step, as compilers may use intermediate
representations before generating the final code. From Eiffel source code, for
example, the EiffelStudio compiler generates bytecode, which is available for
interpretation (as part of the Melting Ice Technology discussed later) but also
serves as intermediate code from which the compiler can generate a final target.

Optimization improves the code generation process to ensure the production
of more efficient code. Optimization can occur in conjunction with several of
the preceding tasks, such as semantic analysis or code generation. Examples of
optimization include:

� Register allocation — optimizing for execution time. Mathematically
3 ∗ b + a has the same value as a + 3 ∗ b, but one of these forms may
compute faster than the other by using the processor’s registers more
effectively. Optimization will ensure that code generation produces the
fastest variant.

� Dead code removal — optimizing for execution space. If the optimizer
determines that some part of the program will never be used during
execution, it can remove the corresponding generated code or, better yet,
avoid generating it in the first place.

← “The lexical level
and regular autom-
ata”, 11.6, page 311.

Actual Eiffel validity
constraints are
expressed in a more
formal “if and only if”
style. See the
ISO/ECMA Eiffel stan-
dard at www.ecma-
international.org/pub-
lications/standards/
Ecma-367.htm.

← “Registers and the
memory hierarchy”,
page 287.

http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm

§12.3 THE ESSENTIALS OF A COMPILER 337

A program that includes elements that will never be executed does not necessarily
reflect programmer sloppiness. If your software relies on libraries of reusable
components, a simple compilation strategy might compile the entire library, but at
any particular stage of its evolution the program uses only a subset of that library.
In EiffelStudio, where most programs rely on general-purpose libraries such as
EiffelBase, dead code removal often halves the size of the generated code.

Fundamental data structures

In general the lexical analysis and parsing tasks are closely integrated: the parser
calls the “lexer” (short for lexical analyzer) to get successive tokens. The main
output is an abstract syntax tree, representing the structure of the program
stripped of any purely textual property such as keywords. Another fundamental
structure is the symbol table; it records the names used in the program — class
names, feature names, local variables, other entities — and, for each of them,
the associated properties. For example the entry for a local variable will record
the type of the variable and the routine to which it belongs. Further properties,
useful in semantic analysis and optimization, might include the lists of
instructions which use the variable’s value and of instructions that may modify
that value. Hash tables, studied in the chapter on data structures, are often a
good implementation for symbol tables.

In the typical organization of a modern compiler the combined lexing and
parsing task will produce a raw AST and a symbol table initialized with basic,
purely syntactic information. The role of the remaining tasks is then to enrich,
or decorate, these data structures with ever deeper semantic information.

Passes

The traditional description of the compiling process emphasized the notion of
pass. A compiler pass is a traversal of the entire program, intended to perform
specific operations on its constituents. Historical circumstances made this
notion important: the program representations appropriate for each step —
initially the source text, then the parse tree and so on — would generally not fit
in the limited memories of earlier computers; they had to be kept in external
storage as files on disk or, earlier yet, tape. Compilation consisted of successive
passes, each processing the previous file and producing the next one. The
dominant performance goal was to minimize the number of passes.

This concern even had an influence on language design. Pascal, for
example, was explicitly designed with strict limits on forward references (such
as calls to a routine occurring before the routine’s declaration) to permit
one-pass compilation.

→ “Hash tables”,
13.9, page 411 .

← “Describing
abstract syntax”, 11.4,
page 310.

PROGRAMMING LANGUAGES AND TOOLS §12.3338

Today the situation is different and the notion of pass less clear. In the most
common scheme, the compiler first applies a single pass — the only one clearly
recognizable as such — combining lexical analysis and parsing to produce an
abstract syntax tree and a symbol table. The rest of the compilation processes
and decorates these data structures.

The compiler as verification tool

To appreciate the full role of compilers, we should remind ourselves of an
observation already encountered several times: the compiler is — in addition to
a program translation tool — a program verification tool. For modern typed
languages with their elaborate type systems, the type properties of a program
provide considerable semantic information. The validity rules of Eiffel are an
example, describing a rich set of consistency properties all meant to improve the
reliability of the software you write. By performing validity checking, the
compiler enforces these rules, catching violations at compile time.

Software engineering research has shown the considerable benefit of
detecting errors early; in particular it costs much more to correct an error if it is
found dynamically, during execution, rather than statically. A compile-time
error, in this view, is good news.

Loading and linking

Machine-code programs need memory addresses: an assignment x := exp will
put a value in the memory address associated with x; a conditional instruction
if c then a … will branch to the address of subsequent code if c evaluates to
false; a routine call r (…) or x.r (…) will transfer execution to the address of the
code for r and, on termination of that code, must branch back to the address of
the code following the call.

The exact addresses are beyond the control of the compiler. On a typical
platform, many programs run concurrently. A special program of the operating
system, the loader, is responsible for starting other programs. Whenever it
launches a program, the loader must find memory space and adjudicate it to the
program’s code and data. This scheme prevents the compiler from including the
final addresses in the generated code:

� When processing software elements within a module, for example the
routines of a given class, the compiler only controls their relative addresses
in the memory area assigned to the module. For example when it processes
an unqualified call r (…) appearing in a routine of the same class C as r, the
compiler knows the offset of the code for r within the area assigned to C;
but it does not know the corresponding absolute addresses, which will only
be set at loading time and may vary from one execution to the next.

→ “Touch of Methodol-
ogy: Zen and the Art of
Reacting to Compiler
Messages”, page 367.

← Using the scheme
given in “The goto
instruction”, page 183.

§12.3 THE ESSENTIALS OF A COMPILER 339

� For elements in a different module, addresses will be relative to the start
address of that module. If the entire program is compiled together this case
falls within the preceding one, as the compiler could define the layout for
all the modules. But often it is desirable to allow separate compilation,
where modules can be compiled individually before being combined into a
single target program.

The first problem has two possible solutions. Some operating systems use a
relocating loader which will, before execution, add a constant value (the
memory area’s start address) to every relative address. The more common
solution is to use a hardware platform designed to handle the notion of relative
address directly: all instructions interpret their address arguments relative to the
program’s memory start address.

The second problem requires the use of another operating system program:
a linker, which combines several target modules into a single module. Any one
of the linker’s input modules may include unresolved references, which the
linker will replace whenever possible by addresses obtained from other
modules. The process can be iterative: if not all references are to targets in the
modules being linked, the linker’s output can still have unresolved references,
to be filled later by a new linking phase.

Linking is a conceptually simple operation but can have a significant
performance impact because it may have to traverse the entire set of modules
being linked, making linking time potentially proportional to total program size.
This goes against the trend towards incremental compilation, itself resulting
from a desire to provide fast turnaround after a program change.

The runtime

Today’s ambitious programming languages require not only sophisticated
compile-time tools (including a sophisticated compiler) but also sophisticated
execution-time support: when a program runs, it needs dynamic memory
allocation (for instructions such as create x), automatic garbage collection to
reclaim objects that are no longer accessible, exception handling, support for
input and output. The hardware generally does not provide these mechanisms
directly. Effective memory management, in particular, relies on complex
algorithms and data structures.

Since these needs are common to all programs written in a given language,
it would make no sense for the compiler to generate the corresponding code
separately for each. Instead, the generated code will include, where the program
needs one of these facilities, calls to routines from a library known as the
run-time system, the run-time library or just “the runtime”. The code must then
be linked with the runtime before execution.

← “Memory manage-
ment and garbage col-
lection”, 6.7, page 128.

Or even several lan-
guages, as in the .NET
framework which pro-
vides a multi-
language execution
infrastructure.

PROGRAMMING LANGUAGES AND TOOLS §12.3340

Another way of stating this role of the runtime is to relate it to the notion of
virtual machine. While typical machine code and the visible properties of actual
hardware — other than speed and size — have not changed much in a
half-century, today’s programming languages expect more advanced virtual
machines. We have seen that it is possible to build such a virtual machine with
its own instruction code such as bytecode, and target the compiler to that code,
which will then be interpreted; but the performance overhead may be
unacceptable. Here we encounter a different approach: generate the machine
code of the actual hardware, but provide the more advanced mechanisms
through a runtime. In this case the virtual machine is the combination of the
hardware and the runtime.

Bytecode-based virtual machines also include a set of mechanisms supporting the
execution of bytecodes; so the notion of runtime applies to them too.

Although typically a smaller program, the runtime is as necessary as the
compiler for the processing of programs in a modern object-oriented language.

Debuggers and execution tools

Once your program has been compiled and linked, you will want to exercise it.
The final version will typically be a self-running executable, but that’s only
when you have completed the development. Until then, you will want to try out
the execution under controlled conditions, enabling you for example to explore
the execution context (precise location in the program text, object contents) in
case of an execution failure. To do this you need a debugger. The term is actually
too specific — too pessimistic — since such tools are useful even when you are
not specifically looking for a fault (“bug”); modern debuggers are control tools
enabling you to monitor what the execution of programs.

A typical debugger will provide such facilities as: define, in the source code,
“breakpoints” where execution will stop; start execution; interrupt execution;
resume execution; terminate execution. When execution has stopped — which
can arise from three possible causes: reaching a breakpoint, triggering a failure,
or responding to a user interrupt — the debugger will let you examine the code
that led to the current state, explore the object structure by looking up object
contents and following references, evaluate expressions dynamically, and
perform other inspections on the program and its data. In some cases, such as
the EiffelStudio debugger, you can even simulate backward execution of the
program, a useful facility if you encounter a failure and want to understand what
happened before. The figure on the facing page shows a typical state of the
EiffelStudio debugger.

The availability of a good debugger is not an excuse for sloppy
programming (resting on the hope that any problems will be found at debug
time). Execution control can only tell you about a few cases out of a myriad of

§12.4 VERIFICATION AND VALIDATION 341

possible executions. More generally, dynamic verification techniques such as
debugging are not a substitute for static verification and validation; it is always
better to avoid problems than to cure them. But debuggers let you experiment
with your program and get a concrete feel for what happens at run time.

12.4 VERIFICATION AND VALIDATION

Debuggers typically support program checking performed by the program’s
developers themselves. Before being released, programs must generally be
submitted to more systematic verification and validation (“V&V”), often by
different people for more objectivity. (Verification refers to checks of internal
consistency; validation, to checks of adequacy to intended purposes.)

The chapter on software engineering has more on V&V. For the moment we
simply note that the corresponding tools belong to two major categories:

� Static analyzers rely on the program text. An example is the enforcement of
type rules and other validity constraints by a compiler, but static analysis
tools go further, all the way to possible proofs of program correctness.

� Dynamic techniques must execute the program, especially by testing it
against expected results.

A debugger

session with

EiffelStudio

→ On static verifica-
tion and validation see
next section and
“Static techniques”,
page 732.

→ “Verification and
validation”, 19.7,
page 727.

PROGRAMMING LANGUAGES AND TOOLS §12.5342

12.5 TEXT, PROGRAM AND DESIGN EDITORS

To enter program modules and other software elements (such as design
documents and other documentation), you may use text editors — the programs
that enable us to type and format documents.

When these documents are programs, two possibilities present themselves:
a generic text editor, which you happen to use for texts in a particular
programming language; or a specialized program editor, which knows about
that language and is able to interact with other programming tools such as the
compiler. There are pros and cons to each approach:

� Good generic editors offer many sophisticated features, for example ways
to perform complex changes, or a command language to process the
document in specific ways. But they are not specifically tailored to
programming and miss some facilities specific to programs; for example,
they typically do not know that program texts will be processed by a
compiler and executed under the control of a debugger.

� A specialized program editor can take advantage of specific knowledge
about the language; for example it can parse your program texts as you type
them, show the location of errors directly in the text, offer a button to start
a compilation from within the editor, and provide other direct connections
to the development tools. But in its language-independent text editing
capabilities it may be less advanced than a general-purpose text editor.

Such technical considerations are not the sole determinant. Text editors — such
as Vi and Emacs, both notable for the enthusiasm they generate in their
respective user communities — can be addictive; people used to the conventions
of such a general tool may resent being asked to change their practices just
because they are typing a program rather than plain text.

Another reason why program editors have not displaced generic editors even
for entering programs is that today’s generic editors can often be parameterized
to support the syntax of a particular programming language (or other precisely
defined notations such as HTML). Making such an editor support a new language
simply means providing it with a grammar description in BNF or equivalent. The
generic editor can then provide some of the benefits of a program editor;
examples are syntax coloring to distinguish keywords and various kinds of syntax
elements, and automatic completion (you type the beginning of a construct
specimen, for example if, and for the rest a template appears with keywords
pre-filled, such as <Condition> then <Instructions> else <Instructions> end

showing where to enter the missing elements).

§12.5 TEXT, PROGRAM AND DESIGN EDITORS 343

These observations indicate that a development environment should offer a
specialized editor that supports the language or languages of interest, but not
impose its use; it should also accept texts prepared with other tools.

As an example, EiffelStudio offers a built-in editor for class texts and would have
an easier job if it could assume that this is the only way for users to enter and type
classes: it could then easily keep track of changes, facilitating the automatic
recompilation process described below. But it must accept that users will also rely
on other text editors; in that case the compiler must analyze files and their time
stamps (times of last modification) to know what to recompile.

Besides purely textual tools, it may be convenient to use graphical
representations of program texts, such as the diagrams used in this book to
describe software architectures as sets of classes with client and inheritance
links. The notation we use is called BON (Business Object Notation); another
one, more widely used and more complex, is UML (Unified Modeling
Language). Graphical tools support these notations: they let you enter a diagram
interactively, then will automatically generate the program text, or at least the
overall structure. They are often called CASE tools (for Computer-Aided
Software Engineering — a term that literally covers all the tools of this chapter
but is generally used in this more restrictive sense). A well-known example
supporting UML is Rose from Rational Software. EiffelStudio includes a
Diagram Tool providing graphical displays of classes and clusters:

→ E.g. “An inherit-
ance hierarchy”,
page 554. See also the
diagram on page 565.

Text view (top)

and Diagram

Tool of

EiffelStudio

Another example, from
Traffic, appears on
page 555.

PROGRAMMING LANGUAGES AND TOOLS §12.6344

An important requirement on such tools is round-trip engineering: the guarantee
that transforming from graphics to text and backwards, in either order. will yield
back the original. Graphical views are, for many people, a clear way to describe
overall structures; but when it comes to precise semantic properties nothing beats
text. Round-trip engineering guarantees the consistency of these views: the tool
should enable you to start from the text or the pictures as you please, then work
on the pictures through the graphical interface and have the relevant classes
immediately regenerated, or modify the text and have the pictures automatically
updated. This is the principle behind EiffelStudio’s Diagram Tool.

12.6 CONFIGURATION MANAGEMENT

Software almost always changes over time. Software systems often have many
parts. Software is commonly developed by many people.

Put these three characteristics together and you have a serious
administration problem.

Put any two of these characteristics together and you still have a problem. In
fact, any one of them already calls for configuration management.

Varieties of configuration management

The particular issue that gives configuration management its name is the task of
ensuring the consistency of combinations, or “configurations”, of the parts
making up a system. Consider just the “Parts” and “Changes” dimensions. In the
case of programs the parts are modules, such as the features, classes and clusters
of object-oriented programming. Each module goes through successive
versions, according to its own schedule and constraints; the process is more
counterpoint than harmony, more Bach fugue than military march. But the
system as a whole also needs to progress through its own version history: every
so often you must put the pieces together, in their current state, and produce a
release. This is called a build in the trade jargon, and is where disaster threatens.

The three

dimensions of

software

configuration

management

People

Parts

Changes

One configuration

§12.6 CONFIGURATION MANAGEMENT 345

It is ever so easy to use version 3.1 of module A and version 2.5 of module B,
whereas the A version has only been certified to work with version 2.4 of B.
Many software catastrophes on record can be traced to such seemingly trivial
management mishaps, which cease to be trivial as system size and project
duration grow.

There is more to configuration management. The issues can be tricky even
for the development of a single module. Typical questions are:

� When was the module last modified?

� Who modified it between September and December of last year?

� When was version n released?

� What changed between version n and version n + 1?

� What was the reason for this particular change?

� Does this bug still exist in the current version?

� If not, when was it fixed?

� Can we revert to the version of module M as of March 15 of this year?

This aspect of configuration management is often called version control.

The most widespread configuration management tools address the two
questions just described: automatic build and version control. We review these
two facets of configuration management. The next section will discuss total
project repository platforms, which extend configuration management by
providing general project infrastructure.

Build tools: from Make to automatic dependency analysis

The inspiration for build tools is the Unix Make command developed
by Stuart Feldman in 1977. The idea is to automate the reconstruction
of a system on the basis of a description of module dependencies,
known as a “make file” or “makefile”. A makefile is a list of entries of
the form

This states that the target is dependent on source1, source2 …; usually the target
and sources are files. Whenever any of the sources have changed, the
corresponding target is no longer up to date; the listed command or commands
are in charge of updating it. Executing

target: source1 source2 …
command1

…

make target

Feldman (2006)

The tool’s name is
often written “make”,
all lower case, as this
is how you must type it
to execute the com-
mand-line version.

PROGRAMMING LANGUAGES AND TOOLS §12.6346

will reconstruct target from its sources by applying the corresponding
command; if any of these sources is itself the target of a dependency, it will first
be reconstructed in the same way. In this process the order of entries in the
makefile does not matter: the make processor deduces from the dependencies
the order in which to apply the commands. The language of makefiles is indeed
— unlike most programming languages, which specify execution order
precisely — of a descriptive style.

The notion of dependency enforced by Make also involves update time. The
operating system records the time stamp (last modification time) of every file;
Make will only apply the commands associated with a dependency if one or
more of the sources have a more recent time stamp than the target.

A typical makefile, for building a program written in C, is

The C practice is to store source modules in files called name.c; the compiler,
command cc, will generate the object code into a file name.o. Command cc

doubles up as a linker: applied to one or more .o files, it produces a new object
module with cross references removed. The first entry says that our program
depends on three object modules, as listed (main is the main program module);
generating the program requires applying cc to them. To describe how to get the
.o modules, we could use three entries of the form

main.o: main.c
cc main.c

and similarly for module1 and module2. The second rule in the makefile
subsumes them into a general rule applicable to any .o file; the symbol % is a
placeholder, so the first line says that any name.o depends on name.c for the
same name; in the command of the second line $< denotes whatever was
matched in the second part of the first line. (At this point you could be forgiven
for remarking that the notation is not the most limpid possible, but before
jumping to conclusions remember that since 1977 the original Make and its
avatars have helped millions of programmers build their programs right.) The
command make program will do the expected: first compile the three modules
to produce their respective .o files per the first entry; then link them (again
through cc) to produce program. Note again that Make automatically
determines the order of these operations from an analysis of the dependencies.

program: main.o module1.o module2.o

cc main.o module1.o module2.o

%.c: %.o

cc $<

§12.6 CONFIGURATION MANAGEMENT 347

The concepts are applicable beyond programming: for example you could
define a makefile for documentation generation, with dependencies from source
files in a document composition format (Microsoft Word, Open Office, TeX,
FrameMaker…) to targets in HTML or PDF, and commands to regenerate
these representations.

Make single-handedly established the discipline of build management and is
a success story of software engineering. With hindsight its main limitation is the
need to describe dependencies explicitly. When modules change, their
dependencies change too; you must in each case make sure to update the
makefile. Another way of stating that observation is to note that a makefile is
software, and must be designed and maintained like the rest of the software. Some
simplifications are possible, thanks in particular to built-in generic rules such as
the second rule above (specifying how to compile and link C programs); but the
process remains tedious. Errors can result in incorrect builds and faulty systems.

A more modern approach is to equip the program with enough information
to allow computing the dependencies automatically. This is for example what
EiffelStudio does: there is no equivalent of makefiles for Eiffel code because the
compiler can determine, when a feature or class changes, what other classes
depend on it and hence will have to be recompiled.

Version control

Version control tools help you keep track of successive versions
of an individual module: in our three-dimensional picture, it
corresponds to a horizontal plane as shown, or in the case of a
single developer to a horizontal line. The parts (modules in the
case of programs) undergo successive changes. We cannot just
let developers edit them at their discretion then recompile the
entire system; havoc would follow. Instead we must record
every change — who, when, what, why — and, if needed,
compare successive versions or revert to an earlier version.

There are many version control tools, open-source and commercial;
some are ambitious integrated frameworks, although the most successful
seem to have been simpler tools that focus on the essential issues and are
easy to integrate into a company’s existing software development process.
Most notable has been a line of four- then three-letter-acronym tools starting
with SCCS by Mark Rochkind (Source Code Control System, 1972. coming
out of Bell Labs like Make) and continuing with RCS by Walter Tichy
(1982, R for Revision), CVS (1986, C for Concurrent, based on RCS) and
more recently SVN (longer name: Subversion), a reimplementation of CVS.

People

Parts

Changes

(From the figure on page 344.)

 Tichy (2008)

PROGRAMMING LANGUAGES AND TOOLS §12.6348

The setup with such a system includes:

� A repository, which contains the official successive versions of each part
under version control.
Conceptually the repository is a database — like the customer database of your
phone provider, or the account database of your bank — although version control
systems do not generally use database technology.

� Local copies of the parts, which users (for example software developers)
can keep and modify for their own purposes.

The repository is stored on a server, and users typically access it through a
network. The two fundamental operations at their disposal are:

� Update (or check-out): make a local copy of a part from the repository —
by default the part’s latest version, but you can specify an earlier one.

� Commit: (or check-in): enter a part, possibly new but more commonly a
modified local copy of an existing part that a user checked out.

A commit creates a new version, with its version identifier. It is customary to
use version identifiers made of a sequence of numbers separated by periods, such
as 6.3 (the version number of EiffelStudio at the time of printing). 6 is the “major
number”, changed only for a version that introduces essential innovations, 3 the
“minor number”; the next release would be 7.0 in the first case, but will actually
be 6.4. Intermediate versions, introducing for example a “patch” that corrects a
bug, would have version identifiers such as 6.3.m or even 6.3.m.n.

Conceptually, the repository retains all old versions. This goal would seem to
require a prohibitive amount of storage space; what makes it realistic is a
technology known in trade talk as “diff” from the name of the Unix command
that takes two files and shows how they differ: lines added, lines changed, lines
removed. If you have ever clicked “Compare selected versions” in the History
page of a Wikipedia entry you will have seen a diff-like view:

Checking in
and out

Part A

Part B

Part C

Update

Commit

Part A

Part B

Update

UsersLocal copies Shared versions

REPOSITORY

It is possible to con-
sider additions and
deletions only, repre-
senting a replacement
by a deletion followed
by an addition.

§12.6 CONFIGURATION MANAGEMENT 349

This representation of the “diffs” between two versions of a file, say filen–1 and
filen, is intended for human inspection; but the diff algorithm can also generate
a form d of the diffs that allows a companion algorithm to reconstruct filen from
filen–1 and d, or, backwards, filen–1 from filen and d.

That companion algorithm is straightforward: d describes a sequence of line
additions, line deletions and line replacements at given positions; it suffices to apply
these operations to the file, in order. The diff algorithm itself is more delicate.

A consequence for version control systems is that the repository only needs to
store the original version of each file and successive diffs; if there is a request
for a particular version it will be recomputed. Alternatively, the repository can
always store the latest version — to save time, since it is the one that will be
requested most often — and store backward diffs. Either way, the advantage is
that diffs are typically much smaller than the full file, so the solution optimizes
space usage and makes it possible to store the entire history of a file, sometimes
going back a decade or more and remembering thousands of revisions.

As the Wikipedia case illustrates, revision control is useful beyond program
modules. For example in our group at ETH many people work on the slides for
large courses; all the slides are kept in a Subversion repository.

In the case of software development, version control is applicable not only
to program modules but also to all other documents of a software project, from
user requirements to design documents and test results. Version control is easy
to use — through a simple discipline of updating any part before you change it,
and committing it afterwards — and averts many potential disasters. The
following rule is one of the most important that you should remember for the
practice of software development:

PROGRAMMING LANGUAGES AND TOOLS §12.6350

The second part of the advice relates to the possibility, when you commit a new
version, of entering into the version management system a message that will be
retained along with the changes. You can leave it blank, but don’t: just as you
should always include a header comment at the time you write a routine (rather
than trying a year later to remember what the routine was about), so should you
record the reason and context of every change while they are fresh in your mind.
Systematically applying this guideline means that over time the version control
repository becomes a rich knowledge base about the evolution of your software.

The version control scenario assumed so far functions well with a single
developer. A more delicate situation arises when several people must work on
the same module, for example a class, typically as part of requests for separate
improvements to the software. It is possible to lock a module on update so that
no one else can check it out, but this is generally too drastic. When you commit
your changes after someone else committed his or her own changes to the same
module, the version control tool will detect the conflict and ask you to resolve
it, helping you by displaying a “diff”. In many cases the reconciliation process
is straightforward as different developments tend to affect different classes or,
within a class, different features, but once in a while you will get a real conflict
which you will have to resolve carefully. The key in such a process is not to wait
until too many changes make the task inextricable:

A companion piece of advice involves “branching”:

Touch of Methodology:

Use version control

Keep all code and all relevant documents of a software project under the
management of a version control tool.
In committing, always write down the reason and nature of the changes.

Touch of Methodology:

Commit early and often

Commit software after every significant change, to minimize conflicts and
facilitate their resolution.

Touch of Methodology:

Branching

Do not create a new version control branch unless you intend it to lead to a
separate product, separately maintained.

← “How long is this
line?”, page 55. See
also “Touch of Meth-
odology: Placeholder
routines”, page 221.

§12.7 TOTAL PROJECT REPOSITORIES 351

Branching is the facility, available in version control systems, to split a product
into two, each with its own sequence of version identifiers. The problem with
branching is that each of the branched lines gets a life of its own, and after a
while reconciliation becomes an arduous task.

Branching is a temptation when several people start working on the same
code and extend it in different directions; it is the easy solution in the short term,
enabling these developers to work independently by putting off reconciliation
to some time in the future. One of the pieces of wisdom that the software
community has collectively acquired is that this is almost always a bad idea. The
recurring little nuisance of having to resolve diffs every few days or so is far
preferable to the Big Bang of putting together a set of developments that each
seemed over the past few months to proceed smoothly — and turn out to have
major incompatibilities that cause uncontrollable disruptions and delays.

The only case for branching allowed by the above advice is the creation of
a new product line.

For example EiffelStudio has a research version, Eve (“Eiffel Verification
Environment”), which branched at the time of 6.2. In this case the two are still
expected to remain in sync, with regular reconciliations, as the changes tend to
affect distinct parts of the system.

Configuration management — both the basic tasks sketched here, build
management and version control, and more advanced applications — is one of
the principal “best practices” of modern software engineering, which every
project large or small should apply.

12.7 TOTAL PROJECT REPOSITORIES

Build management and version control address specific issues of project
management. Complementing these individual solutions and often integrating
them, “total project repository” platforms have appeared in recent years,
providing any project with a single home. The best known such platform is
SourceForge. Another example, built at ETH, is Origo.

The idea of such platforms is to provide in a convenient and consistent way
the set of facilities that every project will need, and that it would otherwise have
to procure from many tools in an inconsistent fashion. For example if you create
an Origo project you can get the following elements automatically created for
you: a version control repository (using Subversion), a web site, registrations for
the administrators, developers and users you select (and to whom you grant
appropriate privileges), electronic discussion forums, Wiki pages for the project
documentation and others.

The scope of these tools is not limited to software projects, since just about
any other collaborative endeavor can also benefit.

Unlike in physics, the
Big Bangs of software
happen at the end.

origo.ethz.ch.

http://origo.ethz.ch

PROGRAMMING LANGUAGES AND TOOLS §12.8352

12.8 BROWSING AND DOCUMENTATION

Large software systems include many components connected by many relation
links, such as client and inheritance in the object-oriented world. Also in that
world, features undergo many avatars in their journey through the inheritance
structure: classes can redefine them, rename them, undefine them.

Browsing tools help programmers find their way through this maze. Among
typical questions they help answer:
� What are the parents of class C? Its heirs, ancestors, descendants? Its clients,

its suppliers?
� In what ancestor of C was feature f first defined?
� In what ancestor can I find the version of f applicable to C?
A related task is the production of documentation from the software text. You
may want to produce class versions at different levels of abstraction (such as the
contract and interface views of a class) and in various formats such as HTML
and Postscript. As much as possible the process should be automatic, extracting
information from the software as written rather than relying on separate
documentation; the risk of such external information is that it can become
obsolete as the software changes. Since the code may not contain all information
of interest, some programming languages provide special constructs to state
supplementary properties in the program text; examples are the Javadoc format,
supporting structured comments which tools can process, and the note clauses
which can (and should) appear in an Eiffel class to describe its general properties.

The documentation tools also retain header comments of features; this is one of the
reasons why you have been repeatedly advised never to omit these comments.

12.9 METRICS

Computer science is not a natural science: its objects of study are human
creations. These creations are large and complex enough to warrant the same
kind of empirical, quantitative analysis that scientists apply to the objects of the
physical world. Metrics tools support their process.

Properties to be measure include process attributes, characterizing the
software development effort, and product attributes, characterizing the code and
other outcomes of that effort. Measurable process attributes include
development time (global, by team member, by module), development cost,
number and type of faults (“bugs”) detected. Measurable product attributes
include such factors as:
� Code size (using well-defined metrics, from number of source lines to size

of generated code but also number of classes, number of features, number
of exported features, percentage of the code devoted to contracts).

� Coverage of the requirements (what percentage of the system’s original
objectives, or “function points”, have been realized?).

← Contract view:
“What characterizes a
metro line”, page 53.

→ “Process and prod-
uct”, page 705.

§12.10 INTEGRATED DEVELOPMENT ENVIRONMENTS 353

� Other measures of functionality such as the number of distinct user interface
states or screens.

Metric tools collect such data. They can be very useful if they apply sound,
well-defined metrics, and are part of a general quality policy that uses the
measurements’ results to help improve the software development process.

12.10 INTEGRATED DEVELOPMENT ENVIRONMENTS

Progress in software engineering tools has not just produced individual
solutions to individual development tasks as discussed until now — compilers,
interpreters, program editors, linkers, configuration management tools … — but
coherent tool suites known as Integrated Development Environments or IDEs.
Integration here means that users are presented with what looks like a single
tool, usually interactive and graphical (command-line facilities are usually
provided as well), from which they can perform all software development tasks,
or most of them. So instead of preparing your program text with an editor, then
saving the file and starting the compiler, then using a debugger to run the
program, you do everything from a single place.

Typically the GUI will still show several subwindows — editor, compiler
messages, debugger and so on — but they are connected to each other. You can
for example combine them to explore various properties of a class: its text in the
editor subwindow, its client structure in the documentation subwindow,
execution of one of its features in the debugger subwindow. All along you can
exchange information between subwindows through mechanisms such as
drag-and-drop.

The best-known IDEs today are Eclipse, an open-source environment
initially targeted at Java, and on the commercial side Microsoft’s Visual Studio.

A comprehensive IDE may include tools covering many or all of the tasks
discussed in this chapter: compiling, interpreting, editing, entering and
displaying information graphically, linking and running the program,
computing metrics, executing and debugging. Some IDEs integrate
configuration management support, but it is more common to offer interfaces
(“plug-ins”) to separate configuration management systems.

12.11 AN IDE: EIFFELSTUDIO

To conclude this discussion we take a look at the EiffelStudio environment, both
as a concrete example of Integrated Development Environment and because of
its support for the programming concepts you are learning in this book; in
particular the compilation technology provides an application of the discussion
of compilation and interpretation earlier in this chapter.

PROGRAMMING LANGUAGES AND TOOLS §12.11354

This is a description of EiffelStudio concepts, not a user’s manual; see the
corresponding appendix for a quick introduction to using the environment.

The implementation of EiffelStudio uses its own technology; the environment
represents (at the time of writing) about 2 million lines of Eiffel code (around
6000 classes), plus some supporting C code for the runtime system.

Overall structure

The following figure shows the major components of EiffelStudio.

At the center is the environment’s engine, EiffelStudio. It provides users with
the key mechanisms: browsing and automatic documentation (see below),
compilation, debugging, round-trip textual (EiffelStudio) and graphical
(Diagram Tool) design, as well as a metric tool allowing you to define your own
metrics and apply them to any system or any part of a system.

On the left you see a number of libraries of reusable components addressing
various application areas. The fundamental ones are EiffelBase, covering
common data structures and algorithms, and EiffelVision, offering graphics
with portability across platforms such as Windows and Linux. EiffelBuild, at the
top, is a tool for building graphical user interfaces; it generates code that calls
EiffelVision features, although you can also use EiffelVision directly.

→ Appendix E.

§12.11 AN IDE: EIFFELSTUDIO 355

The bottom part shows mechanisms for interfacing Eiffel code with external
software written in various languages and (where available) with facilities of the
.NET environment.

The figure also shows the two compilation vehicles: the EiffelStudio
compiler can generate C, used here as a kind of portable assembly language, and
then compiled into machine code; on the .NET platform it generates the internal
bytecode of that platform, known as CIL (Common Intermediate Language), for
jitting by the .NET virtual machine. On .NET the code relies on the standard
.NET runtime, but in the C-based scheme the result of compilation will be
linked with EiffelStudio’s own runtime.

Executable systems (on the right) can produce persistent object structures
through a simple serialization mechanism, and exchange objects with databases,
relational or object-oriented.

Browsing and documentation

The browsing and documentation facilities of EiffelStudio are particularly
developed, reflecting the variety of language mechanisms for structuring
systems and the versatility of inheritance. The basic metaphor is pick and drop:
pick a “pebble” representing a software element, and drop it into a hole to
perform a suitable operation on that element. In more detail:

� The elements that can be picked include classes, features, clusters and
others such as error messages.

� You start a pick-and-drop by right-clicking on any representation of the
element (a name, an icon) appearing anywhere.

� After picking, the cursor changes into a symbol representing the type of the
selected element, for example for a class and for a feature.

� You drop the icon into a hole by right-clicking again. In many cases an
entire window or subwindow acts as a hole; for example if you drop a class
into an editor window the window will “retarget” itself to the class,
displaying the class text so that you can edit it.

� For comfort, you do not need (as in drag-and-drop mechanisms) to hold the
mouse key down while moving the pebble. You just right-click once to pick
it, and once to drop it. A left-click will cancel the process.

PROGRAMMING LANGUAGES AND TOOLS §12.11356

A rich set of documentation mechanisms complement pick-and-drop. For any
class or feature you can display a number of views at various levels of abstraction,
such as the contract, interface and flat views of a class, but also the lists of its
clients, suppliers and features; for a feature, you can trace its history in ancestors
and descendants.

As an example of such views, the screenshot below shows the
“implementers” of the feature item of LINKED_LIST: all the classes and
routines where the feature gets a new implementation. It was obtained by
pick-and-dropping the feature name from the top part to the bottom part and
selecting the implementers view. Any feature, class or cluster name appearing
anywhere in the display can become the target of a pick-and-drop.

You may also display such information, as well as any view that the
environment can display, in HTML, PDF, RTF (Microsoft Word) and other
formats (it is easy to add another format by writing the corresponding “filter”).
If you work collaboratively, this facilitates sharing information about a software
project, from the most detailed (source code) to abstract views and diagrams.

← On the contract
view: “What charac-
terizes a metro line”,
page 53.

→ We will see how to
provide a new imple-
mentation for a feature
in “Redefinition”,
16.6, page 570.

Implementers of

a feature

§12.11 AN IDE: EIFFELSTUDIO 357

The melting ice technology

EiffelStudio’s compiling technology combines interpretation and compilation to
ensure both fast turnaround and good run-time performance.

The underlying observation is that the most important compiling scenario in
the day-to-day life of a developer is not the compiling of a large system from
scratch — no one spends months writing code without compiling it — but
recompiling a system after a set of changes following a previous compilation.
The system can be small or large; the changes can be small or large. For a small
system any decent compilation mechanism will be fast enough; the critical case
is that of a small change to a large system, say EiffelStudio itself with its two
million lines of code. You work for a few minutes to make a few specific
changes or extensions; then you will want to see the results immediately by
restarting interactive execution or running a test case.

This natural attitude of any developer yields a design constraint on
the environment:

The compilation technology follows from this principle. The metaphor that
inspires it is illustrated below. Think of a compiled system as a block of ice; the
changes are like melted drops of water, dripping from the ice as a result of the
heat generated by your work.

Melting is the process of making changes to your software; freezing, of putting
back the melted parts into the “freezer” by recompiling them.

Melting Ice Principle

The time to re-process a system after a change should only depend on the
logical size of the change, not on the size of the system.

MELTED

FROZEN

The melting ice

PROGRAMMING LANGUAGES AND TOOLS §12.11358

As you make changes, the resulting melted parts are not by default
recompiled; EiffelStudio instead generates bytecode meant to be interpreted.
But this only affects the changed parts, typically a very small part of the system
(how much of two million lines will you change in five minutes or half an
hour?); the rest remains compiled, so that the effect on performance is small.
The whole mechanism requires that interpreted and compiled code know about
each other; in particular, if a compiled routine calls a routine that has been
modified, the version to use is the bytecode version; the compiled code must
include a switch to ensure that the right version is called.

All of EiffelStudio is open-source, so it you want to understand the details of this
delicate machinery you can simply inspect the code.

The melting mechanism is automatic: you just make your changes — either
through EiffelStudio editing or through an external tool — and hit the Compile
button. EiffelStudio will then perform a fast change and dependency analysis to
find the minimum set of software elements (down to individual features, not
necessarily entire classes) that must be recompiled. This does not just include
the parts that you explicitly changed or added, but also anything else that the
change may affect. Information hiding helps make the process more efficient: if
a feature changes but not its interface, clients need not be recompiled. The
analysis does not require user intervention, in particular no makefile or
equivalent: as noted earlier, there is enough semantic information in the
software text itself to allow EiffelStudio to figure out the dependencies
automatically. This is one of the benefits of a tool integrated in an IDE and
specifically targeted to a statically typed object-oriented language.

As the share of the melted part (the water in the metaphorical bowl, or more
prosaically the file containing the generated bytecode) grows, the effect on
performance can become noticeable, so once in a while you may need to
re-freeze. This is still an incremental operation, recompiling only what’s
needed, but longer than a melt — typically, for a large system, a few minutes
rather than a few seconds. A freeze will also happen automatically after you
change or add external code, for example in C, since interpretation cannot work
for such code.

Both melting and freezing are “workbench mode” operations, meaning that
they generate a system primarily intended for execution under EiffelStudio. A
third compilation mode, finalization, generates a stand-alone executable,
completely independent of EiffelStudio. Finalization also performs extensive
optimizations such as dead code removal, discussed earlier in this chapter, and
application of static binding (when equivalent to dynamic binding, as studied in
the chapter on inheritance).

eiffelstudio.origo.ethz.ch.

→ “A peek at the
implementation”,
16.8, page 575.

http://eiffelstudio.origo.ethz.ch

§12.12 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 359

In workbench mode these optimizations are impossible. Dead code
removal, for example, relies on an analysis showing that certain routines will
never be called. But at the next opportunity the programmer might add a call to
any routine. This means that such an optimization is not incremental; it requires
an analysis of the entire system and is only justified when the compiler
generates executable code for the entire system. Finalization is still reasonably
fast; continuous progress in compilation techniques and of course hardware
performance have brought it down, for the full 2-million-line EiffelStudio, from
several hours a few years ago to about 15 minutes (at the time of writing) on a
plain desktop PC.

Complementing the three compilation modes that we have seen — melting,
freezing, finalizing — a precompilation mechanism processes an entire library,
such as EiffelBase or EiffelVision, so that it can be integrated into any system
without further compilation. Basic libraries are generally used in precompiled
form; you will either download the precompiled version, or perform the
precompilation yourself at installation time.

12.12 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

� Software engineering tools are to the software engineer what
Computer-Aided Design tools are for designers and engineers in other
disciplines such as architecture, mechanical engineering and electronics.

� To implement programs in high-level languages, the two basic techniques
are compilation, which turns a program into an internal form, and
interpretation, which provides an engine for executing the program directly.

� Some implementations combine compilation and interpretation; for
example compilation might produce, instead of machine code, an internal
form meant for execution by an interpreter, or more generally a “virtual
machine”. Another mixed compilation-interpretation strategy is
EiffelStudio’s Melting Ice, which supports incremental development by
interpreting recently changed parts while executing unchanged parts in their
compiled form.

� Compilers perform a number of tasks, from lexical and syntactic analysis to
semantic analysis, code generation and optimization, which were
traditionally implemented as successive passes but today tend to take the
form of construction and decoration of a core data structure: abstract syntax
tree plus symbol table.

� Linkers combine compiled modules; loaders ready them for execution.

� A runtime provides execution support.

� Editors and CASE tools help build programs through text and graphic input.
They should support round-trip engineering

PROGRAMMING LANGUAGES AND TOOLS §12-E360

� Build tools such as Make reconstruct a system from its components on the
basis of a description of dependencies.

� Version control tools such as Subversion keep track of successive versions
of a software part; internally they only store differences between versions.

� Browsing and documentation tools facilitate the exploration and
understanding of large software systems.

� An Integrated Development Environment (IDE) supports the principal tasks
of software development by providing a collection of interconnected tools
through a consistent interface.

New vocabulary

12-E EXERCISES

12-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

12-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

12-E.3 An interpreter and a compiler

Several exercises ask you to apply the concepts of this chapter by designing
abstract syntax classes for a small programming language and write an
interpreter a compiler and an “unparser” for it. Since an effective solution
requires recursion and inheritance, these exercises appear in the chapters on the
corresponding topics.

Branching Browsing Bytecode

CASE Commit Configuration management

Debugger Diff

DSL (Domain-Specific Language IDE

Jitter, Jitting Melting Ice Metric tool

Pass (of a compiler) Round-trip engineering Runtime

Update Version control Virtual machine

← Exercise “Concept
map”, 11-E.2, page 319.

→ Exercises 14-E.4,
page 501 and 16-E.3,
page 616 to 16-E.6,
page 618 .

13

Fundamental data structures,

genericity, and algorithm complexity

On one of those evenings when it seems you have done nothing all day but
store and retrieve things, have a kindred thought for your programs. Many of
them — like Traffic with its list-like structures representing metro lines —
spend a good deal of their time putting objects into repositories and searching
for previously stored objects.

Such a repository, whose elements we will call “items”, is known as a
container. Lists are only one example, among many kinds differing by the
speed of container operations (insert an item, retrieve an item, remove an item,
search for items satisfying certain properties, apply an operation to all items…)
and the space they require to store the items.

In this chapter we will study some fundamental container structures, useful
across all application areas of computing science: arrays, lists of various kinds,
hash tables, stacks, queues. This will also be an opportunity to discover three
fundamental programming concepts:

� The role of types in the development of reliable software.

� Genericity: how to declare type-safe container classes.

� Algorithm complexity, a technique to estimate the performance of
algorithms and data structures.

In passing we will encounter a number of rules of good software design, such as
naming conventions for features of reusable components.

13.1 STATIC TYPING AND GENERICITY

The first issue container structures raise is a typing issue.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.1364

Static typing

All the entities of our software are declared with a certain type. This rule enables
the compiler to check that any operation you want to apply to an entity x — for
example a feature call, x.f (a) — uses a feature that is indeed applicable to it.
The compiler only needs to look up the type T with which x has been declared:

� There must be a class for T.

� It must contain a feature f, taking an argument of the right type.

This policy is known as static typing: static because type properties are
specified in the program text, and so can be enforced at compilation time. The
alternative, dynamic typing, would forsake type declarations, and wait until run
time to find out that a feature call x.f (a) tries to apply a feature f to an object
that cannot handle it. We saw in the previous chapter that some programming
languages, such as Smalltalk, have adopted dynamic typing as their policy.

The case for static typing — the regime that prevails in many of today’s O-O
languages including Java, C# and Eiffel — relies on two main arguments:

� Clarity: by declaring every entity with a precise type and every feature with
a precise signature, we express the intent behind them and facilitate
program reading and maintenance.

� Reliability: an invalid feature call is always the result of a programming
mistake (a bug). Letting the compiler find the mistake for you beats waiting
until run time; as we have seen, the cost of error detection and correction
increases dramatically as a software project advances through its lifecycle.

Static typing for container classes

How can we apply static typing principles to containers? We are already familiar
with lists, since we saw that instances of LINE are lists of instances of class
STATION, with features such as

Now assume you want a class LIST that can describe lists of anything: a list of
metro stations, a list of integers, a list of objects of some other known type. The
class should have the above features, but you cannot declare the argument s to
extend, or the result of item, without knowing the type of list items: STATION

as above, or INTEGER in the second case, or any other type that you have
chosen for the objects of a particular list.

extend (s: STATION) -- A command
-- Add s at end of line.

item: STATION -- A query
-- Station at current cursor position.

← “Definitions:
Static, Dynamic”,
page 11.

← “The compiler as
verification tool”, page
338; see also below:
“Touch of Methodol-
ogy: Zen and the Art of
Reacting to Compiler
Messages”, page 367.

← E.g. page 60.

§13.1 STATIC TYPING AND GENERICITY 365

You could of course write distinct classes: LIST_OF_STATIONS,
LIST_OF_INTEGERS and so on. You would not want to do that, since the class
texts would be identical except for some type declarations. Such duplication or
quasi-duplication goes against every principle of economy and reuse.

The idea of genericity is to use a single class, here LIST, but parameterize

it so that it can support many types without reprogramming.

Generic classes

Using genericity, we declare class LIST as

G is just a name; it is known as a formal generic parameter for the class. (“A”
parameter because there may be more than one.) It denotes a type, so that within
the class we may use it for declarations, as here with the argument s of extend

and the result of item.

What type does G denote? The class itself does not answer this question. To
use the class LIST in practice you will declare for example

where it is the responsibility of each example to specify a type, known as an
actual generic parameter — here INTEGER and STATION respectively —, to
indicate what G must represent, within class LIST, for the particular list of interest.

This technique solves the problem of static typing for general container
classes. Assuming the variables

you may use the following valid instructions:

class LIST [] feature

extend (s:)
-- Add s at end of line.

do … end

item:
-- Station at current cursor position.

…Other features and invariant …
end

first_1000_primes: LIST [INTEGER]
stations_visited_today: LIST [STATION]

some_integer: INTEGER

some_station: STATION

G

G

G

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.1366

This all satisfies the type rules. The formal argument of extend in LIST is of type
G; this means INTEGER for first_1000_primes, declared as LIST [INTEGER],
and STATION for stations_visited_today; so it is legitimate to pass as actual
argument an integer in the first case and a metro station in the second case. The
same applies to the result of item.

On the other hand, if you try either of

you will not get past compilation:

first_1000_primes.extend (some_integer)
stations_visited_today.extend (some_station)

some_integer := first_1000_primes.item

some_station := stations_visited_today.item

first_1000_primes.extend ()
stations_visited_today.extend ()

Warning: invalid.some_station

some_integer

§13.1 STATIC TYPING AND GENERICITY 367

Until the mid-eighties drivers encountered a single interruption in the entire
stretch of Highway 101 from San Francisco to Los Angeles and San Diego: a
traffic light in Santa Barbara. This created a perennial traffic jam. To those who
complained, Jerry Brown, California governor in the seventies, once replied in
a very seventies-California way that they should instead be grateful for the
opportunity to pause and reflect on life. This is exactly how you should react to
a compilation error such as this one:

In the present case we are being protected against our own mistakes by the “type

system” of a modern programming language, specifically its generic
mechanism, providing the right combination of safety and flexibility.

The techniques just introduced lead to a bit more terminology:

LIST is a generic class; the type LIST [INTEGER], obtained from LIST by
providing the generic parameter INTEGER, is a generic derivation of LIST.

All the container classes studied in this chapter, such as ARRAY [G],
LINKED_LIST [G], HASH_TABLE [G, H], are generic. The generic parameter
name G will always represent the type of items in the container. This is just a
convention; you may use for a generic parameter any name that is not also the
name of a class in your system.

Genericity is the name of the mechanism allowing classes to have generic
parameters, and as a result allowing types to be defined through generic derivation.

While we are on terminology: do not confuse the arguments of a routine, formal
and actual (representing values passed to the routine by its callers), with the
parameters of a generic class, representing types governing a particular use of the
class. This convention is not universal — you will find “parameter” used for
“argument” — but it is important to keep distinct names for distinct concepts.

Touch of Methodology:

Zen and the Art of Reacting to Compiler Messages

When the compiler rejects your class, cut the cursing. Take a breath, have a
cup of organic herb tea (optional), reflect on the deeper meaning of life,
consider the hours of debugging that might have ensued if the program had
been allowed to compile then produce an error at run time rather than compile
time, ponder how to avoid such mistakes in the future, and rejoice.

Definitions: Generic class, generic derivation

A generic class is a class that has one or more generic parameters.
A type obtained by providing actual generic parameters to a generic class is a
generic derivation of that class.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.1368

Validity vs correctness

The goal of the genericity mechanism is, as noted, to ensure the type validity of
certain kinds of program (those involving container structures). Genericity is
what makes such feature calls as first_1000_primes.extend (some_integer)
“valid”, meaning that they satisfy the type rules of the language and the
compiler will let them through.

This does not mean, however, that such instructions will always work
correctly. The target of the call, first_1000_primes, might be void at execution
time; or extend might have a precondition that some_integer does not satisfy.
We have two different notions at play:

The definition of correctness only applies to valid programs. Indeed, for a
statically typed language (a language with precise validity rules, such as Eiffel)
it makes no sense to ask about correctness unless the program has passed the
validity checks.

This generalizes the rule that every level of language properties only makes sense
if the properties at the preceding levels hold. We already encountered this property
for the original three levels of language description, to which validity adds (as the
updated figure on the right shows) one more between syntax and semantics. Just as
syntax rules are only defined for lexically correct texts, so are validity rules (also
called static semantics) defined for syntactically correct texts.

Examples of the “certain kinds of run-time malfunctions” ruled out by validity
include application of a feature to an object that cannot handle it.

Why two notions? It would be good if validity implied correctness, so that
once your program has passed muster with the compiler you could go home and
rest assured that it will execute properly. Dream on. Although programming
languages have been getting better at defining static rules that catch errors at
compile time, there remain cases that can only be detected during execution. For
these, run-time mechanisms are available, such as exception handling.

Devising a framework in which validity implies correctness is an old quest,
the Philosopher’s Stone of programming research. The frontier regularly
advances; perhaps the most striking recent example is the ability to eliminate

Definitions: Validity, correctness

A program is valid if it satisfies all the type rules and other static consistency
rules of the language, guaranteeing that certain kinds of run-time malfunctions
will never happen.
A valid program is correct if it will always execute in accordance with the
desired behavior, and never cause a contract violation or other run-time
malfunctions leading to failure of the execution.

Lexical rules

Syntax rules

Semantic rules

Validity rules

(Original figure

on page 44.)

← “An introduction to
exception handling”,
7.10, page 200.

§13.1 STATIC TYPING AND GENERICITY 369

void calls through type rules, as with the “attached type” mechanism sketched
in an earlier chapter: what used to be a source of nasty and unpredictable
run-time failures becomes a standard compiler check. This is representative of
the general march towards proofs of program correctness.

Until such proofs become routine, validity and correctness will remain
distinct; but you will quickly find out that static typing, especially when
combined with techniques of Design by Contract, gives you a tool to kill bugs
before they have a chance to bite you.

Classes vs types

With genericity we may take a closer look at the relationship between the
notions of class and type.

A type is the description of a set of run-time values: type INTEGER

specifies the properties of integers as they will be used in your programs, type
STATION describes the properties of run-time objects representing stations, and
so on.

A class is a program module defining a collection of features (and their
properties, such as the class invariant) applicable to a set of run-time objects.

The connection is very close: the “set of run-time objects” associated with
a class is, at least if the class is not generic, a type. Any non-generic class such
as INTEGER and STATION is indeed a type, and can be used in type declarations
for entities, as in the examples used earlier:

This use of classes as both the basic units (“modules”) of program texts, a static

notion, and the typing mechanism for objects, a dynamic notion, is central to the
object-oriented style of programming, which would better be called
class-oriented.

The connection between classes and types remains just as strong with
genericity. The new twist is that a class such as LIST or ARRAY no longer
immediately gives us a type; it gives us a template for a type. To get an actual
type, it suffices to perform a generic derivation by providing an actual generic
parameter. For example:

� INTEGER and STATION are classes; they are types too. This is true of any
non-generic class.

� LIST and ARRAY are classes; LIST [STATION] and ARRAY [INTEGER] are
types. This is applicable to any generic class.

some_integer: INTEGER

some_station: STATION

← “Appendix: getting
rid of void calls”, 6.9,
page 136.

→ On proofs: “Static
techniques”, page 732.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.1370

We can turn this observation into a precise definition:

The notion is “class type” rather than “type” in general since there are a few other
kinds, although class types are the most important.

Nesting generic derivations

There remains to clarify what you may use as an actual generic parameter for
a generic class. The answer is easy to guess: a type. You can see this in the last
examples: in LIST [STATION] the actual generic parameter STATION is a type;
so is INTEGER in ARRAY [INTEGER].

You perhaps sense something strange in these definitions:

� We have just defined types by stating (clause T2) that they may be obtained
from a class and actual generic parameters.

� Now we are defining an actual generic parameter as a type.

Is this a worthless circular definition? No. Just an example of a recursive

definition, one that builds new elements of a set under definition — here the set
of types — by using elements previously obtained under the same definition.
The process is clear:

� Through clause T1 of the definition we know for example that STATION, a
non-generic class, is a type.

� We may then use T2 to deduce that ARRAY [STATION] is also a type.

Recursion is a fascinating technique, not just for definitions of such concepts but
for routines and data structures. We will have a full chapter — the next one —
devoted to it, but this example should suffice to show that, in the present case,
there is nothing inconsistent or strange in the recursive definition of “type”.

The definition in fact opens interesting possibilities. The type used as actual
generic parameter in T2 can follow not just from T1 but also again from T2; in
other words it can be generically derived. This allows types such as

Definitions: Class type, generically derived, base class

A class type is one of:
T1 A non-generic class.
T2 A generic derivation, that is to say, the name of a class (called the base

class of the type) followed by appropriate actual generic parameters. In
this case the type is said to be generically derived.

LIST [LIST [INTEGER]]
LIST [ARRAY [STATION]]
ARRAY [ARRAY [ARRAY [INTEGER]]]

→ Chapter 14, in par-
ticular “Recursive def-
initions”, page 436
and “Bottom-up inter-
pretation of a con-
struct definition”,
page 482.

§13.2 CONTAINER OPERATIONS 371

and so on without limitations. This is not just a theoretically pleasant possibility,
but a practical mechanism, as we will encounter the need for lists of lists, lists
of arrays and other multi-level containers.

13.2 CONTAINER OPERATIONS

The second part of this chapter reviews fundamental container structures, from
arrays, linked lists and other kinds of lists to stacks and hash tables, all in
common practical usage. They exhibit both commonality and diversity:

� Many of their basic operations are the same: insert or remove an item, find
out whether a particular item is present, find the number of items…

� Each variant implements these operations differently. This diversity is due
to the difficulty of providing equally efficient implementations for all
operations. Arrays let you get to an item very quickly if you know its index,
but are slow for insertion of new items; linked lists are reasonable for
insertion, but slower than arrays for index-based access. Other structures
also have their merits and demerits. No single structure is optimal for
all situations.

When you need a container, you will have to choose one of the available
structures depending on the operations you require.

Before studying each specific container variant, we now review these
fundamental operations, looking first at queries, then at commands. G will
denote the type of a container’s items; it is the first generic parameter of the
corresponding classes, as in ARRAY [G] or LINKED_LIST [G].

Queries

One of the operations we will need for each kind of container is to find out
whether a container is empty (has no items). The query, returning a BOOLEAN,
is called is_empty. Its signature is just

In other words it takes no argument but is called under the form c.is_empty,
yielding a boolean value for any container c.

To find out if a particular item appears in a container we will use

is_empty: BOOLEAN

has (v: G): BOOLEAN

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.2372

To find out how many items are in a container:

An invariant clause, applicable to all relevant container classes, states:

To obtain an item from the container — any item, chosen by the container’s
policy, not by the client:

Some containers such as arrays instead let you obtain an item given by an
integer index, as in “give me the third item”. The query is:

Using the same name as for the previous operation causes no ambiguity because
the signature is different.

An integer is only a special case of a key enabling you to retrieve an item
from some information associated with it. There are many different kinds of
key; one of the most common is a string, as in a container representing a Web
page and allowing a search engine to ask whether certain words appear on the
page. For string keys the query will be

We will learn how to generalize the key type beyond just strings. Here too
reusing the name item causes no confusion.

Commands

The creation procedure that sets up a container will usually be called make.
Often it has no argument, but sometimes it takes one indicating an expected
number of items:

count: INTEGER

is_empty = (count = 0)

item: G

 item (i: INTEGER): G

 item (i:): G

make (n: INTEGER)

STRING

→ Through hashing,
in “Hash tables”,
13.9, page 411.

§13.2 CONTAINER OPERATIONS 373

For all the containers of this chapter, n is only an indication to guide the initial
creation of the data structure, not an absolute maximum.

The most common operation for adding or replacing an item is called put,
with one of the following signatures, matching one of the signatures for item but
with one more argument indicating the new value:

The postcondition should always include the clause

and, in addition, should express the relationship with the corresponding version
of item:

� item = v if put has no argument (the first case).

� item (i) = v for the version with an integer index.

� item (k) = v in the last case.

The procedure put, when present, may either add an item or replace an existing
one. Sometimes we need to distinguish, using one of

with the postcondition

or one of

with

put (v: G)
put (v: G; i: INTEGER)
put (v: G; k: STRING)

inserted: has (x)

extend (v: G)
extend (v: G; i: INTEGER)
extend (v: G; k: STRING)

one_more: count = old count + 1

replace (v: G)
replace (v: G; i: INTEGER)
replace (v: G; key: STRING)

same_count: count = old count

→ See “Touch of
Methodology: Don’t
box in your users”,
page 375.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.2374

When either of extend and replace exists, put is usually a synonym for one of
them, corresponding (if both are present) to the more common use. In all cases,
the postcondition clause has (v) expresses that after you have added an item the
structure must answer “yes” if asked about its presence.

The procedure to remove an item is, depending on the context, called
remove or prune.

Standardizing feature names for basic operations

The names cited above — item, has, put…— recur throughout the libraries.
Even a casual look at container classes will show that most of them have
features bearing these names, or many of them.

This is a deliberate choice. One could of course invent new names for each
class, reflecting the specific properties of the corresponding kind of container.
But these peculiarities are already captured by the signature, header comments
and contracts of the features, for example in put for ARRAY

and in put for STACK:

so that no confusion can result. Using consistent terminology facilitates using
the library and — for novices — learning to use it: when discovering a new
class, readers can quickly identify the key features and their purpose.

put (v: like item; i: INTEGER)
-- Replace i-th entry, if in index interval, by v.

require

valid_key: valid_index (i)
ensure

replaced: item (i) = v

put (v: G)
-- Push v onto top.

require

extendible: extendible

ensure

pushed: item = v

Touch of Methodology:

Standard Feature Name Principle

Use the standard names, when applicable, for features of your own classes, to
enhance their consistency and readability.

→ valid_index appears
in the discussion of
arrays, page 382.

§13.2 CONTAINER OPERATIONS 375

Automatic resizing

We saw above that creation procedures (usually make) that specify an initial size
always mean it as an indication, not a permanent limit. The data structures of
EiffelBase (Eiffel’s container library) are almost all either unbounded or, if they
have an initial bound, resizable. Part of what defines a good programmer is,
indeed, avoidance of absolute limits.

Do not let anyone lock you — and the users of your programs — in a fixed
box. Computers have large memories. Design your data structures, whenever
possible, so that if the size of the data exceeds expectations they do not give up
but just reallocate themselves with a larger size. Not applying this advice
exposes users of your programs to one of the most frustrating run-time
situations: having to stop because execution has reached a size limit, even
though there is plenty of memory left.

Even our arrays will be resizable.

It so happened that during the writing of this chapter the world was fixated on the
initially unsuccessful exploration of Mars by the NASA’s Spirit and Opportunity
rovers. Spirit was silent for more than a day, rebooting again and again. Engineers
suspected all kinds of possible equipment failures, until it surfaced that it was a
software issue: the system had room for a fixed number of file handles, and needed
more files than planned.

One year later, a few weeks after the US elections, it transpired the vote-counting
software in the San Francisco Supervisor vote had failed because of “a hard-coded

constant maximum number of voters that was set too low”.

Do not fall into such pitfalls:

We will see that for some of the container variants, especially arrays, resizing is
an expensive operation, time-wise. So you should always use it carefully. But
efficiency concerns are never an excuse for using fixed-size structures. Such
structures in fact damage efficiency on the space side, since they encourage
programs to over-allocate, just in case. Better allocate what you think you will
normally need, and resize dynamically if necessary.

Touch of Methodology:

Don’t box in your users

Do not use constant built-in limits. Let your data structures resize themselves
to adapt to the size of each instance of the problem.

See www.newscientist.
com/news/news.jsp?id
=ns99994610.

Peter G. Neumann,
“Some 2004 voting
anomalies”, www.risks.
org/23.59.html#subj2.

→ “Resizing an
array”, page 386.

http://www.newscientist.com/news/news.jsp?id=ns99994610
http://www.risks.org/23.59.html#subj2
http://www.risks.org/23.59.html#subj2

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.3376

13.3 ESTIMATING ALGORITHM COMPLEXITY

The last comment brings to the forefront the issue of efficiency, or performance,
which involves both execution time and storage space. The main reason for using
different kinds of container structure is that they exhibit different time and space
performance behaviors for carrying out the essential operations just reviewed.

We need a reliable way to contrast performance between various data
structure choices. It is not enough to measure concrete performance on specific
examples and report that “on average, calls to the item query took 10

nanoseconds for arrays and 40 nanoseconds for linked lists”:

� To talk about averages we must have a significant statistical distribution;
there is no clear way of determining such a distribution for container sizes
(how many 10-item containers, how many with 1000 items etc.).

� You cannot easily infer from the measurements how the results will scale
up. Some techniques can be very good for small structures, but what matters
in performance-critical applications is how well they do for large sizes. (For
10,000 items, almost any container will do a decent job.)

� The result is closely tied to the context of the measurements: machine,
operating system, even programming language and compiler. The same
experiment may give radically different outcomes in different setups.

The main accepted measure of algorithm complexity provides an estimate
liberated from such contingencies. It is known as abstract complexity; also as
asymptotic complexity, and familiarly as “Big-O notation”, sometimes written
“Big-Oh” to emphasize that the O is a letter.

Measuring orders of magnitude

Abstract complexity relies on two principles:

� Provide the measure as a function of the size of the data structures under
consideration. For most of the examples in this chapter it is a single
parameter: count, the number of items in a container.

� Define the function not by an exact formula but by an order of magnitude,
the O in “Big-O”, as in O (count) (pronounced “O of count”).

When we say that the time for a search operation in a list of count elements is
O (count) we mean that for large values of count it grows at most

proportionally to count. Another operation may be O (count2), meaning that
its execution time grows at most proportionally to the square of the number of
elements. The same conventions are used for estimating space requirements.

§13.3 ESTIMATING ALGORITHM COMPLEXITY 377

In such a measure:

� Constant multiplicative factors do not matter: O (100 ∗ count2) means the

same as O (count2). The justification for this convention is that we should
not attach long-term importance to multiplication by any constant, since the
same algorithm implementation may become 100 times faster or slower just
by being moved to a different machine; but how its computation time varies
when count grows does not depend on such technical choices.

� Constant additive factors also do not matter: O (count2 + 10000) means the

same as O (count2). The constant may have a strong influence for small
count, but as count grows it fades away.

� Similarly, any additive factor with a smaller exponent does not matter:

O (count3 + count2) is the same as O (count3).

As a consequence, to express that an algorithm takes constant time — or more
realistically, since several executions are unlikely to take exactly the same time,
that its execution time is bounded by a constant on any particular platform —
we say that it is O (1). We might just as well say O (37) or O (1000), but 1 is the
convention.

Mathematical basis

The Big-O notation may seem informal, but it is possible to define it in a
rigorous way, as a relation between two functions:

When reading analyses of algorithm complexity you may encounter statements

such as “f (n) = g (n) + O (n2)” as an abbreviation for “f (n) = g (n) + s (n) for some

function s, where s (n) is O (n2)”. The intent is to state that f is “like” g except for a

term in O (n2).

As a consequence of the definition, if a function is O (n2) it is also O (n3), O (n4)
and so on. This is because a Big-O specification gives an upper bound, not a tight
estimate. Useful statements of complexity will use the best (lowest) known

estimate, as in “We know this algorithm is O (n2.5), can we show it is O (n2)?”.

Definition: Big-O notation for abstract complexity

Let f and g be two functions from natural numbers to positive real numbers.
Function f is said to be O (g) — or, more commonly, f (n) to be O (g (n)),
spelling out the argument — if there exists a constant K such that f (n) / g (n)
< K for every natural number n.
An algorithm is O (g (n)) in time or in space if the function giving its
execution time or space occupation in terms of the input size n is O (g (n)).

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.3378

To state that a function g asymptotically provides a lower bound as well as an upper
bound, within multiplication by constant factors, algorithm analysis has the
“Big-Theta” notation Θ (g (n)). For simplicity we will just use O, with the
understanding that the given g functions are the best known at any stage of the
discussion, and that they characterize worst-case behavior unless otherwise noted.

Logarithms frequently arise in the analysis of algorithm complexity. For

example the best algorithms for sorting a list of n values are O (n ∗ (log n)).
Such a formula does not specify the logarithm base (such as 2 or 10), because a
change of base only contributes a multiplicative constant, per the formula

logb n = ∗ loga n.

Making the best use of your lottery winnings

This convention of ignoring multiplicative constants can be surprising at first.

If an algorithm takes count2 nanoseconds, abstract complexity considers it less

good than one taking 106 ∗ count nanoseconds, even though it runs faster for up
to one million items. What the convention gives us is an understanding of the
essential behavior of algorithms as a function of the growth of the problem size.

The following observation helps understand the benefit. Consider four
algorithms with performance such that the biggest problem size they can tackle
in 24 hours of continuous operation on your computer is respectively N1. N2. N3.

N4. Their abstract complexities are O (n), O (n log n), O (n2), O (2n). You win

at the lottery and have the opportunity to buy a computer one thousand times
faster than your current one. What does this get you?

� With an O (n) algorithm you can now solve a problem that is also a thousand
times bigger: 1000 ∗ N1.

� With O (n log n) the improvement is still multiplicative, with a factor that
is close to 1000 for large N2.

� With O (n2) you multiply the maximum problem size by a factor of about
32 (square root of 1000).

� With O (2n) your new dream machine increases N4 — an addition, not a
multiplication! — by just 10.

This question — how big a problem you can solve in a given time, rather than
how much time it will take to solve a problem of a given size — is often the right
way of looking at efficiency issues.

logb a

Adapted from Aho,
Hopcroft, Ullman; see
“Further reading”,
page 432.

§13.3 ESTIMATING ALGORITHM COMPLEXITY 379

Consider for example a next-day weather forecast program. (Meteorology has made
spectacular progress in the past two decades thanks to computer modeling.) The
program works from past data collected at a number of points on a geographical
grid. More grid points means more accurate predictions. To assess the program’s
efficiency, the useful criterion is not how long it takes to process a fixed number of
grid points, since an outstanding next-day forecast will not help if it takes 48 hours
to complete. It is the reverse question: how many data points you can process in a
fixed time, for example one hour.

This reasoning illustrates what abstract complexity gives us: a view of algorithm
efficiency free from superficial technology considerations, but helping to
understand the benefits of potential technology improvements.

Abstract complexity in practice

When measuring the Big-O complexity of an algorithm you may be interested
in any of three variants, and should clarify which one you report:

� Average complexity, assessing the average time or space taken up by the
algorithm. As noted this is only meaningful if we have a probability
distribution on the algorithm’s input; usually the distribution considers all
possible inputs equally likely.

� Maximum complexity, also called worst-case complexity, assessing the
time or space required by the inputs that make this measure highest.

� Minimum or best-case complexity, less often useful in practice (other than
for programmers who believe in the Tooth Fairy), but sometimes interesting
for purposes of comparison.

Presenting data structures

In the remainder of this chapter we look at fundamental structures. The
presentation relies on the EiffelBase library of data structures and algorithms,
which provides reusable classes for all the concepts under study: ARRAY,
LINKED_LIST, HASH_TABLE, STACK and so on.

The description takes the viewpoint of the client programmer (also known
as “you”): someone who will take advantage of these library classes to write a
new application that uses arrays, linked lists etc. Features will, as a result, be
introduced through their contract forms.

The presentation explains basic implementation techniques but does not, as
a rule, show feature implementations. You can see implementations if you wish:
EiffelBase is open source software, included with any delivery of EiffelStudio,
and you are welcome to explore its code, written with the explicit goal of
serving as a model of O-O style, and refined over the years.

Not to imply it’s
perfect …

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.4380

13.4 ARRAYS

We start with one of the most ubiquitous kinds of container, arrays.
Arrays are a software notion, but their importance comes from a hardware

property: the addressing mode of the type of main memory used in today’s
computers, known as Random Access Memory, or just “Random Memory”. In
spite of the name this does not mean that the computer throws a die to decide
which cell to access (interesting idea, though) but that the time to access a
memory cell — either to read it or to modify it — does not depend on the cell’s
address. (Understand “random” as in “you can pick an address at random and

not worry about the effect on access time”.) If you have a 2 GB memory, it will
not make any difference whether the cell is the first (address 0), the last (address
231–1) or anywhere in-between.

Random access memory stands in contrast to sequential access memory,
where you access an item by first traversing a set of preceding elements.
Magnetic tapes are a typical example: the tape head reaches a particular position
by rolling the tape to that position. You may also think of analogies in
non-computer devices:

The scroll on the left will be read and written sequentially. You may access any of
the mailboxes on the right directly, without going through the others first.

Arrays take advantage of the random access property by letting you define and
manipulate structures made of a number of items stored in contiguous memory
locations, and each identified by an index:

← “Transient mem-
ory”, page 284.

Sequential and

random access

(Sequential)

(Random)

An array

lower upper
Valid index values

§13.4 ARRAYS 381

Bounds and indexes

An array has a lower bound and an upper bound, given in the class ARRAY [G]
by the queries

The invariant of the class states that count, the number of items (also accessible
as capacity), is upper – lower + 1. Since count ≥ 0, we must have

The case lower = upper corresponds to an array with one item; lower = upper

+1 corresponds to an empty array (you can visualize it, in the last figure, as
lower moving right and upper moving left until they cross). This is a legitimate
state for an array:

There is a long history of bugs resulting from inadequate handling of extreme
cases. People will think of (and test for) cases in which an array or other
structure has items; then, in an execution for some particular input data, the
container happens to be empty, and everything blows up. Following the above
advice avoids such nasty problems.

The class invariant is your primary guide to checking that the definition
“still makes sense”. Here the case lower = upper +1 remains compatible with
the invariant clause lower <= upper +1; it yields the smallest value of
upper – lower +1 (that is to say, count) that still satisfies this requirement.

lower: INTEGER

-- Minimum index.
upper: INTEGER

-- Maximum index.

lower <= upper +1

Touch of Methodology:

Extreme Cases Principle

When designing object structures, for example containers, consider extreme
cases — empty structure, “full” structure if there is a maximum capacity —
and make sure that the definition still makes sense for them.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.4382

To access and modify array items, you must use integer indexes. A query is
available to find out if an integer is a meaningful index:

Creating an array

To create an array, you provide the desired lower and upper bounds:

using the creation procedure

As the first two postcondition clauses indicate, the procedure sets lower and
upper to the given values, your_lower_bound and your_upper_bound in the
example. These are arbitrary expressions; you can use constants, as in

where the bounds are set in the program text; but you may also use variables and
more general expressions, as in

valid_index (i: INTEGER): BOOLEAN

-- Is i within array bounds?
ensure

Result implies ((i >= lower) and (i <= upper))

your_array: ARRAY [SOME_TYPE]
…
create your_array.make (your_lower_bound, your_upper_bound)

 make (min_index, max_index: INTEGER)
-- Allocate array; set index interval to min_index .. max_index;
-- set all values to default.
-- (Make array empty if min_index = max_index + 1).

require

valid_bounds: min_index <= max_index + 1

ensure

items_set: all_default

create yearly_twentieth_century_revenue.make ()

create another_array.make ()

lower_set: lower = min_index

upper_set: upper = max_index

1901, 2000

m, m + n

§13.4 ARRAYS 383

In examples such as these the index interval has a meaning of its own, such as
directly representing the years of the 20th century. If you just want a sequence
of n values that can start anywhere, the common convention is to use the bounds
1 and n:

The C language and its successors (C++, Java, C#) require all arrays to start their
indexes at 0. In examples such as “years of the 20th century” this means that you
will have to perform back-and-forth translations (here adding or subtracting 1901)
between the physical index and its intended meaning. For cases such as
simple_array, the choice of 0 or 1 as starting index is partly a matter of taste. If you
are like me you think of your thumb as the first finger on your hand, not the zeroth,
and of your middle finger as the third, not the second. A less subjective reason is
that with the 0 convention the last item of an array of size n has index n–1, a source
of errors.

The query all_default, in the last postcondition clause of make, expresses that
all items of an array of type ARRAY [SOME_TYPE] will, on creation, be set to
the default value for SOME_TYPE: zero for INTEGER and REAL, false for
booleans, void reference for any reference type.

Accessing and modifying array items

The basic query and command to obtain and modify an array item are:

Note the precondition, requiring in both cases the index to be within bounds.

A typical use is, with your_array: ARRAY [SOME_TYPE] properly created
and your_value: SOME_TYPE:

create simple_array.make ()

 item (i: INTEGER): G
-- Entry at index i, if in index interval.

require

valid_key: valid_index (i)

put (v: like item; i: INTEGER)
-- Replace i-th entry, if in index interval, by v.

require

valid_key: valid_index (i)
ensure

 inserted: item (i) = v

your_array. (your_value, your_index)

1, n

→ The declaration of
item also contains
alias and assign
clauses; see “Bracket
notation and assigner
commands”, page
384 below.

← valid_index
appeared on page 382.

put

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.4384

which sets the corresponding array item:

overwriting any value previously entered there (including the default after
initialization). Note the order of arguments: first the value to be written, then the
index at which to write it.

After this call to put, the instruction

will assign to your_value the item found at your_index in the array.

The postcondition of put as shown on the previous page expresses that
immediately after a put the item value at the given index is the given value.

The examples for both put and item are only correct if the chosen
your_index is within bounds. If this not guaranteed, then you should use

and similarly for item.

In any reasonable implementation of arrays the cost of a call to put or item is
O (1) — constant time. This is the RAM property, the basic reason for using arrays.

Bracket notation and assigner commands

The following notations, using brackets, are available for class ARRAY and a
few others in this chapter:

This is particularly convenient for such instructions as

your_value := your_array. (your_index)

if your_array. (your_index) then

your_array.put (your_value, your_index)
else

…
end

your_value := your_array

-- An abbreviation for your_value := your_array.item (your_index).

your_array := your_value

-- An abbreviation for your_array.put (your_value, your_index).

a [i] := a [i] + 1 [3]

Updating an

array element

lower upper
your_index

your_
value

item

valid_index

[your_index]

[your_index]

§13.4 ARRAYS 385

more readable than a.put (a.item (i) + 1, i). The bracket notation follows
mathematical practice; its advantage is clear for expressions that involve several
array elements and mathematical operators.

There is nothing magical about the bracket notation, and it is not specific to
arrays. To make it applicable to any type for which it makes sense, include a
alias "[]" mark next to the name of the corresponding feature in its declaration.
This is what class ARRAY does for item:

Adding alias "[]" to the feature name indicates that the brackets are an “alias”
for the feature name: another way to call it. As a result, the notation

is simply a synonym (an alias) for

The declaration of item also specifies assign put. You may use such a clause for
any query q — whether or not it also has a bracket alias — by marking it
assign c where c is a command of the same class. The effect (using the present
example in which q is item and c is put) is to make the following assignment-like
notation valid:

merely as an abbreviation for a call

to the command put which the assign clause has associated with item; such a
command is called an assigner command.

Terminology: a command whose principal role is to set the value of a query was
called a setter command. A setter command becomes an “assigner command”
through the language mechanism that explicitly associates it with the query.

item : G

-- Entry at index i, if in index interval
require

valid_key: valid_index (i)
do

… Implementation of the feature …
end

your_array [i]

your_array.item (i)

your_array your_value [4]

your_array [5]

alias "[]" assign put

← As previewed in
“Information hiding:
modifying fields”,
page 240.

.item (i) :=

.put (your_value, i)

← “Setters and get-
ters”, page 248.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.4386

Because item now has both a bracket alias and an assigner command, it is also
legitimate to use the bracket form as another synonym for the last call

which achieves full reconciliation with traditional mathematical notation for
arrays, vectors etc., while using the semantics of object-oriented operations.
This is what made [3] legal.

The assigner command mechanism is applicable to any query, including
attributes. The resulting instructions, such as [4] and [6], are not assignments:
assigning to a field would, as you know, violate information hiding. They are
plain procedure calls, equivalent to [5] and observing object-oriented principles;
they simply use an assignment-like syntax for convenience.

A language note: most programming languages, from Pascal, C and C++ to Java
and C#, offer such bracket notation for arrays, for both access (your_array [i]) and
modification (your_array [i] := your_value). In most cases the notation is specific
to arrays, and arrays themselves are a special built-in notion. Eiffel treats ARRAY as
a normal class with features item and put, for consistency with other data structures
and the object-oriented approach (allowing, for example, a class to inherit from
ARRAY). The language offers bracket notation as a synonym, through the alias "[]"
construct. This construct is general and not limited to arrays: it is available in other
structures studied later in this chapter, such as hash tables and linked lists, and you
can apply it to any class that you write.

Resizing an array

At any time during execution, an arrays has fixed lower and upper bounds, and
hence a fixed number (count) of items. The precondition valid_index of put and
item reflects this property. In many languages these properties are set once and
for all, either statically (using constants bounds) or on creation. In Eiffel you can
resize an array through resize:

Feature min and max, used in the postcondition, are functions on INTEGER,
giving the minimum and maximum of the current number and the argument.

your_array your_value [6]

resize (min_index, max_index: INTEGER)
-- Rearrange array to accommodate indexes down to min_index

-- and up to max_index. Preserve existing items.
 require

good_indexes: min_index <= max_index

 ensure

no_low_lost: lower = min_index.min (old lower)
no_high_lost: upper = max_index.max (old upper)

[i] :=

← Information hid-
ing: modifying fields,
page 242.

§13.4 ARRAYS 387

Resizing is often indirect, through the procedure force. To change the value of
an item, the default mechanism is put (v, i), with the precondition that we have
seen: valid_index (i). This is usually the right approach; but it assumes that you
know in advance how many items you will need. If you miscalculate, the
algorithm will fail. Using force works in such cases:

Unlike put, procedure force has no precondition and so is always applicable. If
i falls outside of the interval lower..upper, the procedure will call resize to
accommodate the requested entry.

Because of the continuous-memory implementation of arrays, resizing usually
requires reallocating the array to a new memory area and copying the old values:

Reallocation and copying are expensive, O (count) operations. As a result, force

itself is O (count), to be compared to the very fast, O (1) cost of a standard put.
Obviously, you should use force with care. Note that its implementation is
prudent: if it has to call resize, it will make sure that the new size is sufficiently
bigger than the previous one, so that for example a call

increases the size by more than one; the default policy is a 50% increase. So if
you repeatedly use force in this style to extend an array at either end, only a few
of the force operations will cause a resize.

force (v: like item; i: INTEGER)
-- Replace i-th entry, if in index interval, by v.

ensure

inserted: item (i) = v

higher_count: count >= old count

your_array.force (some_value,

← Page 383.

-- Always applicable: resize the array if i falls out of current
-- bounds; preserve existing items.

Reallocating an

array to resize it

min max

new_min new_max

B C DA

B C DA

resize (new_min, new_max)

your_array.count + 1)

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.4388

Using arrays

An array of type ARRAY [G] represents a total function from the integer interval
lower.. upper to G. If after creation the bounds lower and upper do not change,
or change only rarely, the implementation is highly efficient, since every access
to the function, or modification of the function’s value for a given index in the
interval, is O (1) and very fast. This makes arrays well suited to situations where:

� You need to handle a set of values associated with an integer interval.

� Possibly after an initial period of allocating the array and filling up its
initial values, the dominant operations are limited to index-based access
and modification.

Because of the high cost of reallocation, arrays are not appropriate for highly
dynamic data structures where elements come and go. In particular, inserting or
deleting an item is expensive (O (count)) if this implies renumbering the
indexes, and hence shifting all the elements to the right or left of the insertion
or deletion position. For such behavior, you should use other structures studied
later in this chapter.

Performance of array operations

Here is a summary of the cost of array operations.

Operation Features in
class ARRAY

Complexity Comments

Index-based access item alias "[]" O (1)

Index-based replacement put alias "[]" O (1)

Index-based replacement
outside of current bounds

force O (count) Requires reallocating the
array. (Only a fraction of
successive force operations,
will, however, cause such
reallocation.)

New item insertion O (count) Shifting indexes; not a
common operation.

Removal O (count) Can be done in O (count) by
shifting indexes; not a
common operation.

§13.5 TUPLES 389

13.5 TUPLES

Arrays are homogeneous: in an instance of ARRAY [T], all items are of type T,
or a type compatible with T. Tuples are similar to arrays, but may hold values
of several specified types rather than just one. If you declare

the possible values for tup at run time are sequences of three or more
components of which the first is of type INTEGER, the second of type STRING

and the third of type PERSON, assumed to be an existing class. Such tuples
could be useful, for example, in a census application, each of them recording the
observation that at a certain number in a certain street lives a certain resident.

To denote a tuple value it suffices to write the successive components in
brackets with commas in-between, yielding an expression, or manifest tuple, which
you can use as argument to a routine call or assign to a tuple variable such as tup:

The term “tuple” comes from mathematics: after the pair — two values, whose
order matter — and the triple there’s the quadruple, the quintuple and (unless the
term gets blocked by parental-control filters) the sextuple, so it was natural for
mathematicians to start talking about “n-tuples” for any n, denoting ordered
sequences of n values.

Tuple types are not particularly exciting as a data structure — exciting in the way
arrays, lists, hash tables, binary search trees and others each bring an original way
to store and retrieve data, with its own efficiency advantages and limitations. In
fact a straightforward implementation of tuples is through arrays. (Ignoring the
specific type information we may look at a tuple as an ARRAY [ANY] where ANY

is the general high-level type covering all possible types.) Then for the
complexity of tuple operations we can use what we just found for arrays:

The interest of tuple types lies elsewhere: as a language mechanism allowing
you to describe simple structures in an clear and simple way, without resorting
to classes. So far the tags — number, street, resident — played no role in that
mechanism; manifest tuples, as in [7], did not use them. Tags are useful to
access and set individual components of an existing (non-void) tuple; after [7],
for example, tup.number will have the value 99. You can also use them to set

tup: TUPLE [number: INTEGER, street: STRING, resident: PERSON]

tup := [99, "Rue de Rivoli", Louvre_museum_curator] [7]

Operation Tuple notation Complexity Comments

Component access t.comp O (1)
See below about the notationsComponent replacement t.comp := value O (1)

Insertion, Removal Not applicable

→ “Overall inherit-
ance structure”,
16.10, page 586.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.5390

component values; they are treated like attributes with associated “assigner
commands”, enabling you to write such instructions as

All this suggests that we could do without tuple types by using classes such as

which allows the same operations on cr of type CENSUS_RECORD as on tup

above: to access fields, cr.number etc.; to set fields, cr.resident := some_person etc.

Tuples are useful when this is all that you need from a class: a set of
attributes, all public; and for each of these attributes, a setter with no
precondition, assigning the argument’s value to the attribute and doing nothing
else. Such a class describes plain records (composite values, as used for example
in relational databases). Using tuples in such cases saves the need to write
simple classes such as CENSUS_RECORD. For that reason, tuples are also
called anonymous classes. As soon as you need anything more sophisticated,
they will no longer do the job: you should declare a class (and give it a name).

To finish with the language mechanism, note that tags do not affect the
tuple’s type; in fact they are optional. So you can also write the above type as
TUPLE [a: INTEGER, b: STRING, x: PERSON], or just TUPLE [INTEGER,
STRING, PERSON] if you do not need to access or set components by name.

Syntactically, such tuple types look like generically derived class types,
such as LIST [T]; indeed the concepts are similar, but there is no class TUPLE

because it would have to admit an arbitrary number of parameters, whereas a
generic class always takes a fixed number (one parameter in ARRAY [G] and
LIST [G], two in HASH_TABLE [G, KEY]). With tuple types you can describe
sequences of any length: TUPLE with no parameters covers all sequences,
TUPLE [T] sequences of at least one element with the first of type T, and so on.

This observation also determines conformance properties: you may assign
an expression of type TUPLE [T, U, V] to a variable of the same type or of any
of the following types: TUPLE [T, U]; TUPLE [T]; plain TUPLE. The last of
these (not a class, as noted, but a type) covers all possible tuples.

We will find tuple types particularly useful in connection with agents, covering
applications such as iteration and event-driven programming.

tup.resident := some_person

class CENSUS_RECORD feature

number: INTEGER assign set_number

street: STRING assign set_street

resident: PERSON assign set_resident

set_number (n: INTEGER) do number := n ensure number = n end

… set_street, set_resident like set_number …
end

← “Bracket notation
and assigner com-
mands”, page 384.

→ A precise definition of
conformance will appear
in “Definition: conform-
ance”, page 564.

→ Chapter 18.

§13.6 LISTS 391

13.6 LISTS

A list, also known as a sequence, is a container keeping elements in a certain
order, usually the order of insertion. Mathematically, it represents a total
function from the interval 1..count to G; this seems similar to arrays, but the
big difference is that count can vary freely as you insert new elements.

The figure illustrates a list, made of five items. The arrow is there simply to
highlight that order matters. The same elements organized in a different order
would make up a different list.

Like for arrays and other structures where elements are numbered, we systematically
start the numbering at 1.

Various implementations of lists are possible, provided by such EiffelBase classes
as LINKED_LIST, TWO_WAY_LIST, ARRAYED_LIST, MULTI_ARRAYED_LIST.

The present section describes properties common to all these variants and covered
by class LIST; we will then look at the important case of linked lists, and survey
the others briefly. As in the rest of this chapter the implementations will not be
described in detail, but we review the essential ideas and significant implementation
examples. For the full picture you can read the class texts from EiffelBase.

LIST, as befits a class describing a general, abstract notion, is a deferred class, of
which the others inherit directly or indirectly. This means in particular that they do
not repeat common elements, but move them to the class at the highest level of
generality in each case. These concepts are the topic of the chapter on inheritance.

The list classes treat a list not just as a collection of elements but as a machine

which at any point in its existence has a state characterized by a cursor:

This notion is not new; when we manipulated a metro line as a list of stations
we already had a cursor.

A list count1

"Balard" "La_Motte" "Concorde" "Invalides" "Commerce"

→ Chapter 16.

A list with its

cursor
count1

"Balard" "La_Motte" "Concorde" "Invalides" "Commerce"

0 count
+ 1

← “Animating a metro
line”, page 166.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.6392

Having a cursor facilitates the basic list operations — accessing, inserting or
deleting an item — by letting the corresponding routines use a simple interface:
instead of asking you to specify a position, they work at the cursor position. “
Delete”, for example, means “delete the item at cursor position”. You can still
perform an operation at any position you like: just move the cursor there first.

In this scheme the cursor “internal”: each list has its own cursor. It is also possible to
use external cursor objects, allowing different clients to retain separate views of where
they are in a list. This is useful in particular in concurrent applications. You can look
up the EiffelBase class CURSOR and its descendants for more details on this approach.
A typical use of an external cursor, illustrated in a later chapter, is to record the initial
position of the internal cursor and restore it after an operation requiring a traversal.

Cursor queries

We should allow the cursor, as suggested by the last figure, to range not only from
1 to count — positions that may hold items — but from 0 to count + 1: it may fall
off to the left of the first item or to the right of the last item. You will quickly see
the usefulness of this convention. We can express it formally: with the query

we have the invariant clauses

To characterize these extreme cases we have two queries:

Note the careful phrasing of the comments, justified by the need to cover all
cases including that of an empty list as we will see next.

index: INTEGER

-- Current cursor position.

non_negative_index: index >= 0
index_small_enough: index <= count + 1

before: BOOLEAN

-- Is there no valid cursor position to the left of cursor?

after: BOOLEAN

-- Is there no valid cursor position to the right of cursor?

→ The iterator routine
do_all in “Writing an
iterator”, page 631
uses this scheme.

“Before” and

“after” cursor

positions

count10 count
+ 1

before after

§13.6 LISTS 393

According to the style standard for boolean-valued queries, the above two queries
should be called is_before and is_after (as in the Traffic classes representing lines,
used in previous chapters). The names before and after have been around for so long
that no one wants to change them. Other names used below, such as is_empty,
follow the normal is_something convention.

If in the current state of a list the cursor is either “before” or “after” we say that
it is “off”:

Further invariant clauses express the properties of these queries (postconditions
are also possible):

Other queries about the cursor position include:

themselves relying on

A list can indeed be empty, in which case is_first and is_last always yield false
as implied by the relevant invariant clauses: the cursor can only be on the first
item if there is at least one item. Do not forget the Extreme Cases Principle: it is
essential to make sure that our conventions still work well in such border cases.
In the absence of items, the figure illustrating the list becomes:

off: BOOLEAN

-- Is there no current item?
ensure

definition: Result = (after or before)

before_definition: before = (index = 0)
after_definition: after = (index = count + 1)
off_definition: off = (index = 0 or index = count + 1)

is_first: BOOLEAN

-- Is cursor on first item?
ensure

valid_position: Result implies (not is_empty)

is_last: BOOLEAN

-- Is cursor on last item?
ensure

valid_position: Result implies (not is_empty)

is_empty

-- Are there no items?

← Page 381.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.6394

In this case count is zero and the maximum index position satisfying the
invariant, count + 1, is one. In such an empty list the cursor can be in position 0
or position 1. In either case off will hold, hence the invariant clause

Note the repeated accumulation of invariant clauses to express, little by little,
what we understand of our own object structures:

To access the list item at cursor position

you will use

This query returns a result of type G, the generic parameter of the list classes
(LIST [G], LINKED_LIST [G] etc.). Note the precondition: in an off state —
including for an empty list — there is no current item.

empty_constraint: is_empty implies off

Touch of Methodology: Using invariants

Use invariant clauses to make explicit the consistency properties of the classes
you design, and to check (in particular by considering extreme cases, in line
with the Extreme Cases Principle) that these properties are logically sound and
compatible with each other.

item: G
-- Item at cursor position.

require

not_off:

An empty list and

its two possible

cursor positions

0 1

A possible cursor
position (before)

The other possible
cursor position (after)

(No items)

Current itemitem

index count1

not off

§13.6 LISTS 395

Cursor movement

You have a number of commands at your disposal to move the cursor around.
The following will bring the cursor to the beginning or end of a list:

A call to start ensures is_first, and a call to finish ensures is_last, but only, for
reasons just discussed, for non-empty lists. The postconditions express this.

You can also move the cursor by one position:

The preconditions guarantee that the index remains within bounds as specified
by the earlier invariant clauses non_negative_index and index_small_enough.
You may also move the cursor to a specified position:

start

-- Move cursor to first position (no effect if empty).
ensure

at_first: (not is_empty) implies is_first

finish

-- Move cursor to last position (no effect if empty).
ensure

at_last: (not is_empty) implies is_last

forth

-- Move cursor to next position.
require

not_after:

ensure

moved_forth: index = old index + 1
back

-- Move cursor to previous position.
require

not_before:
ensure

moved_back: index = old index – 1

go_i_th (i: INTEGER)
-- Move cursor to i-th position.

require

valid_cursor_position: i >= 0 and i <= count + 1

ensure

position_expected: index = i

not after item

index count1

back
forth

not before

← Page 392.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.6396

Iterating over a list

One of the most common manipulations on a list is to apply a given operation
to every item in turn. Assume this operation is given by a routine

We have already seen, when dealing with metro lines and their stations, the
scheme for applying your_operation to every list item; the general form is the loop

This is for applying an operation to some existing list your_list from your
program. The scheme also appears within the list classes themselves to perform
traversals of the current list, using unqualified calls start, after, forth without
“your_list.” (that is to say, without a call target and a period). We will see
examples shortly, with the routines search and has which search for a value
among the items of a list.

There are other forms, for example to apply a certain operation to all
elements of a list up to and excluding the first that satisfies a certain condition:

your_operation (x: G)

from

your_list.start

until

your_list.after

loop

your_operation ()
your_list.forth

variant

your_list.count – your_list.index + 1
end

from

your_list.start

until

your_list.after

loop

your_operation (your_list.item)
your_list.forth

variant

your_list.count – your_list.index + 1

end

your_list.item

← “Definitions: Qual-
ified and unqualified
call”, page 134.

or else your_condition (your_list.item)

§13.6 LISTS 397

Such a scheme is an example of iterating on a data structure:

Another term for “iterating” is traversal. An iteration is the application of an
iterating mechanism to a structure, although we have also encountered the term
in the sense of one step in the process (“on every iteration of the loop, the cursor
moves by one position”). An iterator is the mechanism that transforms an
operation on an individual item into an operation on all items of a structure.

An example of implementation using an iteration mechanism, shared by all
the list classes, is the procedure search for finding an element in a list. Its text
looks like this:

This version compares v and item through basic equality =; it is also possible to use
object equality, ~.

This feature is a command, which brings the cursor:

� If the sought value v occurs at the current position or any one to its right, to
the first such position.

� Otherwise, to the extreme right (after).

This interface convention allows you to use search repeatedly to search for
successive occurrences of a value. The procedure is also used in the
implementation of has, the query to find out whether a value appears at all:

Definition: Iterating

To iterate on an object structure is to apply a given operation to all items of
the structure, or to all items satisfying a given condition.

search (v: G)
-- Move cursor to first position, at or after current position,
-- where item value is v; if none, go to after position.

do

from

if before and not is_empty then

forth

end

until

after or else item = v

loop

forth

end

end

→ “Traversals”, page
453.

→ “Definition: Itera-
tor”, page 431.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.6398

As a query, has should leave the object structure in the state where it found it; it
uses a local variable original_index to record the initial cursor position and
return to it, through go_i_th, at the end.

Both search and has require O (count) time on maximum and average.
The iteration scheme illustrated by search recurs throughout the use of lists

and other sequential structures; we have already encountered several examples,
starting with the loop that illuminated the total travel time on a metro line.

At the end of this chapter we will come back to the concept of iteration and
take a first look at general mechanisms that enable us to use standard iteration
mechanisms rather than re-implement in every case an explicit loop with start,
forth, item and after.

Adding and removing items

To add an item to a list — at the beginning, the cursor position, or the end —
you may use one of the operations with the following specifications:

has (v: G)
-- Does structure include an occurrence of v?

local

original_index: INTEGER

do

original_index := index

go_i_th (original_index)
end

put_front (v: G)
-- Add v to beginning; do not move cursor.

put_left (v: G)
-- Add v to left of cursor position; do not move cursor.

require

not_before: not before

put_right (v: G)
-- Add v to right of cursor position; do not move cursor.

require

not_after: not after

extend (v: G)
-- Add v to end; do not move cursor.

start

search (v)
Result := not after

← Page 154.

→ “Iterating on data
structures”, 13.13,
page 431.

Unlike the last two
examples, which
showed full implemen-
tations, these are just
interface specification
of the corresponding
EiffelBase features.

§13.6 LISTS 399

As the comments indicate, these procedures are designed to have no effect of
the cursor, since there is no reason an insertion should change the currently
active position in the list.

In many cases the implementation does change the cursor temporarily; for example
it is possible to implement extend (v) as

with an integer variable original_index, as in has, to record the initial index
position, enabling the command to restore the cursor position at the end.

To delete elements, you may use

In this case the cursor has to be moved because the item to which it was pointing
goes away:

Also available are remove_left and remove_right, acting on positions next to the
cursor, which do not change the cursor position. Write their specifications
(signature, header comment, contract) as an exercise.

original_index := index

finish

put_right (v)
go_i_th (original_index)

remove

-- Remove item at cursor position; move cursor to right neighbor
-- (or to after if no right neighbor).

require

item_exists: not off

ensure

removed: count = old count – 1
after_when_empty: is_empty implies after

Removing the

current itemRemoved item

Cursor
moves
to next
item

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.7400

13.7 LINKED LISTS

We have now seen the basic properties and features of lists, independent of any
implementation. We turn our attention to specific variants, in particular the
important case of linked implementations, with class LINKED_LIST.

Linked list basics

In our work with metro stations we saw the technique of linking elements of a
sequential structure:

We can generalize this — thanks to the genericity mechanism — to arbitrary
structures. An instance of LINKED_LIST [T] for some type T will refer to zero
or more linked cells, or “linkables”, each containing a value of type T and a
reference to another possible linkable:

As the figure indicates, the implementation involves two classes:

� The top object is an instance of LINKED_LIST [T]. Such an object is known
as a list header; it contains general information about the list and provides
access to items, but does not itself represent any item. Field count denotes
the number of elements, if implemented by an attribute (it could also be a
function). Other fields are references to list cells; they include first_element,
leading to the first cell, and active, leading to the item at cursor position.

� The other objects represent list cells; they are instances of a class LINKABLE,
also generic and using the same actual generic parameter, here LINKABLE [T].

Linking stations

← This figure first
appeared on page 116.

(STOP)

right

(STOP)

right

(STOP)

right

A linked list

"Balard" "Lour-
mel"

"Bouci-
caut"

"Com-
merce"

(LINKED_LIST [T])

active

first_element

"Inva-
lides"

(LINKABLE [T])

count

...

← As previewed in
“Making lists
explicit”, page 262.

§13.7 LINKED LISTS 401

In normal usage, client applications that need linked lists will only use the class
LINKED_LIST. LINKABLE is an implementation class; it represents a very
simple notion of list cell that can be linked to other similar cells; a typical
instance looks like this:

The implementation of LINKED_LIST routines relies on features from
LINKABLE: the queries

and the associated setter commands:

Insertion and removal

Below is a picture of how class LINKED_LIST implements the command
put_right, which — as specified earlier — must add an item to the right of the
cursor, without moving the cursor. For a linked list, it suffices to create a new
LINKABLE cell and update the linking:

item: G
-- Value in cell.

right: LINKABLE [G]
-- Next item.

put (x): G
-- Set item’s value to x.

ensure

set: item = x

put_right (other: LINKABLE [G])
-- Link to other.

ensure

set: right = other

An instance of

LINKABLE [T]rightitem

(T) (LINKABLE [T])

← Page 398.

Adding a cell

"Bouci-
caut"

active

"Inva-
lides"

count

Newly created cell

(LINKABLE [T])

right

first_element

p v

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.7402

In the implementation of the routine, the operation illustrated on the previous
page uses two calls to put_right from LINKABLE, highlighted below. Note how
it must also include special treatment to handle the before case properly:

With its need to juggle references, this example illustrates the earlier discussion
of how delicate it is to program with references. Even though it performs a
simple operation, the algorithm requires care to ensure that it works correctly in
all details. The difficulty will increase in the next two examples, item removal
and list reversal.

The procedure remove discards the cell at cursor position; as we have seen,
the specification states that the cursor will move to the position immediately to
the right as shown on the next figure. The implementation must, as illustrated,
change two references:

� It must reattach the right link of the cell just before the cursor position (with
item value "Lourmel") to bypass the item at cursor position.

� To update the cursor as required, it must reattach the active link of the
LINKED_LIST object to the item (here "Invalides") just after the previous
cursor position.

put_right (v: G)
-- Add v to right of cursor position; do not move cursor.

require

not_after: not after

local

p: LINKABLE [G] -- The cell to be created
do

create p.make (v)
if before then -- Special before case:

p.put_right (first_element)
first_element := p

active := p

else -- The most common case:

end

ensure

next_exists: active.right /= Void

inserted: (not old before) implies active.right.item = v

inserted_before: (old before) implies active.item = v

end

← Generalizing
put_next, page 258.

This routine is from
LINKED_LIST; it
includes three calls to
a routine with the same
name from LINK-
ABLE. The reuse of the
name is part of the
notational convention
(“Standardizing fea-
ture names for basic
operations”, page
374) and causes no
ambiguity since p is of
type LINKABLE.

p.put_right (active.right)
active.put_right (p)

← “Where to use ref-
erence operations?”,
page 263.

← Page 399.

§13.7 LINKED LISTS 403

Here too you should look up the actual implementation: routine remove in
LINKED_LIST. The details are more intricate than for put_right, as there are
several special cases, including when the cursor is on the first or last item. It may
help to read first the text of routine remove_right, somewhat simpler.

Reversing a linked list

As a final illustration of algorithms manipulating references, and the care they
require, let us write a routine that — just for once in this chapter — does not

figure in the corresponding EiffelBase class, here LINKED_LIST, at the time of
writing. (There is no obvious reason why it is not there.) We want a procedure

to reverse the items in a list. The basic idea is clear since we already wrote a
function to produce a new list reversed from an existing one. Now we must
address two more issues: the generalization to arbitrary linked lists; and the need
to reverse an existing list in place, which makes things trickier.

First we may note how not to do it. A correct but inefficient algorithm
proceeds as follows: go to the last item, attach first_element to it and link this
item to its left neighbor (the next-to-last); go to the next-to-last item, link it to
its left neighbor; and so on, starting from the right and linking each item to its
left neighbor. You will need a local variable to retain the original first_element

reference before you reset it, and another to retain, in each traversal, a reference
to the item immediately to the left of the one you process.

Since it is not a good idea to modify a library class such as LINKED_LIST, you can
simply write a small class that inherits from it:

class MY_INTEGER_LIST inherit LINKED_LIST [INTEGER] feature

reverse do … … end

end

You do not need any of the other properties of inheritance.

Programming Time!

An O (n2) reversal algorithm

Turn the above informal description into a routine, and try it on some lists of
integers. Instrument the code so as to count the number of loop iterations.

Removing a cell

"Bouci-
caut"

active

"Inva-
lides"

count

right"Lour-
mel"

first_element

← “Reversing a linked
structure”, page 259.

Your code here

→ Chapter 16.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.7404

The problem with this approach is its performance: the first traversal takes count

iterations, the second one count – 1, the third count – 2 etc., so the overall

number of iterations is count (count + 1) / 2, meaning O (count2). We want an
O (count) algorithm. and will now devise one. It follows the same lines as the
function version, using a single loop, but changes the structure in place.

As usual the only way to understand the process is to see the loop invariant.
Here it is in visual form, showing the state after a typical iteration:

In this intermediate state:

� first_element is attached to one of the items of the original list (as in the
figure), or is void.

� We consider that first_element always represents a position i in the original
list: the item’s position or, if first_element is void, the position to the left of
the first item if any. (This also means that for an empty list — remember to
check border cases! — first_element is void.)

� pivot is attached to the item that was the immediate right neighbor of i in the
original list. Consistent with this rule, pivot is void if and only if either i was
the last item of the original list or the list is empty.

� Starting with pivot and following right links yields a list that is made of all
the original items past i if any, in their original order.

� Starting with first_element and following right links yields a list that is
made of all the original items up to i if any, but in the reverse order.

This property has all the makings of a good invariant for an iterative process,
meaning a process of successive approximations: it is easy and in fact trivial to
ensure initially (set pivot to the original first_element and first_element to void);
it yields the desired result upon termination (when i is the last position of the
original list, first_element gives us the entire reversed list!); and when it is
satisfied in an intermediate state we can easily extend it to cover one more item,
using three reference reattachments as pictured:

right right

Reversing a

linked list:

intermediate

state (original

state at top)

(Compare with the fig-
ure on page 260 for the
function version.)

right right

1 2 3 4 5

right rightright right right

1 2 3 4 5

pivotfirst_element

first_element

i

Added link

Reversed order Original order

← “Loops as approxi-
mations”, page 154.

§13.7 LINKED LISTS 405

The code for such an iteration of the loop is simply:

Note the need for a temporary variable to record the original first_element so
that we can link the new first_element cell to it in the last operation, C.

Here is the full algorithm, bringing everything together. To express the
variant — things are subtle enough that we should take care to ascertain
termination — we add an integer local variable c, counting iterations (or,
equivalently, recording the position of the current first_element in the original).

 := first_element
first_element := pivot -- The operation labeled A in the figure
pivot := pivot.right -- Operation B
first_element.put_right () -- Operation C

reverse
-- Re-link items in reverse order.
-- (No precondition, will work for empty list.)
-- Do not move cursor.

local
pivot, i: LINKABLE [G] ; c: INTEGER

do
from

pivot := first_element ; first_element := Void ; c := 0
invariant

-- c is index of the first_element item, if any, in original list;
-- list starting at first_element includes all items up to position c
-- in original, in reverse order; list starting at pivot includes all items
-- past position c in original, in original order.

until
pivot = Void

loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)
c := c + 1

variant
count – c + 1

end
end

Reversing a

linked list:

adding one item

(Compare with the fig-
ure on page 261 for the
function version.)

right

1 2 3 4 5

pivotfirst_element
Removed link
Added link

A
B

Ci

i

i

i

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.7406

Make sure you understand the reverse and put_right algorithms thoroughly, as
they give a good idea of what is involved in implementing linked list operations.
They are another illustration of the difficulty of programming with references
and of the Reference Programming Principle: such stuff belongs in either
dedicated clusters of a system or general-purpose professional libraries, not the
“business logic” of an application program.

You should test your understanding of the reversal algorithm by writing its variants
for other implementations studied next: arrayed lists and two-way lists.

Performance of linked list operations

We can assess the cost of list operations in the case of a linked implementation:
� The complexity is O (1) for operations that need only perform operations at

the cursor position: put_right, remove_right.
� Operations that may need to traverse the list are O (count). This is the case,

as we already saw independently of the implementation, for search and has.
The procedure reverse as just seen is O (count) too; so is general cursor
movement, go_i_th, as well as finish (implemented as go_i_th (count)).

An interesting case is extend, to add an item at the end of the list. As noted, this
can be implemented as finish followed by put_right, and go_i_th if we need to
restore the cursor position. All three operations are O (count). But often you will
need, for example when initializing a list, to add items repeatedly at the end. If
you can let the cursor remain on the last item (query is_last), then extend will
just perform a put_right followed by a forth, and hence will be O (1):

Some operations working at the cursor position are more delicate than put_right

and remove_right since they may need a reference to the item immediately to
the left. This is the case with remove, which removes the item at cursor position,
and therefore must link its left neighbor to its right neighbor. Including an
attribute previous attached to the left neighbor makes them O (1) — but slightly
decreases the efficiency of other operations, since they must update previous.

The interface of LINKED_LIST and other list classes makes no obvious
difference between forth, moving the cursor forward one position, and back,
moving it backward. In this implementation, however, the performance is
radically different: forth is O (1), but back has to be implemented as

← “Touch of Method-
ology: Reference Pro-
gramming Principle”,
page 263.

→ Reversing lists of
various kinds. exercise
13-E.5, page 434

← Page 399.

Inserting at end

active
count

first_element

v

§13.7 LINKED LISTS 407

which is O (n) (with a previous attribute you can perform one back in O (1), but
only one, invalidating the value of previous, so this not very useful). Symmetric
structures, such as TWO_WAY_LIST seen next, remove this discrepancy.

The precondition of back is not before; it implies that index ≥ 1 and hence that
index – 1 satisfies the precondition of go_i_th.

Here is the complexity summary, as for other structures in this chapter. First the
insertion and removal operations at cursor position:

Then cursor movements:

Finally, global operations that may require a traversal:

start

go_i_th (index – 1)

Operation Features in class
LINKED_LIST

Complexity Comments

Insert at cursor position put_right, put_left O (1) For operations left of cursor, O (1)
requires a previous attribute.
remove_left is O (count)

Remove at cursor position remove_right,
remove

O (1)

Insertion at end, if cursor
already there

extend O (1)

Move cursor to first start O (1) For operations left of cursor,
O (1) may require a previous
attribute.

Move cursor to last finish For operations left of cursor,
O (1) requires previous attribute.

Move cursor one step right forth O (1) For operations left of cursor,
O (1) may require a previous
attribute.

Move cursor one step left back

Insert at end, if cursor not there extend O (count)

Search search, has O (count)

Reverse reverse O (count) Not in class, but given above

O (count)

O (count)

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.8408

13.8 OTHER LIST VARIANTS

LINKED_LIST is only one of the implementations of lists.

Two-way lists

LINKED_LIST favors left-to-right traversal; the huge performance discrepancy
between forth and back is a consequence. Class TWO_WAY_LIST provides a
fully symmetric version. The cost is in space, since instead of a LINKABLE with
one reference every cell is a BI_LINKABLE with two:

A TWO_WAY_LIST retains not only first_element but also last_element, a
reference to the last item in the list:

This symmetry brings us O (1) performance for left-of-cursor operations such
as remove_left and put_left as well as their right-of-cursor counterparts, and for
back as well as forth.

Abstraction and consequences

Here I should tell a little story from the battlefield. One day the programmers at
a certain company were complaining to their manager that this object-oriented
stuff was way too slow. The manager asked a senior developer to check the
code, only to discover that it was performing back operations again and again
— on instances of LINKED_LIST. Replacing this by TWO_WAY_LIST yielded
an instant speedup factor of 23 (that is, the code ran twenty-three times faster).
The programmers lived happily ever after, and never a single time did they raise
their voices again about the speed of the generated code.

This highly moral tale holds two important lessons on abstraction, a
cornerstone of modern software development.

Instances of

LINKABLE [T]
and
BI_LINKABLE [T]

right

(T) (LINKABLE [T])
item

(LINKABLE [T])

right

(T) (BI_LINKABLE [T])
item

(BI_LINKABLE [T])

left

(BI_LINKABLE [T])

A two-way list

(Compare with

the singly linked

list in the figure

of page 400)

(TWO_WAY_LIST [T])

active

first_element

(BI_LINKABLE [T])

count

...

last_element

§13.8 OTHER LIST VARIANTS 409

On the one hand, it shows the risks of abstraction: while it is elegant to consider
back an operation applicable to lists of any kind — and indeed, we saw how to
implement back for a one-way linked list — the danger exists that we lose track
of the efficiency side of the story. By viewing a list just as a list — an abstraction
that later techniques such as polymorphism and dynamic binding will encourage
even further — we might forget that sometimes it is a two-way list, making back

a snappy O (1) formality, and sometimes a one-way list, turning back into a
sluggish O (n) chore. The first lesson is that in the practice of professional software
development, where performance is one of the inescapable constraints, you should
not let the benefits of functional abstraction obscure efficiency properties.

If this first lesson highlights the possible dark side of abstraction, the second
lesson is to the credit of abstraction. To achieve the speedup, it sufficed in a few
declarations to change the type from LINKED_LIST to TWO_WAY_LIST.
Without object-oriented techniques and abstraction, the implementation details
would have been buried deep into the software, and the change would have been
far more intricate.

Abstraction is not the enemy of performance; it can initially hide
performance issues for an inattentive observer, but also helps you identify these
issues effectively and correct any deficiency you discover.

Arrayed lists

Rather than a linked structure, you can use an array to represent a list:

The EiffelBase class ARRAYED_LIST provides this implementation. Do not
confuse it with ARRAY: the exported features — visible to the clients of
ARRAYED_LIST — are those of LIST, implemented through the features of
ARRAY such as item and put. Internally, as shown in the figure, lower is 1, so as
a result of the array invariant capacity = upper – lower + 1 the upper bound
upper is equal to capacity, the array’s physical size.

For an array, the number of items count is also the same as capacity: the
array’s items are those that fit in its representation. Not so for an arrayed list:
count is the count of lists, while capacity is the maximum count that can be
accommodated without resizing. In the above figure count is 5 and capacity is
9, and the occupied positions are those with indexes 1 to count. The class
invariant includes the property count <= capacity.

→ “Polymorphism”,
16.2, page 557;
“Dynamic binding”,
16.3, page 562.

An array

implementing a

listlower upper

"Balard" "Lour-
mel"

"Bouci-
caut"

"Com-
merce"

"Inva
lides"

count
= capacity= 1 index

5 9

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.8410

The cursor is represented by the integer index, which ARRAYED_LIST

implements as an attribute. As another sign of the difference between arrayed
lists and arrays, array indexes can only go from 1 to capacity (lower to
capacity), but index can, as with lists in general, range from 0 to capacity + 1.

The implementation does not have to put up all items in an area starting at
position 1; to support left-of-cursor insertions it may be useful to treat the array
circularly, with two integer markers at the end; the technique will be described for
circular queues. No implementation trick, however, can remedy the fatal limitation
of an arrayed implementation: an insertion or removal requires moving all the
items to the left or the right of the cursor. These operations are then, fundamentally,
O (n). (For removals, we can delay the day of reckoning by leaving blank entries
for a while, but at some point we will run out of entries for insertions and will have
to perform the O (n) compaction.) If an insertion would cause count to exceed
capacity, the array must be resized — an expensive operation as we know.

This property severely limits the usefulness of arrayed lists. They remain
interesting if the scenario for a certain list structure includes an initialization
period where items are entered, after which the list mostly remains stable, with
few if any insertions and removals. Then an arrayed list provides the benefits of
arrays: in space (no need for reference fields such as right and left in the earlier
solutions); and in speed if some random access will be needed. Note in
particular that the one command for which arrayed lists shine in time
complexity is go_i_th (i), implemented as just index := i and hence O (1),
whereas it was O (n) in the linked implementations.

Multi-array lists

Many variations are possible on the themes listed. You may occasionally be
interested in MULTI_ARRAY_LIST, which attempts to combine the benefit of
arrayed and linked structure (at the price of added complexity, as you can see
from the code of the class). A multi-array list is a two-way list of arrayed lists:

One advantage is that there is never a need to resize (and hence reallocate) an
array: when running out of space, the structure allocates a new arrayed list. If it
shrinks, it gives up an arrayed list. Worst-case performance remains O (n) for
several key operations, but ordinary usage can be more favorable.

→ “Queues”, 13.12,
page 428.

Multi-array list

(BI_LINKABLE [ARRAYED_LIST [T]])

§13.9 HASH TABLES 411

13.9 HASH TABLES

Arrays represent structures indexed by integers. What if we want other kinds of
key? Strings are a common example. You may need containers where the access
criterion is a character string, such as:

� A directory of people — a container where each object represents
information about one person; you will want to retrieve these objects
through people’s names, in the same way that you find a person, in a
traditional paper directory, by looking up the name.

� A collection of Web pages, as maintained by a search engines; the pages are
indexed by all the words that appear in them.

Assume for a moment that in the first example all the people in the directory
have names starting with a different letter: Annie, Bertrand, Caroline, … Then
you could use an array of twenty-six entries, each corresponding to a letter code,
1 for A, 2 for B and so on:

We have hashed the keys (the strings representing the names) into integer
values in the interval 1.. 26. “Hashing” is understood here by analogy with
mincing up food into small pieces. Specifically:

In other words, for any key ∈ K, the function gives you a value i = h (key) such
that a ≤ i ≤ b.

Definition: Hash function

A hash function, for a set K of possible keys, is a function h that maps K into
some integer interval a.. b.

1

2

3

4

26 A perfect hash

"Annie"

"Bertrand"

"Caroline"

"Donatella"

"Yuri"

"Zoia"

"Egon"
5

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.9412

In practice the interval is usually of the form 0..capacity–1 for some integer
capacity, with h (key) of the form f (key) modulo capacity for some basic
function f returning an integer. The array will then be of size capacity.

The example used a primitive hash function that simply returns, for a string
key, the rank of the first letter, in the interval 1.. 26. A slightly more
sophisticated function would take the ASCII codes of all characters in the string,
add them, and take the remainder by capacity.

The hash function depends only on the item key, not on the number of items,
so if count is the measure of our problem’s size execution will be O (1). (O (l)
if we take into account the length l of keys, but we may assume that the hash
function only uses the first K characters of the key for some constant K.)

The assumption behind the example was that each name started with a
different letter, giving a different hash value. A hash function that gives a
different value for every element of a given set of keys is called a perfect hash

for those keys. With a perfect hash, insertion and search are O (1).

In most cases, we will not get a perfect hash, even with a better hash
function such as the sum of all codes modulo capacity. A collision occurs —
with a non-perfect hash function — when two different keys give the same hash
value. A good hash function will cause fewer collisions — it is in this sense that
we can say that the second example, sum modulo capacity, is “better” than the
first — but will not in general avoid them completely. In fact, if the hash
function computes its result modulo capacity, collisions are inevitable as soon
as we deal with more than capacity keys. The implementation of hashing must
be able to handle them.

One technique is open hashing, which combines arrays with linked lists. In
the last figure, with a perfect hash, the array directly contained items and would
have been declared as

but with open hashing we may use an array of linked lists of objects:

In each entry of the array, for a certain index i, you find the list of objects whose
keys hash to i:

ARRAY [G]

ARRAY [LINKED_LIST [G]]

← ASCII is the stan-
dard encoding of basic
characters, with val-
ues from 0 to 255.

§13.9 HASH TABLES 413

With open hashing we search for an item, or insert it, by first hashing its key into
an index, which gives us an array entry, then performing a sequential search in
the associated list. The cost is O (1) for the first operation and O (c) for the
second, where c is the collision factor — the average number of keys hashing to
a given value. If the array size capacity is constant, the value of c for a large
count and an evenly distributed hash function will be O (count / capacity), that
is to say O (count). To avoid this linear behavior we would need periodically to
resize the array; but then it is usually better to use the other technique for
collision resolution, closed hashing.

Closed hashing — as in the EiffelBase class HASH_TABLE, which you may
study for a deeper understanding of hashing — uses no linked structure but only
an ARRAY [G]. At any time some of its positions will be occupied and some free:

If for an insertion the hash function yields an already occupied position, for
example the one marked i above, the mechanism will try a succession of other
positions — i1, i2, i3 below — until it finds a free one:

0

1

2

3

capacity–1 Open hashing

using an array of

linked lists
"Zoia" "Denis" "Caroline"

"Bertrand" "Yuri"

"Annie"

Linked list of items
with same hash value

"Donatella"

capacity–10

Occupied Free

Array

implementing a

hash table in

closed hashing

i

capacity–10
Looking for a

free position

i i1 i2 i3

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.9414

A common technique, if the hash function yields a first candidate position
i = f (key) modulo capacity, is to try successive positions i + increment,
i + 2 ∗ increment, i + 3 ∗ increment and so on, all modulo capacity, where
increment (2 on the last figure) is f (key) modulo . This is the
algorithm used by HASH_TABLE in EiffelBase; see its implementation in
routine search_for_insertion if you want to study it in detail.

To guarantee that the process terminates (meaning that the corresponding
loop has a variant) the algorithm must always find an empty slot. This is
guaranteed by an appropriate choice of parameters and by a policy that
reallocates the array — resize is essential here — if it fills up. In fact we should
not wait until the last minute: reallocation should occur as soon as the fill factor
reaches a preset limit, which class HASH_TABLE sets at 80% (see the feature
Max_occupation in the class). What’s amazing is that with this policy, and a
good choice of hash function, search and insertion in a hash table are essentially
O (1). (For the theoretical complexity analysis leading to this property, see the
references at the end of this chapter.)

This behavior means that for practical purposes you may see hash tables as
almost as good as arrays, generalized to arbitrary keys, not just integers, as long
as the keys are “hashable”. Strings, for example, are hashable, so you may
consider a hash table of string-identified objects as if it were an array indexed
by strings rather than integers.

This is a remarkable result, since really indexing by strings would lead to
impossibly huge structures. Consider for example strings of at most 7 lower-case

letters; the number of possibilities is approximately 267, or 8 billion, but it would
be absurd to use an array of that size even if we had the memory, since any practical
use needs only a small subset of these possible strings. By hashing the strings we
allocate just a little more space than what we actually need (per Max_occupation

noted above) and still get time behavior comparable to that of an array.

Finding hash functions that yield such efficient behavior is somewhat of an art;
you can again take inspiration from the function used in class HASH_TABLE.

That class, HASH_TABLE [G, KEY], is our first example with two generic
parameters rather than just one; G represents the type of items and KEY the type
of their keys. You may use it for example to declare a hash table of objects
representing persons, indexed by their names, as

Here are some of the fundamental features of HASH_TABLE. The class has a
single creation procedure make; to create a hash table, use for example

personnel_directory: HASH_TABLE [PERSON, STRING]

create personnel_directory.make ()

(capacity – 1)

initial_size

§13.9 HASH TABLES 415

where initial_size is some positive integer. It does not matter much what value
you select; as the name suggests, this is just a hint for the initial allocation. If
you are too far below the real need, you will just pay for one more resizing
(automatic, of course) at run time.

Next, the main queries. To find out if there is an item for a certain key, use

To obtain the item associated with a given key, if any:

The postcondition indicates that if there isn’t an item for the given key, the
result is the “default value” of type G (zero for numbers, false for booleans, void
for references). This is not a good way to test for the presence of an item in a
hash table, since there could be an item with the default value; so if you are not
sure whether the key appears, use has first.

The specification indicates, as with item for arrays, that bracket
notation is available for the item associated with a certain key: you may write

as a synonym for

The bracket form is shorter and we will use it whenever applicable.

To insert an item into a hash table, you will need to provide both the item
and its key, as in

even if the key is in fact a property of the item, as in

has (k: KEY): BOOLEAN

item (k: KEY) : G assign put

-- Item associated with k, if any; otherwise default value of type G.
ensure

default_value_if_not_present:
not (has (k)) implies (Result = computed_default_value)

personnel_directory

personnel_directory

personnel_directory.put (that_person, "Isabelle") [8]

personnel_directory.put (that_person,)

alias "[]"

alias "[]" ← “Bracket notation
and assigner com-
mands”, page 384.

["Isabelle"]

.item ("Isabelle")

that_person.name

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.9416

The class offers four insertion operations with the same signature:

Among them, extend has a precondition stating that it is only applicable if the
key is not already used; the other three are always applicable. A “note” clause
at the beginning of the class explains when to use each variant; since it says
exactly what there is to say I am reproducing it here, omitting only a few details:

In the first two cases the procedure will set the value of the boolean query found,
enabling you to find out, after insertion, if there already was an item with the
given key.

The declaration of item both has the bracket alias and names put as its
associated assigner command:

 (new: G; k: KEY) -- This is the assigner command for item.

 (new: G; k: KEY)

 (new: G; k: KEY)
require

not_present: not has (k)

 (new: G; k: KEY)

Insertion variants for hash tables

(from the text of class HASH_TABLE)

� Use put if you want to do an insertion only if there was no item with the
given key, doing nothing otherwise.

� Use force if you always want to insert the item; if there was one for the
given key it will be removed.

� Use extend if you are sure there is no item with the given key, enabling
faster insertion.

� Use replace if you want to replace an already present item with the given
key, and do nothing if there is none.

item (k: KEY) alias "[]": G

… See rest of declaration on previous page …

put

force

extend

replace

← “Bracket notation
and assigner com-
mands”, page 384.

assign put

§13.9 HASH TABLES 417

As a result, bracket notation is available for calling this procedure, allowing you
to insert an item into a hash table through an assignment-like instruction:

which is just a shorthand for the call to put that was written earlier in ordinary
dot notation [8].

To remove an item with a given key, use

This has no effect if the key was not present; you can find out afterwards
through the query removed.

Calling clear_all will remove all the current entries.

Throughout these operations, you do not have to worry about the size of the
data structure; thanks to the resizable nature of Eiffel arrays, the routines will
take care of maintaining enough space for all the current items, plus breathing
space to ensure the fill ratio remains at most Max_occupation.

If you explicitly want to change the size, a call to accommodate (n: INTEGER) will
ensure that the table can accommodate n items; it will not discard any item already
present in the table.

Here is a summary of the cost of hash table operations.

As you start working on systems operating on large numbers of objects that
must be easily stored and retrieved based on their actual contents, you will find
in hash tables one of your most consistently useful tools.

personnel_directory

remove (k: KEY)

Operation Feature in class
HASH_TABLE

Complexity

Key-based access item, has O (1)

Key-based insertion put, force, extend O (count)

Key-based replacement replace O (1)

Removal remove O (1)

["Isabelle"] := that_person

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.10418

13.10 DISPENSERS

Arrays and hash tables are indexed structures:

� When inserting an item, you give some identifying information, such as the
index in an array and the key in a hash table.

� To access an item, you must provide the associated index or key.

The next (and last) structures we will study follow a different policy. They use
no key or other identifying information for items. You insert an item just by
itself, typically through a procedure

(Compare with put (x: G; i: INTEGER) for arrays and put (x: G; k: KEY) for hash
tables.) When it comes to retrieving items, you do not get to choose which one
you get; the basic query is

with no argument (compare with item (i: INTEGER): G for arrays and
item (k: KEY): G for hash tables). We call such structures dispensers, by
analogy with a one-button vending machine as illustrated: the provider loads the
machine with cans of soft drinks; after inserting a coin, the customer will get a
can — any can — from those in the machine. The machine, not the customer,
decides which can to deliver if more than one are available.

put (x: G)
-- Add x to current structure.

item: G
-- Item obtained from current structure.

require

not is_empty

A dispenser

Press the button

Get a can

§13.10 DISPENSERS 419

Dispensers differ in the policy the machine uses to select the item to deliver:

� Last-In First-Out: choose the item inserted most recently. A dispenser with
a LIFO policy is called a stack.

� First-In First-Out: choose the oldest item not yet removed. A dispenser with
a FIFO policy is called a queue.

� With a priority queue, items have an associated “priority” (an integer or
real number); the query item will return the item with highest priority.
Although this case seems closer to indexed structures, it is still an example
of dispenser, as the priority is an intrinsic property of each item, rather than
information provided by clients on insertion and retrieval.

For all dispensers, the four basic features are put and item with signatures and
precondition shown above, the boolean query

and a command to remove an item:

Just as item does not let you choose which item to access, remove does not let
you choose which item to remove; as the comment indicates, the item removed
is the one that item, had it been called just before, would have yielded.

A good implementation of dispensers should make all these operations
execute in constant (O (1)) time; we will see examples shortly.

In some libraries you will find an operation that combines the effect of
remove and item: a function, say get, that removes an item, and returns as its
result the value of that item. We could implement such a function in terms of
remove and item:

is_empty: BOOLEAN

-- Are there no items?

remove

-- Remove item from current structure.
require

not is_empty

get: G
-- Side-effect-producing function, violates methodology rules!

do

Result := item

remove

end

← See also the discus-
sion on getter func-
tions in “Setters and
getters”, page 248.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.11420

We will not use any such function since it would both change the structure and
return a result, violating the rule that only commands, not queries, should be
permitted to affect the state (“Command-Query Separation Principle”). For
reasons explained in an earlier chapters, it is preferable to let clients access and
remove items through two separate features, one a command, the other a
side-effect-free query.

The next two sections cover stacks and queues. We will not study priority
queues, but you may look up the EiffelBase class PRIORITY_QUEUE.

13.11 STACKS

A stack is a dispenser applying a LIFO policy: the item that you can access at
any given time is the one added most recently. The place of access is called the
“top” of the stack, and indeed the natural image is that of a stack in the ordinary
sense, for example the set of dictionaries on my desk, assuming I can only pick
the top item:

The “Towers of Hanoi” studied in the next chapter to illustrate recursion also
function as stacks.

As another possible illustration you can think of a piggybank where you would
insert and retrieve coins at the same end.

Stack basics

The stack operations are often known as:

� Push an item to the top of the stack (command put).

� Pop the top item (command remove).

� Access the top element (query item).

A stack

→ See the figure on
page 441.

→ Figure on page 535.

§13.11 STACKS 421

which you may visualize as this:

Using stacks

Stacks have many applications in computer science. Two examples from
programming language implementation — one static, the other dynamic — are
parsing, as illustrated by the simple case of processing “Polish notation”, and
the management of routine calls at run time.

Assume you want to evaluate a mathematical expression in Polish notation,
a form often used by pocket calculators and sometimes as an internal form by
compilers and interpreters. It has the advantage of being unambiguous without
using parentheses: each operator applies to the operands that precede it;
evaluating the operator on these operands yields an operand for the next operator.

For example the expression

is represented in Polish notation as

with the following meaning, corresponding to the intended value: the first +
applies to the previous two operands, leading to the new operand a + b; the –
operator applies to the previous two operands, leading to the new operand c – d;
then the ∗ applies to these two resulting operands, leading to the new operand
(a + b) ∗ (c – d); the final + yields the sum of 2 (the first of all operands) and
this result.

For simplicity all operators in this example are binary, but it is easy to adapt
the scheme to operators that each specify their number of operands (arity).

2 + (a + b) ∗ (c – d)

2 a b + c d – ∗ +

Conceptual

image of a stack

Body (what would
remain after popping)

Top A new item would
be pushed here

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.11422

The following algorithm, using a stack of operands s, evaluates a general
Polish expression with binary operators:

This uses two local variables op1 and op2 representing operands, and assumes
a function application that yields the result of applying a binary operator to
operands; for example application ('+', 2, 3) is 5. The following figure shows
the algorithm’s key operation, as expressed by the else clause, at the time of
processing the ∗ operator in the example expression.

A proper implementation of the algorithm must handle erroneous input (by
checking for s.is_empty before using item and remove, and checking in the else

clause that x is an operator), and consider operators of varying arity.

Our second example underlies the run-time support of every modern
programming language implementation and is present in every operating
system (that is a strong statement, but no counter-example comes to mind).
Consider a programming language where a routine can call a routine, which can
call a routine, which …; at execution this yields a call chain:

from -- Initialization is empty
until

“All terms of Polish expression have been read”
loop

“Read next term x in Polish expression”
if “x is an operand” then

s.put (x)
else -- x is a binary operator

-- Obtain and pop the two top operands:
op1 := s.item; s.remove

op2 := s.item; s.remove

-- Apply operator to operands and push result:
s.put (application (x, op1, op2))

end

end

Polish

expression

evaluation
a + b

c – d

2

(a + b) ∗ (c – d)

2

Pop two, push one
op1

op2

§13.11 STACKS 423

At any run-time moment several routines — p to t in the figure — have been
started and not yet finished; the last one that started, here t, is the “current

routine”. Consider any one of its instructions, say an assignment x := y + z.
Unless x, y, z are attributes of the enclosing class, they must belong to the current
routine, as either arguments (not x, since we may not assign to arguments) or
local variables. We use the term “locals” for both categories. To perform
instructions such as this assignment, the code generated by the compiler must
have access to all the locals. The solution is, on every routine call, to create an
activation record containing the routine’s locals:

The structure on the right is the heap, which contains the objects allocated through
create instructions or equivalent. Of interest for the present discussion is the call

stack, also called the run-time stack (and often just “The Stack”), containing the
activation records for all currently active routines. Because no routine execution
terminates until the execution of all the routines it has started terminates, the
routine activation scheme is LIFO, and a stack is the appropriate structure.

In many programming languages, routine texts can be nested (enclosed in others);
then an instruction may refer not only to locals of the current routine but also to
locals of any enclosing routine. This means that the execution may need access not
only to the top activation record, but also to a few others below it. In this scheme
the activation record structure — still called “the stack” — uses a slightly extended
notion of stack. Eiffel does not need routine nesting.

Call chain

Routine call

p
q

r
s

t

The run-time

stack and heap
Top

Activation
records (local
variables and
arguments)

p

q

r

s

t

The heapThe stack

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.11424

On routine entry, the mechanism creates a new activation record for the routine
(with the local variable entries set to the default initial values, and the argument
entries set to the values of the actual arguments for the call) and pushes it onto
the stack. On routine return, it pops the stack.

A benefit of using a run-time stack is that the activation records are not
required to represent different routines — only different routine executions. As
a result, this technique supports recursive routines: routines that call
themselves, directly or indirectly. Allocating a new activation record for every
new call allows each recursive call to use its own set of locals, distinct from any
locals used by previous, still active incarnations of the same routine, which have
their own activation records further down in the stack. Recursion is the topic of
an entire chapter, and its implementation — based largely on stacks — of one
of the chapter’s sections.

Implementing stacks

As with several other structures of this chapter, there are two general categories
of stack implementations: arrayed and linked.

By far the most common implementation uses an array rep of type ARRAY

[G] and an integer count, with the invariant

where capacity is the number of array items (upper – lower + 1). With the array
indexed from one (lower = 1), the stack items if any are stored in positions 1 to
count of the array:

count >= 0 ; count <= rep.capacity

→ “Implementation of
recursive routines”,
14.9, page 486.

← See page 381.

capacity

count

Arrayed

implementation

of a stack

1

Occupied

Free

Top

rep

§13.11 STACKS 425

In class ARRAY, the number of items is known as both count and capacity, with an
invariant stating that the values of these attributes are equal. This count of arrays
should not be confused with the count of stacks, which gives the number of stack
items — in the arrayed implementation, the number of array positions occupied by
stack elements.

We already encountered this distinction for arrayed lists which, like arrayed stacks,
get their implementation from arrays and their specification (including count) from
another container type.

In this implementation, the query item giving the top item simply returns
rep [count] the array item at position count; the command remove can be
implemented as simply count := count – 1, and put (x) as

using the command force of arrays, which will perform a resizing if count

outgrows the current capacity of the array.

This implementation is what you will find in the EiffelBase class
ARRAYED_STACK. (The class does not actually need rep since it inherits from
class ARRAY, but this is conceptually equivalent and we have not studied
inheritance yet.) The use of force for the algorithm of put means you do not have
to worry about dimensioning the array properly; the array just starts out with a
default size and gets resized as needed when you push items.

Of course, the available memory is limited in the end, so you still have to ensure
that the total size of your data structures remains within control.

Array resizing is not commonly available outside of Eiffel, so most other
arrayed implementations of stacks use a fixed-size array, which may be
inevitable in some cases anyway (including in Eiffel) if you need to control
memory tightly. The corresponding EiffelBase class is BOUNDED_STACK.
For a bounded stack there is, along with count, a query capacity (implemented
in the arrayed representation as rep.capacity) and a boolean query is_full,
whose value is count = capacity. Then in the same way that remove has the
precondition not is_empty, the command put now has the precondition
not is_full, and its array implementation (see [9] above) uses put rather than
force; this is correct since ensuring not is_full will guarantee that the call to
rep.put satisfies the precondition valid_index (count) of put, meaning here that
count must be between 1 and capacity inclusive.

All the operations cited are O (1) in time.

count := count + 1 [9]

rep.force (x, count)

← “Arrayed lists”,
page 409.

← Page 419.

← Page 383.

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.11426

A variant of the arrayed representation, bounded, has the stack grow downward:

In this representation, count is no longer an attribute; it is replaced by a secret
attribute free giving the index of the first free position. The query count must
still be available to clients; it is now a function that returns capacity – free.

The invariant will state that free >= 0 and free <= capacity; compare with
the requirement on count in the previous representation.

The case free = 0 corresponds to is_full, and free = capacity to is_empty ; the
items, if any, are in positions capacity down to free + 1. The implementation of
remove is free := free + 1, and the implementation of push is

If you have limited space available and two stacks, you can store both of them
in a single array, using the upward scheme for one and the downward scheme
for the other (they appear as leftward and rightward on the following figure):

rep.force (x, free)
free := free – 1

capacity

Downward

arrayed

implementation

of a stack

1

Occupied

Free

Top

rep

free

Stack growth

capacity1

Two stacks in one

array

Stack 1 items

Top of stack 1 Top of stack 2

Stack 2 items

§13.11 STACKS 427

The advantage of this technique over two separate arrays is that it achieves a better
use of space if the two stacks do not reach their maximum count together. Denoting
by max (x) the maximum value of a mathematical variable x, we note that

so that a one-array representation of size 2 ∗ n might still have space available
if one of the stacks has more than n items, whereas with two arrays of size n we
run out of space as soon as either stack reaches n. An exercise asks you to write
a class TWO_STACK implementing this idea.

Along with arrayed implementations, you can use a linked representation
for stacks. Indeed a linked list as studied earlier in this chapter provides a
ready-made implementation of a stack. The figure below illustrates the
technique: the first cell is the top, the rest of the list is the stack body.

The operation put (x) is implemented simply as rep.put_front (x), where rep is
the linked list; item is just rep.first (where first for linked lists yields the first
element, i_th (1)); and so on. Class LINKED_STACK, in EiffelBase, provides
such an implementation. The basic operations are still O (1), although slower
than in the arrayed versions; for example, put_front of LINKED_LIST and hence
put of LINKED_STACK must allocate a new LINKABLE cell.

All the basic operations are indeed constant-time in the various
implementations of stacks we have seen — with, as noted, the occasional
exception of a call to force in a resizable stack:

max (count1 + count2) ≤ max (count1) + max (count2)

Operation Feature in stack classes Complexity Comments

Access top item O (1)

Push to top put O (1) With automatic resizing,
occasionally O (count)

Pop remove O (1)

→ 13-E.3, page 434.

Linked stackright right rightTop

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.12428

13.12 QUEUES

With their First-In First-Out policy, queues are useful in many applications. Two
typical examples:

� In simulation applications, especially the variant known as discrete-event

simulation, a program perform steps simulating what is happening in some
process — an assembly line producing cars from parts, a network
transmitting messages, a store serving customers — to analyze waiting
times and remove inefficiencies. Often, the handling of events (parts
arriving on the assembly line for processing, messages arriving on the
network, customers arriving at the store) is FIFO; a queue will represent the
pending events.

� A similar situation arises in a Graphical User Interface (GUI) system, where
the events triggered by users — mouse clicks, cursor movements, key
presses — should be processed in the order of arrival.

� In operating systems and other cases of concurrent programming, a
frequently useful scheme is producer-consumer communication where one
process, the producer, generates some information, which another, the
consumer, reads and processes in the order of production. The structure used
for the exchange of information is a queue, in a variant adapted for
concurrent processing and known as the buffer.

The last figure can serve as a conceptual representation of any queue, not just a
buffer: insert items at one conceptual end, remove them at the other end.

As with stacks, we may use linked and arrayed representations. A linked
implementation is straightforward:

← The original appli-
cation area of O-O
languages, see
“Object-oriented lan-
guages”, page 327.

Consumer-
producer

communication

through a buffer

Producer deposits items

Consumer accesses
and remove items

Linked queueright right right
Insert

here

Access and

remove here

§13.12 QUEUES 429

For example the operation put (v) will just be rep.put_front (v) (if as usual rep

is the implementing structure, here a linked list), item returns the last item of the
list, and remove removes it. The EiffelBase implementation, class
LINKED_LIST, maintains the invariant

meaning that the list cursor is always past the last item.

The arrayed representation is a little more tricky than for stacks because we
must remove elements at one end and insert new ones at the other. Instead of just
one integer marker count we should maintain two, which the class
ARRAYED_QUEUE calls in_index and out_index, both secret attributes. (The
public query count is still there, giving the number of items.) It is not good
enough, however, to use the interval in_index..out_index to store items, as in
this simple picture

(with the obvious implementation of remove as out_index := out_index + 1 and put

(v) as in_index := in_index + 1; rep [in_index] := v, where rep is an array); with
this technique we would quickly run out of space after a few put even if, as a result
of one or more remove, space remains unused at the beginning of the array:

The solution: when the in_index marker reaches past capacity, the next put

should cycle it back to the beginning of the array, and similarly with remove for
out_index. Conceptually it is as if we wrung the array to bring its two ends
together, turning it into a ring:

is_always_after: not empty implies rep.after

capacity1 A possible state

for an arrayed

queue

Queue items in_index

count

out_index

capacity1
Arrayed queue

reaching right

end of array

in_indexout_index

Unused (and unusable) space Queue items

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.12430

Here for example is put from ARRAYED_QUEUE:

The first instruction reallocates the array if we truly run out of space. (“Don’t

box us in”.) Procedure grow simply calls resize on rep. When we increment
in_index in the highlighted instruction, we do it modulo capacity; i \\ j is the
integer remainder of i by j, as i // j is their integer quotient. The implementation
is tuned (see the final if…) to an array rep indexed from 1 to capacity; it is also
possible — and a recommended exercise — to see what it gives for an array
indexed from zero, and to write the corresponding remove implementation.

Queues, with proper representation, yield the same performance as stacks:

put (v: G)
-- Add v as newest item.

do

if count + 1 = rep.count then grow end

rep [in_index] := v

if in_index = 0 then in_index := capacity end

end

Operation Feature in queue
classes

Complexity Comments

Access oldest item item O (1)

Add item put O (1) With automatic resizing,
occasionally O (count)

Remove oldest item remove O (1)

Portrait of the

array as a

doughnut

Queue items

in_index

out_index

Available space for
inserting items

in_index := (in_index + 1) \\ capacity

← “Automatic resiz-
ing”, page 375.

→ 13-E.4, page 434.

§13.13 ITERATING ON DATA STRUCTURES 431

13.13 ITERATING ON DATA STRUCTURES

Container data structures such as the ones we have studied in this chapter are
repositories of objects. A common need on such structures is, as we have seen,
to apply a certain operation repeatedly to all these objects. This is known as
iterating on a data structure. Complementing the definition of this term, we also
have a name for the mechanism that turns an operation on individual items into
an operation on the entire container:

We have already seen many examples of iterating on container structures. They
all follow a common pattern: if your_list is a LINKED_LIST [T] or more
generally a LIST [T] (in any implementation of lists) and there is a procedure

the following scheme will iterate the operation over the list

Alternatively, you may want to apply the operation only to items that satisfy a
certain condition given by a function your_condition (x: T): BOOLEAN; the
loop body then changes to

Definition: Iterator

An iterator is a mechanism that can yield, from one or more operations
applicable to individual items of a container data structure, an operation
applicable to the structure as a whole.

some_operation (x: T) …

from

your_list.start

invariant

-- All elements before cursor have been subjected to some_operation

until

your_list.after

loop

your_list.forth

variant

your_list.count – your_list.index + 1
end

← “Definition: Iterat-
ing”, page 397.

some_operation (your_list.item)

if your_condition (your_list.item) then

some_operation (your_list.item)
end

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13.14432

Other variants of iteration include:

� Apply an operation to all items until the first one that satisfies, or does not
satisfy, a certain condition.

� Find out if at least one item, or all items, satisfy a condition.

Isolating general schemes is good; making them reusable, so that one does not
have to code them anew each time, is better. You can indeed apply the basic
iteration mechanisms, without writing loops, by using features such as do_all

and do_if available in all list classes (including LIST, LINKED_LIST and others
cited in this chapter). They capture the preceding loop structures once and for
all, so that you may write the last two examples as

where agent your_operation denotes an object that represents the procedure
your_operation ready to be applied to each item, and agent your_condition

similarly represents the query. To understand the details we have to wait for the
general notion of agent in a later chapter.

Even with agents at your disposal, you will have opportunities to write
explicit list traversals (iterations), using the above schemes as your guides.

13.14 OTHER STRUCTURES

The data structures that we have seen are among the most important in
programming, but by no means the only ones. We have already had a glimpse
of trees (in the form of abstract syntax trees) and will see more of them in the
next chapter. A generalization of trees, useful in many applications (for example
networking) is the notion of graph, directed or not, and multigraph.

The following bibliographic section cites books that review the fundamental
data structures, usually in connection with fundamental algorithms. In addition
a number of textbooks address the “Data Structures and Algorithms” courses
offered by most computer science curricula.

13.15 FURTHER READING

Donald E. Knuth: Fundamental Algorithms, volumes 1 (Fundamental

Algorithms) and 3 (Sorting and Searching) of The Art of Computer

Programming, 3rd edition; Addison-Wesley, 1997.

Widely considered the ultimate reference on algorithms and data
structures. Part of a planned seven-volume set of which three
have appeared (and some of the fourth in fascicle form).

your_list. (agent your_operation)
your_list. (agent your_operation, agent your_condition)

do_all

do_if

→ Chapter 18.

Knuth (2005)

§13.16 KEY CONCEPTS LEARNED IN THIS CHAPTER 433

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The Design and

Analysis of Computer Algorithms, Addison-Wesley, 1974.
A compact survey of the most important algorithms and data
structures. Still an excellent survey of the field, suitable after a first
introduction as given in this chapter.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein: Introduction to Algorithms, second edition, MIT Press, 2001.

An excellent modern textbook on algorithms, giving correctness
concerns their due place.

Bertrand Meyer: Reusable Software, Prentice Hall, 1994.
A presentation of design principles for building quality reusable
libraries, illustrated through the example of EiffelBase.

13.16 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Static typing makes program clearer and catches errors at compile time.
� A generic class has one or more parameters representing types. This provides

flexibility and is particularly useful for describing container structures.
� Data structures should support resizing.
� For the consistency of a library, a standard feature naming policy is desirable.
� Abstract complexity estimates the performance of algorithms, independent

of hardware choices, by focusing on algorithm behavior for large data sizes
and ignoring constant multiplicative and additive factors.

� “Big-O” notation, as in O (n2), expresses abstract complexity.
� Arrays provide fast, constant-time access and replacement of items known

through their indexes in a given range. Although they can be reallocated,
they are not suited for the representation of structures with frequent item
insertions and deletions.

� Hash tables generalize arrays to indexes that can be not just integers but
almost arbitrary “keys”, for example strings, while keeping access and
replacement time essentially constant.

� Lists describe sequential structures, and — in linked representations —
support insertions and deletions.

� Dispensers let you access, insert and remove elements at only one place. A
Last-In First-Out policy yields stacks, First-In First-Out yields queues.

� Stacks are particularly useful to represent nested structures and have
applications throughout operating systems and compilers. An array
implementation is the most common; a single array can host two stacks.

� Queues are particularly useful in modeling, and in concurrent programming
as “buffers”. With an array implementation, array indexes should cycle past
the upper bound after repeated insertions and deletions.

Aho (2007)

FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM COMPLEXITY §13-E434

New vocabulary

13-E EXERCISES

13-E.1 Vocabulary

Give a precise definition of all the terms in the above “New vocabulary” list.

13-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

13-E.3 Two in one

Write a class DOUBLE_STACK [G] implementing two stacks in a single array;
you may call the features put_1, put_2, remove_1, remove_2 and so on. The
stacks are of bounded size; make sure to include the right preconditions and
invariant clauses.

13-E.4 Indexing from zero

The implementation we saw for arrayed queues, similar to he EiffelBase class
ARRAYED_QUEUE but without inheritance, uses an array rep indexed from one.

1 Using for inspiration the implementation of put given in the text, write the
routine remove, and a creation procedure make setting up the queue as
empty of any items.

2 Rewrite all three routines using an implementation array indexed from zero.

13-E.5 Reversing lists of various kinds

Write a list reversal procedure for two-way lists and arrayed lists, putting it in a
class that inherits from the corresponding EiffelBase class: TWO_WAY_LIST or
ARRAYED_LIST.

Abstract complexity Activation record Actual generic parameter

Array Call chain Complexity

Correctness Cursor Dispenser

Dynamic typing FIFO Formal generic parameter

Generic class Generic derivation Genericity

Hash table Heap Linked list

LIFO List Parameter

Priority queue Queue Run-time stack

Stack Static typing Validity

← Exercise “Concept
map”, 12-E.2, page 360.

← Page 383.

← Page 430.

← See reverse, page
405, for linked lists.

14

Recursion and trees

The cow shown laughing on the Laughing
Cow box holds, as if for earrings, two
Laughing Cow boxes each featuring a
cow shown laughing and presumably — I
say “presumably” because here my
eyesight fails me, I don’t know about yours
— holding, as if for earrings, two Laughing
Cow boxes each featuring a cow shown
laughing and presumably holding… (you
get the idea).

This 1921 advertising gimmick, still
doing very well, is an example of a structure defined recursively, in the
following sense:

“Recursion” — the use of recursive definitions — has applications throughout
programming: it yields elegant ways to define syntax structures; we will also see
recursively defined data structures and routines.

We may say “recursive” as an abbreviation for “recursively defined”:
recursive grammar, recursive data structure, recursive routine. But this is only a
convention, because we cannot say that a concept or a structure is by itself
recursive: all we know is that we can describe it recursively, according to the
above definition. Any particular notion — even the infinite Laughing Cow
structure — may have both recursive and non-recursive definitions.

When proving properties of recursively defined concepts we will use
recursive proofs, which generalize inductive proofs as performed on integers.

Recursive definition

A definition for a concept is recursive if it involves one or more instances of
the concept itself.

www.bel-group.com.
Picture credit:
page 847.

http://www.bel-group.com

RECURSION AND TREES §14.1436

Recursion is direct when the definition of A cites an instance of A; it is
indirect if for 1 ≤ i < n (for some n ≥ 2) the definition of every Ai cites an instance
of Ai+1, and the definition of An cites an instance of A1.

In this chapter we are interested in notions for which a recursive definition
is elegant and convenient. The examples include recursive routines, recursive
syntax definitions and recursive data structures. We will also get a glimpse of
recursive proofs.

One class of recursive data structures, the tree in its various guises, appears
in many applications and embodies the very idea of recursion. This chapter
covers the important case of binary trees.

14.1 BASIC EXAMPLES

At this point you may be wondering whether a recursive definition makes any
sense at all. How can we define a concept in terms of itself? Does such a
definition mean anything at all, or is it just a vicious circle?

You are right to wonder. Not all recursive definitions define anything at all.
When you ask for a description of someone and all you get is “Sarah? She is just

Sarah, what else can I say?” you are not learning much. So we will have to look
for criteria that guarantee that a definition is useful even if recursive.

Before we do this, however, let us convince ourselves in a more pragmatic
way by looking at a few typical examples where recursion is obviously useful
and seems, just as obviously, to make sense. This will give us a firm belief —
little more than a belief indeed, based on hope and a prayer — that recursion is
a practically useful way to define grammars, data structures and algorithms.
Then it will be time to look for a proper mathematical basis on which to
establish the soundness of recursive definitions.

Recursive definitions

With the introduction of genericity, we were able to define a type as either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T], where C is a generic class and T is
a .

This is a recursive definition; it simply means, using the generic classes ARRAY

and LIST, that valid classes are:

� INTEGER, STATION and such: non-generic classes, per case T1.

� Through case T2, direct generic derivations: ARRAY [INTEGER],
LIST [STATION] etc.

� Applying T2 again, recursively: ARRAY [LIST [INTEGER]], ARRAY [ARRAY

[LIST [STATION]]] and so on: generic derivations at any level of nesting.

→ “Making sense of
recursion”, 14.7,
page 473.

← “Definitions: Class
type, generically
derived, base class”,
page 370.

type

§14.1 BASIC EXAMPLES 437

You may consider using a similar technique to answer the exercise which, in the
first chapter, asked you to define “alphabetical order”.

Recursively defined grammars

Consider an Eiffel subset with just two kinds of instruction:

� Assignment, of the usual form variable := expression, but treated here as a
terminal, not specified further.

� Conditional, with only a then part (no else) for simplicity.

A grammar defining this language is:

For our immediate purposes Condition is, like Assignment, a terminal. This
grammar is recursive, since the definition of Instruction involves Conditional as
one of the choices, and Conditional in turn involves Instruction as part of the
aggregate. But since there is a non-recursive alternative, Assignment, the
grammar productions clearly imply what an instruction may look like:

� Just an assignment.

� A Conditional containing an assignment: if c then a end.

� The same with any degree of nesting: if c1 then if c2 then a end end,
if c1 then if c2 then if c3 then a end end end and so on.

Recursive grammars are indeed an indispensable tool for any language that —
like all significant programming languages — supports nested structures.

Recursively defined data structures

The class STOP represented the notion of stop in a metro line:

A naïve interpretation would deduce that every instance of STOP contains an
instance of STOP, which itself contains another ad infinitum, as in the Laughing
Cow scheme. This would indeed be the case if STOP were an expanded type:

Instruction =Δ Assignment |

Conditional =Δ if Condition then end

class STOP create

 …
feature

next:
-- Next stop on same line.

 … Other features omitted (see page 123) …
end

← 1-E.3, page 14.

← This discussion
was previewed in
“Recursive gram-
mars”, page 307.

Conditional

Instruction

← Page 123.

STOP

RECURSION AND TREES §14.1438

This is impossible, however, and STOP is in any case a reference type, like any
type defined as class X … with no other qualification. So the real picture is the
one originally shown:

Recursion in such a data structure definition simply indicates that every instance
of the class contains a reference to a potential instance of the same class —
“potential” because the reference may be void, as for the last stop in the figure.

In the same chapter we encountered another example of self-referential
class definition: a class PERSON with an attribute spouse of type PERSON.

This is a very common case in definitions of useful data structures. From
linked lists to trees of various kinds (such as the binary trees studied later in this
chapter), the definition of a useful object type often includes references to objects
of the type being defined, or (indirect recursion) a type that depends on it.

Recursively defined algorithms and routines

The famous Fibonacci sequence, enjoying many beautiful properties and many
app l ica t ions to mathemat ics and the na tura l sc iences , has the
following definition:

F0 = 0
F1 = 1
Fi = Fi–1 + Fi–2 -- For i > 1

Touch of History:
Fibonacci’s rabbits

Leonardo Fibonacci from Pisa (1170-1250) played a key role in making Indian and
Arab mathematics known to the West and, through many contributions of his own,
helping to start modern mathematics. He stated like this the problem that leads to
his famous sequence (which was already known to Indian mathematicians):

Nested fields

(not the correct

interpretation)

(STOP)

next

(STOP)

next
(STOP)

next …

Other fields

← Page 116.

A linked line

(STOP)

next

(STOP) (STOP)

nextnext

About Fibonacci:
www.mcs.surrey.ac.uk/
Personal/R.Knott/
Fibonacci/fib.html;
about the sequence:
www-gap.dcs.st-and.
ac.uk/~history/Mathema
ticians/Fibonacci.html.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html

§14.1 BASIC EXAMPLES 439

The answer is that the pairs at month i include those already present at
month i – 1 (no rabbits die), numbering Fi–1, plus those begot by pairs
already present at month i – 2 (since pairs are fertile starting the second
month), numbering Fi–2. This gives the above formula; successive values
are 0, 1, 1, 2, 3, 5, 8 and so on, each the sum of the previous two.

The formula yields a recursive routine computing Fn for any n:

The function includes two recursive calls, highlighted. That it works at all may
look a bit mysterious (that’s why it is good to check it for a few values); as you
progress through this chapter, the legitimacy of such recursively defined
routines should become increasingly convincing.

The principal argument in favor of writing the function this way is that it
elegantly matches the original, mathematical definition of the Fibonacci
sequence. On further look it is not that exciting, because a non-recursive version
is also easy to obtain.

A man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if
every month each pair begets a new pair, which becomes productive
from the second month on?

fibonacci (n: INTEGER): INTEGER
-- Element of index n in the Fibonacci sequence.

require
non_negative: n >= 0

do
if n = 0 then

Result := 0
elseif n = 1 then

Result := 1
else

Result := +
end

end

Programming Time!
Recursive Fibonacci

Write a small system that includes the above recursive routine and prints out
its result. Try it for a few values of n — including 12, as in Fibonacci’s original
riddle — and verify that the results match the expected values.

Programming Time!
Non-recursive Fibonacci

Can you write (without first turning the page) a function that computes any
Fibonacci number, using a loop rather than recursion?

Fibonacci

fibonacci (n – 1) fibonacci (n – 2)

RECURSION AND TREES §14.1440

The following function indeed yields the same result as the above fibonacci (try
it for a few values too):

For convenience this version assumes n ≥ 1 rather than n ≥ 0. Thanks to the
initialization rules previous starts out as zero, ensuring the initial satisfaction of the
invariant since F0 = 0. The variable second_previous is set anew in each loop
iteration and does not need specific initialization.

This version, just a trifle more remote from the original mathematical definition,
is still simple and clear; note in particular the loop invariant (which, however,
refers for convenience to the recursive function, which it takes as the official
mathematical definition). Some may prefer the recursive version anyway, but
this is largely a matter of taste. Depending on the compiler, that version may (as
we will see) be less efficient at run time.

Taste and efficiency aside, if it were only for such examples we would have
a hard time convincing ourselves of the indispensability of recursive routines.
We need cases in which recursion provides a definite plus, for example because
any non-recursive competitor is significantly more abstruse.

Such problems indeed abound. One that concentrates many of the
interesting properties of recursion, with the smallest amount of irrelevant detail,
arises from a delightful puzzle: the Tower of Hanoi.

fibonacci1 (n: INTEGER): INTEGER

-- Element of index n in the Fibonacci sequence.
-- (Non-recursive version.)

require

positive: n >=

local

i, previous, second_previous: INTEGER

do

from

i := 1 ; Result := 1
invariant

Result = fibonacci (i)
previous = fibonacci (i – 1)

until i = n loop

i := i + 1
second_previous := previous

previous := Result

variant

n – i

end

end

1

Result := previous + second_previous

§14.2 THE TOWER OF HANOI 441

14.2 THE TOWER OF HANOI

In the great temple of Benares, under the dome that marks the center of the

world, three needles of diamond are set on top of a brass plate. Each needle is

a cubit high, and thick as the body of a bee. On one of these needles God strung,
at the beginning of ages, sixty-four disks of pure gold. The largest disk rests on

the brass and the others, ever smaller, rest over each other all the way to the top.
That is the sacred tower of Brahma.

Night and day the priests, following one another on the steps of the altar,
work to transfer the tower from the first diamond needle to the third, without

deviating from the rules just stated, set by Brahma. When all is over, the tower

and the Brahmins will fall, and it will be the end of the worlds.

In spite of its oriental veneer, this story is the creation of the French
mathematician Édouard Lucas (signing as “N. Claus de Siam”, anagram of
“Lucas d’Amiens”, after his native city). On a market in Thailand — Siam
indeed — I bought the above rendition of his tower. The labels A, B and C are
my addition. I will not expand on why I chose a model made of wood rather than
diamond, gold and brass, but it is legitimate, since I did have a large suitcase, to
ask why it has only nine disks:

Quiz time!
Hanoi tower size

Why do commercially available models of the Towers of Hanoi puzzle have
far fewer than 64 disks?
(Hint: the game comes with a small sheet of paper listing a solution to the
puzzle, in the form of a sequence of moves: A to C, A to B etc.)

Tower of Hanoi

(or should it be

Benares?) with 9

disks, initial state

RECURSION AND TREES §14.2442

To answer this question, we may assess the minimum number Hn of individual

“move” operations required — if there is a solution — to transfer n disks from
needle A to needle B, using needle C as intermediate storage and following the
rules of the game; n is 64 in the original version and 9 for the small model.

We observe that any strategy for moving n disks from A to B must at some
point move the largest disk from A to B. This is only possible, however, if
needle B is free of any disks at all, and A contains only the largest disk, all others
having been moved to C — since there is no other place for them to go:

What is the minimum number of moves to reach this intermediate situation? We
must have transferred n – 1 disks (all but the largest) from A to C, using B as
intermediate storage; the largest disk, which must stay on A, plays no role in this
operation. The problem is symmetric between B and C; so the minimum number
of moves to achieve the intermediate situation is Hn-1.

Once we have reached that situation, we must move the largest disk from A
to B; it remains then to transfer the n – 1 smaller disks from C to B. In all, the
minimum number of moves Hn for transferring n disks, for n > 0, is

(Hn–1 moves to transfer n – 1 disks from A to C, one move to take the largest
disk from A to B, and Hn–1 again to transfer the n – 1 smaller disks from A to C).
Since H0 = 0, this gives

and, as a consequence, the answer to our quiz: remembering that 210 (that is,

1024) is over 103, we note that 264 is over 1.5∗1019; that’s a lot of moves.

Hn = 2 ∗ Hn–1 + 1

Hn = 2n – 1

Intermediate

state

§14.2 THE TOWER OF HANOI 443

A year is around 30 million seconds. At one second per move — very efficient
priests — the world will collapse in about 500 billion years, over 30 times the
estimated age of the universe. As to the paper for printing the solution to a 64-disk
game, it would require cutting down the forests of a few planets.

This reasoning for the evaluation of Hn was constructive, in the sense that it also
gives us a practical strategy for moving n disks (for n > 0) from A to B using
C as intermediate storage:

� Move n – 1 disks from A to C, using B as intermediate storage, and
respecting the rules of the game.

� Then B will be empty of any disk, and A will only have the largest disk;
transfer that disk from A to B. This respects the rules of the game since we
are moving a single disk, from the top of a needle, to an empty needle.

� Then move n – 1 disks from C to B, using A as intermediate storage,
respecting the rules of the game; B has one disk, but it will not cause any
violation of the rules of the game since it is larger than all the ones we want
to transfer.

This strategy turns the number of moves Hn = 2n – 1 from a theoretical minimum
into a practically achievable goal. We may express it as a recursive routine, part
of a class NEEDLES:

The discussion of contracts for recursive routines will add other precondition
clauses and a postcondition.

By convention, we represent the needles as characters: 'A', 'B' and 'C'. Another
convention for this chapter (already used in previous examples) is to

recursive branches; hanoi contains two such calls.

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as
-- intermediate storage, according to the rules of the
-- Tower of Hanoi puzzle.

require

non_negative: n >= 0
different1: source /= target

different2: target /= other

different3: source /= other

do

if n > 0 then

 (n–1, source, other, target)
move (source, target)

 (n–1, other, target, source)
end

end

 213 sheets per tree
(tinyurl.com/6azaht);

210 moves per page
(very small print);
double-sided since we
are environmentally
conscious; maybe 400

billion (over 238)

usable trees on earth
(tinyurl.com/yfppyd):
adding three similar
planets will get
us started.

hanoi

hanoi

→ “Contracts for
recursive routines”,
14.8, page 485.

highlight

http://tinyurl.com/6azaht
http://tinyurl.com/yfppyd

RECURSION AND TREES §14.2444

The basic operation move (source, target) moves a single disk, the top one
on needle source, to needle target; its precondition is that there is at least one
disk on source, and that on target either there is no disk or the top disk is larger
than the top disk on source. If you have access to the wireless network of the
Great Temple of Benares you can program move to send an instant message to
the cell phone of the appropriate priest or an email to her Blackberry, directing
her to move a disk from source to target. For the rest of us you can write move

as a procedure that displays a one-disk-move instruction in the console:

For example executing the call

will print out the sequence of fifteen (24 – 1) instructions

which indeed moves four disks successfully from A to B, respecting the rules of
the game.

move (source, target: CHARACTER)
-- Prescribe move from source to target.

do

io.put_character (source)
io.put_string (" to ")
io.put_character (target)
io.put_new_line

end

Programming Time!
The Tower of Hanoi

Write a system with a root class NEEDLES including the procedures hanoi

and move as shown. Try it for a few values of n.

hanoi (4, 'A', 'B', 'C')

A to C

A to B

C to B

A to C

B to A

B to C

A to C

C to B

C to A

B to A

C to B

A to C

A to B

C to B

Shown here split into
three columns; read it
column by column,
top to bottom in each
column. The move of
the biggest disk has
been highlighted.A to B

§14.2 THE TOWER OF HANOI 445

One way to look at the recursive solution — procedure hanoi — is that it
works as if we were permitted to move the top n–1 disks all at once to a needle
that has either no disk, or the biggest disk only. In that case we would start by
performing this operation from source to other (here A to C):

Then we would move the biggest disk from A to B, our final target; this
single-disk move is clearly legal since there is nothing on B. Finally we would
again perform a global move of n–1 disks from C, where we have parked them,
to B, which is OK because they are in order and the largest of them is smaller
than the disk now on B.

Of course this is a fiction since we are only permitted to move one disk at a
time, but to move n–1 disks we may simply apply the same technique
recursively, knowing that the target needle is either empty or occupied by a disk
larger than all those we manipulate in this recursive application. If n = 0, we
have nothing to do.

Do not be misled by the apparent frivolity of the Tower of Hanoi example.
The solution serves as a model for many recursive programs with important
practical applications. The simplicity of the algorithm, resulting from the use of
two recursive calls, makes it an ideal testbed to study the properties of recursive
algorithms, as we will do when we return to it later in this chapter.

Fictitious initial

global move

RECURSION AND TREES §14.3446

14.3 RECURSION AS A PROBLEM-SOLVING STRATEGY

In earlier chapters we saw control structures as problem-solving techniques:
� A compound (sequence) solution means “I know

someone who can get me from here to B and someone else

who can get me from B to C, so let me ask them one then

the other and that will get me to C ”.
� A conditional solution means “I know someone who can

solve the problem in one case and someone else for the

other possible case, so let me ask them separately ”.
� A loop solution means “I do not know how to get to C, but

I know a region I (the invariant) that contains C, someone

(the initialization) to take me into I, and someone else

(the body) who whenever I am in I and not yet in C can take

me closer to C, decreasing the distance (the variant) in such

a way that I will need her only a finite number of times; so

let me ask my first friend once to get into I, then bug my

other friend as long as I have not reached C yet ”.
� A routine solution means “I know someone who has solved this problem in

the general case, so let me just phrase my special problem in his terms and

ask him to solve it for me”.
What about a recursive solution? Whom do I ask?

I ask myself.
Possibly several times! (As in the Hanoi case and many to follow.)
Why rely on someone else when I trust myself so much more? (At least I

think I do.)
By now we know that this strategy is not as silly as it might sound at first. I

ask myself to solve the same problem, but on a subset of the original data, or
several such subsets. Then I may be able to pull it off, if I have a way to extend
these partial solutions into a solution to the entire problem.

Such is the idea of recursion viewed as a general problem-solving strategy.
It is related to some of the earlier strategies:
� Recursion resembles the routine strategy, since it relies on an existing

solution, but in this case we use a solution to the same problem — not only
that, the same solution to that problem: the solution that we are currently
building and that we just pretend, by a leap of faith, already exists.

� Recursion also shares properties with a loop solution: both techniques
approximate the solution to the whole problem by solutions covering part of
the data. But recursion is more general, since each step may combine more
than one such partial solution. Later in this chapter we will have the
opportunity of comparing the loop and recursion strategies in detail.

A CB

Nn = CN2N1

conditioncondition
 holds

(Figure from page 147.)

(Figure from page 174.)

(Figure from page 155.)

does not hold

Ni

I

← Chapter 8.

← “The loop strat-
egy”, page 155.

← “From loops to recur-
sion”, 14.6, page 471.

§14.4 BINARY TREES 447

14.4 BINARY TREES

If the Tower of Hanoi solution is the quintessential recursive routine, the binary
tree is the quintessential recursive data structure. We may define it as follows:

It is easy to express this as a class skeleton, with no routines yet:

where a void reference indicates an empty binary tree. We may illustrate a
binary tree — here over INTEGER — as follows:

This “branching” form is the most common style of representing a binary tree,
but not the only one; as in the case of abstract syntax trees, we might opt for a
nested representation, which here would look like the following.

Definition: binary tree

A binary tree over G, for an arbitrary data type G, is a finite set of items called
nodes, each containing a value of type G, such that the nodes, if any, are
divided into three disjoint parts:
� A single node, called the root of the binary tree.

� (Recursively) two over G, called the left subtree and

right subtree.

class BINARY_TREE [G] feature

item: G
left, right:

end

binary trees

BINARY_TREE [G]

35

23 54

41 7818

12 60

Right subtreeLeft subtree

67

A binary tree

(“branching”

representation)

90

item

left right

Convention:

← “Nesting and the
syntax structure”,
page 40.

RECURSION AND TREES §14.4448

The definition explicitly allows a binary tree to be empty (“the nodes, if any”).
Without this, of course, the recursive definition would lead to an infinite
structure, whereas our binary trees are, as the definition also prescribes, finite.

If not empty, a binary tree always has a root, and may have: no subtree; a
left subtree only; a right subtree only; or both.

Any node n of a binary tree B itself defines a binary tree Bn . The association
is easy to see in either of the last two figures: for the node labeled 35, Bn is the
full tree; for 23 it is the left subtree; for 54, the right subtree; for 78, the tree rooted
at that node (right subtree of the right subtree); and so on. This allows us to talk
about the left and right subtrees of a node — meaning, of its associated subtree.
We can make the association formal through another example of recursive
definition, closely following the structure of the definition of binary trees:

A recursive routine on a recursive data structure

Many routines of a class that defines a data structure recursively will follow the
definition’s recursive structure. A simple example is a routine computing the
number of nodes in a binary tree. The node count of an empty tree is zero; the
node count of a non-empty tree is one — corresponding to the root — plus
(recursively) the of the left and right subtrees, if any. We may turn
this observation into a recursive function of the class BINARY_TREE:

Definition: Tree associated with a node

Any node n of a binary tree B defines a binary tree Bn as follows:

� If n is the root of B, then Bn is simply B.

� Otherwise we know from the preceding definition that n is in one of the
two subtrees of B. If B’ is that subtree, we define Bn as B’n (the node

associated with n, recursively, in the corresponding subtree).

35

23

18

12

54

41

78

60 90

67

A binary tree
in nested

representation

Left subtree

Right subtree

Convention:

node counts

§14.4 BINARY TREES 449

Note the similarity of the recursive structure to procedure Hanoi.

Children and parents

The children of a node — nodes themselves — are the root nodes of its left and
right subtrees:

If C is a child of B, then B is a parent of C. We may say more precisely that B
is “the” parent of C thanks to the following result:

The theorem seems obvious from the picture, but we have to prove it; this gives
us an opportunity to encounter recursive proofs.

Recursive proofs

The recursive proof of the Single Parent theorem mirrors once more the
structure of the recursive definition of binary trees.

If a binary tree BT is empty, the theorem trivially holds. Otherwise BT

consists of a root and two disjoint binary trees, of which we assume — this is
the “recursion hypothesis” — that they both satisfy the theorem. It follows from
the definitions of “binary tree”, “child” and “parent” that a node C may have a
parent P in BT only through one of the following three ways:

P1 P is the root of BT, and C is the root of either its left or right subtree.

P2 They both belong to the left subtree, and P is the parent of C in that subtree.

P3 They both belong to the right subtree, and P is the parent of C in that subtree.

count: INTEGER
-- Number of nodes.

do
Result := 1
if left /= Void then Result := Result + end
if right /= Void then Result := Result + end

end

Theorem: Single Parent

Every node in a binary tree has exactly one parent, except for the root which
has no parent.

left.count
right.count

Right childLeft child

A binary tree

(“branching”

representation)

Parent

RECURSION AND TREES §14.4450

In case P1, C has, from the recursion hypothesis, no parent in its subtree; so it
has one parent, the root, in BT as a whole. In cases P2 and P3, again by the
recursion hypothesis, P was the single parent of C in their respective subtree,
and this is still the case in the whole tree.

Any node C other than the root falls into one of these three cases, and hence
has exactly one parent. In none of these cases can C be the root which, as a
consequence, has no parent. This completes the proof.

Recursive proofs of this kind are useful when you need to establish that a
certain property holds for all instances of a recursively defined concept. The
structure of the proof follows the structure of the definition:
� For any non-recursive case of the definition, you must prove the property

directly. (In the example the non-recursive case is an empty tree.)
� A case of the definition is recursive if it defines a new instance of the

concept in terms of existing instances. For those cases you may assume that
the property holds of these instances (this is the recursion hypothesis) to
prove that it holds of the new one.

This technique applies to recursively defined concepts in general. We will see
its application to recursively defined routines such as hanoi.

A binary tree of executions

An interesting example of a binary tree is the one we obtain if we model an
execution of the hanoi procedure, for example with three disks on needles A, B,
C. Each node contains the arguments to the given call; the left and right subtrees
correspond to the first and second recursive calls.

By adding the move operations you may reconstruct the sequence of operations;
we will see this formally below.

This example illustrates the connection between recursive algorithms and
recursive data structures. For routines that have a variable number of recursive
calls, rather than exactly two as hanoi, the execution would be modeled by a
general tree rather than a binary tree.

3 A B C An execution of

Hanoi viewed as

a binary tree
2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

→ Page 454.

§14.4 BINARY TREES 451

More binary tree properties and terminology

As noted, a node of a binary tree may have:
� Both a left child and a right child, like the top node, labeled

35, of our example.

� Only a left child, like all the nodes of the left subtree,
labeled 23, 18, 12.

� Only a right child, like the node labeled 60.

� No child, in which case it is called a leaf. In the example
the leaves are labeled 12, 41, 67 and 90.

We define an upward path in a binary tree as a sequence of zero or more nodes,
where any node in the sequence is the parent of the previous one if any. In our
example, the nodes of labels 60, 78, 54 form an upward path. We have the
following property, a consequence of the Single Parent theorem:

Proof: consider an arbitrary node C and the upward path starting at C and
obtained by adding the parent of each node on the path, as long as there is one;
the Single Parent theorem ensures that this path is uniquely defined. If the path
is finite, its last element is the root, since any other node has a parent and hence
would allow us to add one more element to the path; so to prove the theorem it
suffices to show that all paths are finite.

The only way for a path to be infinite, since our binary trees are finite sets
of nodes, would be to include a cycle, that is to say if a node n appeared twice
(and hence an infinite number of times). This means the path includes a
subsequence of the form n … n. But then n appears in its own left or right
subtree, which is impossible from the definition of binary trees.

Considering downward rather than upward paths gives an immediate
consequence of the preceding theorem:

The height of a binary tree is the maximum number of nodes on a downward path
from the root to a leaf (or the reverse upward path). In the example (see figure
above) the height is 5, obtained through the path from the root to the leaf labeled 67.

Theorem: Root Path

From any node of a binary tree, there is a single upward path to the root.

Theorem: Downward Path

For any node of a binary tree, there is a single downward path connecting the
root to the node through successive applications of left and right links.

(From the figure on page 447.)

35

23 54

41 7818

12 60

67

90

RECURSION AND TREES §14.4452

It is possible to define this notion recursively, following again the recursive
structure of the definition of binary trees: the height of an empty tree is zero; the
height of a non-empty tree is one plus the maximum of (recursively) the heights of
its two subtrees. We may add the corresponding function to class BINARY_TREE:

This adapts the recursive definition to the convention used by the class, which
only considers non-empty binary trees, although either or both subtrees, left and
right, may be empty. Note again the similarity to hanoi.

Binary tree operations

Class BINARY_TREE as given so far has only three features, all of them queries:
item, left and right. We may add a creation procedure

and commands for changing the subtrees and the root value:

height: INTEGER
-- Maximum number of nodes on a downward path.

local
lh, rh: INTEGER

do
if left /= Void then lh := end
if right /= Void then rh := end
Result := 1 + lh.max (rh)

end

make (x: G)
-- Initialize with item value x.

do
item := x

ensure
set: item = x

end

add_left (x: G)
-- Create left child of value x.

require
no_left_child_behind: left = Void

do
create left.make (x)

end

add_right … Same model as add_left …

replace (x: G)
-- Set root value to x.

do item := x end

left.height
right.height

x.max (y) is the maxi-
mum of x and y.

← Page 447.

Note the precondition,
which prevents over-
writing an existing
child. It is possible to
add procedures
put_left and put_right,
which replace an exist-
ing child and do not
have this precondition.

§14.4 BINARY TREES 453

In practice it is convenient to specify replace as an assigner command for the
corresponding query, by changing the declarations of this query to

item: G
making it possible to write bt.item := x rather than bt.put (x).

Traversals

Being defined recursively, binary trees lead, not surprisingly, to many recursive
routines. Function height was one; here is another. Assume that you are
requested to print all the item values associated with nodes of the tree. The
following procedure, to be added to the class, does the job:

This uses the procedure print (available to all classes through their common
ancestor ANY) which prints a suitable representation of a value of any type; here the
type is G, the generic parameter in BINARY_TREE [G].

Remarkably, the structure of print_all is identical to the structure of hanoi.

Although the business of print_all is to print every node item, the algorithm
scheme is independent of the specific operation, here print, that we perform on
item. The procedure is an example of a binary tree traversal: an algorithm that
performs a certain operation once on every element of a data structure, in a
precisely specified order. Traversal is a case of iteration.

For binary trees, three traversal orders are often useful:

In these definitions, “visit” means performing the individual node operation,
such as print in the print_all example; “ ” means a recursive
application of the algorithm to a subtree, or no action if the subtree is empty.

Preorder and other traversals that always go as deep as possible into a
subtree before trying other nodes are known as depth-first.

print_all
-- Print all node values.

do
if left /= Void then end
print (item)
if right /= Void then end

end

Binary tree traversal orders

� Inorder: left subtree, visit root, right subtree.

� Preorder: visit root, left, right.

� Postorder: left, right, visit root.

← “Bracket notation
and assigner com-
mands”, page 384.

assign replace

print_all (left)

print_all (right)

→ “Overall inherit-
ance structure”, 16.10,
page 586.

← “Definition: Iterat-
ing”, page 397. For
further study see
“Agents for iteration”,
17.3, page 627.

traverse traverse

traverse traverse

traverse traverse

traverse

RECURSION AND TREES §14.4454

The procedure print_all is an illustration of inorder traversal. We may easily
express the other two variants in the same recursive form; for example, a routine
post for postorder traversal will have the routine body

where visit is the node operation, such as print.

In the quest for software reuse, it is undesirable to write a different routine for
variants of a given traversal scheme just because the visit operation changes. To
avoid this, we may use the operation itself as an argument to the traversal routine.
This will be possible through the notion of agent in a later chapter.

As another illustration of inorder traversal, consider again the binary tree of
executions of hanoi, for n = 3, with the nodes at level 0 omitted since nothing
interesting happens there:

Procedure hanoi is the mother of all inorder traversals: traverse the left subtree
if any; visit the root, performing move (source, target), as for each
node (source and target are the first two needle arguments); traverse the right
subtree if any. The inorder traversal, as illustrated by the bold line, produces the
required sequence of moves A B, A C, B C, A B, C A, C B, A B.

Binary search trees

For a general binary tree, procedure print_all, implementing inorder traversal,
prints the node values in an arbitrary order. For the order to be significant, we
must move on from binary trees to binary search trees.

The set G over which a general binary tree is defined can be any set. For
binary search trees, we assume that G is equipped with a total order relation

enabling us to compare two arbitrary elements of G through the boolean

if left /= Void then end

if right /= Void then end

visit (item)

post (left)

post (right)

→ “Writing an itera-
tor”, page 631.

3 A B C Hanoi

execution as

inorder

traversal
(From the figure on
page 450)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C Traversal
(inorder)

highlighted

→ We will learn more
about total orders in
the study of topologi-
cal sort: “Total
orders”, page 514.

§14.4 BINARY TREES 455

expression a < b, such that exactly one of a < b, b < a and a ~ b (object equality)
is true. Examples of such sets include INTEGER and REAL, with the usual <
relation, but G could be any other set on which we know a total order.

As usual we write a <= b for (a < b) or (a ~ b), and a > b for b < a. Over
such totally ordered sets we may define binary search trees:

The node values in the left subtree are less than the value for the root, and those
in the right subtree are greater; this property must apply not only to the tree as a
whole but also, recursively, to any of its immediate or indirect subtrees. We will
call it the Binary Search Tree Invariant.

This definition implies that all the item values of the tree’s node are
different. We will use this convention for simplicity. It is also possible
to accept duplications; then the conditions in the definitions become
le <= r and r <= ri. An exercise asks you accordingly to adapt the binary
search tree algorithms that we are going to see.

Our example binary tree of integers is a binary search tree: all
the values in the left subtree are less than the root value, 35, all
those in the right subtree are greater, and the same properties
hold recursively in every subtree.

The procedure print_all, applied to a binary search tree,
will print all the node items in order, from smallest to greatest.

Performance

Let us look more closely at why binary search trees are useful as container
structures — a potential competitor to hash tables. Indeed they usually provide
much better performance than sequential lists. Assuming random data, a
sequential list provides us, n being the number of items, with
� O (1) insertion (if we keep the items in the order of insertion).
� O (n) search.

Definition: binary search tree

A binary search tree over a totally ordered set G is a binary tree over G such
that, for any subtree of root item value r:
� The item value le of any node in the left subtree satisfies le < r.
� The item value ri of any node in the right subtree satisfies ri > r.

Programming Time!

Printing values in order

Using the procedures given so far, write a program that builds the example tree,
then prints the node items using print_all. Check that the values are in order.

The EiffelBase class is
BINARY_SEARCH_TREE.

→ Exercise 14-E.3,
page 500.

35

23 54

41 7818

12 60

67

90

← Second performance
table on page 407.

RECURSION AND TREES §14.4456

With a binary search tree, both operations can be O (log n), much better than O (n)
for large n. (Remember that in big-O notation it does not matter what base we
choose for the logarithms.) Here is the analysis for a full binary tree, that is to say
one in which both subtrees of any given node have exactly the same height h:

It is clear, by induction on h, that the number of nodes n in a full tree of height

h is 2h – 1 (in the above figure, h is 3 and n is 7). This implies that for a given
number of nodes n the height is log2 (n + 1), which is O (log n). In a full tree,

both a search and an insertion — using algorithms given below, which you can
already guess — will start from the root and follow a downward path to a leaf,
taking O (log n) time. This is the major attraction of binary search trees.

Of course most practical binary trees are not full; if you are out of luck with
the order of insertion, the performance can be as bad as with sequential lists,
O (n) — with added storage costs since each node has both a left field and a
right field where a linked list cell has just one. The following figure shows such
cases: insertions in descending order (A), ascending order (B), greatest then
smallest then second greatest and so on (C).

With a random enough order of insertions, however, the binary search tree will
remain sufficiently close to full to ensure O (log n) behavior. You can actually
guarantee O (log n) insertions, searches and deletions by using the AVL or
“red-black” variants of binary search trees, which remain near-full.

Inserting, searching, deleting

Here is a recursive routine for searching a binary search tree (this routine and
the following ones are to be added to the binary search tree class):

A full binary tree

← “Theorem: Down-
ward Path”, page 451.

Some binary

search tree

schemes causing

O (n) behavior

(A) (B) (C)

On these techniques,
see the bibliographic
references of the previ-
ous chapter, for exam-
ple Cormen et al.
(page 433).

§14.4 BINARY TREES 457

The algorithm is O (h) where h is the height of the tree, meaning O (log n) for
full or near-full trees.

In this case there is a reasonably simple non-recursive version, using a loop:

has (x: G): BOOLEAN

-- Does x appear in any node?
require

argument_exists: x /= Void

do

if x ~ item then

Result := True

elseif x < item then

Result := (left /=Void) and then

else -- x > item

Result := (right /= Void) and then

end

end

has1 (x: G): BOOLEAN
-- Does x appear in any node?

require
argument_exists: x /= Void

local
node: BINARY_TREE [G]

do
from

node := Current
until

Result or node = Void
invariant

-- x does not appear above node on downward path from root
loop

if x < item then
node := left

elseif x > item then
node := right

else
Result := True

end
variant

-- (Height of tree) – (Length of path from root to node)
end

end

~ is object equality.

left.has (x)

right.has (x)

← The variant and
invariant are
pseudocode; see
“Touch of Style: High-
lighting pseudocode”,
page 109.

RECURSION AND TREES §14.4458

For inserting an element, we may use the following recursive procedure:

The absence of an else clause for the outermost if reflects the decision to ban
duplicate information. As a consequence, a call to put with an already present
value will have no effect. This is correct behavior (“not a bug but a feature”),
since the header comment is clear. Some users might, however, prefer a different
API with a precondition stating not has (x).

The non-recursive version is left as an exercise.

The next natural question is how to write a deletion procedure remove (x: G).
This is less simple because we cannot just remove the node containing x (unless
it is a leaf and not the root, in which case we make the corresponding left or right

reference void); we also cannot leave an arbitrary value there since it would
destroy the Binary Search Tree Invariant.

More precisely we could put a special boolean attribute in every node, indicating
whether the item value is meaningful, but that makes things too complicated, wastes
space and affects the other algorithms.

What we should do is reorganize the node values, moving up some of those
found in subtrees of the node where we find x to reestablish the Binary Search
Tree Invariant.

put (x: G)
-- Insert x if not already present.

require
argument_exists: x /= Void

do
if x < item then

if left = Void then
add_left (x)

else

end

elseif x > item then
if right = Void then

add_right (x)
else

end
end

end

← About add_left and
add_right see page 452.

left.put (x)

right.put (x)

← See page 455.

→ 14-E.5, page 502.

§14.5 BACKTRACKING AND ALPHA-BETA 459

In the example binary search tree, a call remove (35),
affecting the value in the root node, might either:

� Move up all the values from the left subtree (where
each node has a single child, on the left).

� Move up the value in the right child, 54, then
recursively apply a similar choice to move values
up in one of its subtrees.

Like search and insertion, the process should be O (h)
where h is the height of the tree, in favorable cases.

The deletion procedure is left as an exercise; I
suggest you try your hand at it now, following the inspiration of the
preceding routines:

14.5 BACKTRACKING AND ALPHA-BETA

Before we explore the theoretical basis of recursive programming, it is useful to
look into one more application, or rather a whole class of applications, for which
recursion is the natural tool: backtracking algorithms.

The name carries the basic idea: a backtracking algorithm looks for a
solution to a certain problem by trying successive paths and, whenever a path
reaches a dead end, backing up to a previous path from which not all possible
continuations have been tried. The process ends successfully if it finds a path
that yields a solution, and otherwise fails after exhausting all possible paths, or
hitting a preset termination condition such as a search time limit.

A problem may be amenable to backtracking if every potential solution can
be defined as a sequence of choices.

The plight of the shy tourist

You may have applied backtracking, as a last resort, to reach a travel destination.
Say you are at position A (Zurich main station) and want to get to B (between the
main buildings of ETH and the University of Zurich):

Programming Time!

Deletion in a binary search tree

Write a procedure remove (x: G) that removes from a binary search tree the
node, if any, of item value x, preserving the Binary Search tree Invariant.

35

23 54

41 7818

12 60

67

90

(From the figure on page 447.)

RECURSION AND TREES §14.5460

Not having a map and too shy to ask for directions, you are reduced to trying out
streets and checking, after each try, if you have arrived (you do have a photo of
the destination). You know that the destination is towards the East; so, to avoid
cycles, you ignore any westward street segment.

At each step you try street segments starting from the north, clockwise: the
first attempt takes you to position 1. You realize that it is not your destination;
since the only possible segment from there goes west, this is a dead end: you
backtrack to A and try the next choice from there, taking you to 2. From there
you try 3, again a dead end as all segments go west. You backtrack to the
previous position, 2.

If all valid (non-westward) positions had been tried, 2 would be a dead-end
too, and you would have to go back to A, but there remains an unexplored
choice, leading to 4.

The process continues like this; you can complete the itinerary on the map
above. While not necessarily the best technique for traveling, it is sometimes the
only possible one, and it is representative of the general trial-and-error scheme
of backtrack programming. This scheme can be expressed as a recursive routine:

Trying and

backtracking

B

A
2

4

Intermediate

1

Dead-end

state

3

§14.5 BACKTRACKING AND ALPHA-BETA 461

This uses the following conventions: the choices at every step are described by
a type CHOICE (in many cases you may be able to use just INTEGER); there
is also a type PATH, but a path is simply a sequence of choices, and p + c is
the path obtained by appending c to p. We identify a solution with the path
that leads to it, so find returns a PATH; by convention that result is void if find

finds no solution. To know if a path yields a solution we have the query
is_solution. The list of choices available from p — an empty list if p is a dead
end — is p.choices.

To obtain the solution to a problem it suffices to use find (p0) where p0 is
an initial, empty path.

As usual, Result is initialized to Void, so that if in a call to find (p) none of
the recursive calls on possible extensions p + c of p yields a solution — in
particular, if there are no such extensions as p.choices is empty — the loop will
terminate with c.after; then find (p) itself will return Void. If this was the
original call find (p0), the process terminates without producing a solution; but
if not, it is a recursively triggered call, and the parent call will simply resume by
trying the next remaining choice if any (or returning Void too if none are left).

find (p: PATH): PATH

-- Solution, if any, starting at p.
require

meaningful: p /= Void

local

c: LIST [CHOICE]
do

if p.is_solution then

Result := p

else

c := p.choices

from c.start until

(Result /= Void) or c.after

loop

Result :=

c.forth

end

end

end

find (p + c)

RECURSION AND TREES §14.5462

If, on the other hand, the call finds p to be a solution, it returns p as its result,
and all the callers up the chain will return it as well, terminating their list
traversals through the Result /= Void clause of the exit condition.

Recursion is clearly essential to handle such a scheme. It is a natural way to
express the trial-and-error nature of backtracking algorithms; the machinery of
recursion takes care of everything. To realize its contribution, imagine for a
second how you would program such a scheme without recursion, keeping track
of previously visited positions. (I am not suggesting you actually write out the
full non-recursive version, at least not until you have read about
derecursification techniques further in this chapter.)

The later discussion also shows how to improve the efficiency of the given
algorithm by removing unnecessary bookkeeping. For example it is not really
necessary to pass the path p as an explicit argument, taking up space on the call
stack; p can instead be an attribute, if we add p := p + x before the recursive call and
p := p.head after it (where head yields a copy of a sequence with its last element
removed). We will develop a general framework allowing us to carry out such
optimizations safely.

Getting backtracking right

The general backtracking scheme requires some tuning for practical use. First,
as given, it is not guaranteed to terminate, as it could go on exploring ever longer
paths. To ensure that any execution terminates, you should either:

� Have a guarantee (from the problem domain) that there are no infinite paths;
in other words, that repeatedly extending any path will eventually yield a
path with an empty choices list.

� Define a maximum path length and adapt the algorithm so that it treats any
path as a dead-end when it reaches that limit. Instead of the path length you
may also limit the computation time. Either variant is a simple change to the
preceding algorithm.

In addition, a practical implementation can usually detect that a path is
equivalent to another; for example, with the situation pictured

→ “Implementation of
recursive routines”,
14.9, page 486.

→ “Preserving and
restoring the context”,
page 488.

→ Exercise “Back-
tracking curtailed”,
14-E.8, page 503.

Path with a cycle

1

3

2

4

§14.5 BACKTRACKING AND ALPHA-BETA 463

the paths [1 2 3 4], [1 2 3 4], [1 2 3 4 2] etc. are all equivalent.
The example of finding an itinerary to a destination avoided this problem through
an expedient — never go west, young man — but this is not a generalizable
solution. To avoid running into such cycles, the algorithm should keep a list of
previously visited positions, and ignore any path leading to such a position.

Backtracking and trees

Any problem that lends itself to a backtracking solution also lends itself to
modeling by a tree. In establishing this correspondence, we use trees where a
node may have any number of children, generalizing the concepts defined
earlier for binary trees. A path in the tree (sequence of nodes) corresponds to a
path in the backtracking algorithm (sequence of choices); the tree of the
itinerary example, limited to the choices that we tried, is:

We can represent the entire town map in this way: nodes for locations,
connected by edges representing street segment. The result is a graph. A graph
only yields a tree if it has no cycles. Here this is not the case, but we can get a
tree, called a spanning tree for the graph, containing all of its nodes and some
of its edges, through one of the techniques mentioned earlier: using a
cycle-avoiding convention such as never going west, or building paths from a
root and excluding any edge that leads to a previously encountered node. The
above tree is a spanning tree for the part of our example that includes nodes A,
1, 2, 3 and 4.

With this tree representation of the problem:

� A solution is a node that satisfies the given criterion (the property earlier
called is_solution, adapted to apply to nodes rather than paths).

� An execution of the algorithm is simply a preorder (depth-first) traversal
of the tree.

In the example, our preorder traversal visited nodes A, 1, 2, 3 and 4 in this order.

2 3 4 2 3 4 2 3 4

→ Exercise “Cycles
despised”, 14-E.9,
page 503.

← “Binary trees”,
14.4, page 447.

→ “Trying and back-
tracking”, page 460.

Backtrack treeA

2

4

1

3

← About this adapta-
tion see “Definition:
Tree associated with a
node”, page 448.

RECURSION AND TREES §14.5464

This correspondence indicates that “Preorder” and “backtracking” are

essentially the same idea : the rule that whenever we consider a possible path

we exhaust all its possible extensions — all the subtrees of its final node —

before we look at any of the alternative choices at the same level, represented

by siblings of its node. For example if A in the previous figure has a third child,

the traversal will not consider it before it has exhausted all the subtrees of 2.

The only property distinguishing a backtracking algorithm from an ordinary

preorder traversal is that it stops as soon as it finds a node satisfying the given criterion.

“Preorder” was defined for binary trees as root first, then left subtree, then right

subtree. The left-to-right order — generalized to arbitrary trees by assuming that the

children of each node are ordered — is not essential here; “depth-first” does not

imply any such ordering. It is just as simple, however, to assume that the choices

open to the algorithm at every stage are numbered, and tried in order.

Minimax

An interesting example of the backtracking strategy, also modeled naturally as

a tree, is the “minimax” technique for games such as chess. It is applicable if

you can make the following assumptions about the game:

� It is a two-player game. We assume two players called Minnie and

Maximilian, the latter familiarly known as Maxi.

� To evaluate the situation at any time during a game, you have an evaluation

function with a numerical value, devised so that a lower value is better for

Minnie and a higher one for Maxi.

A primitive evaluation function in checkers, assuming Maxi is Black, would be

(mb – mw) + 3 ∗ (kb – kw) where mb, mw are the numbers of black and white “men”

and kb, kw the corresponding numbers of “kings”; the evaluation function considers

a king to be worth three times as much as a man. Good game-playing programs use

far more sophisticated functions.

Minnie looks for a sequence of moves leading to a position that minimizes the

evaluation function, and Maxi for one that maximizes it.

§14.5 BACKTRACKING AND ALPHA-BETA 465

Each player uses the minimax strategy to choose, from a game position, one of
the legal moves. The tree model represents possible games; successive levels of
the tree alternatively represent the moves of each player.

In the figure, we start from a position where it is Minnie’s turn to play. The
goal of the strategy is to let Minnie choose, among the moves available from the
current position (three in the figure), the one that guarantees the best outcome
— meaning, in her case, the minimal guaranteed evaluation function value in
leaves of the tree. The method is symmetric, so Maxi would rely on the same
mechanism, maximizing instead of minimizing.

This assumption of symmetry is essential to the minimax strategy, which
performs a depth-first traversal of the tree of moves to assign a value to
every node:

M1 The value of a leaf is the result of applying the evaluation function to the
corresponding game position.

M2 The value of an internal node from which the moves are Maxi’s is the
maximum of the of the node’s children.

M3 In Minnie’s case it is the minimum of the children’s .

The value of the game as a whole is the value associated with the root node. To
obtain a strategy we must retain for each internal node, in cases M2 and M3, not
only the value but also the child choice that leads to this value. Here is an
illustration of the strategy obtained by assuming some values for the evaluation
function (shown in color) in the leaves of our example tree:

Game treeMinnie

Minnie

Maxi

values

values

RECURSION AND TREES §14.5466

You can see that the value at each node is the minimum (at levels 1 and 3) or
maximum (at level 2) of the values of the children. The desirable move for
Minnie, guaranteeing the minimum value , is choice C.

Backtracking is appropriate for minimax since the strategy must obtain the
values for every node’s children before it can determine the value for the node
itself, requiring a depth-first traversal.

The following algorithm, a variation on the earlier general backtracking
scheme, implements these ideas. It is expressed as a function minimax returning
a pair of integers: guaranteed value from a starting position p, initial choice
leading to that value. The second argument l is the level at which position p

appears in the overall game tree; the first move from that position, returned as part
of the result, is Minnie’s move as in the figures if l is odd, and Maxi’s if l is even.

minimax (p: POSITION; l: INTEGER): TUPLE [value, choice: INTEGER]
-- Optimal strategy (value + choice) at level l starting from p.

local

next: TUPLE [value, choice: INTEGER]
do

if p.is_terminal (l) then

Result := [value: p.value; choice: 0]
else

c := p.choices

from

Result := worst (l)
c.start

until c.after loop

next :=
Result := better (next, Result, l)

end

end

end

Game tree with

valuations

Minnie (level 1)

Minnie (level 3)

Maxi (level 2)

124 –96 59 –78 3

–7548 –9

–78 5

–7

A B C

10 2

2

20–1

–1

–7

minimax (p.moved (c.item), l + 1)

§14.5 BACKTRACKING AND ALPHA-BETA 467

To represent the result, we use a tuple of integers representing the value and
the choice.

The auxiliary functions worst and better are there to switch between
Minnie’s and Maxi’s viewpoints: the player is minimizing for any odd level l
and maximizing for any even l.

To determine the worst possible value for either player we assume constants
Max, with a very large value, and Min, with a very small value, for example the
largest and smallest representable integers.

Function minimax assumes the following features from class POSITION:

� is_terminal indicates that no moves should be explored from a position.

� In that case value gives the value of the evaluation function. (The query
value may have the precondition is_terminal.)

� For a non-terminal position choices yields the list of choices, each
represented by an integer, leading to a legal moves.

� If i is such a choice, moved (i) gives the position resulting from applying the
corresponding move to the current position.

worst (l: INTEGER): INTEGER

-- Worst possible value for the player at level l.
do

if l \\ 2 = 1 then Result := Max else Result := Min end

end

better (a, b: TUPLE [value, choice: INTEGER]; l: INTEGER):
TUPLE [value, choice: INTEGER]

-- The better of a and b, according to their value, for player at level l.
do

if l \\ 2 = 1 then

Result := (a.value < b.value)
else

Result := (a.value > b.value)
end

end

\\ is integer remainder.

To avoid the repeated
use of the TUPLE
type, you may instead
define a small class
GAME_RESULT with
integer attributes
value and choice.

RECURSION AND TREES §14.5468

The simplest way to ensure that the algorithm terminates is to limit the depth of

the exploration to a set number of levels Limit. This is why is_terminal as given

includes the level l as argument; it can then be written as just

In practice a more sophisticated cutoff criterion is appropriate; for example the

algorithm could keep track of CPU time and stop exploration from a given

position when the exploration time reaches a preset maximum.

To run the strategy we call minimax (initial, 1) where initial is the initial

game position. Level 1, odd, indicates that the first move is Minnie’s.

Alpha-beta

The minimax strategy as seen so far always performs a full backtracking

traversal of the tree of relevant moves. An optimization known as alpha-beta

pruning can significantly improve its efficiency by skipping the exploration of

entire subtrees. It is a clever idea, worth taking a look at not just because it is

clever but also as an example of refining a recursive algorithm.

Alpha-beta is only meaningful if, as has been our assumption for minimax,

the game strategy for each of the two players assumes that the other player’s

strategy is reversed (one minimizes, the other maximizes) but otherwise identical.

The insight that can trim entire subtrees in the exploration is that it is not

necessary for a player at level l + 1 to continue exploring a subtree if it finds that

this could only deliver a result better for the player itself, and hence worse for

its adversary, than what the adversary has already guaranteed at level l: the

adversary, which uses the reversed version of the strategy, would never select

that subtree.

is_terminal (l: INTEGER): BOOLEAN
-- Should exploration, at level l, stop at current position?

do
Result := (l = Limit) or choices.is_empty

end

This discussion refers
to a player as “it”
since our players are
program elements.

§14.5 BACKTRACKING AND ALPHA-BETA 469

The previous example provides an illustration. Consider the situation after
the minimax algorithm has explored some of the initial nodes:

We are in the process of computing the value (a maximum) for node Ma1, and
as part of this goal the value (a minimum) for node Mi2. From exploring the first
subtree of Ma1, rooted at Mi1, we already have a tentative maximum value for
Ma1: 8, signaled by a question mark since it is only temporary. This means a
guarantee for Maxi that he will not do, at Ma1, worse than 8. For Maxi, “worse”
means lower. In exploring the Mi2 subtree we come to Ma2, where the value —
obtained in this case from the evaluation function since Ma2 is a leaf, but the
reasoning would apply to any node — is 6. So at node Mi2 Minnie will not do
worse (meaning, in her case, higher) than 6. But then Maxi would never, from
node Ma2, take choice B leading to Mi2, since he already has a better result from
choice A. Continuing to explore the subtree rooted at Mi2, part of choice B,
would just be a waste of time. So as soon as it has found value 6 at Ma2 the
alpha-beta strategy discards the rest of the Mi2 subtree.

In the figure’s example there is only one node left in the Mi2 subtree after Ma2 and
we are at the leaf level, but of course Ma2 could have many more right siblings with
large subtrees.

Not only is this optimization an interesting insight; it also provides a good
opportunity to hone our recursive programming skills. Indeed do not wait for the
solution (that is to say, refrain from turning the page just now!) and try first to
devise it by yourself:

Programming time!
Adding Alpha-beta to Minimax

Adapt the minimax algorithm, as given earlier, so that it will use the alpha-beta
strategy to avoid exploring useless subtrees.

Trimming barren

subtrees

98

8

8?

–7

10

Minnie

Maxi
Mi2

Ma1

Mi1

Ma2

6?

A B

Minnie

6

← Function minimax,
page 466.

RECURSION AND TREES §14.5470

The extension is simple. (Well, as you will have noted if you did try, it requires
some care to get the details right, in particular to avoid getting our better

comparisons upside down.) The routine needs one more argument to denote
the value, if any, already guaranteed for the adversary at the level immediately
above. Here is minimax updated for Alpha-beta, additions highlighted:

Each player now stops exploring its alternatives whenever it finds a result that
is “better” for the adversary than the “guarantee” the adversary may already
have assured.

Since better was defined without a precondition it will accept a zero level, so it is
acceptable to pass it l – 1. We might equivalently pass l + 1. In fact a slightly simpler
variant of better (guarantee, Result, l – 1) is better (Result, guarantee, l); it is
equivalent thanks to the symmetric nature of the strategy.

The recursive call passes as a “guarantee” to the next level the best Result

obtained so far for the current level. As a consequence, alpha-beta’s trimming,
which stops the traversal of a node’s children when it hits the new exit trigger

, will never occur when the node itself is the
first child of its own parent; this is because the loop initializes Result to the worst

value for the player, so the initial guarantee is useless. Only when the traversal
moves on to subsequent children does it get a chance to trigger the optimization.

Minimax and alpha-beta provide a representative picture of backtracking
algorithms, which have widespread applications to problems defined by large
search spaces. The key to successful backtracking strategies is often — as
illustrated by alpha-beta — to find insights that avoid exhaustive search.

alpha_beta (p: POSITION; l: INTEGER;):
TUPLE [value, choice: INTEGER]

-- Optimal strategy (value + choice) at level l, starting from p.
-- Even level minimizes, odd level maximizes.

local
next: TUPLE [value, choice: INTEGER]

do
if p.is_terminal (l) then

Result := [value: p.value; choice: 0]
else

c := p.choices
from

Result := worst (l)
c.start

until c.after loop

next := minimax (p.moved (c.item), l + 1),)
Result := better (next, Result, l)

end
end

end

← The parts not high-
lighted are unchanged
from minimax, page
466 (departing from
the convention of the
rest of this chapter,
which highlights
recursive branches).

guarantee: INTEGER

or better (guarantee, Result, l – 1)
Result

better (guarantee, Result, l – 1)

§14.6 FROM LOOPS TO RECURSION 471

14.6 FROM LOOPS TO RECURSION

Back to the general machinery of recursion.

We have seen that some recursive algorithms — Fibonacci numbers, search
and insertion for binary search trees — have a loop equivalent. What about the
other way around?

It is indeed not hard to replace any loop by a recursive routine. Consider an
arbitrary loop, given here without its invariant and variant (although we will see
their recursive counterparts later):

We may replace it by

with the procedure

In functional languages (such as Lisp, Scheme, Haskell, ML), the recursive
form is the preferred style, even if loops are available. We could use it too in our
framework, replacing for example the first complete example of the discussion
of loops, which animated a Metro line by moving a red dot, with

from Init until Exit loop Body end

Init

loop_equiv

loop_equiv

--Emulate a loop of exit condition Exit and body Body.
do

if not Exit then

Body

end

end

Line8.start

animate_rest (Line8)

Loop_equiv

← “Functional pro-
gramming and func-
tional languages”,
page 324.

← Page 168.

RECURSION AND TREES §14.6472

relying on the auxiliary routine

(A more complete version should restore the cursor to its original position.)

The recursive version is elegant, but there is no particular reason in our
framework to prefer it to the loop form; indeed we will continue to use loops.

The conclusion might be different if we were using functional programming
languages, where systematic reliance on recursive routines is part of a distinctive
style of programming.

Even if just for theoretical purposes, it is interesting to know that loops are
conceptually not needed if we have routines that can be recursive. As an
example, recursion gives us a more concise version of the loop-based routine
paradox demonstrating the unsolvability of the Halting Problem:

Knowing that we can easily emulate loops with recursion, it is natural to ask
about the reverse transformation. Do we really need recursive routines, or could
we use loops instead?

We have seen straightforward cases: Fibonacci as well as has and put for
binary search trees. Others such as hanoi, height, print_all do not have an
immediately obvious recursion-free equivalent. To understand what exactly
can be done we must first look more closely into the meaning and properties
of recursive routines.

animate_rest (line: LINE)
-- Animate stations of line from current cursor position on

do

if not line.after then

show_spot (line.item.location)
line.forth

end

end

recursive_paradox

-- Terminate if and only if not.
do

if terminates ("C:\your_project") then

end

end

animate_rest (line)

← “An application:
proving the undecid-
ability of the halting
problem”, page 223.

recursive_paradox

§14.7 MAKING SENSE OF RECURSION 473

14.7 MAKING SENSE OF RECURSION

The experience of our first few recursive schemes allows us to probe a bit deeper
into the meaning of recursive definitions.

Vicious circle?

First we go back to the impolite but inevitable question: does the recursive
emperor have any clothes? That is to say, does a recursive definition mean
anything at all? The examples, especially those of recursive routines, should by
now be sufficiently convincing to suggest a positive answer, but we should still
retain a healthy dose of doubt. After all we keep venturing dangerously close to
definitions that make no sense at all — vicious circles. With recursion we try to
define a concept in terms of itself, but we cannot just define it as itself. If I say

I have not defined anything at all, just stated a tautology; not one of those
tautologies of logic, which are things to prove and hence possibly interesting,
just a platitude. If I refine this into

I have added some usable elements but still not produced a satisfactory
definition. Recursive routines can, similarly, be obviously useless, as:

which for any value of the argument would execute forever, never producing
any result.

“Forever” in this case means, for a typical compiler’s implementation of recursion
on an actual computer, “until the stack overflows and causes the program to crash”.
So in practice, given the speed of computers, “forever” does not last long. — you
can try the example for yourself.

How do we avoid such obvious misuses of recursion? If we attempt to
understand why the recursive definitions seen so far seem intuitively to make
sense, we can nail down three interesting properties:

“Computer science is the study of computer science”

“Computer science is the study of programming, data structures, algorithms,
applications, theories and other areas of computer science”

p (x: INTEGER)
-- What good is this?

do end

← “Definition: Tau-
tology”, page 78.

p (x)

→ You can see an
example of the result
on page 665.

RECURSION AND TREES §14.7474

For a recursive routine, the change of “context” (R2) may be that the call

uses a different argument, as will a call r (n–1) in a routine r (n: INTEGER);

that it applies to a different target, as in a call x.r (n) where x is not the

current object; or that it occurs after the routine has changed at least one field

of at least one object.

The recursive routines seen so far satisfy these requirements:

� The body of Hanoi (n, …) is of the form if n > 0 then … end where the

recursive calls are in the then part, but there is no else part, so the routine

does nothing for n = 0 (R1). The recursive calls are of the form

Hanoi (n–1, …), changing the first argument and also switching the order

of the others (R2). Replacing n by n–1 brings the context closer to the

non-recursive case n = 0 (R3).

� The recursive has for binary search trees has non-recursive cases for

x = item, as well as for x < item if there is no left subtree, and x > item if there

is no right subtree (R1). It calls itself recursively on a different target, left or

right rather than the current object (R2); every such call goes to the left or

right subtree, closer to the leaves, where the recursion terminates (R3). The

same scheme governs other recursive routines on binary trees, such

as height.

� The recursive version of the metro line traversal, animate_rest, has a

non-recursive branch (R1), doing nothing, for a cursor that is after. The

recursive call does not change the argument, but it is preceded by a call

line.forth which changes the state of the line list (R2), moving the cursor

closer to a state satisfying after and hence to the non-recursive case (R3).

Touch of Methodology:

Well-formed recursive definition

A useful recursive definition should ensure that:
R1 There is at least one non-recursive branch.
R2 Every recursive branch occurs in a context that differs from the original.
R3 For every recursive branch, the change of context (R2) brings it closer to

at least one of the non-recursive cases (R1).

← Page 443.

← Page 457.

← Page 452.

← Page 472.

§14.7 MAKING SENSE OF RECURSION 475

R1, R2 and R3 also hold for recursive definitions of concepts other than routines:

� The mini-grammar for Instruction has the non-recursive case Assignment.

� All our recursively defined data structures, such as STOP, are recursive
through references (never through expanded values), and references can be
void; in linked structures, void values serve as terminators.

In the case of recursive routines, combining the above three rules suggests a
notion of variant similar to the loop variants through which we guarantee that
loops terminate:

The variant may involve the arguments of the routine, as well as other parts of
its environment such as attributes of the current object or of other objects. In the
examples just reviewed:

� For Hanoi (n, …), the variant is n.

� For has, height, print_all and other recursive traversals of binary trees, the
variant is node_height, the longest length of a path from the current node to
a leaf.

� For animate_rest, the variant is, as for the corresponding loop, Line8.count

– Line8.index + 1.

There is no special syntax for recursion variants, but we will use a comment of
the following form, here for hanoi:

Touch of Methodology:

Recursion Variant

Every recursive routine should be declared with an associated recursion
variant, an integer quantity associated with any call, such that:
� The routine’s precondition implies that the variant is non-negative.

� If an execution of the routine starts with a value v for the variant, the value
v’ of the variant for any recursive call satisfies 0 ≤ v’ < v.

-- variant n

← Page 437.

← Page 437.

← “Loop termination
and the halting prob-
lem”, page 161.

← Page 168.

RECURSION AND TREES §14.7476

Boutique cases of recursion

The well-formedness rules seem so reasonable that we might think they are
necessary, not just sufficient, to make a recursive definition meaningful. Such is
indeed the case with the first two properties:

� R1: if all branches of a definition are recursive, it cannot ever yield any instance
we do not already know. In the case of a recursive routine, execution will not
terminate, except in practice through a crash following memory exhaustion.

� R2: if a recursive branch applies to the original context, it cannot ever yield
an instance we do not already know. For a recursive routine — say p (x: T)
with a branch that calls p (x) for the same x with nothing else changed —
this means that the branch, if taken, would lead to non-termination. For
other recursive definitions, it means the branch is useless.

The story is different for R3, if we take this rule as requiring a clearly visible
recursion variant such as the argument n for Hanoi. Some recursive routines which
do terminate violate this property. Here are two examples. They have no practical
application, but highlight general properties of which you must be aware.

McCarthy’s 91 function was devised by John McCarthy, a professor at
Stanford University, designer of the Lisp programming language (where
recursion plays a prominent role) and one of the creators of Artificial
Intelligence. We may write it as follows:

The value for n > 100 is clearly n – 10, but it is far less obvious — from a
computation shrouded in two nested recursive calls — that for any integer up to
99, including negative values, the result will be 91, explaining the function’s
name. The computation indeed terminates on every possible integer value. Yet
it has no obvious variant; mc_carthy (mc_carthy (n + 11)) actually uses as
argument of the innermost recursive call a higher value than the original!

mc_carthy (n: INTEGER): INTEGER

-- McCarthy’s 91 function.
do

if n > 100 then

Result := n – 10
else

Result := mc_carthy (mc_carthy (n + 11))
end

end

← See “Functional
programming and
functional lan-
guages”, page 324
(with photograph of
McCarthy).

§14.7 MAKING SENSE OF RECURSION 477

Here is another example, also a mathematical oddity:

This uses the operator // for rounded down integer division (5 // 2 and 4 // 2 are
both 2), and a boolean expression even (n) to denote whether n is an even
integer; even (n) can also be expressed as n \\ 2 = 0, using the integer remainder
operator \\. The two occurrences of a // division in the algorithm apply to even
numbers, so they are exact.

Clearly, if this function gives any result at all, that result can only be 1, the
value produced by the sole non-recursive branch. Less clear is whether it will
give this result — that is to say, terminate — for any possible argument. The
answer seems to be yes; if you write the program, and try it on sample values,
including large ones, you will be surprised to see how fast it converges. Yet there
is no obvious recursion variant; here too the change seems to go in the wrong
direction: the new argument in the second recursive branch, (3 ∗ n + 1) // 2, is
actually larger than n, the previous value.

These are boutique examples, but we must take their existence into account
in any general understanding of recursion. They mean that some recursive
definitions exist that do not satisfy the seemingly reasonable methodological
rules discussed above — and still yield well-defined results.

Note that such examples, if they terminate for every possible argument, do
have a variant: since for any execution of the routine the number of remaining
recursive calls is entirely determined by the program’s state at the time of the
call; it is a function of the state, and can serve as a variant. Rather, it could serve
as a variant if we knew how to express it. If we don’t, its theoretical existence
does not help us much.

bizarre (n: INTEGER): INTEGER

-- A function that can yield only a 1.
require

positive: n >= 1
do

if n = 1 then

Result := 1
elseif even (n) then

Result := bizarre (n // 2)
else -- i.e. for n odd and n > 1

Result := bizarre ((3 ∗ n + 1) // 2)
end

end

n / 2, using the other
division operator /,
would give a REAL
result; for example 5 /2
is 2.5.

RECURSION AND TREES §14.7478

You will have noted that it is not possible to determine automatically — through
compilers or any other program analysis tools — whether a routine has a recursive
variant, even less to derive such a variant automatically: that would mean that we
can solve the Halting Problem.

In practice we dismiss such examples and limit ourselves to recursive
definitions that possess properties R1, R2 and R3, guaranteeing that they are
safe. In particular, whenever you write a recursive routine, you must always —
as in the examples of the rest of this chapter — explicitly list a recursive variant.

Keeping definitions non-creative

Even with well-formedness rules and recursion variants, we are not yet off the
hook in our attempts to use recursion and still sleep at night. The problem is that
a recursive “definition” is not a definition in the usual sense because it can
be creative.

An axiom in mathematics is creative: it tells us something that we cannot
deduce without it, for example (in the standard axioms for integers) that n < n’

holds for any integer n, where n’ is the next integer. The basic laws of natural
sciences are also creative, for example the rule that nothing can travel faster than
the speed of light.

Theorems in mathematics, and specific results in physics, are not creative:
they state properties that can be deduced from the axioms or laws. They are
interesting on their own, and may start us on the path to new theorems; but they
do not add any assumptions, only consequences of previous assumptions.

A definition too should be non-creative. It gives a new name for an object
of our world, but all statements we can express with the definition could be
expressed without it. We do not want to express them without it — otherwise
we would not introduce the definition — but we trust that in principle we could.
If I say

I have not added anything to mathematics; I am just allowing myself to use the

new notation e2, for any expression e, in lieu of the multiplication. Any property
that can be proved using the new form could also be proved — if more clumsily
— using the form that serves to define it.

The symbol , which we have taken to mean “is defined as” (starting with
BNF productions), assumes this principle of non-creativity of definitions. But
now consider a recursive definition, of the form

Define x2, for any x, as x ∗ x

f some_expression [1]

← “An application:
proving the undecid-
ability of the halting
problem”, page 223.

=Δ

← From page 298 on.

=Δ

§14.7 MAKING SENSE OF RECURSION 479

where some_expression involves f. It does not satisfy the principle any more! If
it did we could replace any occurrence of f by some_expression; this involves f
itself, so we would have to do it again, and so on ad infinitum. We have not
really defined anything.

Until we have solved this issue — by finding a convincing, non-creative
meaning for “definitions” such as [1] — we must be careful in our terminology.
We will reserve the symbol for non-recursive definitions; a property such as
[1] will be expressed as an equality

which simply states a property of the left and right sides. (We may also view it
as an equation, of which f must be a solution.) To be safe when talking about
recursive “definitions”, we will quarantine the second word in quotes.

The bottom-up view of recursive definitions

To sanitize recursion and bring it out of the quarantined area, it is useful to take
a bottom-up view of recursive routines and, more generally, recursive
“definitions”. I hope this will remove any feeling of dizziness that you may still
experience when seeing concepts or routines defined — apparently — in terms
of themselves.

In a recursive “definition”, the recursive branches are written in a top-down

way, defining the meaning of a concept in terms of the meaning of the same
concept for a “smaller” context — smaller in the sense of the variant. For
example, Fibonacci for n is expressed in terms of Fibonacci for n – 1 and n – 2;
the moves of Hanoi for n are expressed in terms of those for n – 1; and the syntax
for Instruction involves a Conditional that contains a smaller Instruction.

The bottom-up view is a different interpretation of the same definition,
treating it the other way around: as a mechanism that, from known values, gives
new ones. Here is how it works, first on the example of a function. For any
function f we may build the graph of the function: the set of pairs [x, f (x)] for
every applicable x. The graph of the Fibonacci function is the set

consisting of all pairs [n, Fibonacci (n)] for all non-negative integers n. This
graph contains all information about the function. You may prefer to think of it
in the following visual representation:

f some_expression [2]

F =Δ {[0, 0], [1, 1], [2, 1], [3, 2], [4, 3], [5, 5], [6, 8], [7, 13] …} [3]

=Δ

=

The quarantine ends
on page 482.

RECURSION AND TREES §14.7480

The top row lists possible arguments to the function; for each of them, the
bottom row gives the corresponding fibonacci number.

To give the function a recursive “definition” is to say that its graph F — as
a set of pairs — satisfies a certain property

for a certain function h applicable to such sets of pairs. This is like an equation
that F must satisfy, and is known as a fixpoint equation. A fixpoint equation
expresses that a certain mathematical object, here a function, remains invariant
under a certain transformation, here h.

For example to “define” the Fibonacci function recursively as

is to state that its graph F — the above set of pairs [3] — satisfies the fixpoint
equation F = h (F) [4] where h is the function that, given such a set of pairs,
yields a new one containing the following pairs:

G1 Every pair already in F.

G2 [0, 0]. -- The pair for n = 0: [0, fib (0)]

G3 [0, 1]. -- The pair for n = 0: [1, fib (1)]

G4 Every pair of the form [i, a + b] for some i such that F contains both a pair
of the form [i – 1, a] and another of the form [i – 2, b].

We can use this view to give any recursive “definition” a clear meaning, free of
any recursive mystery. We start from the function graph F0 that is empty (it
contains no pair). Next we define

F = h (F) [4]

fib (0) = 0
fib (1) = 1
fib (i) = fib (i – 1) + fib (i – 2)-- For i > 1

F1 =Δ h (F0)

INTEGER …

INTEGER …

0 1 1 3 82 5 13

0 1 2 4 63 5 7 A function graph

(for the Fibonacci

function)

§14.7 MAKING SENSE OF RECURSION 481

meaning, since G1 and G4 are not applicable in this case (as F0 has no pair), that
F1 is simply {[0, 0], [1, 1]}, with the two pairs given by G2 and G3. Next we
apply h once more to get

Here and in subsequent steps G2 and G3 give us nothing new, since the pairs
[0, 0] and [1, 1] are already in F1, but G4, applied to these two pairs from F1,
adds to F2 the pair [2, 1]. Continuing like this, we define a sequence of graphs:
F0 is empty, and each Fi+1 for i > 0 is defined as h (Fi). Now consider the infinite
union F of all the Fi for every natural integer i: F0 ∪ F1 ∪ F2 ∪ …, more
concisely written

where N is the set of natural integers. It is easy to see that this F satisfies the
property F = h (F) [4].

This is the non-recursive interpretation — the semantics — we give to the
recursive “definition” of Fibonacci.

In the general case, a fixpoint equation of the form [4] on function graphs,
stating that F must be equal to h (F), admits as a solution the function graph

where Fi is a sequence of function graphs defined as above:

This fixpoint approach is the basis of the bottom-up interpretation of recursive
computations. It removes the apparent mystery from these definitions because
it no longer involves defining anything “in terms of itself”: it simply views a
recursive “definition” as a fixpoint equation, and admits a solution obtained as
the union (similar to the limit of a sequence in mathematical analysis) of a
sequence of function graphs.

F2 =Δ h (F1)

F =Δ

F0 =Δ { } -- Empty set of pairs

Fi =
Δ h (Fi – 1) -- For i > 0

∪
i ∈N

Fi

∪
i ∈N

Fi

The empty set can, of
course, be written also
as ∅. The notation { }
emphasizes that it is a
set of pairs.

RECURSION AND TREES §14.7482

This immediately justifies the requirement that any useful recursive “definition”
must have a non-recursive branch: if not, the sequence, which starts with the empty
set of pairs F0 = { }, never gets any more pairs, because all the cases in the definition
of h are like G1 and G4 for Fibonacci, giving new pairs deduced from existing ones,
but there are no pairs to begin with.

This technique reduces recursive “definitions”, with all the doubts they raise as
to whether they define anything at all, to the well-known, traditional notion of
defining a sequence by induction.

The Fibonacci function is a good example for understanding the concepts,
but perhaps not sufficient to get really excited: after all, its usual definition in
mathematics textbooks already involves induction; only computer scientists
look at the function in a recursive way. What we saw is that we can treat its
recursive “definition” as an inductive definition — a good old definition,
without the quotes — of the function’s graph. We did not learn anything about
the function itself, other than a new viewpoint. Let us see whether the bottom-up
view can teach us something about a few of our other examples.

Bottom-up interpretation of a construct definition

Understood in a bottom-up spirit, the recursive definition of “type” has a clear
meaning. As you will remember, it said that a is either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T], where C is a generic class and T
a .

T1 is the non-recursive case. The bottom-up perspective enables us to
understand the definition as building the set of types as a succession of layers.
Limiting for simplicity the number of possible generic parameters to one:

� Layer L0 has all the types defined by non-generic classes: INTEGER,

STATION and so on.

� Layer L1 has all the types of the form C [X], where C is a generic class and

X is at level L0: LIST [INTEGER], ARRAY [STATION] etc.

� More generally, layer Ln for any n > 0, has all the types of the form C [X],

where X is at level Li for i < n.

This way we get all possible types, generically derived or not.

← R1, page 474.

This is the end of the
“quarantine” decreed
on page 479.

← “Definitions: Class
type, generically
derived, base class”,
page 370.

type

type

§14.7 MAKING SENSE OF RECURSION 483

The towers, bottom-up

Now consider the Tower of Hanoi solution from a bottom-up perspective. We
may understand the routine as recursively defining a sequence of moves. Let’s
denote such a sequence — move a disk from the top of needle A to B, then one
from C to A and so on — as <A → B, C → Α, …>. The empty sequence of
moves will be < > and the concatenation of sequences will use a simple “+”, so
that <A → B, C → Α> + <B → A> is <A → B, C → Α, B → A>.

Then we may express the recursive solution to the Towers of Hanoi problem
as a function han with four arguments (an integer and three needles), yielding
sequences of moves, and satisfying the fixpoint equation

defined only when the values of s, t, o (short for source, target, other) are
different — we take them as before to range over 'A', 'B', 'C' — and n is positive.

The bottom-up construction of the function that solves this equation is simple.
[5] lets us initialize the function’s graph to all pairs for n = 0, each of the form

for s, t, o ranging over all permutations of 'A', 'B', 'C'. Let us call H0 this first part
of the graph, made of six pairs.

Now we may use [6] to obtain the next part H1, containing all the values for
n = 1; they are all of the form

since for any sequence x the concatenation < > + x or x + < > is x itself. The next
iteration of [6] gives us H2, whose pairs are of the form

for all s, t, o such that H1 contains both a pair of the form [(1, s, o, t), f1] and one
of the form [(1, o, t, s), g1].

han (n, s, t, o) =
< > -- If n = 0 [5]

han (n – 1, s, o, t) + + han (n – 1, o, t, s) -- If n > 0 [6]

[(, s, t, o),]

[(, s, t, o),]

[(, s, t, o), f1 + + g1]

<s → t>

0 < >

1 <s → t>

2 <s → t>

RECURSION AND TREES §14.7484

Iterating again will give us H3 and subsequent elements of the graph. The
complete graph — infinite of course, since it includes pairs for all possible
values of n — is the set of all pairs in all elements of the sequence, .

Here I strongly suggest that you get a concrete grasp of the bottom-up view
of recursive computation by writing a program that actually builds the graph:

A related exercise asks you to determine (without programming) the
mathematical properties of the graph.

Another important exercise directs you to apply a similar analysis to binary
tree traversals. You will have to devise a model for representing the solution,
similar to the one we have used here; instead of sequences of moves you will
simply use sequences of nodes.

Grammars as recursively defined functions

The bottom-up view is particularly intuitive for a recursive grammar, as in our
small example:

distilled even further here: ifc represents “if Condition then” and ast represents
Assignment, both treated as terminals for this discussion.

It is easy to see how to generate successive sentences of the language by
interpreting these productions in a bottom-up, fixpoint-equation style:

and so on. You can also look again, in light of the notion of bottom-up recursive
computation, at the earlier discussion of the little Game language.

It is possible to generalize this approach to arbitrary grammars by taking a
matrix view of a BNF description.

Programming time:

Producing the graph of a function

Write a program (not using recursion) that produces successive elements H0,
H1, H2 … of the function graph for the recursive Hanoi solution.

Instruction =Δ ast | Conditional

Conditional =Δ ifc Instruction end

ast

ifc ast end

ifc ifc ast end end

ifc ifc ifc ast end end end

∪
i ∈N

Hi

→ Details in exercise
14-E.11, page 503.

→ 14-E.10, page 503.

→ 14-E.12, page 503.

← Actual version
on page 437.

← “Recursive gram-
mars”, page 307.

→ Exercise 14-E.17,
page 504.

§14.8 CONTRACTS FOR RECURSIVE ROUTINES 485

14.8 CONTRACTS FOR RECURSIVE ROUTINES

We have learned to equip our classes and their features with contracts stating
their correctness properties: routine preconditions, routine postconditions, class
invariants; the same concerns applied to algorithms gave us loop variants and
loop invariants. How does recursion affect the picture?

We have already seen the notion of recursion variant. If a routine is
recursive directly or indirectly, you should include a mention of its variant. As
noted, we do not have specific language syntax for this but add a clause

to the routine’s header comment.

A recursive routine may have a precondition and postcondition like any
other routine. Because ensuring a precondition is always the responsibility of
the caller, and here the routine is its own caller, the novelty is that you must
ensure that all calls within the routine (or, for indirect recursion, in associated
routines) satisfy the precondition.

Here is the Towers of Hanoi routine with more complete contracts; the new
clauses, expressed as comments, are highlighted.

-- variant: integer_expression

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as intermediate
-- storage, according to rules of Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source /= target
different2: target /= other
different3: source /= other

do
if n > 0 then

hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end
ensure

end

← “Touch of Method-
ology: Recursion Vari-
ant”, page 475.

← The original was on
page 443.

-- invariant: disks on each needle are piled in decreasing size.
-- variant: n

-- source has n disks; any disks on target and other are all
-- larger than all the disks on source.

-- Disks previously on source are now on target, in same order,
-- on top of those previously there if any; other is as before.

RECURSION AND TREES §14.9486

A properly specified recursive routine has a recursion invariant: a set of
properties that must hold both before and after each execution. In the absence
of a specific language mechanism they will just appear twice, in the
precondition as well as in the postcondition; for clarity you may also, as here,
include them in the header comment under the form

This is not a language construct but relies on the following convention:

� If the recursion invariant is just pseudocode expressed as a comment, as in
this example, do not repeat it in the precondition and postcondition; here
this means omitting from the precondition and postcondition the property
that any disks on the affected needles are piled up in decreasing size.

� Any recursion invariant clause that is formal (a boolean expression) should
be included in the precondition and postcondition, since there is no other
way to express it formally.

14.9 IMPLEMENTATION OF RECURSIVE ROUTINES

Recursive programming works well in certain problem areas, as illustrated by
the examples in this chapter. When recursion facilitates your job you should not
hesitate to use it, since in modern programming languages you can take
recursion for granted.

Since there is usually no direct support for recursion in machine code,
compilers for high-level languages must map a recursively expressed algorithm
into a non-recursive one. The applicable techniques are obviously important for
compiler writers, but even if you do not expect to become one it is useful to
know the basic ideas, both to gain further insight into recursion (complementing
the perspectives opened by previous sections) and to understand the potential
performance cost of using recursive algorithms.

We will look at some recursive schemes and ask ourselves how, if the
language did not permit recursion, we could devise non-recursive versions, also
called iterative, achieving the same results.

-- invariant: integer_expression

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 487

A recursive scheme

Consider a routine r that calls itself:

There might be several recursive calls, but we look at just one. What does it
mean — if we revert to a top-down view — to execute that call?

The presence of recursion implies that neither the beginning of the routine’s
code nor its end are just what they pretend to be:

� When code_before executes, this is not necessarily the beginning of a call
a.r (y) or r (y) executed by some client routine: it could result from an
instance of r calling itself recursively.

� When code_after terminates, this is not necessarily the end of the r story: it
may simply be the termination of one recursively called instance; execution
should resume for the last instance started and not terminated.

Routines and their execution instances

The key novelty in the last observation is the concept of instance (also called
activation) of a routine. We know that classes have instances — the “objects”
of object-oriented program execution — but we have not yet thought of routines
in a similar way.

At any moment during a program’s execution, the state of the computation is
characterized by a call chain as pictured above: the root procedure p has called
q which has called r… When an execution of a routine in the chain, say r,
terminates, the suspended execution of the calling routine, here q, resumes just
after the place where it had called r.

r (x: T)
do

code_before

code_after

end

r (y)

p
A call chain,

without recursion

calls

q

calls

r

RECURSION AND TREES §14.9488

In the absence of recursion, we did not need to make the concept of routine
instance explicit since any routine had, at any time, at most one active instance.
With recursion, the call chain may include two or more instances of the same
routine. Under direct recursion they will be contiguous:

For example a call hanoi (2, s, t, o) immediately starts a call hanoi (1, s, o, t)
which starts a call hanoi (0, s, t, o); at that stage we have three instances of the
procedure in the call chain.

A similar situation arises with indirect recursion:

Preserving and restoring the context

All instances of a routine share their program code; what distinguishes them is
their execution context. We have seen that in a useful case of recursion the
context of every call must differ by at least one element. The context elements
characterizing a routine instance (rather than object states) are:

� The values of the actual routine arguments, if any, for the particular call.

� The values of the local variables, if any.

� The location of the call in the text of the calling routine, defining where
execution should continue once the call completes.

As we saw when studying how stacks support the execution of programs in
modern languages, a data structure representing such a routine execution
context is called an activation record.

p
Call chain with

direct recursion
q

r
r

r

p
Call chain with

indirect recursionq
s

q
s

q
s

← R2, page 474.

← “Using stacks”,
page 421.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 489

Assume a programming language that does not support recursion. Since at
any time during execution there is at most one instance of any routine, the
compiler-generated program can use a single activation record per routine. This
is known as static allocation, meaning that the memory for all activation
records can be allocated once and for all at the beginning of execution.

With recursion each activation of the routine needs its own context. This
leaves two possibilities for implementation:

I1 We can resort to dynamic allocation: whenever a routine instance starts,
create a fresh activation record to hold the routine’s context. Use this
activation record whenever the routine execution needs to access an
argument or local variable; use it too on instance termination, to determine
where execution must continue in the caller’s code. Resuming the caller’s
execution implies going back to its own activation record.

I2 To save space, we may note that the reason for keeping context information
in an activation record is to be able to restore it when an execution resumes
after a recursive call. An alternative to saving that information is to
recompute it. This is possible when the change performed by the recursive
call is invertible. The recursive calls in procedure hanoi (, …) are of the
form hanoi (, …); rather than storing the value of n into an activation
record, creating a new record holding the value n – 1, then restoring the
previous record on return, we may use a single location for n in all recursive
instances, as with static allocation: at call time, we decrease the value by
one; at return time, we increase the value by one.

The two techniques are not exclusive: you can save space by using I2 for values
whose transformation in calls (such as replacing n by n – 1) admits an easily
implemented inverse, and retain an activation record for the rest of the context.
The decision may involve a space-time tradeoff if the inverse transformation,
unlike the n := n + 1 example, is computationally expensive.

Using an explicit call stack

Of the two strategies for handling routine contexts let us look first at I1, which
relies on explicit activation records.

Like activation records, objects are created dynamically, as a result of
create instructions. The program memory area devoted to dynamically
allocated objects is known as the heap. But for activation records of routines we
do not need to use the heap since the patterns of activation and deactivation are
simple and predictable:

n

n – 1

← “Creating simple
objects”, 6.4, page 118.

RECURSION AND TREES §14.9490

� A call to a routine requires a new activation record.
� On returning from that call, we may forget this activation record (it will

never be useful again, since any new call will need its own values), and we
must restore the caller’s activation record.

This is a last-in, first-out pattern for which we have a ready-made data structure:
stacks. The stack of activation records will reflect the call chain, pictured here
going up:

We have encountered the stack of activation records before: it is the call stack

which keeps track of routine calls during execution. If you are programming in
a language supporting recursion, the call stack is the responsibility of the code
generated by the compiler. Here we are looking at how to manage it ourselves.

You can use an explicit stack of activation records to produce an iterative
equivalent of a recursive routine:
� To access local variables and arguments of the current routine: always use

the corresponding positions in the activation record at the top of the stack.
� Instead of a recursive call: create a new activation record; initialize it with

the value of the call’s arguments and the position of the call; push it on the
stack; and branch back (goto) to the beginning of the routine’s code.

� Instead of a return: return only if the stack is empty (no suspended call is
pending); otherwise, restore the arguments and local variables from the
activation record at the top of the stack, pop the stack, and branch to the
appropriate instruction based on the call position information found in the
activation record.

Note that both translation schemes involve goto instructions. That is fine if we
are talking about the machine code to be generated by a compiler; but when it
is a manual simulation of recursion in a high-level language we have learned to
avoid the goto and in fact Eiffel has no such instruction. We will have to write
gotos temporarily, then replace them by appropriate control structures.

← “Stacks”, 13.11,
page 420.

Call chain and the

corresponding call

stack

Top of stack

Activation record for p

Activation record (1) for q

Activation record (2) for s

Activation record (2) for q

Activation record (1) for s

p

q

q

s

s

← “Using stacks”,
page 421.

“Iterative”, defined
on page 486, means
non-recursive.

← “The goto instruc-
tion”, page 183.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 491

Recursion elimination essentials

Let us see how the scheme works for the body of hanoi with its two recursive
calls. We use a stack of activation records, called just stack:

with a small auxiliary class RECORD to describe activation records:

(Instead of a full-fledged class we could also just use tuples.) An instance of the
class represents the context of a call: the number of disks being moved (count),
the three needles in the order used by the call, and call telling us whether this
execution, if coming from a recursive call, came from the first or second call in

We use the stack of activation records to provide a non-recursive version of the
procedure, temporarily relying on gotos, as shown on the following page.

stack: STACK [RECORD]

note

description: "Data associated with a routine instance"
class RECORD create

make

feature -- Initialization
make (n: INTEGER; c: INTEGER; s, t, o: CHARACTER)

-- Initialize from count n, call c, source s, target t, intermediary o.
do

count := n ; call := c; source := s ; target := t ; other := o

end

feature -- Access
count: INTEGER.

-- Number of disks.

call: INTEGER

-- Identifies a recursive call: 1 for the first, 2 for the second.

source, target, other: CHARACTER -- First call
-- Needles.

end

hanoi (n: INTEGER; source, target, other: CHARACTER)
do

if n > 0 then

hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end

end

-- First call

-- Second call

RECURSION AND TREES §14.9492

iterative_hanoi (n: INTEGER; source, target, other: CHARACTER)
local -- We need locals representing arguments to successive calls:

count: INTEGER

x, y, z, t: CHARACTER

call: INTEGER

top: RECORD

do -- Initialize locals to values of arguments in original call:
count := n; x := source; y := target; z := other

start: if count > 0 then

-- Translation of hanoi (n–1, source, other, target):

after_1: move (,)

-- Translation of hanoi (n–1, other, target, source):

end

-- Translation of routine return:

end

Warning: because of
the goto instructions
and labels this is not
legal Eiffel. The gotos
will be removed next.

This block is referred to
below as
SAVE_AND_ADAPT_1

stack.put (create {RECORD}. make (count, 1, x, y, z))
count := count – 1
t := y ; y := z ; z := t

goto start

Referred to below as
MOVE

x y

Referred to below as
SAVE_AND_ADAPT_2

stack.put (create {RECORD}. make (count, 2, x, y, z))
count := count – 1
t := x ; x := z ; z := t

goto start

Referred to below as
RETRIEVE

after_2: if not stack.is_empty then

top := stack.item -- Top of stack
count := top.count
x := top.source ; y := top.target ; z := top.other

call := top.call ; stack.remove

if call = 2 then

goto after_2

else

goto after_1

end

end

-- No else clause: the routine terminates when
-- (and only when) the stack is empty.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 493

The body of iterative_hanoi derives from hanoi through systematic application
of recursion elimination techniques:

D1 For every argument, introduce a local variable. The example uses a simple
naming convention: x for source and so on.

D2 Assign on entry the value of the argument to the local variable, then work
exclusively on that variable. This is necessary because a routine may not
change the value of its arguments (n := some_new_value is invalid).

D3 Give a label, here start, to the routine’s original first instruction (past the
local variable initializations added by D2).

D4 Introduce another local variable, here call, with values identifying the
different recursive calls in the body. Here there are two recursive calls, so
call will have two possible values, arbitrarily chosen as 1 and 2.

D5 Give a label, here after_1 and after_2, to the instructions immediately
following each recursive call.

D6 Replace every recursive call by instructions which:

� Push onto the stack an activation record containing the values of the
local variables.

� Set the values of the locals representing arguments to the values of the
call’s actual arguments; here the recursive call replaces n by n – 1 and
swaps the values of other and target, using the local variable swap for
that purpose.

� Branch to the first instruction.

D7 At the end of the routine, add instructions which terminate the routines’
execution only if the stack is empty, and otherwise:

� Restore the values of all local variables from the activation record at the
top of the stack.

� Also from that record, obtain the call identification

� Branch to the appropriate post-recursive-call label among those set in D5.

This is the general scheme applicable to the derecursification of any recursive
routine, whether a programmer is carrying it out manually, as we are now doing,
or — the more common situation — compilers include it in the code they
generate for routine calls.

We will see next how to simplify it — including goto removal — with the
help of some deeper understanding of the program structure; in the meantime,
make sure you fully understand this example of brute-force derecursification.

RECURSION AND TREES §14.9494

If, as I hope, you do find the transformation (if not the result)
simple and clear, you may enjoy, as a historical aside, an anecdote
reminding us that what is standard today was not always obvious. It is
told by Jim Horning, a computer scientist well known for his own
contributions, in particular to the area of formal methods:

The reference to independent inventions of the notion of call stack is
probably to Friedrich Bauer from Munich, who used the term Keller

(cellar), and Edsger Dijkstra from Holland, when implementing his
own Algol 60 compiler.

Simplifying the iterative version

The code given above looks formidable, especially against the simplicity
of the original recursive version. Indeed, with a truly recursive algorithm
like this one an iterative version will never reach the same elegance. But
we can get close by reviewing the sources of complication:
� We may replace the gotos by structured programming constructs.
� By identifying invertible operations, we may limit the amount of information

to be stored into and retrieved from the stack.
� In some cases (tail recursion) we may bypass the stack altogether.

Touch of History:

When recursion was thought impossible

(as told by Jim Horning)

In the summer of 1961 I attended a lecture in Los Angeles by a little-known

Danish computer scientist. His name was Peter Naur and his topic was the

new language Algol 60. In the question period, the man next to me stood up.
“It seems to me that there is an error in one of your slides.”
Peter was puzzled, “No, I don’t think so. Which slide?”
“The one that shows a routine calling itself. That’s impossible to implement.”
Peter was even more puzzled: “But we have implemented the whole language,
and run all the examples through our compiler.”
The man sat down, still muttering to himself, “Impossible! Impossible!”. I

suspect that much of the audience agreed with him.
At the time it was fairly common practice to allocate statically the memory for

a routine’s code, its local variables and its return address. The call stack had

been independently invented at least twice in Europe, under different names,
but was still not widely understood in America.

Naur & Horning

(2006)

Slightly abridged from
Jim Horning’s blog at
horningtales.blogspot.
com/2006/07/recur-
sion.html. Reproduced
with permission.

Bauer (2005)

← See I2, page 489.

http://horningtales.blogspot.com/2006/07/recursion.html

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 495

The last two kinds of simplification can also be important for performance,
since all this pushing and popping takes time, as well as space on the stack.

On the Hanoi example let us start by getting rid of the goto eyesores. To
abstract from the details of the code we express the body of iterative_hanoi as

with SAVE_AND_ADAPT_1 representing the storing of information into the
stack and change of values before the first call, SAVE_AND_ADAPT_2 the same
for the second call, RETRIEVE the retrieval from the stack of local variables
including call, MOVE the basic move operation, and INIT the initialization of
local variables from the arguments.

This is the example of goto structure that served (with abstract names for
the instructions and conditions, I1, C1 etc.) as illustration in the discussion of
goto removal. The result was

which we can immediately simplify, getting rid in particular of the stop

boolean variable:

INIT

start: if count > 0 then

SAVE_AND_ADAPT_1

goto start

end

after_2: if not stack.is_empty then

RETRIEVE

if call = 2 then goto after_2 else goto after_1 end

end

from INIT until over loop

from until count <= 0 loop

SAVE_AND_ADAPT_1

end

from stop := stack.is_empty until stop loop

RETRIEVE

stop := (stack.is_empty or (call /= 2))
end

over := (stack.is_empty and (call = 2))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

← From page 492.

count is an integer
variable; the instruc-
tions I0, I1 and I2 can
change its value.

after_1: MOVE
SAVE_AND_ADAPT_2

goto start

← “Appendix: an
example of goto
removal”, page 205.
The resulting goto-less
structure appears on
page 206. The local
variable over is initial-
ized to False.

RECURSION AND TREES §14.9496

The simplifications result from an analysis of possible changes to the values of
the variables:

� Since count can never become negative because of the precondition of
hanoi and the test conditioning recursive calls, it is legitimate to replace that
test, count <= 0, by count = 0.

� To get rid of stop we note that any value call gets out of RETRIEVE can only
be 1 or 2, since these are the possible values stored onto the stack; so we can
replace call /= 2 by call = 1, then set call to 2 the first time around so that
this particular condition is only taken into account for the second and later
iterations if any.

Tail recursion

A standard technique that helps reduce the overhead of stack pushing and
popping relies on the observation that it is not necessary to store context
information, and later retrieve it, if the algorithm does not need this information
any more; this is the case in particular for a recursive call that is the last

operation executed by an instance of the recursive routine.

This simplification applies to the hanoi example. The second recursive call
is the last instruction executed by an activation of the routine. This means that
SAVE_AND_ADAPT_2 is not necessary, or more precisely that the only
information it must preserve is call, since in getting back from a call you need
to know whether it was an instance of the first or the second one: in the first case
you need to pop the other values (count, x, y, z), in the second you don’t.

A good compiler can detect tail recursion and apply this optimization to
improve the performance of a recursive algorithm.

In the hanoi case it is superseded by another optimization, which almost
entirely gets rid of the stack and which we will now see. You should, however,
practice tail recursion elimination by implementing the above algorithm and
removing the unneeded push operations.

from INIT until over loop

from until count = 0 loop SAVE_AND_ADAPT_1 end

from call := 2 until stack.is_empty or call = 1 loop RETRIEVE end

over := (stack.is_empty and (call = 0))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

→ Exercise 14-E.14,
page 504.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 497

Taking advantage of invertible functions

Using a stack to store the values before a call and retrieve them afterwards is the
default technique and always works, but we saw earlier that an alternative
exists: reverting the transformation of arguments. In the hanoi case this turns out
to be possible for all arguments:

� The transformation of count prior to each call, count := count 1, has an
obvious inverse: count := count 1.

� For the other arguments, representing needles, the transformation is swap23

for the first call and swap12 for the second, if we call swapij the operation

that swaps the variables representing the i-th and j-th needles (for example
swap23 is t := y ; y := z ; z := t). But every swapij is its own inverse: applying

it a second time restores the original values.

So we do not actually need to store any of count, x, y and z on the stack: it
suffices, at the time of a RETRIEVE, to apply the appropriate inverse operation.
Specifically, RETRIEVE becomes:

A stack remains necessary, but only to record and retrieve the values of call. The
simplification becomes even more dramatic if we notice that call only has two
possible values, 1 and 2, which were just a convention to identify the two
recursive calls. Let us instead call them 1 and 0. There is a simple representation
for a stack of 0/1 (or boolean) values: if you know for certain that the stack’s
height plus one cannot exceed the bit size of an integer — typically 64 on
modern computers, until recently 32 —, just use a single integer, say s, for the
stack. It is a matter of considering the 0s and the 1s of the binary representation,
even if you do not know the details of number representation on your computer.
The operations are:

“Retrieve the value of call”

count := count + 1
if call = 1 then swap23 else swap13 end

s = 1 -- Is the stack empty?
s := 1 -- Initialize to an empty stack
s := 2 ∗ s -- Push a 0
s := 2 ∗ s + 1 -- Push a 1
b := s \\ 2 -- Obtain (into b) the top of the stack (\\ is remainder)
s:= s // 2 -- Pop the stack (// is integer division)

← I2, page 489.

–
+

The first is a boolean
expression, the others
are instructions.

RECURSION AND TREES §14.9498

Here is the result of a typical sequence of such instructions:

The binary representation of integers, shown in the last column, has the largest
weights on the left (“big-endian” convention). The top of a non-empty stack is
0 if the number is even, 1 if it is odd.

This technique of using a single integer to represent a stack of boolean
values can be used safely whenever you have a guaranteed limit on the stack

size. In the hanoi example this is not a problem since 263 or even 231 are more
moves than can be handled in any reasonable time.

Combining the previous observations leads to a simpler and more efficient
form of the iterative_hanoi algorithm with arguments n, source, target, other:

Instruction Goal Result Binary representation of s
(leftmost zeroes omitted)

s := 1

s := 2 ∗ s

s := 2 ∗ s + 1

s := 2 ∗ s + 1

s := 2 ∗ s

s:= s // 2

b := s \\ 2

-- Start empty

-- Push a 0

-- Push a 1

-- Push a 1

-- Push a 0

-- Pop

-- Get top

s = 1

s = 2

s = 5

s = 11

s = 22

s = 11

b = 1

from

count := n ; x := source ; y := target ; z := other ; s := 1
until over loop

end

1

0

0

1

1
1

01

101

1101

1101

 over is initialized to
False as usual.

-- Go down left
-- (H1, see next page)

-- Go back up
-- (H2)

-- Visit node,
-- go down right
-- (H3)

from until count = 0 loop

swap23 ; s := 2 ∗ s + 1 ; count := count – 1
end

from call := 0 until s = 1 or call = 1 loop

call := s \\ 2 ; s := s // 2 ; count := count + 1
if call = 1 then swap23 else swap13 end

end

over := ((s = 1) and (call = 0))

if not over then

move (x, y)
swap13 ; s := 2 ∗ s ; count := count – 1

end

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 499

Although this is the result of a systematic transformation and not the kind of
program that you would normally write (recursion is simpler and clearer), it is
interesting to follow the execution on this form too, relating it to the original
recursive version and specifically to the binary execution tree from the
beginning of this chapter, showing the execution as an inorder traversal:

As noted next to the algorithm, it has three components:

H1 Go down left, as far as possible, until you reach a leaf. The leaves are at
n = 0 (count = 0 in this version), although earlier figures showing this tree
stopped at 1 since nothing visible from the outside happens at level 0.

H2 Go back up. As long as you are coming from the right just continue going
up, since this corresponds to the second recursive call and there is nothing
more to do with this instance of the routine.

H3 Having gone up one left branch, perform the visiting operation (move one
disk from x to y, and go down one right branch).

This is repeated until, coming up from the right (H2), you find the stack empty.

When going down (H1, H3), you decrement count and swap y and z if going
left (H1), x and z if going right (H3); when coming back up (H2), you restore
the original values by incrementing count and doing the appropriate swap
depending on whether you are coming back from the left or from the right —
which you find out by looking at the top of the stack, meaning the parity of s as
given by call.

3 A B C Hanoi binary

tree traversal
(From pages 450 and
454)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

Go down left

Go

Go down right,
one step

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

back up

The last step
(H1)

(H3)

(H2)

(H2)

H2 H1

RECURSION AND TREES §14.10500

14.10 KEY CONCEPTS LEARNED IN THIS CHAPTER

� It is often convenient to define a concept recursively, meaning that the
definition uses one or more other instances of the concept itself.

� For the definition to be useful, any occurrence of the concept in its definition
must apply it to a smaller target, and there must be at least one case for
which the definition is non-recursive, so that any application of the
definition reduces in the end to a combination of elementary cases.

� Recursive definitions can be useful in particular for routines, data structures
and grammars.

� Any loop can be expressed in an equivalent recursive form, through a
simple transformation.

� The other way around, any recursive algorithm has a recursion-free
equivalent, but the transformation is more delicate; it requires changing the
control flow, and recording the value of local information prior to every
recursive call so as to retrieve it later, either by using a stack or by spotting
invertible transformations.

New vocabulary

14-E EXERCISES

14-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

14-E.2 Too much recursion?

Is the definition of “recursive definition” a recursive definition?

14-E.3 Binary search trees with repetitions

For every binary search tree routine in this chapter, rewrite the declaration (if
needed) to permit multiple occurrences of a given item value in a tree as
discussed after the initial definition.

Activation Activation record Alpha-beta

Backtracking Binary tree Call chain

Depth-first Direct recursion Indirect recursion

Inorder Iterative Instance (of a routine)

Minimax Non-creative Postorder

Preorder Recursion Recursive

Recursive definition Traversal

← Page 435.

← Page 455.

§14-E EXERCISES 501

14-E.4 A programming language without program texts

This exercise addresses language processing techniques seen in an earlier
chapter; the solution requires recursion.

The goal is to write an interpreter and a compiler for an elementary
programming language. To avoid dealing with concrete syntax, the tools will
directly manipulate data structures rather than texts.

Our little language is called WASO (acronym for With Abstract Syntax
Only) and has the following properties:

� The only data type is “integer”.

� Variables, all of integer type, do not need to be declared. A variable name is
an arbitrary string.

� Integer constants can be used, such as 1.

� Integer expressions can be formed with addition, subtraction, multiplication
and integer division.

� There are two kinds of instruction: assigning an expression to a variable,
and printing the value of a variable.

� A WASO program consists of a sequence of assignments and a sequence of
print instructions, either or both of which can be empty.

� The execution of a program consists of initializing all variables to zero,
executing the assignments in sequence, and executing the print instructions
in sequence.

So a typical program — written out here as if WASO had a textual
representation (concrete syntax), although this is not part of the language
definition — is:

The execution of this program prints the single value 8.

The concrete syntax is only one of many possible choices. Another would use the
keyword print instead of then and in the second clause list only the variables to be
printed, without repeating print.

assign

x := 3
y := 5
x := 2 ∗ (x + (y // 3))

then

print x
print z

end

→ See also exercises
16-E.4, page 617 to
16-E.6, page 618 in the
inheritance chapter.

This is only one possi-
ble concrete syntax.

RECURSION AND TREES §14-E502

The assignment:

1 Write a set of classes, including PROGRAM, ASSIGNMENT, PRINT and
EXPRESSION, with the associated features including creation procedures,
to build abstract syntax trees representing WASO programs.

2 Add a class with a procedure that uses these classes and features to create
an abstract syntax tree representing the above example program.

3 Add to class PROGRAM a procedure write_out that produces a textual
(concrete) representation of a WASO program, as given out for the example.
Run it on the example tree from step 2 and check that the output is the above
text. Hint: you need a recursive procedure performing a traversal, similar to
those introduced for binary trees in this chapter.

4 Write a WASO interpreter, in the form of a procedure interpret in class
PROGRAM which executes the program and produces the expected output.
Run it on the example and check the result (which as noted should be the
single value 8).

5 Write a WASO-to-Eiffel compiler, in the form of a procedure compile in class
PROGRAM which produces an Eiffel system implementing the semantics of
the source WASO program: a root class with an appropriate creation
procedure, and any other classes needed. Run it on the example; use Eiffel
Studio to Eiffel-compile the output; run it on the example and check the result.

Terminology note: the result of step 5 is an unparser, producing a text
representation from an internal representation such as an abstract syntax tree —
the reverse of what a parser does.

14-E.5 Non-recursive insertion

Write a version of put for binary search trees using a loop rather than recursion.
(Hint: you may use for inspiration the non-recursive version of the search
function has.)

14-E.6 Recursive reversal

Retaining the same assumptions (a list of stops is known through its first cell, of
type STOP, giving access to the rest through repeated application of next),
rewrite the function reversed from the discussion of references so that it uses
recursion rather than a loop. (See also the next exercise.)

14-E.7 Reversing a list, functional style

Write a recursive function that produces the reverse of a linked list (the
argument and the result should be of type LINKED_LIST [G], from EiffelBase).
Keep pointer manipulations to a minimum and remain as close as possible to the
style of the reversed function given as an example of Haskell programming.
Analyze the time and space complexity of your solution.

← Page 458.

← Page 261.

← “Functional pro-
gramming and func-
tional languages”,
page 324.

§14-E EXERCISES 503

14-E.8 Backtracking curtailed

Adapt the general backtracking algorithm so that it keeps track of previously
explored positions and discards any path leading to such a position. You may
assume that PATH has a query position defining a path’s terminal position.

14-E.9 Cycles despised

Adapt the general backtracking algorithm so that it does not explore paths
longer than path_cutoff, a given integer value.

14-E.10 Properties of a function graph

(This exercise calls for mathematical analysis, not a programming solution.) In
the successive approximations Hi of the graph of the Towers of Hanoi function,
assuming three needles 'A', 'B', 'C':

1 What is the number of pairs in Hi?
2 Give a mathematical formula for Hi.

14-E.11 Programming a function graph bottom-up

1 Devise a class of which every instance represents an arguments-result pair,
of the form [(n, s, t, o], <…>], for the Towers of Hanoi function graph.

2 Based on the preceding class, devise another to represent the function graph
as a whole.

3 From this class and the rules [5] and [6] defining the function graph in the
bottom-up interpretation of recursion, write a program that produces the i-th
approximation of the graph, Hi, for any i. The algorithm may use loops, but
it may not use recursion.

4 Use this program to print out sequences of moves (with source 'A' and target
'B’) for a few values of i; check that the results coincide with those of the
recursive procedure.

14-E.12 Bottom-up view of binary tree algorithms

Consider a recursive algorithm for binary tree traversal; you may choose
preorder, inorder or postorder.

1 Taking inspiration from the bottom-up analysis of the Towers of Hanoi
solution, devise a model to interpret the traversal as a function returning a
sequence of nodes.

2 Write a recursive “definition” of this function.
3 Express this “definition” as a fixpoint equation on the function graph, using

Ti as the name of the graph for binary trees of height i.
4 Use the definition to produce (either manually or by writing a small

program) H5 for the example binary tree, and the resulting traversal order.

← Page 461.

← Page 461.

← “The towers, bot-
tom-up”, page 483.

← “The towers, bot-
tom-up”, page 483.

← “The towers, bot-
tom-up”, page 483.

← From the figure on
page 447.

RECURSION AND TREES §14-E504

14-E.13 Recursion without optimization

(This exercise requires access to a compiler for a programming language such
as C or C++ with support for goto instructions.) Implement and test the direct
iterative translation of the hanoi procedure, in its initial version using gotos and
a stack without optimization.

14-E.14 Saving on stack saving

1 Implement and test the goto-free iterative, stack-based version of the Tower
of Hanoi problem.

2 Improve the solution through tail recursion optimization, avoiding
unnecessary saves in the second call.

3 (Only if you have solved the previous exercise.) Apply the same
optimization to the version using goto instructions.

14-E.15 Traversal without a stack

We saw that implementing recursion only requires a technique to invert the
transformation of arguments in recursive calls; a stack is just one possible way to
satisfy this requirement. Using a suitable inversion technique, implement binary
tree traversal, for example inorder, non-recursively and without any stacks except
possibly a stack of boolean values (or, equivalently, a bit in every node).

Hint: temporarily overwrite tree links to remember where you came from.
Counter-hint: you could find a solution by running Web searches for the words

Deutsch, Schorr and Waite (names of authors of a famous algorithm based on this
idea). Don’t; rather, design an algorithm, then look up existing references if you wish.

14-E.16 Transitive closure

(This exercise refers to a later chapter.) Restate the definition of transitive
closure as a recursive definition.

14-E.17 Matrix algebra on BNF productions

(This exercise requires basic knowledge of linear algebra.) Consider a BNF
production, such as the small example used in this chapter, or more extensive ones
from earlier chapters, involving only Concatenation and Choice productions (no
Repetition, as it can be replaced by combinations of the other two).
1 Treating concatenation of tokens as “multiplication” and alternative choices

as “addition”, show that it is possible to express the grammar as a matrix
equation X = A ∗ X + B, where X is the vector of nonterminals, A is a matrix
of terminals and nonterminals, and B is a vector.

2 Discuss ways of solving this equation by following the model discussed for
fixpoint equations.

← iterative_hanoi,
page 492.

← Algorithm on page
495.

← “Implementation of
recursive routines”,
14.9, page 486.

→ Page 513.

15

Devising and engineering an

algorithm: Topological Sort

One of the pleasures of learning computer science is to discover beautiful
algorithms. In this chapter we explore an algorithm scheme with several claims
to our attention: it is useful in many practical cases; it has a simple mathematical
basis; it is particularly elegant; and it illustrates problem-solving techniques that
you will find applicable in many other contexts.

I will not throw a ready-made answer at you; instead we will develop the
solution step by step from the description of the problem, starting with a
mathematical analysis and continuing with a search for data structures ensuring
both correctness and efficiency. We will not just devise an algorithm but strive
for a complete, properly engineered solution that can satisfy practical needs. At
the end of the chapter, we will draw the lessons of this example for both
algorithm development and general software engineering.

15.1 THE PROBLEM

Today is for culture: you want to visit the Louvre and the Orsay museum, in any
order. Before visiting either you must get a map; you must also get a metro pass
because your old one expired yesterday, but you cannot get a pass until you have
gone to the bank or an Automatic Teller Machine to get some money. We may
express these constraints as

where [x, y] means “x must occur before y”; or we may represent them
graphically

[Map, Louvre], [Map, Orsay], [Pass, Louvre], [Pass, Orsay], [Money, Pass]

Money Pass

Map

Louvre

Orsay

Ordering

constraints

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.1506

A topological sort of such a set of elements governed by ordering constraints
is an enumeration of all the elements in an order that respects the constraints.
Possible topological sorts in this example include

but , Map, Louvre, Orsay, for example, would be incorrect since it
violates the constraint [Money, Pass].

A topological sort problem may have:
� Several solutions, as here.

� Exactly one solution.

� No solution, as will be the case if — and only if — the constraints include
a cycle: a set of constraints of the form [e1, e2], [e2, e3], …, [en, e1] for some

n ≥ 1. If we add [Orsay, Money] to the example, creating such a cycle, there
can no longer be any solution since the constraints require both that Money

occur before Orsay and the reverse.

If there is more than one solution, the problem is to produce one of them.
Usually, any solution has an associated cost; then the goal will be to produce the
solution with minimal cost. We will see where, in the algorithm, we can apply
this criterion to choose between alternative solutions. Another variant of the
problem would be to produce all solutions.

Example applications

The topological sort problem arises whenever we want to order a number of
elements in conformance to some ordering constraints. This is a frequent
problem; here are some examples.

� In a graphical display, consider rectangles that may overlap. Some are
“above” others, as illustrated. You need an algorithm that will display them
in an order respecting these constraints, so that in the end the figure appears
as intended. This is a topological sort problem. In the illustrated example,
the constraints are [B, A], [D, A], [D, C], [B, D], [E, C] (where [x, y] means
“x must not hide any part of y”); a possible solution is the order B D E A C.

Money, Pass, Map, Louvre, Orsay

Map, Money, Pass, Orsay, Louvre

Money, Map, Pass, Louvre, Orsay

There are two more
possibilities

Pass, Money

Rectangles with

precedence

constraintsA C

D

B
E

§15.1 THE PROBLEM 507

� When an industrial installation such as a power plant or an airplane
undergoes maintenance, the schedule is determined from a set of tasks to be
performed and a set of ordering constraints between them; for example
structural work on an element must come before repainting it. A topological
sort yields a schedule of tasks compatible with these constraints.

� Another application occurs in project management, especially software
project management. If the problem domain is technical, the project should
produce and maintain a glossary of the technical terms involved.
(Misunderstandings between application area experts and software
developers are a major source of errors and deficiencies in software systems.)
The definition of any of these terms may involve other terms that have their
own entries. The entries might appear in alphabetical order, as in a dictionary,
but it may also be useful to have a version of the glossary that can be read in
sequence, with the definition of any term appearing before any definition that
uses the term. Producing such a list is a topological sort problem.

� You might want to see a list of the features in a class that shows the features
not in the order listed (grouped, by default, into feature categories) but in
one that facilitates sequential reading by guaranteeing that no call to a
feature occurs before the feature’s declaration.

� Compiling object-oriented programs efficiently can take advantage of
topological sort for implementing inheritance, specifically dynamic binding

as discussed in the next chapter. The issue is to number the classes of a
possibly large program so that the number assigned to a class is close to
those of its descendants, classes that inherit from it directly or indirectly.
Using “inherits from” as the ordering relation, the EiffelStudio compiler
relies on topological sort to achieve dramatic space optimizations, essential
to the viability of the O-O approach.

Points in a plane

Another example provides a convenient visualization of the problem. Consider
points in a plane:

→ The requirements
document of a software
project should include
such a glossary: “The
glossary”, page 722.

→ “A peek at the
implementation”,
16.8, page 575

1 2 3 4

1

2

0

(0, 1)

(1, 2)

(3,0)

(4,2)

 a

 b

 c

 d A finite set of

points

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.1508

We introduce a relation by stating that p1 p2 holds for any two points p1
of coordinates (x1, y1) and p2 of coordinates (x2, y2) if they satisfy all of:

� x1 ≤ x2

� y1 ≤ y2

� p1 ≠ p2 (the two points are not the same).

For the four points shown in the figure, the following hold:

A topological sort for this relation is any enumeration of the points that lists p
before q for any two points such that p q. For our four points there are three
such enumerations:

which we may visualize as three different traversals of the set of points in the
preceding figure:

On the other hand, the enumeration a, d, b, c is not compatible with the
relation since the property c d requires c to appear before d.

a b a d b d c d

a, b, c, d
a, c, b, d
c, a, b, d

<< <<

<< << << <<

<<

1 2 3 4

1

2

0

 a

 b

 c

 d
Three

topological sorts

of a set
of points

<<
<<

§15.2 THE BASIS FOR TOPOLOGICAL SORT 509

15.2 THE BASIS FOR TOPOLOGICAL SORT

The problem discussed in this chapter has a concise mathematical statement:

This definition is made possible by simple mathematical notions — relations as
sets, acyclic relation, order relation (total or not) — which we will now review.

Binary relations

An example relation over the set {1, 2, 3} is

which we may call "<" since it represents “less than” (meaning that it contains
all the pairs [x, y], with a and b both in {1, 2, 3}, such that x is less than y).

We may use relations to describe the earlier examples:

� A relation below over a set of rectangles, containing all rectangle pairs [x, y]
such that the display must show points of y rather than x in any area where
they overlap.

� A relation before, the set of pairs {[Map, Louvre], [Map, Orsay], …}; it is a
relation over the set {Money, Pass, Map, Louvre, Orsay}, containing all
pairs [x, y] for which x must happen before y.

� A relation used_in over a set of glossary terms, containing all pairs [x, y]
such that the definition of the term y uses the term x.

� A relation called_by over the features of a class, containing all pairs [x, y]
such that the body of feature y contains a call to feature x.

� A relation over points, the set of pairs {[a, b], [a, d], [b, d], [c, d]}.

Definition: The topological sort problem

Given an acyclic relation r on a finite set, find a total order relation of which
r is a subset.

Definition: Relation

A relation over a set A (short for binary relation) is a set of pairs of the form
[x, y] where both elements of the pair, x and y, are members of A.

{[1, 2], [1, 3], [2, 3]}

More general rela-
tions, as in relational
databases, are sets of
tuples of n elements
belonging to any given
sets, for any n. The
relations of this chap-
ter are binary (n = 2)
and over a single set A.

<<

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.2510

Acyclic relations

Our examples so far are all acyclic relations, a notion defined as follows:

with:

The relation before as given has no cycles:

Adding the pair [Orsay, Money] would create a cycle: Money, Pass,
Orsay, Money.

The simplest case of a cycle for a relation r occurs (with m = 2) for an element x
such that [x, x] ∈ r.

To succeed, topological sort requires an acyclic relation, although for practical
considerations we will look for an algorithm that can partially process
constraints involving a cycle.

If the underlying set is finite, acyclic relations have an important property,
crucial to the topological sort algorithm:

Definition: Acyclic relation

A relation is acyclic if it has no cycle.

Definition: Cycle in a relation

A cycle for a relation r over a set A is a sequence x1, … xm (m ≥ 2) of elements

of A such that all successive pairs [xi, xi+1] for 1 ≤ i < m belong to r, and

xm = x1.

No-Predecessor theorem

For any acyclic relation r over a non-empty finite set A, there exists an element
x of A with no predecessors for r.

Money

Pass

Map

Louvre

Orsay

A relation

describing

ordering

constraints

Adding this link

would create a cycle

§15.2 THE BASIS FOR TOPOLOGICAL SORT 511

relying on a notion of “predecessor”:

The proof of the No-Predecessor theorem is by contradiction. Assume the
theorem does not hold; then every element in A has at least one predecessor. Let
x1 be some element in A (we may indeed find such an x1 since the theorem
assumes A to be non-empty). By the hypothesis, x1 has at least one predecessor;
let us pick one and call it x2. By the same reason x2 also has at least one
predecessor, so we may again pick x3 such that [x3, x2] is in r. Continuing this
way gives an infinite sequence such that [xi+1, xi] belongs to r for every i ≥ 1.
Because A is a finite set, the sequence has to repeat elements. More precisely:
the elements x1, x2, … xn+1, where n is the number of elements of A, cannot all
be different; there must be integers i and j, with 1 ≤ i < j ≤ n + 1, such that xi = xj.
But then xj, xj-1, … xi is a cycle for r, which is impossible.

This is a constructive proof, which we will directly use in devising the
topological sort algorithm: to produce an enumeration of the elements, the
algorithm will pick, at every iteration, an element that has no predecessor in the
remaining order relation.

The condition that A is finite is essential to the proof. The theorem does not apply
to infinite sets; for example, the relation “less than” on mathematical integers is
acyclic, but every element has predecessors.

Order relations

The idea of topological sort is to embed a given acyclic relation in a total order

relation. To define this notion we must first consider plain order relations.

Definition: Predecessor

A predecessor of an element y for a relation r is an element x such that the
pair [x, y] belongs to r.

Definition: Order relation (strict, possibly partial)

A relation is an order relation if it satisfies the following properties for any
elements x, y, z of the underlying set X:
O1 Irreflexive: the relation has no pair of the form [x, x].
O2 Transitive: whenever the relation contains a pair [x, y] and a pair [y, z]

(whose first element is the same as the second element of the first pair),
it also contains the pair [x, z].

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.2512

Such an order relation is also:

O3 Asymmetric: whenever it contains a pair [x, y], it does not contain the pair
[y, x]. (Proof: if it contained both, transitivity implies that it would also
contain [x, x], violating irreflexivity.)

The full name for order relations as defined above is: strict and possibly partial

order relation. Our order relations (also the “total” ones seen next) are strict, in the
same sense that "<" denotes “strictly less than”. It is also possible to work with the
nonstrict versions, such as "≤", less than or equal.

The relation "<" on {1, 2, 3} (or any other set of integers) is an order relation.
So is the relation on points. Our other acyclic relations — before between
tasks, used_in between dictionary entries, called_by between features — are
irreflexive and asymmetric, but not necessarily transitive, so they are not order
relations; we will see next how to obtain transitive versions.

Order relations vs acyclic relations

Order relations are closely connected with acyclic relations. In one direction the
connection is straightforward:

The proof is by contradiction. Assume a cycle x1, x2, x3, … xm where xm is the
same as x1. By transitivity (O2) this implies that [x1, x1] is also in the relation;
that is impossible because of irreflexivity (O1).

This generalizes the above proof that asymmetry — the impossibility of having
both pairs [x, y] and [y, x] (O3) — follows from O1 and O2. Such a case is indeed
a cycle with just two elements. Similarly, the pair [x, x], ruled out by irreflexivity,
would be a cycle with just one element.

There is also an interesting property the other way around: the transitive closure

of an acyclic relation is an order relation. Informally, the transitive closure of a
relation is a version of the relation made transitive by following the original
relation’s links as many times as possible.

Theorem: Acyclic and order relations (1)

Any order relation (and more generally any subset of an order relation)
is acyclic.

→ See “Appendix: ter-
minology note on
order relations”, 15.7,
page 546. Also, do
exercise 15-E.3, page
547 to explore the rela-
tionship between strict
and nonstrict versions.<<

§15.2 THE BASIS FOR TOPOLOGICAL SORT 513

This can be illustrated on the relation before expressing ordering constraints
between tasks. The relation is irreflexive, asymmetric and acyclic; it is not
transitive since it contains the pairs [Money, Pass] and [Pass, Louvre] but not
[Money, Louvre]. We can make such a relation transitive by adding all pairs of
the form [x, z] for which the original includes both [x, y] and [y, z] for some y,
repeatedly until there are no more pairs to be added. The result of this process is
the transitive closure of the original relation. In the example it adds just two links:

For the relation called_by between features, the transitive closure is the relation
that holds between x and y if y calls x directly or indirectly. For a relation child

among persons, denoting the set of pairs [x, y] such that person x is a child of y,
the transitive closure is the relation connecting any two persons x and y such that
y is a descendant, direct or indirect, of x.

The transitive closure of a relation r is written r+, so we may state that
child + = descendant. Here is a precise definition:

Transitive closure gives us the other side of the relation between acyclic
relations and order relations:

Definition: Transitive closure of a relation

The transitive closure r+ of a relation r over a set A is the relation containing
all pairs of the form [x1, xm] for some sequence of elements x1, … xm (m ≥ 2)

such that all [xi, xi+1] pairs for 1 ≤ i < m belong to r.

Theorem: Acyclic and order relations (2)

The transitive closure of any acyclic relation is an order relation.

Money

Pass

Map

Louvre

Orsay

Transitive closure

of ordering

constraints

Links added
for transitivity

Original links

← Same use of + as in
language theory; see
“Repetition”, page 301

←Exercise 14-E.16,
page 504 requests a
recursive variant of
this definition.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.2514

Proof: the transitive closure of any relation r is obviously transitive, so all we
have to show is that it is irreflexive for an acyclic r. Assume it is not. This means

that there exists an element x such that [x, x] belongs to r+. By the definition of
transitive closure, there must be a sequence of elements x1, … xm (m ≥ 2) such

that all [xi, xi+1] pairs for 1 ≤ i < m belong to r and that both x1 and xm are x. But

this is a cycle for r, and hence impossible.

This result shows that we may view an acyclic relation as the “germ” of an
order relation. Taking its transitive closure gives us a true order relation. This
corresponds to the intuition behind relations such as before between tasks: if the
constraints specify that task Money must precede Pass, and also that Pass must
precede Louvre, we naturally understand that x must precede z. In other words,
we instinctively take the transitive closure. But when it comes to preparing the
input data for a scheduling program, or another program that will perform a
topological sort, we will want to list basic constraints only, not their full
transitive closure. That is why topological sort can use an acyclic relation as its
input. (Many presentations of topological sort start from an order relation, but
this is more specific than required.)

Computing a transitive closure is a computationally expensive operation,
but we do not need to perform it explicitly; the topological sort algorithm will
work directly from the acyclic relation.

Total orders

To describe the output of topological sorting we need a specialization of the
notion of order relation: total order relation. For a finite set we may view a total
order simply as an enumeration of the underlying set’s elements, each appearing
once, such as Money, Pass, Map, Louvre, Orsay; but the concept is more general:

To understand condition O4, note that we know from asymmetry (O3) that at
most one of the first two possibilities may hold, and from irreflexivity (O1) that
the last possibility is exclusive of the other two. So at most one of the three may

hold. What the new condition adds is that one of the three does hold.

Definition: total order relation (strict)

A total order is an order relation that additionally is:
O4 Total: for any a and b, one of the following holds: [a, b] is in the relation;

[b, a] is in the relation; a = b.

← Briefly encountered
in the study of recur-
sion: “Binary search
trees”, page 454.

← Meaning a relation
that’s irreflexive (O1,
page 511) and transi-
tive (O2, page 511); it’s
asymmetric as a result
(O3, page 512).

§15.2 THE BASIS FOR TOPOLOGICAL SORT 515

The relation "< " on integers is also total. But not every
order is total. Our relation on points in a plane is an
order relation, as we have seen; but it is not total since this
would mean that for any two different points p1 and p2
either p1 p2 or p2 p1 holds. That’s not the case for
the pair [a, c] since neither a c nor c a holds. There
is another counter-example, the pair [b, c].

Many total orders exist on this set of four points; in
fact, any enumeration of them — that is to say, any
ordered list that includes each of them exactly once —
yields a total order t, defined as follows: the pair [p, q] is in t if and only if p
appears before q in the enumeration. For example the enumeration [a, b, c, d]
defines the total order

Conversely, any total order on a finite set defines a single enumeration.
Such a total order is a topological sort of the original

relation — in our example, the relation — if and only if
it is compatible with it, meaning that whenever p q the
element p appears before q in the total order. We have seen
that three total orders satisfy this requirement for the
example: expressed as enumerations they are a, b, c, d
(given in [1] as a set of pairs); a, c, b, d; and c, a, b, d.

What does “compatible” precisely mean? This notion
is actually easy to specify thanks to the definition of
relations as sets of pairs. To say that a total order such as
the enumeration a, b, c, d, is compatible with a given
(acyclic) relation is simply to say that the set of pairs of that relation is a subset

of the total order’s set of pairs: every pair in the order relation is also a pair of
the total order relation. In our example the relation is the set of pairs

and is indeed a subset of the set of pairs [1] of the total order. The subset property
expresses that whenever the given constraints specify a certain order between two
elements, the output of the algorithm must list these elements in that order.

This yields the definition of “topological sort”, describing our task as
finding a total order of which the given order is a subset.

{[a, b], [a, c], [a, d], [1]

 [b, c], [b, d],
 [c, d]}

{[a, b], [a, d], [b, d], [c, d]} [2]

1 2 3 4

1

2

0

(0, 1)

(1, 2)

(3,0)

(4,2)

 a

 b

 c

 d

(Figure from page 507.)

<<

<< <<
<< <<

→ The proof is exer-
cise 15-E.3, page 547.

(Figure from page 508.)

1 2 3 4

1

2

0

 a

 b

 c

 d <<
<<

<<

← Page 509.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.2516

Acyclic relations have a topological sort

The absence of cycles is clearly a necessary condition for the existence of a
topological sort (a total order that includes the original relation). What about the
other way around: if we have an acyclic relation, can we always produce a
topological sort — a total order that includes it?

Indeed we can:

To prove this theorem we may use the observation that r ⊆ r+, where r+ is the
transitive closure of r, and the previously proved property that r+ is an order
relation; it suffices to extend r+ to a total order relation. But another proof is
more interesting for our purposes. It is a constructive proof (relying on the No-
Predecessor theorem) and will allow us directly to deduce an algorithm scheme.

This proof is by induction on the number of elements n in the set A. If n = 0,
the set is empty; the only possible relation is the empty relation (the empty set
of pairs of elements of A), which is a total order. This proves the base step.

If you prefer, you can use as base step the case n = 1, for which A consists of a single
element x; even though A is not empty then, the only acyclic relation in A is the
empty relation again, since if a relation has at least one pair that pair must be [x, x],
which would create a cycle.

For the induction step assume that the theorem holds for sets of n elements and
consider an acyclic relation on a set A of n + 1 elements. The figure gives the
idea of the proof:

Topological Sort theorem

For any acyclic relation r over a finite set A, there exists a total order relation
t over A such that r ⊆ t.

← “Theorem:
Acyclic and order rela
tions (2)”, page 513.

→ See exercise 15-E.5,
page 548.

Extending an

incomplete

topological sort

Pick an element
with no predecessor

On the other elements,
we already have
a total order

Extend the total order
by adding the new element
at the start

x

A’

2

3

1

§15.3 PRACTICAL CONSIDERATIONS 517

The No-Predecessor theorem tells us that A has at least one element without
predecessors. Let x be such an element. Let A’ be the set consisting of all
elements of A except x, and r’ the relation on A’ consisting of all pairs of r except
those involving x. Clearly, r’ is an acyclic relation over A’. By the induction
hypothesis, since A’ has n elements, there exists a total order t’ over A’ that is
compatible with r’ (that is to say, r’ ⊆ t’). Now consider the relation t over A
consisting of the following pairs:

� All the pairs in t’.

� All pairs of the form [x, y] where y is an element of A’.

If you prefer to think of a total order as an enumeration, you may just view t as the
enumeration of the elements of A that starts with x and continues with the
enumeration of the elements of A’ given by t’.

It is easy to see that t is a total order, and that r ⊆ t; this gives us a total order
compatible with r, and proves the theorem.

The Topological Sort theorem is the mathematical justification for the
program that we are now going to build; better yet, its proof directly suggests
the algorithm’s basic idea.

15.3 PRACTICAL CONSIDERATIONS

With the theoretical basis clear, we can start looking for a software solution. The
core is a topological sort algorithm, but first we must examine performance
constraints and define a software engineering framework.

Performance requirements

What can we expect to achieve in time and space complexity?

The inputs to the algorithm are a set of elements and a set of constraints. Let
n be the number of elements and m the number of constraints.

The algorithm must (in the case of an acyclic relation) perform:

� At least one operation for every constraint (since ignoring any single
constraint might make any particular output order wrong).

� At least one operation for every element, if only to add it to the output.

So the best time complexity that we may hope for is O (m + n).

The more surprising result is that the topological algorithm developed
below will actually achieve this theoretical ideal, both in time and in space.

← Page 510.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.3518

Class framework

A purely algorithmic solution would use a function of the form

with appropriate input types to represent the sets elements and constraints

(corresponding to our earlier A and r). It is better — as the remaining
development will progressively show — to use an object-oriented approach
with a class TOPOLOGICAL_SORTER, any instance of which represents an
instance of the topological sort problem. The data structures representing the
elements and constraints will be attributes of the class, set up through
initialization procedures such as record_element and record_constraint.

Instead of a function topologically_sorted as above we will have:

� A procedure process, performing the topological sort process.

� A query sorted, returning a list of elements, as computed by process.

This framework gives us more flexibility, and will accommodate many useful
additional features.

Input and output

The sets of elements A and constraints r might come from many different
sources. For example we might have a file listing the constraints, one per line:

topologically_sorted (elements: …; constraints: …): LIST […]
-- Enumeration of the members of elements,
-- in an order compatible with the constraints.

Map Louvre

Map Orsay

Pass Louvre

Pass Orsay

Money Pass (From the figure on page 505.)

Money Pass

Map

Louvre

Orsay

§15.3 PRACTICAL CONSIDERATIONS 519

It may be useful to have a separate file listing all elements, or at least elements
not involved in any constraint (we cannot guess such elements from the
constraints, but they should still be part of the output).

In another setup, the input might have been entered interactively using a
program or a Web form. In examples such as ordering rectangles on a screen,
terms in a glossary or features of a class, the format will again be different.

To ensure generality we make our basic class generic: it becomes
TOPOLOGICAL_SORTER [G], where the parameter G represents the type of
the elements. Then the result of the query sorted — denoting the topologically
sorted list of elements computed by process —is of type LIST [G]; the two
initialization procedures cited have signatures

Overall form of the algorithm

Consider an acyclic relation r over a set of elements A; since we need program
names, let us assume — without prejudging its implementation choices — that
the class TOPOLOGICAL_SORTER has them available through queries
constraints and elements. The general scheme for the topological sort algorithm
in procedure process is:

Suitably refined, this form will work if we indeed start from an acyclic relation
(or, as a special case, an order relation).

The four pseudocode instructions shown above recur throughout the rest of this
chapter; to avoid monopolizing attention, they will no longer use the special color
marking pseudocode (except in one case where the attention will be required). The
normal pseudocode convention resumes in the next chapter.

The No-Predecessor and Topological Sort theorems give the justification, which
we should express through a loop invariant and variant (did the spectacle of an
invariant-less loop make you scream? — I hope it did):

record_element (e: G)
record_constraint (e, f : G)

from … until elements.is_empty loop

“Let x be an element without predecessors for the constraints”
“Produce x as the next element of sorted”
“Remove x from the set of elements”
“Remove all pairs starting with x from the set of constraints”

end

← “Touch of Style:
Highlighting
pseudocode”, page
109. The exception is
in the final form of the
core loop, page 536.

← Pages 510 and 516.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.3520

Cycles in the constraints

This version of the algorithm scheme is correct in principle but not suitable for
most real-life applications of topological sorting.

The problem is the precondition, which requires r to be an acyclic relation.
A topological sort program gets its input in the form of individual ordering
constraints, for example [Map, Louvre], [Map, Orsay] as above. Such input may
have been prepared by humans, and we cannot be sure that it is error-free. (In
industrial plant maintenance, there may be thousands of tasks and tens of
thousands of constraints between them.)

In the glossary example, we may hope that no set of two or more terms all
reference each other in their definitions (thereby creating a cycle), but we have
no way to enforce this rule on glossary authors. The expectation is in fact the
other way around: the glossary’s author will expect a program that can be told:
“Order these entries so that definition always comes before first use — and by

the way, if you find any mutually referential entries, tell me what they are, so that

I can improve the definitions”.

process

-- Produce in sorted an enumeration of the members of elements,
-- in an order compatible with constraints.

require

-- “constraints describes an acyclic relation on elements”
do

from

create {…} sorted.make

until

elements.is_empty

loop -- As before, except for explicit use of the result list sorted:
“Let x be a member of elements without predecessors for constraints”
sorted.extend (x)
“Remove x from elements”
“Remove from constraints all pairs starting with x”

end

ensure

-- “sorted is a topological sort of elements according to constraints”
end

invariant

-- “constraints describes an acyclic relation on elements”

variant

elements.count

§15.3 PRACTICAL CONSIDERATIONS 521

Similarly, the task of ordering the features of a class so that declarations
appear before calls is impossible in the case of indirect recursion (direct
recursion is fine), even though this is not an error. It may still be interesting to
apply a topological sort algorithm to the non-cyclic part of the call graph, and
report any remaining cycles.

These considerations suggest that process renounce its above contract

in favor of a more realistic one:

This is not enough yet, since the class should be able to report to its clients that
the input contains a cycle — and to say what elements are involved. One way to
provide this functionality would be through a boolean-valued function

or, more informatively, a function that returns the list of elements involved in a
cycle (void if and only if has_cycle is false). This is conceptually sound, but not
the best approach because it is computationally too expensive. Finding cycles
— the job of a function has_cycle — is essentially as hard, in time and space
complexity, as topological sort proper; but if we attempt to do a topological sort
without the precondition, we may at hardly any extra cost find any cycles in
the process.

require

-- “constraints describes an acyclic relation on elements”
ensure

-- “sorted is a topological sort of elements,

-- according to constraints”

-- (No precondition.)
ensure

-- “sorted is a topological sort, according to constraints, of all the
-- members of elements not involved in a cycle”

has_cycle: BOOLEAN

-- Is the relation represented by elements and constraints

-- not acyclic?
do … end

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.3522

The No-Predecessor theorem tells us indeed how we can find cycles as a
side bonus of a topological sort process:

� As shown in the loop above, we look at each stage, as long as the set of
elements is not empty, for an element without predecessors.

� The theorem indicates that if the relation is acyclic we will always find such
an element.

� If we cannot find an element that has no predecessors and the set elements

is not empty, we know — from the theorem — that the remaining elements
are all involved in at least one cycle. We can terminate the algorithm and
report that a full topological sort is impossible. This is a graceful form of
termination, since we will have topologically sorted the elements that are
not in cycles, and will be able (from the remaining elements and constraints)
to tell the client which elements and constraints cause the problem.

In this scheme, used in the rest of this chapter, the topological sort routine has
no precondition and the loop invariant, instead of

gets weakened to:

with the consequences that

and

This is the basis we should retain. As a consequence, we can no longer use the
loop exit condition elements.is_empty as above, since a non-empty elements

does not guarantee any more that we may correctly execute the instruction

As the new exit condition, we will simply have

whose negation — there is at least an element without predecessors —
guarantees that the loop body can find the next candidate element for output.

-- “constraints describes an acyclic relation on elements”

-- “constraints describes a subset of the original relation on elements

-- “Any cycle in constraints was present in the original relation”

-- “constraints describes an acyclic relation if the original was acyclic”

“Let x be a member of elements without predecessors for constraints”

“No member of elements is without predecessors for constraints”

← Pages 510.

§15.3 PRACTICAL CONSIDERATIONS 523

Overall class organization

We can now define the overall form of the class that will serve as the framework
for the solution:

class
TOPOLOGICAL_SORTER [G –> HASHABLE]

feature {NONE} -- Internal data structures

… See next sections …

feature -- Initialization

record_element (a: G)
-- Include a in the set of elements.

require
not_sorted: not done

do
 … See next sections …

end

record_constraint (a, b: G)
-- Include [a, b] in the constraints.
require

not_sorted: not done
do

 … See next sections …
end

feature -- Status report
done: BOOLEAN

-- Has topological sort been performed?

feature -- Element change

process

-- Perform a topological sort over all applicable elements.
-- Results accessible through sorted, cycle_found and cyclists.

require
not_sorted: not done

do
 … See next sections…

ensure
sorted: done

end

→ The routine body
appears on page 526
(revised, page 536).

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.3524

The feature clauses have been listed in an order facilitating sequential reading rather
than the recommended standard order, which a final version should respect.

The class is generic; the generic parameter G represents the type of elements.
The notation G –> HASHABLE means that we are “constraining” G (a notion
introduced in the next chapter) by type HASHABLE; the reason for the
constraint will emerge a little later.

The algorithm will rely on internal data structures, which we will devise in
the next sections; the corresponding features do not need to be available to
clients, so they will all be declared under feature {NONE}.

Once process has done its job, it will make its results available to clients
through several related queries:

� The boolean done, enabling clients to find out whether a topological sort has
indeed been performed; it is false after initialization.

� The list sorted, giving an order compatible with the constraints for elements
not involved in a cycle.

feature -- Access

cycle_found: BOOLEAN
-- Did the original constraint imply a cycle?

cyclists: LIST [G]
-- Elements involved in any cycle.

sorted: LIST [G]
-- List, in an order respecting the constraints, of all
-- the elements that can be ordered in that way

feature -- Status setting

reset
-- Allow further updates of the elements and constraints.
do

done := False
cycle_found := False ; cyclists := Void ; processed_count := 0

ensure
fresh: not done

end

invariant
elements_exist: elements /= Void
constraints_exist: constraints /= Void
cyclists_only_if_cycle: done implies (cycle_found = (cyclists /= Void))

end

→ “Constrained
genericity”, page 596.
See “Numbering the
elements”, page 531.

← Meaning they are
secret; see “Informa-
tion hiding: modifying
fields”, page 240.

§15.3 PRACTICAL CONSIDERATIONS 525

� The boolean cycle_found, to indicate whether any elements were
determined to participate in one or more cycles.

� The list of all these cycle-involved elements, which we accordingly call
cyclists. The invariant clause cyclists_only_if_cycle tells us that it is only
meaningful if cycle_found is true.

So a typical use of the class by a client wishing to perform a topological sort is:

It would be desirable for consistency to equip the queries sorted, cycle_found

and cyclists with the precondition done, but we omit this for the moment.

There is, however, a precondition not done for the initialization procedures
record_element and record_constraint, as well as for the topological sort
procedure process which has the postcondition done. This enforces the rule that
as a client you should first set up the elements and constraints, then call process.
As a result, it is an error to call process several times in succession on the same
class instance; since the constraints have not changed, this would make no sense
(although you may of course reuse the query results as many times as you wish).
The procedure reset is there in case you explicitly want to add elements and
constraints after a call to process, in preparation for a new call to process.

Procedure reset simply sets done to false, without clearing the previous
elements and constraints. We might add a procedure forget that calls reset and
clears all data structures. But it is just as reasonable to assume that, in this case,
the client will create a new instance of TOPOLOGICAL_SORTER.

your_structure: TOPOLOGICAL_SORTER [YOUR_ELEMENT_TYPE]
…
create your_structure

… Calls of the form your_structure.record_element (x) to record elements
… and your_structure.record_constraint (x, y) to record constraints …

your_structure.process

-- The topologically sorted elements are now available,
-- in the correct order, as your_structure.sorted.

if your_structure.cycle_found then

-- The elements involved in cycles are now available
-- through your_structure.cyclists …

end

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4526

15.4 BASIC ALGORITHM

We can now start to provide a full implementation of the key part of the solution,
procedure process.

The loop

We already had a general algorithm for process; adapted in light of all
subsequent observations (loosening the invariant, using the feature sorted which
represents the result in TOPOLOGICAL_SORTER), it reduces to this:

All that remains — do not rejoice too soon, major decisions still lie ahead — is
to refine the pseudocode elements into actual program text. The final part
(reporting cycles) will be a straightforward consequence of the rest; this leaves
the four highlighted operations, in fact just three since we can treat the first two
(finding out if there is an element without predecessors, and if so get one such
element) as a single operation. They will be the focus of our search for an
efficient algorithm:

from

create {…} sorted.make

until

loop

sorted.extend (x)

end

if “Any elements remain” then -- Report cycle:
cycle_found := True

“Insert these elements into cyclists”
end

Topological sort: the basic operations

T1 Find an element without predecessors — or report there isn’t any.
T2 Given an element x, remove it from the set of elements.
T3 Given an element x, remove from the set of constraints all that start with

it (that is to say, all pairs of the form [x, y] for some y).

← Page 520.

“No element is without predecessors”

“Let x be an element without predecessors”

“Remove x from the set of elements”
“Remove all constraints starting with x”

§15.4 BASIC ALGORITHM 527

We must find a representation for the elements and constraints that makes these
operations as efficient as possible. The data structures will appear as secret
features in the section reserved for that purpose in the class text.

That class sketch left two other routine bodies unfilled: add_element and
add_constraint. We will need to complete them based on the data structures that
we devise.

A “natural” choice of data structures

For our first attempt at data structures, it is natural to choose a representation
that directly models the problem’s input as it comes to us. (One thing you may
have already learned about programming is to become suspicious when you
hear a solution presented as natural. What is natural to me may not be natural
to you; and what is natural to you and me may turn out to be silly.)

We most likely get our data as a list of elements and a list of constraints. We
can use attributes that directly reflect that structure (declared secret, like all data
structures that follow, by appearing, in the class text, in a section of the form
feature {NONE} -- Internal data structures):

In our example the data structures will look like this:

assuming for convenience that we have assigned numbers to the example’s
elements, as follows:

elements: LINKED_LIST [G]
constraints: LINKED_LIST [TUPLE [G, G]]

← The clause starting
with feature {NONE}
on page 523.

←Page 523.

Elements and

constraints

1 2 1 4 5 2 5 4 3 5

1 2 3 4 5elements

constraints

Numbering the

elements

(From the figure on

page 505.)

Money Pass

Map

Louvre

Orsay

3
5

2

41

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4528

Performance analysis of the natural solution

Can we implement what we need — the operations T1, T2, T3 and the
procedures record_element and record_constraint — with this representation,
and if so what is the time and space cost?

Th e two p roced u re s a r e s t r a igh t fo rward . Fo r ex ampl e
record_constraint (x, y) will just perform

adding the tuple [x, y] at the end of the list of constraints. Similarly,
record_element (x) will perform elements.extend (x).

We must make sure that constraints and elements are non-void for such instructions;
the corresponding create instructions may either appear in a default_create for the
class, or be performed on demand on first need. This will also apply to other data
structures introduced below.

We can also use this representation to perform the other operations; let us
examine the cost, for n elements and m constraints:

� To find if there is an element without predecessors (T1), we can traverse the
list of constraints and count predecessors for every element, then traverse
the list of elements to find those for which the count is zero; but the first part
is an O (m) operation and the second is O (n). If we do this at every step, the
total cost is O (m ∗ n + n2).

� Removing an element (T2) can be as bad as O (n) each time (meaning
O (n2) for the whole process) with a linked list, although we could bring it
down to O (1) (total O (n)) by tuning the data structure.

� Removing a set of constraints (T3) can again be as bad as O (m) each time,
meaning O (m ∗ n) altogether, if all we have to represent constraints is the
global list constraints, which does not enable us to find all the constraints
starting with a given x without traversing the whole structure.

Anything that is O (m ∗ n) or O (n2) is bad. In particular, we may in a practical
application expect most elements to be involved in at least one constraint —
often many more in the average, e.g. ten or so in a typical scheduling problem —
so that m > n, implying that O (m ∗ n) is worse than O (n2). Anything in n2,
growing like the square of the number of elements, will be out of reach for large
practical applications, as the number of elements may be large.

So with this first choice of data structures we do have a solution, but
performance-wise it does not scale up to large practical problems.

constraints.extend ([x, y])

← “Creation proce-
dures”, 6.5, page 122.

§15.4 BASIC ALGORITHM 529

Duplicating the information

Fortunately we can do better than the “natural” solution. The observation is that
we do not have to use the data structures as they are given to us. The lists
elements and constraints express the data in a form that directly mirrors how
things appear to the external world, for example to the person who inputs a set
of tasks and a set of associated constraints. What is clear and “natural” to
describe the input to the outside world is not necessarily the best form for an
algorithm that will process the data for a specific purpose. Rather than following
the original form blindly, the algorithm may start with an initialization phase
that turns it into the format best suited to that processing.

The following data structures help make the job of topological sort — tasks
T1 to T3 — convenient and fast:

Here is how they will initially look for our working example:

This expresses the constraints between elements,
repeated on the side figure. For example, the
explanation for the entries of indexes 1 and 2 is that
task 1 (Map) has no predecessor and the successors
2 and 4 (Louvre and Orsay), and that task 2
(Louvre) has two predecessors and no successors.

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Indexed by element numbers; for each element x, gives the list of
-- its successors: the elements y such that there is a constraint [x, y].

predecessor_count: ARRAY [INTEGER]
-- Indexed by element numbers; for each, says how many
-- predecessors the element has.

Number of

predecessors,

and lists of

successors

1

predecessor_

2

3

4

5

0

2

3

2

1

2 4

5

2 4

successors
count

(From the figure on page 527.)

Money Pass

Map

Louvre

Orsay

3
5

2

41

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4530

What’s interesting in this representation is that the array predecessor_count

is conceptually redundant: we could always reconstruct the information it

provides by exploring the array successors, which includes all there is to know

about the constraints. But there is nothing wrong with storing information in two

(or more) different ways if — as we are going to see — it brings us a significant

improvement in computation time.

Such space-time tradeoffs are a key ingredient of good algorithm design.

Of course the tradeoff has to be acceptable. Here our goal is to have O (m + n)

time complexity. In space complexity, successors is O (m + n) (one array entry

per element, one tuple and reference per constraint); adding the O (n) array

predecessor_count does not change the picture.

The original data structures, elements and constraints, already took up

O (m + n) space.

Spicing up the class invariant

It is convenient for clarity to add a query

which we can make public. It is also useful, if only for readability, to add the

following invariant clauses, the last two expressed informally:

count: INTEGER

-- Number of elements

elements.count = count

predecessor_count.count = count

successors.count = count

-- For every i in 1..count, predecessor_count [i] is the number of
-- predecessors of i according to the constraints.

-- For every i in 1..count, successors [i] contains all the successors
-- of i as implied by the constraints, or is void if i has no such successors.

count represents n in
the program.

§15.4 BASIC ALGORITHM 531

Numbering the elements

To use an array we need to associate an integer with every element. I sneakily
introduced such a numbering a while ago but now it is not just a useful
convention; it is required by our choice of data structures.

Does this mean that we should renounce the generic parameter G of our
class TOPOLOGICAL_SORTER [G] since all manipulations of elements will
now use their integer numbers? Absolutely not. It remains necessary, for
expressiveness, to produce a mechanism applicable to elements of any type. All
we need in practice is a hash table and an array:

The integer index_of_element [e] will be the number x assigned to an element
e, of type G. Then element_of_index [x] will be e.

Both of these use bracket notation: index_of_element [e] is the item of key e in the
hash table, and element_of_index [i] is the item of index i in the array.

Subject to a proper implementation of hash tables, these structures are both
O (n) in space.

To define a hash table of elements of type G requires that G conform
(through inheritance) to class HASHABLE. This was taken care of by declaring
the class as TOPOLOGICAL_SORTER [G –> HASHABLE] (using “constrained
genericity” as introduced in the next chapter).

TOPOLOGICAL_SORTER will not export index_of_element and
element_of_index, since these features are for implementation only; but we
must enable clients to find out if a certain element is part of the problem, so we
export the following query:

index_of_element: HASH_TABLE [INTEGER, G]
-- For every element, gives its index

element_of_index: ARRAY [G]
-- For every assigned index, gives the associated element

←“A “natural”
choice of data struc-
tures”, page 527.

←“Bracket notation
and assigner com-
mands”, page 384.

Two-way

mapping

between

elements and

numbers

Louvre

Pass

Orsay

Map

Money

1

2

3

4

5

index_of_element
(hash table)

Pass

Orsay

Money

Louvre

Map1

2

3

4

5

element_of_index (array)

index itemkeyitem

← Page 523.

→ “Constrained
genericity”, page 596.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4532

Make sure you understand the postcondition.

Let us see how our new data structures help reach the goal of O (m + n) time.
Two aspects are now involved: operations T1 to T3, but also initializing the data
structures predecessor_count and successors. Both are equally relevant: it
would not help to have O (m + n) for the core of the algorithm (the loop iterating
operations T1 to T3) if the initialization took — say — O (m ∗ n).

It does not seem too hard to initialize the data structures in O (m + n): process
all constraints in sequence; for every constraint [x, y], increment the y entry in the
array predecessor_count, and insert y into the list successors [x]. Both of these
operations are O (1), so applying them to all constraints is O (m + n). We will
need to spell out the details, but for now let us indeed assume O (m + n)
initialization and concentrate on T1 to T3, the core operations of the algorithm.

Basic operations

We start with T3: “Given an element x, remove all constraints of the form [x, y]
for any y”. If we know the number for x, this is straightforward:

L1 We will not need the list of successors of x any more. We could make it void
through successors [x] := Void. In practice, this is not necessary, as the
algorithm will never visit the entry x of successors any more. But even if we
had to perform this operation it would be O (1) — meaning O (n) globally
if we apply it to all elements. Good!

L2 We must also update any relevant entry in the array predecessor_count. The
effect on this array of “removing all constraints [x, y]” for given x means that
we must decrease predecessor_count [y] by 1 for every successor y of x. So
it suffices to traverse the list successors [i] (before you set it to void, of course,
if you want to do that), and for each element encountered decrease the
corresponding entry in predecessor_count. This is a straightforward loop,
whose code appears below. This process will be done at most once, in the
entire processing, for each constraint in the system. So it is O (m). Good again!

has_element (e: G): BOOLEAN

-- Is e one of the elements to be topologically sorted?
do

Result := index_of_element.has (e)
ensure

consistent: Result =index_of_element.has (e) and then

index_of_element [e] >= 1 and then

index_of_element [e] <= element_of_index.count and then
element_of_index [index_of_element [e]] = e

end

→ Exercise 15-E.6,
page 548.

→ “Initializations and
their time perfor-
mance”, page 538.

→ Innermost loop on
page 536.

§15.4 BASIC ALGORITHM 533

T3, then, is O (m + n) at worst.

All the processing just described is there to maintain the invariant clauses
expressing that the array predecessor_count and the array of lists successors

faithfully reflect the structure of the remaining constraint relation.

T2 is “given an element x, remove it from the set of elements”. In fact, with
our new data structures, we do not really need to do anything here. The
information that really matters affects the constraints starting with x, and we
have just taken care of these. Definitely good.

There remains T1, “find an element without predecessors — or report there

isn’t any”. It suffices to traverse the array predecessor_count and look for zero

values. But this is O (n) meaning, overall, O (n2). Not good!

We are still missing one — our last — data structure.

The candidates

We will not avoid one O (n) traversal of the array predecessor_count upon
initialization — the from clause of our main loop — to find out the initial
“candidates” for immediate output: elements without predecessors in the
original relation. Unless every element is involved in some cycle, a rather
inauspicious initial situation for an attempt at even partial topological sorting,
we will find one or more x for which predecessor_count [x] is initially 0. This
requires O (n), as noted, but paying O (n) once is not a problem.

After that, we will not ever need to traverse the array predecessor_count to
look for new candidates. It suffices to notice that the operation labeled L2 on the
previous page, which decrements one or more entries of the array
predecessor_count, is the only one that can make an entry of the array zero if it
wasn’t zero initially. This means we can just extend the operation to make it
watch for entries that become zero. Assuming it was written

we replace it by

-- Decrease the y entry of predecessor_count by one:
predecessor_count [y] := predecessor_count [y] – 1

-- Decrease the y entry of predecessor_count by one
-- and check if this makes y an element without predecessors:

predecessor_count [y] := predecessor_count [y] – 1 [3]

if predecessor_count [y] = 0 then

“Record that y is now without predecessors”
end

← As introduced on
page 530.

→ In procedure
find_initial_candidates,
page 537.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4534

To “Record that an element is without predecessors” it suffices to add it to a
structure candidates which will, after initialization and after every iteration of
the loop, contain all not yet processed elements that have no predecessor. What
concrete data structure should we use for candidates? For the topological sort
algorithm the precise choice does not matter as long as the structure supports the
following five features:

feature -- Access

item: G
-- An element previously inserted.

require

not_empty: not is_empty

feature -- Measurement

count: INTEGER

-- Number of elements.
ensure

non_negative: Result >= 0

feature -- Status report

is_empty: BOOLEAN

-- Is there no element?
ensure

definition: Result = (count = 0)

feature -- Element change

put (x: G)
-- Insert x.

ensure

one_more: count = old count + 1

remove: G
-- Remove the element given by item.

require

not_empty: not is_empty

ensure

one_fewer: count = old count – 1

count is there for com-
pleteness, but we will
not actually need it.

§15.4 BASIC ALGORITHM 535

The general name for such a structure is dispenser, by analogy with a machine
into which you may deposit elements (put) and also, by pressing a button,
getting a previously deposited element (item and remove), assuming there is still
at least one (not is_empty):

As you remember, the basic idea is that you do not choose the element to get and
remove: the dispenser chooses for you. Stacks, with a LIFO policy, and queues,
with a FIFO policy, are dispensers; so are priority queues.

For topological sort, any dispenser will do the job. Choosing a particular
kind affects the actual order — among those compatible with the constraining
relation — in which the algorithm outputs elements. This is the lever that you
can apply to select a specific policy, for example to ensure that the result will
optimize a certain criterion. It is also the reason for describing topological
sorting as an algorithm family rather than a single algorithm.

We may declare the candidate dispenser as

An implementation by a STACK or QUEUE would also do; a “priority queue”
is a more general kind of dispenser where every element may be given a priority,
with the rule that item yields (and remove takes away) the element with the
highest priority. STACK and QUEUE are the special cases of priorities set as an
increasing and decreasing function of the order of insertions. A general
PRIORITY_QUEUE allows you, by playing with the priorities, to enforce any
selection policy of interest.

candidates: PRIORITY_QUEUE [INTEGER]
-- Elements without predecessors, ready to be released

-- Additional clause for the invariant:
-- For every item x of candidates, predecessor_count [x] = 0

← “Dispensers”,
13.10, page 418.

A dispenser

→ As explored in exer-
cise “Parameterizing
topological sort”,
15-E.9, page 548

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4536

The loop, final form

We may now write the main loop of the topological sort algorithm — the body
of the procedure process — with all its details. The pseudocode instructions of
the previous version have been left as comments (in red) for comparison. The
routine must declare local variables x and y of type INTEGER and x_successors

of type LIST [INTEGER], recording the successors of a particular element. We
also add an integer variable processed_count — used next — to keep track of
how many elements we have processed.

from
create sorted.make

-- See next
invariant

-- “The data structures represent a subset of the original elements,
-- and the corresponding subset of the original relation”

until

loop
-- “Let x be a member of elements with no
-- predecessor for constraints”

x := ;

sorted.extend (element_of_index [x])

-- “Remove x from elements and
-- all pairs starting with x from constraints”

x_successors := successors [x] -- A list
from x_successors.start until x_successors.after loop

y := x_successors.item

-- Next few lines are from [3], page 533:
predecessor_count [y] := predecessor_count [y] – 1
if predecessor_count [y] = 0 then

-- “Record that y is now without predecessors”

end

x_successors.forth
end
processed_count := processed_count + 1

variant
count – processed_count

end

report_cycles -- See next
done := True

← The basic form
appeared on page 526.
For the context,
including procedure
process, see page 523.

find_initial_candidates

candidates.is_empty

candidates.item candidates.remove

candidates.put (y)

§15.4 BASIC ALGORITHM 537

This algorithm assumes that the arrays predecessor_count and successors have
been properly set up, as must be the case before any call to process. The details
of the initializations are coming next.

Operations on candidates are highlighted to emphasize how critical this
structure has now become to the algorithm.

The procedure find_initial_candidates must set up the candidates dispenser
with the elements initially without predecessors. It is straightforward:

This is the O (n) traversal that without candidates we would have had to
perform at each step of the loop; now we just do it once at the beginning.

It is not an error for the procedure to find no elements satisfying
predecessor_count [x] = 0; this case will simply result in an empty candidates

structure, causing the loop to terminate immediately, as every element is
involved in a cycle.

Procedure process must do one more thing after the loop: set up the
information enabling a client to find out about any cycles in the input. This is
the task of procedure report_cycles. To implement it, we note that the loop
terminates when there are no more elements in candidates; if the original
relation was acyclic we will have processed all elements, so we use
processed_count to find out whether there are any left:

find_initial_candidates

-- Insert into candidates any elements without predecessors.
local

x: INTEGER

do

if candidates = Void then create candidates end

from x := 1 until x > count loop

if predecessor_count [x] = 0 then

candidates.put (x)
end

x := x + 1

end

end

→ “Initializations and
their time performance”,
page 538 below.

← As noted at the end
of “Basic operations”,
page 533.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4538

Initializations and their time performance

We now have an efficient — O (m + n) — implementation of the core of the
topological sort loop, thanks to three data structures chosen directly to fit its
needs: the arrays predecessor_count and successors, and the dispenser
candidates. To complete the job we must spell out their initialization, making
sure they do not exceed the performance constraints.

The initialization will have to perform:

� record_element (e) for every element: n times altogether.
� record_constraint (e, f) for every constraint: m times altogether.

The job of record_element (e) is to assign a number to e,
so that the rest of the processing can deal with integers,
rather than actual elements of G.

This is done by filling in twin entries in the array
element_of_index and the hash table index_of_element:

report_cycles

-- Make information about cycles available to clients.
do

if processed_count < count then

-- There was a cycle in the original relation!
cycle_found := True

create {LINKED_LIST [G]} cyclists.make

from x := 1 until x > count loop

if predecessor_count [x] /= 0 then

-- x was involved in a cycle
cyclists.extend (element_of_index [x])
x := x + 1

end

end

end

(From the figure on page 531.)

Louvre

Pass

Orsay

Map

Money

1

2

3

4

5

index_of_element

Pass

Orsay

Money

Louvre

Map1

2

3

4

5

element_of_index

§15.4 BASIC ALGORITHM 539

The initial test ensures that the procedure ignores a second attempt to insert a given
element. This policy allows record_constraint (e, f) to start by calling
record_element on both e and f just to make sure the elements are properly inserted.
An exercise asks you for a way to avoid the duplication of work between
has_element and extend.

With appropriate implementations of extend and force, the code of
record_element is O (1); executed for all elements, it will contribute O (n) to the
algorithm. This is in line with our requirements.

The remaining initialization mechanism is the procedure for entering
constraints. A call to record_constraint (e, f) must increase by 1 the number of
predecessors of f in the array predecessor_count, and add f to the list of
successors of e. That list is one of the entries of the array successors:

record_element (e: G)
-- Add e to the set of elements, unless already present.

require

not_sorted: not done

do

if not has_element (e) then

count := count + 1

index_of_element.extend (count, e)
element_of_index.force (e, count)

-- extend and force expand the structures if necessary; this means
-- we do not need to know the number of elements in advance.
end

ensure

inserted: has_element (e)
one_more: not (old has_element (e)) implies (count = old count + 1)

end

→ Exercise 15-E.7,
page 548.

Adding a

constraint

predecessor_count

p

f

successors

Add 1 to this entry

index_of_element [e]

Add a new entry for f hereindex_of_element [f]

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.4540

The routine will read

with an auxiliary procedure (which does not need to be exported):

record_constraint (e, f : G)
-- Add the constraint [e, f].

require

not_sorted: not done

exist: e /= Void and f /= Void

local

x, y: INTEGER

do

-- Ensure e and f are inserted (no effect if they already were):
record_element (e); record_element (f)

x := index_of_element [e]
y := index_of_element [f]
predecessor_count [y] := predecessor_count [y] + 1
add_successor (x, y)

ensure

both_there: has_element (e) and has_element (f)
end

add_successor (x, y: INTEGER)
-- Record y as successor of x.

require

1 <= x ; x <= count

1 <= y ; y <= count

local

x_successors: LINKED_LIST [INTEGER]

do

x _successors := successors [x]

-- The successor list for x may not have been created yet:
if x_successors = Void then

create x_successors.make

successors [x] := x_successors

end

x_successors.extend (y)

end

§15.4 BASIC ALGORITHM 541

As suggested earlier, record_constraints starts by calling record_element on the
constraint’s two elements; because of the way we have designed
record_element, this has no effect if they were already there. This policy makes
it possible for a client application to start from just a list of constraints, never
having to call record_elements explicitly.

We cannot, however, assume this will always be the case and remove
record_element from the public interface of the class. An instance of the problem
may, as noted, include elements that are not involved in any constraint but should
still be listed as part of the output. In such a setup, the input must include, separate
from the list of constraints, a list of elements.

On the subject of duplication, the procedure record_constraint does not attempt
to determine if a constraint has already been entered. Indeed, as you are invited
to check, our topological sort algorithm will work as expected if a constraint
appears twice. This may well happen with manually entered data and the
algorithm does not consider it an error; there is nothing contradictory in saying
twice “e must come before f ”. To apply a different policy is the responsibility
of the client application, as part of input validation.

Now what about efficiency? The code for each of the two auxiliary
procedures is O (1): one array access plus, in the second case, insertion at the
end of a list (with a good implementation ensuring that the list cursor stays at
the end) and, once for each applicable element, an object creation. Then
record_constraint as a whole is O (1); as it is executed once for each constraint,
its contribution to the algorithm is O (m). We have achieved our goal of
O (m + n) time for the initialization as well as the main part of the algorithm.

Putting everything together

You have now seen all the program elements needed to implement topological
sort. A class built directly from this discussion is available in EiffelBase and
used in Traffic, but I suggest that independently of this existing implementation
you check your understanding of the concepts by writing yourself an
implementation that brings them all together:

Make sure to engineer the solution properly by providing not just the algorithm
but also the initialization procedures (record_element, record_constraint).

To test your solution, you will find at the page for this course a file listing a
few hundred example constraints, and all its possible topological sorts.

Programming time!
Usable implementation of topological sort

From the elements of this chapter, write a class TOPOLOGICAL_SORTER

providing a general, usable implementation of topological sort.

→ Exercises 15-E.8,
page 548 and 15-E.9,
page 548.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.5542

15.5 LESSONS

The topological sort algorithm has important consequences to teach us for both
algorithm design and software engineering.

Interpretation vs compilation

We have seen the two solution styles for executing programs written in some
source programming language S:

� Interpretation; write a program, called an interpreter, that can directly
execute an arbitrary S program applied to an arbitrary input.

� Compilation: write a program, called a compiler, that transforms any S

program into a program with equivalent semantics expressed in a target
language T. If T is machine language for the desired platform, the result can
be directly executed; alternatively, T can be further compiled or interpreted.

Practical language implementations, as noted, often combine the two approaches.

These concepts generalize to many application domains other than the
execution of programs in a high-level language. To perform a certain processing
on a certain input, we may use data structures that directly mirror the input; or
we may proceed in two steps:

� Compilation: transform the data into a form more suitable for the
algorithm’s needs.

� Interpretation: apply the needed operations to the resulting structure.

← “Compilation vs
interpretation”, 12.2,
page 330.

Interpretation

and

compilation of

programs

(Simplified version of
figure on page 331.)

S
program

T
program

Data

S Compiler

Interpretation

Interpreter

Compilation

Execution

(input, output)

← “Combining com-
pilation and interpre-
tation”, page 332.

§15.5 LESSONS 543

This technique (which, as for language processing, may in the general case
involve several iterations of the process) is exactly what we have applied for
topological sort. We first looked at an interpretive solution using the seemingly
natural data structures, directly deduced from the statement of the problem; but
they turned out to yield bad performance. “Compiling” them into a
representation tailored to our goals led to a solution with excellent performance.

In such a two-step solution, the “compilation” step, which initializes the
data structures, may be as delicate to devise as the actual processing based on
its results, and it may account for as much time, sometimes more. That is fine
as long as the overall performance meets your goals — but of course you must
not jump to conclusions about performance until you have taken into
consideration the initialization as well as the later processing.

The approach can be summed up as a heuristics — a general strategy, similar to
a “design pattern” but of a more abstract nature, that is known to help devise
good solutions in suitable cases:

We will see another application of this idea in the discussion of architectures for
event-driven design.

Touch of Heuristics:

Compile the data first!

Good algorithms are often obtained through a two-step strategy where:
� The first step turns the input, from its given form, into internal data

structures carefully devised to suit the algorithms’ goals.

� The second step processes the resulting form to attain these goals.

← “A “natural”
choice of data struc-
tures”, page 527.

“Interpretation”

and “compilation”

of data

Original
data

“Compiled”
form Output

Initialization

Main

(“Compiler”)

Algorithm

(“Interpreter”)

→ “About design pat-
terns”, page 678.

→ “Invest then
enjoy”, page 694.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.5544

Time-space tradeoffs

Closely tied to the “Compile the data first!” heuristics is the observation that the
ideal data structure — the one best helping the second step — is often not the
most economical representation possible for the underlying information. In the
topological sort solution, information about constraints may end up in three

different parts of the data structure: a constraint [x, y] causes y to appear in the
list of x’s successors in the array successors; it adds one to predecessor_count

[y]; and the absence of any such constraint for a given y leads to inserting y into
candidates. Such replication sacrifices some space to ensure a considerable gain
in execution time. Tradeoffs of this kind, in this direction or the reverse one, are
among the keys to efficient algorithm design.

Algorithms vs systems and components

It is possible to give a description of topological sort that ignores many of the
aspects studied in this chapter, concentrating only on the final algorithm. For a
usable solution, however, one must take into account the practical needs of
applications. The object-oriented approach allows us to meet this goal: instead
of writing a “topological sort program” we have devised a class ,
TOPOLOGICAL_SORTER. An instance of this class describes an instance of
the topological sort problem, equipped with not only the algorithm (procedure
process) but also with all the apparatus enabling clients to:

� Set up the problem instance, by recording elements and constraints in a
convenient way.

� Apply process to produce a topological sort of the applicable elements,
satisfying the constraints.

� Query the resulting state, to discover whether any cycles were found, and if
so what elements they involve.

The difference between this approach and a mere algorithm is part of the
difference between software engineering and mere programming. In software
engineering it is not enough to devise clever algorithmic solutions and the
associated data structures; the goal is to provide solutions that can be integrated
into successful systems.

In addition we should make these solutions reusable, so that they are not
just design patterns, which programmers can integrate into their systems by
buying and reading books (especially excellent books such as the present one),
but components that can be made available, once and for all, for reuse directly
off the shelf.

You will also have noted how, in this process, the contracts enable us at
every step to know exactly what we are doing — what we expect, what we
guarantee and what we maintain.

← For the terminology
see “Information and
data”, page 8.

→ Chapter 19
describe the non-pro-
gramming aspects of
software engineering.

§15.6 KEY CONCEPTS LEARNED IN THIS CHAPTER 545

15.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

� A topological sort is an enumeration of a set of elements compatible with a
set of ordering constraints on these elements.

� The problem has a simple mathematical description: given a (strict) order
relation, find a total order that is a subset of it.

� In practice the relation is usually not an order relation but at best acyclic.
Taking its transitive closure gives an order relation.

� A realistic, well-engineered software solution must accept possibly
erroneous input in which the relation has cycles. It should then produce a
topological sort of the acyclic part, and report remaining cycles.

� Such a solution must provide not just the topological sort algorithm but also
mechanisms to build a problem instance by entering individual elements
and constraints.

� With n elements and m constraints, it is possible to perform topological
sorting in O (m + n) time and space.

� The key to the efficiency of the algorithm is that it works from data
structures specifically adapted to the problem: two arrays giving, for each
element, the list of its successors and the number of its predecessors; and a
dispenser (stack, list or priority queue) containing the set of elements
without predecessors.

� As this example illustrates, good algorithmic solutions are often obtained by
first “compiling” the problem’s data into a specially designed data structure,
which can then be “interpreted” efficiently.

New vocabulary

Acyclic Antisymmetric Binary relation

Cycle Irreflexive Order relation

Partial order Relation Strict order

Topological sort Total order Transitive closure

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15.7546

15.7 APPENDIX: TERMINOLOGY NOTE ON ORDER RELATIONS

To discuss topological sort it is convenient — as this chapter has shown — to use
strict order relations, as in “strictly less than”; the "<" relation on numbers is an
example of strict order. For other problems it may be more useful to deal with the
non-strict versions, such as "≤" on numbers. The two are closely related: x ≤ y holds
if and only if x < y or x = y. The common convention is for “order relation” to mean
the nonstrict version. In this chapter, since we have used only strict order relations,
the word “strict” has usually been omitted, so that “order” means “strict order”.

For a strict order relation (irreflexive and transitive), some of the literature uses the
term quasi-order. Of course one may pick any name for a notion as long as one
provides a precise definition, but this particular name is unfortunate since there is
nothing “quasi” about such orders; if anything they are “more” ordered than
nonstrict variants — those usually called “order relations” — since they do not hold
between an element and itself (irreflexivity). To make things worse, other authors
use “quasi-order” for relations that are transitive and reflexive (rather than
irreflexive). So it is better to stay away from this term and instead qualify order
relations as “strict” when needed.

The next issue is whether the relation is total or not. Totality means that for any two
non-equal elements x and y one of x < y and y < x will hold. An order relation that
satisfies this property is a total order. One that does not satisfy the property —
meaning that there is at least one pair of distinct elements for which neither [x, y]
nor [y, x] is in the relation — should be called a partial order. But that is not what
“partial order relation” means in most of the literature: it means an order relation
that we do not know to be total. In other words, it is a possibly partial order relation.
That is confusing, since now a total order relation is also partial! It is better to write,
as in this chapter:

� Total order for an order relation that is known to be total.

� Partial order for an order relation that is known to be non-total.

� If we do not know, or want to include both cases, just order. In case of possible
ambiguity, use “possibly partial order”.

15-E EXERCISES

15-E.1 Vocabulary

Give a precise definition of each of the terms in the vocabulary list on the
preceding page.

15-E.2 Irreflexivity and asymmetric

Order relations were defined as irreflexive and transitive, and proved
asymmetric as a consequence. Prove that it is equivalent to define them as
asymmetric and transitive, with irreflexivity a consequence.

← Page 511.

§15-E EXERCISES 547

15-E.3 Total order and enumeration

Prove that if a relation r is a total strict order on a finite set, there exists a single
enumeration of the elements such that, for any elements x and y, x appears before
y in the enumeration if and only if the pair [x, y] is in r.

15-E.4 Strict vs. nonstrict orders

The discussion in this chapter has relied on strict order relations (partial or
total), such as "<" on integers, “less than”. It is also possible to use nonstrict

order relations, such as "≤", “less than or equal to”. The definition of a partial
strict order — which we will call "<" although it does not have to be the usual
relation on numbers — was that it must be:

O1 Irreflexive: x < x holds for no x.

O2 Transitive: whenever x < y and y < z hold, so does x < z.

That the relation is also

O3 Asymmetric: x < y and y < x may not both hold.

is a consequence of the previous two properties.

F o r a p a r t i a l nons t r i c t o rde r r e l a t i on "≤ " , t h e re a r e t h r e e
independent conditions:

N1 Reflexive: x ≤ x for any x.

N2 Transitive: whenever x ≤ y and y ≤ z hold, so does x ≤ z.

N3 Antisymmetric: whenever x ≤ y and y ≤ x both hold, then x = y.

For any partial strict order relation "<" there is an associated relation "≤",
defined by

Conversely, given a partial nonstrict order relation "≤", we may define an
associated relation "<" by

This exercise explores the relationship between these associated strict "<" and
nonstrict "≤" variants.

1 Prove that if "<" is a partial strict order relation, then "≤", as defined by [4],
is a partial nonstrict order relation.

2 Prove that if "≤" is a partial nonstrict order relation, then "<", as defined by
[5], is a partial strict order relation.

x ≤ y if and only if: x < y or x = y [4]

x < y if and only if: x ≤ y and x ≠ y [5]

← “Binary relations”,
page 509.

DEVISING AND ENGINEERING AN ALGORITHM: TOPOLOGICAL SORT §15-E548

3 In the strict case, the definition imposes only two conditions: irreflexivity
and transitivity; condition O3, asymmetry, is a consequence. In the nonstrict
case, there are three conditions. Prove that antisymmetry, N3 does not
necessarily follow from the other two, reflexivity and transitivity. (In other
words, find an example that satisfies N1 and N2 but not N3.)

4 Prove that replacing “reflexive” by “irreflexive” in the definition of a
nonstrict order yields the definition of a strict order.

5 Does replacing “irreflexive” by “reflexive” in the definition of a strict order
yield the definition of a nonstrict order?

15-E.5 Acyclic and total order relations

Prove the Topological Sort theorem on the basis of the second theorem on
acyclic and order relations.

15-E.6 An interesting postcondition

Explain the postcondition of the function has_element.

15-E.7 Optimizing hash table usage

The algorithm for procedure record_element tests whether an element e is
already present in the hash table index_of_element, and inserts it only if not.
This causes two search operations, one for has (called by has_element) and one
for extend. Examining the contract form of HASH_TABLE to find the
appropriate features, rewrite the procedure to avoid this small inefficiency.

15-E.8 Programming topological sort

Implement the class TOPOLOGICAL_SORTER according to the discussion of
this chapter.

15-E.9 Parameterizing topological sort

(This exercise assumes you have done the preceding one.) Extend the
implementation of topological sort to enable clients to select a specific policy
for choosing between competing “candidates” ready for output.

← Page 516;
page 513.

← Page 532.

← Page 540.

← See “Programming
time! Usable imple-
mentation of topologi-
cal sort”, page 541.

→ As discussed in
“The candidates”,
page 533.

16

Inheritance

The world (are you ready, this early in the chapter, for deep revelations about
life?) is a mess. Nature perhaps abhors a mess, perhaps not, I am not sure, it
depends on whom you read — Plato, Aristotle, Kant — but science definitely
does. Sane reasoning about the world demands order.

Order is what science provides: an idealized, organized version of reality.
We’ll leave it to our philosopher friends to debate whether the order was really
present in the first place, behind a disorderly appearance, and all science has to
do is uncover it; or if the world really is a mess and science stencils an artificial
order onto the natural mishmash. What matters, to get us started on
understanding inheritance, is that science, and with it engineering, seek
systematic, well-structured descriptions. One of the principal tools in this quest
is hierarchical classification, also known as taxonomy.

To become sciences, botany and zoology needed Linné, in the 18th century,
to devise an effective classification of living beings. Biological taxonomy tells
us that the common dolphin species, which it calls Delphinius delphis, is
included in the genus Delphinius, itself part — I am skipping levels — of the
order of Cetaceans, which belongs to the class of Mammals, included in the
superclass of Tetrapodes, attached to the sub-phylum of Vertebrates, member
beyond any doubt of the kingdom of Animals. The objects in this case are
natural; the order is artificial.

It is indeed one of many possible human choices; Aristotle, for example, did not
associate dolphins with land mammals, although he recognized they were not fish
as others had previously classified them.

In mathematics, the objects themselves — numbers, functions, sequences… —
are artificial, a creation of human minds. Évariste Galois in the early 19th
century, then Georg Cantor and others came up with abstract mathematical
structures to group such mathematical objects — however different they may
superficially look — into categories, themselves organized in hierarchical
classifications. With one operation that is associative and has an identity
element (think of concatenation for strings, with the empty string as identity, or

For the full line see for
example the Wikispe-
cies entry: species.
wikimedia.org/wiki/
Delphinus_delphis.

http://species.wikimedia.org/wiki/Delphinus_delphis
http://species.wikimedia.org/wiki/Delphinus_delphis
http://species.wikimedia.org/wiki/Delphinus_delphis

INHERITANCE §16.1552

addition for non-negative integers with 0) you get a monoid structure; add the
notion of inverse, and you have a group (think of the set of all integers, with –x

as the inverse of x); add a second operation with adequate properties (on
integers, multiplication) and you get a ring; bring in some more properties and
you get a field (think of real numbers).

Like mathematicians, we programmers deal with abstract objects —
figments of our imagination — and cannot blame their disorder on anyone but
ourselves. Like everyone, we need to organize these disorders into a semblance
of order. Perhaps we need this more than anyone else, because we are arguably
the world champions in entropy creation, apt through our programs to create
bigger messes than was ever thought possible. “To err is human, but to mess up

for good takes a computer”, the saying goes, to which we may add “or a

computer programmer”.

To fight this we can, like other sciences, use taxonomy. We organize our
objects into categories, and examine the hierarchical relations between those
categories. As a dolphin is a mammal and a mammal a vertebrate, as a field is a
ring, a taxi as modeled in our programs is a vehicle and a vehicle is a moving
city object. A pedestrian is a moving city object too, but not a vehicle.
Inheritance will enable us to reason about such “is-a” relationships and use the
resulting taxonomies to structure our software.

We have encountered inheritance and the associated inherit keyword before
— actually in our very first example — as a way to let a class benefit from the
work done for previous classes. This was only one of the aspects of inheritance;
it applies to classes viewed as modules (collections of useful features).
Inheritance becomes even more interesting — with new techniques such as
polymorphism and dynamic binding — in its application to the other role of
classes: as types, each describing a collection of run-time objects, such as metro
lines or taxis.

16.1 TAXIS ARE VEHICLES

Yes, taxis. We have done our plebeian bit enough in previous chapters, taking
the metro with everyone else; now we move up one rung, economically if not
environmentally, and commandeer our own vehicles.

Inheriting features

Traffic’s class TAXI provides, as you can check, such features as

take (from_location,to_location: LOCATION)
-- Bring passengers from from_location to to_location

← PREVIEW inherit-
ing from TOURISM:
page 16.

The actual class name
is TRAFFIC_TAXI; as
usual you should prefix
the names of all Traffic
classes in this chapter
by TRAFFIC_.

§16.1 TAXIS ARE VEHICLES 553

and office, representing the taxi dispatching office.

When reading the class text you will only see a few other features. And yet
taxis have more properties. For example:

� A taxi has passengers (otherwise the comment of take would make no sense:
what passengers are being taken from one place to another?); the class must
include a command to load passengers and a query to find out the current
number of passengers.

� At any time a taxi has a current position.

Where are the corresponding features? You can find the answer by noticing the
beginning of the class declaration:

TAXI inherits from VEHICLE and indeed if you look up class VEHICLE you
will find the commands load, to load passengers into a vehicle, as well as unload

and a query count giving the current number of passengers. Now look up
VEHICLE itself and you will see

where the class MOVING, describing any moving objects that can be tracked in
Traffic, has queries such as position.

VEHICLE, and MOVING as well, are introduced not just by the usual class

but by deferred class; we will soon study in more detail the concept of deferred
class, used to specify that a class does not fully describe all its features, leaving
the implementation of some or all of them to classes that inherit from it.

note

…
class

TAXI

feature

… Rest of class …

note

…
 class

VEHICLE

feature

… Rest of class …

inherit

VEHICLE

deferred

inherit

MOVING

INHERITANCE §16.1554

Looking at these three classes as describing types of run-time objects — taxis,
vehicles, anything that moves — we see what the inheritance clauses tell us: that
in Traffic any taxi can be handled as a vehicle, and any vehicle as a moving object.
In particular, all the features of class MOVING are applicable to targets of types
VEHICLE and TAXI, and all the features of VEHICLE to targets of type TAXI.

Inheritance terms

As usual, precise terminology helps:

The definition of descendant is recursive, but by now this should cause no
mystery for you; another, more informal way to express it is that descendants of
A include A itself, its heirs, their own heirs and so on.

In the literature you may encounter the term “subclass”, sometimes meaning heir
and sometimes proper descendant, as well as “superclass”.

In our example as illustrated below: the descendants of MOVING are all the
classes shown; its proper descendants are all these classes except MOVING

itself; the proper ancestors of TAXI are VEHICLE and MOVING.

Next to each class, the figure shows a feature or two that it introduces. Note the
convention for representing inheritance on such class diagrams: a single arrow,
red in our figures; remember that the other relation between classes, “client”, is
represented by double arrows. The inheritance arrow always goes from heir to

Definitions: heir, parent, (proper) descendant and ancestor

If B inherits from A (in Eiffel by listing A in its inherit clause), B is an heir of
A and A a parent of B.
The descendants of a class are the class itself and (recursively) the
descendants of its heirs; proper descendants exclude the class itself.
“Ancestor” and “proper ancestor” are the reverse notions.

TAXI

VEHICLE

MOVING
∗ An inheritance

hierarchy

Inherits from

Deferred

PASSENGER

position

load

count

take

TRAM

∗

∗

§16.1 TAXIS ARE VEHICLES 555

parent, not the other way around, reflecting an important property: the designer
of a class knows about its parents (and hence its ancestors), but should not have
to know about its proper descendants.

You do not have to produce class structure diagrams such as the above
manually; if the classes exist and have been compiled the Diagram Tool of
EiffelStudio will produce them for you. Just click the Diagram tab in the bottom
subwindow and drop classes there:

If the class does not exist yet and you are designing the class structure. you can also
use the Diagram Tool for that purpose, to create classes and describe their client and
inheritance links graphically; in that mode the texts will be generated from the
diagrams rather than the other way around.

Features from a higher authority

With examples such as the MOVING hierarchy, we can appreciate the novelty
introduced by inheritance: the “features of a class” no longer mean just the
features declared in the class itself, but also those inherited from a parent. So
with m: MOVING, v: VEHICLE and t: TAXI you may write, along with

v.load (…)
t.take (…)
v.count -- An expression

← “Text, program and
design editors”, 12.5,
page 342.

An inheritance

hierarchy in the

Diagram Tool

As the diagram shows,
the previous figures
omitted some classes
for simplicity; in par-
ticular TRAM inherits
from VEHICLE not
directly but through
the intermediate class
LINE_VEHICLE, of
which another heir is
BUS. Also note the cli-
ent link fromPASSEN-
GER to VEHICLE.

INHERITANCE §16.1556

other feature calls such as

which rely on features inherited from a parent or, more generally, a proper
ancestor. We may distinguish between “immediate” and “inherited” features:

Note that the definition involves recursion.

From now on, then, there is more to a class A than what you see in its class
text: “features of A” means not only the features declared there, but also those
it gets from its parents, if any.

The flat view

How then can you get the full picture? It is called the flat view of a class: an
artificially reconstructed version that has all the features, immediate and
inherited. It is not something you write but just a view, like the contract view

which, as we saw, gives you the implementation-free version of a class.
EiffelStudio will produce it for you; just bring up any class and click the “Flat
view” icon in the top right (let the tooltip help you find it):

The result looks like a normal class text (with some new notations that will
become clear as we go along); note a new kind of comment, here for a feature
of LINKED_LIST:

t.count

t.load

t.position

v.position

Definitions: features of a class, immediate, inherited, introduce

A “feature of a class” is one of:

� An inherited feature if it is a of one of the parents of the class.
� An immediate feature if it is declared in the class, and not inherited. In

this case the class is said to introduce the feature.

feature

← “What character-
izes a metro line”,
page 53.

Flat view button

§16.2 POLYMORPHISM 557

These are not in the original class text but added by EiffelStudio when it
produces the flat view; they indicate that the feature is inherited, coming here
from the proper ancestor CHAIN, and that its precondition was defined in
another ancestor, LINEAR. We will soon see how contracts are transmitted
through inheritance.

The Contract View of a class is deduced (by removing secret information as
explained in the earlier discussion) not from the original class text but from the
flat view: what generally matters to clients is to know the exported features and
their abstract properties, not whether the class introduced or inherited them. You
can limit yourself to immediate features through the Interface View.

16.2 POLYMORPHISM

Accumulating features is not the only purpose of inheriting from a class. After
all, we were already doing this when we wrote PREVIEW as an heir to
TOURISM. We should take advantage of inheritance as a relationship between
types, not just modules: the dolphins-are-mammals and rings-are-groups story.

Translating into programming terms the notion that “any taxi is also a

vehicle” means accepting assignments between variables and expressions of
these two types. With

the inheritance structure described above makes this assignment valid:

It differs from the assignments we saw so far, starting with the chapter on this
notion: until now the source expression and the target variable were of the exact
same type, but here they are different. Specifically, the source type is a
descendant of the target type.

my_vehicle: VEHICLE

cab_at_corner: TAXI

my_vehicle := cab_at_corner

Flat view

← “What character-
izes a metro line”,
page 53.

← Page 16.

← Chapter 9 intro-
duced assignment.

INHERITANCE §16.2558

The effect of the assignment is nothing new. Other than type considerations,
all we learned about assignment still applies. Assuming the two variables were
initially both attached to objects, the before-and-after picture is the same as with
reference assignments seen earlier:

It is a plain reference assignment; the attached objects — here the VEHICLE and
TAXI objects — are not affected. The novelty is that a variable declared of a
certain type, such as VEHICLE, may now become attached during execution not
only to an object of that exact type, but also to one of any descendant type, such
as TAXI.

Definitions

Here too we need appropriate terminology:

Remember that “entities” include variables (attributes, local variables) but also
formal arguments of routines and Result.

“Polymorphism” is the existence of these possibilities. It is often confused with
dynamic binding, to be studied next. Dynamic binding is related to
polymorphism, and only makes sense because of polymorphism, but it is a
separate concept.

Definitions: Polymorphism

An attachment (assignment or argument passing) is polymorphic if its target
variable and source expressions have different types.
An entity or expression is polymorphic if — as a result of polymorphic
attachments — it may at run time become attached to objects of
different types.
A container data structure is polymorphic if it may contain references to
objects of different types.

← “Reference assign-
ment”, 9.5, page 252.

Polymorphic

assignment

my_vehicle

(VEHICLE)

BEFORE

cab_at_corner

(TAXI)

AFTER

← Chapter 13 dis-
cussed containers.

§16.2 POLYMORPHISM 559

As the definition notes, polymorphism results not only from assignment but
also from argument passing. If some arbitrary class, say DAILY_SCHEDULE,
has a routine

then the following call is valid:

where the actual argument is of a proper descendant type. Most interesting here
is the ability of a routine such as register_trip to deal with its formal argument on
the basis of partial knowledge: all it knows is that at run time the argument’s value
will denote (be attached to) an object representing some kind of VEHICLE; that
object could be a TAXI, a TRAM or any other kind of vehicle, but the routine does
not know which, and the answer may change from one execution to the next.

Some of the corresponding classes may even have been written after the
release of routine register_trip, as library designers concoct new kinds of
VEHICLE to extend the existing framework. Think of what this means if you
are asked to write such a routine: you may be dealing, through its arguments,
with objects of types that have not yet been devised! The answer to this
challenge will come from dynamic binding.

Polymorphism is not conversion

In spite of its name — from Greek words meaning “several shapes” —
polymorphism does not cause any object to get a new “shape” (a new type) at
run time. Polymorphic attachments are only applicable to reference types, with
the effect described in the last figure: a reference reattachment. No object

changes type.

You may occasionally need, aside from polymorphism, a way to transform
objects; a simple example is the assignment of an integer value to a REAL target,
whose internal representation is different. The appropriate mechanism here is
not polymorphic reattachment but conversion.

Eiffel provides a general conversion mechanism, applicable to both
reference and expanded types; it is the one that stands behind your ability to
assign an integer to a real, but you can define conversions for your own types as
well. If you devise a class DATE with attributes day, month and year, you can
include a conversion routine from DATE to STRING, making it possible to
assign a date to a string variable (with a result such as "3 Jun 2009" or any other
format defined by the conversion procedure).

register_trip (v: VEHICLE)

register_trip ()cab_at_corner

INHERITANCE §16.2560

We will not explore the conversion mechanism further; if you need to use it,
just look up the beginning of class REAL_32 in EiffelBase (see the convert

clause); this will be enough to get the basic ideas.

What matters for the present discussion is that conversion and
polymorphism are exclusive mechanisms; if either of them is applicable, the
other is not. So when you see an assignment a := b, or the passing of an
argument to a routine, there is never any ambiguity as to what they mean.

Polymorphic data structures

In the definition of polymorphism the last case, polymorphic data structures
(also called polymorphic containers), is particularly interesting. Consider a list
— a typical container — intended to collect vehicles:

and a call such as fleet.extend (…), adding an item to the list. What kind of
argument can we use to replace the “…”? If you look up the declaration of
extend in LIST [G] you see

In the case of fleet the actual generic parameter corresponding to G is
VEHICLE, so the call expects an argument of type VEHICLE, as in

But then polymorphism implies that wherever you need a VEHICLE any
instance of a descendant type is fine too, so that — aside from the possibility for
my_vehicle itself to be polymorphic — it is valid to use

and in general any actual argument whose type is a proper descendant of
VEHICLE, such as TAXI, TRAM and others.

A polymorphic container is the result of such a sequence of insertions, using
possibly different actual types in each case. After a few such calls to extend, our
fleet list might look like this:

fleet: LIST [VEHICLE]

extend (v:)
-- Add a new occurrence of v at end.

…

fleet.extend (my_vehicle)

fleet.extend ()

← Page 558.

G

cab_at_corner

§16.2 POLYMORPHISM 561

with a mix of objects of different types, all descendants of VEHICLE (including
BUS, not listed on the earlier figure).

The possibility of building such polymorphic data structures results from
the combination of two fundamental object-oriented mechanisms: inheritance
and genericity. It gives us a new level of flexibility. Consider for example the
query last, which yields the last element of a list. It is declared in class LIST [G]
as returning a result of type G. Since fleet: LIST [VEHICLE] uses VEHICLE as
the actual generic parameter for G, the expression

is of type VEHICLE. In any particular call, the resulting object may be of any
descendant type. If the list is in the state illustrated above, the object is a TAXI;
but it might be of any other vehicle type, and you don’t know. Nor do you need

to know, since you can apply to that result any VEHICLE feature: after
v := fleet.last, with v: VEHICLE, calls such as v.load (…) and v.count are valid
— although not, of course, v.take (…) since take expects not just a VEHICLE

argument but a TAXI.

I can hear you: it’s unfair! Just look at the picture — the last element is a
taxi! Why can’t I use a perfectly respectable taxi operation like take?

Just calm down.

One, life is unfair, you might just as well get used to it.

Two, how can you be so sure the last element is a taxi? A picture is just a
picture; what really matters is the argument that this particular execution passed
to extend or another list command in the last call that modified fleet.

And three — all right, this is the real answer — there does exist a technique
to check that the last item is indeed a taxi in that particular execution, and, if it
is, to subject it to specific TAXI features such as take. But for that you have to
wait for almost forty pages. Did I mention that life is unfair?

What is more immediately important is to understand the effect of the valid
calls — calls to vehicle features, such as v.load (…) and v.count — in the case
of a polymorphic target. The answer brings us to another fundamental
object-oriented concept.

fleet.last

A polymorphic

list

(TAXI) (TRAM) (TRAM) (BUS) (TAXI)

→ “Uncovering the
actual type”, 16.13,
page 599.

INHERITANCE §16.3562

16.3 DYNAMIC BINDING

In a call such as v.load (…), with the declaration
v: VEHICLE, the target v may be polymorphic; so at run
time it may be attached to an object of type TAXI or
TRAM or any other VEHICLE descendant. Now if you
look up these classes you will note that each of them has
a different implementation of the feature load (we will
see below how to declare them without creating any
ambiguity or conflict). Which version of the feature
should the call actually solicit?

Only one answer really makes sense: we want to call
the right feature. Right in the sense of the version that most closely matches the
type of the run-time object that v denotes (is attached to) in that particular
execution. When that object is an instance of TAXI you want the TAXI version
of load; when it is a TRAM you want the TRAM version; and so on. Any other
solution would be incorrect: not just the obviously foolish idea of applying a
tram operation to a taxi object, but even applying to such an object the default
version from class VEHICLE if there is one. Surely, if the author of class TAXI

took the trouble to provide a special version of VEHICLE features directly
adapted to TAXI objects, it was with the expectation that any call to the feature
on a TAXI target will use that version.

The declaration of the target, v: VEHICLE in our example, has no effect
here, and should not have any. Its purpose is different: to make the variable v
general enough that in various executions it may sometimes denote a taxi object,
sometimes a tram, sometimes other kinds of vehicles. But in any particular call
it is not some abstract, non-denominational vehicle: it is either a taxi or a tram
or something else just as specific. The features that execution applies to it
should be specific too.

This policy, a cornerstone of the object-oriented form of software
construction, has a name:

The reverse policy is called static binding. Surprising as it sounds, it does exist
in some languages, notably C++; there static binding is the default and you only
get dynamic binding if you request it explicitly by declaring the features
(“functions” or “methods” in C++) virtual.

Definition: Dynamic binding

Dynamic binding (a semantic rule) is the property that any execution of a feature
call will use the version of the feature best adapted to the type of the target object.

(Original figure on page 554.)

TAXI

VEHICLE

load

count

take

TRAM

→ For details of the
C++ policy: “Static
and dynamic binding”,
page 826 (part of the
C++ appendix).

§16.4 TYPING AND INHERITANCE 563

16.4 TYPING AND INHERITANCE

As you have probably guessed from the examples, there are limits to the typing
flexibility provided by polymorphism. It is OK to make a variable of type
VEHICLE denote a TAXI or TRAM object, but it would not be right to let it
become attached to an object representing a passenger or a city.

The rule is straightforward: in a polymorphic reattachment, the type of the
source must be a descendant of the type of the target. This is not quite the proper
terminology — we will see below how to get it right — but conveys the basic
idea. It means that our earlier example assignment my_vehicle := cab_at_corner

is valid, but not, for example, my_vehicle := Paris. The city of Paris is not a
vehicle (only, since Rastignac, a vehicle for people’s dreams).

This rule stands behind the various possibilities discussed so far: if we allow
x := y with x of type T and y of type U, we must be sure that a call x.f will make
sense at run time not only if the target object is of type T but also if it is of type
U, as long as the call was accepted as valid at compile time. That validity
condition is the usual one, based on the declaration of x: it states that f must be
a feature of T. We need the guarantee that f is then also a feature of U; this is the
case, by definition, if U is a descendant of T.

The following terms help in understanding these concepts:

After the assignment my_vehicle := cab_at_corner, the entity my_vehicle has
dynamic type TAXI. Its static type is the type used in its declaration: VEHICLE.

These notions apply to entities and expressions. For objects there is no need
for the distinction: an object only has a dynamic type; it is a TAXI or a TRAM or
something else, but only one of these, and will not change its type.

A consequence of the basic type rule, expressed with these notions, is that
any dynamic type for an entity or expression must conform to its static type.

Static type, dynamic type

The static type of an entity or expression e is the type used in its declaration
in the corresponding class text.
If the value of e, during a particular execution, is attached to an object, the type
of that object is e’s dynamic type.

← “Definitions: fea-
tures of a class, imme-
diate, inherited,
introduce”, page 556.

INHERITANCE §16.4564

The term “conform” used here generalizes to types what “descendant”
means for classes. As you remember, the difference between classes and types
comes from genericity. A non-generic class is also a type (which has enabled
this discussion to use just “descendant” so far); but if a class is generic you need
to provide actual generic parameters — types themselves — to turn it into a
type. Conformance holds, for reference types, if descendance holds between the
underlying classes and the actual generic parameters if any are the same:

� TAXI (no generic parameters) conforms to VEHICLE since it is a descendant.

� LINKED_LIST [TAXI] conforms to LIST [TAXI] since LINKED_LIST is a
descendant of LIST and the actual generic parameter is the same.

Here is a more precise statement of this property:

The full definition also accepts conformance if the actual parameters are not
identical but conform; for example LINKED_LIST [TAXI] conforms to
LINKED_LIST [VEHICLE] (and hence to LIST [VEHICLE]). This case requires
special precautions and we will not need it. As usual with language issues, consult
the language standard if you want to know the full story.

All this just to have a correct version of the polymorphism rule. The precise rule
must mention conformance rather than descendance:

This confirms that polymorphism is only applicable to reference types since, per
the above definition, an expanded type only conforms to itself.

The typing rules give us safety, by ensuring that in the fundamental
operation of object-oriented programming

Definition: conformance

If a class D is a descendant of a class C, both non-expanded, then types derived
from D conform to those derived from C as follows:
� If the classes are not generic, then D (as a type) conforms to C.
� If they are generic, then D [T, U, …] conforms to C [T, U, …] (with the

same generic parameters).
An expanded type conforms only to itself.

Polymorphism type rule

For a polymorphic attachment to be valid, the type of the source must conform
to the type of the target.

x.f (…)

← “Classes vs types”,
page 369.

www.ecma-interna-
tional.org/publica-
tions/standards/Ecma-
367.htm.

http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm

§16.5 DEFERRED CLASSES AND FEATURES 565

there will always be a feature f applicable to the object to which x is attached at
run time, whatever its type may be as a result of polymorphic attachments to x.
It is interesting to note the combination of properties that characterizes most
recent object-oriented languages:

� Static typing, guaranteeing that there is at least one feature for f.

� Dynamic binding, guaranteeing use of the best feature — the one directly
appropriate for the object’s type — if more than one feature variant would
be available.

The Smalltalk language departs from this policy by combining dynamic binding
with dynamic typing: invalid feature applications, say Paris.load (…) applying
a VEHICLE feature to a CITY target, are not flagged statically but detected only
at run time, where they typically cause the program to terminate abnormally.
The goal is to avoid the overhead of compile-time checks and to provide more
flexibility. Subsequent object-oriented languages — their task made easier by
advances in performance — have tended to apply static typing.

16.5 DEFERRED CLASSES AND FEATURES

Looking up the list of features in class VEHICLE:

you see a feature move_next. In the class text it does not appear; indeed
move_next is inherited from MOVING, but in the text of MOVING you will find

move_next

-- Move to following position as determined by schedule.

end

Features of

VEHICLE in

EiffelStudio

deferred

INHERITANCE §16.5566

This is a new form of declaration for us; previous routines had a body starting
with do and continuing with instructions. Declaring a feature deferred means
that it has a specification — signature and contract — but no implementation.
The implementation is deferred (hence the name) to descendant classes. Indeed
in class TAXI you will see

providing an actual implementation corresponding to the needs of TAXI moving
objects. Class TRAM provides another implementation.

We say that these classes effect the feature — make it effective. From now
on we have two kinds of feature: effective (specification plus implementation)
and deferred (specification only). From features these terms carry over to
classes and then types:

As usual, the distinction between classes and types is due to genericity. You can see
for example that LIST is a deferred class (because it describes the general notion of
list, with implementations in effective descendants such as LINKED_LIST);
LIST [TAXI], and more generally LIST [T] for any T, are deferred types.

Deferred classes are also called “abstract”, and effective classes “concrete”.

The reason why move_next is deferred in class MOVING is that at this level:

� We know that the feature applies to all moving objects, and want to ensure
that all actual vehicle objects have a version of it.

� Because MOVING describes the general concept of moving object, not a
specific kind, it is not possible to provide a default implementation.

MOVING specifies the existence of the feature, but it is the responsibility of
proper descendants, such as TAXI, to offer their own implementations.

The absence of a default implementation in MOVING raises an obvious
issue: what would be the effect of m.move_next if the object attached to m is of
type MOVING or VEHICLE, both of which have move_next deferred, hence not
implemented? The answer is simple: there are no such objects.

move_next

-- Move to following position as determined by schedule.

 … A sequence of instructions …
end

Deferred classes and types

If a class C has at least one deferred feature (either introduced as deferred in
C itself, or inherited as deferred and not effected), it is a deferred class.
A type based on a deferred class is a deferred type.
A type or class is effective if it is not deferred (all its features are effective.)

We may also say
“deferred routine”,
but the standard term
is “deferred feature”
since the specification
does not prescribe
eventual implementa-
tion as routine or
attribute.

do

This is known as
an “effecting”.

§16.5 DEFERRED CLASSES AND FEATURES 567

This prohibits us from creating an object of type MOVING or VEHICLE, for
example in create my_vehicle (with the earlier declaration): it would be
impossible to carry out a call to a deferred feature such as move_next on the
resulting object.

So if a type is deferred there are no objects of that type. But you may still have
variables (and other entities, and expressions) of the type, such as my_vehicle.
They will become attached to instances of effective conforming types, such as
TAXI in this example. Indeed the whole idea of deferred features, classes and
types only makes sense thanks to polymorphism and dynamic binding.

Because creation requires an effective type, you must know, when you want
to use a class, whether it is effective or deferred; this tells you whether you can
use create x on variables of the corresponding types. To find out, you should not
have to look up the class text (or, because deferred features can be inherited, the
text of ancestors or the flat view); this would defeat information hiding. Being
deferred or not is a key property of the class and should be advertised visibly. In
fact it is (after the note clause which provides general information about the
class) the first thing the class text shouts to the world:

Subject to variations of syntax and terminology, the previous rules and definitions
were independent of the programming language. This one is an Eiffel rule.

“A deferred class” in this rule has the meaning of the preceding definition: a
class that has at least one deferred feature, immediate or inherited. The rule
states that this should not just remain insider knowledge but becomes part of the
interface of the class, as reflected in its contract view. In our example you can
check that MOVING and VEHICLE start with deferred class.

Eiffel allows you to declare a class deferred class even if it does not have
any deferred features. The class is then considered deferred, as an extension to
the above definitions. This is useful if you want to force the use of the class as
an ancestor in inheritance hierarchies and to prohibit instantiating it.

Non-Deferred Creation rule

The target type of a creation instruction may not be deferred.

Deferred Class rule

The declaration of a deferred class must start with deferred class (instead of
just class for an effective class).

← “The flat view”,
page 556.

← “What character-
izes a metro line”,
page 53.

INHERITANCE §16.5568

To be more precise, declaring a class deferred prohibits direct instantiation.
The concepts of this chapter call for revisiting the notion of “instance”. So far
an instance of a type (and of the underlying class) was just a run-time object
matching the description given statically by the class. This remains correct but
we need to distinguish between direct and indirect cases:

A consequence of the Non-deferred creation rule is that a deferred type has no
direct instances; this is the case with VEHICLE and MOVING. Both have
instances, though: the direct instances of effective descendants such as TAXI.

These definitions directly reflect the concept of polymorphism: declaring x
of type T means you want x at run time to denote instances of that type; with
polymorphism we understand this as covering not only objects deduced exactly
from the declaration of T — its direct instances — but, recursively, instances of
any conforming type.

Deferred classes are a major part of the effectiveness of inheritance as a
taxonomy mechanism. Often, the higher levels of an inheritance hierarchy
consist mostly of deferred classes, introducing abstract concepts whose
implementation is relegated to the effective descendants. You can readily look
up two extensively developed examples:

� The EiffelBase library of data structures and algorithms. The library introduces
a global taxonomy of the fundamental structures of computer science; towards
the top, you will see classes such as LINEAR (structures that can be traversed
one-way) and FINITE (finite structures); more specific structures are covered
by effective classes descending from these general abstractions.

� The EiffelVision graphics library. Look up for example the “figures” cluster,
with a general notion of FIGURE, represented by a deferred class, and its
progressive specialization all the way down to effective classes representing
concrete kinds of figure such as circles and squares. The taxonomy of
geometric figures is a standard example in textbook presentations of
inheritance, but there is nothing academic about its use in EiffelVision.

Some programming languages, notably Java and C#, offer a language construct
known as the interface, presented in the appendices covering these languages.
An interface is similar to a class but its features have no implementation
whatsoever. It is like a class where all features are deferred (and do not have any

Instance, direct instance

An object obtained through a creation instruction is a direct instance of the
instruction’s target type.
An instance of a type is a direct instance of any conforming type. Including the type

itself.

← Not to be confused
with the general soft-
ware engineering con-
cept of interface intro-
duced in chapter 4.

§16.5 DEFERRED CLASSES AND FEATURES 569

contracts). Deferred classes are more general: as the definition indicates, a class
is deferred as soon as it has one deferred feature, but it can have a mix of
deferred and effective features. This enables the deferred class mechanism to
support an incremental mode of development: you start out by identifying key
abstractions, which you define through classes with most features deferred
(“very deferred” classes, close in spirit to interfaces, but with contracts); then,
as you explore the problem in more detail, you introduce more and more
effective descendants. This is the object-oriented variant of the general
technique of refinement.

A particularly powerful technique involving partially deferred classes is the
Program with Holes design pattern, which has effective routines calling
deferred ones. It captures a general scheme whose details are left for
descendants to implement, hence combining reusability with adaptability. As a
typical example, you have seen many times the standard scheme for repeating
(iterating) an operation over all the elements of a sequential structure such as a
list; applied to the search operation, it reads

EiffelBase classes representing lists and other such structures all inherit from a
deferred class LINEAR where this code appears (in a more complete version
taking into account the distinction between reference and object equality — for
details bring up the class text in EiffelStudio). The implementation of forth,
however, depends on the representation chosen for lists: linked, or using an
array etc. So in LINEAR the feature is deferred:

Note the precondition and postcondition; as discussed below, contracts are fully
applicable to deferred features and classes.

search (v: G)
-- Move to first position (at or after current position) where
-- v appears. If no such position ensure that exhausted will be true.
do

 from until v = item loop end

end

forth

-- Advance cursor by one position
require

in_range: not after

ensure

increased: index = old index + 1

end

← “Deferred classes
and types”, page 566.
On how interfaces com-
pare to deferred classes,
see also “Using multi-
ple inheritance”, page
588 below.

← Refinement was dis-
cussed in “Overall
setup”, 6.1, page 108.

forth

deferred

← “What happens to
contracts?”, 16.9,
page 580.

INHERITANCE §16.6570

Then every effective descendant of LINEAR effects forth; for example in an
arrayed list, where the cursor is simply represented by the integer attribute
index, the implementation is just index := index + 1; in a linked list (look up the
feature in LINKED_LIST and TWO_WAY_LIST) the details are more
complicated. What matters is that search does not have to know such details; all
it needs is the ability to rely on a feature forth, of which it knows the
specification, as expressed by the contract, but not the implementation.

The name “Program with Holes” reflects this approach to incremental
software construction: at each level of abstraction, capture all the relevant
information, including those that can be fully implemented (effective features
with no calls to deferred ones), those that can only be specified (deferred
features) and those that can be implemented by relying on deferred features,
such as search in LINEAR. We may view the result as a partially constructed
program, with holes to be filled through refinement in descendants.

This is one of the most important contributions of object-oriented
methodology to the orderly construction of systems, in particular large ones.

16.6 REDEFINITION

When a class effects a deferred feature, it provides the first implementation of a
mechanism that until then (in ancestors) had a specification but no
implementation. To take further advantage of dynamic binding and make the
architecture even more flexible, you may provide a new implementation for a
feature that already had one in the parent from which a class inherits it.

We will say that the class redefines the feature; another term, used in
particular with the C++ language, is overriding. Redefinition complements the
just studied mechanism of effecting:

The rightmost case of the diagram shows that when inheriting a deferred feature
you can not only make it effective (per the branch labeled “effecting”) but also
change it while leaving it deferred; this can only be to change its signature or
contract, and is considered a form of redefinition, like the leftmost case. To
complete the list of cases we also have undefinition, through which you forget
the implementation of an effective feature by making it deferred again, ready to
embark on a new life of passionate effectings.

Forms of

redeclarationEffective Deferred

DeferredEffective

Redefinition Redefinition

Undefinition
Effecting

Status in parent

Status in heir

§16.6 REDEFINITION 571

The term redeclaration covers all these cases:

We do not need to study undefinition here as it is a fairly specialized operation
(although not particularly hard or mysterious — you may find examples in
EiffelBase by looking for the keyword undefine). Redefinition, on the other
hand, is a widely used mechanism.

As an example, consider the Traffic class DISPATCH_TAXI, which inherits
from TAXI and represents the notion of a taxi that is under the control of a
dispatching office, as opposed to just cruising the streets and finding customers
on its own. The procedure take has a different implementation for
DISPATCH_TAXI, since when a dispatch taxi picks up a customer it must
communicate this to the dispatching office and perform a number of auxiliary
operations. On inheritance diagrams we represent a redefined feature through
the symbol ++ (the idea being that one + represents effecting, the process of
getting an implementation for the first time, and two mean changing that
implementation status — becoming, as it were, even more effective):

The absence of any symbol means “effective” by default. Figures generally omit the
single “+” except to emphasize that a particular feature or class is effective.

To redefine an inherited feature you provide a new declaration in the class text,
but you must also announce the redeclaration to the world, loud and clear,
through a redefine clause in the corresponding inherit part:

Definition: redeclaration

To redeclare an inherited feature is to change any or all of its signature,
contract and implementation, or remove its implementation. Variants include
effecting, redefinition and undefinition.

TAXI+

VEHICLE
Redefinition

Inherits from

∗ Deferred

take+

TRAM+

+ Effective
++ Redefined

DISPATCH_

take++

TAXI+

∗

INHERITANCE §16.6572

If the class redefines several features it will list them all: redefine f, g, … end.

The purpose of the redefine clause is clarity and safety. It is an important rule
of sound object-oriented programming that within a class a feature name should
never denote two different features, a case known as overloading (permitted by
some languages as discussed in the corresponding appendices, but causing a risk
of confusion). The redefine clause clarifies, for a reader of the class text, the
relationship of the feature to its namesake in the parent class: it is not a new feature
with the same name but a re-implementation of the same feature.

If you omit the clause, you will get a compile-time validity error since your
class is now considered to have two features with the same name, a forbidden
case of overloading.

The requirement of listing an inherited feature under redefine applies to
redefinition only. For undefinition, you will similarly use an undefine clause
and provide a new, deferred declaration. For effecting, as in the earlier
examples, there is no such clause; no conflict arises since the feature did not
have an implementation before, so the new, effective feature naturally subsumes
the version inherited in deferred form, giving it the implementation it had been
waiting for all along in ancestors.

Redefinition, like effecting, works with dynamic binding: in

class

DISPATCH_TAXI

inherit

TAXI

feature

take (from_location,to_location: LOCATION)
-- Bring passengers from from_location to to_location

do

… New implementation …
end

… Other features and rest of class …
end

group_move (taxi_ fleet: LIST []-- See below about TARGET

-- Make all taxis in taxi_ fleet follow the same route.
do

from taxi_ fleet.start until taxi_ fleet.after loop

taxi_ fleet.forth

end

end

redefine take end

TAXI

taxi_ fleet.item.take (…)

§16.7 BEYOND INFORMATION HIDING 573

every element of the list will execute the version of take from either TAXI or
DISPATCH_TAXI depending on whether it is a direct instance or one or of the
other. This is like in our earlier examples of polymorphic variables and data
structures; the only difference is that TAXI is effective and hence has direct
instances, whereas MOVING and VEHICLE are deferred and have none.

If you redefine a feature, the parent version is known as the feature’s
precursor. Fairly often, the new implementation needs to rely on the precursor
version. Rather than duplicating the code (did I ever mention that copy-pasting
code is not a good idea?), you may use the keyword Precursor. The new
declaration of take in DISPATCH_TAXI looks like this:

This means that the implementation starts by doing whatever its precursor
version in TAXI did, then adds its own operations specific to dispatch taxis.

In a feature redefinition like here, you may use Precursor just like a feature
name; if the feature requires arguments you pass them — here from_location,
to_location — as you would to the feature itself.

16.7 BEYOND INFORMATION HIDING

The combination of mechanisms described so far plays a key role in obtaining
flexible, reusable and (thanks to static typing and also to the contract rules, yet
to come) reliable systems. The particular contribution of polymorphism and
dynamic binding is to take information hiding one step further. The basic idea
of information hiding is to let clients use supplier mechanisms without having
to know how they are implemented. The next advance is to protect the client
from having to know which of the possible suppliers is being used in a particular
case. When you write

you are asking for a certain abstract operation, load, to be applied to the target
object; but since you do not know — with my_vehicle possibly polymorphic —
what exact type the object will have, dynamic binding means that you also do
not know what exact feature will be triggered.

take (from_location,to_location: LOCATION)
-- Bring passengers from from_location to to_location

do

… Other operations, specific to dispatch taxis…
end

my_vehicle.load (…)

Precursor (from_location, to_location)

← “Information hid-
ing”, 8.5, page 218.

INHERITANCE §16.7574

This is the reason why contracts are so important. What you do know,
captured by the original contract of load in the deferred class VEHICLE, is the
essential semantics of load: that it adds n passengers to the vehicle. This is
common to all the variants, although it is up to each of them to fill in the details.

Beware of choices bearing many cases

To appreciate the value of the object-oriented style permitted by polymorphism
and dynamic binding, consider what you would do, without these mechanisms,
to achieve the same goal of adapting an operation to the type of its target. It is
of course not hard to come up with a solution:

We just test for the type and apply the corresponding algorithm. The technique
works, but with unpleasant consequences for software architecture:
� It yields long, complex conditional instructions (which could use a

multi-branch rather than the if form, without affecting this discussion).
� It has to be repeated for every operation such as load that is conceptually

applicable to any vehicle but carried out differently for different vehicles.
There may be many such operations.

The problem with such verbose and repetitious code is that it damages the
software’s prospects of smooth evolution. The need to add a type variant — in
the Traffic example, a new kind of vehicle — arises frequently in the evolution
of a software system; every such addition requires going back to every routine
that discriminates on types in the above style.

In contrast, the dynamic-binding solution requires you only to: add a class;
give it a proper place in the inheritance hierarchy; and write an implementation
for the features that need a specific variant for that class. In many cases there is
no need to change anything in previously written software.

As a general rule, be wary of decision structures with many branches as
above. They often reflect bad design, damaging extendibility:

load (v: VEHICLE; n: INTEGER)
-- Add n passengers to v.

do

if “v is a tram object” then

“Apply tram loading algorithm”
elseif “v is a taxi object” then

“Check that the capacity is 4 at most”
“Apply tram loading algorithm”

elseif …
end

end

Warning: non-OO
style, not recommended.

← “Multi-branch”,
page 195.

§16.8 A PEEK AT THE IMPLEMENTATION 575

This is a design guideline and not an absolute rule; not all conditional
instructions should be replaced by dynamic binding. The most suspicious ones
discriminate along the type of an object, as in the example. Then the solution is
to reverse the architecture: instead of asking algorithms to choose between types
of applicable objects — requiring them to know about all possible such types —
equip each object type with the applicable algorithm variants.

What makes this solution better is inheritance, meaningful for types but
with no equivalent for algorithms: when adding a class, once you have found its
proper place in the inheritance hierarchy you only have to redeclare the features
that need a special version for that class. The others you’ll just inherit.

This discussion has assumed all along that we are dealing with a known set
of operations and newly appearing types. It does not address the reverse
situation, or the case of frequently adding both types and operations. “Visitor”
techniques, studied at the end of this chapter, provide the complement.

16.8 A PEEK AT THE IMPLEMENTATION

In general this book presents programming concepts from the viewpoint of their
use by application programmers, not their implementation by compiler writers —
a fascinating topic, but for other books. We have already made a few exceptions;
dynamic binding provides another one. Taking a little break away from pure
concepts to look under the hood will give us a better grasp of the issues.

For simplicity let us just consider routine calls (although the situation with
attributes is similar). Without dynamic binding, the compiler knows, when it
sees a call, what feature to specify in the generated code. For example static
binding for the call

means applying the TAXI version of load, as deduced from the type declared for
the target cab_at_corner. To describe the generated code let us use C, which is
low-level enough to be representative of assembly languages, but still
understandable because it is not tied to a particular platform. (In addition, of
course, the EiffelStudio compiler does generate C as one of its possible outputs,
so this realistic.) Without dynamic binding, the generated code for the above call
would be something like:

Touch of Methodology:

Fight the Many Explicit Variants syndrome

If your design leads you to a control structure involving conditional
instructions with many branches, examine whether a simpler and more
extendible solution is possible through dynamic binding.

cab_at_corner. load (…)

→ “Reversing the
structure: visitors
and agents”, 16.14,
page 606.

→ As this is not criti-
cal to the discussion of
programming princi-
ples you may prefer on
first reading to skip to
16.9, page 580.

→ Appendix C covers
the C++ language and
appendix D its C subset.

INHERITANCE §16.8576

where C_TAXI_load is the C translation of the routine load in its version from
class TAXI. Since C is not object-oriented and has no notion of a qualified
feature call x.f (…), the C routine (“function”) must take one more argument,
corresponding to the target, here C_cab representing the original cab_at_corner

from Eiffel.

In this setup the routine, C_TAXI_load, is known at compile time; it can
appear explicitly, under its actual name, in the generated code.

With dynamic binding this is no longer the case. Of various load versions
available as a result of the compilation, only at run time can it be determined
which one a particular call must use. The generated code for an O-O call

must rely on some appropriate data structure, such as one looking like this:

The key structure is a routine table (also known as a dispatch table, a virtual
table or just a vtable). Entries in that table are references; unlike our usual
references they point not to other data but to code. Specifically, each entry
points to one of the versions of a routine, in this case load.

Such references (or “pointers”) to code are not something that you can
directly get in Eiffel and most other high-level languages, but at the machine
level they are a direct result of the stored-program computer concept: since
code, along with data, resides in memory, a table entry can contain the address
of the start of a block of code, and the instruction set of any computer includes
an instruction of the form “execute the code that starts at address a” for given a.

High-level languages do not need such a facility because it is error-prone: what if
the memory content starting at address x is not code, or is code but planted by a
malicious hacker? They provide safer replacements, including, for O-O languages,
dynamic binding. In Eiffel another higher-level mechanism is agents: an agent
wraps some routine and can be passed around to various parts of the software,

 (C_cab, …); [C1]

v.load (…)

C_TAXI_load Note: this is C code.

Resolving a

dynamically-
bound call
 Other

Type C_TAXI_load

implementations
of load

(TAXI)

Routine
table

v

Data
Code

← “The stored-pro-
gram computer”,
page 10.

→ Chapter 17.

§16.8 A PEEK AT THE IMPLEMENTATION 577

enabling them to call the associated routine. Some non-O-O languages offer, as
another technique, the ability to pass a routine as argument to another routine. A
section in the chapter of agents discusses these and other language mechanisms
allowing programs to delay the selection of a routine until run time.

With dynamic binding, the routine selection depends on the type of the target
object. In the figure that object, shown on the left, is an instance of TAXI. We
cannot deduce this from the program text, where it is only known through the
variable v, of the more general type VEHICLE; but if v is polymorphic, the
corresponding reference may in a particular execution be attached to a TAXI

object, and — this is the whole idea of dynamic binding — it’s that type that
counts, not the declaration of v which was only meant, in the program text, to
preserve generality by permitting other kinds of object in other executions.

If we consider these properties with the eyes of a compiler writer, a clear
consequence is that every object must contain the identification of its own

type. Otherwise there would be no way to achieve dynamic binding, since the
type determines the routine to select among all the possible variants.
Implementations of object-oriented languages indeed include in the
representation of any object, in addition to the fields denoting the object’s
attributes, one denoting its type; it is marked “ Type” in the figure. Typically this
is represented as an integer, filling up a word: 4 or 8 bytes — enough to cover
all the possible types in any actual system. The EiffelStudio implementation
adds yet another word to every object, for control information needed in
particular by garbage collection. Such is the space overhead for O-O
mechanisms in that implementation: two words per object. It is generally
acceptable, but may become an issue if you have a very large number of very
small objects.

You can trace in the figure, starting at the top left and following arrows, the
machinery of dynamic binding for a call v.load (…). If the value of v is not void,
following the corresponding reference leads us to an object. The “Type” field
of that object gives us the integer representing the object’s type, here TAXI. We
use that integer to index into the routine table for load; the corresponding table
entry yields the address of the program code for the appropriate routine variant.

Taken literally, this scheme would give the following C code, to be
compared to the static binding implementation [C1]:

Explanation: ∗ is the de-referencing operator, so ∗v is the object pointed to by
v; then (∗v).type (which can also be written v–>type) is the object’s type field,
which we use as an index into the array routine_table; this is the address of the
corresponding C routine, which we apply directly to the arguments. As before,
the argument list includes, in addition to the original arguments, the current
object — here known simply through v, which plays the earlier role of C_cab.

(routine_table [(∗v).type]) (v, …); [C2]

→ “Other language
constructs”, 17.8,
page 654.

← Page 576.

Note: this is C code.

INHERITANCE §16.8578

From this basic scheme many variants and optimizations are possible. First,
to understand the issue in full generality we note that the collection of all routine
tables, each indexed by types, is a two-dimensional structure with T rows and R
columns for a system with T types and R routines, as shown in the following figure.

The solution so far, leading to the [C2] code style, splits this table along
columns, each of them a routine table. We may instead split it by row, each a
“type table”. Or we might have a two-dimensional array as suggested by the last
figure. All these solutions satisfy a crucial requirement:

The time overhead of a dynamically-bound call over its statically-bound
counterpart [C1] is the cost of finding the appropriate routine at run time. The
flexibility brought by polymorphism and dynamic binding is worth a price, but
not any price; in particular it is essential, as the principle states, to guarantee a
constant upper bound on the execution time. Naïve implementations keep the
inheritance structure at execution time and traverse it to find the applicable
routine version. This technique is unacceptable as it introduces a direct conflict
between the depth of the inheritance structure and program performance. (It
becomes even worse with multiple inheritance.) All the array-based
implementations discussed — routine-based, type-based, two-dimensional —
satisfy the principle since finding the routine only involves indirections
(following references) and array lookups, all constant-time operations.

There is, however, a downside to this time efficiency: the added space cost.
In all three variants, the above structure takes up T × R entries. This can be hard
to justify; EiffelStudio itself, for example, needs over 6000 types and 50,000
routines. The table as pictured above is highly wasteful of space since in any
practical case most of these entries will be empty; each routine is relevant for
only a few types, for example load only for VEHICLE and its descendants.

Efficient implementation of dynamic binding

A good implementation of dynamic binding should ensure that the time to find
the appropriate routine version is O (1).

General scheme

for dynamic

binding

implementation

Type-routine table

Data
Code

Types ↓
Routines →

1

T

R1

TAXI →

load

C_TAXI_load

↓

← “Using arrays”,
page 388.

For T types and
R routines.

§16.8 A PEEK AT THE IMPLEMENTATION 579

What counts is routines, not routine names! It does not matter how many unrelated
routines elsewhere in your system happen to have the same name, here load.

In the variant that uses routine tables, we can trim each of these tables by
removing, in each column, all entries before the first non-empty one (the
“effective start” of the column) and after the last non-empty one:

The above code [C2] will still work if a table entry routine_table [i] is indexed
from the effective rather than physical starting point of the column; this is easy
to achieve in machine code or C where an array is really nothing more than a
starting address for a block of values, so that it suffices to offset that address by
the index of the first non-empty entry in the column.

Such an optimization is not particularly interesting if the non-empty entries
are scattered throughout a column representing a routine table. Assume for
example that we have 6000 types and the type number is 1 for VEHICLE, 3000
for TRAM and 6000 for TAXI. Even if load exists only in these three classes, we
still need the full column with 6000 entries, all but three of them empty. To
improve this situation, noting that we have free choice for the numbers we
assign to types, we can take advantage of the following property:

This suggests choosing a type numbering scheme that gives neighboring
numbers to descendants of any given class. By now you know what can help us
here: topological sort as discussed in the previous chapter. “Descendant” is
indeed a partial order since inheritance is acyclic.

Performing a topological sort based on the inheritance relation dramatically
decreases the size of routine tables — by about 85% in EiffelStudio. This
technique is essential; without it the space overhead would be hard to bear.

Feature Neighborhood theorem

The classes to which a feature belongs are the descendants of the class that
introduces it.

General scheme

for dynamic

binding

implementation

Non-empty entry

Types ↓
Routines →

TAXI →

load
↓

VEHICLE →

(points to the code
for a routine)

Empty entry

ANY →

is_equal
↓

INHERITANCE §16.9580

On the time side the overhead is, as required above, constant-bounded (even
in the not yet discussed case of multiple inheritance) and actually quite small:
essentially (see [C2]) an indirection, a field access and an array access. Better
yet, the overhead can disappear altogether in certain cases: the compiler can
find out that:
� A certain routine has only one version.
� A certain expression is not polymorphic
In these cases it can apply the static binding scheme [C2] and avoid any time
penalty at all. This is, by the way, the reason why some older O-O languages
offer static binding as an option — the default in C++, which reserves dynamic
binding to “virtual” routines. The problem with this policy is that it is easy for
a programmer to make the mistaken assumption that a call is static whereas it
should be polymorphic; or maybe the decision was correct at some stage, but
then you add a descendant class with a new version of the routine and forget to
make the routine virtual.

The rule to remember is that dynamic binding is always the correct

semantics for object-oriented calls. As a consequence static binding is only
acceptable when it has the same semantics as dynamic binding, typically in one
of the two cases cited. Because it is hard to detect such cases, static binding is
better left as a compiler optimization.

In the EiffelStudio environment, such optimizations are indeed the
responsibility of the compiler technology.

These observations complete our foray into language implementation
techniques, which I hope will have given you a good grasp of what inheritance
and associated techniques mean for the execution of O-O programs. There are
of course many details to account for in practice; if you want to get to the bottom
of things, the best place to start is an examination of the C code generated by the
EiffelStudio compiler in “classic” mode. (The next step would be to look at the
source code of EiffelStudio itself, all available as open source.) The two key
points are that:
� The time overhead for dynamic binding can be constant-bounded and small;

proper techniques reduce it to zero in applicable cases.
� The space overhead includes a field in every object, and tables that can be

limited to an acceptable size through proper techniques.

16.9 WHAT HAPPENS TO CONTRACTS?

The definition of a feature does not just consist of a name, signature and (for an
effective feature) implementation, but may also include a precondition and
postcondition. For a class, we have the invariant. We know what they mean in
the absence of inheritance. How does inheritance affect the picture?

→ “The melting ice
technology”, page 357.

The other mode is
“.NET”, which does
not generate C.

§16.9 WHAT HAPPENS TO CONTRACTS? 581

Invariant accumulation

The first rule affects class invariants. It reflects the “is-a” view of inheritance
and its role as a taxonomy mechanism. Writing TAXI as an heir of VEHICLE is
not just a matter of convenience but makes a statement that polymorphism will
work: when a vehicle is expected, for example as part of a LIST [VEHICLE], a
taxi will do. This means that any constraint that has been defined for instances
of the parent class must apply to those of the heir.

In VEHICLE we find

expressing that the number of passengers (count) is non-negative and bound by
the defined capacity. You will not find such clauses in TAXI; not because they
have somehow stopped being applicable, but for the exact opposite reason: the
clauses are automatically there. A class inherits from a parent not only its
features but its class invariant.

You will see these inherited invariant clauses if you look up the flat view or
the contract view of the class. This will also reveal that the heir may introduce
supplementary constraints. Indeed the text of TAXI includes the clause

which comes in addition to those of VEHICLE; the flat view lists the parent
clauses first, then the ones added by the heir.

A natural question is what would happen if these contradicted the parent properties,
for example by stating capacity = –1. But this is nothing new compared to the
possibility of including two contradictory invariant clauses in a single class, such as
a >= 0 and a = –1. Such an invariant is simply wrong, and will be caught through
testing (or in the future by static analysis).

The following definition captures the semantics:

invariant

not_too_small: count >= 0
not_too_large: count <= capacity

invariant

legal_limit: capacity = 4
… Other clauses affecting taxi-specific features …

Definition: Invariant of a class

The invariant of a class is the assertion (p1 and … and pn) and then i, where

i is the assertion listed in the class’s own invariant clause (or True if it does not
have one), and p1 … pn are (recursively) the invariants of its parent classes if any.

← “The flat view”,
page 556.

← On and then see
“Semistrict boolean
operators”, 5.3,
page 89.

INHERITANCE §16.9582

The definition accounts for possible multiple parents, as studied later in this chapter
(and including ANY if applicable, see next). The assertion in an invariant clause
may consist of several subclauses, as in the above examples; in this case there
already is an implicit and then.

In our example the invariant of TAXI is the conjunction of the clauses appearing
in the texts of both VEHICLE and TAXI.

Precondition weakening and postcondition strengthening

The second issue is what happens to preconditions and postconditions and leads
to an important rule of software development. To understand the issue we must
consider it in the context of polymorphism and dynamic binding.

Consider a routine r in a supplier class S, with a precondition and a
postcondition (called α and β in the figure). A proper descendant T redeclares
r; the figure shows this to be a redefinition, but it could be an effecting if r was
deferred in S. The question is: to what extent can the redeclared version change
the contract of the feature, here α and β?

To devise the answer we must look at the perspective of a client class C that
includes a call x.r (…) for x declared of type S. The contract gives the author of
C a directive and a guarantee: make sure to satisfy the precondition when you
call me, and you are entitled to assume the postcondition when I return. For
example, the following scheme, which establishes the precondition in the
simplest possible way — testing for it in a conditional — is guaranteed to work:

if x.α then

x.r (…) [3]

-- Here x.β is guaranteed to hold
end

C

The contract

adaptation

context
S

U

x: S
r require α

ensure β

T
r++

require ?
ensure ?

Inherits from

++ Redefined
Client

← “Redeclaration”
covers redefinition and
effecting. See “Defini-
tion: redeclaration”,
page 571.

§16.9 WHAT HAPPENS TO CONTRACTS? 583

This is the direct application of Design by Contract, which we have used many
times. But now we have polymorphism. Our x, declared of type S, is no longer
certain for any particular run-time call to be attached to a direct instance of S (an
object exactly of type S): it could denote a T object, or an instance of any other
descendant of S such as U shown in the figure.

Because of dynamic binding the above call will, if the descendant has
redeclared r as T does, use the redeclared version. But of course the author of a
client class such as C does not necessarily know this. It’s actually more devious:
the scheme may well arise for a class T that did not even exist when C was
written; in C, the above code may have been in a routine

so that x is something of type S — meaning, S or conforming — that is passed
to C by the outside world. Two years later T gets added to the class hierarchy,
some o the r co de ge t s wr i t t en t ha t know s abo u t T an d ca l l s
c1.do_something_with_an_S_object (t1) with c1 of type C and t1 of type T. Pity
the original author of class C, who must write client code and guarantee its
correctness even though it deals with objects of types yet to be conceived!

To ensure such correctness, C can only deal with the advertised properties
of its suppliers such as S and their features such as r. This strictly limits how
descendants such as T can fool around with the contract. Specifically:

� Making the precondition of r stronger in T would mean that client calls such
as [3] can no longer be guaranteed correct treatment: if the dynamic type of
x is T, all that the client guarantees is the original precondition α, which is
not enough.

� Making the postcondition weaker would mean that the client may no longer
rely on the assurance that the original postcondition β will hold after the call.

In other words, T, as a subcontractor, would be breaching the contract that
binds the original contractor S, the only one that clients such as C know about.

In this discussion “stronger” means “implies” and “weaker” means “implied by”.
More precisely “a is stronger than b” means (a implies b) and not (a = b), and
“weaker” is the inverse relation.

The rule follows from these observations:

do_something_with_an_S_object (x: S)

Contract Redeclaration rule

The redeclared version of a feature may only: keep or weaken the
precondition; keep or strengthen the postcondition.

← “Implication”, 5.2,
page 84.

INHERITANCE §16.9584

It is not necessary to retain the contract exactly: weakening the precondition
means that the descendant version accepts cases that would have been rejected
by the original; strengthening the postcondition, that it delivers a better result —
for example a better numerical approximation — than has been promised by the
original. Both cases are harmless and, in fact, frequently useful.

As an example of precondition weakening, the routine take in class TAXI

has a precondition clause stating that the customer must be within a certain
distance (100 meters) of the current taxi position. In DISPATCH_TAXI, this is
no longer necessary; the revised and relaxed condition, which the original one
implies, is that the customer must be within the geographical area of the taxi.

How can the programming language enforce the contract redeclaration rule?
The solution in Eiffel (also taken over by other notations applying Design by
Contract ideas) is simple:

� You are not permitted to use the basic contract clauses, require and ensure,
in a feature redeclaration.

� If you do not write a contract clause, the original clauses are retained. You
will see them in the flat and contract views.

� To weaken an inherited precondition, use a contract clause of the form
require else new_pre. The semantic effect is to equip the redeclared version
with the precondition old_pre or else new_pre, where old_pre is the
inherited precondition.

� To strengthen an inherited postcondition, use a contract clause of the form
ensure then new_post. The semantic effect is to equip the redeclared
version with the postcondition old_post and then new_post.

This satisfies the rule since — from the rules of logic — a implies a or b, and a

and b implies a.

The and then semantics for postconditions is a simplification of the actual rule, not
affecting this discussion. For the full rule see the Eiffel language specification.

The flat and contract views will show the full reconstructed contracts, including
inherited clauses.

The precondition of take in DISPATCH_TAXI, in application of this
discussion, reads

You can find many more examples by perusing libraries such as EiffelBase.

require else

in_zone: customer.is_in_zone (Current)

← Exercise “Signs of
strength”, 5-E.8, page
103.

§16.9 WHAT HAPPENS TO CONTRACTS? 585

Contracts in deferred classes

The Contract Redeclaration rule gives its full meaning to the use of contracts in
deferred classes, such as the contracts you may have noted in forth. Deferred
features do not have an implementation, but they may have preconditions and
postconditions; deferred classes, while not fully implemented, may have
invariants. This is a big part of what makes the whole concept useful.

When writing a deferred class and its features, you are providing a template
with some elements to be filled in by descendants; remember the “Program with
Holes” design pattern. While you are letting descendants provide their own
implementations, you may and usually should constrain what such
implementations may do. The contracts enable you to define such basic
semantics, which descendants may refine but never contradict.

The example of forth was typical:

This describes a routine that advances the cursor in a list. How it moves the
cursor depends on the implementation; this is why the routine is deferred. But
whatever a descendant implementation does, it must work correctly for any
cursor position that is not after (not past the last element), and it must increase
the cursor index by 1. Anything else is permitted as long as the implementation
meets these conditions.

As an analogy, think of a stereo system with various outlets where you may plug
devices (a tuner, a CD player, speakers etc.). You can choose the device that you
plug into each outlet — but only if it satisfies the corresponding electrical
requirements. In the same way, search lets you “plug in” many possible variants of
forth and other routines in descendants of LINEAR, but only if they satisfy the
contracts defined for these features in LINEAR.

This gives us a closer grasp of what deferred classes and features are about.
They do not just shirk implementation, but define an abstract semantic
framework for future implementations. That is also why this notion is so useful
in requirements analysis and high-level design: you can use deferred elements
to define essential properties, not just of structure, but also of behavior. As the
classes get progressively refined in descendants, the details will be filled, but
always in accordance with the general framework that you have set at the start.

forth

-- Advance cursor by one position
require

in_range: not after

deferred

ensure

increased: index = old index + 1
end

← Page 569.

← Page 569.

INHERITANCE §16.10586

Contracts tame inheritance

Whether for deferred or effective classes, the rules on contract adaptation are
essential to a proper use of inheritance. Polymorphism and dynamic binding are
powerful techniques, but a bit scary too: since every type can adapt inherited
features, how do you know that a call my_vehicle.turn_left will not — because
of some redefinition in the applicable descendant class — make your vehicle
turn right, stop, or make a U-turn? Here the flexibility that the combination of
redefinition, polymorphism and dynamic binding brings to programming goes
too far. As the designer of the original turn_left you want to allow every
descendant to provide its own implementation, but you also want to freeze the
essential semantic constraints that each must respect.

The Contract Redeclaration rule and associated language mechanisms
(require else …) give you this control. You can specify, as broadly or narrowly
as you wish, the boundaries of their freedom to implement your overall concept.

Inheritance and its associated techniques are not just a powerful form of reuse
but a subcontracting technique. Classes use redefinition to subcontract certain
operations to descendants. Because of polymorphism and dynamic binding, a
client does not know which subcontractor will handle a particular call — just as,
when you order an iPhone, you do not know which parts are made in Cupertino,
Taiwan, Shanghai, Bangalore or Bucharest. The Contract Redeclaration rule
could be called the “Keeping Subcontractors Honest ” rule.

16.10 OVERALL INHERITANCE STRUCTURE

Inheritance allows us to provide a general framework where every software
element has a clear place. Most object-oriented languages (a notable exception is
C++) define a special class, sometimes called Object (Smalltalk, Java, C#). In
Eiffel it is called ANY and is a part of the “Kernel Library”, which also includes
some fundamental classes closely connected with the language definitions
(ARRAY, STRING and basic types such as BOOLEAN, INTEGER, CHARACTER,
REAL). The overall structure appears in the figure on the facing page.

A, B etc. in that figure are any of the classes that you and I may write. The
rule defining the role of ANY is simple: any such class to which you have not
given an inherit clause, writing it instead as just

is understood as if you had actually written

class A feature … end

class A feature … endinherit ANY

§16.10 OVERALL INHERITANCE STRUCTURE 587

ensuring the following property:

ANY is the place where general-purpose features, useful for all types, have their
original declarations; they include is_equal and other general comparison
features; in earlier examples we used its print procedure, which prints a default
representation of any object. As a type, ANY is the most general of all; a variable
declared as v: ANY can be used polymorphically to denote objects of any type.

The bottom of the figure shows another predefined class: NONE. As ANY is
an ancestor to all classes, so is NONE a descendant of all classes. Unlike ANY,
a flesh-and-bone class whose text you can bring up in EiffelStudio, revealing
many useful features, NONE is a convenient fiction, closing off the type
structure at the bottom, but without a meaningful class text. It serves two
practical purposes:

� As a type, it enables us to give a type to Void, the predefined value
representing the void reference (a value not attached to any actual object).

� As a class, it supports information hiding: as you know, we declare secret
features in a clause starting with feature {NONE}. This means that they are
exported only to NONE; so no actual class can use them.
The syntax is a special case of selective export: the ability to start a feature clause
with feature {C, D, …}, for any classes C, D, …, meaning that the features whose
declarations follow are exported only to C, D, …, and their descendants.

It would make no sense to export a feature to C and not to its descendants, since they
need the mechanisms available to C, for example to redeclare a feature of C. Class
NONE has no proper descendants, so in this case it makes no difference.

Universal inheritance and conformance theorem (Eiffel)

Every class is a descendant of ANY.
Every type conforms to ANY.

Programmer-defined
classes

NONE

ANY

A B C

ED

Overall

inheritance

structure

← “Traversals”,
page 453.

← “Information hid-
ing: modifying fields”,
page 240.

INHERITANCE §16.11588

16.11 MULTIPLE INHERITANCE

From the start, this discussion of inheritance has noted that a class may have two
or more parents, a case known as multiple inheritance. This is an important
possibility that can be put to great benefit. Here a warning is necessary if you
have encountered some of the naïve literature on object-oriented programming:

(If you are new to the field you do not need this warning — good for you.) The
misconception about multiple inheritance comes from poor language design in
early O-O approaches, which made multiple inheritance seem messy, and also
from the limitations of early implementation techniques. As we will now see
none of this is justified today, and once you have discovered the practical use of
multiple inheritance you will not be able to live without it.

Using multiple inheritance

Inheritance is specialization: vehicles specialize the notion of a moving object,
taxis specialize the notion of a vehicle. Sometimes a notion is a specialization
of two or more other notions; then multiple inheritance is necessary. Without it
you would end up choosing one of the parents as the principal one, and duplicate
the code of the other.

To inherit from several classes just list them successively in the inherit part,
each with its redefine and other inheritance-adaptation clauses if any:

Touch of Methodology:

Dispelling urban legends about multiple inheritance

Multiple inheritance (while subject to misuse like any other programming
construct) is an essential tool for the construction of reliable, extendible,
reusable software systems. Do not be misled by blanket dismissals of this
technique as difficult or problematic.

class TROLLEY inherit

TRAM

redefine add_station, remove_station end

BUS

feature

…
end

§16.11 MULTIPLE INHERITANCE 589

A simple example can be found in basic libraries. The class NUMERIC covers
objects equipped with the standard mathematical operations:

(This is only a sketch; look up the class text in EiffelStudio). Another library
class, COMPARABLE, covers objects equipped with a total order relation:

Not all comparable types are numeric: strings have a total order relation — the
usual lexicographic order — but no multiplication or division. Not all numeric
types are comparable: there is no usable total order on complex numbers or
matrices. But some types, such as INTEGER and REAL, possess both sets of
properties; the corresponding classes use multiple inheritance to reflect this.

deferred class NUMERIC feature

plus alias "+" (other: NUMERIC): NUMERIC deferred end

minus alias "–" (other: NUMERIC): NUMERIC deferred end

times alias "∗" (other: NUMERIC): NUMERIC deferred end

divided alias "/" (other: NUMERIC): NUMERIC deferred end

…
end

deferred class COMPARABLE feature

lesser alias "<" (other: NUMERIC): BOOLEAN end

lesser_or_equal alias "<=" (other: NUMERIC): BOOLEAN
greater alias ">" (other: NUMERIC): BOOLEAN
greater_or_equal alias ">=" (other: NUMERIC): BOOLEAN

…
end

← We studied total
orders with topologi-
cal sort: “Total
orders”, page 514.

deferred

do … end

do … end

do … end

“Usable” in the sense
of retaining essential
properties, such as the
field structure of com-
plex numbers.

Multiple

inheritance

STRING

COMPARABLE
*

NUMERIC
*

REAL

INTEGER

COMPLEX

INHERITANCE §16.11590

Java and C# permit multiple inheritance not from classes but from interfaces as
discussed earlier, similar to entirely deferred classes. The present example
illustrates the difference. As highlighted above, class COMPARABLE needs
only one deferred feature, for example lesser (with its alias <); all the others can
be defined from it as effective features, for example

Similarly, greater (other) is defined as other.lesser (Current) and again
greater_or_equal in terms of the others. These are not just initial
implementations but definitive ones, as expressed by the postcondition of
lesser_or_equal.

COMPARABLE is an example of the Program with Holes pattern: a scheme
that leaves some operations open for descendants to implement — here we
settled on lesser, although any of the four could play this role — and defines the
others in terms of them. If you can only choose between an interface, fully
deferred, and a class, fully effective, you will not be able to rely on this
fundamental software development technique. More precisely, making
COMPARABLE an interface would mean that every descendant must provide
implementations of all its features. This may cause:

� Code duplication, since all implementations of lesser_or_equal, for
example, will be identical, using the code given above.

� The risk of errors, since — except through contracts in a language that
supports them — there is no way for the author of the ancestor class to
impose specific implementations on authors of descendants.

Just as the distinction between classes and interfaces is artificial, the restriction
of multiple inheritance to interfaces is impractical.

Renaming features

Multiple inheritance raises the specter of overloading if a class C inherits from
two classes with identically named features:

lesser_or_equal alias "<=" (other: NUMERIC): BOOLEAN

-- Is current object less than or equal to other?
do

Result := () or (Current ~ other)
ensure

definition: Result = ((Current < other) or (Current ~ other))
end

← Page 568.

Current < other
~ is object equality.

← Page 569.

§16.11 MULTIPLE INHERITANCE 591

This is easy to resolve if we insist on staying away from overloading: never give
the same name to two different features in the same class. If you try to compile
code corresponding to the above structure

with both A and B having unrelated features called f, the class C will not pass
compilation. The solution is just as easy:

The rename clause (which can be combined with redefinition, as in rename f as

first_ f redefine first_ f end) simply indicates that the feature known as f in A

will be known as first_ f in C. Here we could of course have renamed the feature
from B, or both.

The renamed feature is still the same feature — “the feature formerly known
as f ” — in C. So the following calls are both valid with a1: A ; c1: C :

but not, of course, with a1.first_ f, since A does not have a feature called first_ f.
The call c1.f is valid but refers to the feature from B; if we had also renamed
that feature, then the call would be invalid. In a polymorphic situation, after we
have assigned a1 := c1, the two calls above would have the same effect since a1

and c1 denote the same object, and f and first_ f denote the same feature in the
corresponding classes.

The flat view of a class and its contract view both take renaming into
account, as well as redefinition.

class C inherit

A

B

end

class C inherit

A

B

end

a1.f

c1.first_ f

Name clash
BA

C

f f

rename f as first_ f end

INHERITANCE §16.11592

Apart from removing name clashes, renaming helps you get your feature
terminology right. Sometimes when you inherit features from a parent their
names are not well suited to the context of the heir; then you can just adapt them
through renaming.

Compare renaming and redeclaration:

You can combine them when you want to change both the feature and its name.

These techniques are central to the use of inheritance as a tool for software
architects. As we saw early in this book, to write a class is to build a machine;
inheritance is a tool for building machines by extending and specializing existing
machines. It is a construction technique more than an interface technique, as
clients of a class do not need (except to use it polymorphically) to know that it
has been obtained through inheritance rather than built from scratch.

From multiple to repeated inheritance

We have one more technical point to examine: the case of repeated inheritance,
arising when as a result of multiple inheritance more than one path exists from
a descendant to an ancestor:

You only need to build such structures for advanced development (you can see
a few examples in the EiffelBase library), but should know the rule because
repeated inheritance arises in fact any time you use multiple inheritance:
because of the structure discussed in the previous section, the common
descendant will inherit ANY repeatedly.

Repeated inheritance raises two questions: the fate of repeatedly inherited
features; possible ambiguity through dynamic binding.

Renaming vs redeclaration

Renaming keeps the inherited feature and changes its name.
Redeclaration changes the feature (through redefinition, effecting or
undefinition) and keeps its name.

← “Objects as
machines”, page 28.

Repeated

inheritancef

CB

D

A

← As illustrasted in
“Overall inheritance
structure”, page 587.

§16.11 MULTIPLE INHERITANCE 593

In the illustrated case, the first question arises for f, a feature of A: in D, does it
yield one feature, or two? The answer is simple and in line with previous discussions:

� If the feature is inherited from both sides under the same name, for example
if it never undergoes any renaming along the inheritance paths — it remains
known as f throughout — it is clearly the same feature. This is a case of
acceptable name clash: even though the parents have a feature with the same

name, no problem results since they actually denote the same feature. It is
not really a clash. This case is known as sharing.

� If the feature is inherited under two different names — as a result of
renaming along the way — then, again to avoid any overloading, it must
denote two different features. We talk of feature replication.

An obvious validity constraint applies in the sharing case: you need to know
what is being shared. If there has been a redeclaration on either path, the version
of the feature from the other side must be deferred (either originally, or through
undefine). If you have two effective features and want to keep both, just rename
one of them, getting back to the replication case.

The second question arises precisely in the replication case, when there has
been a redefinition. It can occur for example with repeated inheritance from
ANY if one of the classes along the way has introduced its own notions of copy
and equality by redefining copy and is_equal from ANY:

is_equal and copy should always be redefined together, since the postcondition of
copy (other) states is_equal (other): any copy operation must ensure that the result
is equal to the target of the copy, according to the local notion of equality.

LIST redefines copy and is_equal to ensure that they copy and compare not the
list header but the actual contents of the list; most container classes of the
EiffelBase library similarly define their own notion of copy and comparison.
Now D inherits from LIST and also from a class C which has retained the default
versions from ANY. All this works according to the previous rules; D must
rename the features to avoid a name clash, so they are duplicated. The only
problem arises under polymorphism: for a of type ANY and d1 of type D, a call
executed after a polymorphic assignment as in

The need for

“select”

CLIST

D

copy
is_equal

Possible
intermediate

ancestors

copy C_copy
is_equal C_is_equal

copy
++

is_equal++
++ Redefined

Renamed

ANY

INHERITANCE §16.12594

is potentially ambiguous: should it use the LIST version (known as copy in the
class) or the C version (C_copy)? This situation arises whenever there is both
replication and redefinition. A simple clause, select, is required in such cases to
remove the ambiguity. Here is how you should write D:

This means that you want to “select” the versions from LIST under dynamic
binding for a polymorphic target with a possible ambiguity. You will need the
clause in any such case; you may of course select from either branch, and you
may select some features from a parent and the rest from another, although in
the present case it only makes sense to select copy and is_equal consistently.

16.12 GENERICITY PLUS INHERITANCE

The introduction of inheritance enables us to revisit the other major
extendibility technique for classes: genericity. You have seen inheritance and
genericity shine separately; in combination they are even more potent.

Polymorphic data structures

We have encountered a first way of making inheritance
and genericity collaborate: polymorphic data structures.
With a container such as

you know that the various items can be instances of any
of the descendants of VEHICLE; this lets you play the
game of dynamic binding with list elements as obtained
for example through fleet.item during a traversal.

The figure at the top of the facing page offers a graphical view of this kind
of inheritance-genericity combination. It introduces no new concept, simply an
informal interpretation of what you already know from the concept of

a := d1

a.copy (…)

class D inherit

LIST [T] end

C rename copy as C_copy, is_equal as C_is_equal end

feature

… Rest of class text …
end

fleet: LIST [VEHICLE]

 select copy, is_equal

← “Static typing and
genericity”, 13.1,
page 363.

(Figure from page 561.)

A polymorphic

list

(TAXI) (TRAM) (TRAM) (BUS) (TAXI)

§16.12 GENERICITY PLUS INHERITANCE 595

polymorphic data structure. We start from the basic notion of class, illustrated by
a “list of taxis” abstraction in the center, with the features we expect: add an item,
remove an item, move the cursor, get the item at cursor position and so on. From
there we can vary the concept in two ways, represented by the two directions:

� Besides a list of taxis we may want to talk about lists of persons, cities, or
objects of any other types. Genericity allows us to travel this horizontal
dimension of the figure by providing a type parameterization mechanism,
hereby avoiding code duplication while guaranteeing type safety as we saw
in the original discussion.

� A list is a special kind of “chain” and in turn has more specialized kinds
such as the “linked list”, functionally a list but resulting from a specific
choice of implementation. Inheritance allows us to travel this vertical
dimension of the figure by providing a generalization and specialization

mechanism, again a powerful form of reuse.

As suggested at the bottom left and top right of the figure, you can combine the
two mechanisms freely by going to any point of its metaphorical plane, getting,
for example, a linked list of persons or a chain of cities.

More terminology: you may encounter genericity, especially in the literature about
“functional languages”, under the name parametric polymorphism. Don’t ask me
why. Genericity and (especially in the Java and C# context) its variant generics are
the more common terms.

Inheritance and

genericity

LIST [TAXI]

LINKED_LIST
[TAXI]

CHAIN [TAXI]

LIST [CITY]LIST [PERSON]

Genericity
(type parameterization)

Inheritance

Specialization

Generalization

INHERITANCE §16.12596

Constrained genericity

Polymorphic data structures are not the only way to combine genericity and
inheritance. The other important technique follows from exploring the question:
what can we do with an entity or expression of a formal generic type?

In a generic class such as LIST [G] or ARRAY [G] — the text of the classes
themselves, not some use such as LIST [VEHICLE] in a client — we will have
declarations such as x: G; what operations are applicable to G?

You can guess the answer from an earlier discussion. Since G is just a
placeholder for any type, which will be given by the actual generic parameter in
a derivation (VEHICLE in the example), applicable operations are those that
work for all classes: the features of ANY. So you may use x.cloned,
x.is_equal (y) and so on, but no features beyond those of ANY since they might
not always be available depending on the choice of generic derivation.

What if you want more operations? Sometimes this would be really handy.
Consider the case of a “sorter” class providing features such as sort that order
the elements of data structures such as arrays or lists, for example producing an
ordered permutation of any list of integers. We want a mechanism that will work
for many types, not just integers, so genericity seems appropriate.

Sorting algorithms are a rich area of computer science; we do not study
them here, although we have seen a special case, topological sort. But we do not
need to study any particular sorting technique to realize that, somewhere in the
algorithm, we will need — assuming we are sorting an array a — an instruction
such as

where i and j are integers and a [i] and a [j] the array items at the corresponding
positions. The algorithm will swap their values if it finds they are out of order.
Any sorting algorithm defines a strategy for selecting successive i and j values
for comparison and possible swap. That part is not our concern here; the
interesting issue is how to make the highlighted comparison work. What “<”
comparison operation does it use?

The right one, we want to answer: integer comparison if we are sorting
integers, ranking if we are comparing tennis players, and so on. But how do we
even know that there is such an operation?

x := t [i] ; y := t [j]
if then [4]

-- Swap the items at positions i and j in a:
a [i] := y ; a [j] := x

end

← “Overall inherit-
ance structure”,
16.10, page 586.

Computer science uses
“sorting” in the sense
of ordering (producing
a total order).

← Chapter 15.

x < y

§16.12 GENERICITY PLUS INHERITANCE 597

We don’t, and sometimes there isn’t. As noted when we encountered the
library class COMPARABLE, no useful total order exists on objects such as
complex numbers or matrices.

To provide a general-purpose sorting algorithm applicable to sorting arrays
of many types we should put the above code [4] in a generic class

But where does the “<” come from? This is not as if we were using x and y,
which both have type G (the formal generic parameter), in operations such as
x.cloned or x.is_equal (y); these operations come from ANY and hence are
applicable to arbitrary objects. Here we want a comparison operation, available
only from specific classes such as COMPARABLE.

Classes such as COMPARABLE? Why not choose COMPARABLE itself; it
is deferred, and its effective (directly usable) descendants will provide their
versions of lesser alias "<" and other comparison operations. We may go further
and expect that any class that represents objects with a total order relation must
be a descendant of COMPARABLE. Then the answer to our basic genericity
question is straightforward: G, the formal generic parameter, should no longer
represent an arbitrary type but one that conforms to COMPARABLE. The
following syntax represents this property:

The symbol –> (hyphen followed by angle bracket) recalls the arrows of
inheritance diagrams; the type that follows, here COMPARABLE, is the generic

constraint. The meaning is that a generic derivation SORTER [T] is valid only
i f T confo rms to tha t cons t ra in t . So SORTER [INTEGER] and
SORTER [STRING] are fine, as well as SORTER [TENNIS_PLAYER] if
TENNIS_PLAYER inherits from COMPARABLE (effecting lesser to compare
player ranks), but not SORTER [COMPLEX], or SORTER [VEHICLE] if we have
not made vehicles comparable. Such attempts are rejected at compile time.

class SORTER [G] feature

sort_array (a: ARRAY [])
-- Reorganize elements of a according to an order relation.

local

do

… Code such as [4], with tests such as …
end

…
end

class SORTER [G] feature

… The rest as above…

← Page 589.

See below the replace-
ment for the “ ”.…

…
G

x, y: G

x < y

–> COMPARABLE

INHERITANCE §16.12598

As you probably guessed by now, one may view the basic genericity case
LIST [G], (unconstrained genericity) as a shorthand for LIST [G –> ANY]. This
gives a formal basis to the above observation that operations applicable to x of
type G in such a class are those of ANY, such as cloned and is_equal.

Constrained genericity has many applications. Some frequently occurring
cases use deferred library classes similar to COMPARABLE:

� If you define vector or matrix classes, you will want to equip them with
features covering addition and other numeric operations. For example it
should be possible to compute m1 + m2 where m1 and m2 are both of type
MATRIX [T]. This requires the ability to compute t1 + t2 where t1 and t2 are
both of type T. The solution is to remember class NUMERIC and declare the
matrix class as MATRIX [G –> NUMERIC]. Then you may use
MATRIX [INTEGER] but not, for example, MATRIX [STRING]. An
interesting twist is to make MATRIX itself inherit from NUMERIC, which
makes sense since it provides all the required operations (indeed the model
for NUMERIC is the mathematical notion of ring); this allows such
d e r i v a t i o n s a s MATRIX [M AT RI X [INTE G ER]] , a s w e l l a s
MATRIX [MATRIX [MATRIX [INTEGER]]] and so on.

� You may want to allow features of a class C [G] to store elements of type G
into a hash table. This assumes that on every such element you can compute
an integer hash function, a simple requirement but not one that all types
necessarily satisfy. Those that do are descendants of the library class
HASHABLE, and effect its deferred query hash_code.

HASH_TABLE itself is declared as

explaining why the generic parameter to TOPOLOGICAL_SORTER was also
constrained by HASHABLE: we wanted to put the elements into a hash table.

HASH_TABLE also illustrates in passing that you may have more than one generic
parameter — here one constrained, the other not — and name them however you
like (calling the first one G is a common but not obligatory convention).

A language note: it is possible to specify multiple generic constraints. For
example you might declare a class

to specify that an actual generic parameter, to be valid, must conform to all the
types listed. INTEGER satisfies this. The example is extreme, but conforming
to both COMPARABLE and NUMERIC is frequent.

class HASH_TABLE [ELEMENT,] feature …

class C [G –>] feature …

← Page 589.

← “Hash tables”,
13.9, page 411.
See “Definition: Hash
function”, page 411.

KEY –> HASHABLE

← “Numbering the
elements”, page 531.

Note the braces in case
of multiple constraints.

{COMPARABLE, NUMERIC, HASHABLE}

§16.13 UNCOVERING THE ACTUAL TYPE 599

Constrained genericity illustrates the fundamental role of types in modern
programming. Other language approaches to the problem discussed here are
possible, such as somehow passing a comparison routine to SORTER. But it is
more consistent with basic object-oriented ideas to make the required
functionality part of the type. This also means that we can continue relying on
the compiler to perform all necessary validity checks for us, rather than running
the risk of a run-time mismatch. If the compiler rejects your class because of a
type inconsistency, remember that such seemingly bad news is really good
news: better catch a bug before it catches you.

Never underestimate the power of static typing. This is really a program
verification mechanism. The sophistication of the type system that you now
master — with classes, constrained and unconstrained genericity including
multiple constraints, single, multiple and repeated inheritance, polymorphic
variables and data structures, rules on feature calls, argument passing and
assignment — defines a framework of mathematical precision, which the
compiler uses to perform crucial consistency checks. The types of your program
elements closely reflect the semantics of the underlying model of the world.

16.13 UNCOVERING THE ACTUAL TYPE

The discussion of dynamic binding’s contribution to
software architecture explains why it was not so urgent,
in the presentation of polymorphism and polymorphic
data structures at the beginning of this chapter, to answer
the question “what if I know that the last element of the
list is an instance of TAXI, not just VEHICLE, and want to
apply a taxi-specific operation to it?”. You are looking at
an item of a list that you know as a list of vehicles:

or more generally at a variable or expression of type VEHICLE. That is how you
know it; you have renounced its specificity — its distinctive identity as a taxi, a
tram or a bus — to treat it as just a vehicle. The downside is that you can no
longer take advantage of its taxiness or tramness; the advantage is that you can
apply any vehicle operation to it without having to know what kind of vehicle it
is, even if the operation is different for each kind. So if you want to apply a
specific operation you should, in the usual case, make it an operation applicable
to all vehicles, with a specific implementation for each variant. This is the only
way to avoid the Many Explicit Variants Syndrome.

This reasoning breaks down in two cases:

fleet: LIST [VEHICLE]

← “Touch of Methodol-
ogy: Zen and the Art of
Reacting to Compiler
Messages”, page 367.

(Figure from page 561.)

A polymorphic

list

(TAXI) (TRAM) (TRAM) (BUS) (TAXI)

← “Touch of Method-
ology: Fight the Many
Explicit Variants syn-
drome”, page 575.

INHERITANCE §16.13600

� The operation you want to apply is really specific to the chosen type, and
you cannot introduce it at a higher level in the inheritance hierarchy, if only
because the classes in that hierarchy are someone else’s classes.

� Your program obtains objects — for example the above list — from an
outside source over which it has no control; for example it retrieves them
from a file, a database or a network. Then it will only know them as values
of the most general kind; indeed the corresponding library features return a
result of type ANY.

As an important example of the second case, any good O-O environment
provides some kind of serialization mechanism to write out object structures to
files, and retrieve them. The retrieval operation, such as

can only declare the type of its result as ANY because the operation is
general-purpose: it should work for any application domain and will return
whatever object it finds, be it a taxi, a tram, a city or anything else. When you
use it in a particular application and for a particular file, you expect a certain
type of object, for example TAXI; but then you will not be able to write

for t of type TAXI, since ANY does not conform to TAXI — it’s the other way
around! You need somehow to force, or cast, the retrieved object reference into
a TAXI object; to throw away its nondescript identification as an ANY, shared
with the entire object populace, and reveal its true inner nature, its taxi self. To
support this identification process we need more than the inheritance,
polymorphism and dynamic binding techniques seen so far.

In looking for a new mechanism, we note that the cast cannot be
unconditional. When obtaining an object from a file or a network you can expect
that it will be of a certain type, but you cannot be sure. You are no longer dealing
with objects entirely within the control of your program, for which a declaration
t: TAXI guaranteed that t would always be attached to a TAXI instance. For
objects coming from the wild world out there, you no longer have such a

retrieved:
-- Object retrieved by the last retrieval operation

t := my_serializer.retrieved

ANY This is the interface you
will find in Eiffel serial-
ization library classes
such as STORABLE.

§16.13 UNCOVERING THE ACTUAL TYPE 601

guarantee. Even an object structure that you serialized yourself — say you saved
the fleet structure into a file — may have been corrupted or hacked when you
read it back. This imposes a rule on the relevant language mechanisms:

In other words such a mechanism must be conditional. If you expect a TAXI and
uncover some unrelated object, the casting attempt should fail.

A mechanism that does not satisfy this principle is the C language’s form of casting
(also present in C++, but alongside a more sophisticated construct satisfying the
principle): writing (T) e, where T is a type and e a reference, will yield a reference
of type T, with the same value as e, disregarding the actual type of the data at the
corresponding memory location. This directly reflects machine-level operations
that treat references (pointers) as just addresses without a specific type;
programmers are supposed to “know what they are doing”. Higher-level languages
enforce more typing and more checks.

A common term for describing casting mechanisms satisfying the principle is
dynamic cast; “conditional cast” is also appropriate. This is another area that
lacks a standard terminology; other terms that you may encounter are type

narrowing and downcasting, both addressing the case of casting from a
general type such as VEHICLE to a more specific type such as TAXI that
conforms to it. (It is more narrowly focused, and further down in the inheritance
hierarchy.) This is the most common case but not the only one; we will see why
the mechanism to be studied now, Object Test, can apply a dynamic cast
between two arbitrary types.

A more general term covering any kind of technique for finding out the
types of objects at run time is RTTI, for “Run-Time Type Identification”.

Sorry for this terminology chop-suey; I did not make up all these
grand-sounding terms. You should know that they exist, but what really matters
is to understand the underlying concepts and the general solution to be presented
now. We will in fact review two dynamic cast mechanisms, one current, the
other obsolete but still in use.

Touch of Methodology:

Casting Principle

Any mechanism that forces a type upon an object reference without respecting
the static rules of conformance must rely on a run-time test of the
corresponding object, to ensure that its type conforms to the expectation.

This is a principle for
language design (with
direct effect on
program design).

Yet one more term is
“typecast”; see
“Derived types”, page
808 in the discussion
of C++.

INHERITANCE §16.13602

The object test

Assume you are convinced the last item of fleet is a TAXI

object — as it is in the figure — and want to apply a
taxi-specific feature such as take to that element. The
simplistic solution will not work:

for reasons that should be clear but which we can analyze
carefully by splitting the instruction into two:

As suggested by the “ ” we cannot properly type t (in the sense of giving it a
type — my keyboard is fine, thanks) since we are stuck:
� If we declare t as a VEHICLE, [5] is valid but not [6] since take is not a

feature of VEHICLE.
� If we declare it as a TAXI, [6] is valid, but the assignment [5] violates the

polymorphism type rule; it goes against the direction of conformance.
The object test construct provides the solution in such cases. An object test is a
boolean expression that (as a form of RTTI) determines whether an object’s type
conforms to an expected type, and if so has the supplementary effect of defining
a local name to represent the object for a small part of the program text, or
“scope”. Applying an object test to the example yields:

In accordance with the Casting principle the operation is conditional; it tests for
the type of fleet.last — the actual object attached, at the time of execution, to
this reference — and returns false if that type does not conform to the type listed,

fleet.last.take (…)

-- Earlier declarations:
fleet: LIST [VEHICLE]
t: -- Placeholder, should be replaced with an actual type
…
t := fleet.last [5]

t.take (…) [6]

if then

t.take (…)
… Any other TAXI operations on t, attached to a TAXI object …

else

… Do something else (non-taxi) if necessary …
end

(F i gu re f ro m pa ge

A polymorphic

list

(TAXI) (TRAM) (TRAM) (BUS) (TAXI)

WARNING: this exam-
ple and the previous
one are invalid.

?

?

This one is valid!

(In fact, it is the solution.)

attached {TAXI} fleet.item as t

§16.13 UNCOVERING THE ACTUAL TYPE 603

TAXI. In that case the else clause of the conditional, if present, will be executed.
If the type does match, we have a taxi object and locally make it available
through the name listed, t, called an object-test local. It is as if you had declared
a local variable t and somehow were able to perform the assignment
t := fleet.last, [5] above. Such an assignment is not permitted, but a by-product
of the object test is to make t denote the original value of fleet.last throughout
the scope of the object-test local.

If the object test serves as the condition of an if, as here, the scope is the then

part, where you can use t as a TAXI variable denoting the value of fleet.last.
Because it is indeed a TAXI, both statically as a result of the declaration of t and
dynamically since you checked that the actual object has the expected type, you
can apply TAXI features such as take without any risk.

The definition of the scope of an object test local expresses where it
intuitively makes sense to include such operations safely. The following cases
cover all practical needs (if you have anything more complicated just introduce
a local variable):

� As just seen, if the object test appears as the condition of an if, the scope is the
then part, including if you combine it with other conditions through and then,
as in if and then v.is_moving then …

� If you negate the object test (possibly combined with other conditions through
or else), as in if then …, the scope is
now the else part.

� Similarly if the object test appears negated in the exit condition — until

clause — of a loop, again possibly combined with other booleans through
or else, the scope is the loop body (loop clause).

As an example of the last case, here is how to compute the number of objects
preceding the first one of a specific type in a possibly polymorphic list:

pre_taxi_count (fleet: LIST [VEHICLE]): INTEGER

-- Number of objects in fleet before the first TAXI.
do

from fleet.start until

fleet.after or else

loop

Result := Result +1 ; fleet.forth

end

ensure

non_negative: Result >= 0
at_most_length_of_list: Result <= fleet.count

end

← and then, or else:
“Semistrict boolean
operators”, 5.3, page 89.

attached {TAXI} fleet.item as t

not attached {TAXI} fleet.item as t

→ Also do the exercise
“How many taxis?”,
16-E.7, page 618.

attached {TAXI} fleet.item as t

INHERITANCE §16.13604

This particular algorithm does not use the value of the object-test local t; as a
consequence you may write the object test as just attached {TAXI} fleet.item.

There is no restriction on the types involved in an object test: in
attached {U} exp as x, where exp is an expression of (static) type T, both T and
U are arbitrary. The most common case is downcasting as defined earlier: U is
a descendant of T; the example, with VEHICLE and TAXI, illustrates it. But this
is not a requirement, and with multiple inheritance you may need an object test
even for T and U not directly related by inheritance. A typical case looks like
this, referring to classes mentioned in the discussion of multiple inheritance:

NUMERIC and HASHABLE share descendants such as B and C. If you have a
list numlist of NUMERIC elements, you might want to hash any of these
elements that is HASHABLE:

(with numlist of type LIST [NUMERIC], and hash_code a feature of
HASHABLE). This is not downcasting, since HASHABLE does not conform to
NUMERIC any more than the other way around, but a legitimate case all the
same. It illustrates why we need a general dynamic cast mechanism, not
restricted to type narrowing.

Assignment attempt

(This subsection is complementary material, eminently skippable on first
reading — but do read the following one, “Using dynamic casts wisely”.) Object
test supersedes an older mechanism, assignment attempt. Since you may still
encounter it in existing code, here is a brief overview. We can go back to the
example that showed the inability of basic assignment to provide downcasting:

if then

your_hash_table.put (h,)
end

NUMERIC
Indirect

inheritance

relationship

A B C D

HASHABLE

attached {HASHABLE} numlist.item as h
h.hash_code

§16.13 UNCOVERING THE ACTUAL TYPE 605

We declare t as a TAXI. As before, this makes [7] invalid: an assignment in the
wrong conformance direction. Instead of assignment, however, we use
assignment attempt, relying on the symbol ?=, read aloud as “may receive”, to
be compared to “receives” for assignment :=. The effect is:

� If the run-time value of the source (the right side) is of a type conforming to
the type of the target, here TAXI, to attach the target, here t, to that object, as
in a regular assignment.

� Otherwise, to make t void.

A safe use of assignment attempt should, immediately afterwards and before
applying a feature to the target, test whether it is void:

Clearly, you can use assignment attempt for anything you can do with object
test. The newer mechanism has the advantage of not encumbering the program
with local variables such as t: an object-test local plays the same role but appears
only at the exact place where you need it. In addition, the use of Void to
represent failure is unsafe, since it does not force you to test for non-voidness as
above: if you forget, you end up with a void call and usually a crash; this cannot
happen with object test. As a consequence the language standard for Eiffel,
while recognizing the assignment attempt’s decades of distinguished service,
retired it to introduce object test as its replacement.

Using dynamic casts wisely

Regardless of the actual dynamic cast mechanism, we should not forget the ever
looming Multiple Explicit Variants Syndrome. Any kind of dynamic cast makes
it possible to implement decision structures of the form “if I have a TAXI then
do this; else if I have a TRAM then do that; else if I have a BUS …”.

fleet: LIST [VEHICLE]
t:
…
-- t := fleet.last -- For comparison only: commented out since invalid [7]

t.take (…) -- Valid but unsafe; see next

t ?= fleet.last

if

-- Valid and safe
… Any other TAXI operations on t, attached to a TAXI object …

else

… Do something else (non-taxi) if necessary …
end

Warning: illustrates
obsolete mechanism.TAXI

t ?= fleet.last

← “The power of
assignment”, page 235.

t /= Void then

t.take (…)

← “Touch of Method-
ology: Fight the Many
Explicit Variants syn-
drome”, page 575.

INHERITANCE §16.14606

The details, by the way, have to be handled carefully, because the tests use
conformance: if you are discriminating between MOVING objects, anything that
matches TRAM also matches VEHICLE, so the order of the tests is significant.

Still, you can do it.

That is clearly not a good idea. The abuse heaped by previous sections on
explicit multiple-branch choices, and the rationale for avoiding them, remain as
relevant as ever. Dynamic casting is useful not as a competitor to dynamic binding,
which beats it hands-down when both are available, but for specific cases of the
kind cited earlier: objects coming from the outside — file, database, network —
whose type the program must ascertain dynamically before it can use them; and
objects accessible through a polymorphic variable or data structure, when as a
programmer you know more about their types — or think you know more, since
you must still include a run-time check — than what the declaration says.

In such cases you will usually be casting to one specific type, not testing
against a large set of type possibilities. This is a pretty good criterion to use if
you are pondering in a particular case whether to use a dynamic cast. If you are
expecting a certain object type and ascertaining that the reality conforms to the
expectation, you are probably OK. If you are discriminating between a whole
range of types, you are almost certainly misusing the mechanism, and should
instead consider dynamic binding; or, if you are not at liberty to change affected
classes, learn about the Visitor pattern — our next and final topic.

16.14 REVERSING THE STRUCTURE: VISITORS AND AGENTS

The design discipline that we have discovered in this chapter, combining
inheritance, deferred classes, polymorphism, redefinition and dynamic binding, all
supported by contracts, yields elegant and flexible architectures. But there is still
a dark side, which we cannot leave unexplored.

The dirty little secret

The dirty secret (not entirely a secret, since it was mentioned briefly at the start
of the discussion) is that our recipe for keeping software architectures stable
throughout system changes is biased towards one of the two principal kinds of
change. With the techniques seen so far we are very good at guaranteeing
smooth evolution when we know the operations and must deal with new types

— but this says nothing about the reverse case!

Now I would not want you to imagine that the first fifty-six pages of this
chapter were deceptive advertisement. Experience shows that the scenario we have
studied in depth — extending old operations to new types — is the most frequent
and delicate one in system evolution. This is where polymorphism and dynamic
binding shine; object technology owns much of its success to these powerful ideas.

§16.14 REVERSING THE STRUCTURE: VISITORS AND AGENTS 607

But the reverse scenario does occur as well, and we cannot ignore it.

Assume for example that for the benefit of some application you want to
enrich Traffic objects of many different kinds with a facility for flashing their
visual representation a few times. You may want to flash specific objects, or all
objects in a list. Can you add this to the software with the same information
hiding benefits we have seen — in particular, without testing individual objects
for their specific types?

Let us call target classes the classes to which we want to add this facility
(in this case, Traffic classes such as TAXI) and client classes the application
classes that need to apply the new operation to target objects.

In favorable cases the techniques we have studied still succeed:

� If the target classes all inherit from a common ancestor, you could add the
facility at that level, then redeclare it as appropriate in descendants.

� If they have no common ancestor, you could add one, say a class
FLASHABLE, making all relevant target classes inherit (through multiple
inheritance) from it.

This works, but does not scale up well if the need arises again for new
operations. Besides flashing you might want to rotate Traffic objects (assuming
this is not already possible); later on, to raise them above others; and so on. With
multiple inheritance you can add ROTATABLE, RAISABLE and such, but this
explosion of little classes does not look right.

As another example, important in practice, consider a development environment
such as EiffelStudio or Eclipse, where the fundamental structure is the abstract
syntax tree (AST), covered by target classes such as INSTRUCTION ,
EXPRESSION, LOOP. These classes possess a number of essential features, but a
new client tool that comes along — a program formatter, a program analysis tool
intended to find potential errors, an HTML generator … — may need to apply a
new operation to every node in an AST. If the operation is really fundamental the
corresponding routine should be added to the AST classes, but this should happen
only rarely. EiffelStudio addresses this issue through the Visitor techniques
discussed next.

In some cases the option of modifying target classes is not available anyway, for
example if they are in a library under someone else’s control; even if you have
access to the source code it makes no sense to modify it since the next release
will invalidate your changes. Then the previous solutions do not help.

There are two possibilities in such a case:

� The Visitor pattern.

� Using the agent mechanism.

An outline of these techniques follows.

→ Target classes usu-
ally belong to the core
of the application and
are also called “model
classes”. See “The
model and the view”,
page 675.

→ “Many Little Wrap-
pers” pattern, see page
619 in the next chapter.

INHERITANCE §16.14608

The Visitor pattern

The Visitor pattern is an architectural technique enabling you to define arbitrary
facilities applicable to instances of existing classes.

The idea is very simple: let the operations know about the types. If we are
to apply various operations to various types, either each operation must know
about every applicable type, or the other way around. With dynamic binding,
each type knows about the applicable operations. Now we are concerned with
the other case: a client class needs the ability to perform an operation on
instances of many possible classes (the target classes); we may call such objects
— such as taxis and trams in our staple example— target objects, or just targets.

The issue is not how to define the operations. We have to assume that
appropriate algorithms are available to write features such as

and so on (flash_tram, flash_bus…). The question is about architecture: where
do the features belong, and how can we use them in a way that preserves the
extendibility of the software?

The features are not in the target classes: if they were, dynamic binding
would be the solution. We are assuming this is not the case; that is why they
must get their targets through arguments, such as t: TAXI above. But there is no
reason to require client classes to implement the features either: better collect
the features in a separate class which knows how to perform a specific
operation, say flash, on various possible targets such as taxis and trams.

So our pas-de-deux between the client and the target turns into a
ménage-à-trois between client, target and visitor. A visitor is an object able to
apply a single kind of operation to many kinds of object; this is the reverse of
classes designed for dynamic binding, although — as testimony to the power of
the basic O-O ideas — visitors are still implemented as classes and the scheme
still crucially relies on dynamic binding.

flash_taxi () do … Algorithm for flashing a taxi …end [8]

→ For more about the
concept of pattern see
“About design pat-
terns”, page 678.

t: TAXI

CLIENT The Visitor

ménage-à-trois

(→ See page 611 for
the full picture with
inheritance.)TARGET V_VISITOR

t.accept (v)

T_TARGET

t v

v. T_visit (Current)
Client (calls)
Client (knows about)

§16.14 REVERSING THE STRUCTURE: VISITORS AND AGENTS 609

For a target type T, such as TAXI, and an operation V, such as flash, the figure
shows the interplay between:

� The target class, T_TARGET, representing target objects of type T. Class
TAXI is a typical example.

� The visitor class V_VISITOR, for example FLASH_VISITOR, representing
application of the chosen operation to objects of many different types.

� The client class, representing an application element that needs to perform
the operation on target objects of various types.

Often the client class will need to perform the operation on a set of target
objects, for example flash all Traffic objects in a list. This explains the term
visitor: a visitor object — an instance of a class such as FLASH_VISITOR —
enables the client to “visit” every element of a certain structure, each time
performing the appropriate version of a specified operation. As you know the
process of performing such visits is called “iteration” or “traversal”.

As always in discussing software architecture for extendibility and
reusability, it is important to examine who knows what, and also who does not

need to know what, with the aim of reducing the amount of knowledge that is
spread over the structure and would cause trouble when the information
changes. Here:

� The target class knows about a specific type, such as TAXI, and also (since
for example TAXI inherits from VEHICLE and VEHICLE from MOVING)
its context in a type hierarchy. It does not know about new operations
requested from the outside, such as flashing.

� The visitor class knows all about a given operation, and provides the
appropriate variants for a range of relevant types, denoting the
corresponding objects through arguments: this is where we will find
routines such as flash_bus, flash_tram, flash_taxi. It does not know anything
about clients.

� The client class needs to apply a given operation to objects of specified
types, so it must know these types (only their existence, not their other
properties) and the operation (only its existence and applicability to the
given types, not the specific algorithms in each case).

Using the Visitor pattern, the client will be able to apply the operation, for
example, to all items of applicable types in a list, without knowing these types
individually, as in

← “Definition: Iterat-
ing”, page 397; “Tra-
versals”, page 453.

INHERITANCE §16.14610

The Visitor pattern provides an implementation of the
line in pseudocode. That implementation is very simple
(follow it in the figure): the basic visit operation is

for a target object t and a visitor object v, leading us to
replace the pseudocode line by

where flasher is the FLASH_VISITOR object.
All target classes must provide a feature accept, whose general

implementation is

T_visit is a visitor feature that implements the requested operation for the type
T: for example bus_visit, tram_visit. These procedures must be provided on the
visitor side:

It is generally possible to avoid wrapping existing routines in this way, and instead
directly implement flash_bus under the name bus_visit etc.

Admire the delicately choreographed duet in which the target and the visitor
engage once the client has set them in motion. The target object knows about its
own type; it does not know the requested operation, but knows someone who

flash_all (fl: LIST [] -- See below about TARGET

-- Flash all items in fl.
do

from fl.start until fl.after loop

-- “Flash fl.item”
fl.forth

end

end

t.accept (v)

fl.item.accept (flasher)

accept (v: VISITOR)
-- Apply the relevant visit operation from v to x.

do

v. (Current)
end

bus_visit () do flash_bus (t) end

tram_visit () do flash_tram (t) end

taxi_visit () do flash_taxi (t) end

… and so on …

TARGET

← The line partially in
red is pseudocode; see
“Definition:
Pseudocode”, page 108.
The expansion of the
pseudocode comes next.

(Figure from page 608.)

Visitor classes

CLIENT

TARGET V_VISITOR

t.accept (v)

T_TARGET

t v

v.T_visit (Current)

T_visit

t: BUS

t: TRAM

t: TAXI

§16.14 REVERSING THE STRUCTURE: VISITORS AND AGENTS 611

knows: the visitor v passed by the client as the argument to accept. So it calls
T_visit on the visitor, where T identifies the target type, and passes itself —
Current — as argument. This enables the visitor to use the right operation,
identified by the inclusion of T in the routine name, to the right object, identified
by the argument to that routine.

Even though the Visitor pattern is intended to remedy limitations of
dynamic binding, it fundamentally relies on dynamic binding. Twice, in fact:

D1 In the client’s call t.accept (v), to select the right target.

D2 In the target’s call v.T_visit (Current), to select the right operation (by
selecting the right visitor).

Dynamic binding is also known as dynamic dispatch, and more specifically as
single dispatch since it dispatches a call to the suitable algorithm on the basis
of a single criterion (the type of the call’s target). The Visitor pattern is an
example of double dispatch: selecting an action on the basis of two criteria,
here a kind of object and a kind of operation. It illustrates a possible technique
for achieving double dispatch in a framework that supports single dispatch, as
most object-oriented languages do: use single dispatch twice. The first call, D1,
taking as its target the target object t, performs a dispatch on the first criterion
by applying dynamic binding to that object; it includes the other operand, the
visitor v, as its argument. This allows the routine, here accept, to perform the
second dispatch through a second call, D2, which uses this argument as its own
target. The routine T_visit of that final call must still have access to the original
target object; this is achieved by passing Current as the argument.

For the first case of dynamic binding, D1, to work, all target classes must have
a feature accept, each redeclaring it in the form v.T_visit (Current) as above.

CLIENT

Visitor in full

V_VISITOR

t.accept (v)

T_TARGET

t v

v.T_visit

Client (calls)
Client (knows about)

TAXITRAM
(Current) FLASH_

VISITOR
ROTATE_
VISITOR

…

*
TRAFFIC_

…

VISITOR

tram_visit+

taxi_visit+
…

tram_visit+

taxi_visit+
…

tram_visit+

taxi_visit+
…

*
TRAFFIC_
TARGET

tram_visit*
taxi_visit*
…

Deferred
Effective

*
+

Inherits from

accept*

accept+ accept+ accept+

TARGET CLASSES VISITOR CLASSES

INHERITANCE §16.14612

As illustrated by the figure, accept will come from a common ancestor, where
it is deferred. That ancestor is class TARGET, which can be very simple:

The last two lines of the header comment rely on a standard convention: starting
with --| rather than just -- will cause the contract view not to display them. This is
appropriate for comments that describe properties of the implementation, not
relevant for clients.

Having to make all target classes inherit from a special TARGET class is
disappointing, since the original idea was to reuse target classes as they are.
With the technique as seen so far, if you have no say at all on target classes, you
are stuck. This is the principal limitation of the Visitor pattern; to remove it, we
will need to go to completely different techniques, as previewed below. In many
practical cases, though, it is not as bad as it sounds: the aim is to avoid
modifying target classes again and again, every time a new kind of visitation
need pops up. Here you must only make sure that the target classes have one

ancestor with one specific feature; then for the rest of their lives you can add
visitors to you heart’s content.

On the visitor side too you need a common ancestor, say VISITOR, and
necessary to make accept valid in TARGET. Here it is not a problem to require
such a common ancestor, since you will need to write specific visitor classes for
every case of applying the Visitor pattern.

The figure on the previous page extends our earlier one by including all
relevant classes and inheritance relationships. The names of the deferred classes
TARGET and VISITOR now start with TRAFFIC_, to be replaced by any name
identifying the application when you use the Visitor pattern; this is because with
the techniques seen so far it is really impossible to define these classes as
reusable components with full generality. VISITOR in particular must know all
the target types in the application so that it can list, even in deferred form, the
relevant features, here tram_visit, taxi_visit and such.

As before, T and V stand for prototypical examples of a target type and an operation,
complemented here by concrete examples such as TRAM and FLASH.

note

description: "Objects that can be used as targets in the Visitor pattern"
deferred class TARGET feature

accept (v:)
-- Make v perform one “visit” operation on the current object
--| Note: typical implementation is v.T_visit (Current)
--| where T is the specific effective descendant type.

deferred

end

end

Appearing as
TRAFFIC_TARGET;
see explanation below.

VISITOR

← “What character-
izes a metro line”,
page 53.

 TRAFFIC_VISITOR
in the figure, see next.

§16.15 FURTHER READING 613

This completes the presentation of the Visitor pattern; I hope that you
understand it thoroughly, not just the technique but its precise goals, scope,
principles, advantages and limitations, as well as how to apply it in practice.

Improving on Visitor

The Visitor design pattern is a popular and useful technique, but suffers from
the two limitations noted:

� To ensure visitability, all the target classes must descend from a common
ancestor. This is not realistic if they are owned by someone else who has not
prepared them accordingly.

� The pattern is not a reusable solution: it must be programmed anew for each
use, with code that is very similar-looking in all cases; in particular, all
implementations of accept in target classes follow the same scheme.

It is possible to improve on this basic scheme by using genericity. Beyond
this, however, a full satisfactory solution relies on the mechanism studied in the
next chapter: agents.

The agent-based solution is easy to use: for each applicable target type T, write
a visit routine that implements the requested operation for T. This does not require
modifying any existing class or adding any class. Then, to apply the operation
variants to many different targets, pass both the target and agent visit, an object
representing the operation, to a general mechanism that applies an agent to an
object without having to know anything specific about either. An exercise in the
agent chapter asks you to pursue this solution further. The “pattern library”
developed at ETH provides a reusable visitor solution implementing this approach.

16.15 FURTHER READING

Bertrand Meyer: Object-Oriented Software Construction (Second edition,
Prentice Hall, 1997).

Contains a detailed analysis of inheritance over several chapters.

Bertrand Meyer and Karine Arnout: Componentization: the Visitor Example, in
Computer (IEEE), vol. 39, no. 7, July 2006, pages 23-30. Also available at
se.ethz.ch/~meyer/publications/computer/visitor.pdf.

The Visitor pattern complements dynamic binding by making it easy to
add an operation to a set of existing types (rather than the reverse). This
article presents the pattern and proposes a reusable component that
provides it, part of the ETH “pattern library”. You will find many other
descriptions of the Visitor pattern in the literature (including in
Wikipedia); most of them derive their descriptions from E. Gamma et al.,
Design Patterns, Addison-Wesley, 1994.

→ “Generic visitor”,
16-E.8, page 618

→ “Visiting with
agents”, 17-E.7,
page 660.

http://se.ethz.ch/~meyer/publications/computer/visitor.pdf

INHERITANCE §16.16614

16.16 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Inheritance enables a class (heir) to obtain the features and invariant clauses
of another (parent); instances of the heir can be handled in the same way as
instances of the parent.

� Conformance generalizes to types the descendant relation between classes.

� Together with genericity, inheritance helps define a sophisticated type
system which turns the compiler into a proof tool enforcing advanced
consistency properties of software systems.

� Polymorphism, applicable only to references, enables an expression
declared of a certain “static” type to denote objects of various types (its
“dynamic” types) at run time. The type system guarantees that the dynamic
types are all descendants of the static type.

� A form of polymorphism, relying on genericity, allows the definition of
container structures which will at run time be populated by objects of
different types.

� Dynamic binding guarantees that in the presence of polymorphism any
feature call always uses the feature version best adapted to the dynamic type
of the target.

� Polymorphism and dynamic binding advance information hiding by letting
clients ignore the exact type of objects they handle and the corresponding
operation versions whenever that information is not necessary.

� Typing rules constrain polymorphism: the type of any object to which a
variable may become attached at run time (the variable’s “dynamic” type)
must conform to its declared (“static”) type. This ensures that in any
assignment or argument passing the type of the source conforms to the type
of the target.

� Deferred features have a specification, including a signature and a possible
contract, but no implementation. A class is deferred if it contains at least one
deferred feature, although it may have others that are effective
(non-deferred). Deferred features capture high-level abstractions and are
particularly useful for devising proper taxonomies. Deferred classes may
not be instantiated.

� A class may redefine an inherited feature to provide a different
implementation that overrides the (already effective) version defined in the
parent. This combines reuse with adaptation to a new context.

� Genericity and inheritance are complementary mechanisms for type
extension. Genericity provides type parameterization; inheritance provides
generalization and specialization.

§16.16 KEY CONCEPTS LEARNED IN THIS CHAPTER 615

� “Constrained” genericity makes it possible to apply specific operations to
variables of a formal generic type, by requiring that all the corresponding
generic parameters conform to a given type, the generic constraint.

� Multiple inheritance lets a class benefit from the combination of several
abstractions. It is a simple and effective technique; to avoid ambiguity, any
conflict in feature names (“name clash”) should be removed at the point
of inheritance.

� Repeated inheritance arises when, as a result of multiple inheritance, a class
is a descendant of another through more than one path. Repeatedly inherited
features are merged if inherited under a single name, and kept separate
otherwise. Any potential ambiguity under dynamic binding is resolved
through a “select” specification.

� For smooth software evolution, the software’s architecture should minimize
the amount of knowledge that each part of a system possesses about the rest.

� Dynamic binding provides an excellent solution to the software evolution
case of new types with their own variants of old operations.

� For the case of new operations on old types, the Visitor pattern is a widely
applicable solution; it relies on “visitor” objects acting as middlemen
between client classes and target classes. A more general, fully reusable
solution is also possible, based on the agent mechanism.

New vocabulary

Do not be scared by the length of the following list; it is due in part to terminology
variations between authors and between programming languages. The number of
actual concepts is smaller; for example “dynamic dispatch” means the same as
“dynamic binding”. Make sure, however, that you understand all the concepts
(exercise 16-E.1).

Ancestor Assignment attempt Cast

Client (of a visit) Conformance Constrained genericity

Deferred feature, class, type Descendant Double dispatch

Downcasting Dynamic binding Dynamic cast

Dynamic dispatch Effect, effective, effecting Flat view

Generic constraint Immediate feature Inheritance

Inherited feature Interface (Java, C#) Introduce (a feature)

“Is-a” relation Multiple inheritance Name clash

Object test Object-Test local Overriding

Parametric polymorphism Polymorphic expression Polymorphic data structure

Polymorphism Precursor Programs with Holes pattern

INHERITANCE §16-E616

16-E EXERCISES

16-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

16-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

16-E.3 Abstract syntax

This is a preparatory exercise for the next two (writing an interpreter and a
compiler). The aim is to build programs using abstract syntax to avoid having
to write a parser (a task that can be carried out simply, but using techniques that
have not been covered).

We consider a programming language L0 with the following constructs,
expressed here informally with concrete syntax:
� The only data type is integer.
� A variable (that is, an integer variable) has a name, which is an arbitrary

non-empty string.
� A constant is a negative, zero or positive integer.
� An expression is one of: a variable; a constant; an operator expression.
� An operator (all operators are binary) is one of: +, –, ∗.
� An operator expression is made of two expressions connected by an operator,

with the expected semantics (addition, subtraction, multiplication).
� An instruction is one of: skip, read, compound (a sequence of instructions),

assignment, conditional and loop).
� A skip instruction, in concrete syntax skip, has no effect.
� A read instruction, read x, names a variable x; its execution consists of

reading an integer input from an interactive user and assigning it to the
named variable, here x.

� An assignment is of the form x := e, where x is a variable and e an expression.
� An integer value can be used in a test (for conditional and loop) with the

convention that 0 means false and any other value means true.

Proper ancestor, descendant Redeclaration Redefinition

Refinement Repeated inheritance Replication (of a feature)

Routine table RTTI (Run-Time Type Identification)

Single dispatch Subclass Subcontracting

Superclass Taxonomy Target (of a visit)

Type narrowing Unconstrained genericity Virtual table Visitor

← Exercise “Concept
map”, 13-E.2, page 434.

← See also exercise
14-E.4, page 501.

§16-E EXERCISES 617

� A conditional is of the form if e then i1 else i2 end where e is an expression
(understood as boolean as just described); i1 and i2 are instructions.

� A loop is of the form from i1 until e loop i2 end

� A compound is a sequence of instructions; in concrete syntax they are
preceded by do and followed by end.

� A program is a compound.

1. Using this concrete syntax, write a program in L0 to read two integers from
a user and compute their greatest common divisor, apply Euclid’s algorithm and
not using multiplication. (You may write other L0 programs as examples for the
next questions.)

2. Design a set of classes — such as PROGRAM, COMPOUND and so on —
that make it possible to represent the abstract syntax of an L0 program. Use
inheritance as appropriate. Make sure to include the appropriate creation
procedures so that programs can be created (purely as object structures, with no
concrete syntax).

3. Write a program that produces an abstract syntax tree representing the
greatest common divisor program (and any other example you may have
prepared) from question 1.

16-E.4 Unparsing

(This is a continuation of the last exercise. Its task, producing concrete from
abstract syntax, is the reverse of parsing and is known as unparsing.)

Write a program that prints out a concrete representation, with the concrete
syntax described in the previous exercise, of an L0 program given as an instance
of class PROGRAM and associated objects (instances of COMPOUND etc.).
Every instruction should start on a single line; a compound nested in another,
the branches of a conditional, the initialization and body of a loop should
be indented.

Check the output of your program on the examples, such as greatest
common divisor, from the previous exercises.

16-E.5 An interpreter operating on abstract syntax

(This is a continuation of the last four exercises.) Write an interpreter, that is to
say, an Eiffel program that can execute any L0 program given as an instance of
class PROGRAM and associated objects (instances of COMPOUND etc.). The
semantics of L0 is that execution of an L0 program consists of:

� Executing its associated compound.

← See also exercise
14-E.4, page 501.

INHERITANCE §16-E618

� Printing out, each on a line, a sequence of pairs; the first element of each
pair is the name of a variable used in the program, and the second element
is the variable’s value at the end of execution. The order of pairs is not
important, but every variable used in the program must appear in exactly
one pair.

Try out your interpreter by executing it on the example L0 programs from the
previous exercises and checking the results.

16-E.6 A compiler operating on abstract syntax

(This is a continuation of the previous exercises.) Write a compiler that
translates any L0 program into an Eiffel system, in the form of a root class and
a set of auxiliary classes as needed.

Try out your compiler by executing it on the L0 programs from the previous
exercises, compiling the resulting Eiffel system, executing it, and checking the
results. Check in particular that the results are the same as with the interpreter
of the previous exercise.

16-E.7 How many taxis?

For this exercise you can use as inspiration the function pre_taxi_count.
Consider fleet: LIST [VEHICLE].

1. Write a function that computes the number of vehicles in the list that are
instances of TAXI.

2. Write a function that computes the number of vehicles in the list that are direct

instances of TAXI.

16-E.8 Generic visitor

Show how to improve the Visitor pattern by representing the target class as a
generic parameter of the VISITOR class. Make sure to spell out the solution at
the same level of detail as the discussion in this chapter. Do you still need a
multitude of VISITOR variants? Is the solution fully reusable? Discuss its
advantages and limitations as compared to the basic Visitor pattern.

← Page 603.

17

Operations as objects: agents and

lambda calculus

The object-oriented framework has already given us a set of powerful
mechanisms to write our programs. In this chapter we again extend our powers
of expression, adding mechanisms that let us abstract operations and pass them
around for later operations.

17.1 BEYOND THE DUALITY

The extension will require treating operations as if they were objects, which
appears at first to contradict the basic duality, so far taken for granted, between
these two notions:

� Programs manipulate objects.

� They do so by applying operations to these objects.

The textual structure of our O-O programs also relies on this distinction: we
divide programs into classes, each based on a type of objects, and each operation
is attached, in the form of a routine, to one of these classes.

The two notions seem clearly distinct: what the program can do
(operations); what it can do it to (objects).

And yet it is sometimes interesting to treat an operation as an object or, more
precisely, to define objects whose sole role is to describe an operation. We call
such objects agents. This chapter studies them in detail, but it is not hard to get
the basic idea. You can obtain a simple agent through the notation

This is an expression; its value is an agent representing the routine r. Because it
is an expression, you can assign it to a variable, as in

with a of the appropriate type.

agent r

a := agent r

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.1620

What can you do with an agent? Well, it is associated with a routine or other
feature, so one of its uses is to call that feature. With a denoting an agent after
the above assignment, the call

will have the same effect as if you directly called

for any applicable x and y. The feature call is applicable to all agents; it takes a
single tuple, here [x, y], as argument. A tuple is simply an object representing a
sequence of values (as I am sure you remember, but if not you should refresh
your memory before proceeding with this chapter).

Why use call on an agent, as in [1], when you could just call the routine
directly as in [2]? Indeed if you know which routine r you want to call there is
no point in going through an agent. But now assume you got a from another
program element, for example as an argument to the current routine. Then all
you know is that a denotes a routine (and, as we will see, what kind of arguments
that routine takes); but you do not know the routine itself — the original r.

This is indeed what agents give us: the ability to build and dispatch objects
representing operations ready to be executed, with a complete separation between:

� Agent definition: the place in the software that defines an agent around a
routine r, through agent r, and of course must know about r.

� Agent call: any place in the software that receives an agent a and can apply
features such as call to it, without knowing what routine it carries.

This mechanism has many different applications, of which we will now explore
some of the most important:

� Iteration: providing a general mechanism that applies an arbitrary operation
to every item of a data structure.

� Numerical programming, as when computing the integral of a function over
an interval; we may represent the function as an agent.

� Equipping an interactive application with an undo-redo mechanism.

Another area where agents play an important role is event-driven design, also
known as Publish-Subscribe, particularly useful for graphical user interfaces; it
is the subject of the next chapter.

We will compare agents with other techniques, based on previously studied
mechanisms such as dynamic binding, which would also be available to address
some of these applications; we will take a peek at the mathematical basis, the
fascinating theory of lambda calculus; and we will examine some techniques
available in languages other than Eiffel.

a.call ([x, y]) [1]

r (x, y) [2]

← “Tuples”, 13.5,
page 389.

§17.2 WHY OBJECTIFY OPERATIONS? 621

17.2 WHY OBJECTIFY OPERATIONS?

It is good first to understand why we need some kind of mechanism to treat
operations as objects, and what we would do if we did not have it. Here are
four examples: iteration, integration, observation, undoing.

Four applications of agents

First, iteration. We have become used, in our loops, to schemes that apply a
certain operation to every element of a sequential structure such as a list. They
look like this:

(where start brings the cursor to the first element, forth

moves it one position forward, after says whether it is past
all items, and item yields the item at cursor position).

In Traffic, we can apply this scheme to an instance of
ROUTE, denoting an itinerary with a number of stops. We
might want to print the names of all stops in order; to
compute the total travel time (by adding the times from each stop to the next
one); to produce a list of restaurants along the route (from a list of nearby
restaurants, available for each stop); and so on. In each case the solution will look
like [3]. We have a name for such schemes: iteration, already encountered in the
discussion of data structures. You can use such an iteration scheme, for any given
action, to produce a routine that applies action to every stop along a route.

Now assume that you do not want to write a new routine each time you need
this scheme. Can we go up one notch on the abstraction scale and simply write
something like [3] in a routine where action is not hardwired any more, but just
an argument? Then we could use that routine with different actions, and let it
take care of the looping.

Iteration mechanisms will indeed enable us to provide routines such as
do_all which you can call with an agent argument representing the action:

The second example is from numerical mathematics: integration. Given a
function f (x: REAL): REAL defined over an interval [x, y], algorithms exist (we
will see the basic one below) to compute a good approximation of the integral
of f over that interval:

from start until after loop
“Apply to item” [3]
forth

end

your_route.do_all ()

← The second line is
pseudocode (see
page 108.)

action

(Figure from page 167.)

1 start

item

after

forth

agent action

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.2622

The problem here is: is it possible to define a general integration mechanism —
say a feature integral from a reusable class INTEGRATOR — that we can apply
to any existing routine f representing the mathematical function? Agents will
allow us to provide such a mechanism, and call it as

with your_integrator of type INTEGRATOR.

The third example is a preview of the next chapter: event-driven design.
Assume some part of the system can trigger certain events and other parts need
to execute some operations whenever such an event occurs. An example event
is a clock tick, happening whenever a set time has elapsed; then a clock display
module must update an image, another module needs to update the total time
count, and so on. Each such “subscriber” module needs to register a certain
action to be executed whenever such an event occurs. We will devise an
architecture enabling subscribers to achieve this simply through

where clock_tick represents the event type and subscribe is a general-purpose
library feature. Such subscribers are said to “observe” the event type.

The last example corresponds to a functionality widely needed in interactive
systems: undoing an operation. Although not widely acknowledged — I have
never seen a statue of its inventor — the humble CTRL-Z or equivalent is one
of the milestones in the history of humankind, accounting for our need to be
saved from our own messing up. Even when we do not actually mess up, we like
to try out ideas, see what happens, and backpedal if the result is not to our liking.

The only really good undo-redo mechanism is one that lets you undo and
redo not just the last operation but many. You probably do not need much
convincing as a user of existing software, but now think of how you would write

a program with built-in undo-redo to any level.

The most radical technique involves representing all undoable-redoable
actions as objects which you can put into a data structure, say history, which can
be implemented as a list of agent pairs:

your_integrator.integral ((x, y)

clock_tick.subscribe ()

a

b

 (x) dxf

agent f

agent some_routine

§17.2 WHY OBJECTIFY OPERATIONS? 623

Each action comes from a routine. In this solution the system never executes
such a routine, say r, directly; instead, it calls

where execute performs call (the mechanism for calling the routine associated
with an agent, as previewed above) on its first argument, but also appends the
object pair of its two arguments into the history list. Each pair in the history list
contains two agents, one representing an action and the other — appearing as
reaction in the figure — representing the reverse action; this assumes that for
every routine r implementing a user command you also provide a routine
r_inverse that cancels the action (otherwise you could not offer an undo-redo
mechanism). Then if the user requests one or more “undo”, you perform

as many times as needed, but of course not going further back than the first item.
For a “redo” request after one or more “undo”, perform

not going further than the last item.

A world without agents

We cannot really understand agents in depth unless we ask ourselves how we
would address the above problems if we did not have a special mechanism.

Can we find a solution at all? Of course we can. If what you need is an object
wrapper around an action, it suffices to create that object yourself, devising the
appropriate class. That will be the hurdle: defining new classes. Let us see the
idea at work in the previous examples.

execute (,)

history.item.reaction.call ([])
history.back

history.forth

history.item.action.call ([])

A history listOldest
Most recent
command

remembered
command

UNDO
Cursor

action
reaction

REDO

Normal
execution

agent r agent r_inverse

Assuming no argu-
ments, hence the empty
argument tuple [].

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.2624

Integration is typical. To define the integration function integral, give it an
argument of type INTEGRATABLE_FUNCTION. That would be a deferred
class, looking like this:

You may devise a more sophisticated form of this class — for example by adding a
query defined (x: REAL) and using it in a precondition for item — but this simple
version suffices to understand the architectural issue.

For each particular function to be integrated you must write, as the figure
suggests, a little effective class such as COSINE_FUNCTION which provides
the desired implementation of item:

Then to obtain the integral of the cosine function over [x, y], you declare a
variable f: INTEGRATABLE_FUNCTION, make sure it is dynamically attached
to an object of type COSINE_FUNCTION, and call

note

description: "Functions that can be integrated over finite intervals"
deferred class INTEGRATABLE_FUNCTION feature

item (x: REAL): REAL

-- Function’s value for x.
deferred

end

end

-- In class COSINE_FUNCTION

item (x: REAL): REAL

-- Function’s value for x.
do

Result := cosine (x)
end

your_integrator.integral (f) [4]

COSINE_

Classes for

mathematical

functions

INTEGRATABLE_
FUNCTION

FUNCTION

∗

SINE_
FUNCTION

← cosine and any
other math routine
must be obtained, e.g.
through inheritance,
from some math
library class.

§17.2 WHY OBJECTIFY OPERATIONS? 625

The function integral (f: INTEGRATABLE_FUNCTION) is easy to write, using
any algorithm for approximating integrals; whenever it needs to evaluate the
value of the function at a certain point x, it uses f.item (x). Note the role of
dynamic binding: the run-time type of f, such as COSINE_FUNCTION,
determines which item feature this call will use. To make sure that you
understand this scheme and review your understanding of fundamental O-O
techniques it is a good idea to try to write integral yourself:

This example is typical of how to take advantage of standard O-O techniques
that you can use if you do not have agents. The ideas are easily transposed to all
our other examples:

� For iteration, the deferred class will be ITERATABLE_ACTION; effective
descendants provide specific versions of a procedure call describing one
execution of the iterated operation.

� For observation (event-driven programming), the deferred class is
OBSERVER; specific observer classes inherit from it and provide their own
versions of the update procedure which publishers will call when triggering
an event. What this describes is the exact principle of a well-known design

pattern, Observer, discussed in the next chapter.

� For Undo-Redo, every command of the interactive system must be
implemented by a command class providing two procedures: execute to
perform the command, and cancel to undo the effect of the last execute. An
instance of this class describes information resulting from one execution of
the command, and necessary to undo it later should this be requested; for
example, in a text editor, an instance of LINE_DELETION has two fields,
the content of the line being deleted and the position of that line in the text,
so that the cancel procedure can re-insert a line deleted by execute. All such
command classes inherit from a deferred class COMMAND where execute

and cancel are deferred. The history list can then be implemented as, for
example, a LINKED_LIST [COMMAND]. This is the scheme for another
classic design pattern, “Command”.

Programming time!
An integration library without agents

Write a class INTEGRATION with a feature integral that computes the
integral, over a finite interval, of a function passed as an argument of type
INTEGRATABLE_FUNCTION. Devising appropriate descendants of
INTEGRATABLE_FUNCTION, apply your work to the computation of
integrals of various sample functions.
For a simple integration algorithm, you may use the model of the agent-based
version given below.

→ There is one in
“Agents for numerical
programming”, 17.4,
page 634.

→ “Agents for numer-
ical programming”,
17.4, page 634.

→ “The observer pat-
tern”, 18.4, page 678.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.2626

We may call this technique the “Many Little Wrappers” design pattern
because it uses dynamic binding based on writing a class, typically small, to
wrap each variant of an operation.

The pattern works, but it has the obvious disadvantage suggested by its
name: bloating the software with numerous small classes. There is nothing
wrong in principle with small classes, but a class should embody a significant
abstraction, and having just one significant feature (such as item in the
integration case) makes it suspicious. This suspicion is reinforced by the
observation that in two of the examples (integration and iteration) the classes
have only one significant feature (item, call). In particular, they have no
attributes, and hence each needs only one instance (such as the instance of
COSINE_FUNCTION attached to f in [4]). A class with just one instance is
known as a singleton, but here the objects are not only single, they also have no
fields — strange objects indeed. Each of the classes is essentially there to
encapsulate a single routine. We may call them One-Song-Artist classes.

Having to write many such wrappers complicates the software, in particular
its inheritance structure, as we will see for the Observer pattern in the next
chapter. In the end, it is frustrating that we cannot directly use the cosine

function for integration, or a routine print_stop_name for route traversal. Why
do we need a class wrapper? In an extreme case, the same mathematical
operation could conceivably be amenable to integration and iteration and

observation; we would wrap it in three different ways!

Among our examples, the one case where wrapping does not come out as
too artificial or bothersome is undo-redo, because the COMMAND abstraction
seems warranted: it has two equally important routines, execute and cancel, so
it is at least a two-song artist; and descendant classes describe meaningful
objects, with many different instances (for example every execution of a
LINE_DELETION yields a new instance) characterized by meaningful fields
(such as the specific content and position of the deleted line).

In the other cases, it seems hard to justify the Many Little Wrappers
technique. We do need to wrap individual routines into objects, but we would
prefer not to do the wrapping ourselves. Better rely on a language mechanism.

Agents are that mechanism. If f is a routine, you can get it gift-wrapped for
free by just writing agent f ; this gives you an object that has everything about
f, including the ability to call f (through call), for any applicable arguments,
whenever you need to. In all the cases cited and many others, agents and related
techniques are superior to the Many Little Wrappers pattern. So I hope you did
not mind this little digression — about what to do without agents — since it
gives us a better appreciation for the benefits of a simple, built-in mechanism to
deal with actions through objects.

→ On related tech-
niques see “Other lan-
guage constructs”,
17.8, page 654.

§17.3 AGENTS FOR ITERATION 627

17.3 AGENTS FOR ITERATION

Now that we see where agents fit and why we need them, we can go beyond the
earlier overview and see the full details. The present section completes the
iterator example; the following one deals with integration. The next chapter has
a detailed agent-based solution to the problem of event observation.

Basic iterating schemes

A simple example from Traffic illustrates the use and definition of iterators
through agents. Consider the notion of ROUTE. We can add to ROUTE a routine
do_at_every_stop that takes an action as argument and applies it to every stop.
This will make it possible to use

This simply assumes that print_stop_name, append_restaurants and other_operation

are routines — specifically, procedures — all taking a STOP as argument.

How will do_at_every_stop make all these uses possible? It abstracts the
standard iteration scheme cited earlier in this chapter [3]:

To trigger the associated routine, this uses call, a procedure available on all
agents, whose effect is to call the agent’s routine, with the arguments given;
more precisely, given as a single tuple, in this case [item]. As you know, a
sequence of values in square brackets is a manifest tuple; since action is
intended to represent routines such as print_stop_name that take one argument,
the tuple used here, [item], has just one element.

The effect of the highlighted call action.call ([item]) [6] is exactly the same
as that of a direct call to the corresponding routine, such as

your_route.do_at_every_stop (agent print_stop_name) [5]

your_route.do_at_every_stop (agent append_restaurants)
…
your_route.do_at_every_stop (agent other_operation)

do_at_every_stop (:…)
-- Apply action to every stop in this route.

do

from start until after loop

[6]

forth

end

end

print_stop_name (item) [7]

← Page 621.

action → The type for action
appears below (see
page 629).

action.call ([item])

← “Tuples”, 13.5,
page 389.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.3628

if the argument passed to do_at_every_stop was agent print_stop_name, or

if the argument was agent append_restaurants, and so on. The difference with
[6] is that within do_at_every_stop we do not know what actual routine action

represents, so we cannot use a direct call such as [7] or [8]; we need an agent,
represented here by action.

This technique is the basic mechanism for providing iterators in the
EiffelBase library; we will study the actual library implementation below.

Iterating for predicate calculus

An interesting application of iteration is to give us a direct implementation of
the predicate calculus mechanisms: for all (∀), exists (∃). Assume that you want
to state that all items of an array of integers a, of bounds a.lower and a.upper,
are positive. In predicate calculus we learned to express this as

where i..j denotes the interval containing all values between i and j inclusive.
Without agents you can use all_positive (a) if you write a function
all_positive (ia: ARRAY [INTEGER]) which determines the result through a
loop. But thanks to agents you do not need to write such a routine; just use

which is very close to [9]. |..| is the operator alias of a function interval from
class INTEGER, which yields a result of type INTEGER_INTERVAL, a library
class, providing functions for_all and exists which take as argument an agent
representing the test being “for-alled” or “existed” across the interval.

These particular for_all and exists are for arrays, but we will soon see
similar functions applicable to lists and other sequential structures.

[10] still requires you to write a small function to test whether an integer is positive:
is_positive (n: INTEGER): BOOLEAN. This is more reasonable than requiring
something like all_positive for every such case. At the end of this chapter we will
learn how to get rid of even is_positive by writing the needed agent inline, without
having to introduce an explicit routine.

append_restaurants (item) [8]

∀ s: a.lower .. a.upper | a [i] > 0 [9]

(a.lower |..| a.upper).for_all (agent is_positive) [10]

Exploration time!

You may wish to take a quick look now at the functions for_all and exists in
INTEGER_INTERVAL. Do not get stuck with the type declarations (they are
explained next), but make sure you understand the algorithms. Also see exists1.

→ “Writing an itera-
tor”, page 631.

← “Predicate calcu-
lus”, 5.4, page 94.

→ “Inline agents”,
17.7, page 652.

§17.3 AGENTS FOR ITERATION 629

Agent types

In the declaration of do_at_every_stop we need to fill in the type of action,
representing an agent. The actual declaration will be:

PROCEDURE is a generic library class describing command (procedure)
agents. It takes two generic parameters, representing type properties of the
procedure p associated with the agent:
� The first denotes the class from which p comes, or an ancestor of that class.

Since ANY is ancestor to all classes you can usually use ANY, as we do here
with do_at_every_stop, since in an actual argument agent p corresponding
to action we do not care what class p comes from.

� The second parameter is always a tuple type. The tuple component types
correspond to the types of the arguments to p.

Here p will be a procedure, such as print_stop_name and append_restaurants,
taking one argument of type G (the generic parameter of LINEAR and
descendants, also serving as the type for item and representing the type of the
items in the data structure). As a consequence, the second generic parameter of
PROCEDURE must be TUPLE [G].

It is this choice of TUPLE [G] as the second parameter type that enables the
body of do_at_every_stop to call the associated routine p, whatever it is, with
valid arguments, through the following line from [6]:

Indeed, procedure call is declared in PROCEDURE (check the class text in the
library!) as taking an argument of type OPEN, the second generic parameter.

PROCEDURE describes agents associated with commands. It is part of a
hierarchy of four classes in the Kernel Library:

do_at_every_stop (action :
… The rest as before [6] …

action.call ([item]) [11]

← The type was left
unfilled, as “…”, in [6].

PROCEDURE [ANY, TUPLE [G]]

∗

PROCEDURE FUNCTION

PREDICATE

Agent classes

ROUTINE

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.3630

FUNCTION is for agents denoting queries, except that queries returning a result
of type BOOLEAN are covered by PREDICATE. FUNCTION has a third
generic parameter, representing the type of the function’s result. Class
ROUTINE, deferred class, covers all agent variants.

Here are the headers of the classes involved:

The second parameter, OPEN, is constrained by TUPLE, so you can only use a
tuple type — TUPLE [G] in the above example — as actual parameter. Given a
feature f, the expression agent f is of a type derived from one of the above,
depending on the nature of f : procedure, boolean query, other query.

For an agent representing procedures with two arguments of types T and U, use

and similarly for the other cases. For a routine with no arguments, the second
actual parameter will be just TUPLE, as in PROCEDURE [ANY, TUPLE].

Class ROUTINE declares:

allowing you to call the agent by passing an appropriate tuple as illustrated
above [11]. If there are no arguments — the actual parameter for OPEN was just
TUPLE — you will pass to call an empty tuple [].

In addition, FUNCTION and PREDICATE include the feature

and, for convenience, the function item combining call and last_result:

deferred class ROUTINE [BASE, OPEN –> TUPLE]

class PROCEDURE [BASE, OPEN –> TUPLE] inherit

ROUTINE [BASE, OPEN]

class FUNCTION [BASE, OPEN –> TUPLE, RES] inherit

ROUTINE [BASE, OPEN]

class PREDICATE [BASE, OPEN –> TUPLE] inherit

FUNCTION [BASE, OPEN, BOOLEAN]

PROCEDURE [C, TUPLE [T, U]] -- C is often just ANY

call (v: OPEN)
-- Call feature with all its operands, using v for the open operands.

last_result: RES

-- Function result returned by last call to call, if any

In the actual class
texts, the formal
generic matters have
longer names
BASE_TYPE,
OPEN_ARGS and
RESULT_TYPE to
avoid conflicts with
programmer-chosen
class names.

← “Constrained
genericity”, page 596.

§17.3 AGENTS FOR ITERATION 631

so that f.item ([x]), for a function agent f, yields the result of calling the
associated function on the argument x.

A home for fundamental iterators

Class LINEAR in EiffelBase, ancestor to all the list classes such as LIST,
LINKED_LIST and others, describes any structure that can be traversed linearly.
As such, it is the natural home for a set of iterator features:

� do_all applies a certain action in turn to all item of the structure, like our
do_at_every_stop example.

� do_if applies it to all elements that satisfy a certain condition; there are also
do_while and do_until.

� for_all tests whether a certain property (again represented by an agent) holds
of all elements of a structure, and exists tests whether it holds of at least one.

The arguments are:

� In the first two categories, action representing the action to be applied, of
type PROCEDURE [ANY, TUPLE [G]].

� In the last two categories, test representing a boolean-valued query, of type
PREDICATE [ANY, TUPLE [G]].

(do_if, do_while and do_until have both arguments.) As an example of use,
assume a certain class has an integer attribute sum and the procedure

Then given a list il: LIST [INTEGER] the call

will (after sum := 0) assign to sum the total of the values of il’s items.

Writing an iterator

Of course I do not expect you to be content with the knowledge of how to use

iterators such as do_all; we must learn how to write them. So we move to the
internal picture.

item (v: like open_operands): RES

-- Result of calling feature with all operands, using v for open operands.
-- (Will call call.)

ensure

set_by_call: Result = last_result

increase_sum (n: INTEGER)
-- Add n to sum.

do sum := sum + n ensure added: sum = old sum + n end

il.do_all (agent increase_sum)

→ In cases so far the
“open operands” are
the arguments. For
more, see “Open oper-
ands”, 17.5, page 636.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.3632

Here is the routine’s text, copy-pasted from the library:

We can first ignore the cursor-related instructions and focus on the signature,
comment and the highlighted part marked “Core loop”.

Procedure do_all takes a single argument, action, representing the agent to
be iterated. Its type PROCEDURE [ANY, TUPLE [G]] indicates that the agent’s
associated procedure can come from an arbitrary class (as expressed by ANY)
and (as expressed by TUPLE [G]) should take one argument of type G, the
formal generic parameter of the enclosing class.

The header comment tells us “Semantics not guaranteed if action changes
the structure”. The warning is important: havoc could result if action changes
the data structure itself, for example by deleting an element. (An exercise asks
you to try this for yourself if you have the nerve.) It is OK for action to change
the contents of objects in the structure; for example you can safely use do_all to
add one to every element of a list of integers, through

Anatomy Lesson

As part of our regular series of examining real code in depth, we now take a
look at the text of do_all in class LINEAR [G] from EiffelBase. You are
encouraged afterwards to explore its companions such as do_if and for_all.

 do_all (action: PROCEDURE [ANY, TUPLE [G]])
-- Apply action to every item.
-- Semantics not guaranteed if action changes the structure;
-- In such a case, apply iterator to clone of structure instead.

local
c: CURSOR

do
c := cursor

go_to (c)
end

do_all (agent increment)

Version 6.3.

Procedure

do_all in class

LINEAR

from -- Core loop
start

until
after

loop
action.call ([item])
forth

end

→ Exercise “An itera-
tor that shoots itself in
the foot”, 17-E.5,
page 660.

In this example both
increment and the call
to do_all are assumed
to be in a descendant
of LIST [INTEGER].

§17.3 AGENTS FOR ITERATION 633

with

since this does not modify the structure. If you do want to modify it, the last line
of do_all’s header comment indicates that it is safe to iterate on a clone
(duplicate) of the original structure; then action can modify the original without
affecting the clone. For a clone of a structure s, simply use s.cloned.

The requirement stated by this header comment is legitimate: the notion of iterating
on a data structure stops making sense is the structure itself changes as you are
iterating on it. Still, as you may have reflected, it is regrettable that to enforce it we
have to resort to exhortation through a header comment, rather than expressing it in
the contract for the routine, in the form of a precondition on action. Contracts are
currently not expressive enough to state such properties.

The “Core loop”, the heart of the algorithm, is the same scheme we already saw
in a special case [6]:

With this, you understand the essential properties of do_all and similar operators.

Since we are studying software exactly as it is in the library, it is useful to
go a bit further than usual into the implementation details, with a comment on
performance and a clarification of what the algorithm does with the cursor.

First, although you might not immediately guess it, a major compiler
optimization is essential to the success of the above scheme, specifically the
instruction marked [12]. A manifest tuple expression such as [item] represents
a tuple object. Once it has been passed to call, the object is no longer needed;
but a naïve implementation would create a new object every time. This is bad
for performance; not so much a space issue, as the garbage collector will
eventually reclaim the unneeded objects, but a time penalty, as object creation
is expensive. To avoid this penalty we should — like a regular coffee drinker
who, instead of using a paper cup each time, decides to get a good, sturdy cup
once and for all — create a single tuple object and reuse it throughout.

You can program this optimization explicitly: declare a tuple variable t,
create the tuple at the beginning, then on each iteration fill t with item and pass
it — rather than the manifest tuple [item] — as argument to call.

This is not something you need to worry about, however, as the compiler
does the optimization for you:

increment do item := item + 1 end

from start until after loop

action.call ([item]) [12]

forth

end

→ Do this as an exer-
cise: “Manual optimiza-
tion”, 17-E.6, page 660.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.4634

The last detail is the variable c. Its purpose is to ensure that
the iterator leaves the structure in the state where it found it.

A LINEAR structure has a cursor; the iteration in do_all

moves it using start and forth. But other parts of the
software may also work on the list and, having moved the
cursor to some position, may expect to find it later in that
same position. Iterators such as do_all must be good citizens: they can move the
cursor while they operate, but they must restore it when they are done

It suffices to use a variable c of type CURSOR; an instance of CURSOR is
an abstract description of a cursor position, independent of the representation.
The query cursor returns such an object, denoting the current position. At the
beginning, we record it into c; at the end, the command go_to (c) moves the
cursor back to the position represented by c.

An instance of CURSOR is an “external cursor”, representing a position in a
traversable structure but, unlike the “internal cursor”, kept as a separate object
rather than stored in the structure itself. Here we use an external cursor to remember
the initial position of the internal cursor and restore it later.

17.4 AGENTS FOR NUMERICAL PROGRAMMING

As iterators illustrate, agents allow us to describe
operations that manipulate other operations. Such
needs frequently arise in numerical programming;
integration is a typical example.

The standard numerical technique to integrate a

real function f over a finite interval a..b is — as
previewed in an earlier chapter — to approximate

the exact integral by the sum of the

areas of many small rectangles. If all these rectangles have width step, the one

starting at abscissa x has area step. ∗ f (x). An approximation of the integral over

the interval is the sum of these areas for all x such

that a ≤ x <. b; the number n of rectangles is approximately (b – a) / step.

Touch of Optimization:
Reusing a tuple

In schemes such as [12] for do_all, requiring many tuples each used a single
time, the EiffelStudio compiler generates code that creates a single tuple and
refills it repeatedly.

(Figure from page 167.)

1 start

item

after

forth

← Internal and exter-
nal cursors were briefly
discussed in the intro-
ductory part of “Lists”,
13.6, page 391.

(Figure from
page 281.)

a b

f

x x + step

f (x)

a

b
f (x) dx

Σ
i = 0

n – 1
f (a + i × step) × step

§17.4 AGENTS FOR NUMERICAL PROGRAMMING 635

What agents give us here is the possibility of writing an integration function
integral not just for a specific function f — say the cosine function — but for
any applicable function.

Here is an implementation of integral:

The declaration of f indicates that it must be a function that takes an argument
of type REAL and yields a result of type REAL. To evaluate f at point x we just
use f.item ([x]); we have seen that item, for a function agent, calls the function
through call and returns the result of the call. This feature expects a tuple as
argument, hence the square brackets around x.

On the numerical side, note the computation of x from scratch on every iteration of
the loop, rather than by successive additions which would cause the error
to accumulate.

Function integral most likely belongs in a class INTEGRATOR describing
objects in charge of performing integration operations on mathematical
functions. If you adopt such a design, and your_integrator is of the
corresponding type, then you will obtain the integral of a function f over an
interval a..b as the value of

Class INTEGRATOR is also where step should be declared as a REAL attribute,
with an associated setter procedure so that clients can control the precision of
the integration process. The class is more than a mere “wrapper” for integral; it
describes a meaningful abstraction, “integration control”.

integral (f : ; a, b : REAL): REAL

-- Approximation of integral of f over interval a..b.
local

x: REAL ; i: INTEGER

do

from x := a until x >= b loop

Result := Result +

i := i + 1; x := a + i ∗ step

end
end

your_integrator.integral (agent f, x, y)

FUNCTION [ANY, TUPLE [REAL], REAL]

f.item ([x])

← “Computing with
numbers”, page 279.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.5636

17.5 OPEN OPERANDS

Sometimes you will need a bit more flexibility in using agents, to set some
arguments once and for all in the agent’s definition and leave others to be filled
separately by each call. We talk of “closed” and “open” arguments.

Open arguments

As a simple example consider a variant of the last scheme where you still want
to compute a function’s integral, but the function has extra arguments:

Variables u and v retain constant values during the integration — only the x axis
is involved, as before — but they are still needed to evaluate g for every value
of x. You could rely on the previous solution by obtaining the integral as

after defining an auxiliary function

assuming that u and v are attributes. This works; but it is tedious to write such
auxiliary functions, especially if the pattern recurs. It will be even more
unpleasant if u and v are local variables or formal arguments.

A function such as g_extended is just a wrapper, whose only purpose is to
freeze some of the arguments of a function, turning it into a function of the
remaining arguments only. This is needed so often that a special notation is
appropriate. You can obtain the same effect as [13], without writing a wrapper
function, through the expression

The agent expression agent g (u, , v) denotes:
The one-argument function obtained from the three-argument
function g by freezing its first and third arguments, to the values u and
v respectively, and retaining only as a true argument the one at the
second position, marked “?”.

your_integrator.integral (agent , x, y) [13]

g_extended (x: REAL): REAL

-- Same as g but with first and second arguments set to u and v.
do

Result := g (u, x, v)
end

your_integrator.integral (agent g (u, , v) , x, y)

a

b

g (, x,) dxu v

g_extended

?

?

§17.5 OPEN OPERANDS 637

More generally, in an agent expression you may use an argument list,
corresponding to the signature of the underlying function, but in this list you
may replace any of the arguments by a question mark ?. These are known as
open arguments to the agent, and the others — the ones given by normal values,
like u and v above — as closed. The agent represents a function of the open
arguments only.

This means in particular that our first agent notation, agent f, is just an
abbreviation for

with all arguments open. Of course in this case it is just as simple to use the
shorter notation agent f.

The notion of open argument increases the versatility of agents, saving the
need for many auxiliary routines such as g_extended. As another example, let
us vary a bit the earlier iteration scheme involving a list il of integers, assuming
a routine

with sum now a REAL since that is the type the power operator ^ returns. Then,
after executing sum := 0.0, we can assign to sum the sum of the squares of all
the elements of il through

To summarize:

Terminology reminder: the “definition” of an agent is the expression that specifies
it, such as agent f (a, ?); a “call” to an agent is an instruction (involving a call to
call) or expression (involving a call to item for a FUNCTION agent) that calls its
associated routine at run time.

agent f

increase_sum_by_power (, n: INTEGER)
-- Add to sum the value of m to the power n.

do sum := sum + ensure added: sum = old sum + end

il.do_all (agent increase_sum_by_power (, 2)

Definition: Open and closed operand

An operand of an agent is closed if it is specified in the agent’s definition.
An operand is open if it will be provided only in calls to the agent. In the agent
definition, it is marked with a question mark “?”.

(?, ?, …)

← Page 631.

m

m ^ n m ^ n

?

← From page 620.

← Page 631.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.5638

Open targets

The last box sneakily introduced a new term, operand. So far we had been
looking at open arguments. Why another notion? The reason is that sometimes
what you need to keep open includes not just arguments but the target of a call.

Consider again the earlier example involving routes and their stops:

This is identical to [5] except that we no longer need the ad hoc procedure
do_at_every_stop; we directly use do_all, since Traffic’s ROUTE class is
actually a descendant of LINEAR [STOP]. The example assumes a procedure
print_stop_name of signature

so that agent print_stop_name, appearing in a class C, has the type
PROCEDURE [C, TUPLE [STOP]], matching the type for the formal argument
of do_all.

The procedure print_stop_name looks at instances of STOP from the
outside: it does not belong to this class but takes an argument of type STOP. This
argument is the one that remains open since [14] is really an abbreviation for

Whenever do_all issues a call to the agent — we saw where this occurs:
action.call ([item]) for every item representing a STOP in the route — has the
same effect as a direct call to the associated routine, of the form

where the highlighting emphasizes that the iterated action, corresponding to the
? in the agent, is passed as argument. The agent-based iteration scheme [14] is
equivalent to a loop that would explicitly iterate through your_route, initializing
the iteration through your_route.start, advancing it through your_route.forth

and executing the call [16] at every step.

Like any call in object-oriented programming, this call has a target, but here
the target is implicit: the current object. (We can always make it explicit by
writing the call as Current.print_stop_name (your_route.item).)

your_route.do_all (agent print_stop_name) [14]

print_stop_name (s: STOP)

your_route.do_all (agent print_stop_name) [15]

print_stop_name [16]

(?)

← “Core loop” of
do_all, page 632.

(your_route.item)

← “Definitions: Qual-
ified and unqualified
call”, page 134.

§17.5 OPEN OPERANDS 639

Assume now, however, that the operation we want to iterate is no longer such
an outside action but one given by a feature of class STOP itself. For example
class STOP may have a feature close to mark the current stop inoperative. If we
want to close an entire line, we should iterate close over all its stops; but close

takes no argument, since it is called just on its target, as in the typical call

so that the action to be iterated, replacing [16], is

In this case it is the routine’s target, not one of its arguments, that we want to
keep open in the argument to do_all, replacing agent print_stop_name (?) in
[15] (or the short form [14]).

At first we might think of writing that argument as something like ?.close.
But this would not work since it misses the type of the target; many classes may
have a feature called close. We must specify the target type; the valid form for
the example, illustrating the notation for open targets, is

Now you see the need for the term operand: it covers all the values needed to
execute a call — target and arguments.

For open arguments a plain “?” will generally do, since the types follow
from the routine’s signature — for example in [14] and [15] we know that
print_stop_name takes one argument of type STOP —, but the form {TYPE},
listing an explicit type, is also permitted. (It can be useful if you want to specify
a TYPE other than the argument’s declared type, although it must conform to it.)

All combinations of open and closed operands are valid (assuming f with
arguments and g without arguments in a class C):

� Everything closed: agent f (x, y, z), agent g.
� Target closed, all arguments (if any) open, as in agent g (no arguments) and

agent f (?, ?, ?). As we saw, the latter can also be written just agent f.

� Target closed, some arguments open, some closed: agent f (?, y, ?).

� Target open, some or all arguments closed: agent {C}.f (?, y, ?),
agent {C}.f (x, y, z).

� Everything open: agent {C}.f (abbreviation for agent {C}.f (?, ?, ?)),
agent {C}.g.
These mechanisms are what allows us to use a single set of iterators — do_all,
do_if, for_all and others — in LINEAR and all its descendants. Without them, we
would need two sets of iterators: one to iterate operations that work on their target,
and the other to iterate operations that work on their argument.

some_stop.close

your_route.item.close

your_route.do_all (agent .close) [17]{STOP}

agent g fits both of the
first two cases.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6640

17.6 LAMBDA CALCULUS

We have now seen the basics of agents (and quite a few details as well); I hope
you appreciate the power of expression of this mechanism and are already
thinking of all kinds of wondrous applications.

There is actually one more level of flexibility, but before we get there allow
me to take you through a tour of the underlying mathematical ideas. To
understand what agents really are about — in particular, to get a deeper
understanding of the concepts of “open” and “closed” operands as just studied
— you should know the basics of lambda calculus.

It is a beautiful theory, developed in the 1930s before there were any
computers; the discovery thirty years later that it provides a clear basis for many
of the concepts of programming languages led to a revival of interest, and
lambda calculus remains a fertile area of research.

Lambda calculus gives us a theory of the notion of function, reduced to its
essence: not any particular kind of function, such as the functions of
trigonometry or real analysis with their specific properties, but the very idea of
a function as a mechanism that takes arguments and yields a result. This is the
mathematical notion of function, but since it underlies the concept of routine in
computer science the theory will give us new insights directly relevant to
programmers: what is the scope of a variable, what is the role of an argument,
and how can we treat a routine as if it were an object — the very goal that this
chapter pursues by wrapping routines into agents.

Operations on functions

The basic idea is simple: a notation and transformation rules allowing us to play
with functions as we play with other mathematical objects.

Given two numbers a and b, you can write combinations like a + b or
sin (a) + cos (b); these use functions with well-defined signatures, for example

Can we play similar games with functions? Even in elementary mathematics we
do find operators on functions: if f and g are functions with appropriate
signatures, their composition, written g f or sometimes f ; g (the notation we
will use, because it retains the order of application), is the function h such that
h (x) = g (f (x)) for any applicable argument x. This makes ";" an operation on
functions, the way "+" is an operation on real numbers.

sin: REAL → REAL -- Meaning: For any argument of type REAL,
-- sin yields a result of type real

"+": [REAL × REAL] → REAL

-- × is cartesian product; brackets are for grouping

§17.6 LAMBDA CALCULUS 641

Lambda calculus will enable us to define many operators such as ";", whose
arguments are functions.

We can continue up the ladder of abstraction. Composition, ";", can itself be
viewed as a function: if f and g have — for some sets X, Y, Z — the signatures

their composition f ; g, called h above, has signature X → Z. Now ";", as defined
above, can itself be defined as a function that given any two arguments such as
f and g yields a result such as h. That function has signature

We can go on defining functions that operate on functions that themselves
operate on functions and so on. Lambda calculus gives us a vocabulary and rules
— a theory — for dealing with such functions at an arbitrary level.

Lambda expressions

First we need a simple notation for defining functions. We will assume that we
have at our disposal basic operations such as "+" on integers and reals; this is
only for the sake of examples, since lambda calculus can be defined without
reference to such existing mathematical theories. The symbol =

Δ will, as usual,
mean “is defined as”. To define a function “square” of signature

yielding the square of a number, we write a lambda expression as follows:

The right-hand side (after the =
Δ) is the lambda expression; it denotes the

function that, for any x of type REAL, yields x ∗ x.
The symbol λ, “lambda”, is just a matter of convention but gives the whole
approach its name. To introduce the value, the lambda calculus literature generally
uses a dot ., as in λ x: REAL x ∗ x; t this does not work in an object-oriented
context where “.” has another role, so we use a vertical bar instead.

This is reminiscent of how we define a routine in programming:

f : X → Y
g: Y → Z

";": [[X → Y] × [Y → Z]] → [X → Z] [18]

square : REAL → REAL

square =
Δ [19]

square (x: REAL): REAL [20]

-- Square of x.
do

Result := x ∗ x

end

λ x : REAL | x ∗ x

.
|

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6642

with a more compact form in line with mathematical practice. The variable
following the λ, here x, is known as a bound variable of the lambda expression
and is similar to the formal arguments of a routine.

The choice of bound variable does not affect the informal meaning of the
lambda expression. Just as we may choose the name y for the argument to the
routine [20], without affecting the routine’s meaning as long as we use y instead
of x throughout its text, so does [19] denotes the same function as

This observation will be formalized below through the notion of alpha-conversion.

A lambda expression may have more than one bound variable, as long as all
these variables have different names:

What do lambda expressions buy us? At first sight, [19] states the same property
as if we had just said that square is the function such that

but the difference is that [21] only talks about the function square, giving
properties of its values for possible arguments, whereas [19] defines square as
a mathematical object in its own right, in the same way that we can define the
number π by giving its value.

One of the immediate benefits is to allow clear definitions of higher-order
functions such as composition (signature given by [18]):

X, Y, Z are assumed to be known sets. Since they are arbitrary, we could introduce a
genericity mechanism for lambda expressions, as for classes, turning X, Y and Z
here into formal generic parameters. We do not need such a notation for this short
overview of lambda calculus.

In this example the source set in the signature, [X → Y] × [Y → Z], is a cartesian
product; correspondingly, the lambda expression has two bound variables f and g.

λ : REAL | ∗

λ x, y: INTEGER | x + y -- The addition function
λ x: NATURAL, z : REAL | zx -- Notation when the types are different

∀ x : REAL | square (x) = x ∗ x [21]

";" =
Δ λ f : X → Y, g : Y → Z | g (f (x))

y y y

Either an approximate
value, of the exact value
as a sequence limit or
other math formula.

§17.6 LAMBDA CALCULUS 643

You will have noted that every definition of a function by a lambda
expression so far has been preceded by a specification of the signature of the
function; in addition, every bound variable is declared with its type (as in f : X →
Y), like a formal argument in a routine. It is also possible to omit the types
entirely, with lambda expressions such as λ f, g | g (f (x)), yielding the variant
of the approach known as untyped lambda calculus. Here we will stick to
typed lambda calculus, for the same reasons we use typing in programming with
languages such as Eiffel: readability, and avoiding errors.

If the signature appears just before, we may omit the declarations of the bound
variables, as in

Currying

As an example of higher-order function that can be described through a lambda
expression, consider currying.

Currying — so named in honor of the American mathematician Haskell
Curry, one of the founders of the theory known as combinatory logic of which
lambda calculus is a part — allows us, without loss of generality, to work only
with functions of just one argument. First, a notational convention:

Touch of Methodology:
Declaring the signature

Whenever you define a function by a lambda expression, precede the
definition by a declaration of the function’s signature.

";": [[X → Y] × [Y → Z]] → [X → Z]
";" =

Δ λ | g (f (x)) -- No need to declare f and g.

Touch of Notation:
Brackets and parentheses

In ordinary mathematical notation, parentheses serve both for grouping and
for function application, as in f (a ∗ (b + c)) (innermost for grouping,
outermost for application). This would be very confusing in a discussion of
operators on functions.
In the present discussion of lambda calculus, parentheses are only for

function application; grouping uses square brackets. So
[f ; g] (a ∗ [b + c])

is the application of the function f ; g (the composition of f and g) to an
argument that is the product of a and b + c.

f, g

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6644

When we are given a function, it often has two arguments — like “;” as just seen
(on functions) and “+” (on reals) — or more. Consider such a function:

for given X, Y, Z. From f we can define a function f ' with signature

as

What does this mean? Unlike f, function f ' takes only one argument, of type X ;
also unlike f it does not directly yield a result of type Z. Instead, for any argument
x it yields a function, highlighted above. Let us call that function g. It itself takes
an argument y of type Y, then yields a result of type Z. This result g (y) is f (x, y):
the same as if we had directly applied f to two arguments.

We say that f ' is the curried version of f. Currying a two-argument function
means turning it into a one-argument function, related to the original by [22].
Another way of expressing this is to say that to curry the function is to specialize

it on its first argument. This leaves a function of one argument.
If add is the addition operation on integers (which we may write in lambda

notation as add =
Δ λ x, y: INTEGER | x + y), then curry (add) is the function

so that add’ (1), for example, is λ y : INTEGER | 1 + x: the “increment”
function, adding one to any given integer.

The correspondence between a two-argument function f and its curried
version (called f ' above) is one-to-one: informally, we do not lose any
information by specializing f on its first argument, since the effect of the second
argument remains embodied in the argument of the resulting function f '.

It is interesting — and an example of the expressive power of lambda
notation — to state this correspondence between f and f ' explicitly, by
introducing currying itself as a function, say curry, defined by a lambda
expression. For given X, Y, Z its signature is

and its value:

You should similarly define the inverse function, yielding f from f '.

f : [X × Y] → Z

f ' : X → [Y → Z]

f ' =
Δ λ x : X | [] [22]

add’ =
Δ λ x : INTEGER | [λ y : INTEGER | x + y]

curry: [[X × Y] → Z] → [X → [Y → Z]]

curry =
Δ λ f : [X × Y] → Z | [λ x : X | [λ y : Y | f (x, y)]]

λ y : Y | f (x, y)

→ Exercise: “Uncurry-
ing”, 17-E.9, page 661.

§17.6 LAMBDA CALCULUS 645

Generalized currying

Although our basic examples all curry a two-argument function on its first
argument, it is easy to generalize the concept: you can curry any function of n
arguments (n ≥ 1) on any choice of m arguments (1 ≤ m ≤ n) simply by setting
values for these arguments. This yields a function of the remaining n – m

arguments, representing a specialized version of the original function, also
known as a partial evaluation. If m = n, you get a constant function.

Currying in practice

As an example of what currying represents in
practice, consider the difference between
compilation and interpretation. If we have an
interpreter for a programming language, we may
view it abstractly as a function of signature

where Program is the set of all correct programs
in the language, Input the set of possible inputs
and Output the set of possible outputs. (This is a simplified but not incorrect
view of what programs are about.) Now a compiler produces, from the source
program, a machine code program; because we have a mechanism — the
hardware — to execute such programs without further effort on our part, we
may consider them to be members of the set

A compiler generates such a machine code program from a source program, so
it is abstractly a function of signature

When we have two possible execution mechanisms for the same programming
language it is important that they implement identical semantics.

This is essential for example in EiffelStudio, where you typically go back and forth
between the fully compiled, fully optimized finalized form of compilation and the
fast incremental recompilation or Melting Ice, which is mostly interpreted; certainly
you want your finalized code as delivered to your customer to produce — just faster
— exactly the same result as the Melting Ice version.

Stating that

interpreter : Program × Input → Output

Machine_program =
Δ Input → Output

compiler : Program → [Input → Output]

← Figure from the dis-
cussion of compilation,
page 330.

Source
program

Target
program

Input

Output

Compiler

Execution

Interpretation

Interpreter

Compilation

← “The melting ice
technology”, page 357.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6646

captures this consistency requirement concisely and elegantly.

The notion of currying is particularly relevant for an object-oriented
programmer. At the center of O-O style of programming appears a distinctive
style that makes every operation relative to an object, as in the standard call

(but also in an “unqualified” call f (args), which is the same operation applied
to the current object, and which you may indeed also write Current.f (args)).

Object-oriented programmers never really use the idiom “Apply this
operation to those objects out there”, which dominates non-O-O forms of
programming and would lead to calls of the form f (x, arg1, arg2, …) with all
operands treated on an equal footing. Instead it is always “Apply this operation
to this object x over here — oh, and by the way, you might need a couple
arguments, here’s args for you”.

In the end you can express with one style what you would with the other,
but the consequences of the object-oriented style on the structure of programs
are profound: two notions that it makes possible are the class, as a form of both
type and module, and inheritance.

All this boils down to the concepts of this section. Object-oriented
programming is curried programming.

The calculus

What we have seen so far of lambda calculus is lambda expressions: a notation,
providing useful insights, but not a calculus. Relying on that notation, the
calculus provides a fascinating theory of functions and the operations on them;
it is beyond the scope of this book but you should be familiar with its basic ideas.

Lambda calculus can model the general notion of computation through two
basic operations on lambda expressions: alpha-conversion and beta-reduction
(also written α- and β-).

To define these notions, we need to distinguish between two kinds of
occurrence of a variable in a lambda expression: bound and free.

As you remember, we say that x, y, … are the bound variables of a lambda
expression λ x: X, y : Y,… | e. Then an occurrence of a variable a in such an
expression is bound if either:

compiler = curry (interpreter)

x. f (args)

← “Definitions: Qual-
ified and unqualified
call”, page 134.

§17.6 LAMBDA CALCULUS 647

� a is one of the bound variables (x, y, …).

� The occurrence is (recursively) a bound occurrence of a in e.

This is an example of a recursive definition as discussed in an earlier chapter.

The notion immediately generalizes to a non-lambda expression exp: an
occurrence is bound in exp if it is bound in one of its lambda subexpressions.
For example in

the occurrences of a are bound, but not those of f, g and b. An occurrence that
is not bound, such as those of f, g and b in this example, is free. In

the occurrences of x and y are bound, but the occurrence of z is free. Informally,
this means that x and y are names local to the expression, but z must be defined
outside of it. This is exactly what we get in programming: in

x and y are formal arguments, meaning that they are just conventional names
used to define the function, and any other names would work if they do not
conflict with each other or with names from the enclosing class; but z must come
from the context. In practice it should be a feature (specifically a query: attribute
or function) of the class.

We say that x “occurs bound” in an expression e if it has at least one bound
occurrence in e, and that it “occurs free” if it has at least one free occurrence; in the
second case x is a “free variable” of e.

The other basic notion is substitution:

For example, if exp is

and e is sin (x), then exp [x := e] is λ z : INTEGER | + y + z ∗ .
As this example indicates, e may contain several occurrences of x.

[f ; g] (λ a : INTEGER | a + f (a, b))

λ x : INTEGER | [λ y : INTEGER | x + y + z]

 f (x, y: INTEGER): INTEGER do Result := x + y + z end

Definition: variable substitution

Let exp be an expression, x a variable and e another expression. Then
exp [x := e]

denotes the expression obtained from exp by replacing (substituting) every
free occurrence of x by e.

λ z : INTEGER | x + y + z ∗ x

← Chapter 14.

We already know what
it means for x to be a
“bound variable” of e.

The := symbol is the
same as for assignment
in programming, but of
course this is a mathe-
matical notation.

sin (x) sin (x)

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6648

We only substitute free occurrences: if exp is

(the same as before except that x is now bound), then exp [x := e] is identical to
exp since we do not substitute the bound occurrences of x. If exp is

we will substitute the first (highlighted) occurrence of x, which is free, but not
the bound variable x in the innermost lambda expression, where this would
make no sense because in that subexpression x is just an arbitrary name;
λ z : INTEGER | z + y, where x does not appear, denotes (informally) exactly the
same function. Alpha-conversion will make this clear.

We start with the other operation, beta-reduction, the central rule that
captures the essence of lambda notation. Beta-reduction enables us to get rid of
a bound variable (and hence, if it there is no other, of a λ) by transforming

into

if no free variable of e occurs bound in exp. This neatly expresses the notion
of applying a function to actual arguments: since λ x : X | exp intuitively stands
for the function that yields exp as a function of x, applying it to e should stand
for exp with every free occurrence of x replaced by e. For example, writing

e →β f for “beta-reduction transforms e into f ”:

In the last example, the bound variable x is not actually used in exp; we may
view the lambda expression as representing a constant function of x. So no
substitution occurs when we apply the expression to an arbitrary argument e; the
lambda abstraction just disappears.

λ , z : INTEGER | x + y + z ∗ x

λ y : INTEGER | f (, [λ x : INTEGER | x + y])

[λ x : X | exp] (e)

exp [x := e]

[λ x : X | x + y] ()→β
z + y

[λ x : X | x + y] ()→β
y + y

[λ x : X | x + y] ()→β
x + y

[λ x : X | z + y] (e) →β
z + y

x

x

→ A slightly less
restrictive condition
will do; see the exer-
cise “Beta-reduction
condition”, 17-E.10,
page 661.

z

y

x

§17.6 LAMBDA CALCULUS 649

As the second and third examples show, beta-reduction is possible even if e
uses variables that occur in exp, provided these occurrences are not bound. This
restriction does not rule out the third example, because exp is x + y, where x does
not occur bound: it only occurs bound in the full enclosing lambda expression
λ x : X | x + y. The restriction would only prevent beta-reduction of an
expression such as

where the reduction would yield λ y : Y | y + y, which incorrectly confuses y
with the bound variable — “incorrectly” according to the informal intent of the
lambda expressions involved.

Does this mean we can never — through beta-reduction — simplify an
expression [λ x : X | exp] (e) if we are unfortunate enough that one of the free
variables of e has been chosen as bound variable for some subexpression of exp?
This would of course be regrettable since bound variables are just arbitrary
names. If we replace [23] by

beta-reduction becomes possible, yielding λ z : Y | y + z ; but that was just a
change of bound variable, not affecting the informal understanding of the
underlying function. You do the same, in programming, when you choose a new
name for a variable or a formal argument, for example to remove a conflict with
the name of an attribute of the enclosing class.

Some programming languages allow such conflicts, with the convention that the
most local name takes precedence. Eiffel prohibits them to avoid the risk of
confusion, since finding a new name is easy and makes the program clearer.

To legitimize such harmless changes of bound variable, we need the second
rule: alpha-conversion. Given a variable y, alpha-conversion transforms a
lambda expression

in which y has neither free nor bound occurrences, into

[λ x : X | [λ y : Y | x + y]] () [23]

[λ x : X | [λ : Y | x +]] (y)

λ x : X,… | exp

λ y : X, … | exp [x := y]

y

z z

→ Again the condition
is, for simplicity, stron-
ger than needed; see
the exercise
“Alpha-conversion
condition”, 17-E.11,
page 661.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.6650

The condition on y prohibits us from replacing x by y in either of

since the resulting expression λ y : X | y + y would, in both cases, lose the
intended semantics of the original expression:

� [24] represents a function of one argument, which returns y added to
whatever value is passed to the function as argument. For this function, y is
a free variable: a value contributed by the context of the expression (for
example an enclosing expression). If the substitution were permitted, its
result would be λ y : X | y + y. This denotes a function of one argument,
locally usurping the name y to denote that argument; whatever value you
pass to that function, it returns the value added to itself. The two functions
are completely different!

� In [25] y is bound, but then alpha-conversion would merge it with the free
variable x.

The last observation indicates that the requirement on y as stated above is in fact
stronger than it needs to be: we do not need to ban alpha-conversion if y if it has any
bound occurrences in exp, only if any of these occurrences appears in a context
where x is also bound.

Alpha-conversion and beta-reduction provide the basis for a full-fledged theory

of computation, which describes any computation as a sequence of such
transformations of (possibly complex) lambda expressions. A fundamental
consistency property of that theory is the Church-Rosser Theorem, stating that
if from a given lambda expression e two separate sequences of transformations
yield different expressions e1 and e2, then there exist two other sequences that
transform e1 and e2, respectively into some common expression f (see the
illustration below). This means that if several transformations are possible on
any particular expression, it does not matter which one you choose to apply first,
as you will eventually get to the same “canonical” result f.

λ x : X | x + y [24]

λ y : X | x + y [25]

→ Exercise 17-E.11.

Church-Rosser

property

e

e1 e2

f

Sequences of
transformations
(α, β or a mix)

§17.6 LAMBDA CALCULUS 651

Lambda calculus and agents

I hope that as you were reading about lambda calculus you started to make the
connection with the concepts of the preceding sections.

The routine as we knew it until the present chapter was a program
structuring construct, but could not join the games of program execution, along
with references, basic objects (integers etc.) and more complex objects. Like
mathematical functions in the absence of a framework such as lambda calculus,
routines remained — according to a metaphor widely used in the programming
language literature — “second-class citizens”.

Like lambda calculus turns functions into first-class citizens of the
mathematical world, so do agents set routines loose, wrapped in objects, as fully
privileged values for program execution.

Even in the absence of an agent mechanism, routines are a form of lambda
expression, and routine call is a form of beta-reduction. But the reduction must
be planned statically, through calls such as f (x, y) with f specified explicitly.
Object-oriented programming introduces a first element of dynamism thanks to
dynamic binding, allowing f to have several variants and the selection between
them to take place anew for each call x. f (x, y) on the basis of the type of the
object attached to x. This dynamic element is what enables us to address some
of the examples of this chapter through the Many Little Wrappers pattern (with
the limitations cited); but the choice it offers is restricted to a set of variants
specified in advance. With agents, beta-reduction becomes a completely
dynamic operation, a.call ([x, y]), not requiring us to know anything — save for
the signature — about the routine that the agent a represents.

The concepts of lambda calculus help us understand the nature of “open”
and “closed” operands. They correspond in agents to bound and free variables
in lambda expressions.

� In e =
Δ λ x : INTEGER | x + y, the bound variable x represents an argument

to be provided at the time of beta-reduction; the free variable y comes from
the environment, typically an enclosing expression (it will remain
unevaluated in a beta-reduction of e).

� In agent f (?, y), the open argument will provided at the time of a call; the
closed argument y is provided at the time of definition.

You may also have noted that having closed arguments in an agent is essentially
to curry the routine on these arguments (taking currying in its general form
applied to any m of n arguments). Consider the various dynamic forms that we
can produce from a routine:

← “Generalized cur-
rying”, page 645.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.7652

� agent {C}.f is a dynamic version of the full f, faithful to the signature of
the original.

� At the other extreme, agent f (x, y) and agent t.f (x, y), with all operands
closed, are completely curried versions; you call them (if the value of a is
such an agent) as a.call ([]) with no arguments. This, by the way, reminds
us of one of the differences between mathematics and programming: we
noted earlier that a math function curried on all its arguments is a constant
function, but successive calls to a.call ([]) need not produce the same effect,
because even if a has not changed the surrounding objects may have.

� In-between, an agent with some operands closed and some open, such as
agent a.f (?, x, y), is similar to a function curried on the closed operands.

In one respect, agents as seen so far are less general than lambda expressions.
To use agent a.f (?, x, y), or any of the other variants, we must assume there is
a function f to build on. It is as if in lambda expressions λ x, … | exp we
restricted exp to be of the form f (args) where f is a function. We are now going
to see how to remove that restriction — and put the final touch on the agent
mechanism — by allowing for agents the equivalent of an arbitrary exp.

17.7 INLINE AGENTS

The study of lambda calculus suggests a generalization of the basic agent
mechanism, giving us flexibility beyond what we have already gained through
the introduction of open and closed arguments.

The agents that we have used so far each proceed from an existing routine.
But sometimes you want an agent and no routine. You just need to pass along
some computation or property as an agent, and it is cumbersome to extend the
enclosing class with a routine just for that purpose. The routine may not be an
interesting feature for the class, and will just make it seem more complex. Inline

agents let you define an agent without burdening any class.

The need often arises in writing contracts — of all kinds: preconditions,
postconditions, class invariants. For example the invariant of a class could
specify that all the elements of a certain array of integers a are positive. We
already know how to state this thanks to the class INTEGER_INTERVAL and the
operator function |..| which, for any two integers a and b, enables us to express
the interval a |..| b. We saw how to state the requisite condition, equivalent to
∀ s: a.lower .. a.upper | a [i] > 0 in predicate calculus:

(a.lower |..| a.upper). for_all (agent is_positive) [26]

← “Math is static,
software is dynamic”,
page 227.

← “Iterating for pred-
icate calculus”, page
628.

←Same as [10],
page 628.

§17.7 INLINE AGENTS 653

To make such a condition meaningful, you must have written a little function for
the occasion:

This is a bit of a nuisance. Not so much the writing of the code; you should never
worry about a few extra keystrokes if the result is relevant. But assume you only
need is_positive for expressing the above property [26], for example as a clause
in a class invariant. You are then encumbering the class with a feature that is not
an essential feature of the corresponding data abstraction. This is particularly
unpleasant if you have many such properties, as will be the case if you try to
write precise and extensive contracts. True, you need not export these features,
but they become part of the class anyway. It would be better to express the
relevant properties or computations just at the place where you need them, with
no visibility beyond that context.

Inline agents fit right here. An inline agent, as the name suggests, is a
routine-like declaration yielding an agent — nothing else, no routine of the class
— and declared where the agent is needed. The syntax is straightforward as
illustrated by the rewriting of the last example; we merge [27] into [26], yielding

From the second line on, the text is the same as in [27]; the only difference is
that there is no longer a routine name (such as is_positive).

This property characterizes an inline agent: it is an anonymous routine.

is_positive (n: INTEGER): BOOLEAN [27]

-- Is n greater than zero?
do

Result := (n > 0)
ensure

definition: Result = (n > 0)
end

(a.lower |..| a.upper). for_all
([28]

-- Is n greater than zero?
do

Result := (n > 0)
ensure

definition: Result = (n > 0)
end)

agent (n: INTEGER): BOOLEAN

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.8654

The syntax of an inline agent is indeed, as this example shows, that of a
routine declaration, with the routine name replaced by the keyword agent. You
may include all the components applicable to a routine, such as pre- and
postconditions, or a local clause to give the agent its own local variables. Their
names must be different from those of features of the class and local variables
of the enclosing routines; this is different from the convention for lambda
expressions (where inner bindings simply take precedence over outer ones), but
avoids any confusion. Names are not a scarce resource — or, put differently, you
should take care of your own alpha-conversions.

Even though there can be no name conflicts with local variables of the enclosing
routines, you may not use them directly in the agent. In the rare case you need them,
you will have to pass them as arguments to the agent.

Illustrated above for predicates, the inline agent mechanism is just as useful for
procedures and functions of any signature.

This mechanism completes our panoply of agent mechanisms, providing a
major boost to the expressiveness of our object-oriented programs. The next
chapter will take us through a major application of this mechanism, addressing
in an elegant way the “observation” problem sketched earlier.

17.8 OTHER LANGUAGE CONSTRUCTS

At the beginning of this chapter we saw that a number of situations call for the
possibility of passing around data — objects, in an O-O framework — that wrap
computations. The agent mechanism addresses that need effectively.

Not all programming languages, however, have such a construct. In fact, of
languages commonly used in industry, only Eiffel, Smalltalk and C# have
something like it (with significant differences in the details). So it is interesting
to review briefly what solutions are available depending on the kind of
languages you may have to use.

There are basically four approaches:

� A mechanism supporting lambda expressions, such as agents.

� Routines as arguments to other routines.

� Function pointers.

� In object-oriented programming, the Many Little Wrappers pattern.

← “Four applications
of agents”, page 621.

← “Why objectify
operations?”, 17.2,
page 621.

§17.8 OTHER LANGUAGE CONSTRUCTS 655

Agent-like mechanisms

Agents as we have studied them in this chapter is a form of the first approach.
C# offers delegates, which pursue the same aim. Other than (fairly important)
differences of spirit and notation, the main difference between C# delegates and
Eiffel agents is that the target of a delegate cannot be open; the expression
agent .close has no direct equivalent in C#. The C# appendix gives
details of the delegate mechanism.

Smalltalk has a notion of block, a segment of code that can be passed
around as an object. Note that Smalltalk is an untyped language, meaning that
there is no way to check at compile time that blocks will be used with the proper
arguments; a mismatch will result in a run-time error.

Functional languages typically support the ability to treat functions (their
routines) as data. This was already the case with the original Lisp, where an
expression of the form

defines f as a function of two arguments. Then you can use f as argument to
another function, for example in

where curry itself can be defined in Lisp. The language was indeed defined
explicitly on the basis of (untyped) lambda calculus, so it is not surprising that
much of what we have seen in this chapter can be done fairly naturally. This also
applies to more recent functional languages, such as Haskell and ML. Two
points are worth noting:

� Functional languages were not initially object-oriented. Some of them have
added O-O constructs such as class and inheritance, but not all the concepts
that we have taken for granted are applicable in a functional environment.

� While some functional languages are statically typed, others are not;
whether you get the benefits of static type checking depends on which
variant you use.

The term closure is often used about functional languages to denote expressions
representing routines that can be passed around as data even though they may
need to access global variables.

(defun f (x y) (“expression involving x and y”))

(curry f)

From [17], part of
“Open targets”, page
638. On C# delegates,
see “Delegates and
events”, page 791.

{STOP}

← “Functional pro-
gramming and func-
tional languages”,
page 324.

Lisp syntax.

Lisp syntax.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.8656

Routines as arguments

A number of programming languages allow you to pass a routine as argument
to another routine, with a syntax such as

You can then pass to integral, as actual argument, a routine with a matching
signature, as in integral (, 0, 1). The language must provide an
appropriate notation to call the corresponding routine, here through f, from
within the code of a routine such as integral.

Compared to agents or closures, this solution has limitations:

� “Routine” is a special argument type which does not generally fit well in the
type system of the language.

� Typically, information about a routine is not a well-defined value, as it is in
the case of an agent or a closure, and hence cannot be assigned to a variable
(for which, because of the previous point, it would be hard to declare a
type); it can only be used as argument to a routine.

� Because there is no proper typing for routine arguments, it is generally not
possible or at least not simple to move up in abstraction and define functions
such as composition or currying.

� All you can do on a routine argument is to call it. In contrast, agents are
full-fledged objects whose features provide information on the
associated routine.

� Some issues arise when routines access global variables; they affect the
compiler writer but also, to some extent, the programmer.

� The approach does not fit well with an object-oriented scheme, since it uses
data other than objects.

The approach, however, fills many of the basic needs and has been used
successfully in non-O-O languages, going as far back as Fortran and continuing
with Pascal and several of its successors.

Function pointers

Computers, as you know, use memory to store not only objects but programs.
At run time, a particular routine resides at a particular address, and it is possible
to transfer execution to the code at that address. If there is a way for the program
to denote that address, and a mechanism to say “execute routine at address a,
then return and continue”, you can treat routine addresses as data through which
to call the corresponding routines.

At the machine level this technique is what makes all the others possible:

integral (; x, y: REAL): REAL Not the exact syntax of
a specific language.

f: function (x: REAL): REAL

cosine

← “The stored-pro-
gram computer”,
page 10.

§17.8 OTHER LANGUAGE CONSTRUCTS 657

� When you use a routine as argument to another routine, what the compiler
will actually pass is the routine’s address.

� An agent object will internally contain — although not in a field that your
program can directly access — the address of the associated routine.

� Dynamic binding, necessary for the Many Little Wrappers pattern, assumes
the run-time ability to call a routine through its address, stored in some data
structure representing properties of a type. The routine table, studied as part
of the implementation of inheritance, is an example of such a structure.

All these techniques, however, are for the compiler to use when generating
code, not for the application programmer when writing programs; they hide the
physical routine address under one or more layers of abstraction, enabling
programmers to think in high-level terms: routines (or groups of redeclared
routines known through a common signature and contract), agents, objects.

C and C++ let you pass the name of a function (the only kind of routine,
procedures being treated as functions with a “void” result type) as actual
argument, or assign it to a variable. Then if x is the corresponding formal
argument or variable, you can call the original function through

When declaring a formal argument representing a function you can specify the
full signature, known as a prototype, so that an actual argument that does not
match the signature will be rejected at compile time. This technique then
becomes the same as the previous one (“routines as arguments”). Providing the
signature is, however, not compulsory; you can get away without it at the price
of a possible compile-time “warning” — a message that signals a possible
problem but does not prevent compilation. With this option, which assimilates
the function name to the corresponding machine-level address, you gain the
same flexibility as if you were programming in assembly language but lose the
benefits of type checking.

Many Little Wrappers and nested classes

If a programming language does not support any of the preceding techniques but
is object-oriented — with classes, inheritance, polymorphism and dynamic
binding — you can use the Many Little Wrappers pattern studied at the
beginning of this chapter.

The main disadvantage is the need to write many little classes, often with
just one routine.

(*f) (args)

← “A peek at the
implementation”,
16.8, page 575.

→ Appendices C and D.

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17.9658

Java, which has no agent-like mechanism and no way to pass routines as
arguments, mitigates this problem by allowing the programmer to declare a
class as local to another class; this is known as a nested class. You can then use
that class, as if it were a feature of the enclosing class, to describe objects that
will only need to be created by features of the latter. This technique avoids
polluting the global name space of the program (that is to say, the set of class
names directly available to other software components); but the basic problems
remain the same.

17.9 FURTHER READING

J. Roger Hindley and Jonathan P. Seldin: Introduction to Combinators and

λ-Calculus, London Mathematical Society Student Texts, Cambridge
University Press, 1986,

Classic reference on lambda calculus and the companion theory of
combinators (which directly serves as the basis for some functional
programming languages). A mathematical text, not written specifically for
computer scientists; remarkably clear, defines all needed concepts.

Chris Hankin: An Introduction to Lambda Calculi for Computer Scientists,
King’s College Publications, London, 2004.

This one is specifically intended for computer scientists.

17.10 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Many program schemes benefit from a mechanism for packaging a routine
into an object and storing it away for later call. The corresponding language
construct may be called “agent”; other common names include “delegate”
(in the C# language) and “closure”.

� An agent wrapping a routine can be treated as any other object, for example
assigned to variables and passed around the program structure through
feature calls. It can be called at any time through a feature applicable to all
agents; this triggers a call of the associated routine, but the context of the
agent’s call need not know, and usually does not know, what that routine is.

� Agents can have any number of “open operands”, corresponding to the
bound variables of a lambda expression. Open operands may include some
or all of the arguments, as well as the target. Closed arguments (the
non-open ones) are specified in the agent’s definition; open arguments must
be provided, in the form of a tuple, for each call to the agent.

→ On Java’s relation to
agents, see “Agents”,
page 766 and “Nested
and anonymous
classes”, page 767.

§17.10 KEY CONCEPTS LEARNED IN THIS CHAPTER 659

� Agents can be defined on the basis of an existing routine; it suffices to
specify the values of closed operands if any. To avoid defining a new routine
when none is available, it is also possible to declare an agent “inline” by
writing the instructions directly in the agent’s definition.

� In a programming language not supporting agents or a similar mechanism,
passing functions around as data requires the use of many wrapper classes,
or routines as arguments, or routine addresses. These solutions are less
convenient and, in the last case, less type-safe.

� The theory of lambda calculus provides a mathematical framework for
understanding agent.

� A lambda expression includes bound variables and a defining expression
(itself possibly a lambda expression), which may involve the bound
variables, as well as other variables said to occur free. It represents a
function; applying the function to arguments yields the defining expression
after substitution of each argument for the corresponding bound variable.
This process is known as beta-reduction.

� The bound variables of a lambda expression are arbitrary names. They can
be changed throughout the expression (including in its defining expression)
as long as this does not create any conflicts, in particular with free variables.
This process is known as alpha-conversion.

� To curry a function of n arguments is to specialize it on m of its arguments
(1 ≤ m < n), leaving a function of n – m arguments.

New vocabulary

Agent Alpha-conversion Beta-reduction

Church-Rosser property Closed operand Closure

First-class citizen Inline agent Lambda calculus

Lambda expression Many Little Wrappers pattern

Nested class One-Song-Artist class Open operand

Operand Partial evaluation Prototype (C, C++)

Substitution (of a variable in an expression)

OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §17-E660

17-E EXERCISES

17-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

17-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

17-E.3 An integration class without agents

See the corresponding “Programming Time!”.

17-E.4 Iterator objects

Devise an iterating mechanism that does not use agents but relies on a
LINEAR_ITERATOR class describing objects able to iterate a specific operation
on a linear structure such as a list.

17-E.5 An iterator that shoots itself in the foot

(This is a programming exercise of the masochistic kind, asking you to violate
a methodology prescription just to contemplate the resulting mess.) Working
with a descendant of LINEAR such as LINKED_LIST, use the procedure do_all

with an agent argument representing a routine that — disregarding the explicit
prescription in do_all’s header comment — changes the structure, in such a way
that do_all crashes execution or produces an otherwise inconsistent result. With
the help of the debugger if needed, analyze the exact circumstances leading to
this failure.

17-E.6 Manual optimization

Rewrite the do_all iterator of LINEAR so that it does not use a manifest tuple as
argument to call, but instead a tuple variable t that is refilled with a new value
before each call. Hint 1: to create the tuple object initially, just assign it a value.
Hint 2: Re-read about the properties of tuples, especially tags.

17-E.7 Visiting with agents

Consider an existing set of classes, for example a subset of the Traffic classes.
Assume that programmers can write visit operations that may have a variant for
each of these classes; they take the target object as argument. The aim of the
exercise is to define a feature apply that applies the appropriate visit operation
to any such object, passed as argument, without knowing the specific type. (The
feature apply can declare that argument as being of type ANY, or use C for some
other class C known to be a common ancestor of all applicable classes.)

← Exercise “Concept
map”, 16-E.2, page 616.

← Page 625.

← See [12], page 633,
and the discussion that
follows. On tuples:
13.5, page 389.

§17-E EXERCISES 661

You are not permitted to modify any of the target classes, or their ancestors.
The Visitor pattern is not applicable since you may not assume that the classes
are descendants of a VISITOR class.

Show that it is possible to use agents to achieve the desired goal. Hint:
follow the model of iterator classes as defined in this chapter.

You may find a solution — not a hint, the full design and implementation — in the
Visitor componentization article cited in an earlier discussion.

17-E.8 The Halting Problem with agents

Devise a more concise proof of undecidability of the Halting Problem, not using
any files, directories or string representation of program texts, but instead
working on program elements passed as agents.

17-E.9 Uncurrying

It was noted that currying is a one-to-one function. Write the signature and
definition of the function uncurry that, given a one-argument function f ' whose
result is a one-argument function, yields the associated two-argument function
f such that f ' = curry (f).

17-E.10 Beta-reduction condition

Show that the condition for beta-reduction of [λ x : X | exp] (e), “no free
variable of e occurs bound in exp”, is stronger than actually needed for the
reduction to preserve the informal semantics of function application, and devise
a less restrictive but still correct condition.

17-E.11 Alpha-conversion condition

Show that the condition for alpha-conversion of e =
Δ λ x : X | exp into

λ y : X | exp [x := y], “y occurs neither free nor bound in e”, is stronger than
actually needed for the reduction to preserve the informal semantics of change
of variable, and devise a less restrictive but still correct condition.

← “Reversing the
structure: visitors and
agents”, page 606.

← “Further reading”,
16.15, page 613.

← “An application:
proving the undecid-
ability of the halting
problem”, 8.9, page
223. See also “From
loops to recursion”,
14.6, page 471.

18

Event-driven design

Who’s in charge?

In the style of programming that we have used so far, the program defines
the order of operations. It follows its own scenario, defined by control
structures: sequence, conditional, loop. The external world has its say —
through user interaction, database access and other input, affecting the
conditions that control loops, conditionals and dynamic binding; but it is the
program that decides when to evaluate these conditions.

In this chapter we explore another scheme, where the program no longer
specifies the sequencing of operations directly but is organized instead as a set
of services ready to be triggered in response to events, such as might result from
a user clicking a button, a sensor detecting a temperature change, a message
arriving on a communication port. At any time, the next event determines which
service gets solicited. Once that service has carried out its function, the program
gets back to waiting for events.

Such an event-driven scheme requires proper initialization: before the real
action begins, there must be a setup phase to register services with event types.

This architectural style — in the end another control structure, to be added
to our previous catalog — is also known as publish-subscribe, a metaphor
emphasizing a possible division of roles between software elements:

� Some elements, the publishers, may trigger events during execution.

� Some elements, the subscribers, express their interest in certain types of
events, indicating what services they want provided in response.

These roles are not exclusive, as some subscribers may trigger events of their
own. Note that “event” is a software concept: even when events originate
outside of the software — mouse click, sensor measurement, message arrival —
they must be translated into software events for processing; and the software
may trigger its own events, unrelated to any external impulse.

Event-driven programming is applicable to many different areas of
programming. It has been particularly successful for Graphical User Interfaces
(GUI), which will be our primary example.

← Chapter 7, Control
structures.

EVENT-DRIVEN DESIGN §18.1664

18.1 EVENT-DRIVEN GUI PROGRAMMING

Good old input

Before we had GUIs, programs would take their input from
some sequential medium. For example a program would read
a sequence of lines, processing each of them along the way:

where read_line attempts to read the next line of input, leaving it in last_line,
and exhausted does not refer to the mood of the programmer but is set to true by
read_line if there are no more lines to be consumed.

With such a scheme the program is in control: it decides when it needs
some input. The rest of the world — here a file, or a user typing in lines at a
terminal — has to provide that input.

Modern interfaces

Welcome to the modern world. If you write a program with a GUI, you let users
choose, at each step, what they want to do, out of many possibilities —
including some unrelated to your program, since a user may go to another
window, for example to answer an email.

Consider the screen on the facing page. (It illustrates a stack overflow from
infinite recursion, triggered by running a program in EiffelStudio. The precise
example is irrelevant — any modern GUI program would do.) The user
interface includes “controls”: text fields, buttons, menus, grids and others.

We expect that the user will perform some input action, and we want to
process it appropriately in our program. The action might be to type characters
into the text field at the top left, to click a button, or to select a menu.

But which of these will happen first? Indeed, will any happen at all?

from

read_line

count := 0
until

exhausted
loop

count := count + 1

-- Store last_line at position count in Result:
Result [count] := last_line

read_line

end

By permission of Alcatel-
Lucent USA, credits p. 847.

← Stack overflow was
mentioned in “Vicious
circle?”, page 473.

A “control” is a GUI
element, such as a win-
dow or button. This is
Windows terminol-
ogy; in the Unix world
the term is “widgets”.

§18.1 EVENT-DRIVEN GUI PROGRAMMING 665

We do not know.
Of course we could use a big if … then … elseif … end, or a multi-branch

listing all possibilities:

but this suffers from all the problems we have seen with multiple-choice
algorithm structures (explaining why dynamic binding is such an
improvement): it is big and complex, and highly sensitive to any change in the
setup. We want a simpler and more stable architecture, which will not require
updating each time there is a new control.

Event-driven (publish-subscribe) design addresses such a situation through
a completely different scheme.

We may picture this scheme as one of those nuclear physics experiments (see
the figure on the next page) that hurl various particles at some innocent screen
pierced with a little hole, to find out what might show up on the other side.

inspect

user_action

when “Clicked the Stop button” then

“Terminate execution”
when “Entered text in the Class Name field” then

“Update the top-left subwindow to show the corresponding class”
when … Many other branches …
end

A program GUI

← “Beware of choices
bearing many cases”,
page 574.

EVENT-DRIVEN DESIGN §18.2666

The publish-subscribe style is useful in many different application areas; GUI
programming is just an example. You can find many others, in fields such as:

� Communication and networking, where a node on a network can broadcast
messages that any other node may pick up.

� Process control. This term covers software systems associated with
industrial processes, for example in factories. Such a system might have
sensors monitoring temperature, pressure, humidity; any new recording, or
just those exceeding specified thresholds, may trigger an event which some
elements of the software are prepared to handle.

18.2 TERMINOLOGY

In describing event-driven programming it is important to define the concepts
carefully, distinguishing in particular — as in other areas of programming —
between types and instances.

Events, publishers and subscribers

This definition highlights the distinctive properties of events:

Definitions: Event

An event is a run-time operation, executed by a software element to make
some information (including the information that it occurred) available for
potential use by certain software elements not specified by the operation.

EVENTS

ROUTINE

ROUTINE

ROUTINE

PUBLISHERS SUBSCRIBERS Triggering and

handling eventstrigger events handle events

§18.2 TERMINOLOGY 667

� An event releases some information. A mouse click should indicate the
cursor position; a temperature change, the old and new temperatures.

� Part of the information, always included, is that the event occurred: on 5
August 1492, Christopher Columbus set sail; five minutes ago (this is less
widely known) I clicked the left button of my mouse. Usually there is more:
when and where did Columbus sail? What were the cursor coordinates? But
in some cases all that matters is that the event occurred, as with a timeout

event indicating that a previously set deadline has passed.

� “Certain” software elements can use this information. This is sufficiently
vague to permit various setups: allowing any module of the system to find
out about events, or identifying specific modules as the only eligible ones.

� In all cases, however, what characterizes event-driven design is that the

event itself does not name the recipients. Otherwise an event would just
be like a routine call, such as x.f (a, b, c), which satisfies all the other
properties of the definition: it is an operation that makes information (the
arguments a, b, c) available to a software element (the feature f). But when
you call a routine you explicitly say whom you are calling. An event is
different: it just sends the information out there, for consumption by any
software element that has the ability to process it.

Remember that for our purposes an event is a software operation; phenomena
triggered outside of the software may be called external events. An example such
as “mouse click event” does not denote the user’s click action, an external event; it
is the result of a GUI library detecting the external event and turning it into a
software event, which other parts of the software can process. In addition to such
cases, a system may also have its own software-only events.

Some associated terminology, most of it already encountered informally:

The same software element may act as both a publisher and a subscriber; in
particular it is a common scheme for a subscriber to react to an event by
triggering another event.

In the literature you will encounter competitors to the above terms:
subscribers are also called observers, hence the “Observer pattern” studied
next; they are said to observe the publishers but also, without fear of mixing
sensory metaphors, to listen to them, gaining one more name: listener.
Publishers, the targets of all this visual or auditory attention, are entitled to their
own synonyms: subject and — in “observer” terminology — observed.

Definitions: Trigger, publish, publisher, subscriber

To trigger (or publish) an event is to execute it. A software element that may
trigger events is a publisher. A software element that may use the event’s
information is a subscriber.

Remember that an event
is defined as an opera-
tion to be executed.

→ “Listener” is used in
Java programming. See
“Nested and anonymous
classes”, page 767.

EVENT-DRIVEN DESIGN §18.2668

Arguments and event types

We need a name for the information that comes — according to the definition
— with any event:

The term “argument” highlights the similarity with routines. Pushing this
similarity further, we will assume that the arguments are grouped in an ordered
list, like the arguments in a call x.f (a, b, c). As with routines, the list can be
empty; this would be the case in the timeout example.

How do subscribers find out that an event occurred? One model is polling:
checking repeatedly (as when you subscribe to a newspaper and go see whether
the day’s edition has been delivered to your mailbox). Another is notification:
the triggering of an event causes all potential recipients to be notified.

Models for distributing information over the Internet are classified into “pull”
(waiting for users to access information) and “push” (sending it to them). The
distinction between polling and notification is similar.

The notification model is more flexible and we will assume it from now on. It can
only work if subscribers express their interest in advance, just as you subscribe
to a newspaper to receive it every day. But to what can you subscribe? It cannot
be to an event: the event is an operation occurring once: before it is triggered the
event does not exist, and afterwards it is too late to subscribe to it! This would
be like subscribing to today’s newspaper after you have spotted the headline on
your neighbor’s copy, or retroactively buying shares of a company after the
announcement of its latest dividend.

What subscribers need is an event type, describing possible events that
share general characteristics. For example all left-button mouse clicks are of the
same event type, but of a different type from key-press events. This notion of
event type plays a central role in event-driven design and will be the central
abstraction in our search for a good O-O architecture.

All events of a type have the same argument type list. For example, the
argument list for any left mouse click event includes the mouse coordinates, two
integers. Here too we may borrow a concept from routines, the signature, or list
of argument types — a procedure print (v: VALUE; f: FORMAT) has signature
[VALUE, FORMAT], a list of types — and extend it to event types:

For example:

Definitions: Argument

The information associated with an event (other than the information that the
event occurred) constitutes the event’s arguments.

Definitions: Event type, signature

Any event belongs to an event type.
All events of a given event type have the same signature.

← “Anatomy of a rou-
tine declaration”,
page 215. For a func-
tion, the signature also
includes the result’s
type.

§18.2 TERMINOLOGY 669

� The signature for “temperature change” may be [REAL, REAL] to represent
old and new temperatures.

� A “left click” event type may have signature [INTEGER, INTEGER].

It is also possible to have a single “mouse click” event with a third signature
component indicating which button was clicked. This is the case in the EiffelVision
library, which also adds arguments such as pressure applied, useful (especially in
game applications) for joysticks and exotic pointing devices.

� Although we might define an event type for each key on the keyboard, it is
more attractive to use a single “key press” event type of signature
[CHARACTER], where the argument is the key code.

� For an event type such as “timeout” describing events without arguments,
the signature is empty, just as with an argument-less routine.

Whenever a publisher triggers an event, it must provide a value for every
argument (if any): mouse coordinates, key code, temperatures. This is once
again as with routines, where every call must provide actual arguments.

The term “event type” may suggest another analogy, where event types correspond to
the types of O-O programming (classes, possibly with generic parameters), and
events to their instances (objects). But comparing event types to routines is more
appropriate; then an event of a given type corresponds to one specific call to a routine.

In this analysis, then, an event is not an object — and an event type is not a

class. Instead the general notion of event type is a class, called EVENT_TYPE

below; and one particular event type, for example “left-button mouse click” (the
idea of left clicks, not that one time last Monday when I distractedly clicked OK
in response to “Delete all?”), is an object. As always when you are hesitating
about introducing a class, the criterion is “is this a meaningful data abstraction,
with a set of well-understood operations applicable to all instances?”. Here:

� If we decided to build a class to represent a particular event type, its
instances would be events of that type; but they have no useful features.
More precisely, an event has its own data, the arguments, but we only need
queries to access these arguments; there are no commands.

� In contrast, if we treat an event type as an object, there are a number of
clearly useful commands and queries: trigger a particular event of this type
now, with given arguments; subscribe a given subscriber to this event type;
unsubscribe a subscriber; list the subscribers; find out how many events of
this type have been triggered so far; and so on. This is the kind of rich
feature set that characterizes a legitimate class.

← Class EVENT_
TYPE in the final
design: “Using agents:
the event library”,
18.5, page 686.

EVENT-DRIVEN DESIGN §18.2670

Not treating each event as an object is also good for performance, since it is
common for execution to trigger many events; every tiny move of the cursor is an
event, so we should avoid creating all the corresponding objects — even though this
does not get us out of the woods since the arguments of each event must still be
recorded, each represented by a tuple. A good GUI library will remove the
performance overhead by recognizing a sequence of contiguous moves in close
succession and allocating just one tuple instead of dozens or hundreds.

It is useful to have terms for subscribers’ actions with event types and events:

Although registration (and deregistration) may occur at any time, it is common
to have an initialization phase that puts subscriptions in place, followed by the
main execution step where publishers trigger events which subscribers handle.

Registering, for a subscriber, means specifying a certain action for
execution in response to any event of the specified type. There must be a way
for the action to obtain the values of the event’s arguments. The obvious way to
achieve such registration is to specify a routine, whose signature matches the
event type’s signature. Then an event of the given type will cause a call to the
routine, with the event’s arguments serving as actual arguments to the call.

We now have the full picture of how an event-driven design works:

In the GUI example:

E1 A publisher is some element of the software that tracks input devices and
triggers events under specified circumstances, for example mouse click or
key press. You usually do not need to write such software; rather, you rely

Definitions: Subscribe, register, handle, catch

A software element may become a subscriber to a certain event type by
subscribing (or registering) to it. By doing so it asks to be notified of future
events of that event type, so that it can obtain the associated arguments and
execute specified actions in response.
When a subscriber gets notified of an event to whose type it has subscribed, it
handles (or catches) the event by executing the registered action.

The event-driven scheme

E1 Some elements, publishers, make known to the rest of the system what
event types they may trigger.

E2 Some elements, subscribers, are interested in handling events of certain
event types. They register the corresponding actions.

E3 At any time, a publisher can trigger an event. This will cause execution
of actions registered by subscribers for the event’s type. These actions
can use the event’s arguments.

§18.2 TERMINOLOGY 671

on a GUI library — EiffelVision for Eiffel, Swing for Java, Windows
Forms for .NET… — that takes care of triggering the right events.

E2 A subscriber is any element that needs to handle such GUI events; it
registers the routines it wants to execute in response to these events. For
example you may register, for the mouse click event type on a button that
says “OK” in a file-saving dialog, a routine that saves the file.

E3 If, during execution, a user clicks the OK button, this will cause execution
of the routine — or routines — registered for the event type.

An important property of this scheme, illustrated by the separation between the
two sides of our earlier figure, is that subscribers and publishers do not need to
know about each other. More precisely, the definition of “event” requires that
subscribers do not know the subscribers; the other way around it is more a
matter of methodology, and we will see how various architectural solutions fare
against this criterion.

Keeping the distinction clear

You might think the distinction between events and event types obvious, but in
fact — this is a warning, to help you understand the literature if you start using
various event-driven programming mechanisms — many descriptions confuse
the two; this can make simple things sound tricky.

The following excerpt comes from the introductory presentation of event
handling in the online documentation of .NET, a Microsoft framework whose
concepts are reflected in the C# and Visual Basic .NET languages:

Events Overview

Events have the following properties:
1 The publisher determines when an is raised; the subscribers

determine what action is taken in response to the .
2 An can have multiple subscribers. A subscriber can handle multiple

 from multiple publishers.
3 that have no subscribers are never called.
4 are commonly used to signal user actions such as button clicks or

menu selections in graphical user interfaces.
5 When an has multiple subscribers, the event handlers are invoked

synchronously when an is raised. To invoke
asynchronously, see [another section].

6 can be used to synchronize threads.

7 In the .NET Framework class library, are based on the
EventHandler delegate and the EventArgs base class.

← “Triggering and
handling events”,
page 666.

From msdn2.microsoft.
com/en-us/library/awb
ftdfh(VS.80).aspx as of
April 2009. Numbers,
italics and colors added.

event
event

event
events
Events
Events

event
event events

Events

events

http://msdn2.microsoft.com/en-us/library/awbftdfh(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/awbftdfh(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/awbftdfh(VS.80).aspx

EVENT-DRIVEN DESIGN §18.2672

I have highlighted in those occurrences of “event” where I think the
authors really mean event, and in those for which they mean event type
(a term that does occur in the .NET documentation, but rarely). Where the word
is in italics, it covers both. This is all my interpretation, but I think that you will
agree. In particular:
� It is not possible (points 1, 5) to subscribe to an event; as we have seen, the

event does not exist until it has been raised, and when it has been raised that
is too late. (Nice idea, though: wouldn’t you like to subscribe retroactively
to the event “IBM’s shares rise by at least 5%”?) A subscriber subscribes to
an event type — to declare that it wishes to be notified of any event of that
type raised during execution.

� Point 7 talks about properties of classes describing event types, as indeed in
.NET every event type must be declared as a class. Such a class must inherit
from the “delegate” class EventHandler (.NET delegate classes provide an
agent-like mechanism) and use another class EventArgs describing the
notion of event arguments.

� Point 3 sounds mysterious until you realize that it means: “If an event type

has no subscriber, triggering an event of that type has no effect.” All it
describes is an internal optimization: by detecting that an event type has no
subscriber, the event mechanism can remove the overhead of raising the
corresponding events, which in .NET implies creating an object for each.
(The mystery is compounded by the use of “call” for what the rest of the
documentation refers to as “raising” an event.)

The possibility of confusion is particularly vivid in two places:
� “A subscriber can handle multiple events from multiple publishers” (point

2). This comment might seem to suggest some sophisticated concurrent
computation scheme, where a subscriber catches events from various places
at once, but in reality it is just a mundane observation: a given subscriber
may register for several event types, and several publishers may trigger
events of a given type.

� Point 5 states that when “an event” has multiple subscribers, each will
handle it synchronously (meaning right away, blocking further processing)
when “an event” is raised. Read literally, this would suggest that two
“events” are involved! That is not the idea: the sentence is simply trying to
say that when multiple subscribers have registered for a certain event type,
they handle the corresponding events synchronously. It uses a single word,
in the same breath, with two different meanings.

So when you read about event-driven schemes remember to ask yourself
whether people are talking about events or event types — and (since this is the
time for one of our periodic exhortations) please make sure that your own
technical documentation defines and uses precise terminology.

green
yellow

§18.2 TERMINOLOGY 673

Contexts

A subscriber that registers says: “for events of this type, execute that action”. In
practice it may be useful, especially for GUI applications, to provide one more
piece of information: “for events of this type occurring in that context, execute
that action”. For example:

� “If the user clicks the left button on the OK button, save the file”.

� “If the mouse enters this window, change the border color to red ”.

� “If this sensor reports a temperature above 25o C, ring the alarm”.

In the first case the “context” is an icon and the event type is “mouse click”; in
the second, they are a window and “mouse enter”; in the third, a temperature
sensor and a measurement report.

For GUI programming, a context is usually just a user interface element. As
the last example indicates, the notion is more general; a context can be any
boolean-valued condition. This covers the GUI example as a special case, taking
as boolean condition a property such as “the cursor is on this button” or “the
cursor has entered that window”. Here is a general definition:

We had a taste of the notion of context — in a programming style that was not
event-driven — when we encountered iterators such as do_if, which performs
an action on all the items of a structure that satisfy a certain condition: this is
similar to how a context enables a subscriber to state that it is interested in
events of a certain type but only if a certain condition holds at triggering time.

We could do without the notion of context by including the associated
condition in the registered action itself, which we could write, for example

but it is more convenient to distinguish the condition by specifying it, along with
the event type and the action, at the time of registration.

Definition: Context

In event-driven design, a context is a boolean expression specified by a
subscriber at registration time, but evaluated at triggering time, such that the
registered action will only be executed if the evaluation yields True.

if “The cursor is on the Exit icon” then

“Normal code for the action”
end

← “Writing an itera-
tor”, page 631.

EVENT-DRIVEN DESIGN §18.3674

18.3 PUBLISH-SUBSCRIBE REQUIREMENTS

With the concepts in place, we will now look for a general solution to the
problem of devising an event-driven architecture. We start with the constraints
that any good solution must satisfy.

Publishers and subscribers

In devising a software architecture supporting the publish-subscribe paradigm,
we should consider the following requirements.

� Publishers must not need to know who the subscribers are: they trigger
events, but, per the basic definition of events, do not know who may process
them. This is typically the case if the publisher is a GUI library: the routines
of the library know how to detect a user event such as a click, but should not
have to know about any particular application that reacts to these events, or
how it reacts. To an application, a button click may signal a request to start
the compilation, run the payroll, shut down the factory or launch the rocket.
To the GUI library, a click is just a click.

� Any event triggered by one publisher may be consumed by several

subscribers. A temperature change in a factory control system may have to
be reflected in many different places that “observe” the event type, for
example an alphanumeric temperature display, a graphical display, a
database that records all value changes, or a security system that triggers
certain actions if the value is beyond preset bounds.

� The subscribers should not need to know about the publishers. This is a
more advanced requirement, but often desirable too: subscribers know
about event types to which they subscribe, but do not have to know where
these event types come from. Remember that one of the aims of
event-driven design is to provide a flexible architecture where we can plug
in various publishers and various subscribers, possibly written by different
people at different times.

� You may wish to let subscribers register and deregister while the application

is running. The usual scheme is that registration occurs during initialization,
to set things up before “real” execution starts; but this is not an obligation,
and the extra flexibility may be useful.

� It should be possible to make events dependent or not on a context. We have
seen the usefulness of binding events to contexts, but the solution should
also provide the ability — without having to define an artificial context —
just to subscribe to an event regardless of where it happens.

§18.3 PUBLISH-SUBSCRIBE REQUIREMENTS 675

� It should be possible to connect publishers and subscribers with minimal

work. The actions to be subscribed often come from an existing application,
to which you want to add an event-driven scheme. To connect the two sides
you will have to add some program text, often called “glue code”; the less
of it the better.

The last requirement is critical to the quality of a system’s architecture,
especially when the goal is to build user interfaces: you should not have to
design the core of an application differently because of a particular interface.
This observation directly leads to our next notions, model and view.

The model and the view

For user interface design we need not only to separate subscribers from
publishers but also to distinguish two complementary aspects of an application:

“Application domain” as used in this definition is also a common phrase,
denoting the technical area in which or for which the software operates. For a
payroll processing program, the application domain is human resources of
companies; for a text preparation program it is text processing; for flight control
software, the application domain is air traffic control.

Although the application domain need not have anything to do with
software, the “model” is a part of the software: the part that deals with that
application domain. For payroll processing it is the part of the software that
processes information on employees and hours worked, computes salaries,
updates the database. For the flight system it is the part that determines airplane
itineraries, takeoff times, authorizations and so on. One could say that the model
is the part of the software that does the “real job” at hand, independently of
interaction with users of the software and the rest of the world.

“Business model” is more precise but we usually just say “model” because the word
“business” may be misinterpreted as restricting us to business-oriented application
domains (company management, finance etc.) at the expense of engineering
domains such as text processing and flight control.

A “view” is a presentation of the information, typically for input or output. A
GUI is a view: for example a flight system has a user interface allowing
controllers to follow plane trajectories and enter commands.

Definitions: model, view of a software system

The model (also called business model) is the part of a software system that
handles data representing information from the application domain.
A view is a presentation of part of that information, in the system’s interaction
with the outside: human users, material devices, other software.

← “Definitions: Data,
information”, page 8.

← See also the notion
of target class in
“Reversing the struc-
ture: visitors and
agents”, 16.14, page
606.

EVENT-DRIVEN DESIGN §18.3676

Usually a program covers just one — possibly broad — application domain,
but it may have more than one view, hence “the model” and “a view” in the
above definition. It is then good practice to assign the two aspects to two
different parts of a system’s architecture. In a naïve design for a small program
you might not pay much attention to this issue. But in a significant system you
should, if only because you may need to plan for several views, such as:
� A GUI view (occasionally, several).
� A Web view (“WUI ”), allowing use of the system through a Web browser.
� A purely textual (non-graphical) interface, for situations in which graphics

support is not available.
� A “batch” interface where the system takes its input from a prepared

scenario and produces its output in one chunk. This is particularly useful for
testing interactive systems. Interactive testing is hard, as it requires people
spending long sessions with the system to try many different combinations;
you may instead prepare a collection of scenarios (typically recorded from
sessions with human users) and run them without further interaction.

� Views provided by other programs, running locally and accessing the
functionality through an API.

� Web service views provided by programs running on other computers and
accessing the functionality through a Web-directed API. (Web services
require specific techniques, such as the SOAP protocol.)

Often one view is enough at the beginning; that is why it is a common design
mistake to build a system with the model and the view intricately connected.
Then when you need to introduce other views you may be forced to perform
extensive redesign. To avoid this you should practice model-view separation as
a general principle, right from the start of a design:

If we use an event-driven model this rule goes well with a clear separation of
publishers and subscribers. Both the subscribers and the publishers will interact
with the view, but in a decoupled way:
� Publishers trigger events which may immediately update the

view, typically in minor ways; for example the cursor may change
shape when it enters a certain window, and a button usually
changes its aspect when it has been pressed like the Class button
on the right (if you look carefully).

Touch of Methodology:

Model-View Separation Principle

In designing the architecture of a software system, keep the coupling between
model elements and view elements to a minimum.

Not pressed Pressed

§18.3 PUBLISH-SUBSCRIBE REQUIREMENTS 677

� Subscribers catch events (of event types to which they are subscribed), and
process them. The processing may update the view.

Note that the publisher-subscriber and model-view divisions are orthogonal:
both publishers and subscribers may need to interact with the model as well as
with the views, as we can see in the example of a text processing system:
� The need for a publisher to trigger an event may be due to

something that happens in a view — a user moves the mouse or
clicks a button — or in the model, as when the spell checker
detects a misspelled word and a view highlights it.

� The processing of an event by a subscriber will often cause
modifications both to the model and to the view. For example if
the user has selected a certain text and then presses the Delete key,
the effect must be both to remove the selected part from the
representation of the text kept internally by the system (model) and
to update the display so that it no longer shows that part (view).

Model-View-Controller

A particularly interesting scheme for GUI design is “Model-View-Controller”
or MVC. The role of the third element, Controller, is to direct the execution of
an interactive session; this may include creating and coordinating views.

Each of the three parts communicates with the other two:

The presence of a controller provides further separation between the model and
the views. (Remember that there may be more than one view, hence “VIEWi”
in the figure.) The controller handles user actions, which may lead to updates of
the view, the model, or both.

As before, a view provides a visual representation of the model or part of it.

Flagging spelling errors

Selecting text for deletion

MVC structure

MODEL VIEWi

…(Other
views)

CONTROLLER
updates,

GUI tools

User

sees
interactsthinks in

terms of with

represents

updates

coordinates

EVENT-DRIVEN DESIGN §18.4678

The system designer may assume that users understand the model: using a
text processing system, I should know about fonts, sections and paragraphs;
playing a video game, I should have a feel for rockets and spaceships. A good
system enables its users to think in terms of the model: even though what I see
on the screen is no more than a few pixels making up some circular shape, I
think of it as a flying vessel. The controller enables me to act on these views, for
example by rolling my mouse wheel to make the vessel fly faster; it will then
update both the model, by calling features of the corresponding objects to
change their attributes (speed, position), and the view, by reflecting the effect of
these changes in the visual representation.

The MVC paradigm has had a considerable influence on the spread of
graphical interactive applications over the past decades. We will see at the end
of this chapter that by taking the notion of event-driven design to its full
consequences we can get the benefits of MVC but with a simpler architecture,
bypassing some of the relations that populate the figure on the previous page.

That figure provides an opportunity for a side comment serving as general advice.
Too often in presentations of software concepts you will find impressive diagrams
with boxes connected by arrows but little specification of what they mean (their
semantics). The last figure uses labels such as “represents” and “updates” to make
the semantics clear. (Unlabeled arrows reflect standard conventions for client and
inheritance links.) A picture is not worth any number of words if it is just splashes
of color. Do not succumb to the lure of senseless graphics; assign precise semantics
to each symbol you use, and state it explicitly.

18.4 THE OBSERVER PATTERN

Before we review what will be the definitive scheme for event-driven design (at
least for the kind of examples discussed in this chapter), let us explore a
well-known design pattern, “Observer”, which also addresses the problem.

About design patterns

A design pattern is a standardized architecture addressing a certain class of
problems. Such an architecture is defined by typical classes that must be part of
the solution, their role, their relations — who inherits from whom, who is a
client of whom — and instructions for customizing them as the problem varies.
Design patterns emerged in the mid-nineties as a way to record and catalog
design solutions, also known as “best practices”, that good programmers had
devised over the years, often reinventing them independently.

A couple dozen of these patterns, Observer among them, are widely
documented and taught; hundreds more have been described or proposed.

§18.4 THE OBSERVER PATTERN 679

Observer basics

As a general solution for event-driven design, Observer is actually not very
good; we will analyze its limitations. But you should know about it anyway for
several reasons: it is a kind of classic; it elegantly takes advantage of O-O
techniques such as polymorphism and dynamic binding; it may be the best you
can do in a language that does not support such notions as agents, genericity and
tuples; and it provides a good basis for moving on to the more reasonable
solution studied next.

The following figure illustrates a typical Observer architecture.
PUBLISHER and SUBSCRIBER are two general-purpose classes, not
specifically dependent on your application; PUBi and SUBj stand for typical
publisher and subscriber classes in your application.

Although both PUBLISHER and SUBSCRIBER are intended to serve as
ancestors to classes doing the actual job of publishing and handling events, only
SUBSCRIBER need be deferred; its deferred procedure handle will define, as
effected in each concrete subscriber class SUBj, how subscribers handle events.
PUBLISHER needs no such deferred feature.

As noted, we may say that the subscribers “observe” the publishers, standing on
alert for any messages from them (hence the name of the pattern), and that the
publishers are the “subjects” of this observation. You will similarly encounter, in the
pattern literature, other names for the key features: “attach” for subscribe, “detach”
for unsubscribe, “notify” for publish, “update” for handle.

The publisher side

Class PUBLISHER describes the properties of a typical publisher in charge of
an event type — meaning it can trigger events of that type, through the procedure
publish. The main data structure is a list of subscribers to the event type.

Observer

Pattern

architecture

subscribe

Deferred (abstract) class

Effective (concrete) class
Inherits
from

PUBLISHER

PUBi

unsubscribe

Client of

f + Effective feature

f * Deferred feature

SUBSCRIBER

SUBj

handle*

handle+

∗

……

∗

We could still make
PUBLISHER deferred
to prohibit direct
instantiation. For a
refresher on these con-
cepts see “Deferred
classes and features”,
16.5, page 565.

EVENT-DRIVEN DESIGN §18.4680

Procedure publish will notify all subscribers that an event (of the event type for
which the publisher is responsible) has occurred. We will find it easier to write
it after devising the class representing a typical subscriber.

The implementation allows calling subscribe twice for the same subscriber;
then (see publish below) the subscriber will execute the subscribed action twice

note

what: ["Objects that can publish events, all of the same type,
 monitored by subscribers"]

class
PUBLISHER

feature {SUBSCRIBER} -- Status report
subscribed (s : SUBSCRIBER): BOOLEAN

-- Is s subscribed to this publisher?
do

Result := subscribers.has (s)
ensure

present: has (s)
end

feature {SUBSCRIBER} -- Element change
subscribe (s : SUBSCRIBER)

-- Make s a subscriber of this publisher.
do

subscribers.extend (s)
ensure

present: subscribed (s)
end

unsubscribe (s : SUBSCRIBER)
-- Make s a subscriber or this publisher.

do

subscribers.remove_all_occurrences (s)
ensure

absent: not subscribed (s)
end

publish (args : LIST [ANY]) -- Argument Scheme 1
-- Publish event to subscribers.

do

… See below …
end

feature {NONE} -- Implementation

-- Subscribers subscribed to this publisher’s event.
end

See next about publish,
the type of its argu-
ment, and its “Argu-
ment Scheme”.

subscribers: LINKED_LIST [SUBSCRIBER]

§18.4 THE OBSERVER PATTERN 681

for each event — most likely not the desired effect. To avoid this we could wrap
the body of subscribe in if not subscribed (s) then … end, but then a linked list
is no longer efficient since has requires a traversal. While not critical to the
present discussion, this matter must be addressed for any actual use of the
pattern; it is the subject of an exercise at the end of this chapter.

Apart from subscribers, meant for internal purposes only and hence secret
(exported to NONE), the features are relevant to subscriber objects but not to
any others; they are hence exported to SUBSCRIBER. (As you remember, this
means they are also exported to the descendants of this class, which need the
ability to subscribe and unsubscribe.) As a general rule, it is a good idea to
export features selectively when they are only intended for specific classes and
their descendants. Better err on the side of restrictiveness to avoid mistakes
caused by classes calling features that are none of their business; it is easy to
ease the restrictions later if you find that new classes need the features.

The subscriber side

note

what: "Objects that can register to handle events of a given type"
 class

SUBSCRIBER

feature -- Element change
subscribe (p: PUBLISHER)

-- Subscribe to p.
do

ensure

present: p.subscribed (Current)
end

unsubscribe (p: PUBLISHER)
-- Ensure that this subscriber is not subscribed to p.

do

p.unsubscribe (Current)
ensure

absent: not p.subscribed (Current)
end

feature {NONE} -- Basic operations

end

→ “Efficient
Observer”, 18-E.3,
page 697.

← “Overall inherit-
ance structure”,
16.10, page 586.

deferred

p.subscribe (Current)

See below about the
“Argument Scheme”
and the type of args.

handle (args: LIST [ANY]) -- Argument Scheme 1
-- React to publication of one event of subscribed type

deferred

end

EVENT-DRIVEN DESIGN §18.4682

This class is deferred: any application class can, if its instances may need to act
as subscribers, inherit from SUBSCRIBER. We will call such descendants
“subscriber classes” and their instances “subscribers”.

To subscribe to an event type, through the corresponding publisher p, a
subscriber executes subscribe (p). Note how this procedure (and, similarly,
unsubscribe) uses the corresponding feature from PUBLISHER to subscribe the
current object. That was one of the reasons for exporting the PUBLISHER

features selectively: it would be useless for a subscriber class or one of its clients
to use subscribe from PUBLISHER directly, since subscribing only makes sense
if you provide the corresponding handle mechanism; the feature of general
interest is the one from SUBSCRIBER. (This also justifies using the same names
for the features in the two classes, which keeps the terminology simple and
causes no confusion since only the SUBSCRIBER features are widely exported.)

Procedure unsubscribe removes an observer from the attention of the corresponding
publisher. To avoid memory leaks, do not forget to call it when a subscriber no
longer needs its subscription. This recommendation also applies to other
architectural techniques and is further discussed below.

Each subscriber class will provide its own version of handle, describing how it
handles an event. The basic idea of handle is simple: just call the desired
operation, passing it the event arguments if any.

There is, however, an unpleasant part: ensuring that the operation is getting
arguments under the right types. The reason is that we tried to make PUBLISHER

and SUBSCRIBER general, and so had to declare for args, representing the event
arguments in both publish and handle, a completely general type: LIST [ANY]. But
then handle has to force (“cast ”) the right type and number of arguments.

Assume for example that the event type declares two arguments of
respective types T and U ; we want to process each event by calling a routine
op (x: T ; y : U). We have to write handle as follows:

handle (args: LIST [ANY])

-- React to publication of event by performing op on the arguments.
do

if args.count >= 2 and then

then

op (x, y)
else

-- Do nothing, or report error
end

end

→ “Subscriber disci-
pline”, 18.6, page 690.

← Casting was dis-
cussed in “Uncovering
the actual type”,
16.13, page 599.

-- Argument Scheme 1

(attached {T } args.item (1) as x) and
 (attached {U } args.item (2) as y)

§18.4 THE OBSERVER PATTERN 683

The Object Tests make sure that the first and second elements of the args list are
of the expected types, and bind them to x and y within the then clause.

The only way to avoid this awkward run-time testing of argument types
would be to specialize PUBLISHER and SUBSCRIBER by declaring the exact
arguments to publish and subscribe, for example

and similarly for handle in SUBSCRIBER. This loses the generality of the
scheme since you cannot use the same PUBLISHER and SUBSCRIBER classes
for event types of different signatures. Although it is partly a matter of taste, I
would actually recommend this “Argument Scheme 2” if you need to use the
Observer pattern, because it will detect type errors — a publisher passing the
wrong types of arguments to an event — at compile time, where they belong.

With handle as written on the previous page, you will only find such errors at run
time, through the tests on the size and element types of args; that is too late to do
anything serious about the issue, as reflected by the rather lame “Do nothing, or
report error” above: doing nothing means ignoring an event (is that what we want,
even if the event is somehow deficient since it does not provide the right
arguments?); and if we report an error, report it to whom? The message should be
for the developers — us! — but will be displayed to the end users.

It was noted in the discussion of object test that this mechanism should generally
be reserved for objects coming from the outside, rather than those under the
program’s direct control, for which the designer is in charge of guaranteeing the
right types statically. Here the publishing and handling of arguments belong to
the same program; using object test just does not sound right.

It is actually possible to obtain a type-safe solution by making classes PUBLISHER

and SUBSCRIBER generic; the generic parameter is a tuple type representing the
signature of the event type (that is to say, the sequence of its argument types). That
solution will appear in the final publish-subscribe architecture below (“Event
Library”). We will not develop it further for the Observer pattern because it relies on
mechanisms — tuple types, constrained genericity — that are not all available in
other languages: if you are programming in Eiffel, which has them, you should use
that final architecture (relying on agents), which is better than an Observer pattern
anyway and is available through a prebuilt library. It is a good exercise, however, to
see how to improve Observer through these ideas; try it now on the basis of the hints
just given, or wait until you have seen the solution below.

publish (x: T ; y : U)

← “Uncovering the
actual type”, 16.13,
page 599.

-- Argument Scheme 2

→ “Type-safe
Observer”, 18-E.4,
page 698.

EVENT-DRIVEN DESIGN §18.4684

Publishing an event

The only missing part of the Observer pattern’s implementation is the body of
the publish procedure in PUBLISHER, although I hope you have already
composed it in your mind. This is where the pattern gets really elegant:

With “Argument Scheme 1”, args is of type LIST [ANY]; with “Argument
Scheme 2”, the declaration will specify the exact expected types.

The highlighted instruction takes advantage of polymorphism and dynamic
binding: subscribers is a polymorphic container; each item in the list may be of
a different SUBSCRIBER type, characterized by a specific version of handle;
dynamic binding ensures that the right version is called in each case. A festival
of the best practices in object-oriented architecture!

Assessing the Observer pattern

The Observer pattern is widely known and used; it is an interesting application
of object-oriented techniques. As a general solution to the publish-subscribe
problem it suffers from a number of limitations:
� The argument business, as discussed, is unpleasant, causing a dilemma

between two equally unattractive schemes: awkward, type-unsafe run-time
testing of arguments, and specific, quasi-identical PUBLISHER and
SUBSCRIBER classes for every event type signature.

� Subscribers directly subscribe to publishers. This causes undesirable
coupling between the two sides: subscribers should not have to know which
part of an application or library triggers certain events. What we miss here
is an intermediary — a kind of broker — between the two sides. The more
fundamental reason is that the design misses a key abstraction: the notion of
event type, which it merges with the notion of publisher.

� With a single general-purpose PUBLISHER class, a subscriber may register
with only one publisher; with that publisher, it can register only one action,
as represented by handle; as a consequence it may subscribe to only one
type of event. This is severely restrictive. An application component should

publish (args: … Argument Scheme 1 or 2, see above discussion …)
-- Publish event to subscribers.

do
-- Ask every subscriber in turn to handle the message:
from subscribers.start until subscribers.after loop

subscribers.forth
end

end

← To be inserted in
class PUBLISHER,
page 680.

subscribers.item.handle (args)

← Page 683.

← “Polymorphic data
structures”, page 560.

§18.4 THE OBSERVER PATTERN 685

be able to register various operations with various publishers. It is possible
to address this problem by adding to publish and handle an argument
representing the publisher, so that subscribers can discriminate between
publishers; this solution is detrimental to modular design since the handling
procedures will now need to know about all events of interest. Another
technique is to have several independent publisher classes, one for each type
of event; this resolves the issue but sacrifices reusability.

� Because publisher and subscriber classes must inherit from PUBLISHER and
SUBSCRIBER, it is not easy to connect an existing model to a new view
without adding significant glue code. In particular, you cannot directly reuse
an existing procedure from the model (op in our example) as the action to be
registered by a subscriber: you have to fill in the implementation of handle

so that it calls that procedure, with the arguments passed by the publisher.
� The previous problem gets worse in languages without multiple inheritance.

PUBLISHER and SUBSCRIBER, intended to be inherited by publisher and
subscriber classes, both need effective features: respectively publish, with
its fundamental algorithm, and subscribe. In languages that do not support
multiple inheritance from classes with effective features, this prevents
publisher and subscriber classes from having other parents as may be
required by their role in the model. The only solution is to write special
publishers and suppliers — more glue code — and make them clients of the
corresponding model classes.

� Note finally that the classes given above already correct some problems that
arise with standard implementations of the Observer pattern in the literature.
For example the usual presentation binds a subscriber to a publisher at
creation time, using the publisher as an argument to the observer’s creation
procedure. Instead, the above implementation provides a subscribe procedure
in OBSERVER, to bind the observer to a specific publisher when desired; so
at least you can later unsubscribe, and re-subscribe to a different publisher.

All these problems have not prevented designers from using Observer
successfully for many years, but they have two serious consequences. First, the
resulting solutions lack flexibility; they may cause unnecessary work, for
example writing of glue code, and unnecessary coupling between elements of
the software, which is always bad for the long-term evolution of the system.
Second, they are not reusable: each programmer must rebuild the pattern for
every system that needs it, adapting it to the system’s particular needs.

The preceding assessment of “Observer” is an example of how one may analyze a
proposed software architecture. You may get some inspiration from it when you are
presented with possible design alternatives. The criteria are always the same:
reliability (decreasing the likelihood of bugs), reusability (minimizing the amount
of work to integrate the solution into a new program), extendibility (minimizing
adaptation effort when the problem varies), and simplicity.

← op was used on
page 682.

→ See “Touch of
Methodology: Assess-
ing software architec-
tures”, page 695.

EVENT-DRIVEN DESIGN §18.5686

18.5 USING AGENTS: THE EVENT LIBRARY

We are now going to see how, by giving the notion of event type its full role, we
can obtain a solution that removes all these limitations. It is not only more
flexible than what we have seen so far, and fully reusable (through a library class
which you can use on the sole basis of its API); it is also much simpler. The key
boost comes from the agent and tuple mechanisms.

Basic API

We focus on the essential data abstraction resulting from the discussion at the
beginning of this chapter: event type. We will no longer have PUBLISHER or
SUBSCRIBER classes, but just one class — yes, a single class solves the entire
problem — called EVENT_TYPE.

Fundamentally, two features characterize an event type:

� Subscribing: a subscriber object can register its interest in the event type by
subscribing a specified action, to be represented by an agent.

� Publishing: triggering an event.

We benefit from language mechanisms to take care of the most delicate
problems identified in the last section:

� Each event type has its own signature. We can define the signature as a tuple
type, and use it as the generic parameter to EVENT_TYPE.

� Each subscription should subscribe a specific action. We simply pass this
action as an agent. This allows us in particular to reuse an existing feature
from the business model.

These observations are enough to give the interface of the class:

If you are an application developer who needs to integrate an event-driven
scheme in a system, the above interface — for the class as available in the Event

note

what: "Event types, allowing publishing and subscribing"

class EVENT_TYPE [ARGUMENTS –> TUPLE] feature

publish (args: ARGUMENTS)
-- Trigger an event of this type.

subscribe (action: PROCEDURE [ANY, ARGUMENTS])
-- Register action to be executed for events of this type.

unsubscribe (action: PROCEDURE [ANY, ARGUMENTS])
-- De-register action for events of this type.

end

Class interface only.
The implementations
of publish and sub-
scribe appear below.

§18.5 USING AGENTS: THE EVENT LIBRARY 687

Library — is all you need to know. Of course we will explore the implementation
too, as I am sure you will want to see it. (It will actually be more fun if you try
to devise it yourself first.) But for the moment let us look at how a typical client
programmer, knowing only the above, will set up an event-driven architecture.

Using event types

The first step is to define an event type. This simply means providing an
instance of the above library class, with the appropriate actual generic
parameters. For example, you can define

The function left_click returns an object representing the desired event type.

Remember, we do not need an object per event; that would be a waste of
space. We only need an object per event type, such as left-click. Because this
object must be available to several parts of the software — publishers and
subscribers — the execution needs just one instance; this is an opportunity to
use a “once routine” (one of the very few Eiffel mechanism that we had not seen
yet, and the last one for this book). As the name suggests, a once routine
(marked instead of do or deferred) has its body executed at most once,
on its first call if any; subsequent calls will not execute any code and, in the case
of a function as here, they will return the value computed by the first. One of the
advantages is that you do not need to worry about when to create the object;
whichever part of the execution first uses left_click will (unknowingly) do it.

We will see shortly where the event type declaration [1] should appear; until
then, let us assume that subscriber and publisher classes both have access to it.

To trigger an event, a publisher — for example a GUI library element that
detects a mouse click — simply calls publish on this event type object, with the
appropriate argument tuple; in our example:

On the subscriber side things are equally simple; to subscribe an action
represented by a procedure p (x, y: INTEGER), it suffices to use

left_click: EVENT_TYPE [] [1]

-- Event type representing left-button click events

create Result

end

left_click.publish ([your_x, your_y])

left_click.subscribe () [2]

TUPLE [x: INTEGER; y: INTEGER]

once

once

agent p

EVENT-DRIVEN DESIGN §18.5688

This scheme has considerable flexibility, achieved in part through the answer to
the pending question of where to declare the event type:

� If you want to have a single event type published to all potential subscribers,
just make it available to both publisher and subscriber classes by putting its
declaration [1] in a “facilities” class to which they all have access, for
example by inheriting from it.

� Note, however, that the event type is just an ordinary object, and the
corresponding features such as left_click just ordinary features that may
belong to any class. So the publisher classes — for example classes
representing graphical widgets, such as BUTTON, in a library such as
EiffelVision — may declare left_click as one of their features. Then the
scheme for a typical subscription call becomes

This allows a subscriber to monitor — “observe” or “listen to”, in Observer
pattern terminology — mouse events from one particular button of the GUI.
Such a scheme implements the notion of context introduced earlier; here the
context is the button.

Whenever the context is relevant — meaning whenever subscribers do not
just subscribe to an event type as in [2], but to events occurring in a context, as
in [3] — the proper architectural decision is to declare the relevant event types
in the corresponding context classes. The declaration of left_click [1] becomes
part of a class BUTTON. It remains a once function, since the event type is
common to all buttons of that kind; the event type object will be created on the
first subscribe or publish call (whichever comes first). If left-click is relevant for
several kinds of widget — buttons, windows, menu entries … — then each of
the corresponding classes will have an attribute such as left_click, of the same
type. The once mechanism ensures, as desired, that there is one event type
object — more precisely: at most one — for each of these widget types.

So we get the appropriate flexibility, and can tick off the last remaining item
(“It should be possible to make events dependent or not on a context”) on our
list of requirements for a publish-subscribe architecture:

� For events that are relevant independently of any context information,
declare the event type in a generally accessible class.)

� If a context is needed, declare the event type as a feature of a class
representing the applicable contexts; it will be accessible at run time as a
property of a specific context object.

In the first case, the event type will have at most one instance, shared by all
subscribers. In the second case, there will be at most one instance for each
context type for which the event type is relevant.

 left_click.subscribe (agent p) [3]your_button.

←“Contexts”, page 673.

 This is the technique
used by EiffelVision.

←“Publishers and
subscribers”, page
674.

§18.5 USING AGENTS: THE EVENT LIBRARY 689

Event type implementation

Now for the internal picture: we still have to see the implementation of
EVENT_TYPE. It is similar to the above implementation of a PUBLISHER. A
secret feature subscribers keeps the list of subscribers. Its signature is now

(where, as before, LINKED_LIST is a naïve structure but sufficient for this
discussion; for a better one, look up the actual class text of EVENT_TYPE in the
Event Library, or do the exercise). The items we store in the list are no longer
“subscribers”, a notion that the architecture does not need any more, just agents.
The type of every such agent, PROCEDURE [ANY, ARGUMENTS], indicates
that the agent represents a procedure with an argument of the tuple type
ARGUMENTS, as defined for the class. This considerably improves the type
safety of the solution over what we saw previously: mismatches will be caught
at compile time as bad arguments to subscribe.

For subscribe it suffices (in the “naïve” implementation) to perform

The use of ARGUMENTS as the second generic parameter for the
PROCEDURE type of action ensures compile-time rejection of procedures that
do not take arguments of a matching type.

To publish an event, we traverse the list and call the corresponding agents.
This is in fact the same code as in class PUBLISHER for the Observer pattern,
although args is now of a more appropriate type, ARGUMENTS:

subscribers: LINKED_LIST [PROCEDURE [ANY, ARGUMENTS]]

subscribe (action: PROCEDURE [ANY, ARGUMENTS])
-- Register action to be executed for events of this type.

do

subscribers.extend (action)
ensure

present: subscribers.has (action)
end

publish (args: ARGUMENTS)
-- Publish event to subscribers.

do

-- Trigger an event of this type.
from subscribers.start until subscribers.after loop

subscribers.forth

end

end

→ “Efficient
Observer”, 18-E.3,
page 697.

← Page 684.

subscribers.item.call (args)

EVENT-DRIVEN DESIGN §18.6690

Any argument to the agent feature call must be a tuple; this is indeed the case
since ARGUMENTS is constrained to be a tuple type.

The solution just described is at the heart of the “Event Library”, and also
of the EiffelVision GUI library; it is widely used for graphical applications,
some small and some complex, including the EiffelStudio environment itself.

The class includes a few more details, which it is a good idea to peruse:

18.6 SUBSCRIBER DISCIPLINE

If you apply any of the techniques of this chapter, from the crude Observer
pattern to the agent-based mechanism, you should be aware of a performance
issue which can lead to potentially disastrous “memory leaks”, but is easy to
avoid if you pay attention to the subscribers’ behavior:

Why this rule? The problem is memory usage. It is clear from the
implementation of subscribe — both the version from PUBLISHER in the
Observer pattern and the version from EVENT_TYPE in the Event Library
approach — that registering a subscriber causes the publisher to record, in its
list subscribers, a reference to the subscriber object. In a GUI application the
publisher belongs to a view, and the subscriber to the model. So a view object
retains a reference to a model object, which itself may directly and indirectly
refer to many other model objects (say planes, flights, schedules and so on in
our flight control example).

But then it becomes impossible — unless the view objects themselves go
away — to get rid of any such model object even if the computation does not
need it any more. In a modern environment with garbage collection, the GC will
never be able to reclaim the objects as long as others refer to them. If memory
reclamation is manual (as in C and C++ environments), the situation is even
worse. In either case we have a source of “memory leak”: as execution fails to
return unneeded space, memory occupation continues to grow.

Program Reading Time!

Event types

Read the EVENT_TYPE library class and make sure you understand all of it.

Touch of Methodology:
Do not forget to unsubscribe

If you know that after a certain stage of system execution a certain subscriber
will no longer need to be notified of events of a certain event type, do not
forget to include the appropriate call to unsubscribe.

← Page 680.

← Page 686.

§18.7 SOFTWARE ARCHITECTURE LESSONS 691

Hence the above rule: subscribing is great, but once you no longer need a
service do not forget — as with free magazines and catalogs, if you do not want
to see your mailbox inexorably fill up — to unsubscribe.

Methodological rules are never as effective as tools and architectures that guarantee
the desired goal. In this case, however, there is no obvious way to enforce
unsubscription, other than through this methodological advice.

When you subscribe an agent and want to be able to unsubscribe later, you
should use a variable representing the agent:

Subscribing through a variable, rather than using the agent directly as in the earlier
form left_click.subscribe (agent p), ensures that the unsubscription applies to the
same agent object (unlike left_click.unsubscribe (agent p) which would apply to a
new object). If you have subscribed a given handler more than once to a given event
type, unsubscribe (internally using remove_all) removes all such subscriptions.

18.7 SOFTWARE ARCHITECTURE LESSONS

The designs reviewed in this chapter prompt some general observations about
software architecture.

Choosing the right abstractions

The most important issue in software design, at least with an object-oriented
approach, is to identify the right classes — data abstractions. (The second most
important issue is to identify the relations between these classes.)

In the Observer pattern, the key abstractions are “Publisher” and
“Subscriber”. Both are useful concepts, but they turn out to yield an imperfect
architecture; the basic reason is that these are not good enough abstractions for
the publish-subscribe paradigm. At first sight they would appear to be
appropriate, if only because they faithfully reflect the two words in the general
name for the approach. What characterizes a good data abstraction, however, is
not an attractive name but a set of consistent features. The only significant
feature of a publisher is that it publishes events from a given event type, and the
only significant feature of a subscriber is that it can subscribe to events from a
given event type. That is a bit light.

 := agent p [4]

left_click.subscribe ()

… -- Then, when the time comes to unsubscribe:
left_click.unsubscribe ()

handler

handler

handler

EVENT-DRIVEN DESIGN §18.7692

The more significant concept, not recognized by the Observer design, is the
notion of event type. This is a clearly recognizable data abstraction with several
characteristic features: commands to publish and subscribe events, and the
notion of argument (which could be given more weight through a setter
command and a query). So it meets the criteria.

By treating EVENT_TYPE as the key abstraction, yielding the basic class of
the final design, we avoid forcing publisher and subscriber classes to inherit
from specific parents. A publisher is simply a software element that uses publish

for some event type, and a subscriber an element that uses subscribe.

MVC revisited

One of the consequences of the last design is to simplify the overall architecture
suggested by the Model-View-Controller paradigm. The Controller part is “glue
code” and we should keep it to the strict minimum.

EVENT_TYPE provides the heart of the controller architecture. In a simple
scheme it can actually be sufficient, if we let elements of the model subscribe
directly to events:

(The double arrows represent, as usual, the client relation, used here to
implement the more abstract relations of the general MVC picture.) In this
scheme there is no explicit controller component.

While the model does not directly know about the view (if it does not use
contexts), it does connect to specific event types. This setup has both limitations
and advantages:
� On the negative side, it can make it harder to change views: while we are

not limited to a single view, any new view should trigger the same events.
This assumes that the various views are not entirely dissimilar; for example
one could be a GUI and another a Web interface.

� It has, on the other hand, the merit of great simplicity. Model elements can
directly specify which actions to execute for specific events coming from
the interface. There is essentially no glue code.

This scheme is good for relatively simple programs where the interface, or at
least the interface style, is known and stable. For more sophisticated cases, we
may reintroduce an explicit controller, taking the task of event type subscription
away from the model:

Direct

subscription

MODEL VIEWi

subscribe

EVENT
TYPES

publish

§18.7 SOFTWARE ARCHITECTURE LESSONS 693

The controller is now a separate part of the software. Its job is to subscribe
elements of the model to event types; it will have connections both to:

� The model since the arguments to subscribe are actions to be subscribed,
and these must be agents built from the mechanisms of the model.

� The view, if contexts are used. The figure shows this as an optional
client link.

This solution achieves complete uncoupling between model and view; in a
typical application the controller will still be a small component, achieving the
goal of using as little glue code as possible.

The model as publisher

In the GUI schemes seen so far all events come from the GUI, normally through
the mechanisms of a library, and are processed by the model. In other words the
views are publishers, and model elements are subscribers.

It is possible to extend the scheme to let the model publish too. For example
if an element of the GUI such as pie chart reflects a set of values which the
model may change, the corresponding model elements may publish change
events. Views become subscribers to such events.

This possibility is easy to add to the second scheme, subscription through a
controller. The controller will now act as a fully bidirectional broker, receiving
events from the views for processing by the model and the other way around.

This solution, which adds complexity to the controller, is only useful in the
case of multiple views.

Subscription

through a

controller
MODEL

VIEWi

EVENT
TYPES

publish

(Action) (Context)
(Event type)

Optional
client link

subscribe

CONTROLLER

← As per style [3],
page 688.

EVENT-DRIVEN DESIGN §18.7694

Invest then enjoy

Common to the two architectures we have seen, Observer and Event Library, is
the need to subscribe to event types prior to processing them.

It is possible for subscribers to subscribe and unsubscribe at any time; in
fact, with the Event Library solution, the program can create new event types at
any stage of the computation. While this flexibility can be useful, the more
typical usage scenario clearly divides execution into two steps:

� During initialization, subscribers register their actions, typically coming
from the model.

� Then starts execution proper. At this stage the control structure becomes
event-driven: execution proceeds as publishers trigger events, which
(possibly depending on the contexts) cause execution of the subscribed
model actions.

(So from the order of events it really is the “Subscribe-Publish” paradigm.)
Think of the life story of a successful investor: set up everything, then sit back
and prosper from the proceeds.

You may remember a variant of the same general approach, the
“compilation” strategy that worked so well for topological sort: first translate
the data into an appropriate form, then exploit it.

Assessing software architectures

The key to the quality of a software system is in its architecture, which covers
such aspects as:

� The choice of classes, based on appropriate data abstractions.

� Deciding which classes will be related, with the overall goal of minimizing
the number of such links (to preserve the ability to modify and reuse various
parts of the software independently).

� For each such link, deciding between client and inheritance.

� Attaching features to the appropriate classes.

� Equipping classes and features with the proper contracts.

� For these contracts, deciding between a “demanding” style (strong
preconditions, making the client responsible for providing appropriate
values), a “tolerant” style (the reverse), or an intermediate solution.

� Removing unneeded elements.

← “Interpretation vs
compilation”, page 542.

§18.8 FURTHER READING 695

� Avoiding code duplication and removing it if already present; techniques
involve inheritance (to make two or more classes inherit from an ancestor
that captures their commonality) as well as genericity, tuples and agents.

� Taking advantage of known design patterns.

� Devising good APIs: simple, easy to learn and remember, equipped with the
proper contracts.

� Ensuring consistency: throughout the system, similar goals should be
achieved through similar means. This governs all the aspects listed so far;
for example, if you use inheritance for a certain class relationship, you
should not use the client relation elsewhere if the conditions are the same.
Consistency is also particularly important for an API, to ensure that once
programmers have learned to use a certain group of classes they can expect
to find similar conventions in others.

Such tasks can be carried out to improve existing designs, an activity known as
refactoring. It is indeed a good idea to look at existing software critically, but
prevention beats cure. The best time to do design is the first.

Whether as initial design or as refactoring, work on software architecture is
challenging and rewarding; the discussion in this chapter — and a few others in
this book, such as the development of topological sort — give an idea of what
it involves. The criteria for success are always the same:

18.8 FURTHER READING

Trygve Reenskaug, MVC papers at heim.ifi.uio.no/~trygver/themes/
mvc/mvc-index.html.

Trygve Reenskaug, a Norwegian computer scientist, introduced the
Model-View-Controller pattern while at Xerox PARC (the famed
Palo Alto Research Center) in 1979. The page listed contains a
collection of his papers on the topic. I find his original 1979 MVC
memo (barely more than a page) still one of the best presentations
of MVC.

Touch of Methodology:

Assessing software architectures

When examining possible design solutions for a given problem, discuss
alternatives critically. The key criteria are: reliability, extendibility, reusability
and simplicity.

Reenskaug

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

EVENT-DRIVEN DESIGN §18.9696

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design

Patterns, Addison-Wesley, 1994.
The classic text on design patterns. Contains the standard description
of Observer, along with many others, all in C++.

Bertrand Meyer: The Power of Abstraction, Reuse and Simplicity: An

Object-Oriented Library for Event-Driven Design , in From

Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan

Dahl, eds. Olaf Owe, Stein Krogdahl, Tom Lyche, Lecture Notes in
Computer Science 2635, Springer-Verlag, 2004, pages 236-271.
Available online at se.ethz.ch/~meyer/publications/lncs/events.pdf.

A significant part of the present chapter’s material derives from this
article, which analyzes the publish-subscribe pattern in depth,
discussing three solutions: Observer pattern, .NET delegate mechanism,
and the event library as presented above.

18.9 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Event-driven design, also called “publish-subscribe”, leads to systems whose
execution is driven by responses to events rather than by traditional control
structures. The events are triggered by the software, often in reaction to
external events. GUI programming is one of the important areas of application.

� The key abstraction in event-driven design is the notion of event type.
� Publishers are software elements that may trigger events of a certain event

type. Subscribers are elements that request to be notified of events of a
certain type by registering actions to be executed in response.

� In a system with one or more interfaces or “views”, an important design
guideline is to keep the views separate from the core or the application,
known as the “model”.

� The Model-View-Controller architecture interposes a “controller” between
the model and the view to handle interactions with users.

� The Observer pattern addresses event-driven design by providing high-level
classes PUBLISHER and SUBSCRIBER, from which publisher and
subscriber classes must respectively inherit. Every subscriber class provides
an update procedure to describe the action to be executed in response to
specified events. Internally, each publisher object keeps a list of its
subscribers. To trigger an event, it calls update on its subscribers; thanks to
dynamic binding, each such call executes the desired version.

� Agents, constrained genericity and tuples allow a general solution to
event-driven design through a single reusable class based on the problem’s
central abstraction: EVENT_TYPE.

 Gamma (2007)

http://se.ethz.ch/~meyer/publications/lncs/events.pdf

§18-E EXERCISES 697

� Software architecture is the key to software quality. Devising effective
architectures and improving existing ones (refactoring) should be a
constant effort, focused on simplicity and striving at reliability,
extendibility and reusability.

New vocabulary

18-E EXERCISES

18-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

18-E.2 Concept map

Add the new terms to the conceptual map devised for the preceding chapters.

18-E.3 Efficient Observer

Choosing the appropriate representation of the subscribers list, adapt the
implementation of the Observer pattern so that the following operations are all
O (1): add a subscriber (doing nothing if it was already subscribed); remove a
subscriber (doing nothing if it was not subscribed); find out if a potential
subscriber is subscribed. The publish procedure, ignoring the time taken by
subscribers’ actual handling of the event, should be O (count) where count is the
number of subscribers actually subscribed to the publisher. Overall space
requirement for the subscribers data structure should be reasonable, e.g.
O (count). (Hint: look at the various data structures of chapter 13 and at the
corresponding classes in EiffelBase.) Note that this optimization also applies to
the Event Library implementation.

Application domain Argument (of an event) Business model

Catching (an event) Context (of an event) Control (Windows)

Controller Event Event-driven

Event type External event Glue code

Handle (an event) Model MVC

Publish (an event) Publish-Subscribe Register

Refactoring Signature (of event type) Subscribe

Trigger (an event) View Widget

← Exercise “Concept
map”, 17-E.2, page 660.

← “The observer pat-
tern”, 18.4, page 678..

EVENT-DRIVEN DESIGN §18-E698

18-E.4 Type-safe Observer

Show that in implementing the Observer pattern a type scheme is possible that
removes the drawbacks of both “Argument Scheme 1” and “Argument Scheme
2” by taking advantage, as in the last design of this chapter (Event Library), of
tuple types and constrained genericity. Your solution should describe how the
PUBLISHER and SUBSCRIBER classes will change, and also present a typical
publisher and subscriber classes inheriting from these.

← “The subscriber
side”, page 681..

19

Introduction to software

engineering

There is more to software development than programming. This statement is not
a paradox, but a recognition of all the factors that affect the success of a software
project, and all the tasks, other than writing the program, that we must
accordingly worry about. To take just a few examples:

� A program with a brilliant design may end up a failure if its user interface
displeases the target audience.

� The best program is useless if it does not solve the right problem. Hence the
need for a requirements task to capture user needs and decide on the
system’s precise functionality.

� Aside from technical aspects, projects must tackle management issues:
setting and enforcing deadlines, organizing meetings and other
communication between project members, defining the budget and
controlling expenses.

These activities and others discussed in this chapter do not involve
programming techniques, but if not taken care of properly they can destroy a
project regardless of its technical qualities.

This is typical of what defines moving beyond programming to software

engineering. In the previous chapters we have almost exclusively been
concerned with programming, but the picture would be incomplete without a
foray into the non-programming aspects of software engineering.

This is a wide-ranging and well-developed discipline. To cover it
extensively would require another textbook. Fortunately, several already exist;
you will find the references to some of the best in the “Further reading” section.
The present chapter has more l imited goals: to introduce a few
non-programming aspects of software engineering, enough I hope to awaken
your interest and make you want to learn further from the rest of the literature.

An important part of software engineering is the role of tools. A survey of some
software engineering tools appeared in an earlier chapter.

→ Page 740.

← Chapter 12.

INTRODUCTION TO SOFTWARE ENGINEERING §19.1702

19.1 BASIC DEFINITIONS

The following broad-ranging definition will serve us well:

Two important properties of software engineering captured by this definition are
the restriction to production software, and the focus on quality.

Production software is operational software, intended to function in real
environments to solve real problems. Software developed purely as an
experiment, or “throw-away” programs used once and not further maintained,
generally do not qualify, except if it they are a means towards some broader goal
which belongs to software engineering proper. For example, an experiment to
evaluate various possible algorithms may not qualify by itself, but this changes
if it is performed as part of the development of a production system.

What characterizes production software is the combination of constraints
that it must satisfy. They may include:

� Quality constraints (discussed next): for example the guarantee that the
system will not crash, will deliver correct results and will perform fast.

� Size constraints: production systems may consist of thousands or tens of
thousands of classes and other modules, and hundreds of thousands or
millions of lines of code.

� Duration constraints: systems used in industry must often be maintained
(that is to say, kept operational and regularly updated) over many years or
even decades.

� Team constraints: such systems may involve large teams of developers, and
large numbers of users; this raises specif ic management and
communication problems.

� Impact constraints: these systems affect physical and human processes; in
particular, if they do not function well, people may be affected — by trains
not arriving in time, phones not working, salaries not paid, orders not
delivered, or worse. This reinforces the emphasis on quality.

Quality is indeed at the center of software engineering concerns. The definition
mentions “defined standards”: quality is not just something that someone
arbitrarily declares to be present or absent in a software process or product; it
should be evaluated as objectively as possible.

Definition: Software engineering

Software engineering is the set of techniques — including theories, methods,
processes, tools and languages — for developing and operating production
software meeting defined standards of quality.

§19.1 BASIC DEFINITIONS 703

The definition also talks of “developing and operating” software. Software
construction cannot be hit-and-run: along with development you have to set up
the actual usage (operation) of the software. Even the development part should
not be understood as only the initial production of a releasable system: what
comes afterwards is just as important. We have already encountered the
technical term for this activity:

The term “maintenance” comes from other parts of engineering: think of
maintenance for a car, of a coffee machine, of a house. As many people have
pointed out, the analogy is misleading: a program does not deteriorate from
repeated use; run your program ten, a thousand or a million times, and unlike a
car whose tires will inexorably wear out it is still exactly the same program as
the first time. As a software term, however, “maintenance” is here to stay. There
is no problem in using it as long as this is based on a precise definition as above.

A jargon term will be useful for the discussion:

This encompasses many people: developers, but also testers and other quality
assurance personnel; project managers; future users of the system (or others on
whom it may have an effect, including — the less pleasant part but definitely a
possibility — those who will not be users because the system makes their
current jobs obsolete); marketing and sales people who will have to find
customers in the case of a product to be released to the world; trainers (who will
teach users how to benefit from the product); corporate legal departments.

It is an important task of project management to identify all the stakeholders
early, and to give due consideration to the needs and constraints of each.

Definition: Software maintenance

The maintenance of software systems covers all development activities
occurring after the first release of an operational version, such as: adaptation
to new platforms and environments; correction of reported deficiencies;
extensions (addition of new functionality); removal of unneeded functionality;
quality improvement.

Stakeholder

A stakeholder of a software project is any person who can affect or be
affected by the project and the quality of the resulting software.

INTRODUCTION TO SOFTWARE ENGINEERING §19.2704

19.2 THE DIAMO VIEW OF SOFTWARE ENGINEERING

To understand the challenges of software engineering, we may view the
discipline as consisting of five parts of roughly equal importance. Programming
is one of the components of one of these parts (the second part, “Implement”).
As a mnemonic for this classification we may use the acronym DIAMO
(although it is not an English word, only the prefix of one). The letters stand for
Describe, Implement, Assess, Manage and Operate.

Describe: many software engineering activities involve understanding and
specifying problems and systems; the goal here is not to build solutions, but to
describe properties of such solutions. We may need the description before

building the solutions, as in requirements analysis and design specifications; or
afterwards, as in documentation.

Implement: this is the task of building the programs. It includes not just
implementation (“programming” in a restricted sense of this term) but also
design, the task of defining the high-level architecture of a system.

Assess: a large part of software processes is devoted to analyzing software.
The products being assessed include not just programs but everything else that
makes up software, in particular designs and documentation. The most common
goal is to uncover deficiencies (or, conversely, to establish correctness); this is
where you find such tasks as static program analysis, testing and debugging. It
is not, however, all there is to assessment; in particular, an effective software
organization often needs quantitative properties of both its products (size,
complexity…) and its processes (time spent, costs); this is the purpose of
software metrics.

Manage: any serious software project, even with just a few developers,
requires management. The management part of software engineering addresses
such tasks as communication within the development team — ever more
challenging today, as many teams are geographically distributed across
countries and continents —, scheduling tasks so that they will meet deadlines,
ensuring smooth interaction with customers and other stakeholders, and
handling the inevitable requests for change.

Operate: when everything has been analyzed, designed, implemented,
tested and documented, you are not done yet. You still need to put the system
into operation — a step known as deployment — and organize its successful
operation. The deployment phase can, in industry, be a major undertaking; think
of a bank installing software in thousands of automatic teller machines in many
countries, with the need to adapt each installation to the local context (display
language, security requirements, network connections) and to put in place a
sustainable process of future system-wide upgrades.

Programming, of course, retains its fundamental role: no programs, no software
engineering. All of the other activities are theoretically dispensable. In practice, any
significant project must devote attention to each one of them.

D

I

A

M

O

§19.3 COMPONENTS OF QUALITY 705

19.3 COMPONENTS OF QUALITY

Quality, the central pursuit of software engineering, is a notion with many
different facets, often called factors of software quality. Let us take a look at
some of the most important ones.

Process and product

Discussions of software engineering address two complementary aspects:

� Products: outcomes of the development. The most obvious product is the
source code, but software projects frequently add many others such as
requirements and design documents, test data, project plans,
documentation, installation procedures.

� Process: mechanisms used to obtain these products.

The number of errors in a delivered program is an example of a product issue.
Whether the program is delivered on schedule is an example of a process issue.

In each case the other aspect plays a role too: the process determines in part the
introduction and removal of errors; and treating timely delivery as the principal goal
may affect the product, for example through dropped functionality.

It is convenient to discuss the factors of software quality under three rubrics
based on this distinction:

� Process quality, characterizing the effectiveness of the software
development process.

� Immediate product quality, characterizing the adequacy of the product as
delivered in a particular version.

� Long-term product quality, characterizing the future prospects of the
software. In the world of software engineering, where projects may have a
long life, this is just as important as the immediate picture.

We will now take a look at the major goals in each area, starting with the most
visible property of a software project: immediate product quality. The
discussion also includes some comments about why some other factors are less
relevant. Two general notes about this review:

� No explicit definitions are given for self-explanatory quality factors (“ease
of use”, “ease of learning”). The corresponding terms will not appear in the
“New vocabulary” list of this chapter.

� You will notice a certain relativism in the definitions: adequacy is
satisfaction of defined needs, efficiency is adequate use of resources. This
is not vagueness but in fact the reverse: definitions of software quality goals
are only useful as long as they allow the product or process to be assessed

against these goals. The definitions consequently assume that such goals
have been clearly defined. This issue is not just academic: imagine that you

→ Page 743.

INTRODUCTION TO SOFTWARE ENGINEERING §19.3706

are heading a software development project and that you track the number

of remaining deficiencies (“bugs”). Should you authorize the release when
the number reaches 1000, 500, 200, 0? (In a realistic setup you would have

to distinguish between categories of bugs: show-stoppers, serious but
non-critical deficiencies, minor issues such as user interface imperfections,

missing “nice to have” functionalities that could be deferred to the next
release and so on.) This question is essentially impossible to answer unless

precise criteria have been stated in advance. We are back to the original
definition of software engineering and its insistence on “meeting defined

standards of quality”.

The following figure shows the overall classification for the quality factors to

be reviewed now.

← Page 702.

Product quality

factors

Quality
Factors

Product

Process

Immediate

Long-term

External

Internal

Corrigibility
Extendibility
Portability
Reusability

Production speed
Cost effectiveness
Collaboration

Stakeholder

Built-in assessment
Predictability
Measurability
Reproducibility
Self-improvement

Rules of programming
style, good design,
effective requirements etc.

effectiveness

involvement

Adequacy
Correctness
Robustness
Security
Efficiency
Ease of use
Ease of learning

§19.3 COMPONENTS OF QUALITY 707

Immediate product quality

Product quality involves the following factors.

� Adequacy: satisfaction of defined user needs. In other words: does the
software serve the right purposes for its user community? Other factors
commonly cited in this area are completeness and usefulness, but both are
less precise and are subsumed by “adequacy”: no system ever has
“complete” functionality, since someone will always think of another
facility that would be nice to have; and “usefulness” is a subjective criterion
unless you state precisely to whom and for what needs the system is, or not,
useful enough.

� Correctness: to what extent the software functions as prescribed by the
specification, in cases covered by the specification. This is clearly a
fundamental requirement. It is just as clearly hard to achieve, not only
because writing programs that meet a specification is hard, but also because
writing the specification itself is tough too — you must think of all cases and
end up with a document that is precise yet readable.
An important consequence of this definition is that correctness is a relative notion. We
can never say in absolute terms that a software system is correct or incorrect. We can
only discuss its correctness with respect to a certain specification. In mathematical
terms, correctness does not apply to a program but to a pair: [program, specification.]

� Robustness: how well the system reacts to erroneous cases of use, outside
of the specification. That a user pressed the wrong button, a sensor
malfunctioned or another program sent bad input is not a good excuse for
the system to crash or produce wild results. Robustness assesses error
handling and recovery mechanisms.

� Security: how well the system protects itself, its data, its users and any
affected devices or people against attempts at hostile misuse. Unfortunately
it is not just errors we need to worry about, as addressed by robustness;
computer systems offer ready targets for people with all kinds of nasty
intent, and you cannot write software, especially if it will be available over
a network, without considering potential attacks.

� Efficiency (often called performance): adequate use of time, memory
space, and other resources such as bandwidth if the system engages in
network communication. “Adequate”, not optimal: if your compiled
program takes up one megabyte of memory, reducing this to 0.6 MB may
be possible, but is not necessarily useful. If you expect your users to have
plenty of memory, it is probably more productive to spend your time on
other quality factors; but if you are running in a tightly constrained
environment, for example with software for small-memory hand-held
devices, such space optimization can become critical. What matters once
again is to define objectives.

INTRODUCTION TO SOFTWARE ENGINEERING §19.3708

� Ease of use: the really difficult challenge here is to make the system easy to
use for various categories of users. Much of the effort in “usability”, as this
is also called, goes into facilitating the task of complete novices. But it is
just as important to help the experts — who, for example, do not want to go
through the same repetitive sequences of clicking “OK” on various
informational windows over and again, when they know exactly what to do
— and to support the process of progressing from novice to expert. Each of
us is a novice in some tools and an expert in others; and each of us was once
a novice in each of the systems at which we are now an expert. Ease of use
is also about defining that path and helping anyone who wants to travel it.

� Ease of learning: closely connected to the previous factor.

Long-term product quality

Some product qualities are of no immediate value to users of a system, but of
much interest to those who commission or purchase it. If I am driving, I do not
care that the software controlling the brakes or the air bag is easy to modify; I
care that it works (an “immediate” factor). But if I am an executive in charge of
managing software development or acquisition at Nissan or BMW I have to
keep in mind the long-term picture: will the software be easy to upgrade if an
improvement is requested? Can the version developed for sedans be transposed
at reasonable cost to convertibles?

Descriptions of software products and software issues often talk about “the
user”; the term has acquired almost mythical connotations. It is good to think of
users, but stakeholders in user organizations also include others with a
long-term perspective. The more general term “customer” is appropriate
(whether or not the product is commercial) to cover both people using the
products now and those interested in its past and future.

Long-term qualities, in the approximate order of when concerns will
arise, include:

� Corrigibility: how easy it is to update the software to repair deficiencies (of
correctness, robustness, security, ease of use…). One of the recipes for
achieving corrigibility is structure: devising a modular architecture that is
easy to understand and reflects the structure of the problem and its solution.

� Extendibility: how easy it is to add functionality. Here too, structure is key;
the object-oriented techniques we have learned — data abstraction,
information hiding, classes, genericity, contracts, inheritance, dynamic
binding, agents and so on — facilitate extension. Extendibility is a principal
requirement of practical software development, as almost every system
undergoes changes of its expected functionality. The reason for change may

Also “correctibility”.

Also “extensibility”.

§19.3 COMPONENTS OF QUALITY 709

be that the initial requirements definition missed some functions;
sometimes it is simply the consequence of initial success, as a useful system
suggests ideas of what more it could do. A good software process must
enforce a discipline on such changes, by defining strict procedures for
examining new requests once initial requirements have been approved; but
it cannot pretend that the need will not arise.

� Portability: how easy it is to transfer the software to other platforms. A
“platform” here is a combination of computer architecture and operating
systems, plus other resources that the system may need, such as a database
management system. The IT industry has experienced considerable
standardization in recent decades, making the construction of portable
software more realistic than when dozens of incompatible computer brands
populated the market. For general-purpose computing, the hardware scene
is down to a few architectures (Pentium and compatible, Sparc, PowerPC),
and the operating system world to Windows and to Unix variants such as
Linux, Solaris and MacOS. As to programming languages, many today are
available on numerous platforms.

� Reusability: how much of the product can be applied to future
developments. Many applications need some of the same functionality,
either of a general nature (data structures and fundamental algorithms, GUI
mechanisms) or targeted to a particular application domain. Reusable

software is software that is sufficiently independent from the specifics of a
particular project to be of use for subsequent ones. Helped by object
technology, reusability in software has made great strides, leading to
software components that serve the needs of many different developments.
(Think of the Traffic library and all the libraries on which it itself relies.)
Even if you are not producing software components, you can strive to make
your software reusable to facilitate future projects.

In the literature you will see references to a quality factor called maintainability,
having to do with the ease of continuing to work on a system after its initial
release. This important concern is not an independent factor but a combination
of the long-term product factors just reviewed, since maintenance may involve
fixing errors, adding functionality and adapting to new platforms.

All the properties reviewed so far are external quality factors: they are of direct
interest to customers. Quality also involves internal factors, characterizing how
the software is actually written, and directly meaningful to developers only. You
informally know many of them because they correspond to the design and
programming advice given throughout this book, telling you to ensure that your
software is divided into classes reflecting relevant data abstractions, uses
appropriate inter-class relations (client and inheritance), takes advantage of
effective design patterns, includes meaningful contracts, applies information

← “Definition: Soft-
ware maintenance”,
page 703

INTRODUCTION TO SOFTWARE ENGINEERING §19.3710

hiding, incorporates proper comments and documentation, and is written in a
readable style facilitating future extensions. Another example of internal factors is
the list of properties defined below for good requirements documents, some of
which also apply to programs. Internal qualities are fundamental attributes of a
software system; so fundamental indeed that external factors can only be achieved
through them. Correctness and corrigibility, for example, both boil down to matters
of systematic programming, sound software architecture and appropriate contracts.

In the end, however, the external factors are the ones that matter, since
they directly relate to customer needs.

Process quality

Process factors address the quality of the mechanisms used to produce the
software. They include the following:

� Production speed: the ability to deliver a product in a short time. Every
project has to worry about this; customers are waiting, competitors
progressing, shareholders wondering.

� Cost effectiveness. This is also a concern for almost all projects. In
software (unlike some other fields of engineering) the production cost is
usually negligible. Development cost dominates everything else (except
sometimes the cost of marketing, which can be significant especially for
mass-market products); within it, personnel costs dominate other aspects
such as equipment and office space. For that reason the standard measure of
cost is the person-month: the average cost of employing one person —
employee, contractor — for one month, all-inclusive.

� Collaboration effectiveness: the effectiveness of procedures for combining
the contributions of all project members and allowing them to communicate.
Significant software projects may involve large numbers of people,
requiring special attention to coordination mechanisms. Communication in
particular is a delicate issue, which beyond a certain team size can
overshadow all other aspects of the development. An extreme form of this
phenomenon is known as “Brooks’s Law” (from the name of the designer
of the IBM OS/360 operating system), which states that adding people to a
late project delays it further. This is only true of badly managed projects but
highlights the need to devote proper attention to communication issues.

� Stakeholder involvement: the degree to which the project takes into
account all relevant needs and viewpoints.

� Built-in assessment: the inclusion of mechanisms and procedures in the
process, to evaluate quality factors at well-defined steps. Quality is not just
decreed and attempted: it must be checked and enforced. A good process
integrates this task as one of its components.

→ “Fifteen properties
of good require-
ments”, page 724.

Often also
“man-month”.

→ See book citation in
“Further reading”,
19.9, page 740.

§19.3 COMPONENTS OF QUALITY 711

� Predictability: the inclusion in the process of reliable methods to estimate
other quality factors — in particular production speed and cost — ahead of
time. Predictability is one of the most important characteristics of a good
process; sometimes a guaranteed date is just as important as an early date.
The software industry has not had a good record in this area, as many
projects are late and over budget; the situation is improving, thanks to better
application of software engineering principles and techniques.

� Measurability: the availability of sound quantitative criteria to determine
achievement of other quality factors, both process and product; for example,
techniques for measuring error rates. Effective management needs precise
measures of progress. This criterion is closely related to the preceding two,
since the ability to make predictions and to assess whether the predictions
were met requires the ability to measure.

� Reproducibility: the independence of development, management and
prediction techniques from unessential attributes of individual projects. In
most industrial contexts, a software development does not happen in isolation
but as one step in a succession of projects. It is important to carry over
information and experience from one project to others, so that success in one
particular project can be replicated on future ones. (Failure in a project also
deserves careful analysis: not to reproduce it, but to learn the lessons.) This
means in particular being able to abstract process and product attributes from
the circumstantial properties of particular projects, such as the personalities
of the developers and the specifics of the customer. Such reproducibility is
one of the characteristics of an industrial production process. Because
software is an intellectual activity, not assembly-line work, no process will
ever achieve total reproducibility, nor would that necessarily be desirable; but
a good software process reduces unnecessary sources of non-reproducibility
— bad surprises.

� Self-improvement: the inclusion, in the process specification itself, of
mechanisms to qualify and improve that process. Organizations, like people,
can learn from experience. The self-improvement criterion assesses to what
extent the process, as defined by the organization, encourages this
phenomenon by including built-in evaluation mechanisms, which can be fed
back into the process itself for adapting it as a result of the lessons learned.

Process models such as CMMI (studied later in this chapter) take these issues to
heart, in particular the last five, to foster a software culture where assessment,
predictability, measurability, reproducibility and self-improvement are built-in
as core practices.

→ “Capability matu-
rity models”, 19.8,
page 735.

INTRODUCTION TO SOFTWARE ENGINEERING §19.4712

Tradeoffs

While any software development should strive for the highest quality across all
factors, the preceding review implies that tradeoffs are inevitable:

� Tradeoffs between process and product factors: a quest for perfection in the
product might take too long to achieve, affecting the “production speed”
process factor.

� Tradeoffs between product factors: ease of use does not always agree with
security, since you will only want to make the product easy for legitimate

users; passwords are bad for ease of use but good for security. Optimizing
for efficiency can conflict with corrigibility (as it may lead to contorted
code), and with factors such as extendibility, portability and reusability, all
of which call for general solutions rather than techniques narrowly targeted
to a particular platform and context.

One of the characteristics of a well-managed project is that it examines these
tradeoffs explicitly, and resolves them on the basis of rational analysis. Otherwise
they end up being resolved anyway, but not necessarily in the most desirable way;
a common example is a misplaced concern for efficiency — extensive
optimization where it is not essential — at the expense of other quality factors.

19.4 MAJOR SOFTWARE DEVELOPMENT ACTIVITIES

Software engineering involves a number of tasks. You have learned much about
one of them, implementation, and gained a good first idea of others such as
design, documentation and specification. We now go through the list of major
tasks; the order is, roughly, from tasks closest to customers’ concerns to those
dealing with internal properties of the software.

Feasibility analysis is the task of studying a customer-related problem and
deciding whether it is possible and desirable to build a software system (or a
system involving software) to address it. The second aspect, although not
immediately suggested by the name, is just as important as the first; not every
system that can be built should.

Requirements analysis defines the functionality of the system. The
elements making up a requirements document are of two kinds:

� Functional requirements, describing the results or actions of the system: “If
the phone user leaves a coverage area to enter another, the connection shall
automatically switch to an access point in the new area”.

§19.4 MAJOR SOFTWARE DEVELOPMENT ACTIVITIES 713

� Non-functional requirements, specifying constraints on the system’s
operation. They include performance requirements such as timing (“For an
access point less than two kilometers away, switchover shall take no more
than one second”), memory and bandwidth usage, security (“all
communication with the access point shall be encrypted”). They also cover
the impact on the system’s environment, and consequences for stakeholders
such as employees: the effect on work practices and training requirements).

Specification is the precise description of individual elements of the system.
Requirements are customer-oriented; specification translates requirements into
a form that is directly usable for the development of the software. The main
difference is rigor and precision: the specification must give an unambiguous
answer to every relevant question about the operation of the system.

Requirements and specification are sometimes treated as a single activity;
the world analysis is then used to cover them both. In the lifecycle models that
follow we will treat them as separate. Regardless of the exact division, the
activities seen so far only address the problem to be solved; with the next tasks
we enter the world of software solutions.

Design, also called architecture, builds the overall structure of a software
system. It is responsible in particular for defining the principal units, or
modules, of that system, and the relations between those units.

Implementation is the task of actually developing the program text to
produce a usable system. This is also known as coding, with just a hint of a
derogatory tone — as if writing the program were a menial chore to be
performed once the great thinkers have done the analysis and design. (This book
uses programming in the broad sense of program construction: not just
implementation but also design and analysis.)

Documentation is the task of describing various aspects of the system to
help its users and other stakeholders, in particular developers. Aside from
documents for users, it may include project plans (for managers) and documents
describing the results of some of the other tasks: requirements documents,
specifications, design plans. The word “document” encompasses more than
traditional reports designed for paper; today’s documentation takes many other
formats such as Web pages, online help files, or explanations included in
program texts and processed by specialized tools (such as the header comments
in Eiffel classes, or, in Java programs, special comments marked as “Javadoc”).

Verification and Validation, or “V&V”, is the task of assessing whether
the system is satisfactory. The two aspects are complementary:
� Verification is internal assessment of the consistency of the product,

considered just by itself. A typical example, at the implementation level, is
type checking, preventing you for example from declaring a variable as
REAL and using it as if it were an INTEGER.

INTRODUCTION TO SOFTWARE ENGINEERING §19.5714

� Validation is the relative assessment of a product vis-à-vis another that
defines some of the properties that it should satisfy: code against design,
design against specification, specification against requirements,
documentation against standards, observed practices against company
rules, delivery dates against project milestones, observed defect rates
against defined goals, test suites against coverage metrics.

A popular version of this distinction is that verification is about ascertaining that
the product is “doing things right” and validation that it is “doing the right
thing”. It only applies to code, since a specification, a project plan or a test plan
do not “do” anything.

“Maintenance”, as already noted, is not a separate activity but a combination of
some of the tasks listed above; its only distinctive characteristic is when it happens:
after the initial release.

19.5 LIFECYCLE MODELS AND AGILE DEVELOPMENT

A mainstay of the software engineering literature is the emphasis on lifecycle
models: specifications of how to schedule the basic software engineering
activities listed above into actual processes. The exercise has its limits, because
the models describe idealized processes whereas software development is a
human activity with its inevitable elements of unpredictability.

The waterfall

The starting point for all discussions of lifecycle models is the “waterfall

model”, dating back to a 1970 article (which was actually written to criticize the
model, but ended up as its reference definition). The waterfall idea is simply to
execute the above tasks (with possible variations) in the order given.

It has become a common practice — reflective perhaps of the lack of rigor
of process model definitions — to represent them in graphical form. I will
follow this practice here. The picture on the right is a conventional
representation of the Waterfall model.

Like some other elements in this section, it is adapted from chapter 28, The Software

Construction Process, of my “Object-Oriented Software Construction”, 2nd edition,
Prentice Hall, 1997, which contains a more detailed discussion of process models.

By Winston W. Royce,
see tinyurl.com/r3jaj.

http://tinyurl.com/r3jaj

§19.5 LIFECYCLE MODELS AND AGILE DEVELOPMENT 715

A disadvantage of this model is its rigidity, since it assumes that all activities
will proceed synchronously on the entire system. Even more damaging is the
late appearance of code (at the “implementation” stage); many problems can
become clear only then, even if the previous stages, all devoted to plans and
predictions and high-level views, seem to have proceeded smoothly. The
inability to translate these hopes into code may be the reckoning.

The spiral model

In his book Software Engineering Economics (Prentice Hall, 1988) and other
publications, Barry Boehm proposed a model that mitigates some of this risk by
adopting an iterative approach, based on writing successive prototypes. This is
known as the spiral model and is illustrated on the next page.

Each prototype in the spiral model follows a sequence of steps similar to the
waterfall, but is intended to try out hypotheses and possible designs rather than
producing a working system. Each iteration of the spiral benefits from the
lessons of the previous iteration.

The spiral model is more flexible than the waterfall and avoids some of its
principal deficiencies. What creates a risk, however, is that a prototype is not a
system; often, to build a prototype, one relaxes some constraints (such as
performance), which may turn out later to be the most critical and jeopardize the

The waterfall

model

TIME

FEASIBILITY
STUDY

REQUIREMENTS
ANALYSIS

SPECIFICATION

IMPLEMEN-

DEPLOYMENT

GLOBAL
DESIGN

DETAILED
DESIGN

TATION

VERIFICATION
& VALIDATION

& OPERATION

INTRODUCTION TO SOFTWARE ENGINEERING §19.5716

value of any lessons learned from the prototype. As another risk, if a budget is
cut or pressure to release becomes untenable, the project will end up shipping a
prototype — which was never intended for that purpose.

The cluster model

The model that fits best with object-oriented development as presented in this
book is the cluster model, which modifies the basic waterfall in a different way:
instead of a synchronous process it assumes that the system is divided into a
number of subsystems or clusters, each with its own mini-process as pictured
on the facing page. As appears immediately from the figure, this adds to the
sequential dimension a concurrent aspect, since several clusters can proceed in
parallel; a consequence for the project manager is the ability to react to surprises
in project development: tasks that proceed faster or (more commonly) less fast
than expected. It suffices in such cases to hasten or delay the start of another
cluster, or of a task of that cluster.

To minimize risk, the development should start with the most fundamental
clusters, providing critical functionality, and proceed towards the more
user-oriented parts. It can be hard to convince customers of the merits of this
order, since they naturally want to see visible results, but it is the soundest
approach to ensure success.

The spiral

model

Figure by Conrad Nut-
schan (Wikimedia
Commons), adapted
from Boehm, “Soft-
ware Engineering
Economics”, Prentice
Hall, 1981.

§19.5 LIFECYCLE MODELS AND AGILE DEVELOPMENT 717

The tasks appearing in each cluster’s development are the expected ones from
the waterfall, with one innovation: G for Generalization. The idea here is that
once you have satisfactorily implemented a cluster you may not be through yet
if you are interested in reusability. The goal of the Generalization phase is to
remove from the cluster’s classes any property that needlessly limits their
applicability, such as dependencies on specific parts of the project, built-in size
limits, insufficient contracts and imperfect inheritance structures. As a result the
cluster’s classes may be applicable to future developments in addition to
providing an answer to the immediate needs of the project.

The development of each cluster proceeds continuously rather than through
a sequence of separate steps (as in the waterfall). This is the idea of seamless

development, particularly important in the Eiffel approach, where analysis,
design and implementation all use the same notation and all build on the same
basis, starting for example with high-level deferred classes that describe the
problem, so that the design and implementation phases consist of refining and
enriching these classes. This facilitates reversibility, the ability (symbolized by
the reverse red arrows on the figure above) to go back in the process to improve
or correct an imperfect first version.

Agile development

In reaction to the rigidity of some process models, agile methods, in particular
the approach known as “extreme programming”, de-emphasize plans and
processes and focus instead on elements such as:

The cluster

model

A: Analysis
D: Design
I: Implementation
I: Verification & Validation
G: Generalization

Cluster 1

Cluster 2

Cluster n

INTRODUCTION TO SOFTWARE ENGINEERING §19.6718

� Working code as the principal measure of progress.

� Collaboration between developers but also with customers, who are
expected to have a representative in every development team.

� Frequent communication.

� Tests (rather than specifications) to guide the development.

� Small increments of development, to provide a constant feedback loop, and
continuous integration (compile and test changes immediately, and integrate
them promptly into the project baseline, rather than waiting for weeks or
months and running the risk that two parts of the project diverged and have
become hard to reconcile).

� Specific practices such as “pair programming” (developers systematically
writing code in is groups of two people sharing their thinking aloud, to make
programming choices explicit and catch more errors early).

The original introduction of agile techniques in the nineties caused considerable
controversy and appeared at the time like a sociological phenomenon — the
revolt of the cubicles (the programmers) against the corner office (the
managers), or if you prefer the tussle between Dilbert and his pointy-haired
boss. Things have cooled down considerably, and many agile practices, such as
continuous integration, have been widely adopted. Others, such as the primacy
of tests over specifications, remain questionable. But it is becoming clear that a
software process can be both structured and agile.

19.6 REQUIREMENTS ANALYSIS

The rest of this book is almost entirely about technology. Without the proper
programming techniques — algorithms, data structures, contracts, performance
analysis, modular structures, compiler support, tool support and others that we
have studied — projects will fail. But technology, however indispensable, is not
sufficient. Successful systems are built to serve their stakeholders, in particular
users, and must be adapted to their needs. Requirements analysis is the task of
achieving a good match between what the users want and what the system does.

This is one of the core tasks of software development; it is hard, but can be
quite enjoyable. There is perhaps no better way to dispel the popular view of
software developers as introspective nerds than to note how much time, in the
daily practice of their job, they spend interacting with users and other
non-technical parties.

The following overview of the requirements task describes some of the
challenges that it faces and a few principles that you should keep in mind to
produce effective requirements.

§19.6 REQUIREMENTS ANALYSIS 719

Products of the requirements phase

A requirements process should produce two concrete results:

� A requirements document describing the characteristics of the software to
be built.

� A V&V plan (often, just a test plan) describing how that future software,
once built, will be assessed.

The second product is often neglected, but it is as important as the first: the time
to come up with a good test plan, and more generally a good quality assurance
plan, is before the software has been built. This ensures in particular that the
tests assess whether the system satisfies its actual intent: the later the tests are
defined, the more likely it is that they will be driven by the chosen design and
implementation solutions and less by the original user needs. (In other words the
risk is to get a V&V plan that tilts more towards verification, away from
validation, and hence fails to assess fulfillment of the most important
stakeholder objectives.)

The IEEE standard

A useful resource exists for preparing requirements: a standard of the IEEE
Computer Society (together with the ACM, one of the most active professional
associations in information technology — we already encountered one of its
standards, for floating-point arithmetic). The “Recommended Practice for

Software Requirements Specifications” standard defines some best practices for
requirements, including a universal structure for requirements documents.

This is a short and simple standard; it is a good idea to read it for its advice,
and, if you have to write requirements, to follow the recommended structure,
which the industry uses widely. This structure consists of three parts:
introduction, overall description and specific requirements. Part 2, overall
description, includes: product perspective; product functions; user
characteristics; constraints; assumptions and dependencies; apportioning of
requirements. Part 3 goes deeper into details of the system, including external
interfaces, performance requirements and database requirements.

All this is no more than a checklist of the system properties that
requirements may need to address. Because so many of these properties can
affect the success of a software development, following the standard helps
projects avoid costly upfront mistakes.

 → Precise reference
in “Further reading”,
19.9, page 740.

← The floating-point
standard was cited in
“Computing with
numbers”, page 279

INTRODUCTION TO SOFTWARE ENGINEERING §19.6720

Scope of requirements

A software system is almost always part of a bigger system. “Embedded”
software, say in a digital camera or a cell phone, is part of a system involving
hardware. “Business” software is part of a system involving company processes.
One of the first decisions to make when preparing the requirements is to define
boundaries: do the requirements cover the software part only, or the entire system?
The first answer does not mean you can ignore the rest of the system: you still have
to specify the interfaces between the software and its operating environment.

Another important distinction, already noted, is between functional and
non-functional aspects:
� Functional requirements specify the system’s responses. “If the input in the

social security number field is a valid social security number, the system

shall display the first and last names of the corresponding person” is a
functional requirement.

� Non-functional requirements specify all other properties of a system, such
as constraints on performance, availability and ease of use. “Displaying the

first name and last name shall take no more than 0.2 seconds in 99.5% of

requests” is an example of non-functional requirement.
Note the terminology: “a requirement” is a unit of specified behavior, functional
or non-functional, as in each of these examples; “the requirements” means the
collection of all such individual units.

Obtaining requirements

The process for obtaining (or “eliciting”) a system’s requirements varies widely.
It can be very informal, with a few people laying down the essentials of the system
and proceeding quickly to actual development. The “agile” approach mentioned
above favors constant interaction with customers rather than a heavy upfront
requirements process. Many large industry projects, however, devote considerable
effort to getting the requirements right first, while sometimes leaving room for
later revision as the construction of the software yields new insights.

This last comment highlights a general feature of requirements gathering. You
might think that in an ideal process the system is entirely derived from “user
needs”: the requirements team patiently goes around, asking customers what they
want; they record all the answers, sort them out, organize them into a requirements
document, and hand out the document to a development team which implements
the customers’ desires. Things almost never happen this way. Nor should they:
� Various stakeholders often have conflicting views; someone must resolve

the conflicts.
� User demands often include a mix of easy, feasible and hard (or impossible)

features. Users often do not have a clear understanding of what is easy and

§19.6 REQUIREMENTS ANALYSIS 721

what is hard. Only the development team can assess the technical cost of
each requested functionality, an essential criterion in deciding whether to
include individual requirements.

� Users tend to think in terms of existing systems (or, at the other extreme, of
systems that are impossible to build); often, developers are in a good
position to propose functionalities that users would not have imagined.
(This is a general feature of technology innovation: few breakthrough
products — pick your favorite example, software or not — were designed
by just gathering the wishes of a panel of potential users. The technologists
listen to the users, but come back with “What if I gave you a device that
looks like this?” proposals of their own.)

� Many external factors affect the final choice of functionalities, such as
budget constraints, the existence of a previous software system, and the
need to interface with other systems; think for example of the common case
of a company being acquired by another, which has its own software.

These observations indicate that, beyond the simplistic view of a process that
would just gather user needs then implement them, any realistic requirements
process is a negotiation: users express the desirable, developers describe the
feasible, and after a few iterations they agree on a middle ground. Such
discussions can be quite creative, the two groups together devising solutions
that neither would have initially imagined on its own.

The requirements process must support this model. While there is such a job
description as “requirements engineer”, the requirements effort should include
the principal members of the software development team. They have a special
role among stakeholders: if they cannot implement the required functionalities,
the requirements document will be worthless. Even if the task is technically
feasible, it has little chance of success if the development group is
fundamentally hostile. The practical rule is that the development should not start
until the requirements document has been endorsed — concretely, signed — by
representatives of the two critical groups of stakeholders: the principal
decision-maker on the customer side (the person who holds the purse strings)
and the head of the development group. Many a software project failure would
have been avoided if the project had applied this simple rule.

Sometimes a company will perform a requirements process without having selected
a development team, external or internal (hence making this rule inapplicable); the
idea is to define the needs first, and then to decide who is best equipped to answer
them. This is a risky practice. It can lead to unrealistic requirements, in particular if
the company hires external consultants for the requirements analysis. As I have seen
too often in industry projects, such a process invites over-ambitious requirements:
why strive for realistic demands if you know your responsibility stops there? The
temptation is too great to please your customer by making promises that someone
else will have to fulfill. In the best cases, requirements have to be redone —
inevitably, in the direction of more limited functionality — when a development
team takes over; in the worst cases, the development fails to implement the
requirements, resulting in either delays or failure.

INTRODUCTION TO SOFTWARE ENGINEERING §19.6722

Techniques for gathering requirements include

� Interviews. You go around and ask representatives of each stakeholder
category what they would expect from a new system or an extension to an
existing system. The interviews must be carefully prepared, including both
questions on predefined issues and open-ended parts allowing stakeholders
to describe their thoughts freely. It is common practice to videotape the
interviews for later perusal.

� Workshops. Gathering a number of stakeholders in a room for a discussion
of desirable features may be a better use of time than conducting many
individual interviews. Because the setting encourages discussions, you may
avoid the painful process of discovering contradictions between the requests
of different stakeholders and resolving them after the fact; different views
may come out early and be reconciled through direct interaction.

� Previous systems. Few developments start in a virgin environment. Usually,
the company has in the past built or acquired software addressing some of
the same needs. Studying these existing systems to understand their benefits
and limitations is an important part of requirements gathering. There may
even be a technical requirement that the new system perform at least as well
as an existing one, or deliver the same results in comparable cases.

� Competing systems. If you are in the business of selling software products,
you will need to know what the competition is offering. Even if the
development is internal to your company, it can be useful to study how its
competitors, who often have similar needs, are addressing them.

The glossary

Every requirements effort should develop, as one of its products, a glossary. (In
the IEEE standard’s recommended structure it is section 1.3, “Definitions,
acronyms, and abbreviations”.)

Every technical area has its jargon; stakeholders from the area, often called
domain experts, will use it in requirements interviews and workshops; they
might assume that you understand it — and that all other domain experts
understand it in the same way they do. Neither assumption necessarily holds.
Your first task in a requirements process is to list all the terms and define their
precise technical meaning. Collect all such definitions into a glossary, and show
it to the domain experts to make sure that they agree — with you, and with each
other. This will be one of your principal resources for the requirements process,
and also beyond it, since many of the concepts listed in the glossary will need
direct counterparts (classes, features and such) in the programs.

§19.6 REQUIREMENTS ANALYSIS 723

Machine properties and domain engineering

An important distinction to keep in mind when writing requirements
(emphasized in particular in an important book by Michael Jackson) is between
domain and machine properties. Any system will function in some domain,
natural or human, which has its own laws: an electronic system is subject to
physical limitations on signal speed; a banking system is subject to banking
regulations. The software’s development will yield a system — a “machine” —
that adds its own rules. Jackson emphasizes the need to distinguish between the
resulting two categories of requirements elements:

� “No transfer shall be accepted if it would cause the account balance to

become less than the approved overdraft limit” is a domain property: it is
imposed by the environment, here business or legal rules.

� “A transfer attempt that would bring the balance below the approved

overdraft limit shall result in the sending of an email to the account manager”
is a machine property, describing a particular decision being made for the
system. (In an actual requirements document, it would have to be stated more
precisely.) This particular machine requirement follows from the preceding
domain requirement, but not all machine requirements will have this direct
relationship to the domain; some are purely system-related decisions.

In the short text describing the Paris metro, the statement that “It is a property

of the metro network that such a route always exists between any two stations

(in mathematical terms, the graph is connected)” was a domain property: any
software system dealing with the metro must take it for granted. The
south-to-north station numbering rule (explicitly introduced as a way “to make

our life easier”), is a machine property, describing a particular convention we
chose to model the metro.

Out of this need to understand the domain emerges a new software
engineering task, distinct from requirements engineering: domain engineering,
devoted to modeling the general properties of an application domain. Domain
engineering is not tied to a particular project, but helps the requirements process
of all projects in the chosen domain. For example a company that regularly
develops train control software may invest in a non-project-specific effort to
model the general properties of railway systems.

Requirements are the combination of domain constraints and machine
properties. Too often, requirements documents fail to distinguish between the
two kinds; then readers, in particular developers, do not immediately see what
is a consequence of external circumstances (the speed of light, for example, will
not change) and what might be reconsidered in the future evolution of a system.
For this reason, it is important for the requirements document to specify the
nature, domain or machine, of every individual requirement.

→ Reference in “Fur-
ther reading”, 19.9,
page 740.

 Jackson (2004)

← “Touch of Paris:
Welcome to the
Metro”, page 52 and
“Conventions: Line
numbering”, page 58.

INTRODUCTION TO SOFTWARE ENGINEERING §19.6724

Fifteen properties of good requirements

Let us now complete this overview of the requirements phase by taking a look
at the properties — fifteen of them! — that good requirements should satisfy:
requirements on requirements. I should note that I have never seen a
requirements document that satisfied all of them; but they provide a clear set of
objectives for any requirements writer. Some, but not all, appear in the IEEE
standard; they are marked with an asterisk * below.

Requirements should be justified. Every individual requirement should
have its source in some identified and explicitly stated stakeholder need.

They should be correct*: any system that satisfies the requirements should
meet stakeholder needs. This is very hard to guarantee formally; informally, you
should make sure that all stakeholders know and approve the requirements
affecting them, which brings up the next point.

Requirements should be complete: they should cover all approved
stakeholder needs. In principle this is impossible to ascertain, since the
immediate question arises: complete with respect to what? Any answer would
have to refer to some higher-level description of the intent; but that would just
be another requirements document, meaning that we would only have pushed
the completeness problem one level further. In practice, a useful heuristics
exists, based on concepts introduced early in this book:

Like a class, any system provides some commands and some queries: you can
ask the system to perform some actions, and you can ask it for information. A
requirements document will describe both the commands and the queries; the
information should be sufficient to enable the reader to determine how executing
any one of the listed commands will affect any one of the available queries.

“Sufficient completeness” is a technical term, introduced in a 1978 article by Guttag
and Horning to characterize properties of abstract data types, the theoretical basis
for object-oriented programming.

Touch of Methodology:
Sufficient completeness

A requirements document should define the effect of every command of the
system on every query of the system.

← “Features, com-
mands and queries”,
page 26.

→ Precise reference in
“Further reading”,
19.9, page 740.

§19.6 REQUIREMENTS ANALYSIS 725

Requirements should be consistent: they should not include contradictions.
This is surprisingly difficult to achieve. The difficulty comes in part from the
size of many industrial requirements documents, which can run into hundreds
or thousands of pages for complex systems. Inconsistencies will slip in, page
325 stating that the system must close the door before sounding the beep that
signals the train will be moving and page 1232 implying the reverse. But of
course the programmers will have to implement one or the other, so the
requirements phase is the time to detect and correct such inconsistencies.

Note the difference between consistency and correctness: consistency is internal to
the requirements document; correctness addresses its satisfaction of some external
constraints. This is the same distinction as between verification and validation.

Requirements should be unambiguous. What makes this goal challenging is
that most requirements documents are written in a natural language, with its risk
of imprecision and misinterpretation. Consider this example:

The Background Task Manager shall provide status messages at

regular intervals not less than 60 seconds.

It is easy to think of many ways the system’s developers could understand this,
some leading to results that users will find highly unsatisfactory. The
requirements expert who cites this extract proposes as a replacement (making
some guesses about the intention, to be confirmed with customers):

1. The Background Task Manager (BTM) shall display status

messages in a designated area of the user interface.

2. The messages shall be updated every 60 (plus or minus 10) seconds after

background task processing begins and shall remain visible continuously.

3. If background task processing is progressing normally, the BTM

shall display the percentage of the background task processing that

has been completed.

4. The BTM shall display a Done message when the background task

is completed.

5. The BTM shall display an error message if the background task

has stalled.

This is far more precise and in a typical style for industrial requirements
document (of which the word “shall”, already present in the first variant, is a
fixture, encouraging requirements writers to be clear about what the system
must do). But the example, in its obsession to leave no stone unturned, also
illustrates the difficulties and limits of requirements specification, and helps
understand why carefully written requirements documents can run, as noted
above, into the thousands of pages.

← “Major software
development activi-
ties”, 19.4, page 712.

Example from Wieg-
ers’s “Software Req-
uirements”, see refer-
ence in “Further read-
ing”, 19.9, page 740.

INTRODUCTION TO SOFTWARE ENGINEERING §19.6726

To achieve precision and remove ambiguity, natural language is often
inadequate. This is the reason why considerable work has attempted to use
mathematics for requirements; this is known as formal specification. An article
in the bibliography discusses some of the benefits and challenges.

Requirements should be feasible. It is all too possible, especially (as noted)
if those who define the goals are not those who will implement them, to produce
pie-in-the-sky requirements that will never be met. The task of a serious
requirements process includes limiting ambition and emphasizing the possible.

Requirements should be abstract. A common pitfall in requirements
preparation is to start defining design and implementation choices. Such
overspecification prematurely narrows the realm of possibilities and betrays the
mission of requirements, which should limit themselves to defining the what

and not encroach on the how.

Requirements should be traceable*. In other words, it should be possible to
keep track of the consequences of every individual requirement in the code and
all other software products. This makes it possible not only to check that a
proposed implementation takes all requirements into account but also, for any
requirements change, to track down all the software elements that may be affected.

As an example of a traceability mechanism, EiffelStudio includes a facility known
as EIS (Eiffel Information System) supporting the definition of links, both ways,
between individual elements from a requirements document and individual classes
or features of the Eiffel software. In principle, every software element should follow
directly or indirectly from a requirement, and every requirement should have some
counterpart in the software. EIS enables you to add links to (for example) a PDF or
Microsoft Word document, so that clicking the link will open EiffelStudio on the
designated class or feature; and to add links to the Eiffel code that, in the same way,
lead to the appropriate parts of the document. EIS is a direct implementation of the
traceability principle, intended in particular to facilitate requirements change.

Requirements should be verifiable*. It is useless to state a requirement unless a
clear criterion exists to decide whether a proposed system meets it. An extreme
— but unfortunately common — example of non-verifiability is a requirement of
the form “the system shall respond in real time” (to certain commands or queries).
What is real time to me may be an eternity to you; real-time response for a banking
system may be 2 seconds, for a network device it may be 100 microseconds. The
document should specify the expected response time precisely and distinguish
between average and maximum, normal and degraded operation etc.

Requirements should be delimited. It is important to state not only what the
system must do but also what lies beyond its purview.

Requirements should be interfaced: they should precisely specify the
system’s connections to other systems — software, hardware or human.

Requirements should be prioritized*. Sometimes circumstances prevent a
project from implementing all that was hoped; typical causes include budget

→ “On Formalism in
Specification”, see
“Further reading”,
19.9, page 740.

← See “Order overspeci-
fication”, page 151.

Reminder: the asterisk
identifies requirements
listed in the IEEE stan-
dard.

See docs.eiffel.com/
book/eiffelstudio/eiffel
-information-system.

The IEEE standard says
“ranked for importance
and/or stability”.

http://docs.eiffel.com/book/eiffelstudio/eiffel-information-system
http://docs.eiffel.com/book/eiffelstudio/eiffel-information-system
http://docs.eiffel.com/book/eiffelstudio/eiffel-information-system

§19.7 VERIFICATION AND VALIDATION 727

cuts, unexpected difficulties (which delay the project and lead to trimming some
functionality to release the product in a reasonable time) and the appearance of
a competing product (forcing an early release). The choice of what to remove
should not be left to the time of such project hiccups; instead, the requirements
should specify the importance of each functionality and constraint relative to
other elements of the requirements. This enables project management to make
choices on the basis of pre-agreed priorities.

Requirements should be understandable. The drive for precision and detail
can result in formidable documents. Unless the requirements are easy to consult
and understand, they will not play their due role.

Requirements should be modifiable*. Circumstances evolve, companies
get merged, customers change their mind. Like any other software product, the
requirements should be designed for change.

Finally, requirements should be endorsed. There is so much room for
misunderstanding and conflicts in project development that one should not start
without a clear, formal understanding involving at least (as already noted) the
signatures of the main representatives on the customers’ and developers’ sides.

I hope I did not scare you with this long list of requirements criteria. It is in
fact possible to write good (although perhaps not perfect) requirements
documents, reflecting stakeholders’ needs and providing a sound basis for
development and V&V. This is an important part of software development, and
a great opportunity to combine technology with business and human aspects.

19.7 VERIFICATION AND VALIDATION

The first rule of V&V is that it would be nice not to have to do it. The purpose of
all the rules of design and programming methodology in this book (and I trust you
will apply every one of them, on every single occasion) is to ensure that you
produce software that works the first time and every time. But you still have to
convince the rest of the world that it does; besides, you might still make mistakes;
or, if this sounds insulting, just consider that your assignment might be to enhance
or modify software written by another, less enlightened programmer. In practice,
Verification and Validation are a major part of the software development effort,
often consuming more time than software construction proper.

We will limit ourselves here to a quick overview of some of the basic ideas.
The discussion mostly considers programs — even though, as noted, V&V also
applies to non-program artifacts such as documentation. The term “software
quality assurance” will be used as a synonym for V&V.

This is a slight abuse of language since quality assurance includes a priori

techniques for building quality software, in addition to techniques for assessing the
quality of software once built.

INTRODUCTION TO SOFTWARE ENGINEERING §19.7728

Varieties of quality assurance

To many people, V&V only evokes testing and debugging. The range of
techniques is in fact broader.

Testing is the main kind of dynamic technique. It consists of executing the
system (hence “dynamic”) on selected inputs, to try to uncover deficiencies.

Static techniques analyze the program text without executing it. They
include code reviews, static analysis, program proving and model-checking.

We will examine testing first, then static techniques. The following terms
are useful for this discussion; it comes from yet another IEEE standard, on
software engineering terminology:
� A program execution that does not function as expected (it crashes, or

produces a wrong result) causes a failure.
� The failure is (except in the rare case of a hardware malfunction) due to a

fault: a characteristic of the software that is not what it should be. Note that
the fault is not necessarily in the implementation (the code) but might be at
any other level, such as specification or design.

� The fault is due to a mistake made by a software developer. (The term
“error” is also common, but the standard recommends “mistake” because
“error” also has the meaning of a discrepancy between the actual result and
the expectation, as in, for example, “numerical error”.)

The term bug is not part of this official terminology, although it is commonly
used to denote either faults or mistakes, and figures in debugging, the task of
correcting the mistakes to remove the faults and stop the failures. (Many people
have pointed out that “bug” evokes some creeping creature insinuating itself
into the program, and may be an attempt to shirk responsibility by pretending
that it wasn’t the programmer who inserted the fault in the first place.)

Testing

We start with the most commonly applied technique, testing. The first
observation is one of modesty: while it is tempting to think of testing as a way
to assess quality, it is not very useful in this role. The reason was expressed by
Edsger Dijkstra in one of the most quoted sentences in the history of computing
science: testing can show the presence of errors, never their absence. A failed
test reveals a fault; a successful test says little, since any realistic program has a
cosmic number of cases to be tested. Even a program to multiply two 64-bit

integers yields 2128 cases.
Dijkstra’s comment is accurate, but should not be taken as an indictment of

testing. “Showing the presence of errors” is extremely useful in practice,
enabling us to find faults before our users do. This is what testing is: a technique
to make programs fail.

IEEE Std 610.12-1990,
tinyurl.com/3w57pk
(1990 text, but much of it
still useful).

“Errors” is used here
for faults.

tinyurl.com/3w57pk

§19.7 VERIFICATION AND VALIDATION 729

Testing technology has considerably progressed in recent years. The
evolution has been towards more automation. Frameworks now exist, for all
important programming languages, enabling developers to record tests and run
test campaigns automatically; they are often known generically as “XUnit”,
following the original JUnit framework for Java. They have enjoyed a wide
success since the alternative — manually managing and running the tests — is
increasingly unrealistic given the ambition of today’s programs and the
resulting high numbers of tests to run. Computer power indeed makes it possible
to carry out many tests, but the process requires automated support.

Automation is particularly necessary for the task known as regression

testing. It is a fact of software development, often surprising to newcomers, that
corrected faults may resurface in later releases (indicating that the software has
partly regressed to an earlier state, hence the name). Causes of regression include:

� Insufficiently thorough corrections, which remove the symptom but not the
cause (the original mistake).

� A pattern of mistaken reasoning that has caused several faults and may
come back even after some of them have been corrected. The debugging
advice of Tom Van Vleck in his delightful cartoon (see overleaf) is,
unfortunately, not applied widely enough:

Regression testing tries to catch such cases by running all the tests that
previously failed. Every serious project runs a regression test prior to releasing
any new version. This can be expressed as a principle:

Recent research is taking test automation even further. As an example of what
is now becoming possible, take a look at the Eiffel Test Framework which (since
version 6.3) has been an integral part of EiffelStudio. You will notice, in
addition to standard “XUnit” mechanisms, two advanced facilities:

� Test synthesis from failure: every failed execution, in accordance with the
Failed Test principle, automatically produces a test. The novelty here is the
automation. Many of the most important potential tests come from
interactive executions that failed during development, but in usual
approaches they are lost after correction and do not contribute to the
regression test suite. Here the process of turning a failure into a reproducible
test is automatic.

Touch of Methodology:
The Failed Test Principle

Every failed test must become part of the regression test suite, and remain in
it for the entire life of the project.

INTRODUCTION TO SOFTWARE ENGINEERING §19.7730

� Test generation from specifications: you can ask the Testing Framework to
test a class for you without having to provide input values. The tool will
exercise all routines of the class, using values and objects that it creates
automatically. The process can happen in the background while you are
developing your software, making itself heard only if it causes a failure
(remember, the purpose of testing is not to ascertain quality but to uncover
faults). Failures in this case are postcondition or invariant violations.

Testing is a vibrant research area, and you can expect to see many more tools
and facilities in future development environments.

Three questions

you should ask

about each bug

you find

(Tom Van Vleck, Soft-
ware Engineering
Notes, vol. 14, no. 5,
July 1989, slightly
adapted)

NO, IS IT A POP GROUP?

Hi-yo Eiffel,

IN C

BE DONE IN THE PARENT

THIS STUFF SHOULD REALLY

§19.7 VERIFICATION AND VALIDATION 731

Coming back to today’s testing technology, a few more notions are worth
noting (and looking up, for details, in software engineering textbooks and the
testing literature).

Testing occurs at several levels of granularity. Unit testing covers individual
modules — typically classes or clusters in object-oriented development — and
is usually carried out by individual developers. Integration testing assesses how
a group of modules or subsystems perform when combined; it is generally the task
of the development group — possibly handled by a specialized subset of that
group, the “test team” or “quality assurance team”. System testing tests the system
as a whole; often the term denotes a step that is still performed by the development
group or its test team, unlike acceptance test, which determines the acceptability
of the system from the customer’s viewpoint, and is the responsibility of the
customer organization, or of a joint customer-developer group.

For unit testing, it is common to distinguish between the white-box and
black-box approaches. In white-box testing, the program text is available to
guide the testing process, whereas black-box testing relies on the program’s
specification only. Black-box testing is the only solution if you acquire
components from an external provider, do not have their source text, and want
to assess their applicability to your development; but it may be interesting even
for software of which you could consult the source if you wanted to. As an
example of this last case, the just-noted mechanism for automatic test
generation from specifications, in the Eiffel Test Framework, does not use the
implementation but works on the sole basis of the class API including contracts.

Finally, we note the concept of test coverage, mostly applied to white-box
testing in the current state of the art. Coverage is a measure of the quality of a
test suite (a collection of test cases), attempting to estimate how much of the
functionality has been tested. Coverage measures include:

� Instruction coverage: what percentage of the program’s instructions does
the test suite exercise?

� Branch coverage: what percentage of branches (elementary paths of the
program, for example the two branches of a Conditional) are exercised?

Many other coverage criteria exist, although in the end the only one that really
counts is how many faults a test suite uncovers (which may or may not correlate
with elementary coverage measures). A black-box generalization of the notion
of coverage would be to define specification coverage, estimating how many of
the cases permitted by the specification have been tried.

Also called “statement
coverage”.

INTRODUCTION TO SOFTWARE ENGINEERING §19.7732

Static techniques

We conclude this review of V&V by taking a look at static techniques.
Design and code reviews, also known as inspections, are a manual process
designed to uncover faults and other deficiencies. The target is some software
element, typically under the responsibility of one developer: a program unit such
as a class, but also possibly (since reviews can also apply to products other than
programs) some part of a design document or even a chapter from a user’s
manual. The text is circulated in advance, and discussed in a meeting whose
purpose is to discover possible problems. The meeting has no other goal: it is
not intended to correct these problems (that will be the developer’s
responsibility, after the meeting), or to evaluate the developer.

This is the description of the classical idea of code reviews; with the advent
of the Internet and the increasing practice of using geographically distributed
development teams, the process can take advantage of remote interaction
techniques. One of the lessons of such experiences is that code reviews are more
effective if conducted partly in writing; the process starts ahead of the meeting,
wi th pa r t i c ipan t s annota t ing a common document (us ing Web
document-sharing technology that only became widely available in recent
years). It turns out that in most cases the original developer and the critics agree.
The meeting (in practice, a conference call) can then be devoted to the most
interesting issues, those on which disagreement remains.

My article “Design and Code Reviews in the Age of the Internet” (Communications

of the ACM, vol. 51, no. 9, September 2008), describes the process in more detail.

We cannot expect to use reviews as an effective tool for systematic detection of
faults: reviews are a time-consuming human process, which does not scale up.
Rather, they are spot checks; they will discover some faults (it is indeed a good
idea to apply reviews to critical modules), but the main benefit of performing
reviews is to assess an organization’s or team’s overall design and code practices,
especially practices that can damage quality. It is therefore important, whenever
a review has identified a deficiency, to probe further into its causes and ponder
what techniques can be used to avoid similar mistakes in the future.

A more effective static analysis process requires automated tools. If you
have used a compiler for any statically typed language you have used a static
analyzer, since part of the compiler’s role, as we have seen, is to enforce the type
system. Beyond such direct implementation of programming language rules,
static analyzers look for code patterns that might be faulty even if they do not
explicitly violate the language definition. Examples include:
� Variables that can, on some program paths, be accessed before they have

been set (in a language that does not include automatic initialization rules).
� Variables that are not used (not necessarily a fault, but an anomaly).
� Void calls (if the language does not enforce void safety).

Available on the ACM
site and at se.ethz.ch/
~meyer/publications/
acm/reviews.pdf.

← “The compiler as ver-
ification tool”, page 338.

http://se.ethz.ch/~meyer/publications/ acm/reviews.pdf
http://se.ethz.ch/~meyer/publications/ acm/reviews.pdf
http://se.ethz.ch/~meyer/publications/ acm/reviews.pdf

§19.7 VERIFICATION AND VALIDATION 733

The ultimate form of static analysis is program proving, the most ambitious
but also the hardest approach. It uses the term “proving” in the mathematical
sense and hence assumes that the properties of the software have been
mathematically, or “formally”, specified. Eiffel’s contracts give an idea of how
such specifications may look like: every software element is characterized by a
precondition and a postcondition (for routines) or an invariant (for a class).
These are abstract specifications of functionality. For full program proofs, the
specifications must be more detailed, but the general idea remains applicable.
“Proving” a class then means establishing through mathematical techniques that
every implementation satisfies the relevant specification: every routine, started
in any state satisfying its precondition and the class invariant, will terminate its
execution in a state satisfying its postcondition and again the invariant.

This form of specification is in line with the observation, earlier in this chapter, that
the correctness of a program can only be defined with respect to a stated
specification. Here the specification takes the form of contracts, and correctness
means that the implementation is consistent with the contract.

Because of the many details involved in such proofs, and also because
human-written proofs are subject to error and would not necessarily be trusted,
the process must (beyond academic examples) rely on automatic tools, known
as program provers. Many program provers run on top of theorem provers,
which are able to perform general mathematical reasoning. Work on theorem
and program provers has proceeded for decades, and has received new impetus
in recent years thanks to advances in proof technology and a better
understanding of the issues. This is a very active research area.

Some of the most impressive progress has been brought by techniques that
generally do not attempt full proofs of functional correctness, but focus instead
on identifying specific faults, the way testing does. Model checking takes
advantage of computing power to explore the state space of the program, or
more realistically of a simplified version of the program; if it succeeds in
reducing the state space to a tractable size, it can determine whether any of the
states violates the property of interest, often a correctness or security property.
This approach integrates some ideas from testing (exploration of many cases,
focus on uncovering faults rather than establishing full correctness) but is a
static technique and in fact a form of proof. Abstract interpretation defines an
abstract version of a program to which it applies advanced static analysis
techniques; one of its success stories is the proof that large safety-critical
programs embedded in the Airbus A330/340 and A380 planes will not produce
any run-time failures.

← “Immediate prod-
uct quality”, page 707.

INTRODUCTION TO SOFTWARE ENGINEERING §19.7734

What does this practically mean, you may ask, for the daily practice of
programming? It really depends where you work. For a long time, “formal
methods” — as proofs and related techniques are known — were considered an
intellectually attractive idea not applicable to industry developments. (Calling
an approach “academic” is often the kiss of death.) This view is simply no
longer tenable today. With the steady improvement in both theory and tools, and
the increased awareness of the risks of malfunctioning software systems, a
number of industry developments have used formal methods and tools. Some of
the lessons are encouraging and some sobering:

� On the positive side, formal tools work. It is possible to develop realistic
systems equipped with full guarantee of correctness. Note, by the way, that
such proofs do not mean that the software is perfect, only that it meets the
specified properties under specified assumptions (for example, that the
hardware works right); they make no other claim. Still, they are solid enough
to remove the need for certain kinds of test; there is generally no point in
testing correctness properties that have been mathematically proved.

� The limitation is that such impressive results can only be obtained, in the
current state of the art, through a special development process and by
specially trained development teams. In addition, they generally assume a
drastically reduced programming language; often you have to renounce
most of what makes life worth living: classes, inheritance and its
consequences (polymorphism, dynamic binding), genericity, dynamic
object creation, recursion…

All these features of modern programming language technology are there for a
reason: facilitating the construction of large programs with elegant architectures
open for extension and reuse, and enhancing the programmers’s power of
expression. As a result, the use of formal methods has largely been confined so
far to areas where such criteria have to yield to one crucial goal: correctness.
This is the case with life-critical systems, such as train or plane control systems,
where everything must be done to avoid malfunctions. The Airbus software is a
representative example.

The rest of the industry is generally not willing to adopt the kind of
asceticism that such techniques impose on their followers. Considerable
research is in progress to make them more applicable to more mainstream
developments; Tony Hoare has initiated a “Grand Challenge” to encourage a
concerted international attack on the problem of producing verified software.
We can indeed hope that, within a few years, fully formal tools will benefit even
those of us who do not have the privilege that their programs, if they
malfunction, will kill someone.

§19.8 CAPABILITY MATURITY MODELS 735

19.8 CAPABILITY MATURITY MODELS

Our last topic for this chapter covers a general organizational approach that
companies have increasingly applied in recent years. It is in line with the ideas
behind the lifecycle models discussed earlier in this chapter, but extends them
to a more general framework.

Assume you are in an organization that needs to contract out some
development to a software company. There is no product yet to assess, so all you
can evaluate is the process. The company tells you they have everything under
control, but how do you know?

In the early nineties this need for objective evaluation of companies’ software
processes led the US Department of Defense (DOD), the world’s largest
consumer of software services, to ask the Software Engineering Institute, a
DOD-funded center at Carnegie-Mellon University in Pittsburgh, to develop a
model for the level of industrial “maturity” of software organizations. The
resulting “Capability Maturity Model”, further developed into a more
comprehensive set of models known as CMMI (“I” for “Integration”), has exerted
a profound influence on several segments of the software industry, in particular:

� US defense contractors, its initial target.

� Indian software companies, probably not part of the initial plan; India’s
nascent outsourcing industry saw in the CMM, as it was then called, a
critical tool for obtaining outside certification that would reassure the
Western customers they were trying to attract. Soon after the model was
released, Indian companies started to account for a significant share of
CMM certifications.

CMMI is also used outside of these communities. As a sign that it has extended
its reach beyond its initial target group, the proportion of defense contractors
and military organizations in CMMI assessments went down to 40% in 2004
and continues to decrease.

Some companies seeking process improvement and qualification prefer other
models. The 9000 series of standards from the International Standards Organization
(ISO) is the software-oriented branch of a set of international standards for
industrial quality in general. SPICE (Software Process Improvement and Quality
dEtermination) combines some elements of the other two. This overview only
considers CMMI.

CMMI scope

CMMI and friends examine only the process. They are technology-neutral,
language-neutral and tool-neutral. All they assess is whether the organization
has a set of clear procedures in place, applies them, controls that it applies them,
measures their effect, and strives to improve them. In terms of the earlier
discussion of software quality, the emphasis is on process factors, especially the

← “Components of qual-
ity”, 19.3, page 705.

INTRODUCTION TO SOFTWARE ENGINEERING §19.8736

last five on our list. Think of the pilot and copilot going through their check-list
prior to a flight: what matters is that they consider every single item on the list,
tick it off if it’s OK, and follow the predetermined action (such as calling aircraft
maintenance) if not. Because of this emphasis on formal procedures at the
expense of technology, some people dismiss process models as merely a way for
managers to “cover their bottoms” in case the project fails, by showing that they
did everything by the book. Indeed there have been cases of project failures in
organizations with high CMMI or ISO qualifications. But such dismissal is a
classical case of confusing necessary with sufficient: software projects,
especially large ones, need both high process quality and excellent technology.
While you can still mess up if you have a perfect process, process qualification
helps companies not mess up.

Key to CMMI is the notion of assessment. Organizations wishing to
establish their “maturity level” as discussed next may get themselves evaluated
— in the military’s passionate acronym culture this yields an example of
acronym nesting, SCAMPI for “Standard CMMI Appraisal Method for Process

Improvement” — by assessors officially accredited by the Software Engineering
Institute: 179 “SEI partners”, organizations rather than individuals, as of 2005.
Assessed organizations may publish the results of the assessment — typically,
to boost their attractiveness if they are software companies — or keep them for
themselves. Between April 2002 and September 2004, the SEI was notified of
424 appraisals affecting 206 companies, half of them outside the US.

CMMI disciplines

As the I in the acronym attests (“Integration”), CMMI outgrew the original
CMM to cover a range of models that extend beyond software; their four
“disciplines” include software engineering but also:

� “Systems engineering”. This concept covers non-software aspects of a
system; indeed, software is often part of a bigger system — think of the
software in your car, music player or refrigerator — which has its own
process involving hardware, software and other aspects.

� “Integrated product and process development”.

� “ Supplier sourcing”: selecting, controlling and coordinating all the suppliers
that contribute to a project. Large projects often involve the participation of
many suppliers; in some cases, for example a government customer with no
software development department of its own, a project is entirely outsourced.
Supplier sourcing is the process of overseeing outsourced work.

An organization interested in implementing CMMI and being assessed may
select from these disciplines, depending on its activity and needs.

← “Process quality”,
page 710.

§19.8 CAPABILITY MATURITY MODELS 737

Goals, practices and process areas

The essence of CMMI is to define goals and recommend practices:

� A goal is a desirable property of a process. For example, every project
should have good requirements, describing user needs; this observation
yields goals such as “Develop customer requirements” and “Analyze and

validate requirements” (that is to say, it is not enough just to produce
requirements for a project, but one should also have formal procedures to
check that they are feasible and satisfy the stakeholders).

� A practice is a technique that has been shown to help achieve a goal.
Examples are “Establish a definition of required functionality” and
“Analyze requirements to establish balance between stakeholder needs and

[project] constraints”.

As the examples indicate, every practice must be related to a certain goal; using
software terminology, the goal is a specification and the practice an
implementation (carried out by humans) of that specification.

Such goals and the corresponding practices are grouped into collections
called process areas. The preceding examples are part of the process area
“Requirements development”.

The term “area” is not intuitive, so to understand the rest of the discussion you must
remember that a “process area” is exactly what this definition says: a collection of
goals and of practices supporting those goals.

Two models

CMMI exists in two variants: staged and continuous. The difference is scope:

� The staged variant addresses the maturity level of an organization as a
whole. This has the merit of yielding a single, global figure (“Our division
just achieved CMMI qualification at level 4!”) but ignores the differences
between various activities and specialties; for example an organization
might be very good at software construction but not have mastered
requirements yet. Staged description is in the tradition of the original CMM,
and is still the dominant practice.

� Continuous description allows assessment of individual process areas and
hence provides more flexibility.

Common to both variants is the notion of assessment level. CMMI enables you
to qualify your organization — all of it if staged, some of its process areas if
continuous — at one of five levels, labeled 1 to 5 in order of increasing
closeness to the Nirvãna of total control. (The continuous representation adds a
level 0, “incomplete”, for process areas not applied.)

INTRODUCTION TO SOFTWARE ENGINEERING §19.8738

In the staged variant, each level is characterized by a set of process areas:
you reach that level if you apply the applicable practices and meet the
corresponding goals. For example, reaching level 2 assumes that you satisfy
Requirements management and other process areas listed below. In addition,
each level has one generic goal and an associated set of generic practices not
belonging to any process area; for example level 2 has the generic goal
“Institutionalize a managed process”, meaning a company-wide definition and
enforcement of a development process, and associated generic practices such as
“Plan the process” and “Provide resources”.

As a consequence of these concepts, the goals and practices are divided into
two categories:

� Generic: characterizing a CMMI level, but not belonging to a particular
process area.

� Those belonging to a process area, called specific.

Assessment levels

Here is the general characterization of the levels, in the staged variant. The more
precise definition comes from the table on the facing page, which identifies the
generic and specific goals of each. There are, as noted, five levels:

1 Initial: this characterizes an organization with little process definition or
enforcement. Some projects succeed, others not, but no one quite knows the
reason. It is like going for mushrooms in the woods on a rainy day in
October: this oak has lots, that one has none, but why? To me they look just
the same. In software development this is sometimes known as the “heroic”
stage: success depends too much on the people involved, their willingness
to make extraordinary efforts, and the poorly controlled circumstances of
each project.

2 Managed: at this level there is a real process; the organization has defined
policies that include a description of the process and plans for carrying it
out; it has allocated resources and defined responsibilities to meet these
plans; application of the process is monitored, reviewed, and reported to
higher management; stakeholders are defined and involved; and a
mechanism is in place for configuration management. In other words, the
process has been defined and is carefully carried out.

3 Defined: this is a managed process (from now on each level assumes the
preceding ones) with more systematic procedures. The main difference with
the previous level is the mix of generality and tailorisation: there is a global
but customizable process model for the organization as a whole, and the
process for any project is customized from it.

Note for Argentinian,
Australian, Brazilian
and South African
readers: for “Octo-
ber”, read “April”.

Not to be confused
with Taylorisation
(which is how critics
would characterize the
whole thing).

§19.8 CAPABILITY MATURITY MODELS 739

4 Quantitatively managed: in addition to the previous requirements, the
process makes extensive use not only of quantitative data (such as measures
of costs, development time, reliability and service quality) but of statistical
quality control techniques to analyze the data in depth and use the results as
part of the process.

5 Optimized: this level adds a feedback loop that uses data collected about
the projects to question the process and improve it continually, both
incrementally and through more innovative changes.

The following table describes, more precisely, what must be achieved at each
level (starting at 2 since by definition there is nothing to report at level 1).

Level Name Generic practices Process areas

2 Managed Requirements management
Project planning
Project monitoring & control
Supplier agreement management
Measurement & analysis
Process & product quality assurance
Configuration management

3 Defined Requirements development
Technical solution
Product integration
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management for IPPD
Risk management
Integrated teaming
Integrated supplier management
Decision analysis & resolution
Organizational environment for integration

4 Quantitatively

managed

Organizational process performance
Quantitative project management

5 Optimized Organizational innovation & deployment
Causal analysis and resolution

INTRODUCTION TO SOFTWARE ENGINEERING §19.9740

The CMMI defines, for each level, a precise set of goals and practices. We will
not go into these here, but perhaps this overview will have given you the
incentive (and courage, see the comments below) to go to the CMMI literature
and learn the details by yourself. In the process, you will encounter a technique
known as the Personal Software Process, which applies some of the same ideas
to the work of individual developers.

19.9 FURTHER READING

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli: Fundamentals of

Software Engineering, 2nd Edition, Prentice-Hall, 2002.
A well-known software engineering textbook, providing excellent
coverage of the field. Other good textbooks are by: S.L. Pfleeger and
J. Atlee (3rd edition, Prentice Hall, 2005); and Roger Pressman (6th
edition, McGraw Hill, 2005).

IEEE Computer Society (Software Engineering Standards
Committee): IEEE Recommended Practice for Software Requirements

Speci f ica t ions , IEEE Std 830-1998, ava i lab le onl ine a t
ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=15571 (at the time of
writing, access requires personal or institutional membership).

A short standard describing best practices for writing
requirements documents, included a recommended document
structure that is widely applied in industry.

Bertrand Meyer: On Formalism in Specifications, in IEEE Software,
vol. 3, no. 1, January 1985, pages 6-25. Available online at
se.ethz.ch/~meyer/publications/computer/formalism.html.

An old article explaining why it is useful to rely on mathematical
techniques to express specifications (requirements).

John V. Guttag and James J. Horning: The Algebraic Specification of

Abstract Data Types, in Acta Informatica, vol. 10, pages 27-52, 1978.
A seminal paper on the theory of abstract data types, underlying
object technology. Introduces the notion of “sufficient completeness”.

Karl E. Wiegers: Software Requirements, Microsoft Press, 2003.
A repertoire of useful rules for writing good requirements documents.

Michael Jackson: Software Requirements and Specifications: A Lexicon of

Practice, Principles and Prejudices, ACM Press, Addison-Wesley, 1995,
An excellent discussion of requirements challenges and techniques.

 Ghezzi (2008)

 Mandrioli (2008)

 Horning (2007)

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=15571
http://se.ethz.ch/~meyer/publications/computer/formalism.html

§19.9 FURTHER READING 741

Axel van Lamsweerde: Requirements Engineering, Wiley, 2009.
Another excellent book on requirements, the most recent, by one of the
authorities in the field. Strong on both theory and examples.

Bertrand Meyer and Jim Woodcock (editors): VSTTE (Verified Software:

Theories, Tools, Experiments), LNCS 4171, Springer-Verlag, 2008.
Proceedings of a 2005 conference at ETH Zurich, which launched Tony
Hoare’s “Grand Challenge”. Provides a good assessment of the state of the
art in program verification.

Frederick P. Brooks: The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley, 1995 (the
original edition is from 1975, same publisher).

At IBM Fred Brooks directed the development of OS/360, one of
the first examples of a complex operating system available across
a whole line of computers. This book, where he summarized his
experience through short individual essays, has to be mentioned
here since it is widely considered a classic in software
engineering, although that is more for its folksy advice than for
any contribution of substance.

Software Engineering Institute: Capability Maturity Model

I n t e g r a t i o n (C M M I) O v e r v i e w, on l i ne do cu men t a t
www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf.

Presentation slides providing a short overview of CMMI.

Software Engineering Institute: Capability Maturity Model® Integration

(CMMISM), Version 1.1, CMMISM for Systems Engineering, Software Engineering,

Integrated Product and Process Development, and Supplier Sourcing

(CMMI-SE/SW/IPPD/SS, V1.1) Staged Representation CMU/SEI-2002-TR-012

ESC-TR-2002-012. Sorry, I do not make those titles. Available online at
tinyurl.com/kf9uy (shorthand for www.sei.cmu.edu/pub/documents/02.reports/
pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22).

This is the official, detailed description of CMMI, staged representation.
(Continuous variant at tinyurl.com/gjla9; the two documents share a large
amount of material.) You will need to gear yourself up for the delicate
charm of Government-Committee English, an acquired taste and probably
not quite what your creative writing instructor had in mind when exhorting
you to be concise, concrete and clear. A typical sample:

The plan for performing the organizational process focus process,

which is often called ‘the process-improvement plan,’ differs from the

process action plans described in specific practices in this process area.

The plan called for in this generic practice addresses the

comprehensive planning for all of the specific practices in this process

area, from the establishment of organizational process needs all the

 Brooks (2007)

http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf
http://tinyurl.com/kf9uy
http://tinyurl.com/gjla9
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22

INTRODUCTION TO SOFTWARE ENGINEERING §19.10742

way through to the incorporation of process-related experiences into

the organizational process assets”

Wow! Once you get used to the style you will in fact find, like gems in the
rubble, a concentrate of some of the best project organization practices that
have emerged from four decades of software project management experience.

Watts S. Humphrey: PSP: A Self-Improvement Process for Software

Engineering, Addison-Wesley, 2005
Describes the Personal Software Process, a personal discipline for
programmers applying sound rules of engineering practice and
derived in part from CMMI ideas of accountability
and reproducibility.

19.10 KEY CONCEPTS LEARNED IN THIS CHAPTER

� Software engineering encompasses programming but also all the other
activities, technical or not, involved in producing software systems. It
focuses on industrial software production with defined standards of quality.

� Software engineering involves five major task categories, as captured by the
acronym DIAMO: Describe, Implement, Assess, Manage and Operate.

� Issues of software engineering affect both the development process and the
resulting products.

� Product and process quality involves many factors, from correctness and
efficiency to cost effectiveness and reproducibility.

� A software project should have a clear view of who its stakeholders are and
which goals are important for each category of stakeholders.

� Software development includes a number of clearly defined tasks, which
lifecycle models attempt to organize sequentially. Agile methods put less
emphasis on the process and more on working code and human interaction.

� The analysis of system requirements is an essential task for any project.
Requirements analysis calls for precision, for a description of system
properties free of any early commitment to implementation, for a clear view
of stakeholders’ needs, for realism and for traceability.

� System requirements include functional aspects, specifying the system’s
functions, and non-functional aspects such as performance constraints. An
IEEE standard exists for structuring requirements documents.

� Domain properties reflect external constraints; machine properties express
decisions about system properties.

� Verification and Validation can use dynamic techniques, particularly
testing, and static techniques such as design and code reviews, static
analysis, correctness proofs and model checking.

 Humphrey (2007)

§19-E EXERCISES 743

� The purpose of testing is to cause failures, revealing faults.

� Capability Maturity Model Integration (CMMI) defines five levels of
maturity for an organization’s process. At level 5, the highest, the process is
defined, documented, measured, reproducible and self-improving.

New vocabulary

The names of some of the quality factors (ease of use, production speed…) retain
their meanings from non-technical usage and do not figure in this list.

Acronym collection

19-E EXERCISES

19-E.1 Vocabulary

Give a precise definition of each of the entries in the above vocabulary and
acronym list (including each acronym’s expansion).

19-E.2 Stakeholders

Are competitors stakeholders in a software project? Discuss what part they, or
concerns about them, may play in building the software and managing the project.

Adequacy Built-in assessment Correctness

Correctibility Cost control Efficiency

Extendibility Factor (of software quality) Goal (CMMI)

Lifecycle Maintenance Measurability

Portability Practice (CMMI) Predictability

Process (vs product) Process area (CMMI) Product (vs process)

Production software Reproducibility Reusability

Robustness Security Self-improvement

Software engineering Stakeholder

CMM CMMI DIAMO

DOD ISO SCAMPI

SEI SPICE

← “Components of
quality”, 19.3, page 705

INTRODUCTION TO SOFTWARE ENGINEERING §19-E744

19-E.3 Better wrong or better late?

The overview of CMMI listed under “Further reading” attributes this comment
to an unnamed senior manager (and criticizes it): “I’d rather have it wrong than

have it late. We can always fix it later”. Discuss this statement from a software
engineering perspective.

A

An introduction to Java

(from material by Marco Piccioni)

A.1 LANGUAGE BACKGROUND AND STYLE

Java was introduced in 1995, the result of an internal research project at
Sun Microsystems led by James Gosling (other key contributors include
Bill Joy, Guy Steele and Gilad Bracha). The language came at just the right
time to benefit from two separate phenomena:
� Widespread dissatisfaction, after initial enthusiasm for object

technology in the late eighties, with the C++ language (see appendix
C), particularly its complexity and the limits of its “hybrid” approach
retaining compatibility with the non-object-oriented C language.

� The spread of Internet access and the advent of the World-Wide Web,
which seemed to call for a universal mechanism to execute programs
securely from within browsers.

The Java project, initially intended for “set-top boxes” and network appliances,
was ready to support such programs, called applets. As noted in an earlier chapter,
applets never became the dominant computing model as prophesied at the time,
but Java usage quickly expanded to many other application areas.

The following properties characterize the Java programming model:
� A close connection between the programming language and a computing

platform based on a virtual machine, called a JVM (Java Virtual Machine).
� An emphasis on portability captured by the slogan “Write Once, Run

Anywhere” and based on compilation to the JVM’s bytecode, which can
then be interpreted, or compiled to machine code, on many platforms.

� Syntax, general language style and basic instructions taken from the C-C++
line of languages.

� A strongly typed object-oriented model, with many of the mechanisms
studied in this book: classes, inheritance, polymorphism, dynamic binding,
genericity (added in recent versions). Some missing elements are multiple
inheritance (except for “interfaces”, as we will see), contracts and agents; in
addition, the O-O part of the type system does not include primitive types.

� Beyond the language proper, a rich set of libraries supporting software
development in many application areas.

 Gosling (2007)

← “Virtual machines,
bytecode and jitting”,
page 333.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.2748

A.2 OVERALL PROGRAM STRUCTURE

We first review the general structure of a Java program, starting with an
overview of the Java Virtual Machine.

The Java Virtual Machine

A Java Virtual Machine is a software system providing mechanisms to support
the execution of Java programs. (We may talk of “the” JVM as the general
specification of these mechanisms, and “a” JVM as one particular
implementation.) Here are the principal mechanisms:

� A class loader manages classes and libraries in the file system and
dynamically loads classes in bytecode format.

� A verifier checks that bytecode satisfies fundamental constraints on
reliability and security: type safety (non-null references always lead to
objects of the expected types); information hiding (feature access observes
visibility rules); branch validity (branches should always lead to valid
locations); initialization (every data element is initialized before use).

� An interpreter, the software equivalent of a CPU in a physical computer,
executes bytecode.

� A Just In Time compiler (JIT compiler or “jitter”) translates bytecode into
machine code for a specific platform, performing various optimizations.
The most widely used JIT compiler is “Hot Spot” from Sun.

Packages

Java programs, like those in other object-oriented languages, are structured into
classes, but Java offers a modular structure above the class level: the package.
A package is a group of classes (like Eiffel “clusters”, which are not a language
mechanism but an organizational concept).

Packages fulfill three main roles. The first is to help you structure your
systems and libraries. Packages can be nested, and hence make it possible to
organize classes in a hierarchical structure. This structure is conceptual, not
textual; in other words, you will not declare a package as such (with its
constituent classes), but instead declare classes and in each of them indicate the
name of its package if any:

package p;
class A {… Declarations of members of A …}
class B {… Declarations of members of B …}
… Other class declarations …

← “Null” is the same
as “void”: see
“Void references”, 6.3,
page 111.

← “Virtual machines,
bytecode and jitting”,
page 333.

§A.2 OVERALL PROGRAM STRUCTURE 749

If this is the content of a source file, all classes given belong to package p. The
package directive, if present, must be the first line in the file. Nested packages
use the dot notation: p.q is the sub-package q of p.

The package directive is optional; in its absence, all classes in a file will be
considered to belong to a special default package.

The second role of packages is as compilation units. Rather than compiling
classes individually, you can compile an entire package into a single “Java
Archive” (JAR) file.

In their third role, closely related to the first, packages provide a namespace

mechanism to resolve the class name conflicts that may arise when you combine
libraries from different providers. When referring to a class A belonging to a
package p, you may always use the fully qualified name: p.A. This technique
also applies to classes from subpackages, as in p.q.r.Z. To avoid full
qualification, you may use the import directive: writing

allows the rest of the file to use the classes from p.q without qualification, as
long as this does not create any conflict. (The asterisk ∗ means “all classes from
the package”, not including subpackages.) Fully qualified notation remains
available to resolve ambiguities.

The package mechan i sm comes wi th some me thodo log ica l
recommendations. One recommendation is to use it in its explicit form: include
every class in a named package (in other words, do not rely on the default
package). Another follows from the observation that packages and namespaces
only push the name clash problem one step, since you can still have clashes
between package names. To minimize the likelihood that this will happen, a
standard convention for packages uses names that start with the institution’s
Internet domain, listing components in reverse order; for example a package
originating with the Chair of Software Engineering at ETH Zurich (our group,
domain name se.ethz.ch) might be called

Program execution

From a command line, the command to start the execution of a Java program is:

import p.q.∗;

ch.ethz.se.java.webtools.gui

java C arg1 arg2 …

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.3750

where C is the name of a class and the optional arguments arg1 arg2 … are
strings. The effect is to execute a method (routine), which must be present in C
under the name main:

Unlike in Eiffel, this does not create an object since a “static” method (as
explained below) does not need an object. Of course main will usually create
objects, or call other methods that create objects. The optional formal argument
is an array of strings (String[]), corresponding in the above call to arg1 arg2 …
The public qualifier, also studied below, makes main available to all clients.

A.3 BASIC OBJECT-ORIENTED MODEL

We now take a look at the basic object-oriented mechanisms of Java; the
discussion assumes familiarity with the concepts of the preceding chapters.

The Java type system

Most Java programmer-defined types will, as in most examples of this book, be
reference types, each based on a class. At the top of the class hierarchy stands a
class called Object (think of ANY, but there is no equivalent to NONE).

A major difference with the type system assumed in the rest of this book
affects basic types. In Eiffel, and in C# as studied in the next appendix, every
type is based on a class; this includes basic types describing arithmetic, boolean
and character values. Java, in contrast, follows C++ in treating a number of
basic types as predefined outside of the object-oriented type system. Java has
eight such types, known as “primitive types”:

� boolean.

� char, representing 16-bit unicode characters.

� Integer types: byte, short, int and long, respectively representing 8-bit,
16-bit, 32-bit and 64-bit integers.

� Floating-point types for real numbers: float (32-bit) and double (64-bit).

public static void main(String[] args) {
… Code for main program…

}

← “System execution”,
6.8, page 130.

→“Static members”,
page 753.

← “Overall
inheritance structure”,
16.10, page 586.

§A.3 BASIC OBJECT-ORIENTED MODEL 751

You cannot use the corresponding values, such as integers and characters,
directly as objects, for example in a data structure described by a generic class
which could be used with arbitrary generic parameters. You will have to wrap,
or “box”, the values into objects. Java provides a set of boxing classes: Boolean,
Character, Byte, Short, Integer, Long, Float, Double. (The language is
case-sensitive, so Byte is distinct from byte.) So with the declarations

you can convert back and forth between the primitive and object forms:

As the comments indicate, the assignments require calls to conversion functions
between primitive (unboxed) values and their boxed equivalents, but you do not
need to use these functions explicitly; this is known as autoboxing.

The expression oi.intValue(), in the expanded form of the last example,
illustrates another difference with the concepts of this book: Java does not apply
the Uniform Access principle. A function without arguments, such as intValue
in Integer, will be called with an empty argument list as above, clearly
distinguishing it from an attribute.

Classes and members

A class contains members, the Java term for the features of a class. A member
can be a field (attribute), a method (routine), or a constructor (creation
procedure). A class text may also contain an initializer: an anonymous block of
code invoked at initialization time. The following class text contains examples
of all these categories:

int i; // Primitive
Integer ; // Wrapper

 = i; // Abbreviation for oi = Integer.valueOf(i);
i = ; // Abbreviation for i = oi.intValue()

class D {
String s; // Variable field
final int MAX = 7; // Constant field

T func (T1 a1, T2 a2){
// Method with two arguments of types T1 and T2
// returning a result of type T.

… Code for func …
}

oi

oi

oi

← “Touch of
Methodology: The
Uniform Access
Principle”, page 246.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.3752

Information hiding

A class member has an export status, which must be one of the following four,
listed in order of decreasing accessibility:

� public: available to any client.

� protected: available to the class itself, others in its package, and descendants
of the class, but not to any other classes.

� package (not a keyword, but the default): available to classes in the package.

� private: available only to the class itself.

These qualifiers also apply to classes, in particular because Java supports class
nesting. For a top-level class (not nested in another), the only possibilities are
the default (the class is accessible to others in the same package) and public.

Because of the absence of support for Uniform Access, the export status
does not mean the same as what we have seen in this book. Exporting a field
member, in any of the first three cases above, gives the corresponding clients
writing privileges as well as read access. This means that you can directly access
fields of remote objects:

void proc(){
// Method with no arguments.

… Code for proc …
}

D(){
// Constructor: same name as the containing class, no
// return type. … Code for constructor …

}

D (T1 a1){
// Another constructor, with one argument

… Code for constructor …
}

{
// Initializer

… Initializer code…
}

}

x.a = b;

§A.3 BASIC OBJECT-ORIENTED MODEL 753

This contradicts the principle of information hiding, and leads to the common
methodological practice of never exporting fields, keeping them private instead
and equipping each of them with a getter function and a setter procedure.

Static members

Another Java concept departing from the strict object-oriented style used in this
book is the support for static members.

To access a class member you will normally need a target object, and will
use the standard object-oriented notation target.member (possibly with
arguments) where target denotes an object. The keyword this denotes the
current object (Current in Eiffel).

Java also makes it possible to declare static members, which do not require
a target object and are called with the syntax C.member where C is the name
of a class. The declaration of a static method may not use any non-static
methods or fields (since they would require a target object, which the calling
method does not provide).

The main program, main, must be static as noted above; the reason is that at
the start of execution no object exists yet to call a method (unlike in Eiffel,
where execution consists of creating an object and calling a creation procedure
on it).

Abstract classes and interfaces

You may mark a method as abstract to indicate that the implementation will be
provided in descendant classes. The class in which such a declaration appears
must also be declared abstract:

This corresponds to Eiffel’s deferred features and classes, without the ability to
equip the features with contracts.

public class Vehicle {
public void load (int passengers); // No method body.
…Declarations of other members (abstract or not) …

}

← “Setters and get-
ters”, page 248.

← Page 750.

abstract
abstract

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.3754

Another difference with the deferred class mechanism is that abstract
classes — like other Java classes, as we will see in reviewing the Java
inheritance mechanism — can only participate in single inheritance: a class may
inherit from at most one other, abstract or not. This makes it impossible, using
classes only, to combine two or more abstractions into one. To ease the
restriction, Java provides another form of abstract module: the interface. An
interface is equivalent to an abstract class whose members are all abstract
methods (constants and nested types are also permitted). The declaration of an
interface looks like this:

Note that the declarations only specify names and signatures, plus values for
constants. All methods of an interface are automatically abstract and public, and
all attributes public and static constants.

Classes may implement one or more interfaces, as in

Overloading

It is possible for a Java class to have two methods with the same name as long
as their argument signatures differ: they have a different number of arguments,
or the same number with at least one different type, or the same types in a
different order. This is known as method overloading.

The convention for object creation, discussed next, fundamentally relies on
overloading: all the constructors of a class (its creation procedures) have the
same name, which is also the name of the class.

interface I {
// Constants

int MAX = 4;

// Abstract methods
void m1(T1 a1);
String m2();

}

class E implements I, J{
void m1(T1 a1) { }
String m2() }
… Implementations of the members of J (assumed to be another interface)…
… Other members of E …

}

← See the discussion
in “Deferred classes
and features”, 16.5,
page 565.

… Implementation of m1 …
… Implementation of m2 …

§A.3 BASIC OBJECT-ORIENTED MODEL 755

Outside of constructors, it is preferable to stay away from overloading:
within the same scope, different things should have different names.;
additionally, in a language supporting inheritance, overloading interferes with
redefinition (overriding).

Run-time model, object creation and initialization

The Java run-time model is similar to the model discussed in this book; in
particular, Java is designed for automatic garbage collection.

A reference not attached to any object has the value null, which is also the
default initialization value for reference variables.

The keyword void is used for something else in Java, as already illustrated: it serves
as the return type for methods which do not return a result (procedures).

Programs create objects dynamically through new expressions, as in

where o is of type D. If this is the initialization of o, it is common to combine the
declaration of o and its creation, since Java does not enforce Eiffel’s separation
between declarations (static) and instructions (dynamic):

Unlike Eiffel’s create, a creation through new always needs to repeat the
class name.

A new expression such as the above refers to one of the constructors of the
class. As noted, constructors do not have their own names (as other members of
the class do) but all use the class name, disambiguated through overloading.
Class D as given earlier has two constructors: one with no arguments; one with
a single argument of type T1, which the above creation instruction will use
provided arg1 is of type T1 or a descendant (otherwise the instruction is invalid).

The reliance on overloading can be constraining; for example it is impossible to
achieve the equivalent, in a class representing points in two-dimensional space, of
two creation procedures with different semantics, make_cartesian and make_polar

(to define a point through cartesian or polar coordinates), which happen to have the
same signature. You would need to add an argument for the sole purpose of
disambiguating calls.

o = new D (arg1); // Referring to the earlier class D, specifically
// its second constructor from page 752.

 o = new D (arg1);D

← Page 752.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.3756

It is possible for a class not to declare any constructors; in this case it is
considered to have a “default constructor” with no arguments and an empty body.

The creation process is complex. The full effect of a creation instruction
such as the above is to execute the following sequence of steps:

I1 Allocate space for an object of type D.

I2 Recursively perform steps I3 to I8 with respect to D’s parent. (D as given
has no explicit parent, hence the implicit parent Object, but if it named a
parent class the steps would be executed for that class including,
recursively, for its own ancestors up to Object.)

I3 Set all static fields to their defaults.

I4 Set static fields to values, if any, stated in their declarations (as in static int
n=5;).

I5 Execute all static block initializers.

I6 Set all non-static fields to their defaults.

I7 Set non-static fields to values, if any, stated in their declarations.

I8 Execute all non-static block initializers.

I9 Invoke a parent constructor.

I10 Execute the body of the constructor.

Step I9 reflects the Java rule that every object creation must invoke a parent
constructor in addition to a constructor of the given class. (Either or both of
these constructors may be a default constructor.) The rule is recursive, so this
chain of constructor calls goes all the way up to Object. The choice of the parent
constructor is as follows:

� The local constructor’s text may have, as its first instruction, a call to the
special method super, with arguments if needed. The keyword super denotes
the parent class, so this will result in a call to the appropriate constructor,
chosen through overloading resolution.

� Otherwise, the constructor is understood to start with super ();. In this case
the parent must have an argument-less constructor (one that it declares
explicitly, or the default constructor); the effect of the implicit super
instruction is to call that constructor.

The reason for these rules is unclear. The intent is probably to make sure that an
instance of a descendant type also satisfies the consistency constraints defined by
proper ancestors. The constructor chain mechanism may be an attempt at achieving
such consistency, in the absence of a notion of class invariant to express the
constraints explicitly.

The initialization of fields in steps I3 and I6 uses default values, as in Eiffel.
Unlike in Eiffel, the rules only apply to fields; local variables must be initialized
manually. Compilers must issue a warning if you fail to do so.

“Parent” in the
singular because of
single inheritance

§A.3 BASIC OBJECT-ORIENTED MODEL 757

Arrays

Java arrays are objects, allocated dynamically as we have done in the rest of this
book. To define an array, simply use a declaration such as

To create the array object, you may use

where size is an integer expression (not necessarily a constant). Unlike in Eiffel,
arrays are not resizable.

Array access uses the bracket notation, as in arr[i]; be sure to note that
indexing starts from 0, so in the above example the valid indexes range from 0
to size – 1. You may assign a value to an array element, as in

The expression arr.length (length is a read-only field) denotes the number of
elements of the array; after the above allocation its value will be size + 1 (since
size will actually determine the highest legal index, and indexing starts at zero)
A typical iteration on an array, using the for loop detailed below, is

where i++ increases the integer i by 1. Note that the continuation condition
 reflects that the last legal index is arr.length – 1.

You can have multi-dimensional arrays, in the form of arrays of arrays:

allowing access of the form

int[] arr; // An array of integers

arr = new int[size];

arr[i] = n;

for (int i=0; ; i++)
{… Operations on arr[i] …}

int[][][] arr3; //Three-dimensional array

arr3[i][j][k]

i < arr.length

i < arr.length

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.3758

Exception handling

An exception is an abnormal run-time event that interrupts the normal flow of
control. Typical causes of exceptions include null pointer dereferencing (void
call: x.f where x is null) and integer division by zero. In Java can also trigger a
developer exception explicitly through

where e1 is of an exception type, which must be a descendant of the Throwable
library class. More specifically, this type is in most cases a descendant of
Exception, the heir of Throwable that covers programmer exceptions. The other
heir, Error, covers system-related run-time errors.

A Java program may handle an exception in the following style:

If the try block triggers an exception of one of the types listed, here ET1, ET2 …,
execution will not complete the try block but continue with the corresponding
catch block. The finally part is executed in all cases, exception or not; its typical
purpose is to release resources, for example to close open files, before moving on.

Any occurrence of an exception produces an exception object — an instance
of the appropriate descendant of Throwable. The program can access this object,
in the corresponding catch clause, through the specified exception name (e in
all the catch clauses above). Examples of properties that you can obtain in this
way are the human-readable name of the exception and the state of the call
stack, although ordinary exception handling seldom needs such information.

If an exception occurs whose type does not match any of the listed types —
or it is triggered outside of a try block —, it is passed on to the caller for
application of this policy, until a caller up the chain has a suitable catch; if none
does, the program terminates in error.

Java introduces an interesting distinction between “checked” and
“unchecked” exceptions. The place of exception types in the Throwable hierarchy
determines which exceptions are checked, as illustrated by the following figure:

throw e1;

try {
… Normal instructions, during which an exception may occur …

} catch (ET1 e) {
… Handle exceptions of type ET1, details in e …

} catch (ET2 e) {
… Handle exceptions of type ET2, details in e …

}… Possibly more cases…
finally {

… Processing common to all cases, exception or not…
}

← “An introduction to
exception handling”,
7.10, page 200.

See the inheritance
diagram on the adja-
cent page.

§A.3 BASIC OBJECT-ORIENTED MODEL 759

Checked exceptions provide a contract-like mechanism: the rule is that if a
method can throw a checked exception, it must declare it, and then all callers are
required to handle it.

To specify that it can throw an exception, the method will use the throws
keyword (do not confuse with throw, used by the instruction that actually
triggers the exception):

If r includes throw e3; for e3 of a checked type ET3, and e3 does not appear in
its throws clause, the method is invalid — unless its body contains a try block
with a branch of the form catch (ET3 e), ensuring that the exception will be
processed within the method rather than passed on to the caller.

With the above declaration, any call to r in another method must be in a try
block containing catch clauses for the listed exception types, here ET1 and ET2.

This carefully designed mechanism has attracted praise but also some
controversy. A limitation is that one can only force the use of throws
specifications for programmer-defined exceptions, whereas the most damaging
cases often come from system-related events (void call, integer division by
zero…). When the rules do force callers to use a try block, it is easy for a lazy
programmer to write a perfunctory catch clause that pacifies the compiler but
does nothing, thereby defeating the purpose of the mechanism. This is probably
why the C# exception mechanism, otherwise almost identical to Java’s, did not
retain checked exceptions. Still, checked exceptions encourage a disciplined
approach to exception handling; you should take advantage of them if you use
programmer-defined exceptions in Java.

public r(…) {
…Code for r, including instructions

throw e1; // For e1 of type ET1
throw e2; // For e2 of type ET2

…
}

Throwable
Checked and

unchecked

exception

classes in Java

Inherits from

Exception

RuntimeException

Error

All descendants

All other descendants

All other descendants

Checked

Unchecked

throws ET1, ET2

→ “Exception han-
dling”, page 790
(about the C# excep-
tion mechanism, in the
next appendix).

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.4760

A.4 INHERITANCE AND GENERICITY

The original Java design had single inheritance and no genericity. Since then the
language has added genericity (“generics” in the usual Java terminology); the
limitation to single inheritance remains.

Inheritance

To make a class inherit from another, use the keyword extends. This is distinct
from the syntax for inheriting from interfaces, which uses implements. The two
can be combined, with extends coming first:

A class with no extends clause is considered to inherit from Object.

You can declare a class final so that no other is permitted to inherit from it:

There is no equivalent in Java to the rename mechanism for resolving name
clashes. If two methods inherited from a class and an interface, or two
interfaces, have the same name and different argument signatures, this will be
considered a case of overloading; if the signatures are the same, the two
methods are in conflict and there is no simple way to resolve the issue.

Redefinition

The redefinition of a method is called “overriding”. The overriding method may
not be static; it must have the same argument signature as the original.

You have to be careful about keeping an identical signature: any change in
type or number of arguments would be considered overloading, and so would
not produce a compilation error (unless it clashes with another overloading of
the same method). This requires particular attention since both overriding and
overloading are silent (there is no equivalent to the redefine clause): you simply
declare in the new class a member with the same name, and depending on how
you declare the arguments it could be an override, an overload, or a validity error.

The return type is not part of the argument signature and plays no role in the
overloading rules. For an overridden method, it will generally be the same as the
original’s, but it can also be a descendant of the original. This is known as
covariant redefinition. (Eiffel has covariant redefinition for both result types
and arguments, which raises special issues for the type system.)

public class F extends E implements I, J {…}

 class M …final

§A.4 INHERITANCE AND GENERICITY 761

The equivalent of the Precursor mechanism for accessing the original
version of a redefined method is the super construct, which we have already
seen for constructors. For example:

For fields (attributes), using the same name and type in a descendant
shadows the original version.

The redefinition of a member may extend its visibility status (going up in
the earlier order, for example from private to public), but not restrict it, since
clients could then cheat the restriction by going to the parent to access the
redefined feature through polymorphism and dynamic binding.

Polymorphism, dynamic binding and casts

Polymorphism and dynamic binding are the default policy, as presented in the
rest of this book. In other words, if e1 is of type E, f1 is of type F, and F is a
descendant of E, you may use the polymorphic assignment

after which calls of the form e1.r () will use the F version of m if F overrides the
method r.

Polymorphic assignments such as the above are known as upcasting. The
other way around, the mechanism for downcasting (forcing a specific type on
an object known through a more general type, as studied in detail in the
discussion of inheritance) uses the C syntax for “casts”:

If e1 is attached to an object of type F, this operation will attach f1 to that object;
if not, the cast will cause an exception, in accordance with the Casting Principle.
You may plan for the possible exception through a try block, but it is better to
avoid it through the instanceof operator:

public display(Message m) { // A redefinition of an inherited method
 ; // execute the original’s body

… Other operations, specific to the redefinition…
}

e1 = f1;

f1 = e1;

super(m)

← “Information hid-
ing”, page 752.

F

E

← “Uncovering the
actual type”, 16.13,
page 599.

(F)

← “Touch of
Methodology: Casting
Principle”, page 601.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.4762

This achieves an effect similar to Object Test, without the notion of scope.

Genericity

Java genericity (“generics”) concepts will be familiar from the discussion of
unconstrained genericity. Generic parameters are enclosed in angle (rather than
square) brackets <…>. If you declare

class N has two generic parameters. A generic derivation (or “instantiation”)
also uses angle brackets:

Like classes, interfaces can be generic.

The closest equivalent to constrained genericity is the ability to declare a
formal generic parameter as

which means that the corresponding actual generic parameter must be a
descendant of V. This is known as a “bounded wildcard”.

A significant extension to the genericity mechanism, not present in Eiffel,
is that methods, as well as classes, can be generic. You can for example declare

With the appropriate body this could be a method that takes as argument an
integer n and a value of arbitrary type G, and returns a list containing n items all
equal to that value. With this declaration, the expression

if ()
{f1 = (F)e1;}

else
{… Handle case in which e1 did not denote an F object…}

public class N {
…Class body …

}

N<T, U>

<? extends V>

public List <G> repeated (int n, G val) {…}

e1 instanceof F

← “The object test”,
page 602.

← “Generic classes”,
page 365.

<G, H>

<G>

§A.5 FURTHER PROGRAM STRUCTURING MECHANISMS 763

denotes a list of 27 strings, all of them with the content "ABC".

A number of restrictions govern generics:

� You cannot use the primitive types such as boolean and int as actual generic
parameters. Instead you have to use their object-oriented counterparts, such
as Boolean and Integer, and wrap the corresponding values into objects.

� Exception classes cannot be generic.

� No static context is possible for generic types.

A.5 FURTHER PROGRAM STRUCTURING MECHANISMS

The control structures of Java are largely inherited from C and C++.

Conditional and branching instructions

Conditional instructions have the form:

You may omit the braces for the then or else part if it consists of a single
instruction. (It is better to leave the braces anyway, since adding an instruction
later on could lead to unintended semantics.)

There is no equivalent to elseif; you have to use nesting, but the clauses do
not have to look nested due to the absence of an end keyword and, visually, the
use of comb-like indentation:

 repeated (27, "ABC")

if(boolean_expression){
…

}
else{

…
}

if (expression) {…}
else if (expression) {…}
else if (expression) {…}
…
else statement

<String>

← “The Java type sys-
tem”, page 750.

← “Comb-like struc-
ture, figure on page 179.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.5764

The closest to a multi-branch instruction is the switch instruction, although it is
a multiple-target goto instruction rather than a one-entry, one-exit conditional.
The multi-branch instruction has the form

where expression is of a character type (char or the boxed variant Character) or
an integer type (short, byte, int or their boxed variants), and each value is a
compile-time constant of a compatible type. If the value of the expression does
not match any of these constants, the instruction executes its default branch if
present, nothing otherwise. (In Eiffel, in the absence of an else clause in an
inspect, this case produces a run-time error.)

To obtain the effect of a multi-branch conditional you must include
instructions as shown. If you omit them control will flow, when a branch
terminates, to the next branch. The break instruction is also applicable to other
control instructions: if conditionals, and loops as seen next.

Another branching instruction is continue; you may include it within a loop
body to cause the execution to ignore the rest of the body and continue with the
continuation test and, if positive, the next iteration.

As we saw in the discussion of control structures, it is usually best to stay away from
such goto-like constructs

To ensure that a break or continue breaks or continues to the intended place, you
may use the form break label or continue label, where label is an identifier; this
assumes that you have labeled the corresponding structure:

While the unlabeled break and continue only break out of the immediately
enclosing structure, the labeled form enables you, in a nested control structure,
to jump out any number of levels. If you use break and continue at all, make sure
to use this labeled form to decrease the likelihood of errors.

switch (expression) {
case value: statement;
case value: statement;
…
default: statement

}

label: … The control structure (if, switch or loop) …

← “Multi-branch”,
page 195.

break;
break;

long is not permitted.
The boxed variants
were seen in “The Java
type system”, page 750.

break;

← “The goto puts on a
mask”, page 189.

§A.5 FURTHER PROGRAM STRUCTURING MECHANISMS 765

Loops

Java provides three kinds of loop:

In all these variants, the boolean_expression serves as a continuation condition;
this is the reverse of the convention used by the from … until … loop … end

form of the rest of this book, where the until clause uses an exit condition. To
go from one style to the other, just negate the condition.

The difference between the two while variants is that the second one always
executes the body (statement) at least once, since it tests the expression before
executing the body (as in a repeat … until …, with the condition reversed); the
first form can have zero executions of the body.

The for loop is the most general and the most commonly used. The purpose
of the advance_statement (included in the body in the Eiffel syntax) is to
advance the iteration. So the equivalent of

is, in Java:

The language also provides an enhanced form of for loop, simplifying the
writing of loops that iterate through containers

The equivalent in Eiffel would be obtained through the iteration mechanisms of
container classes, relying on agents.

while (boolean_expression) statement

do statement while (boolean_expression);
for (init_statement ; boolean_expression ; advance_statement) body_statement

from i := 1 until i > n loop
…
i := i + 1

end

for (int i = 1; i <= n; i++)
{…}

for (variable: collection){
...
}

← “Other forms of
loop”, page 192.

← “Four applications of
agents”, page 621.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.6766

A.6 ABSENT ELEMENTS

A number of mechanisms on which we have come to rely are not directly
present in Java. Let us explore how to achieve their effect.

Design by Contract

Java has no direct support for Design by Contract (preconditions,
postconditions, class and loop invariants). Java 1.4 introduced an assert
instruction, used in the form

which (similar to Eiffel’s check) evaluates the boolean_expression, does
nothing else if the value is true, and otherwise throws an exception of type
AssertionError — a descendant of Error and hence not checked. This instruction
can be used to insert assertion monitoring at specific points, for example at the
beginning of a method body (where a precondition would appear) and at the end
(postcondition). But of course this provides only a small subset of the Design by
Contract mechanisms, in particular missing the applications to documentation
and inheritance and the whole notion of invariant.

Recognizing the importance of this deficiency, many groups have proposed
extending the language to add contracts; usually these extensions have
experimental implementations that use a preprocessor (a tool that processes the
extended language and translates it into standard Java). There are dozens of such
proposals; the most widely used is JML, the Java Modeling Language, which
has served as the basis for important work on software verification (see the
bibliographic section for a reference).

Multiple inheritance

The ability for a class to implement multiple interfaces means that you can
combine several abstract types. But you cannot combine several classes through
inheritance. We will see below a way to remedy this limitation in part through
inner classes.

Agents

Java has no equivalent to the notion of agent as used in this book or to similar
mechanisms in other languages, such as C#’s “delegates” studied in the next
appendix. Because the strongly typed nature of the language also precludes the
use of function pointers as in C and C++, this leaves Java at a disadvantage for
applications that need to treat operations as objects: event-driven programming,
some numerical applications such as integration, iteration and others that we
saw in the discussion of agents.

assert boolean_expression;

← “Exception han-
dling”, page 758.

← Chapter 17.

§A.7 SPECIFIC LANGUAGE FEATURES 767

Java of course offers alternatives for such needs. We saw that loops now
have a built-in iteration mechanism; for most other cases the recommended Java
solution is to use inner classes (as detailed, for the example of GUI
programming, in the next section).

For a long time, the Java community denied that anything else was necessary;
a 1997 white paper provides a fascinating insight into that view (and more
generally into issues of programming language design). In its eagerness to
demonstrate that delegates — which were then being proposed for Java, but only
made their way into the future C# — are a superfluous mechanism, it provides a
number of examples written side-by-side with inner classes and delegates, and in
the end succeeds in demonstrating the superiority of the very mechanism that the
paper is attempting to dismiss. This will not be a surprise if you remember the
earlier discussion of how the absence of agents complicates programs.

Almost a decade and a half later the designers finally relented: it has been
announced that Java 7 will include an agent-like mechanism known as closures.

A.7 SPECIFIC LANGUAGE FEATURES

Java provides a number of mechanisms that are absent from the basic
object-oriented framework presented in this book.

Nested and anonymous classes

It is possible in Java to declare a class within the text of another:

This is known as a “nested” or “inner” class. Within class O, class Inner is just
like a member of O — except that it is not a field or attribute, just the name of a
class that other members can use, for example to declare variables, and calls
methods of Inner on the corresponding objects.

It is even possible, if you only need a class within a specific context, to
declare it without a name. Such nested classes are called anonymous; we will
see an example below.

While you may be wondering about the usefulness of these possibilities, they
turn out to have a role in emulating some of the missing mechanisms noted
above: multiple inheritance and agents. Let us examine both applications.

public class O {

… Other members of O, can use class Inner …
}

java.sun.com/docs/white
/delegates.html.

← “A world without
agents”, page 623.

class Inner {
… Members of Inner …

}

http://java.sun.com/docs/white/delegates.html
http://java.sun.com/docs/white/delegates.html

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.7768

Assume first that you would like to write a class R as heir to two classes P
and Q. The language permits you to choose only one of them, say P, as the class
that R officially extends. For Q, the usual solution is to use the client relation
instead; inner classes offer a slight improvement over this technique. You can
add to R an inner class S that extends Q; this enables other members of R to use
the members of Q through class-qualified notation, S.some_member_of_Q:

If R is really to offer the functionality of Q, it is often appropriate in practice to
add to R, for every public method f of Q, a simple method of the form

The benefits and limitations of this emulation technique are clear. On the
positive side, it provides direct access to all the members of the spurned parent
(here Q), and allows overriding them. But it can lead to code duplication (if you
use scheme [1] above) and does not achieve the symmetry of multiple
inheritance. One of the parents is the real one; the other is more like a poor uncle
whom you charitably put up in your attic. In particular, you cannot
polymorphically use an instance of R as an instance of Q; only P has that
privilege. The uncle is not allowed to forget that he does not quite belong.

Consider now the emulation of agents, for example in GUI programming.
Assume you want to specify that any occurrence of an event of a certain type,
say left-mouse-button click, on a certain GUI element such as a button
OK_button, should trigger the execution of a certain routine perform of your
system, which takes as arguments two integers for which it will use the mouse
coordinates. We have seen how to do this with agents:

To understand this discussion you should indeed be familiar with the concepts
developed in the earlier discussion of event-driven design.

public class R {
class S { // Class S is inner to R

… Members of S, including possible overriding of members of Q …
}

…Other members of R …
// Declarations here can use members of S (including those from Q)
// under the form S.f(…)

}

T f (T1 a1, …) // Same argument and result signature as Q.f
{S.f (a1, …)} [1]

OK_button.left_click.subscribe (agent perform) [2]

extends P
extends Q

← “Using agents: the
event library”, 18.5,
page 686.

← Chapter 18.

§A.7 SPECIFIC LANGUAGE FEATURES 769

Let us see how to achieve the effect of [2] in Java, using the general approach
of Java GUI libraries such as Swing, although not their precise terminology (the
goal is not to teach you how to use a particular library — you will find many
Web pages for that — but rather to show you, as in the rest of this book, how
things actually work under the hood). What you need first is an interface
associated with the event type; for example:

There will be one such interface for every event type. Here it needs only one
method, which we call process, denoting the operation to execute in reaction to
an event of the given type. The argument e represents an event; when an event
occurs, the event producer will create an event object of the appropriate type,
here ClickEvent, containing the event arguments, such as the mouse coordinates.
We assume that these arguments are accessible, for an event e, as e.args.

As the name of the interface suggests, its instances (that is to say, instances
of its descendant classes) represent objects that have subscribed to the
corresponding event type; as we saw, “listener” is just another term for what is
also called an observer or a subscriber.

Internally, the overall mechanism ensuring that subscribers are notified of
events will be the same as what we saw for the Observer pattern and, in a simpler
form, the Event Library: for each event type, keep a list of subscribers; when an
event occurs, traverse the subscriber list so that each can execute its subscribed
operation. All that we need to see is how such a class, say U, subscribes its own
operation to the event type. This is where we can use an anonymous nested class:

interface ClickListener {
void process(ClickEvent e);

}

class U { [3]

Button b;
build () {

okButton=new Button(…);
okButton.addListener(

);
}
…Other members of U …

}

← “Definitions: Trig-
ger, publish, publisher,
subscriber”, page 667.

new ClickListener(){
public void process(ClickEvent e){

// Code to be executed for e, for example:
perform(e.args);

}

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.7770

The basic scheme for adding a listener is the same as in the earlier chapter: add
an element to the list of observers (listeners), here under the form
okButton.addListener (). In the Observer pattern, was an instance of
an observer class, and we had to define such a class for every possible kind of
event type and observer. The agent mechanism simplified this drastically by
enabling us to write as just agent perform, where perform encapsulates the
routine we want to call, together with any associated objects. The scheme here
is closer to the Observer mechanism, but with a significant improvement: we do
not need to encumber our system with a new class fulfilling a local role only;
instead, we may use an anonymous nested class.

Normally, new would not be applicable to ClickListener since this is an
interface; we would have to define a class that implements ClickListener, and
make an instance of that class. Since we only need such a class in the
context given, we define it inline and instantiate it right away; this is what the
highlighted part of the preceding code achieves. Since the class will not be used
anywhere else it does not need a name.

To be a valid descendant class of ClickListener (an effecting in the
terminology of earlier chapters), all the class needs to do is implement the
interface’s single method, process. Our implementation of process calls the
desired routine from our system, perform, passing it the event’s arguments.

The benefit is that you can use the needed class within the desired scope as
you would a normal class, but without polluting the global name space. In
addition, inner classes have access to all the members of the enclosing class,
including private members; this can be useful for example if U is part of the
application’s GUI and the subscriber code, here process, needs to change
elements of the user interface.

This technique, however, essentially addresses one of the limitations of
what was earlier called “a world without agents”: the “Many Little Wrappers”
syndrome, forcing you to wrap operations into small classes. Here we do not
need to give first-class status to these classes since they remain local and
anonymous; but we still need to define one (typically very small) interface per
event type.

In addition we cannot directly reuse classes from the application (the
“model” in terms of the earlier discussion), such as perform; we have to wrap
them into “glue code” such as process. We also lose the flexibility of mixing
open and closed arguments in an agent.

It is not necessary, however, to belabor the point: a mere look at the texts of
[2] and [3] shows eloquently enough the difference in expressiveness— and, as
noted, the Java community seems by now to have got the message.

obs ← “The observer pat-
tern”, 18.4, page 678.

obs

obs

obs

← “Deferred classes
and features”, 16.5,
page 565.

← “A world without
agents”, page 623. On
Many Little Wrappers
see page 626.

← “The model and the
view”, page 675.

§A.7 SPECIFIC LANGUAGE FEATURES 771

Type conversions

Java provides a uniform framework for converting values between different
primitive types.

Where there is no loss of precision — in converting from byte to short, short
to int, int to long, char to int, int to double and float to double — you can use a
plain assignment, for example l = s; where s is of type short and l of type long.

This possibility also applies (as in most programming languages) to some
cases in which the loss of precision is considered acceptable: int to float, long
to float, long to double.

For cases with a more significant loss of precision, such as converting from
a floating-point type to an integer type (which requires rounding or another
approximation), you must use explicit cast syntax as a way to assert that you
know what you are doing. As an example:

Autoboxing, as we saw, provides automatic conversions between primitive and
wrapper types. Unlike in Eiffel, it is not possible to define conversions between
arbitrary types.

Enumerated types

Enumerated types make it possible to define variables that range over a finite
set of predefined values, as in

You can denote the values by prefixing them with the type name and a dot, as in
CardColors.Spades.

Internally, a type such as CardColors is a class that extends the library class
Enum and has four instances. Since it is a class, you may add constructors,
attributes and methods.

float s; // Single-precision floating-point
double d = 9.9; // Double-precision floating-point
s = d;

enum CardColors {Spades, Hearts, Diamonds, Clubs}

(float)

← “The Java type
system”, page 750.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.7772

Varargs

From version 5.0 on, you can design a Java method to handle a variable number
of actual arguments, or “varargs”, without explicitly using an array or a
collection (the standard technique in the absence of a specific language
mechanism). The convention is simple:

which indicates that after the first two arguments come any number — zero, one
or more — of String arguments. A method may have at most one such “varargs”
argument, and it must appear at the end of the argument list.

The effect is the same as if that last argument were an array (here an array
of String); the routine can then use array features: s.length to find out how many
values were actually passed in a particular call, and s[i] (for i ranging from 0 to
s.length) to access them.

Annotations

Also introduced in version 5.0, annotations provide a mechanism for adding
structured information to Java programs. The intent is similar to that of Eiffel’s
note construct, and of C# attributes studied in the next chapter.

Information contained in annotations should not affect the basic semantics
of the program (that is the purpose of the other language constructs), but it can
be of interest to other tools, for example project management tools.

An annotation is based on an interface, declared with the keyword variant
@interface. You might for example want a standard way of equipping classes
with basic version control information: an author name, a modification date, and
optionally a revision number, all strings. You may define an annotation interface:

public void m(T1 a1, T2 a2, s)

public @interface ChangeInfo {
 string author;
 string last;
 string revision;

}

String …

→ “Attributes”,
page 801 (on the C#
mechanism).

§A.8 LEXICAL AND SYNTACTIC ASPECTS 773

Then you can equip a class or (here) a method with version information:

As part of Java’s reflection library, which provides programs with information
about their own structure, you may then access annotations associated with a
software element through the expression

where x (obtained through reflection) represents a class or a method.

A.8 LEXICAL AND SYNTACTIC ASPECTS

Java uses the Unicode character set. Like Eiffel and most other modern
languages, Java is “free-format”: break characters (blanks, tabs, new lines) are
all equivalent and only serve to keep tokens separate.

Unlike in Eiffel, identifiers are case-sensitive. They can be of arbitrary
length but may not start with a digit, include / or –. As a style custom rather than
a language rule, Java identif iers generally use “camel case”, as
in aCamelCaseName.

Comments have two forms: //, used liberally in the examples of this chapter,
introduces a comment that extends to the end of the line; you can also write a
comment over any number of lines by enclosing it in /* and */. In this second
form, you may start a comment by /** to indicate that it is specifically intended
for the Javadoc program documentation tool.

Just in case you have not noticed (then you should probably start reading
this appendix again, more carefully this time), Java retains two basic syntax
conventions from C and C++: ending every declaration and instruction with a
semicolon (a terminator rather than a separator); and using = for assignment,
whereas == is the symbol for equality.

@ChangeInfo{
author= "Caroline",
last= "24 December 2009",
revision= "6.7"

} public void r {…}

x.getAnnotations()

← “Breaks and inden-
tation”, page 45.

← “Touch of Style:
Choosing your identifi-
ers”, page 45.

AN INTRODUCTION TO JAVA (FROM MATERIAL BY MARCO PICCIONI) §A.9774

Keywords

The following names are reserved in Java:

The names const and goto appear in this list even though the language does not
currently use them.

Operators

These are the Java operators:

A.9 BIBLIOGRAPHY

James Gosling, Bill Joy, Guy Steele and Gilad Bracha: The Java Language

Specification, third edition, Addison Wesley, 2005.
As is often the case, this description of the language by its main designers
beats most derivative works. A must-read for anyone interested in Java.

Joshua Block: Effective Java, second edition, Prentice Hall, 2008.
Bruce Heckle: Thinking in Java, fourth edition, Prentice Hall, 2006.
Cay S. Hearthstone and Gary Corneal, Core Java, Volume 1 (Fundamentals),
eighth edition, Prentice Hall, 2007.

Three widely used textbooks.

java.sun.com/reference/docs
The online documentation from Sun.

www.eecs.ucf.edu/~leavens/JML/
This is the home page for JML, from which you will find references to
numerous articles on this Design by Contract extension for Java.

abstract, boolean, break, byte, case, catch, char, class, const, continue, default,
do, double, else, extends, final, finally, float, for, goto, if, implements, import,
instanceof, int, interface, long, native, new, null, package, private, protected,
public, return, short, super, switch, synchronized, this, throw, throws,
transient, true, try, void, volatile, while

Access, call: . [] ()
Other unary: + - ~ ! new ()
Arithmetic: * / %
Shift: << >> >>>
Equality: == !=
Ternary: cond ? expr1:expr2
Assignment: ^= |= <<= >>= >>>=

Postfix: expr++ expr--
Prefix: ++expr --expr
Additive: + -
Relational: < > <= >= instanceof
Logic: & ^ | && ||
Assignment: = += –= *= /= %= &=

http://www.eecs.ucf.edu/~leavens/JML/
http://java.sun.com/reference/docs

B

An introduction to C#

(from material by Benjamin Morandi)

On introducing C# in 1999, Microsoft presented the language as follows:

The ideal solution for C and C++ programmers would be rapid
development combined with the power to access all the functionality of the
underlying platform. They want an environment completely in sync with
emerging Web standards and providing easy integration with existing
applications. Additionally, they would like the ability to code at a low level
when the need arises.

C# is a modern, O-O language that enables programmers to quickly build a
wide range of applications for the new .NET platform, which provides tools and
services that fully exploit both computing and communications.

Because of its elegant O-O design, C# is a great choice for architecting a wide
range of components — from high-level business objects to system-level
applications. Using simple C# language constructs, these components can be
converted into XML Web services, then invoked across the Internet from any
language running on any operating system.

Most readers of this book presumably prefer English, so here is a translation: “C#
is Java plus delegates (routine objects, in the spirit of agents) and a few low-level
mechanisms brought over from C++.” C# was Microsoft’s response in its rivalry
with companies supporting Java, particularly Sun Microsystems and IBM, and the
language was extremely close to Java.

This characterization remains largely applicable today, although C# has
evolved as a design of its own and introduced a number of interesting
innovations with no direct Java counterparts. C# in its version at the time of
writing (3.0) is a rich language, of which we will only survey the essentials.

To learn C#, knowledge of Java is useful but not required; this appendix
covers C# on its own and does not assume that you have read the description
of Java in the previous appendix. (As a consequence it repeats some of its
observations, when covering shared concepts.) Like other language-specific
appendices, it does not start from scratch but assumes that you are familiar
with the programming concepts introduced in this book, occasionally
describing C# by comparison with corresponding Eiffel mechanisms.

See tinyurl.com/dkeeur
(archive of msdn.micro
soft.com/vstudio/next-
gen/technology/csharp-
intro.asp). For a more
recent introductory
description see msdn.
microsoft.com/en-us/vcs
harp/bb466176.aspx.

← Agents were dis-
cussed in chapter 17.

Anders Hejlsberg

(C# designer), 2007

http://tinyurl.com/dkeeur
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp
http://msdn.microsoft.com/en-us/vcsharp/bb466176.aspx
http://msdn.microsoft.com/en-us/vcsharp/bb466176.aspx
http://msdn.microsoft.com/en-us/vcsharp/bb466176.aspx

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.1776

B.1 LANGUAGE BACKGROUND AND STYLE

C# (pronounced C sharp, as in music) is closely connected with Microsoft’s
.NET environment, a platform for developing and running software using a
virtual machine. In an earlier discussion we saw the role of virtual machines and
their benefit for implementing higher-level languages.

.NET, the CLI and language interoperability

While the Java Virtual Machine was designed specifically to support the Java
language (although it was later used to implement other programming languages),
it was a central design goal of the .NET platform, from the beginning, to support
several languages; the name of the virtual machine, Common Language Runtime

(CLR) and its supporting interoperability API, Common Language Infrastructure

(CLI, now an international standard), reflect this decision.
Part of the reason was that Microsoft, pre-.NET, already provided

implementations of several languages, notably Visual Basic (a mass-market
offering often used by non-professional programmers to develop simple
applications, as well as a few less simple ones), C++, and JScript for client Web
applications. The company could not ask all the corresponding programmer
communities to drop their favorite languages and move to a brand new one. It
could, however, provide a common base for interoperability and future
evolution. .NET and the CLR/CLI were able from the start to provide
implementations of four Microsoft-supported languages (the three ones
mentioned plus C#) as well as languages developed by third parties, including
Eiffel (from the very introduction of .NET in 1999) and Cobol, the latter a
legacy language still important for many business applications.

Language openness goes beyond the availability of compilers for several
languages: it implies a high degree of interoperability between programs written
in these languages. This is the role of the Common Language Infrastructure: to
provide a standard set of mechanisms that can be used from any language. The
CLI is, more specifically, an object model, akin to an object-oriented language
without the syntax. The object model specifies a set of mechanisms in a precise
way; these are the object-oriented mechanisms studied in this book — classes,
features (members), inheritance, genericity, a type system, objects, a policy for
dynamic object creation and garbage collection — for which the CLI design
makes a number of specific design choices.

As long as .NET languages do not depart too much from those decisions,
they can reach a degree of interoperability unheard of in pre-.NET days; in
particular, classes written in various object-oriented languages can easily
interface with each other, through both the client and inheritance relation; for
example an Eiffel class can inherit from a C# class and conversely. This simply
assumes that the compilers enforce the CLI rules for “producers” and
“consumers” of assemblies (the target modules produced by .NET compilers).

← “Virtual machines,
bytecode and jitting”,
page 333.

CIL (Common Inter-
mediate Language)

is the name of the
.NET bytecode.

§B.2 OVERALL PROGRAM STRUCTURE 777

This interoperability scheme has proved quite successful (in spite of a recent
and worrying tendency of software producers to ignore the CLI compliance
rules). It allows each language to retain its specificity as long as it can map its
object model to CLI; for example, Eiffel’s implementation must emulate
multiple inheritance — not directly supported by the CLI — through special use
of CLI mechanisms (multiple inheritance from interfaces, a concept discussed
later in this appendix).

The favorite son

In this society of languages some are more equal than others. C# is the favorite
son, with an object model closely reflecting the CLI. (Visual Basic .NET, which
resembles previous versions of Visual Basic in syntax only, is a close contender
for the title. “Managed C++”, the CLI-compliant version of C++, departs
significantly from the usual C++ to participate in the .NET interoperability
game.) C# indeed took its essential semantics from the CLI, although
subsequent versions extended it considerably. The syntax is in the C-C++-Java
tradition, with semicolons as instruction terminators (rather than separators) and
braces to enclose program blocks.

B.2 OVERALL PROGRAM STRUCTURE

The basic elements of a C# program are classes and structures (or “structs”),
organized in a number of program files.

Classes and structs

C# classes and structs are descriptions of a set of possible run-time objects to
which the same members (features) are applicable. The general form of a
declaration is

with the keyword struct instead of class in the case of a structure declaration.

A member is one of the following: field (corresponding to Eiffel attributes);
constant; method (routine); property (field equipped with a getter and setter);
operator (function with operator syntax); constructor (creation procedure);
destructor (associated with garbage collection, and applicable only to classes, not
structs); event (in connection with delegates and event-driven programming);
indexer; and nested type. We will review the most important below.

class name {
…Member declarations …

}

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3778

A struct is a simplified form of class, with no possibility of inheritance. The
rest of this discussion focuses on classes, but most non-inheritance-related
properties also apply to structs.

Classes and structs are grouped into assemblies (corresponding to the notion
of cluster in Eiffel).

Program execution

Every executable program must have at least one method, called Main and
marked as static (a notion explained in the next section). Program execution
consists of executing that method. You can write the proverbial “Hello world”
as a single class with a Main method:

Main may have no arguments or, if the execution needs user-provided
arguments, it should (as in this example) take an array of strings (string[]) as its
single argument. It may return no result as here, or it may be a function returning
an integer, typically a status code indicating possible errors.

B.3 BASIC OBJECT-ORIENTED MODEL

Many of the concepts of C# resemble what we have seen throughout this book,
but C# introduces a number of variations.

Static members and classes

One of the C# concepts departing from the strict object-oriented style used in
this book is the support for static members and classes.

To use a class member you will normally need a target object, and will use
the standard object-oriented notation target.member (possibly with arguments)
where target denotes an object. To denote the current object (Current in Eiffel)
use the keyword this.

C# also makes it possible to declare static members, which do not require
an object and are called with the syntax C.member where C is the name of a
class. The definition of a static member, for example a static method, may not
use any non-static member.

public class Program {
static void Main(string[] arguments) {

System.Console.WriteLine("Hello world!");
}

}

§B.3 BASIC OBJECT-ORIENTED MODEL 779

A class as a whole can be declared static class… if all its members are static;
then it is not possible to create instances of the class. A static class may be
convenient, for example, to group a set of object-independent general facilities,
such as mathematical functions which do not use an object-oriented design.

It was noted above that Main must be static; the reason is that at the start of
execution no object exists yet to call a method.

Eiffel addresses the problem by defining execution as the creation of a “root object”
to which it applies a “root procedure”.

Export status

For information hiding, every type and member has an accessibility level,
defining clients’ access rights. The goal is the same as Eiffel’s information
hiding mechanism, including selective exports, but with a coarser granularity
since in C# you cannot make a feature accessible to a specified list of classes.
The three possible qualifiers are:

� public: accessible by any code.
� internal: accessible by code in the same assembly.
� private: accessible by code in the same class or struct. This is the default

for class members.
Some restrictions apply: a type can only be internal (the default) or public,
unless it is a nested class (a class declared within another), which can also be
private; destructors may not have access modifiers; a user-defined operator
must be public; the accessibility of a member must be at most equal to the
accessibility of the types used in its declaration. It is not hard to see the
justification behind each of these rules.

Fields

C# fields correspond to attributes.
The rest of this book has used more specific terminology: a field (dynamic notion)
is a constituent of an object; it corresponds to a feature of the generating class,
called an attribute (static notion). In C# “field” covers both.

The declaration of a field gives the type (before the field name, as in T f, rather than
f : T in Eiffel); it can optionally include an initial value, using the assignment symbol
=. Such an initial value may not refer to other instance fields of the current object,
because they might not be initialized yet. Here is an example with two fields:

class A {
public string s1 = "ABC";
public readonly string s2 = "DEF";
… Other member declarations …

}

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3780

Note the semicolon terminating all declarations and instructions. The readonly
qualifier in the second example prohibits assignments to the field, except in its
declaration as here or in a constructor (creation procedure).

Unlike in Eiffel, exporting a non-readonly member (through public or
internal) gives the corresponding clients writing privileges as well as read
access. For a reasonable application of information hiding, this means that fields
should usually be private, with associated setters and getters. C# simplifies the
writing of setters and getters through the notion of property studied below.

Basic types

C# provides a number of built-in types:
� bool, representing booleans.
� char, representing 16-bit Unicode characters. A character constant is written

in single quotes, as in 'A'.
� string, representing sequences of zero or more Unicode characters. A string

literal constant is written in double quotes, as in "ABC".
� Integer types: sbyte (signed 8-bit), byte (unsigned 8-bit), short (signed

16-bit), ushort (unsigned 16-bit), int (signed 32-bit), uint (unsigned 32-bit),
long (signed 64-bit), ulong (unsigned 64-bit).

� Real (floating-point) types: float, double and decimal, representing 32-bit,
64-bit and 128-bit IEEE floating point numbers.

The type object is ancestor to all class types (think ANY in Eiffel).
The void (null reference) is written null.

References and values

Every C# type is either a reference type or a value type; this is the same
distinction as between reference and expanded types in Eiffel. A variable of a
value type directly denotes a value, which may be a simple value as just seen
(the built-in types except string and object are value types) or a complex object;
a variable of a reference type denotes a reference to an object.

You can go from a value to a reference through an operation called boxing:

As this example indicates, boxing happens automatically on assignment of a
value to a reference. Unboxing is explicit, using the “cast” operator (…):

int i; object o;
i = 1;

; // Boxing: create an object containing the integer 1, and attach o to it.

i = (int) o; // Unboxing: get the integer value in o, and assign it to i.

← “Setters and get-
ters”, page 248.

← “Overall inherit-
ance structure”,
16.10, page 586.

o = i

§B.3 BASIC OBJECT-ORIENTED MODEL 781

Constants

A field can be declared const to indicate that it has the same value, specified in
the declaration, for all instances of the class. The value can be a literal constant
(a manifest integer, string etc.) or an expression that only involves previously
defined constants:

Since a constant’s value is independent of any target object, you can access it
using the class name, as in A.s4 if the above declarations appear in a class A.

Note the difference between const and readonly fields: a read-only field is,
like other non-constant fields, attached to an object, and its value does not
necessarily appear in the program (it may be set by constructors).

Methods

Routines are called methods in C#. Methods cover both procedures (with no
result) and functions; a result-less method uses void as its return type. Here are
a few example declarations illustrating some important possibilities:

By default arguments are passed “by value” (as in Eiffel), meaning that the
formal argument represents a copy of the actual argument; what is copied may
be a reference or an object depending on the type. But you may also declare a
formal argument ; in that case assignments to the argument, such as the
assignment to arg2 in p above, will also modify the corresponding actual.

The actual argument corresponding to a ref formal argument must also be
specified as ref in the call, as in

Local variables are not declared in a separate clause; the declaration of a local
simply appears in the body of a method, prior to its first use. The name must be
different from the names of formal arguments and other locals.

public const string s3 = "ABC- ";
public const string s4 = s3 + "DEF"; // Value: "ABC-DEF"

class B {
public void p(int arg1, int arg2) {… arg2 = 0;} // Procedure
public string f() {… return "ABC";} // Function
public string sf() {… return "DEF";} // Static function

}

B v = new B();
int x = 1;
int y = 1;

v.p(x, y); // Does not change x, sets y to 0

ref

static

ref

ref

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3782

Local variables and formal arguments may have the same name as members
of the class, over which they take precedence. This explains why you will
encounter the pattern

where a, within the same class, denotes both a field and a method argument; the
method can still access the field through the notation shown, .a. This is
actually a common occurrence, especially for constructors (reusing the name of
a field for the constructor argument that serves to initialize it). It is better to stay
away from it and choose different names for each purpose.

Overloading

C# permits method overloading: two methods of a class may have the same
name as long as their argument signatures (number and types of arguments,
including whether they are ref) are different. The result type plays no role.

The previous methodological comment applies here too: names are not a scarce
resource. Overloading, however, is a pervasive practice in languages such as C# and
is required in the case of multiple constructors as discussed below.

Properties

The export policy, as noted, does not distinguish between read and write access.
This means that it is almost never appropriate to export a field a, since this
would allow clients to perform direct field assignments x.a = v in direct
violation of information hiding principles. The object-oriented solution in this
case is to provide a getter function (not necessary in Eiffel since you can export
the attribute, giving read access only) and a setter procedure. C# standardizes
the writing of setters and getters through the notion of property. The pattern for
shadowing a secret attribute a with a property is:

int a; // a is a field
r (int a) { .a = a;} // a is also a formal argument to r

class C {
private string a; // The secret attribute

public string ap { // The property
 {return a;} // The getter

 { // The setter
a = ; // The field’s value
… Possibly other instructions …

} } }

this

this

get

set
value

§B.3 BASIC OBJECT-ORIENTED MODEL 783

This mechanism uses the three keywords get, set and value. It declares two
special methods with names get and set, enabling the getter and the setter to
access the attribute with, in the setter case, assignment syntax:

The effect is similar to what is achieved in Eiffel with an assign specification; the
Eiffel mechanism does not require writing the getter, which in practice is almost
always of the above form return a. (The setter, for its part, commonly includes
more than an assignment, for example a log update, so it is normal to request
writing it explicitly.)

Constructors

Creation procedures, used to initialize objects, are called constructors in C#. A
constructor can be:

� An instance constructor, initializing objects created dynamically.

� A static constructor, initializing static data members.

The following class contains an example of each kind:

Constructors do not have their own names but use the name of the class, here ,
relying on overloading, and disambiguation through the signatures, if there is
more than one constructor.

This convention does not work in some cases, such as a class POINT that would
require two creation procedures make_cartesian and make_polar: both would have
the same signature, two arguments of type float.

A constructor declaration does not specify a return type, not even void. In the
case of a constructor marked static, there may not be any other modifier.

C x = new C();
string b;
b = x.ap; // Uses the getter
x.ap = "ABC"; // Uses the setter

class D {
public (string a) { // Constructor 1: instance

… Field initializations, typically using a …
}

static () { // Constructor 2: static
… Field initializations …

}
}

← “Bracket notation
and assigner com-
mands”, page 384.

D

D

D

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3784

The creation of a new object relies on the new operator (think create in
Eiffel) and an instance constructor, as in:

C# does not enforce the distinction between declarations (static) and
instructions (dynamic); statement is the term that covers both of these concepts,
as well as their combination as in this example which both declares and
initializes x. Execution of the new expression will create a new instance of D
and call the associated constructor, here the one that was marked Constructor 1.

This is not, however, the full story on instance constructors and instance
creation. The detailed specification (given below in the discussion of
inheritance) implies that the constructor you call may itself call other
constructors, resulting in a constructor chain that must involve constructors
from every ancestor class.

A static constructor — rather, the static constructor of a class, since there can
be at most one, with no argument as illustrated above — gets executed before
the first occurrence, if any, of either a creation of an instance of the class or an
access to one of its static members. This facility makes it possible to initialize
properties associated with a class rather than specific instances (as you might do
in Eiffel through a once function). Imagine for example an error reporting
system, where errors are recorded into a special log file. The first creation of an
error object will create and open that file.

Destructors

C# is designed for garbage collection: while object creation happens explicitly
through new, reclamation of unused objects’ memory space is the responsibility
of an automatic mechanism, the garbage collector (GC).

Sometimes you may want to ask the GC to perform a specific operation
whenever it reclaims an object. The typical example is a file object, associated
with an actual file: whenever the object gets collected, you will also want to
close the associated file. (In Eiffel you can, for this purpose, define a dispose

routine which the GC will call on reclaiming the object.)

D x = new D("ABC");

→ “Inheritance and
creation”, page 798.

§B.3 BASIC OBJECT-ORIENTED MODEL 785

C# destructors fulfill this need. A destructor is a method of name ~C where
C is the name of the class. No overloading here; a class may have only one
destructor, without arguments, return value, or modifiers (such as static):

Operators

An operator is a static method with an operator name, as in

which can then be called (like an Eiffel feature with an operator alias) in operator
syntax, as in x + y with x and y of type E in this example. Operators are built-in
for predefined types such as int and float; you can use the same operator names
(unlike in Eiffel, you cannot define your own) to define operators for your own
classes such as E above. The main available unary operators are

where ! is negation for booleans and ~ is negation for integers (replacing every
0 by a 1 and conversely in the binary representation). ++ and – – are
side-effect-producing operations: x++ returns the value of x, then increments x
by one; ++x also increments x, but returns the incremented value; and similarly
for x– – and – –x. As you know, expressions with side effects are not a good
idea; use them at your own risk. Binary operators are:

class File {
… Other class members including constructors …
~File() {

… Instructions to close the associated physical file…
}

}

class E {
public static E operator +(E a, E b) {

… Computation of result into exp…
return exp;

}
}

+ – ! ~ ++ – –

+ – ∗ / % ^ // Arithmetic (% is remainder, ^ is power)
< > <= >= // Relational (should yield boolean result)
== != // Also relational (equality, inequality)
& ^ | // Boolean, strict (and, xor, or)
<< >> // Bit-shift (left, right)
&& || // Boolean, semistrict (and, or)

← “The ubiquity of
calls: operator
aliases”, page 134.

← “Semistrict bool-
ean operators”, 5.3,
page 89.

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3786

As in other C-based languages, = is reserved for assignment, requiring a special
notation == for equality. Some of the above operators handle integers in their
binary representation: the strict boolean operators are applicable not only to
booleans but to integer operands, to which they apply the corresponding
operations to every bit in the representation; the left and right bit-shift operators
shift the bits of the first operand (m in m << n) by the number of positions given
by the second operand (n), discarding the bits that fall off the right or left edge,
and filling the freed positions with zeros.

You can use any of the operators listed, except semistrict boolean operators,
for your own types, by relying on the overloading mechanism. In the case of
comparison operators, overloading must come in pairs: if you overload < you
must overload >; similarly for <= and >=, as well as == and !=.

In addition, C# supports the following non-overloadable operators:

+= and such combine an arithmetic or other operation with an assignment:
x += 1 is a shortcut for x = x + 1.

Arrays and indexers

To declare an array, with one or more dimensions, use bracket notation:

For more than one dimension, use commas as illustrated. Arrays are indexed
from 0: b [1, 1] is the element in the second row and second column. Because
of this condition you must take care to avoid indexing errors.

The declaration does not specify bounds; the array will be allocated
dynamically as in Eiffel. The assignment

creates an array with four elements, initialized to standard default values.
Alternatively, you can directly specify the values of these elements:

[…] // Array indexing
(…) // Cast
+= –= ∗= /= %= ^= // Operation cum assignment
&= |= <<= >>= // Operation cum assignment

string[] a; // One-dimensional array
string[] b; // Two-dimensional arrays

a = new string[4];

,

§B.3 BASIC OBJECT-ORIENTED MODEL 787

For multiple dimensions, use commas to separate the brace-enclosed lists:

In addition to these standard rectangular arrays, C# offers jagged arrays, which
are simply arrays of arrays, as in

Each row may have a different size (hence “jagged”). A typical initialization is

resulting in rows with one, three and two elements.

Access and modification use bracket syntax, as in

To allow bracket-like notation for accessing structures other than arrays, as in

where Table is one of your own classes, you should equip that class with an
indexer, performing a role similar to Eiffel’s bracket alias. The definition of an
indexer resembles the definition of a property:

a = new string [] {"A", "B", "C", "D"};// Creates an array with four elements

b = new string[2, 3];
b = new string[,] {{"A", "B"}, {"C", "D"}, {"E", "F"}}; // Dimension: [3, 2]

string[][] c;

c = new string[][] { new string[] {"A"},
new string[] {"B", "C", "D"},
new string[] {"E", "F"}};

b[0, 0] = "Z";
c [0] = new string[] {"Y", "Z"}; // Changes the first (zero-th) row
c [0][0] = "Z";

Table t = new Table (); string n;
…
n = t [1, 1]; // Accesses the very first element (see implementation below)

← “Bracket notation
and assigner com-
mands”, page 384.

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3788

The indexer has the name , defined with a getter and a setter. In this example
the implementation of Table provides indexing from one in both dimensions,
relying internally on a private array rep indexed from zero.

Genericity

C# genericity concepts (the more common term for Java and C# is “generics”)
will be familiar from those of Eiffel; generic parameters are enclosed in angle
(rather than square) brackets <…>. If you declare

class F has two generic parameters. The second one, H, is constrained by T,
meaning (as in class C [G, H –> T] in Eiffel) that any actual generic parameter
must conform to T. The inclusion of new() means (as in Eiffel if the declaration
read C [G, H –> T create make end] for a creation procedure make of T) that T
must provide a public constructor without arguments; this allows methods of F
to create instances of T.

A generic derivation (or “instantiation”) also uses angle brackets:

Basic statements

Here is a review of the principal kinds of instructions (executable statements).
Assignment, as we have seen, uses an equal sign, as in

Note the use of the semicolon as a terminator (rather than a separator), required
at the end of every basic statement.

A method call uses the name of the method and a list of arguments. Unlike
routine calls in Eiffel, it always includes a parenthesis pair even if the argument
list is empty, as in methodWithNoArgument ().

class Table {
private string[,] rep; // Initialization of rep omitted
public string [int i, int j] {

 {return rep [i – 1, j – 1];}
 {rep [i – 1, j – 1] = ;}

}
}

class F<G, H> where H: T, new() {
…Class declaration …

}

F<V, W> // W must conform to T, and provide a default constructor
// with no arguments.

var = e

this
get
set value

this

;

§B.3 BASIC OBJECT-ORIENTED MODEL 789

The return instruction has no direct equivalent in Eiffel. It is written just
return in a procedure (method with void type) and, in a function (method with
an actual result type), specifies a value to be returned:

A return terminates the current method execution and, in the second case,
delivers the value of the expression as the function’s result. This means that C#
does not enforce the one-exit rule.

Control structures

A conditional has the following structure:.

with zero or more else if parts, and zero or one else part. Conditions must appear
in parentheses. There is no elseif keyword; technically the use of else if (two
keywords) leads to nesting the else parts, but this is not visible because of the
absence of an end keyword, and is visually supported by the indentation style.

The multi-branch instruction has the form

where expression is an integer or boolean expression and each value is a
compile-time constant. If the value of the expression does not match any of these
constants, the instruction executes its default branch if present, nothing
otherwise. (In Eiffel, in the absence of an else clause in an inspect, this case
produces a run-time error.) The switch instruction by itself is not a one-entry,
one-exit conditional but a multi-target goto; to obtain the effect of a multi-branch
conditional you must include instructions as shown. Explicit transfer is
mandatory at the end of every case, to avoid the common bug, in the C++ and
C version of switch, of mistakenly continuing from one branch to the next.

Several forms of loop are available. The most general one, coming from C
and easy to relate to the Eiffel from structure, is.

return some_expression;

if (c1) {
…

} else if (c2) {
…

} else {
…

}

switch (expression) {
case value: statement;
case value: statement;
…
default: statement;

}

← “Structured pro-
gramming”, page 188.

← “Comb-like struc-
ture, figure on page 179.

← “Multi-branch”,
page 195.break;

break;

break;

← For methodological
comments on the use of
such constructs see
“The goto puts on a
mask”, page 189.

break;

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3790

This executes the initialization and stops if exit is true, otherwise executes the body

and the modification until exit becomes true. The modification typically includes
the part of the iteration that advances to the next step, such as incrementing an
index or advancing a cursor. (In Eiffel it would be integrated with the body.)

For simple while- or until-style loops you may use one of

Surprisingly, C# also offers a goto statement: goto l, where l is a label; you can
label a statement by prefixing it with l: (a label followed by a colon).

Exception handling

An exception is an abnormal run-time event that interrupts the normal flow of
control. Typical causes of exceptions are null pointer dereferencing (void call:
x.f where x is null) and arithmetic overflow. It is also possible in C# to trigger
a developer exception explicitly through

where e is of an exception type, which should be a descendant of the Exception
library class.

A C# program may handle an exception in the following style:

If execution of the try block triggers an exception of one of the types listed, here
ET1, ET2, … execution immediately transfers (without completing the try
block) to the corresponding catch block. The finally part is executed in all cases,
exception or not; its typical purpose is to release resources, for example to close
open files, before moving on.

for (initialization; exit; modification) {
… body …

}

while (condition) {statements}
do {statements} while (condition)

throw e;

try {
… Normal instructions, during which an exception may occur …

} catch (ET1 e) {
… Handle exceptions of type ET1, details in e …

} catch (ET2 e) {
… Handle exceptions of type ET2, details in e …

}… Possibly more cases…
finally {

… Processing common to all cases, exception or not…
}

← “An introduction to
exception handling”,
7.10, page 200.

§B.3 BASIC OBJECT-ORIENTED MODEL 791

Occurrence of an exception creates an exception object, accessible to the
program in the corresponding catch clause through the specified exception
name, such as e. This makes it possible to access such properties as the
human-readable name of the exception and the state of the call stack, although
ordinary exception handling seldom uses this facility.

If an exception occurs whose type does not match any of the listed types —
or it is triggered outside of a try block —, it is passed on to the caller for
application of this policy, until a caller up the chain has a suitable catch; if none
does, the program terminates in error.

The reader familiar with Java will have noted that the preceding description applies
to both languages (which both got the mechanism from C++). C#, however, departs
from the Java model by ignoring the rule that a routine should specify the
user-defined exceptions (those coming from an explicit throw instruction) that it
could trigger. As a consequence there is no equivalent to Java’s throws
specification. This is a source of controversy in both language communities.

Delegates and events

C# offers the delegate mechanism to describe high-level routine objects, as
addressed by Eiffel’s agents. An associated mechanism, events, complements
delegates for event-driven programming. (In Eiffel event types were described
as ordinary objects and hence did not need any specific language construct.)

The basic way to use delegates, which will encapsulate methods, is to
declare the corresponding delegate type, as in

This is a type declaration; it defines a type DT representing functions of one string
argument returning an integer result. To define an actual delegate and associate
it with a given method — say int (string s), a function in the current
class returning the number of letter characters in a string — you may use

although you can make the constructor call implicit by using the method
name directly:

In general, modern programming languages (other than functional languages) do not
allow using a routine as argument to another routine; the agent and delegate
mechanisms, as well as the function pointers of C++ and C, are precisely devised to
avoid this need by providing special objects, usable as arguments, which serve as
wrappers around functions. To produce a C# delegate from a method, however, you
must pass the method itself as argument to the new constructor of delegates as in [5].
Conceptually this is the only case in which the language allows treating a method name

public delegate int DT (string s); [4]

DT d = new DT () ; [5]

DT d = ; [6]

← See chapter 17
about agents and
chapter 18 about
event-driven design.

lettercount

lettercount

lettercount

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.3792

as a value. In practice C# relaxes the rule by allowing assignments such as [6], or
passing the method name as argument to another method, but these are just syntactical
shortcuts; the value actually passed is a delegate, here new DT () .

You can call a delegate like any other method: the call

has the same effect, after the above assignment [5] or [6], as n = lettercount ("A");
— a direct call to the original function. Of course, in a call such as [7] we usually
do not know which particular function d represents; this is particularly the case
if we used [7] in a method r, of which d is the formal argument, and instead of
an assignment such as [6] we pass the delegate as actual argument:

The Eiffel equivalent of the combination of [4] and [5] would be the single
instruction d := agent lettercount, with no need for a type declaration such as
[4]. This form has no direct equivalent in C#, but you can use delegates on
“anonymous methods” (the equivalent of inline agents), as in

where the highlighted part is the anonymous method. Note that such an anonymous
method declares the argument signature but not the result type. In a similar vein,
there is no direct equivalent to the notion of open argument (the ? syntax in Eiffel),
but you can achieve it through anonymous methods in the illustrated style.

An alternative notation for the equivalent of inline agent is the lambda

expression, as in (int x, int y) => x + y, corresponding in mathematical lambda
notation to λ x, y : INTEGER | x + y.

A C# delegate is not constrained to represent a single method; if a and b are
declared of the same delegate type, a + b denotes another delegate of that type;
executing that delegate means executing the methods associated with a and b,
in order. You can directly add and remove components to such a multicast

delegate through the operators += and –=.
For event-driven programming you may define event types and associate

them with delegates. In fact an event type is always associated with a delegate
type, as in the declaration:

defining click as an event type such that the associated events will be treated by
delegates of type DT1.

You must read such a declaration to the end: public event does not qualify DT1
(which must be defined separately as a delegate type); instead, this is a declaration
of the last item listed, click, with three qualifiers — public, event and DT1.

n = d ("A"); [7]

r () ; [8]

r ();

public event DT1 click;

lettercount

This is, as noted,
an abbreviation of
r (new DT (lettercount)).

lettercount

← “Inline agents”,
17.7, page 652.

delegate (string s) {return lettercount (s);}

← “Lambda calcu-
lus”, 17.6, page 640.

§B.3 BASIC OBJECT-ORIENTED MODEL 793

This example uses a new delegate type DT1 rather than the above DT since
delegate types handling events usually return void whereas DT was a function
delegate. If we intend click to represent mouse-click events with two associated
integer coordinates, DT1 will be declared as

To understand the mechanism it is necessary to know that the C#
implementation represents an event type member, such as click, as a list of
delegates corresponding to the various methods subscribed to the event. This
explains how to subscribe to an event:

where r is a routine with the appropriate signature: void r (int x, int y). The +=
operator, overloaded for lists, adds an element to a list. Note that you can use the
routine r directly rather than explicitly wrapping it into a delegate; what gets
added to the list, however, is a delegate. To remove a subscriber, use –=.

This takes care of subscription. To publish an event, use the scheme

(In this example, h and v are two integers giving the mouse coordinates.) Once
again you need to know about the list implementation to understand the need for
the test click != null: if no delegate has been subscribed to click, the list will be
null and the call click (h, v) would cause a run-time error.

The recommended style for handling event arguments in the .NET
framework does not directly use individual arguments such as x and y in this
example, but an event type class declared as a descendant of the library class
EventArgs. In this example you may define a class IntPairArgs inheriting from
EventArgs and declaring two integer fields x and y; then the routines you
subscribe will be of the form

where — as part of the same recommended style — the first argument sender
represents the target object; the second argument e represents the event
arguments. The advantage is that all event handling schemes look the same; it
is not clear, however, that it justifies the resulting complication: instead of
directly reusing existing model routines such as r you have to wrap them into
special glue code such as rHandler.

public delegate void DT1 (int x, int y);

click += r;

if (click != null) {click (h, v);}

private void rHandler (object sender, IntPairArgs e) {r (e.x, e.y);}

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.4794

B.4 INHERITANCE

The C# model of inheritance, essentially taken from Java, does not support
multiple inheritance from classes but only from a special kind of abstraction
called the interface.

Inheriting from a class

Here is how a class declares another as its parent:

This makes L an heir of K. The following example shows the order of specification
elements if the inheriting class is also generic, here with a constraint:

You may only specify one parent class, here K.

Abstract members and classes

Corresponding to deferred features and classes in Eiffel (without the contracts),
you may define both members of a class and the class itself to be abstract:

You may not instantiate an abstract class (as in new N (…)). An abstract method
may only appear in an abstract class; non-abstract descendants must provide an
overriding (redefinition) that is not abstract. You may not declare a method or
class both abstract and static.

Properties and indexers may also be abstract, subject to the same rules.

class L
{… Declarations of members of L …}

class M<G> where G: T
{… Declarations of members of M …}

abstract class N {
public abstract void r(); // Note no implementation
public abstract int s(); // Note no implementation{…}

… Other members (of which some may be abstract and some not)…
}

: K

: K

§B.4 INHERITANCE 795

Interfaces

An interface is similar to a class that would be completely abstract. Interfaces
specify abstract functionality that each descendant will implement in its own
way. Interfaces provide a restricted form of multiple inheritance since a class
may, as noted, inherit from any number of interfaces. This enables the language
to avoid providing a mechanism for resolving clashes between inherited
features (we saw that this problem has a simple solution through renaming), at
the price of renouncing some of the power of inheritance.

A typical interface would read as follows:

The recommended style convention gives interfaces names starting with I. The
example illustrates that interfaces can be generic, and also that their members are
not declared public or private: they are implicitly public. This interface defines
the notion of objects comparable through the usual comparison operations.

It also illustrates the limits of the notion of interface: because members cannot have
any implementation, you cannot specify that a.greater (b), for example, should
always be implemented as b.lesser (a). You could do this in an abstract class, but
then a concrete (non-abstract) class that inherits from it could not have any other
parent, even though comparability generally is only one among several properties
applicable to a class.

A class can inherit from one or more interfaces, providing implementations
(effectings in our earlier terminology) of its members:

Name clashes do not prevent such multiple interface inheritance; there is no
renaming mechanism as in Eiffel, but the inheriting class may disambiguate
clashing names through the dot notation, as in IAnotherInterface.clashingname.

interface IOrdered <T> {
bool lesser (T other);
bool greater (T other);
bool lesserEqual (T other);
bool greaterEqual (T other);

}

class TennisPlayer: IOrdered<TennisPlayer>, IAnotherInterface {
public int ranking;
public bool lesser (TennisPlayer other) {return (ranking < other.ranking);}
… Similarly for greater, lesserEqual, greaterEqual …
… Implementations of members of IAnotherInterface …
… Other members of TennisPlayer …

}

← See the discussion
in “Deferred classes
and features”, 16.5,
page 565.

← “Renaming fea-
tures”, page 590.

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.4796

Accessibility and inheritance

Inheritance brings in new accessibility (export) modifiers for class members in
addition to the ones seen earlier (public, internal, private):

� protected: accessible in the class and its descendants.

� protected internal: accessible in classes of the same assembly and in
descendants (combines protected and internal).

When you override an inherited member as discussed next, you cannot change
its access status. This is different from the Java policy which allows extending
(but not restricting) accessibility in descendants. In addition, descendants may
not have greater accessibility than their ancestors.

Overriding and dynamic binding

You may generally override (redefine) an inherited member. The conventions,
however, are different from those of other modern object-oriented languages.
As in C++ and unlike in Eiffel and Java, binding in C# is — surprisingly for a
language first released in 1999 — static. In other words, the version of f to be
executed in a.f follows from the declaration of a, not from the dynamic type of
the object attached to a. To obtain dynamic binding you must declare the
member virtual:

and override it in descendants by keeping the same argument signature (exactly)
and replacing virtual by the override modifier:

You may access the original version of an overridden feature — as with
Precursor in Eiffel — through the keyword base and dot notation; for example,
the implementation of f in Q can use

class P {
public void f (…) {…}
…

}

class Q: P {
public void f (…) {…}
…

}

base.f (n);

← “Export status”,
page 779.

← “Redefinition”,
16.6, page 570.

virtual

override

←Page 573.

§B.4 INHERITANCE 797

to take advantage of the original P implementation.

The new declaration will then be considered an overriding of the original, and
cause dynamic binding. These rules require that you exert particular care since
a new declaration that does not exactly follow the above scheme (original
method specified virtual, new one specified override) will sail through the
compiler but have a different result. Consider the following variant:

The original f is not declared virtual in R, but you can still use a new declaration
in the descendant S. It is not an override but simply declares a new method that
shadows the inherited one on targets of (statically declared) type S, so that s1.f(n)
will use this version; but r1.f(n) will use the R version regardless of the run-time
value of r1. This is rather dangerous. To protect yourself against the risk of error,
you are expected in this case to mark the overriding member as new:

but this is not required; forgetting new only causes a compiler warning. In the
same way, no dynamic binding will occur for p1.f (n), with p1 declared of type
P above and dynamically of type Q, if you omit the override modifier in Q; this
is not an error, simply a case that applies static binding.

An overriding declaration can use the modifier sealed to prohibit any further
overriding in descendants:

This is only permitted in overriding redeclarations (marked override); the
reason is that you do not need it for original declarations since any new member
not marked virtual is non-overridable. You can also declare a class sealed
(sealed class T …) to prohibit its use as parent of others.

Declaring classes and members sealed is a more common practice in .NET libraries
than object-oriented methodology would normally command, probably because in
the absence of contracts this is the only way to prevent descendants from messing
up the original intent.

class R {public void f (int i) {…}}
class S: R {public void f (int i) {…}}
R r1 ; S s1 = new S() ; int n;
r1 = s1;

class S: R {public void f (int i) {…}

class Q1: P {
public void f (…) {…}
…

}

new

In Eiffel you may simi-
larly declare a feature
or class frozen.

sealed override

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.4798

The language’s choice of static binding by default is clearly wrong. The
consequence of this observation is a methodological rule for C# programming:
always declare methods virtual by default; only remove this modifier in the
rare case of a method that you want to seal.

Inheritance and creation

C# enforces a special rule on constructors in the presence of inheritance: any
constructor of a derived (heir) class must call a constructor of the parent. As a
result, a constructor call will always result in a chain of constructor calls, going
all the way to object’s default constructor. This effect can be achieved either
explicitly or implicitly:

� The constructor can call a parent constructor of its choice through the base
notation, as in base (n); since constructors do not have individual names
(only the name of the class), the argument signature determines, after
resolution by overloading, which parent constructor is intended.

� In the absence of such a call, the parent must have a default constructor, which
will automatically execute before the heir’s constructor starts its execution.

One of these cases must apply: the absence of both a default constructor in the
parent and an explicit parent constructor call in the heir’s constructor is a
validity (compile-time) error.

As noted in the discussion of the corresponding Java mechanism, the reason
for these rules is not entirely clear. The intent is probably to make sure that an
instance of a descendant type also satisfies the consistency constraints defined
by proper ancestors. The constructor chain appears as an attempt to ensure such
consistency in the absence of a notion of class invariant to express the
constraints explicitly.

Run-Time Type Identification

To force a type U on an expression exp of type T (as with Eiffel’s object test)
you may use two mechanisms:

� An explicit cast, letting you write (U) exp, an expression of type U
regardless of the declared type of exp. If the value of exp is indeed an object
of type U at execution time, you may use this expression to refer to that
value under that type. The downside is that if the dynamic type does not

match U an attempt to evaluate the expression will cause an exception,
which you should handle for safe programming.

� As a more gentle technique, you can use the boolean expression exp is U.

← “Run-time model,
object creation and ini-
tialization”, page 755.

← You should be
familiar with “Uncov-
ering the actual type”,
page 599, which
describes the issue and
introduces object test.

§B.5 FURTHER PROGRAM STRUCTURING MECHANISMS 799

In the second case exp is still statically of its declared type T; but then you may
combine the two mechanisms with the guarantee that the cast will work:

B.5 FURTHER PROGRAM STRUCTURING MECHANISMS

C# introduces a number of program structuring facilities beyond the basic
object-oriented paradigm.

Namespaces

In combining software from different sources you may run into type name
clashes: two providers give you types, usually classes, with the same name. C#
makes it possible to resolve such clashes by defining an extra level of naming
for types, the name space — usually written in one word: namespace.

By default all type names belong to a global namespace. You can define
your own namespaces and include type declarations in them:.

Then a client needing to access several classes called C can disambiguate its
intent through the notation N1.C.

An important predefined namespace is System, which contains fundamental
library classes.

You may nest namespaces; this can mean nesting the texts physically, but
you may also use dot notation to define the innermost namespace separately:

A client that uses many names from a namespace can avoid repeating the
qualified notation (as in N1.N2.C, N1.N2.D and so on) through a using directive:

if (exp is U) {r (exp)}; // With the method declaration r (x) {…}

namespace N1 {
… Declarations of classes (and other types if desired) …
}

namespace N1 {// Sub-namespace of N1; contents accessible as e.g. N1.N2.
… Declarations of classes including …
}

using N1.N2;
using SomeOtherNamespace;
… Here we can use as a shortcut for N1.N2. …

(U) U

.N2 V
V

V V

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.5800

As this example suggests you can have any number of using directives. If the
corresponding namespaces define types with clashing names, you must go back
to dot notation to disambiguate them: here if SomeOtherNameSpace defines a
type called V the above is no longer valid and you must use N1.N2.V.

Extension methods

Assume you want to extend the concept covered by an existing class X. The
normal object-oriented mechanism is to declare a new class that inherits from
X. But inheritance may be inconvenient or inapplicable. For example X might
be sealed (a common practice, as noted, in .NET libraries). More generally,
defining a new class means defining a new type; even if you are only adding
methods and no fields, the type system prevents you from applying its
operations to existing objects of the original type X, for example objects that
have been stored in a file or database.

To address this issue, C# provides the interesting mechanism of extension

methods: methods added, from the outside, to an existing class.

Extension methods are essentially a syntactic simplification, since one
could solve the extension problem through static methods: in any class you may
write a static method sm to be called as sm (x1, other_args) with x1 of type X.
What we want, however, is a method m that will be called in the same style as
if it were a method of X:

even though m is declared somewhere else. The syntactic trick is to mark the
first argument of m with the modifier this:

making [9] valid (with two integer values to replace other_args in this case).

x1.m (other_args); [9]

public static class Y {
static void m (X x, int arg1, int arg2) {…}
…

}

this

§B.5 FURTHER PROGRAM STRUCTURING MECHANISMS 801

Attributes

By nature a programming language is restricted to the semantic mechanisms
foreseen by its creators. Sometimes new applications call for the inclusion of
supplementary properties to characterize program elements; such properties
will not necessarily be relevant for the compilation process and obviously
should not change the existing semantics — if it did, the proper solution would
be to change the programming language and update its compilers — but may be
of interest to other tools, for example documentation or serialization tools.

It is prudent for a programming language to provide an open-ended
mechanism supporting such extensions, known as metadata (supplementary
information added to a document, separate from its essential content). In Eiffel
you may have noticed the note clauses associated with classes and features,
which serve precisely that purpose. .NET and C# provide metadata support in
the form of attributes (not to be confused with the object-oriented notion of
attribute as used elsewhere in this book, for which the C# term is “field”).

Some attributes are predefined, but programmers may also define their own,
known as custom attributes.

An example of predefined attribute is Serializable, which you can attach to
a class declaration to indicate that its instances can be converted to an external
representation suitable for external storage:

The syntax for adding an attribute to a program element — here an entire class,
but the convention is the same if you want to attach the attribute to a class
member — is simply to prefix its declaration with the attribute name in brackets.

A custom attribute is defined by a class, which must be a descendant of the
library class System.Attribute (that is, class Attribute in the predefined
namespace System). As an example, assume we want the possibility of
equipping classes with basic version control information: an author name, a
modification date, and optionally a revision number, all strings. We use:

public class Z {… Class declaration as usual …}

public class ChangeAttribute: {
private string author;
private string last;
public ChangeAttribute (string a, string l)

{author = a ; last = l;}
public string revision;

}

← To serialize an object
structure is to map it to
external storage. See
“Uncovering the actual
type”, page 599.

[Serializable]

System.Attribute

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.6802

Note the recommended style of giving custom attribute classes a name that ends
with Attribute.

Then we can equip a class or (here) a method with version information:

In using the attribute we must pass arguments for the chosen constructor. It is
also possible (but optional) to specify values for public, writable fields of the
custom attribute class, such as revision in this example:

ChangeAttribute as declared is applicable to any program element: class, struct,
method, field, delegate and several others. You can restrict the applicability of
an attribute by attaching to its own declaration the AttributeUsage attribute:

Instead of you may use such other possibilities as All (the default),
Assembly, Delegate, Event, Interface, Field, Method, Parameter (argument),
Struct. You may specify two or more permitted target types, separating them by |.

Within an attributed element you can obtain the values of the attributes
through built-in “reflection” mechanisms. For o denoting an object, the call

returns array containing the attributes that have been defined for the generating
class of the object, with their values.

B.6 ABSENT ELEMENTS

C# misses a number of object-oriented mechanisms to which we have grown
accustomed in this book, notably contracts and multiple inheritance from classes.

The Spec# experimental language, from Microsoft Research, extends C# with
contracts. It is based on an earlier version of C#, version 2.0.

[ChangeAttribute ("Caroline", "24 December 2009")] public void r {…}

[ChangeAttribute ("Caroline", "24 December 2009",)]
public void r {…}

[System.AttributeUsage(System.AttributeTargets.)]
public class ChangeAttribute: System.Attribute {… The rest as before …]

o.GetType().GetCustomAttributes(true);

revision = "2.1"

Class

Class

research.microsoft.com/e
n-us/projects/specsharp/.

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/

§B.7 SPECIFIC LANGUAGE FEATURES 803

B.7 SPECIFIC LANGUAGE FEATURES

It is useful to be aware of a few supplementary C# constructs.

Unsafe code

C# combines a strong emphasis on type safety with a desire to let programmers
work on low-level aspects that would normally be handled in C or assembly
language. The “unsafe” construct supports a clear separation between normal,
type-checked parts of the program and data, and the unsafe elements.

Declaring a method unsafe enables it to manipulate a data area outside of
the C# heap (the set of objects created by new operations), performing direct
pointer manipulations similar to those of C++ and C and hence bypassing the
normal type rules on that part of the data.

Enumeration types

Enumerated types make it possible to define variables that range over a finite
set of predefined values, as in

The values are actually integers; the underlying type is int by default, but you
can specify another integer type, as in enum T:long {…}. Values normally start
at zero, but you can specify explicit values, as in

where values not specified are incremented by one from those preceding. In all
cases the resulting values must all be different. You can denote the values by
prefixing them with the type name and a dot, as in CardColors.Spades. You can
treat the values as integers through explicit casts.

enum CardColors {Spades, Hearts, Diamonds, Clubs}

enum CardColors1 {Spades = 1, Hearts, Diamonds, Clubs}

AN INTRODUCTION TO C# (FROM MATERIAL BY BENJAMIN MORANDI) §B.8804

Linq

A set of mechanisms introduced in C# 3.0 has attracted considerable attention.
Known as Linq, it enables the programming language to cover database and web
manipulations that are generally handled through separate formalisms, typically
SQL for databases and XML for web aspects. Object-oriented environments
usually support such manipulations through libraries that provide the interface
to the underlying mechanisms, such as relational databases and the HTTP
protocol. The originality of Linq is to make everything expressible without
leaving the programming language at all; for example you can run a database
query as

referring to a relation Employees from a database; it produces the list of ranks
of all employees making more than a certain salary. This is the same style as
SQL queries, but integrated in the programming language; the elements
involved are normal objects, such as lists, of the program.

B.8 LEXICAL ASPECTS

C# identifiers follow conventions similar to those of Eiffel. They may, however,
start with an underscore (not just a letter), although this possibility is not
normally used in application programs. An important difference is that
identifiers are case-sensitive: anIdentifier, AnIdentifier and anidentifier are all
considered different. The underlying character set is Unicode.

Comments in C# programs can be:

� Single-line: any part of a line starting with //.

� Multi-line: starting with /∗ and ending with ∗/.

Single-line comments starting with /// (with an extra slash character) are
intended to contain XML code for use as special documentation by automatic
documentation processing tools.

B.9 BIBLIOGRAPHY

Judith Bishop and Nigel Horspool, C# Concisely, Addison-Wesley, 2003.

An introduction to the basic C# mechanisms (covering an earlier version
of the language).

Online documentation at msdn.microsoft.com/en-us/vcsharp/default.aspx.

The best place to get detailed specifications of language mechanisms. The
site also includes a number of tutorials.

from e in Employees where e.salary > median select e.rank

SQL (Structured Query
Language) is the stan-
dard language for
manipulating rela-
tional databases.

http://msdn.microsoft.com/en-us/vcsharp/default.aspx

C

An introduction to C++

(from material by Nadia Polikarpova)

It is customary to characterize object-oriented languages as either “pure” (fully
and solely implementing O-O concepts) and “hybrid” (mixing O-O and
non-O-O features). The most prominent representative of the hybrid class is
C++, designed to make some O-O ideas acceptable to C programmers. C++ has
a general flavor quite different from the Eiffel notation used in the rest of this
book; it is also more complex.

You will find many books and introductory articles about C++, usually
starting from scratch or assuming knowledge of C. The role of this appendix is
different: it is directly targeted to you, the patient reader of this book, who have
made it to page 805 and hence master object-oriented programming in its “pure”
form . The goal is to enable you to apply what you have learned if you have to
program in C++. For that reason, many C++ constructs will be explained — as
was done for Java and C# — in the style “This is what you would do in Eiffel,

and here’s how to obtain the same or a similar effect in C++”.

C, on which C++ is based, is itself an important language, briefly covered
in the next appendix.

C.1 LANGUAGE BACKGROUND AND STYLE

Today the idea of using an object-oriented language hardly scares anyone,
but in the late eighties it was sulfurous; many programmers and managers
in industry and academia, while intuitively attracted by O-O concepts, were
suspicious of their applicability. From 1979 on Bjarne Stroustrup, then of
Bell Laboratories, designed and implemented a language initially called “C
with classes”, which extended C with concepts imitated from Simula 67, the
first object-oriented language; code was translated into plain C through a
“preprocessor”. The language soon proved a hit, as it promised a reassuring
transition path for C programmers.

In the following two decades the language was progressively extended
with constructs such as templates (a form of genericity with wide -ranging
applications) and multiple inheritance.

Stroustrup (2007)

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.2806

C.2 OVERALL PROGRAM ORGANIZATION

In a fully object-oriented approach a program is made of a set of classes. C++,
in keeping with its hybrid spirit, does not enforce this rule. A program can
include classes but also other elements that do not belong to any class: functions
(corresponding to routines in Eiffel, that is to say, including procedures as well
as true functions), variables, constants and non-class types.

As an example of stand-alone function, every program includes a function
called main, which defines the program entry point. In Eiffel this role was
played by the root creation procedure.

Rather than a set of classes, a C++ system is a set of translation units, each
contained in a source code file which can be processed independently by a C++
compiler. Each translation unit can contain declarations of classes and other
types, functions, variables and constants.

The declaration of such an element may be a definition, meaning that it
contains the full description of the element, but it may also be a non-defining
declaration, such as

with the understanding that the rest of the definition of the given elements —
here a class and a type — appears in another unit, or later in the same unit. This
makes it possible to use the element without knowing its detailed properties. For
a variable or constant, a non-defining declaration will use the keyword extern to
indicate that the definition appears elsewhere:

A function definition includes the name, signature and implementation:

class Person;
enum Week_day;

extern bool has_error;
extern const double pi;

int factorial (int n)
{

if (n > 1) {
return n ∗ factorial (n - 1);

} else {
return 1;

}
}

← “System execu-
tion”, 6.8, page 130.

§C.2 OVERALL PROGRAM ORGANIZATION 807

A class definition contains the list of class members (features).

A variable definition indicates the type (coming before the variable, instead of
the Eiffel convention variable_name: TYPE):

The second of these has an initializer part, which sets an initial value. The
definitions above do not contain the extern keyword: it means that the variables
can be used only within the given translation unit.

Defining a variable implies that memory will be allocated for it, as with
Eiffel’s expanded types.

A constant definition always includes an initializer:

Unlike in Eiffel, order of declaration matters: names declared in a translation
unit, become usable only after the declaration. To use an element ahead of its
definition — as needed for example in the case of mutually recursive definition
— use a non-defining declaration first.

To avoid a translation unit becoming too large, you may split it into several
files and rely on the #include directive, as in:

which has the effect of making all the definitions contained in the source file
filename available to the current translation unit. A common use of this facility
is to use header files (with conventional filenames of the form name.h),
containing declarations of elements used by many units, which all #include it.

class Person { // Objects that represent persons
string name; // Person's name
Date birth_date; // Person's birth date
void set_name (string s)

{name = s;}
void set_birth_date (Date d)

{birth_date = d;}
… // Other members

};

int n;
bool has_error = false;

const double Pi = 3.14159265358

#include "filename"

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3808

A #include directive, like any other starting with #, is intended for the C++
preprocessor, a tool that is run on program files before the compiler processes
them. Other uses of the preprocessor include conditional compilation, which
enables you to set preprocessor variables and include certain code only if the
corresponding variables have been set. A typical example is

to include code on the Linux platform only, depending on the LINUX variable.
Such variables, unrelated to the program’s variables, are set or unset as options,
prior to preprocessing and compilation.

C.3 BASIC OBJECT-ORIENTED MODEL

Like in Eiffel, every C++ variable and constant has a type, but unlike in Eiffel
not all types are based on classes, and consequently not all values are objects. A
type is one of: built-in; derived (with possible combinations of derivation
mechanisms); user-defined.

Built-in types

Built-in types are preset in the language. They include: bool for boolean values;
char, short int, int and long int for integer values with various range; float,
double and long double for floating point numbers with different range. Type
char also serves to store characters.

Each integer type also has a signed and an unsigned versions, such as signed
short int and unsigned short int. Unsigned versions only include positive values.
By default all integer types except char are signed, making types such as signed
int redundant; whether char is signed is platform-dependent.

The built-in type void does not have values. It serves as a return type for
functions that do not return a value (procedures in Eiffel), such as

Derived types

Derived types are constructed from already existing types using one of five type
transformations: constant, pointer, reference, array and function. The following
examples apply these transformations to obtain new types from an existing type T.

The type const T represents immutable values of type T. For example, a
constant n defined as

#ifdef LINUX
… Linux-specific code …

#endif

void set_name (string s);

§C.3 BASIC OBJECT-ORIENTED MODEL 809

will have type const int. You may assign an expression of type const T to a
variable of type T, but not the other way around.

T∗ is the type “pointer to T ”. A value of this type denotes the address of the
memory location where a variable of type T is stored. To obtain a pointer to a
variable x, use & as in &x. The other way around, if p is a pointer, the
dereferencing operator ∗, as in ∗p, yields the value stored at the location to
which p points; if that value is an object, you can access a field f through dot
notation applied to the dereferenced pointer, as in (∗p).f. The special syntax
p–>f is a synonym.

Because a pointer is simply a memory address, you can subject it to arithmetic
operations, in particular add or subtract an integer to a pointer to get a new address,
as in ∗(p + n) which yields the value stored at the (n * sizeof T)-th byte after p, where
p is of type T* and sizeof T yields the number of bytes occupied by an instance of
type T. This is known as pointer arithmetic and is widely used in low-level C
programs to access specific memory locations. The mechanism is error-prone (since
it is hard to guarantee the type of the value that will appear at such a dynamically
computed address) and should generally not be used in C++ applications.

All pointer types conform to the special pointer type void∗, making it partly
similar to the Eiffel type ANY, but only partly since this conformance is built-in
and not induced by inheritance. As you cannot have variables of type void, you
cannot dereference void∗ pointers, nor can you perform any other operations on
them. To use such pointers you should perform an explicit typecast (a “run-time
type identification” operation) to attach the value stored in the pointer to a
variable of another type. There are multiple typecast operations in C++; they
have different results in case of unsuccessful cast.

T& is the type “reference to T ”. Like a pointer, a reference represents an
address, but any use is automatically dereferenced. References are the most
direct way to obtain the effect of ordinary (reference) class in Eiffel. With an
Eiffel class class PERSON … end, the equivalent of a client routine

will be, in C++:

with a call of the form call_her_izzy (Isabelle) if Isabelle has type Person. The
effect is to change the name field of the referenced object. If the argument in the
C++ version had the type Person, the call would create a copy of the Person

const int n = 5;

call_her_izzy (p: PERSON)
do p.set_name ("izzy") end

void call_her_izzy (p)
{p.set_name ("izzy");}

← “Uncovering the
actual type”, page 599.
A typecast is also known
as a dynamic cast

This is Eiffel, not C++..

Person&

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3810

object; the routine would work on that copy, but with no useful effect since the
copy is lost on return.

To implement the reference behavior with pointers, you must make the use
of the address and the dereferencing explicit:

The call in this case will be call_her_izzy (&Isabelle). It is considered good C++
style to use pointers rather than references in such cases, as it makes the
reference semantics explicit.

Another difference is that a reference is enforced to have an initializer,
which attaches a value of type T to a T& reference, whereas pointers can have
zero value (also called NULL and corresponding to Eiffel’s Void). This does
not, however, provide the benefits of Eiffel’s attached types, since it is possible
to assign a dereferenced T∗ pointer to a variable of type T& or T, causing a
run-time error if the pointer is null.

More generally, reference types enforce a stricter type discipline; in
particular, they do not allow pointer arithmetic.

Now for array types. The array type T[size], where size is an integer
constant known at compile time, represents sequences of values of type T stored
in size adjacent memory locations. If a is of that type, you can use [i], where i is
an integer expression, to access the i-th array element. A C++ array is really just
an address at which enough locations are assumed to be available to store size
elements. For safe array handling with index control avoiding out-of-bound
array access, you may use library classes.

Finally, function types. They actually are pointer to function types. If R,
A1, …, An are types,

declares a variable f whose values are pointers to functions with return type R
and argument types A1, … An. For example, with the declaration

you can assign to the variable a value denoting a function pointer:

void call_her_izzy (p)
{p–>set_name ("izzy"); // or (∗p).set_name ("izzy");
}

R (∗f) (A1, …, An);

void (∗f) (Person∗)

f = call_her_izzy; //or f = &call_her_izzy;

Person∗

← “Appendix: getting
rid of void calls”, 6.9,
page 136.

§C.3 BASIC OBJECT-ORIENTED MODEL 811

and then perform an indirect call:

After the previous assignment this will have the same effect as a direct call
call_her_izzy (Isabelle); the difference is that f is a variable, and could be
assigned pointers to many other functions.

A function pointer can denote not only a standalone functions, but also a
member function of a class, as in

which declares and assigns p as a pointer to a function from class Person, taking
one argument of type string. You may call that function through the .∗ operator:

As you have surely started to reflect, pointers to functions are closely related
to two object-oriented mechanisms that we have studied, both of which rely on
the ability to call a routine but leave until run time the determination of exactly
which routine that will be: dynamic binding and agents. C++ function pointers
indeed make it possible to emulate both of these facilities:

� They are the best way to obtain the effect of agents in C++, although they
lose the idea that an agent represents a routine with all its properties (all you
can do with a function pointer is to call the function, the equivalent of the
routines call and item on agents), and some of the typing guarantees.

� C++ function pointers would also enable you to obtain the effect of dynamic
binding, by using an object’s dynamic type as an index into an array of
function pointers to find the right version of a function. This technique was
described in detail in the discussion of inheritance implementation. You do
not need to use it in C++ since the virtual function mechanism, studied
below, gives you dynamic binding. (The availability of both techniques can
be confusing to C++ beginners.) You will need it if you are programming in
C, rather than C++, since C has no object-oriented mechanisms and in
particular no virtual functions. This is also why Eiffel compilers that use C
as their target language also rely on it, through the scheme explained in the
earlier discussion.

f (Isabelle); // or (∗f) (Isabelle);

void (Person::∗p) (string)
…
p = Person::set_name;

(Isabelle.∗p) ("Izzy");

← “Dynamic bind-
ing”, 16.3, page 562;
agents are the topic of
chapter 17.

← “A peek at the
implementation”,
16.8, page 575.

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3812

Combining derived type mechanisms

The five mechanisms for building derived types, as just reviewed, can be
combined in various ways. Here are some of the most important.

You can combine the const and pointer modifiers to obtain:

� A constant pointer, which will always point to the same memory location
throughout execution, although the value at that location may itself change.

� A pointer to a constant, which can be changed, but may not be used to
change the value at any location to which it points. (But such a location may
also be the target of a non-constant pointer, in which case the value can be
changed through that other pointer.)

� Constant pointers to constants, for which both the memory location and the
pointed value are immutable.

You may similarly combine const with references. The following examples
illustrate some of the possibilities:

Also important in practice is the typedef notation that enables you to give a
name to any type. This makes it possible to refer to complex derived types
through simple names as in

which make it possible to use rather than const Person ∗, as in a declaration
Cp p; similarly, Pf denotes a function pointer type.

User-defined types

In addition to classes studied next, user-defined types include enumeration

types which enable you to represent a fixed, usually small set of values, as in:

const int∗ pointer_to_const;
const int& reference_to_const;
int∗ const const_pointer;
int& const const_reference;

typedef const Person∗ ;
typedef void (∗) (Person∗);

enum Week_day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};
enum Error {Division_by_zero, Null_pointer_dereference, File_error, Memory_error};

Cp
Pf

Cp

§C.3 BASIC OBJECT-ORIENTED MODEL 813

Internally, the values of an enumeration are integer constants; enumeration
types conform to integer types, but not vice versa, to help ensure that the value
of an enumeration variable remains within bounds.

Another kind of user-defined type is the structure type, usually called just
“struct”, a form of class. Classes are studied below; structures have essentially
the same properties but a different export policy.

Finally, a union type describes objects which can be of several kinds all
occupying the same storage, defined using the keyword union instead of class
or struct. This mechanism is a carry-over from C where it was intended for
storage optimization; it is not type-safe, since if you use p.a you cannot be sure
that p is of the right variant having the attribute a. For this reason C++
programmers rarely use unions, relying instead on inheritance, as in other
object-oriented languages, to support variants of a common type.

Classes

You may define a C++ class through the following syntax:

This may occur at any place in a translation unit where definitions are allowed,
including inside other classes and even inside function bodies, although such
nesting is not common. Similarly, it is preferable (but not required) to include
only one class in a file, as you would do in Eiffel.

You can use a class as a type for variables and to construct other derived and
user-defined types:

For class members (features), C++ distinguishes between member variables,
also called data members (corresponding to Eiffel attributes), and member

functions, also called methods (correspond to Eiffel routines).

A class definition can contain both definitions and non-defining
declarations of members. In the latter case members should be defined outside
of the class:

class A{
… // list of members

};

A var; // variable of type A
const A const_var; // constant of type A
A∗ p; // pointer to objects of type A

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3814

C++ does not apply the Uniform Access principle, instead treating qualified
access to a member variable and invocation of a member function as different
operations. For a function you must always use parentheses to enclose the
argument list even if that list is empty:

Another important difference from Eiffel (and departure from another principle,
information hiding) is that you may directly assign to object fields:

Needless to say, this is not recommended — use setter commands instead.

Special member functions called constructors serve to create objects. Here
is an example of a constructor:

A constructor plays the same role as an Eiffel creation procedure but there are
important differences. As this example illustrates, constructors do not have their
own names but use the name of the class, here A; this still makes it possible to
have several constructors as long as they have different type signatures (a case
of overloading as studied below). To initialize a variable of a class type you
must call a constructor, as in:

class A{
int n; // member variable
void f () // member function defined inside the class

{…}
void g (); // member function defined outside the class

};

void A::g // definition of g
{…}

A var;
int i;
i = var.n;
var.f ;

var.n = 5;

class A{
int n;

// The next two lines define a constructor

…
};

()

← “Touch of Method-
ology: The Uniform
Access Principle”,
page 246.

()

← “Information hid-
ing: modifying fields”,
page 240.

← “Setters and get-
ters”, page 248.

A (int i)
{n = i;}

§C.3 BASIC OBJECT-ORIENTED MODEL 815

where the second form is an abbreviation for the first. A class may have a default

constructor with no arguments (think of default_create from class ANY in
Eiffel), enabling you to omit the explicit initialization:

In the absence of a constructor declaration, the class is considered to have a
default constructor that sets all the data members to default values. If, however,
any of the class members is of a type that does not have a default constructor,
the class must include at least one explicit constructor.

A constructor assumes that prior to its execution all member variables have
been set to default values. These values are language-defined for built-in types,
and for classes are given by the default constructor if present. In its absence you
must provide a default value through a member initializer list, which may also
include values for any other data members, as in:

The process for constructing an object involves: constructing the fields, using
the initializer list if supplied and default constructors otherwise, in the order in
which the member variables are defined inside the class; then executing the
constructor’s body.

To denote the current object (Current in Eiffel) you may use the keyword
this, defined as a constant pointer.

It is common in C++ practice to define functions that both change the state
and return a value, departing from the Command-Query Separation principle,
although nothing prevents C++ designers from following this principle. Indeed
you can guarantee that a function does not change the state by declaring it const:

A var = A(2);
A another_var (2);

A var; // synonym for A var = A ();

class B {
int value;
Person a_friend;
B (int v, string name) : value (v), a_friend (name) {}

// Can also be written: B (int v, string name) : a_friend (name)
// {value = v;}

};

← “Creation proce-
dures”, 6.5, page 122.

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3816

Such a function may not modify the current object by assigning to member
variables or calling non- functions.

Information hiding

In Eiffel you define clients’ access privileges through export specifications,
which can be selective. In C++ you may define, for every member of a class, one
of three access modifiers: public, protected and private. Public access means full
rights for clients and descendants (as with exporting to ANY in Eiffel). Protected
access means exporting to the class itself and its descendants. Private access
prohibits access in class descendants, unlike Eiffel where descendants always
have full access for unqualified calls. These rules indeed do not differentiate
between unqualified and qualified calls (so that there is no equivalent to making
a feature completely unavailable through qualified calls, by exporting it NONE).
The following examples use some of these access modifiers

In practical usage, member variables are rarely declared public since this makes
them available for assignment as well as access. The common practice is to
define a getter; we saw why this is not needed in Eiffel.

The default for class members in the absence of an access modifier is
private. For structures, however, the default is public.

These techniques do not exactly support the notion of “selective export” (as
in feature {A, B, C} in Eiffel, which exports the features that follow to the
specified classes and their descendants), but there is a closely related
mechanism allowing a class to designate a function or another class as its friend:

class A {
int n;
int n_squared ()
{return n∗n; }

};

class A {
 :

int n;
float secret_function () { … }

 :
float variable_for_descendants;
int n_squared () { … }

 :
string variable_for_everyone;
do_everything () { … }

};

const

const

← Selective exports
were seen in “Overall
inheritance structure”,
16.10, page 586.

private

protected

public

← “Setters and get-
ters”, page 248.

← “Overall inherit-
ance structure”,
16.10, page 586.

§C.3 BASIC OBJECT-ORIENTED MODEL 817

A friend can access all class members, including private and protected ones.
(This means that the level of granularity of the friend mechanism is coarser than
with selective export, which specifies access to individual features). Unlike a
member function, a friend function is not called on the current object; hence it
may not use this, and may only access private members in a qualified way.

Scoping

Any variable, constant, function or type has a scope: local to a block (a program
part enclosed in braces {…}) if this is where its declaration appears, otherwise
global (extending to the entire translation unit).

A consequence is that there is no special syntax for local variables, which
are simply defined anywhere in the block making up a function body. It is
actually considered good practice in C++ to define local variables as close as
possible to the point of their first use.

Blocks can be nested. A declaration in an inner block hides an element
defined with the same name in an outer block or globally:

A hidden element can still be accessed in an inner block through the :: notation,
the scope resolution operator:

These facilities are error-prone and it is preferable to choose different names in
nested scopes.

class Linkable {
 class Linked_list;
 bool is_equal (const Linkable& other);

…
};

int x; // global x
void f ()

{x = 1; // Assignment to global x
int x; // Defines a local x
x = 2; // Assignment to local x
}

int y = x; // Uses the global x

int x; // Global x
class A {

int x; // Member x
void f ()

{int x; // Local x
int y = A::x; // Uses member x
int z = ::x; // Uses global x
}

};

friend
friend

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3818

Operators

As in Eiffel, you can define functions which will be called in operator syntax:

Unlike in Eiffel, operator functions do not have an equivalent identifier name,
and you are restricted to a fixed set of predefined operators (such as + and such)
whose syntax properties — number of arguments, infix or prefix use, left- or
right-associativity — cannot be changed.

Overloading

It is possible in C++ to declare several functions with the same name in the same
scope, if they have different signatures as in

This mechanism is called function overloading. It is often used in particular for
operators (“operator overloading”). It is also what permits all constructors of a
class to use the same name — the class name.

Static declarations

In a pure object-oriented framework, all elements of the program are relative to
the current object (we called this “general relativity”). C++ adds a mechanism
to describe member variables and functions, said to be static, that belong to a
class but can be applied independently of any of its instances. (In Eiffel the
equivalent effect is obtained through the notion of once routine, not used in this
book but described in the standard documentation.)

Unlike usual member variables, which represent fields of every instance of
a class, a static member variable represents data at the level of the class itself.
For example, a static data member can be used to count how many times a
certain member function of the class was called:

class Complex {
…
Complex operator+ (const Complex& other) const {…}
Complex operator- (const Complex& other) const {…}
Complex operator∗ (const Complex& other) const {…}
Complex operator/ (const Complex& other) const {…}

};

void print (int n) {…}
void print (string s) {…}
…
print (5); // Uses the integer print function
print ("hello"); // Uses the integer print function

← “The current object
and general relativ-
ity”, page 132.

See e.g. docs.eiffel.com/
book/method/10-other-
mechanisms.

http://docs.eiffel.com/ book/method/10-other-mechanisms
http://docs.eiffel.com/ book/method/10-other-mechanisms
http://docs.eiffel.com/ book/method/10-other-mechanisms

§C.3 BASIC OBJECT-ORIENTED MODEL 819

A static member function operates only over static member variables and
constants, as in:

Calls to static member variables and functions do not need a target object;
instead of dot notation you may use the scope resolution operator:

Another use of the static keyword is to declare a static function local, which will
preserve its value between function invocations, as in

Object lifetime

C++ differentiates between objects whose storage is automatically managed by
the runtime system and those under direct programmer control.

Programmer-controlled objects are also called dynamic objects or heap

objects. Programmers bring dynamic object into existence by calling the new
operator with a constructor:

class Rocket_launcher {
…

 int rocket_count;
 const int max_count = 100;

void launch () // Launch a rocket
{

…
rocket_count++; // Increase by 1

}
};

class Rocket_launcher {
… Rest of class as above …

 bool is_in_bounds ()
{return rocket_count <= max_count;}

};

r = Rocket_launcher::rocket_count;
m = Rocket_launcher::max_count;
if (Rocket_launcher::is_in_bounds ()) …

void f ()
{ int invocation_count = 0; // static local
…
invocation_count++; // increasing by one
}

static
static

static

static

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3820

Evaluation of the new expression yields a pointer to an object of type Complex,
causing the assignment to have the same effect as an Eiffel creation instruction
create c.make (1.0, 2.0) with c of type COMPLEX.

Unlike Eiffel, C++ is not designed for automatic garbage collection. It is the
programmer’s responsibility to determine when a dynamic object is going to
become unreachable and remove it from the heap using the delete operator:

(For the same purpose C provides a library function called free.) If after
executing this instruction some pointers or references are still referencing the
object that was attached to c before, they will become dangling pointers:
dereferencing such a pointer means trying to access a non-existent object and
will cause a runtime error or yield an arbitrary value. On the other hand, failing
to delete objects that have become unreachable will cause memory leaks.

While dynamic objects are always accessed through pointers — with the
possibility of several pointers attached to the same object — a non-dynamic
object (which can still have “secondary” pointers and references attached to it)
is associated with a single variable or constant, whose scope determines the
object’s lifetime. A non-dynamic object can be of two kinds:

� Variables local to a function or other block yield automatic (or stack)
objects; they are managed on the call stack, allocated at the point of
definition and forgotten on block exit.

� Global variables and variables declared static (static data members, static
function locals) yield static objects: they are created before the invocation
of the main function and exist throughout execution.

The lifetime of object fields (which correspond to non-static member variables)
is determined by the lifetime of the object to which they belong. The destruction
process will be applied first to an object and then to its fields. In the absence of
automatic garbage collection it is often necessary to specify certain operations
to perform when an object is deleted (either through an explicit delete or, for
automatic objects, on block exit). Any class C can define for this purpose a
special destructor member function, of name ~T, which will be invoked on
object destruction. Here is a typical destructor:

Complex∗ c;
…
c = new Complex (1.0, 2.0);

delete c;

← “Memory manage-
ment and garbage col-
lection”, 6.7, page 128.

§C.3 BASIC OBJECT-ORIENTED MODEL 821

This example illustrates a common C++ pattern, Resource Acquisition Is

Initialization (RAII): use the constructor to acquire resources that an object
needs and the destructor to free them. This removes some sources of errors by
ensuring that delete operations happen in the right order. Systematic application
of RAII confines use of dynamic memory to specific classes, often in libraries;
the rest of the software uses instances of these classes non-dynamically,
alleviating some of the consequences of the absence of garbage collection.

The RAII pattern extends to resources other than memory, such as files,
sockets (network connections) and locks (for multithreading and other forms of
concurrent programming), for which the releasing of resources had to be
handled manually even in the presence of a garbage collector. In addition, RAII
ensures that in the case of abnormal termination (through exceptions, discussed
below) destructors will be called properly. These benefits have led some
proponents to state that RAII is superior to garbage collection; it remains,
however, a manual approach limited to specific patterns of memory usage.

Initialization

Unlike in Eiffel, automatic initialization only applies to static objects (preset
values for built-in types, default constructor for class types). So declaring

initializes both n and rocket_count to zero. (You need to include the second
declaration of rocket_count, since the declaration of a static member variable
within a class is non-defining.)

class Person1 {
…
Passport* pp;
Person1 (string n, date d) // Constructor, creating a dynamic

// Passport object
{pp = new Passport (n, d); }

};

int n;
class Rocket_launcher {

static int rocket_count;
… Rest as above (page 819)…

};
int Rocket_launcher::rocket_count;

~Person1 () // Destructor
{delete pp;} // Delete passport

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3822

You must initialize references, constants and automatic objects manually,
using the = value syntax. The syntax in all cases is that of assignment, using =
(equality is ==); for a constant the assignment is part of the declaration, and no
further assignment is permitted.

Omitting the initialization of an automatic object will result in its initial
value being undefined, which is almost always an error (and the source of
potential security break-ins). So you must manually, and carefully, check that
every automatic object has a proper initialization.

Exception handling

C++ exception handling is available to process abnormal run-time events.
Rather than the Eiffel style, based on Design by Contract principles, it uses the
“try-catch” style.

An exception, caused for example by an erroneous arithmetic operation
(overflow or underflow), will interrupt the normal flow of control. You can allow
a block to catch the exception and provide recovery instructions by enclosing it
in a try clause, whose catch part describes the recovery, as in this example:

The catch clauses specify an exception type, such as io_error, and a name for the
exception, here e, used by the following instructions (in a way similar to a
formal argument of a routine) to access specific properties of the exception.

You can also trigger, or throw, an exception through the instruction

where exp is an expression. Although it can be of any type, the practice is to use
special library classes specifically designed to describe exceptions.

Any exception occurring during the execution of a block interrupts the
execution of that block (the remaining instructions are not executed). Then:
� If the block is in a try clause and one of the catch specifications matches the

exception’s type, execution will proceed with the corresponding catch
block, then move on to the next construct (unless the catch block re-throws
the exception through throw ()).

� If there is no matching handler, or the exception occurs outside of a try block
or is re-thrown, the current function terminates and throws an exception to
its caller, which follows the same policy.

try {
… Code that might trigger exceptions …

} catch (io_error e) {
… Processing for I/O exception …

} catch (memory_error e) {
… Processing for memory exception …

}

throw exp

“Static analysis” tools
can help. See “Verifica-
tion and validation”,
12.4, page 341.

← “An introduction to
exception handling”,
7.10, page 200.

§C.3 BASIC OBJECT-ORIENTED MODEL 823

If no matching catch block appears in the call chain, the exception ends up
interrupting main and hence terminating the program in an erroneous state.

In this process of terminating functions and passing the exception up the call
chain, known as stack unwinding, all automatic objects are destroyed, using
destructors if available. This is one of the places where RAII helps.

For safer exception handling you can specify, as part of a function’s
signature, a throw set: the list of exceptions that its execution might trigger, as in

The absence of a throw set means that the function can throw any exception (to
specify that it can throw no exceptions use throw ()). Systematically including
throw sets, with the rule that each function’s throw set should be a superset of
those of the functions it calls, is recommended discipline since it helps avoid
missing exceptions; this is difficult to enforce, however, because libraries and
existing code used by new systems may not follow the same discipline.

Templates

Templates provide the C++ version of genericity. Here is a simple example:

This defines Stack as a class parameterized by the type name G, as with an Eiffel
class STACK [G]. To define a particular stack, you may use

The main difference between C++ templates and generic classes found in other
O-O languages is that every generic derivation such as the above is considered
to produce a new class, a process called template instantiation.

This is a form of preprocessing — transformation of the program text prior to
compilation — which actually has the full power of a compile-time programming
language and has found some exotic applications in advanced C++ programming.

void read_and_store (string a_file_name) throw (Io_error, Memory_error)
{ … }

template <typename G> class Stack {
…
public:

G item () {…}
void push (G an_item) {…}
void pop () {…}

};

Stack<int> s;

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.3824

There is no counterpart to the notion of constrained genericity: if you apply an
operation to a variable of a formal generic parameter, such as G above, type
checking will be applied to every instantiation to ensure that the operation is
always valid.

From a class template it is possible to define full or partial specializations.
A full specialization freezes the actual parameters, as in this example using the
above Stack:

A partial specialization would retain a formal parameter but impose some
limitations on it:

As these examples suggest, a specialization can have its own member
definitions; this does not cause conflict since compilation always chooses the
most specialized concrete version.

Beyond class templates, C++ supports function templates, as in:

In instantiating function templates you may omit actual parameters if it is
possible to infer them automatically from actual argument types, as in:

which automatically instantiates max with int for G.

template<>
class Stack<bool> {

… Operations specific to stacks of booleans …
};

template<typename G>
class Stack<G∗> {

… Operations specific to stacks of pointers …
}

template <typename G>
G max (G a, G b) { … Computation of maximum …}

int a, b, c;
…
c = max (a, b); // Calls max<int>

← “Constrained
genericity”, page 596.

§C.4 INHERITANCE 825

The template mechanism goes beyond genericity by allowing template
parameters to include boolean and integer values, not just types. The
corresponding actual generic parameters must be compile-time constants. The
following example uses this possibility to define multiplication of fixed-size
matrices with a guarantee that the sizes match:

Trying to multiply matrices of incompatible (constant) dimensions would result
in a static (compilation-time) error.

C.4 INHERITANCE

You can define a class B to be a derived class (heir) of a class A (a base class

for B) in the following way:

Overriding

There is no equivalent to Eiffel’s renaming and undefinition. To redefine (or
override) an inherited member function, simply include a new declaration; you
must be particularly careful to use an identical signature, since otherwise the
new declaration would be understood as simply overloading and there is no
simple way to detect such mistakes.

Export status and inheritance

By default inherited members are private. To change their export status, you can
specify an access modifier — private, public or protected — for an inheritance
relationship, as in

The effect of such a specification is to give each inherited member the minimum
of the access rights of the original member and the access right specified for
inheritance; so in this example all inherited members keep their A status in B.

template <int n, int m> class Matrix { … };
template <int n, int m, int k> Matrix<n, k> operator∗

(const Matrix<n, m>& m1, const Matrix<m, k>& m2)
{… Matrix multiplication algorithm … }

class B : A {
…

};

class B : public A {…};

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.4826

Precursor access

To access the original version of a redefined function — the equivalent of
Precursor in Eiffel — you may use the scope resolution operator as long as the
that version is not private:

Static and dynamic binding

We saw that dynamic binding was a central contribution of object technology to
software architecture. A major difference between C++ and other O-O
languages such as Eiffel is that binding is static by default: the criterion for
determining which version of a function to call is the declared type of the target
expression, not the dynamic type of the object attached to it at run time. You
may subject a particular function to dynamic binding by declaring it virtual:

Dynamic binding only applies to objects accessed through pointers or
references, as illustrated by this example:

class B : public A {
void b_function () // Need not be the redefinition of r
{

 // Will call A's version
…

}};

class Rectangle {
…

 void draw() {…} // should be declared as virtual
 void rotate() {…}

};
class Rounded_rectangle : public Rectangle {
…

 void draw() {…} // Specifying “virtual” again in redefinition
void rotate() {…} // … but this is optional (same effect:

// dynamic binding still applies!)
};

Rectangle r (1.2, 0.5);
Rounded_rectangle rr (5.0, 3.2, 0.2);
r = rr; // r still a plain rectangle, with fields of rr partly copied

 // Static binding: rectangle::draw()
Rectangle∗ p = &rr;
p –> draw (); // Dynamic binding: rounded_rectangle::draw()
Rectangle& ref = rr;
ref.draw (); // Dynamic binding: rounded_rectangle::draw()

← On Precursor see
page 573.

A::r ();

← “Dynamic bind-
ing”, 16.3, page 562.

virtual
virtual

virtual

r.draw ();

§C.4 INHERITANCE 827

Constructors, which are not applied to an existing target object, cannot be
virtual. Destructors can and often should be virtual, to make sure upon object
reclamation the appropriate resources will be released.

Pure virtual functions

The closest equivalent to deferred features is the notion of pure virtual function,
which have a definition but no implementation:

A class with at least one pure virtual function is called an abstract class, similar
to deferred classes.

Multiple inheritance

C++ supports multiple inheritance:

The mechanism is less flexible than what we have seen in this book. In
particular the language, as noted, does not support renaming. You may inherit
two identically named functions, and will use the scope resolution operator to
disambiguate them:

Repeated inheritance does not allow you to choose between sharing and
replication for each member, only globally for the inherited class; replication is
the default. Disambiguation may require complicated uses of scope resolution:

class Figure {
virtual void draw() = 0;
… Other members …

};

class Arrayed_stack : public Stack, private Array {…}

class A {void f () {…}};
class B {void f () {…}};
class C : {…};
void test()
{

C∗ p = new C();
// p–>f(); This call would be ambiguous and hence invalid

 ;
 ;

}

← “Deferred classes
and features”, 16.5,
page 565.

← “Multiple inherit-
ance”, 16.11, page 588.

public A, public B

p–>A::f()
p–>B::f()

← “From multiple to
repeated inherit-
ance”, page 592.

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.4828

If you want the common ancestor's fields to be joined instead of replicated, you
should define this ancestor as a virtual base class:

The disadvantage is that the choice is made not at the point of using repeated
inheritance, here in class W, but earlier, in classes U and V, which might not
know about W's plans to inherit from both of them.

Inheritance and object creation

C++ has specific rules regarding the creation of instances of derived classes.
Constructors are not inherited, but the creation of a derived class instance causes
a call to the parents’ constructors (a recursive process) before the class’s own
constructor. It is possible to supply arguments to the parent’s constructor, as in
the following example

class D {int n;};
class E : public D{};
class F : public D {};
class G : public E, public F {};
void f()
{

G∗ p = new G();
// p–>n = 0; // This would be invalid: which n?
p–>E::D::n = 0; // Valid, assigns to version replicated in E
p–>F::D::n = 0; // Valid, assigns to version replicated in F

}

class T {int n;};
class U : public T {};
class V : public T {};
class W : public U, public V {};
void f()
{

D∗ p = new D();
p–>n = 0; // Now valid

}

class Rounded_rectangle : public Rectangle {
public:

Rounded_rectangle (float w, float h, float r) : Rectangle (w, h), radius (r)
{…}

… Rest of class as before …
};

virtual
virtual

§C.5 FURTHER PROGRAM STRUCTURING MECHANISMS 829

C.5 FURTHER PROGRAM STRUCTURING MECHANISMS

In large software systems it can be difficult to avoid name conflicts; a system
may in particular use libraries that include classes with the same names. C++
provides namespaces: named blocks whose only purpose is to restrict the scope
of names declared in each block:

To resolve any ambiguities it suffices to use the scope resolution operator. If this
becomes too tedious when you are frequently using a name from another
namespace, you may introduce a local name through the using notation:

Or you can do this globally for all the names from a namespace:

C.6 ABSENT ELEMENTS

The following is a brief review of mechanisms to which you have become used
in learning programming through this book, and which have no direct
equivalent in C++. It includes some suggestions about how to emulate their
effect.

Contracts

C++ does not support the Design by Contract mechanisms (preconditions,
postconditions, class and loop invariants, loop variants) which play an essential
role in modern programming methodology as developed in the present book.

// In "some_library.h":
namespace some_library {

class Parser {…};
class Lexer {…}
…

}
// In "your_program.cpp":

#include "some_library.h"
namespace your_program {

class Parser {…}; // No ambiguity: different scope
}

using some_library::Lexer;
Lexer lexer; // Shortcut for some_library::Lexer lexer

using namespace some_library;

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.6830

You may use the instruction

(where b is a boolean expression) to express that b should hold at this program
point during execution. With the suitable compilation option, this will trigger a
run-time check that will produce a message and terminate execution — a
surprisingly result, as one would rather expect an exception! — if the condition
is not satisfied.

This mechanism makes it possible to use assertions for debugging, but of
course falls short of all the other applications of contracts — for class and
routine specification, documentation, design etc.

Many people have proposed C++ extensions or macro packages (a macro is
a preprocessor instruction) to emulate Design by Contract. A Web search for
“Design by Contract in C++” will yield references to many of these tools, whose
use has remained limited since they are not integrated with the language.

Agents

As noted, C++ does not have an agent mechanism. The simple effect of calling a
variable function can be achieved (as we have also seen) through function
pointers. A more sophisticated solution uses the notion of “functor”, implemented
by overloading operator (), the function call operator, making it possible to call a
functor object like any other function. The disadvantage is that you must define a
separate functor class for every possible number of formal arguments.

Constrained genericity

We saw that C++ has no direct counterpart to constrained genericity and that
each template instantation is type-checked on its own. This means that it is
impossible to inform client authors formally that a generic parameter is
supposed to represent descendants of a particular type; they will only find out if
they violate this intent, as the template instantiation (using non-applicable
features) will not compile.

As a methodological rule, you should at least express the intent informally
by specifying the constraining type as a comment in the template definition:

assert b;

template <typename G>
G max (G a, G b) { … }

/∗ G should be a descendant of Comparable ∗/

§C.7 SPECIFIC LANGUAGE FEATURES 831

Overall inheritance structure

C++ does not have the equivalent of a top class in the inheritance hierarchy, such
as Eiffel’s ANY, or of a bottom class such as NONE.

C.7 SPECIFIC LANGUAGE FEATURES

We have encountered a number of C++ features not available in Eiffel. Here we
review two other C++ peculiarities: argument defaults and nested classes.

Argument defaults

You may define a default value for a formal argument, enabling calls to omit the
corresponding actuals. If not all formals have defaults, those with defaults
should follow the others:

You may also define a function with a variable number and types of arguments,
using an ellipsis (…) instead of formal arguments list. This mechanism is not
type-safe and is more appropriate for system-level C programming (see next)
than for application programs written in C++.

Nested classes

C++, as noted, allows many forms of nesting. In particular you may declare a class
inside another class or even a function. A class nested within a class is also called
a member class; like any other member it may be private, protected or public.

Private member classes represent data abstractions of interest only to the
enclosing class. An alternative solution would be to declare the class on its own and
use the friend mechanism to restrict member access to the intended class, although
as we saw this makes all members accessible to the friend, whereas a member class
can have its own private members, not accessible to the enclosing class.

C.8 LIBRARIES

Often used in C++ applications, the Standard Template Library, or STL, covers
fundamental data structures, in particular containers (which require genericity,
so that most of the classes are templates, hence the library names), exceptions
and input-output.

void f (float x, float y, int n , char c) { … }
f (1.2, 5.0, 2, 'a'); // You may still include all actuals
f (1.2, 5.0, 2); // c has default value '!'
f (1.2, 5.0); // n has default value 1, and c default value '!'

= 1
1

= '!'
1

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.9832

For input and output STL uses streams, which can represent media such as
the console (standard streams cin and cout), files and strings. Writing and
reading use the overloaded bit shift operators >> and <<, so that a typical
console interaction looks like this:

where endl stands for the end of the line.

Many third-party libraries are also available.

C++ retains the C standard library, which it is preferable to avoid in C++
applications, as many of its facilities are low-level and not type-safe.

C.9 SYNTACTIC AND LEXICAL ASPECTS

The C++ grammar for instructions and expressions is complex; only the basic
elements will be reviewed here.

Instructions as expressions

A key concept is the expression statement: an expression followed by a
semicolon. This notion seems paradoxical since we have maintained in this
book a clear distinction between instructions and expressions, in line with the
strict distinction between commands and queries. C++, however, does not insist
on this separation, and as a consequence an expression statement is both an
expression, which returns a value unless its type is void, and an instruction.

Correspondingly, even if a function returns a value it can have side effects; it is
common in C++ to use a call to such a function as an instruction. In this case the
return value is simply lost.

One of the consequences of the fusion of the concepts of expression and
instruction is that an assignment (using =) is also an expression, whose value is
whatever was assigned to the target. This makes it possible to write such
combinations as:

which assigns the value 5 to b, then the result of this assignment — the resulting
value of b, again 5 — to a. Such schemes are confusing and should be avoided.

Person p (…);
int my_age;
cout << “Name: “ << p.name << endl << “Age: “ << p.age () << endl;
cout << “Enter your age: “ << endl;
cin >> my_age;

a = b = 5;

For a starting point see
for example the
peer-reviewed librar-
ies at www.boost.org..

http://www.boost.org

§C.9 SYNTACTIC AND LEXICAL ASPECTS 833

Control structures

Blocks correspond to Eiffel compound and consist of a list of statements in
braces {…}. Blocks, as we saw, can be arbitrarily nested.

A conditional statement (instruction) has the form:

(note the required parentheses around the expression). The expression does not
have to be of boolean type; it can also be of any numeric or pointer type, with 0
(also written NULL for pointers) representing false and any other value true.
Here and with other control structures, you can use a compound for each
statement by enclosing any number of instructions in braces; it is preferable to
use braces in all cases, even for a one-instruction compound, to facilitate adding
other instructions later.

There is no equivalent to elseif; you have to use nesting, but the clauses do
not have to look nested due to the absence of an end keyword and, visually, the
use of comb-like indentation:

The multi-branch instruction has the form

where expression is a boolean or integer expression and each value is a
compile-time constant. If the value of the expression does not match any of
these constants, the instruction executes its default branch if present, nothing
otherwise. (In Eiffel, in the absence of an else clause in an inspect, this case
produces a run-time error.) The switch instruction by itself is not a one-entry,
one-exit conditional but a multi-target goto; to obtain the effect of a
multi-branch conditional you have to include instructions as shown. If
you omit them control will flow, when a branch terminates, to the next branch.

As we saw in the discussion of control structures, it is usually best to stay away from
such goto-like constructs

if (expression) statement else statement

if (expression) statement
else if (expression) statement

else if (expression) statement

…
else statement

switch (expression) {
case value: statement;
case value: statement;
…
default: statement
}

← “Comb-like struc-
ture, figure on page 179.

← “Multi-branch”,
page 195.

break;
break;

break;

← “The goto puts on a
mask”, page 189.

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.9834

C++ offers three kinds of loop:

The difference between the two while variants is that the second one always
executes the body (statement) at least once, since it tests the expression before
executing the body (as in a repeat … until …, with the condition reversed); the
first form can have zero executions of the body. The for loop is the most general
and the most commonly used. The purpose of the advance_statement (included
in the body in the Eiffel syntax) is to advance the iteration. So the equivalent of

is, in C++:

C++ includes goto-like instructions: the goto itself whose use, as you know, is
not recommended; break, whose use we saw in connection with switch; and
return. The way a function returns its value (to be contrasted with the Eiffel
convention of using the value of the special variable Result) is through

which terminates function execution and returns the given value. (For a
procedure — in C++, a function returning void — omit the expression.)

As a result of these constructs, C++ blocks are not constrained to the
one-entry, one-exit structure that this book has systematically used in line with
recommendations of programming methodology.

while (expression) statement

do statement while (expression);
for (init_statement ; expression ; advance_statement) body_statement

from i := 1 until i > n loop
…
i := i + 1

end

for (int i = 1; i <= n; i++)
{…}

return expression;

← “Other forms of
loop”, page 192.

← “Goto elimination
and structured program-
ming”, 7.8, page 185.

← See the figure
“Three kinds of
one-entry, one-exit
structure”, page 188.

§C.9 SYNTACTIC AND LEXICAL ASPECTS 835

Assignment and assignment-like instructions

The target of an assignment does not have to be a variable, but must denote a

storage location (called a “left-value” or “l-value” since it appears on the left of

the assignment symbol). Here are some examples:

Several C++ operators perform assignment together with some other operation.

In particular:

� a += b is a shortcut for a = a + b, and similarly with operators other than +.

� Instead of a = a + 1 you may use not just a += 1 but an even shorter form:

a++ or ++a. As usual, these are expressions as well as instructions; the

difference is that the second expression yields the already incremented

value of a (quiz: what are the effects of a = a++ and a = ++a?).

The use of = for assignment (the equality operator is ==), a departure from

centuries of mathematical tradition, causes particular risks of confusion in C++

because of another property, just reviewed in connection with conditionals: the

weak typing of boolean expressions, where almost any type is acceptable with

the convention that 0 is false and anything else is true. A common mistake,

known to have caused bugs in many programs, is to write

almost certainly intended to execute Some_instructions if and only if x and y

have an equal value, but producing a quite different effect: assign to x the value

of y; execute Some_instructions if and only if that value was not zero. This is

something that even experienced C++ programmers must guard against.

int a; Person p;
a = 5; // Valid
// a + 2 = 5; Would be invalid: a + 2 does not denote a location
∗(&a + 1) = 5; // Valid: assigns to memory location next to location of a
p.name = "Izzy"; // Valid: assigns to name field of p

if (x y) {Some_instructions}= WARNING: almost
certainly a mistake —
the intention must have
been to use the equal-
ity operator ==.

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.9836

Expressions and operators

A C++ expression is a literal, an identifier, this or an operator expression. The
following tables include all C++ operators. Unary operators are:

and binary operators:

The semantics of the division operator / adapts to the types of its operands: on
integers it is an integer division, with at least one floating-point operand the result
is floating-point.

Operator Role Example Operator Role Example

+ unary plus +a delete memory deallocation delete p

– unary minus –a sizeof size of expression’s
type

sizeof (a + b)

∗ dereferencing ∗p ++ prefix increment ++a

~ bitwise not ~a ++ postfix increment a++

! logical not !b -- prefix decrement --a

new memory allocation new int (5) -- postfix decrement a--

Operator Role Example Operator Role Example

+ binary plus a + b = receives a = 5

- binary minus a - b += receives plus a += 5

∗ multiplication a ∗ b -= receives minus a -= 5

/ division a / b ∗= receives multiplied a ∗= 5

% modulo a % b /= receives divided a /= 5

^ bitwise xor a ^ b %= receives modulo a %= 5

& biwise and a & b ^= receives bitwise xor a ^= b

| bitwise or a | b &= receives bitwise and a &= b

&& logical and b1 && b2 |= receives bitwise or a |= b

|| logical or b1 || b2 <<= receives bit shift left a <<= 1

== equal a == 5 >>= receives bit shift right a >>= 1

!= not equal a != 5 […] subscripting a [i]

< less than a < 5 , sequence a, b = 2

<= less than or equal a <= 5 . member access x.f

> greater than a > 5 .∗ indirect member access x.∗pf

>= greater than or equal a >= 5 –> member access
through pointer

px–>f

<< bit shift left a << 1 –>∗ indirect member
access through pointer

px–>∗pf

>> bit shift right a >> 1 :: scope resolution Person::name

§C.9 SYNTACTIC AND LEXICAL ASPECTS 837

The sequence operator (the comma) is in the spirit of the language’s merge of
instructions and expressions; a list of expressions separated by commas is evaluated
in order and yields the value of the last one. An example use is

b = (temp = a, a = b, temp)

which swaps the values of a and b and yields the resulting value of b. Needless to
say, it is clearer to use a slightly longer form with explicit instructions.

C++ also supports a notion of conditional expression, of the form

which yields the value of a if x, interpreted as a boolean, has value true
(non-zero), and of b otherwise. (This means that ? … : can be considered a
ternary operator, the only one.) A typical usage pattern is

The parenthesis pair, (…), used in function calls such as f (a, b), is also
considered an operator, the only one with a variable number of operands.

Programmers may overload all operators — to reuse them for their own
functions — with the exception of the following four:

Identifiers

A C++ identifier is an arbitrarily long sequence of letters (including
underscores) and digits, from which the first character should be a letter. This
allows (unlike in Eiffel) the first character to be an underscore, but by
convention this should be reserved for special compiler-managed variables.

Unlike Eiffel, C++ is case-sensitive.

There are no standard naming conventions in C++, so you can use the
conventions of this book or others. Note, however, that STL class names are
lower-case.

Literals

Literals (manifest constants) can represent integer, character, floating point or
string constants.

x ? a : b

template <typename G>
G max (G a, G b) { return a > b ? a : b; }

. .∗ :: :? sizeof

AN INTRODUCTION TO C++ (FROM MATERIAL BY NADIA POLIKARPOVA) §C.10838

Integer constants can be: decimal; octal if preceded with 0; hexadecimal if
preceded with 0x. In the last two cases the starting character is the digit 0. So
you can represent decimal 12 as any of

Be careful not to start a decimal constant with 0: the constant written 012 will be
interpreted as octal — its value is 10!

A character constant is enclosed in quotes, as in 'A'. A floating point constant
consists of an integer part, a decimal point, a fraction part, and an optional
integer exponent consisting of the e symbol followed by an optionally signed
integer. By default a floating point constant has type double, unless it has suffix
f (for float) or l (for long double). A string literal is a sequence of charaters,
enclosed in double quotes.

Keywords

The following names are reserved in C++ for use as keywords:

C.10 FURTHER READING

Reference manual by the language designer (anyone with a serious interest in
C++ should read it):

Bjarne Stroustrup: The C++ programming language, 3rd edition,
Addison-Wesley, 2000.

Introductory texts:
Herbert Schildt: C++: A Beginner’s Guide, McGraw-Hill, 2003
Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice
Hall, 2000.

For advanced features, especially template-based programming:
Andrei Alexandrescu: Modern C++ Design: Generic Programming and

Design Patterns Applied, Addison-Wesley, 2001
David Vandevoorde and Nicolai M. Josuttis: C++ Templates: The

Complete Guide, Addison-Wesley, 2002.
David Abrahams and Aleksey Gurtovoy: C++ Template

Metaprogramming: Concepts, Tools and Techniques from Boost and

Beyond, Pearson, 2004.

12 // Decimal
014 // Octal
0xC // Hexadecimal

asm, auto, break, case, catch, char, class, const, continue, default, delete, do, double, else, enum,
extern, float, for, friend, goto, if, inline, int, long, new, operator, private, protected, public, register,
return, short, signed, sizeof, static, struct, switch, template, this, throw, try, typedef, union,
unsigned, virtual, void, volatile, while.

D

From C++ to C

C++, studied in the previous chapter, is an extension of C, a rare example of a
language that is almost fully backward-compatible with a predecessor, meaning
that a valid C program is generally valid as a C++ program and produces the
same results.

C++ has not replaced C. The earlier language retains its value for a
well-defined application niche: programming directly at the level of the operating
system or hardware. This is in part because hardly any processor exists without
a C compiler. Or maybe the causal relationship is the other way around: no one
dares to release a processor without a C compiler, because the market expects it.
In any case C is the de facto standard for low-level programming.

Most C programmers also learn C++. For that reason, the present appendix
does not describe C from the ground up: it assumes that you have read the
previous one, and simply lists C++ constructs that are not available in C. This is
quickly said, so the appendix is very short.

This mode of description (by difference with another language) also
explains why, unlike in previous language appendices, the discussion of C’s
background and style only comes in the latter part of the discussion.

D.1 ABSENT ELEMENTS

From the description of C++, going down from C++ to C means dropping:

� All object-oriented mechanisms: classes and objects; function members (for
structures); inheritance; virtual functions; constructors; destructors;
references (but pointers remain).

� Templates (no genericity in C).

� Argument defaults. (Functions with variable arguments are available
through a library mechanism, known as varargs.)

� Access control mechanisms and the friend mechanism; the scope
resolution operator.

� Namespaces.

� Exceptions.

FROM C++ TO C §D.2840

Most of the rest remains, including:

� Static functions.

� The instruction-expression merge.

� Pointers (not references) and the ability to manipulate them through
arithmetic operations.

� The control structures, other than exceptions.

� Operators with side effects such as ++.

� The syntax conventions: braces rather than keywords, = for assignment,
semicolons as terminators.

� The availability of a preprocessor, in particular compile-time variables
allowing conditional compilation (#ifdef compile_time_variable, where the
value of compile_time_variable is set outside of the program, for example
through a compilation option).

D.2 LANGUAGE BACKGROUND AND STYLE

C came out of research at AT&T’s Bell Laboratories in the late sixties, as a way
to benefit from ideas of structured programming yet retain direct access to
machine-level mechanisms. This latter requirement is not just a matter of
performance; another reason is that the original application of C was to write an
operating system, the first version of Unix. That project was a success, and all
subsequent versions of Unix (and several other operating systems) have been
written in C.

Crucial to this ability of C to handle low-level aspects of applications — that
is to say, to work directly at the level of the operating system and the hardware
— is the direct manipulation of addresses that we saw in the previous appendix,
in particular the use of pointers (∗ and & operators), pointer arithmetic, and the
idea that an assignment can have as its target any expression (l-value) that may
denote an address.

The tradeoff here is that by gaining fine control of low-level resources you
lose some of the benefits of abstraction as provided by more modern languages,
in particular the full extent of type checking. Pointer arithmetic is a typical
example of this situation: you can compute any address dynamically, but cannot
be sure that what will appear at that address will, in every execution, be a
meaningful value. This is not just a matter of program reliability, but also a
security concern: buffer overflow, one of the favorite attack techniques for
Internet intruders, fundamentally relies on C’s mechanisms for accessing
arbitrary memory addresses computed dynamically.

§D.2 LANGUAGE BACKGROUND AND STYLE 841

The tradeoff also sets the limit of reasonable C usage. Although C continues
to be used for large systems, this is not its best use. Two valuable applications
remain for C: short routines for direct resource access, and target language for
portable compilers.

In the first role, C remains a tool for direct use by programmers. The
observation is that the bulk of any application does not need the low-level
aspects of C, and would suffer from them, for example by risking memory
access errors at run time. Some specialized part of the application, however,
may need direct interaction with the platform (hardware plus operating system).
Programmers should provide these mechanisms in the form of clearly specified
and carefully written functions, which typically will be in C, and just as
typically should remain very short. An example is a routine to send information
through a socket (abstract network connection). Such routines — usually no
more than a few lines or a few dozen lines — should be grouped into a library
and made available to the rest of the software through a well-designed API.

The EiffelBase library relies on such an approach for the implementation of such
abstractions as arrays and files. To the rest of the world, the corresponding classes
are just normal Eiffel classes with contracts; their implementations simply call out
to short external C functions.

In the second role, C serves as the target language produced by compilers for
some programming language PL offering a higher level of abstraction than C.
This technique presents significant advantages:

� The almost universal availability of C compilers facilitates the construction
of portable compilers (where portability means the ability to support many
p l a t fo rm s) . T he c o m pi l e r f o r PL c an concen t r a t e on t h e
platform-independent aspects of compilation of PL programs, relying on the
C compiler to turn its output into machine code for specific platforms.

� The generated C code can still include platform-dependent elements by
relying on conditional compilation.

� C compilation technology is well understood; considerable optimization

work, in particular, has gone into C compilers. Authors of PL compilers can
concentrate on PL-specific optimizations, and (generally) rely on the C
compiler to perform standard optimizations of low-level constructs such as
arithmetic expressions which do not need to be re-implemented for every
particular language.

This approach has been successfully used by a number of compilers, including
Eiffel compilers.

Applications of C other than the two described here seem hard to justify
given the limitations of C and the availability of many solutions devised in the
forty years following the first introduction of this highly successful language.

← “Long-term prod-
uct quality”, page 708.

FROM C++ TO C §D.3842

D.3 FURTHER READING

Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language,
second edition, Prentice Hall, 1988. (First edition with same title, Prentice Hall,
1978, still available.)

This is the bible of C programming, known as “K&R” from the authors’
initials, notable for the clarity and conciseness of the presentation. There
are many other books about C, but it seems hardly necessary to read
anything other than K&R to master C. For C++, see the references at the
end of the preceding appendix.

E

Using the EiffelStudio environment

Throughout this book you have been invited to write examples and run them
using the EiffelStudio environment. The present appendix helps you prepare the
examples and set up the execution. More precisely, you will find only some of
the basic information here; for details, see the expanded version of this appendix
online at touch.ethz.ch/eiffelstudio.

E.1 EIFFELSTUDIO BASICS

EiffelStudio is a general-purpose Integrated Development Environment (IDE);
it is the result of many years of development and is routinely applied to produce
software systems, small and large, in many application areas.

One of these systems, by the way, is EiffelStudio itself, written — just in
case you are wondering — entirely in Eiffel with the exception of some C code
making up the “run-time system”. At the time of writing EiffelStudio includes
about 2.2 million lines of code, written in accordance with the principles of this
book. If you are curious to see that code, do not be shy: the whole environment
is available as open source.

EiffelStudio has versions for numerous operating systems, including
Windows, Linux and other variants of Unix. The details of installing and
starting EiffelStudio will vary with each platform, and the “look-and-feel” (the
graphical appearance) conforms to the standard conventions of every supported
platform; but the environment otherwise works identically.

The explanations in this appendix are platform-independent, with the only
exception that they use the term “directory” for what you may know as a
“folder” if you are a Windows user.

The figure overleaf shows the essential components of EiffelStudio. It is
reproduced from the discussion of IDEs and EiffelStudio in the chapter on tools.
You do not need to have read those sections to start using EiffelStudio, but when
you do get to that part of the book you will be able to form a better idea of why
things are the way they are.

← “An IDE: EiffelStu-
dio”, 12.11, page 353.

http://touch.ethz.ch/eiffelstudio

USING THE EIFFELSTUDIO ENVIRONMENT §E.2844

E.2 SETTING UP A PROJECT

With EiffelStudio you build systems. A system (also called a “project” in
EiffelStudio) is a collection of classes, grouped for convenience into clusters,
with one of the classes serving as root; the root defines where execution starts.

There are two ways to launch EiffelStudio to work on a system:

� To build a completely new system, launch EiffelStudio (typically by
clicking the corresponding icon or menu entry among your installed
programs, but this can also be done from a command line) and choose
File → New project. A wizard will guide you through the (simple) process.

� If you start from an existing system, it will include an “ECF” (Eiffel Control
File), automatically generated by the EiffelStudio session. You will see it as
a file with the ecf extension; more precisely, the file name is s.ecf where s
is the name of the system. Double-clicking this file (or using any other
convention provided by your operating system) will start EiffelStudio on the
corresponding project.

If you want to work on one of the examples of this book, you can use the second
technique since the ECFs already exist. The conventions were given with our
very first example: each example occupies a subdirectory of the directory
example in the Traffic delivery. The name of each subdirectory is made up from
the chapter number and the example name, for example 02_object for the
“object ” system serving as the basis for chapter 2.

EiffelStudio

components

(Figure from page 354.)

← “System execu-
tion”, 6.8, page 130.

← “A class text”, 2.1,
page 15.

§E.3 BRINGING UP CLASSES AND VIEWS 845

To start working on one of these systems, double click the ECF in the
appropriate directory. EiffelStudio starts, loading the system. The first thing you
should then do is to click the “Compile” button to compile the system in its
initial version, before you start modifying it.

E.3 BRINGING UP CLASSES AND VIEWS

To bring up a particular class in the top-left subwindow, you may either:

� Start typing the class name. If the class exists, you do not need to type the
full name; EiffelStudio will complete it. Type Enter when the name is final.
If no class exists with the given name, EiffelStudio understands that you
want to create one, and brings up a simple wizard to help you do this.

� Use pick-and-drop. Right-clicking a name anywhere in the interface enables
you to select the corresponding class (or feature, or other software element).
You only need a click; do not maintain the button pressed. You can then
move the cursor to a suitable “drop” place, and right-click again. If the drop
place is, for example, the top-left window, it will retarget itself to show the
text of the chosen element.

A row of buttons enables you to change the display format by selecting an
appropriate “view” such as Contract or Flat.

You can explore many more views, as well as graphical representations,
metrics, compiler information and other facilities by using the bottom-left
subwindow and its various tabs.

Note that “bottom-left” and other positional descriptions only refer to the
default layout. You may organize the various subwindows of your EiffelStudio
workspace any way you like by dragging them around; the layout will be
retained from one session to the next, although if you mess up you can always
use View → Tools Layout → Restore Default Layout. You can also save your
preferred layout into a file; this is useful in particular if you use EiffelStudio on
different machines and do not want to repeat the setup process.

E.4 SPECIFYING A ROOT CLASS AND CREATION PROCEDURE

To specify or change the root class and root creation procedure of a system,
choose File → Project Settings, then click Target: s where s is the name of your
system. The Root entry lists the root in the format root_class.root_procedure;
you can edit it, then recompile.

← “Browsing and
documentation”, ,
page 355.

← Contract View:
“What characterizes a
metro line”, page 53 ;
Flat View: “The flat
view”, page 556.

USING THE EIFFELSTUDIO ENVIRONMENT §E.5846

E.5 CONTRACT MONITORING

You can control the level of run-time monitoring of contract elements:
preconditions, postconditions, class invariants, loop invariants, loop variants,
and the check instructions. (The last construct, which we have not used, is a
simple instruction stating that a property must hold at a certain point in a
routine). The settings are separately applicable to each of these categories. To
change them from the default, choose File → Project Settings, then Target: s
where s is the name of your system, then Assertions.

E.6 CONTROLLING EXECUTION AND INSPECTING OBJECTS

To monitor the execution of your system, explore the run-time object structure,
execute code step by step, set breakpoints, and even step backward, you may use
the EiffelStudio debugger. You can find detailed information on how to use it at
docs.eiffel.com/book/eiffelstudio/debugger.

E.7 PANIC MODE (NOT!)

Things should go smoothly, of course, but if at some point nothing suddenly
seems to work any more, do not panic; remember the following.

If the problem is just that you do not find the tools to which you are used in
the interface, restore the default layout or one you previously saved, as
explained above; use View → Tools Layout.

If things really go bad and you find your system in a strange state, it may be
that the project files have been corrupted. Then you may:

� Exit EiffelStudio.

� Restart it, but directly (not by clicking an ECF).

� Choose File → Open and select the ECF of your system.

� Check the box labeled Clean, then click Open. This will bring up the
system but remove all the compilation files. You will have to recompile the
system from scratch.

An equivalent technique is, outside of EiffelStudio and while it is not running,
to remove the directory called EIFGENs (for Eiffel-Generated files) in your
project directory. It only contains compiler-generated files, which will be
re-created in the next compilation.

E.8 TO KNOW MORE

EiffelStudio is a rich environment with many facilities; this appendix only
scratches the surface. You may find extensive information, including tutorials,
manuals, videos and reference documents at docs.eiffel.com.

http://docs.eiffel.com/book/eiffelstudio/debugger
http://docs.eiffel.com

Picture credits

Punched cards, page 12: thanks to Immo Noack and Luca Previtali for helping to
locate a surviving deck of punched cards.

Tunnel sign illustrations, page 27: Till Bay.

Buitoni Minestrone bag, page 142: with permission from Société des Produits Nestlé
S.A., Vevey, Switzerland.

Tintin extract, page 87: Explorers on the Moon (American edition of On a marché sur
la Lune), Litttle, Brown and co. 1976, © Hergé/Moulinsart 2008, with permission.

Portrait of Peter Naur (page 296): Painted by Duo Duo Zhuang (www.dodoz.com),
with permission.

Laughing Cow, page 435: with permission from Fromageries Bel, www.bel-
group.com. The laughing cow trademark is the property of Fromageries Bel.

Zurich map, page 460: Google maps, reprinted per permission policy at
www.google.com/permissions/geoguidelines.html.

Teletype brochure cover, page 664: reprinted with permission of Alcatel-Lucent USA Inc.

Debugging cartoon, page 730: Tom Van Vleck.

Photographs of computer scientists:
Page 187 (Dijkstra): Hamilton Richards.
Page 318 (Chomsky): Prof. Chomsky’s MIT office.
Page 295 (Backus): IBM Switzerland.
Page 325 (McCarthy): John McCarthy.
Page 328 (Dahl and Nygaard): Personal archive of Kristen Nygaard, courtesy of

Prof. Marius Nygaard.
Page 329 (Goldberg): Adele Goldberg.
Page 494 (Naur & Horning): Jim Horning.
Page 695 (Reenskaug): Trygve Reenskaug.

Others photographs are by the author of the present book. (For more, see the “Gallery
of Computer Scientists” at se.ethz.ch/~meyer/gallery.)

Miscel laneous i l lus t ra t ions: ch ip (page 9) , by Michael J . Connors ,
www.mconnors.com; desktop computer system (page 9), by Quentin Houyoux; laptop
(page 9), by Elvin Santana; GPS system (page 9), by Julien Gron; scroll (page 380),
by Davide Guglielmo, www.broken-arts.com; memory chip (page 284), from Matrix
Warehouse Computers, www.matrixonlineshop.co.za; diamond (page 704), by
Tomislav Zivkovic.

http://www.bel-group.com
http://www.google.com/permissions/geoguidelines.html
http://se.ethz.ch/~meyer/gallery
http://www.dodoz.com
http://www.mconnors.com
http://www.broken-arts.com
http://www.matrixonlineshop.co.za

Index

Page numbers in boldface indicate a page where
the concept is defined.

In the electronic version, clicking a page number will
take you to the corresponding occurrence in the text.

Symbols

λ (in λ-calculus, λ-expression), see lambda
Θ Notation for algorithm complexity 378
∀ Universal quantifier in predicate calculus 98, 628

→ See also do_all
∃ Existential quantifier in predicate calculus 97, 628

→ See also exists
. 129
.. Notation for intervals 312, 628
.NET xxxii, 129, 333, 339, 355, 671, 775-777, 793,

 797, 800-801
→ See also C#, Common Language Infrastructure,

Common Language Runtime
–> Notation for constrained genericity 597
? Notation for open arguments in agents 636-639
?= Notation for assignment attempt (obsolete

construct) 605
[...] Notation for formal and actual generic

parameters 365
[] Bracket alias 385
{...} Notation for object test 603
|..| Infix operator for intervals 628
~ Notation for object equality 397, 455, 457, 590

Numbers

9000 standards series (International Standards
Organization) 735

A

Abrahams, David 838
abstract

class, synonym for deferred 566
in C# 794
in Java 753-754

complexity, see abstract under complexity
data type 724

→ See also abstraction under data
interpretation 733
machine, see machine under virtual
member

in C# 794
in Java 753-754

program interface (API) 49
property of requirements 726
syntax 42-43, 310, 501-502

syntax tree 42-43, 305, 333, 607
abstraction 212, 220-222, 408, 691-692

choosing right 691-692
data ~, see abstraction under data
effect on efficiency 408-409
functional ~ 211-214, 220-222, 225, 409

ACM 186-187, 207, 296, 328-329, 719
Communications of the ~ 186-187, 207, 296, 328,

 732
→ Name stands for “Association for Computing Ma-

chinery”
acronym

nested ~ 736
software engineering ~s 743

activation
of a routine 487
record 423, 488

activities
of software engineering, see tasks under lifecycle

actual
argument 215-217
generic parameter 365
parameter 365

acyclic, see under relation
Ada xli
addition of decimal numbers 141
address 276-277, 288

space 288
adequacy 707
agent 454, 619-661, 686-694

applications 621-623
to event-driven design 686-694
to iteration 627-634
to numerical programming 634-635
to replace the Visitor pattern 660-661

basic form 619
call 620
definition 620
delegate (in C#) 791-793
emulation

in programming languages other than Eiffel 654-
658, 766-767

in Java 766-767
in the absence of an agent mechanism 623-626

Halting Problem 661
inline ~ 652-654
operand 636, 638-639

closed 637
open 637

relation to lambda calculus 651-654

INDEX850

target 638-639, 655
cannot be open in C# 655

type 629-631
agent 619
agile development 717-718
Aho, Alfred V. 318, 433

photograph 433
Airbus software verification 733-734
Alexandrescu, Andrei 838
Algol 296

Algol 58 296
Algol 60 296, 494
Algol W 199

algorithm 141-147, 186-188, 191-192
→ Precise definition of this term 143
basic properties 143-144
complexity, see abstract under complexity
concurrent ~ 144
deterministic ~ 144
examples 141-142
non-deterministic ~ 144
recursive ~ 438-445, 448-449
sequential ~ 144
vs programs 144-145
vs recipes 142-143
vs systems and components 145, 544

alias
bracket ~ 135, 385, 416
operator ~ 134-135

alias 135, 385
aliasing 265-268

dynamic 265-268
allocation

dynamic ~ 489
static ~ 489
→ See also creation

alpha-beta (strategy for game-playing) 468-470
alpha-conversion 649-650, 661
analysis

feasibility ~ 712
requirements ~, see requirements
→ The term “analysis” covers requirements and

specification, see these terms 713
ancestor 554

proper 554
and 75
and then 92, 117
animal 551
annotation

in Java 772-773
anonymous

class, see anonymous under class
antecedent 84
ANY 203, 586-587, 598, 629-632, 660
API (Abstract Program Interface) 49, 731
applet 322, 333
applicative, see under programming language
approximation

provided by loops 154-155
architecture 713

hardware ~, 32-bits 275
hardware ~, 64-bits 275
software ~, see architecture under software

area
process ~, in CMMI 737

Argentina 738
argument 30-31, 35, 367, 423, 620-621, 623-633,

 635-640, 651-652, 654, 658
actual 215-217
closed 636-637
default

in C++ 831
formal 215-216, 220, 249, 657
not to be confused with parameter 367
of a mathematical function 640-652
of an agent 621, 629-630, 636, 651-652, 654
of events 668-672
open 636-637
polymorphic ~ passing 558
routine as ~ 656
signature, see argument under signature
type list 668
variable number, see varargs

Aristotle 89, 551
arithmetic

overflow 280
pointer ~, see arithmetic under pointer
underflow 280

arity 421
ARRAY 381-386, 388, 586
array 380-388

access and modification operations 383-384
as implementation for lists, see arrayed and multi-ar-

ray under list 410
bounds 381-383
creation 382-383
in C# 786-788
in C++ and C 808, 810-811
in Java 757
index 381-383
multi-array list 410
performance 388
practical use 388
resizing 375, 386-387

arrayed list, see arrayed under list 410
ARRAYED_LIST 434
Artificial Intelligence 476
ASP.NET xxiv
assembler 290
assembly

language 289-290, 355
assertion 62

tag 62
Assess (software engineering activity) 704
assessment

built-in 710
assign 242, 385
assigner command 242, 385, 390, 416-417
assignment 228-237

attempt, see assignment attempt

INDEX 851

polymorphic ~ 558
precise semantics 230
syntax 237
syntax confusion with equality 237
to references 252-268
truth ~, see truth assignment

assignment attempt 604-606
associative 83
assurance

quality ~, see V&V
software quality ~, see V&V

AST, abbreviation for Abstract Syntax Tree 42
→ See syntax tree under abstract

asymmetric 512
asymptotic complexity, see abstract under complexity
AT&T 190
Atlee, Joan 740
attached 110-113, 217

target principle 113
type 136

attached 602
Attached Target Principle 113
attachment 558
attribute 238-244

constant 250
style rule 250

constant ~ 250, 252
constant ~ vs variable ~ 250-252
custom ~ (in C# and .NET) 801-802
exporting property 249
in C# and .NET 801-802
modification principle 243

Australia 738
Autobahn 27
autoboxing

in Java 751, 771
axiom

as creative 478

B

Bach, Johann Sebastian 344
backtracking 459-470

and trees 463-466
general scheme 459-462
getting the details right 462-464
→ See also depth-first, preorder, minimax, alpha-

beta
backup 285
Backus, John 295, 847

photograph 295
backward-compatible 839
Bal, Henri E. 318
Bauer, Friedrich L. 494

photograph 494
Bay, Till 847
Ben-Ari, Mordechai 100
best practices 678
beta-reduction 648-650, 661
big-endian 498
Big-O (or Big-Oh) notation 376-377

binary
number system 274-279

abbreviations 277-279
basics 275
powers of two 277

relation, see this term (all relations used in this book
are binary)

search tree 454-459
insertion, search, deletion 456-459
invariant 455, 458
performance 455-456

tree
see binary under tree

binding
dynamic ~ 358, 507, 562, 761

implementation 575-580
efficient 358, 578

in C# 796-798
in C++ 826-827
in Java 761
static ~ 358, 562

binds tighter 82
Bishop, Judith 804
bit 274
Black 274
black-box testing 731
Bloch, Joshua 774
block

one-entry, one-exit 189
block (Smalltalk), similar to agents 655
BNF 295-320, 342

applications 305
basics 297-299
modern meaning of acronym (Backus-Naur

Form) 296
practical use 305-310
role 295-296

BNF-E 297-299, 304-306, 311, 313, 316
BNF-E rule 304

body
of a routine 217, 219-220

Boehm, Barry W. 715
Böhm, Corrado 186
BON (Business Object Notation) 343
Boole, George 89
BOOLEAN 56, 63, 73, 586
boolean

algebra 72-94
constant 72
expression 72-94

complex 76
simplifying the notation 82-83
use of parentheses 83

operations 72-101
distributivity 82
semistrict, see semistrict boolean operations 89

value 63
variable 72

border cases 171
bottom-up

INDEX852

interpretation of recursive definitions 479-484
reasoing and development 211-212

bottom-up reasoning and development 211-212, 220-
222, 225

bound
occurrence, see bound under occurrence
variable, see "in mathematics" under variable

boxed in 375
Bracha, Gilad 747, 774
bracket

alias 135, 385, 416
in lambda calculus notation 643
notation 384-386, 415, 417

branch
of a tree 42
→ See also branching instruction, multi-branch

branching (in software project management) 350-351
branching instruction 181-190

conditional and unconditional 182-183
→ See also goto

Brazil 738
break 45
Brooks, Frederick P. 710, 741
Brown, Jerry 367
buffer 428

overflow 840
bug 64, 66, 112, 129, 170, 340, 345, 352, 364,

 458, 728
opposed to feature 458

build 344
automatic ~ 345-347

build tools 345-347
built-in assessment 710
business model, business logic, see model
byte 275
Byte magazine 329
bytecode 333-335

C

C xxxvi-xxxvii, 194, 329, 346, 355, 601, 839-842
as a portable assembly language 355
compiler (cc) 346

C sharp, C-sharp, see C#
C# xxxvii, 129, 264, 364, 590, 654-655, 671, 775-

804
basic object-oriented model 778-793
collection library 264
inheritance 794-799
Linq 804

C++ xxxvi-xxxvii, 128-129, 194, 264, 329, 601,
 775-776, 805-839
basic object-oriented model 808-825
inheritance 825-828

CAD-CAM (Computer-Aided Design, Computer-Aided
Manufacturing) 321

call 18-31, 132-135, 215
chain 422
qualified ~ 134
semantics 23
stack 423-424, 489-490, 494

unqualified ~ 134
void, see call under void

caller 215
camel case 45, 773
candidate

in topological sort algorithm 533-535
canonical form

of a regular language 313
Cantor, Georg 551
CAP (Certified Attachment Pattern) 136
capability

maturity models, see CMMI
Carnegie-Mellon University 735
carriage return 45
case

camel ~ 45, 773
CASE (Computer-Aided Software Engineering) 343
cast 600-606, 761, 780, 798, 803, 809

dynamic ~ 601-606, 761, 798, 809
using wisely 605-606

in C 601
in C# 798-799
in C++ 601, 809
in Java 761, 786

Casting Principle 601
catch

in exception handling, see try-catch under exception
catching

an event type 670
cc, C compiling command 346
Certified Attachment Pattern 136
cetacean 551
chain

call ~ 422
chained, see linked
CHARACTER 276-277, 586, 669
CHARACTER_32 276
CHARACTER_8 276
check 846
check instruction 846
checkers (game) 464
check-in, see commit
check-out, see update
chess (game) 464
child

in a binary tree 449
choice

avoiding choices with many cases 574-575
production 301, 313

Chomsky, Noam 318, 847
photograph 318

chop-suey 601
Church-Rosser theorem 650
CIL (Common Intermediate Language), in .NET 355,

 776
citizen

first-class, second-class 651
class 15-32, 48-68

→ Precise definition of this term 50
abstract ~, synonym for deferred 566

INDEX 853

anonymous ~
in Java 767, 769
synonym for tuple 390

as a static concept 50
base ~ 370
basic text form 15-17
client ~, see client
concrete ~, synonym for effective 566
creating an instance 126
deferred ~ 566
editing the text 18-20
effective ~ 566
feature of a class 556
for topological sort 518
generating ~ 50
generic ~ 367
in Java 751-754
inner ~, see nested under class
invariant 67-69, 126-127, 266, 369, 372, 381,

 392-395, 409, 424-426, 429, 581, 653
accumulation under inheritance 581-582
includes inherited clauses 581
influence on object creation 126-127
principle 68
using effectively 394

model ~ 685
nested ~ 658

in C# 779
in C++ 831
in Java 658, 767-770

one-song artist ~ 626
root ~, see class under root
static and dynamic views 369
supplier ~ see supplier 606
target ~ (in the Visitor pattern) 607
type 370
using a class 51-54
vs types 369-370
what makes a good class 51

class 16
Class Invariant Principle 68
Clemens, Samuel Langhorne (alias for Mark Twain) 265
CLI, see Common Language Infrastructure
client 47, 152, 215, 607

in the Visitor pattern 607
of itself 215
programmer 62

closed
argument, see closed under argument
hashing 413
operand, see operand under argument

closure
term for agent in functional languages 655

in Java 767
→ See also agent

CLR, see Common Language Runtime
cluster 844

model of the software lifecycle 716-717
CMM 735

→ acronym means “Capability Maturity Model”

CMMI 735-740
certification 735
discipline 736
goal 737

generic 738
levels of assessment 738-740
models 737-738
practice 737

generic 738
process area 737
scope 735-736
→ acronym means “Capability Maturity Model Inte-

gration”
Cobol xxxvi, 776
code 39, 108

generation 336
glue ~, see glue code
inspection 732
legacy ~ 327
machine ~, see code under machine
size 352
unsafe ~ (C#) 803

code review 732
coder 39
collaboration

effectiveness 710
in agile methods 718

collection, see container
garbage ~, see garbage collection

collision (in hashing) 412
Columbus, Christopher 667
command 29, 59-61, 244, 372-374, 383

assigner ~ 242, 385, 390, 416-417
command-query separation 324, 420
setter ~ 119, 248

→ See also assigner command
Command pattern 625
Command-Query Separation Principle 324, 420
comment 17

comment out 112
header ~ 55
uncomment 112

commit
version control operation 348

Common Intermediate Language (CIL) 355, 776
Common Language Infrastructure (CLI) 776
Common Language Runtime (CLR) 776
communication device 7
Communications of the ACM, see under ACM
commutative 75
COMPARABLE 589-590, 597-598
compilation 20

as a general algorithmic strategy 542-544, 694
incremental ~ 219
Just-In-Time ~, see jitter
separate 339
vs interpretation 330-335, 542-543, 645-646
→ See also compiler

compiler 11, 92, 305, 321, 323, 326, 329-332, 334-
342, 346-347, 353, 355, 359, 542, 618, 633,

INDEX854

 645, 657
as verification tool 338
fundamental data structures 337
messages, as a benefit 367
optimization, see this term
pass 337-338
tasks 335-341
writing a compiler 618
→ See also compilation

complete
sufficient completeness 724

complete (property of requirements) 724
completeness, see complete
complexity

abstract ~ 377-379, 455-459, 517, 528, 530, 532-
533, 537-538, 541, 545
mathematical basis 377-378
use in practice 379

asymptotic ~, synonym for abstract complexity
average ! 379
effect of abstraction 408-409
estimating 376-379
maximum (worst-case) ~ 379
minimum (best-case) ~ 379
of array operations 388
of arrayed list operations 409-410
of hash table operations 417
of linked list operations 406-409
of two-way list operations 408-409

component 544, 709
composition

of functions 641
Compound 301
compound 147-153, 617

→ Precise definition of this term 149
as a problem-solving strategy 147-148, 446
correctness 152-153
examples 147-148
order overspecification 151
semantics 150
syntax 149-150

compound instruction, see compound
computation

theory 650
Computer

~-Aided Design and Manufacturing (CAD-CAM) 321
computer 3, 6

basic concepts 3-11
basic tasks 6-10
general organization 7
instructions 288-290
stored-program ~ 10-11
ubiquitous role 9-10

concatenate 301
concatenation 301, 483

production 300-301, 313
concrete

class, synonym for effective 566
syntax 310

tree 42-43, 310

concurrent 144, 146, 151, 291-292, 392
Conditional 303
conditional 146, 174-181

as a problem-solving strategy 174-175, 446
conditional branching instruction 182-183
correctness 181
example 175-176
in C# 789
in C++ 833
in Java 763-764
instruction variants 176-180
semantics 181
syntax 180, 298, 300, 303
unconditional branching instruction 182
with many choices 574-575

conditional instruction, see conditional
configuration 344

management 344-351
varieties 344-345

conformance 390, 564
conforms to, see conformance
conjunction 75-76

generalized to "forall" 95-96
principle 76

Conjunction Principle 76
consequent 84
consistent (property of requirements) 725
constant

in C# 781
in C++ 807-808, 810, 812-813
manifest ~ 43
symbolic ~ 251
→ See also under attribute

constrained genericity 596-599
construct 39-40, 43, 298-314

lexical ~ 311
nonterminal ~ 43
terminal ~ 43

constructive proof 443, 511
constructor, see procedure under creation

default constructor 798, 815, 821
in C# 777, 780-781, 783-784, 788, 791, 798, 802
in C++ 814-815, 818-819, 821, 828
in Java 756

consultants 721
container 256, 363-434, 558

general operations 371-375
polymorphic ~ 558
static typing 364-371

context 488-489, 673-674, 688, 692, 694
affects events, or not 674, 688
GUI 673

context-free 316-318
context-sensitive 316

grammar 317
continuous

in CMMI 737
contract 61-68, 126-127, 139-140, 152-153, 159-166,

 181, 200-201, 266-267, 580-586, 846
and creation 122-127

INDEX 855

and exceptions 201-204
emulation

in C# 802
in C++ 829-830
in Java 766

for debugging 64, 846
for documentation 65
for recursive routines 485-486
in deferred classes 585
monitoring at run time 846
subcontractor, subcontracting (in inheritance) 583
under inheritance 580-586
view 53-54, 65, 244-246, 557, 845

Contract Redeclaration rule 583
contradiction 79
control (Windows) 664
control flow 146
control structure 139-209, 295

→ Precise definition of this term 146
as problem-solving mechanism 139-142
basic concepts 146-147
variants 191-199

controller, see Model-View-Controller pattern
convention

absent digit in addition of decimal numbers 141
absent precondition 64
camel case 45
for cursor position in empty lists 169, 171
for imprecise terms used in recipes 143
for labeling instructions 183
for specifying an algorithm 143
implies as a semistrict operator 94
length of a metro line 55
metro line numbering 58-60, 65, 67
multi-word identifiers 45
names of predefined objects 23
Traffic library class names 53
typesetting ~ for software texts 16
value of quantifiers applied to empty sets in predicate

calculus 99
conversion 559-560

in Java 771
core

memory, see core under memory
Cormen, Thomas H. 433
Cornell, Gary 774
correct, see correctness
correctibility, see corrigibility
correctness 11, 126, 140, 142, 152, 159-160, 168,

 170-171, 181, 185, 188, 192-193, 368, 707
property of requirements 724
vs validity 368

corrigibility 708
cosmetics 20
cost

effectiveness 710
covariance 760
coverage

of requirements 352
see under test

Cox, Brad 329
CPU (Central Processing Unit) 7
creation 29, 118-135, 339, 567

and inheritance
in C# 798
in C++ 828
in Java 756

correctness 126-127
for arrays 382-383
how to create an object 126
in C# 776, 779, 783-784
in Java 755-756
not always necessary 114-115
principle 124
procedure 122-127

in C#, see under constructor
in C++, see under constructor

relation to class invariant 126-127
Creation Instruction Correctness Rule 126
Creation Principle 124
creative definition 478-479
Current 249
current object 132-134

→ Precise definition of this term 132
Curry, Haskell 643
currying 643-646, 651-652, 655, 661
CURSOR 392
cursor 154, 167-175, 229, 231, 239-240, 248, 263,

 364-365, 391-395, 397-403, 405-408, 410, 429,
 431
constraint on positions 173-174
external ~ 392, 634
internal ~ 392, 634
movement 395-398
queries 392-394

cycle 463, 510
in the constraints of topological sort 520-522
no ~ in binary trees 451
no ~ in trees 463

D

Dahl, Ole-Johan 207, 328, 847
photograph 328

data 8
abstraction 220, 691-692, 708, 724

choosing right 691-692
difference with information 8
how to encode 273-282
structure, see data structure
type, see this term
used in the singular 8

data abstraction, see abstraction under data
data structure 363-434

“natural” choice not always best 527-535
container ~, see container
for compilers 337
for topological sort 527-535
linked ~ 256-264, 400-407

reversing 259-261
polymorphic ~ 560-561, 594-595

INDEX856

recursive ~ 437-438, 448-449
database 348, 390, 509
De Morgan’s laws 81-82
dead code removal 336, 358-359
debugger 169-170, 340-341, 846

EiffelStudio ~ 340-341, 846
debugging 64

→ See also debugger
decimal

measurement 279
decimal number

addition 141
declaration

of a feature 17
of a routine 213, 215-217

decorating a tree 311, 337
default

constructor
in C# 798
in C++ 815

default_rescue 203
deferred 565-570

class 566
cannot be instantiated 567

class rule 567
feature 565-570
type 566
use for requirements 585
use of contracts 585

deferred 553, 567, 585
defined

CMMI level 738-739
defining

production 304
definition

creative ~ 478-479
must be non-creative 478-479
recursive 435
recursive ~ 435

delegate (.NET) 672
delegate (C#) 791-793
delegate (C#), see agent
delimited (property of requirements) 726
delimiter 43, 297
Delphinius 551
denote 36
Department of Defense (US) 735
dependency analysis 345-347, 358
deployment 704
depth-first 453, 463-466

→ See also backtracking, preorder
derivation, derived, see under generic
descendant 554

proper 554
Describe (software engineering activity) 704
descriptive style 37, 237, 323, 326, 346

→ See also applicative under programming language
design 50, 130-131, 713

pattern, see design pattern
review 732

→ See also architecture under software
Design by Contract, see contract
design pattern 625, 678

Command 625
Many Little Wrappers 607, 626, 651, 654, 657-

658, 770
in Java 658, 770

Model-View-Controller 677-678
Observer 625, 678-685

→ See also Observer pattern
One-Song-Artist 626
Program with Holes 569-570, 585, 590
Visitor 608-613, 660

possible improvements and replacement by a reus-
able component 613, 660-661

desktop 9
destructive operation 237
destructor

in C# 784-785
in C++ 820-821, 823, 827

detachable
type 136

detachable 136
deterministic

algorithm 144
Deutsch, L. Peter 504
Diagram Tool (of EiffelStudio) 343-344, 555
diagrams, use in presenting ideas 678
DIAMO (Describe, Implement, Assess, Manage, Oper-

ate), description of software engineering 704
diff (display of file differences) 348-350
Dijkstra, Edsger W. 14, 187, 207, 494, 728

photograph 187
Dilbert 718
direct

recursion 488
direct instance 568
directory 843
discrete-event simulation 328, 428
disjunction 74-75

generalized to "there exists" 95-96
principle 75

Disjunction Principle 75
disk 285-286
dispatch

double ~ 611
dynamic ~ 611
single ~ 611
table, synonym for routine table 576
→ See also dynamic under binding

dispenser 418-430
distributivity

of boolean operations 82
Divide and conquer 212
Divide and rule 212
do 16
do_all 621, 631-634, 637-639, 660

anatomy of the implementation 631-634
do_if 631
do_until 631

INDEX 857

do_while 631
documentation 65, 713
DOD (US Department of Defense) 735
dolphin 551
domain

~-specific language (DSL) 322
engineering 723
expert 722
vs machine (in requirements) 723

double dispatch 611
downcasting 601, 761

in Java 761
downward path 451
Downward Path theorem 451
DSL (Domain-Specific Language) 322
duality 76
Dupond, see Thomson
Dupont, see Thompson
DVD 4
dynamic 11, 50, 227, 324, 369

aliasing 265-268
allocation 489
as a property of software 227
binding, see dynamic under binding
property 11, 227

→ See also static
type 563
typing 364
view of classes 369

E

ease
of learning 708
of use 708

EBNF (extended BNF) 297
ECF (Eiffel Control File) 223-224, 844-845
Eckel, Bruce 774, 838
Eclipse 353, 607
editor

program ~ 342-343
text ~ 342-344

effect, effected, effecting 566
effective

class 566
feature 566
type 566

effectiveness
collaboration ~ 710
cost ~ 710

efficiency 11, 707
effect of abstraction 408-409
→ See also complexity

Eiffel 364
Eiffel Test Framework 729
EiffelBase 337, 359, 375, 379, 391, 403, 409, 413-

414, 420, 425, 427, 429, 433-434, 568, 584, 841
taxonomy 568

EiffelBuild 354
EiffelStudio 215, 218-219, 332, 335, 337, 343-344,

 347-348, 351, 353-359, 555, 580, 607, 726, 843-

846
is open-source 358
routine inlining 222
usage instructions 843-846

EiffelVision 359, 669
EIFGENs directory 846
Einstein, Albert 132, 202, 290
EIS (Eiffel Information System) 726
elicitation, see under requirements
else 175
Else_part 303
elseif 178
Emacs (text editor) 342
email attachment 10
embedded 129
embedded computers and software 9-10, 13
empty structure

in quantifiers 99-100
end 16
endorsed (property of requirements) 727
engineering

domain ~, see under domain
software ~, see software engineering
systems ~ 736

Enigma 165
ensure 65
ensure then 584
entity 110, 249-252

categories 249
variable ~ 250

Entscheidungsproblem 165, 223
enumeration type

in C# 803
in C++ 812-813
in Java 771

equality
object ~, see equality under object
syntax 237

equation
defining recursive functions 479
fixpoint ~ 480-481, 483-484, 503-504
matrix ~ 504

equivalence
of boolean expressions 79-81

error 728
numerical ~ 280-282, 728

evaluation
function (in game-playing strategies) 464
of an expression 230
partial ~ 645

Eve (Eiffel Verification Environment) 351
event 666

argument 668-670, 672, 682-685, 687, 689-690,
 692-693

dependent on a context, or not 674, 688
distinguishing from event type 671-672
driven, see event-driven
external ~ 667
library 686, 694

basic API 686

INDEX858

publishing 667, 684
in the Observer pattern 684

raising, see triggering
signature 668-669, 683-684, 686, 689
triggering 667
type 668-672

catching 670
distinguishing from event 671-672
does not resemble types of object-oriented

programming 669
handling 670
implementation 689-690
in C# 792-793
not a class 669
registering 670
resembles routines of object-oriented

programming 669
signature 668-669, 683-684, 686, 689
subscribing 670
use in the Event Library 687

EVENT_TYPE 669, 686-687, 689-690, 692, 696
class implementation 689-690
class interface 686

event-driven 663-698
→ Precise definition of this term 670
design 620, 625, 663-698, 768-770

in Java 768-770
GUI programming 664-666
in C# 791-793
overall scheme 670
requirements for acceptable solution 674-678
terminology 666-673
under .NET 671
using agents 686-694
→ See also event

EXCEPTION 204
exception 91, 112, 147, 199-204, 339

→ Precise definition of this term 201
accessing the details of an exception 204
and contracts 201-204
failure 113, 201
in C# 790-791
in C++ 822-823
in Java 758
object 204
recipient 201
rescue 202-204
retrying 202-204
role 200, 204
try-catch style 204, 758-759, 790-791, 822-823

Excluded Middle Principle 74, 78
executing a program 20-22
execution 130-135, 488-489

associated binary tree 450
context, see this term
setup 130-135
start 130

in Java 749-750
tools 340-341

existential quantifier 96-100

existentially quantified expression 96
exists 628, 631
expanded, see under type
expert

domain ~ 722
export

selective, see selective export
expression 36

evaluation 230
existentially quantified 96
Old 66
universally quantified 98

extendible, extendibility 11, 131, 708
applied to requirements 727

extensibility, see extendibility
extension

method (C#) 800
external

quality factor 710
Extreme Cases Principle 381
extreme programming 717

F

factor
see quality under software

Failed Test Principle 729
failure 728

in exception handling, see under exception
principle 203

Failure Principle 203
Fairy

Tooth 379
False 72
fault 340, 352, 728
feasible (property of requirements) 726
feature 17, 26-29

bracket notation 415, 417
call, see this term
classification 244-249

client’s view 244-247
suppliers’s view 247

declaration 17
effective ~ 566
immediate ~ 556
inherited ~ 556
inheriting from a parent 552-557
introduced ~ 556
name 374

standardization 374
neighborhood theorem 579
of a class 556
opposed to bug 458
ordering through topological sort 507
precursor 573
redefined ~

precursor 573
renaming 590-594
routine 213
standard ~ name principle 374
→ See also member

INDEX 859

feature 16
Feldman, Stuart 345

photograph 345
Fibonacci, Leonardo 438-439

statue 439
Fibonacci numbers 227, 438-440, 471-472, 479-480,

 482
computed iteratively 440
computed recursively 439

field (mathematical structure) 589
field in an object, see under object
field, other term for attribute

C# 779-780
Java 751-753

FIFO (First-In, First-Out) 419
→ See also queue

finalization
compilation mode in EiffelStudio 222, 358

finite
automaton 314-316

finite automaton 314-316
language recognized by a finite automaton 315

first-class citizen 651
First-In First-Out, see FIFO
fixpoint equation 480-484, 503-504
flash, see under memory
flat

view 556-557, 845
flowchart 183-185
folder 843
for loop 194
for_all 628, 631
forest 42
formal

argument 215-216, 220, 249
generic parameter 365
methods 734
parameter 365

formal specification 733
format

free ~ 45
in Java 773

Fortran xxxvi, 194, 212, 268, 295
frame

problem 267
property 267

free
format 45

in Java 773
occurrence, see free under occurrence
variable, see "in mathematics" under variable

free variable 658
freezing 357
from 154
FUNCTION 630, 637
function 212, 219-220, 245

application (in lambda calculus) 643
as a synonym for routine in C 212
as argument to another routine 656
evaluation ~ (in game-playing strategies) 464

getter ~ 248-249
not needed 249

graph 479-484
hash ~ 411
in mathematics 640-652

as argument to another function 641
composition 641
operations 640-641

point 352
pointer 656-657

functional
abstraction 211, 214, 220-222, 225
programming, see functional under programming lan-

guage
requirements, see functional under requirements

Fundamental Data Structure Library Principle 264

G

Galois, Évariste 551
game-playing 464-470
Gamma, Erich 613, 696

photograph 696
garbage collection 128-129, 339, 577, 633, 690, 784
GC, abbreviation for garbage collection
general relativity

of the object-oriented model of computation 132-135
generalization (software lifecycle activity) 717
generating a language 306
generating class 50
generic, see genericity

→ See also goal and practice under CMMI
generically derived, see under genericity
genericity 365-371, 594-599

combined with inheritance 594-599
constrained ~ 596-599
generic class 367
generic derivation 367, 370-371, 482

nested 370-371
generically derived 370
in C# 788
in C++ 823

→ See also under template
in Java 762-763
unconstrained ~ 598

generics, Java and C# term for genericity 595, 760,
 788
→ See genericity

getter 248-249
not needed 249

Ghezzi, Carlo 740
photograph 740

gibi 278
giga 278
gigahertz 278
glossary

applying topological sort 507
for requirements 507, 722

glue code 675, 685, 770
Gödel, Kurt 165
Goldberg, Adele 329

INDEX860

photograph 329
Gosling, James A. 747, 774

photograph 747
goto 183-190

considered harmful 185-188
history 187
removal 205-206, 495-496

example 205-206
under other forms 189-190

grammar 40, 296-320
as recursively defined function 484
context-sensitive ~ 317
generated language 306
lexical 311
recursive ~ 307-310, 437, 484
regular ~ 312-314
rules 303-305
turning into a parser 311

Grand Challenge of program verification 734, 741
graph 463

of a function 479-484
Grune, Dick 318
GUI 675, 768-770

→ abbreviation for Graphical User Interface 48
as a view 675
event-driven programming 664-666, 768-770
interface, see user under interface
library 670
programming 664-666, 768-770

in Java 768-770
Gurtovoy, Aleksey 838
Guttag, John V. 328, 740

H

Haddock
Captain ~ (in Tintin) 86-87, 103

Halting Problem 164, 223-224, 472, 661
undecidability proof

using agents 661
using loops 223-224
using recursion 472

handling
an event 670
exception ~, see exception

Hankin, Chris 658
Hanoi

see Tower of Hanoi
hardware 3, 273-294
hash

closed hashing 413
function 411

perfect 412
open hashing 412
table 411-417, 531, 538, 548

complexity of hash table operations 417
for topological sort 531, 538, 548
implementation of hash tables 412-417

HASHABLE 589, 598, 604
hashing, see hash
Haskell 325-327, 471, 655

(person’s name) see Curry
header

comment 55
of a list 263, 400

heap 423, 489
height

of a binary tree 451
computed recursively 452

heir 554
Heisenberg, Werner 165
Hejlsberg, Anders 775
Helm, Richard 696
Hennessy, John L. 291
hertz 278
heuristics 309, 543, 724

compiling the data first 543-544
sufficient completeness 724

hiding
information ~, see hiding under information

Hilbert, David 165
Hindley, J. Roger 658
History list 623
history list 623, 625
Hoare, C.A.R. ix, 199, 207, 734, 741
hole

in program, see Program with Holes under design pat-
tern

in punched cards 12
Hopcroft, John E. 433
Horning, James J. 740, 847

photograph 494
Horning, Jim 494, 847
Horspool, Nigel 804
Horstmann, Cay S. 774
Hot Spot (JIT compiler) 748
HTML 342, 347, 352, 356
HTTP 804
Humphrey, Watts S. 742

photograph 742

I

I/O (abbreviation for “input and output”) 7, 324
IBM 710, 741

OS/360 710, 741
IDE (Integrated Development Environment) 321, 353-

359, 843
identifier 43, 312

precise form in Eiffel 44
IEEE

Computer Society 740-741
Standard for Binary Floating-Point Arithmetic 282
standard for requirements specifications 719, 722,

 724-730
standard on software engineering terminology 728

IEEE Computer Society 719
if 175, 603
immediate feature 556
imperative, see under programming language
Implement (software engineering activity) 704
implementation 50, 713

INDEX 861

as an influence on language design 199
of a routine 213, 217
of event types 689-690
of hash tables 412-417
of lists 400-410
of polymorphism and dynamic binding 575-580
of stacks 424-427, 497-499

implication 84-89, 94
compared with inference 85
practical meaning 86-88
principle 84
reversing ~ 88-89
semistrict ~ 94

Implication Principle 84
implies 84, 117
incremental

compilation 219
indentation 19, 45
index

see under array 381
indexer (C#) 787-825
Indian software industry 735
indirect

recursion 488
indirection 198
industrial plant maintenance 507
inference 85

vs implication 85
infix notation 135
information 8

difference with data 8
duplicating ~ 529-530
hiding 218-219, 328, 358, 573-575, 587, 752-753,

 761, 816-817
application to compiler performance 358
improved by inheritance 573-575
in C# 779, 796
in C++ 816-817
in Java 752-753, 761

Ingalls, Daniel Henry Holmes, Jr. 329
inherit 16, 553
inheritance 265, 551-618

and constructors in C# 798
and constructors in C++ 828
and constructors in Java 756
and creation 756, 798, 828
basic terminology 554-555, 558-559
combined with genericity 594-599
contract adaptation 580-586
for reuse combined with adaptation 265
improves information hiding 573-575
in C# 794-799
in C++ 825-828
multiple ~, see multiple inheritance
overall structure 586-587
repeated ~, see repeated inheritance

initial
CMMI level 738

inlining
of a routine 222

inner
class, see nested under class

inorder 453
input 7
inspect 196
instance 50, 568, 669

direct ~ 568
full definition of this term, involving inheritance 568
how to create 126
of a routine execution 487-488

instantiation, see creation under object
Instruction 301
instruction 35-36

branching ~, see branching instruction
check ~ 846
compound ~, see compound
computer ~, see code under machine
conditional ~, see conditional
creation ~, see creation
goto ~, see goto
loop ~, see loop
multi-branch ~, see multi-branch

INTEGER 55-56, 63, 276-277, 586, 628, 669
integer 312

division 477
remainder 477

INTEGER_16 276
INTEGER_32 276
INTEGER_64 276-277
INTEGER_8 276
INTEGER_INTERVAL 628
integrated development environment, see IDE
integration

numerical ~, see integration under numerical
testing 731

interface 47-68, 217, 568-569, 590
C# language construct 568-569, 590, 795
interfaced 726
Java language construct 568-569, 590, 753-754
of a routine 217
program ~ 47
user ~ 47, 664-666

modern style 664-666
old style 664

view 557
interfaced (property of requirements) 726
internal

quality factor 709
internal node 42
International Standards Organization (ISO) 297
internationalization 252
Internet 322
interpretation 358

abstract ~ 733
as a general algorithmic strategy 542-543
in EiffelStudio 358
vs compilation 330-335, 542-544, 645-646
→ See also interpreter

interpreter 330-334, 542, 617, 645
writing an interpreter 617

INDEX862

→ See also interpretation
interval 194-195, 628

for integration 634-635
introducing a feature 556
invariant 159, 581
invariant, see under class, loop, recursion

binary search tree ~ 455, 458
using effectively 394

invertible function 497-499
for implementation of recursion 489

irreflexive 511
is defined as (symbol) 298
is-a relationship 552
Isis 274
ISO (International Standards Organization) 735

9000 standards series 735
ISO standard

8859-1 (extended ASCII) 276
item 363
iterating 166-174, 195, 390, 397-398, 431-432, 453,

 609-613, 620-621, 625, 631-634, 673, 765
basic iterating schemes 627-628
full iterator implementation 631-634
in Java 765
iterator 397, 431, 627-628, 631-632, 634, 639,

 660-661, 673
library 631
objects for iteration 660
on a list 166-173, 396-398
over an interval 195
through the Visitor pattern 609-613
to implement predicate calculus 628
using agents 627-634
→ See also iteration, traversal

iteration 397, 621
of a loop 154-157, 161-162, 164, 166, 168, 172-

173, 189, 192, 206, 260, 397, 403-405
on a binary tree, see under traversal
→ See also iterating

iterative 486
equivalent of a recursive routine 486-499

simplifying the iterative version of a recursive
algorithm 494-496

iterator, see under iterating

J

Jackson, Michael 723, 740
photograph 723

Jacobs, Ceriel J.H. 318
Jacopini, Giuseppe 186
Java xxxiv, xxxvii, 129, 189, 264, 353, 364, 590,

 658, 671, 713, 729, 747-775, 791
basic object-oriented model 750-759
collection library 264
genericity 762-763
inheritance 760-762
JVM (Java Virtual Machine) 747-748, 776
no agent-like mechanism 658, 766-767
overall program structure 748-750
type system 750-751

use for teaching introductory programming xxxiv-
xxxvi

Javadoc 352, 713, 773
Jazayeri, Mehdi 740
Jerry 274
jitter 748
jitter (Just-In-Time compiler) 334-335, 355
jitting, see jitter
Johnson, Ralph 696
Josuttis, Nicolai M. 838
Joy, William N. 747, 774
joystick 7
JScript 776
jump, see goto
jump table 198-199
JUnit 729
justified (property of requirements) 724
Just-In-Time compiling, see jitter

K

K&R (Kernighan and Ritchie) 842
Kant, Immanuel 551
Karenina, Anna Arkadyevna 200
Kay, Alan Curtis 329

photograph 329
Kernel Library 586
Kernighan, Brian W. 842
keyboard 7
keyword 17, 41-43, 299

C++ 838
kibi 278
kilo 278
Knuth, Donald E. 296, 432

photograph 328, 432

L

Lam, Monica S. 318
photograph 318

lambda
calculus 640-661

operations of the lambda calculus 646-650
operations on functions 640-641
relation to agents 651-654
typed 643
untyped 643
→ See also alpha-conversion, beta-reduction

expression 641-643
correspondence with routines 641

Langendoen, Koen G. 318
language

assembly, see language under assembly
context-free ~ 316
context-sensitive ~ 316
description levels (lexical, syntactic, semantic) 44
domain-specific ~ (DSL) 322
functional ~, see under programming language
generated by a grammar 306
generation 306
interoperability 776-777
little ~ 305

INDEX 863

natural ~ 37
programming ~, see programming language
recognition 306
recognized by a finite automaton 315
regular ~ 316
scripting ~ 323
size 305
vs metalanguage 299-300

laptop 9
last_exception 204
Last-In, First-Out, see LIFO
latency

in disk access 285
Laughing Cow 435, 847
leaf 42

of a binary tree 451
leak

memory ~, see leak under memory
leak, see under memory
Leavens, Gary 774
Leda, Queen of Sparta 268
legacy code 327
Leibniz, Gottfried Wilhelm von 89, 165
Leiserson, Charles E. 433
letter 312
lexer 337

→ See also analysis under lexical
lexical 44, 311-317

analysis 311-318
using BNF 311-312

construct 311
grammar 311
structure 43-45

library 53, 131, 337, 375, 379, 403, 686
dead code removal 337
GUI ~ 670
iteration ~ 631
numerical integration ~ 625

Licht (signs on German freeways) 27
life, unfair 561
lifecycle 714-718

cluster model 716-717
seamless 717
spiral model 715-716
tasks 712-714, 716-717, 723
waterfall model 714-715

LIFO (Last-In, First-Out) 419
→ See also stack

LINEAR 569, 585, 631, 634
LINKABLE 263
linked

list, see linked under list
structure 256-264, 400-407

reversing 259-261, 403-406
LINKED_LIST 263, 356, 631
linker, linking 339
Linq 804
Linux xviii, xxxii, 354, 709, 843
Liskov, Barbara 328

photograph 328

Lisp 471, 476, 655
LIST 631
list 391-410

adding and removing items 398-399, 401-403
arrayed ~ 409-410

complexity 409-410
cursor 391-395

commands to move the cursor 395-398
queries 392-394

header 263, 400
history 623
history ~ 623
implementation variants 400-410
iterating on a list 396-398
linked ~ 400-410

complexity 406-409
insertion and removal 401-403
reversing 259-261, 403-406

multi-array ~ 410
reversing 259-261, 403-406
two-way ~ 408-409

complexity 408-409
listener, see subscriber
listening to an event, see event-driven, Observer pattern,

subscriber
little language 305
loader, loading 338-339

relocating loader 339
local 423

variable 231, 233-235, 238, 249-250, 260-261,
 423
Result 234
rule 233

Local Variable Rule 233
logic 71-101
look-and-feel 843
loop 146, 153-174

as a problem-solving strategy 154-157, 446
as approximation 154-155
correctness 159-166, 169-172
do ~ 194
equivalent recursive routine 471-472
in C# 789-790
in C++ 834
in Java 765
initialization 191-195
invariant 155, 159-161, 229, 231-232, 236, 242,

 253, 260-261, 404-405, 431
principle 159

postcondition principle 160
strategy 155-157
syntax 157-159

variants
for 194
repeat-until 193
while 192

termination 161-166, 168
topological sort 526, 536-538
variant 162-166, 168

INDEX864

when to exit 230
where to place preceding actions 192

loop 154
Loop Invariant Principle 159
Loop Postcondition Principle 160, 190

M

machine
abstract ~, see machine under virtual
code 11, 144, 182-183, 288-290, 330, 486, 542,

 645, 841
virtual ~, see machine under virtual
vs domain (in requirements) 723

MacOS 709
magic 17
main program 131

in C# 778
in C++ and C 806
→ See also class under root

maintainability 709
Maintenance 714
maintenance 702-703, 709

of an industrial plant 507
make (or Make), software build tool 345-347
makefile 345-347, 358

not needed with Eiffel 358
mammal 551
Manage (software engineering activity) 704
managed

CMMI level 738-739
management

configuration ~, see configuration management
Mandrioli, Dino 740

photograph 740
manifest

constant 43
string 251
tuple 389, 633, 660

Manna. Zohar 100
Many Explicit Variants syndrome 575
Many Little Wrappers, see under design pattern
Markoff, John 291
mathematics

is static 227
Maxwell, James Clerk 290
McCarthy, John 325, 476, 847

McCarthy’s 91 function 476
photograph 325

measurability 711
mebi 278
mega 278
melting 357-358
Melting Ice

principle 357
technology 357-359

member, synonym for feature
C# 776-786
C++ 807-808, 811, 813-821, 824-825, 827, 831,

 836
~ class 831
~ function 811, 813-814, 817-820, 825
~ variable 813-816, 818-821

static member variable 818
→ Synonym for data member

data ~ 813, 815, 818, 820
→ Synonym for member variable

Java 751-752
memory 6, 10, 283-287, 324, 690

core ~ 284, 287-288
flash ~ 285-286
hierarchy 287
leak 128, 682, 690-691
measurements in binary interpretations 279
persistent ~ 283
primary ~ 284
removable ~ 285
secondary ~ 284
stick 286
transient ~ 283
virtual ~, see memory under virtual

Mendelson, Elliot 100
Menelaus, King of Sparta 268
metadata 801
metalanguage 297, 299, 301

vs language 299-300
method, synonym for routine 212-838

in C# 781-783, 785, 788-789, 791-794, 797-800,
 802-803
extension method 800

in C++ 813
in Java 750-755, 760-761, 766, 771-773

methodology advice, see principle, rule
metrics 352-353, 704
Metro 18, 21-22, 25-26, 28, 51-56, 59, 67, 89, 95-

96, 107, 147-148, 153-155, 160, 167, 174, 177,
 180, 195, 251, 259, 723

Microsoft 775
Microsoft .NET 671
Microsoft Word 726
Mingins, Christine 311
minimax (strategy for game-playing) 464-470
mistake 364, 728
ML 471, 655
mobile phone 9
model 675-678, 685-686, 690, 692-694

→ Precise definition of this term 675
as publisher 693
capability maturity ~, see CMMI
checking 733
class, see model under class
distinguished from view 675-678, 770
lifecycle ~, see lifecycle

modeling 256
Model-View Separation Principle 676
Model-View-Controller pattern 677-678, 692-693

revisited 692-693
modifiable (property of requirements) 727

INDEX 865

Modula-2 xli
monogamy 114-115, 117
Moore, Gordon Earle 290
Moore’s law 290-291
Morandi, Benjamin 775-804
mouse 7
MP3 8
multi-branch 195-199, 574, 606

in C# 789
in C++ 833
in Java 764

multicore 144, 151
multiple dispatch, see double dispatch
multiple inheritance 588-594, 685

in C# 794, 802
in C++ 827-828
in Java 766
removing name clashes 590-594
renaming features 590-594
urban legends 588
use 588-590

MVC, see Model-View-Controller pattern

N

namespace
in C# 799-800
in C++ 829

narrowing 601
NATURAL 276
natural

be wary of solutions presented as ~ 527
language 37

NATURAL_64 276
NATURAL_8 276
Naur, Peter 296, 494

photograph 494
portrait 296

negation 73-74
theorem 74

negotiation
in requirements elicitation 721

nested, see nesting
nesting 40-41, 177, 789

of acronyms 736
of blocks in C++ 817, 833
of classes (Java, C++, C#), see nested under class
of namespaces in C# 799
of routines 423
representation of trees 40-41, 447
style rule 177

.NET events 671
network 7
Neumann, Peter G. 190, 375
new line character 45

on Windows 45
Newton, Isaac 290
Nirvãna 737
node 42

associated tree 448
internal 42

internal ~ 42-43
nonterminal ~ 43

Non-Contradiction Principle 74, 78
non-creative definition 478-479
Non-Deferred Creation rule 567
non-deterministic 144
NONE 244, 587
non-functional requirements, see functional under re-

quirements
non-recursive, also called iterative 486
non-strict

operator 92
→ See also semistrict

order and possibly partial order relation 546
nonterminal 43, 298-301, 303-307, 309, 312-314,

 317-318
No-Predecessor Theorem 510, 516-517, 519, 522
not 73
notation, see bracket, infix, prefix
note 352, 416, 567, 801
note clause 352, 416, 567, 801
notification 668
nuclear physics 665-666
number

addition 141
NUMERIC 589-590, 598, 604
numerical

analysis 282
computation 279-282, 620-623, 625-635
errors 281-282
integration 621-623, 625

Nygaard, Kristen 328, 847
photograph 328

O

O-O, see object-oriented
O, notation for estimating algorithm complexity 377
Oberon xli
object 18-31, 47-68, 107-137

as a dynamic concept 50
as a machine 28
basic concepts 18-29
basic definition 29
contains identification of its own type 577
creation, see this term
current ~, see current object
duality with operations 619-626
equality 397, 455, 457, 590
exception ~ 204
field 110
material and immaterial ~ 25-26
objectifying operations 621-626
predefined ~ 23
test, see object test

object form of a program 11
object test 602-604

~ local 603
scope 603

objectifying operations 621-626
object-oriented 25

INDEX866

database 355
general relativity of the ~ model 132-135

object-test local, see under object test
observed, see publisher, event-driven, Observer pattern
Observer pattern 625, 667, 678-685, 688-692, 694,

 696-698
assessment and criticism 684-690
basics 679
improving efficiency 697
publisher side 679-681
subscriber side 681-683
type safety 698

observer, see subscriber, event-driven, Observer pattern
occurrence 646

bound ~ 646-649
free ~ 647-649

occurs bound, occurs free 647
octet 275
old 66
Old expression 66
once 687
once function, once routine, see once under routine
One Laptop Per Child (OLPC) 286
one-entry, one-exit 189
One-Song-Artist classes 626
OOPSLA Object-Oriented Programming, Systems, Lan-

guages and Applications) 329
open

argument, see open under argument
hashing 412
operand, target, see operand, target under agent
target, see open under target

Open Office 347
open-source

EiffelStudio 358
operand

see under agent
Operate (software engineering activity) 704
operating system 162, 338-339, 346
operation

duality with objects 619-626
objectifying operations 621-626
→ See also feature

operator 43, 134
alias 134-135
in C# 785-786
in C++ 818, 836-837

opposite 74
optimization 92, 336-337, 580, 633

performed by compiler 331, 336-337, 358-359, 580,
 633

optimized
CMMI level 739

optional construct (in a Concatenation production) 300
or 74
or else 92
order

of magnitude 376-377
overspecification 151
relation, see total order and possibly partial order un-

der relation
Origo 351
OS, see operating system
OS/360 (IBM) 710, 741
Osiris 274
output 7
outsourcing 735
overflow

arithmetic ~, see overflow under arithmetic
buffer ~ 840

overloading 572, 590-591
in C# 782
in C++ 818
in Java 754-755

override, overriding, synonyms for redefine,
redefinition 570
in C# 796-798
in C++ 825
in Java 760-761

overspecification 93, 151, 726
of order of instructions 151

P

package
in Java 748-749

page 288
fault 288

page-in 288
page-out 288
pair

programming 718
panic

avoiding ~ with EiffelStudio 846
parallel 146

→ See also concurrent
parameter 367

actual ~ 365
formal ~ 365
not to be confused with argument 367

parametric polymorphism, term sometimes used for
genericity 595

PARC, see under Xerox
parent 554

in a binary tree 449
parenthesis

in boolean expressions 83
in lambda calculus notation 643

Paris
city 18, 23-25, 49, 51-52, 107

in a bottle 25
in a program 25
Metro, see this term

person (from mythology) 268
Parnas, David Lorge 224

photograph 224
parser, parsing 305, 311, 332, 336, 502

unparser 502
parsing

unparsing 617
partial evaluation 645

INDEX 867

partial order relation, see possibly partial under order
Pascal xxxvi, 193, 199, 296, 333, 337
pass (in compilers) 337-338
path

downward ~ 451
upward ~ 451

pattern, see design pattern
Patterson, David A. 291

photograph 291
PCMCIA 286
PDF 347, 356, 726
pebi 278
Pentium 709
perfect hash 412
performance 707

effect of abstraction 408-409
of event-driven programming 690-691
of topological sort 517, 528-529, 538, 543
optimizing hash table usage for topological sort 548
→ See also complexity

persistence, persistent 7, 283-286
persistent objects 355

personal software process 740, 742
peta 278
Peyton Jones, Simon

photograph 326
Pfleeger, Shari Lawrence 740
phrase 296-297, 299, 306, 308-310

generating all the phrases of a grammar 306-309
Piccioni, Marco 747-774
pick and drop 355-356
picture

not necessarily worth a thousand words 678
PL/I xxxvi
placeholder

routine 221
Plato 551
plug-in 353
point 507-508

function ~ 352
pointer

arithmetic 809
to code 576

Polikarpova, Nadia 805-838
Polish notation 421
polling 668
Polya, George 207
polymorphic, see under polymorphism
polymorphism 558-562, 593, 761

implementation 575-580
parameteric ~, term sometimes used for

genericity 595
polymorphic argument passing 558
polymorphic assignment 558, 761

in Java 761
polymorphic attachment 558
polymorphic data structure 560-561, 594-595
type rule 564
under repeated inheritance 593-594
vs conversion 559-560

portability 709, 841
postcondition 65-66, 532, 548

adaptation under inheritance 582-586
loop principle 160
of a recursive routine 485
principle 66

Postcondition Principle 66
postorder 453
Postscript 352
PowerPC 289-290, 709
practice

in CMMI 737
precedence

of boolean operators 82
precondition 62-64, 139

adaptation under inheritance 582-586
meaning if absent 64
of a recursive routine 485
principle 64

Precondition Principle 64
Precursor 573
precursor of a feature 573

in C# 796-797
in C++ 826

predecessor 511
No-Predecessor Theorem 510

predefined objects, style convention 23
PREDICATE 630-631
predicate calculus 72, 94-100, 628

implementation through agents 628
predictability 711
prefix notation 135
preorder 453, 463-464
preprocessor 766, 808

C++ 805
in C++ 808, 830

prescriptive, see imperative under programming lan-
guage

preserve 159
Pressman, Roger 740
primary memory 284
principle

Attached Target 113
Attribute Modification 243
Casting 601
Class Invariant 68
Command-Query Separation 324, 420
Conjunction 76
Creation 124
Disjunction 75
Excluded Middle 74, 78
Extreme Cases 381
Failed Test 729
Failure 203
Fundamental Data Structure Library 264
Implication 84
Loop Invariant 159
Loop Postcondition 160, 190
Melting Ice 357
Model-View Separation 676

INDEX868

Non-Contradiction 74, 78
Postcondition 66
Precondition 64
Reference Programming 263
Standard Feature Name 374
Symbolic Constant 251
Uniform Access 246

prioritized (property of requirements) 726
priority queue 419
problem-solving strategy 147-148, 154-156, 174-175,

 211-212, 446
PROCEDURE 629-632, 638
procedure 212, 219-220

root ~ 130
setter ~ 248

→ See also setter under command 247
process

area, in CMMI 737
control 666
personal software ~ 740, 742
quality 710-711
vs product 705-712

processor 7
product

quality 707-710
immediate 707-710
long-term 708

vs process 705-712
production (syntax) 298, 300-305

choice ~ 301, 313
concatenation ~ 300-301, 313
defining ~ 304
repetition ~ 301-302, 313

production speed 710
program

editor 342-343
execution 130-135
interface 47
main ~ 131

→ See also class under root
prover 733
proving 341, 369, 733-734
self-modifying 10
vs algorithms 144-145
→ See also software, system

programmer 4
client ~, see programmer under client

programming
→ Precise definition of this term 713
extreme ~ 717
pair ~ 718

programming language 11, 37, 322-338
applicative ~ 324
classification 322-323
functional ~ 228, 324-327, 471-472, 655

emulating in an imperative language 327
imperative 237
imperative ~ 37, 228, 323, 325-327
object-oriented ~ 327-329
→ See also language

project
management 507
repository 351

proof
constructive ~ 443, 511
of a program 341, 369, 733
recursive ~ 449-450

proper, see under ancestor, descendant
property

Attribute Exporting 249
in C# 782-783

propositional calculus 72, 94
prototype (C, C++) 657
prover 733
pseudocode 108, 212, 221, 457, 519, 621

convention for program texts 109
replaced by routines 221

publisher 663, 666-667, 669-672, 674-677, 679-694,
 696-698
→ Precise definition of this term 667
in the Observer pattern 679-681

publishing an event (same as triggering) 667
publish-subscribe, synonym for event-driven design 663
pull 668
punched card 12
push 668
Python xxiv

Q

qualified call 134
quality

assurance, see V&V
software ~, see quality under software

quantifier 96, 628
existential ~ 96-100
implementation through agents 628
universal ~ 96-100

quantitatively managed
CMMI level 739

quasi-order 546
query 29, 55-59, 244-246, 371-372, 383

command-query separation 324, 420
queue 428-430

priority ~ 419

R

RAII (Resource Acquisition Is Initialization) 821, 823
raising

an event, see triggering
RAM (Random Access Memory, synonym for main

memory) 284, 380, 384
Rastignac, Eugène de 563
Rational Software 343
RCS (Revision Control System) 347
read 274
REAL 277, 280, 586, 669
REAL_32 277
REAL_64 277
real-time 129
recipe

INDEX 869

vs algorithms 142-143
recipient of an exception, see under exception
record

activation ~, see record under activation 488
rectangles

ordering in a graphics application 506
recursion 435-504

as a problem-solving strategy 446
avoiding vicious circles 473-475
basic examples 436-440
boutique cases 476-478
contracts 485-486
direct ~ 488
implementation 486-499

through invertible functions 497-499
through stacks 489-499

indirect ~ 488
invariant 486
iterative equivalent 486-499
making sense of ~ 473-484
recursive algorithm 438-445
recursive data structure 437-438
recursive definition 435, 647

well-formed 474
recursive grammar 307-310, 313, 437, 484
recursive proof 449-450
recursive routine 438-445, 448-449

associated with a recursive data structure 448-449
recursively defined type 482
tail ~ 496
theory 473-484
turning loops into recursive routines 471-472
variant 475, 485

recursive, see recursion
non-recursive, also called iterative 486

redeclaration 571
vs renaming 592

redefine 571-572, 591
redefinition 570-573

in C# 796-798
in C++ 825
in Java 760-761

Reenskaug, Trygve 695, 847
photograph 695

refactoring 695
reference 110-117, 475

as a modeling tool 256
assignment 252-268
initialization 111-112
possible states 111
programming with references 256-268
unresolved 339
void 258-259, 528

proper usage 259
where to use operations on references 263-264

Reference Programming Principle 263
refinement 108, 212

→ See also top-down reasoning and development
reflexive 80
register 183, 287-290, 336

allocation 336
registering to an event type 670
regression

testing 729
regular

grammar 312-316
language 313, 316

canonical form 313
relation 509-520

→ Used in this book to denote binary relations
acyclic ~ 510, 548

relationship to order relations 512-513
relationship to topological sort 516

basic properties 509-517
cycle 510
irreflexive ~ 546
order

non-strict ~ 546
strict vs nonstrict ~ 547

partial order ~ 546
possibly partial order ~ 511, 546

strict 511
reflexive ~ 546
total order ~ 514, 546

and enumeration 547
strict 514, 589

transitive closure 513
relational database 355, 390, 509
relativity

of addresses in generated code 339
of the object-oriented model of computation 132-135

relocating loader 339
removable memory 285
rename 591
renaming

vs redeclaration 592
renaming, see under feature
repeated inheritance 592-594

and polymorphism 593-594
in C++ 827-828

repeat-until loop 192, 194
repetition

production 301-302, 313
repository 351
reproducibility 711
require 62
require else 584
requirements 52, 585, 712, 718-727

coverage 352
elicitation 720-722
functional vs non-functional 712-713, 720, 733
glossary 722
products 719
properties of good ~ 724-727
scope 720
standard 719
using deferred classes 585

rescue 202
rescue, see under exception
reserved word 234

INDEX870

resizing data structures 375
Resource

Acquisition Is Initialization (RAII) 821, 823
Result 220, 229, 234, 238

as local variable 234
retrieval 6
Retry 202
retry, see retrying under exception
return instruction

in C# 789
in C++ 834
in Java 762

reusability 131, 544, 709, 717
→ See also reuse

reusable 11, 131, 544, 709
reuse 221, 264-265, 432

of tuple memory 634
through inheritance 265
→ See also reusability

reversibility 717
reversing a list 259-261
review

of design, code, documentation 732
rhetorics 89, 268
ring 598
Risks forum 190, 375
Ritchie, Dennis M. 842
Rivest, Ronald L. 433
robust, robustness 11, 707
Rochkind, Mark J. 347
root 41-42

class 130-131, 845
how to specify 131, 845

creation procedure 130, 845
object 130
of a binary tree 447
procedure 130, 845

Root Path theorem 451
Rose (software tool from Rational Software) 343
round-trip engineering 344
ROUTINE 630
Routine 247
routine 147, 211-225, 247-616, 641-660, 670-697

activation 487
anatomy of the declaration 215-217
anonymous ~ (inline agents as anonymous

routines) 653
as a feature 213
as a problem-solving strategy 211-212, 446
as a superior alternative to pseudocode 221
as argument to another routine 656-657
body 217, 219-220
correspondence with lambda expressions 641
declaration 213, 215-217
execution instance 487-488
implementation view 217
in C#, see under method
in C++, see under method
inlining 222
interface 217

model for event types in event-driven design 669
nesting 423
once 784
once ~ 687-688, 818
other names for the concept 212
placeholder ~ 221
recursive ~ 448-449
subscribing to an event type 670
table 576, 657
usage 222

RPM (rotation per minute) 285
RTF 356
RTTI, see type identification under run-time
Ruby on Rails xxiv
rule

Contract Redeclaration 583
Creation Instruction Correctness 126
Deferred Class 567
Local Variable 233
Non-Deferred Creation 567

run
time, see runtime (meaning a virtual machine) or run-

time (meaning execution time)
run-time 110

library, see runtime
stack (or call stack), see stack under call
system, see runtime
type identification (RTTI) 601

in C# 798-799
in C++ 809

runtime 129, 339, 355
.NET 355

Russell, Bertrand 165

S

satisfiable 79
satisfies 77
SCAMPI (Standard CMMI Appraisal Method for Pro-

cess Improvement) 736
SCCS (Source Code Control System) 347
Scheme xxxvi, 325, 471
Schildt, Herbert 838
Schorr, Herbert 504
Schützenberger, Marcel-Paul 318
scientific computation 281
scope 233, 266

of an object-test local 603
scoping

in C++ 817
scripting language 323
sealed (C#) 797
seamlessness, seamless development 717
secondary memory 284
security 707, 822
SEI, see Software Engineering Institute
Seldin, Jonathan P. 658
Selective export 816
selective export 587, 816
self-improvement 711
self-modifying programs 10

INDEX 871

semantics 23, 36, 481
semantic analysis 336
used as singular 36

semicolon, as (optional) separator 149, 302
style rule 149

semistrict 92
boolean operations 89-94, 117

choosing against strict operations 93
in practice 93
semantics 92
use to express conditions involving qualified

calls 117
implication 94, 117

sensor 7
separate

compilation 339
sequence 146

→ See also compound, list
sequential

algorithm 144
serialization 600, 801
Sethi, Ravi 318

photograph 318
setter, see under command

→ See also assigner command
side effect 228, 324, 420
signature 215, 220, 656, 668, 670

argument ~ 215, 754, 782, 792, 796, 798
declared explicitly in typed lambda calculus 643
of a function 220, 643
of an event type 668-669, 683-684, 686, 689

Simula 1 328
Simula 67 328-329, 805
simulation 328, 428
single dispatch 611
Single Parent theorem 449
singleton 626
Smalltalk 46, 329, 364, 565, 654-655
SOAP 676
socket 841
software 3

activities, see tasks under lifecycle
architecture 50, 131, 608-609, 691-695

assessing 694-695
lessons from topological sort 542-544
→ See also design

component 544, 709
design, see this term
documentation 65
embedded, see this term
engineer 3
engineering, see software engineering
is dynamic 227
lifecycle, see this term
metrics 352-353, 704
metrics, see this term
outsourcing 735
personal ~ process 740, 742
process, see this term
production ~ 702

quality 702, 705-712
assurance, see V&V
external factor 710
factors 705-712
process ~ 710-711
process vs product ~ 705-712
product ~

immediate 707-708
long-term 708-710

tradeoffs 712
quality assurance, see V&B
review 732
tasks, see this term under lifecycle
tools 321-360

software engineering 701-744
→ Precise definition of this term 702
DIAMO view 704
difference with programming 544
tasks, see this term under lifecycle
terminology 702-703

Software Engineering Institute 735-736, 741
Solaris xxxii, 709
sorting 596

topological, see topological sort
source 11, 20
SourceForge 351
sourcing

supplier ~ 736
South Africa 738
space-time tradeoff 199, 246, 375, 408, 410, 414
spanning tree, see spanning under tree
Sparc 709
Spec# 136, 802
special symbol 43, 300
specification 713

formal ~ 733
specimen 39-40, 298
SPICE (Software Process Improvement and Quality

dEtermination) 735
spiral

model of the software lifecycle 715-716
stack 420-427, 489, 494-499

applications 421-424
for implementing recursion 489-499
for parsing 421-422
for run-time management 422-424, 490-494

basic operations 420-421
call ~, see stack under call
implementation 424-427, 497-499

as a single integer for a stack of booleans 497-499
through arrays 424-426

run-time ~, see stack under call
staged

in CMMI 737
stakeholder 703

involvement 710
standard

for binary floating-point arithmetic 282
Standard Feature Name Principle 374
Standard Template Library (C++) 831

INDEX872

starting execution 130
state 324
static 11, 50, 227, 324, 369

allocation 489
analysis 341, 732
as a property of mathematics 227
binding 358, 562
members and classes in C# 778-779
members and classes in Java 753
property 11, 227

→ See also dynamic
semantics (synonym for validity) 368
type 563
typing 364
V&V (verification and validation) techniques 732-

734
variables and functions in C++ 818-822
view of classes 369

Steele, Guy L., Jr. 747, 774
Stein, Clifford 433
stereo system 585
STL (Standard Template Library) 264
STL(C++ Standard Template Library) 831
storage 6, 285
stored-program computer 10-11
strategy, see problem-solving strategy
strict

operator 92
→ See also semistrict

order relation 512, 546
possibly partial order relation 511

STRING 56, 63, 586
string

manifest 251
stronger 85
Stroustrup, Bjarne 329, 805, 838
struct

in C# 777-779, 802
in C++ 813, 838

structure, see control structure, data structure, struct
structured programming 188-189
subclass, synonym for either heir or proper

descendant 554
subcontractor 583
subject (Observer pattern), see publisher
subject, see publisher, event-driven, Observer pattern
subprogram, synonym for routine 212
subroutine, synonym for routine 212
subscriber 663, 666-677, 679-694, 696-698, 769

→ Precise definition of this term 667
discipline 690-691
in the Observer pattern 681-683
must not forget to unsubscribe 690

subscribing to an event type 670
substitution 647

theorem (for boolean expressions) 80
subtree

of a binary tree 447
Subversion (a tool for version control) 347
Sudoku 108

sufficient completeness 724
sugar, syntactic 134
superclass, synonym for either parent or proper

ancestor 554
supplier 47

sourcing 736
SVN (short name of Subversion, a tool for version

control) 347
swapping two values 235
Swing 671, 769
symbol

is defined as 298
special 300

symbolic constant 251
Symbolic Constant Principle 251
syntax 23, 36, 295-320

abstract ~ 42-43, 310, 501-502
analyzer, see parser
of assignment and equality 237
production 300-305
syntactic sugar 134
tree, see under "abstract" and "concrete"

system 130-135, 844
engineering (also systems engineering) 736
execution 130-135, 844
starting execution 130
testing 731
type ~, see system under type
vs algorithms 145, 544
vs programs 145

T

table
dispatch ~, synonym for routine table 576
hash ~, see table under hash
jump ~, see jump table
routine ~ 576, 657

tag
for assertions 62
for tuples 389

tail recursion 496
target 11, 35, 42

class (Visitor pattern), see target under class
of an agent, see target under agent
open ~ 638-639

task
of software engineering, see under lifecycle

tautology 78
tebi 278
template

in C++ 823-825
temporary variable 235
tera 278
terminal 43, 298

node 43
terminal (screen, monitor) 7
test 163, 171, 341, 728-731

~ team 731
black-box 731

INDEX 873

coverage 731
bramcj 731
instruction 731
statement 731

in agile methods 718
integration ~ 731
regression ~ 729
system ~ 731
unit ~ 731
white-box 731

testing, see test
tetrapode 551
TeX 347
text

editor 342-344
view 217

then 175, 603
Then_part 303
Then_part_list 303
theorem 510

acyclic and order relations 512-513
as non-creative 478
Böhm and Jacopini 186, 189, 191
canonical form of a regular language 313-314
Conjunction 76
De Morgan’s Laws 81
Disjunction 75
distributivity of boolean operators 82
Downward Path 451
equivalence of regular grammars and finite

automata 316
Excluded Middle 74
Feature Neighborhood 579
Implication 84
Implication And Inference 85
incompleteness 165
negation properties 74
non-contradiction 74
No-Predecessor 510-511, 516-517, 519, 522
Rooth Path 451
Single Parent 449
Substitution 80
Topological Sort 519, 548
undecidability of the Halting Problem 164
universal inheritance and conformance (Eiffel) 587

theorem prover 733
theory 641

of computation 650
Thompson (detective in Tintin) 86-87, 103
Thomson (detective in Tintin) 86-87, 103
thrashing 288
Tichy, Walter 347
time stamp 343, 346
Tintin 86-87, 103
TLA (Three-Letter Acronym) 49
token 43, 296-297, 299, 309-311, 314, 316

categories 43
Tolstoy, Count Lev Nikolayevich 200
Tom 274
tool, see tools under software

Tooth Fairy 379
top construct 299
top-down reasoning and development 108, 211-212,

 220-222, 225
topological sort 505-548, 579, 596

→ Precise problem statement 509
algorithm 526-541

basic operations 532-533
applied to compilation of object-oriented

programs 507, 579
candidate structure 533-535
class invariant 530
example applications 506-508
final form of the solution 541
handling cycles in the constraints 520-525
initialization 533, 538-541
input and output 518-519
loop

basic 526-527
final 536-538

mathematical basis 509-517
numbering elements 531-532
overall algorithm 519-520
parameterized ~ 548
performance 517, 528-529, 538, 543
practical considerations 517, 525
problem description 505-508
software engineering lessons 542-544
theorem 516

total order relation, see total order under relation
Tower of Hanoi 441-445, 483-484

iterative routine 492, 495-496
recursive routine 443
size 441-443

traceable (property of requirements) 726
tradeoff

in software quality 712
space-time, ~ see space-time tradeoff

transient 283-284
transition

in a finite automaton 315
transitive 511
transitive closure, see under relation
traversal 453

of a binary tree 453-455
of a set of points 508
through the Visitor pattern 609-613
→ See also iterating, preorder, inorder, postorder,

depth-first, backtracking
traverse 453
tree 41

associated with a node 448
backtracking (tree representation) 463-466
binary ~ 447-459

height 451

INDEX874

computed recursively 452
insertion, search, deletion 456-459
leaf 451
no cycles 451
of executions 450
operations 452-454, 456-459
properties and terminology 451-452
root 447
search, see binary search tree
subtree 447
traversal 453-455

binary search ~, see binary search tree
decorating a ~ 311, 337
no cycles 463
spanning ~ 463
syntax ~, see under "abstract" and "concrete"

triggering
an event, see publishing

True 72
truth

assignment 77-79
table 74

try-catch style of exception handling, see under excep-
tion

TUPLE 389-390, 629-632, 635, 638
tuple 389-390, 620, 627, 629-630, 633-635

manifest ~ 389, 633, 660
reusing the memory 634
tag 389

Turing, Alan 165, 318
Turing Award 165
Turing machine 165, 186, 318
Twain, Mark 265
two

powers of ~ 277-279
TWO_WAY_LIST 434
two-way list, see two-way under list
type 55-57, 59, 61, 63, 68

abstract, see data type under abstract, abstraction un-
der data

attached ~ 136
cast, see this term
class ~ 370
contained in every object 577
conversion, see this term
deferred ~ 566
detachable ~ 136
dynamic ~ 563
effective ~ 566
enumeration ~

in C# 803
in C++ 812-813
in Java 771

event ~, see type under event
expanded 256, 564
expanded ~ 780
in C# 780
in C++ 808-816
narrowing 601
nested ~ in C# 777

Observer pattern problems 683, 698
of an agent 629-631
polymorphism type rule 564
recursive definition 482
role of inheritance 563-565
rules 44
static ~ 363-371, 563

for container classes 364-371
system 363-371, 656

as a protection against mistakes 367
in Java 750-751

uncovering at run time 599-606
vs classes 369-370

typecast
in C++ 809
→ See also dynamic under cast

typesetting
conventions for software text 16

typing
dynamic ~ 364
for lambda calculus 643
static ~ 363-365
→ See also: system under type; genericity; inherit-

ance

U

UI (User Interface) 48
Ullman, Jeffrey D. 318, 433
UML (Unified Modeling Language) 343
unambiguous (property of requirements) 725
uncomment 112
unconditional

branching instruction 182-183
unconstrained genericity 598
uncurrying 661
undecidability 164, 223-224, 661
undefine 593
underflow, see under arithmetic
underscore 312
understandable (property of requirements) 727
undo-redo 620, 622-623, 625
unfairness of life 561
Unicode 276, 292, 773, 780, 804
Uniform Access Principle 246
unit

testing 731
universal quantifier 96-100
universally quantified expression 98
Unix 709, 843
unparser, unparsing 360, 502, 617
unqualified call 134
unresolved

reference 339
unsafe code (C#) 803
unsubscribing 690
until 154
untyped lambda calculus 643
upcasting, synonym for polymorphic assignment 761

→ See polymorphic assignment under polymor-
phism

INDEX 875

update
version control operation 348

upward path 451
US Department of Defense 735
USB (Universal Serial Bus) 286

disk 286
memory stick 286

user 4, 677-678, 683
gets error messages that should be for developers 683
interface, see user under interface
not to be boxed in 375
understands model 677-678

V

V&V
quality assurance team 731

V&V (verification and validation) 341, 727-734
and requirements 719
dynamic techniques 728-731
plan 719
static techniques 732-734
varieties 728-734

vache qui rit, see Laughing Cow
validation 341, 714

and verification, see V&V
validity 44, 332, 336, 341, 368

checking 336, 341
rule (in Eiffel) 336
vs correctness 368

value 35, 37
van Lamsweerde, Axel 741
Van Vleck, Tom 729-730, 847
Vandevoorde, David 838
varargs (variable number of arguments)

C 839
Java 772

variable 110, 228-230, 233-238, 241, 248, 250, 252-
253, 258, 260-261, 265-266
attribute 250-252
in mathematics

bound 642-643, 646-649, 651, 658-659
free 647-651, 659, 661

local ~, see variable under local
number of arguments, see varargs
substitution (in lambda calculus), see this term
temporary ~ 235

variable entity, longer name for variable 250
variant 163
variant, see under loop, recursion
verifiable (property of requirements) 726
verification 341, 713

and validation, see V&V
version control 345, 347-351

→ Precise definition of this term 345
methodology advice 350

vertebrate 551
Vi (text editor) 342
vicious circle

avoiding a ~, in recursion 473-475
view 53

→ Precise definition of this term 675
contract ~ 53-54, 65, 244-246, 557, 845
distinguished from model 675-678
flat ~ 556-557, 845
interface ~ 557
text ~ 217

virtual
machine 330, 333-335, 340

Java Virtual Machine, see JVM under Java
memory 129, 288
method

in C# 796-798
in C++ 562, 580

table, synonym for routine table 576
visit 453, 609
Visitor pattern 608-613, 660
Visual Basic xxxvi

Visual Basic .NET 671, 777
Visual Studio 353
Vlissides, John 696
VM, see virtual machine
vocabulary 296
Void 112, 258
void

call 113-114, 136, 369
avoiding in boolean expressions 116-117
getting rid of ~s 136, 369

reference 111-117, 136, 217, 258-259
difficulties 112-113, 136
proper use 115-117, 259
role 115-117

void-safe 136
vtable, synonym for routine table 576

W

Wadler, Philip
photograph 326

Waite, William M. 504
Waldinger, Richard 100
WASO (With Abstract Language Only, sample language

for exercises) 501-502
water, how to boil 139
waterfall

model of the software lifecycle 714-715
weaker 85
Web service 676
well-formed

recursive definition 474
when 196
while loop 192
White 274
white-box testing 731
widget 664
Wiegers, Karl E. 740
Wikipedia 348
wildcard

in Java 762
Windows xviii, xxxii, 45, 224, 354, 664, 709, 843

carriage return and new line 45
folders 224

INDEX876

notion of control 664
Windows Forms 671
Wirth, Niklaus ix, 145, 187, 199, 296

photograph 145
wizard

in EiffelStudio 844-845
Woodcock, Jim 741
word 275

→ See also reserved word, keyword
workbench mode (in EiffelStudio) 358-359
working set 288
worst-case complexity 379
write 274
WUI (Web User Interface) 676

X

Xerox
PARC (Palo Alto Research Center) 329, 695

XML xix, xxix, 51, 223, 775, 804
XO laptop 286
XUnit 729

Z

Zhuang, Duo Duo 296, 847

	Cover Page
	Title Page
	Copyright Page
	Short Contents
	Community resources
	Dedication
	Prefaces
	Student_preface
	Instructor_preface
	Note to instructors: what to cover?
	Contents
	The industry of pure ideas
	Dealing with objects
	Program structure basics
	The interface of a class
	Just Enough Logic
	Creating objects and executingsystems
	Control structures
	Routines, functional abstraction andinformation hiding
	Variables, assignment andreferences
	Just enough hardware
	Describing syntax
	Programming languages and tools
	Fundamental data structures,genericity, and algorithm complexity
	Recursion and trees
	Devising and engineering analgorithm: Topological Sort
	Inheritance
	Operations as objects: agents andlambda calculus
	Event-driven design
	Introduction to softwareengineering
	An introduction to Java(from material by Marco Piccioni)
	An introduction to C#(from material by Benjamin Morandi)
	An introduction to C++(from material by Nadia Polikarpova)
	From C++ to C
	Using the EiffelStudio environment
	Picture credits
	Index

