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iiForeword 

If a builder build a house for someone, and does not construct
it properly, and the house which he built falls in and kills its
owner, then that builder shall be put to death

Article 229 of the Code of Hammurabi (1780 BC).

This earliest recorded attempt to regulate the engineering profession reminds
us, in the bluntest way possible, that the paramount purpose of engineering and
engineering design is to serve the user. One would assume that the engineer’s
responsibility to users is so self evident that it goes without saying. Various
professional engineering societies have inculcated this into the core of the rules
that regulate the conduct of their members.

However, in the relatively young discipline of software engineering, this has
not yet fully permeated the professional culture. Part of it is due to the essential
nature of the software: like no other engineering medium, software provides the
shortest path from concept to reality. With no metal to bend, heavy weights to
lift, or large teams of people to mobilize, creativity is practically unhampered. In
the heady and seductive process of embodying ideas through software, users are
often forgotten or relegated to secondary status. In some cases, they are even
seen as a distraction whose idiosyncrasies merely get in the way of ‘elegant and
clean’ design. Software developers are notorious for their impatience with
anything that separates them from programming – the medium has become the
message. Symptomatically, the terms ‘hacking’ and ‘hacker’ have no equivalent
in any other engineering discipline.

It is interesting to note the dramatic impact that the concept of ‘use case’ has
had on the software community. This idea, introduced by Ivar Jacobson and his
colleagues a little over a decade ago, was lauded as revolutionary. Its essence lies
in the formal introduction of the concept of a user (an ‘actor’) into the software
design process. (The layperson can hardly be blamed for wondering ‘what took
them so long?’ Hammurabi knew this almost 4000 years ago.)
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Clearly, there is an imbalance of motivations here that needs to be set right:
the creative urge needs to be made subservient to the need to support the user.
This is something that has to be instilled from the first steps in a software
engineering education, and the book by Tim Lethbridge and Robert Laganière
is an important contribution to this.

The authors build the book around nine ‘themes’, auspiciously starting with
‘understanding the customer and user’. (Many software practitioners do not
even differentiate between customers and users.) The themes are not dry
theorems but distillations of practical and proven domain knowledge drawn
from a wealth of experience in industrial software development. The book
abounds with pragmatic detail that is rarely found in textbooks. In fact, it is the
kind of textbook that, as a young engineering student, I wished I had, because it
describes the proverbial ‘real world’.

The book does not shirk theory, quite to the contrary. However, the theory
comes alive because it is set in its full and proper context, comprising not only
the technical but the social and cultural aspects that often play an important role
in molding the theory. The reader not only learns why a particular technological
approach is good, but also its drawbacks and, perhaps equally importantly, its
history. (Some things – like the QWERTY keyboard – can only be understood
properly if one is familiar with their history.) They carefully point out the
controversial issues in modern software engineering without taking sides,
meticulously listing the arguments for each viewpoint.

The ‘engineering’ side of software engineering is extremely well represented
here and not just because the authors emphasize a user-centric approach.
Themes such as ‘incorporating quantitative thinking’, ‘evaluation of alternatives
in requirements and design’, ‘risk management’, or ‘communicating effectively’
are all proven and effective techniques evolved from centuries of engineering
experience and which, unfortunately, are still not adequately applied in software
engineering. Yes, software is different from other forms of engineering in many,
many ways, but not so different that it cannot benefit from these lessons learned.
For example, the lack of quantitative thinking, including elementary risk
analysis, is probably one of the most common causes of software project failures.
And, no matter which statistics you read, more software projects fail than
succeed. (Thankfully, the engineers who design buildings and airplanes have a
much better record than their software counterparts.) 

Model-driven development is another important thread throughout the
book. This relatively new approach to software development, which promises
to be the first true technological generational advance since the invention of
the compiler, is covered in detail, from the basic principles of object
orientation to the latest modeling languages and their use. The way of the
future lies here.

So, from the nuts and bolts of objects to the high vistas of software
architecture, from writing code to testing, from software development processes
to project management – it’s all gathered here. The breadth and depth of the
material covered is striking and impressive, yet it has been brought together
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quite seamlessly, all the pieces in their rightful places, in balance. Although
primarily conceived as a textbook, it will undoubtedly serve its readers as a
reference for years to come.

If a builder build a program for someone, and does not
construct it properly…

Bran Selic
August, 2004
Ottawa, Canada
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Our focus in this book is software engineering knowledge and skills that readers
can put into immediate practical use. The book is designed to be used in second-
year post-secondary software engineering courses, although it has been used in
introductory software engineering courses at all levels. It will also be valuable to
programming practitioners who want to develop a better understanding of
modern software engineering.

We have taught software engineering courses for fourteen years, and have
attempted to tune the book so that it is both useful and enjoyable to students.
Feedback from former students has been gratifying – some have reported that they
regularly use it as a reference in their jobs. Our industrial experience performing
software development, consulting and professional training has also allowed us to
focus on material that is important to the employers of these students.

Using the book in a software engineering degree program
Software engineering is becoming an established discipline, separate from
computer science and computer engineering. As a witness to this, in 2004 The
IEEE Computer Society and the ACM approved Software Engineering 2004
(SE2004), a document outlining what should be taught in any undergraduate
software engineering program. Timothy Lethbridge played a leading role in that
project, and this book is specifically designed as a textbook for SE2004 course
SE201. See the web site http://sites.computer.org/ccse.

At the University of Ottawa, we teach the material in this book over a 12-week
period during the first semester of the second year. By that time, students have
completed two semesters of computer science – including object-oriented
programming in Java. They take a course in data structures and algorithms in
parallel with this course, and subsequently take advanced software engineering
courses that expand their knowledge of the material we introduce here.

Students who have studied the material in this course should be particularly
employable in summer jobs, co-op and sandwich work terms, and other forms
of industrial placement. Employers are looking for students who understand
what constitutes a good requirement, can apply fundamental design principles,
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can use UML properly, can translate requirements and designs into good quality
programs, and can effectively test those programs. This book gives a practical
grounding in all of these skills.

The book is structured so that in a 12-week course or unit, it can be taught
using three hours a week of classroom instruction, plus regular supervised and
unsupervised laboratory time. Each year we assign a selection of the exercises,
many of which students work on in groups. This second edition of the book
updates many exercises and introduces many new ones.

Suggested background
Prior to studying this book, readers should understand the basic notions of
object-oriented programming, although Chapter 2 gives a brief review of these
concepts. We have selected Java as the language used for programming examples
since it is a complete, simple and popular object-oriented language. Motivated
readers who know other object-oriented languages should be able to pick up the
necessary Java from the material provided in Chapter 2 and the book’s web site,
and as they work through the exercises.

Material on the web site
We have prepared a web site with many resources to support readers and
teachers. The address is http://www.lloseng.com.

Here you will find sets of presentation slides, source code, answers to exercises,
links to all the web-based references, a knowledge base summarizing many of the
concepts presented, videotapes of lectures, and various other learning aids.

There is also a publisher’s website at http://www.mhhe.com/lethbridge, where
you will find lecturer’s password-protected resources.

Themes taught throughout the book
Woven throughout the book are nine themes that we believe are basic to
contemporary software engineering. Each of these themes is revisited in many
chapters, and is taught in the context of concrete examples and exercises.

1. Understanding the customer and the user. We emphasize domain analysis as
well as gathering and validating requirements. We place these in the context of
use case analysis and usability. Readers are asked to think in terms of what the
customer’s problem really is, what is realistic, etc. The purpose of software
engineering is described at the beginning of the book as solving customers’
problems, rather than developing software for its own sake.

2. Basing development on solid principles and reusable technology. We
emphasize the necessity for software engineers to understand design principles
and have a thorough grasp of suitable technology before embarking on a
project. To ensure this is the case for the design work in this book, we first
review object-oriented principles. Later we discuss frameworks, a series of
design principles, and many design and architectural patterns.
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3. Visual modeling using UML. We present key elements of UML, particularly
class, interaction and state diagrams. We do not cover all of UML and we do
not restrict our discussion to UML alone since it does not cover all of software
engineering. We emphasize that UML diagrams do not solve problems by
themselves, but are one of the many tools that software engineers should use as
a regular part of their work. For the second edition, we have updated the book
so that it is compliant with UML 2.0.

4. Evaluation of alternatives in requirements and design. Throughout the book
we present alternatives with their advantages and disadvantages. We encourage
readers to record the rationale for each choice.

5. Object orientation. We cover all aspects of object-oriented development,
including analysis, design, and programming. Ensuring that the reader sees
how to take projects all the way to implementation means that he or she gets
more than just an abstract view of the development process, and appreciates
the reasons for many design principles.

6. Quantitative and logical thinking. We cover the essentials of software metrics
in several different chapters so that students can learn to think quantitatively.
We also promote the judicious application of logic as embodied in OCL and
assertions.

7. Iterative and agile development. We strongly emphasize that readers should
follow an iterative approach to development. As project work, readers are asked
to perform requirements analysis, design and implementation very near the
beginning of the book, and then again several times throughout the book. To
accomplish this we introduce a complete project in Chapter 3. Initially, readers
are asked to make only a small change to this project in order to begin to
understand it. In Chapter 4, readers are then asked to write and review
requirements for new features to add to the system – again they design and
implement the features. Later, readers learn more details of topics such as
design and quality assurance, and are asked to apply what they learn to
successively more advanced changes to their project. Concepts from the agile
movement are also emphasized: developing in very small increments, test-first
development, etc.

8. Communicating effectively using documentation. We encourage readers to
practice writing informative but concise documentation; we provide templates
and examples of each type of document.

9. Risk management in all software engineering activities. Throughout the
book, we discuss many aspects of risk management, including evaluating
potential costs and risks on a regular basis, balancing risks with benefits,
avoiding doing work that is not worthwhile, and evolving plans as we learn
more information. We point out that the knowledge learned from the other
themes above can be applied to reduce risk.
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Changes in the second edition
In the second edition, we have made a wide variety of small changes to keep up
with changes in the field. The following are some of the more significant
changes:

■ Covers UML 2.0.

■ Moves all discussion of use cases to Chapter 4.

■ Introduces model-driven development.

■ Discusses web-based software architectures and middleware.

■ Integrates discussion of agile approaches, and techniques made popular by
those approaches including refactoring and test-driven development.

■ Covers more of the essentials of measurement and metrics.

■ Incorporates many new and changed exercises. All exercises have been given a
new numbering scheme to prevent confusion with those in the first edition.

Structure of the book

Size The book is small enough so that instructors can realistically require students to
read it all during a 12-week course. We present a suggested schedule below.

Depth Rather than covering all aspects of software engineering, we present in
reasonable depth a cohesive collection of material that will give readers a
foundation in topics central to the field. We focus on material that is
immediately applicable in industrial software projects.

Examples and

exercises

Readers can practice applying the concepts, since we provide an extensive
set of examples and exercises. One set of project exercises is based on a fully
implemented small system, which we provide. This means that, rather than
always programming from scratch, readers are able to spend their time
thinking about higher-level analysis and design issues, yet they can still
practice implementation of their ideas. Readers also come to appreciate
reuse, since the implemented system is based on a framework that is
applicable to a wide variety of client–server systems. The exercises vary
widely in difficulty; some are easy and simply encourage the reader to think
about what they have read; others are intended to motivate advanced
readers. Many exercises have fully explained answers available in the
student’s answer manual; other answers are available in a manual only
available to instructors.

Sequencing The sequence of material in the book is designed to allow students to rapidly
start work on real problems requiring analysis, design and implementation. As
readers perform several iterations of project work, we introduce topics they
will need in each iteration. The early part of the book, for example, introduces
the knowledge about object orientation and architecture that they will need to
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understand the project work. Then we move on to requirements and object-
oriented analysis, focusing initially on use cases and static modeling. Later, we
introduce dynamic modeling.

Use of this book in a 12-week course
The following is a suggested schedule for using this book in a second-year
university course. For the main body of the book, Chapters 3 to 10, the allocated
time corresponds roughly to the length of each chapter.

The authors use this book in a 12-week course, where each week has three
hours of lecture as well as three hours of lab and tutorial time. Students are
expected to read all the chapters, although the lectures focus most heavily on the
core material in Chapters 3 through 10, and particularly Chapters 3, 5, 8 and 9. 

We also anticipate that students work on a selection of exercises with
deliverables about four times during the course. We also expect them to deliver
three iterations of the project. We have provided suggested project activities at
the end of many chapters.

Week 1 Chapters 1 and 2: Introduction and review (1 week).

Weeks 2–3 Chapter 3: Reuse and the client–server framework (1.5 weeks).
Project work: learning to use the client–server framework by making a minor
change to a system implemented using it.

Weeks 3–4 Chapter 4: Domain analysis, use cases and requirements (1.5 weeks).
Project work: adding features following requirements analysis.

Weeks 4–5 Chapter 5: OO analysis and modeling (1.5 weeks).
Project work: adding features that require considerable modeling.

Week 6 Chapter 6: Design patterns (1 week).

Week 7 Chapter 7: Use cases and user interfaces (0.5 weeks).
Project work: adding a GUI.

Weeks 8–9 Chapter 8: Dynamic modeling (1.5 weeks).

Weeks 9–10 Chapter 9: Design principles and architecture (1.5 weeks).
Project work: detailed design of some features.

Week 11 Chapter 10: Testing (1 week).
Project work: preparing a test plan.

Week 12 Chapters 11 and 12: Introduction to project management and review (1 week).

Other orderings are possible. In particular, the order in which Chapters 6
through 11 can be covered is flexible. Also, parts of many chapters could be
skipped in order to give greater emphasis to other material.
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ivGuided tour

Learning Objectives
Each chapter opens with a set of learning objectives, summarising
what readers should learn from each chapter.

Boxes
The book includes example boxes that are designed to illustrate how
you can apply the main techniques learned. They may also offer extra
explanations of important ideas explored in the text.

Figures and Tables
Each chapter provides a number of figures and tables to help you to
visualise the software engineering models and concepts, and to
illustrate and summarise important ideas.

11Software and software
engineering

The software engineer’s job is to solve problems economically by developing
high-quality software. In this first chapter we will present important issues that
all software engineers should understand to do their jobs well.

1.1 The nature of software

Similarly to mechanical engineers who design mechanical systems and electrical
engineers who design electrical systems, software engineers design software
systems. However, software differs in important ways from the types of artifacts
produced by other types of engineers:

■ Software is largely intangible. Unlike most other engineering artifacts, you
cannot feel the shape of a piece of software, and its design can be hard to

In this chapter you will learn about the following

■ How does software differ from other products? How does software change
over time? What do we mean when we talk about high-quality software?
What types of software are there and what are their main differences?

■ How are software projects organized? How successful are typical projects?

■ How can we define software engineering? Why will following a disciplined
approach to software engineering help us produce successful software
systems?

■ What activities occur in every software project?

■ What should we keep in mind as we perform any software engineering
activity?

2 Chapter 1
Software and software engineering 

visualize. It is therefore difficult for people to assess its quality or to appreciate
the amount of work involved in its development. This is one of the reasons why
people consistently underestimate the amount of time it takes to develop a
software system.

■ The mass-production of duplicate pieces of software is trivial. Most other types
of engineers are very concerned about the cost of each item in terms of parts
and labor to manufacture it. In other words, for tangible objects, the processes
following completion of design tend to be the expensive ones. Software, on the
other hand, can be duplicated at very little cost by downloading over a network
or creating a CD. Almost all the cost of software is therefore in its development,
not its manufacturing.

■ The software industry is labor intensive. It has become possible to automate
many aspects of manufacturing and construction using machinery; therefore,
other branches of engineering have been able to produce increasing amounts of
product with less labor. However, it would require truly ‘intelligent’ machines
to fully automate software design or programming. Attempts to make steps in
this direction have so far met with little success.

■ It is all too easy for an inadequately trained software developer to create a piece
of software that is difficult to understand and modify. A novice programmer
can create a complex system that performs some useful function but is highly
disorganized in terms of its design. In other areas of engineering, you can
create a poor design too, but the flaws will normally be easier to detect since
they will not be buried deep within thousands of pages of source code. For

Offshoring: an exaggerated fear?
The software engineering labor market has been increasingly affected by the recent trend towards

offshoring: this occurs when organizations in developed countries outsource software development

to countries that have much lower labor costs yet have highly educated populations and are politically

stable. India and some Eastern European countries have particularly benefited from this. Many

economists believe offshoring represents a healthy redistribution of wealth that will result, in the

longer run, in increased wages and consumer demand in the recipient countries. Citizens of these

countries are also becoming big consumers of software, increasing the total market.

However, fear that offshoring will contribute to a lack of jobs is one factor that has caused

a sharp drop in university computing enrolments in many developed countries.  This fear is

exaggerated for three reasons.

First, students studying computing still have a much higher chance of finding a job in their

field than students studying most other subjects. Second, as we will learn in this book, close

and constant interaction with end-users is essential to the development of quality software;

it will always therefore remain important to have a significant part of the development team

close to the user.  And thirdly, as software development becomes distributed, there will be

an increasing need for the disciplined approaches to modeling, requirements, architecture and

quality assurance as taught in this book.

Section 2.2 31Classes and objects

The object-oriented paradigm: organizing procedural abstractions in the 
context of data abstractions

Starting in the late 1960s, programmers began to see the advantage of organizing
programs around data abstractions. They realized that they could make systems
much simpler by putting all the procedures that access or modify a particular class
of objects in one place, rather than having the procedures spread out all over the
system. This idea is the root of the object-oriented (OO) paradigm which, by the
1990s, had become accepted as the best way to organize most systems.

In the object-oriented paradigm, a running program can be seen as a
collection of objects collaborating to perform a given task.

Figure 2.1 summarizes the essential difference between the object-oriented
and procedural paradigms. In the procedural paradigm (shown on the left), the
code is organized into procedures that each manipulate different types of data.
In the object-oriented paradigm (shown on the right), the code is organized into
classes that each contain procedures for manipulating instances of that class
alone. Later on, we will explain how the classes themselves can be organized into
hierarchies that provide even more abstraction.

2.2 Classes and objects

Classes and objects are the aspects of object orientation that people normally
think about first. In this section, we will define in more detail what we mean by
these two terms.

Definition: The object-oriented paradigm is an approach to the solution of problems in which all 

computations are performed in the context of objects.  The objects are instances 

of programming constructs, normally called classes, which are data abstractions and 

which contain procedural abstractions that operate on the objects.

Figure 2.1 Organizing a system according to the procedural paradigm (left) or the object-
oriented paradigm (right). The UML notation used in the right-hand diagram will 
be discussed in more detail later
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Exercises
Each chapter in the book features a range of questions and exercises
that test your understanding of the techniques you have read about,
and apply software engineering methodology to real-world
situations. Solutions are available on the supporting website.

Definitions
Key terms are explained by clear and straightforward definitions so
that you can check you have understood. They are boxed in the text
for easy reference and revision.

Chapter summary and ‘for more information’ section
This section briefly reviews and reinforces the main topics you will
have covered in each chapter to ensure you have acquired a solid
understanding of the key topics. A section entitled ‘for more
information’ directs you to useful websites, journal articles, books
and a variety of other resources to aid further study. 

Appendices of notation
These appendices at the end of the book provide essential references
for your studies, including summaries of the UML notation,
documentation types, system descriptions, and a comprehensive
glossary.
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Exercise

E1 Classify the following software according to whether it is likely to be custom,
generic or embedded (or some combination); and whether it is data processing or
real-time.

(a) A system to control the reaction rate in a nuclear reactor.

(b) A program that runs inside badges worn by nuclear plant workers that
monitors radiation exposure.

(c) A program used by administrative assistants at the nuclear plant to write
letters.

(d) A system that logs all activities of the reactor and its employees so that
investigators can later uncover the cause of any accident.

(e) A program used to generate annual summaries of the radiation exposure
experienced by workers.

(f) An educational web site containing a Flash animation describing how the
nuclear plant works.

1.2 What is software engineering?

Not all software development should be called software engineering, in the same
way as not all construction is civil engineering. A do-it-yourselfer can build a
wooden footbridge spanning a 60-cm-wide stream in his or her garden, but it
requires a civil engineer to build a bridge across a wider span that public vehicles
will traverse. Similarly, a self-trained shareware author may write a small
program to track a personal stock portfolio, but it requires a software engineer
to develop a complete trading and accounting system for a large brokerage
company.

Each of the words in this definition has been chosen carefully. Let us therefore
split up the definition and examine each component.

Solving customers’ problems
Solving customers’ problems should be the goal of every software engineering
project. Before finalizing any software engineering decision, you should
therefore ask yourself whether the proposed alternative will help achieve this
goal. In particular, it is important to recognize activities that are not consistent

Definition: software engineering is the process of solving customers’ problems by the 

systematic development and evolution of large, high-quality software systems 

within cost, time and other constraints.
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Resolution. Participate in promoting and marketing the project. Enhance your
negotiating and other ‘people’ skills. Regularly evaluate how the system will
impact all the stakeholders, and work closely with them to foster increased
understanding of issues.

1.10 Summary

We have emphasized in this chapter that software engineering is an emerging
engineering specialty in which you focus on solving a customer’s problem by
developing high-quality software.

Since software is relatively intangible, our ability to work with it is different
from other engineering products. It is possible for a beginner to rapidly program
a significantly sized system, make changes to source code in a matter of minutes,
and distribute thousands of copies at little cost. Unfortunately, developing
systems in a rapid and ad hoc way like this leads to excessive complexity and
increasing numbers of problems.

To perform good software engineering, it is necessary to incorporate
discipline into software development. Some ways of doing this include carefully
understanding users and their requirements, taking time to perform design, and
carefully evaluating the quality of the software. You also must keep systems
small at first to reduce the risk of failure, focus on delivering systems within a
fixed amount of time, and constantly reassess what you are doing so that you can
take action when problems arise.

Throughout the rest of this book we will present many different software
engineering techniques so that you can learn how to achieve the goal of solving
customers’ problems more effectively.

1.11 For more information

At the end of each chapter we will discuss sources of information that you can
consult to learn more about the material in that chapter. In this chapter, we list
general software engineering resources; in later chapters we list resources
covering specific issues.

The resources include web sites, books and periodicals. We have only listed
web sites that we believe to contain reasonably reliable information or useful sets
of links, which have stood the test of time, and are likely to be maintained. This
book’s web site (www.lloseng.com) contains a page with all the links shown in
the book, updated as necessary.

Software engineering magazines published by major organizations

■ IEEE Software, http://www.computer.org/software/
The IEEE Computer Society is one of the two most important international
organizations that focus on software engineering. They produce many software

AASummary of the UML notation
used in this book 

Since this is an introductory textbook, we have discussed only a subset of UML
features. The following provides a simple overview of what has been covered.
The reader is invited to examine a more complete guide to UML in order to
learn about features we have omitted.
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ivTechnology to enhance
learning and teaching

This book is supported by a publisher’s web site: http://mhhe.com/lethbridge.

The McGraw-Hill Online Learning
Center contains a range of resources for
lecturers to support their teaching of
Object-Oriented Software Engineering.

Available for lecturers:

■ Chapter-by-chapter PowerPoint slides to
support delivery of topics in lectures

■ A full set of solutions to the exercises
within the text, plus code.

Visit the web site to find out how to contact your local representative for a
password.

The authors have also developed a comprehensive web site to support the book
at: http://lloseng.com. Take advantage of the study tools offered to reinforce the
material you have read in the text, and to develop your knowledge of software
engineering further.

Resources for students include:

■ Answers to selected textbook exercises,
enabling students to test their progress

■ Source code and documentation

■ Useful Web links and further reading

■ A searchable glossary of key terms
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For lecturers: Primis Content Center

Study skills
We publish guides to help you study, research, pass exams and write essays, all
the way through your university studies.

http://www.openup.co.uk/ss/

Computing skills
If you would like to brush up on your computing skills, we have a range of titles
covering MS Office applications such as Word, Excel, PowerPoint, Access and
more: http://www.mcgraw-hill.co.uk/app.

If you need to supplement your course with
additional cases or content, create a
personalised e-Book for your students. Visit
http://www.primiscontentcenter.com or email
primis_euro@mcgraw-hill.com for more
information.



 



 
11Software and software

engineering 

The software engineer’s job is to solve problems economically by developing
high-quality software. In this first chapter we will present important issues that
all software engineers should understand to do their jobs well.

1.1 The nature of software

Similarly to mechanical engineers who design mechanical systems and electrical
engineers who design electrical systems, software engineers design software
systems. However, software differs in important ways from the types of artifacts
produced by other types of engineers:

■ Software is largely intangible. Unlike most other engineering artifacts, you
cannot feel the shape of a piece of software, and its design can be hard to

In this chapter you will learn about the following

■ How does software differ from other products? How does software change
over time? What do we mean when we talk about high-quality software?
What types of software are there and what are their main differences?

■ How are software projects organized? How successful are typical projects?

■ How can we define software engineering? Why will following a disciplined
approach to software engineering help us produce successful software
systems?

■ What activities occur in every software project?

■ What should we keep in mind as we perform any software engineering
activity?
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visualize. It is therefore difficult for people to assess its quality or to appreciate
the amount of work involved in its development. This is one of the reasons why
people consistently underestimate the amount of time it takes to develop a
software system.

■ The mass-production of duplicate pieces of software is trivial. Most other types
of engineers are very concerned about the cost of each item in terms of parts
and labor to manufacture it. In other words, for tangible objects, the processes
following completion of design tend to be the expensive ones. Software, on the
other hand, can be duplicated at very little cost by downloading over a network
or creating a CD. Almost all the cost of software is therefore in its development,
not its manufacturing.

■ The software industry is labor intensive. It has become possible to automate
many aspects of manufacturing and construction using machinery; therefore,
other branches of engineering have been able to produce increasing amounts of
product with less labor. However, it would require truly ‘intelligent’ machines
to fully automate software design or programming. Attempts to make steps in
this direction have so far met with little success.

■ It is all too easy for an inadequately trained software developer to create a piece
of software that is difficult to understand and modify. A novice programmer
can create a complex system that performs some useful function but is highly
disorganized in terms of its design. In other areas of engineering, you can
create a poor design too, but the flaws will normally be easier to detect since
they will not be buried deep within thousands of pages of source code. For

Offshoring: an exaggerated fear?
The software engineering labor market has been increasingly affected by the recent trend towards
offshoring: this occurs when organizations in developed countries outsource software development
to countries that have much lower labor costs yet have highly educated populations and are politically
stable. India and some Eastern European countries have particularly benefited from this. Many
economists believe offshoring represents a healthy redistribution of wealth that will result, in the
longer run, in increased wages and consumer demand in the recipient countries. Citizens of these
countries are also becoming big consumers of software, increasing the total market.

However, fear that offshoring will contribute to a lack of jobs is one factor that has caused
a sharp drop in university computing enrolments in many developed countries.  This fear is
exaggerated for three reasons.

First, students studying computing still have a much higher chance of finding a job in their
field than students studying most other subjects. Second, as we will learn in this book, close
and constant interaction with end-users is essential to the development of quality software;
it will always therefore remain important to have a significant part of the development team
close to the user.  And thirdly, as software development becomes distributed, there will be
an increasing need for the disciplined approaches to modeling, requirements, architecture and
quality assurance as taught in this book.
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example, if a civil engineer designed an unsafe bridge, it would normally be
easy for inspectors to notice the flaws since they know exactly what to look for
in each drawing and calculation. A poorly designed software system will
usually at least partly work, but many other types of engineering artifact will
not work at all if they are badly designed.

■ Software is physically easy to modify; however, because of its complexity it is
very difficult to make changes that are correct. People tend to make changes
without fully understanding the software. As a side effect of their
modifications, new bugs appear.

■ Software does not wear out with use like other engineering artifacts, but instead
its design deteriorates as it is changed repeatedly. As mentioned in the previous
point, changes tend to introduce new defects; consequently the changed
software tends to be worse in terms of design than the original. Over time, the
designs of successive versions of software may show significant deterioration to
the point where a complete redesign is needed.

Taken together, the above characteristics mean that much existing software is of
relatively poor quality and is steadily becoming worse. At the same time, there
is strong demand for new and changed software, which customers expect to be
of high quality and to be produced rapidly. Therefore, software developers have
often not been able to live up to the expectations of their managers and
customers – many software projects are either never delivered, or are delivered
late and over budget. Furthermore, many software systems that are delivered are
never put to use because they have so many problems; others require major
modification before they can be used.

This whole situation has been called the software crisis, despite the fact that
the crisis has been going on for several decades. The term ‘crisis’ was chosen
with the hope that the problems which arose as the software industry expanded
would be resolved by implementing improved software engineering methods.
Although this sentiment still holds true, we now realize that the difficulties of
the software industry are, to some extent, a natural consequence of the complex
nature of software, coupled with the laws of economics and the vagaries of
human psychology.

It is an objective of this book to teach you how to engineer software so that it
meets expectations and doesn’t contribute to the crisis. To do that, you will have
to learn techniques that allow you to minimize or hide the complexity, and take
account of economic and psychological realities.

Types of software and their differences
There are many different types of software. One of the most important
distinctions is between custom software, generic software and embedded
software.

Custom software is developed to meet the specific needs of a particular
customer and tends to be of little use to others (although in some cases
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developing custom software might reveal a problem shared by several similar
organizations). Much custom software is developed in-house within the same
organization that uses it; in other cases, the development is contracted out to
consulting companies. Custom software is typically used by only a few people
and its success depends on meeting their needs.

Examples of custom software include web sites, air-traffic control systems and
software for managing the specialized finances of large organizations.

Generic software, on the other hand, is designed to be sold on the open
market, to perform functions that many people need, and to run on general-
purpose computers. Requirements are determined largely by market research.
There is a tendency in the business world to attempt to use generic software
instead of custom software because it can be far cheaper and more reliable. The
main difficulty is that it might not fully meet the organization’s specific needs.
Generic software is often called Commercial Off-The-Shelf software (COTS),
and it is sometimes also called shrink-wrapped software since it is commonly
sold in packages wrapped in plastic. Generic software producers hope that they
will sell many copies, but their success is at the mercy of market forces.

Examples of generic software include word processors, spreadsheets,
compilers, web browsers, operating systems, computer games and accounting
packages for small businesses.

Embedded software runs specific hardware devices which are typically sold
on the open market. Such devices include washing machines, DVD players,
microwave ovens and automobiles. Unlike generic software, users cannot
usually replace embedded software or upgrade it without also replacing the
hardware. The open-market nature of the hardware devices means that
developing embedded software has similarities to developing generic software;
however, we place it in a different category due to the distinct processes used to
develop it.

Since embedded systems are finding their way into a vast number of
consumer and commercial products, they now account for the bulk of software
copies in existence. Generic systems, on the other hand, account for most of the
software running today on general-purpose computers. Although custom
software has fewer copies than either of the other types, it accounts for many
more distinct systems and hence is what most developers work on.

It is possible to take generic software and customize it. The risk in doing this,
however, is that when a new release of the generic software is issued, the
customization work may have to be re-done.

Table 1.1 Differences among custom, generic and embedded software

Custom Generic Embedded

Number of copies in use Low Medium High

Total processing power devoted to running this type of 
software

Low High Medium

Worldwide annual development effort High Medium Medium
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You can also take custom software and try to make it generic; however, this
can be a complex process if the software was not designed in a flexible way.

Table 1.1 summarizes some of the important characteristics of custom,
generic and embedded software.

Another important way to categorize software in general is whether it is real-
time or data processing software. The most distinctive feature of real-time
software is that it has to react immediately (i.e. in real time) to stimuli from the
environment (e.g. the pushing of buttons by the user, or a signal from a sensor).
Much design effort goes into ensuring that this responsiveness is always
guaranteed. Much real-time software is used to operate special-purpose
hardware; in fact almost all embedded systems operate in real time. Many
aspects of the custom systems that run industrial plants and telephone
networks are also real-time.

Generic applications, such as spreadsheets and computer games, have some
real-time characteristics, since they must be responsive to their users’ inputs.
However, these tend to be soft real-time characteristics: when timing
constraints are not met, such systems merely become sluggish to use. In
contrast, most embedded systems have hard real-time constraints, and will fail
completely if these are not met. Safety is thus a key concern in the design of
such systems.

Data processing software is used to run businesses. It performs functions
such as recording sales, managing accounts, printing bills etc. The biggest
design issues are how to organize the data and provide useful information to
the users so they can perform their work effectively. Accuracy and security of
the data are important concerns, as is the privacy of the information gathered

about people. A key characteristic of traditional
data processing tasks is that rather than
processing data the moment it is available, it is
instead gathered together in batches to be
processed at a later time.

Some software has both real-time and data
processing aspects. For example, a telephone
system has to manage phone calls in real time,
but billing for those calls is a data processing
activity.

Software varies in terms of its age. Much
custom software written in the 1960s and
1970s is still in use today. That software differs
from newly developed software in terms of
programming languages, data storage technol-
ogies, user interface technology and design
techniques. Many of the web-based user inter-
faces we use today, e.g. for banking, are just
new front ends on much older custom data
processing software.

Usage of the word ‘software’ – a 
common mistake made by non-native 
speakers of English.
Many non-native speakers of English
erroneously say sentences such as the
following: ‘I will create a software to update
the database’.  The error is that you cannot
talk about ‘a software’. When the word
‘software’ is used as a noun, it is a mass noun,
like ‘water’ and ‘sand’, and cannot be preceded
by the indefinite article ‘a’.  Therefore you
have to say, ‘I will create some software to
update the database’, or ‘I will create a piece of

software to update the database’.  You can also
use the word software as an adjective, as in ‘I
will create a software system to update the
database’. In this latter case the indefinite
article is referring to ‘system’, not ‘software’.
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Exercise

E1 Classify the following software according to whether it is likely to be custom,
generic or embedded (or some combination); and whether it is data processing or
real-time.

(a) A system to control the reaction rate in a nuclear reactor.

(b) A program that runs inside badges worn by nuclear plant workers that
monitors radiation exposure.

(c) A program used by administrative assistants at the nuclear plant to write
letters.

(d) A system that logs all activities of the reactor and its employees so that
investigators can later uncover the cause of any accident.

(e) A program used to generate annual summaries of the radiation exposure
experienced by workers.

(f) An educational web site containing a Flash animation describing how the
nuclear plant works.

1.2 What is software engineering?

Not all software development should be called software engineering, in the same
way as not all construction is civil engineering. A do-it-yourselfer can build a
wooden footbridge spanning a 60-cm-wide stream in his or her garden, but it
requires a civil engineer to build a bridge across a wider span that public vehicles
will traverse. Similarly, a self-trained shareware author may write a small
program to track a personal stock portfolio, but it requires a software engineer
to develop a complete trading and accounting system for a large brokerage
company.

Each of the words in this definition has been chosen carefully. Let us therefore
split up the definition and examine each component.

Solving customers’ problems
Solving customers’ problems should be the goal of every software engineering
project. Before finalizing any software engineering decision, you should
therefore ask yourself whether the proposed alternative will help achieve this
goal. In particular, it is important to recognize activities that are not consistent

Definition: software engineering is the process of solving customers’ problems by the 

systematic development and evolution of large, high-quality software systems 

within cost, time and other constraints.
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with this goal, such as adding unnecessary features. Software engineers have
the responsibility to recognize situations when it would be most cost effective
not to develop software at all, to develop simpler software or to purchase
existing software.

The problems being solved by software engineers are usually related to
human activities. Software engineers must therefore learn to communicate
and negotiate effectively with people, to understand how people do their
work, and to understand what impact any proposed software may have on its
users’ productivity.

Systematic development and evolution
Software development becomes an engineering process when the developers
apply well-understood techniques in an organized and disciplined way.
Software engineering is a young field, and its technology and techniques are
still undergoing rapid development. Nevertheless, there are many well-
accepted practices that have been formally standardized by bodies such as the
IEEE, ISO (International Organization for Standardization) and various
national standards bodies.

Sometimes a software engineering team sets out to develop completely new
software. However, most development work involves modifying software that
has been already written – this is because software is normally continually
changed over a period of years until it becomes obsolete. Ensuring that this
constant change, called maintenance or evolution, is done in a systematic way
is an integral part of software engineering. We will discuss this in more detail
in Section 1.6 below.

Large, high-quality software systems
A small system can often be successfully developed by a programmer working
alone. However, large systems with many functions and components become
too complex unless engineering discipline is applied. A system of many
thousands of lines of code cannot be completely understood by one person,
and certainly would take one person far too long to develop, therefore
teamwork is essential to software engineering. One of the hardest challenges
is dividing up the work and ensuring that the teams communicate effectively
and produce subsystems that properly connect with each other to produce a
large but functioning system.

The techniques discussed in this book are therefore essential for large
systems, although many of them are also useful for small systems.

The end product that is produced must be of sufficient quality. Some
software engineering techniques are aimed at increasing the quality of the
design, whereas others are used to verify that sufficient quality is present
before the software is released. Quality is discussed in more detail in
Section 1.5 and Chapter 10.
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Cost, time and other constraints
One of the essential characteristics of engineering is that you have to consider
economic constraints as you try to solve each problem. The main economic
constraints are: 1) resources are finite, 2) it is not worth doing something unless
the benefit gained from it outweighs its cost, and 3) if somebody else can
perform some particular task more cheaply or faster than us, they will probably
succeed instead of us. Software engineers, like other engineers, therefore must
ensure their systems can be produced within a limited budget and by a certain

due date. Achieving this requires careful planning
and sticking to the plan in a disciplined way.
Furthermore, creating a realistic plan in the first
place requires a great deal of knowledge about
what is required to produce a system, and how
long each activity should take.

Unfortunately, failure to stick to cost and time
budgets has been widespread in software
engineering projects. The reasons for this are many,
but include the inherent complexity of software, the
relative immaturity of software engineering and its
technologies, lack of knowledge and experience on
the part of software engineers, the inherent human
tendency towards over-confidence, and pressure to
offer excessively low prices and short development
times in order to obtain contracts or make sales.

1.3 Software engineering as a branch of the engineering profession

People have talked about software engineering since 1968 when the term was
coined at a NATO conference. However, only since the mid-1990s has there
been a shift towards recognizing software engineering as a distinct branch of the
engineering profession. Some parts of the world, notably Europe and Australia,
were somewhat ahead of others in this regard.

In most countries, in order to legally perform consulting or self-employed
work where you call yourself an ‘engineer’, you must be licensed. Similarly, a
company that sells engineering services may be required to employ licensed
engineers who take formal responsibility for projects, ensuring they are
conducted following accepted engineering practices.

Prior to the 1940s, very few jurisdictions required engineers to be licensed.
However, various disasters caused by the failure of designs eventually
convinced almost all governments to establish licensing requirements.
Licensing agencies have the responsibility to ensure that anyone who calls
himself or herself an engineer has sufficient engineering education and
experience. To exercise this responsibility, the agencies accredit educational
institutions they believe are providing a proper engineering education, and

Other definitions of software 
engineering
We have presented our definition of software
engineering. Here are two other definitions:
■ IEEE: (1) The application of a systematic,

disciplined, quantifiable approach to the
development, operation, maintenance
of software; that is, the application of
engineering to software. (2) The study
of approaches as in (1).

■ The Canadian Standards Association:
The systematic activities involved in
the design, implementation and testing
of software to optimize its production
and support.
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scrutinize the background of those who are applying to be engineers, often
requiring them to write exams.

We can characterize the work of engineers as follows: engineers design
artifacts following well-accepted practices, which normally involve the
application of science, mathematics and economics. Since engineering has
become a licensed profession, adherence to codes of ethics and taking personal
responsibility for work have also become essential characteristics. Some people
only include in engineering those design activities that have a potential to
impact public safety and well-being; however, since most people who are trained
as engineers do not in fact work on such critical projects, most people define
engineering in the broader sense.

Historically, engineering has evolved several specialties, most notably civil,
mechanical, electrical and chemical engineering. Computer engineering evolved
in the 1980s to focus on the design of computer systems that involve both
hardware and software components. However, most of the practitioners
performing what we have defined above to be software engineering have not
historically been formally educated as engineers.

Many of the earliest programmers were mathematicians or physicists;
then in the 1970s the discipline of computer science developed, and educated
many of the current generation of software developers. The computer
science community recognized the need for a disciplined approach to the
creation of large software systems, and developed the software engineering
discipline.

In the mid-1990s the first jurisdictions started to recognize software
engineering as a distinct branch of engineering. For example, in the United
Kingdom those who study software engineering in computer science departments

Ethics in Software Engineering
It is very important as a software engineer-in-training that you develop a sense of professional ethics.
Many people perform software development work without fully realizing some of the ethical issues
that can arise. The following are highlights of the IEEE/ACM code of ethics. For details about the IEEE
and the ACM, see the ‘For More Information’ section at the end of the chapter.

Software engineers shall:
■ Act consistently with the public interest.
■ Act in the best interests of their client or employer, as long as this is consistent with the public

interest.
■ Develop and maintain their product to the highest standards possible.
■ Maintain integrity and independence when making professional judgments.
■ Promote an ethical approach in management.
■ Advance the integrity and reputation of the profession, as long as doing so is consistent with the

public interest.
■ Be fair and supportive to colleagues.
■ Participate in lifelong learning.
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at universities have been able to achieve the status of Chartered Engineer, after a
standard period of work experience and passing certain exams. In North America,
the State of Texas and the Province of Ontario were among the first jurisdictions
to license software engineers (in 1998 and 1999 respectively).

In parallel with the process of licensing software engineers, universities have
been establishing academic programs in universities that focus on software
engineering, and are clearly distinct from either computer science or computer
engineering. Since considerable numbers of these graduates are now entering
the workforce, software engineering has become firmly established as a branch
of engineering.

1.4 Stakeholders in software engineering

Many people are involved in a software engineering project and expect to
benefit from its success. We will classify these stakeholders into four major
categories, or roles, each having different motivations, and seeing the software
engineering process somewhat differently.

■ Users. These are the people who will use the software. Their goals usually
include doing enjoyable or interesting work, and gaining recognition for the
work they have done. Often they will welcome new or improved software,
although some might fear it could jeopardize their jobs. Users appreciate
software that is easy to learn and use, makes their life easier, helps them achieve
more, or allows them to have fun.

■ Customers (also known as clients). These are the people who make the
decisions about ordering and paying for the software. They may or may not be
users – the users may work for them. Their goal is either to increase profits or
simply to run their business more effectively. Customers appreciate software
that helps their organization save or make money, typically by improving the
productivity of the users and the organization as a whole. If you are developing
custom software, then you know who your customers are; if you are developing
generic software, then you often only have potential customers in mind.

■ Software developers. These are the people who develop and maintain the
software, many of whom may be called software engineers. Within the
development team there are often specialized roles, including requirements
specialists, database specialists, technical writers, configuration management
specialists, etc. Development team members normally desire rewarding
careers, although some are more motivated by the challenge of solving difficult
problems or by being a well-respected ‘guru’ in a certain area of expertise.
Many developers are motivated by the recognition they receive by doing high-
quality work.

■ Development managers. These are the people who run the organization that is
developing the software; they often have an educational background in
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business administration. Their goal is to please the customer or sell the most
software, while spending the least money. It is important that they have
considerable knowledge about how to manage software projects, but they may
not be as intimately familiar with small details of the project as are some of the
software developers. For this reason, it is important that software developers
keep their managers informed of any problems.

In some cases, two, three or even all four of these stakeholder roles may be held
by the same person. In the simplest case, if you were privately developing
software for your own use, then you would have all four roles.

Exercise

E2 How do you think each of the four types of stakeholders described above would
react in each of the following situations?

(a) You study a proposal for a new system that will completely automate the
work of one individual in the customer’s company. You discover that the
cost of developing the system would be far more than the cost of
continuing to do the work manually, so you recommend against
proceeding with the project.

(b) You implement a system according to the precise specifications of a
customer. However, when the software is put into use, the users find it does
not solve their problem. 

1.5 Software quality

Almost everybody says they want software to be of ‘high quality’. But what does
the word ‘quality’ really mean? There is no single answer to this question since,
like beauty, quality is largely in the eye of the beholder.

Figure 1.1 shows what quality means to each of the stakeholders. They each
consider the software to be of good quality if the outcome of its development
and maintenance helps them meet their personal objectives.

Attributes of software quality
The following are five of the most important attributes of software quality.
Software engineers try to balance the relative importance of these attributes so
as to design systems with the best overall quality, as limited by the money and
time available.

■ Usability. The higher the usability of software, the easier it is for users to work
with it. There are several aspects of usability, including learnability for novices,
efficiency of use for experts, and handling of errors. We will discuss more about
usability in Chapter 7.
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■ Efficiency. The more efficient software is, the less it uses of CPU-time,
memory, disk space, network bandwidth and other resources. This is important
to customers in order to reduce their costs of running the software, although
with today’s powerful computers, CPU-time, memory and disk usage are less of
a concern than in years gone by.

■ Reliability. Software is more reliable if it has fewer failures. Since software
engineers do not deliberately plan for their software to fail, reliability depends
on the number and type of mistakes they make. Designers can improve
reliability by ensuring the software is easy to implement and change, by testing
it thoroughly, and also by ensuring that if failures occur, the system can handle
them or can recover easily.

■ Maintainability. This is the ease with which you can change the software. The
more difficult it is to make a change, the lower the maintainability. Software
engineers can design highly maintainable software by anticipating future
changes and adding flexibility. Software that is more maintainable can result in
reduced costs for both developers and customers.

■ Reusability. A software component is reusable if it can be used in several
different systems with little or no modification. High reusability can reduce the
long-term costs faced by the development team. We will discuss reusable
technology in Chapter 3.

All of these attributes of quality are important. However, the relative importance
of each will vary from stakeholder to stakeholder and from system to system.
For example, reliability and efficiency are usually both of concern to customers
and users; however, in a safety-critical system for controlling a nuclear power
plant, reliability would be far more important than efficiency – assuming that
faster hardware could be bought if efficiency became a problem. On the other
hand, efficiency might be highly important in a program for biologists that
calculates how proteins fold – such a program might take days to run, but if it
fails no disaster will occur. The program can simply be corrected and re-run.

Figure 1.1 What software quality means to different stakeholders

Quality software

Developer:
easy to design;
easy to maintain;
easy to reuse its parts

User:
easy to learn;
efficient to use;
helps get work done

Customer:
solves problems at an acceptable
cost in terms of money paid and
resources used

Development manager:
sells more and pleases customers
while costing less to develop
and maintain
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Often, software engineers improve one quality at the expense of another. In
other words, they have to consider various trade-offs. The following are some
examples of this:

■ Improving efficiency may make a design less easy to understand. This can
reduce maintainability, which leads to defects that reduce reliability.

■ Achieving high reliability often entails repeatedly checking for errors and
adding redundant computations; achieving high efficiency, in contrast, may
require removing such checks and redundancy.

■ Improving usability may require adding extra code to provide feedback to the
users, which might in turn reduce overall efficiency and maintainability.

One of the characteristics that distinguishes good engineering practice is setting
objectives for quality when starting a project, and then designing the system to
meet these objectives. The objectives are set in such a way that if they are met,
all the stakeholders will be happy. Also, since there is no need to exceed the
objectives, they help engineers to avoid spending more effort than is necessary.

To compete in the market successfully, it is sometimes necessary to optimize
certain aspects of designs. This means achieving the best possible levels of
certain qualities, while not exceeding a certain budget and at the same time
meeting objectives for the other qualities.

Exercise

E3 For each of the following systems, which attributes of quality do you think
would be the most important and the least important?

(a) A web-based banking system, enabling the user to do all aspects of banking
on-line.

(b) An air traffic control system.

(c) A program that will enable users to view digital images or movies stored in
all known formats.

(d) A system to manage the work schedule of nurses that respects all the
constraints and regulations in force at a particular hospital.

(e) An application that allows you to purchase any item seen while watching TV. 

Internal quality criteria

Above, we have largely been talking about external quality attributes that can be
observed by the stakeholders and have a direct impact on them. There are also
many internal quality criteria that characterize aspects of the design of software
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and have an effect on the external quality attributes. The following are a couple
of examples:

■ The amount of commenting of the code. This can be measured as the fraction
of total lines in the source code that are comments. This impacts
maintainability, and indirectly it impacts reliability.

■ The complexity of the code measured in terms of the nesting depth, the
number of branches and the use of certain complex programming constructs.
This directly impacts maintainability and reliability.

In Sections 2.10 and 9.2, when we talk about design, we will discuss additional
internal quality criteria that affect the externally visible qualities.

Quality for the short term vs. quality for the long term
It is human nature to worry more about short-term needs and ignore the longer-
term consequences of decisions. This can have severe consequences. Examples
of short-term quality concerns are: Does the software meet the customer’s
immediate needs? Is it sufficiently efficient for the volume of data we have
today?

These questions are important, and must be answered. However, if you take
an exclusively short-term focus you are likely to ignore maintainability, and also
to ignore the longer-term needs of the customers. This is a mistake made by
numerous software engineers over the years, resulting in much higher costs later
on. Unfortunately, at the height of excitement about new projects with
impending deadlines and markets to capture, even seasoned developers fall into
the same trap.

1.6 Software engineering projects

Software engineering work is normally organized into projects. For a small
software system, there may only be a single team of three or four developers
working on the project. For a larger system, the work is usually subdivided into
many smaller projects.

We can divide software projects into three major categories: 1) those that
involve modifying an existing system; 2) those that involve starting to develop a
system from scratch, and 3) those that involve building most of a new system
from existing components, while developing new software only for missing
details.

Evolutionary projects
Most software projects are of the first type – modifying an existing system. The
term maintenance is often used to describe this process; however, for many
people the word maintenance implies keeping something running by simply
fixing problems, but without adding significant new features. The reality of
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software change is somewhat different: there tends to be constant pressure from
users and customers not only to fix problems but also to make many other kinds
of changes. After several years of such changes, software systems are often
significantly larger and barely resemble their original state. We will thus use the
term evolution to more accurately describe what happens to software over its
life-span.

Evolutionary or maintenance projects can be of several different types:

■ Corrective projects involve fixing defects.

■ Adaptive projects involve changing the system in response to changes in the
environment in which the software runs. For example, it might be necessary to
make changes so that the system will continue to work with a new version of
the operating system or database, or with a new set of tax laws.

■ Enhancement projects involve adding new features for the users.

■ Re-engineering or perfective projects involve changing the system internally so
that it is more maintainable, without making significant changes that the user
will notice.

In reality, most evolutionary projects involve more than one of the above.
In many cases, a software engineering team must undertake evolution of a

system when the original developers are no longer available, or when their
memory of the design is starting to fade. Such a system is called a legacy system.

A team can take great pride in evolving a high-quality product such that it
continues to meet the needs of customers. However, it is important to ensure
that the product does not become a ‘victim of its own success’. This occurs
when customers constantly want new features added, so the software becomes
so large and bloated that it becomes difficult to maintain at a high level of
quality.

Greenfield projects
Projects to develop an entirely new software system from scratch are
significantly less common than evolutionary projects. Developers often enjoy
such brand new, or greenfield, projects because they have a wider freedom to be
creative about the design.

In a greenfield project you are not constrained by the design decisions and
errors made by predecessors. However, it takes a lot of work to build a complex
system from scratch.

Projects that involve building on a framework or a set of existing components
The third type of software project can be considered neither evolutionary
nor new development. This type of project, which is becoming increasingly
common, starts with a framework, or involves plugging together several
components that are already developed and provide significant functionality.
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A framework is a software system especially designed to be reused in different
projects, or in the various products of a product line. A framework contains
important functionality, but must be adapted to handle the requirements of
particular customers or products.

For example, imagine an application framework for ticketing. Such a system
would have basic capabilities for reserving and printing tickets for events or
travel. These functions would be well designed and tested by the original
developers of the framework. However, many details would need to be added to
handle the particular needs of each new organization that adopts the
framework. Selling tickets for a theater can be quite different from selling tickets
for a sporting event, a tropical holiday package or even a cinema.

As an example of the use of components, imagine you had an accounting
package and a package for tracking meetings, appointments etc. You might hook
these together to create a product for a lawyer’s office. The meetings and
appointments would automatically result in charges for time being recorded in
the accounting package. The code that you write to connect the two component
packages is called glue.

The use of frameworks or components allows you to benefit from reusing
software that has been shown to be reliable. Yet, at the same time, it gives you
much of the freedom to innovate that you would have if you were performing
greenfield development.

In Chapter 3 we will discuss frameworks in detail. We will also present a
framework that you will use in exercises and projects throughout this book.

1.7 Activities common to software projects

The following subsections briefly describe many of the activities commonly
found in software engineering projects. We will discuss most of these in more
detail later in the book.

Requirements and specification

In order to solve the customer’s problems, you must first understand the
problems, the customer’s business environment, and the available technology
which can be used to solve the problems. Once you have done this, you can meet
with the customers and users to decide on a course of action that will solve the
problems. If you decide that developing or modifying software is the best course
of action, then you can decide in detail what facilities the software should provide.

This overall process may include the following activities.

■ Domain analysis: understanding the background needed so as to be able to
understand the problem and make intelligent decisions.

■ Defining the problem: narrowing down the scope of the system by
determining the precise problem that needs solving.
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■ Requirements gathering: obtaining all the ideas people have about what the
software should do.

■ Requirements analysis: organizing the information that has been gathered,
and making decisions about what in fact the software should do. The term
‘requirements analysis’ is often used more broadly to include some of the other
steps in this list.

■ Requirements specification: writing a precise set of instructions that define
what the software should do. These instructions should describe how the
software behaves from the perspective of the user, but should not describe any
details of the implementation.

One of the most important principles of requirements is to separate the ‘what’
from the ‘how’. The ‘what’ refers to the requirements – what is needed to solve
the problem. The ‘how’ refers to how the solution will be designed and
implemented.

Although initial requirements should be established early in a project, the
customers’ needs tend to change. Requirements analysis therefore should be
continued throughout the life of a software system. We will discuss
requirements in detail in Chapter 4.

Design
Design is the process of deciding how the requirements should be implemented
using the available technology. Important activities during design include:

■ Deciding what requirements should be implemented in hardware and what in
software. This is called systems engineering and is normally only necessary for
embedded and other real-time systems. Even for these systems, there is a trend
towards implementing more and more facilities in software so that the
hardware can be simpler and more generic.

■ Deciding how the software is to be divided into subsystems and how the
subsystems are to interact. This process is often called software architecture;
there are several well-known ways of structuring software which are called
architectural patterns or styles. In Chapter 3 we will introduce the client–server
architecture, and in Chapter 9 we will look at other architectural patterns.

■ Deciding how to construct the details of each subsystem. Such details include
the data structures, classes, algorithms and procedures. This process is often
called detailed design.

■ Deciding in detail how the user is to interact with the system, and the look and
feel of the system. This is called user interface design, and will be discussed in
Chapter 7.

■ Deciding how the data will be stored on disk in databases or files. We do not
discuss this topic in this book – it is addressed in many specialized books.
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Quite often, for large systems, software engineers work on architectural design
in conjunction with high-level requirements. This allows them to divide a
system effectively into subsystems. Detailed requirements can then be
developed for each subsystem. For smaller systems and lower-level subsystems
though, it is conventional to develop the requirements before starting the design
since otherwise the design may have to be re-done if requirements change.

Modeling
Modeling is the process of creating a representation of the domain or the
software. Various modeling approaches can be used during both requirements
analysis and design. These include:

■ Use case modeling. This involves representing the sequences of actions
performed by the users of the software. We will discuss this in Chapter 4.

■ Structural modeling. This involves representing such things as the classes and
objects present in the domain or in the software. This is the topic of Chapters 5
and 6.

■ Dynamic and behavioral modeling. This involves representing such things as
the states that the system can be in, the activities it can perform, and how its
components interact. This is the topic of Chapter 8.

Modeling can be performed visually, using diagrams, or else using semi-formal
or formal languages that express the information systematically or
mathematically. In this book, we will primarily use semi-formal notations and
diagrams – in particular a visual language called UML.

Programming
Programming is an integral part of software engineering. It involves the
translation of higher-level designs into particular programming languages. It

Agile versus conventional development
There is a community of software engineers who practice what is called agile development.  Agile
methods emphasize the ability to quickly modify software and have been found to work well for small
to medium-sized systems.  The most well-known such method is called eXtreme Programming (XP).
We will contrast agile methods with more conventional methods at several places in this book.

One way in which agile and conventional methods differ is in how they treat requirements
and design.  Agile practitioners gather requirements in very small increments, and design and
implement each increment before gathering the next small requirements increment.  They
fully acknowledge that this may require the design to be changed to accommodate the new
requirements, and use techniques called refactoring to make the necessary design changes.
Conventional practitioners, on the other hand, prefer to develop a design that will be robust
in the face of changing requirements. We will revisit all these ideas at various points in the
book.
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should be thought of as the final stage
of design because it involves making
decisions about the appropriate use of
programming language constructs,
variable declarations etc. Most people
who call themselves programmers also
perform many higher-level design
activities. People who limit their work
to programming (i.e. who do no
higher-level design or analysis) are
often today called ‘coders’.

One of the objectives of software engineering researchers has been to
automate programming. There has been some success in this regard – some
tools now generate much of the code for you from models typically represented
in UML. However, there will always be a need for some programming done by
humans.

We assume that readers of this book have some object-oriented program-
ming background. We will use Java for the example code in this book, and you
will be asked to translate designs into programs so you can get a feel for the
effects of various design decisions. If you know an object-oriented language
other than Java (e.g. C++, C# or Smalltalk) it should not be difficult to learn
enough Java to use the book effectively.

Quality assurance
Quality assurance (QA) encompasses all the processes needed to ensure that the
quality objectives discussed in Section 1.5 are met. Quality assurance occurs
throughout a project, and includes many activities, including the following:

■ Reviews and inspections. These are formal meetings organized to discuss
requirements, designs or code to see if they are satisfactory.

■ Testing. This is the process of systematically executing the software to see if it
behaves as expected.

Quality assurance is also often divided into validation, which is the process of
determining whether the requirements will solve the customer’s problem, and
verification, which is the process of making sure the requirements have been
adhered to.

In various chapters, we present checklists that you can use to conduct reviews.
Testing and some other aspects of quality assurance are presented in detail in
Chapter 10.

Deployment
Deployment involves distributing and installing the software and any other
components of the system such as databases, special hardware etc. It also
involves managing the transition from any previous system.

Pair programming
One of the recommended approaches in the agile method
‘eXtreme Programming’ is called pair programming. In this
technique, two programmers always work together in
front of a single computer.  The idea is that their constant
interaction should stimulate good ideas and prevent
errors.  Whether this approach should be widely adopted
is still being studied and debated.



 

20 Chapter 1
Software and software engineering 

Deploying a new release of a large system with many users can pose great
difficulties – the amount of work is often under-estimated. To keep this book
short, we have decided not to discuss deployment.

Managing software configurations
Configuration management involves identifying all the components that
compose a software system, including files containing requirements, designs
and source code. It also involves keeping track of these as they change, and
ensuring that changes are performed in an organized way. All software
engineers must participate in the configuration management of the parts of the
system for which they are responsible.

Managing the process
Managing software projects is considered an integral part of software
engineering. All software engineers assist their managers to some extent, and
most will, at some point in their careers, become managers themselves.

Management issues are discussed briefly in Chapter 11. In addition to leading
the other activities described above, the manager has to undertake the following
tasks:

■ Estimating the cost of the system. This involves studying the requirements
and determining how much effort they will take to design and implement.

■ Planning. This is the process of allocating work to particular developers, and
setting a schedule with deadlines.

Both cost estimates and plans need to be examined and revised on a regular
basis, since initial estimates will only be rough.

1.8 The themes emphasized in this book

The nine general themes discussed below are emphasized through many of the
chapters in this book. They represent general principles or unifying approaches
that can be used in any software project.

Theme 1: understanding the customer and user
Interaction with customers and users should occur in virtually all of the
software engineering activities discussed in the previous section. These two
groups of stakeholders are most heavily involved in requirements analysis, user
interface design and deployment, but also may play a role in design, quality
assurance and project management.

If software engineers can learn how users and customers think and behave,
then it will be easier to produce software that meets their needs. Ensuring that
they feel involved in the software engineering process will result in fewer
mistakes being made and greater acceptance of the finished product.
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Theme 2: basing development on solid principles and reusable technology
A fundamental tenet of engineering is that once techniques or technology
become well established, their use should become routine. Civil engineers, for
example, have a well-established set of principles, which they use to decide what
kind of bridge to build. They also have standard bridge designs that they adapt
for most routine bridge projects.

Even though software engineering is still a maturing discipline, many
principles have become well established. We discuss these principles throughout
the book.

As for technology, we base our designs on Java, a language with wide
acceptance. Furthermore, in Chapter 3 we present a framework – a collection of
classes that forms the basic structure upon which many different applications
can be built. We demonstrate how this framework can be used to rapidly build
several different applications.

Applying well-understood principles and reusing designs means that we are
building on the experience and work of others, rather than ‘reinventing the
wheel’. The creative task of the engineer is to put knowledge to use in innovative
ways to solve problems. This contrasts with the role of the scientist, which is to
seek out new knowledge.

Theme 3: object orientation
Object-oriented (OO) techniques are based on the use of classes that act as
abstractions of data, and that contain a set of procedures which act on that data.
It is now widely recognized that object orientation is an effective design
approach to manage the complexity inherent in most large systems.

In this book we discuss three major areas of software engineering in an object-
oriented context: analysis, design and programming. In Chapter 2, we review
basic OO principles and OO programming; then, in the rest of the book, we
approach analysis and design from a primarily OO perspective. We will ask you
to implement your designs in the OO language Java, so that you can see the
consequences of your design decisions.

Theme 4: visual modeling using UML
The Unified Modeling Language (UML) is a set of notations for representing
software requirements and design. It is now widely accepted as the standard
approach to representing many aspects of software.

We will teach you in some detail how to use several different aspects of UML,
including class diagrams (Chapter 5), state diagrams and interaction diagrams
(both in Chapter 8).

Theme 5: evaluation of alternatives in requirements and design
There is rarely a single straightforward answer to any problem in software
engineering. Whether you are developing requirements or performing design,
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there are often several alternatives that must be assessed systematically to
decide which is best.

In both requirements analysis and design we will encourage you to list
alternatives, and discuss their advantages and disadvantages before making a
decision. We will also encourage you to document your reasoning, frequently
called rationale, so that others can understand your decisions.

Theme 6: incorporating quantitative and logical thinking
It is becoming increasingly necessary to incorporate mathematical thinking into
software development. We will present basic ways to measure aspects of
software systems and software engineering processes. The objective of doing
this measurement is to help make predictions of development time and quality
in order to better control these factors. This topic, commonly known as software
metrics, is covered in the chapters on object-orientation (Chapter 2),
requirements (Chapter 4), design (Chapter 9), testing (Chapter 10) and project
management (Chapter 11).

We will also show several ways to make use of logic in order to develop software:
in Chapter 5 we will introduce OCL, a language for formally describing properties
of designs; and in Chapter 9 we will show how logic can be used in a technique
called defensive programming.

Theme 7: iterative and agile development
Traditionally, software engineering has been performed following what is called
the waterfall model. In this approach you first develop requirements; once these
are complete you move on to design, and then to programming, testing and
deployment. An outdated view held that you should completely finish each of
these steps before moving on to the next; then, when you complete deployment,
you are finished. In contrast, the currently accepted view is that software
engineering is, and should be, a highly iterative process. So-called agile
techniques are the most highly iterative of all (see the sidebar ‘Agile versus
conventional development’ earlier in this chapter).

It is typical to develop the first iteration of a system as a prototype, with only
rough requirements and little functionality. Doing this serves to help establish
the requirements for the next iteration. Several iterations of prototypes may be
needed before the stakeholders are finally satisfied with the requirements, at
which time you can proceed with a more rigorous process involving more
complete specification and design.

Even after delivering software to customers, you typically continue to build a
series of new releases, each one involving most of the activities discussed in
Section 1.6. Iterative development results in delivering smaller units of work
(prototypes or releases) quite frequently. This means that the first release can be
in the customers’ hands earlier than if you had tried to develop a fully fledged
system. It also means that if the system turns out to be a disaster, less work has
been wasted.
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We will practice the iterative approach in this book, starting in Chapter 3, by
asking you to make a series of small changes to a project. You will do the
requirements, design and implementation of each change, with changes
becoming more sophisticated as you learn more of the material in the book.

We discuss processes the waterfall, iterative and other approaches in more
detail in Chapter 11.

Theme 8: communicating effectively using documentation
Software engineers communicate with each other orally both in meetings and at
each other’s desks; however, it would never be possible to run a large project if
all information had to be conveyed in this manner.

Writing clear documentation is therefore an
essential skill. Documentation should be written at
all stages of development and includes requirements,
designs, user manuals, instructions for testers and
project plans. One of the keys to writing good
documentation is to understand the audience. You
must provide the information the readers will need,

and organize it in such a way that the readers can find it easily. For example, the
audience for design documentation includes other software engineers with whom
you are currently working, as well as those who will need to make changes later. Both
groups need to understand what you did and why you did it.

Unfortunately, unless it is managed appropriately, writing documentation can
waste resources and can be a source of rigidity in software development. The
waste of resources can occur if documentation is never read – this will be the
case if it is excessively voluminous, poorly written or not made readily available.
Excessive documentation means that the readers cannot find what they want
easily, and ‘can’t find the forest for the trees’. It is therefore as bad as if you had
not created enough documentation to start with.

Forcing software developers to write documents prematurely just to meet
specific deadlines can mean that the overall objective becomes writing
documents, instead of solving problems. Furthermore, such documents can
entrench poorly made decisions that are hard to change.

In this book, we will encourage you to write documentation but we will
emphasize that it should be as short and succinct as possible, and it should serve
the purpose of documenting your decisions and communicating them to others.
Furthermore, documentation should be written in the context of risk
management, discussed below, which means that it is always subject to change.

We will give you outlines of each type of document as well as several example
documents. You will have the opportunity to practice writing the documents
and also reviewing them in groups.

When writing documentation you should also be aware that there are often
standards that you should adhere to. It is important that documentation used
within a company have a standard format so that people can more easily use it.

Agile documentation
Agile developers prefer to write very little
documentation. Some would prefer that
anything that needs documenting be put in
code comments and nowhere else.
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Theme 9: risk management in all software engineering activities

Whereas documentation allows future readers to keep an eye on the past, we
must also constantly keep an eye on the future. Risk analysis is a key software
engineering activity in which we constantly assess any new information to
determine whether it will cause problems for the project. If you believe there is
a significant risk that a certain type of problem will arise, then you can take steps
to reduce the risk.

Software is an investment that should provide benefits; and risks are natural
in any investment. The objective must be to reduce risks to acceptable levels,
while still achieving the benefits. Taking action to reduce risks is like adjusting
your investment portfolio. Sometimes you put more effort into certain tasks to
ensure the project is completed successfully; at other times you must cut parts
of the system to avoid losses.

The last numbered section of every chapter will discuss the difficulties and
risks to be considered in the material covered by that chapter. In the next section
we begin this process by reviewing the most important risks in software
engineering.

1.9 Difficulties and risks in software engineering as a whole

The following is a selection of general factors, or challenges, that can have a
major impact on the success of a software engineering project. Software
engineers should regularly analyze whether any of these poses a risk, and take
the suggested corrective action if necessary.

Some of these points serve as a review of what we said earlier in this chapter.
We will discuss many of them in more detail in subsequent chapters.

After each challenge listed below, we list some suggestions for resolution.
These suggestions can be used both to reduce risk and solve problems. However,
since each situation is different, the suggestions will not always work –
experience and good judgment must be your ultimate guide. As you read
through the rest of the book, you will learn more details about how to go about
resolving the difficulties.

■ Complexity and large numbers of details. Software systems tend to become
complex because: a) it is easy to add new features, b) software developers
typically add features without fully understanding a system, and c) the system
may not have been originally designed to accommodate the features.
Resolution. Design the system for flexibility right from the start. Divide the system
into smaller subsystems, so that each one is naturally simpler. Resist the urge to
add new features, and consider removing those that are not needed. Use tools
designed to help you more fully understand the structure of a software system.
Budget sufficient time to learn about the software before making changes. When
faced with an over-complex system, redesign parts of it as necessary.
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■ Uncertainty about technology. You can never be sure whether the technology
on which a system depends will work as expected. Hardware tends to be
reliable, but special-purpose hardware or future versions of the hardware may
differ from what you expect. Software libraries and other software systems with
which a system interacts can be expected to have bugs and incompatibilities.
Resolution. Avoid technology sold by just a single vendor and which has relatively
few other customers. Widely used technology is more likely to be supported and to
have had its defects removed. Avoid obscure features of any technology. Balance
the benefits of your use of third-party technology with the risks of problems.
Create prototypes to try out the technology you will be using.

■ Uncertainty about requirements. Until a system is delivered and in use, you
can never be quite sure whether it meets the customer’s needs.
Resolution. Understand the application domain so you can communicate
effectively with clients and users. Follow a good requirements gathering and
analysis process. Prototype to get an early view of potential problems. Continually
interact with users and clients to keep up to date on their needs. Design with
change in mind.

■ Uncertainty about software engineering skills. Software engineering is
heavily labor-intensive; however, skills of team members can vary
dramatically and probably are the biggest single factor affecting success of a
project.
Resolution. Make sure software engineers have sufficient general education,
plus training in the technology to be used. Make sure they have sufficient
experience by ‘practicing’ on prototypes or systems that are of lesser importance.
Put in place a mentoring system so that the software engineers can effectively
learn from others.

■ Constant change. Both technology and requirements can be expected to
change regularly.
Resolution. Design for flexibility to accommodate potential changes. Stay aware of
things that may change. Adjust the requirements or design as soon as important
changes are discovered. Avoid changing too much too frequently, however.

■ Deterioration of software design. Software deteriorates due to successive
changes that introduce bugs.
Resolution. Build flexibility and other aspects of maintainability into the software
from the start so that changes are easier to make. Ensure software engineers have
sufficient training. Ensure changes are not rushed. Perform quality assurance
activities on each change.

■ ‘Political’ risks. Not everybody will be happy with the requirements. Not
everybody may want the system. Competition or organizational changes might
render the system less important or might result in project cancelation. Various
stakeholders may not understand certain software-engineering practices and
may want you to do things with which you disagree.
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Resolution. Participate in promoting and marketing the project. Enhance your
negotiating and other ‘people’ skills. Regularly evaluate how the system will
impact all the stakeholders, and work closely with them to foster increased
understanding of issues.

1.10 Summary

We have emphasized in this chapter that software engineering is an emerging
engineering specialty in which you focus on solving a customer’s problem by
developing high-quality software.

Since software is relatively intangible, our ability to work with it is different
from other engineering products. It is possible for a beginner to rapidly program
a significantly sized system, make changes to source code in a matter of minutes,
and distribute thousands of copies at little cost. Unfortunately, developing
systems in a rapid and ad hoc way like this leads to excessive complexity and
increasing numbers of problems.

To perform good software engineering, it is necessary to incorporate
discipline into software development. Some ways of doing this include carefully
understanding users and their requirements, taking time to perform design, and
carefully evaluating the quality of the software. You also must keep systems
small at first to reduce the risk of failure, focus on delivering systems within a
fixed amount of time, and constantly reassess what you are doing so that you can
take action when problems arise.

Throughout the rest of this book we will present many different software
engineering techniques so that you can learn how to achieve the goal of solving
customers’ problems more effectively.

1.11 For more information

At the end of each chapter we will discuss sources of information that you can
consult to learn more about the material in that chapter. In this chapter, we list
general software engineering resources; in later chapters we list resources
covering specific issues.

The resources include web sites, books and periodicals. We have only listed
web sites that we believe to contain reasonably reliable information or useful sets
of links, which have stood the test of time, and are likely to be maintained. This
book’s web site (www.lloseng.com) contains a page with all the links shown in
the book, updated as necessary.

Software engineering magazines published by major organizations

■ IEEE Software, http://www.computer.org/software/
The IEEE Computer Society is one of the two most important international
organizations that focus on software engineering. They produce many software
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engineering publications, but IEEE Software is probably the one most readable
by practitioners.

■ IEEE Computer, http://www.computer.org/computer/
Also published by the IEEE Computer Society, this magazine covers a broader
spectrum of computing topics, including software engineering. All members of
the society receive this.

■ Communications of the ACM, http://www.acm.org
The Association for Computing Machinery (ACM) is the other main
international organization involved in the development of software
engineering. CACM is not exclusively about software engineering, but has
many articles on this topic. It is included with membership in the ACM.

Other selected software engineering Internet sites

■ The Software Engineering Body of Knowledge (SWEBOK), www.swebok.org
The goal of this project, initiated by the ACM and the IEEE, is to gather
together all the most important and widely accepted knowledge in software
engineering. The SWEBOK initiative is under continuous development, and is
an excellent resource to find detailed background material about the field.

■ The ACM/IEEE software engineering code of ethics, http://www.acm.org/
serving/se/code.htm

■ The Community for Software Engineers, www.software-engineer.org

■ The Wikipedia entry for software engineering: http://en.wikipedia.org/wiki/
Software_engineering

■ The Software Engineering Institute (SEI) at Carnegie Mellon University,
www.sei.cmu.edu
One of the foremost research institutes on software engineering.

General software engineering books

■ Roger Pressman, Software Engineering: a Practitioner’s Approach, 6th edition,
McGraw Hill, 2004. This is one of the classic books covering all areas of
software engineering in considerable depth. http://www.rspa.com/about/
sepa.html

■ Stephen R. Schach, Object-Oriented and Classical Software Engineering, 6th
edition, McGraw Hill, 2004. http://www.mhhe.com/catalogs/0072865512.mhtml

■ Ian Sommerville, Software Engineering, 7th Edition, Addison-Wesley, 2004,
http://www.software-engin.com/

■ Bernd Bruegge and Allen Dutoit, Object-Oriented Software Engineering: Using
UML, Patterns and Java, 2nd edition, Prentice Hall, 2004
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■ Shari Lawrence Pfleeger, Software Engineering: Theory and Practice, 2nd
edition, Prentice Hall, 2001.

The profession of engineering

■ Greatest achievements of engineering: http://www.greatachievements.org

■ Professional Engineering Institutions (UK): http://www.pei.org.uk

■ Canadian Council of Professional Engineers: http://www.ccpe.ca

■ National Society of Professional Engineers (US): http://www.nspe.org
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As we mentioned in the last chapter, software engineers must have a good
understanding of the computing technology with which they work. In this chapter,
we review an important area of that technology: object-oriented programming.

It is our expectation that most readers will have learned the basics of object-
oriented programming in Java before reading this book.

If you do not know Java, but know another object-oriented language, such as
C++, C#, Delphi or Smalltalk, then the exercises at the end of this chapter will
help you make the transition to Java. We recommend you also make use of Java
learning resources, some of which we list at the end of the chapter.

Our goal with the use of Java in this book is to give you practical illustrations
of software engineering concepts.

2.1 What is object orientation?

Object-oriented systems make use of abstraction in order to help make software
less complex. An abstraction is something that relieves you from having to deal
with details. Object-oriented systems combine procedural abstraction with data
abstraction. To help you better understand what this means, we will first take a
look at these two types of abstraction.

In this chapter you will learn about the following

■ The basic principles of object orientation.

■ Classes and objects.

■ Instance variables, attributes and associations.

■ Methods, operations and polymorphism.

■ Organizing classes into inheritance hierarchies.

■ Evaluating alternative implementations of simple designs in Java.
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Procedural abstraction and the procedural paradigm
From the earliest days of programming, software has been organized around the
notion of procedures (also in some contexts called functions or routines). These
provide procedural abstraction. When using a certain procedure, a programmer
does not need to worry about all the details of how it performs its computations;
he or she only needs to know how to call it and what it computes. The
programmer’s view of the system is thus made simpler.

In the so-called procedural paradigm, the entire system is organized into a set
of procedures. One ‘main’ procedure calls several other procedures, which in
turn call others.

The procedural paradigm works very well when the main purpose of
programs is to perform calculations with relatively simple data. However, as
computers and applications have become more complex, so has the data.
Systems written using the procedural paradigm are complex if each procedure
works with many types of data, or if each type of data has many different
procedures that access and modify it.

Data abstraction
Data abstractions can help reduce some of a system’s complexity. Records and
structures were the first data abstractions to be introduced. The idea is to group
together the pieces of data that describe some entity, so that programmers can
manipulate that data as a unit.

However, even when using data abstraction, programmers still have to write
complex code in many different places. Consider, for example, a banking
system that is written using the procedural paradigm, but using records
representing bank accounts. The software has to manage accounts of different
types, such as checking, savings and mortgage accounts (a checking account
would be called a cheque account or current account in some countries). Each
type of account will have different rules for the computation of fees, interest,
etc. Such a system would have procedures like the following pseudocode in
many different places:

if account is of type checking then
  do something
else if account is of type savings then
  do something else
else
  do yet another thing
endif

Imagine also that clients can hold several accounts of different types, and some
accounts can be held jointly; also the different account holders might have
different rights. Rules to deal with issues like these would be scattered
throughout the code, making change very difficult.
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The object-oriented paradigm: organizing procedural abstractions in the 
context of data abstractions

Starting in the late 1960s, programmers began to see the advantage of organizing
programs around data abstractions. They realized that they could make systems
much simpler by putting all the procedures that access or modify a particular class
of objects in one place, rather than having the procedures spread out all over the
system. This idea is the root of the object-oriented (OO) paradigm which, by the
1990s, had become accepted as the best way to organize most systems.

In the object-oriented paradigm, a running program can be seen as a
collection of objects collaborating to perform a given task.

Figure 2.1 summarizes the essential difference between the object-oriented
and procedural paradigms. In the procedural paradigm (shown on the left), the
code is organized into procedures that each manipulate different types of data.
In the object-oriented paradigm (shown on the right), the code is organized into
classes that each contain procedures for manipulating instances of that class
alone. Later on, we will explain how the classes themselves can be organized into
hierarchies that provide even more abstraction.

2.2 Classes and objects

Classes and objects are the aspects of object orientation that people normally
think about first. In this section, we will define in more detail what we mean by
these two terms.

Definition: The object-oriented paradigm is an approach to the solution of problems in which all 

computations are performed in the context of objects.  The objects are instances 

of programming constructs, normally called classes, which are data abstractions and 

which contain procedural abstractions that operate on the objects.

Figure 2.1 Organizing a system according to the procedural paradigm (left) or the object-
oriented paradigm (right). The UML notation used in the right-hand diagram will 
be discussed in more detail later

CheckingAccount

computeInterest()
computeFees()

SavingsAccount

computeInterest()
computeFees()

Account

credit()
debit()performTransaction

main

credit debit computeInterest

if checking
then xxx

if savings
then xxx

etc.

computeFees

if checking
then xxx

if savings
then xxx

etc.
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Objects
An object is a chunk of structured data in a running software system. It can
represent anything with which you can associate properties and behavior.
Properties characterize the object, describing its current state. Behavior is the
way an object acts and reacts, possibly changing its state.

Figure 2.2 shows some of the objects and their properties that might be
important to a particular banking system. The notation used in Figure 2.2 to
represent objects is UML. We will show you some very simple UML notation in
this chapter; we will explain it in more detail in Chapter 5 and subsequent
chapters.

The following are some other examples of objects:

■ In a payroll program, there would be objects representing each individual
employee.

■ In a university registration program, there would be objects representing each
student, each course and each faculty member.

■ In a factory automation system, there might be objects representing each
assembly line, each robot, each item being manufactured, and each type of
product.

In the above examples, all the objects represent things that are important to
the users of the program. You use a process often called object-oriented
analysis to decide which objects will be important to the users, and to work out
the structure, relationships and behavior of these objects.

When performing object-oriented analysis, you do not initially need to
understand how objects are physically represented using a particular
programming language, nor whether they are stored in random-access
memory or on disk. It is best to leave consideration of such issues until you

Figure 2.2 Several objects in a banking application

Savings account 12876:

balance=1976.32
opened=“1999/03/03”

Jane:

dateOfBirth=“1955/02/02”
address=“99 UML St.”
position=“Manager”

Greg:

dateOfBirth=“1970/01/01”
address=“75 Object Dr.”

Mortgage account 29865:

balance=198760.00
opened=“2003/08/12”
property=“75 Object Dr.”

Margaret:

dateOfBirth=“1984/03/03”
address=“150 C++ Rd.”
position=“Teller”

Instant teller 876:

location=“Java Valley Cafe”

Transaction 487:

amount=200.00
time=“2001/09/01 14:30”



 

Section 2.2 33Classes and objects

have completed object-oriented analysis, and moved on to object-oriented
design (OOD). We will discuss object-oriented analysis and design in detail
starting in Chapter 5.

Classes and their instances
Classes are the units of data abstraction in an object-oriented program. More
specifically, a class is a software module that represents and defines a set of
similar objects, its instances. All the objects with the same properties and
behavior are instances of one class.

For example, Figure 2.3 shows how the bank employees Jane and Margaret
from Figure 2.2 can be represented as instances of a single class Employee. Class
Employee declares that all its instances have a name, a dateOfBirth, an address and
a position.

As a software module, a class contains all of the code that relates to its objects,
including:

■ Code describing how the objects of the class are structured – i.e. the data stored
in each object that implement the properties.

■ The procedures, called methods, that implement the behavior of the objects.

In other words, in addition to defining properties such as name and address,
as shown in Figure 2.3, an Employee class would also provide methods for
creating a new employee, and changing an employee’s name, address and
position. We will talk more about the contents of a class in Sections 2.3
and 2.4.

Sometimes it is hard for beginners to decide what should be a class and
what should be an instance. The following two rules can help:

■ In general, something should be a class if it could have instances.

■ In general, something should be an instance if it is clearly a single member of
the set defined by a class.

For example, in an application for managing hospitals, one of the classes
might be Doctor, and another might be Hospital. You might think that Hospital
should be an instance if there is only one of them in the system; however, the
fact that in theory there could be multiple hospitals tells us that Hospital
should be a class.

Figure 2.3 A class, representing similar objects from Figure 2.2

Employee

name
dateOfBirth
address
position
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Example 2.1 In the following, we indicate whether each item should be a class or an instance. If
it should be a class, we describe its instances. If it should be an instance, we
describe its class. 

Film: class; instances include ‘Star Wars’ and ‘Casablanca’.
Reel of film: class; instances are physical reels.
Film reel with serial number SW19876: instance of ReelOfFilm.
Showing of ‘Star Wars’ in the Phoenix Cinema at 7 pm: instance of class 
ShowingOfFilm.

Exercise

E4 Which of the following items do you think should be a class, and which should
be an instance? For any item that should be an instance, name a suitable class
for it. If you think an item could be either a class or an instance, depending on
circumstances, explain why.  

Naming classes
One of the first challenges in any object-oriented project is to name the classes.
Notice that the class names mentioned in the last subsection such as Employee,
Hospital and Doctor are nouns, have their first letter capitalized and are written in
the singular. These are important conventions that should be followed in all
object-oriented programs in languages like Java and C++. Being consistent
about capitalization ensures that readers of the program can tell what is a class
and what is not. Using the singular ensures that readers can tell that an instance
of the class is a single item, not a list or collection. If you want to give a class a
name consisting of more than one word, then omit the spaces and capitalize the
first letter of each word, for example: PartTimeEmployee.

It is also important to choose names for classes that are neither too general nor
too specific. Many words in the English language have more than one meaning,
or are used with a broad meaning. For example, the word ‘bus’ could mean the
physical vehicle, or a particular run along a particular route, as in, ‘I will catch
the 10:30 bus (but I don’t care which vehicle is used)’. You might choose to call

(a) General Motors (b) Automobile company

(c) Boeing 777 (d) Computer science student

(e) Mary Smith (f) Game

(g) Board game (h) Chess

(i) University course SEG 2100 (j) Airplane

(k) The game of chess between Tom 
and Jane which started at 2:30 pm 
yesterday.

(l) The car with serial number 
JM 198765T4
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the class that represents physical vehicles BusVehicle and the class that represents
runs along a route BusRouteRun. Sometimes it is possible to be too specific in
naming a class: for example, when filling out a form, you may be asked to specify
the ‘city’ as part of an address. But not everybody lives in a city! Therefore, rather
than creating a class called City to store, for example, a person’s place of birth,
you should perhaps use the more general class name Municipality.

Another principle is to name classes after the things their instances represent in
the real world. Unless you are dealing with low-level system design, you should
avoid using words in class names that reflect the internals of a computer system
such as ‘Record’, ‘Table’, ‘Data’, ‘Structure’, or ‘Information’. For example, a class
named Employee would be acceptable, but one named EmployeeData would not.

Exercises

E5 Some of the following are not good names for classes in the scheduling system
of a passenger rail company. For each name, indicate whether it is a bad class
name, and if so, explain why and suggest a better name or names:

(a) Train

(b) Stop

(c) SleepingCarData

Usage of the words ‘Instance’, ‘Object’ and ‘Class’
A common question is: what is the difference between an instance and an object?  The answer is that
they refer to the same thing; the difference is one of grammar and usage in the English language.
‘Instance’ is a role term, meaning that it is used to talk about the role an object plays, in this case as
an instance of a class.

It might be easiest to see this by analogy. There are many similar pairs of words in normal
English usage; ‘Daughter’, a role term, ‘Girl’, a non-role term; or ‘Father’, a role term, ‘Man’, a
non-role term. If, for example, you saw some girls walking down the street and said, ‘I see
several daughters’, people would know what you meant, but it would sound funny.  You would
normally instead say, ‘I see several girls.’ On the other hand it would be quite reasonable to
say, ‘Jane has several daughters.’

Thus it is possible to say, ‘instances are stored in memory’, although it sounds better to
say, ‘objects are stored in memory’. You also can say, ‘class Passenger has 10 objects’, but it
would sound better if you said, ‘class Passenger has 10 instances’.

You will sometimes read documents where the word ‘object’ is used when the author
really ought to have said ‘class’. For example, you might hear somebody incorrectly say, ‘I just
finished designing the Passenger object.’ Although you would know what they mean in this
context, in other contexts using these terms loosely can be confusing. For example, if
somebody says, ‘the Employee object is stored in the database’, you might wonder if they mean
all the objects of the class, or just one particular object.
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(d) arrive

(e) Routes

(f) driver

(g) SpecialTrainInfo 

E6 Identify all the classes you can think of that might be part of the following
systems, and choose good names for them.

(a) A restaurant reservation system.

(b) A video rental store.

(c) A weather forecasting system.

(d) A video editing tool. 

2.3 Instance variables

A variable is a place where you can put data. Each class declares a list of variables
corresponding to data that will be present in each instance; such variables are
called instance variables.

Attributes and associations
There are two groups of instance variables, those used to implement attributes,
and those used to implement associations.

An attribute is a simple piece of data used to represent the properties of an
object. For example, each instance of class Employee might have the following
attributes:

■ name 

■ dateOfBirth 

■ socialSecurityNumber 

■ telephoneNumber 

■ address 

An association represents the relationship between instances of one class and
instances of another. For example, class Employee in a business application might
have the following relationships:

■ supervisor (association to class Manager)

■ tasksToDo (association to class Task)

We will talk about selecting and representing attributes and associations in
much more detail in Chapter 5.
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Variables versus objects
One common source of confusion when discussing object-oriented programs is
the difference between variables and objects. These are quite distinct concepts.

At any given instant, a variable can refer to a particular object or to no object
at all. Variables that refer to objects are therefore often called references.
During the execution of a program, a given variable may refer to different
objects. Furthermore, an object can be referred to by several different
variables at the same time.

The type of a variable determines what classes of objects it may contain. We
will explain the rules regarding this in later sections.

Variables can be local variables in methods; these are created when a method
runs and are destroyed when a method returns. However, objects temporarily
referenced by such variables may last much longer than the lifetime of the
method as long as some other variable also references the object.

Exercises

E7 Identify the attributes that might be present in the following classes. Try to be
reasonably exhaustive.

(a) Series (in a scheduling system for an independent television station)

(b) Passenger (in an airline system)

(c) Event (in a personal schedule system; a meeting might be a kind of event)

(d) Clasroom (in a university course scheduling system)

(e) PhoneCall (in the system of a mobile telephone company)

(f) AssemblyLine (in a factory automation system)

E8 Identify some associations that might involve the classes listed in the
previous exercise. For each association, indicate the other class that would
be involved.

Instance variables versus class variables
If you declare that a class has an instance variable called var, then you are saying
that each instance of the class will have its own slot named var. Therefore, for
example, each Employee has a supervisor. The actual data put into these variables
will vary from object to object: employees will have different instances of Manager
as their supervisors.

Sometimes, however, you want to create a variable whose value is shared by
all instances of a class. Such a variable is known as a class variable or static
variable. If one instance sets the value of a class variable, then all the other
instances see the same changed value.
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Class variables are often overused
by beginners in cases when they
should use instance variables. Class
variables are, however, useful for
storing the following types of
information:

■ Default or ‘constant’ values that are
widely used by methods in a class.

■ Lookup tables and similar structures
used by algorithms inside a particular
class.

2.4 Methods, operations and polymorphism

The word ‘method’ is used in object-oriented programs where the words
‘procedure’, ‘function’ or ‘routine’ might be used in other programs. Methods are
procedural abstractions used to implement the behavior of a class.

An operation is a higher-level procedural abstraction. It is used to discuss and
specify a type of behavior, independently of any code that implements that
behavior. Several different classes can have methods with the same name that
implement the abstract operation in ways suitable to each class. The word
‘method’ is used because in English it means ‘way of performing an operation’.

We call an operation polymorphic, if the running program decides, every time
an operation is called, which of several identically named methods to invoke.
The program makes its decision based on the class of the object in a particular
variable. Polymorphism is one of the fundamental features of the object-
oriented paradigm.

As an illustration of polymorphism, imagine a
banking application that has an abstract operation
calculateInterest. In some types of account, interest is
computed as a percentage of the average daily balance
during a month. In other types of account, interest is
computed as a percentage of the minimum daily
balance during a month. In a mortgage account, to
which you can only deposit (make a payment) but from
which you cannot withdraw except initially, interest
may be computed as a percentage of the balance at the
end of the month.

Definition: polymorphism is a property of object-oriented software by which an abstract 

operation may be performed in different ways, typically in different classes.

Terminology for instance variables 
and class variables
You may read the term ‘data
member’; this is C++ terminology
that means an instance variable. A
‘static data member’ is a class variable.
The term ‘field’ is also often used to
collectively refer to both instance and
class variables.

C++ terminology for methods
For readers coming from the world of
C++, the term ‘function member’ or
‘member function’ is normally used in
that language instead of ‘method’.  Also,
the term ‘virtual’ is used to indicate
methods that are implementations of a
single polymorphic operation. Hence,
polymorphic methods are sometimes
called ‘virtual functions’.



 

Section 2.5 39Organizing classes into inheritance hierarchies

In the banking system, the three classes CheckingAccount, SavingsAccount and
MortgageAccount would each have their own method for the polymorphic operation
calculateInterest. When a program is calculating the interest on a series of accounts,
it will invoke the version of calculateInterest specific to the class of each account.

Exercise

E9 For each of the following sets of classes, find an appropriate superclass and the
polymorphic operations that should be included in this superclass. Explain the
way these operations would behave in each subclass and identify some
operations that might be present in only one of the subclasses.

(a) Square, Circle, Rectangle

(b) Truck, Ambulance, Bus

(c) Techician, AdministrativeAssistant, Manager 

2.5 Organizing classes into inheritance hierarchies

If several classes have attributes, associations or operations in common, it is
best to avoid duplication by creating a separate superclass that contains these
common aspects. Conversely, if you have a complex class, it may be good to
divide its functionality among several specialized subclasses.

For example, imagine you are creating a banking application in which
there are several kinds of accounts. Some things are common to all accounts,
such as having a balance and an owner, as well as being able to deposit
money in the account, open it and close it. Other things differentiate the
accounts – for example, a mortgage account has a negative balance as well as
a property (e.g. a house) as collateral; a savings account might have certain
privileges associated with it such as higher interest for keeping a high
balance in it. In this example we would say that class Account should be the
superclass of subclasses SavingsAccount, CheckingAccount and MortgageAccount.

The relationship between a subclass and an immediate superclass is called
a generalization. The subclass is called a specialization. A hierarchy with one
or more generalizations is called an inheritance hierarchy, a generalization
hierarchy or an isa hierarchy. The reason for the latter name will become

clear shortly.
You can draw inheritance hierarchies graphically as shown

in Figure 2.4. The little triangle symbolizes one or more
generalizations sharing the same superclass, and points to the
superclass. It is clearest when such diagrams are drawn with the
superclass at the top and the subclasses below, although other
arrangements are also allowed.

C++ terminology for 
superclass and subclass
In C++, a superclass is called a
‘base class’, while a subclass is
called a ‘derived class’.
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It is also possible to show inheritance hierarchies textually using indentation,
like this:

Account 
   SavingsAccount 
   CheckingAccount 

   MortgageAccount

You control inheritance by creating an inheritance hierarchy. Once you define
which classes are superclasses and which classes are their subclasses, inheritance
automatically occurs.

For example, all the features of Account are also present in SavingsAccount,
CheckingAccount and MortgageAccount. Figure 2.5 expands on Figure 2.4, showing
a variety of attributes and operations possessed by Account that would also be
inherited by the three subclasses. Attributes are shown in the middle of the class
box; operations are shown at the bottom. The inherited features are not
explicitly shown in the subclasses to make the diagram clearer; however, any
new features exclusive to each subclass are shown.

Organizing classes into inheritance hierarchies is a key skill in object-oriented
design and programming. It is easy to make mistakes and create invalid
generalizations. One of the most important rules to adhere to is the isa rule. The
isa rule says that class A can only be a valid subclass of class B if it makes sense,
in English, to say, ‘an A is a B’. For example it makes sense to say ‘a SavingsAccount
is an Account’ ; it does not make sense to say the inverse, ‘an Account is a
SavingsAccount’. You should test all superclass–subclass pairs (generalizations)
against the isa rule. It is for this reason that inheritance hierarchies are often
called isa hierarchies.

When you detect a violation of the isa rule, it is a clear indication that you have
made an invalid generalization. However, not all cases where the isa rule holds
are good generalizations. Other important points you should check are:

■ If you have given the subclass or superclass ambiguous names (such as ‘Bus’ as
described earlier), you will often create bad generalizations.

Figure 2.4 Basic inheritance hierarchy of bank accounts

Account

SavingsAccount MortgageAccountCheckingAccount

Definition: inheritance is the implicit possession by a subclass of features defined in a 

superclass. Features include variables and methods.
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■ A subclass must retain its distinctiveness throughout its life. For example if you
decided to create a subclass OverdrawnAccount, the isa rule appears to hold: ‘An
overdrawn account is an account’. However, an overdrawn account will not
remain a distinct type of account once enough money is deposited into it.
Therefore this is not a good generalization; in fact, the class OverdrawnAccount
should not be a separate class.

■ All the inherited features must make sense in each subclass. In Figure 2.5 you
must ensure that each of the three subclasses can have a balance, an openedDate
and a creditOrOverdraftLimit. You must also make sure that it makes sense to
perform the operations credit and debit in each subclass, and that all methods of
these operations will behave consistently. You may think that debit would not
apply to MortgageAccount; however, remember that when the account is first
created, a large debit is made. We will discuss this issue more in the next section.

It is a common mistake for designers to
overlook these three checks. If the checks
are overlooked, the resulting code then
needs many special conditions to deal with
unwanted inheritance, and it becomes hard
to understand.

Key conclusions we can draw from the
above are: generalizations and their
resulting inheritance help to avoid
duplication and improve reuse; but poorly
designed generalizations can actually cause
more problems than they solve.

Figure 2.5 Inheritance hierarchy of bank accounts showing some attributes and operations

SavingsAccount MortgageAccount

collateralProperty
collateralValue

setCollateralValue()

CheckingAccount

withdrawUsingCheck()
calculateServiceCharge()

highestCheckNumber

Account

balance
openedDate
creditOrOverdraftLimit

credit()
debit()

The Liskov Substitution 
Principle
The Liskov Substitution Principle says
this: if you have a variable whose
type is a superclass (e.g. Account),
then the program should work
properly if you place an instance of
that superclass or any of its
subclasses in the variable. The
program using the variable should
not be able to tell which class is
being used, and should not care.
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Example 2.2 Organize the following set of classes into hierarchies: Circle, Point, Rectangle,
Matrix, Ellipse, Line, Plane.

Figure 2.6 shows one possible solution – there can often be more than one
acceptable answer to this kind of question.

The following are some possible changes to Figure 2.6 that can be debated:

■ You could consider a Point to be a degenerate Shape. But how many dimensions
does it have? A point could have any number of dimensions. Perhaps what is
needed is to have separate classes Point2D and Point3D.

■ A Line, similarly, can be 2-dimensional or 3-dimensional.

■ The fact that Circle is shown as a subclass of Ellipse is interesting.
Mathematically, a circle has all the properties of an ellipse. An ellipse has two
foci; in a circle these two foci are constrained to be equal to each other – at the
center. In an object-oriented system, subclasses must have all the properties of
their superclass; in the case of the ellipse, a valid operation is to change one of
the foci. This implies we should be able to change one focus of a Circle, which
is a bit odd. We could permit this as long as doing so automatically changes the
other focus so that the circle remains a circle with one center. However, this
solution is not entirely satisfactory since every instance of Circle must still have
two attributes to store the foci. An alternative sub-hierarchy, showing a
different way of arranging the attributes of circles and ellipses, is shown in
Figure 2.7. Yet another option is to get rid of the Circle class entirely and just
use the Ellipse class; you might then add a Boolean attribute constrainAsCircle
to Ellipse if you wanted certain ellipses to always remain circles.

Figure 2.6 A possible inheritance hierarchy of mathematical objects

MathematicalObject

Shape Point Matrix

Shape2D Shape3D

Ellipse Polygon Line Plane

Circle Quadrilateral

Rectangle
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Exercises

E10 Which of the following would not form good superclass–subclass pairs
(generalizations), and why? Hint: look for violations of the isa rule, poor
naming, and other problems.

(a) Money – CanadianDollars 

(b) Bank – Account

(c) OrganizationUnit – Division

(d) SavingsAccount – CheckingAccount

(e) Account – Account12876

(f) People – Customer

(g) Student – GraduateStudent

(h) Continent – Country

(i) Municipality – Neighborhood 

E11 What problems could arise by making Quadrilateral and Rectangle subclasses of
Polygon? What alternatives are possible? What are the advantages and
disadvantages of each alternative?

E12 Organize each of the following sets of items into inheritance hierarchies of
classes. Hints:

■ For each set of items, you will have several distinct hierarchies.

■ You will need to add additional classes to act as superclasses. You will also need
to change some names, and you will discover that two items may correspond to
a single class.

■ Think of important attributes present in your classes. Make sure that attributes
in a superclass will be present in each of its subclasses.

■ Remember to use the isa rule.

Figure 2.7 An alternative approach to defining ellipses and circles that avoids difficulties that 
would occur if CCCCiiiirrrrcccclllleeee were a subclass of EEEElllllllliiiippppsssseeee

EllipticalShape

Ellipse

focus1
focus2

Circle

center
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a) Vehicle Car Sports car

Airplane Amphibious vehicle Engine

Jet engine Electric motor Wheel

Transmission Truck Bicycle

   

b) Edition of book Copy of book Volume

Issue of newspaper Magazine Work of literature

Newspaper Issue of magazine Publication

Chapter Author Publisher

Copy of issue of 
magazine

 

   

c) Schedule Bus Trip

Chartered bus Bus route Express bus

Luxury bus Tour bus Route

Unscheduled trip   

   

d) Student Course Professor

Graduate student Course section Program of studies

Teaching assistant Administrative assistant Technician

Classroom Time slot Meeting room

Building Gymnasium Registration system 

Laboratory Tutorial Exam

  

e) Currency Exchange rate Bank

Financial instrument Credit card Debit card

Check Credit Union Bank machine

Visa MasterCard Loan

Bank account Bank branch Canadian dollars

US dollars  

f) Hotel room Meeting room Ballroom

Suite Hilton (the hotel chain) Ottawa Hilton

Meeting organizer Catered function Booking

Guest Reservation Meeting

Conference Conference room Item on bill

   

g) Insurance policy Claim Deductible

Insurance client Insured property Automobile policy

Home policy Life insurance Beneficiary

Policy renewal   
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2.6 The effect of inheritance hierarchies on polymorphism and variable declarations

Much of the power of the object-oriented paradigm comes from polymorphism
and inheritance working together. In this section we will investigate this synergy.

Figure 2.8 shows an expanded version of the hierarchy of two-dimensional
shapes from Figure 2.6, also incorporating the EllipticalShape class from
Figure 2.7, as well as a modified Polygon hierarchy. We will use Figure 2.8 to
illustrate several important points; you should study it and try to understand it
before proceeding.

h) Telephone Phone line Digital line

Phone call Conference call Call waiting

Extension Feature Call on hold

Caller Call forwarding Forwarded call

Telephone number Voice mail message Voice mail

Voice mail box  

Figure 2.8 A hierarchy of shapes showing polymorphism and overriding

Shape2D

rotate()

translate()

changeScale()
getArea()
getPerimeterLength()

getCenter()

getBoundingRect()

center

EllipticalShape

semiMajorAxis

Polygon

getVertices()
getBoundingRect()

Ellipse

getSemiMajorAxis()
getSemiMinorAxis()

rotate()

getArea()
getPerimeterLength()

getOrientation()
getBoundingRect()

semiMinorAxis

changeScale()

getFocus1()
getFocus2()

orientation

Circle

rotate()

getArea()
getPerimeterLength()
getBoundingRect()

changeScale()

getRadius()

SimplePolygon

orientation

rotate()
getOrientation()

ArbitraryPolygon

points

addPoint()
removePoint()
rotate()
changeScale()
getArea()
getPerimeterLength()
getVertices()

RegularPolygon

numPoints
radius

changeNumPoints()
changeScale()
getArea()
getPerimeterLength()
getVertices()

Rectangle

height
width

setHeight()
setWidth()

changeScale()

getArea()
getPerimeterLength()
getVertices()
getBoundingRect()
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Figure 2.8 is a four-level hierarchy with four generalizations. The classes at the
very bottom of the hierarchy are called leaf classes.

The following explains certain details of some of the classes:

■ An Ellipse is defined using the lengths of two axes: the longer one is called the
major axis, and the shorter one the minor axis. The semi-major axis is half the
major axis; in a circle, the semi-major axis and the semi-minor axis are equal to
the radius.

■ A RegularPolygon is any shape whose vertices can be all placed on the
circumference of a circle and whose side lengths are equal; for example, an
equilateral triangle, square or regular pentagon.

■ An ArbitraryPolygon is any polygon that is neither a rectangle nor regular. It is
defined by a set of points.

Class Shape2D lists seven operations. Since this is the ultimate superclass of the
hierarchy, these seven operations are all inherited by each of the other eight
classes. This means that each operation must make sense and behave consistently
in all the classes. In this example, the various subclasses will use different
methods for most operations. We will discuss this further, below.

Three of the operations in Shape2D modify the shape. The effect of these
operations is illustrated in Figure 2.9.

■ rotate: takes one argument, the number of degrees to rotate the shape. The
shape is modified as a result of the rotation.

■ translate: takes two arguments, an x-amount and a y-amount and moves the
shape in the x- and y-directions.

■ changeScale: takes one argument, a percentage, and makes the shape bigger or
smaller, keeping its center the same.

Figure 2.9 Effects of certain operations on an EEEElllllllliiiippppsssseeee and an AAAArrrrbbbbiiiittttrrrraaaarrrryyyyPPPPoooollllyyyyggggoooonnnn

getBoundingRect

rotate(30)

translate(5,5)

changeScale(50)

changeScale(150)
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The getCenter operation simply returns the value of the center instance variable.
The getArea and getPerimeterLength operations compute a value and return it.
The getBoundingRect operation returns a non-rotated Rectangle that would be just
big enough to fit around the shape – this is also illustrated in Figure 2.9.

Abstract classes and abstract methods
There are separate methods in four different classes to compute the operation
rotate. Each method takes advantage of properties unique to its class:

■ Circle: rotating a circle does not change it! Therefore the rotate method in
class Circle would do absolutely nothing. The method would exist but would
immediately return.

■ SimplePolygon and Ellipse: these classes have an attribute called orientation,
which the rotate method simply has to modify.

■ ArbitraryPolygon: rotating one of these would be a little more complex. See a
textbook on computer graphics to learn precisely how to do it.

However, it is not possible to write a method to rotate instances of the
superclasses of these four classes. This is because there is not enough
information available in those classes to do the rotation. This leads us to two
important conclusions:

1. The rotate operation found in Shape2D is an example of an abstract operation. If a
class has an abstract operation, it means that no method for that operation exists in
the class, although the operation makes logical sense for it and for all the classes
below it in the hierarchy. Abstract operations are shown in italics in Figure 2.8. Leaf
subclasses have to have or inherit implementations of each operation – in other
words, you can have abstract operations anywhere except leaf classes.

2. The four classes, Shape2D, EllipticalShape, Polygon and SimplePolygon, must be
abstract classes. An abstract class is one that cannot have any instances. Any
class, except a leaf class, can be declared abstract; however, a class that has one
or more abstract methods must be declared abstract. The main purpose of an
abstract class is to hold features that will be inherited by its subclasses. If a class
is not abstract, then it is said to be concrete, and instances of it can be created.
Leaf classes must be concrete, although it is also possible to have concrete
classes higher in the inheritance hierarchy.

You should also note the following other interesting facts about abstract classes
and methods in the shape hierarchy of Figure 2.8:

■ In addition to rotate, all but two of the other operations in class Shape2D are
abstract. As required, these have concrete implementations by the time the leaf
classes are reached. However, the concrete implementations do not actually
have to be defined in the leaf classes – they can be defined higher in the
hierarchy. For example, rotate is defined in the abstract class SimplePolygon.
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■ Class SimplePolygon is abstract, even though it has two concrete methods. This
is because it neither has nor inherits concrete implementations of operations
changeScale, getArea and getPerimeterLength.

■ There is an abstract operation getBoundingRect in class Shape2D of Figure 2.8. It
has a concrete implementation in Polygon, since it is possible to design a general
algorithm for computing the bounding rectangle if you can compute the
vertices of a shape – and class Polygon does have such a method, called
getVertices.

■ Class Polygon declares the operation getVertices, yet the operation does not
exist in its superclass Shape2D. This is because it only makes sense to talk about
vertices of polygons; no vertices exist in smooth-curved shapes such as ellipses.

■ Operation getVertices is abstract in Polygon, even though the concrete method
getBoundingRect calls it. Such calling of an abstract operation by a concrete
method is quite legal and in fact is considered good design practice.

■ Operation getVertices has concrete implementations in the three leaf classes
below Polygon, but not in the immediate subclass SimplePolygon, because there is
not enough information to compute the vertices in that class.

■ The attribute semiMajorAxis is present in EllipticalShape; however, it is not
accessed by any method in that class. This is because Circle accesses it using the
method name getRadius – it would be odd to be able to talk about the semi-
major axis of a circle even though mathematically it is equivalent to the radius.

Overriding
In addition to the implementation of getBoundingRect in Polygon, there is also
another concrete implementation in class Rectangle (which is a subclass of
Polygon). This second concrete implementation is said to override the version of
getBoundingRect that otherwise would be inherited from Polygon. The
getBoundingRect method in Rectangle computes the same result as the method in
Polygon, but the overriding version in Rectangle can be more efficient: in those
cases where the Rectangle is not rotated, its bounding rectangle is the Rectangle
itself.

In general, there are three valid reasons for overriding methods: restriction,
extension and optimization:

■ Overriding for restriction occurs when the overriding method prevents a
violation of certain constraints that are present in the subclass, but were not
present in the superclass.

For example, imagine there was a changeScale(x,y) method in Shape2D that
allowed a shape to be distorted by having its width and height modified by
different percentages. It would be reasonable to use this method to modify any
ArbitraryPolygon, Ellipse or un-rotated Rectangle. However, scaling a Circle in
this way would mean that it would no longer be a Circle – it would be an Ellipse.
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You might therefore consider creating an overriding
version of changeScale(x,y) in Circle which throws an
exception if x and y are not equal to each other. Similarly,
non-uniform scaling of a RegularPolygon should be
forbidden.

As another example of overriding for restriction,
imagine adding a concrete version of debit in

MortgageAccount in Figure 2.5 that restricts your ability to withdraw money from
the account: MortgageAccount might allow you to only withdraw a fixed amount
when the account is first opened. Any other attempt to withdraw money would
throw an exception.

Overriding for restriction can have some undesirable effects. It is important
to ensure that all polymorphic methods implementing an abstract operation
behave consistently. For example, if the implementations of debit in some classes
may throw an exception, while other implementations of debit do not declare
that they too may throw the exception, then consistency is being violated. The
programmer can solve this problem by declaring that the exception may be
thrown by any of the polymorphic implementations of debit, even though he or
she knows that certain of the methods will not in practice do so. Users of the
operation must therefore always prepare for the exception (in Java, by using a
try–catch construct).

■ Overriding for extension occurs when the overriding method does basically
the same thing as the version in the superclass, but adds some extra capability
needed in the subclass. For example, in Figure 2.5, there might be a version of
debit in SavingsAccount that would charge an additional fee if your bank balance
was less than $1500.

■ Overriding for optimization occurs when the overriding method in the subclass
has exactly the same effect as the overridden method, except that it is more
efficient. Above, we described a case of this in which getBoundingRect can often be
computed more efficiently in the Rectangle class than in the general case.

Exercises

E13 This question requires knowledge of very basic geometry. Describe in one
paragraph how the different polymorphic implementations of the following
operations from Figure 2.8 would work in classes Rectangle, RegularPolygon, Circle
and their superclasses. You do not need to write any code; instead just describe
what attributes would be used and/or modified, and the formula to be used (if any).

(a) translate

(b) changeScale

(c) getArea

(d) getCenter 

C++ terminology for abstract 
operations
You may hear the term ‘pure virtual
function’.  This is C++ terminology for
‘abstract operation’.
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E14 Explain how you would incorporate the operations flipHorizontally and
flipVertically into the hierarchy of Figure 2.8. Describe which classes (if any)
should declare these to be abstract operations, and which classes should have
methods for them.

E15 Explain how you would incorporate the following classes into the hierarchy of
Figure 2.8. Describe the attributes and operations that would be present in
these classes.

(a) IsoscelesTriangle

(b) Square

(c) Star

E16 Describe what the methods addPoint and removePoint in class ArbitraryPolygon
would have to do. Hint: think about what attributes would be affected, and
how. You do not need to write any code.

E17 Imagine you want to create an operation called getEnclosingCircle in the
hierarchy of Figure 2.8. This operation would compute the smallest circle that
can completely enclose any shape. Describe the methods that you think would
be needed to implement this operation.

Variables and dynamic binding
Imagine you are programming in an object-oriented language and declare a
variable called aShape that has type Shape2D. What this means is that as the
program runs, the variable can contain objects of any concrete class in the
hierarchy of Shape2D.

If you then attempt to invoke the operation getBoundingRect on the variable
aShape, the program will make the decision about what method to run ‘on the fly’.
The decision-making process is called dynamic binding (or sometimes late
binding or virtual binding).

You can imagine that the following procedure is used to perform dynamic
binding:

1. The program looks in the class of the object actually stored in the variable. If
there is a concrete method for the operation in that class, then it runs the
method.

2. Otherwise, it checks in the immediate superclass to see if there is a method
there; if so, it runs the method.

3. The program repeats step 2, looking in successively higher superclasses until it
finds a concrete method and runs it.

4. If no method is found, then there is an error.
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Therefore, for example, if you had an instance of RegularPolygon in the aShape
variable, and invoked the operation getBoundingRect, the program would look
first in RegularPolygon, then SimplePolygon and finally Polygon before it finds a
method to run.

If aShape had contained an instance of Rectangle, however, then the program
would find a getBoundingRect method in that class immediately.

It would be inefficient if programs ran the above dynamic binding algorithm
for every procedure call, therefore an optimized approach using a lookup table
is used instead. However, programmers do not normally need to be aware of the
optimized mechanism.

Dynamic binding is what gives polymorphism its power. It relieves
programmers from the burden of having to write conditional statements to
explicitly choose which code to run; with dynamic binding, that work is done
automatically by the programming language.

Dynamic binding is only needed when the compiler determines that there is
more than one possible method that could be executed by a particular call.
Therefore, for example, if you declared a variable to have type Rectangle, and you
could be sure that Rectangle would have no subclasses, then only a Rectangle
could be put in that variable. In such a case, the compiler can statically
determine precisely which method to call. 

Exercise

E18 In which of the following situations would dynamic binding be needed?
Assume that the compiler knows that no new classes or methods can be added
to the hierarchy. 

Interfaces

An interface in Java is very much like an abstract class, except that it can have
neither instance variables nor concrete methods – it is basically a named list of
abstract operations. We instead create several implementing classes (rather than
subclasses) of an interface that must implement the abstract operations. A class
can implement multiple interfaces, but can have only one superclass.

 You have a variable of type: You invoke the operation:

a) Rectangle getPerimeterLength 

b) SimplePolygon getCenter 

c) Polygon getBoundingRect 

d) EllipticalShape getScale 

e) RegularPolygon translate 
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You will see many interfaces built into Java: for example Comparable is an
interface that defines operations that allow objects to be compared, and Runnable
is an interface that allows an object to execute as a thread.

A key feature that gives interfaces their power is that you can declare a
variable with an interface as its type. This means that an instance of any class
that implements the interface can be put in the variable. With the variable, you
can then call any of the operations defined in the interface – dynamic binding
operates in the same way as with generalization.

We will see in Chapters 5, 6 and 9 that interfaces are very useful for
creating good-quality designs.

2.7 Concepts that define object orientation

We have looked at several important aspects of object orientation. It is now
time to summarize what we have presented and, at the same time, point out
the essential features that distinguish an object-oriented language or system
from one that is not object oriented. To be called object oriented, a language
needs to have the following features:

■ Identity. The language must allow a programmer to refer to an object without
having to refer to the instance variables contained in the object. Every object
has a unique identity; therefore objects that contain instance variables with the
same values must be recognized as different objects.

■ Classes. The programmer must be able to organize the code into classes,
each of which describes the structure and function of a set of objects.

■ Inheritance. There has to be a mechanism to organize these classes into
inheritance hierarchies, where features inherit from superclasses to subclasses.

■ Polymorphism. There has to be a mechanism by which several methods, in related
classes, can have the same name and implement the same abstract operation. There
must consequently be a dynamic binding mechanism that allows the choice of
which method to run to be made during execution of the program.

Sometimes, languages or systems are sold that purport to be object oriented;
however, without these key capabilities the term object oriented should not
be applied. The term ‘object based’ is sometimes used instead of ‘object
oriented’ for technologies which have features like objects or classes but
which are perhaps missing inheritance, polymorphism or both.

The following four concepts are enhanced by the presence of the points
listed above, and are also integral to object-oriented languages and systems.
They allow us to engineer software effectively. We will revisit some of these
issues later in the book.

■ Abstraction. As discussed at the beginning of the chapter, creating an
abstraction means creating a simplified representation of something that you
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can work with in place of the original thing. Abstractions help you deal with
complexity because you can reason about the simpler abstractions instead of
the full details of something. There are many abstractions in an object-oriented
program:

❏ An object is an abstraction of something of interest to the program,
normally something in the real world such as a bank account.

❏ A class is an abstraction of a set of objects; at the same time it also acts as an
abstract container for the methods that operate on those objects. The
abstraction is improved if fewer methods are public.

❏ A superclass is an abstraction of a set of subclasses: you can declare a
variable to be of a certain class, and not care that instances of its subclasses
may be put in the variable. An interface is a similar but even better
abstraction since it has fewer details defined (only abstract operations).

❏ A method is a procedural abstraction that hides its implementation: you
can call the method without having to know the implementation.

❏ An operation is an abstraction of a set of methods. Better abstraction is
achieved by giving an operation fewer parameters.

❏ Attributes and associations are abstractions of the underlying instance
variables used to implement them.

■ Modularity. An object-oriented system can be constructed entirely from a set
of classes, where each class takes care of a particular subset of the functionality
(functionality related to a given type of data), rather than having the
functionality spread out over many parts of the system.

■ Encapsulation. A class acts as a container to hold its features (variables and
methods) and defines an interface that allows only some of them to be seen
from outside.

■ Abstraction, modularity and encapsulation each help provide information
hiding. This arises when software developers using some feature of a
programming language or system do not need to know all the details; they only
need to know sufficient details to use the feature. The result is that the
developers have less confusing detail to understand and will therefore make
fewer mistakes. Hence they can work effectively with larger systems.

Exercise

E19 Search the Internet for programming languages, databases or other tools on the
market that call themselves object oriented. See if you can determine whether
the claim of being object oriented is valid.
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History of object orientation – programming languages
The first object-oriented programming language was Simula-67.  This language allows programmers to

simulate the way objects behave in the real world. For example, a simulation application might model

cars approaching an intersection controlled by traffic lights.  The objects in this simulation would include

cars, lights and traffic lanes.  When running a Simula program, each object is represented by a ‘chunk’ of

data. All the procedures that operate on that object are found together in a class, so that the

programmer can easily change the behavior of a car or a traffic light without having to search through

the entire program.

Although Simula-67 was intended as a special-purpose simulation language, software

developers gradually recognized that a wide variety of programs would be easier to develop and

understand if organized this way.  Although Simula is still used today, mostly in Scandinavia, it

never gained widespread popularity.

In the early 1980s a new object-oriented language called Smalltalk gained popularity. Smalltalk

was developed at Xerox PARC (Palo Alto Research Center).  This research lab is also credited

with giving rise to many other inventions, which we take for granted today: graphical user

interfaces, the mouse, the laser printer, etc.

Smalltalk has many features that were innovative at the time. It has a simple syntax that is

quite unlike that of other popular languages. It has a large library of reusable code – and

programmers have access to all the source code for the library.  Smalltalk popularized bytecode,

platform independence and garbage collection, as now found in Java.

Smalltalk is still used today and has a loyal following, but it was rapidly overtaken in the late

1980s by a new language called C++.  The developer of C++, Bjarne Stroustrup, recognized the

advantage of object orientation but also recognized that there were tremendous numbers of

programmers of the C language who wanted to take advantage of their C expertise and C’s

execution speed. He thus added object-oriented extensions to C and the new language became

rapidly dominant.

However, over 15 years of experience has shown that C++ has certain drawbacks. Its syntax is

quite complex and it is too easy to create code that has bugs. Large C++ programs have thus been

found to be hard to maintain – they deteriorate rapidly as many programmers make changes.

In 1991, a group of engineers at Sun Microsystems started a project to design a programming

language that could be used in consumer ‘smart devices’. Knowing the strengths and weaknesses

of C++, Smalltalk, and a third language called Objective-C, they invented a language initially called

Oak. This borrowed the C syntax from C++, and many of its other essential features from

Smalltalk. Some of the more troublesome features of C++, such as multiple inheritance and the

ability to create pointers to arbitrary parts of memory, were eliminated.

Unfortunately, the team faced difficulties trying to sell Oak. It was only when the Internet

gained popularity, with the advent of the World Wide Web in 1994, that Sun saw an opportunity

to exploit the technology.  The new language, renamed Java, was formally presented in 1995 at

the SunWorld ’95 conference.

More recently, Microsoft has entered the fray with its language C# (C-Sharp). C# has very

many similarities with Java, but some subtle and interesting differences. C# is one of several

languages that can run on Microsoft’s Common Language Runtime, and is part of its .Net

framework.  Anyone who knows Java should be able to learn C# quite easily.

We will continue this history of object orientation in Chapter 5, where we will look at

methods and notations for describing object-oriented systems.
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2.8 A program for manipulating postal codes

On the book’s web site (www.lloseng.com) you will find a Java program
designed to illustrate the most important features of Java, including inheritance,
polymorphism, string manipulation, access control. The program also
illustrates an important software engineering concept: separation of the user
interface from the functional part of a system.

The example is divided into three elements, as illustrated in Figure 2.10. The
first element is a hierarchy representing postal codes of different countries. The
second element is a new exception class. The third element is the PostalTest class
that allows the user to enter postal codes and test the facilities of the PostalCode
hierarchy.

The PostalCode hierarchy
The following are some design decisions you should study in PostalCode and its
subclasses:

■ PostalCode is declared as abstract, meaning that no instances can be created.
Two of its operations, validate and getCountry, are abstract, meaning that they
must be given concrete implementations in subclasses.

■ The operation validate is protected, and is called by the constructor. Its
concrete implementations in each subclass will throw a PostalCodeException
(described below) if the format of the code is invalid.

■ All the instance variables are declared private. All other classes, including
subclasses, can only access them using methods. This helps to improve
encapsulation.

■ There is a toString method, as should be provided in most Java classes.

There are three examples of subclasses of PostalCode. Each of these implements
the two abstract operations. For example, the validate method of one subclass,

Figure 2.10 Classes for manipulating postal codes, showing public methods

PostalCodeException

BritishPostalCode

getCountry()
validate()

CanadianPostalCode USZipCode

PostalCode

toString()
getCode()
getDestination()
setDestination()
validate()
getCountry()

PostalTest

main()

getCountry()
validate()

getCountry()
validate()
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CanadianPostalCode, ensures that the format is XNX NXN, where N is a number
and X is a letter; the first letter is also taken from a restricted set. The other
implementations of validate ensure that US postal codes have an all-numeric
format, while British postal codes adhere to their more complex alphanumeric
format. 

The PostalCodeException class
PostalCodeException illustrates the concept of the user-defined exception class.
Instances of this class are thrown when an error is found while validating a
postal code. A class that manipulates postal codes could choose to handle such
exceptions in any way it wishes.

The user interface class PostalTest 
The user interface class, PostalTest, has only a static main method and one private
static helper method called getInput. The code prompts the user for input and
then attempts to create an instance of one of the subclasses of PostalCode. If a
PostalCodeException is thrown, it tries to create an instance of other subclasses
until none remain. Then it prints out information about the result. Clearly this
is not a sophisticated user interface, nevertheless it is sufficient to test the
facilities of the PostalCode hierarchy.

It would be possible to put all the code from PostalTest into PostalCode – the
main method in PostalCode would then simply be used to test the class. This is, in
fact, a design alternative that some people would choose. We prefer to advocate
the complete separation of the classes that do the user interface work from the
functional classes.

PostalTest is a rather degenerate class in the object-oriented sense, since it will
never have any instances. If any instances were created, then they could do
nothing since there are no constructors, instance variables or instance methods.
The main method and its helper methods are class methods (also called static
methods), reminiscent of the procedural paradigm. For the purposes of having
a simple test class, we believe this is acceptable; however, you should be careful
not to force class methods to do work that would be better done in instance
methods.

Exercises

E20 Run the postal code program. Then carefully read through the code for all six
classes. Use the Java documentation to look up any methods or classes you do
not understand. 

E21 The way the program is written, letters in Canadian postal codes are only
accepted if they are upper case. On the other hand, letters in British postal
codes are accepted whether they are upper case or not. This is inconsistent.
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Modify the program so that user input of upper or lower case is accepted, and
the input is converted to upper case immediately.

E22 Describe how you would design the following modifications to the postal code
program. Think carefully about whether there should be one method, or
several different polymorphic methods. In the latter case, think about whether
there should be an abstract method in the superclass and concrete methods in
the subclasses, or else a concrete method in the superclass and one or more
overriding methods in the subclasses.

(a) There should be an operation length that returns the number of characters
in a postal code.

(b) There should be a file that contains postal codes, one per line. There should
then be an operation called isOnRecord that returns true if a postal code is in
this file. Do not worry for now about the efficiency of this operation in the
case of very large files, although you should be aware that this would be a
concern in a production-quality system. Hint: investigate class
FileInputStream.

(c) For each country, there should be a file that contains, on each line, a postal code
prefix followed by the name of a destination of such postal codes. For example,
class BritishPostalCode might use the file BritishPostalDestinations.txt, and
on one of its lines it might contain ‘SW Southwest-London’. The parts of the
program that set the destination should read these files.

E23 Implement the designs you prepared in the above exercise.

E24 Add a new subclass representing postal codes for the fictitious country of
Ootumlia, whose format is always one or two letters, followed by a space,
followed by two numbers. You will have to modify the PostalTest class to
accommodate your new subclass, although you must not modify the PostalCode
class. 

2.9 Classes for representing geometric points

In this section we illustrate the use of the mathematical class library in Java. We
also illustrate how a seemingly simple problem can be solved in several rather
different ways. You will have the chance to analyze the advantages and
disadvantages of various alternatives.

The classes described in this section represent points on a 2-dimensional plane.
From mathematics, we know that to represent a point on a plane, you can use x
and y coordinates, which are called Cartesian coordinates. Alternatively, you can
use polar coordinates, represented by a radius (often called rho) and an angle
(often called theta). In the code we have provided, you can interchangeably work
with a given point as Cartesian coordinates or polar coordinates.
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Java already has classes for representing geometric points. Take a few
moments to look at classes Point2D and Point in the Java documentation.

We will call the point class presented here PointCP; its main distinguishing
feature from the built-in Java classes is that it can handle both Cartesian and
polar coordinates. We also provide a class called PointCPTest which, like
PostalTest, simply provides a user interface for testing. The public methods of
both classes are shown in Figure 2.11. The code for these classes can also be
found at the book’s web site (www.lloseng.com).

Class PointCP contains two private instance variables that can either store x
and y, or else rho and theta. No matter which storage format is used, all four
possible parameters can be computed. Users of the class can also call methods
convertStorageToPolar or convertStorageToCartesian in order to explicitly convert
the internal storage of an instance to the alternative format.

The above design of PointCP is certainly not the only possible design. Table 2.1
shows several alternative designs; the above design is Design 1.

Exercises

E25 Answer the following questions with respect to the above designs of the PointCP
class.

(a) Discuss why it might be useful to allow users of class PointCP (Design 1) to
explicitly change the internal storage format, using convertStorageToCartesian
or convertStorageToPolar.

(b) What might be a potential hidden weakness of these methods? Hint: what
could happen if one is called, then the other, and this process is repeated
numerous times?

(c) Write a short program to test whether the weakness you discussed in part b
is, in fact, real.

E26 Create a table describing the various advantages (pros) and disadvantages
(cons) of each of the five design alternatives. Some of the factors to consider
are: simplicity of code, efficiency when creating instances, efficiency when

Figure 2.11 Classes for representing points using both Cartesian and polar coordinates. Only 
the operations are shown

PointCPTest

main()

PointCP

getX()
getY()
getRho()
getTheta()
convertStorageToCartesian()
convertStorageToPolar()
toString()
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doing computations that require both coordinate systems, and amount of
memory used.

E27 Implement and test Design 5. You will also have to make some small changes to
PointCPTest. Hints: a) Do you still need the variable typeCoord? b) Do still you
need the third argument in the constructor?

E28 Run a performance analysis in which you compare the performance of Design
5, as you implemented it in the previous exercise, with Design 1. Determine the
magnitude of the differences in efficiency, and verify the hypotheses you
developed in E26.

E29 To run a performance analysis, you will have to create a new test class that
randomly generates large numbers of instances of PointCP, and performs
operations on them, such as retrieving polar and Cartesian coordinates. You
should then run this test class with the two versions of PointCP – Design 1 and
Design 5.

E30 Summarize your results in a table: the columns of the table would be the two
designs; the rows of the table would be the operations. The values reported in
the table would be the average computation speed. Make sure you explain your
results.

Table 2.1 Alternative designs for the PPPPooooiiiinnnnttttCCCCPPPP class

How Cartesian coordinates are 
computed

How polar coordinates are 
computed

Design 1: Store one type of 
coordinates using a single pair 
of instance variables, with a 
flag indicating which type is 
stored

Simply returned if Cartesian is 
the storage format, otherwise 
computed

Simply returned if polar is the 
storage format, otherwise 
computed

Design 2: Store polar 
coordinates only

Computed on demand, but 
not stored

Simply returned

Design 3: Store Cartesian 
coordinates only

Simply returned Computed on demand, but not 
stored

Design 4: Store both types of 
coordinates, using four 
instance variables

Simply returned Simply returned

Design 5: Abstract superclass 
with designs 2 and 3 as 
subclasses

Depends on the concrete 
class used

Depends on the concrete class 
used
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E31 Study the PointCPTest class. It has a complex pair of loops for obtaining input
from the user.

(a) Discuss whether you think the design is clear, and if not, why not.

(b) Design, but do not yet implement, an alternative to PointCPTest that does not
have the nested loops. What are the drawbacks of this alternative design?

(c) Implement and test your alternative design.

E32 In Design 5 of Table 2.1, we suggested creating an abstract superclass. Another
alternative (we can call it Design 6) would instead involve turning PointCP into
an interface. Different classes corresponding to designs 1 to 4 would implement
this interface.

(a) Design and implement this approach (with two different implementing
classes).

(b) What advantages and disadvantages does this approach have? 

2.10 Measuring the quality and complexity of a program

It is very important for engineers to be able to measure properties of the
materials and devices they work with. A civil engineer, for example, needs to
know the load capacity of a beam so that he or she can decide on its required
thickness or support. In software engineering, we work with pure information
as represented in programs, designs and other documents. Our goals of
measurement include: better prediction of the time and effort required for
development, and, as was discussed in Section 1.5, improved control of aspects
of quality such as reliability, usability and maintainability.

A metric is a well-defined method and formula for computing some value of
interest to a software engineer. Below are some of the metrics relevant to the
basic principles of object-oriented programming and design we have discussed
in this chapter. Each metric is useful as a rough indicator of some quality such
as maintainability, or of work involved in development. However, each metric
also has disadvantages, which we will address.

Lines of code: You will often notice people describe the amount of work they
have accomplished in terms of the number of lines of code they have written.
This is a very easy metric to compute and is easy to understand. In large systems,
the term KLOC is used, which means thousands of lines of code. A program with
more lines of code will typically take more time to develop and maintain than a
program with fewer lines of code. Unfortunately, this is not always the case: a
smaller program may be more technically complex than a larger program and
therefore require more development time; also, either program may be better
designed and therefore have fewer defects; finally, a programmer can add
duplicate or unneeded lines to make the system appear bigger than it should be.
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For these reasons it is considered unfair to judge a programmer’s abilities based
solely on the number of lines of code she or he has developed; it is also not
reasonable to predict future maintenance based exclusively on this metric.

Uncommented lines of code: Sometimes instead of counting all the lines in a
source code file, only the lines containing actual source code statements are
included; blank lines and those with just comments are left out. This can result
in a less biased metric: a programmer could otherwise add extra unneeded
comments or blank lines to make the amount of code appear greater. However,
the other problems with lines of code mentioned above still remain.

Percentage of lines with comments: It is considered a sign of more
maintainable code if it has lots of informative comments – in some systems up
to 50% is desirable for this metric. However, the comments have to be
informative. Also, well-structured code with better choices for variable and
method names can be self-documenting and therefore require fewer comments. 

Number of classes: This is often a good indicator of the overall size of a design.
Its main weakness is that the number of classes can be affected significantly by
the quality of the design. Some programmers, particularly when they are used
to procedural programming, will create too few classes that are too complex; on
the other hand, some programmers will create redundant and useless classes.

Number of methods per class: If a class has a very large number of methods it
is often a sign that it is too complex.

Number of public methods per class: Similar to the above, this should be very
small. Too many public methods suggests that methods that ought to be private
are being made public; alternatively, classes may simply be too complex.

Number of public instance
variables per class: Ideally this
should be zero – it is good practice
to make them all as private as
possible.

Number of parameters per
method: A low number is better
here – most methods should take
zero or one parameter.

Number of lines of code per
method: It is considered better to
have more, but smaller methods. In

Goals, Questions, Metrics (GQM)
When working with software engineering metrics, the
recommended practice is to first think of your high-level
goals: e.g.  ‘To improve maintainability’.  Then you should
think about the questions you can ask of the system or the
process that will help achieve these goals: e.g.  ‘How much
information is provided to the maintainer?’ or ‘How
complex is the system?’ Finally you choose or develop
metrics that will answer your questions: e.g. ‘Percent lines
with comments’ can help answer the ‘how much
information?’ question.

Merely computing numbers for metrics without
goals and questions is not considered an efficient way
to work. 
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Chapter 6 we will see a design pattern that directly leads to this.

Depth of the inheritance hierarchy: Very complex inheritance hierarchies can
be quite difficult to maintain. At the same time, having no inheritance at all
limits opportunities for reuse.

Number of overridden methods per class: A number too high here suggests
problems in the design. A subclass is supposed to be a specialization of its
superclass, not something completely different.

Exercises

E33 Compute values of each of the metrics described above for the following.
Where appropriate, compute values for the entire system, each package, each
individual class, and each method.

(a) The PostalCode system.

(b) The various designs of the PointCP system.

(c) Some other system you have developed.

E34 Analyze your data from the previous exercise. Rank the metrics in the order in
which you think they might:

(a) Act as indicators of the amount of work that would have been required to
develop the code.

(b) Act as indicators of the maintainability of the system.

2.11 Difficulties and risks in programming language choice and OO programming

The following are some of the factors arising from the material in this chapter
that can pose a risk to software engineering projects:

■ Language evolution and deprecated features. Every programming language
evolves, such that code written for earlier versions will not run or gives warning
messages threatening that it will not run in the future. This has been true for
Java – a list of deprecated classes and methods is available as part of the
standard Java documentation.
Resolution. Pay careful attention to the documentation describing which features
of Java are deprecated.

■ Efficiency can be a concern in some object-oriented systems. Most
implementations of Java run using a virtual machine. This means that Java
code tends not to be as efficient as code written in a language such as C++.
Java’s exception handling and safety checking also can consume considerable
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CPU time. But even object-oriented C++ code can be less efficient than purely
procedural code if it uses dynamic binding extensively and allocates objects
excessively. Some projects have failed because, when complete, the system did
not provide adequate performance.
Resolution. Prototype the system early, especially those parts that involve complex
algorithms, in order to determine whether performance will be satisfactory. Learn
about the different programming strategies that make a Java program run faster.
Consider languages other than Java for number-crunching applications. Profile
the running system to discover places where inefficiencies lie, then selectively
rewrite code to eliminate the worst inefficiencies.

2.12 Summary

In this chapter, we have reviewed the main principles of object orientation.
Object-oriented systems use classes and objects to provide software engineers
with a useful combination of data and procedural abstraction.

Some of the key features of object-oriented systems are that they provide
inheritance hierarchies and polymorphism. It is important to learn to use these
facilities correctly, since abusing them can result in designs that are difficult to
maintain. For example, you should check carefully to ensure that all
generalizations follow the ‘isa’ rule, and you should make sure that all features
present in a superclass also make sense in each subclass.

2.13 For more information

The following are just a few of the many books and web sites that present
information about basic object orientation and Java. Since Java is evolving, and
since new books and web sites about it appear almost weekly, check your favorite
bookstore and search the web for other material.

Books to help you learn Java and OO principles

■ C. Thomas Wu, An Introduction to Object Oriented Programming with Java, 3rd
edition, McGraw Hill, 2004. http://www.drcaffeine.com

■ Walter Savitch, Java: An Introduction to Computer Science and Programming,
3rd edition, Prentice Hall, 2003

■ Ken Arnold, James Gosling and David Holmes, The Java Programming
Language, 3rd edition, Addison-Wesley, 2000. The book by the originators of
Java; for those who already know something about programming. http://
java.sun.com/docs/books/javaprog/

■ Bruce Eckel, Thinking in Java, 3rd edition, Prentice Hall, 2002. Online version:
http://www.mindview.net/Books/TIJ/
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■ C. S. Horstmann, Core Java, Volumes I and II, 6th edition, Prentice Hall, 2002,
http://www.horstmann.com/corejava.html

Book on programming in general

■ J. Bentley, Programming Pearls, 2nd edition, Addison-Wesley, 2000, http://
www.cs.bell-labs.com/cm/cs/pearls/

Book on metrics

■ N. Fenton, and S. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, 2nd edition, Course Technology, 1998

Web sites about Java

■ Sun’s official web site: http://java.sun.com contains a wealth of information,
including official documentation, tutorials and downloads. You will be
particularly interested in The Java Tutorial: http://java.sun.com/docs/books/
tutorial and the Javadoc pages: http://java.sun.com/javadoc

■ The Java Lobby: http://www.javalobby.org is an excellent site containing Java
news and products

■ JavaWorld, an online magazine about Java: http://www.javaworld.com

Tools to help you develop Java code
We recommend that you use an integrated tool to help you develop Java code.
The following are some popular alternatives:

■ Borland JBuilder: Borland Corporation: http://www.borland.com

■ CodeWarrior: http://www.metrowerks.com

■ The Eclipse open source development environment: http://www.eclipse.org

Project exercises

The following are additional advanced exercises to help you tune up your Java
and programming skills. 

E35 Write a package that implements some of the hierarchy of two-dimensional
shapes, discussed earlier in this chapter, including the abstract classes and the
concrete classes Circle and Rectangle. Your main program should construct
some random shapes of the concrete classes, do some transformations on these
shapes, and then print out as much information as possible about the resulting
shape, including perimeter, area, and bounding rectangle. Use the PointCP class
presented earlier where possible. Hints:

■ For a circle, the area is πr2 and the perimeter (i.e. the circumference) is 2πr.
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■ To compute the bounding rectangle of an object you have to compute its
maximum and minimum points in the x- and y-directions.

■ As a challenging bonus, you can try to implement ArbitraryPolygon. Use one of
the collection classes to store the points. To compute the area, you can divide it
into triangles and sum the area of the triangles. The area of a triangle is 0.5 ×
base × height. To compute the bounding rectangle you will have to search
through the points to find the maximum and minimum x- and y-coordinates.

■ As another bonus you can try to implement the class Ellipse. The area is π × a ×
b where a is the semi-minor axis and b is the semi-major axis. The approximate
perimeter is . Computing the bounding
rectangle of an ellipse is a challenging problem if the ellipse is rotated.

E36 Compare the performance of ArrayList, Vector and ordinary arrays. You should
do a series of experiments where you do each of the following tests with the
three types of collection, timing the execution of each run. You should run each
case several times on the same computer to obtain stable average timings.

(a) Construct very large collections by putting random integers into each
collection one at a time. The random integers should range in value from
zero to nine. You should make each collection large enough so that the run
takes at least 10 seconds to add the integers in the case of an ArrayList. You
will have to do some initial experiments to find out what is a good size. You
would use the same size of collection for ArrayList, Vector and the array. The
ArrayList and Vector can be created by successively adding items and
allowing them to grow, while the array has to be created at its full size and
then populated with its contents. You could also try to experiment with the
case where you do create the ArrayList and Vector initially with their full size.

(b) Construct very large collections as in (i). Then use iterators to sum the
elements. Subtract the construction time to get a measure of how much
time the iteration takes. Use a for loop for the array, and an Iterator for the
Vector and ArrayList.

(c) Again, construct collections as in (i). Then iterate through the collections
removing all the even numbers. Subtract the construction time to get a
measure of how much time deletion takes. You can only easily do this for
Vector and ArrayList.

(d) Once again, construct collections. Then iterate though them adding an
extra element after every number 9 encountered. Subtract the original
construction time to get an idea of how long adding elements randomly
into collections takes. You can only easily do this for Vector and ArrayList.

Write up the results of your experiments as a formal laboratory report. Present
your data in suitable tables, and draw conclusions from an analysis of the data.
From your conclusions, develop recommendations to designers.

π 3 a b+( ) a 3b+( ) 3a b+( )–( )
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reusable technology 

In the last chapter, we refreshed your knowledge of the object-oriented
paradigm, an important software development technology that can be used to
construct complex software systems. It would be nice, however, if instead of
developing an entire system from scratch, you could simply adapt an existing
system to meet your needs. In other words, reuse is one of the keys to successful
software development. We will start our exploration of the software
development process by looking at a technology called frameworks that
promotes reuse.

In this chapter we will also introduce the client–server architecture, one of the
most widely used ways of structuring software systems. We will then introduce
a framework specifically designed for this book that allows software developers
to rapidly build many different client–server systems.

In this chapter you will learn about the following

■ Frameworks, reusable software subsystems that implement important
facilities which many applications can use.

■ The client–server architecture, an important way of designing programs in
which the software is divided into two main parts: a client program which
runs on each user’s computer, and a server program with which each user’s
client communicates in order to obtain services.

■ A client–server framework written in Java. We will use this as the basis for
many of the exercises presented in the book.
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3.1 Reuse: building on the work and experience of others

Where feasible, software engineers should avoid re-developing software that
others have already developed; in other words, they should try to reuse others’
work.

In order to facilitate reuse, software engineers should also make their designs
reusable. This means designing and documenting software so that it is
understandable and flexible enough be used in a variety of different systems.

The following are some of the types of reuse practiced by software engineers,
in increasing order according to the potential amount of work that can be saved
by the reuse:

■ Reuse of expertise. Software engineers who have many years of experience
working on projects can often save considerable time when it comes to
developing new systems because they do not need to re-think many issues:
their past experience tells them what needs to be done. If such people write
articles describing their experiences, this can help others to do better
engineering work.

■ Reuse of standard designs and algorithms. There are thousands of algorithms
and other aspects of designs described in various books, standards documents
and articles. These represent a tremendous wealth for the software designer,
since all he or she needs to do is to implement them if they are appropriate to
the current task.

■ Reuse of libraries of classes or procedures, or of powerful commands built
into languages and operating systems. Libraries and commands represent
implemented algorithms, data structures and other facilities. Software
developers always do this kind of reuse to some extent since all programming
languages come with some basic libraries. The more powerful the facilities that
come with a programming language, the more powerful and ‘high level’ the
language is. Applications like spreadsheets, word processors and database
programs have built-in languages with commands for such things as sorting,
searching and displaying dialogs. Using these languages, which are often called
fourth-generation languages, is an important form of reuse.

■ Reuse of frameworks. Frameworks are libraries containing the structure of
entire applications or subsystems. To complete the application or subsystem,
you merely need to fill in certain missing details. A framework can be written
in any programming language and can vary considerably in sophistication and
detail. We will discuss them in more detail in Section 3.3.

■ Reuse of complete applications. You can take complete applications and add a
small amount of extra software that makes the applications behave in special
ways the client wants. For example, you might take a standard email application
and add a feature that would always update its ‘address book’ with data from
the company’s employee and client databases. This type of reuse is often called
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reuse of commercial off-the-shelf or
COTS software, and the extra code
written is often called glue code. It is
common to write the glue code using
scripting languages which run using
an interpreter.

The elements reused in the latter three types of reuse are often collectively called
components.

Unfortunately, reuse is not as extensive in software engineering projects as
might be desirable. Some of the reasons for this are outlined in the next section.
In this book, we want to encourage you always to think in terms of reuse when
you develop software. Therefore, as a major part of this chapter, we will present
a reusable framework that will form the basis for many examples and exercises.

Exercises

E37 Search the Internet in order to build a list of sources of information about the
following things which can be reused during software development. Rate each
source on a scale from low to high, where low means the source is very
uninformative (perhaps just offering to sell a product), and high means it
provides a wealth of practical information.

(a) Wisdom and experience about software design (e.g. tips, guidelines etc.).

(b) Written descriptions of standard algorithms.

(c) Class libraries.

(d) Code repositories.

(e) Fourth-generation languages.

(f) Macro packages you can add to spreadsheet or word processor programs.

(g) Frameworks.

(h) Scripting languages used to glue together COTS programs.

E38 Pick a couple of the best sources of information from the last exercise and
discuss how they can help you achieve the reuse objective. 

3.2 Incorporating reusability and reuse into software engineering

In order for reuse to occur, software developers must not only reuse existing
good-quality components, but must also contribute to reusable components
that others can use.

Newton on reuse
Reuse is not a new concept. It was
Isaac Newton who said,  ‘If I have seen
further it is by standing on the
shoulders of giants.’
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Encouraging reuse: breaking the vicious cycle
Reuse and design for reusability, especially of frameworks, need to be made part
of the culture of software development organizations. In the many organizations
that do not practice reuse, software engineers tend to start design from scratch
for each new application either because there are no reusable components
available to reuse, or because they do not feel confident about reusing whatever
is available.

Developers are often willing to reuse packages of code delivered with a
programming language, but are reluctant to develop new ones, and are
especially reluctant to develop entirely new frameworks.

There are several reasons for this reluctance:

■ Developing anything reusable is seen as not directly benefiting the current
customer – after all, the current customer only needs one application, so why
take the extra time needed to develop something that will benefit other
applications? This argument often seems particularly convincing when
developers are under extreme deadlines.

■ If a developer has painstakingly developed a high-quality reusable component,
but management only rewards the efforts of people who create the more visible
‘final product’, then that developer will be reluctant to spend time on reusable
components in the future.

■ Efforts at creating reusable software are often done in a hurry and without
enough attention to quality. People thus lose confidence in the resulting
components, and in the concepts of reuse and reusability.

Therefore many organizations suffer from a vicious circle: developers do not
develop high-quality reusable components, therefore there is nothing good
enough to reuse. Since there is nothing good enough to reuse, software
developers take so much time to develop applications that they lack time to
invest in reusable frameworks or libraries.

This cycle can only be broken if software engineers and their managers
recognize the following points:

■ The vicious cycle exists, and costs money.

■ In order to save money in the longer term, some investment in reusable code is
normally justified.

■ Developers should be explicitly rewarded for developing reusable components.

■ Attention to quality of reusable components is essential so that potential
reusers have confidence in them.

■ Developing reusable components will normally simplify the resulting design,
independently of whether reuse actually occurs.

■ Developing and reusing reusable components improves reliability, and can
foster a sense of confidence in the resulting system.
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The latter three points are worth further discussion.
The quality of a software product is only as good as its lowest-quality reusable

component. It is no wonder then that many developers refuse to reuse
components in which they lack confidence. To combat this, development of
reusable components should be treated just like development of complete
applications. You need to do proper domain and requirements analysis for the
component; to design and document it properly; and to ensure its quality
through testing and inspection. We will discuss these activities later in the book.
In addition, it is important that software engineers be always available to
properly maintain a reusable component. If all of the above are performed, then
the component should be of high quality and hence it is more likely to be reused.

The process of developing reusable components, as part of a larger software
project, can have significant benefits, even if the components are never reused
outside the project. Looking at a problem at a more general level tends to make
it easier to understand: details relevant to only certain specific cases are
discarded, which leads to better abstractions and a simpler structure of the
resulting design. Also, the very process of developing reusable components
separately from their target system reduces the interconnections among parts of
the system, a quality we will call low coupling, and discuss in detail in Chapter
9. This low coupling makes the resulting application easier to understand,
modify and test.

In addition to simplifying design, reusable software tends to be more reliable.
The more places the reusable components are used, the more testing they get.
Also, they will be used in different contexts, thus their weak points are more
likely to be exposed. When developing a new system, you can substantially
increase confidence in it by composing it mostly of components that have
already been thoroughly validated.

Making it possible to find reusable components
Even if reusable components are available, software engineers must be able to
find them easily. An essential activity therefore is to carefully catalog and
document all the reusable components.

This catalog must be easy to search and must be kept up to date. In particular,
it is important to drop or deprecate older components that have been found to
be unreliable or have been superseded by better components. Deprecating a
component means declaring that it should not be used in subsequent designs,
but remains available to support existing designs that incorporate it.

3.3 Frameworks: reusable subsystems

Developing and using frameworks is an excellent way to promote reuse and
reusability.
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The key principle behind frameworks is as follows: applications that do
different but related things tend to have similar designs – in particular, the
patterns of interaction among the components tend to be very similar. This can
be true even if the applications are in quite different domains. To develop a
framework, you identify the common design elements and develop software
that implements these design elements in a reusable way.

The key thing that distinguishes a framework from other kinds of software
subsystem is that a framework is intrinsically incomplete. This means that there
are certain classes or methods that are used by the framework, but which are
missing. 

The missing parts are often called slots. The application developer fills in these
slots in an application-specific way to adapt the framework to his or her needs.
The more slots that the application developer must fill, the more complex the
framework is to use. At the same time, a framework with many slots tends to be
more flexible and therefore you are more likely to be able to reuse it to create a
wide range of applications across different domains.

Frameworks also usually have hooks: these are like slots, except that they are
places where developers can add optional functionality of different kinds. We
will see examples of hooks and slots in the framework we present later in this
chapter.

Developers using frameworks not only fill slots and hooks, but they also use
the services that the framework provides, i.e. methods that perform useful
functions. The set of services, taken together, is often called the Application
Program Interface, or API.

A framework enables the reuse of both design and code. The user of a
framework not only reuses the overall design envisioned by the framework’s
designer, but also a body of code that implements that design.

The following are some examples of frameworks:

■ A framework for payroll management. Most businesses have software that
includes a payroll module. The rules and features needed in a payroll system
will differ considerably, depending on the type of business, the local
jurisdiction and other software the company uses. However, basic elements
such as making regular payments, and computing taxes and other deductions,
will always exist. Although it is possible to purchase complete payroll
applications, many businesses are of sufficient complexity that such
applications do not implement all the needed features and rules. Instead of
developing a custom payroll package from scratch, several businesses could
adapt a common framework to their individual needs.

Definition: a framework is reusable software that implements a generic solution to a 

generalized problem. It provides common facilities applicable to different 

application programs.
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■ A framework for a frequent buyer ‘club’. In order to encourage loyalty,
many companies have a system that awards points to customers based on
the amount they purchase. The details of such systems will differ from
company to company, but they all have a lot in common. A company
implementing a new frequent buyer club would do well to base it on a
framework in order to avoid the cost of developing a system from scratch.
An airline frequent-flier plan could be built using the same framework
since it is merely a special kind of frequent buyer club.

■ A framework for course registration. Each institution has its own
academic rules, hence it is difficult to create a commercial application that
can be bought off the shelf to automate student information systems.
However, when software engineers are developing or replacing student
information systems, they could benefit from basing their designs on a
common framework.

■ A framework for e-commerce web sites. Most e-commerce web sites are
built on the same general model. There is a list of products to pick from;
when an item is selected it is added to a shopping cart; the site then
prompts for personal information and arranges for secure payment.
Individual web sites will want to have special features to differentiate
themselves in the market. However, developers could save a lot of work if
they had a framework that implemented the above general model.

Frameworks and product lines
A product line (or product family) is a set of products built on a common base
of technology. The various products in the product line have different
features to satisfy different market requirements. Many consumer products
are sold in product lines. For example, a company producing microwave
ovens will likely produce a very basic model that they can sell cheaply, and
successively more expensive models with increasingly sophisticated
features.

The software industry is following the product-line model more and
more. Underlying a software product line is a framework containing the
software technology common to all the products in the line. Each product is
then produced by varying the modules used to fill the hooks and slots; new
product variations can be produced quickly and easily.

For example, the software controlling a line of microwave ovens will be
based on a common framework. Each model in the line will then have
different combinations of software and hardware features. Doing this is far
more economical than designing each model separately.

Product lines are also found in many generic software products: you can
often purchase stripped-down ‘demo’ or ‘lite’ versions of software, as well as
‘pro’ versions with extra features. Sets of software versions each tailored to
specific languages or countries also represent product lines.
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Horizontal and vertical frameworks
A framework can be horizontal or vertical (Figure 3.1). A horizontal framework
provides general application facilities that a large number of applications can
use. For example, if many applications need to have a ‘preferences’ dialog that
allows users to specify many kinds of options, then a horizontal framework
could be designed that would provide general ‘preferences dialog facilities’ for
many different types of applications.

A vertical framework, often also called an application framework, provides
facilities that will allow easy development of a more specific class of application
programs. The microwave oven, frequent-buyer and course registration
frameworks are vertical in nature, while the e-commerce framework might be a
hybrid – a vertical framework composed of several horizontal frameworks that
perform the sub-functions (such as general secure payment facilities).

A vertical framework will have a more complete implementation, and may
have fewer slots and hooks. An interface in Java can be considered an extreme
example of a horizontal framework: there is no implementation, and all the
specified methods represent slots that must be filled.

An application will typically use only a subset of the framework’s services. For
example, a framework for a rental store could do such things as manage
membership, handle deposits, process rentals and returns, and compute
penalties for late returns. A developer using this framework to build an
application for a video rental store would likely ignore the facilities for handling
deposits, but would take advantage of the membership facilities. When building
a car-rental system, the opposite would be true.

Figure 3.1 Horizontal and vertical frameworks showing services (at the top) and fillers of 
hooks and slots (at the bottom). One of the hooks is not filled
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In Section 3.6, we will be studying a framework for the development of client–
server applications. This is a horizontal framework, since it is usable by a very
large number of applications that require a client–server architecture, but does
not itself provide any functions for the end-user.

Object-oriented frameworks
In the object-oriented paradigm, a framework is composed of a library of
classes. The set of services – the API – offered by the framework is defined by
the set of all public methods of the public classes.

Some of the classes in an object-oriented framework should be abstract. To
use the framework in the context of a new application, the developer creates
concrete classes that extend these abstract classes. The abstract methods in the
abstract classes are the slots that are filled when concrete methods are created in
the concrete subclasses.

Example 3.1 Imagine you are designing a framework that different libraries (of books, not
code) would be able to adapt to meet their needs. What kind of facilities would
you want to provide if you were designing such a framework? In what ways do
libraries differ such that they would need to use a framework rather than a
complete application? 

Answer: common facilities a library framework might provide include:

■ A user interface providing standard kinds of searches (e.g. by author, title and
subject) and the ability to browse through lists of books and periodicals, or
authors.

■ Basic classes representing books, clients, loans etc., along with common
operations that can be done with those classes.

Differentiating features of library systems might include:

■ The cataloging scheme (e.g. Dewey Decimal or Library of Congress).

■ The kind of information kept about each client and book (e.g. clients may have
different privileges, such as to be able to borrow only certain types of books).

■ Rules for types and lengths of loans, putting items on hold, payment of fines
etc.

■ The particular types of items that can be borrowed from the library. All
libraries have books, but libraries may contain such specialized items as videos,
maps or rare books that need special treatment.

■ Specific data unique to this library such as a specific style of barcodes placed on
books, multilingual support, etc.

■ Specific hardware the library possesses, such as particular types of barcode
scanners and checkout machines.
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■ The security mechanisms, such as who has authority to do what kind of
operations. Login passwords in a university library might, for example, be
integrated with login passwords for other university systems.

■ Integration of the system with other systems such as online library resources,
existing databases of books and periodicals, accounting systems (e.g. for fines).

Exercises

E39 Imagine you are designing a framework for the following classes of
applications. Describe what services you might put in the framework. Answer
this question using a simple list of things the system should be capable of
doing.

(a) A reservation framework. This could be expanded into an application to
reserve anything that needs reserving, e.g. dental appointments, meetings,
tickets at the theater, etc.

(b) A scheduling framework. This could be expanded for scheduling meetings,
trains, classes etc.

(c) A language-processing framework. This could be expanded to process a
programming language, a database query language or a command
language.

(d) An editing framework. This could be expanded to allow editing of text,
spreadsheets, and elements of different kinds of diagrams. Think about
common features of editing tools provide.

E40 For each of the three frameworks in the last exercise, what differentiating
features would software developers need to provide to build specific
applications? What hooks and slots should therefore be available?

E41 List as many types of applications as you can think of that might benefit from
the development of the frameworks in Exercise E39, so as to reduce the work
required to develop similar applications from scratch.

E42 Imagine an airline company asks you to develop the software for its frequent-
flier program. You choose to attack the development of this system by first
developing a framework. You consider two approaches:

(a) Developing and then adapting a vertical framework that provides the
facilities needed by several types of frequent-flier programs.

(b) Developing and then adapting a more horizontal framework that
encompasses any frequent-buyer program such as a hotel priority club, a
book club or a video rental store membership club.
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For each of these two approaches, sketch the resulting framework in terms of: (i)
the services it would have to offer, (ii) the slots that should be present, and (iii)
the hooks that would be useful.

E43 Prepare arguments for both sides of the following debate question: ‘Resolved:
when asked to develop a new frequent-flier system, developing a new frequent-
flier framework would be a waste of time.’ 

3.4 The client–server architecture

Software architecture is the branch of software engineering that deals with how
to organize and connect a set of software modules so that they can work together
with each other. There are many well-known architectures – one of the most
widely used is the client–server architecture. We will use this as the basis for
much of the design work in this book; we will look at other architectures in
Chapter 9.

We present the client–server architecture here since we want to introduce a
client–server framework upon which we will build some example applications.
You will find, in the coming sections, all the details you need to learn in order to
understand how our client–server framework works. Once you understand this
material, you will be able to reuse the framework to build a wide variety of
applications.

A distributed system is a system in which computations are performed by
separate programs, normally running on separate pieces of hardware, that co-
operate to perform the task of the system as a whole. A server is a program that
provides some service for other programs that connect to it using a
communication channel. A client is a program that accesses a server. A client
may access many servers to perform different functions, and a server may be
accessed by many clients simultaneously. A client–server system is a distributed
system involving at least one server and one client. A peer-to-peer system is a
client–server system in which programs can act as both client and server for
each other.

Figure 3.2 illustrates a server program communicating with two client
programs. The vertical lines represent the three programs involved. After
connecting, Client 1 sends a message, receives a reply and disconnects. Client 2
connects while Client 1 is still connected; it simply sends a message and then
disconnects. This diagram is an example of a UML sequence diagram; we will
study such diagrams in more detail in Chapter 8.

In general, the components of a client–server system interact as follows:

■ The server starts running.

■ The server waits for clients to connect. This waiting process is called listening.

■ Clients start running and perform various operations, some of which require
connecting to the server to request a service.
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■ When a client attempts to connect, the server accepts the connection if it is
willing.

■ The server waits for messages to arrive from connected clients.

■ When a message from a client arrives, the server takes some action in response,
then resumes waiting.

■ Clients and servers continue functioning in this manner until one of them
decides to shut down.

Normally, the action taken by the server includes sending a message back to the
client. Most servers have to be able to handle connections from many clients and
respond to messages from all the connected clients. How this is accomplished
will be described below.

It is possible for the same program to be both a client and a server at the same
time. For example, a database server might connect to another server in order
to obtain additional data. It is also possible for the client and server to be located
on the same computer, and run as separate processes. However, it is quite typical
for them to be located on separate computers, perhaps in different geographical
locations.

Table 3.1 lists some important kinds of systems that use the client–server
architecture.

Comparing the client–server architecture to alternatives
You could also have some mechanism other than client–server communication
for exchanging information. For example, one program could write a file, and
another program could read the file, or else both programs could read and write

Figure 3.2 A server program communicating with two client programs
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Table 3.1 Example client–server systems

System Clients Server

The World Wide Web Browsers that display web 
pages and post forms, e.g. 
Netscape Navigator or 
Microsoft Internet Explorer

Web servers that manage sets 
of web pages (as well as CGI 
programs and servlets), and 
send information to browsers 
when sent a URL 

Email Programs that read and send 
email. For example, Microsoft 
Outlook, Eudora

A post-office program that 
receives email from remote 
sites and holds it until an 
email-reading client is 
activated. The program also 
forwards outgoing mail from 
the client to other sites

Network file system Programs on any computer 
that access files that happen to 
be on other computers

A program whose main 
purpose is to allow clients on 
other computers to access files. 
Unix NFS and Novell NetWare 
are examples

Transaction processing system Programs that send specific 
requests to perform some kind 
of transaction, such as debiting 
a bank account or booking an 
airline ticket

A program that centralizes all 
the functions of some business 
and processes transactions 
when they arrive

Remote display system Programs that want to display 
information on the screen. 
Many Unix programs are 
capable of displaying graphical 
output on any computer 
running an X-Windows server

A program that manages the 
screen and allows applications, 
perhaps running on other 
computers, to display their 
output. A Unix X-Windows 
server is an important example

Communication system A program that allows users to 
send a message or maintain a 
conversation with users on 
another computer

A program that routes 
messages. It can have features 
such as ‘forwarding’ that 
people are familiar with from 
the telephone network

Database system Any application program that 
wants to query a database

A database management 
system that responds to 
requests to query or update the 
database
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the same database. This could work for some kinds of communication, but
would normally result in more complex and slower programs.

A single program that does everything can also be an alternative to a client–server
system. However, the client–server architecture can have the following advantages:

■ The computational work can be distributed among different machines.
Designers can choose to centralize some computations on the server and
distribute others to the clients. If everything is done on the server, then a
powerful computer may be needed. On the other hand, if the clients take care
of some computations then the server’s workload will be lighter.

■ The clients can access the server’s functionality from a distance.

■ The client and server can be designed separately, therefore they can both be
simpler than a program that does everything. The development work can be
done by independent groups, each only concerned with one part of the system
(plus how the client and server communicate). Since the groups may be able to
work on the client and server in parallel, they may be able to complete the
whole system sooner.

■ All the data can be kept centrally at the server, thus making it easier to assure its
reliability. For example, it can be easier to ensure that regular backups are made
of a single server’s data, rather than trying to separately back up data saved by
many separate programs.

■ Conversely, distributing data among many different geographically distributed
clients or servers can mean that if a disaster occurs in one place, the loss of data
is minimized.

■ The information can be accessed simultaneously by many users. It is possible to
accomplish this using a single large program, but that approach tends to be
more complex.

■ Competing clients can be written to communicate with the same server, and
vice versa; for example, different web browsers can communicate with the same
web server. This can encourage innovation.

Exercises

E44 For each of the following systems, discuss under what circumstances it would
be worth making it into a client–server system, as opposed to just creating a
single program that does everything. In the case of a client–server system,
indicate what work could be done by the server, and what by the client. In
answering this question, make your best judgment, using whatever knowledge
you already have about software applications.

(a) A word processor.

(b) A system for doctors to look up patient records when visiting a patient.
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(c) A home alarm system that monitors various sensors such as motion
detectors, smoke detectors and window-opening sensors.

E45 If you were designing a server for the following classes of applications, list the
kinds of main activities that you might expect the server to do:

(a) A server for an airline reservation system.

(b) A server that contains the master list of toll-free telephone numbers that
different telephone companies will need to access.

(c) A server that forms the center of a building alarm system; clients are
individual controllers for devices around the building.

(d) Your favorite site for buying books on the Internet.

(e) A web-based course registration system. 

Capabilities that must be provided when designing a server
A server has the following main activities to perform:

1. The server must initialize itself so that it is able to provide the required service.
For example, a server that handles airline reservations might load data
describing the available flights.

2. It must start listening for clients attempting to connect. Until it starts listening,
any client that attempts to connect will not succeed.

3. It must handle the following types of events originating from clients, which can
occur at any time:

❏ It accepts connections from clients. This process will normally involve
some form of validation to ensure that the client is allowed to connect.
While a client is connected, the server keeps a record of the connection.

❏ It reacts to messages from connected clients. This is the most important
thing the server does. In an airline server a message could be a request to
book a passenger, or a query to find out who is booked. In response to a
message from a client, a server can do many types of things, including
performing computations and obtaining information. Normally the server
will send some information back to the requesting client; it might also send
a message to another client or broadcast messages to many clients at once.

❏ It handles the disconnection of clients. A client can request disconnection
by sending a message to the server or by simply disconnecting itself; it
might ‘disappear’ if it crashes, or if its network connection goes down;
finally, the server might force a client to disconnect if the client is not
‘behaving’ well.

4. The server may be required to stop listening. This means that it will no longer
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accept new client connections, but it will continue to serve the currently
connected clients. This may happen when the number of connected clients
becomes too high; in such a situation the server rejects new clients so that it
does not run out of resources such as memory. When it has enough resources
again, it can start listening again. The server may also choose to stop listening
prior to shutting down, allowing the connected clients time to terminate their
work.

5. It must cleanly terminate, i.e. shut down, when necessary. Shutting down
cleanly means doing such things as notifying each client before terminating its
connection.

The above main activities of a server are illustrated in Figure 3.3, which is an
example of a UML state diagram. We will examine such diagrams in detail in
Chapter 8; for now, we believe that the diagram is sufficiently self-explanatory.

Later on in this chapter, we will see that in order to perform its work
effectively, a server needs to use several concurrent threads.

Capabilities that must be provided when designing a client
A client has the following main activities to perform:

1. Like the server, a client must initialize itself so that it is able to communicate
with the server. For example, it needs to know the network address of the
server.

2. It performs some work, which includes:

❏ Making a decision to initiate a connection to a server. If connecting to the
server fails, or the server rejects the connection, the client may try again or
may give up.

❏ Sending messages to the server to request services.

Figure 3.3 The main activities performed by a typical server

Waiting for Connections

handle
disconnection

start listening stop listening
terminate

For each connection:

For the server as a whole:

accept connection

Waiting

Initializing

Handling a Connection
do/  react to messages



 

Section 3.4 83The client–server architecture

3. It must handle the following types of events originating from the server, which
can occur at any time:

❏ It reacts to messages coming from the server. Often, messages received
from the server alternate with messages sent to the server – in other words,
the messages from the server are replies to the client’s requests. Sometimes,
however, an unanticipated message might arrive from the server; for
example, to announce that some new data is available or that the server is
shutting down.

❏ It handles the disconnection of the server. This might occur because the
server crashed or the network failed. It might also occur because either
the client or server requested disconnection. The important issue is that the
client knows it is no longer connected and makes decisions accordingly;
one possible action is to attempt to reconnect.

4. It must cleanly terminate. This includes disconnecting from a server if it is still
connected.

The above main activities of a client are illustrated in Figure 3.4, which shows
one possible sequence of activities. Note that the ‘regular’ work of the client may
need to proceed concurrently with the process of responding to events
originating from the server. This is indicated in Figure 3.4 by the horizontal bars
that show execution dividing into two distinct paths. We will consider
concurrency in more depth in the next subsection.

Figure 3.4 is an example of a UML activity diagram; we will discuss these
further in Chapter 8.

Concurrency in client–server systems
Client–server systems are inherently concurrent because the server runs at the
same time as the clients, normally (but not necessarily) on different computers.

Figure 3.4 The main activities performed by a typical client
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However, there is an added level of concurrency in both the client and server
sides. As mentioned above, the client will normally be doing the following
things concurrently:

■ Waiting for interactions with the end-user, and responding when interactions
occur.

■ Waiting for messages coming from the server, and responding when messages
arrive.

These generally have to be implemented using multiple threads of control that
can be concurrently executed. Without this mechanism, when the client is
waiting for one kind of input, it will not be able to respond to the other kind of
input. An exception to this can occur in clients that do not need to interact with
the user in any way.

Similarly, the server should normally have concurrent threads which do the
following:

■ Waiting for interactions with the user who is in charge of the server, and
responding as necessary. As with the client, some servers can dispense with
user interaction, but most will need a thread to handle basic controlling
commands.

■ Waiting for clients to try to connect and establishing connections as needed.

■ For each connected client, waiting for messages coming from that client, and
responding when messages arrive.

Servers thus normally operate with at least two concurrent threads, and in
general n+2 threads where n is the number of connected clients. Figure 3.5
illustrates the various threads executing in a typical client–server system. In this
diagram only one client (client A) is shown communicating with the server;
however, a thread for a second dormant client (client B) is also shown.

Thin- versus fat-client systems
The work of a client–server system can be distributed in several different ways.
In a thin-client system, the client is made as small as possible and most of the
work is done in the server. In the opposite approach, called a fat-client system,
as much work as possible is delegated to the clients. The two approaches are
illustrated in Figure 3.6.

An important advantage of a thin-client system is that it is easy to download
the client program over the network and to launch it. In Java, applets are usually
thin clients because it is desirable for them to download rapidly. An advantage
of fat-client systems is that since more computations are distributed to the
clients, better use is made of available computational resources; the server can
therefore be smaller or can be made to handle more clients.

One of the main considerations in choosing between a fat-client and a thin-
client system is how intensively the system will use the network to communicate
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– making the wrong choice can sometimes result in an overloaded network.
Depending on the nature of the system, either a fat-client or a thin-client system
may take the fewest network resources. In some cases, a thin-client system will
need to communicate the least because it generally sends only simple user
requests to the server. On the other hand, a thin client might need to
communicate with the server much more frequently than a fat client and to
download voluminous results of the server’s calculations.

Exercise

E46 In each of the following systems, list: (i) the work normally performed on the
server side; (ii) the work normally performed on the client side; (iii) the types
of information transmitted in both directions over the network; (iv) whether
the system is thin-client, fat-client or intermediate; (v) what could be done to

Figure 3.5 Threads in a client–server system

Figure 3.6 A thin-client system (a) and a fat-client system (b). The clients are at the top and the 
servers are at the bottom
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increase or decrease the proportion of work done on the client side; (vi) what
effects such changes would have on the network.

(a) to (e) The systems from Exercise E45.

(f)The world wide web in general (with browsers and web servers).

(g)The email system that you use. 

Messages in a client–server system: communications protocols
The types of messages the client is allowed to send to the server form a language.
The server has to be programmed to understand that language. Similarly,
another language consists of the types of messages the server is allowed to send
to the client.

When a client and a server are communicating, they are in effect having a
conversation using these two languages. As with a human conversation, there
have to be rules to ensure, for example, that the communicating parties take
turns to speak. The rules also describe the sequences of messages that the client
and server must exchange, in order to reach agreement on something or to
accomplish some other task.

The two languages and the rules of the conversation, taken together, are called
the protocol. The design of protocols can be very complex; in simple systems,
such as those discussed in this book, the protocol is merely a list of service
requests and their responses.

Example 3.2 Sketch a protocol for a simple program for manipulating files on a remote
computer. 

The following illustrates the kinds of messages sent between clients and the
server.

The above protocol does not deal with such things as security and logging in;
nor does it suggest how the information would be presented to the user in a
friendly way.

Messages to server Possible replies to client

getFile name fileContent, accessDenied, noSuchFileOrDir, failed 

saveFile name content successful, accessDenied, failed 

rename oldname newname successful, accessDenied, noSuchFileOrDir, failed 

delete name successful, accessDenied, noSuchFileOrDir, failed 

listDir fileList, accessDenied, failed 

changeDir name successful, accessDenied, noSuchFileOrDir, failed 

createDir name successful, accessDenied, failed 
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Exercise

E47 Propose a simple protocol for the systems described in question E45. 

Tasks of the software engineer when developing a client–server system
When designing a client–server system, the software engineer should make use
of a framework that provides much of the underlying mechanism. We will
describe such a framework later; however, the designer still has four key things
to design:

1. The primary work to be performed by both client and server; i.e. the
computations to be performed, data to be stored, etc.

2. How the work will be distributed – thin client, fat client, or intermediate.

3. The details of the set of messages that will be sent from the client to the server
and vice versa in order to accomplish the main activities, i.e. the
communications protocol.

4. What has to happen in the client and server when they start up, handle
connections, send and receive messages, and terminate.

3.5 Technology needed to build client–server systems

In order to build a client–server system you need a computer network as well as
software facilities for sending and receiving messages. There are several
standards for data communication, and most modern programming languages
include suitable data communication packages. This section discusses basic
Internet and Java technology you can use to construct client–server systems.

Some important network concepts
In order to be able to understand how a client and a server communicate with
each other, you must understand a few basic concepts about computer networks.
Many books have been written about networks, but the few details discussed
here will be enough to enable you to understand client–server design.

Since most computers today are connected to the Internet, we will assume
that clients and servers will communicate with each other using the Internet’s
main communications mechanism, TCP/IP.

‘IP’ stands for ‘Internet Protocol’. The main function of IP is to route messages
from one computer to another. Long messages are normally split up into small
pieces which are sent separately and then reassembled at the destination
computer. Since the Internet is a large heterogeneous network of many
computers and other devices, this routing process is quite complex. Luckily,
Internet users rarely need to worry about the complexity.
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‘TCP’ stands for ‘Transmission Control Protocol’. TCP handles connections
between two computers. A connection lasts for a period of time, during which
the computers can exchange many IP messages. In addition to simply
exchanging data, the computers use TCP to establish the connections, and to
assure each other that the messages they have sent each other have been
satisfactorily received. There is another mechanism called UDP that can be used
instead of TCP; however, we will not discuss UDP here.

Each computer using IP is called a host and has a unique address. In IP
Version 4, you may see this address written as four numbers (each from 0 to
255), separated by dots, such as 128.37.100.100; in IP version 6, to which many
networks are moving, the address appears as eight hexadecimal numbers
separated by colons. More commonly, however, you will see an IP address as a
more human-understandable dot-separated series of words such as
‘www.mcgraw-hill.com’. The numeric and word forms can be used
interchangeably. The numeric form is normally called the IP address, while the
word form is normally called the host name. If you strip off the first component
of the host name (everything up to and including the first dot) then the
remaining part typically represents a sub-network on which the host is running;
this is often called a domain. In the above example, ‘mcgraw-hill.com’ is a
domain. The ‘.com’ is a top-level domain.

Several servers can run on the same host. Each server is identified by a port
number, which is an integer from 0 to 65535. In order to initiate communication
with a server, a client must know both the host name and the port number. By
convention, port numbers from 0 to 1023 are reserved for use by specific types
of servers; for example, web servers normally use port 80. Knowing this
convention, a web browser that is only given a host name (in a URL) can connect
to a web server by assuming that the server is at port 80. We therefore should not

How to find out the IP address and host name of a computer
Using a web browser, you can normally find out the IP address of your computer (and a lot of other
information about your network connection) at privacy.net/analyze/.

In Windows XP you can find the IP address by first opening the ‘Network Connections’
control panel.  Then click on the icon for a connection and look in the ‘Details’ tab.  You can
also issue the command ‘ipconfig /all’ to obtain very detailed information including your host
name. 

On Mac OS X, you can find out the IP address by looking at the ‘TCP/IP’ tab of the
‘Network Preferences’ panel.

On most varieties of Unix, including Mac OS X, or Linux, you can find out your host name
by issuing the commands hhhhoooossssttttnnnnaaaammmmeeee or uuuunnnnaaaammmmeeee    ----nnnn. You can normally look up the IP address
corresponding to a host name using yyyyppppccccaaaatttt    hhhhoooossssttttssss    ||||    ggggrrrreeeepppp    <<<<hhhhoooossssttttnnnnaaaammmmeeee>>>>. In addition, you can look
up the host name corresponding to an IP address using the same command sequence.

On many computers (including both Windows and Mac) you can issue the command
nnnneeeettttssssttttaaaatttt    ----aaaa    ----pppp    TTTTCCCCPPPP to determine which ports are in use.
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use port 80 for any other kind of server since confusion will result. In this book,
we will by default run servers on port 5555 if it is not already occupied by some
other server. In general, when you create a new server, you must pick a port
number and publish both the host name and port number so that clients know
where to connect. Taken together, the host name and port number are often just
called the address of the server. By convention, if a client wants to talk to a server
on the same computer, it can use the special host name localhost (IP address
127.0.0.1).

Establishing a connection in Java
Java includes a package specially designed to permit the creation of a TCP/IP
connection between two applications: it is called java.net. The class Socket is the
central element of this package; instances of this class encapsulate information
concerning each connection. Both the client and the server must have an
instance of Socket in order to exchange information.

Before a connection can be established, the server must start listening to one
of the ports. To do this, it uses the resources of the class ServerSocket. This is
typically done as follows:

ServerSocket serverSocket = new ServerSocket(port);

where port is the integer representing the port number on which the server
should be listening.

In order for a client to connect to a server, it uses a statement like the
following, passing the host name (or numeric IP address) and port number of
the server:

Socket clientSocket = new Socket(host, port);

For the connection to be accepted, the server must have a thread constantly
listening for connections using a statement like the following, embedded in a
loop:

Socket clientSocket = serverSocket.accept();

The above statement will wait indefinitely in the accept method until a client
tries to connect, then it will try to create an instance of Socket to handle the new
connection. If this is successful, both client and server now have instances of
Socket and can communicate freely with each other.

All of the above assumes the network is working properly, and appropriate
values are specified for host and port. If communication fails for any reason,
these statements will throw an IOException. Appropriate code must be written to
handle such exceptions, e.g. notifying the user of the failure or trying again.

Once a connection is established, the exchange of communication may
commence. From now on, both client and server can send messages to each
other at any time. The connection is said to be symmetric, meaning that the
client communicates with the server in the same way as the server
communicates with the client.
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Normally there will be two distinct streams of information: from server to
client and from client to server. Each program uses an instance of InputStream
to receive messages from the other program, and an instance of OutputStream to
send messages to the other program. These classes are found in the package
java.io, and their instances can be created as follows:

output = clientSocket.getOutputStream();

input = clientSocket.getInputStream();

When a message is sent from one program using its OutputStream, it may be
read by the other connected program using its InputStream. However, InputStream
and OutputStream deal with messages composed merely of bytes, the most
primitive form of data. Programmers often want to exchange more
sophisticated types of data without having to worry about how to translate them
into a byte stream. To do this, Java provides a series of filters which convert the
raw bytes into other forms. For example, DataOutputStream and DataInputStream
allow direct transmission of the Java primitive types such as int and double.
Another pair of filters, ObjectOutputStream and ObjectInputStream, allows the
exchange of Java objects. For maximum flexibility, we will use this latter pair of
classes in our client–server framework.

To send an object, Java uses a process called serialization. This is a technique
by which every object is converted by an ObjectOutputStream into a binary form
for transmission, and then reconstructed when it is received by an
ObjectInputStream. Most objects can be serialized; the only requirements are that
they be instances of classes that implement the interface java.io.Serializable,
and that the data in their instance variables also be serializable. Serialization is
also the mechanism used to save objects into a binary file.

In order to use an object stream, you must wrap it around a binary stream in
the following manner:

output = new ObjectOutputStream(clientSocket.getOutputStream());

You can then send an object thus:

output.writeObject(msg);

In order to receive objects, you create an object input stream thus:

input = new ObjectInputStream(clientSocket.getInputStream());

and then arrange for the following statement to be executed in a loop:

msg = input.readObject();

The readObject method will wait until an object is received over the socket, or
until an I/O error occurs. An I/O error will occur if the program at the other end
of the connection is terminated.



 

Section 3.6 91The Object Client–Server Framework (OCSF)

3.6 The Object Client–Server Framework (OCSF)

In the next few sections we present a framework that can be used to develop any
client–server system. We call this framework OCSF (Object Client–Server
Framework) since it can be used to build a client–server system that exchanges
Java objects. We will use the OCSF for the systems we develop in this book. In
Chapter 6 we will extend the framework to make it more flexible.

You should attempt to understand completely how the OCSF functions. Not
only will doing so ensure you understand the principles of frameworks and
client–server systems in general, but it will also teach you about some of the
subtleties of software design. Later in the book, some of the design issues raised
here will be revisited.

To help you understand the framework, we provide a simple application in
Section 3.9 that uses it. We also provide some project exercises where you
change the application – modifying an existing application is one of the best
ways to learn how it works.

The core of OCSF consists of three classes: one to implement the client and
two to implement the server. The core classes are illustrated in Figure 3.7, along
with their most important methods. The line with the asterisk connecting
AbstractServer to ConnectionToClient indicates that there are many instances of
ConnectionToClient associated with the server. The labels such as «control»,
«hook» and «slot» divide the methods into categories, which we will describe
shortly.

In Chapter 6, we will discuss some additional classes that extend OCSF; there
is no need to know anything about those to start working with OCSF.

Figure 3.7 The essentials of the core OCSF classes
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Programmers using OCSF never modify the framework’s classes. Instead, a
programmer should do the following to create an application:

■ Create subclasses of the abstract classes in the framework.

■ In these subclasses, write implementations of certain slot methods that are
declared to be abstract in the framework classes.

■ Also in the subclasses, override certain methods that are explicitly designed to
be overridden. These are the hooks of the framework.

■ In various parts of the application, call public methods that are provided by the
framework. These public methods, which are the services of the framework,
allow the application designer to control the client or server, and to find out
information about them.

We will first discuss in detail the client side of the framework, and then the
server side. In this chapter, your main objective should be to understand how to
use the framework. To do that, you will have to understand how it works to some
extent; however, you will probably obtain a more detailed understanding of that
in later chapters.

Complete source code of the OCSF is found at www.lloseng.com.

3.7 Basic description of OCSF – client side

The client side of the OCSF consists of a single class AbstractClient. This is an
abstract class that provides all of the facilities needed to connect and exchange
objects with servers – with one exception: AbstractClient must be subclassed in
order to implement the method handleMessageFromServer that takes appropriate
action when a message is received from a server.

AbstractClient implements the Runnable interface. This is because we want the
message waiting activity of its instance to run as a separate thread as described
earlier. As an implementer of Runnable, AbstractClient has a run method which
contains a loop that executes for the lifetime of the thread, receiving messages
from the server and responding to them. We will discuss the internals of the run
method a bit later.

The public interface of AbstractClient 
The public interface to AbstractClient consists of the service methods that
software developers who are using the class can access. In OCSF, as in other
well-designed object-oriented systems, the public interface only provides a set
of methods that can be called – it does not permit direct access to any variables.

The public interface of AbstractClient consists of three kinds of methods: a
constructor, some methods that are used to control the client, and some methods
used to access basic information about the client.
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Public constructor. There is only one simple constructor in this class. It merely
initializes variables representing the host and the port of the server to which the
client will connect.

Public controlling methods. These methods provide services and do the bulk
of the work of controlling the client. They are declared final so that they cannot
be overridden by subclasses. The final declaration ensures that subclasses
cannot create versions that contain bugs; however, it also means that subclasses
cannot correct any design flaws in these methods. That puts a particularly
strong responsibility for quality control into the hands of the framework’s
designers. The three key controlling methods are:

■ openConnection: this connects, if it can, to a server at the host and port specified
in the constructor (or subsequently using setHost and setPort described below).
As soon as the connection to the server is established, this method starts the
thread which will then run until the connection to the server is terminated.

■ sendToServer: this sends a message to the server, if it can. The message can be
any object.

■ closeConnection: this stops the communication with the server and signals the
thread to stop looping and hence terminate

All three of the above methods will throw an IOException if they fail – callers have
to handle this in some way.

Utility accessing methods. These additional service methods are used to
inquire about the state of the client or make minor changes to that state. They
include:

■ isConnected: allows callers to inquire whether the client is currently connected
to a server.

■ getHostPort and getPort: allow callers to inquire which host and port the client
is connected to, or is prepared to connect to.

■ SetHost and SetPort: allow callers to change the host and port of a
disconnected client in preparation for the next call to openConnection.

■ getInetAddress: provides some detailed information about the connection.

The callback methods of AbstractClient 
In addition to the public interface, AbstractClient also contains several hook
methods that are designed to be overridden by subclasses of the client, as well as
one abstract slot method. The hooks and slots are called when particular events
occur as the client operates. Methods like these are conventionally referred to as
callbacks, since they are not called by the application code, but rather they
represent calls back to the application code from methods in the framework.
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Methods that may be overridden by subclasses (hooks). These may be
overridden by subclasses and are called when various potentially ‘interesting’
events happen. If developers of subclasses of AbstractClient are interested in
taking some action when these events occur, the developers can implement the
methods. The default implementations do nothing.

■ connectionEstablished: is called after a connection with a server is established.

■ connectionClosed: is called whenever a connection with the server is terminated
by the client.

■ connectionException: is called when something goes wrong with the
connection, such as when the connection is terminated by the server.

Method that must be defined in subclasses (slot). The only abstract slot method
in AbstractClient is named handleMessageFromServer. This must be defined in
subclasses and is called whenever a message is received from the server.

How an application developer should use AbstractClient 
A developer who wants to design a client which uses the AbstractClient class
need only do the following:

■ Create a subclass of AbstractClient.

■ In this subclass, implement the handleMessageFromServer slot method to do
something useful with any messages coming from the server.

■ Arrange for some code somewhere to create an instance of the new subclass of
AbstractClient and to call openConnection.

In almost all clients, the developer will also want to do the following:

■ Arrange for some code somewhere to send messages to the server using the
sendToServer service method. It is possible to have a client that only receives
messages from a server, and hence does not call sendToServer, but that would be
rather unusual.

■ Implement the connectionClosed callback to do something intelligent, such as
notifying the user, when the connection to the server is terminated normally.

■ Implement the connnectionException callback to deal with abnormal
disconnection.

Not every application will need to use the other service methods, or override the
other callback method (connectionEstablished).

A few details of the private internals of AbstractClient 
Software developers do not, strictly speaking, need to know much more than the
above to use AbstractClient. However, knowing a few details of how a class works
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can help a developer to diagnose problems and feel more comfortable using the
class.

AbstractClient has the following instance variables:

■ A Socket, clientSocket, which keeps all the information about the connection to
the server.

■ Two streams, an ObjectOutputStream (output) and an ObjectInputStream (input),
that are used to transmit and receive objects using clientSocket.

■ A Thread, clientReader, that runs using AbstractClient’s run method.

■ A boolean variable, readyToStop, used to signal when the thread should stop
executing.

■ Two variables storing the host and port of the server.

The thread starts running when openConnection calls start which in turn calls run.
The loop inside run repeatedly waits for a message to come from the server by
calling the readObject method of the ObjectInputStream. When a message is
received, the run method then responds by calling the application’s
implementation of handleMessageFromServer.

Complete source code for AbstractClient is found on the book’s web site. You
may find it useful to study the code, following the above explanation. We suggest
you do the exercises at the end of the chapter to test your understanding.

3.8 Basic description of OCSF – server side

The server side of OCSF is slightly more complex than the client side since it has
two classes, not one. The two classes are needed because, as discussed in Section
3.4, the server has to implement both the thread that listens for new connections
(AbstractServer) and the threads that handle the connections to clients
(ConnectionToClient).

The public interface of AbstractServer 
As with AbstractClient, there is a limited set of public methods (the API) that
provide all the services of this side of the framework.

The public constructor. AbstractServer has only one constructor, which takes a
port number on which the server will listen. The port number can be changed
later, if needed.

The public controlling methods. Similarly to the client side, the AbstractServer
has a set of methods that can be used by subclasses to perform useful functions.

■ listen: this creates the serverSocket that will listen on the port that was
specified in the constructor or by using setPort. It also starts this instance as a
thread that will, in the run method, repeatedly wait for new clients to connect.
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■ stopListening: this method signals to the run method controlling the thread to
stop looping, and therefore terminate. No new clients will be accepted until the
listen method is called again. Any connected clients can still communicate
with the server because their connections are controlled by separate threads.

■ close: this does the same thing as stopListening, but goes further: it
disconnects all connected clients and closes the server socket.

■ sendToAllClients: this attempts to send a message to all clients.

The methods listen and close can throw an IOException.

Utility accessing methods. These inquire about the state of the server or make
modifications to that state.

■ isListening: determines if the server is listening for new clients.

■ getNumberOfClients: returns a count of the number of currently connected
clients.

■ getClientConnections: returns an array of instances of ConnectionToClient (the
array is declared as an array of Thread, but ConnectionToClient is a subclass of
Thread, so that you can cast the elements of the array to ConnectionToClient). You
can use this method to write services that do something with all clients, such as
searching for clients that have a particular property. This is one of the most
important service methods available to the developer of concrete subclasses.

■ getPort: finds out what port the server is listening on.

■ setPort: instructs the server to listen on the specified port next time listen is
called; it does not change the port on which the server is currently listening.

■ setBacklog: sets the size of the queue length. If a client attempts to connect
when this queue is full, the connection is refused. The queue can get full if large
numbers of clients try to connect, and the server cannot accept them fast
enough.

The callback methods of AbstractServer 

These five methods are all called when important events occur.

Methods that may be overridden by subclasses. These may be overridden by
subclasses and are called when events occur that may be interesting to concrete
subclasses:

■ serverStarted: called whenever the server starts accepting connections.

■ clientConnected: called whenever a new client connects; it provides the
instance of ConnectionToClient (described below) as an argument.
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■ clientDisconnected: called whenever the server disconnects a client using a call
to the close method of ConnectionToClient. It provides the instance of
ConnectionToClient as an argument.

■ clientException: called whenever a client disconnects itself, or is disconnected
as a result of a network failure.

■ serverStopped: called whenever the server stops accepting connections as a
result of a call to stopListening.

■ listeningException: called whenever the server stops accepting connections
due to some failure.

■ serverClosed: called when the server closes down.

In the same way that the client had only one abstract method, the server has only
one abstract method called handleMessageFromClient. This single slot method is
the most important piece of code that a developer of a concrete subclass will
write. When called by the framework, it provides as arguments the message
received as well as the instance of ConnectionToClient corresponding to the client
that sent the message.

The public interface of ConnectionToClient 

For the period of time during which each client is connected, an instance of
ConnectionToClient exists for that client. The currently existing instances of this
class can be accessed using getClientConnections, as described above, as well as
several of AbstractServer’s callback methods. You use such objects to find out
information about clients and to communicate with clients.

ConnectionToClient is a concrete class. Users of the framework can simply use
its facilities – they do not have to subclass it. It provides five service methods that
can be used by developers of concrete subclasses of AbstractServer. The first two
of these can throw an IOException.

■ sendToClient: the central method that is used to communicate with the client.

■ close: causes the client to be disconnected.

■ getInetAddress: obtains the Internet address of the client connection.

■ setInfo: allows arbitrary information to be saved about this client. For
example, the concrete server could give certain clients special privileges, which
would be recorded using this method. More simply, this method could be used
to record the client’s user id.

■ getInfo: allows the retrieval of any information that had been saved using
setInfo.
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How an application developer should use AbstractServer and ConnectionToClient 

A developer who wants to create a server using OCSF needs to perform the
following activities, which are almost identical to what a developer of a client
needs to do:

■ Create a subclass of AbstractServer.

■ In this subclass, implement the slot method handleMessageFromClient to do
something useful with any messages coming from the client.

■ Arrange for some code somewhere to create an instance of the new subclass of
AbstractServer and to call the listen method.

In almost all servers, the developer will also want to do the following:

■ Arrange for code somewhere to send messages to clients, using the
getClientConnections and sendToClient service methods. For a simple server, it
might be possible to use sendToAllClients instead.

■ Implement one or more of the other callback methods to respond in intelligent
ways to various events.

A few details of the private internals of AbstractServer and ConnectionToClient 

You can design a server knowing only the above information; however, the
following are a few of the internal details of the server side of OCSF. These
details will help you form a better understanding of how it works.

■ The setInfo and getInfo methods make use of a Java class called HashMap. A
HashMap can store an arbitrary object using some other arbitrary object as a key.
The key can then be later used to retrieve the stored object.

■ Many of the methods in the server side of OCSF are synchronized.
Synchronizing a method ensures that no other thread can access the object
while it is running. Since there are many ConnectionToClient threads that could
all make concurrent changes to the data maintained by the server,
synchronization guarantees that critical operations are performed one at a
time, ensuring the integrity of the data.

■ The collection of instances of ConnectionToClient maintained by AbstractServer
is stored using a special Java class called ThreadGroup. This class takes care of
automatically removing elements when a thread terminates.

■ The server must regularly take a temporary pause from listening to see if the
stopListening method has been called; if not, then it resumes listening
immediately. A design alternative would be to have the stopListening method
force the listening thread to terminate; however, that would leave the
ServerSocket in an unstable state. The method setTimeout can be used to set the
interval between server pauses; it defines the maximum time that the server
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will take to stop the listening thread. The default value of 500 ms is suitable for
most applications.

3.9 An instant messaging application using the OCSF

To illustrate the use of OCSF, we present here a simple client–server instant
messaging system. We call this SimpleChat, and its source code can be found on
the book’s web site. The version presented here is Phase 1 of SimpleChat.
Various project exercises found at the end of this and subsequent chapters ask
you to add features to SimpleChat.

The server side of SimpleChat is particularly simple. All the server does is
echo messages coming from clients to all the connected clients; thus the class is
called EchoServer. EchoServer itself has no user interface; once started its process
must be killed or it will run indefinitely.

As Figure 3.8 shows, EchoServer is simply a subclass of AbstractServer. The main
method creates a new instance and starts listening for server connections by
calling listen. To provide feedback, all the callback methods simply print out
messages to the user’s console. The main methods are underlined since they are
static.

The handleMessageFromClient method does one more thing: it calls
sendToAllClients in order to echo any messages. The following is the code for
handleMessageFromClient.

public void handleMessageFromClient (
  Object msg, ConnectionToClient client)
{
  System.out.println
    ("Message received: " + msg + " from " + client);
  this.sendToAllClients(msg);
}

On the client side, ChatClient is a subclass of AbstractClient that overrides one
method, handleMessageFromServer. This method does nothing but arrange for

Figure 3.8 Extending the OCSF framework to build the SimpleChat application
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messages to be displayed to the end-user, as discussed below. ChatClient also has
two other methods that are called by the user interface.

The user interface of the client is carefully separated from the functional part
of the client. A Java interface, ChatIF, is provided that specifies that any user
interface must implement a single method, display. One class called
ClientConsole implements this interface; some other class could be substituted in
place of ClientConsole. For example, on the book’s web site you will find a class
called ClientGUI. This substitute class simply has to implement the display
operation to work properly with ChatClient.

When the client starts, the main method in ClientConsole runs. This creates
instances of ClientConsole and ChatClient (which runs as a second thread), and
then calls a method called accept to await user input. The accept method runs in
a loop until the program is terminated; it sends all input to the instance of
ChatClient by calling its handleMessageFromClientUI. This in turn calls sendToServer.
The code for handleMessageFromClientUI is written as follows:

public void handleMessageFromClientUI(String message)

{
  try
  {
    sendToServer(message);
  }
  catch(IOException e)
  {
    clientUI.display 
      ("Could not send message to server. Terminating client.");
    quit();
  }

}

Communication coming from the server works as follows. The framework
triggers a call to handleMessageFromServer. This in turn calls the display operation
of ChatIF, which results in a call to the display method in the user interface class
ClientConsole. The code for handleMessageFromServer is as follows.

public void handleMessageFromServer(Object msg) 

{

  clientUI.display(msg.toString());

}

In the exercises at the end of the chapter, you will make some changes to Phase
1 of SimpleChat. In subsequent chapters, you will have the chance to make many
other improvements and additions to its design. If you follow all the exercises,
you will end up being able to transmit drawings in real time with the program.
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3.10 Difficulties and risks when considering reusable technology and client–server systems

Software development organizations should design software that is reusable,
and should reuse software whenever possible. In both cases, the goal is to reduce
the large cost associated with developing the same thing over and over again.
One important approach is to actively look for opportunities in any
development project to design a framework instead of designing an entire
application.

Unfortunately, there are some important risks involved in both reuse and
reusability. Software engineers should always consider these issues as part of the
risk management process we discussed in Chapter 1.

Risks when reusing technology

■ Poor quality reusable components. You have to trust that the technology
works properly, and that any problems will be fixed. Unfortunately, the
designer of the reusable software might not have followed good software
engineering practices, and you may discover major problems. The designer
may not have the time to fix the technology, or the technology may be so poor
that fixing it adds new problems.
Resolution. Ensure the developers of the reusable technology follow good software
engineering practices and are willing to provide active support.

■ Compatibility or availability not maintained. Later versions of the
technology might be changed in ways that are incompatible with how you have
used it. Alternatively, the producer of the technology might go out of business
or withdraw it from the market. You may therefore be forced to abandon the
technology or modify your applications to stay compatible.
Resolution. Avoid the use of obscure features of technology. Only reuse technology
that others are also reusing. Mandate that reuse should be the rule, but allow
exceptions in cases where developers can provide a clear justification.

Risks when developing reusable technology

■ Risk from an uncertain investment. Developing reusable technology takes
time away from developing applications and is therefore a calculated risk.
Resolution. To ensure the investment pays off, carefully plan the development of
the reusable technology, in the same manner as if it were a product for a client.
Monitor the success or failure of the reusable software so that you can improve
your investment decisions in future projects.

■ The so-called ‘not invented here syndrome’. A framework developed by one
set of developers might not be used because others fear it might not be
supported.
Resolution. Build confidence in the reusable technology by guaranteeing support,
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ensuring it is of high quality and responding to the needs of the users. (The users
in this case are the software engineers who adopt the technology.)

■ Competition. Reusable technology might not end up being used if somebody
else develops competing technology that gains wide acceptance. Being beaten
by the competition is a risk in any business; however, with reusable software the
competitive forces are often not financial in nature. Several groups may
develop similar packages and one may be accepted for reuse merely because its
developers are better known or ‘market’ it better.
Resolution. Ensure the reusable technology is as useful and as high quality as
possible. Advertise the presence and advantages of your reusable software.

■ Divergence. Several development teams using the same framework may want
to change it in different ways.
Resolution. Ensure that the framework is well tested and reviewed; if it is designed
to be general enough, then it will be less likely to suffer from divergent changes.

Risks inherent in client–server or other distributed systems

■ Security. Distributed systems are particularly prone to security violations, due
to the fact that information is transmitted over a network. Communications
can be intercepted, or a denial-of-service attack can be implemented.
Resolution. Recognize that security is a big problem with no perfect solutions.
Incorporate encryption, firewalls and similar protective measures into your
designs.

■ Need for adaptive maintenance. If clients and servers are developed by
different organizations, then the developers of clients are frequently forced to
upgrade their clients whenever the server is changed.
Resolution. Ensure that all software is forward-compatible and backward-
compatible with other versions of clients and servers. Achieving this requires
designing the client–server protocols to be very general and flexible.

3.11 Summary

In this chapter we have studied reusable technology, which should be the basis
for most software development projects. When developing software, you can
reuse many kinds of things, ranging from the expertise of people who have
worked on past projects up to complete applications. You should also strive to
make anything you develop as reusable as possible.

An important type of reuse is reuse of frameworks. Frameworks are software
systems that are not immediately usable, but can be quickly extended to build an
application or part of an application, by providing essential details that are
missing.

We studied in depth a client–server framework written in Java. The Object
Client–Server Framework (OCSF) provides all the essential features of any
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client–server system. On the server side it includes facilities for starting and
stopping the server, maintaining a list of clients, sending messages to clients and
responding to messages received from clients. On the client side, it provides
facilities for connecting and disconnecting from a server, sending messages to
the server, and responding to messages coming from the server.

We showed how it is possible to take this framework and implement only a
few methods in order to create an instant messaging system we call SimpleChat.

3.12 For more information

Reuse

■ ReNewsWWW: http://frakes.cs.vt.edu/renews.html The Electronic Software
Reuse and Re-engineering Newsletter on the World Wide Web

■ I. Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture Process and
Organization for Business Success, Addison-Wesley, 1997

■ C. McClure, Software Reuse Techniques: Adding Reuse to the System Development
Process, Prentice-Hall, 1997

Frameworks and product lines

■ M. E. Fayad, D. C. Schmidt and R. Johnson, Implementing Application
Frameworks: Object-Oriented Frameworks at Work, Wiley, 1999

■ G. Rogers, Framework-Based Software Development in C++, Prentice Hall, 1997

■ D. F. D’Souza, A. C. Wills, Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach, Addison-Wesley, 1999

Network ethics
People who design and work with distributed systems must develop a heightened awareness of
certain ethical issues.

With distributed systems, it is particularly easy to violate people’s privacy.  This can be
done by simply gathering data about people as they use network-based programs, or else by
actively intercepting communications. Both these activities should normally be considered
unethical unless people have consented to the release of their private information, are able
to withdraw that consent easily at any time, are able to examine and correct the information
collected about them, and are aware of the method by which the information is collected.

Knowledge of how to develop distributed systems also brings with it knowledge of how
to develop harmful programs such as viruses or Trojan horses, as well as how to ‘hack’ into
systems. Some people take a perverse pride in using such knowledge; however, doing so is
illegal and extremely unethical, no matter whether the knowledge is used for ‘fun’ or
maliciously.
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■ The product line practice initiative: http://www.sei.cmu.edu/plp/

The Internet, networking etc.

■ The Living Internet: http://livinginternet.com. This web site gives an excellent
overview about the Internet, including a discussion of IP addresses etc.

■ M. Hughes, M. Shoffner and D. Hamner, Java Network Programming: A
Complete Guide to Networking, Streams, and Distributed Computing, 2nd
edition, Manning Publications, 1999. http://nitric.com/jnp/

The client–server architecture

■ The Webopedia entry for this topic: http://webopedia.internet.com/TERM/c/
client_server_architecture.html

■ The client–server newsgroup news:comp.client-server. http://groups.google.com/
groups?&group=comp.client-server

Project exercises

The following series of exercises should ideally be followed in sequence. After
completion of these exercises you will have built Phase 2 of SimpleChat. A
complete implementation of Phase 2 is available on the book’s web site. 

E48 On the book’s web site, you will find a set of ‘test cases’ for Phase 1 of the
SimpleChat program. We will discuss test cases in much more detail in Chapter
10. For now, you can simply see them as a set of instructions that allow you to
verify the functionality of the system. You can also use them to learn about the
system. Pick ten Phase 1 test cases and execute them.

E49 This exercise will help you to become familiar with the internals of OCSF and
Phase 1 of an instant messaging application we call SimpleChat. Modify the
application to provide the following features (Remember: do not modify the
OCSF framework):

Client side:

(a) Currently, if the server shuts down while a client is connected, the client does
not respond, and continues to wait for messages. Modify the client so that it
responds to the shutdown of the server by printing a message saying the
server has shut down, and quitting. Design hint: look at the methods called
connectionClosed and connectionException.

(b) The client currently always uses a default port. Modify the client so that it
obtains the port number from the command line. Design hint: look at the
way it obtains the host name from the command line.
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Test that this works by connecting a client to a server using a different
port from the default. If the port is omitted from the command line, then the
default value should still be used.

Server side:

(c) Currently the server ignores situations where clients connect or disconnect.
Modify the server so that it prints out a nice message whenever a client
connects or disconnects. Hint: you will simply have to write code in
EchoServer that overrides certain methods found in AbstractServer – study
the AbstractServer description above to determine which methods you
have to override.

E50 Make further modifications to the SimpleChat application, as follows:

Client side:

(a) Currently, the client simply sends to the server everything the end-user types.
When the server receives these messages, it simply echoes them to all clients.
Add a mechanism so that the user of the client can type commands that
perform special functions. Each command should start with the ‘#’ symbol
– in fact, anything that starts with that symbol should be considered a
command.

You should implement commands specified as follows:

(i) #quit causes the client to terminate gracefully. Make sure the
connection to the server is terminated before exiting the program.

(ii) #logoff causes the client to disconnect from the server, but not quit.

(iii) #sethost <host> calls the setHost method in the client. Only allowed if
the client is logged off; displays an error message otherwise.

(iv) #setport <port> calls the setPort method in the client, with the same
constraints as #sethost.

(v) #login causes the client to connect to the server. Only allowed if the
client is not already connected; displays an error message otherwise.

(vi) #gethost displays the current host name.

(vii) #getport displays the current port number.

Server side:

(b) Currently, the server does not allow any user input. Study the way user input
is obtained from the client, using the ClientConsole class, which implements
the ChatIF interface. Create an analogous mechanism on the server side.
Design hint: you will have to add a new class you can call ServerConsole
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that also implements the ChatIF interface. Following your modifications,
the following should be true:

(i) Anything typed on the server’s console by an end-user of the server
should be echoed to the server’s console and to all the clients.

(ii) Any message originating from the end-user of the server should be
prefixed by the string ‘SERVER MSG>’.

(c) In a similar manner to the way you implemented commands on the client
side, add a mechanism so that the user of the server can type commands
that perform special functions. You should implement commands specified
as follows:

(i) #quit causes the server to quit gracefully.

(ii) #stop causes the server to stop listening for new clients.

(iii) #close causes the server not only to stop listening for new clients, but
also to disconnect all existing clients.

(iv) #setport <port> calls the setPort method in the server. Only allowed if
the server is closed.

(v) #start causes the server to start listening for new clients. Only valid if
the server is stopped.

(vi) #getport displays the current port number.

E51 Make further modifications to the SimpleChat application, as follows.

In Phase 1, clients are always anonymous. When a message is sent from a
client, it is echoed to all the other clients, but nobody knows who sent it. In this
exercise, you will implement a basic mechanism by which clients have a ‘login
id’ that is known both to the client and the server.

Client side:

(a) Add a new ‘login id’ command line argument to the client. This should be
the first argument, before the host name and port, because the host name
and port are optional in the sense that if they are omitted, defaults are
used. The login id should be mandatory; the client should immediately
quit if it is not provided. Design hint: the login id should be stored in an
instance variable in ChatClient. You might ask the question: why not put
the instance variable in ClientConsole? The reason is to separate the user
interface (how information is displayed and input) from the other aspects
of the system.

(b) Whenever a client connects to a server, it should automatically send the
message ‘#login <loginid>’ (i.e. the string #login with the login id appended
to it) to the server. Note that this use of the ‘#’ is different from what we
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have seen so far: the #login is sent to the server; it is not handled by the
client as was the case with #quit, #logoff etc.

Server side:

(c) Arrange for the server to receive the #login <loginid> command from the
client. It should behave according to the following rules:

(i) The #login command should be recognized by the server. Design hint:
modify handleMessageFromClient so that it does more than just echo
messages.

(ii) The login id should be saved, so that the server can always identify the
client. Design hint: use the setInfo method to set the login id and the
getInfo method to retrieve it again later.

(iii) Each message echoed by the server should be prefixed by the login id of
the client that sent the message.

(iv) The #login command should only be allowed as the first command
received after a client connects. If #login is received at any other time,
the server should send an error message back to the client.

(v) If the #login command is not received as the first command, then the
server should send an error message back to the client and terminate
the client’s connection. Hint: use the method called close found in
ConnnectionToClient.

E52 Now that you have completed Phase 2 of SimpleChat, you can execute the test
cases provided in the web site for Phase 2. You should execute all the test cases
that are indicated to apply to Phase 2, along with a sample of test cases that are
marked as relevant only to Phase 1. When testing, use your own server with
somebody else’s client and vice versa. If you have followed the instructions
above consistently, then you should have no trouble doing this.



 



 
44Developing requirements 

In the previous two chapters, you learned about technologies that software
engineers need to master before developing applications. Now, we can start
thinking about the particular problem we wish to solve. We will first put effort
into understanding the background of the problem, a process called domain
analysis. Then we will look at the information you have to gather so that you can
describe the problem and its proposed solution. Finally, we will discuss some
techniques for gathering and analyzing that information.

4.1 Domain analysis

Domain analysis is the process by which a software engineer learns background
information. He or she has to learn sufficient information so as to be able to
understand the problem and make good decisions during requirements analysis
and other stages of the software engineering process. The word ‘domain’ in this
case means the general field of business or technology in which the customers
expect to be using the software.

In this chapter you will learn about the following

■ Domain analysis: learning background knowledge so that you can
communicate with users and make more intelligent decisions.

■ Understanding the customer’s problem and setting the scope for the project.

■ What exactly is a requirement, as well as the various types of requirements.

■ Requirements documents and what should be put in them.

■ How to go about gathering requirements.

■ How to model users’ tasks using use case diagrams and detailed descriptions
of use cases.

■ How to review a set of requirements.
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Some domains might be very broad, such as ‘airline reservations’, ‘medical
diagnosis’, and ‘financial analysis’. Others are narrower, such as ‘the
manufacturing of paint’ or ‘scheduling meetings’. People who work in a domain
and who have a deep knowledge of it (or part of it) are called domain experts.
Many of these people may become customers or users.

To perform domain analysis, you gather information from whatever sources
of information are available: these include the domain experts; any books
about the domain; any existing software and its documentation; and any other
documents you can find. The interviewing, brainstorming and use case
analysis techniques discussed later in this chapter can help with domain
analysis. Object-oriented modeling, discussed in Chapter 5, can also be of
assistance.

As a software engineer, you are not expected to become an expert in the
domain; nevertheless, domain analysis can involve considerable work. The
following benefits will make this work worthwhile:

■ Faster development. You will be able to communicate with the stakeholders
more effectively, hence you will be able to establish requirements more rapidly.
Having performed domain analysis will help you to focus on the most
important issues.

■ Better system. Knowing the subtleties of the domain will help ensure that the
solutions you adopt will more effectively solve the customer’s problem. You will
make fewer mistakes, and will know which procedures and standards to follow.
The analysis will give you a global picture of the domain of application; this will
lead to better abstractions and hence improved designs.

■ Anticipation of extensions. Armed with domain knowledge, you will obtain
insights into emerging trends and you will notice opportunities for future
development. This will allow you to build a more adaptable system.

It is useful to write a summary of the information found during domain analysis.
The process of organizing and writing this summary can help you gain a better
grasp of the knowledge; the resulting document can help educate other software
engineers who join the team later.

We suggest that a domain analysis document should be divided into sections
such as the following:

A. Introduction. Name the domain, and give the motivation for performing the
analysis. The motivation normally is that you are preparing to solve a particular
problem by development or extension of a software system.

B. Glossary. Describe the meanings of all terms used in the domain that are either
not part of everyday language or else have special meanings. You must master
this terminology if you want to be able to communicate with your customers
and users. The terminology is likely to appear in the user interface of the
software as well as in the documentation. You may be able to refer to an
existing glossary in some other document, rather than writing a new glossary.
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The section is best placed at the start of the domain analysis document so that
you can subsequently use the defined terms.

C. General knowledge about the domain. Summarize important facts or rules
that are widely known by the domain experts and which would normally be
learned as part of their education. Such knowledge includes scientific
principles, business processes, analysis techniques, and how any technology
works. This is an excellent place to use diagrams; however, where possible,
point the reader for details to any readily accessible books or other documents.
This general knowledge will help you acquire an understanding of the data you
may have to process and computations you may have to perform.

D. Customers and users. Describe who will or might buy the software, and in
what industrial sectors they operate. Also, describe the other people who work
in the domain, even peripherally. Mention their background and attitude as
well as how they fit into the organization chart, and relate to each other.

E. The environment. Describe the equipment and systems used. The new system
or extensions will have to work in the context of this environment.

F. Tasks and procedures currently performed. Make a list of what the various
people do as they go about their work. It is important to understand both the
procedures people are supposed to follow as well as the shortcuts they tend to
take. If, for example, people are supposed to enter certain information on a
form, but rarely do so, this suggests that the information is not useful. Tasks
listed in this section may be candidates for automation.

G. Competing software. Describe what software is available to assist the users
and customers, including software that is already in use, and software on the
market. Discuss its advantages and disadvantages. This information suggests
ideas for requirements, and highlights mistakes to avoid.

H. Similarities across domains and organizations. Understanding what is
generic versus what is specific will help you to create software that might be
more reusable or more widely marketable. Therefore, determine what
distinguishes this domain and the customer’s organization from others, as well
as what they have in common.

Be careful not to write an excessive amount of detailed information. It is a waste
of effort to duplicate the original source material; your domain analysis should
simply include a brief summary of the information you have found, along with
references that will enable others to find that information.

No serious software project should be undertaken without a sound domain
analysis; a good knowledge of the domain of application considerably increases
your chances of success. Many of the most successful software products have
been developed by people who were actively working in the domain before they
became software developers – such people have a better feel for what is really
needed.
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Once software engineers have a good grasp of the domain, they can move on
to requirements analysis, which includes defining the problem to be solved and
what software will be created to solve it. However, domain analysis should never
really end: software engineers have the responsibility to continue improving
their understanding as development proceeds. An extension to the system
added for a subsequent release will often merit a domain analysis of its own sub-
domain.

Example 4.1 Outline in one paragraph the information you would need to gather in order to
perform domain analysis for an airline reservation system. 

You would attempt to learn as much as possible about such things as how airline
flights are scheduled; how fares are set and structured; and how ticketing and
booking works in the customer’s airline and other airlines. You would study how
the various people in the airline reservation business, including travel agents
and airline employees, do their jobs; what existing reservation systems are
capable of doing and how they work; and what laws, regulations and other rules
govern the industry. You would study the functionality of competing
reservation systems, particularly the many web-based systems currently
available.

Example 4.2 Imagine you are performing a domain analysis in order to develop a new and better
telephone response and dispatch system for medical emergencies. The system will be
used by operators and paramedics who respond to calls to the emergency number
911 (in North America) or 999 (in the UK). Summarize the information you would
expect to learn. Structure your answer using the categories of information we
suggest for a domain analysis document. 

A. Introduction. The domain is ‘Medical Emergency Dispatch’. You already know
that the motivation for the domain analysis is to develop a new system that
would improve upon existing systems. You would want to record the qualities
that are valued in such systems; these presumably include accurate guidance to
the paramedics, fast response time, flexibility, and, above all, saving lives.

B. Glossary. Much of the special terminology for this domain will be medical in
nature, but there will also be terminology related to communications
equipment, emergency vehicles and rescue equipment.

C. General knowledge about the domain. You should obtain statistics about the
calls received and the types of cases handled; this will help you understand the
level of performance the system must achieve. Other examples of information
to learn include: what are the different categories of emergency situations, and
how is each handled? how are addresses described (it is critically important
that no mistake is made when communicating an address to an ambulance
driver)? how do dispatchers decide whether police, fire-fighters or other special
services should also be dispatched?
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D. Customers and users. In this domain, everyone, including operators, drivers,
paramedics and doctors in hospitals, has a clearly defined role. You should
understand the knowledge they possess and what they need to learn during the
process of handling an emergency. You might discover that some dispatch workers
are opposed to the introduction of any new software – they might have developed
considerable skill with the existing methods, and fear a new system will render their
skills redundant, or even put them out of a job. Knowing this fact, you can take
actions to address their concerns and thus avoid any political problems.

E. The environment. Study the computers and communications gear currently used.
Your customers may be willing to upgrade generic hardware, but your system will
have to work with specialized hardware that would be too expensive to replace.

F. Tasks and procedures currently performed. The procedures that are currently
used by dispatchers and paramedics will help you decide the functions that you
have to implement. These procedures are normally very well defined so that
they can be followed without any decision-making delay even in a major crisis.
Examples of procedures include: how decisions are made about which
ambulance to dispatch to which address; how dispatchers and ambulance
drivers decide upon a route, especially when traffic is heavy or blocked; how
priorities are established in a disaster, when there are not enough ambulances;
how communications are established among the dispatcher, the paramedics
and doctors in hospitals; and how records of each call are logged. The study of
these procedures will help you identify what aspects can be improved and how
the software will become an asset to your customer. You will also have to learn
about any standards, regulations and laws that may exist, so that the software
can conform to them.

G. Competing software. You might discover that there is widely used and well-
respected emergency management software on the market. You might come to
realize that you have little chance of economically developing something that
would be as good. In such a case, you would propose that your customer buy
the widely used software. On the other hand, you might find that the market is
under-developed, with many opportunities for a product like yours to excel.
With extra effort you might be able to create a generic product, rather than a
custom product, and sell it to many different municipalities.

H. Similarities across domains and organizations. The task of dispatching
ambulances could be generalized as the problem of allocating the closest
resource to a consumer. You might therefore consider developing a generic
framework for this aspect of the problem.

Exercises

E53 Describe as many sources of information as you can think of, that should be
consulted in order to perform a domain analysis for each of the following
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systems (see Appendix C for the descriptions of systems).

(a) The police information system.

(b) The household alarm system.

(c) The GPS automobile navigation system.

(d) The investments system.

(e) The woodworking design system.

E54 Write a short domain analysis for one of the systems listed in Exercise E53
using the format we proposed in this section. Record only the most important
information a software engineer would need to know in order to develop your
chosen system. Gather whatever information you can from several sources. Be
resourceful in your hunt for information! Do not forget to consider including
any general or specific knowledge you might already possess. 

4.2 The starting point for software projects

When a development team starts work on a software project, their starting point
can vary considerably. We can distinguish different types of project, based on
whether or not software exists at the outset, and whether or not requirements
exist at the outset. The four broad categories of starting point are illustrated in
Figure 4.1.

In projects of type A or B, the development team starts to develop new
software from scratch – this is sometimes called green-field development,
alluding to constructing a new building where none existed before. In cases C
and D the team evolves an existing system, a rather more common situation.

In cases A and C, the development team has to determine the requirements
for the software – they either have a bright idea for something that might sell, or
else they are asked to solve a problem and have to work out the best way to solve

Figure 4.1 Starting points for software projects

Requirements
must be determined

Clients have
produced requirements

New
development A B

Evolution of
existing system C D
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it. In cases B and D, on the other hand, the development team is contracted to
design and implement a very specific set of requirements. In these latter cases,
the customer’s organization has normally done the requirements analysis,
perhaps using in-house software engineers or consultants specializing in
requirements analysis.

Projects where the requirements are pre-specified should be handled
carefully. If the customer has not done a good job of analysis and specification,
the requirements are likely to be poor. For example, the customer may be
proposing a system that is far too large, or that does not address a clear problem
(we will discuss both of these issues later). As a software engineer, you have a
professional responsibility to ensure that the requirements on which you base
your work are of good quality, even when they were developed by others. You
should evaluate such requirements yourself, and work with the customers to
resolve any problems. You should not accept a contract where you are required
to implement requirements with no changes allowed.

In the next few sections, we will largely be assuming that you are working on
a project of type A or C and therefore have to develop your own requirements.
However, the matters we discuss will also be helpful if you are reviewing
requirements produced by others.

4.3 Defining the problem and the scope

Once you have learned enough about the domain, you can begin to determine
the requirements. The first step in this process is to work out an initial definition
of the problem to be solved.

A problem can be expressed as a difficulty the users or customers are facing,
or as an opportunity that will result in some benefit such as improved
productivity or sales. The solution to the problem will normally entail
developing software, although you may decide that it is better to purchase
software or to develop a non-software solution.

You should write the problem as a simple statement. Careful attention to the
problem statement is important since, later on, the requirements will be
evaluated based on the question: ‘are we adequately solving the problem?’

A good problem statement is short and succinct – one or two sentences is best.
For example, if you were developing a new student registration system, you
might express the problem as follows: ‘The system will allow students to register
for courses, and change their registration, as simply and rapidly as possible. It
will help students achieve their personal goals of obtaining their degree in the
shortest reasonable time while taking courses that they find most interesting
and fulfilling.’

If the problem is broad, or contains a long list of sub-problems, then the
system will have a broad scope, and hence be more complex. An important
objective is to narrow the scope by defining a more precise problem. In the
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above example, if we had stated: ‘the system will automate all the functions of
the registrar’s office’, that leaves open the possibility of including such features
as fee payment, printing class lists and allocating rooms to courses.

One way to set the scope is to list all the sub-problems you might imagine
the system attacking. To narrow the scope, you can then exclude some of these
sub-problems – perhaps they can be left for another project. Figure 4.2
illustrates this.

Sometimes, an inappropriate choice of problem statement can result in a
scope that is too narrow or completely wrong. To determine whether this is
the case, think about what will be the user’s ultimate high-level goal when
they use the system, and the customer’s high-level goal for having it
developed.

In the university registration example you could consider a student’s goal to
be ‘completing the registration process’. However, you can see that the
student’s higher-level goal might be, ‘obtaining their degree in the shortest
reasonable time while taking courses that they find most interesting and
fulfilling’. This new goal sheds a different light on the problem; you might
consider adding features to the system that would not otherwise have
occurred to you, such as actively proposing courses based on an analysis of the
student’s academic and personal-interest profiles.

All the requirements gathering and analysis techniques described later in
this chapter can help in defining the problem and hence the system’s scope.
Interviewing can give you the stakeholders’ personal perspectives;
brainstorming can generate lists of ideas from which you can extract a suitable
problem or problems; use case analysis can give you a list of the possible things
the system could do; and prototyping can give everybody a better perspective
about what might be possible.

It is a good idea to define the problem and scope as early as possible, before
getting deeper into analysis of the detailed requirements. This prevents you
from working on unnecessary requirements. However, as with domain analysis,
your perspective on the problem will improve as analysis continues, hence the
problem statement may need to be refined several times.

Figure 4.2 Narrowing the project’s scope

Initial list of problems
with very broad scope

Narrowed
scope

Scope of
another system

exam scheduling

room allocation

fee payment

browsing courses

registering

fee payment

browsing courses

registering exam scheduling

room allocation
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Example 4.3 Define the problem and scope for a system that handles university degree
requirements and registrations. Then develop a requirements statement from this.

A university registrar’s office handles a large number of functions. Below, we
have listed some of the functions that you might consider building into such a
system.

The initial, overly broad, problem statement might be: ‘to automate all the
functions of the registrar’s office’.

You would have extensive discussions with stakeholders, and then agree on a
narrower problem statement such as the following: ‘Helping university
administrators manage lists of courses, degree requirements, registration and
academic results. Helping students choose and register in courses in which they
are interested that will lead to their degree.’

You can then determine which functions should be included in the system.
The functions marked with a ‘++’ will be included, while those marked with a ‘−
−’ will be excluded. Note that there will still have to be systems to handle the
functions marked ‘−−’, but these will be left to others to develop, or to a later
project.

−− Fee payments and related accounting and billing

−− Applications for admission

++ Editing and querying the list of available courses, including their
descriptions and lists of prerequisites

++ Editing and querying the requirements for obtaining a degree

++ Editing and querying the list of courses to be taught in a given semester

−− Scheduling the times that courses will be offered

−− Allocating courses or exams to rooms

++ Helping students determine which courses they could take by analyzing
their degree requirements, the courses they have previously taken, their
schedule, and their preferences

++ Registering students

++ Recording marks

++ Printing transcripts

Example 4.4 You are asked to improve a data entry program used to enter a patient’s personal
information when he or she is first admitted to a hospital. Admission clerks have
to enter each new patient’s name, address, telephone number, and various other
pieces of data. The customer tells you that the admissions clerks make an
unacceptable number of mistakes that contaminate the database and cause
administrative problems. You are told that the problem is lack of clarity in the
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user interface, which leads the clerks to put information in the wrong places.
What, however, is the real problem and how might understanding this affect
potential solutions?

The stated problem suggests that the solution is to clean up the user interface.
However, the real problem is that many errors are made. Thinking about the real
problem leads us to realize that a better solution might involve completely
eliminating the data entry process, or at least reducing it. Perhaps some or all of
each patient’s information could be obtained from a database (e.g. one
maintained by the government or insurance companies), or by scanning a
patient’s driver’s license or some other document. Another issue to investigate is
whether all the information typed by the clerks is actually needed – if they have
to type less information, then maybe they will be able to spend more time
checking the accuracy of the important information.

Example 4.5 This is the inverse of the last example. This time, you are told by the customer
that the problem is, ‘the data-entry system is not “high-tech” enough’. Hence you
are asked to write a system that scans drivers’ licenses and other documents in
order to enter a new patient’s name and address accurately and quickly. What
mistake could you be making if you accept this problem statement and proceed to
do exactly what the customer asks?

You should never accept a problem statement that merely says the technology
lacks sophistication – simple technology is often perfectly adequate or even
superior. The customers may not realize that software that accurately scans
arbitrary documents and puts the relevant information in the correct fields will
be difficult to write, and hence would be expensive. In fact there is a
considerable risk that the accuracy achieved by this approach might be
inadequate, and that much maintenance would be needed – for example as
document formats change. Once again, you should base your analysis on the
real problem – that clerks make too many errors. You might discover that your
real focus should be on improving the user interface of the existing system.

Exercises

E55 Define a possible scope for the following systems. First, list a wide range of
things that the system could do. Then narrow down the scope. To do this, select
a minimal set of the most important features that you would implement in the
first release of the system.

(a) A police information system.

(b) A system for real-estate agency.

(c) A system for a public library.

(d) A system for a car-rental agency.
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E56 Give precise problem statements for the systems listed in E55. Remember to
think about high-level goals. 

4.4 What is a requirement?

Let us dissect this definition in order to better understand it:

■ A requirement is a statement…: this means that each requirement is a relatively
short and concise piece of information, expressed as a fact. It can be written as
a sentence or can be expressed using some kind of diagram. We will call a
collection of requirements a requirements document.

■ …an aspect of what the proposed system must do…: most requirements say
something about the tasks the system is supposed to accomplish. They do not
describe the domain.

■ …a constraint on the system’s development…: requirements often specify the
quality levels required. They may also specify details such as the programming
language to be used if this is truly important to the customer. They should,
however, avoid discussing incidental aspects of the design.

■ …contribute … towards adequately solving the customer’s problem: a
requirement should only be present if it helps solve the customer’s problem – as
we discussed in Chapter 1, this is what software engineering is all about.

■ …a negotiated agreement among all stakeholders…: a statement about the system
should not be declared to be an official requirement until all the stakeholders
(users, customers, developers and their management) have reviewed it, have
negotiated any needed changes, and have agreed that it is valid.

4.5 Types of requirements

Requirements can be divided into four major types: functional, quality, platform
and process. Requirements documents normally include at least the first two
types.

Functional requirements
Functional requirements describe what the system should do; in other words,
they describe the services provided for the users and for other systems. The

Definition: a requirement is a statement describing either 1) an aspect of what the 

proposed system must do, or 2) a constraint on the system’s development. In 

either case, it must contribute in some way towards adequately solving the 

customer’s problem; the set of requirements as a whole represents a 

negotiated agreement among all stakeholders.
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functional requirements should include 1) everything that a user of the system
would need to know regarding what the system does, and 2) everything that
would concern any other system that has to interface to this system. Details that
go any deeper into how the requirements are implemented should be left out.

The functional requirements can be further categorized as follows:

■ What inputs the system should accept, and under what conditions. This
includes data and commands both from the users and from other systems.

■ What outputs the system should produce, and under what conditions. Outputs
can be to the screen or printed. They can also be transmitted to other systems,
such as special I/O devices, clients or servers.

■ What data the system should store that other systems might use. This is really a
special kind of output that will eventually become an input to other systems.
Data which is stored for the exclusive use of this system (e.g. the specifics of a
file format used to temporarily back up some data) can be ignored until the
design stage.

■ What computations the system should perform. The computations should be
described at a level that all the readers can understand. For example, you would
describe a sorting process by saying that the result is to be ordered in ascending
sequence according to the account number. You would not normally specify
the particular algorithm to be used.

■ The timing and synchronization of the above. Not all systems involve timing
and synchronization – this category of functional requirements is of most
importance in hard real-time systems that do such things as control hardware
devices (e.g. telecommunications systems, systems that control power plants or
factories, and systems that run automobiles and airplanes).

An individual requirement often covers more than one of the above categories.
For example, the requirements for a word processor might say, ‘when the user
selects “word count”, the system displays a dialog box listing the number of
characters, words, sentences, lines, paragraphs, pages, and words per sentence
in the current document.’ This requirement clearly describes input (selecting
‘word count’), output (what is displayed) and computation (counting all the
necessary information, and computing the average words per sentence).

Example 4.6 Summarize the functional requirements for an embedded software system that
allows a user to control a microwave oven. The system as a whole consists of:

❏ A keypad, with the following buttons that deliver an interrupt to the software
when they are pressed: 0 to 9, five power-level buttons (‘hi’, ‘med-hi’, ‘med’,
‘med-low’, ‘low’), three temperature buttons (‘frozen’, ‘refrigerated’, ‘room
temperature’), and five action buttons (‘AUTO-DEFROST’, ‘AUTO-REHEAT’,
‘START’, ‘CANCEL’ and ‘TIME OF DAY’).
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❏ A door sensor that delivers an interrupt to the software when the door is
opened or closed.

❏ A steam sensor that can be queried by the software, and which indicates the
amount of steam being released from the food.

❏ A digital LCD display on which the system can display output.

❏ A sound generator that the system can use to generate various tones.

❏ The cooking hardware (microwave emitter, fan and turntable). The software
can run this at the five different power levels, and can turn it off.

The following summarizes the main functional requirements. This is intended
to illustrate the different categories of functional requirements, which we have
marked in italics. It is not a complete requirements document; examples of more
complete documents are found in Sections 4.11 and 4.12. There are a few
deliberate weaknesses in these requirements, which are left for you to find in
later exercises.

1. The system can be in the following modes (conditions under which input and
output can occur):

❏ ‘idle’: this is entered when the system is switched on, when cooking is
complete or when ‘CANCEL’ is pressed. This mode is exited when the system
starts accepting input.

❏ ‘accepting input’: this is entered if the system was in idle mode and the user
presses any button, except ‘CANCEL’ and ‘START’. This mode is exited when
the system enters ‘cooking’ mode, the user presses ‘cancel’, or the user
completes the process of setting the time of day.

❏ ‘cooking’: this is entered if the door is closed, while the system is in
‘suspended’ or ‘accepting input’ mode, and the user then presses ‘start’. This
is exited when the user opens the door or presses ‘cancel’.

❏ ‘suspended’: this is entered if the user opens the door while cooking. This
mode is exited when the user presses ‘cancel’; or closes the door and then
presses ‘start’.

2. The user specifies a valid cooking method in one of the following ways (input):

❏ By pressing a sequence of up to five digits indicating minutes and seconds.
The last two digits are the seconds, the previous digits (if any) are the
minutes. The user may optionally then press one of the power-level keys.

❏ By pressing ‘AUTO-DEFROST’ followed by an optional sequence of digits
indicating the weight in pounds. If the user omits the weight, then the
default is 1.

❏ By pressing ‘AUTO-REHEAT’ followed optionally by one of the temperature
buttons. If the user omits the temperature, then the default is ‘refrigerated’.
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3. After specifying a cooking method, the user must press ‘START’ to initiate
cooking (input).

4. The user sets the time of day by pressing ‘TIME OF DAY’ followed by four digits
indicating the hours and minutes, followed by ‘TIME OF DAY’ again (input).

5. When in idle mode, the system displays the time of day using a 12-hour clock,
without any ‘a.m.’ or ‘p.m.’ (output).

6. Each time the user presses a button, the system generates a tone. If the button is
valid, the tone is high-pitched. If any button is pressed in an invalid sequence
(e.g. the user presses ‘START’ while the door is open, or presses ‘AUTO-DEFROST’
followed by ‘AUTO-REHEAT’) the tone is low-pitched (output and conditions for
the output).

7. When the system is in ‘accepting input’ mode, the system indicates on the
display the buttons the user presses (output – in a full document, more details
would be needed).

8. When the user specifies ‘AUTO-DEFROST’ cooking, the system computes the
required heating time and power level from the entered weight of the food
(computation – in a full requirements document the formulas used would have to
be specified).

9. When the system enters ‘cooking’ mode, the system sends a signal to the
cooking hardware to start cooking at the specified or computed power-level
(output).

10. If the system is cooking, and ‘AUTO-REHEAT’ has been specified:

❏ The system stops cooking when it detects sufficient steam, indicating that
the food is hot (input and output – in a full requirements document more
details of required steam levels would be required).

❏ The system displays an estimate of the remaining cooking time from the
initial temperature of the food, as specified by the user, and the amount of
steam it detects. The system constantly updates this estimate (computation
and output).

❏ As a safety measure, if the system has reached its time estimate and has not
detected any increase in steam, then it stops cooking (computation, timing
and output).

11. When the system is in ‘cooking’ mode and either a simple time-period or
‘AUTO-DEFROST’ has been specified:

❏ The system displays the power level and the cooking time remaining
(output).

❏ The system stops cooking when the time remaining reaches zero (timing
and output).
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12. When the system is to stop cooking, it sends a signal to the cooking hardware
to switch it off, and sounds three short high-pitched beeps (output).

Exercise

E57 Using the same format as Example 4.6, describe a set of functional
requirements for systems that would solve the problem statements you devised
in Exercise E56. If you find that a list of functional requirements is getting too
extensive, you may further narrow the problem statement. 

Quality requirements
Quality requirements ensure the system possesses quality attributes such as the
five discussed in Chapter 1: usability, efficiency, reliability, maintainability and
reusability. These requirements constrain the design to meet specified levels of
quality.

One of the most important things about quality requirements is to make them
verifiable. By this, we mean that it should be possible, after the system is
implemented, to determine whether they have, in fact, been adhered to. The
verification is normally done by measuring various aspects of the system and
seeing if the measurements conform to the requirements.

The following are some of the main categories of quality requirements,
although this is not an exclusive list.

■ Response time. For systems that process a lot of data or use a network
extensively, you should require that the system gives results or feedback to the
user in a certain minimum time. For example, you might write that a result
must be calculated in less than three seconds, or that feedback about the
progress of a search must appear within one second. In Chapter 7, we will
discuss usability guidelines for response time. Remember, however, that for
hard real-time systems, response time requirements should be considered to be
functional – the system would not work unless they are adhered to.

■ Throughput. For number-crunching programs that may take hours, or for
servers that continually respond to client requests, it is a good idea to specify
throughput, in terms of computations or transactions per minute.

■ Resource usage. For systems that use non-trivial amounts of such resources as
memory and network bandwidth, you should
specify the maximum amount of these
resources that the system will consume. This
allows others to plan hardware upgrades. For
example, you could specify that no more than
50 MB of memory is to be used by the system,
and that the system must consume less than
10% of the CPU’s time when run on a 1.8GHz
machine under a certain operating system.

Non-functional requirements
Quality, platform and process
requirements used to be
collectively called non-functional

requirements. However, that
term has fallen into disfavor and
we have therefore stopped
using it in this book.
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■ Reliability. Reliability is measured as the average amount of time between
failures or the probability of a failure in a given period. It is a good idea to set
strong but realistic targets for this. For example, you might specify that a
continuously running server must not suffer more than one failure in a six-
month period. It is necessary to define what you mean by a failure: normally it
means much more than just crashes; failures normally include any difficulties
users have getting their work done which are attributable to defects.

■ Availability. Availability measures the amount of time that a server is running
and available to respond to users. As with reliability, you should set a target for
this. For example, you might specify that a server must be available over 99% of
the time, and that no period of downtime may exceed 1 minute.
Telecommunications systems have very rigorous availability criteria: for
example, you might specify that such a system must not be down more than 10
minutes in its 20-year life-span. This is also often called ‘6-nines’ availability,
since it is equivalent to saying that the system must be up 99.9999% of the time.

■ Recovery from failure. Requirements in this category constrain the allowed
impact of a failure. They state that if the hardware or software crashes, or the
power fails, then the system will be able to recover within a certain amount of
time, and with a certain minimal loss of data. For example, the requirements
for a word processor might state: ‘the system will allow users to continue their
work after a failure with the loss of no more than 20 words of typing or 20
formatting commands.’ Note that the detailed procedure for recovery from
failure is a functional requirement.

■ Allowances for maintainability and enhancement. In order to ensure that the
system can be adapted in the future, you should describe changes that are
anticipated for subsequent releases. This constrains design and improves
quality without adding explicit new functional requirements.

■ Allowances for reusability. Similarly to the previous category, it is desirable in
many cases to specify that a certain percentage of the system, e.g. 40%,
measured in terms of lines of code, must be designed generically so that it can
be reused. This will help break the reuse vicious cycle discussed in the previous
chapter.

Platform requirements
This type of requirement constrains the environment and technology of the
system:

■ Computing platform. It is normally important to make it clear what hardware
and operating system the software must be able to work on. Such requirements
specify the least powerful platforms and declare that it must work on anything
more recent or more powerful. For example, you might declare that certain
software must run on any computer operating under Mac OS X version 10.2 or
MS-Windows 98 or higher, with 128 MB of RAM or more, and 100 MB of free
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disk space. This is quite different from the resource usage constraint on
memory above: a resource usage constraint specifies that the system will not
use more than a certain amount of resources, whereas a platform constraint
says it is not guaranteed to run if inadequate or incorrect resources are available.

■ Technology to be used. While it is wise to give the designers as much flexibility
as possible in choosing how to implement the system, sometimes constraints
must be imposed. Common examples are to specify the programming language
or database system. Such requirements are normally stated to ensure that all
systems in an organization use the same technology – this reduces the need to
train people in different technologies. The company might have also spent
considerable money on a certain technology and wants to get the best value for
that money.

Process requirements
The final type of requirements constrains the project plan and development
methods:

■ Development process (methodology) to be used. In order to ensure quality,
some requirements documents specify that certain processes be followed; for
example, particular approaches to testing. The details of the process should not
be included in the requirements; instead a reference should be made to other
documents that describe the process.

■ Cost and delivery date. These are important constraints. However, they are
usually not placed in the requirements document, but are found in the contract
for the system or are left to a separate project plan document, which we will
discuss in Chapter 11.

In most cases, the boundaries between the functional requirements and other
requirements types are clear. But sometimes it is unclear in which category a
requirement should fit. For example, if you were designing a word processor you
would likely build in an ‘auto-save’ feature so that, if the computer was turned
off or crashed, very little work would be lost. The question is, is the auto-save
feature a fundamental part of the word processor’s functionality (a functional
requirement), or is it a constraint on quality (a quality requirement)? You would
probably conclude that it is a functional requirement.

Example 4.7 Classify the following aspects of an airline reservation system into F for
functional, Q for quality, PL for platform, PR for process, and X for ‘should not be
a requirement’. Also indicate the subcategory of requirement. For something that
should not be a requirement, explain why not. 

■ How information about flights, passengers and bookings are entered. F: Input.

■ What information appears on tickets and reports. F: Output.

■ How fares are calculated. F: Computation.
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■ What information must be stored in the database that travel agents and others
access. F: Data storage.

■ The system should be designed such that it can be extended to handle a
frequent-flier plan. Q: Allowance for enhancement.

■ The system must be available at all times. Only 2 minutes’ downtime a week is
to be permitted. Q: Availability.

■ The system must run on any Linux system. PL: Computing platform.

■ A merge-sort algorithm must be used to sort the flights by departure time.
X: This is a design issue.

Exercises

E58 Classify the following requirements statements into F for functional, Q for
quality, PL for platform, PR for process, and X for ‘should not be a requirement’.
Justify your answer. If you would need more information to provide the answer
to one of these questions, indicate what else you would need to know.

(a) The system must use 128-bit encryption for all transactions.

(b) If the alarm system is ringing, then the elevators (lifts) will proceed to the
ground floor, open their doors and suspend further operations.

(c) The student information system will provide output from all commands
within one second.

(d) The system will be able to print to an LC-9 plotter.

(e) The system will use an array to hold the invoices.

(f) The system can read images of the following formats: JPEG, GIF, BMP.

(g) The system must use no more than 32 MB of RAM.

(h) The java.util.Date class should be used to handle dates.

(i) The JUnit framework should be used to test the system.

(j) The system must run under both Linux and Windows operating systems.

E59 The following requirements are stated in an unverifiable way. For each, indicate
the kind of requirement it is, and rewrite it so that it is verifiable (make up
some suitable details).

(a) A modern programming language must be used.

(b) A development process will be used that will ensure the system is of high
quality.

(c) The http server will have high availability and throughput.



 

Section 4.6 127Use cases: describing how the user will use the system

(d) The system must be produced at minimum cost.

(e) The automatic teller machine should be fast.

E60 Write a set of quality and platform requirements for the microwave oven
system of Example 4.6.

E61 Add quality and platform requirements to the systems you worked on in
Exercise E57. 

4.6 Use cases: describing how the user will use the system

Use case analysis is a systematic approach to working out what users should be
able to do with the software you are developing. It is one of the key activities in
requirements analysis.

The first step in use case analysis is to determine the types of users or other
systems that will use the facilities of this system. These are called actors. An actor
is a role that a user or some other system plays when interacting with your
system; each actor will need to interact with the system in different ways.

Most of the actors will be users; a given user may be considered as several
different actors if they play different roles from time to time – that is, if they have
different job functions. Other actors will be systems that automatically exchange
information with your system. If you performed domain analysis, you will have
already listed the different types of users

Example 4.8 You are developing a system for managing the processes of a small town public
library. List all the actors for this system. 

The actors might include the following: Librarian, Checkout Clerk, Borrower.

The second step in use case analysis is to determine the tasks that each actor will
need to do with the system. Each task is called a use case because it represents
one particular way the system will be used.

When listing use cases, make sure you respect the system scope, as discussed
in Section 4.3. In other words, only list use cases that actors will need to do when
they are using the system to solve the customer’s problem. You can also list a set
of use cases to help define the system’s scope.

Example 4.9 List a minimal set of use cases for the following actors in a library system:
Borrower, Checkout Clerk, Librarian, Accounting System.

Definition: a use case is a typical sequence of actions that an actor performs in order to 

complete a given task.
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Borrower:

❏ Search for items by title.

❏ … by author.

❏ … by subject.

❏ Place a book on hold if it is on loan to somebody else.

❏ Check the borrower’s personal information and list of books currently
borrowed.

Checkout Clerk:

❏ All the Borrower use cases, plus

❏ Check out an item for a borrower.

❏ Check in an item that has been returned.

❏ Renew an item.

❏ Record that a fine has been paid.

❏ Add a new borrower.

❏ Update a borrower’s personal information (address, telephone number etc.).

Librarian:

❏ All of the Borrower and Checkout Clerk use cases, plus

❏ Add a new item to the collection.

❏ Delete an item from the collection.

❏ Change the information the system has recorded about an item.

Accounting System (acting autonomously):

❏ Obtain the amount of overdue fines paid by borrowers.

Exercises

E62 For the following systems list the actors and, for each of these actors, list as
many use cases as you can think of.

(a) A system to handle the functions of a mail-order company that manages a
warehouse of goods, takes orders from customers by telephone, and ships
goods overnight to customers.
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(b) A system to handle electronic voting. The system will allow electors to vote
for a specific number of candidates, and only vote once. At the end of the
voting period, the system displays the result of the vote.

(c) A camping reservation system for multiple campgrounds. Campground
managers register many details of their site in the system, including maps
of camping locations and services available. Campers use the system to
select and reserve a camping location.

(d) The microwave oven system of Example 4.6.

Building a use case model
So far, we have discussed the first two steps of use case analysis, listing the actors
and listing the use cases. To build a complete use case model, we now need to
describe the use cases in more detail. A use case model consists of a set of use
cases, and optional descriptions or diagrams indicating how they are related.

How to describe a single use case
The following is how we suggest you describe a complete use case. Only the
name and steps are essential – you may choose to provide a simplified use case
description that omits the other components.

A. Name. Give a short, descriptive name to the use case. This should be a verb
phrase describing the action the user will do with the system. It is also useful to
include a number as a unique identifier for each use case.

B. Actors. List the actor or actors who can perform this use case. For example, in a
library system both a borrower and a librarian can check out a book.

C. Goals. Explain what the actor or actors are trying to achieve. For example, in a
library system, the goal of checking out a book would be to borrow the book in
order to read it.

D. Preconditions. Describe the state of the system before the use case occurs by
listing any conditions that must be true before an actor can initiate this use
case. For example, to be able to check out a book, the book must be available
and the client must not have any
overdue fines.

E. Summary. Summarize what occurs as
the actor or actors perform the use
case.

F. Related use cases. List use cases that
may be generalizations, specializa-
tions, extensions or inclusions of this
one. Later, we will explain these rela-
tionships.

Use case versus task analysis
Use case analysis is similar to task anal-

ysis. Task analysis has been traditionally
used to understand and improve the
efficiency of the tasks that users per-
form, whether or not they are using a
computer. User interface designers
sometimes continue to use the term
task analysis.
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G. Steps. Describe each step of the use case using a two-column format, with the
left column showing the actions taken by the actor, and the right column
showing the system’s responses.

H. Postconditions. What state is the system in following the completion of this
use case.

In general, a use case should cover the full sequence of steps from the beginning
of a task until the end.

A use case should describe the user’s interaction with the system, not the
computations the system performs. For example in a use case for withdrawing
money from an automated teller machine, you would describe the fact that the
user inserts his or her card, responds to various prompts by pressing some
buttons, and then removes his or her card and money. You would not describe
how communication with the bank is established or how the system computes
any fees it charges. The latter information is clearly important, but it belongs in
a different part of the functional requirements.

A use case should also be written so as to be as independent as possible from
any particular user interface design. In Example 4.10, for example, instead of
writing, ‘Push the “Open…” button’ as the first steps, we write ‘Choose the
“Open…” command’. The command could then be implemented as a button, a
menu item, a keystroke or a voice command. Similarly, we have not specified
whether the user types the file name or uses the mouse to select it from a list.
Nor have we indicated what the ‘File open’ dialog looks like.

Example 4.10 Describe in a simplified format a use case for opening a file in an application. 

Use case: Open file

Steps:

Example 4.11 Briefly describe a use case for leaving a particular automated car park (parking
lot). 

Use case: Exit car park, paying cash

Actors: Car drivers

Goals: To leave the parking lot after having paid the amount due.

Preconditions: The driver must have entered the car park with his or her car,
and must have picked up a ticket upon entry.

Actor actions System responses

1. Choose ‘Open…’ command. 2. Display ‘File open’ dialog.

3. Specify filename.  

4. Confirm selection. 5. Remove dialog from display.
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Summary: When a driver wishes to exit the car park, he or she must bring his
or her car to the exit barrier and interact with a machine to pay the amount due.

Related use case: Exit car park by paying using a debit card

Steps:

Note that we have not dealt with the case where the user has not entered enough
money at step 5. We will deal with this case later. 

A use case should normally include only actions in which the actor interacts
with the system. For example, when developing use cases for a library system,
you would not include actions such as ‘Get a book from the shelves’ or ‘Read the
book’. However, if there is a manual task that must be done between two
interactions with the computer, then this can be part of the use case; for
example, ‘Stamp the book with the due date’ is a valid action in Example 4.12.

Example 4.12 Describe in detail the ‘Check out an item for a borrower’ use case as performed by
the checkout clerks at the circulation desk of a library. This is one of the use cases
listed in Example 4.9. 

Use case: Check out an item for a borrower

Actors: Checkout clerk (regularly), chief librarian (occasionally)

Goals: To help the borrower to borrow the item if they are allowed, and to
ensure a proper record is entered of the loan.

Preconditions: The borrower must have a valid card and not owe any fines. The
item must have a valid barcode and not be from the reference section.

Steps:

Actor actions System responses

1. Drive to exit barrier, triggering a 
sensor.

2a. Detect presence of a car.
2b. Prompt driver to insert his or her 

card.

3. Insert ticket. 4. Display amount due.

5. Insert money into slot. 6a. Return any change owing.
6b Prompt driver to take the change 

(if any).
6c. Raise barrier.

7. Drive through barrier, triggering 
a sensor.

8. Lower barrier.

Actor actions System responses

1. Scan item’s barcode and barcode 
of the borrower’s card.

2. Display confirmation that the 
loan is allowed.
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Postconditions: The system has a record of the fact that the item is borrowed,
and the date it is due.

Exercise

E63 Write use case descriptions for the following activities:

(a) Paying a bill at an automatic teller machine.

(b) Creating a table in a word processor.

(c) Programming a microwave oven to turn on in five hours and heat some
food.

(d) Read messages in a voice mail system.

(e) Programming a thermostat to set the day and night temperatures.

Use case diagrams
Use case diagrams are UML’s notation for showing the relationships among a set
of use cases and actors. They help a software engineer to convey a high-level
picture of the functionality of a system.

It is not necessary to create a use case diagram for every system or subsystem.
For a small system, or a system with just one or two actors, a simple list of use
cases will suffice.

As Figure 4.3 shows, there are two main symbols in use case diagrams: an
actor is shown as a stick person and a use case is shown as an ellipse. Lines
indicate which actors perform which use cases. You do not actually need to write
the word ‘Actor’ in each actor’s name; however, we find it useful to do this when
it helps prevent confusion with classes of the same names.

Exercise

E64 For the systems of Exercise E62, draw a use case diagram that shows which
actors perform which use cases. 

Extension, generalization and inclusion of use cases
You may want to develop a group of distinct but related use cases. For example,
when an actor interacts with a system to achieve a particular goal, he or she may
select different options, perform some action repetitively, provide different
inputs, or answer too slowly causing a time-out error. Each variant or repetitive

3. Stamp item with the due date.

4. Confirm that the loan is to be 
initiated.

5. Display confirmation that the 
loan has been recorded.
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pattern of interaction can be represented as a separate use case. Similarly, the
system might have a special reaction when a file cannot be found. The use case
modeler can use extensions, generalizations or inclusions to represent different
types of relationships among use cases.

■ Extensions are used to make optional interactions explicit or to handle
exceptional cases. A use case extension can, for example, describe what happens
if an actor provides a wrong filename to access a given file or describes the
extra interaction that occurs if the actor decides to browse in order to locate the
required file instead of simply typing a filename. By creating separate extension
use cases, the description of the basic use case remains simple. In the extension,
you should indicate which step is the extension point – the point at which the
extension changes the basic sequence.

■ Generalizations work the same way as in a class diagram and use the same
triangle symbol: several similar use cases can be shown along with a common
generalized use case. In Example 4,13, the general ‘open file’ use case has two
sub use cases: ‘open file by typing name’, and ‘open file by browsing’.

■ Inclusions allow you to express a part of a use case so that you can capture
commonality between several different use cases. Even very different use cases
can share a sequence of actions. For example, many different use cases might
require an actor to specify a password, to browse through a list of items, or to
open a file. Rather than repeating the details of such common interactions in
multiple use cases, you can create a special use case that will be included in
other use cases. Such a use case represents the performing of a lower-level task
with a lower-level goal.

In practice, it can be difficult to decide whether to use specialization or
extension. Although it is worth trying to understand the distinction, it is not
worth wasting time in any particular model if you have trouble choosing
between these constructs.

Figure 4.3 A simple use case diagram showing three actors and five use cases

Add course offering

Find information about course

Add course

Register in course

Enter grade
for course

Registrar Actor

Professor Actor

Student Actor
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Example 4.13 Describe related use cases that have to do with opening a file in an application. 

Use case: Open file

Related use cases:

Generalization of:

❏ open file by typing name

❏ open file by browsing

Steps:

Use case: Open file by typing name

Related use cases:

Generalization: Open file

Steps:

Use case: Open file by browsing

Related use cases:

Generalization: Open file

Includes: Browse for file

Steps:

Actor actions System responses

1. Choose ‘Open…’ command. 2. Display ‘File open’ dialog.

3. Specify filename.

4. Confirm selection. 5. Remove dialog from display.

Actor actions System responses

1. Choose ‘Open…’ command. 2. Display ‘File open’ dialog.

3a. Select text field.

3b. Type file name.

4. Click ‘Open’. 5. Remove dialog from display.

Actor actions System responses

1. Choose ‘Open…’ command. 2. Display ‘File open’ dialog.

3. Browse for file (included use case).

4. Confirm selection. 5. Remove dialog from display.
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Use case: Attempt to open file that does not exist

Related use cases:
Extension of: Open file by typing name (extension point: step 4: Click ‘Open’)

Use case: Browse for file (inclusion)

Steps:

The graphical notation for showing extension, generalization and inclusion is
illustrated in Figure 4.4. The open triangle points to a generalization. The «extend»
and «include» stereotypes show the other relationships between use cases. 

Note that actors can also be arranged in a generalization hierarchy. In Figure 4.4,
‘System Administrator’ is a sub-actor of ‘Ordinary User’. This means that all System
Administrators can also act as ordinary users, and do such things as open files.

Exercises

E65 Write the following use cases, which are related to the ‘Exit car park, paying
cash’ use case of Example 4.11.

(a) Exit car park by paying using a debit card.

(b) Attempt to exit car park without initially entering enough money.

(c) Exit car park.

E66 Draw a use case diagram showing the relationships among the use cases of the
last exercise. 

E67 Create a complete use case model for the systems you worked on in Exercises
E55 to E57.

Actor actions System responses

4. Click ‘Open’. 4a. Indicate that file does not exist.

4b. Correct the file name.

4c. Click ‘Open’. 5. Remove dialog from display.

Actor actions System responses

1. If the desired file is not displayed, 
select a directory.

2. Display directory.

3. Repeat step 1 until the desired 
file is displayed.

4. Select a file.
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The modeling processes: choosing use cases on which to focus

You should identify all the use cases associated with the software product, but
you have to put varying emphasis on them when actually developing the system.
Often one use case (or a very small number) can be identified as central to the
system. For example, in an airline reservation system, the central use case will
be ‘Reserve a seat on a flight’. Once identified, the system can be built around
this particular use case.

There are also other reasons for focusing on particular use cases:

■ You may identify some use cases as high risk because you expect to have
problems implementing them. For example, in the GPS-based Automobile
Navigation Assistant (GANA) described in Section 4.11, you may identify
‘Enter navigation mode’ and ‘Speak now’ as high risk. These use cases will
require exploratory prototypes, since it will be challenging to ensure that the
voice output is easy to understand and is spoken to the user at the right time.

■ Some use cases will have high political or commercial value. For example, in an
online stock exchange system, a use case in which the user can see, in real time,
the evolution of the value of a given stock would not be essential – the users
could do their jobs without it. Nevertheless, it might be given high priority
because of its appeal when presenting the product prototype to potential
clients.

Exercise

E68 For the following systems create a list of use cases and describe each of them in
detail. Then identify the central ones, and any other ones that should be given
high priority.

(a) A web-application to pay bills from your bank account.

Figure 4.4 Extension, generalization and inclusion in a use case diagram

«extend» «include»

Ordinary User

System
Administrator

Open file by
browsing

Browse for file

Open file by
typing name

Attempt to open file
that does not exist

Open file
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(b) The GANA navigation system.

(c) A video-cassette recorder.

(d) A voice mail messaging system.

(e) A system to create digital photo albums on your computer.

E69 Identify the central use cases and the ones that should be given highest priority
in the use case models you worked on in Exercise E67.

The benefits of basing software development on use cases

Use case analysis is an intuitive way to understand and organize what the system
should do, since it is based on user tasks and expresses the tasks in natural
language. It can also be used to drive the development process; in particular, use
cases:

■ Can help to define the scope of the system – that is, what the system must do
and does not have to do.

■ Are often used to plan the development process. The number of identified use
cases is a good indicator of a project’s size. Development progress can be
measured in terms of the percentage of use cases that have been completed.

■ Are used to both develop and validate the requirements. If some piece of
proposed functionality does not support any use case, then it can be
eliminated. Users and customers can also understand requirements better if
they are expressed in terms of use cases. The use cases therefore can serve as
part of the contract between the customers and the developer.

■ Can form the basis for the definition of test cases (discussed in Chapter 10).

■ Can be used to structure user manuals.

However, use cases must not be seen as a panacea. There are three things to
watch out for:

1. The use cases themselves must be validated, using the requirements validation
methods to be discussed in Section 4.9. For example, it is important to make
sure that the set of use cases is complete and that they are expressed
consistently and unambiguously.

2. There are some aspects of functional requirements that are not covered by use
case analysis. For example, only activities triggered by an actor will appear as
use cases. An example of something not shown as a use case is the automatic
cleaning of a database to remove outdated information. Although it is not a use
case, this is still a functional requirement since it is important to the user that
the outdated information be periodically purged.
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3. You should be aware that when software requirements are derived from use
cases, the software tends simply to mirror the way users worked before the
software was developed. In other words, innovative solutions may not be
considered. As an illustration of this last point, try to describe a use case for
adjusting the wake-up time of an alarm clock. You will probably follow the
procedure you use yourself to adjust your own clock, even though there might
be more efficient and innovative ways to do it (for example, using speech
recognition).

Scenarios

A scenario is an instance of a use case that expresses a specific occurrence of the
use case with a specific actor operating at a specific time and using specific data.
It can help to clarify the associated use case. It is also often simply called a use
case instance.

Example 4.14 Describe a concrete scenario corresponding to the ‘Exit car park, paying cash’ use
case from Example 4.11. 

Steps:

4.7 Some techniques for gathering requirements

You can gather requirements from the same sources of information as you used
for domain analysis: i.e. from the various stakeholders, from other software
systems, and from any documentation that might be available.

In this section we list some structured techniques that are particularly
effective at gathering (also known as eliciting) requirements. All of them can be
used together to obtain a good set of requirements.

The first gathering technique, observation, is used to obtain subtle
information that stakeholders may not think of telling you. The next three,
interviewing, brainstorming and prototyping, are complementary techniques

Actor actions System responses

Drives to the exit barrier. Detects the presence of a car.

 Displays: ‘Please insert your ticket’.

Inserts ticket. Displays: ‘Amount due $2.50’.

Inserts $1 into the slot. Displays: ‘Amount due $1.50’.

Inserts $1 into the slot. Displays: ‘Amount due $0.50’.

Inserts $1 into the slot. Returns $0.50.

 Displays: ‘Please take your $0. 50 change’.

 Raises barrier.

Drives through barrier, 
triggering sensor. 

Lowers barrier.
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for actively asking for the opinions and knowledge of stakeholders as well as
forcing the stakeholders to stretch their minds.

Users participate in all four of these techniques, therefore they feel personally
involved in the project. This sense of involvement means that they will more
readily accept the final system. In Chapter 7, we will focus on users and discuss
other ways to make them feel personally involved.

Gathering requirements is an iterative process that must be combined with a
process of analyzing the requirements to systematically organize and prioritize
them. Building a use case model, as discussed in the last section, is a common
approach to analysis. You can also analyze requirements with the help of other
types of UML diagrams discussed in Chapters 5, 8 and 9. The analysis process
can be done individually or in a group setting; often much analysis is done with
users during the brainstorming and iterative prototyping sessions we will
discuss shortly.

Whichever techniques you use, it is important to put adequate time and effort
into the requirements process. Many projects have run into problems because
the software engineers rushed the requirements stage and jumped into design or
coding too early. Coding early can be fine as long as it is only rapid prototyping,
not developing the final product.

Observation
You can read documents and discuss requirements extensively with users, but
often only the process of observing the users at work will bring to light subtle
details that you might otherwise miss. For example, in a retail application you
may notice the manager bargaining with buyers over the price of certain items.
In an interview, she may forget to tell you that this is something that ought to be
automated.

In its simplest form, observation means taking a notebook and ‘shadowing’
important potential users as they do their work, writing down everything they
do. You can also ask users to talk as they work, explaining what they are doing.
In another variation, you can videotape the session so that you can analyze it in
more detail later.

Observation, and analyzing the resulting information, can consume a large
amount of time. Therefore it is best done only for the development of large
systems with which potential users will be performing complex tasks.

Interviewing
Interviewing is a widely used technique. However, a well-conducted series of
interviews can elicit much more information than poorly planned ad-hoc
interviews. Unfortunately, despite it being an important skill, software engineers
are rarely trained in conducting interviews; the guidelines below should help
you perform this important step effectively.

Firstly, plan to have as many members of the software engineering team
interview as many stakeholders as possible. Consider going beyond stakeholders,
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talking to users of competing products, marketing personnel, and people
involved with other systems that may interact in any way with the proposed
system.

Spread out the interviews over time, and allow yourself several hours for each
interview, even if you do not expect to use that much time. Time between
interviews will allow you to analyze what you have heard and to think of
additional questions. Leaving plenty of time ensures that if the interviewee is
providing lots of information, you can let him or her continue. For the most
important stakeholders you should hold a series of interviews, going into more
depth each time. This allows your knowledge and analysis to improve in the
intervening period.

Prepare an extensive list of questions, although do not be disappointed if there
is not enough time to have them all answered in a given interview.
Brainstorming, described in the next section, is an excellent technique to
generate a list of questions. The following are some types of questions you
should not forget:

■ Ask about specific details such as maximums and minimums, whether there
are any exceptions to rules and what possible changes might be anticipated. For
example, if you are told that there are exactly seven levels of management in an
organization, you should find out what they are, and you should also ask
whether this number is likely to change (even if the user says no, never design a
system that is inflexible about a detail like this). Journalists are taught to ask the
five W’s: who, what, when, where and why; this suggestion applies to
requirements interviews as well.

■ Ask about the stakeholder’s vision for the future. This question may elicit
innovative ideas and suggest what flexibility should be built into the system.
Some of the visionary ideas may, in fact, be easy to implement and should be
considered immediately – customers and users not familiar with technology
may think only of computerizing existing processes and may believe that more
extensive changes are unattainable.

■ If a customer or user presents concrete ideas for their view of the system, ask if
they have any alternative ideas, or ask how they would feel about alternative
ideas you have. This will help ascertain how flexible they are.

■ Ask what would be a minimally acceptable solution to the problem. In
requirements gathering, you will usually obtain far too many ideas; it is
important to realize what customers and users consider to be their very basic
needs – the basic needs may be surprisingly few in number. Without this
information you may produce expensive facilities that are not used, often called
shelfware.

■ Ask for other sources of information. The stakeholder you are interviewing
may have interesting documents or may know someone with useful knowledge.
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■ Have the interviewee draw diagrams. The diagrams could show such things as
the flow of information, the chain of command, how some technology works,
or practically anything. Diagrams can be a focal point to stimulate improved
information gathering.

An interviewer should cultivate listening skills and empathy for users and
customers. Empathy is the ability to reach into the mind of the interviewee and
really feel what they are feeling. Listening skills include patiently absorbing what
the interviewee is telling you, and then paraphrasing it back to them, seeking
confirmation so as to avoid misconceptions. Having empathy improves
listening, because you will often find that users are telling you facts that are
surrounded by emotional issues having to do with work frustrations, office
politics etc. You have to be able to show the user you understand their feelings,
and at the same time you have to be able to extract the facts and real needs from
them.

Interviewing can be intimidating for some people. Customers and users can
behave in annoying ways. There also can be significant communications
problems if the two parties have quite different backgrounds. In order to avoid
frustration, you have to make clear your level of knowledge: if the interviewee is
talking about complexities you do not understand, ask her to tell you the basics.
If she is explaining things you already know, summarize your knowledge so that
she does not feel she needs to repeat it.

Analysis should not take place at early interviews – they should be used
primarily for information gathering. In particular, if the user starts dictating
exactly what they want to see in the system, do not give him or her the
impression that, yes, you will deliver it. Instead, point out that the ideas are
important, but that you will have to analyze them and discuss them with others.

Following the interview process, you should summarize the information
you have found and share it with all the stakeholders, along with a request
for comments. Doing so may stimulate the stakeholders to give you
additional ideas.

Exercise

E70 Divide up into groups of three. Initially, one person will be the interviewee, one
person the interviewer, and the third person will observe the process. Each
person should first imagine a problem they have for which they desire a
software solution and present this to their group-mates. Each person then takes
a problem statement from another group member and prepares to conduct an
interview by composing a list of questions. Each member takes his or her turn
as interviewer, practicing the interview techniques described above, and taking
detailed notes as he or she proceeds. Each interview should last about 10
minutes. After each interview, the observer gives feedback to the interviewer
about the effectiveness of the questions. 
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Brainstorming

Brainstorming is an effective way to gather information from a group of people.
The general idea is that the group sits around a table and discusses some topic
with the goal of generating ideas. However, as with interviews, adding some
structure to the brainstorming process can help elicit a larger amount of
information. One of the keys to success is arranging for the brainstorming
session to be led, or moderated, by somebody trained in the process.

The following is a suggested approach to organizing and running an effective
brainstorming session:

1. Call a meeting with representation from all stakeholders. Effective brain-
storming sessions can be run with five to 20 people.

2. Appoint an experienced moderator (also known as a facilitator) – that is,
someone who knows how to run brainstorming meetings, and will lead the
process. The moderator may participate in the discussions if he or she wishes.

3. Arrange the attendees around the periphery of a table and give them plenty of
paper to work with.

4. Decide on a ‘trigger question’. This is a key step in the process. A trigger
question is one for which the participants can provide simple one-line answers
that are more than just numbers or yes/no responses.

Examples of trigger questions include the following: What features are
important in the system? What future sources of data should we anticipate?
What outputs should be produced by the system? What classes do we need in
our domain model? What interview questions should we ask? What issues have
we not considered? What are the risks or difficulties in this project? What
trigger questions can we ask?

The trigger question can be determined by the person who called the meeting,
by the moderator, by a quick discussion, or by brainstorming followed by a vote.

5. Ask each participant to follow these instructions:

(a) Think of an answer to the trigger question, no matter how trivial or
questionable the answer is!

(b) Write the answer down in one or two lines on a sheet of paper, one idea per
sheet.

(c) Pass the paper to the neighbor on your left (i.e. clockwise) to stimulate his
or her thoughts.

(d) Look at the answers passed from your neighbor to the right and pass these
on to your left as well. Use the ideas you have read to stimulate your own
ideas.

6. Continue step 5 until ideas stop flowing or a fixed time (5–15 minutes) passes.
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7. Moving around the table, ask everybody to read out one of the ideas on the
sheets that happen to be in front of them. If anyone seeks an explanation, the
originator of the idea may comment briefly (although he or she may choose not
to say anything in order to remain anonymous). The moderator, or a secretary,
writes each idea on a flip-chart. Then, optionally, the whole group may briefly
discuss the idea.

8. After a fixed time period, or after all ideas have been recorded on the flip-chart,
the group may take a series of votes to prioritize them. For example, every
person may be given a fixed number of votes that they can allocate to the
answers they think are the most important.

The concept of passing ideas clockwise round the table is illustrated in
Figure 4.5.

The main advantage of brainstorming is that in a moderated group session,
people are energized and tend to spontaneously invent many good ideas,
stimulated by what others have said. There are two advantages of using a
structured approach as described above. First, introverted or timid people can
have their say effectively since anonymity can be assured. Sometimes, such
people think their ideas are not very good because they lack self-confidence.
Second, a lot of thinking goes on in parallel: during the first phase, everybody is
thinking of their own ideas and writing them down concurrently. The session is
therefore more productive than if everybody had to wait their turn to express
their ideas.

Exercise

E71 Divide into groups of 7 to 12 people. Each group should then elect a moderator
and hold a brainstorming session for 20 minutes, following the procedures
defined above. A possible trigger question might be: ‘what requirements could

Figure 4.5 Phase 5 of structured brainstorming: passing ideas around the table to stimulate 
new ideas
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be implemented in the SimpleChat system, or some other system the group is
developing?’

Prototyping
A prototype is a program that is rapidly implemented and contains only a small
part of the anticipated functionality of a complete system. Its purpose is to
gather requirements by allowing software engineers to obtain early feedback
about their ideas.

The simplest kind of prototype is a paper prototype of the user interface. This
is a set of pictures of the system that are shown to customers and users in
sequence, to explain what would happen when the system runs. It can often be
a very powerful tool for eliciting ideas and feedback, and requires very little
effort to create.

Because paper prototypes are easy to create, they are ideal for parallel
development. In parallel development, several software engineers independently
create their own view of the system – the resulting prototypes are then evaluated
and the best features of each become part of the system’s requirements. It is
possible to carry parallel development further than a paper prototype, but that
takes more work.

The most common type of prototype is a ‘mock-up’ of the system’s user
interface, created using a rapid prototyping language. Rapid prototyping
languages allows you to create code very quickly in order to display the
important parts of a user interface; however, they have various weaknesses that
limit their usefulness for creating the final version of complex systems. The
weaknesses include inefficiency, and limitations on your ability to create robust
and flexible designs.

Users can sometimes make actual use of a rapid prototype; however, there is
often nothing much behind the user interface – it may not, for example, perform
any computations, access any databases or interact with any other systems. You

JAD sessions
Joint Application Development (JAD) is a technique related to brainstorming. In JAD, the developers
meet with customers and users in a secluded location for a period of three to five days.  The entire
time is spent working together to define the requirements. Activities can include regular
brainstorming, and negotiation of specific wording.  The participants can work together as one large
group, or can divide up into smaller groups to work on specific issues.  The final output should be a
written requirements document.

An important rule is that nobody should be interrupted by any other activity; therefore
JAD sessions must not be held near the offices of any of the participants.  The participants
often travel to a special location and stay in a hotel, as if going to a conference.  Activities can
take place in the evenings as well as in regular working hours.

The energy generated by intense JAD sessions can often shorten the period required to
work out the requirements from several months to several days.
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should modify a rapid prototype as many times as necessary in response to
feedback from users. However, you will not have put effort into designing its
architecture, therefore it will become hard to maintain, and will contain many
bugs. Because of this you should not normally turn it directly into the final
system; it should be used only as a requirements gathering tool.

In addition to prototyping the user interface, you may sometimes choose to
prototype other aspects of a system, such as an algorithm or a database. As with
all prototypes, the intent is to test and validate existing ideas, as well as to
generate new ideas.

4.8 Types of requirements document

To perform good software engineering, it is always appropriate to write down
requirements. The level of detail of the requirements can, however, vary
significantly from project to project. At one extreme, there are documents that
informally outline the requirements using a few paragraphs or simple diagrams.
At the other extreme, there are specifications that contain thousands of pages of
intricate detail. Unfortunately developers often err towards either extreme.
Choosing the right level of detail requires careful balancing because too little
detail can result in a system that does not adequately solve the problem, whereas
too much detail can be a waste of time and can make the development process
too inflexible.

Frequently, you have to produce several requirements documents, each
describing a different part of the system or a different level of detail. When doing
this, your strategy should be to make them all complementary. Each should refer
to other documents as necessary, but there should not be redundancy between
the documents. Redundancy leads to contradictions when changes are made in
one place but not another.

Requirements documents for large systems are normally arranged in a
hierarchy. There is a top-level document describing the overall system, its
subsystems and how the subsystems interact. Then there are separate

Agile approaches to requirements
In agile development approaches you do not develop large requirements documents. Instead, two
approaches are employed: user stories and test-first development.

A user story is similar to a use case, but has a looser structure; it describes some
proposed software feature from the perspective of how the user will use it and should be
limited to about three sentences. Development proceeds by choosing a very small number of
user stories to implement in the next iteration. Ideally each iteration will take only a few days
to develop.

The first stage of development in many agile approaches is to first develop test cases
(discussed in Chapter 10).  The series of test cases becomes the detailed specification of how
a user story should be implemented.
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documents describing each subsystem, and sometimes each sub-subsystem.
When we talk about ‘the system’, we are referring to whatever the current
development team is working on, which may be a subsystem or a larger system.
This notion of a hierarchy of requirements documents is illustrated in
Figure 4.6.

How do you decide what type of document to produce and how much detail
should be provided? The following factors can guide you as you make this
decision:

■ The size of the system. A large system will need more detailed requirements
for several reasons. First, there is simply more to say. Second, the system will
need to be divided into subsystems so that different teams can work on each
part – it then becomes essential that everybody have a clear idea of what
everybody else is doing, and how the subsystems interconnect.

■ The need to interface to other systems. Even a small system will need to have
well-described requirements if other systems or subsystems are going to use its
services or communicate with it. For example, as discussed in the previous
chapter, you have to specify the protocol with which clients and servers
communicate, otherwise you will never be able to get them to work together.

■ The target audience. The requirements must be written at a high-enough level
so that the potential users can read them. If the system is intended for the
general population, it should omit jargon that would be understood by only a
few people. On the other hand, the system might be intended for users with
specific scientific or engineering backgrounds, in which case technical details
from their domain can appear. Only if the system is strictly intended for use
exclusively by other software engineers (perhaps it is a framework, or a class
library) is it reasonable to include details down to the level of algorithms, data

Figure 4.6 Hierarchies of requirements documents
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structures and procedures. Normally such a level of detail would only be found
in a design document; however, in certain types of utility packages the
distinction between requirements and design can become blurred.

■ The contractual arrangements for development. If you are arranging a
contract by which a third party will develop software for you, then you will
have to specify the requirements with considerable precision. Similarly, if you
are developing requirements under contract, for a military client, for example,
then you will have to follow specific rules regarding the format and detail to be
provided.

■ The stage in requirements gathering. At an early stage in requirements
gathering, it is important not to write large volumes of precise and detailed
requirements – the risk that these will have to be completely rewritten is too
great. An outline describing a system or subsystem in a few paragraphs or
pages may be best at this stage. Once all the stakeholders agree with a short,
informal statement of requirements, successive levels of detail can be added.
Often it is best to develop a rough prototype, based on a very short statement of
requirements, as the first iteration of a system. You should then experiment
with the prototype, learning a lot of information about what is good and bad
about it. You can then add more detail to the requirements as you develop the
next iteration, which may be a more advanced prototype or a formal release of
a polished system. You should think of this process of repeatedly prototyping as
an integral part of the requirements gathering process.

■ The level of experience with the domain and the technology. If you are
developing software in a well-known domain and using well-known
technology, then you should be able to produce a complete requirements
document before starting to design the system. However, if you are developing
innovative software, then more caution is needed. You should certainly develop
prototypes based on rough requirements to check out the validity of your ideas
or the reliability of the technology. By technology, we mean such things as new
programming languages, class libraries, frameworks, algorithms, hardware,
databases or third-party software with which you will be interfacing.

■ The cost incurred if the requirements are faulty. Any system that, if it fails,
could jeopardize safety or the environment must be precisely specified.
Furthermore, those specifications should be subjected to rigorous analysis and
review. Examples of such critical systems include those that control industrial
processes, vehicles, telecommunications networks, medical equipment and
many consumer devices. The safety risk involved with nuclear plants and
automobiles is clear. Telecommunications networks failures can also pose a
safety risk if people rely on them during emergencies. Software failures in
consumer devices such as garage door openers or washing machines could lead
to injury, fires or floods, not to mention severe financial penalties resulting
from litigation. In addition to safety risks, some types of software failures can
lead to extensive economic damage. A famous example is software that would
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not have operated in the year 2000 had it not been fixed – the requirements for
software written in the 20th century should have specified 4-digit dates, instead
of 2-digit dates.

As software evolves, requirements documents are often written describing
incremental changes such as new features to be added to an existing system.
Doing this repeatedly can cause maintenance difficulties. This is because, after
a while, understanding the entire system will require reading the original
requirements, which are now out of date, plus the requirements for all of the
successive changes. To combat this problem, it is normally a good idea, when
making changes, to update a document that describes general requirements for
the entire system.

Requirements documents are given different names in different organizations.
The term requirements definition normally refers to a less detailed, higher-level
document, whereas the term requirements specification normally refers to a
more detailed and precise document. You should, however, avoid being overly
concerned about the precise names used for documents and follow the
convention used in your company.

Exercise

E72 For each of the following systems, describe the kind of requirements
documentation you think should be produced. Indicate the overall level of
detail that should be provided, whether iterative refinement would be
warranted, and whether a hierarchy of subsystem requirements would be a
good idea. Justify your answers.

(a) Software controlling a manned spacecraft being sent to Mars.

(b) Software for managing the payroll at a large company.

(c) Software for the ‘asteroids’ com-
puter game to be embedded in a
cellular telephone.

(d) Software to find all the occur-
rences of a certain word or
phrase in email you have sent or
received. 

4.9 Reviewing requirements

When developing requirements,
software engineers should adhere to
the guidelines listed below. Most of
the guidelines apply to prototypes as

Design before requirements?
For a large system, you have to break
it down into subsystems, and then
develop requirements for each sub-
system.  This process of subdividing
the system is part of software

architecture – a design activity we will
discuss in Chapter 9.  This means that
some aspects of design have to be
interspersed among the requirements
activities. The important thing to
remember is to do the highest level of
requirements analysis first.
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well as to informal and formal requirements documents. Early prototypes or
drafts of requirements should be reviewed by the author and stakeholders, and
there may need to be several cycles of improvements and repeated review.

The review process normally culminates with a formal requirements review
meeting at which all stakeholders are present. The stakeholders should have
received the document well in advance in order for them to have read it. Ideally,
most of the problems should have been eliminated by reviews of earlier drafts or
prototypes, so that the formal review should not raise major controversies.
However, if extensive changes are identified, then a further formal review may
be needed once the changes are made.

Each individual requirement should be carefully reviewed. In order to be
acceptable, a requirement should:

1. Have benefits that outweigh the costs of development. Cost–benefit analysis
is an important skill in software engineering. You sum, in financial terms, the
benefits of the requirement (such as improvements in productivity or sales)
and compare this to the sum of the costs (development cost, hardware needed
for users, training users, and ongoing maintenance, for example). Cost–benefit
analysis can be performed with considerable attention to detail; however, a very
rough estimate can often quickly show that a requirement will provide only a
minimal benefit, but cost substantially more than this to develop. Such
requirements should be immediately cut. In Chapter 11, we will discuss cost–
benefit analysis in more detail and provide an example.

2. Be important for the solution of the current problem. Many ideas might be
useful to implement, and might have benefits that outweigh their costs;
unfortunately you have to ruthlessly weed out the less important ideas in order
to reduce the total time required to develop the system, and to reduce risks by
keeping the software from becoming overly complex. The less important ideas
can be deferred for future consideration.

One of the most important rules in software engineering is the 80–20 rule,
which says that 80% of the user’s problem can often be solved with 20% of the
work. You should initially consider producing only that first 20% of the system.
The 80–20 rule is also called the Pareto principle.

Building a list of requirements that does more than needed is sometimes
called ‘gold-plating’ or building a ‘Cadillac system’.

3. Be expressed using a clear and consistent notation. Each requirement should
be expressed using language that the customers can understand and should be
consistent with the other requirements. Requirements are normally expressed in
a natural language such as English, sometimes supplemented by a formal mathe-
matical language, and often by some form of diagram. Whichever format is used,
consistent style should be applied throughout the requirements document. We
suggest that English sentences should use present tense, active voice, and express
what the system is to do in response to various inputs. For example, rather than
write: ‘The pharmacist will enter the patient ID number and then the patient’s
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medication record will be displayed’,
write: ‘When the pharmacist enters
the patient ID number, the system
displays the patient’s medication
record.’

4. Be unambiguous. It is typical to
find that an English sentence can
have more than one interpretation.
Often this is because words have several closely related meanings. For example,
the following requirement has two ambiguities: ‘When the user selects an
aircraft, the system assigns it to the flight.’ The first ambiguity has to do with
the word ‘aircraft’: does this mean a specific plane, or does it mean a class of
aircraft (e.g. Boeing 747s)? Secondly, what does the word ‘flight’ mean? Is the
aircraft being assigned just for a particular day’s departure, or is it being
assigned in general to a flight number that departs every day at the same time?

5. Be logically consistent. You should check consistency with any standards, with
other requirements in the document, with higher-level requirements and with
the requirements for other subsystems. In a large system, it can be very hard to
be sure that a requirement does not contradict some other requirement in
some subtle way. In fact, considerable research effort is spent finding ways to
automatically check requirements documents for consistency. However, since
such tools require the document to be written using a mathematical language,
and do not yet work very well for large systems, careful proofreading is the
main way to proceed.

One of the most important ways to help ensure consistency is to avoid
duplicating requirements. It is very common, for example, for a requirement to
be stated in the introduction to a document, and then repeated in more detail in
the body of the document. This is dangerous because if a change is made in one
place, there is a tendency to forget to make the change in the other place. For this
reason, the introductions and conclusions of requirements documents should
not actually contain any requirements.

Another aspect of consistency is consistency of the functional requirements
with the non-functional requirements and with the project plan. These are
addressed in the next two points.

6. Lead to a system of sufficient quality. A requirement should contribute to a
system that is sufficiently usable, safe, efficient, reliable and maintainable. It
takes a good deal of expertise to judge whether requirements meet these needs
– special analysis techniques can also be applied that we will not discuss in
detail in this book. For example, to assess the safety of a critical system, formal
mathematical proof techniques may be employed. To assess usability, the
requirements can be validated against a checklist of good user interface design
principles. As we will discuss in Chapter 7, to fully validate a system’s usability
you have to observe users actually working with a prototype.

Antoine de St. Exupéry on perfection
The importance of excluding unnecessary
requirements brings to mind the words of
Antoine de St. Exupéry: ‘perfection is not
achieved when there is nothing more to
add, but when there is nothing more to
delete.
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7. Be realistic with available resources. A requirement is realistic if the
development team has the expertise and technology to implement it on the
required platform within the budget and time available. If there is any doubt
about whether a requirement is realistic, further analysis is required. For
example, if there is uncertainty about whether an efficient algorithm can be
found to perform some computation, then experimental prototypes should be
developed and tested before committing to make the computation a
requirement.

8. Be verifiable. The requirements document will not only be the basis for a
system’s design, but also for testing the system. There must be some way that
the system can be tested so as to clearly conclude whether or not the
requirement has been correctly implemented. As we mentioned earlier, this
issue is mostly a concern for quality and platform requirements. For example:
‘the search result must be obtained rapidly’ is not verifiable because it is too
vague; readers will wonder what ‘rapidly’ means. A better requirement would
be ‘the first results of the search must appear in less than 1 second on average,
and in less than 3 seconds 95% of the time.’

9. Be uniquely identifiable. It is important to be able to refer to each individual
requirement. This is necessary in requirements review meetings so that people
can indicate which requirement they want to discuss. It is also necessary in
design documents to be able to say which requirement is being implemented by
a given aspect of the design, a quality called traceability illustrated in Figure 4.7.
The first step in making requirements identifiable is avoiding long paragraphs;
ideally, each requirement should start a new paragraph. In some documents,
each requirement is given a unique number – sometimes a hierarchical scheme
is used, e.g. 4.7.12.3 means the third requirement in section 4.7.12. Numbering
every single point makes the document cluttered, however, and leaving off the
final number, and requiring people to count a small number of paragraphs, is
often acceptable.

10. Not over-constrain the design of the system. As we have mentioned before, a
requirement should avoid indicating how it will be implemented, in order to
give the designer as much freedom as possible to make decisions.

Figure 4.7 Providing traceability by giving justification for what is written, either as pointers 
to requirements or as rationale

Design
document

....due to
requirement 1.2

Requirements
document

1.1 XXXX
.... because
1.2 YYYY

rationale
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In addition to the above ten guidelines for individual requirements, there are
several guidelines for requirements document as a whole:

11. The document should be sufficiently complete. We already discussed how a
document could either give a high-level overview or be more detailed.
However, at the chosen level of granularity, it should cover all of the
functionality of the system or subsystem. It should also include all appropriate
quality, platform and process requirements.

12. The document should be well organized. In particular, it should be carefully
designed so that its structure can be easily understood; it can be quickly
scanned, and any given requirement can be easily found. This means giving it a
clear title and dividing it into sections with meaningful headings and
subheadings.

13. Reasoning should be clear. Rationale should be provided for all requirements
that involve a large amount of analysis, that are controversial or for which
several alternatives are considered. Providing rationale serves several
functions: it reduces the need for software engineers in the future to have to
repeat your analysis when they make changes; it convinces the reader that you
did in fact consider the alternatives; and it alerts the reader to the fact that the
requirement may be controversial. Rationale provides traceability of the
requirements to their justifications, as shown in Figure 4.7.

14. The document should be agreed to by all the stakeholders. Requirements
should only be considered definitive when all the stakeholders agree they are to
be implemented. The process of negotiation might result in trade-offs being
made – a group of stakeholders may agree to a certain requirement only if a
change is made to some other requirement. For example, one group may want
to run the software on older computers. They may only agree to constrain the
software to run only on new, fast computers if a web interface is added so that
they can still see the output on their older computers.

We suggest that a complete requirements document should have sections
covering the following types of information. Add a table of contents and an
automatically generated index if the document is more than a few pages.

A. Problem. Provide a succinct description of the problem the system is solving. 

B. Background information. Give information that will help readers understand
the requirements. It should contain references to domain analysis documents,
standards, and the requirements of related subsystems. In this section you can
also discuss important issues you considered, and the rationale for your
decisions (you can also place such rationale directly in sections D and E as long
as those sections do not become cluttered with lengthy discussion).

C. Environment and system models. Provide the context in which the system
runs and a global overview of the system or subsystem. Diagrams are very
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useful here. You should describe the hardware on which the system will run,
and any other subsystems or software with which it will interact.

D. Functional requirements. As discussed earlier, describe the services provided
to the user and to other systems. Describe inputs, outputs, computations and
timing. Diagrams can again be useful.

E. Quality, platform and process requirements. As discussed earlier, describe
any constraints that must be imposed on the design of the system.

Example 4.15 Review the following short statement of functional requirements, pointing out any
problems you find.
Requirements for a restaurant advisor system. This system will allow people to
choose a restaurant in a city. Users enter one or more of the following criteria, and
then the system searches its database for suitable restaurants: food type, price
range, neighborhood, size, service type (fast food, cafeteria, buffet, full service),
smoking arrangements (none allowed, separately ventilated section, non-
separately-ventilated section, allowed on outdoor patio only). The user can also
specify a desired day and time-period, and the number of people in their party.
The system will tap into the reservation database (of participating restaurants)
and only display restaurants that have available space. After entering the criteria,
the user clicks on ‘search’, and the system displays a list of matching restaurants.
For restaurants that participate in the automated reservation system, the user can
click on ‘reserve’ next to a selection in order to make a reservation. 

Some of the problems with the above requirements:

(i) Duplication of ‘the system searches for suitable restaurants’/‘the system
displays matching restaurants’.

(ii) ‘Food type’, ‘price range’, ‘neighborhood’ and ‘size’ are inadequately
defined. Are these taken from a fixed set of values, or does the database
just contain free-form information? It will be hard for the user to search
unless the values of these items are standardized.

(iii) There is ambiguity regarding the ‘reservation database’ and the
‘automated reservation system’. Are these the same thing or not?

(iv) It appears that some of the listed restaurants are not in the reservation
system/database. If the user specifies the desired day and time-period,
and the number of people in the party, what does the system do with
restaurants that are not ‘participating’? Are they omitted from the list?

(v) Can the user select just one option or more than one option for ‘type of
food’? The same question applies to ‘smoking arrangements’ (the user
may not care).
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(vi) If the user selects ‘reserve’, there must presumably be some way for the
system to record identifying information about the user, so that the
restaurant knows who made the reservation. This is omitted.

It should be noted that the document was called a ‘short statement of functional
requirements’, therefore we will hesitate to criticize the fact that it lacks quality
requirements and rationale, or that it is just one large paragraph. However, its
writers should take care of these matters as they add more detail for the next
iteration.

Exercises

E73 The following are short statements of functional requirements for software
applications. Review each of them, listing as many problems as you can. Justify
your answers by referring to the guidelines. (This exercise is particularly
effective when done in groups of two or three.) 

(a) Simple interest calculation program. This is a handy utility for users who
are considering borrowing or lending money. A window pops up when the
program starts. This has three fields entitled: ‘Principal:’, ‘Annual interest
rate:’ and ‘Monthly interest payment:’. Whenever the user edits one of the
fields the other two fields are automatically computed.

(b) Dispatcher automation system. This system helps speed up the process of
ambulance dispatching. When an emergency call is received, an automated
voice recognition system classifies the case into categories depending on
the level of emergency. All urgent cases are transmitted to the ambulance
dispatcher, who will receive the patient’s record, a summary of the
conversation with the operator, as well as the patient’s address and medical
details if known. The dispatcher uses the system to obtain the number of
the closest available ambulance. The ambulance operator receives all the
information about the case.

(c) Inventory recording system. This system runs on dedicated computers at
the shipping and receiving gate of a warehouse. It is used by all warehouse
staff. Whenever an item enters or leaves the warehouse, a staff member
must record that fact in the system. 

A window is always visible on the screen to record items entering the
warehouse. This window has three fields, labeled ‘Product code’, ‘Number’
and ‘Description’. Below these fields is an ‘OK’ key. To process an item, the
staff member simply has to enter the product id and click ‘OK’, or press the
‘return’ key. The ‘Number’ field defaults to one.

If the clerk does not enter a product id, a dialog box appears with a list
of valid product ids and their descriptions; the staff member selects a code
from this list. The staff member can also type a description to add a
product code.
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When the item is successfully entered, the system prints out a sticker
with a barcode on it. The staff member attaches the sticker to the item, and
stores it in the warehouse. The system then clears the fields in the window
so as to be ready to record the next item.

To remove an item from the warehouse, the staff member simply swipes
the item’s sticker past a barcode reader. The system then records that the
item has been removed.

E74 Rewrite each of the statements of functional requirements in Exercise E73,
solving each of the problems you found. Since you will have to add missing
information, your requirements will become substantially longer and take the
form of a requirements definition document. Therefore, pay attention to the
organization of the document and follow the format and guidelines discussed
in this section. We have provided example requirements documents in Sections
4.11 and 4.12 that you can use as templates.

E75 Review the functional requirements for the microwave oven system of
Example 4.6, listing as many potential problems as you can. 

E76 Review the requirements you wrote in Exercises E57 and E61.

4.10 Managing changing requirements

One of the most important things to realize about requirements is that they
change. Just because you have written a requirements document, and have
obtained approval of it by all the stakeholders, does not mean that you can
confidently design and implement the system as specified. By the time the
system is delivered, the users’ and customers’ needs will likely have evolved so
that the requirements as documented no longer completely solve the customers’
problem.

The following are some of the changes to anticipate:

■ Business process changes. Businesses regularly adjust the way they do things
in order to better compete in the market or merely because they gain
experience and decide that an alternative approach is better. Changes to
business processes can also be prompted by such things as changes in laws, as
well as growth or rearrangement of the company.

■ Technology changes. A new release of the operating system, or some other
system with which your system interacts, may force you to reassess the
requirements.

■ Better understanding of the problem. Even though everybody might be
confident about the requirements when they are first approved, various
stakeholders may discover problems when looking at them again several
months later.
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Requirements analysis should therefore never really
stop. The development team should continue to interact
with the customers and users, asking them about their
problems and their ideas and showing them prototypes
of the system. Changes to the requirements should be
made whenever the benefits of doing so outweigh the
costs. Certain small changes, especially to the look and
feel of the user interface, are usually quick and easy to
make at relatively little cost. More large-scale changes
have to be carefully assessed: forcing unexpected
changes into a partially built system over and over again
will probably result in a poor design and late delivery.
On the other hand, the software that is delivered has to

be useful. It is difficult to strike the right balance, but usually it is better to reject
the more complex but less important requirements changes so as to not delay
development excessively.

When dealing with changes to requirements it is very important to avoid
requirements creep. This is what occurs when the changes are really
enhancements in disguise. Remember we discussed earlier the importance of
delivering the smallest possible system in the first release, minimally solving the
customer’s problem. Any changes to the requirements should if possible avoid
making the system bigger, and they should only make it better if the benefits
exceed the costs. Requirements creep has resulted in very significant cost
overruns in projects – it is just too tempting to add a few new features to make
customers happy. Unfortunately, ‘a few new features’ are often time-consuming
to develop – so leave them to a future release.

A final aspect of managing requirements is keeping track of the different
versions of requirements documents. Each time you change requirements, you
should give the document a new version number. The changes in each new
version should be highlighted to the reader using change bars (vertical bars
shown in the margin of a page). You should also use some kind of archiving or
configuration management system that stores older versions of documents. It
can sometimes be important to be able to go back and look at decisions that were
previously made, but subsequently changed.

4.11 GPS-based Automobile Navigation Assistant (GANA)

The following example requirements document is for an embedded system that
will be installed in special-purpose hardware in cars.

Requirements for GANA software

A. Problem. GANA software will help drivers navigate by giving them directions
to their destination.

How do you measure 
requirements?
It is very important to be able to
estimate the time it will take to
develop a system as early as possible.
Once one has developed require-
ments, it becomes possible to estimate
size using a set of techniques called
Function Point counting. We will
discuss this and other cost estimation
techniques briefly in Chapter 11.
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B. Background information. See domain analysis document 1234 (not provided
in this book).

C. Environment and system models. GANA software is to run on special GANA
hardware, described separately in document 1234. As described in document
1234, the hardware provides the following to the software: a) GPS position
information, b) a wireless Internet connection to a map database, c) position of
a trackball, d) a color 10 cm by 10 cm LCD screen, e) six buttons at the bottom
of the screen, and f) input from the car’s other systems containing data about
speed and turning of the steering wheel. This requirements document
describes the software only.

D. Functional requirements.

1. The system uses GPS information to calculate which map to display. The
system also integrates information about the car’s speed and history of turns
made in order to refine its accuracy about the vehicle’s location.

2. The system has two main interaction modes: in setup mode, the user consults
maps and specifies the destination; in navigation mode, the system assists the
user to navigate to the destination.

3. Setup mode
3.1 When the system is switched on, and the vehicle is stationary, it enters

setup mode. If the vehicle is moving, the system enters navigation mode.
For safety reasons the system cannot enter setup mode when the vehicle
is moving.

3.2 In setup mode, the system displays a map. The default map is in 1:25000
scale and is centered on the user’s current position. At this scale, the map
covers a square with 2.5 km sides (6.25 km2). Maps are oriented so that
true north is at the top.

3.3 When the user’s current position is within the visible part of the map,
the system always indicates it with a red arrow. The arrow points in the
direction the user is heading.

3.4 The system also displays in orange (computed in real time) the shortest
route (in estimated travel time) from the current position to the center
of the map. It will not be possible to display the entire route if the current
position is not displayed.

3.5 When the user manipulates the trackball, the screen scrolls the map in
the direction of rotation of the trackball, as if the user were grabbing the
map.

3.6 The LCD screen displays the labels ‘Zoom Out’, ‘Zoom In’, ‘Go Current’,
‘Go Destination’, ‘Set Destination’ and ‘Navigate’ above the six buttons
(from left to right). The buttons work as follows:

❏ ‘Zoom In’ and ‘Zoom Out’ display new maps. The scale of the map
appears at the top right of the screen. There may be a delay
retrieving a map, in which case the system displays the message



 

158 Chapter 4
Developing requirements 

‘Retrieving map’. If the map or network is unavailable for any
reason, the system displays: ‘Sorry, map not available’ near the top of
the screen and continues to display the previous map.

❏ When the user presses ‘Zoom In’, the map scale is doubled so that a
smaller region is displayed, with more local detail. The maximum
scale is 1:3125 which means that the map covers an area with
312.5 m sides (about 100,000 m2). If this scale is displayed, the
‘Zoom In’ button is inoperative and its label appears in light gray.

❏ When the user presses ‘Zoom Out’, the map scale is divided by 2 so
that a larger region is displayed, with less local detail. The minimum
scale is 1:102,400,000 which means that the map covers an area with
sides of approximately 10,000 km (about 108 km2 or enough to
display entire continents). If this scale is displayed, the ‘Zoom Out’
button is inoperative and its label appears in light gray. Note that the
scales are only approximate due to spherical aberration.

❏ When the user presses ‘Set Destination’, the location at the center of
the screen (marked by the end of the orange route) is set as the
destination. The shortest route from the current position to the
destination is highlighted in red and is adjusted as the car moves.

❏ The shortest route to the set destination (red) is shown on top of the
shortest route to the center of the screen (orange), and hence has
precedence. 

❏ When the user presses ‘Go Current’, the map jumps so that it is
centered over the current location.

❏ When the user presses ‘Go Destination’, the map jumps so that it is
centered over the destination. If no destination has been set, the
destination defaults to the current location.

❏ When the user presses ‘Navigate’ or the vehicle starts moving, the
system enters navigation mode described below.

4. Navigation mode

4.1 A detailed map is never displayed in navigation mode since the user
would not be able to concentrate on driving while looking at the map.

4.2 If no destination has been set, the system just displays the name of the
current highway or street and municipality in large type.

4.3 In addition, if a destination has been set, the system displays the
following in as large a size as possible:

❏ An arrow pointing up if the driver should drive straight ahead, a left
arrow if the driver should turn left, a right arrow if the driver should
turn right and a U-turn symbol of the driver should turn around.
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❏ A sentence describing what the user should do, in the following
format: ‘Turn <turning direction> at <turning landmark>, and head
<heading direction> on <road identification> towards <next
landmark>’. For example: ‘Turn left at exit 25 and head north on
highway 33 towards Newton’. The system computes the turning
direction, turning landmark, heading direction, road identification,
and the next landmark when these are available.

❏ The destination municipality (or address, if already within the
municipality), the distance remaining, the expected time remaining
and the expected arrival time.

4.4 The turning arrows and instructions are displayed as soon as possible,
as long as they cannot be interpreted ambiguously. A left turn arrow, for
example, would only appear when the driver must take the next left turn.

4.5 The system displays the labels ‘Speak Now’, ‘Volume Up’, ‘Volume Down’,
‘Guide On’, ‘Guide Off ’ and ‘Setup’ above the six buttons (from left to
right). The buttons work as follows:

❏ ‘Speak Now’ produces a computer-generated voice, reading the
instructions that are on display. Every time the user presses the
button, any reading in progress is canceled and the instructions are
immediately read again starting from the beginning.

❏ ‘Volume Up’ and ‘Volume Down’ adjust sound output.

❏ ‘Guide On’ causes a computer-generated voice to automatically read
the instructions one minute in advance of any required driver
action, such as exiting the highway, being needed. ‘Guide Off ’
cancels this function; the user would have to read the screen or press
‘Speak Now’. In situations where navigational action is required
more frequently than once a minute, the voice reads the next
instruction as soon as the system detects that the driver has
responded to the previous instruction.

❏ ‘Setup’ switches to setup mode if the car is stationary. If the car is not
stationary, the ‘Setup’ button is grayed out and is inactive.

4.6 If the driver does not respond as expected to the instructions, and takes
a different route, the system immediately calculates a new route.

E. Quality requirements.

1. The system will be robust in the case of failure of the Internet connection or
failure to receive the GPS signal, maintaining whatever service it can. 

2. The system will be designed in a flexible way such that changes in wireless
Internet or GPS technology can be incorporated in future releases.
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3. The system will be designed anticipating incorporation of input from an
inertial navigation unit that would take over in cases where GPS signals fail.

Exercise

E77 Perform a requirements review of the GANA system described in this section. 

4.12 Requirements for a feature of the SimpleChat instant messaging program

A. Problem. Sometimes a user wants to prevent messages received by a given
client from appearing on his or her screen. This might be because the client’s
user is being deliberately annoying, or because the client’s user is sending lots
of public messages that are useful to other users but are not useful to the
current user.

We therefore wish to add a facility to SimpleChat that will allow a given user
to block messages coming from another specified user.

B. Background information. See the requirements for SimpleChat Phase 2
(exercises E49–E51 starting on page 104) for the system on which these
requirements are based. The features described in these requirements are part
of Phase 3.

Issues considered:
Issue 1: Can the user block more than one other user at a time?
Decision: Yes; however, he or she will have to issue a sequence of block

commands.

Issue 2: The user needs some way of finding out if he or she has any
blocking in progress, otherwise the user might forget that he or
she had earlier established blocking.

Decision: Add a command called #whoiblock that will list those clients I am
blocking.

Issue 3: It would be useful for a user to know if anyone is blocking
messages that come from him or her.

Decision: Add a command called #whoblocksme that will do this.

Issue 4: Should the server be able to block messages?
Option 4.1: Do not allow the server to block messages.
Advantage: This would be simpler.
Option 4.2: The server should be able to block ordinary messages from

clients, but not administrative messages such as #forward etc.
Advantage: This would prevent a malicious user from overwhelming the

server’s display.
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Decision: Choose option 4.2.

Issue 5: What types of messages should the user be able to block?

Option 5.1: Block only private messages, but not public or channel
messages.

Advantages: The user can always avoid public or channel messages by
changing channel.

Disadvantages: Forcing the user to change channel is not really satisfactory –
what if the user is interested in other messages on that channel?

Option 5.2: Block private, public and channel messages.

Decision: Choose option 5.2.

Issue 6: How should this feature interact with forwarding? The
problem: imagine we have clients A, B and C, with A set to
forward all messages to B.

Scenario 6.1: A blocks messages from C: should a message from C to A be
forwarded to B as normal, or should it be blocked?

Decision: Blocked.

Scenario 6.2: B blocks messages from C (but A does not): should a message
from C to A be forwarded to B, or should it be blocked?

Decision: Blocked.

Scenario 6.3: B blocks messages from A (even though A has forwarded
incoming messages to B).

Option 6.3.1: Do not allow the blocking. However, this could be very
annoying for B; after all, it is not B that requested the
forwarding. Maybe the forwarding is just another harassment
tactic of A.

Option 6.3.2: Allow the blocking but continue allowing forwarding. The
problem with this is that the forwarding effectively allows A to
circumvent B’s block.

Option 6.3.3: Cancel the forwarding and establish a block.

Decision: Choose option 6.3.3.

Issue 7: Does it make sense to block messages from myself?

Decision: No.

Issue 8: Can a user block messages from the server?

Decision: Yes.

Issue 9: How does a user unblock messages?

Decision: The #unblock command with no arguments will cancel all
blocking that a user has set up. The #unblock command with an
argument will cancel blocking for messages from that user only.
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Issue 10: Any user could circumvent blocking by logging in using a
different login ID (and automatically creating a password for
the new login ID).

Option 10.1: Stop allowing users to create their own login IDs.
Advantages: Would solve this problem.
Disadvantages: Would make the system less useful in a chat environment.
Option 10.2: Status quo. Live with this problem.
Decision: Choose option 10.2.

Issue 11: Should it be possible to block users who are not even logged on;
and should a block persist even if the blocked user logs off and
logs on again?

Decision: Yes, to both questions, because otherwise a user could circumvent
the blocking by logging off and on.

Issue 12: Should a block persist even if the blocking user logs off and logs
on again?

Decision: No. For simplicity, we require a user to re-establish any blocks that
he or she desires.

C. Environment and system models. This feature is to be added to Phase 3 of
SimpleChat, at the same time as the forwarding and channels features are
added (see the project exercises at the end of the chapter). There are no
additional environmental considerations for these requirements.

D. Functional requirements:

1. General (applies to client and server alike)

❏ Commands. Each of these can be issued from the user interface of the
client or server. If issued from the client UI they will be transmitted to
the server unchanged.

#block <user>

❏ Initiate blocking for any user named <user>, except self.

❏ Works whether <user> is connected or not.

❏ Displays a message on the originating UI that states: 
Messages from <user> will be blocked.

❏ An attempt to block messages to self will cause the following message
to be displayed: 
You cannot block the sending of messages to yourself.

❏ An attempt to block messages from a user that does not exist will
result in the following message being displayed: 
User <user> does not exist.
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❏ Any number of these commands can be issued to block a series of
users.

❏ server is a valid user for this command.

#unblock {<user>}

❏ If an argument is specified, terminates blocking for messages from
<user> that had previously been established by the #block <user>
command.

❏ When successful, displays the following on the originating UI:
Messages from <user> will now be displayed.

❏ If #unblock <user> is issued with no preceding #block <user> for the
same user, then displays the following: 
Messages from <user> were not blocked.

❏ When issued with no argument:

1. Cancels any blocking in effect.

2. If blocking had been active, displays the following messages for
each previously blocked user:
Messages from <user> will now be displayed.

❏ If no blocking had been in effect, displays:
No blocking is in effect.

❏ server is a valid user for this command.

#whoiblock

❏ For each user for which this user has issued a #block <user>
command, displays the following message:
Messages from <user> are blocked

❏ If no users are blocked, then displays:
No blocking is in effect.

#whoblocksme

❏ For each user that is blocking messages from this user, displays the
message:
Messages to <user> are being blocked.

2. Operation:

2.1 If X blocks messages from Y, this has the following effects, irrespective
of whether X or Y is client or server:

❏ Any simple message sent by Y will not reach X.
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❏ Any #private X message sent by Y will not reach X.

❏ When Y issues the #private X command the following is displayed:
Cannot send message because X is blocking messages from you.

❏ If Y attempts to forward to X, using #forward X, the forwarding
attempt will be rejected and the following message will be displayed:
Cannot forward to X because X is blocking messages from you.

❏ If Y is already forwarding to X, when the block is established, then
forwarding will be terminated and the following messages will be
displayed:

❏ On X (in addition to the message confirming the establishment
of blocking):
Forwarding of messages from Y to you has been terminated.

❏ On Y:
Forwarding to X has been canceled because X is blocking messages
from you.

❏ Unless additional blocking is in effect, all other messages will be
unaffected.

2.2 Blocking persists no matter whether the blocked user logs off or on.
However, if the originator of the blocking logs off, the blocking is
terminated.

E. Other requirements. There are no additional quality, platform or process
requirements for this feature. All such requirements of the base system still
apply.

Exercise

E78 Perform a requirements review of the requirements for the SimpleChat features
described above. 

4.13 Difficulties and risks in domain and requirements analysis

■ Misunderstanding and lack of understanding of the domain or the real
problem. The software developers may make invalid assumptions and hence
create poor requirements or designs. Even customers or users who are ‘experts’
in the domain may not possess the kind of knowledge that can be easily
communicated to others, and they may define their problem too broadly or too
narrowly.
Resolution. Make good use of domain analysis, prototyping and other
requirements gathering techniques to help bring to light any misunderstandings,
and to help clarify the real problem.
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■ Requirements can change rapidly, resulting in requirements ‘churn’.
Requirements always change, and the rate of change is almost by definition
unpredictable. For example, if the requirements are dictated by the open
market, then the launch of competing products might necessitate changing the
requirements to stay competitive. Changes in requirements can result in
completed work being wasted, and can result in a deteriorating design if the
original design did not adequately anticipate the changes.
Resolution. Use an incremental approach to development, build flexibility into the
design, regularly review the requirements and prototypes with the stakeholders,
and, above all, always respect the inevitability of change.

■ Attempting to do too much. This occurs when inadequate boundaries have
been placed on the problem or the solution, or when those boundaries are not
respected (resulting in requirements ‘creep’).
Resolution. Use incremental development, and carefully document the problem
boundaries at an early stage. Carefully estimate the time any proposed
requirement will take, using techniques discussed in Chapter 11. Defer major
changes to subsequent releases if possible.

■ It may be hard to reconcile conflicting sets of requirements. Different
stakeholders may have very different views about what should be developed.
Resolution. Use brainstorming and JAD sessions to help different stakeholders see
other points of view. Create prototypes of the competing visions; when users
actually compare different prototypes, they may change their preferences.

■ It is hard to state requirements precisely. Natural languages, such as English,
are full of ambiguity. Even though everybody thought they had agreed, when
the system is built one group of stakeholders may complain that the system
does not do what they had expected.
Resolution. Break requirements down into simple sentences and review them
carefully, looking for potential ambiguity. Early prototypes can also highlight any
misunderstandings embedded in the requirements.

4.14 Summary

In this chapter we have discussed in detail the process of developing
requirements. It is important to keep developing the requirements throughout
the life of a software system to ensure that they continue to solve the customers’
problems.

We first discussed domain analysis, which enables software engineers to learn
enough about the domain so that they can effectively communicate with the
stakeholders.

We discussed the types of requirements: functional requirements are what the
system will do, while quality, platform and process requirements constrain the
design.
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Next we discussed pinning down a statement of the problem and defining the
system’s scope. Doing this helps ensure that subsequent work is focused and is
less subject to requirements creep.

We looked at various techniques for gathering and analyzing requirements,
including brainstorming, interviewing, prototyping and use case analysis. These
should all be used together. A prototype, in particular, should be seen as a tool
for eliciting requirements. The first system you develop will almost always be
thrown away – it is better that you plan to throw away a prototype, rather than
be forced to throw away a system that you have spent much time developing.

Finally, we gave some guidelines for reviewing requirements documents: the
requirements should be written consistently and clearly, solve the customers’
problem, be cost effective, realistic, verifiable and not over-constrain the design.
It is also important to consider quality, platform and process requirements as
well as functional requirements.

4.15 For more information

The following are some resources about requirements. Many of the general
software engineering resources from Chapter 1 also contain useful information
about requirements. Use cases are covered by many of the books on UML listed
in Chapter 5.

Books

■ R. R. Young, The Requirements Engineering Handbook, Artech House, 2003

■ I. Graham and L. Graham, Requirements Engineering and Rapid Development:
An Object-Oriented Approach, Addison-Wesley, 1998

■ S. Robertson and J. Robertson, Mastering the Requirements Process, Addison-
Wesley, 2000

■ D. Kulak and E. Guiney, Use Cases: Requirements in Context, 2nd edition,
Addison-Wesley, 2003

■ R. Thayer, M. Dorfman and S. Bailin (eds.), Software Requirements Engineering,
2nd edition, IEEE CS Press, 1997

■ G. Kotonya and I. Sommerville, Requirements Engineering, Wiley, 1998

Web site

■ The Requirements Engineering Specialists Group of the British Computer
Society: http://www.resg.org.uk which has links to many other web resources
on requirements.
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Standards
There are many standards covering software engineering – the existence of
standards is an important part of what makes software engineering an
engineering discipline. The following IEEE standards cover requirements
engineering. Organizations that produce standards make money by selling
them, so you cannot, therefore, easily find current ones on the web; however,
your library may subscribe to them. You can find information about them at
www.standards.ieee.org/software/index.html. 

■ IEEE Standard 830, Recommended Practice for Software Requirements
Specifications

■ IEEE Standard 1233, Guide for Developing System Requirements Specifications

Project exercises

In the following two exercises, you will develop some requirements for
extensions to the SimpleChat System that you worked on in Chapter 3. Then you
will implement the requirements and test the resulting system. By implementing
your requirements, you will develop a ‘feel’ for what constitutes a clear or
unclear requirement. We have already presented guidelines for blocking features
– you should use the same format in the first exercise. 

E79 Develop both use cases and requirements for features to be added to the
SimpleChat system that would solve the following problems. If you solve all
these problems, you will have completed Phase 3 of SimpleChat.

(a) Anybody with a client program can connect to a server and start sending
messages impersonating somebody else, since there is no password
protection. Hint: there are two completely different solutions to this
problem.

(b) There is no facility to send a private message to a particular user.

(c) It would be nice if instead of all connected users participating in the same
global chat session, separate channels could be established. All messages in
a channel would be broadcast to all other clients in that channel, but not to
clients outside the channel.

(d) A user wants to have somebody else monitor her incoming messages while
she is in a meeting.

E80 Implement the requirements you specified in Exercise E79.

In the following exercises we present a second project, the ‘Small Hotel
Reservation System’. As with the SimpleChat project, we propose that this be
based on the Object Client–Server Framework presented in Chapter 3, and we
will ask you to develop additional aspects of the project in each successive
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chapter. The main difference from SimpleChat is that this project will involve
more complex object-oriented modeling and design.

We suggest you work in groups of three or four on this project.
The short description of functional requirements for this project is below. On

the book’s web site (www.lloseng.com) we present a fully worked-out example
of a project similar to this. You may choose instead to base your project on one
of the system descriptions in Appendix C.

The goal of this project is to create a system to manage the front-desk
activities of the ‘Interface Rapids Hotel’. You have been contracted to replace the
existing paper-based system, since your customers believe an automated system
will save money and help them to serve guests better. The system will be used to
enter reservations as well as to check guests in and out of the hotel.

The hotel contains rooms in which guests can stay. Some hotel rooms adjoin
others; that is, there are internal doors between them. Each hotel room is
assigned a quality level (e.g. a larger room or a room with a view would be better
than a smaller room without a view). Each room also has a certain number and
type of beds, a room number, and a smoking/non-smoking status. Each quality
level has a maximum daily rate, although the rate that a guest pays may be less.

When a hotel guest wishes to make a reservation, the hotel clerk asks him or
her which nights he or she wants to stay and the type of room he or she wants.
The system must verify if room(s) are available on those nights before allowing
a reservation to be made.

The hotel needs to record basic information about each guest, such as his or
her name, address, telephone number, credit card etc. A reservation can be
canceled at any time but some fees (a percentage of the room price) may be
charged if the cancelation is done too late.

When a guest checks in, a room is allocated to him or her until he or she
checks out. When the customer requests a specific room, this can be allocated
in advance at the discretion of the manager. The system must keep track of the
guest’s account, and print his or her bill.

E81 Perform a domain analysis about hotel reservations. This will help you to
resolve certain ambiguities that might be present in the above statement of
requirements.

E82 Develop a full requirements definition for the above problem. Among the
techniques you should consider employing are the following: interview some
people who run hotels, and take a look at existing front-desk systems; use
brainstorming techniques to refine the requirements; perform use case
analysis, to determine who the actors are and what tasks they must perform. As
you do the above, narrow the problem statement, excluding features that will
not be needed in the first release. Before you complete your requirements
definition, make sure you hold a formal review.
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UML class diagrams are one of the most important tools for both requirements
analysis and design of object-oriented software systems. These diagrams show the
classes, their attributes and operations as well as the various types of relationships
that exist among the classes. In Chapter 2 we introduced some of the basics of class
diagrams, including attributes, operations and generalizations. In Chapter 3, you
saw some of those elements put together to represent the Object Client–Server
Framework. In this chapter we will examine class diagrams in depth, using several
additional examples.

5.1 What is UML?

The Unified Modeling Language (UML) is a standard graphical language for
modeling object-oriented software. It was developed in the mid-1990s as a
collaborative effort by James Rumbaugh, Grady Booch and Ivar Jacobson, each
of whom had developed their own notation in the early 1990s. The ‘U’ in UML
stands for ‘unified’, since its three developers combined the best features of the

In this chapter you will learn about the following

■ How to properly use the most essential features of UML class diagrams:
classes, associations, generalizations and interfaces.

■ The basics of Object Constraint Language (OCL).

■ Typical problems you will encounter when modeling with class diagrams.

■ A step-by-step process for systematically developing class diagrams.

■ Basic techniques for implementing class diagrams in Java.
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languages they had each previously developed. The custodian of the UML
standard is the Object Management Group (OMG). In 2004 the OMG approved
version 2.0 of UML.

UML contains a variety of diagram types, including:

■ Class diagrams, which describe classes and their relationships. These are the
subject of this chapter.

■ Interaction diagrams, which show the behavior of systems in terms of how
objects interact with each other. In Chapter 8, we will discuss two types of
interaction diagrams: sequence diagrams and communication diagrams.

■ State diagrams and activity diagrams, which show how systems behave. We will
also present these in Chapter 8.

■ Component and deployment diagrams, which show how the various
components of systems are arranged logically and physically. We will cover
these in Chapter 9.

UML, however, is much more than just a set of notations for drawing diagrams;
it has the following additional interesting features:

■ The diagrams you create with it are intended to be interconnected to form a
unified model; we will discuss this more in the next subsection.

■ It has a detailed semantics, describing mathematically the meaning of many
aspects of its notations.

■ It has extension mechanisms, which allow software designers to represent
concepts that are not part of the core of UML. We will show some examples of
these mechanisms.

■ It has an associated textual language called Object Constraint Language (OCL)
that allows you to formally state various facts about the elements of the
diagrams. We will introduce this important topic by way of some examples.

The objective of UML is to assist in software development. It is not a
methodology, because it does not describe, in a step-by-step way, how to do
things. See the sidebar for a discussion of this term. 

Why use a standard modeling language?

Some developers have been successful at developing small software systems
without the use of diagrams or other features of modeling languages. However,
as their systems become larger and larger, such developers have an increasingly
difficult time seeing the ‘big picture’ and are liable to create poor designs and
take much longer in their work.

Most systems are therefore documented with the use of diagrams. These
provide views of structure and functionality that would be difficult to grasp by
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looking at code or textual descriptions alone. In other words, diagrams provide
abstraction.

A model goes beyond a mere set of diagrams. A model captures an inter-
related set of information about the system: a diagram is simply one view of that
information. Several diagrams can present the same information in slightly
different ways, either with different notations or with different levels of detail. I
can delete an element from a diagram, and keep it in the model; if I delete an
element from the model it should disappear from all diagrams.

A model can lead software engineers to have insights about the system; they
can analyze the model (manually or using tools) to discover problems and other
properties of it. Simple diagrams generated from the model can also help
communicate with clients and users. However, it is up to the modeler to generate
these easy-to-understand views.

Employing UML, a well-defined standard modeling language, adds additional
advantages:

■ Since it is a standard notation, everybody who looks at the model will be able to
interpret it the same way.

■ There is a wide variety of tools available to build UML models and to enable
simulation, animation and/or generation of code for all or parts of a system.
For details of the most popular tools, see the ‘For more information’ section at
the end of the chapter.

‘Methodology’, ‘Method’ and ‘Process’
Since the early 1970s, many books have been written describing how software engineers should go
about developing software. The authors variously call their approaches methodologies, methods,
processes or development processes.  We prefer ‘methodology’ since the other terms can be used in
several different ways.

Most methodologies describe detailed sequences of steps for performing analysis and
design. Many of them require the use of a particular notation, and the production of
documentation in particular formats. Most also describe aspects of project management, and
many are supported by tools developed by the authors of the methodology, or by others.
Some methodologies are publicly available in book form; others must be obtained, at great
expense, by signing a contract with a consulting company.

It is generally a good idea for an organization to follow a specific methodology. By doing
so, all members of the organization follow the same steps and use the same notations.  They
can communicate with each other, know what each other is doing, and co-ordinate their
work.

The Rational Unified Process is one of the best known methodologies in wide use today. It
was developed by the same group who developed UML and incorporates UML as its notation.
Agile methodologies, such as eXtreme Programming, also have a wide following.

In the current book, our intent is to give you knowledge that will help you to understand
and work in the context of any methodology.
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5.2 Essentials of UML class diagrams

Class diagrams describe the data found in a software system. As you learned in
Chapter 2, many of the classes in these diagrams correspond to things in the real
world. For example, in an airline reservation system there would be classes such
as Flight, Passenger and Airport.

The main symbols shown on class diagrams are:

■ Classes, which represent the types of data themselves.

■ Associations, which show how instances of classes reference instances of other
classes.

■ Attributes, which are simple data found in instances.

History of object orientation – methods and notations
In the 1980s, the object-oriented approach began to become widely accepted in the software
community as a good way to cope with software complexity. At that time, however, object
orientation was applied primarily at the programming level; there was no guidance to software
engineers about how to analyze or design systems in an object-oriented way.  As people continued
to develop ever more complex software, systematic approaches to analysis and design were clearly
needed.

At the end of the 1980s and the beginning of 1990s, the first object-oriented
methodologies appeared. Each of these was published as a book and proposed its own
notation for modeling.

Some of the most important contributors in this period were:
■ Shlaer and Mellor, who proposed their recursive approach in 1989.
■ Rumbaugh, and his colleagues, who published a book about the Object Modeling Technique

(OMT) in 1991.
■ Coad and Yourdon, who in 1991 proposed an approach based on prototypes.
■ Jacobson, who in 1992 used his work experience to incorporate the idea of use cases into object-

oriented development.
■ Booch, a pioneer in object orientation, who presented his method in 1994.
■ Martin and Odell, who also wrote a book describing their approach in 1994.

Unfortunately, the proliferation of methods and notations tended to cause considerable confusion.
The initiative of combining their approaches was taken in 1994 by Rumbaugh and Booch at Rational
Corporation (now part of IBM). In 1995, Jacobson joined the team to participate in defining what is
now known as the Unified Modeling Language.  These three UML developers are now sometimes
called the Three Amigos.

In 1997 the Object Management Group (OMG) started the process of UML
standardization, a process widely supported by industry.  The UML standard is now used by
most software engineers who are performing object-oriented analysis and design.

References to literature about UML and other earlier notations can be found at the end
of the chapter.
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■ Operations, which represent the functions performed by the instances.

■ Generalizations, which are used to arrange classes into inheritance hierarchies.

We will start by explaining how to use these symbols properly. In later sections,
we will discuss more advanced features of class diagrams as well as a step-by-
step approach to drawing class diagrams. In the next chapter we will introduce
common patterns found in class diagrams.

Classes
A class is represented as a box with the name of the class inside. As discussed in
Chapter 2, the name should always be singular and start with a capital letter.
When you draw a class in a class diagram, you are saying that the system will
contain a class by that name, and that when the system runs, instances of that
class will be created.

Optionally, the class diagram may also show the attributes and operations
contained in each class. This is done by dividing a class box into two or three
smaller boxes: the top box contains the class name, the next box lists attributes,
and the bottom box lists operations. If you do not want to specify attributes or
operations, then you simply omit the box.

Figure 5.1 illustrates how a class can be drawn at several different levels of
detail. How much detail you show depends on the phase of development and on
what you wish to communicate. In the leftmost example, only the class name is
shown, indicating merely that the class exists. Additional detail is shown in the
other four representations of the same Rectangle class. The most detail, including
the type of attributes, whether the feature is public (+) or private (−), and the
signature of operations, is shown in the rightmost example. When shown in full
detail, an operation’s signature is specified using the following notation:
operationName(parameterName: parameterType,...): returnType.

5.3 Associations and multiplicity

An association is used to show how instances of two classes will reference each
other. The association is drawn as a line between the classes.

Symbols indicating multiplicity are shown at each end of the association. The
multiplicity indicates how many instances of the class at this end of the
association can be linked to an instance of the class at the other end of the

Figure 5.1 The RRRReeeeccccttttaaaannnngggglllleeee class at several different levels of detail

Rectangle
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− width:

+ getArea(): int
+ resize(int,int)
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association. Figure 5.2 gives some examples of associations, showing their
multiplicity.

A multiplicity of 1 indicates that there must be exactly one instance linked to
each object at the other end of the association. For example, there can only be
one Company associated with each Employee in Figure 5.2.

A very common multiplicity is ∗, which is normally read as ‘many’, and means
any integer greater than or equal to zero. In Figure 5.2, for example, many
employees can be associated with a company; one possibility being that a
company has no employees. Although there is no theoretical upper bound, there
is a practical upper bound that depends on the amount of memory and
processing capacity available.

If there can be either zero or one object linked to an object at the other end of
the association, then the multiplicity is said to be ‘optional’, and the notation 0..1
is used. So, for example, Figure 5.2 shows that there can be zero or one office per
employee. In other words, it is optional that an employee is assigned to an office
(some may work at home or in a job that does not require an office).

You can also specify the multiplicity to be an interval, which is shown as two
dots between the lower and upper bound. An interval is also sometimes called
a range. If, for example, you determine that a sailboat can have between 1 and 3
masts, then you would write 1..3 on the Mast end of the association. The 0..1
notation discussed above is a special case of an interval. If an interval has no
upper bound, then you use the asterisk; therefore 0..∗ and ∗ mean the same
thing, while 1..∗ means ‘at least one’.

The multiplicity can be a specific positive integer; and you can also specify
several multiplicity values or ranges separated by commas. For example,
imagine that the law in some jurisdiction states that a board of directors must
have between three and eight members. Furthermore, if the board finds itself
with insufficient members, then it is automatically dissolved and new elections
must be held – during the election process, the board has zero members. The
multiplicity of the final example in Figure 5.2 reflects this situation: there can be
either zero, or between 3 and 8 persons on a BoardOfDirectors.

Specific multiplicities involving intervals or exact numbers greater than two
are not common, and should only be specified after careful thought. For

Figure 5.2 Examples of possible multiplicities

0..1

Person BoardOfDirectors

Office Employee

Company BoardOfDirectors

AdministrativeAssistant Manager

Employee Company∗

∗ 1..∗

1

0,3..8

∗

∗

11
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example, you might be tempted to specify that a person should always have
exactly two parents. However, if you do so, then you are requiring that the
system always have a record of everybody’s two parents. Adhering strictly to
such a rule would be impossible because not everybody knows who their
parents are, and also because the system would have to know the parents of the
parents, ad infinitum. A more reasonable multiplicity for parents might be 0..2.

If you do not specify the multiplicity of an association end, then it is said to be
undefined. We strongly recommend never leaving a multiplicity undefined,
since much of the meaning of a class diagram comes from the multiplicities. In
some earlier versions of UML, leaving the multiplicity blank meant it should be
interpreted as ‘one’ rather than undefined; you may see some older diagrams
using this convention. 

Labeling associations
Each association can be labeled, to make explicit the nature of the association.
There are two types of labels, association names and role names. Figure 5.3
shows the same associations as in Figure 5.2, but with labels added.

An association name should be a verb or verb phrase, and is placed next to the
middle of the association. One class becomes the subject and the other class
becomes the object of the verb. For example, the association between Employee
and Company is called worksFor. You can read the association in one direction as,
‘an employee works for a company’. The direction to read the association is
normally obvious, but can be clarified by showing a little arrow (a filled triangle)
next to the association name (as in the fourth association in Figure 5.3).

Another way of labeling an association is to use a role name. Role names can
be attached to either or both ends of an association. A role name acts, in the
context of the association, as an alternative name for the class to which it is
attached. For example, in the association between Person and BoardOfDirectors,
boardMember is a role name that describes the people who happen to be members
of the board. You can read this association as, ‘a board of directors has either
zero or 3 to 8 persons as board members’.

Figure 5.3 The associations of Figure 5.2, but with some association names and role names 
added

0..1

Person BoardOfDirectors

Office Employee

Company BoardOfDirectors
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Employee Company∗
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If you omit both the association name and role names, then consider that an
association’s name is simply has, by default. This is not very informative, but in
some cases it is adequate, since the meaning of the association might be clear by
simply looking at the two classes. For example, in the association between
Company and BoardOfDirectors, we have chosen not to add any label; the
association would read, ‘a company has a board of directors’.

A good rule of thumb when performing analysis is: add sufficient names to
make the association clear and unambiguous. It is normally not necessary to add
both role names and an association name to the same association. For example,
we could have added a role name employer next to Company in the first association
of Figure 5.3; however, the association name worksFor is sufficient. We could also
have chosen here to use the role name instead of the association name.

Analyzing and validating associations
It is very common to make errors when creating associations – it is particularly
easy to get the multiplicity wrong. Therefore you should get into the habit of
reading every association in both directions to verify that it makes sense. Most
importantly, you should always ask yourself whether a less restrictive
multiplicity could also makes sense in some circumstances. By less restrictive,
we mean using ‘many’ or ‘optional’ instead of ‘one’ or some other specific
number.

In general, you should err on the side of being less restrictive so as to increase
the flexibility of the system. For example, restricting the number of people who
supervise an employee to ‘one’ would make it hard to introduce a ‘matrix
management’ system, in which a person can have multiple supervisors. On the
other hand, using ‘many’, as opposed to ‘one’, when it is not justified, will
increase a system’s complexity and reduce its efficiency.

The following points discuss three of the most common patterns of
multiplicity, each of which is illustrated in Figures 5.2 and 5.3.

■ One-to-many. A company has many employees, but an employee can only
work for one company. You might argue that this is incorrect, since somebody
might moonlight, working for several companies. However, company policy
might explicitly disallow moonlighting in companies managed by our system.
This multiplicity pattern correctly indicates that a company can have zero
employees, as in the case of a ‘shell’ company. Finally, since it is not possible to
be an employee unless you work for a company, the multiplicity at the Company
end is correctly shown to be exactly one, not optional.

■ Many-to-many. An administrative assistant can work for many managers, and
a manager can have many administrative assistants. Of course, a one-to-one
relationship would be typical between any particular administrative assistant
and manager, but in general there are assistants who work for a group of
managers, and managers who are so senior that they have a group of assistants.
It is also the case that some managers might have zero assistants. An interesting
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question arises when you consider whether it is possible for an assistant to
have, perhaps temporarily, zero managers. We have decided in Figures 5.2
and 5.3 not to allow this, and to require the system to ensure that at all times at
least one manager supervises each administrative assistant.

■ One-to-one. For each company, there is exactly one board of directors. Also, a
board is the board of only one company. A company must always have a board,
and a board must always be of some company. What would happen if the board
members all resigned? We would still say that the board exists, but temporarily
has zero members.

The most common multiplicity pattern is one-to-many. The next most common
is many-to-many. Together, these two patterns account for the vast majority of
associations. Later on we will see how a many-to-many association can be split
into two one-to-many associations.

One-to-one associations are less common. When you see such an association,
you should ask yourself if in fact one or both ends should be changed to
‘optional’ or ‘many’. The implication of a one-to-one association is that
whenever you create an instance of one of the classes, you must simultaneously
create an instance of the other; and when you delete one you must delete the
other. If there is a true one-to-one association, you might also consider whether
it is an aggregation, discussed later.

A common error is to create a one-to-one association between two classes,
where the two classes should really be one. For example, in Figure 5.4 Person and
PersonInfo should become a single Person class, with the attributes of PersonInfo
transferred to Person.

Figure 5.5 illustrates a possible multiplicity pattern involving three classes.
Let’s look in detail at its semantics. We can tell that for each Booking there must
always be exactly one Passenger, but each Passenger can have any number of
Bookings (i.e. on different flights and dates). Similarly, for each Booking there must
always be exactly one SpecificFlight, but each SpecificFlight can have any
number of Bookings (up to the capacity of the aircraft, of course).

We will read and analyze the left association in Figure 5.5 in the following two
directions:

Figure 5.4 An inappropriate one-to-one association (left), and a corrected model showing a 
single class (right)

Person

name
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■ ‘A Booking is always for exactly one Passenger’
This means there could never be a booking with zero passengers. Does this

seem correct? Yes. After all, it would not make sense to have a booking if we did
not know who the booking was for. From this information we can also conclude
that to create a Booking, either we must have previously created the Passenger, or
else we must create it at the same time as the Booking.

The above association also implies that a Booking could never involve more
than one Passenger. Is this really what we mean when we
think of a booking? The answer is not so clear and hence
requires careful thought. You might imagine an entire
family sharing a single Booking to fly to some vacation
spot. On the other hand, the alternative shown in Figure
5.5 is that each member of the family has his or her own
Booking. This alternative provides more flexibility since
it allows any member of the family to change itinerary
without affecting the others.

■ ‘A Passenger can have any number of Bookings’
This statement says that a passenger could have no bookings at all. Does this

seem reasonable? Again, to answer this might need further requirements
analysis. One possibility is that we might not want to waste space storing
information about a passenger who does not have any bookings – hence we may
decide always to delete a passenger if he or she has just one booking and cancels
it. If this is our decision, then the multiplicity can be changed from ∗ to 1..∗. If
we make this change, then whenever we add a new passenger, we will have to
add their first booking simultaneously.

On the other hand, it might be convenient to be able to add some passengers
to the system and then later on to go back and add bookings. Therefore we will
conclude that allowing a Passenger to exist without a Booking is acceptable and
leave the multiplicity at ∗.

Can a passenger have more than one booking? Yes, since it is easy to imagine
somebody arranging a whole series of flights.

Exercises

E83 Discuss other multiplicities that could have been considered in Figure 5.5. 

E84 Create two or three classes linked by associations to represent the situations
below. Take care to specify appropriate multiplicity, as well as labels for the

Figure 5.5 Associations related to booking passengers on a flight

Passenger Booking SpecificFlight∗ ∗1 1

Booking passengers on flights

Diagram frames and labels
Figure 5.5 has a frame around it, with a
label ‘Booking passengers on flights’ in
the top-left corner.  This is an optional
feature that any UML 2.0 diagram may
possess. We have shown it here to
illustrate its use; we will leave it off all
other diagrams in this book.
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associations. If there is more than one reasonable alternative, explain the
advantages and disadvantages of each.

(a) Racing with vehicles and drivers.

(b) A video rental shop, where you must purchase a membership before
renting anything.

(c) A landlord renting apartments to tenants.

(d) A student taking courses in a school.

(e) A professor teaching courses in a university.

(f) An author writing books distributed by publishers.

(g) A repertory theater company planning presentations of various plays.

E85 Explain the consequences of the associations in Exercise E84 in terms of the
creation and destruction of instances. Think about the order in which instances
can be created or destroyed.

E86 For each of the associations you created in Exercise E84, write a few sentences
showing how you would read the association in both directions. 

Association classes
In some circumstances, an attribute that concerns two associated classes cannot
be placed in either of the classes. For example, imagine the association shown in
Figure 5.6, in which a student can register in any number of course sections, and
a course section can have any number of students. In which class should the
student’s grade be put?

If you put the grade in the Student class, then a student could have only one
grade, not one per course section. If you put the grade in the CourseSection class,
then a course section could have only one grade, not one per student. The grade
is therefore not a property of either class.

The solution to this problem is to create an association class to hold the grade.
As shown in the left half of Figure 5.7, an association class is connected to its
association by a dashed line. In this example, the new class is called Registration;
in general, an association class should be named using a noun that reflects the
meaning of the association; the association name is then no longer needed.

Aside from being attached to an association, an association class is no
different from any other class. In particular, it can have subclasses and other
associations connected to it.

Figure 5.6  A many-to-many association. The ‘grade’ attribute can be put in neither class

∗∗ isRegisteredIn
Student CourseSection



 

180 Chapter 5
Modeling with classes 

Any time you see a many-to-many association, you should consider
whether an association class is needed.

The diagram in the left half of Figure 5.7 can be transformed into the
diagram in the right half, which uses only one-to-many associations. Any pair
of classes, linked by a many-to-many association with an association class, can
be transformed in this manner. Pay special attention to the positions of the
‘many’ multiplicities before and after the transformation.

Both halves of Figure 5.7 would be implemented the same way. Sometimes,
though, the left version is clearer since it emphasizes the importance of the
relationship between Student and CourseSection. At other times, the right
version can be easier to read, since no special notation is needed.

Note that Figure 5.5 can also be transformed such that it uses an association
class, since it follows the pattern in the right half of Figure 5.7.

The fact that an association class has two many-to-one associations means
that to create an instance, you must already have instances of the two
associated classes.

Reflexive associations
It is possible for an association to connect a class to itself. Two examples of this
are found in Figure 5.8. A course can require other prerequisite courses to be
taken first. If two courses cover nearly the same material, taking one of them
may preclude a student from taking the other, and vice versa – such courses
are said to be mutually exclusive. The first association is asymmetric, since the
roles of the classes at each end are clearly different. The second, on the other
hand, is symmetric. To make the meaning clear, you should label an
asymmetric reflexive association using role names instead of an association
name.

Figure 5.7 A many-to-many association with an association class, and an equivalent diagram 
using two one-to-many associations

∗

Registration

grade

∗Student CourseSection Student CourseSection∗∗ Registration

grade

11

Figure 5.8 Two examples of reflexive associations

Course∗
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∗
∗

isMutuallyExclusiveWith

prerequisite

successor



 

Section 5.3 181Associations and multiplicity

Exercise

E87 Add association classes to the three many-to-many associations in Figure 5.9. 

E88 Add association classes to the two many-to-many associations in Figure 5.8.
Show the attributes that might be found in these association classes.

E89 Apply the transformation shown in Figure 5.7 to your answer to the previous
exercise. 

Links as instances of associations
In the same way that we say an object is an instance of a class, we say that a link
is an instance of an association. Each link connects two objects – an instance of
each of the two classes involved in the association. For example, in Figure 5.5,
there will be one link of the Passenger-to-Booking association for every Booking.

Directionality in associations
Associations and links are by default bi-directional. That is, if a Driver object is
linked to a Car object, then the Car is also implicitly linked to that Driver. If you
know the car, you can find out its driver – or if you know the driver, you can find
out the car.

It is possible to limit the navigability of an association’s links by adding an
arrow at one end. For example, Figure 5.10 shows two classes that might exist in
a calendar application. The user of this application can associate any number of
written notes with any day. An instance of class Day would need to know about
the instances of Note associated with it; but it is not expected that if you have a
Note, there will be any need to determine the Day to which it belongs.

Decisions about directionality should normally be deferred to later phases of
development, when the detailed design is created. Making associations
unidirectional can improve efficiency and reduce complexity, but might also
limit the flexibility of the system.

Figure 5.9 Three many-to-many associations for Exercise E87

∗∗Player SportGame

∗∗Spectator Show

∗∗Guest HotelRoom

(a)

(b)

(c)

Figure 5.10 A unidirectional association

Day Note∗1
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5.4 Generalization

We discussed generalization in Chapter 2, and presented several examples. You
will remember that they are represented using a small triangle pointing to the
superclass. They must follow the isa rule, and several other rules as well. Here,
we will present some more issues to consider when creating generalizations.

Avoiding unnecessary generalizations
A common mistake made by beginners is to overdo generalization. Figure 5.11
shows a taxonomy of different types of products that might be sold by a music
store. However, to justify the existence of each class, there must be some
operation that will be done differently in that class. In the case of Figure 5.11, it
would be hard to imagine that there would need to be different methods written
for most of the classes. For example, JazzRecording, ClassicalRecording and
BluesRecording would not differ with regard to how they are sold, nor with regard
to what kinds of information clients can find out about them.

A better way to model the information in Figure 5.11 is to create a class
diagram such as that in Figure 5.12 (a). Most of the classes from Figure 5.11 now
become instances of RecordingCategory, and the hierarchy itself becomes a
hierarchy of instances, as shown in Figure 5.12 (b). In fact, Figure 5.12 (b) is an
example of an object diagram – we will discuss these further shortly.

Handling multiple generalization sets
A generalization set is a labeled group of generalizations with a common
superclass; the label describes the criteria used to specialize the superclass into

two or more subclasses. It is clearest to unite all the
generalizations in a set using a single open triangle. You place
the label next to the open triangle.

Two examples of generalization sets, as used in a zoology
program, are shown in Figure 5.13. Animals can be divided up
by habitat into aquatic and land animals, or by type of food, into
carnivores and herbivores.

Figure 5.11 A hierarchy of classes in which there would not be any differences in operations. 
This should be avoided

ClassicalRecording BluesRecording RockRecordingJazzRecordingMusicVideo

Recording

VideoRecording AudioRecording

Discriminators
In earlier versions of UML,
generalization set labels were
called discriminators. That term
is now obsolete.
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The label of a generalization set will typically be an attribute that has a
different value in each subclass. As discussed above, there must also be other
differences in the features of the subclasses in order to justify their existence –
these differences could be attributes, operations or associations. For example, a
Carnivore may have a prey association, an attribute describing its huntingStrategy,
and operations to manipulate this data.

Situations like Figure 5.13, where there is more than one possible
generalization set sharing the same superclass, pose interesting modeling
challenges. If you were to include both generalization sets in the same model,
then a problem would arise in implementation environments such as Java: if an
animal was an AquaticAnimal, it could not also be a Carnivore. Figure 5.13 would
therefore make it hard to represent aquatic carnivores such as sharks. This
problem leads us to search for a way to enable animals to have all possible
combinations of habitat and type of food.

One solution, shown in Figure 5.14, is to create a higher-level generalization
set (here habitat), and then to have generalization sets with duplicate labels at a

Figure 5.12 (a) Modeling a taxonomy of products using a single class, and (b) an object diagram 
generated from this

Figure 5.13 Two generalization sets
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lower level in the hierarchy. The drawback to this is that all the features
associated with the second generalization set would also have to be duplicated.
For example, you would have to provide a prey association for both
AquaticCarnivore and LandCarnivore. Another problem with this solution is that
the number of classes can grow very large. If you wanted to add omnivores, you
would have to add both AquaticOmnivore and LandOmnivore. Figure 5.14 therefore
is not an ideal solution.

Another possible solution, using multiple inheritance, is shown in Figure 5.15.
This approach uses even more classes and generalizations but avoids duplication
of features. However, multiple inheritance generally adds too much complexity.
This example illustrates one reason why it should normally be avoided; a second
reason is that multiple inheritance does not exist in Java.

In the next chapter, we will discuss the player–role pattern, which provides a
superior solution to the problem of multiple generalization sets.

Avoiding having objects change class
Another issue that can arise when creating generalizations is avoiding the need
for objects to change class. In general, an object should never need to change

Figure 5.14 Allowing different combinations of features by duplicating a generalization set 
label at a lower level of the hierarchy. Duplication like this should be avoided

Animal

habitat

typeOfFood typeOfFood

AquaticAnimal LandAnimal

LandCarnivore LandHerbivoreAquaticCarnivore AquaticHerbivore

Figure 5.15 Allowing different combinations of features by using multiple inheritance. This is 
complex and should be avoided
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class. In most programming languages, changing class is simply not possible;
therefore you have to completely destroy the original object and create a new
instance of the second class. This is complex and error prone because you have
to copy all the instance variables and make sure that all links that connected to
the old object now connect to the new one.

The need for an object to change class is illustrated in Figure 5.16. It is clear
that during his or her studies, the attendance status of a student can change from
full-time to part-time and vice versa. You do not want to model this situation in
your system by destroying a PartTimeStudent and creating a FullTimeStudent, or
the opposite, each time the student’s status changes. For this reason Figure 5.16
is a poor model. A possible solution is simply to make attendanceStatus an
attribute of Student and to omit the two subclasses completely. The problem with
this is that we lose the advantage of polymorphism for any operations that
would differ in PartTimeStudent and FullTimeStudent. The player–role pattern,
discussed in the next chapter, can again provide a better solution.

Exercise

E90 Draw a class diagram corresponding to the following situations.

(a) An organization has three categories of employee: professional staff,
technical staff and support staff. The organization also has departments
and divisions. Each employee belongs to either a department or a division
Assume that people will never need to change from one category to
another.

(b) A grocery store has some items sold by weight, and some per unit. Some
items are taxable, while others are not. Some items have special prices when
sold in groups (e.g. 3 for $2). Finally, some items have special prices if you
have certain ‘membership cards’. There could be several different
membership prices on the same item, but you can only use one
membership card per purchase.

(c) A media player that can handle sound, images and sequences of images.
Each type of media requires a ‘plugin’, although some plugins can handle
more than one type of media.

Figure 5.16 A situation in which objects will need to change class from time to time. 
Generalizations of this type should be avoided

Student

FullTimeStudent PartTimeStudent

attendance
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5.5 Object diagrams

Class diagrams tell us what classes will exist in a given system, but they are quite
abstract. Sometimes it can be hard to visualize the relationships among the
objects that will exist at run-time.

An object diagram shows an example configuration of objects and links that
may exist at a particular point during execution of a program. Objects are shown
as rectangles, just like classes; the difference is that the name of the class is
underlined and preceded by a colon,:Employee, for example. You can also give a
name to each instance before the colon, as in Pat:Employee, or even omit the class
name entirely if it is clear from the context, such as Pat:.

A link between two objects is shown as a simple line. You can imagine that
each of the two objects contains a pointer to the other object joined by the link.
The reality can be a little more complex than this, but while we are doing
analysis, a simple vision suffices.

It is important to understand the relationship between a class diagram and an
object diagram. A class is an abstract representation of all the instances of that
class that can ever exist. Similarly, an association represents all the links between
two classes that can ever exist. It should be clear from this that while we put
multiplicity symbols on associations, we never put them on links.

We say that a given object diagram is generated by a class diagram. This means
that it contains instances and links of the classes and associations present in the
class diagram. It also means that the numbers of links among instances are
consistent with the multiplicity of that class diagram. A class diagram can
generate an infinite number of object diagrams.

We have already used an object diagram in Figure 2.2 to represent examples
of instances, including their attributes.

Figure 5.17 shows object diagrams generated from two of the class diagrams
of Figure 5.3.   

Figure 5.17 Object diagrams generated from class diagrams
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Associations versus generalizations in the context of object diagrams

It is a common mistake for beginners to think of generalizations as special
associations. This misconception arises because both generalizations and
associations connect classes together in a class diagram.

However, the differences between the two concepts are profound.

■ An association describes a relationship that will exist between instances at run-
time.

■ A generalization describes a relationship between classes in a class diagram.

An object diagram can never contain a generalization, and can only contain
links generated by associations, not the associations themselves.

When you show an object diagram generated by an association, you show
instances of both classes joined by that association. On the other hand, when you
show an object diagram generated by an inheritance hierarchy, you show a single
instance of one of its concrete classes. That single instance will contain values of
the attributes defined in its class, as well as those attributes inherited from
superclasses. In other words, an instance of any class should also be considered
to be an instance of each of that class’s superclasses.

Exercise

E91 Draw a class diagram that could generate the object diagram shown in
Figure 5.18. Make reasonable choices for multiplicity. 

E92 Write a sentence describing a specific situation, with actual instances, for the
class diagrams of Exercise E84. Then draw the corresponding object diagram.
Make sure that each diagram is compatible with its underlying class diagram.

E93 Draw an example object diagram compatible with the class diagrams of
Exercise E90.

Odds and ends about object diagrams
Object diagrams are sometimes called instance diagrams. There has been a tendency for some
people to speak about object diagrams when they mean class diagrams.  The term ‘instance diagram’
prevents this confusion even though it is not standard UML.

Most tools for drawing UML diagrams do not provide facilities for drawing object
diagrams.  This is because class diagrams contain an abstract view of the system that is much
more information-rich and is always necessary, whereas object diagrams are less commonly
used, and then only to analyze specific scenarios.
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5.6 More advanced features of class diagrams

The notations described in Sections 5.2 to 5.4 are the most important aspects of
class diagrams. In this section, we describe additional features for adding more
specific information to the diagrams. It is important to be able to understand the
meaning of these features in class diagrams, but most modeling, especially at the
analysis level, can be done without them.

Aggregation
Aggregations are special associations that represent ‘part–whole’ relationships.
The ‘whole’ side of the relationship is often called the assembly or the aggregate.

As Figure 5.19 shows, aggregations are specified using a diamond symbol,
which is placed next to the aggregate. This symbol is a shorthand notation that
saves you from having to write an association name such as isPartOf or its
inverse hasParts. Many aggregations are one-to-many, but this is not a
requirement.

Figure 5.18 Object diagram for Exercise E91
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When to use an aggregation instead of an ordinary association has always
been a source of confusion. As a general rule, you can mark an association as an
aggregation if the following are true:

■ You can state that the parts ‘are part of ’ the aggregate, or the aggregate ‘is
composed of ’ the parts.

■ When something owns or controls the aggregate, then they also own or control
the parts.

For example, the parts of a vehicle are clearly in an aggregation relationship with
the vehicle. The other two associations in Figure 5.19 are also legitimate
aggregations. On the other hand, the members of a club are not in an
aggregation relationship with the club. It might sometimes be possible in
English to say that a person is part of a club, but the owner of the club does not
own the members.

A composition is a strong kind of aggregation in which if the aggregate is
destroyed, then the parts are destroyed as well. A composition is shown using a
solid (filled-in) diamond, as opposed to an open one. The parts of a composition
can never have a life of their own; they exist only to serve the aggregate. For
example, as shown in the bottom example of Figure 5.19, the rooms of a building
cannot exist without the building. In ordinary aggregations, on the other hand,
the parts can exist on their own. For example, the engine can be taken out of one
vehicle and placed in another, or a region can secede from one country and
become independent.

A one-to-one composition often corresponds to a complex attribute. You can
therefore show it as an attribute or, if you want to emphasize the details of the
composed class, you can show it as a composition. Figure 5.20 illustrates a
situation where an attribute has been expanded into an associated class. Such
compositions are normally unidirectional, as shown here.

Unlike other associations, UML allows aggregations to be drawn as a hierarchy,
as shown in Figure 5.21. The use of such hierarchies in valid models is quite rare,
however. Figure 5.21 is a much less flexible way to model vehicle parts than the
first diagram, Figure 5.19. This is because Figure 5.19 can more easily
accommodate new types of vehicles that have different configurations of parts.

Marking a part–whole association as an aggregation using the diamond
symbol is optional. Leaving it as an ordinary association is not an error, whereas

Figure 5.20 The address of an employee represented as an attribute or as a composition
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marking a non-aggregation with a diamond is an error and can cause confusion.
Therefore, as a general rule of thumb: when in doubt, leave it out.

An advantage of explicitly identifying aggregation is that it provides useful
information to the designer. In particular, the designer can improve the
encapsulation of the system by arranging for the part objects to be hidden inside
the aggregate object. Methods in the system would be able to perform most
operations on the aggregate, without needing to know about the existence of the
parts. For example:

■ An operation to register the sale of a vehicle would only need to record the new
owner of the aggregate. There would be no need to also record the new owner
of all the parts, since if any subsequent query were made about the ownership
of a part, the part could simply return the owner of the aggregate.

■ An operation to delete an aggregate could automatically delete the parts.

■ An operation to change the thickness of the outline of a shape might work by
simply changing the thickness of all of the line segments that compose the
shape.

The last two examples illustrate a mechanism called propagation that is often
present in aggregations. Under this mechanism, an operation in an aggregate is
implemented by having the aggregate perform that operation on its parts – in
other words, the operation is propagated to the parts. At the same time, this
process often results in the features of the parts being propagated back to the
aggregate. For example, the weight of an aggregate could be obtained by
summing the weights of its parts.

In a sense, we can say that propagation is to aggregation as inheritance is to
generalization. However, the major difference is that inheritance is an implicit
mechanism, whereas propagation has to be programmed when required.

Example 5.1 Justify the use of a composition to represent the association between a polygon
and its line segments, as in Figure 5.22.

Figure 5.21 An aggregation hierarchy
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The justification is as follows:

■ A polygon is composed of line segments.

■ An object that manipulates a polygon also manipulates the line segments.

■ When the polygon is translated or scaled, the line segments are also translated
or scaled.

■ The perimeter of the polygon is computed as the sum of the lengths of all the
line segments.

■ Removing a line segment from a polygon would mean that the polygon is no
longer a polygon, therefore the polygon must have complete control to prevent
such a change.

■ The line segments are deleted when the polygon is deleted.

Exercise

E94 For each of the following associations, indicate whether it should be an
ordinary association, a standard aggregation, or a composition.

(a) A telephone and its handset.

(b) A school and its teachers.

(c) A book and its chapters. 

Interfaces
As discussed in Chapter 2, an interface is similar to a class, except it lacks
instance variables and implemented methods. It normally contains only abstract
methods although it may also contain class variables. We can say that an
interface describes a portion of the visible behavior of a set of objects.

In UML, there are two ways to specify interfaces, both of which are shown in
Figure 5.23:

Figure 5.22 Composition example for Example 5.1
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Figure 5.23 Two ways of showing the cashier interface
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■ As a small circle (like a lollipop), labeled with the name of the interface.

■ As a class rectangle, with the expression «interface» at the top, and (optionally)
a list of supported operations. The «interface» notation is an example of a
stereotype in UML. A stereotype is a way to use some of the standard UML
notation (here a class box) to represent something special (here an interface).
Note that the « and » symbols are called guillemets; they should preferably be
written using the special characters available in most fonts, not using pairs of
less-than or greater-than signs.

In some programming languages, interfaces are simply created using
superclasses containing only abstract methods. But interfaces should not be
confused with generalizations since the basic relation is not the same. We have
already mentioned that generalization is characterized by an isa relationship
between a subclass and a superclass. In the case of interfaces, the relationship
between the implementing class and the interface can be described as ‘can-be-
seen-as’.

Figure 5.23 shows classes representing bank employees and automatic teller
machines; both can be seen as a sort of cashier. That is, it is possible to interact
with one or the other in order to deposit or withdraw money. However, although
Employee and ATM share common operations, they have different superclasses.
This means that they cannot be put in the same inheritance hierarchy; therefore
an interface called Cashier is used.

A key advantage of using interfaces is that they reduce what is called the
coupling between classes. We will discuss this in detail, with an example, in
Chapter 9.

Constraints, notes and descriptive text
Very often, in a class diagram, you want to say more than the graphical UML
notation readily allows. There are three ways in which you can add additional
information to a UML diagram:

■ Descriptive text and other diagrams. It is highly recommended to embed
your diagrams in a larger document that describes the system more fully. Such
text can explain aspects of the system using any notation you like. It is best not
to repeat what is shown in the UML diagrams, but you can highlight and
expand on important features, and give rationale for why certain decisions
were made.

■ Notes. In contrast to the descriptive text described above, a note is a small
block of text embedded in a UML diagram. The box has a ‘bent corner’. The
note can explain a detail, and acts like a comment in a programming language.
Figure 5.24 shows an example note, explaining the purpose of the class
LinearShape.

■ Constraints. A constraint is like a note, except that it is written in a formal
language that can be interpreted by a computer. In a UML diagram, a
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constraint is shown in curly brackets (also called ‘braces’). A constraint
expresses a logical statement that should evaluate to true. UML allows
constraints to be written in any language supported by a given tool; however,
the recommended language is Object Constraint Language (OCL). We will
discuss OCL in more detail next.

5.7 The basics of Object Constraint Language (OCL)

OCL is a formal language designed to enhance the modeling capabilities of
UML. It was originally designed exclusively to specify constraints in UML
models; the latest version, however, can also be used to specify such things as
navigation paths that allow you to formulate queries for information in UML
models.

We will focus here on its original use for modeling constraints, and will give
examples you can emulate in order to write the most common kinds of
constraints. Although we will only discuss its use in class diagrams, OCL can
also be used in other types of UML diagram where constraint specification is
required. If you wish to learn more, you can consult a more advanced book, or
else the OCL specification itself, available from the Object Management Group.

OCL is a specification language, not a full programming language. The OCL
statements we will look at simply specify logical facts (constraints) about the
system that must remain true. OCL statements need not themselves be compiled
and executed; however, designers must ensure that the code they write always
respects the constraints imposed by each OCL statement. Automatic code
generators must also ensure that code adheres to what the OCL statements say.
A constraint cannot have any side effects; it can only compute a Boolean result
and cannot modify any data.

OCL statements in class diagrams can specify what the values of attributes
and associations must be. They can also state the preconditions and post-
conditions of operations, although we will not discuss that usage here.

Figure 5.24 Constraints and notes on polygons and points
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The simplest OCL statements can be built out of the following elements:

■ References to role names, association names, attributes and the results of
operations

■ The logical values true and false 

■ Logical operators such as and, or, =, >, < or <> (not equal)

■ String values such as: 'a string' 

■ Integers and real numbers (the latter having a decimal point)

■ Arithmetic operations *, /, +, - 

For example, the following constraint is found in Figure 5.24:

■ {startPoint <> endPoint} constrains the two ends of a LineSegment to be different.

You can also navigate from class to class using a dot to separate components. For
example, in LinearShape, to refer to the length of the edges you can refer to
edge.length.

When you refer to the ‘many’ end of an association, the result is a collection
of objects. You can refer to special OCL properties of a collection itself using the
-> operator, as in:

■ {edge->size() = 1} constrains the number of edges in a line always to equal one.

Formal methods, first order logic, Z and OCL
A formal method is an approach to software engineering in which everything is specified in logic, and
mathematical techniques are used to verify the logic.  Also, where possible, the logic is automatically
processed to demonstrate that important properties of the software, such as safety requirements,
are true.  The type of logic normally used is called first order logic, although extensions to this exist.
Concepts from set theory are also employed.

There is an ‘opinion war’ going on between those who feel formal methods rarely pay off
in practice, and those who feel that judicious or even extensive use of formal methods (using
a good notation) should be promoted since it will result in much better software.

Historically, logic has been written using a notation called predicate calculus. Z, pronounced
‘zed’, is a syntax for logic and set theory designed at Oxford University for software
specification. For many years it is been one of the most popular notations for formal methods
since it incorporates important abstractions missing from predicate calculus.

However, ordinary practitioners often find Z intimidating, partly because it uses a wide
variety of special characters. OCL was developed by IBM as a logic notation that incorporates
powerful abstractions while at the same time reading more like the programming languages
that software engineers are used to. OCL is part of the UML set of standards managed by the
OMG, and is in fact used to specify much of UML itself.  Almost everything written in Z can
be translated very directly into OCL; we therefore predict that in the long run OCL will
become the dominant notation for formal methods.
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■ {length = edge.length->sum()} constrains the length of a Path to be equal to the
sum of all the separate values of edge.length.

A collection is most often a mathematical set; however, if the special
constraint {ordered} is present on the association, then the collection is a
sequence. In that case you can refer to special properties such as the first and
last elements, as in:

■ {edge->first().startPoint = edge->last().endPoint} which constrains a Polygon
to be a closed loop.

You can make logical statements about all the values in a collection using the
forall operator. The following expression also uses the implies operator, which
works as an if-then statement.

■ {edge->forAll(e1,e2 | e1 <> e2
  implies e1.startPoint <> e2.startpoint
   and e1.endPoint <> e2.endpoint)} 

The above statement can be interpreted in English as follows. Take all possible
pairs of edges, e1 and e2. (All possible pairs can result in two identical edges,
since either member of a pair can be any element in the set.) If the members of
a pair of edges are different, then they must have a different start point and a
different end-point.

OCL expressions do not have to be written directly on a diagram. In order to
avoid clutter, you can write them separately and specify a context for each
expression, as indicated in the following:

context LineSegment inv:
  startPoint <> endPoint

In this expression, inv means that the statement is an invariant (always true) of
the class LineSegment.

Exercises

E95 Write, in English, as many constraints as you can think of about shapes, that
have not been expressed in Figure 5.24. Take at least three of these and write
them in OCL. 

E96 Write constraints using OCL that express the following constraints:

(a) In Figure 5.12(a), a subcategory must be different from its super-category.

(b) In Figure 5.8, none of the mutually exclusive courses can also be successors
or prerequisites.

(c) In Figure 5.8, a successor cannot also be a prerequisite.
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5.8 A class diagram for genealogy

In this section we will present a modeling problem that has some interesting
issues to consider. Imagine you are developing a genealogy system, in which you
have to model various human relationships, particularly those between parents
and children in a genealogical tree.

The first observation to make is that Child and Parent should not be two
distinct classes, since one person can both be the parent of someone and the
child of someone else. It must be the case, then, that child and parent are roles in
an association between instances of a class called Person.

Starting with this observation, we can draw the somewhat naïve initial class
diagram shown in Figure 5.25(a). The fact that the parents of a child must be of
opposite sex is specified here using an OCL constraint. The constraint says that
for all pairs of Person objects playing the parent role, the sex of one must not
equal the sex of the other.

Figure 5.25(a), however, does not allow the system to keep track of marriages,
which are important to genealogists. The two parents of a person are not
necessarily married, and married people may have no children. Therefore
Figure 5.25(b) adds an extra association showing the marriage relation
explicitly. This association contains two constraints that specify the sex attribute
possessed by the husband and wife.

However, there are still some severe problems with Figure 5.25(b), which are
fixed in Figure 5.25(c):

■ A person may have multiple marriages, and also children with several different
partners over the course of his or her life. This problem is solved by making the

Aspects of UML class diagrams we have not covered
We have covered the most important elements of UML class diagrams – enough for you to create
most models.  There are, however, many details we have not covered.  To learn about these, you
should consult a book that describes UML in more depth, or the UML 2.0 specification from the
OMG.  The following are some of the features of class diagrams you may want to learn about first
because you may see them in models you need to understand:
■ Qualifiers.  These are attributes that are shown in a special box at the far end of an association.

The value of the attribute is a unique identifier, controlled by the class to which it is attached. 
■ A notation (a dashed box overlapping the top-left of a class) to represent templates such as those

found in C++ or now Java 1.5.  These are also known as parameterized classes or generic classes.
■ Showing dependencies among classes using a dashed line. Dependencies can include one class

calling the methods in another, or being a friend of another (allowing access to its private
methods).

■ The UML metamodel: a class diagram that describes the elements of UML itself.
■ Ternary or N-ary associations.  These are associations involving more than two classes. It is

always possible to convert these into a series of binary associations.  We therefore do not
recommend using them.
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husband–wife association into an association class. We call it Union, and create a
new role of Person called partner, since there may be no formal marriage.
Marriage could in fact be a subclass of Union. The attributes placeOfMarriage,
dateOfMarriage and dateOfDivorce are now put into the Union class; previously
they would have been duplicated in both instances of Person.

■ In Figure 5.25(b), a person was required to have exactly two parents. In
Figure 5.25(c), the parents role of the child–parent association is made optional
since there may be no record of a person’s parents; this is often the case when
researching historical genealogical information. In addition, the partner role
allows for only zero or one partner to be known, although information such as
the date of marriage might be.

Note that Figure 5.25(c) has an interesting configuration: there are two separate
associations, with quite different meanings, between Person and Union.

Figure 5.25 Alternatives for a genealogical class diagram – the first two are unacceptable since 
they have major problems
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Figure 5.25(d) is similar to Figure 5.25(c), except that two subclasses of
Person have been added. This allows for the removal of a constraint, but is
otherwise of minimal benefit. The sex attribute of person is now removed. A
polymorphic operation would now have to be provided that has different
methods in Woman and Man. These methods might both return constant values,
either "female" or "male".

Exercises

E97 Using Figure 5.25(d), describe how the following operations of class Person
would be performed. You do not need to write code; simply describe how the
available information would be used to compute the result.

(a) getSiblings

(b) getHalfSiblings

(c) getStepSiblings

(d) isMarried

(e) getNumberOfMarriages 

E98 Write OCL constraints expressing the following facts about Figure 5.25(d):

(a) You cannot die before you are born.

(b) The date of a marriage always precedes the date of that marriage’s divorce.

E99 Give the advantages and disadvantages of Figure 5.25(d), as opposed to
Figure 5.25(c).

E100 A possible variation of Figure 5.25(c) would be to create a class Marriage that is a
subclass of Union.

(a) Describe the two classes Union and Marriage in terms of their associations
and attributes.

(b) What would be the advantages and disadvantages of this change, as
opposed to Figure 5.25(c)?

E101 Extend the genealogical example to handle the following situations:

(a) Adoption and adopting parents.

(b) Same-sex unions (but still ensuring that the biological parents of a child
must be of opposite sex). 
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5.9 The process of developing class diagrams

So far in this chapter we have discussed the syntax of class diagrams, and have
raised some issues about what constitutes a good or bad model. You may,
however, be left wondering: where do I start, and what steps should I take to
ensure I build an effective model? This section provides some guidance on this
issue.

Models of the domain, versus models of the system
You can create class diagrams or other UML models at different stages in the
software engineering process and with different purposes and levels of detail.
Three types of model are listed in Table 5.1.

First, you can create informal class diagrams while performing domain
analysis – these constitute part of what we call an exploratory domain model.
Such diagrams represent what you have learned about the various entities and
relationships in the domain; they help in understanding that domain. They are
not, however, intended to model the software you will develop. They normally
have some classes, associations and attributes that are outside the scope of the
system. Also, in an exploratory domain model, you would not normally be
concerned with operations and polymorphism, nor with many of the modeling
principles we have discussed so far, such as avoiding multiple inheritance.

During requirements analysis or the early stages of design you will need to
develop a model that also contains domain classes, associations and attributes.
But this time, the model represents data that will actually be manipulated and
stored by the system. We call this the system domain model; most of the class
diagrams discussed so far in this chapter can be considered to be of this type.
When we say ‘domain model’ we are referring by default to the system domain
model, not the exploratory one. The classes in this model become real software
modules and the instances of most of these classes normally end up being stored

Class diagrams versus entity-relationship diagrams
Database designers have for many years used a notation called Entity Relationship Diagrams (ERDs).
This notation has much in common with UML’s class diagrams; in fact, the developers of OMT, a
predecessor to UML, took many ideas from ERDs. In ERDs, the ‘entities’ are similar to classes and
the ‘relationships’ are similar to associations. Relationships are shown using a large diamond symbol,
which is one of the features that makes them substantially more bulky than class diagrams. Also,
standard ERDs do not show operations. Traditional ERDs did not show inheritance either, but
Extended ERDs (EERDs) do.

ERDs are still widely used in the database community, although many database designers
prefer now to use UML class diagrams. Those who prefer to continue using ERDs do so
because the database community has developed many ERD tools and considerable expertise
at using both the notation and the tools.
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persistently in some kind of database. Instances are typically loaded from and
saved in the database as the program runs.

The system domain model, however, omits many classes that are needed to
build a complete system; in fact it can contain less than half the classes of the
system. The complete system model includes the system domain model, but also
adds classes representing the following:

■ User interface classes such as windows, menus, commands and forms.

■ Classes representing aspects of the system’s architecture such as clients, servers,
files and databases.

■ Utility classes that make parts of the system more reusable, easier to maintain
or easier to connect to other systems.

Instances of the user interface and architectural classes are normally created
when a program is started, and then discarded when a program terminates.
Most of these classes tend to be directly reused from class libraries, or else
represent subclasses of library classes.

Generally, the system domain class diagram should be developed in such a
way that it can be used independently of a particular set of user interface classes
or architectural classes. This point is illustrated by Figure 5.26, which is a
package diagram – a type of diagram we will discuss in Chapter 9. The domain
model classes are in one package, but this package can be used in conjunction
with different UI packages or architectural frameworks.

Table 5.1 Class diagrams developed at different phases of the software engineering 
process

Type of model

Contains elements 
that represent 
things in the 

domain

Models only things 
that will actually 
be implemented

Contains elements 
that do not 

represent things in 
the domain, but are 
needed to build a 
complete system

Exploratory domain model: 
developed in domain analysis to 
learn about the domain

Yes No No

System domain model: models 
those aspects of the domain 
represented by the system 

Yes Yes No

System model: includes classes 
used to build the user interface 
and system architecture

Yes Yes Yes
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A suggested sequence of activities

You would be modeling in a disorganized way if you simply wrote down
whatever occurred to you, and then filled in gaps until you were finished. If you
do this you will find yourself going backwards and forwards adding different
things to your model, never quite sure how close you are to being finished. You
will tend to work slowly and leave out important details.

You could, on the other hand, take a rigid approach in which you would start
by determining a complete list of classes, then determine all the associations,
then fill in all the attributes, etc. However, it is very hard to complete one step
before moving on to the next. Almost all experienced modelers find that
working on one aspect of a model gives them ideas about all the other aspects.
Therefore, if you follow a rigid approach, you will also tend to leave out
important details.

Following an intermediate approach, which is neither disorganized nor overly
rigid, seems to be best. You do need to have a starting point, and that starting
point should be identifying an initial set of classes. However, you will certainly
add and delete from this set as work progresses. We will discuss creating the
initial set of classes shortly.

You also need to have in mind a general path to follow after identifying the
initial classes. However, it is also important to feel free to come back to earlier
steps when you realize you forgot something, and to jump ahead to record your
inspirations when you have them.

We therefore suggest that you work in the following sequence, unless seized
by inspiration to work in a different sequence:

■ Identify a first set of candidate classes.

■ Starting with the most important classes, add any associations and attributes
that clearly will be needed.

■ Work out the clearest generalizations.

■ List the main responsibilities of each class. These are simple statements of
functions to be performed by each class; we will discuss them below.

Figure 5.26 Two different systems which use the same domain model
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■ Based on responsibilities, decide on specific operations that are needed.

■ Iterate over the entire process, examining the model to see if you need to add
or delete classes, associations, attributes, generalizations, responsibilities or
operations. In particular, you will want to ensure that all associations, attributes
and operations are needed to fulfill some responsibility, and that there is
sufficient information to fulfill every responsibility. You will also want to see if
you can apply any of the design patterns discussed in the next chapter. In
addition, you will want to identify any suitable interfaces.

■ Repeat the previous step as needed until the model is satisfactory.

We will explain the steps of the above sequence, with examples, in the coming
subsections.

Identifying classes
There are two ways to identify classes:

■ When developing a domain model, you tend to discover classes. They may be
found in source material such as requirements descriptions, interview notes, or
the results of brainstorming sessions.

■ When you work on the user interface or the system architecture, you tend to
invent classes that are needed to solve a particular design problem. You may
also sometimes invent classes when creating a domain model; for example, you
might invent a generalization whose superclass has a name not normally used
in the domain. To illustrate this, in Figure 5.24 the class LinearShape was
invented to represent all those shapes (Polygons, Lines and Paths) that are

Should you decide upon attributes or responsibilities first?
There are several points of view about the sequence in which you should decide upon the elements
of a class diagram.

Some people prefer to decide upon responsibilities before attributes.  The holders of this
point of view believe that attributes represent the private state of objects, which should be
hidden inside each class, and that responsibilities are more abstract. In this approach,
determining responsibilities first will help you determine the attributes later on.

A different point of view is that when you are deciding upon attributes, you are really
deciding upon abstract responsibilities for holding information, which are among the most
important responsibilities.

Whichever viewpoint you hold, the process of revisiting the analysis steps performed
earlier means that either approach will work.

People who promote both of the above points of view agree on one thing: you should not
decide on instance variables (concrete implementations of attributes) until the final stages of
modeling, because these really do represent the private state of objects.
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composed of line segments – even though people normally do not use the term
‘linear shape’ when they talk.

Reuse should always be a concern when identifying classes. If you are building
your system using a framework, then your model will contain many classes from
that framework. If you are building your system as an extension to an existing
system, then you will incorporate many of the classes from the original system.
You may also be able to look at similar systems to obtain useful insights about
the current application.

A simple technique for discovering the initial set of domain classes for a
system is to look at source material such as a description of requirements. From
this, you extract the nouns and noun phrases. A noun phrase is simply a string
of nouns, or a noun modified by one or more adjectives. Once you have picked
potential nouns or noun phrases, you can choose class names by following the
principles described in Section 2.2 (on page 31).

From the initial set of class names you should make sure there are no nouns
or noun phrases that:

■ Are redundant (i.e. two names for the same class).

■ Clearly represent instances (although their class may have to be included).

■ Are vague or highly general terms, which do not convey specific information
about the proposed software. For example, ‘the organization’s purpose’, ‘the
user’s goal’, ‘the information this application will represent’.

■ Correspond to classes that are not needed for this application or this type of
model. For example, in a domain model, you would eliminate classes that
represent commands or menus in the user interface. As a rule of thumb, a class
is only needed in a domain model if you have to store or manipulate instances
of it in order to implement a requirement.

A common difficulty is deciding whether to keep classes in a domain model
that represent types of users or other actors. You would only keep such classes if
storing and manipulating this information is actually part of the domain. In a
security or instant messaging system, for example, it would probably be part of
the domain; whereas in a drawing program it would not. But what about a
system for managing corporate accounts? The corporate accounting database
would not itself store information about the various users of such a system who
might, for example, be managers, administrative assistants, accountants and
purchasers. However, some part of the system will clearly need to store
information about them in order to permit security checks. The answer here is
that there should probably be two separate subsystems, each with its own
domain model: one for the accounting records and one for access permission.

You might choose to be fairly liberal in the process of building the initial list
of classes, keeping most classes that seem to be possible candidates. You could
on the other hand be stricter, only keeping a class if you are definite it will be
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needed. We suggest the liberal approach since it allows you to be more
spontaneous. You can easily eliminate classes later.

Example 5.2 Using the description of the Airline system from Appendix C, list the nouns and
noun phrases that might end up being classes in a system domain model. For
those nouns that should not become classes, explain why not. 

Nouns that are put on an initial list of classes include: Flight, Passenger, Employee.
Other nouns or noun phrases that we choose not to include in the initial list

of classes:

❏ ‘Ootumlia Airlines’, ‘Java Valley’, ‘Ootumlia’. These are instances.

❏ ‘Reservation system’. This is not a class because it is part of the system, not
the domain information represented by the system.

❏ ‘Sightseeing Flight’. Rejected in favor of Flight, since the latter is more
general and therefore makes the system more flexible.

❏ ‘Seat’. Appears to be an attribute of Flight.

❏ ‘Crew’. This word implies the entire crew, when we really want to store
information about individual members of that crew. We could have created
a class CrewMember, but Employee seemed more flexible – allowing us to use the
class in future for people who are not actually crew members.

❏ ‘Schedule’. This is a word that describes a complex bundle of information
that would be better represented by classes such as Flight, and the attributes
and associations of those classes.

❏ ‘Future’. This is a noun, but it is not part of the system to be developed.

❏ ‘Frequent Flier Plan’. This is not part of the current scope.

Exercise

E102 This exercise is based on the short program descriptions, as found in
Appendix C. Determine the nouns and noun phrases that might, in the end,
become classes. While making your list, choose good names for each of the
potential classes.

(a) Bank account management system.

(b) Election management system.

(c) Geographical information system.

(d) Investments system.

(e) Manufacturing plant controller.
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(f) The woodworking design system.

Identifying associations and attributes
Once you feel you have a good initial list of classes, it is time to turn your
attention to identifying associations and attributes.

The best way to do this is to start with the class or classes that you think are
most central and important to the system. For each of these, decide on the clear
and obvious data it must contain and its relationships to other classes. Then
work outwards towards the classes that are less important.

As you add an association or attribute, make sure it is relevant to the
application – that it will be needed to implement some requirement. For
example, you might be tempted to add many different attributes to a class
Person: name, height, weight, dateOfBirth, educationLevel etc. But do you really
need all this information in your application? If there is no requirement to
manipulate certain information, then representing that information in your
model adds unnecessary complexity.

As you are adding attributes and associations, follow the principles of good
modeling discussed in the earlier sections of this chapter. For example, analyze
each association to make sure its multiplicity is correct.

Tips about identifying and specifying valid associations
To find out whether an association should exist, ask yourself if one class
possesses, controls, is connected to, is related to, is a part of, has as parts, is a
member of, or has as members some other class in your model. You will often
find statements of these types by scanning the document from which you
extracted the original list of classes.

As you add each association, remember to specify the multiplicity at both
ends and label it clearly.

An association is only legitimate if its links will survive beyond the execution
of any particular operation. Associations in domain models will normally be
stored in a database. So, if you do not think that the information captured by an
association will need to be stored, then perhaps the association should be
eliminated.

A common mistake is to represent actions as if they were associations. For
example, imagine you had classes LibraryPatron and CollectionItem (where a
CollectionItem might be a book, video recording, etc.) You might initially think
that borrow and return should be associations between these two classes. On the
surface this seems reasonable since you might want to keep a record of each of
these actions. However, the correct way to model this information is to use a
separate class Loan, as shown in Figure 5.27.

Tips about identifying and specifying valid attributes
Attributes can be identified by looking at the description of the system and
searching for information that must be maintained about instances of each class.
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Several of the nouns you may have originally identified, but rejected as classes,
may now become attributes.

Remember that an attribute should generally be a simple variable – typically
an integer or string. It can also be a one-to-one composition as shown in
Figure 5.20.

An attribute should not normally represent a variable number of things (i.e.
it should not have a plural name). For example, as shown in Figure 5.28,
addresses is not a good name for an attribute of Person, even though there might
be a home address, work address and shipping address. It is also not good to
have many duplicate attributes as shown in the middle diagram. In situations
like this it is best to create an association to a separate Address class as shown
on the right.

An attribute should not have an implicit internal structure. For example, if
in your application you will need to obtain the first name of a person, then you
should not use a single attribute to represent the name. If you did this, then
the application would have to parse the attribute to extract the first name,

Bad, due to the use of associations 
that are actions

Better. The borrow operation creates a 
Loan, and the return operation sets the 

returnedDate attribute

Figure 5.27 Avoiding using associations to represent actions
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Figure 5.28 Alternatives for handling multiple addresses
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which is error-prone. Instead you should have separate firstName and lastName
attributes.

In general, if a subset of a class’s attributes forms a coherent reusable group
(such as an address), then you should consider creating a distinct class
containing these attributes. This will make your system simpler, more flexible
and easier to use.

Example 5.3 Continuing from Example 5.2, add an initial set of associations and attributes to
the classes you identified. Add and delete classes as necessary. 

A central class at which to start identifying associations and attributes is Flight.
The problem description informs us that there is a schedule of numbered flights;
from this we can infer that a flight has a date, a time and a flightNumber. However,
we notice that every day the flights that leave at the same time have the same
flight number. Therefore it makes sense to split Flight into two classes we will
call RegularFlight (containing the time and flight number for flights that
regularly depart at the same time of day) and SpecificFlight (that departs on a
particular day, and on which passengers are booked). The association between
these classes is one-to-many. We do not need to name the association explicitly
since the default ‘has’ appears adequate. (This approach does not allow us to deal
well with charter flights, but we leave that as an exercise.)

We now move on to understand how passengers are booked. There is clearly
a many-to-many relationship between Passenger and SpecificFlight but, as
discussed earlier in Section 5.3, we need to add a Booking association class; this
will contain the seatNumber.

Each Passenger has a name, but we will also assign him or her a number in case
names are identical, and to allow for the anticipated frequent-flier plan.

The phrase ‘who supervises whom’ implies that Employee needs a reflexive
association with a supervisor role. The phrase ‘what everyone does’ implies an
attribute jobFunction.

The class diagram so far is shown in Figure 5.29.

Figure 5.29 First attempt at a class diagram for the airline system
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Exercise

E103 For the system(s) you worked on in the last exercise, identify an initial list of
attributes and associations. Add or delete classes as necessary. Draw a
preliminary class diagram. 

Identifying generalizations and interfaces
There are two ways to identify generalizations: bottom-up and top-down. The
bottom-up approach groups together similar classes, creating a new superclass,
whereas the top-down approach divides up a complex class, creating new
subclasses.

To use the bottom-up approach, you look for classes that have features in
common. In general, if you find two or more classes that have similar attributes,
associations or operations then you should consider creating a common
superclass.

For example, for any system in which there are different types of person, you
will probably find that they all have attributes to store the name, telephone
number and address. These attributes should therefore be placed in the
common superclass.

Sometimes the common features do not have the same name. The left part of
Figure 5.30 shows a case where there are two types of customers: instances of
Company and instances of Person. Despite the fact that the attributes and
associations have different names, we can still see that they are really the same,
hence we should create a common superclass LegalEntity, as shown in the right
part of Figure 5.30. This will possess renamed attributes and a single association.

Instead of creating a superclass, it might be better (or necessary) in some cases
to create one or more interfaces. This would be typical if you will sometimes
need to declare a variable that can contain instances of several classes, yet:

Figure 5.30 Creating a generalization of two classes which have similar features, but the names 
of the features are different. The left diagram is the original version; the right 
diagram is the improved version

customer

customer

corporateCustomer

∗

Person

name
phone

LegalEntity

name
phoneNumber

Company

companyName
telephone

∗

∗
∗

∗

∗
Person Company



 

Section 5.9 209The process of developing class diagrams

■ The classes are very dissimilar except for having a few operations in common,
or

■ One or more of the classes already have their own superclasses, or

■ You want to limit the operations that can be performed on the variable to just
those available in an interface.

For example, in the SimpleChat system there is a class called ClientConsole. If we
wanted to add another type of user interface, such as ClientGUI, then we might
be tempted to create a common superclass called ClientUI. However, this would
prevent us from giving ClientGUI some other superclass – in fact we will want to
make ClientGUI a subclass of Frame.

Example 5.4 Continuing from Example 5.3, add any obvious generalizations, making
whatever other changes become necessary. 

Classes Passenger and Employee clearly share common information. However
simply making a superclass called Person does not suffice since it is possible for
a person to be both an employee and a passenger – an instance can only be of
one class. Therefore we introduce a class called PersonRole and an association
that allows each Person to have up to two roles. The result is shown in
Figure 5.31.

Exercises

E104 For the system(s) you worked on in the previous two exercises, identify any
generalizations or interfaces. This may lead you to add or delete classes,
associations and attributes. Modify your class diagram(s) accordingly. 

E105 For the sets of potential classes listed in Exercise E12, build a complete class
diagram with associations and attributes as well as generalizations. 

Figure 5.31 Airline system class diagram after adding a generalization
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Allocating responsibilities to classes
A responsibility is something that the system is required to do. The prime
responsibility of performing each functional requirement must be attributed to
one of the classes, although other classes will likely collaborate with it to help
perform the task.

In general, it is important to distribute the responsibilities among the classes
so that no one class has an unfair share, and hence becomes unduly complex. If
a class has too many responsibilities then you should examine it to see whether
it can be split into several distinct classes. Also, all the responsibilities of a given
class should be clearly related to each other and to the attributes and
associations of the class.

If a class has no responsibilities attached to it, then it is probably useless. On
the other hand, when a responsibility cannot be attributed to any of the existing
classes, then a new class should be created.

A good way to determine responsibilities is to perform use case analysis as
discussed in Chapter 4. Another good source of information about
responsibilities is to look for verbs and nouns describing actions in the system
description.

There are several categories of responsibilities that can be found in a wide
variety of classes:

■ Setting and getting the values of attributes. It is good practice to make
attributes themselves private and to create public methods where necessary to
allow access to them. This allows the class to have more control over its
attributes – it can ensure that they are given only valid values. It also allows you
to change the internal design of the class without affecting how users of the
class interact with it. For some classes, all the responsibilities fall into this
category. A Date class, for example, might have no other responsibility than
holding the day, month and year of a date, and allowing access to the values of
these attributes.

■ Creating and initializing new instances. Often, the primary responsibility for
creating an instance of a class is given to some other class. (That other class has
to call the constructor of the class being instantiated.) Sometimes, however,
responsibility is placed directly in the class whose instance is being created
(implemented as a static operation). There is often a need for several classes to
collaborate in this type of responsibility, as we will discuss in the next section.

■ Loading to and saving from persistent storage.

■ Destroying instances. Like the process of creating instances, this also often
requires collaboration with other classes.

■ Adding and deleting links of associations, such as recording that a particular
professor will teach a certain course. Responsibilities of this kind are similar to
manipulating attributes. However, they are more complex since there is the
need to collaborate with other classes to ensure that the bi-directional nature of
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most associations is maintained properly. We will discuss this in more detail in
the next section.

■ Copying, converting, transforming, transmitting or outputting. Many
applications have responsibilities of these types, which require changing the
information to some other form. A common example is the toString method in
Java, which creates a String representation of an object.

■ Computing numerical results, such as the fine on an overdue library book.

■ Navigating and searching. For example, in Figure 5.30, there might be a need
for capabilities to look up a particular customer by name, or to find all the
customers that match a certain criteria.

■ Specialized work needed by the particular application that does not fit in any
of the above categories.

When listing responsibilities, many skilled modelers will omit all but the last
three categories – and it is extremely common to omit the first category. This is
because the presence of such responsibilities can largely be inferred from the
class diagram. However, taking this loose approach leaves uncertainty about
where some responsibilities will be put – the modelers have to mentally decide
where to place omitted responsibilities when identifying operations.

Example 5.5 Create a list of responsibilities for the Airline system discussed in Examples 5.2 to
5.4. Allocate each responsibility to a class and discuss your reasoning for the
allocation. Finally, update the class diagram as necessary. 

The following are a few of the responsibilities derived from the system
description, with an indication of in which classes they might be put. It is clear
when creating this list of responsibilities that the airline system description is
rather too brief – forcing us to deduce the presence of unstated requirements.

■ Creating a new RegularFlight. This could be a class (static) responsibility of the
RegularFlight class. But we prefer, as much as possible, to give responsibilities to
instances. We will therefore introduce a new class called Airline (shown in
Figure 5.32) that will have this responsibility. There will probably be only one
instance of Airline.

■ Searching for a particular RegularFlight. In order to do this, we need a class that
maintains a collection of all the instances of RegularFlight. That class will be
Airline, which will therefore have this responsibility.

■ Modifying the attributes of a RegularFlight. Each class should normally modify
its own attributes; this responsibility should therefore go in RegularFlight.

■ Creating a SpecificFlight. We choose to put RegularFlight in charge of this,
since the new SpecificFlight will be an occurrence of a particular RegularFlight
that already exists at the time this responsibility is initiated.
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■ Canceling a SpecificFlight. This can be put in SpecificFlight.

■ Booking a PassengerRole on a SpecificFlight. This could go in either
PassengerRole or SpecificFlight. It could also go in Booking, but we prefer not to
put it there since the appropriate Booking is not yet created by the time this
responsibility is initiated. We choose to give this responsibility to PassengerRole,
since in the real world it is the passengers who initiate bookings.

■ Canceling a Booking. This should be put in Booking.

Exercises

E106 For the system(s) you worked on in Exercises E102 to E104, determine the
responsibilities of each class. Update your class diagrams as necessary. 

E107 Determine the responsibilities for each of the classes in the genealogical
example, Figure 5.25(c).

A paper-and-pencil technique to rapidly develop a class diagram

A useful technique for prototyping class diagrams involves the use of small
cards, or pieces of paper such as sticky notes. As you identify classes, you write
their names on the cards. You can add and delete cards as the technique
progresses. The cards are often called CRC (Class–Responsibility–
Collaboration) cards.

As you identify attributes and responsibilities, you list them on the cards as
well. The fact that each card has limited space encourages you to not make any
of the classes excessively complex. If you cannot fit all the responsibilities on one
card, this suggests you should split the class into two related classes.

Figure 5.32 Airline system after adding the AAAAiiiirrrrlllliiiinnnneeee class
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You can move the cards around freely on a whiteboard
to arrange them into a class diagram. Draw lines
between cards to represent associations and generaliza-
tions.

The above technique allows you to rapidly rearrange
the class diagram, quickly repositioning classes without
having to redraw them. A good software tool can also be
used for this, but low-tech paper-and-pencil techniques
can often be faster than manipulating the software’s user
interface. The paper-and-pencil approach is especially

effective in a brainstorming environment, where several people can be working
together to move around the various classes.

Identifying operations
Operations are needed to realize the responsibilities of each class – there may be
several operations per responsibility, but one will be in charge.

The operation that is in charge of fulfilling the responsibility will normally be
declared public. It becomes part of the interface of the entire subsystem. Other
methods that collaborate to perform the responsibility will be as private as
possible.

The following are situations in which several classes must collaborate to
implement some typical responsibilities of a given class. We will look at the
operations required to implement these responsibilities, and will use the class
diagram shown in Figure 5.33 as an illustration.

(a) Making a bi-directional link between two existing objects; e.g. adding a
link between an instance of SpecificFlight and an instance of Airplane.

Figure 5.33 Classes and operations that collaborate to perform responsibilities of class 
SSSSppppeeeecccciiiiffffiiiiccccFFFFlllliiiigggghhhhtttt. The public operations are shown with a + symbol
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Tagged values
Figure 5.33 shows the use of a UML
feature called tagged values. You can
attach information to any UML
element. In this case we have attached
‘id’ tags to each operation. The ‘id’
indicates the responsibility using a
letter from ‘a’ to ‘e’ as its first character.
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a1. (public) The instance of SpecificFlight makes a unidirectional link to
the instance of Airplane, and then calls operation a2.

a2. (non-public) The instance of Airplane makes a unidirectional link back
to the instance of SpecificFlight.

(b) Creating an object and linking it to an existing object; e.g. creating a
FlightLog, and linking it to a SpecificFlight.

b1. (public) The instance of SpecificFlight calls the constructor of FlightLog
(operation b2); then, when it is complete, makes a unidirectional link to
the new instance of FlightLog.

b2. (non-public) Class FlightLog’s constructor, among its other actions,
makes a unidirectional link back to the instance of SpecificFlight.

(c) Creating an association class, given two existing objects; creating an
instance of Booking, for example, which will link a SpecificFlight to a
PassengerRole.

c1. (public) The instance of PassengerRole calls the constructor of Booking
(operation c2).

c2. (non-public) Class Booking’s constructor, among its other actions, makes
a unidirectional link back to the instance of PassengerRole, makes a
unidirectional link to the instance of SpecificFlight, and calls operations
c3 and c4.

c3. (non-public) The instance of SpecificFlight makes a unidirectional link
to the instance of Booking.

c4. (non-public) The instance of PassengerRole makes a unidirectional link
to the instance of Booking.

(d) Changing the destination of a link; e.g. changing the Airplane linked to a
SpecificFlight, from airplane1: to airplane2:.

d1. (public) The instance of SpecificFlight deletes the link to airplane1:
makes a unidirectional link to airplane2:, calls operation d2, and then
calls operation d3.

d2. (non-public) airplane1: deletes its unidirectional link to the instance of
SpecificFlight.

d3. (non-public) airplane2: makes a unidirectional link to the instance of
SpecificFlight.

(e) Searching for an associated instance; e.g. searching for a crew member
associated with a SpecificFlight that has a certain name.

e1. (public) Create an Iterator over all the crewMember links of the
SpecificFlight, and for each of them call operation e2, until it finds a
match.

e2. (may be public) The instance of EmployeeRole returns its name.

These types of collaborations are applicable in many different systems.
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Notice that it would be very harmful for any of the non-public methods to be
called directly – they would end up only performing part of a complete
responsibility, leaving the system in an unstable state.

Exercises

E108 Add operations to the examples you worked on in Exercises E102 to E104 and
E106. 

E109 Add operations to the genealogical example of Figure 5.25(c), which you also
worked on in Exercise E107.

E110 Use the techniques described in this section to extend the airline system. Your
extended system should include the requirements listed below. You should
produce a single class diagram showing classes, attributes and generalizations.
Do not show operations yet.

(a) Flights fly from one airport terminal to another, but may also have several
intermediate stops. A passenger can be booked on one or more of the legs
of a flight.

(b) Passengers can query the system to determine at what times flights are
available from their desired origin city to their desired destination city
(they do not care about which terminal or airport is used by the airline).

(c) Flights have scheduled departure and arrival times, but they can be late,
therefore they have actual departure and arrival times as well.

(d) The airline may add charter flights that are not regularly scheduled.

(e) The airline publishes prices that apply between any pair of cities to which it
flies. Business class, regular and seat-sale fares are available.

(f) Passengers buy tickets and are charged the prices in effect when their
tickets were booked. Each ticket involves a complete itinerary, composed of
a sequence of one or more legs. The fare type is not necessarily the same for
each leg of the flight.

(g) Passengers are automatically part of a frequent-flier plan. They accumulate
points based on the distance they flew and their fare type (business class or
not).

E111 (a) Determine the responsibilities needed to implement the requirements
listed in the previous exercise (omitting the responsibilities that merely
involve setting and getting attributes).

(b) Determine all the operations needed to implement the responsibilities –
specifying in which classes they belong. 
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5.10 Implementing class diagrams in Java

So far in this chapter we have been talking strictly about modeling. We want
now, however, to take a brief foray into the detailed design stage in order to give
you a taste of how to implement your models. We believe that to become a good
modeler, you have to develop an understanding of how your model will be
concretized as a real system.

On the book’s web site (www.lloseng.com) you can find a complete
implementation of the Airline system discussed in the last section. Below, we
will briefly discuss some aspects of its Java implementation, leaving you to study
the code in order to understand other details.

The implementation of some aspects of class diagrams is rather
straightforward:

■ Attributes are generally implemented as instance variables. You have to choose
an appropriate class, but normally it will be a class from the standard Java
library such as String.

■ Generalizations are implemented using the extends keyword, and interfaces are
implemented using the implements keyword.

Implementing associations, however, takes a bit more thought because there are
several ways to do it. However, once you learn to implement a few associations
you will find yourself using the same general structure of the code over and over
again. In what follows, we will suggest typical ways to implement associations as
objects in a running Java program. More sophisticated techniques are needed
when objects have to be loaded from a database.

Associations are normally implemented using instance variables. You divide
each two-way association into two one-way associations so that each associated
class has an instance variable representing the other end of the association.

To implement a one-way association where the multiplicity at the other end is
‘one’ or ‘optional’, you declare a variable whose type is that class. Therefore
SpecificFlight from Figure 5.33 would have declarations of the following
instance variables:

private TerminalOfAirport destination;
private Airplane airplane;
private FlightLog flightLog;

Some of the declarations in other classes would include:

■ in Booking: SpecificFlight specificFlight ;

■ in FlightLog: SpecificFlight specificFlight ;

To implement a one-way association where the multiplicity at the other end is
‘many’, you use a collection class such as ArrayList. Therefore, SpecificFlight
would have declarations:
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private List crewMembers; // of EmployeeRole
private List bookings;

The following shows the code needed to implement a responsibility in
RegularFlight to create a new SpecificFlight. This follows the pattern of
responsibility (b) from the last section.

class RegularFlight

{

  private List specificFlights;

 ...

  // Method that has primary responsibility

  public void addSpecificFlight(Calendar aDate)

  {

    SpecificFlight newSpecificFlight;

    newSpecificFlight = new SpecificFlight(aDate, this);

    specificFlights.add(newSpecificFlight);

  }

...

}

class SpecificFlight

{

  private Calendar date;

  private RegularFlight regularFlight;

 ...

  // Constructor that should only be called from

  // addSpecificFlight

  SpecificFlight(

    Calendar aDate,

    RegularFlight aRegularFlight)

  {

    date = aDate;

    regularFlight = aRegularFlight;

  }

}

To implement an association where the multiplicity at the other end has a small,
fixed upper bound, you can use a regular array. An example is the 0..2
multiplicity in the association between PersonRole and Person in Figure 5.31.
Remember that if you do this you should make sure you are not limiting the
flexibility of the system.

Person would declare the following instance variable:

private PersonRole[] roles = new PersonRole[2];
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5.11 Difficulties and risks when creating class diagrams

The following is the key difficulty to anticipate when creating class diagrams in
an industrial context:

■ Modeling is a particularly difficult skill. Many people who are excellent
programmers nevertheless have considerable difficulty thinking at the level
of abstraction needed to create effective models. Also, since education
programs have not traditionally focused on it, software developers often have
significantly less knowledge about modeling than about design and
programming. Taken together, these mean that software projects are at risk
from models that are incomplete, incorrect or insufficiently flexible.
Resolution. Ensure that members of the team have adequate training in
modeling. Have an experienced modeler as part of every team. Review all
models thoroughly.

5.12 Summary

In this chapter we introduced UML, the Unified Modeling Language. Then
we showed you how to create class diagrams, one of the most important
types of diagrams in UML. Class diagrams model classes and how they are
related.

Very careful analysis is required to create good class diagrams. A good
starting point is to take a description of the problem, or a statement of
requirements, and look for the nouns in it. Once you have created a basic list
of classes, it is best to start arranging your model starting with the classes
that are the most central or important to the system.

Class modeling can proceed by creating an initial set of associations
among the classes, and adding attributes and generalizations. You then
assign responsibilities to the classes and derive operations from these
responsibilities. This whole process should be performed iteratively.

Any class diagram should be subjected to detailed review. A key thing to
ensure is that all generalizations are valid – that is, they follow the isa rule
and everything in the superclass makes sense in subclasses. Other common
types of error are poor naming of elements of the diagrams and incorrect
multiplicity.

Creating good class diagrams is a central skill in modern software
engineering, but it takes time to become an expert. We suggest practicing
with many examples, and implementing your models. The process of
implementation – actually getting a system to run – will help you heighten
your awareness of potential flaws.
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5.13 For more information

The following are some of the many available resources about UML:

UML in general

■ Cetus Links on UML: http://www.cetus-links.org/oo_uml.html is a very
extensive list of resources

■ OOTips: http://www.ootips.org, a site that consolidates information about OO
technologies from various sources

■ The UML Bibliography: http://www.db.informatik.uni-bremen.de/umlbib

■ G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 1998

■ J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998

■ I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development
Process, Addison-Wesley, 1999

■ M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 3rd edition, Addison-Wesley, 2003

■ J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edition, Addison-Wesley, 2003

■ The Object Management Group: home of the UML Specification: http://
www.omg.org

Object-oriented development processes

■ P. Kruchten, The Rational Unified Process, An Introduction, 2nd edition,
Addison-Wesley, 2000. Discusses the most popular UML-based methodology

■ S. Shlaer and S. Mellor, Object-Oriented Systems Analysis: Modeling the World in
Data, Yourdon Press, 1989

■ J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall, 1991.
A classic book that presents the OMT notation, a predecessor of UML, along
with a development method that focused on class diagrams

■ P. Coad and E. Yourdon, Object Oriented Analysis, Yourdon Press, 1991. This
places the emphasis on entity-relation diagrams
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■ G. Booch, Object-Oriented Analysis and Design With Applications, Addison-
Wesley, 1994. A detailed methodology that was also an important predecessor
of UML

■ J. Martin, and J. Odell, Principles of Object Oriented Analysis and Design,
Prentice Hall, 1992

■ I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, 1994. Introduces use case analysis; another UML
predecessor

Tools for creating UML models

■ IBM Rational Software: http://www.ibm.com/software/rational

■ Together by Borland: http://www.borland.com/together/

■ Objects By Design maintains a list of UML modeling tools at http:/
www.objectsbydesign.com/tools/umltools_byCompany.html

■ ObjectPlant: a good basic shareware tool for the Macintosh. http://
www.arctaedius.com/ObjectPlant/

■ Argo UML: an open source shareware project run by Tigris. http://
argouml.tigris.org. Argo UML actively helps you to draw UML diagrams by
suggesting things that you should do; its developers call this ‘cognitive support’.
Argo UML is written in Java; you can therefore study and modify its source
code if you wish

Project exercise

Since the SimpleChat system has a very simple class diagram, there are no
exercises for that project in this chapter. 

The following problem will allow you to make further progress on the Small
Hotel Reservation System project.

E112 Create a class diagram of the ‘Small Hotel Reservation System’. Base your
analysis on the requirements you developed in the last chapter. Your diagram
should have any necessary classes, associations, generalizations and attributes.
Write the main use cases of this system and determine the main responsibilities
of each class. We will consider the operations later when we study system
interactions in Chapter 8.
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In the previous chapter, we looked at UML class diagrams. This chapter continues
the study of the static view of software by looking at typical patterns found in class
diagrams. These patterns recur in many designs; by learning and using them you
are reusing the collective experience of many software developers.

6.1 Introduction to patterns

As you gain experience in object-oriented software development, you will begin
to notice that many parts of your models or designs reappear, with only slight
changes, in many different systems or subsystems. These recurring aspects are
called patterns. Many of them have been systematically documented for all
software developers to use.

In this chapter you will learn about the following

■ The structure and format used to describe patterns.

■ Patterns used to help ensure separation of concerns in a class diagram:
Abstraction–Occurrence, Observer, and Player–Role.

■ A pattern used to create hierarchies of instances: General Hierarchy.

■ The Delegation pattern in which a method simply calls another method in
another class, but which can significantly improve the overall design of a
system.

■ Patterns in which you use delegation to gain access to facilities in one or
more other classes: Adapter, Façade and Proxy.

■ Patterns that help protect other objects from unanticipated access:
Immutable and Read-Only Interface.

■ A pattern that enables you to create application-specific objects in a
framework: Factory.
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In this chapter we will restrict our attention to patterns used in modeling and
design; but people have also developed patterns for many other human tasks,
such as doing business, diagnosing mechanical problems or taking better
photographs. In Chapter 9, we will look at architectural patterns, which are used
at the very highest level of software design.

A good pattern should be as general as possible, containing a solution that has
been proven to solve the problem effectively in the indicated context. The
pattern must be described in an easy-to-understand form so that people can
determine when and how to use it. Studying patterns is an effective way to learn
from the experience of others.

Each pattern should have a name; it should also have the following
information:

■ Context: the general situation in which the pattern applies.

■ Problem: a sentence or two explaining the main difficulty being tackled.

■ Forces: the issues or concerns that you need to consider when solving the
problem. These include criteria for evaluating a good solution.

■ Solution: the recommended way to solve the problem in the given context. The
solution is said to ‘balance the forces’; in other words, it has a good
combination of advantages, with few counterbalancing disadvantages.

■ Antipatterns: (optional) solutions that are inferior or do not work in this
context. The reason for their rejection should be explained. The antipatterns
may be valid solutions in other contexts, or may never be valid. They often are
mistakes made by beginners.

■ Related patterns: (optional) patterns that are similar to this pattern. They may
represent variations, extensions or special cases.

■ References: acknowledgements of those who developed or inspired the
pattern.

A pattern should normally be illustrated using a simple diagram and should be
written using a narrative writing style.

In the following sections, we present a sample of the most useful patterns that
you can apply when you perform modeling and design using UML class
diagrams. You will recognize some of them from the discussions in the last
chapter. Here, however, we will describe them in a more formal way. Our list of
patterns is by no means exhaustive – you should see the references at the end of
the chapter to learn about the wide variety of patterns that are available.

The first three of the patterns described below we call modeling patterns, since
they appear in domain models long before any software design occurs. The rest

Definition: a pattern is the outline of a reusable solution to a general problem 

encountered in a particular context.
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of the patterns are design patterns since they involve details that would normally
be deferred until the design stage.

6.2 The Abstraction–Occurrence pattern

Context This modeling pattern is most frequently found in class diagrams that form part
of a system domain model.

Often in a domain model you find a set of related objects that we will call
occurrences; the members of such a set share common information but also
differ from each other in important ways.

Examples of sets of occurrences include:

■ All the episodes of a television series. They have the same producer and the
same series title, but different story-lines.

Patterns and the patterns community
The word ‘pattern’ has a well-understood meaning in ordinary English: it refers to a set of
instructions, or a model or an example from which things are made or matched.

The architect Christopher Alexander developed the notion of patterns for use in
architecture and design.  The software engineering community has adopted his meaning of the
term.

Alexander defines patterns as ‘a three-part rule, which expresses a relation between a
certain context, a problem and a solution’.

Patterns are an excellent way to document design understanding, and to pass that
understanding on to others who are learning how to design. By thinking about relevant
patterns as they design, designers can work more rapidly and produce higher-quality work
because they are reusing the experience of others.

The exact format you use to write patterns varies from author to author, but most
authors include the same kind of information that we include.  A group of interrelated
patterns form a pattern language.

There is a ‘patterns community’ within software engineering. This is a loose but large
collection of people who believe in the usefulness of patterns, as well as in certain
philosophies regarding their development.  Among the important philosophies of the patterns
community are:
■ Patterns represent well-known knowledge. In other words, no pattern could ever be patented

because it must be in common use (note the use of a completely unrelated word ‘patent’ that
sounds similar; for more on patents, see the sidebar in the risks section of Chapter 11). People
do not invent patterns – a pattern is a literary work describing common practice.

■ Patterns should be in the public domain, where possible; people should be encouraged to
improve the pattern to make it more usable.

■ When patterns are written or modified, they should be reviewed in a public setting by a group of
the author’s peers.

■ Patterns should be written for the public good.  A pattern that describes how to do something
unethical, for example, would not be acceptable to the community.
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■ The flights that leave at the same time every day for the same destination. They
have the same flight number, but occur on different dates and carry different
passengers and crew.

■ All the copies of the same book in a library. They have the same title and
author. However, the copies have different barcode identifiers and are
borrowed by different people at different times.

Problem What is the best way to represent such sets of occurrences in a class diagram?

Forces You want to represent the members of each set of occurrences without
duplicating the common information. Duplication would consume unnecessary
space and would require changing all the occurrences when the common
information changes. Furthermore, you want to avoid the risk of inconsistency
that would result from changing the common information in some objects but
not in others. Finally you want a solution that maximizes the flexibility of the
system.

Solution Create an «Abstraction» class that contains the data that is common to all the
members of a set of occurrences. Then create an «Occurrence» class representing
the occurrences of this abstraction. Connect these classes with a one-to-many
association. This is illustrated in Figure 6.1.

Examples You might create an «Abstraction» class called TVSeries; an instance of this
might be the children’s series ‘Sesame Street’. You would then create an
«Occurrence» class called Episode. Similarly, you might create an «Abstraction»
class called Title which will contain the author and name of a book or similar
publication. The corresponding «Occurrence» class might be called LibraryItem.
These examples are illustrated in Figure 6.1.

Another example of the Abstraction–Occurrence design pattern is the pair
consisting of RegularFlight and SpecificFlight in the airline system, as shown in
Figure 5.29.

Figure 6.1 Template and examples of the Abstraction–Occurrence pattern

Episode

number
title
storySynopsis

TVSeries

seriesName
producer

∗

«Abstraction» «Occurrence»∗

Title LibraryItem

barCodeNumbername
author
isbn
publicationDate
libOfCongress

∗

1

1

1
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Antipatterns These antipatterns are examples of real mistakes made by beginners.
One inappropriate solution, shown in Figure 6.2(a), is to use a single class.

This would not work, because information would have to be duplicated in each
of the multiple copies of a book. For example, the different copies of Moby Dick
can be borrowed by different people; there would, therefore, have to be separate
‘Moby Dick’ instances, listing the same name, author and ISBN.

Another very bad solution, shown in Figure 6.2(b), is to create a separate
subclass for each title (i.e. a class GulliversTravels and another class MobyDick ).
Information such as name, author, etc. would still be duplicated in each of the
instances of each subclass. Furthermore, this approach seriously restricts the
flexibility of the system – you want to be able to add new books without having
to program new classes.

Figure 6.2(c) shows another invalid solution: making the abstraction class a
superclass of the occurrence class. This would not solve the original problem
presented in this pattern, since, although the attributes in the superclass are
inherited by the subclasses, the data in those attributes is not. For example, even
though there is a name attribute defined in the superclass Title, we would still
have to set the value of this attribute in every instance of LibraryItem.

Related

patterns

When the abstraction is an aggregate, the occurrences are also typically
aggregates. The result is the Abstraction–Occurrence Square pattern, illustrated
in Figure 6.3.

References This pattern is a generalization of the Title–Item pattern of Eriksson and Penker
(see the ‘For more information’ section at the end of the chapter).

Exercise

E113 Apply the Abstraction–Occurrence pattern in the following situations. For each
situation, show the two linked classes, the association between the classes, and
the attributes in each class.

Figure 6.2 Inappropriate ways to represent abstractions and occurrences
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(a) The issues of a periodical.

(b) The copies of the issues of a periodical.

(c) The repeats and re-runs of the same television program.

(d) Models of electronic appliances and the individual appliances.

6.3 The General Hierarchy pattern

Context This modeling pattern occurs in many class diagrams. You often find a set of
objects that have a naturally hierarchical relationship. For example, the
relationships between managers and their subordinates in an organization
chart, or the directories (also known as folders), subdirectories and files in a file
system.

Each object in such a hierarchy can have zero or more objects above them in
the hierarchy (superiors), and zero or more objects below them (subordinates).
Some objects, however, cannot have any subordinates – for example the staff
members in an organization chart (as opposed to the managers) or the files in a
file system (as opposed to the directories).

Problem How do you draw a class diagram to represent a hierarchy of objects, in which
some objects cannot have subordinates?

Forces You want a flexible way of representing the hierarchy that naturally prevents
certain objects from having subordinates. You also have to account for the fact
that all the objects share common features.

Solution Create an abstract «Node» class to represent the features possessed by each
object in the hierarchy – one such feature is that each node can have superiors.

Then create at least two subclasses of the «Node» class. One of the subclasses,
«SuperiorNode», must be linked by a «subordinates» association to the superclass;
whereas at least one subclass, «NonSuperiorNode», must not be. The subordinates
of a «SuperiorNode» can thus be instances of either «SuperiorNode» or
«NonSuperiorNode».

Figure 6.3 The Abstraction–Occurrence Square pattern
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The multiplicity of the «subordinates» association can be optional-to-many or
many-to-many. If it is many-to-many, then the hierarchy of instances becomes
a lattice, in which a node can have many superiors. The ‘optional’ allows for the
case of the top node in the hierarchy, which has no superiors.

Examples In Figure 6.4, there are three kinds of employee in an organization, but only
managers can supervise subordinates. Similarly, only directories can contain
other file system objects. In a user interface, some objects (such as panels) can
contain others; this is illustrated in Figure 6.5. As a final example, in Figure 5.30
a company can have customers, who in turn have other customers, and are the
customers of other companies – the result is a network of customer/service-
provider relationships.   

Antipatterns A common beginner’s mistake is to model a hierarchy of categories using a
hierarchy of classes, as illustrated in Figure 5.11. This mistake is made because
beginners are taught about inheritance hierarchies, and then immediately think
that every hierarchy should be an inheritance hierarchy.

Figure 6.4 Template and examples of the General Hierarchy design pattern

Figure 6.5 Component classes whose instances form a hierarchy in a user interface. The 
example shows a frame, composed of a label (top), a list (left) and two panels. The 
first panel (on the right) is in turn composed of four text fields. The other panel (at 
the bottom) contains three buttons
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Related

patterns

The Reflexive Association, discussed in Section 5.3, can be considered to be a
pattern. Figures 5.8, 5.12(a) and 5.25(a) show that hierarchies of objects can be
modeled using asymmetric reflexive associations. Doing so, however, does not
allow for the special «NonSuperiorNode» classes that occur in the context of the
General Hierarchy pattern.

The Composite pattern is a specialization of the General Hierarchy pattern. In
the Composite pattern, the association between «SuperiorNode» and «Node» is
an aggregation. A Composite is a recursive container; that is, a container that
can contain other containers. This is the case with directories in a file system
(Figure 6.4) as well as instances of GUIComposite (Figure 6.5).

References The Composite pattern is one of the ‘Gang of Four’ patterns. See the book by
Gamma, Helm, Johnson and Vlissides in ‘For more information’.

Exercises

E114 Figure 5.21 shows a hierarchy of vehicle parts. Show how this hierarchy might
be better represented using the General Hierarchy pattern (or more precisely,
by the Composite pattern). 

E115 Revisit Exercise E91. Did you use the General Hierarchy pattern? If not, then
redo the exercise, showing a hierarchy of various levels of government. Imagine
that municipalities are the lowest levels of government. 

E116 An expression in Java can be broken down into a hierarchy of subexpressions.
For example, (a/(b+c))+(b-func(d)*(e/(f+g))) has (a/b+c)) as one of its higher-
level subexpressions.

(a) Using the General Hierarchy or Composite pattern, create a class diagram
to represent expressions in Java. Hints:

(i) A higher-level expression might have more than two parts. 
(ii) The parts of a higher-level expression are connected by operators; how

can these be represented? 
(iii) Think about what the «NonSuperiorNodes» must be. 
(iv) Some expressions are surrounded by parentheses, while others need

not be; how can this be represented?

(b) Using your class diagram from part (a), create an object diagram for the
example above.

6.4 The Player–Role pattern

Context This modeling pattern can solve modeling problems when you are drawing
many different types of class diagram. A role is a particular set of features
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associated with an object in a particular context. An object may play different
roles in different contexts.

For example, a student in a university can be either an undergraduate student
or a graduate student at any point in time – and is likely to need to change from
one of these roles to another. Similarly, a student can also be registered in his or
her program full-time or part-time, as shown in Figure 5.16; in this case, a
student may change roles several times. Finally, an animal may play several of
the roles shown in Figure 5.15, although in this case the roles are unlikely to
change.

Problem How do you best model players and roles so that a player can change roles or
possess multiple roles?

Forces It is desirable to improve encapsulation by capturing the information associated
with each separate role in a class. However, as discussed in Chapter 5, you want
to avoid multiple inheritance. Also, you cannot allow an instance to change
class.

Solution Create a «Player» class to represent the object that plays different roles. Create
an association from this class to an abstract «Role» class, which is the superclass
of a set of possible roles. The subclasses of this «Role» class encapsulate all the
features associated with the different roles.

If the «Player» can only play one role at a time, the multiplicity between
«Player» and «Role» can be one-to-one, otherwise it will be one-to-many.

Instead of being an abstract class, the «Role» can be an interface. The only
drawback to this variation is that the «Role» usually contains a mechanism,
inherited by all its subclasses, allowing them to access information about the
«Player». Therefore you should only make «Role» an interface if this mechanism
is not needed.

Examples Figure 6.6 shows how an Animal or a Student can take on several roles to solve the
problems posed by Figures 5.14 and 5.15.

The example in the middle of Figure 6.6 shows that an object can have a
varying number of roles. An animal could be aquatic, land-based or both. Note
that we could also have used a role class to record whether an animal is a
carnivore, herbivore or omnivore; however, since this information remains the
same for the life of an animal, we can just use ordinary subclasses.

The bottom example in Figure 6.6 shows that you can have two separate
«Role» superclasses. In this case, a student is characterized by his or her
attendance status (full-time or part-time) and by whether he or she is a graduate
or undergraduate. Both of these types of status can change during the life of a
Student object. The Player–Role pattern with two one-to-one associations makes
it possible to create a full-time undergraduate student, a part-time graduate
student or any other combination.

The Player–Role pattern is also used in the airline system to allow a person to
be both a passenger and an employee. This is illustrated in Figure 5.31.



 

230 Chapter 6
Using design patterns 

Antipatterns One way to implement roles is simply to merge all the features into a single
«Player» class and not have «Role» classes at all. This, however, creates an overly
complex class – and much of the power of object orientation is lost.

You could also create roles as subclasses of the «Player» class. But, as we have
already discussed, this is a bad idea if it results in the need for multiple
inheritance or requires an instance to change class.

Related

patterns

The Abstraction–Occurrence pattern has a similar structure to the Player–Role
pattern: the player has many roles associated with it, just like the abstraction has
many occurrences. However, the semantics of the two patterns is quite different.
A key distinction is that in the Abstraction–Occurrence pattern, an abstraction
is, as the name says, abstract, while its occurrences tend to be real-world things
such as copies of books. The inverse is true in the Player–Role pattern: the player
is normally a real-world entity (e.g. a person) while its roles are abstractions.

References This pattern appears in the OMT book by Rumbaugh et al. (1991), referred to in
the ‘For more information’ section of Chapter 5. At the time that book was
written, however, the term ‘pattern’ had not yet taken on its current use.

Figure 6.6 Template and examples of the Player–Role design pattern
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Exercise

E117 Draw a class diagram, applying the Player–Role pattern in the following
circumstances.

(a) Users of a system have different privileges.

(b) Managers can be given one or more responsibilities.

(c) Your favorite sport (football, baseball, etc.) in which players can play at
different positions at different times in a game or in different games.

6.5 The Singleton pattern

Context In software systems, it is very common to find classes for which you want only
one instance to exist. Such a class is called a singleton.

For example, the Company or University classes in systems that run the business
of that company or university might be singletons. Another example is the
MainWindow class in a graphical user interface for systems that can only have one
main window open.

Problem How do you ensure that it is never possible to create more than one instance of
a singleton class?

Forces If you use a public constructor, you cannot offer the guarantee that no more than
one instance will be created.

The singleton instance must also be accessible to all classes that require it,
therefore it must often be public.

Solution In a singleton class, create the following:

■ A private class variable, often called theInstance. This stores the single instance.

■ A public class method (static method), often called getInstance. The first time
this method is called, it creates the single instance and stores it in theInstance.
Subsequent calls simply return theInstance.

■ A private constructor, which ensures that no other class will be able to create an
instance of the singleton class.

Example In an employee management system (Figure 6.7), the Company class might be the
central class that encapsulates several important features related to the system as
a whole. The Singleton implementation ensures that only one instance of this
important class can exist. The public class method getInstance makes this
instance globally accessible.

Note The Singleton pattern should not be overused, since the singleton instance is
effectively a global variable, and the use of global variables should be minimized.

References The Singleton pattern is one of the ‘Gang of Four’ patterns.
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Exercise

E118 Discuss how the Singleton pattern could be generalized to the case where a
class could be limited to have a maximum of N instances.

6.6 The Observer pattern

Context When you create a two-way association between two classes, the code for the
classes becomes inseparable. When you compile one, the other one has to be
available since the first one explicitly refers to it. This means that if you want to
reuse one of the classes, you also have to reuse the other; similarly, if you change
one, you probably have to change the other.

Problem How do you reduce the interconnection between classes, especially between
classes that belong to different modules or subsystems? In other words, how do
you ensure that an object can communicate with other objects without knowing
which class they belong to?

Forces You want to maximize the flexibility of the system to the greatest extent possible.

Solution Create an abstract class we will call the «Observable» that maintains a collection
of «Observer» instances. The «Observable» class is very simple; it merely has a
mechanism to add and remove observers, as well as a method notifyObservers
that sends an update message to each «Observer». Any application class can
declare itself to be a subclass of the «Observable» class. This is illustrated in
Figure 6.8.

«Observer» is an interface, defining only an abstract update method. Any class
can thus be made to observe an «Observable» by declaring that it implements
the interface, and by asking to be a member of the observer list of the
«Observable». The «Observer» can then expect a call to its update method
whenever the «Observable» changes.

Figure 6.7 Template and example of the Singleton design pattern

if (theCompany==null)
  theCompany= new Company();

return theCompany;

«Singleton»

theInstance

getInstance()

Company

theCompany

Company() «private»
getInstance()
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Using this pattern, the «Observable» neither has to know the nature or the
number of the classes that will be interested in receiving the update messages, nor
what they will do with this information.

Examples Java has an Observer interface and an Observable class. The Java mechanism is a
specific implementation of this pattern.

In order to obtain a weather forecast, a system has to perform a long sequence
of calculations. Suppose that these computations are under the control of a
Forecaster object, as shown in Figure 6.8. When a new forecast is ready this
object notifies all interested instances. The Forecaster is therefore the observable
object. One observer might be a user interface object responsible for displaying
the weather forecast. Another observer might use weather forecasts to plan the
schedule of some workers – the workers might do one set of tasks on rainy days
and another set on sunny days.

The Observer pattern is widely used to structure software cleanly into
relatively independent modules. It is the basis of the MVC architecture
presented in Chapter 9. It is also used in an additional layer of the OCSF
framework as presented in Section 6.14.

Antipatterns Beginners tend to connect an observer directly to an observable so that they
both have references to each other. We pointed out earlier that this means you
cannot plug in a different observer.

Another mistake is to make the observers subclasses of the observable. This
will not work because then each observer is at the same time an observable. It is
not therefore possible to have more than one observer for an observable.

References The Observer pattern is one of the ‘Gang of Four’ patterns. It is also widely
known as Publish-and-Subscribe (the observers are Subscribers and the
observable is a Publisher).

Figure 6.8 Template and example of the Observer design pattern
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Exercises

E119 Look at the Java documentation and explain the similarities or differences
between the mechanism behind the ActionEvent and ActionListener classes and
the Observer pattern.

E120 Use the Observer pattern to model a small system where several different
classes would be notified each time an item is added or removed from an
inventory.

6.7 The Delegation pattern

Context You need an operation in a class and you realize that another class already has
an implementation of the operation. However, it is not appropriate to make your
class a subclass and inherit this operation, either because the isa rule does not
apply, or because you do not want to reuse all the methods of the other class.

Problem How can you most effectively make use of a method that already exists in the
other class?

Forces You want to minimize development cost and complexity by reusing methods.
You want to reduce the linkages between classes. You want to ensure that work
is done in the most appropriate class.

Solution Create a method in the «Delegator» class that does only one thing: it calls a
method in a neighboring «Delegate» class, thus allowing reuse of the method for
which the «Delegate» has responsibility. By ‘neighboring’, we mean that the
«Delegate» is connected to the «Delegator» by an association. This is illustrated
in Figure 6.9.

Normally, in order to use delegation an association should already exist between
the «Delegator» and the «Delegate». This association may be bidirectional or else
unidirectional from «Delegator» to «Delegate». However, it may sometimes be
appropriate to create a new association just so that you can use delegation –
provided this does not increase the overall complexity of the system.

Delegation can be seen as providing selective inheritance.

Examples As shown in Figure 6.9, a Stack class can be easily created from an existing
collection class such as LinkedList. The push method of Stack would simply call
the addFirst method of LinkedList, the pop method would call the removeFirst
method and the isEmpty method would delegate to the method of the same
name. The other methods of the LinkedList class would not be used since they
do not make sense in a Stack.

The bottom example in Figure 6.9 shows two levels of delegation in the airline
system. Booking has a flightNumber method that does nothing other than delegate
to the method of the same name in its neighbor, SpecificFlight. This in turn
delegates to RegularFlight.
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Antipatterns The Delegation pattern brings together three principles that encourage flexible
design:

(a) favoring association instead of inheritance when the full power of
inheritance is not needed;

(b) avoiding duplication of chunks of code; and

(c) accessing ‘nearby’ information only. Violation of any of these principles
should be avoided, as explained below.

Instead of using delegation, it is common for people to overuse generalization
and inherit the method that is to be reused – for example, making Stack a
subclass of LinkedList. The biggest problem with this is that some of the methods
of LinkedList, such as addAfter, do not make sense in a Stack, yet they would be
available.

Instead of creating a single method in the «Delegator» that does nothing other
than call a method in the «Delegate», you might consider having many different
methods in the «Delegator» call the delegate’s method. For example, all the
methods in Booking could independently call specificFlight.flightNumber().
Unfortunately, this would create many more linkages in the system. It would be
better to ensure that only one method in the «Delegator» calls the method in the
«Delegate». Otherwise, when you make a change to the method in the
«Delegate», you may have to change all of the calling methods.

Figure 6.9 Template and examples of the Delegation design pattern

delegatingMethod()

{
delegate.method();

}

push()
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Finally, you want to ensure that in delegation a method only accesses
neighboring classes. For example it would not be good for Booking’s flightNumber
method to be written as:

return specificFlight.regularFlight.flightNumber();

This is bad because the further a method has to reach to get its data, the more
sensitive it becomes to changes in the system. Maintenance becomes easier if
you know that a change to a class will only affect its neighbors.

Related

patterns

The Adapter and Proxy patterns, discussed below, both use delegation.

References The Delegation pattern is mentioned in the book by Grand (see ‘For more
information’ at the end of the chapter).

Exercise

E121 Find as many situations as you can where the Delegation pattern should be
applied in Figure 5.25(c). 

6.8 The Adapter pattern

Context You are building an inheritance hierarchy and you want to incorporate into it a
class written by somebody else – that is, you want to reuse an existing unrelated
class. Typically the methods of the reused class do not have the same name or
argument types as the methods in the hierarchy you are creating. The reused
class is also often already part of its own inheritance hierarchy.

The Law of Demeter
A fundamental principle of the Delegation pattern is that a method should only communicate with
objects that are neighbors in the class diagram.  This is a special case of the ‘Law of Demeter’, which
was formulated by a team from Northeastern University in Boston.

The Law of Demeter says, in short, ‘only talk to your immediate friends’. In software
design, this means that a method should only access data passed as arguments, linked via
associations, or obtained via calls to operations on other neighboring data.  The rationale is
that this limits the impact of changes, and makes it easier for software designers to
understand that impact. If each method only communicates with its neighbors, then it should
only be impacted when those neighbors change, not when changes occur in more distant
parts of the system.

The Law of Demeter was named after Demeter, the ancient Greek goddess of agriculture,
because its developers were interested in ‘growing’ software incrementally.  Adhering to the
Law of Demeter should make incremental development much easier.
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Problem How do you obtain the power of polymorphism when reusing a class whose
methods have the same function but do not have the same signature as the other
methods in the hierarchy?

Forces You do not have access to multiple inheritance or you do not want to use it.

Solution Rather than directly incorporating the reused class into your inheritance
hierarchy, instead incorporate an «Adapter» class, as shown in Figure 6.10. The
«Adapter» is connected by an association to the reused class, which we will call
the «Adaptee». The polymorphic methods of the «Adapter» delegate to methods
of the «Adaptee». The delegate method in the «Adaptee» may or may not have
the same name as the delegating polymorphic method.

Other code that accesses facilities of an «Adapter» object will be unaware that
it is indirectly using the facilities of an instance of the «Adaptee».

Instead of being part of an inheritance hierarchy, an «Adapter» can be one of
several classes that implement an interface.

Example As shown in Figure 6.10, imagine you are creating a hierarchy of three-
dimensional shapes. However, you want to reuse the implementation of an
equivalent class called TimsTorus. You do not want to modify the code of
TimsTorus, since it is also being used by others; therefore you cannot make
TimsTorus a subclass of Shape3D. You therefore make Torus an «Adapter». Its
instances have a link to an instance of TimsTorus, and delegate all operations to
TimsTorus.

Adapters are sometimes called wrappers. The Java wrapper classes Integer,
Float, Double etc. are adapters for the Java primitive types.

A variation of the Adapter design pattern is used in an extended version of the
OCSF framework, as explained in Section 6.14.

Figure 6.10 Template and example of the Adapter design pattern
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 }
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 }
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Related

patterns

The Adapter pattern is one of several patterns that make it easier to use other
classes. Other patterns discussed below that do this are:

■ Façade: provides a single class to make it easy to access a whole subsystem of
classes.

■ Read-Only Interface: provides an interface that prevents changing instances of
another class.

■ Proxy: provides a lightweight class that makes it unnecessary to always have to
deal with a heavyweight class.

References The Adapter pattern is one of the ‘Gang of Four’ patterns.

Exercise

E122 Explain whether or not the MouseAdapter class defined in Java is an
implementation of the Adapter pattern.

6.9 The Façade pattern

Context Often, an application contains several complex packages. A programmer
working with such packages has to manipulate many different classes.

Problem How do you simplify the view that programmers have of a complex package?

Forces It is hard for a programmer to understand and use an entire subsystem – in
particular, to determine which methods are public. If several different
application classes call methods of the complex package, then any modifications
made to the package will necessitate a complete review of all these classes.

Solution Create a special class, called a «Façade», which will simplify the use of the
package. The «Façade» will contain a simplified set of public methods such that
most other subsystems do not need to access the other classes in the package.
The net result is that the package as a whole is easier to use and has a reduced
number of dependencies with other packages. Any change made to the package
should only necessitate a redesign of the «Façade» class, not classes in other
packages.

Example The airline system discussed in Chapter 5 has many classes and methods. Other
subsystems that need to interact with the airline system risk being ‘exposed’ to
any changes that might be made to it. We can therefore define the class Airline
to be a «Façade», as shown in Figure 6.11. This provides access to the most
important query and booking operations.

References This pattern is one of the ‘Gang of Four’ patterns.
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Exercise

E123 Suppose that you want to be able to use different database systems in different
versions of an application. To facilitate interchanging databases, you create a
Façade interface plus Façade classes associated with each specific database
system. Draw the class diagram that corresponds to this.

6.10 The Immutable pattern

Context An immutable object is an object that has a state that never changes after
creation. An important reason for using an immutable object is that other
objects can trust its content not to change unexpectedly.

Problem How do you create a class whose instances are immutable?

Forces The immutability must be enforced. There must be no loopholes that would
allow ‘illegal’ modification of an immutable object.

Solution Ensure that the constructor of the immutable class is the only place where the
values of instance variables are set or modified. In other words, make sure that
any instance methods have no side effects by changing instance variables or
calling methods that themselves have side effects. If a method that would
otherwise modify an instance variable must be present, then it has to return a
new instance of the class.

Example In an immutable Point class, the x and y values would be set by the constructor
and never modified thereafter. If a translate operation were allowed to be
performed on such a Point, a new instance would have to be created. The object
that requests the translate operation would then make use of the new translated
point.

In Figure 2.8, imagine there was a method changeScale(x,y) in an immutable
version of class Circle. This would return the same object if x and y were both
1.0, a new Circle if x and y were both equal, and a new Ellipse otherwise.
Similarly, the changeScale(x,y) method in an immutable Ellipse class would

Figure 6.11 Template and example of the Façade design pattern
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return a new Circle if the changeScale(x,y) would result in the semi-major axis
equaling the semi-minor axis.

Related

patterns

The Read-Only Interface pattern, described next, provides the same capability
as Immutable, except that certain privileged classes are allowed to make changes
to instances.

References This pattern was introduced by Grand (see ‘For more information’ at the end of
the chapter).

Exercise

E124 Imagine that all the classes in Figure 2.8 were immutable. What other methods
might be added to the system that would return instances of a different class
from the class in which they are written? 

6.11 The Read-Only Interface pattern

Context This is closely related to the Immutable pattern. You sometimes want certain
privileged classes to be able to modify attributes of objects that are otherwise
immutable.

Problem How do you create a situation where some classes see a class as read-only (i.e.
the class is immutable) whereas others are able to make modifications?

Forces Programming languages such as Java allow you to control access by using the
public, protected and private keywords. However, making access public makes it
public for both reading and writing.

Solution Create a «Mutable» class as you would create any other class. You pass instances
of this class to methods that need to make changes. 

Then create a public interface we will call the «ReadOnlyInterface», that has
only the read-only operations of «Mutable» – that is, only operations that get its
values. You pass instances of the «ReadOnlyInterface» to methods that do not
need to make changes, thus safeguarding these objects from unexpected
changes. The «Mutable» class implements the «ReadOnlyInterface».

This solution is shown in Figure 6.12.

Example Figure 6.12 shows a Person interface that can be used by various parts of the
system that have no right to actually modify the data. The MutablePerson class
exists in a package that protects it from unauthorized modification.

The Read-Only Interface design pattern can also be used to send data to
objects in a graphical user interface. The read-only interface ensures that no
unauthorized modifications will be made to this data. We present this usage in
the description of the MVC architecture in Chapter 9.
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Antipattern You could consider making the read-only class a subclass of the «Mutable» class.
But this would not work since whole point of this pattern is that you want a
single class with different sets of access rights.

References This pattern was introduced by Grand (see ‘For more information’ at the end of
the chapter).

Exercise

E125 Create a read-only version of the SpecificFlight class shown in Figures 5.32 and
5.33. The purpose of this would be so that you could pass instances to other
subsystems safely.

6.12 The Proxy pattern

Context This pattern is found in class diagrams that show how aspects of the architecture
of a system will be implemented.

Often, it is time-consuming and complicated to obtain access in a program to
instances of a class. We call such classes heavyweight classes. Instances of a
heavyweight class might, for example, always reside in a database. In order to
use the instances in a program, a constructor must load them with data from the
database. Similarly, a heavyweight object may exist only on a server: before
using the object, a client has to request that it be sent; the client then has to wait
for the object to arrive.

In both the above situations, there is a time delay and a complex mechanism
involved in creating the object in memory. Nevertheless, many other objects in
the system may want to refer to or use instances of heavyweight classes.

It is very common for all the domain classes to be heavyweight classes. Sets of
instances of these must also be managed by heavyweight versions of the
collection classes used to implement associations (such as ArrayList or Vector ).

Figure 6.12 Template and example of the Read-Only Interface design pattern
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Problem How can you reduce the need to load into memory large numbers of
heavyweight objects from a database or server, when not all of them will be
needed?

A related problem is this: if you load one object from a database or server, how
can you avoid loading all the other objects that are linked to it?

Forces You want all the objects in a domain model to be available for programs to use
when they execute a system’s various responsibilities. It is also important for
many objects to persist from run to run of the same program.

However, in a large system it would be impractical for all the objects to be
loaded into memory whenever a program starts. Memory size is limited; it takes
a long time to load a database into memory; and only a small number of the
objects in the database will actually be needed during any particular run of a
program. Keeping all objects in memory would also make it difficult for
multiple programs to share the same objects.

It would be ideal to be able to program the application as if all the objects were
located in memory. The details of how the objects are actually stored and loaded
should be transparent to the programmer. This provides for separation of
concerns: some programmers can worry about loading and saving of objects,
while others can be concerned with implementing the responsibilities of the
domain model.

Solution Create a simpler version of the «HeavyWeight» class. We will call this simpler
version a «Proxy». The «Proxy» has the same interface as the «HeavyWeight»,
therefore programmers can declare variables without caring whether a «Proxy»
or its «HeavyWeight» version will be put in the variable. This is illustrated in
Figure 6.13.

The «Proxy» object normally acts only as a placeholder. If any attempt is made
to perform an operation on the proxy then the proxy delegates the operation to
the «HeavyWeight». When needed, the «Proxy» undertakes the expensive task

Figure 6.13 Template and examples of the Proxy design pattern
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of obtaining the real «HeavyWeight» object. The proxy only needs to obtain the
«HeavyWeight» once; subsequently it is available in memory and access is
therefore fast.

Some proxies may have implementations of a limited number of operations
that can be performed without the effort of loading the «HeavyWeight».

In some systems, most of the variables manipulated by the domain model
actually contain instances of «Proxy» classes.

Examples In Figure 6.13, a software designer may declare that a variable is to contain a
List. This variable would, however, actually contain a ListProxy, since it would
be expensive to load an entire list of objects into memory, and the list might not
actually be needed. However, as soon as an operation accesses the list, the
ListProxy might at that point create an instance of PersistentList in memory. On
the other hand, the ListProxy might be able to answer certain queries, such as the
number of elements in the list, without going to the effort of loading the
PersistentList.

Now, imagine that the PersistentList was actually a list of students. These
objects might also be proxies – in this case, instances of StudentProxy. Again,
instances of PersistentStudent would only be loaded when necessary.

The Proxy pattern is widely used in many software architectures. We will
discuss it again in the context of the Broker architectural pattern in Chapter 9.

Antipatterns Instead of using proxy objects, beginner designers often scatter complex code
around their application to load objects from databases.

A strategy that only works for very small systems is to load the whole database
into memory when the program starts.

Related

patterns

The Proxy pattern is one of several patterns that obtain their power from
delegating responsibilities to other classes, hence it uses the Delegation pattern.

References The Proxy pattern is one of the ‘Gang of Four’ patterns.

Exercise

E126 Discuss the advantages of using an image-proxy when manipulating the photos
in a digital photo album application. What operations could conceivably be
performed by the proxy without loading the heavyweight image into memory?

6.13 The Factory pattern

Context You have a reusable framework that needs to create objects as part of its work.
However, the class of the created objects will depend on the application.

Problem How do you enable a programmer to add a new application-specific class
«ApplSpecificClass» into a system built on such a framework? And how do you
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arrange for the framework to instantiate this class, without modifying the
framework?

Forces You want the benefits of a framework, but retain the flexibility of having the
framework create and work with application-specific classes that the framework
does not yet know about.

Solution The framework delegates the creation of instances of «ApplSpecificClass» to a
specialized class «ApplSpecificFactory». The «ApplSpecificFactory» imple-
ments a generic interface «Factory» defined in the framework. The «Factory»
declares a method whose purpose is to create some subclass «AppSpecificClass»
of a class we will call «GenericClass». This is illustrated in Figure 6.14.

Example As is shown in right-hand diagram of Figure 6.14, suppose you have a
framework with a class called MediaFile, whose subclasses will represent the
contents of various types of audio-visual media files. You want to create a
subclass of this, XYZImage, to represent your new media format; and you need to
ensure the framework class MediaFileManager can instantiate this. You therefore
create a factory class, XYZImageFactory, whose sole job is to create instances of
XYZImage. This implements the MediaFactory interface. You initiate the system to
create XYZImages by calling the setMediaFactory method of MediaFileManager; this
creates a link to an instance of XYZImageFactory. Each time the MediaFileManager
needs to create a new MediaFile object, it calls the createMedia method as
implemented by XYZImageFactory; this then creates a new XYZImage.

Antipatterns You could get rid of the factory and instead modify the framework code in
MediaFileManager to force it to always instantiate XYZImage directly. However, this
would only be possible if you have access to the source of the framework; and
would not work if you needed to be able to work with several different
«Factory»–«ApplSpecificClass» pairs. As a general principle, modifying a
framework should always be considered forbidden.

References The Factory pattern is one of the ‘Gang of Four’ patterns.

Figure 6.14 Template and example of the Factory design pattern
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Exercises

E127 In a given game, carnivore and herbivore animals are created at random
instants by the game engine. Depending on the country selected by the user, a
factory for the appropriate carnivores and herbivores is loaded (e.g. one that
will create lions and gazelles in Kenya, but cougars and beavers in Canada).
Draw the class diagram to represent this idea.

E128 Find the design pattern that would be most appropriate for the following
problems:

(a) You are building an inheritance hierarchy of products that your company
sells; however, you want to reuse several classes from one of your suppliers.
You cannot modify your suppliers’ classes. How do you ensure that the
facilities of the suppliers’ classes can still be used polymorphically?

(b) You want to allow operations on instances of RegularPolygon that will distort
them such that they are no longer regular polygons. How do you allow the
operations without raising exceptions?

(c) Your program manipulates images that take a lot of space in memory. How
can you design your program so that images are only in memory when
needed, and otherwise can only be found in files?

(d) You have created a subsystem with 25 classes. You know that most other
subsystems will only access about 5 methods in this subsystem; how can
you simplify the view that the other subsystems have of your subsystem?

(e) You are developing a stock quote framework. Some applications using this
framework will want stock quotes to be displayed on a screen when they
become available; other applications will want new quotes to trigger certain
financial calculations; yet other applications might want both of the above,
plus having quotes transmitted wirelessly to a network of pagers. How can
you design the framework so that various different pieces of application
code can react in their own way to the arrival of new quotes?

E129 The Iterator interface, as defined in Java, is an implementation of what is called
the ‘Iterator’ design pattern. Study the Java documentation describing Iterator,
then using the format discussed in this chapter, write a description of the
Iterator pattern, with sections that define its context, problem, forces and
solution.

E130 (Advanced) In order to improve the access to information stored in a database,
several applications use the concept of a cache. The basic principle is to keep in
local memory objects that would normally be destroyed, because it is expected
that these objects will be requested again later on. In this way, when they are
indeed required again, access to them is very fast.
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(a) Create a design pattern that describes this idea. Use the format presented in
this chapter.

(b) Scan the literature on design patterns and look for the Cache Management
design pattern. Compare it with the solution you proposed. 

6.14 Enhancing OCSF to employ additional design patterns

The Object Client–Server Framework (OCSF) presented in Chapter 3 provides
a simple way to set up a client–server application rapidly. In this section, we
introduce additional features of OCSF and show how the use of design patterns
can greatly increase flexibility. As with the basic classes of OCSF, code for the
extensions discussed here is available on the book’s web site (http://
www.lloseng.com).

Client connection factory
The first extension to the basic framework is the addition of a Factory to handle
client connections. To understand the usefulness of this mechanism, let us first
review client connection management on the server side. Each time a new client
connects to the server, a ConnectionToClient object is created. This object defines
a thread that manages all communication with that particular client. All
messages received from the client are passed on to the handleMessageFromClient
method in a subclass of AbstractServer. This method is synchronized so that if
two ConnectionToClient threads need to access the same resource (e.g. an instance
variable of the server) then they won’t interfere with each other – only one call
to handleMessageFromClient will execute at a time.

However, there are some circumstances when you might want to allow
developers to create application-specific subclasses of ConnectionToClient:

■ You might not like having all message handling processed sequentially in the
synchronized handleMessageFromClient in the server object. Instead you might
want to have client message handling take place in a version of
handleMessageFromClient in a special subclass of ConnectionToClient. This could
still be synchronized if you like, but it would be synchronized on the
ConnectionToClient object in order that the processing of messages from
different clients could be done concurrently.

■ You might want to have different handleMessageFromClient methods in different
subclasses of ConnectionToClient. A different subclass of ConnectionToClient
could, for example, be created to handle clients in your local area network, as
opposed to clients somewhere else on the Internet.

To enable the server class to instantiate an application-specific subclass of
ConnectionToClient, OCSF provides an optional Factory mechanism. There are two
keys to this. The first key is an interface called AbstractConnectionFactory (see Figure
6.15). You create an application-specific factory class that implements the
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createConnection method in this interface. Your factory class will in turn create
instances of your own subclass of ConnectionToClient. The second key is the method
setConnectionFactory found in AbstractServer. Your server class calls this to ensure
that whenever a new client attempts to connect, your factory will be directed to
instantiate your subclass of ConnectionToClient to handle the connection.

To use the OCSF factory mechanism, you therefore need to do the following:

1. Create your subclass of ConnectionToClient. Its constructor must have the same
signature as ConnectionToClient, and it must call the constructor of
ConnnectionToClient using the super keyword. Your class will also normally want
to override handleMessageFromClient; if this method returns true, the version of
handleMessageFromClient in your server class will also be subsequently called.

2. Create your factory class that simply defines a method for the createConnection
operation of the AbstractConnectionFactory interface. Typically, the method
would look like this:

protected ConnectionToClient createConnection(
   ThreadGroup group, Socket clientSocket,
   AbstractServer server) throws IOException 
{     
   return new Connection(group,clientSocket,server);
}

3. Arrange for the server make the following call before it starts listening:

setConnectionFactory(new MyConnectionFactory());

Observable layer
A second extension to the OCSF framework is the addition of an Observable
layer. We will describe the client side, but the server side works the same way.

In the basic OCSF, a message received by a client is processed by the subclass of
AbstractClient that implements the handleMessageFromServer abstract method.
Each time a new application is developed, therefore, the AbstractClient class
must be subclassed.

The Observer pattern provides an alternative mechanism for developing a
client. Any number of «Observer» classes can ask to be notified when something
‘interesting’ happens to the client – the arrival of a message or the closing of a
connection, for example. We would therefore like to have a subclass of
AbstractClient that is an «Observable». Unfortunately, since Java does not
permit multiple inheritance, we cannot make it a subclass of the Observable class
itself. Instead, we use the Adapter pattern, as shown in Figure 6.15.

The extended OCSF has the class ObservableClient. This has exactly the same
interface as AbstractClient, except that it is a subclass of Observable. It is also an
adapter: it delegates methods such as sendToServer, setPort, etc. to instances of a
concrete subclass of AbstractClient called AdaptableClient. Designers using
ObservableClient never need to know that AdaptableClient exists.
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Implementation of the Observable layer
The following are some of the highlights of the implementation of the client
side:

■ The class AdaptableClient, as the concrete subclass of AbstractClient, provides
the required concrete implementation of handleMessageFromServer. It also
provides implementations of the hook methods connnectionClosed and
connectionEstablished. All that these three callback methods do is delegate to
the ObservableClient. Their structure is as follows:

callbackMethod()
{
  observable.callbackMethod();
}

■ There is always a one-to-one relationship between an AdaptableClient and an
ObservableClient. Instances of both these classes must exist.

Figure 6.15 The Object Client–Server Framework with extensions to employ the Observable 
and Factory design patterns
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■ All the service methods in ObservableClient (such as openConnection) simply
delegate to the AdaptableClient. They have the following structure:

serviceMethod()
{
  return adaptable.serviceMethod();
}

■ The method handleMessageFromServer in ObservableClient is implemented as
follows:

public void handleMessageFromServer(Object message)
{
  setChanged();
  notifyObservers(message);
}

■ The other callback methods in ObservableClient, such as the hook method
connectionClosed, do nothing. A designer could elect to create a subclass of
ObservableClient which might implement connectionClosed like this:

public void connectionClosed()
{
  setChanged();
  notifyObservers("connectionClosed");
}

The server side is implemented analogously, except that the instance of
ConnectionToClient could also be sent to the observers.

Some important advantages of using the Observable layer of OCSF are:

1. Different types of messages can be processed by different classes of observer.
For example, different parts of a user interface might update themselves when
specific messages are received; they would ignore the other messages.

2. Programmers using the ObservableClient or ObservableServer need to know very
little about these classes. There is thus a better separation of concerns between
the communication subsystem (OCSF) and different application subsystems.

Exercise

E131 In the Observable layer of OCSF, the classes ObservableClient and
ObservableServer are similar to adapters in the sense that their main function is
to delegate to the adaptable classes. In what way do they differ from true
adapters? You can look at the design presented above to answer this, but it may
also help if you study the source code. 
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Using the Observable layer
In order to connect a class to the observable layer of OCSF, the procedure is as
follows:

1. Create the application class that implements the Observer interface (note that
this is not a subclass of any of the framework classes).

2. Register an instance of the new class as an observer of the ObservableClient (or
ObservableServer). Typically, you would do this in the constructor, in the
following manner:

public MessageHandler(Observable client)
{
  client.addObserver(this);
  ...
}

3. Define the update method in the new class. Normally a given class will react
only to messages of a particular type. In the following example, our application
class is only interested in messages that are of class SomeClass.

public void update(Observable obs, Object message)
{
  if (message instanceOf SomeClass)
  {
    // process the message
  }
}

If message is a String, a condition in the if block could be added to determine
what to do with the message.

6.15 Difficulties and risks when using design patterns

The following are the key difficulties to anticipate when designing and using
design patterns:

■ Patterns are not a panacea. Whenever you see an indication that a pattern
should be applied, you might be tempted to apply the pattern blindly. However,
this can lead to unwise design decisions. For example, you do not always need
to apply the Façade pattern in every subsystem; adding the extra class might
make the overall design more complex, especially if instances of many of the
classes in the subsystem are passed as data to methods outside the subsystem.
Resolution. Always understand in depth the forces that need to be balanced, and
when other patterns better balance the forces. Also, make sure you justify each
design decision carefully.

■ Developing patterns is hard. Writing a good pattern takes considerable work.
A poor pattern can be hard for other people to apply correctly, and can lead
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them to make incorrect decisions. It is particularly hard to write a set of forces
effectively.
Resolution. Do not write patterns for others to use until you have considerable
experience both in software design and in the use of patterns. Take an in-depth
course on patterns. Iteratively refine your patterns, and have them peer reviewed
at each iteration.

6.16 Summary

Applying patterns to the process of creating class diagrams helps you to create
better models. Patterns help you to avoid common mistakes and to create
systems that are simpler and more flexible.

Some of the more important patterns that occur in domain models include
Abstraction–Occurrence, General Hierarchy and Player–Role. Observer,
Adapter and Factory are patterns that frequently occur in complete system class
diagrams. Immutable, Façade and Proxy are typically applied when the modeler
is moving towards a more detailed stage of design.

The patterns can also be categorized according to the principles they embody.
The Delegation pattern is a fundamental pattern that prevents excessive
interconnection among different parts of a system. Abstraction–Occurrence,
Observer and Player–Role also help increase separation of concerns. Adapter,
Façade and Proxy help the developer to reuse the facilities of other classes.
Immutable and Read-Only Interface help protect objects from unexpected
changes.

6.17 For more information

The following are some of the many available resources about patterns:

■ The Patterns Home Page: http://www.hillside.net/patterns/ – an extensive list
of resources about patterns

■ A reference source for design patterns in Java: http://www.fluffycat.com/java/
patterns.html

■ Brad Appleton’s description of patterns: http://www.cmcrossroads.com/
bradapp/docs/patterns-intro.html

■ E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, October 1994. This book
is the most widely cited book about patterns. Its authors are often referred to as
the ‘Gang of Four’

■ C. Alexander, A Pattern Language, Oxford University Press, 1977. The classic
book by the originator of the patterns movement
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■ H-E. Eriksson and M. Penker, Business Modeling with UML: Business Patterns
at Work, Wiley, 2000

■ M. Grand, Patterns in Java Volume 1: A Catalog of Reusable Design Patterns
Illustrated with UML, 2nd edition, Wiley, 2002

■ W. H. Brown, R. C. Malveau, H. W. McCormick III and T. J. Mowbray,
Antipatterns: Refactoring Software, Architectures, and Projects in Crisis, Wiley,
1998. A summary of many of the key mistakes that software developers and
managers make

Project exercises

E132 Summarize the advantages and disadvantages of:

(a) The observable layer of OCSF.

(b) Creating a subclass of ConnectionToClient (and instantiating it using the
factory).

E133 Draw an object diagram showing an instance of a subclass of AbstractServer
with a ConnectionFactory that has created three instances of two different
subclasses of ConnectionToClient 

E134 Modify the SimpleChat system so that it uses the Observable layer of the OCSF.
The number of changes you make should be minimized, and the external
interface to the system should not change. When you complete this exercise,
you will have completed Phase 4 of SimpleChat. 

E135 Examine your class diagram for the Small Hotel Reservation System from
Chapter 5.

(a) Determine which patterns, if any, you already applied, without knowing it.

(b) See if you can improve your class diagram by applying one or more of the
patterns discussed in this chapter.
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The vast majority of software is developed for human beings to use. In this
chapter we will show you how to design software for users and how to keep users
involved in the process of design. In fact, we will show that if you do not involve
users, it will be very hard for you to develop usable software.

In Chapter 4, we showed you the first steps towards involving users in
software engineering: one such step is requirements analysis which includes
interviewing, brainstorming and use case analysis. In this chapter we will
introduce the concept of user-centered design. We will also show you how to
create and evaluate designs so as to ensure that they are usable – usability is one
of the important software qualities that we discussed in Chapter 1.

In this chapter you will learn about the following

■ Characteristics of users that every software engineer should understand.

■ Various ways of working with users to ensure that a software system has both
the required functionality and the required usability.

■ Some basic principles for the design of simple graphical user interfaces
(GUIs), involving windows, menus, icons and pop-up dialogs.

■ How to evaluate user interfaces.

■ How to implement basic GUIs in Java.
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7.1 User-centered design

During the 50-year history of computing, software
developers have often failed to involve users adequately
in the development process. For example, during
requirements analysis, they have tended to
communicate with customers and management, but
have often ignored the users. They have then designed,

implemented, tested and installed the software, and finally said to the users: ‘It’s
ready to use!’ A typical response from the users to this is, ‘No, it’s not! This lacks
functions we need to help us get our work done, it’s hard to understand and it’s
time-consuming to use.’ In situations like this, the software is either not used or
has to be extensively, and expensively, modified.

User-centered design (UCD) is the term used to describe approaches to
software development that focus on the needs of users. Software development
approaches that incorporate UCD can help ensure that extensive and expensive
modifications are not needed.

Ways to make software development user centered
Many different activities can contribute to making a development process user
centered. The following are some of the most important:

■ Understand your users. Knowing the characteristics of your users allows you
to design a system that matches their level of knowledge, their abilities and
their preferences. We will discuss this in the next section.

■ Design software based on an understanding of the users’ tasks. Software
needs to facilitate the user’s work. Performing use case analysis, as discussed in
Chapter 4, is the recommended way to ensure this occurs. 

■ Ensure users are involved in decision-making processes. Rather than
involving users to a limited extent in requirements analysis, it is better to
involve them extensively throughout development. Users cannot be expected to
participate in detailed low-level internal design decisions. However, they
should be involved in all decision making that relates to the requirements and
to the user interface design.

■ Design the user interface following principles of good usability. Following
well-researched UI design principles and guidelines naturally leads you to
think about users and their needs. We will study some important usability
principles in Section 7.4.

■ Have users work with and give their feedback about prototypes, online help
and draft user manuals. One of the best ways to ensure that users are involved
is to develop software iteratively and to involve users in the evaluation of
prototypes and user documents. We will look at evaluation of user interface
prototypes in Section 7.5.

Users and eXtreme Programming
One of the tenets of the agile method,
eXtreme Programming, mentioned in
Chapter 1, is that there should at all
times be a user representative present
and working with the developers.
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The importance of focusing on users

User-centered design techniques can significantly improve the quality of the
software. They can also reduce the cost to produce, operate and maintain it.
Here are some of the clear benefits:

■ Reduced training and support costs. Large amounts of money are spent both
training users to use software and running help desks which support users who
have difficulties. If software is designed so that it is more intuitive to use, then
its users will need less training and help.

■ Reduced time to learn the system. Even if users do not take training courses,
they still have to invest time to learn how to use the software. The time users
spend learning software is a hidden cost that cannot be as easily measured as
the cost of training courses and help desks. UCD techniques are particularly
effective at reducing these hidden costs.

■ Greater efficiency of use. Another hidden cost is the amount of time that users
take to do their work with the system, once they have learned how to use it.
UCD techniques can highlight a system’s inefficiencies and help to make it
faster to use. For example, you might discover that users have to enter
unnecessary data, type too many keystrokes, or constantly open and close
dialog boxes. Helping users speed up their work can save their employers large
amounts of money.

■ Reduced costs by only developing features that are needed. Without UCD,
developers will likely add features that are little used, and hence become
‘shelfware’. Development of these features is a waste of money and time. In
Chapter 4, we discussed the importance of cutting unnecessary features from
requirements; UCD helps you choose which features to keep. 

■ Reduced costs associated with changing the system later. Without UCD,
important features will likely be omitted, hence they will have to be added later.
If the software is not flexible and maintainable, this is expensive; but even if the
missing features can be easily added, the delay will cost money.

■ Better prioritizing of work for iterative development. UCD techniques
permit developers to understand which features should be developed for the
first release, and which can be delayed until later. UCD can therefore ensure
that the most important features reach the users sooner, and hence the users
can start reaping the benefits sooner too.

■ Greater attractiveness of the system means that users will be more willing to
buy and use it. Many systems have discretionary patterns of use – users may be
able to use competing software or to avoid using any software at all. Benefits
from the software can only be achieved if the software is attractive to users.
UCD techniques can help developers learn what qualities are likely to make
users actively choose to use the software.
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Exercise

E136 Think of a reasonably complex piece of software with which you have
experience (e.g. an operating system, word processor or spreadsheet). Answer
the following questions about that system:

(a) Do typical users require training to use this software to its full capacity? Is
there anything in the software that could be improved so that less training
would be needed? Remember that, as a computing student or professional,
you probably have considerable experience with a variety of different
software packages; you can therefore figure out a new program much more
easily than the average person.

(b) What aspects did you find most difficult to learn when you learned the
software? Are there any aspects of the system that you deferred learning
because they appeared too complex?

(c) Do you ever find yourself wishing that you could use the software more
quickly? What could be improved about the software that would allow you
to work faster?

(d) Are there any features that you never use? Do you think that removing the
features might make the system easier to use? Or, conversely, do you take
comfort in knowing that the features are available, in case you should ever
need them? 

7.2 Characteristics of users

The first activity that you should perform as part of user-centered design is to
understand your users. In Chapter 4, we pointed out that this is something you
should start to do in domain analysis, and as the first step of use case analysis.

The following are some of the characteristics that can vary from user to user.
As you design software, think about how these characteristics apply to your
particular users.

■ Goals for using the system. Different types of users have different job
functions or roles, and therefore have different goals. These goals will lead the
users to want different features, and to place different levels of importance on
each feature. Understanding goals is critical to defining the problem to be
solved, as discussed in Chapter 4, and to choosing an appropriate set of use
cases.

■ Potential patterns of use. For some users, using the system may be optional. The
task they would use the system for may not be an essential part of their work, or
they may have some alternative way of doing the task. Other users might have no
choice but to use the system. Some users may only use the system occasionally –
they will therefore have to relearn it every time they want to use it.
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■ Demographics. Demographic variables, such as the age ranges of your users,
their educational background, their language and culture, and their geographical
location, will all have an influence on the software design. For example,
software that is used by adults in their employment will have different
characteristics from software that is to be used by children. Special attention
will have to be paid if the software is to be used equally by both groups, in the
case, for example, of a web search engine.

■ Knowledge of the domain and of computers. If the users of software are
experts in a domain, then the software does not have to provide explanations of
concepts and terminology that should be known by those experts. For example,
a diagnosis assistant to be used by physicians could assume that its users
understand basic anatomy. On the other hand, software that is to be used by the
population at large must be significantly simpler to use, providing explanations
of all terms that are not in common use. Also, software that is to be used by
people who are experienced computer users can be more complex than
software that is to be used by people who have little knowledge of computers.

■ Physical ability. You cannot assume that all users can see and hear. Others may
have difficulty using a keyboard or a mouse. You must therefore ensure that the
software can interact with devices that help people with disabilities to use it.
Some disabilities are quite subtle, such as color-blindness: if you rely on people
seeing colors, your application becomes unusable by many people.

■ Psychological traits and emotional feelings. There are many psychological
factors that should be taken into account when designing a system. Many of
these relate to the capabilities of human memory and attention (how well
humans can focus on a task). For example, a large percentage of the population
has to think in order to distinguish right from left – these people (one of the
authors included) tend to make mistakes if asked to do so in stressful
conditions. Some people have emotional reactions to particular color
combinations or imagery. Others might feel a personal attachment to ‘the way
they used to do things’. Finally, people vary in how easily they get frustrated, or
whether they will tend to explore a system out of interest, rather than merely
using it to get their task done. We recommend that a psychology course should
be part of the basic training of a software engineer.

Exercise

E137 Imagine you are planning to develop the following types of software projects.
What different kinds of users should you anticipate? Consider each of the
issues mentioned above.

(a) An air-traffic control system.

(b) The GANA GPS-based navigation system discussed in Chapter 4.
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(c) A microwave oven.

(d) A payroll system.

7.3 The basics of user interface design

As with many other areas of software engineering, user interface design is the
topic of entire books, some of which are listed in the ‘For more information’
section at the end of this chapter. It has been left out of many general software
engineering books because it has historically been seen as a separate discipline.
In the early days of computing, user interfaces were much simpler, and the bulk
of software design work went into databases and algorithms. In today’s world,
the user interface is often the most complex part of the system to design. It can
take over half of all development effort and is the part that is most likely to cause
users to perceive a lack of quality.

User interface design is therefore an essential skill that all software engineers
should possess. In this section and the next, we want to highlight some of the
most important things that every software developer should know about this
topic.

User interface design should be performed in conjunction with other software
engineering activities. Prior to UI design, you should have done some domain
analysis and made a first attempt at defining the problem. You can then employ
use case analysis to help define the tasks that the UI must help the user perform.
Next you can begin an iterative process of user interface prototyping in order to
address the set of use cases that you have identified. During the prototyping
process you will refine both the UI and the use cases. Eventually, results of the
prototyping process will enable you to finalize the requirements for the
delivered system.

We will present various UI design guidelines in the next section. However, no
matter how many guidelines a group of software engineers follow, it would be
very arrogant of them to believe they could develop a perfect user interface on
their own. The iterative prototyping process must involve extensive discussion

Correctly distinguishing left from right in an interface can be critical
On 8 January 1989, British Midland Flight 92 had just taken off from Heathrow, heading towards
Belfast. Unfortunately, the left engine started emitting smoke and lost power.  A Boeing 737 is capable
of flying with just one engine. However, the cockpit indicators did not give a strong enough indication
about which engine was in trouble; the pilots mistakenly thought the right engine had the problem
and shut it down instead. Flying with one engine shut down and the other in trouble, the plane
crashed while attempting to make an emergency landing. Of the 126 people on board, 47 died. Many
people believe that an improved cockpit user interface could have averted this disaster. For more
details, see http://pw2.netcom.com/~asapilot/92.html.
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with, and evaluation by, both users and other user interface designers. We will
discuss techniques to do this in Section 7.5.

Usability versus utility
The overall usefulness of a software system can be considered on two quality
dimensions:

■ Does the system provide the raw functionality to allow the users to achieve
their goal? In other words, does it store the right data, allow the right
operations and do the right calculations? This quality of a system is often called
its utility.

■ Does the system allow the users to learn and to use the raw capabilities easily?
This is usability.

Both utility and usability are essential. It is possible to have one without the
other, but such a system would be useless. For example, you could imagine a
system with very powerful computational capabilities but which is extremely
difficult for its users to understand. At the same time, you can imagine a system
that is easy to use, but which does not do the correct calculations or store the
data a user needs. Both systems would be rejected, for different reasons.

Both utility and usability must be measured in the context of particular types
of user (i.e. particular actors). Users with one set of tasks to perform will judge
the utility differently from users with different sets of tasks to perform. Also,
users with different levels of computer experience and different patterns of use
will perceive usability differently. Power users of computers will be able to
quickly learn software of considerable complexity, and will then insist that the
software allows them to do their job as rapidly as possible. However, users who
only occasionally use the software, or are less computer literate, will be more
concerned with how easy it is to learn.

Aspects of usability
Usability can be divided into four separate aspects: learnability, efficiency of use,
error handling and acceptability.

Learnability is a measure of the speed with which a new user can become
proficient with the system. Learnability can be improved in two ways: by having
fewer things to learn, or by making the learning process more intuitive.
Beginners will perceive a system to be easier to learn if the complex features are
hidden from them initially. This can be done by having separate ‘beginner’ and
‘expert’ interfaces. The expert interface might, for example, have additional
menu items, fields and buttons. It is common to describe learnability in terms of
learning curves, illustrated in Figure 7.1. For example, a user might be able to
learn the most important 20 functions of the system in 3 days if the system is
simple and intuitive, in 7 days if the system is simple but non-intuitive, and in
11 days if the system is complex and non-intuitive.
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Efficiency of use is concerned with how fast an expert user can do his or her
work using the system. Suitable metrics for this are: the total number of
instances of a small task that a user can do per hour, or the total time required
to do a certain large task.

Whereas efficiency of use and learnability consider ordinary use, the
effectiveness of a system at handling errors is concerned with abnormal
situations. A system is better at error handling if it prevents the user from
making errors, if it helps the user to detect errors, and if it helps the user to
correct errors. The following are suitable metrics for these three aspects of error
handling:

■ Error prevention: Compute the number of error messages that appear per hour
of use; a lower number is better. 

■ Error detection: Count the number of errors a user notices, and divide this by
the total number of errors the user makes. Note that some errors, such as
navigating to the wrong place, do not result in error messages; these may or
may not be noticed by the user.

■ Error correction: For each error the user makes, measure the time that elapses
from when the user detects the error, to when the user has corrected the error.
To compute the percentage of time spent correcting errors, sum the time spent
correcting all errors and divide the result by the time spent using the
application.

Acceptability measures the extent to which users like the system. A system may
be learnable and efficient to use, but if users do not like it they will resist using
it. Acceptability is a purely subjective phenomenon to which many factors

Figure 7.1 Various learning curves
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contribute. Various other aspects of usability contribute to it, as does the graphic
design.

Basic terminology of user interface design
User interface designers use specific terms that you should understand:

Dialog The word dialog (also sometimes spelled dialogue) is used generically to
describe the back-and-forth interaction between user and computer. The terms
dialog or dialog box are used to mean a specific window with which a user can
interact, other than the main UI window. 

Control or

widget

These words are used interchangeably to describe specific components of a
user interface. Typical widgets include menus, lists, input fields and scroll
bars.

Affordance The affordance is the set of operations that the user can do at any given point in
time. Examples of operations include typing into an input field, clicking on a
button or selecting an item from a menu. Clicking a button or selecting a menu
item are commands because they cause the system to perform some
computations. UI designers say ‘a button affords clicking’ if clicking on it would
cause some action to occur.

State At any stage in the dialog, the system is displaying certain information in certain
widgets, and has a certain affordance. Taken together, these are the system’s user
interface state. The UI state usually changes when the user issues a command. It
also changes when the system itself notifies the user of some happening, such as
the completion of an earlier command or the arrival of a message.

Mode A mode is a situation in which the UI restricts what the user can do – that is, it
restricts the affordance. For example, if a dialog appears saying ‘Do you really
want to delete a file?’ and all the user can do is click ‘Cancel’ or ‘OK’, then the
system is in a mode.

Modal dialog A modal dialog is one in which the system is in a very restrictive mode. The user
cannot interact with any other window until he or she has dismissed the modal
dialog. The most restrictive type of modal dialog has a single ‘OK’ button to
dismiss the dialog. A non-modal dialog is a separate window with which the user
can choose to interact, but is not forced to. Palettes and toolbars are examples of
non-modal dialogs.

Feedback Whenever the user does something, the response from the system is called
feedback. Feedback includes displaying a message, changing a color or
displaying a dialog.

Encoding

techniques

These are ways of representing information so as to communicate it to the user.
Tables 7.1 and 7.2 list some of the most common encoding techniques, along
with their advantages and disadvantages.    
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7.4 Usability principles

In this section, we discuss twelve principles that you should apply when
designing and evaluating a user interface. After we list the principles, we will
give an example of a user interface that violates many of these principles, as well
as an improved version of the same system.

The twelve principles

Usability Principle 1: Do not rely only on usability guidelines – always test with users

Each situation is different and there are exceptions to the principles in this
section. You should therefore ask the opinions of users and evaluate how they
use prototypes. Evaluation is the topic of Section 7.5.

Usability Principle 2: Base UI designs on users’ tasks as expressed in use cases

Perform a first iteration of use case analysis and then design the UI based on
this. As you evaluate your prototype UI, you will have to go back and revise your
use case model as well as your UI.

Usability Principle 3: Ensure the sequences of actions to complete a task correctly are as simple as
possible

Make sure users can move from step to step easily as they perform their tasks.
You want the user to have to read the smallest amount of text, to navigate the
least, to type the least and not to be led into making errors. In particular, make
sure the user does not have to select menu items repeatedly to complete a
single task. Also, avoid sequences of modal dialogs, since they slow users

Table 7.1 Ways of encoding information to be transmitted using sound. Unless backed 
up by visual cues, these are inaccessible to deaf people

Medium Uses and advantages Problems

Spoken words Essential when there is no screen or 
only a small screen (e.g. a telephone 
system). Important for blind people 
who otherwise must rely on tools 
that convert text into Braille

Can be overheard, violating privacy. 
Sequential, therefore the user has to 
request replay if he or she misses a 
part. Slower for most users than 
reading text

Music Can convey mood. Can add 
attractiveness

Does not usually convey meaning. 
People have different tastes in music

Abstract sounds (e.g. beeps) Can give useful feedback about 
actions that are taking place

Can be hard to interpret

All of the above Attract attention rapidly at onset, 
even if the person is not looking at 
the screen

Can be distracting and annoying
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Table 7.2 Ways of encoding information to be transmitted visually. Except for text, 
which can be spoken or converted to Braille, these are generally inaccessible 
to blind people

Medium Uses and advantages Problems

Text written in a language the 
user can read

Has unlimited ability to express 
meaning. Simple to generate and 
display. Accessible by blind people 
using Braille translators

Takes a lot of space. Writing clearly 
and unambiguously is hard. Not 
usable by young children or the 
illiterate. Hard for users to scan 
quickly

Fonts (including font family, 
as well as bold, italics and size 
attributes)

Add emphasis to text, and reinforce 
its structure, thus simplifying and 
highlighting information

Using too many fonts results in 
confusion and a cluttered 
appearance. Decorative or unusual 
fonts can be distracting

Icons (simple and abstract 
graphics, each representing a 
specific action or object)

Allow many commands or objects 
to be listed in less space than is 
possible with text. Users can scan 
the screen to find an icon faster than 
they can scan to find particular text

Notoriously difficult for users to 
interpret or distinguish. Require 
artistic skill to create

Diagrams (convey objects 
and their relationships)

Can communicate or summarize 
complex concepts or mechanisms 
more easily than other techniques

Can be hard for users to interact 
with or interpret. Can be expensive 
to generate automatically

Photographs and hand-

drawn images of reality

Can help users better appreciate 
reality

Can take a lot of space on screen and 
can slow response time due to 
downloading

Animations and video Provide high impact 
communication of complex 
information. Entertaining and 
hence attractive for users

Bandwidth-intensive, hence reduce 
response time. Sequential, requiring 
replay if users miss parts. Users 
cannot quickly scan them. 
Expensive to produce. May be 
annoying

Purely decorative graphics Make the interface attractive and 
helps to emphasize its organization

Can be distracting or annoying

Colors Draw attention to specific items. 
Convey organization (items colored 
similarly are related). Makes the UI 
more attractive. Users can almost 
instantly notice a small spot of color 
on the screen

Users cannot distinguish among 
large numbers of colors. Some color 
combinations clash. Color-blind 
people cannot see differences in 
hue. Some colors (e.g. bright red) 
can be distracting if overused

Grouping, bordering and 

organizing in columns or 

tables

Help to convey the organization of 
information and reduce its 
perceived complexity

No problems

Flashing Rapidly draws attention to items Distracting and annoying. Fast 
flashing can cause epileptic seizures 
and migraine headaches
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down and give them the feeling that
the computer is in control of the
interaction.

Usability Principle 4: Ensure that the user always knows
what he or she can and should do next,
and what will happen when he or she
does it
At any one time there are usually
several things that a user can do next –
i.e. the system affords several possible
actions. Perhaps the user can click on
one of several icons, select one of
several menu items, or type data into
one of several fields. When designing
the UI, take note of all these things the
user should be able to do; make sure
that the user can clearly see how to do
all the things that are possible, and ‘gray out’ those options that are temporarily
not available. Make the things the user will want to do most often stand out; they
could be larger, in a separate box, or colored more brightly. The consequences
of each action should also be clear.

Usability Principle 5: Provide good feedback, including effective error messages
When a change of state occurs, make sure it is clearly visible to the user. Some
specific guidelines are:

■ If some operation is taking more than a few seconds, provide a progress bar so
that the user knows what is going on.

■ Always keep the user informed about where he or she is located among the
various windows and pages.

■ Communicate clearly to the user when something goes wrong, regardless of
whether the problem arises from the user making a mistake, or from a problem
with the system itself. Error messages should be informative, telling the user
the exact thing that has gone wrong and exactly how to correct the problem, if
that is possible.

Example 7.1 Imagine you are maintaining a program that has to write some data to a specific
file. Whenever the program fails to write to the file, for any reason, it currently
displays the message: “Error 34 writing file”. Describe how this message could be
improved.

1. The message number should not be shown, since this is disconcerting for the
user to see.

The importance of analyzing the 
task and interacting with users
One of the reviewers of this book
relates the following story. Some
designers had put considerable work
into developing a new graphical user
interface to control an existing piece of
hardware more easily. The UI team
were excited about the way the
system would give the hardware
operators easy access to all sorts of
information. However, when they
showed the system to the users, one
of them said, ‘Well, I guess that’s nice,
but all we need to do is press “Start”
and “Stop”.’
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2. The message should state which file (including which directory) could not be
written.

3. The message should tell the user the reason or reasons why it could not write
the file. These might include: the existing file is write-protected (for everybody
or for specific users), the directory is write-protected, the file system is
inaccessible (if it is on a network), the file is locked by another program, there
is not enough space to write the file, or the disk appears to be damaged.

4. The message should give the user as much information as possible to help him
or her to solve the problem. Such information might include: a) the name and
login ID of user who has permission to write to the file or directory, b) the
name and process ID of the program that is locking the file, and c) how much
space must be freed before there is enough space to write the file. 

Usability Principle 6: Ensure that the user can always get out, go back or undo an action

Users will always make mistakes; they will issue incorrect commands or
navigate to somewhere they had not intended to go. Therefore you must ensure,
where possible, that the user can back out of any action.

In particular, make sure that users can easily undo any operation, even if it has
resulted in changes to data. Also make sure that they can easily exit any dialog
box and cancel any operation in progress. Providing both these facilities helps
users to recover from mistakes, and ensures that they are not afraid of
experimenting with the system.

Occasionally it is not possible to undo an action – for example, formatting a
disk. If such an action may have serious consequences, you should warn users
before they perform the action, and ask them to confirm that they really want to
do it.

Usability Principle 7: Ensure that response time is adequate

Response time is the time that elapses from when a user issues a command (by
selecting a menu item, clicking on an icon etc.) to when the system provides
sufficient results that the user can continue his or her work. Response time can
be a problem when processing large volumes of information or transmitting
data over a network.

Users’ perceptions of what is acceptable are determined largely by other
applications they use. If your application runs more slowly than users are
accustomed to, then users will have a sense that the system is wasting their time.

Operations such as the popping up of menus and echoing of input should
appear instantaneous to users. Most other operations should take a second or
less, so that the user’s train of thought is not interrupted. A few operations may
be allowed to take up to about 10 seconds if the user understands that they are
naturally time-consuming. An example is loading a complex web page over a
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slower network connection. Unfortunately, many web sites force users to
download excessively large images.

If an operation is to take more than about 10 seconds then warn users in
advance. This gives them the opportunity to choose not to perform the
operation, and reduces their annoyance with any delay.

When you evaluate a user interface, work on the slowest hardware that end-
users are likely to encounter. We suggest assuming that some users will be
working with computers that are up to three years old.

Usability Principle 8: Use understandable labels and other encoding techniques

Everything that appears on the screen should be easily understandable to users.
This includes all feedback, all elements of the affordance (e.g. buttons) as well as
other information for the user. Refer to Tables 7.1 and 7.2 to select encoding
techniques. Also:

■ Avoid technical jargon and acronyms.

■ Employ technical writers to compose text and graphic designers to create
graphics.

■ Label items so that their meaning is obvious. You can place captions
underneath them or provide pop-up labels that appear when the user moves
the mouse over them.

Usability Principle 9: Ensure that the UI’s appearance is neat and uncluttered

A very common error among UI designers is to provide users with too much to
look at. This distracts users, slows them down and makes it harder for them to
learn the system. Web pages are especially prone to information overload,
particularly with the presence of advertisements.

Messiness of the layout and graphic design can also be distracting, and results
in the user taking longer to figure out how to use the interface.

To achieve a neat, uncluttered UI:

■ Only display essential information, but provide a way for the user to request
additional information.

■ Avoid having large numbers of dialogs that each display only a small amount of
information: the user may become lost trying to navigate your system.

■ Highlight information that belongs together using boxes, colors and fonts. For
example, place a box around related items in a form, and use horizontal lines to
separate related items in a menu.

■ Avoid using too many different colors, fonts or graphics.

■ Line up labels and input fields so that users can more quickly read what they
have to enter. 
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Usability Principle 10: Consider the needs of different groups of users

Earlier, we pointed out that there are different types of users, each with their
own needs. You should accommodate the needs of the following categories of
people:

■ People from different locales. A locale is an environment where the language,
culture, laws, currency and many other factors may be different. Table 7.3 lists
some of the things that differ among locales. When designing a UI, it is
important to internationalize it, which means ensuring that it can be easily
adapted to different locales. Adapting the system to a particular locale is called
localization.

■ People with disabilities. People have many kinds of disabilities. To
accommodate blind people, ensure that your application works with programs
that convert text to Braille or speech. For example, when displaying an image in
a web page, use an ‘alt’ html tag that describes what the image shows. To
accommodate deaf people, ensure the system has visual output that conveys the
same information as the sound. To accommodate physically disabled people,
ensure that your application can interact with software that permits voice
input.

■ Beginners versus experts. In complex applications, provide a simple mode for
beginners, and a fully functional mode for experts. The expert mode would
have more icons and fields as well as more items in menus.

Also, consider providing a ‘preferences’ dialog, to enable users to tailor the
system to their particular needs.    

Usability Principle 11: Provide all necessary help

Ensure that users can easily and quickly access relevant and easy-to-understand
help about anything they are trying to do. It should be the objective of UI design
to make the system good enough such that users will rarely need to access the
help, but it is nevertheless essential to have online help as a backup.

Localization and internationalization in Java and in operating systems
Operating systems have to display locale-specific information.  This means that you can query the
operating system to obtain such information when programming a user interface. However, different
operating systems store different types of locale information.

Java has its own class called LLLLooooccccaaaalllleeee that it uses to format numbers, etc.  You can use this
as a basis for decisions about locale-specific UI features. Java sets the default locale based on
what is set in the operating system. However, many of the issues listed in Table 7.3 are not
automatically managed by Java.

Java has classes called CCCCaaaalllleeeennnnddddaaaarrrr and DDDDaaaatttteeeeFFFFoooorrrrmmmmaaaatttt which allow for the use of the calendars of
specific cultures, and a class called TTTTiiiimmmmeeeeZZZZoooonnnneeee which deals with the difference between Universal
Time Co-ordinated (UTC or GMT) and local time.
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Table 7.3 Some types of information that can differ among locales

Locale-dependent feature Issues the UI designer needs to be aware of

Language Different languages use different amounts of space, different 
character sets, different fonts, and run in different 
directions. Employ a skilled technical translator and ensure 
he or she runs the system in both languages to verify it

Character set and fonts Unicode can handle most world character sets, but you also 
have to ensure that appropriate fonts are available

Direction for reading text Text in some languages runs left to right or top to bottom. 
Laying out screens so that they can automatically 
accommodate this is a challenge

Collating sequences (sort order of words) Some languages order characters with accents or diacritics at 
the end of an alphabet, whereas others order them as if the 
accent or diacritic were absent. Often, the sort order for 
names in phone books is special

The order and components of peoples’ 
names.

Family name comes first in some cultures, last in some, and 
is non-existent in others. In some cultures, a person’s legal 
name differs from their commonly used name. Salutations 
such as Mr and Dr vary widely

Currency and format for displaying 
currencies

An application may use more than one currency at once. 
The number of decimal places and the magnitude of values 
may differ widely. The language somebody uses may not 
correspond to the currency they use

Time zones Time-zone abbreviations are not used consistently. Daylight 
savings time starts and ends on different dates in different 
places, or may not exist at all

Format for dates, times and numbers There are many ways of writing dates, times and numbers. 
Even though the international standard is YYYY/MM/DD, 
this is often not followed

Calendars and holidays Although international business is based on the Gregorian 
calendar, the calendars of particular cultures and religions 
are also used in some places

Formats for phone numbers, addresses, 
postal codes, credit card numbers, etc.

You should almost never require a specific format for these 
items since they differ so widely and can change at any time. 
Allow free-form input of whatever the user wants to type. A 
common error is not to allow sufficient characters, or not to 
allow extensions to be recorded for telephone numbers

Laws and business practices You have to accommodate different ways of calculating 
taxes, performing accounting, or keeping records. Patents 
and other regulations might place restrictions on designs

Icons and metaphors Icons and other encoding techniques can invoke different 
impressions in people of different cultures



 

Section 7.4 269Usability principles

When you develop help, remember that users are often frustrated when they
seek help. Be sure, therefore, that the help system does not increase this
frustration.

Focus on help that guides the user through the steps of a task. But avoid help
that explains all the details at once. Integrate help with the application, making
it context sensitive. For example, allow the user to point to some aspect of the
UI, or to an error message, and obtain an explanation of it.

Ensure that the help can be easily searched, and that searches retrieve relevant
help.

Usability Principle 12: Be consistent

Once users learn how to use one application or dialog, it is a big advantage to
them if other applications and dialogs work the same way. Be consistent,
therefore, within your own application, make your application follow the
standards of the operating system on which it runs, and consider mimicking
aspects of other applications. However, ensure that you are not infringing
copyrights or patents, and avoid duplicating weaknesses.

An example user interface
Figure 7.2 shows parts of a user interface that has several problems. Figure 7.3
shows the same system after improvements have been made. Before reading on,
see how many problems you can find in Figure 7.2. 

Here are some of the specific problems found in Figure 7.2, and the
corresponding improvements made in Figure 7.3.

■ The instructions in Figure 7.2(a), ‘To sign up, use the Edit menu’ violate
Principle 3. Forcing the user to select a menu item in order to start entering
information is more complex than is necessary. In Figure 7.3, the user simply
has to click on the ‘Start’ button.

■ Although the Edit menu of Figure 7.2(a) shows that the user can add three
different kinds of information, there is no indication about the order in which
the information should be filled in. Nor is it clear how to finish the sign-up
process. These problems violate Principle 4, since the user will not know what
to do after completing each step. Figure 7.3, on the other hand, uses a ‘wizard’
interface: the user can step through the various steps by clicking on ‘Next>>’,
which is prominently visible. Figure 7.3 also numbers each step, which is useful
feedback, better conforming to Principle 5.

■ In Figure 7.2(a), one of the menu items is ‘Add Addresses…’. The intent is to
allow the user to specify more than one address (e.g. home, work etc.), but this
is not clear. Also, in Figure 7.2(b) there is a field labeled ‘type’ that is supposed
to contain the type of address (home, work, etc.), but the user will probably not
understand what to put there. These are both violations of Principles 4 and 8,
which require clear instructions and labels. In Figure 7.3, on the other hand, a
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‘tabbed dialog’ is used that makes it clearer to the user how to add several
addresses.

■ In Figure 7.2 there appears to be no way a user can delete a secondary address
once he or she has added it. This violates Principle 6, which states that all
actions should be undoable. The ‘<<Prev’ button and the tabbed dialog make it
much easier for users of Figure 7.3 to change any data they have input.

■ Figure 7.2(b) and (c) are modal dialogs, since they only have ‘OK’ and ‘Cancel’
buttons. This is another violation of Principle 3. Figure 7.3’s ‘wizard’ interface is
preferable.

■ Figure 7.2(b) has two sets of ‘OK’ and ‘Cancel’ buttons. The user will not
understand the reason for this, violating Principles 4 and 8. They also add clutter,
violating Principle 9. The duplicate buttons have been removed in Figure 7.3.

(a) (b)

(c) (d)

Figure 7.2 Parts of the user interface of an Internet Service Provider sign-up application that 
has several usability problems
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■ In Figure 7.2(b), the ‘OK’ button is on the left, and the ‘Cancel’ button is on the
right. This the reverse of what normally appears, violating Principle 12. It is
also likely to lead the user to press the ‘Cancel’ key accidentally, violating
Principle 3. In Figure 7.3, the button the user would be most likely to select is
always located at the bottom-right corner.

■ The layout of Figures 7.2(b) and (c) is messy and inconsistent, violating
Principles 9 and 12. In Figure 7.3, all the labels are right justified, and all the
input fields line up with each other.

■ Figure 7.2(c) has a field labeled ‘Name’ which is ambiguous and violates
Principles 4 and 8. Most users would assume the field is asking for the person’s
name, but why is system asking for it again? The intent is that the user enters
the type of credit card (Visa, MasterCard, etc.) but this is very obscure.
Figure 7.3(c) allows the user to select the card type making this much clearer.

(a) (b)

(c) (d)

Figure 7.3 Views of the ISP sign-up application that has improvements compared with Figure 
7.2 . It uses a ‘wizard’ approach as well as tabbed dialogs
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■ The feedback about the amount owing in Figure 7.3(c) is better than that of
Figure 7.2(c), since it is clear that the amount is a monthly payment
(Principle 5). Also, the user is clearly told that by clicking on ‘I agree’ he or she
is agreeing to payment; it is not clear that this will occur by pressing ‘OK’ in
Figure 7.2(c). This violates Principle 4.

■ The feedback provided in Figure 7.2(d) is very weak, violating Principle 5.
Figure 7.3(d) gives the user much clearer feedback about what is going on as
the system connects to the remote site. The feedback includes a progress bar
and an estimate of the number of seconds remaining.

■ In Figure 7.2, there is no clear way to access help, violating Principle 11.
Figures 7.3(b) and (c) have ‘?’ buttons to provide this capability.

Exercises

E138 Describe the error messages that will need to be displayed in each of the panels
shown in Figure 7.3. 

E139 You are asked to design the GUI for a software application that can convert
audio files from one format to another.

(a) Use the twelve usability principles to draw a paper prototype of this GUI.

(b) Describe how you have adhered to each of the twelve usability principles.

(c) Obtain an application that does the same thing and compare your GUI to
this one. There are free applications available on the Internet.

E140 Imagine your goal is to develop a web-based application to access your voice
messaging system (or your answering machine). This application can allow you
to select messages, play them, drag messages to other applications, etc.

(a) Create a use case model for this application.

(b) Draw the interface of this application. Pay attention to the layout; specify all
labels you would use; propose icons or other encoding techniques to make
your interface more usable.

E141 Draw a paper prototype of the user interface for the GANA system, whose
requirements were presented in Chapter 4. Base your prototype on the textual
description of the UI given in the requirements document, and the use cases
you developed in Exercise E68(b). You will have to fill in some details not
explicit in the textual description, such as the size and shape of buttons etc. 
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7.5 Evaluating user interfaces

No matter how well a designer adheres to the principles discussed in the last
section, usability can only be assured by careful evaluation. In this section, we
describe two approaches to evaluation that can be combined to produce a highly
usable system.

Heuristic evaluation
Heuristic evaluation involves systematically examining the system, looking for
usability defects – aspects of the design that might pose problems for users.
Heuristic evaluation is the most popular of several techniques that are
collectively called usability inspection. Usability inspection should be performed
on all software; it can be done by regular members of the software engineering
team, and by usability experts if they are available.

You can perform a heuristic evaluation of a paper prototype, a finished
system, or any intermediate version. It is best to ask two or three people to do
each evaluation independently in order to maximize the number of defects
found.

Use the following steps when you perform a heuristic evaluation:

1. Pick some use cases to help focus the evaluation. Focus initially on the most
important ones.

2. For each window, page or dialog that appears during the execution of the use
cases, study it in detail to look for possible usability defects: violations of the
principles and guidelines (the heuristics) discussed in the previous section. Be
as critical as you can; if you think something has a chance of being a problem
for some user, then consider it a defect. It is better to raise a concern about
something that is actually not a problem than to ignore something that is.

3. When you discover a usability defect, write down the following information:

❏ A short description of the defect. You may need to include a screen snapshot
if the nature of the problem might not be obvious.

Evaluation versus quality assurance
In Chapter 10, we will discuss inspection and testing of software – two quality assurance processes.
These two processes are used to uncover defects resulting, in general, from violation of
requirements. 

Heuristic evaluation and usability testing, as discussed here, are analogous to the above
but focus on one particular quality: usability. However, there is an important difference: most
of the usability defects found do not represent violation of explicit requirements in fact, the
recommendations for change resulting from these processes really are new requirements –
requirements that couldn’t be known until you have a system to evaluate. Evaluating usability
therefore cannot be left until you think the design and coding are finished.
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❏ Your ideas for how the defect might be fixed.

Your purpose in recording this information is to communicate with other
software engineers who will be fixing the defect. You can also learn what to
avoid when you next design a user interface.

Exercises

E142 Find an application that performs each of the following tasks. Perform a
heuristic evaluation based on each task in order to find the situations where it
violates the twelve usability principles described in the last section. Describe
each of the defects you find, and suggest how it could be fixed.

(a) A facility for drawing a graph, in a spreadsheet or statistical application.
Evaluate changing the graph format (e.g. scatter, bar or line), changing x-
and y-axis labels, changing the scale of the axes and adding extra data
points.

(b) Facilities for creating a table in a word processor. Evaluate converting text
into a table, balancing the widths of columns and making the format of a
table look like those in this book.

E143 Download three freeware applications designed to perform the same task.
Perform a heuristic evaluation of each. Select the best and worst one and
explain why you ranked them this way.

E144 Work in groups of two or three to do the following. First, each member of the
group should independently perform a heuristic evaluation of the paper
prototype you developed in Exercise E139 or E140. Then the group members
should get together and study each other’s lists of defects. Determine how many
were found by only one person, how many were found by two people and how
many were found by all three (if you have three members). This exercise should
demonstrate that having more than one evaluator is important.

E145 Perform a heuristic evaluation of the GANA UI that you drew in Exercise E141.
Update your GUI if necessary; also, indicate any requirements that should be
changed based on your UI review. 

Usability testing: evaluation by observation of users
No matter how much work a software engineer puts into user interface design
and heuristic evaluation, some usability problems will exist. It is therefore
essential to carefully and systematically observe users as they use a prototype of
the system, in order to discover these problems.
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Some strategies for usability testing include:

■ Select users corresponding to each of the most important actors. Remember
that a user may have more than one role. Also, try to select people who are both
beginners and experts in the domain, as well as people who are experts and
non-experts in terms of their experience with computers. You will likely learn
different things from observing different types of users; and you will help
ensure that the system is suited to different types of users.

■ Select the most important use cases for each of the actors you selected in the
last step, and determine specific tasks for the users to follow. Each task should
be a concrete scenario of one of the use cases.

■ Write sufficient instructions about each of the scenarios so that the users know
what goal they should try to achieve. Record these on small cards so that you
can hand them to the users one at a time.

■ Arrange evaluation sessions with users well in advance, and leave plenty of
time for each session. Sessions lasting more than an hour are too tiring. A good
length is 20–30 minutes. Work with one user at a time.

■ At the beginning of the session explain the purpose of the evaluation. In
particular, explain to the users that the objective is to evaluate the software, not
them. Also, make sure that the users understand that their participation is
optional, that they can withdraw at any time, and that whatever happens will be
kept confidential.

■ Preferably make a video recording of each session. It is very difficult to notice
and record all the details of interactions while observing them live. Studying a
video later will often bring to light important information. However, video
recording can be intimidating to users and may make the logistics of the
session harder to manage. If you do record sessions, then test the camera and
look at a sample recording in advance to make sure the screen is sufficiently
readable. When you look at the recording, you need to be able to understand
what the user is doing (you may not be able to completely read all the text on
the screen). Also make sure that the sound is clearly audible.

■ Converse with the users as they are performing the tasks. Ask them what they
are thinking, what they think the system’s feedback means, and why they
perform various actions. Encourage them to think out loud.

■ When the users finish all the tasks, de-brief them. This means ask for their
overall impressions and recommendations.

■ Analyze any difficulties experienced by the users, no matter how small. There
could be times when they had to seek help, times when they made mistakes, or
times when they had to think or explore before figuring out what to do.

■ Formulate your recommendations for changes to the system that will avoid
repetition of the difficulties.
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Exercise

E146 Working in groups of two or three, conduct a usability testing session of some
reasonably complicated web site that interests you. You can each take turns
being the user.

E147 Download two freeware applications designed to perform the same task and
ask two users to use both of them. Follow the usability testing approach
described above. Produce a list of recommendations that would improve the
usability of each of these applications.

7.6 Implementing a simple GUI in Java

After designing the UI abstractly, and evaluating paper prototypes, it is time to
implement it. Java provides two main frameworks for implementing user
interface designs: Swing and the Abstract Window Toolkit (also called AWT).
AWT is considerably simpler, although rather more limited. Other
organizations provide additional frameworks: for example the SWT (Standard
Widget Toolkit) is used in the Eclipse environment (www.eclipse.org).

Due to the volume of details that we would have to provide, and the fact that
GUI libraries change frequently, we will not discuss how to construct a Swing or
SWT-based GUI. However, the basic principles of GUI design in Java remain
the same no matter what GUI library you use.

Under the AWT, building a graphical user interface relies on the use of three
main elements:

Ethics of usability testing
Whenever you observe users as part of the process of studying software, you need to ensure that
you adhere to certain ethical principles. Users may be nervous about participating, may feel an
obligation to perform well, may worry about what their manager or others will think about their
mistakes, and may become frustrated with the system.

First, ensure that the users fully understand the purpose of the study and are made to feel
at ease. They must know that they are volunteers and can stop for any reason. Second,
respect their confidentiality: do not involve managers or other people in the process.
Furthermore, as soon as your recommendations for changing the UI have been understood
by the developers, all records that mention the names of (or show pictures of) individual
users should be erased.

If you are performing user studies as part of a research activity (i.e. not just for product
development), then even stricter ethical guidelines apply. In such situations, users should be
asked to sign an ‘informed consent’ form that clearly specifies their rights, since they are now
acting as ‘research subjects’.
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1. Component. These are the basic building blocks of any graphical interface.
Important subclasses are Button, TextField, TextArea, List, Label, and ScrollBar.

2. Container. The role of these is to contain the components that constitute the
GUI; the main subclasses are Frame, Dialog and Panel. In Java, a Frame is an
independent window, with a title and border. A Dialog is also a window, but is
owned by another window. A Panel is designed to be included in another
Container, even another Panel. It therefore also acts as a Component. Panels are
used to compose complex GUIs.

3. LayoutManager. These are classes that define the way Components are laid out in a
Container. The simplest layout manager is the GridLayout that divides a Container
into a grid where all Components occupy equal-sized rectangles. Another useful
layout manager is the BorderLayout. This time, the Container is divided into five
areas, designated as Center, North, South, East and West. When a Container
with a BorderLayout is resized, the West and East regions grow vertically only,
while the North and South regions grow horizontally only. The Center area
grows in both directions.

As an illustration, let us examine how a graphical interface for the SimpleChat
program (Phase 1) can be built. The resulting GUI is shown in Figure 7.4.

The first step consists of creating the main window by defining a subclass of
Frame. All the widgets that compose the window will be attributes of this class.

public class ClientGUI extends Frame implements ChatIF
{
  private Button closeB =     new Button("Close");
  private Button openB =      new Button("Open");
  private Button sendB =      new Button("Send");
  private Button quitB =      new Button("Quit");
  private TextField portTxF = new TextField("12345");
  private TextField hostTxF = new TextField("localhost");

Figure 7.4 Simple graphical user interface (GUI) for Phase 1 of SimpleChat
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  private TextField message = new TextField();
  private Label portLB =      new Label("Port: ", Label.RIGHT);
  private Label hostLB =      new Label("Host: ", Label.RIGHT);
  private Label messageLB =   new Label("Message: ", Label.RIGHT);
  private List messageList =  new List();

Note that this class also implements the ChatIF interface, as required by the
ChatClient class.

In order to add a title to the Frame, to define its size and to make it visible, the
constructor contains the following lines:

public ClientGUI(String host, int port)
{ 
  super("Simple Chat");
  setSize(300,400);
  setVisible(true);

The window is composed of a List, which is meant to display all the received
messages, as well as a series of other widgets located at the bottom of the
window. These are laid out using a BorderLayout, with the List at the Center and
the remaining widgets in the South region. However, since only one Component
can be placed in the South region, a Panel called bottom is created to contain all
the widgets. The following lines, also in the constructor, accomplish this:

  setLayout(new BorderLayout(5,5));
  Panel bottom = new Panel();
  add("Center", messageList);
  add("South", bottom);

The bottom panel uses a GridLayout of 5 lines and 2 columns to lay out its
Components, as follows:

  bottom.setLayout(new GridLayout(5,2,5,5))
  bottom.add(hostLB);
  bottom.add(hostTxF);
  bottom.add(portLB);
  bottom.add(portTxF);
  bottom.add(messageLB);
  bottom.add(message);
  bottom.add(openB);
  bottom.add(sendB);
  bottom.add(closeB);
  bottom.add(quitB);
  ...
}

When a message is received, the ChatClient instance calls the display method of
the associated ChatIF. The message thus received by the ClientGUI is displayed in
the List widget as follows:
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public void display(String message)
{
  messageList.add(message);
  messageList.makeVisible(messageList.getItemCount()-1);
}

When a user wants to send a message, he or she has to type the message into the
TextField named message and then push the ‘Send’ button. The send method that
actually sends the message is written as follows:

public void send()
{
  try 
  {
    client.sendToServer(message.getText());
  }
  catch (Exception ex)
  {
    messageList.add(ex.toString());
    messageList.makeVisible(messageList.getItemCount()-1);
    messageList.setBackground(Color.yellow);
  }
}

We must arrange for the above method to be called whenever the user pushes
the ‘Send’ button. This can be achieved by creating what Java calls an
ActionListener. ActionListener is in fact an interface with only one abstract
operation called actionPerformed. This operation will be called each time a user
pushes the associated button. To associate a Button with an ActionListener you
must proceed as follows (these lines are normally located in the constructor of
the Frame):

sendB.addActionListener(new ActionListener()
{
  public void actionPerformed(ActionEvent e)
  {
    send();
  }
});

These lines introduce a feature of Java called an anonymous class – refer to a Java
manual for more details on this technique. The basic idea is that we are creating
a class which implements the ActionListener interface without explicitly naming
the new class. We merely give a definition to the abstract method
actionPerformed, defined in that interface. The sendB button is now associated
with an ActionListener that has an actionPerformed method. That method in turn
calls the send method described earlier. The net effect of this is that when you
push the ‘Send’ button, the send method is automatically called.
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The complete code for this class and additional examples of AWT GUIs are
available on our web site (www.lloseng.com).

7.7 Difficulties and risks in user-centered design

■ Users differ widely. This means that different types of user will want to
perform different use cases. Users will also have different perceptions of what is
a good user interface and what is not. In addition, users will want to use the
system in different locales.
Resolution. Make sure you account for differences among users when you design
the system. Design it for internationalization. When you perform usability
studies, try the system with many different types of users.

■ User interface implementation technology changes rapidly. Vendors deliver
new and changed class libraries for UI design more frequently than they change
the core of a programming language.
Resolution. Stick to simpler UI frameworks that are widely used by others; make
sure, however, that they have sufficient power for your needs. Avoid fancy and
unusual UI designs, and especially the design of new controls, because they will be
more sensitive to changes.

■ User interface design and implementation can often take the majority of the
application development effort. UI design is often thought to be easy and is
therefore not explicitly budgeted for as part of the software engineering
process.
Resolution. Make UI design an integral part of the software engineering process,
allocating time for many iterations of prototyping and evaluation. Remember that
you can save a lot of time by designing the UI using very simple prototypes.

■ Developers often underestimate the weaknesses of a GUI. Many software
developers have not been trained in user interface design. Others tend to feel
over-confident about a UI because they personally understand it.
Resolution. Ensure all software engineers have training in UI development.
Always test with users. Study the UIs of any software you use so that you learn to
appreciate what constitutes a good and bad UI.

7.8 Summary

In this chapter we have looked at aspects of software development that relate to
users: involving users in the development process, and developing user
interfaces.

User-centered design is the term given to a variety of software development
approaches and techniques that collectively focus on the user. It has been widely
recognized that developing software without a user focus results in software that
has poor usability.



 

Section 7.9 281For more information

User interface design should be performed once you have a clear idea of the
use cases. You should follow design principles such as:

■ keep the sequences of action simple;

■ ensure that the user knows what step to take next;

■ provide feedback; ensure response time is adequate;

■ use good techniques for encoding information, such as appropriate fonts and
colors;

■ keep the UI uncluttered;

■ ensure the system can be used by different types of users;

■ provide help;

■ be consistent.

Evaluating user interfaces can be done in two main ways: by inspecting them to
verify that they adhere to UI design principles (heuristic evaluation), and by
systematically observing users as they use the system (usability testing).

7.9 For more information

The following are some sources of information about user interfaces and
usability.

Web sites about usability

■ The User Interface Hall of Shame http://digilander.libero.it/chiediloapippo/
Engineering/iarchitect/shame.htm is a valuable site including some truly
hilarious examples of bad user interface design from real applications. Every
software engineer should visit and learn from this site

The USS Vincennes disaster
The USS Vincennes was patrolling the Persian Gulf, when operators noticed an aircraft on their
combat control system’s screen. Unfortunately, in order to determine the altitude and other
information about the plane, they had to look at a separate monitor. Under stress, the operators
associated the wrong information with the plane they saw.  They believed it was a military plane that
was threatening them, and shot it down.  Actually, it was an Iran Air passenger plane – 290 people
lost their lives.

If the designers of the system had followed the principles discussed in this book, this
tragedy might never have occurred. If they had performed use case analysis user-centered
design, they would have realized that essential information about a plane should be
immediately accessible on the combat control system’s screen.
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■ useit.com: http://www.useit.com is Jakob Nielsen’s personal web site is a very
rich source of information related to usability. Jacob Nielsen is probably the
best-known author and speaker in the field of user interface design

■ Usable Web: http://www.usableweb.com has many links about designing usable
web sites

■ The Usability Professionals Association: http://www.upassoc.org.

Books about user interfaces and usability

■ D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for
User Interface Design, Morgan Kaufmann, 1999

■ J. Nielsen, Usability Engineering, Academic Press Professional, 1994. Discusses
techniques for evaluating user interfaces

■ J. Nielsen, Designing Web Usability: The Practice of Simplicity, New Riders,
2000. Contains numerous color pictures of web sites and large numbers of
design guidelines

■ J. Johnson, GUI Bloopers: Don’ts and Do’s for Software Developers and Web
Designers, Morgan Kaufmann, 2000

■ S. Fowler, GUI Design Handbook, McGraw Hill, 1997. http://www.books.mcgraw-
hill.com/computing/authors/fowler.html

■ D. Norman, The Design of Everyday Things, Basic Books, 2002

Project exercises

E148 Working in teams of three or four, develop a graphical user interface for the
client side of Phase 4 of the SimpleChat system (the version developed in the
project exercises of the last chapter). The result of your work will be Phase 5.
Use the guidelines presented in this chapter. In particular, undertake the
following activities:

(a) Have each person in the team independently create a paper prototype that
contains his or her best ideas about how the user interface should appear.
Doing this should take no more than about half an hour.

(b) Have each person present his or her paper prototype to the other members
of the group. The group members should first point out the good ideas of
the prototype, and then give constructive criticism. The creator of the
prototype should write down the ideas.

(c) Working together, the group should then take the best ideas from the paper
prototypes and develop a new unified paper prototype. Be careful, however,
not to add too many features.
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(d) Now, using AWT or a GUI building tool, develop Java code to implement
your interface, replacing the ConsoleChat class.

(e) Evaluate your user interface by arranging for several members of some
other group to use it. Take note of any problems they encounter, and update
your interface to reduce the problems.

E149 On the book’s web site, you will find a class called DrawPad. Associated with this
there is a class called StartDraw that allows you to create an instance of DrawPad
and draw some simple lines and curves using the mouse. Without changing
DrawPad at all, add a feature to SimpleChat that will allow you to communicate
with other users of SimpleChat by drawing pictures. This would work by
having two clients simply open DrawPads and start drawing. The drawing actions
should be transmitted as commands via the server. The result of your work will
be Phase 6 of SimpleChat.

E150 The SimpleChat system is not internationalized. Its most severe problem is that
all the displayed messages are hard-coded in English. Design and implement an
internationalized version of SimpleChat that obtains all the displayed messages
from a message file. Arrange for the system to determine the locale from the
operating system, and then select an appropriate message file. Hint: you can
number each message (but do not display numbers to end-users). You will need
to develop a way to embed parameters in messages.

E151 Develop a prototype user interface for the Small Hotel Reservation System, as
follows. If possible, involve users from the hotel industry.

(a) Do some parallel design of paper prototypes. Then pick the best features of
each paper prototype to create a final version.

(b) Review your prototype, following the guidelines discussed in this chapter.
Change it as necessary.

(c) Use a rapid prototyping tool to create a partially functional prototype based
on your paper prototype. This prototype will not actually manipulate any
data and it will not, therefore, make use of the object model you have
developed.

(d) Have people use your prototype. Observe the difficulties they have. Change
the prototype as necessary.



 



 
88Modeling interactions and

behavior 

In Chapters 5 and 6 we showed you how to use class diagrams to build a static
model of objects in a software system.

In this chapter, we look at how to model system dynamics, focusing on two
aspects: interactions and behavior. An interaction model shows a set of actors
and objects interacting by exchanging messages. A behavior model shows how
an object or system changes state in reaction to a series of events.

8.1 Interaction diagrams

Interaction diagrams are used to model the dynamic aspects of a software
system – they help to visualize how the system runs. They show how a set of
actors and objects communicate with each other to perform the steps of a use
case, or of some other piece of functionality. The set of steps, taken together, is
called an interaction.

Interaction diagrams can show several different types of communication.
These include messages exchanged over a network, simple procedure calls, and
commands issued by an actor through the user interface. Collectively, these are
referred to as messages.

In this chapter you will learn about the following

■ Two types of UML interaction diagram used to model detailed scenarios of
system execution: sequence diagrams and communication diagrams.

■ State and activity diagrams, two other UML diagram types that are used to
model the possible behavior of a system.
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The following elements can be found in an interaction diagram:

■ Instances of classes or actors. As discussed in Chapter 5, instances of classes
(i.e. objects) are shown as boxes with the class and object identifier underlined.
Actors are shown using the same stick-person symbol as in use case diagrams,
introduced in Chapter 4.

■ Messages. These are shown as arrows from actor to object, or from object to
object. One of the main objectives of drawing interaction diagrams is to better
understand the sequence of messages.

Since you need to know the actors and objects involved in an interaction, you
should normally develop a class diagram and a use case model before starting to
create an interaction diagram.

Two kinds of diagrams are used to show interactions: sequence diagrams and
communication diagrams. Both contain similar information about an
interaction, although sequence diagrams have notations that make them
somewhat more powerful. Sequence diagrams explicitly show the sequence of
events on a time line, whereas communication diagrams are more compact.

Sequence diagrams
A sequence diagram shows the sequence of messages exchanged by the set of
objects (and optionally an actor) performing a certain task. Figure 8.1 gives an
example.

The objects are arranged from left to right across the diagram – an actor that
initiates the interaction is often shown on the left. The vertical dimension
represents time. The top of the diagram is the starting point, and time
progresses downwards towards the bottom of the diagram. A vertical dashed
line, called a lifeline, is attached to each object or actor. The lifeline becomes a
box, called an activation box, during the period of time that the object is
performing computations. The object is said to have live activation during these
times.

A message is represented as an arrow between activation boxes of the sender
and receiver. You give each message a label; it can optionally have an argument
list and a response. The complete syntax is as follows:

response:=message(arg,...)

Figure 8.1 shows how the classes work together to allow a student actor to
register in a course; the corresponding class diagram is shown in Figure 8.2.  

There are three objects and one actor involved in this interaction. A Student
object and a CourseSection object exist initially; a Registration object is created as
the interaction proceeds. A creation message is shown using a dashed line with
the label create. Note the different types of arrowheads used by the create
message and the others; it is important to use the correct arrowheads to conform
to UML 2.0 syntax.
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The objects that exist initially should be lined up along the top of the diagram.
Since the Registration is created later, its box appears further down, at the time
when it is created. Unfortunately, many tools can only draw diagrams in which
all the objects appear at the top, as shown in Figure 8.3. However, the create
message still makes it clear when the object is created.

The actor initiates the interaction via the user interface; the user interface
sends a requestToRegister message to the CourseSection, which in turn creates a
Registration. The Registration object then asks the Student to add it to the list of
courses the student is taking, and also asks the CourseSection to add it to the list
of registered students. 

The labels on the messages in Figure 8.1 correspond to operations in
Figure 8.2. The reception of a message by an object causes one of its methods to
be run. Sequence diagrams are therefore useful for identifying the operations
that have to be included in each class.

Often, when an actor interacts with a system, a corresponding object will exist
that contains information about that actor. In Figure 8.1, the actor shown on the

Figure 8.1 A simple sequence diagram showing the student registration process

Figure 8.2 Class diagram for the sequence diagrams shown in Figures 8.1, 8.3 and 8.4

create
requestToRegister

addToSchedule

addToRegistrationList

:CourseSection

:Registration

:Student

Student

addToSchedule()
hasPassedCourse()

Course

getPrerequisite()

RegistrationCourseSection

requestToRegister()
addToRegistrationList()

∗ ∗ ∗1 11

Figure 8.3 Sequence diagram similar to Figure 8.1 as it would have to be drawn by most tools, 
which require all objects to be listed along the top of the diagram

create
requestToRegister

addToSchedule

addToRegistrationList

:CourseSection :Registration :Student
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far left is most likely a student, whose corresponding object is shown on the far
right. Both are abstractions of the same reality, but should not be confused.

As with class diagrams, interaction diagrams can be drawn at various levels of
detail. The level of detail you choose depends on what you wish to
communicate. For example, Figure 8.4 provides more detail than is presented in
Figure 8.1.

■ Figure 8.1 showed the user directly interacting with a CourseSection object. In
reality, the user interacts with the user interface, which in turn interacts with
the rest of the data in the system. Figure 8.4 shows this more clearly.

■ Figure 8.4 gives the arguments and return values of certain messages. For
example, the requestToRegister message has aStudent as an argument. This same
object is also the destination of two messages, therefore the second-to-right
object has been labeled aStudent:Student to make this clear.

■ Figure 8.4 makes use of a combined fragment marked ‘opt’. A combined
fragment is a subsequence of an interaction that is special in some way, and is
shown within a box. The ‘opt’ label means that it may or may not occur. A
Boolean condition, written within square brackets, describes the circumstances
when it will occur. In this case, the condition is written over the :CourseSection
lifeline, and indicates that the subsequence in the combined fragment will only
occur if the hasPrerequisite variable (the return value of the previous message)
is true.

■ Sometimes a message is sent, but the reply to that message is sent back after
considerable delay. A dashed line from the CourseSection to the GUI in Figure 8.4
indicates when the reply to the original requestToRegister message is sent.

In some cases, a sequence of messages must be repeated – in other words
iteration must occur. You show iteration using a combined fragment marked
‘loop’, as is illustrated in Figure 8.5. The number of times to loop is specified

Figure 8.4 A sequence diagram showing more detail about the student registration process 
including an optional combined fragment

requestToRegister

(aStudent)

addToSchedule

requestToRegister

prereq :=

getPrerequisitehasPrerequisite :=

hasPassedCourse(prereq)

addToRegistrationList

aStudent: Student :Course:CourseSection

:Registration
create

[hasPrerequisite]
opt

:GUI



 

Section 8.1 289Interaction diagrams

using the syntax min..max. In Figure 8.5 the getSubtotal message will be sent to
numPurchase different Purchase objects. The class diagram for this example is
given in Figure 8.6.  

Figure 8.5 also shows the case of a message being sent from an object to itself.
A sequence diagram can show the destruction of an object using a big X

symbol on a lifeline. For example, Figure 8.7 shows what might happen when a
booking in the airline system is canceled. The corresponding class diagram is
Figure 5.32.

Exercises

E152 Draw sequence diagrams representing the following interactions:

(a) A client searches for a book in a library. He or she then asks to borrow the
book. If a copy of this book is available, a loan object is created.

Figure 8.5 A sequence diagram showing a loop fragment

Figure 8.6 Class diagram for Figure 8.5

getSubtotal
getUnitPrice

computeTotal

:Bill

:Purchase :Item
0..numPurchasesloop

Purchase
quantity

Item
price

Bill ∗ ∗ 11

Figure 8.7 Illustration of deleting an object in a sequence diagram

cancelBooking

deleteFromItinerary

:SpecificFlight

cancel

deleteFromPassengerList

:PassengerRole:Booking
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(b) To obtain the cousins of an individual, you must determine his or her two
parents. You then obtain the siblings of these parents. For each of these
siblings, you obtain their children (refer to Figure 5.25(c)).

(c) A client wishes to open a new account at a bank branch. To do so, his
instance of class Client must first be retrieved from the central bank server.
For a new client, an instance of Client must be created. An instance of
BankAccount is then created using the Client object. A deposit must then
immediately follow, to complete the account creation process. 

Communication diagrams
A communication diagram shows several objects working together. It appears as
a graph with a set of objects and actors as the vertices.

A communication diagram is very much like an object diagram except that,
as we will discuss below, it shows communication links instead of links of
associations. It also has much in common with a sequence diagram, except that
lifelines, activation boxes and combined fragments are absent. Instead, you draw
a communication link between each pair of objects involved in the sending of a
message; the messages themselves are attached to this link.

You represent a message using an arrow, labeled with the message name and
optional arguments. You specify the order in which messages are sent by
prefixing each message using some numbering scheme.

Figures 8.8 and 8.9 show examples of communication diagrams describing
the same interactions as the sequence diagrams of Figures 8.1 and 8.4.  

Communication links can exist between two objects whenever it is possible
for one object to send a message to the other one. Several situations can make
this possible:

Figure 8.8 A communication diagram representing the same interaction as the sequence 
diagram of Figure 8.1

Figure 8.9 A communication diagram corresponding to the sequence diagram of Figure 8.4

:CourseSection :Registration :Student

1: create

3: addToRegistrationList

2: addToSchedule

4: create

3: hasPrerequisite :=
hasPassedCourse(prereq)

«parameter»
6: addToRegistrationList

«parameter»

:CourseSection :Course

:Registration
aStudent:
Student

1: requestToRegister(aStudent)
«local» 2: prereq := getPrerequisite

5: addToSchedule
«parameter»

:GUI
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■ The classes of the two objects are joined by an association. This is the most
common case. In Figure 8.9, message 2 is sent over such a link. If all messages
are sent in the same direction, then probably the association can be made
unidirectional.

■ The receiving object is stored in a local variable of the sending method (but the
objects are not yet joined by an association). This can happen when the
receiving object is created in the sending method, such as in message 4 of
Figure 8.9, or when some computation returns an object that is only kept in a
local variable. In message 1 of Figure 8.9 we tag such a message with the
stereotype «local».

■ A reference to the receiving object has been received as a parameter of an
earlier message to the sender. In Figure 8.9, we tag such messages with the
stereotype «parameter». For example, in message 3 the Student was previously
passed as a parameter to the CourseSection.

■ The receiving object is global. This is the case when a reference to an object can
be obtained using a public static method (e.g. using the Singleton pattern). The
stereotype «global» could be used in this case. Note that the use of global data
should be minimized, as we will discuss in Chapter 9.

■ The objects communicate over a network. The stereotype «network» could be
used to show this.

Exercises

E153 Draw a communication diagram corresponding to Figure 8.5. 

E154 Draw communication diagrams for the interactions described in Exercise
E152. 

How to choose between using a sequence or a communication diagram
Since sequence and communication diagrams contain much the same
information, you have to decide which of the two you should draw. Sequence
diagrams are often the better choice in the following four situations:

■ You want the reader to be able to easily see the order in which messages occur.

■ You want to build an interaction model from a use case. Use cases already have
a sequence of steps; sequence diagrams expand on these to show which objects
are involved.

■ You need to show details of messages, such as parameters and return values.
Doing so on communication diagrams can result in clutter.

■ You need to show loops, optional sequences and other things that can only be
properly expressed using combined fragments.
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On the other hand, you may prefer a communication diagram when you are
deriving an interaction diagram from a class diagram. This is because
communication diagrams are effectively object diagrams with communication
links instead of association links. Communication diagrams can in fact be used
to help validate class diagrams – a communication diagram might suggest, for
example, that you should add a new association in order to make the interaction
possible.

Communication diagrams, patterns and collaborations
A communication diagram can be used to represent aspects of a design pattern
– such as those discussed in Chapter 6. Figure 8.10(a) shows the two steps
involved in the main interaction of the Proxy pattern. First, a client object makes
a request to a «Proxy» object. Then, if the «HeavyWeight» is needed and is not
already loaded, the «Proxy» causes it to be loaded, before returning the result to
the client. Compare this to Figure 6.13.

The collaboration between the classes involved in an interaction can be
represented in a class diagram using a dashed ellipse, as shown in Figure 8.10(b).
Dashed lines link the ellipse to classes that fulfill the various roles of the
collaboration. Here, for example, PersistentStudent has the role of
«HeavyWeight». This notation is particularly convenient for showing the classes
fulfilling the roles in a design pattern.

8.2 State diagrams

A state diagram, also known as a state machine diagram, is another way of
expressing dynamic information about a system. It is used to describe the
externally visible behavior of a system or of an individual object.

At any given point in time, the system or object is said to be in a certain state.
It remains in this state until an event occurs that causes it to change state. Being

Figure 8.10 Using a communication diagram and a collaboration symbol to represent the 
Proxy design pattern
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(b)
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in a state means that it behaves in a specific way in response to any events that
occur. You represent a state using a rounded rectangle that contains the name of
the state. Figure 8.11, for example, contains two such states.

Several different types of event can cause the system to change from one state
to another. In each state, the system behaves in a different way. A transition
represents a change of state in response to an event, and is considered to occur
instantaneously – that is, to take no time. You draw a transition using an arrow
connecting two states. You can also show a label on a transition; this represents
the event that causes the change of state.

There are two other special symbols that can appear on a state diagram:

■ A black circle represents the start state. When the system or object starts
running, it immediately takes a transition from the start state to a regular state.
There should be only one start state in each top-level state diagram, and there
should be only one unlabelled transition pointing out of the start state.

■ A black circle with a ring around it represents an end state. The system or
object finishes its work when such a state is reached. There can be more than
one end state in a state diagram. The symbol is supposed to resemble a target.

In addition, there are several other pieces of notation that can be placed inside
states and on transitions to describe their behavior more precisely. We will
discuss these in the context of examples below.

Figure 8.11 represents the game of tic-tac-toe, also known as noughts and
crosses. Since player X always goes first, the initial transition from the start state
points to the ‘X Turn’ state. From then on, the game alternates between ‘X Turn’
and ‘O Turn’ states, until the game ends. There can be three possible outcomes
of the game, represented by the three end states: X can win, O can win or there
can be a tie. The ‘Tie’ end state can be reached from both ‘X Turn’ state and ‘O
Turn’ state.

Notice that there is more than one transition leading out of both ‘X turn’ and
‘O turn’ states. In this situation, the system will take the transition that
corresponds to the first occurring event: a move resulting in a win, a tie or
continued play. In the remainder of this chapter we will use event labels of
various kinds to make clear what causes each transition.

Figure 8.11 State diagram of a tic-tac-toe (noughts and crosses) game
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Elapsed-time transitions
The event that triggers a transition can be a certain amount of elapsed time.
Figure 8.12(a) illustrates the use of such elapsed-time transitions to model a
simple traffic signal.

There are three main states in Figure 8.12(a), corresponding to the three
colors of the traffic signal at point 1 of Figure 8.13. The initial state has a
transition to ‘RedLight’ state to indicate what happens when the system starts
up. After startup, the system indefinitely rotates among green, yellow and red,
therefore there is no end state.

The red light only stays on for 30 seconds, at which time the green light comes
on. The green light stays on for 25 seconds, at which time the system moves to
the ‘YellowLight’ state. After five more seconds the yellow light gives way to the
red light again. Note that the traffic signal at point 2 of Figure 8.13 would have
the same state diagram, except that when it goes green, the signal at point 1
would go red, and vice versa.

Figure 8.12(b) extends the above scenario by showing a slightly different
pattern for the signal at point 2. In this case, traffic moving from point 2 to 3
always has a green light unless a vehicle arrives at point 1 and triggers a sensor.
When the sensor at point 1 is triggered, the system moves to ‘YellowLight’ state,
but only after the traffic coming from point 2 has had at least 25 seconds of green
light. An extra state ‘GreenLightChangeTriggered’ is used to model this latter
situation. Without this state and its outgoing transition, a steady series of

Figure 8.12 State diagrams of a simple traffic light, illustrating elapsed-time transitions
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vehicles arriving at point 1 would prevent the light at point 2 from staying green
long enough for traffic to flow.

Transitions triggered by a condition becoming true
Figure 8.14 gives an example of a state diagram containing transitions that are
made whenever certain conditions become true. A condition can be
distinguished from an event name since it contains a Boolean operator. The two
conditions in this figure are classSize >= minimum, and classSize >= maximum.

The figure shows the behavior of instances of the CourseSection class shown in
Figure 8.2. When it is first created, a CourseSection is in ‘Planned’ state and is not
yet ready to receive students. When registration is opened, the system moves to
‘OpenNotEnoughStudents’ state.

In this state, the CourseSection can accept requests to register, but the course
will not actually be taught until the class size reaches a certain minimum. The
object evaluates the classSize >= minimum condition every time anything occurs
that could make the condition true; as soon as it becomes true, a transition is
taken to ‘OpenEnoughStudents’ state.

If requests to register continue while in ‘OpenEnoughStudents’ state, the
object will eventually exceed a predefined maximum number of students, at
which time it automatically moves to ‘Closed’ state. The course section can also
be explicitly closed by a closeRegistration event, indicating that the registration
deadline has passed. If there are not enough students, closing a course section
has the same effect as canceling it.

Traffic lights work differently in different locales
You might notice that the traffic light state diagram of Figure 8.12 does not work in quite the same
way as your local traffic lights do. For example, in many countries, just before the light goes green,
the red and yellow lights come on simultaneously to let drivers know they should prepare to move.
The timing of lights and the rules for the triggering of sensors can differ at each intersection.
Designing a generic and internationalized traffic light system would therefore require considerable
domain analysis.

Figure 8.14 State diagram of a CourseSection class
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There is no end state (the target symbol) because we will keep a permanent
record of the course section, whatever happens. 

The requestToRegister transitions in Figure 8.14 shows that a transition can
lead from a state back to the same state. Also, the /createRegistration notation
designates an action; this is discussed in the next subsection.

Exercises

E155 Enhance Figure 8.11 to show the conditions that should be present to
determine when the system should transition to each of the end states (‘X Win’,
‘O Win’ and ‘Tie’) or to the regular states ‘X Turn’ and ‘O Turn’.

E156 Given the state diagram in Figure 8.14, in what state would the system be in
after the following sequences of events? Assume that minimum is set to 3 and
maximum is set to 5.

(a) openRegistration, requestToRegister (repeated twice), cancel.

(b) openRegistration, requestToRegister (repeated 8 times in total),
closeRegistration 

E157 Enhance Figure 8.14 to handle the following situations:

(a) The course section can be canceled when in any state, except after it has
been taught.

(b) A student can drop out at any time, except after the course section has been
taught.

E158 Figure 8.12(b) shows the state diagram for a sensor-activated light at point 2 of
Figure 8.13, where the light remains green until the sensor is triggered by
traffic wishing to move from point 1 to point 3. Show the corresponding
diagram for point 1 (where the light remains red until the sensor is triggered).

E159 Draw a state diagram for a four-way intersection (also known as a crossroads).
There will be several different signals controlling the different directions of
flow. You have to consider which lights are on at any given time. In the basic
case, the signals facing north will look the same as the signals facing south, and
the signals facing east will appear the same as those facing west. Thus the
system as a whole can have the following states, where NS means north and
south, and EW means east and west: ‘NSRed-EWGreen’, ‘NSChanging-
EWYellow’, ` ‘NSGreen-EWRed’ and ‘NSYellow-EWChanging’.

E160 Enhance your answer to the last exercise by considering a set of traffic signals
for an intersection with turning lanes controlled by separate turning signals.
You may want to study a real intersection to understand what states can occur.
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E161 Model a simple vending machine that can be in four states: ‘Waiting’, ‘Receiving
Money’, ‘Returning Money’, and ‘Delivering Item’. 

Activities and actions in state diagrams
You can represent two kinds of computations using state diagrams. These
computations are called activities and actions.

An activity is something that occurs over a period of time and takes place
while the system is in a state. The system may take a transition out of the state
in response to completion of the activity. However, if some other transition is
triggered first, then the system has to terminate the activity as it leaves the state.

An activity is shown textually within a state box by the word ‘do’ followed by
a ‘/’ symbol, and a description of what is to be done. When you have details such
as actions in a state, you draw a horizontal line above them to separate them
from the state name.

Figure 8.15 shows a jukebox with just two states. In ‘ProposeSelection’ state,
the system waits for the user to press a button, selecting some music. In the
‘MusicPlaying’ state, the system plays the chosen music until it comes to an end.
The system then takes a transition back to ‘ProposeSelection’ state.

An action is something that takes place effectively instantaneously in any of
the following situations:

■ When the system takes a particular transition.

■ Upon entry into a particular state, no matter
which transition causes entry into that state.

■ Upon exit from a particular state, no matter
which transition is being taken.

An action should take place with no
noticeable consumption of time; therefore it
should be something simple, such as sending
a message, starting a hardware device or
setting a variable.

An action is always shown preceded by a
slash (‘/’) symbol. If the action is to be
performed during a transition, then the
syntax is event/action. If the action is to be

Figure 8.15 State diagram for a jukebox, illustrating an activity in a state
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performed when entering or exiting a state, then it is written in the state box
with the notation enter/action or exit/action.

Figure 8.16 illustrates the use of actions in the state diagram for a garage door
opener. Upon entry into each state, a particular action occurs that has an effect
on the garage door motor: the motor controller can be told to start the motor
running forwards (opening the door), to start the motor running in reverse
(closing the door), or to stop the motor. For example, whenever the garage door
becomes completely open, it enters ‘Open’ state; the action taken when this
occurs is to stop the motor.

Normally the controller cycles around the four states in a clockwise manner,
a button being used to initiate opening or closing. When closing the door,
however, there is a safety mechanism: if the button is pressed while the door is
closing, the motor is immediately thrown into the forwards direction, causing
the door to start opening again.

Figure 8.17 shows another example of the use of actions. This is a partial state
diagram of a tape recorder. In this case, there is an exit action that stops the
recording process no matter what causes the ‘Recording’ state to be exited. In
addition, the startOfTape transition has a stop action that occurs during the
transition to the ‘Wait’ state.

Figure 8.17 is clearly incomplete, since there is no transition out of ‘Wait’ state.
An important part of validating a state diagram is to ensure that each state has
at least one outgoing transition, and at least one incoming transition. You should
also make sure that it is possible to get from any state to any other state,
otherwise the system can reach what is called ‘livelock’. We will discuss this
concept in Chapter 10.

Figure 8.16 State diagram for a garage door opener, showing actions triggered by entry into a state
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Figure 8.17 Partial state diagram for a tape recorder showing an action on a transition and an 
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Nested substates and guard conditions
A state diagram can be nested inside a state. The states of the inner diagram are
called substates.

Figure 8.18 shows a state diagram of an automatic transmission; at the top
level this has three states: ‘Neutral’, ‘Reverse’ and a driving state, which is not
explicitly named. The driving state is divided into substates corresponding to
the three gears that the system automatically chooses. The advantage of the
nesting is that it shows compactly that the driving substates are all very similar
to each other – in particular, that they can all transition to ‘Neutral’ at any time,
upon the user’s command. The start symbol inside the driving state shows that
it by default starts at the ‘First’ substate. However, the user can also manually
select ‘First’ or ‘Second’ to force the transmission to move into, and stay in, these
substates.

The notation reachSecondSpeed[driveSelected] illustrates the use of a guard
condition. The system will only respond to the indicated event
(reachSecondSpeed) if the condition in square brackets is true. In Figure 8.18, this
is used to prevent the transmission from changing gear if the driver had
manually selected first or second gear. A guard condition differs from the type
of condition we saw in Figure 8.14: a guard condition is only evaluated when its
associated event occurs.

Figure 8.19 shows how we have converted Figure 8.14 to use nested substates.
Now we need to show only one cancel transition and one requestToRegister
transition. Note that the ‘Planned’ state has a transition that points directly to
the ‘NotEnoughStudents’ substate, and both the transitions to the ‘Closed’ state
comes directly from the inner ‘EnoughStudents’ state. Finally, note that we have
added an activity to the ‘Canceled’ state that deletes all registrations.

Exercises

E162 There is a missing transition in Figure 8.18. Study the diagram, and see if you
can find it (do not add any new states or event types). 

Figure 8.18 State diagram for a car’s automatic transmission showing substates

selectDrive

reachThirdSpeed
[driveSelected]

dropBelowThirdSpeed

reachSecondSpeed
[driveSelected]

dropBelowSecondSpeed
[driveSelected]

selectFirst selectSecond selectNeutral

selectNeutral

selectReverse

selectFirst selectSecond

Reverse

ThirdSecondFirst

Neutral



 

300 Chapter 8
Modeling interactions and behavior 

E163 Modify the diagram shown in Figure 8.18 so that it correctly incorporates the
‘Park’ control of an automatic transmission.

E164 There are several other subtleties of nested states that we will not discuss here.
One of the important skills of a software engineer is to be able to look up
information directly from documentation. Go to the OMG web site and find
the official specification of the latest version of UML. Use this to learn about
the ‘history’ state and how to use it in the context of nested state diagrams.

E165 Draw state diagrams for the following situations:

(a) Modify the jukebox diagram shown in Figure 8.15 so that it has an
‘AcceptingMoney’ state. The correct amount of money must be accepted
prior to the user selecting the music.

(b) Create a state diagram for the microwave oven system described in
Example 4.6.

(c) Expand Figure 8.17 to model the general operation of a VCR. It can be in at
least the following states: ‘Off ’, ‘StandbyForAutomaticRecording’,
‘AutomaticRecording’, ‘ManualRecording’, ‘PlayingTape’, ‘Showing TV
Channel’, ‘Rewinding’, and ‘FastForwarding’. Tape operations can only
occur if a tape has been inserted. Automatic recording occurs when the
VCR is programmed to record a program at a certain time, and for a
certain period of time.

(d) Create a state diagram to model the steps involved in programming a VCR
to record a program at a certain time. Study a real VCR to understand the
possible states. The events are buttons pressed on the VCR’s remote control
or console. This diagram represents the behavior of part of the user
interface of the VCR, whereas Exercise E165(c) represents the behavior of
the functional layer. 

Figure 8.19 A version of the course section example from Figure 8.14, showing the effect of 
nested states

requestToRegister(aStudent)
/createRegistration

openRegistration

classSize ≥ minimum

Open

classSize ≥ maximum

cancel

closeRegistration

closeRegistration

Canceled

do / unregister
students

Closed

NotEnoughStudents

Planned

EnoughStudents



 

Section 8.3 301Activity diagrams

8.3 Activity diagrams

An activity diagram is like a state diagram, except that it has a few additional
symbols and is used in a different context. In a state diagram, most transitions
are caused by external events; however, in an activity diagram, most transitions
are caused by internal events, such as the completion of an activity.

An activity diagram is used to understand the flow of work that an object or
component performs. It can also be used to visualize the interaction between
different use cases.

One of the strengths of activity diagrams is the representation of concurrent
activities. Concurrency is shown using forks, joins and rendezvous, all three of
which are represented as short lines, at which transitions can start and end.

■ A fork has one incoming transition and multiple outgoing transitions. The
result is that execution splits into two concurrent threads.

■ A join has multiple incoming transitions and one outgoing transition. The
outgoing transition will be taken only when all incoming transitions have been
triggered. The incoming transitions must be triggered in separate threads.

■ A rendezvous has multiple incoming and multiple outgoing transitions. Once
all the incoming transitions are triggered, the system takes all the outgoing
transitions, each in a separate thread.

An activity diagram also has two types of nodes for branching within a single
thread. These are represented as small diamonds:

■ A decision node has one incoming transition and multiple outgoing transitions,
each with a Boolean guard in square brackets. Exactly one of the outgoing
transitions will be taken.

■ A merge node has two incoming transitions and one outgoing transition. It is
used to bring together paths that had been split by decision nodes.

Figure 8.20 shows an example activity diagram for the process of registering
in a course section. The first thing that occurs is the reception of the registration
request. Once this processing is complete, the system immediately takes the
outgoing transition and forks the processing into two concurrent threads.

The concurrent thread on the right is responsible for checking whether a
course is full or not. The outcome of its computations is either that the course is
not full, in which case execution proceeds to the join, or else the course is full,
in which case the whole activity diagram terminates.

The concurrent thread on the left, meanwhile, checks whether the student is
allowed to register. First it checks if the student has the prerequisites for the
course; if this check is affirmative, the thread proceeds to the join via a merge
node. Otherwise a second check is performed, to see if the student has special
permission that can override the lack of prerequisites. If this second check is
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affirmative, the thread proceeds to the join via the merge node, otherwise
registration is disallowed and the whole activity diagram terminates.

Either concurrent thread may reach the join first, at which time it will wait for
the other. It may be the case that neither thread, or only one thread, ever reaches
the join, due to the course being full or registration being disallowed. However,
if both threads reach the join, then they are replaced by a single thread that
performs the final activity – completing the registration.

In Figure 8.20, the entire process comes to an end as soon as any of the end
states is reached. This implies that even if one thread is waiting at the join, it will
be terminated if the other thread reaches an end state.

While state diagrams typically show states and events concerning only one
class, activity diagrams are most often associated with several classes. The
partition of activities among the existing classes can be explicitly shown in an
activity diagram by the introduction of swimlanes. These are boxes that form
columns, each containing activities associated with one or more classes.

Figure 8.21 shows how the activities of Figure 8.20 can be allocated to two
different classes.

8.4 Implementing classes based on interaction and state diagrams

Drawing the diagrams discussed in this chapter for every class, interaction and
activity would take too much time. However, you should certainly use these
diagrams for the parts of your system that you find most complex.

For example, a state diagram is useful when different conditions will cause the
instances of a class to respond differently to the same event. This is particularly
true when behavior is distributed across several use cases.

Figure 8.20 Activity diagram of the registration process
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In this section we will give an implementation of the CourseSection class found
in Figure 8.2. Our intent is to show you how interaction and state diagrams help
you create a correct implementation.

First, consider how we have implemented the state diagram from Figure 8.19.
An object’s state can be determined from the values of variables open and
closedOrCanceled, as well as how many students are registered. An object can
determine which state it is in by evaluating the following expressions:

■ ‘Planned’:

closedOrCanceled == false
  && open == false

■ ‘Open’ (accepting registrations):

open == true

■ ‘NotEnoughStudents’ (substate of ‘Open’):

open == true
  && registrationList.size() < course.getMinimum()

■ ‘EnoughStudents’ (substate of ‘Open’):

open == true
  && registrationList.size() >= course.getMinimum()

■ ‘Canceled’:

closedOrCanceled == true

Figure 8.21 Activity diagram with swimlanes
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  && registrationList.size() == 0

■ ‘Closed’ (course section is too full, or being taught):

closedOrCanceled == true
  && registrationList.size() > 0

Calls to operations openRegistration, closeRegistration, cancel and
requestToRegister are used to implement the events of the same names. Note that
these events can cause different transitions, depending on the state of the object.

Two transitions are triggered by conditions becoming true. Method
requestToRegister has to explicitly check if it should trigger the conditional
transition to ‘Closed’.

In Figure 8.19, two transitions are taken when a variable called classSize
reaches certain thresholds. This variable is not present in the implementation –
instead registrationList.size() is used. This is an example of refinement
between the modeling phase and the implementation phase.

The method unregisterStudents is used to implement the action in the
‘Canceled’ state. This must be called by any method that can cause a transition
into that state (i.e. cancel and closeRegistration).

Next let us consider how the sequence diagram from Figure 8.4 is
implemented. Most of the code for this is found in the requestToRegister
method. Two of the messages are also found in the constructor of class
Registration, which is not shown here.

The following is the code for CourseSection, incorporating the decisions we
have discussed above. Note that the complete class would also contain other
methods we have not discussed.

public class CourseSection 
{
  // The many-1 abstraction-occurrence association (Figure 8.2)
  private Course course;
 
  // The 1-many association to class Registration (Figure 8.2)
  private List registrationList;
 
  // The following are present only to determine the state
  // (as in Figure 8.19). The initial state is 'Planned'
  private boolean open = false;
  private boolean closedOrCanceled = false;
 
  public CourseSection(Course course)
  {
    this.course = course;
    registrationList = new LinkedList();
  }
 
  public void openRegistration()



 

Section 8.4 305Implementing classes based on interaction and state diagrams

  {
    if(!closedOrCanceled) // must be in 'Planned' state
    {
      open = true; // to 'OpenNotEnoughStudents' state
    }
  }

  public void closeRegistration()
  {
    // to 'Canceled' or 'Closed' state
    open = false;
    closedOrCanceled = true;
    if (registrationList.size() < course.getMinimum())
    {
      unregisterStudents(); // to 'Canceled' state
    }
  }
 
  public void cancel()
  {
    // to 'Canceled' state
    open = false;
    closedOrCanceled = true;
    unregisterStudents();
  }
 
  public void requestToRegister(Student student)
  {
    if (open) // must be in one of the two 'Open' states
    {
      // The interaction specified in the sequence diagram of
      // Figure 8.4
      Course prereq = course.getPrerequisite();
      if (student.hasPassedCourse(prereq))
      {
        // Indirectly calls addToRegistrationList
        new Registration(this, student);
      }
 
      // Check for automatic transition to 'Closed' state
      if (registrationList.size() >= course.getMaximum())
      {
        // to 'Closed' state
        open = false;
        closedOrCanceled = true;
      }
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    }
  }
 
  // Private method to remove all registrations
  // Activity associated with 'Canceled' state.
  private void unregisterStudents()
  {
    Iterator it = registrationList.iterator();
    while (it.hasNext())
    {
      Registration r = (Registration)it.next();
      r.unregisterStudent();
      it.remove();
    }
  }
 
  // Called within this package only, by the constructor of
  // Registration to ensure the link is bi-directional
  void addToRegistrationList(Registration newRegistration)
  {
    registrationList.add(newRegistration);
  }
}

Exercise

E166 In the above code, what happens if you are in ‘Planned’ state and
closeRegistration or cancel is called? Update the state diagram, as required, to
reflect the implementation. Discuss the implications of this kind of change. 

8.5 Difficulties and risks in modeling interactions and behavior

■ Dynamic modeling is a difficult skill, particularly because in a large system
there are a very large number of possible paths a system can take, and
because it is hard to choose which classes to allocate to each behavior. We
already mentioned in Chapter 5 that static modeling is a difficult skill.
Modeling the dynamics and behavior requires at least as much skill.
Resolution. The general resolution of this difficulty is the same as for static
modeling: ensure that skilled developers lead the process and ensure that all
aspects of your models are properly reviewed. Also, work iteratively: develop
initial class diagrams, use cases, responsibilities, interaction diagrams and state
diagrams; then go back and verify that all of these are consistent, modifying them
as necessary. Drawing different diagrams that capture related, but distinct,
information will often highlight problems. In safety-critical systems it is
important to use tools that can help you animate, analyze and verify your models.
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8.6 Summary

In this chapter we have discussed various ways to represent the behavior of
systems. The types of UML diagrams we studied can be used to design and
understand what happens in a system during the passage of a period of time. As
with other modeling notations, these diagrams can be analyzed to uncover
defects and can serve to communicate designs to others.

Interaction diagrams come in several flavors, including sequence diagrams
and communication diagrams. Both of these show the order in which several
objects communicate with each other. This communication is shown as a series
of messages that may be implemented as procedure calls or as communication
over a network. Sequence diagrams show time on the vertical axis, as well as a
series of objects on the horizontal axis. Communication diagrams show similar
information in a more compact way.

State and activity diagrams show the states in which objects or systems can be
found, as well as what causes them to change state. State diagrams are used
primarily to show what happens when external events occur, while activity
diagrams primarily show internal transitions caused by completion of
computations. Activity diagrams can also show separate threads initiated by
forks and coming together in joins or rendezvous.

8.7 For more information

Aside from general UML books and web sites, there are relatively few up-to-date
practical resources targeting the specific topics discussed in this chapter –
software interaction and behavior. However, you can search the web for such
topics as ‘state diagram’ or ‘sequence diagram’ to uncover many examples of
their use. The following are references that will help you dig a little deeper.

■ D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, McGraw-Hill, 1998. http://www.wisdom.
weizmann.ac.il/~harel/books.html. David Harel has had more influence over
the development of state diagrams than anyone else

■ S. Shlaer and S. Mellor, Object Lifecycles: Modeling the World in States, Yourdon
Press, 1992

■ The Use Case Maps web site. This shows a completely different way to model
the behavior of systems. http://www.usecasemaps.org

■ The SDL Forum Society: http://www.sdl-forum.org/. This organization is the
custodian of SDL (Specification and Description Language) as well as Message
Sequence Charts, which are similar to sequence charts. UML 2.0 incorporated
many ideas from Message Sequence Charts
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■ Petri Nets World: http://www.daimi.au.dk/PetriNets/. Petri nets are a classical
way of expressing behavior. The notation in UML for forks, joins and
rendezvous has its origins with Petri nets

Project exercises

E167 In Chapter 3, the OCSF was partly explained using interaction, state and
activity diagrams. You should now be able to fully understand these diagrams.
Before you do the following exercises, study Figures 3.2 to 3.5 as a review.

E168 Draw interaction diagrams to model the sequences of messages involved in the
three most important SimpleChat use cases you developed in Exercise E79.

E169 Draw detailed state diagrams for

(a) ConnectionToClient in the OCSF framework.

(b) A client in Phase 5 of SimpleChat, which can be in various states that have
to do with connecting to servers, logging in, forwarding of messages, etc.
Hint: you may want to draw separate state diagrams for different aspects of
the client’s operation.

E170 Based on your use cases and requirements for the Small Hotel Reservation
System from Chapter 4, your UI design from the last chapter, as well as your
class diagrams from Chapters 5 and 6, do the following:

(a) Create a list of responsibilities that must be implemented in the Small Hotel
Reservation System for the three most important use cases.

(b) Develop interaction diagrams that will help you work out how the various
classes will need to collaborate to perform each of the responsibilities, and
how to allocate the responsibilities to classes.

(c) Create any state diagrams that you believe will help you to better
understand the behavior of objects over their life-span.

(d) Update your use cases, user interface design, and class diagram to reflect
whatever you have learned from this exercise. Describe the rationale for
each change.
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In earlier chapters you have seen how to gather requirements and build models
of software systems. We have also looked at how to design the external
functionality of the system – the user interface. In this chapter, we will look at
general principles of design, as well as various patterns that can be used to
construct the high-level architecture of a system. We will place particular
emphasis on communicating design decisions to others.

In this chapter you will learn about the following

■ Design as a series of design decisions.

■ Various approaches and types of design, including top-down design starting
with the architecture, and bottom-up design starting with utilities.

■ Design principles that lead to maintainable software, such as ‘divide and
conquer’, striving for high cohesion and low coupling, as well as using good
abstractions to hide details, thus simplifying the system.

■ How to perform design while keeping portability, reuse, reusability and
testability in mind.

■ Evaluating trade-offs among alternatives, and applying basic cost–benefit
analysis when making design decisions.

■ Software architectures for high-level design.

■ How to write a good design document.
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9.1 The process of design

We start this chapter by taking a very high-level view of design, attempting to
answer the following questions. What exactly is design? What general
approaches do designers use? What types of design are there?

Design as a series of decisions

A designer is faced with a series of design issues, which are sub-problems of the
overall design problem. Each issue normally has several alternative solutions,
also known as design options. The designer makes a design decision to resolve
each issue – this process involves choosing what he or she considers to be the
best option from among the alternatives. To make each design decision, the
software engineer uses all the knowledge at his or her disposal, including:

■ knowledge of the requirements;

■ knowledge of the design as created so far;

■ knowledge of the technology available;

■ knowledge of software design principles and ‘best practices’; and

■ knowledge about what has worked well in the past.

Once a decision is made, new issues are raised.
Sometimes there is no suitable choice to resolve a given issue. In that case, the

designer may have to go back and revise previous decisions, or else propose that
the requirements be changed.

There may not be a single best alternative when dealing with a particular
design issue. Several different alternatives may have opposite advantages and
disadvantages, with no clear ‘winner’. For example, a thin-client system might
result in software that is simpler, whereas a fat-client system might result in
software that makes more efficient use of CPU and network resources. Both
might seem equally good.

Also, when evaluating alternatives, different designers have different
knowledge and ideas, therefore they will tend to reach different conclusions. As
a result, two designers will rarely come up with exactly the same solution.

The space of possible designs that could be achieved by choosing different sets
of alternatives is often called the design space. Figure 9.1 illustrates this idea. The

Definition: in the context of software, design is a problem-solving process whose 

objective is to find and describe a way to implement the system’s functional 

requirements, while respecting the constraints imposed by the quality, 

platform and process requirements (including the budget and deadlines), and 

while adhering to general principles of good quality.
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final software product is the result of all the design decisions made; different sets
of decisions lead to a different product.

You should try to explore different paths through design space – investigating
the consequences of choosing different alternatives when major issues arise. In
Chapter 7, we recommended employing parallel design to do this. In parallel
design, several different designers create their own designs. Following parallel
design, you analyze the resulting designs to determine which combination of
choices seems best for the final product.

We also showed you the process of selecting among alternative designs in
Chapter 2, where several exercises asked you to choose among alternative
designs of the PointCP class. In Chapter 5, we studied alternative ways of
modeling problems using class diagrams.

Although there might be several ways to produce a good quality system, some
design issues are critical. For these critical decisions, bad choices will lead to a
poor system. For example, imagine that very early on in your design you chose
not to separate the user interface from the rest of the system. Such a decision
would greatly constrain your ability to achieve a flexible, maintainable design.
For example, it would become much harder to provide a web-enabled version of
your system or to internationalize it.

Each design decision should be recorded, along with the reasoning that went
into making the decision (known as the design rationale). The entire record of
the series of decisions becomes a design document. We will discuss the structure
of design documents later in this chapter.

Parts of a system: subsystems, components and modules
It is now time to define some important terms that will help in further
discussion. These terms are often used interchangeably, but in this book we will
give them the meanings below. The first two terms, component and module,
describe concrete, implemented parts of a system.

Component any piece of software or hardware that has a clear role and can be isolated,
allowing you to replace it with a different component with equivalent
functionality. Many components are designed to be reusable, but in other cases

Figure 9.1 Part of a design space, showing alternative designs resulting from different choices 
when making design decisions. The lines represent options; the bold path is the set 
of decisions made

client–server

monolithic

separate user
interface layer
for client

no separate user
interface layer for client

fat client

thin client

programmmed in Java

programmed in Visual Basic
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they will perform special-purpose functions (e.g. providing the user interface
for a particular system). A framework, discussed in Chapter 3, is a kind of
component. Other components include source code files, executable files,
dynamic link libraries (DLLs) and databases. Some components, such as source
files, only exist at compile time; other components, such as certain data files,
may only exist at run time.

Module a component that is defined at the programming language level. For example,
methods, classes and packages are modules in Java. The modules in the C
programming language are files and functions.

The next two terms describe entities that may be implemented in different ways
and are therefore more abstract than components and modules. 

System a logical entity, having a set of definable responsibilities or objectives, and
consisting of hardware, software or both. A system can have a specification that
is then implemented by a collection of components. The notion of system can
be extended beyond hardware and software to include also people, business
processes, organizations, or natural phenomena that work together to achieve
something. We will, however, use the more restricted meaning unless otherwise
stated. A system continues to exist, even if its components change over the
course of time, or are replaced by equivalent components.

Subsystem a system that is part of a larger system, and which has a definite interface. Java
uses packages to implement subsystems; individual classes may also implement
particular low-level subsystems.

In software engineering, the requirements analysis process determines the
responsibilities of a system. The specification process determines the interface
of any component built to implement a system. The design process determines
how components will be implemented.

Figure 9.2 is a domain model that shows how the above terms are related. Note
that you may find these terms used in slightly different ways in other books.
Later on in this chapter we will discuss UML’s notation for components.

Figure 9.2 Domain model explaining the concepts of system, subsystem, component and 
module as used in this book
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Note that for much of the discussion that follows, we talk about designing
modules. However, the points we make would be the same if we talked in the
context of larger-scale components, or more abstract subsystems.

Top-down versus bottom-up design
There are several fundamentally different sequences with which you can make
design decisions. In top-down design, you start with the very high-level structure
of the system. You then gradually work down towards detailed decisions about
low-level constructs. Examples of high-level issues that are approached first in
top-down design include the software architecture and the kind of database that
will be used. After many higher-level decisions are made, you finally arrive at
detailed decisions such as the format of particular data items, and the individual
algorithms that will be used.

The inverse approach, bottom-up design, involves first making decisions
about reusable low-level utilities and then deciding how these will be put
together to create high-level constructs.

A mix of top-down and bottom-up design is normally used. Top-down design
is almost always needed to give the system a good structure. On the other hand,
some bottom-up design helps ensure that you create reusable components that
can be used in several places in the overall system.

We will revisit the distinction between top-down versus bottom-up in the
next chapter, in the context of testing.

Special types of design
There are many different aspects of software design, including:

■ Architecture design: the division of software into subsystems and components,
as well as the process of deciding how these will be connected and how they
will interact, including determining their interfaces. We will talk more about
this later in the chapter. Architecture design is commonly referred to as
‘software architecture’, although the latter term can also refer to the
documentation produced, and the whole field of study.

■ Class design: the design of the various features of classes such as associations,
attributes, interactions and states. We discussed essential aspects of this in
Chapters 5 and 8.

■ User interface design, discussed in Chapter 7.

■ Database design: the design of how data is persistently stored so that it may be
accessed by many programs and users, over an indefinite period of time.

■ Algorithm design: the design of computational mechanisms.

■ Protocol design: the design of communications protocols – the languages with
which processes communicate with each other over a network.

Each of these types of design is the subject of specialized books.
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9.2 Principles leading to good design

In this section we introduce you to general principles you should apply
whenever you are designing software. Applying these principles diligently will
result in designs that have many advantages over designs in which the principles
were not applied.

Some overall goals we want to achieve when doing good design are:

■ Increasing profit by reducing cost and increasing revenue. For most
organizations, this is the central objective. However, there are a number of ways
to reduce cost, and also many different ways to increase the revenue generated
by software.

■ Ensuring that we actually conform to the requirements, thus solving the
customers’ problems.

■ Accelerating development. This helps reduce short-term costs, helps ensure the
software reaches the market soon enough to compete effectively, and may be
essential to meet some deadline faced by the customer.

■ Increasing qualities such as usability, efficiency, reliability, maintainability and
reusability. These can help reduce costs and also increase revenues.

Design Principle 1: Divide and conquer
The divide and conquer principle dates back to the earliest days of organized
human activity. Trying to deal with something big all at once is normally much
harder than dealing with a series of smaller things. Military campaigns are
waged this way: commanders try to avoid fighting on all fronts at once. Cars are
also built using the divide and conquer strategy: some people design the engines
while others design the body, etc. Furthermore, the task of assembling the car is
also divided into smaller, more manageable chunks – each assembly-line worker
will focus on one small task.

In software engineering, the divide and conquer principle is applied in many
ways. We have already seen how the process of development is divided into
activities such as requirements gathering, design and testing. In this section we
will look at how software systems themselves can be divided.

Dividing a software system into pieces has many advantages:

■ Separate people can work on each part. The original development work can
therefore be done in parallel.

■ An individual software engineer can specialize in his or her component,
becoming expert at it. It is possible for someone to know everything about a
small part of a system, but it is not possible to know everything about an entire
system.

■ Each individual component is smaller, and therefore easier to understand.
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■ When one part needs to be replaced or changed, this can hopefully be done
without having to replace or extensively change other parts.

■ Opportunities arise for making the components reusable.

A software system can be divided in many ways:

■ A distributed system is divided up into clients and servers.

■ A system is divided up into subsystems.

■ A subsystem can be divided up into one or more packages.

■ A package is composed of classes.

■ A class is composed of methods.

Exercise

E171 In Exercises E55 to E57 and E61, you were asked to create requirements for
four systems. Divide each of these into separate subsystems. 

Design Principle 2: Increase cohesion where possible
The cohesion principle is an extension of the divide and conquer principle –
divide and conquer simply says to divide things up into smaller chunks.
Cohesion says to do it intelligently: yes, divide things up, but keep things
together that belong together.

A subsystem or module has high cohesion if it keeps together things that are
related to each other, and keeps out other things. This makes the system as a
whole easier to understand and change.

Listed below are several important types of cohesion that designers should try
to achieve. Table 9.1 summarizes these types of cohesion, starting with the most
desirable.

Functional

cohesion

This is achieved when a module only performs a single computation, and
returns a result, without having side effects.

A module lacks side effects if performing the computation leaves the system
in the same state it was in before performing the computation. The result
computed by the module is the only thing that should have an effect on
subsequent computations.

The inputs to a functionally cohesive module typically include function
parameters, but they can also include files or some other stream of data.
Whenever exactly the same inputs are provided, the module will always
compute the same result. The result is often a simple return value, but can also
be a more complex data structure.

Modules that update a database or create a new file are not functionally
cohesive since they have side effects in the database or file-system respectively.
Similarly, a module that interacts with the user is not functionally cohesive:
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prompting the user is a kind of output, therefore it violates the rule that the only
output of a functionally cohesive module is the result returned at the end of
execution.

The following are some examples of modules that can be designed to be
functionally cohesive:

■ A module that computes a mathematical function such as sine or cosine.

■ A module that takes a set of equations and solves for the unknowns.

■ A module in a chemical factory that takes data from various monitoring
devices and computes the yield of a chemical process as a percentage of the
theoretical maximum.

A functionally cohesive module can call the services of other modules, but the
called modules must preserve the functional cohesion. For example, a module
that computes a mathematical function can certainly call modules that perform
other mathematical functions.

Table 9.1 The different types of cohesion, ordered from highest to lowest in terms of 
the precedence you should normally give them when making design 
decisions

Cohesion type Comments

Functional Facilities are kept together that perform only one 
computation with no side effects. Everything else is kept 
out

Layer Related services are kept together, everything else is kept 
out, and there is a strict hierarchy in which higher-level 
services can access only lower-level services. Accessing a 
service may result in side effects

Communicational Facilities for operating on the same data are kept 
together, and everything else is kept out. Good classes 
exhibit communicational cohesion

Sequential A set of procedures, which work in sequence to perform 
some computation, is kept together. Output from one is 
input to the next. Everything else is kept out

Procedural A set of procedures, which are called one after another, is 
kept together. Everything else is kept out

Temporal Procedures used in the same general phase of execution, 
such as initialization or termination, are kept together. 
Everything else is kept out

Utility Related utilities are kept together, when there is no way to 
group them using a stronger form of cohesion
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There are several reasons why it is good to achieve functional cohesion:

■ It is easier to understand a module when you know that all it does is generate
one specific output and has no side effects.

■ Due to its lack of side effects, a functionally cohesive module is much more
likely to be reusable.

■ It is easier to replace a functionally cohesive module with another that
performs the same computation. Being able to make such easy replacements
greatly assists maintenance. In the case of a non-functionally cohesive module
that has side effects, you would have to verify that any replacement also has
precisely the same side effects. Even if the side effects were carefully
documented, doing such verification is time-consuming and error-prone.
Furthermore, maintainers often fail to pay attention to the presence of side
effects.

Layer

cohesion

This is achieved when the facilities for providing a set of related services to the
user or to higher-level layers are kept together, and everything else is kept out.

To have proper layer cohesion, the layers must form a hierarchy. Higher layers
can access services of lower layers, but it is essential that the lower layers do not
access higher layers. This is illustrated in Figure 9.3.

An individual service in a layer may have functional cohesion. However, this
is not necessary – side effects are allowed, and are often essential.

The set of related services that could form a layer might include:

■ services for computation;

Figure 9.3 Examples of the use of layers. Higher layers can call on the services of lower layers, 
but not the other way around
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■ services for transmission of messages or data;

■ services for storage of data;

■ services for managing security;

■ services for interacting with users;

■ services to access the operating system;

■ services to interact with the hardware.

For example, if a system is to interface with a particular sound card, then a
module should be created specifically to interact with that card. Furthermore,
all the code for directly accessing the card should be in this module, and the
module should do nothing else except interact with the card.

The set of procedures or methods through which a layer provides its services
is commonly called an application programming interface (API). The
specification of the API must describe the protocol that higher-level layers use
to access it, as well as the semantics of each service, including the side effects.

Advantages of layer cohesion are:

■ You can replace one or more of the top-level layers without having any impact
on the lower-level layers.

■ You know you can replace a lower layer with an equivalent layer, because you
know it does not access higher layers. To do this, however, you have to replicate
all aspects of the API, so that upper layers will continue to work the same way.

We will revisit the notion of layers when we discuss architectural patterns, in
Section 9.6.

Communi-

cational

cohesion

This is achieved when modules that access or manipulate certain data are kept
together (e.g. in the same class) – and everything else is kept out. One of the
strong points of the object-oriented paradigm is that it helps ensure
communicational cohesion – provided the principles of object orientation
discussed in Chapters 2, 5 and 6 are properly followed.

The term ‘communicational’ is used for historical reasons. You can remember
it by thinking of the following: All the procedures that ‘communicate’ with the
data are kept together.

For example, a class called Employee would have good communicational
cohesion if all the system’s facilities for storing and manipulating employee data
were contained in this class, and if the class did not do anything other than
manage employee data.

As another example of communicational cohesion, imagine a module that
updates a database, and a second module that keeps a history log of the changes
to the database. Since both database and log file are representations of the same
data, both modules should be kept together in a higher-level module or
subsystem.
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A communicationally cohesive module can be embedded in a layer. In other
words, part of a layer’s API can involve manipulating a particular class of data.
The objects manipulated by the layer may be returned to higher layers in
response to calls to the API.

The big advantage of communicational cohesion is the same key advantage
we ascribed earlier in this book to object orientation: when you need to make
changes to the data, you will find all the code in one place.

You should not sacrifice layer cohesion to achieve communicational
cohesion: for example, even though objects may be stored in a database or on a
remote host, a class must only load and save objects using the services in the API
of lower layers.

Figure 9.4 shows several examples of communicationally cohesive modules
(marked with a ‘C’). These exist inside layers (marked ‘L’) and call on services in
their own layer as well as lower layers. The services they call on may be in
modules with other types of cohesion.

Sequential

cohesion

This is achieved when a series of procedures, in which one procedure provides
input to the next, are kept together – and everything else is kept out. This is
illustrated in Figure 9.4 by the module marked ‘S’.

Your objective should be to achieve sequential cohesion, once you have
already achieved the other types of cohesion listed above. Methods in two
different classes might provide inputs to each other and be called in sequence;
but they would each be kept in their own class, since communicational cohesion
is more important than sequential cohesion.

As an example of sequential cohesion, imagine a text recognition subsystem.
One module is given a bitmap as input and divides it up into areas that appear
to contain separate characters. The output from this is fed into a second module
that recognizes shapes and determines the probability that each area
corresponds to a particular character. The output from that is fed into a third
module that uses the probabilities to determine the sequence of words
embedded in the input. If all these modules were grouped together, then the
result would have sequential cohesion.

Figure 9.4 Cohesive modules, nested inside each other, using the services of other modules. 
The modules are labeled using the first letter of the type of cohesion they represent
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Procedural

cohesion

This is achieved when you keep together several procedures that are used one
after another, even though one does not necessarily provide input to the next. It
is therefore weaker than sequential cohesion. In Figure 9.4, the module marked
‘P’ is procedurally cohesive.

For example, in a university registration system, there would be a module to
perform all the steps required to register a student in a course. The facilities for
doing separate activities, such as adding a new course, would be in other
modules.

Temporal

cohesion

This is achieved when operations that are performed during the same phase of
the execution of the program are kept together, and everything else is kept out.
This is weaker than procedural cohesion and is illustrated in Figure 9.4 by the
modules marked ‘T’.

For example, a designer would achieve temporal cohesion by placing together
the code used during system start-up or initialization, so long as this did not
violate one of the other forms of cohesion listed above. Similarly, all the code for
system termination, or for certain occasionally used features, could be kept
together to achieve temporal cohesion.

There may be a temporally cohesive module in a layer whose job is to initialize
the services of that layer. The module would be called at startup time, and not at
any other time.

Although it would be temporally cohesive, it would be a violation of
communicational cohesion to create a module that directly initializes the static
variables of several different classes or the services of different layers. However,
it would be permissible to have a temporally cohesive module that calls the
initialization procedures of other modules.

Utility

cohesion

This is achieved when related utilities that cannot be logically placed in other
cohesive units are kept together. A utility is a procedure or class that has wide
applicability to many different subsystems and is designed to be reusable. A
utility module is marked ‘U’ in Figure 9.4.

For example, the java.lang.Math class has utility cohesion. Where possible, it
would be better to put mathematical functions in classes on whose instances
they are applied; however, java.lang.Math allows the grouping together of
functions that have no obvious single home.

Exercises

E172 Categorize the following aspects of a design by the types of cohesion that they
would exhibit if properly designed:

(a) All the information concerning bookings is kept inside a particular class,
and everything else is kept out.

(b) A module is created to convert a bitmap image to the JPEG format.
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(c) A separate subsystem is created that runs every night to generate statistics
about the previous day’s sales.

(d) A data processing operation involves receiving input from several sources,
sorting it, summarizing information by input source, sorting according to
the input source that generated the most data and then returning the results
for the use of other subsystems. The code for these steps is all kept together,
although utilities are called to do operations such as sorting.

E173 What is wrong with the following designs from the perspective of cohesion,
and what could be done to improve them?

(a) There are two subsystems in a university registration system that do the
following. Subsystem A displays lists of courses to a student, accepts
requests from the student to register in courses, ensures that the student
has no schedule conflicts and is eligible to register in the courses, stores the
data in the database and periodically backs up the database. Subsystem B
allows faculty members to input student grades, and allows administrators
to assign courses to faculty members, add new courses, and change a
student registration. It also prints the bills that are sent to students.

(b) In an electronic commerce application, a module is created to add books to
the ‘shopping basket’ and perform such operations as computing the total
amount the customer owes. A second module adds ‘special reward’
merchandise to the shopping basket; this module also displays the contents
of the shopping basket on the screen and sends an email to the user telling
him or her what he or she bought.

E174 Describe the kinds of cohesion present in the SimpleChat system. 

Design Principle 3: Reduce coupling where possible
Coupling occurs when there are interdependencies between one module and
another. Figure 9.5 illustrates the concept of a tightly coupled and loosely
coupled system.

Figure 9.5 Abstract examples of a tightly coupled system (left) and a loosely coupled system 
(right). The boldness of the arrows indicates the strength of the coupling



 

322 Chapter 9
Architecting and designing software 

In general, the more tightly coupled a set of modules is, the harder it is to
understand and, hence, change the system. Two reasons for this are:

■ When interdependencies exist, changes in one place will require changes
somewhere else. Requiring changes to be made in more than one place is
problematic since it is time-consuming to find the different places that need
changing, and it is likely that errors will be made.

■ A network of interdependencies makes it hard to see at a glance how some
component works.

Additionally, coupling implies that if you want to reuse one module, you will
also have to import those with which it is coupled. This is because the coupled
components need each other in order to work properly.

Below, we list some of the many different ways by which modules can be
coupled, and some of the ways to reduce the coupling. The types of coupling are
summarized in Table 9.2. 

To reduce coupling, you have to reduce the number of connections between
modules and the strength of the connections. Some of the types of coupling
listed in Table 9.2 are particularly strong and should always be avoided.

Content

coupling

This occurs when one component surreptitiously modifies data that is internal
to another component. Content coupling should always be avoided since any
modification of data should be easy to find and easy to understand.

Java is designed so that the worst kinds of content coupling (e.g. those
involving manipulation of pointers) cannot be easily achieved. However, there
are still some unfortunate tricks that Java programmers can play.

A form of content coupling occurs whenever you modify a public instance
variable in a way that designers did not intend. To reduce content coupling you
should therefore encapsulate all instance variables by declaring them private,
and providing get and set methods. If you do this, you then have confidence that
the only places where the variable is accessed and modified are in these
methods. The set methods can ensure that only valid changes are made to the
variables.

A worse form of content coupling, which is much harder to detect, occurs
when you directly modify an instance variable of an instance variable. For
example, in the following code, class Arch has a method called slant; this
surreptitiously modifies the y value of the Point at the end of its baseline instance
variable.

public class Line 
{ 
  private Point start, end; 
 ... 
  public Point getStart() {return start;} 
  public Point getEnd() {return end;} 
} 
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public class Arch 
{ 
  private Line baseline; 
 ... 
  void slant(int newY) 
  { 
    Point theEnd = baseline.getEnd(); 
    theEnd.setLocation(theEnd.getX(),newY); 
  } 
} 

The content coupling occurs here even though the instance variables are private,
and baseline, an instance of Line, is supposedly immutable (Line has no setStart
or setEnd methods). It is surreptitious because the Line is changed without
‘knowing’ it is changing.

Table 9.2 Different types of coupling. You should reduce coupling where possible, but 
the types at the top are the strongest and hence the most important to avoid

Coupling type Comments

Content A component surreptitiously modifying internal data of 
another component. Always avoid this

Common The use of global variables. Severely restrict this

Control One procedure directly controlling another using a flag. 
Reduce this using polymorphism

Stamp One of the argument types of a method is one of your 
application classes. If it simplifies the system, replace each 
such argument with a simpler argument (an interface, a 
superclass or a few simple data items)

Data The use of method arguments that are simple data. If 
possible, reduce the number of arguments

Routine call A routine calling another. Reduce the total number of 
separate calls by encapsulating repeated sequences

Type use The use of a globally defined data type. Use simpler types 
where possible (superclasses or interfaces)

Inclusion/
import

Including a file or importing a package. Eliminate when not 
necessary

External A dependency exists to elements outside the scope of the 
system, such as the operating system, shared libraries or the 
hardware. Reduce the total number of places that have 
dependencies on such external elements
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Part of the problem is that this code does not adhere to the delegation pattern
(and the law of Demeter) as discussed in Chapter 6: the slant method is not
accessing a neighboring object (the Line) but a more distant object (the Point).

Two things must be done to combat this form of content coupling:

1. Make moving the end of a Line explicit, by adding a moveEnd method to it. The
slant method should call this. However, this is not enough since programmers
could still bypass the moveEnd method.

2. Make the Line class truly immutable. To do this it is necessary to use immutable
classes for its instance variables. If you do this, then you eliminate the
possibility of surreptitious modification. You will notice that the PointCP class
discussed in Chapter 2 was immutable.

Common

coupling

This occurs whenever you use a global variable – all the modules using the
global variable become coupled to each other, and to the module that declares
the variable. The coupling occurs because changes to the variable’s declaration
will affect all the code that uses the variable. Also, changes to the way one
module uses a variable will often have an effect on how the other modules
should interpret the variable.

The word ‘global’, as used here, can mean that the variable is visible to all
procedures and objects in the system. However, a weaker form of common
coupling occurs any time a variable can be accessed by all instances of a subset
of the system’s classes (e.g. a Java package).

In older programming languages, the use of global variables was widespread;
the name ‘common’ comes from the Fortran language in which it is the keyword
used to declare global data. In Java, public static variables serve as global
variables.

The use of common coupling should be minimized, since it shares many of
the disadvantages of content coupling. Occasionally, a case can be made to
create global variables that represent system-wide default values – the argument
for this is that it would be more complex to force a large number of routines to
pass around such information as their parameters. However, most of these
system-wide values are actually constants (i.e. declared final), and not variables.
For example, the java.lang.Math package has the constants PI and E.

As is the case with content coupling, common coupling can be reduced by
encapsulation. For each global variable, create a module that has specially
designated public methods that can be called to get or set the data. The internal
representation of the data can then be more easily changed and it can be
protected from inappropriate changes made by ‘rogue’ code; also, the set
method can verify that changes are valid.

Encapsulation reduces the harm of global variables, but there is still some
undesirable coupling, therefore avoid having too many such encapsulated
variables. Note that the Singleton pattern, discussed in Chapter 6, provides
encapsulated global access to an object; therefore avoid having too many
singletons.
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Control

coupling

This occurs when one procedure calls another using a ‘flag’ or ‘command’ that
explicitly controls what the second procedure does. The following is an example:

public routineX(String command)
{
  if (command.equals("drawCircle")
  {
    drawCircle();
  }
  else
  {
    drawRectangle();
  }
}

The method routineX will have to change whenever any of its callers adds a new
command. It should also probably be changed if any of its callers deletes a
command, otherwise it will have code that is said to be ‘dead’.

Control coupling can often be reduced by simply having the callers of routineX
directly call methods such as drawCircle or drawRectangle. But the use of
polymorphic operations is normally the best way to reduce control coupling. In the
example above, there could be two separate classes Circle and Rectangle; routineX
could then just call draw, with the system choosing the appropriate method to run.

There are cases when control coupling cannot or should not be completely
avoided. For example, the SimpleChat server has the method
handleMessageFromClient. This is tightly coupled to the methods in the
SimpleChat client that generate the commands. One way to reduce the
control coupling in this case would be to have a look-up table that mapped
a command to a method that should be called when that command is issued.
There is still some coupling, since the look-up table must be modified when
commands are changed; however, look-up tables are simpler in structure
than nested if-then-else statements.

Stamp

coupling

This occurs whenever one of your application classes is declared as the type of a
method argument. Some stamp coupling is necessary; however, the following
situation illustrates why it is best to try to reduce it.

Imagine a class Employee that has many instance variables such as name, address,
email, salary, manager, etc., and many methods to manipulate these variables. Any
method that is passed an instance of Employee is given the ability to call any of its
public methods. The method sendEmail in the following Emailer class, for
example, has this ability.

public class Emailer
{
  public void sendEmail(Employee e, String text) {...}
 ...
}
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The problem here is that the sendEmail method does not need to be given access
to the full Employee object; it really only needs access to email and name. Giving it
full access represents unnecessary stamp coupling. Any time a maintainer
changes the Employee class he or she will have to check the sendEmail method to
see if it needs to be changed. The Emailer class is also not reusable – it can only
be used in applications that use the Employee class.

There are two ways to reduce stamp coupling, a) using an interface as the
argument type, and b) passing simple variables. The following illustrates the
first way:

public interface Addressee
{
  public abstract String getName();
  public abstract String getEmail();
}
 
public class Employee implements Addressee {...}
 
public class Emailer
{
  public void sendEmail(Addressee e, String text) {...}
 ...
}

The stamp coupling is reduced since the sendEmail method now has access only
to the name and email data that it truly needs. Changes to the Employee class will
be far less likely to impact it. The sendEmail method will still be impacted if the
Addressee interface is changed, although that is probably unlikely to occur. Given
that the Addressee interface is easy to reuse, the Emailer class now becomes
reusable.

Instead of creating a new Addressee interface, you might have considered using
a superclass of Employee (e.g. Person ) as the type of the sendEmail method. This
can sometimes effectively reduce the stamp coupling; but using an interface is
usually a more flexible solution. 

The second way to reduce stamp coupling is illustrated as follows:

public class Emailer
{
  public void sendEmail(String name, String email, String text) 
  {...}
 ...
}

In this case the stamp coupling has been replaced with data coupling, discussed
below.

Data coupling This occurs whenever the types of method arguments are either primitive or else
simple classes such as String. Methods must obviously have arguments,
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therefore some data coupling or stamp coupling is unavoidable. However, you
should reduce coupling by not giving methods unnecessary arguments.

The more arguments a method has, the higher the coupling. This is because
each caller to the method must have code to prepare the data for each argument;
and any changes to how the method declares or interprets each argument may
require changes to each caller’s code.

There is a trade-off between data coupling and stamp coupling. In the case of
a single argument, data coupling is considered looser, and therefore better, than
stamp coupling. However, if you replace a single complex argument (stamp
coupling) with many simple arguments (data coupling), the total resulting
coupling will be higher. In the above code, it was acceptable to eliminate stamp
coupling at the expense of adding one extra argument to the sendEmail method.
It would not have been acceptable to add three or four extra arguments; in such
a case, sticking with the stamp coupling (using the Addressee interface) would
have been better.

Routine call

coupling

This occurs when one routine (or method in an object-oriented system) calls
another. The routines are coupled because they depend on each other’s behavior,
and the caller depends on the interface of the called routine.

Routine call coupling is always present in any system. However, if you use a
sequence of two or more methods to compute something, and this sequence is
used in more than one place, then you can reduce routine call coupling by
writing a single routine that encapsulates the sequence.

For example, imagine that to use a graphics package, you had to write the
following sequence of code over and over again:

aShape.drawBackground();
aShape.drawForeground();
aShape.drawBorder();

You would be better off creating a new method that encapsulated this sequence.
Should the arguments of the above three methods ever change, the maintainer
would now only have to change your encapsulated method.

Type use

coupling

This occurs when a module uses a data type defined in another module. Type
use coupling naturally occurs in typed languages such as Java. It occurs any time
a class declares an instance variable or a local variable as having another class for
its type.

Type use coupling is similar to common coupling, but instead of data being
shared, only data types are shared. The impact of sharing data types is normally
less than the impact of sharing data, hence type use coupling is considered less
problematic than common coupling.

The consequence of type use coupling is that if the type definition changes,
then the users of the type may well have to change.

Stamp coupling is closely related to type use coupling, therefore the
techniques for reducing stamp coupling can also be applied to type use coupling.
In particular, you should declare the type of a variable to be the most general
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possible class or interface that contains the required operations. For example,
when creating a variable that is to contain a collection, you should normally
declare its type to be List, that is, any class that implements the java.util.List
interface. The actual instance stored in the variable could be an ArrayList,
LinkedList or Vector, or perhaps some other class to be defined later. However,
declaring the type to be List is sufficient since all the important operations are
defined in that interface. The benefit is that your code would be less likely to
need to change were you to later decide to use a different type of collection.

Inclusion or

import

coupling

Import coupling occurs when one component imports a package (as in Java);
inclusion coupling occurs when one component includes another (as in C++).
Doing this means that the including or importing component is now exposed to
everything in the included or imported component – even if it is not actually
using the facilities of that component. If the included or imported component
changes something on which the includer relies, or adds something that raises a
conflict with something in the includer, then the includer must change.

The bigger the imported or included component, the worse the coupling.
However, importing a standard package (e.g. one delivered with the
programming language) is better than importing a homemade package.

Some inclusion or import coupling is necessary – since it enables you to use
the facilities of libraries or other subsystems. However, it is important not to
import packages or classes that you do not need: in addition to having to worry
about changes to the things you are using, you then also have to worry about
changes to things you don’t use. For example, your system might suddenly fail if
a new item is added to an imported file, and this new item has the same name
as something you have already defined in your subsystem.

External

coupling

This occurs when a module has a dependency on such things as the operating
system, shared libraries or the hardware. It is best to reduce the number of places
in the code where such dependencies exist.

The Façade design pattern can reduce external coupling by providing a very
small interface to external facilities.

Exercises

E175 Another way to resolve control coupling in handleMessageFromClient would be to
use Java’s reflection mechanism. This permits Java to directly treat a string as a
method name, and then to call the method. Investigate reflection, and
determine what changes would be required to handleMessageFromClient. Then
discuss whether the use of reflection would actually be a good design decision,
as opposed to keeping the control coupling. 

E176 Categorize the following aspects of a design by the types of coupling they
exhibit.



 

Section 9.2 329Design Principle 4: Keep the level of abstraction as high as possible

(a) Class CourseSection has public class variables called minClassSize and
maxClassSize. These are changed from time to time by the university
administration. Many methods in classes Student and Registration access
these variables.

(b) A user interface class imports a large number of Java classes, including
those that draw graphics, those that create UI controls and a number of
other utility classes.

(c) A system has a class called Address. This class has four public variables
constituting different parts of an address. Several different classes, such as
Person and Airport manipulate instances of this class, directly modifying the
fields of addresses. Also, many methods declare one of their arguments to
be an Address.

E177 Describe ways to reduce the cases of coupling described in the last exercise.

E178 What forms of coupling are present in the SimpleChat system? Describe any
ways in which coupling can be reduced. 

Design Principle 4: Keep the level of abstraction as high as possible
You should ensure that your designs allow you to hide or defer consideration of
details, thus reducing complexity. The general term given to this property of
designs is abstraction. Abstractions are needed because the human brain can
process only a limited amount of information at any one time. 

We have discussed many types of abstractions in earlier chapters. In Chapter 2
we introduced procedural abstraction and data abstraction – hiding the details
of procedures and data, respectively. In Section 2.7 we discussed several types of
abstraction present in object-oriented programs.

Some abstractions, like classes and methods, are supported directly by the
programming language. Others, like associations, are present purely in models
used by the designer.

Abstractions work by allowing you to understand the essence of something
and make important decisions without knowing unnecessary details. The
details can be provided in several ways:

■ At a later stage of design. For example, when creating class diagrams, you often
initially leave out the data types of attributes, and you do not show the
implementation details of associations.

■ By the compiler or run-time system. For example, dynamic binding takes care
of which methods will run.

■ By the use of default values. For example, a draw operation that always makes
the background white unless some explicit action is taken to change the
default.
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Design Principle 5: Increase reusability where possible
There are two complementary principles that relate to reuse; the first is to design
for reuse, and the second is to design with reuse. We introduced both of these
principles in Chapter 3.

Designing for reusability means designing various aspects of your system so
that they can be used again in other contexts, both in your system and in other
systems. As discussed in Chapter 3, you can build reusability into algorithms,
classes, procedures, frameworks and complete applications. Mechanisms whereby
components can be reused include calling procedures and inheriting a superclass.

Important strategies for increasing reusability are as follows:

■ Generalize your design as much as possible. As you design a potentially
reusable component, imagine several other systems that could use this
component. Then design your component so that it could work with the other
systems too. For example, if you are creating a facility to draw a particular kind
of diagram, why not design it so that it could be used to draw other kinds of
diagrams for other applications? Better yet, forget the specific application and
focus on the reusable component alone. For example, if you need to create a
method to save instances of Employee to a binary file, instead consider the
problem of saving instances of any class to a binary file.

■ Follow the preceding three design principles. Increasing cohesion increases
reusability since the component has a well-defined purpose. Reducing coupling
increases reusability because the component can stand alone. Increasing
abstraction increases reusability since abstractions are naturally more general.

■ Design your system to contain hooks. As discussed in Chapter 2, a hook is an
aspect of the design deliberately added to allow other designers to add
additional functionality. One of the barriers to reuse occurs when a component
does most of what someone else needs, but not quite everything. If a
component has effective hooks, then other people can easily extend it to do
what they want. For example, the OCSF system has hooks such as
connectionClosed that allow application designers to choose to do something
interesting when a connection is closed.

■ Simplify your design as much as possible. The more complex the component,
the less it is likely to be reusable in novel contexts. The most reusable
components are those that do one simple thing but do it very well. Basic Unix
commands such as grep, cat, head, tail, sort, uniq, awk, and sed are considered
classic examples of reusable components because they are very powerful yet
relatively simple. Their simplicity comes from the fact that they all input and
output the same data type: streams of characters. Their power comes from the
fact that they can be strung together in a large variety of combinations.

There are a number of barriers that tend to thwart attempts to build reusable
software. These are discussed in the ‘Difficulties and risks’ section at the end of
Chapter 3.
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Design Principle 6: Reuse existing designs and code where possible

Designing with reuse is complementary to designing for reusability. Actively
reusing designs or code allows you to take advantage of the investment you or
others have made in reusable components.

Cloning should normally not be seen as an effective form of reuse. Cloning
involves copying code from one place to another; it should be avoided since,
when there are two or more occurrences of the same or similar code in the
system, any changes made (e.g. to fix defects) will have to be made in all clones.
Unfortunately, maintainers are often not aware of all the clones that exist, and
hence only make the change in one place. The bug thus remains, even though
the maintainer thinks it is fixed.

In general, it can be acceptable to clone a single line of code; perhaps a line
that contains a complicated call to a method with many arguments. However,
any time you are tempted to clone more than a couple of lines of code, it is
normally best to encapsulate the code in a separate method and call it from all
the places it is needed. See the sidebar ‘Tolerating Clones?’ for a discussion of
exceptions to this rule.

Design Principle 7: Design for flexibility

Designing for flexibility (also known as adaptability) means actively anticipating
changes that a design may have to undergo in the future and preparing for them.
Such changes might include changes in implementation (e.g. to improve

Tolerating clones?
Developers are often advised, as we have done here, not to clone code, but rather to create a new
routine or method and call it from several places.  This remains good general advice, but there are
exceptions:

Imagine you have a software system, we will call it ‘A’, that is thoroughly tested and has a
high reliability requirement. Imagine then that you need to create a new system ‘B’ that is
similar to A, but has important differences. The standard advice is to build a framework out
of A’s code and then create both a new A and a new B built on this framework. But then A
would have to be tested all over again since its code would not be identical to the original.
The cost of doing this might be higher, in some cases, than the expected cost of having to
maintain clones caused by the alternative approach: duplicating A and modifying it to create
B. However, if we repeated this cloning process over and over, the cost of maintaining clones
would eventually exceed the cost of developing a framework and re-doing the various
systems.

In the above situation, of course, if the original designers of A had had the foresight to
create a framework in the first place, then the above issue would not arise.

Removing clones that already exist in a reliable, tested system might also often cost more
than leaving them there.
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efficiency or to handle larger volumes
of data) or changes in functional
requirements.

Ways to build flexibility into a
design include:

■ Reducing coupling and increasing
cohesion. This allows you to more
readily replace part of a system. For
example, if your current application
saves data to a file, you might
anticipate that in future you will want
to use a commercial database package.
Placing the data-saving parts of your system in a subsystem that has layer
cohesion will greatly facilitate such a change.

■ Creating abstractions. In particular, try to create interfaces or superclasses
with polymorphic operations. Doing this allows new extensions to be easily
added.

■ Not hard-coding anything. Constants should be banished from code. For
example, if you want to limit the number of clients that can connect to a server
to 25, do not have a line of code that says: if(numConnections <= 25)…. Instead,
read the maximum value from a configuration file when the server starts.
Better yet, make such values preferences that users can change through a
preferences dialog.

■ Leaving all options open. For example, when a method encounters an
exception, it is best that the method throws the exception rather than taking a
definite action to handle it. The caller of the method then has the flexibility to
decide what to do with the exception.

■ Using reusable code and making code reusable. The techniques discussed in
the previous two design principles, such as adding hooks, tend also to make
designs more flexible.

Design Principle 8: Anticipate obsolescence
Anticipation of obsolescence is a special case of design for flexibility. Changes
will inevitably occur in the technology a software system uses and in the
environment in which it runs. Anticipating obsolescence means planning for
evolution of the technology or environment so that the software will continue to
run or can be easily changed.

The following are some rules that designers can use to better anticipate
obsolescence:

■ Avoid using early releases of technology. The immediate problem is that early
releases are likely to have more defects than later releases. However, even if it is

Cloning objects versus cloning 
code
In Java there is an interface CCCClllloooonnnneeeeaaaabbbblllleeee:
many classes implement this, meaning
that you can call the method cccclllloooonnnneeee to
duplicate instances – that is, to create
new, identical, objects.

This is quite different from the
‘copying code’ sense of cloning
discussed here.
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possible to work around a defect, a secondary problem may then arise: if the
provider of the technology fixes the defect in a subsequent release of the
technology, the original work-around may no longer work. Even where no
defect exists, improvements to the technology, which are especially likely in the
first few releases, can render designs that use the technology in need of change.
For example, early adopters of Java, in the 1995–1997 time frame, were later
required to make many changes to their code because some of the classes and
methods they used became deprecated. The Java designers declared
components to be deprecated when they developed improved designs – they do
not intend to support the older components indefinitely, therefore users are
forced to update their software.

■ Avoid using software libraries that are specific to particular environments. For
example, software that makes use of specific features found only in one
operating system, or one particular type of hardware, is less likely to be
supported in the distant future.

■ Avoid using undocumented features or little-used features of software libraries.
The little-used features are not only more likely to have defects but, more
importantly, the manufacturers may feel that little harm will be done if they are
removed or changed. On the other hand, if the technology provider makes
changes to heavily used features there will be loud protests from many users,
therefore such changes are less likely to be made.

■ Avoid using reusable software or special hardware from smaller companies, or
from those that are less likely to provide long-term support. A smaller
company is more likely to go out of business or not to have the resources to
support older versions. It may seem harsh to suggest that we should only trust
larger companies – they can go out of business too. However, the probability is
higher that a small company will have to abandon a product.

■ Use standard languages and technologies that are supported by multiple
vendors. Doing this gives you some confidence that important technology will
not be orphaned. Many software systems still in existence today are based on
obscure proprietary languages. However, standards are not a panacea: they can
change, and there may be subtle differences in implementations of a standard
that make it difficult to switch to a competing vendor, even if the new vendor
ostensibly supports the same standard.

Design Principle 9: Design for portability

Designing for portability shares many things in common with anticipating
obsolescence, although the objective is different. Anticipating obsolescence has,
as its primary objective, the survival of the software. Design for portability has,
as its prime objective, the ability to have the software run on as many platforms
as possible, although sometimes this might also be a necessity for survival.
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An important guideline for achieving portability is to avoid the use of
facilities that are specific to one particular environment. Some programming
languages, such as Java, make this easy because the language itself is designed to
allow software to run on different platforms unchanged. Nevertheless, even with
Java, there can be subtle differences regarding how some features work on
different platforms – knowing about these and avoiding them is important. One
such difference is class libraries; some companies have produced special Java
libraries that work only with that company’s compiler, which in turn runs on
only one platform. Attempting to port software that uses that library to another
platform can be difficult.

Other languages such as C++ have many features that are very much
dependent on the particular hardware architecture. You have to be aware, for
example, of the order of characters within a word (so-called big-endian versus
little-endian), and the number of bits in an integer.

Another important portability issue has to do with text files: the characters
used to terminate lines differ from platform to platform.

Design Principle 10: Design for testability
During design you can take steps to make testing easier. Testing, which is the
subject of the next chapter, can be performed both manually and automatically.
Automatic testing involves writing a program that will provide various inputs to
the system in order to test it thoroughly. Therefore it pays to design a system so
that automatic testing is made easy.

The most important way to design for testability is to ensure that all the
functionality of the code can be executed without going through the graphical
user interface. You can achieve this by carefully separating the UI from the
functional layer of the system. A test harness can then be written that calls the
API of the functional layer. Another good strategy is to provide a command-line
version of your system, such as the command-line version of SimpleChat that
we presented at the beginning of this book. This will allow you to write a test
program that automatically issues commands to your application.

In order to design a Java class for testability you can create a main method in
each class. Such main methods simply exercise the other methods of a class and
report any problems.

Design Principle 11: Design defensively
You should never trust how others will try to use a component you are
designing. Just like automobile drivers are taught not to trust other drivers, and
therefore to drive defensively, a software designer should not trust other
designers or programmers, and so should design defensively. In other words, in
order to increase the reliability of your system, you not only need to make sure
you don’t add any defects yourself, but you must also properly handle all cases
where other code attempts to use your component inappropriately.
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The most important way to design defensively is to check that all of the inputs
to your component are valid. Or, more accurately, check the preconditions of
each component.

For example, imagine you have a method that determines whether a certain
date is a working day. The first thing this method would do is check that the date
is valid.

Unfortunately, over-zealous defensive design can result in unnecessarily
performing the same validity checks over and over again. For example, imagine
the following method:

public boolean isWorkingDay(String aDate)
  throws InvalidDateException
{
  if(!isValidDate(aDate)) throw new InvalidDateException();
  return !(isWeekEnd(aDate) || isHoliday(aDate));
}

The first line of the method body validates the date. However, due to defensive
design, isWeekEnd and isHoliday may also validate the date. It is a waste of
computing power to check the date up to three times like this.

Design by contract is a technique that allows you to design defensively in an
efficient and systematic way. The key idea behind design by contract is that each
method has an explicit contract with its callers. The contract has a set of
assertions that state:

■ What preconditions the called method requires to be true when it starts
executing. The caller has the responsibility to make these preconditions true
before making the call. 

■ What postconditions the called method agrees to ensure are true when it
finishes executing. The called method has the responsibility to make these
postconditions true, before returning.

■ What invariants the called method agrees will not change as it executes.

Preconditions, postconditions and invariants are all Boolean expressions. If
they ever evaluate to false, this indicates that there is a failure. They are
similar to the OCL expressions we discussed in Chapter 5; in fact, OCL can
be used to write assertions.

Performing assertion checking inside a program is one of the most
effective ways to detect and correct errors. Many languages incorporate
different mechanisms to write assertions. The ANSI macro
assert(expression) can be used to this end in C++. In Java, the keyword assert
has been introduced in version 1.4. For example, in the code below, an
explicit precondition assertion has been added, meaning that the method
must always be called with a valid date. Not fulfilling this condition would
be an error.
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public boolean isWeekEnd(String aDate)
{
  assert isValidDate(aDate); // precondition.

  return (dayOfTheWeek(aDate)==SUNDAY || 
          dayOfTheWeek(aDate)==SATURDAY);
}

Under normal operation, the assertions should not be explicitly evaluated in
each method since they have always to be true. However, in the testing phase it
is useful to have the assertions explicitly executed, so that you can quickly
identify any methods that do not fulfill their contract. In Java, assertions are
enabled at compile time by using the –ea switch of javac. In this mode, assert will
throw an AssertionError if the expression evaluates to false. When assertion
checking is disabled (default mode), the assert statements are simply ignored.
You should therefore always switch on assertion checking during development
and testing, and turn it off when the system is finally released.

Note that design by contract implies a level of trust. It is like having a driving
instructor with you, clarifying the rules of the road, and stopping you from
having an accident while you are learning. However, if you make mistakes after
getting your license (the assertion checking is off) you can still have an accident.
Therefore at the boundaries between major components, such as layers, you
should always rigorously check inputs. At these boundaries, you would
therefore not use an assertion mechanism that can be turned off.

9.3 Techniques for making good design decisions

The principles discussed in the previous section suggest qualities you should
strive to build into software as you design it. In this section we describe two
approaches that will help you to make decisions.

Using priorities and objectives to decide among alternatives
Before you start design, you should have established priorities and objectives for
various aspects of quality. An objective is a measurable value you wish to attain.
A priority states which qualities override others in those cases where you must
make compromises.

The qualities to consider when setting priorities and objectives include
memory efficiency, CPU efficiency, maintainability, portability and usability. In
general, the priorities and objectives should be obtained from the non-
functional requirements.

In order to make a design decision, you can perform the following steps:

Step 1 List and describe the alternatives for the design decision.

Step 2 List the advantages and disadvantages of each alternative with respect to your
objectives and priorities.
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Step 3 Determine whether any of the alternatives prevents you from meeting one or
more of the objectives. If it does, you may have to rule it out. However, if none
of the alternatives permit you to meet your objectives, you may have to adjust
your objectives or else go back to earlier design decisions.

Step 4 Choose the alternative that helps you to best meet your objectives. If several
alternatives seem equally good in terms of the objectives, then use the priorities
to decide among them.

Step 5 Adjust your priorities for subsequent decision making. If you know you have
already met your objectives for some aspects of quality, then you can increase
the priority of the other qualities, for which you have not yet met your
objectives.

Example 9.1 You are asked to choose between five different algorithms that can be used to
perform a particular distributed financial analysis operation. You are given the
following objectives. When everything is otherwise equal, highest priority should
be given to the qualities at the top of the list. 

■ Security. Encryption must not be breakable within 100 hours of computing
time on a 2GHz Intel processor, using known cryptanalysis techniques.

■ Maintainability. No specific objective.

■ CPU efficiency. Must respond to the user within one second when running on
an 800MHz Intel processor (the slowest machine the users are likely to use).

■ Network bandwidth efficiency. Must not require transmission of more than 8
KB of data per transaction.

■ Memory efficiency. Must not consume over 30 MB of RAM.

■ Portability. Must be able to run on Windows 2000 and later versions of
Windows, as well as Mac OS and Linux.

You evaluate the algorithms and determine the information in Table 9.3.
‘DNMO’ means that the algorithm Does Not Meet the Objective; the objective is
met in the other cases. A dash means that you did not evaluate the factor since
you found out that the algorithm did not meet two separate objectives.

We first look at whether the objectives are met. It turns out that none of the
algorithms meet the CPU efficiency objective. We are, however, unable to find
any algorithms that are better in this respect, therefore we have to lower our
standards and choose the algorithms that come closest (A, B and D). Algorithm
D, however, does not meet the bandwidth efficiency objective and we therefore
rule it out.

Next, we use the remaining priorities to decide between algorithms A and B.
Both algorithms are equal in terms of our top priority, security. However,
algorithm B is better in terms of the second priority, maintainability; it therefore
becomes our final choice.
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Exercise

E179 You are given Table 9.4 showing the quality levels achieved by various software
architectures. 

Determine which architecture you might choose if you had the following
objectives and priorities. Justify your answer.

(a) Objectives: runs on Windows; works on a 30 Kbps connection or faster;
works on a 1 GHz machine or faster; requires no more than 25 MB
memory. General priorities, starting with first: bandwidth efficiency, CPU
efficiency, portability, memory efficiency, maintainability.

(b) Same as (a) except bandwidth drops to fourth priority.

Table 9.3 Algorithm evaluations

 Security Maintainability Memory
efficiency

CPU 
efficiency

Bandwidth
efficiency

Portability

Algorithm A High Medium High Medium; 
DNMO

Low Low

Algorithm B High High Low Medium; 
DNMO

Medium Low

Algorithm C High High High Low; 
DNMO

High Low

Algorithm D — — — Medium; 
DNMO

DNMO —

Algorithm E DNMO — — Low; 
DNMO

— —

Table 9.4 Quality levels achieved by various software architectures

Software
architecture

Maintain-
ability 

Memory
required

CPU speed
required

Bandwidth
required

Portable to which 
platforms?

A High 20 MB 1 GHz 
needed

35 Kbps Unix, Windows

B High 14 MB 500 MHz 
needed

1 Mbps Windows only

C High 8 MB 2 GHz 
needed

2 Kbps Windows, 
Macintosh

D Medium 20 MB 1 GHz 
needed

30 Kbps Unix only
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(c) Objectives: runs on Unix; works on 1 Mbps connection or faster; works on
500 MHz machine or faster; requires no more than 40 MB memory.
General priorities, starting with first: maintainability, portability,
bandwidth, CPU speed, memory. 

Using cost–benefit analysis to choose among alternatives
An important consideration when you do design is finding ways to reduce costs
and increase benefits. Whenever you make a design decision in which the
alternatives have different benefits or costs, you can therefore perform cost–
benefit analysis to ensure you are making the best decision. You would certainly
do this if you are adding an optional aspect of the design, or if the priorities and
objectives do not lead to a clear decision.

Cost–benefit analysis is widely taught in management courses, but it is not
just for project managers. Individual software engineers should be able to use
this technique, since they must make day-to-day design decisions.

You cannot expect to be completely accurate when performing cost–benefit
analysis. However, even ‘back-of-the-envelope’ computations based on rough
estimates can help you to make better decisions. Often, it becomes very clear
that a certain option will cost far more than an alternative.

To estimate the costs of a new feature or design alternative, you should add up
estimates of the following:

■ The incremental cost of doing the software engineering work, including
ongoing maintenance for the life of the system. This includes the work involved
in requirements, design, implementation, quality assurance, etc. By
‘incremental’, we mean the extra cost that would be required if you chose this
alternative. The software engineering cost is proportional to the amount of
time spent by software engineers, commonly measured in person-days or
person-months. Most organizations convert this into monetary terms by
multiplying by a factor that accounts for the average salary plus other costs
associated with employing a person, such as their office space.

■ The incremental costs of any development technology that you will have to buy,
such as programming languages, reusable components, databases etc.

■ The incremental costs that end-users and product support personnel will
experience. These costs include the extra installation time, training time, help-
desk time, learning time and data entry time, as well as extra licenses for reused
components, and any extra hardware needed.

In Chapter 11, we will look at other aspects of cost estimation, such as
techniques for doing it as accurately as possible.

To estimate the benefits of a new feature or design alternative, you should add
up the following:

■ The incremental software engineering time saved. For example, an
improvement in flexibility might considerably reduce maintenance cost.
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■ The incremental benefits measured in terms of either increased sales or else
financial benefit to users. You can base your estimate on increased sales if your
product is generic. On the other hand, if the product is custom in nature, then
you can estimate how much money users could make or save if you
implemented the alternative under consideration. Both figures will depend
heavily on making an accurate estimate of the number of users who will
eventually use your system.

Example 9.2 You are the software architect for the GANA system and you are trying to decide
whether it would be cost-effective to develop a generic framework for navigation
systems. Outline the costs and benefits that should be considered. 

Costs:

■ Extra software engineering work: you estimate this will take 3 person-months
of extra time to work out the generic requirements, 2 person-months of extra
time to do the design, 1 extra person-month for the implementation, and 2
extra person-months for the testing.

■ There will be no costs for extra development technology.

■ There will be no extra end-user costs.

Benefits:

■ Software engineering work saved: you estimate that over the next three years,
your company will be developing more advanced navigation systems for the
trucking industry and the search and rescue industry. These will, together, save
6 person-months of labor if they can build on your framework. You also
estimate that the framework will save you 4 person-months of maintenance
time for the GANA system itself.

■ You also estimate that the framework will allow you to get new products to
market faster. The potential benefit of this is hard to quantify, but it could
increase sales by over £200,000.

Even though the above estimates are very approximate, they support your
decision to develop a framework. This is true even if you do not consider the
uncertain benefits of getting products to market faster.

9.4 Model Driven Development

In Chapters 5, 6 and 8 you learned how to develop models of software using
UML. As we mentioned, a model is an abstraction or view of a system that helps
you to design it and analyze it. When you study a diagram in a model, what you
see should faithfully represent the final system, but only a simplified view of an
aspect of the system.
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Since the earliest days of software engineering, people have used models; and
since the mid 1990s these have been typically developed in UML. However,
often in the past the models were little more than diagrams – very useful
diagrams, but just diagrams. Developers used the diagrams as a guide to their
programming. Gradually, various modeling tools were given the capability to
generate some of the code; programmers could then fill in the missing details.

Now, tools are available which can take models and generate all of the code for
certain types of applications. The model effectively becomes a form of high-level
program and all development work can take place exclusively in the model. This
process, known as model-driven development, is expected to become more and
more widespread over the next 10–20 years as tools become more sophisticated.

Model-driven development does not, however, eliminate the need to code
certain types of detailed algorithms. That is why tools that generate entire
systems from UML models must also provide a language for implementing the
actions and activities that we discussed in Chapter 8. UML provides a lot of
detail about the semantics of the actions and activities that must be supported
by such a tool; however, it leaves the syntax of an appropriate action language to
the tool. We will not discuss the details of UML actions any further, except to say
that tools can allow the developer to code the actions in a language such as Java.

There are various different approaches to model-driven development. An
approach developed by the OMG (who also develop UML) is called Model
Driven Architecture (MDA).

One of the important features of model-driven development is that the
models themselves can be created at several different levels of abstraction. In
MDA, one first develops a Platform Independent Model (PIM). This describes
the system’s data and activities in a very general way. One then adds detail to

Increasing abstraction in programming
In the beginning (the early 1950s) people programmed in machine language: directly manipulating the
binary op-codes that the CPU uses as its instructions. Then computer scientists had the bright idea
of creating assembly language: abstracting some of the detail away, making the machine code more
human readable using mnemonics for each instruction, and adding higher-level macro capabilities to
deal with repetitive tasks.  Assemblers translated this into machine language.

The next stage in the evolution of programming was high-level languages: this started with
Fortran and Cobol, and eventually led to modern languages such as Java, C#, etc. Compilers
are programs that initially generated assembler code, and now directly generate machine
code or else bytecode for virtual machines. High-level languages added numerous
abstractions to make programming simpler: types systems, higher level statements, classes,
etc.

Model-driven development simply takes this process further: by modeling in UML the
developer can take advantage of abstractions such as states and associations without having
to worry about the details of coding them. Tools can generate high-level language code,
machine code or bytecode.
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create one or more Platform Specific Models (PSMs). For example, you could
develop a PIM for a Police Information System; this would contain class
diagrams representing all the data to be manipulated, various state diagrams,
various activity diagrams, as well as other types of diagrams we will discuss in
the next section. This model could, however, be implemented as a web-based
system, a client–server system using a technology such as OCSF, something else
entirely, or even several of these.

To develop the details for each type of implementation of the Police
Information System, you would need a PSM. The PSM for a web-based system
would describe the various html pages that would be needed, and the various
programs that would interpret http form data generated when the user selects
‘submit’ on a web page.

9.5 Software architecture

Architecture plays a central role in building construction. A building’s
architecture is described using a set of plans that, taken together, represent all
aspects of the building. It describes the building from such viewpoints as
electricity, plumbing, structure, etc.

The architect is the person in charge of the whole project. He or she has the
responsibility to make sure that the building will be solid, cost-effective and
satisfactory to the client.

Software architecture is similar. It plays a central role in software engineering,
and involves the development of a variety of high-level views of the system.
Furthermore, individuals called software architects often lead a team of other
software engineers.

The term ‘software architecture’ is also applied to the documentation
produced as a result of the process. For clarity, this documentation is often also
called the architectural model.

The importance of developing an architectural model
Software engineers discuss all aspects of a system’s design in terms of the
architectural model. Decisions made while this model is being developed
therefore have a profound impact on the rest of the design process. The
architectural model is the core of the design; therefore all software engineers
need to understand it.

The architectural model will often constrain the overall efficiency, reusability
and maintainability of the system. Poor decisions made while creating this
model will constrain subsequent design.

Definition: software architecture is the process of designing the global organization of a 

software system, including dividing software into subsystems, deciding how 

these will interact, and determining their interfaces.
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There are four main reasons why you need to develop an architectural model:

■ To enable everyone to better understand the system. As a system becomes
more and more complex, making it understandable is an increasing challenge.
This is especially true for large, distributed systems that use sophisticated
technology. A good architectural model allows people to understand how the
system as a whole works; it also defines the terms that people use when they
communicate with each other about lower-level details.

■ To allow people to work on individual pieces of the system in isolation. The
work of developing a complex software system must be distributed among a
large number of people. The architecture allows the planning and co-
ordination of this distributed work. The architecture should provide sufficient
information so that the work of the individual people or teams can later on be
integrated to form the final system. It is for that reason that the interfaces and
dynamic interactions among the subsystems are an important part of the
architecture.

■ To prepare for extension of the system. With a complete architectural model,
it becomes easier to plan the evolution of the system. Subsystems that are
envisioned to be part of a future release can be included in the architecture,
even though they are not to be developed immediately. It is then possible to see
how the new elements will be integrated, and where they will be connected to
the system. Architects designing buildings often use this technique – their
drawings show not only the proposed building but also its future extensions
(Phase I, Phase II, etc.). Specialists like electrical engineers can then plan the
cabling to take into account the future needs of the foreseen extension.

■ To facilitate reuse and reusability. The architectural model makes each system
component visible. This is an important benefit since it encourages reuse. By
analyzing the architecture, you can discover those components that can be
obtained from past projects or from third parties. You can also identify
components that have high potential reusability. Making the architecture as
generic as possible is a key to ensuring reusability.

Contents of a good architectural model
A system’s architecture will often be expressed in terms of several different
views. These can include:

■ The logical breakdown into subsystems. This is often shown using package
diagrams, which we will describe later. The interfaces among the subsystems
must also be carefully described.

■ The dynamics of the interaction among components at run time, perhaps
expressed using interaction or activity diagrams.

■ The data that will be shared among the subsystems, typically expressed using
class diagrams.
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■ The components that will exist at run time, and the machines or devices on
which they will be located. This information can be expressed using
component and deployment diagrams, which are discussed later.

An important challenge in architectural modeling is to produce a relevant and
synthetic picture of a large and complex system. In other words, the reader
should be able to understand the system very quickly by looking at the different
views. To enable this, it should be clear how the views relate to each other.

To ensure the maintainability and reliability of a system, an architectural
model must be designed to be stable. Being stable means that the new features
can be easily added with only small changes to the architecture.

When developing custom software, the architecture should be expressed
clearly enough that it can be used to communicate effectively with clients. The
clients may not need to know other details of the design. However, they often
want to understand the architecture so that they can be confident the software
is being designed well, and can monitor development progress. The
architectural diagrams used for the construction of buildings are also used to
communicate with clients.

How to develop an architectural model

The system’s architecture must take its overall shape very early in the design
process, although it will continue to mature as iterative development proceeds.

The basis for the architectural model will be the system domain model and
the use cases. The first draft of the architectural model should be created at the
same time as these. These give the architect an idea about which components
will be needed and how they will interact. At the same time, the early
architecture will give use case modelers guidance about the steps the user will
need to perform. For example, if the use cases describe a process of accessing
information that is stored centrally in some repository, this guides the architect
to think in terms of a client–server architecture. Similarly, the fact that there is
a client–server architecture guides the use case modeler to add use cases for
logging in, account creation, etc.

The following are some steps that you can use iteratively as you refine the
architecture.

1. Start by sketching an outline of the architecture, based on the principal
requirements, including the domain model and use cases. At this stage, you can
determine the main components that will be needed, such as databases,
particular hardware devices and the main software subsystems. You can also
choose among the various architectural patterns we will discuss later, such as
using a client–server architecture or a pipe-and-filter architecture. It can be
worthwhile having several different teams independently develop a first draft
of the architecture; the teams can then meet to pick the best architecture, or to
merge together the best ideas.
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2. Refine the architecture by identifying the main ways in which the components
will interact, and by identifying the interfaces among them. Also, decide how
each piece of data and functionality will be distributed among the various
components. Now is the time to determine if you can reuse an existing
framework. If possible, you might decide to transform your architecture into a
generic framework that can be reused by others.

3. Consider each use case, adjusting the architecture to make it realizable. At this
stage you try to finalize the interface of each component.

4. Mature the architecture as you define the final class diagrams and interaction
diagrams.

Describing an architecture using UML
All UML diagrams can be useful to describe aspects of the architectural model.
Remember that the goal of architecture is to describe the system at a very high
level, with emphasis on software components and their interfaces. Use case
diagrams can provide a good summary of the system from the user’s
perspective. Class diagrams can be used to indicate the services offered by
components and the main data to be stored. Interaction diagrams can be used
to define the protocol used when two components communicate with each
other.

In addition to the UML diagrams we have already studied in this book, three
other types of UML diagram are particularly important for architecture
modeling: package diagrams, component diagrams and deployment diagrams.
These are used to describe different aspects of the organization of the system. In
the next three subsections we will survey the essentials of these types of
diagram.

Packages
Breaking a large system into subsystems is a fundamental principle of software
development. A good decomposition helps make the system more
understandable and therefore facilitates its maintainability.

In UML, a package is a collection of modeling elements that are grouped
together because they are logically related. Note that a UML package is not quite
the same thing as a Java package, which is a collection containing only classes.
However, a very common use of UML packages is to represent Java packages.

A package in UML is shown as a box, with a smaller box attached above its top
left corner. The packages of the SimpleChat system are illustrated in Figure 9.6.
Inside the box you can put practically anything, including classes, instances, text
or other packages.

When you define a package, you should apply the principles of cohesion and
coupling discussed earlier. Increasing cohesion means ensuring that a package
only has related classes; decreasing coupling means decreasing the number of
dependencies as much as possible.
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You show dependencies between packages using a dashed arrow. A
dependency exists if there is a dependency between an element in one of the
packages and an element in another. To use a package, it is required to have
access to packages that it depends on. Also, changes made to the interface of a
package will require modification to packages that depend on it.

A package that depends on many others will be difficult to reuse, since using
it will also necessitate importing its dependent packages. Circular dependencies
among packages are particularly important to avoid. Finally, making the
interface of a package as simple as possible greatly simplifies its use and testing.
The Façade pattern can help to simplify a package interface.

Component diagrams
A component diagram shows how a system’s components – that is, the physical
elements such as files, executables, etc. – relate to each other. The UML symbol
for a component is a box with a little ‘plug’ symbol in the top-right corner. An
example is shown in Figure 9.7; many more examples can be found in the next
section.

A component provides one or more interfaces for other components to use.
The same ‘lollipop’ symbol is used for an interface as was introduced in
Chapter 5. To show a component using an interface provided by another, you
use a semi-circle at the end of a line. Figure 9.7 show how these two symbols
plug together.

Various relationships can exist among components, for example:

■ A component may execute another component, or a method in the other
component.

■ A component may generate another component.

■ Two components may communicate with each other using a network.

It is easy initially to confuse component diagrams with package diagrams. The
difference is that package diagrams show logical groupings of design elements,
whereas component diagrams show relationships among types of physical
components.

Figure 9.6 An example package diagram
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Figure 9.7 An example component diagram
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Deployment diagrams
A deployment diagram describes the hardware where various instances of
components reside at run time. An example is shown in Figure 9.8. A node in a
deployment diagram represents a computational unit such as a computer, a
processing card, a sensor or a device. It appears as a three-dimensional box.

The links between nodes show how communication takes place. Each node of
a deployment diagram can include one or several run-time software
components. Various artifacts such as files can also be shown inside nodes.

9.6 Architectural patterns

The notion of patterns, introduced in Chapter 5, can be applied to software
architecture. In this chapter we present several of the most important
architectural patterns, which are also often called architectural styles. Each allows
you to design flexible systems using components that are as independent of each
other as possible.

The Multi-Layer architectural pattern
Building software in layers is a classical architectural pattern that is used in
many systems. It is so important that layer cohesion was one of the types of
cohesion we presented earlier when discussing Design Principle 2.

As we discussed, in layered systems each layer communicates only with the
layers below it – in many cases, only the layer immediately below it. Each layer
has a well-defined API, defining the services it provides.

A complex system can be built by superimposing layers at increasing levels of
abstraction. The Multi-Layer architectural pattern makes it possible to replace a
layer by an improved version, or one with a different set of capabilities.

It is particularly important to have a separate layer at the very top to handle
the user interface. Independence of the UI layer allows the application to have
several different UIs. These could be UIs running on different platforms, UIs for
‘professional’ versus ‘standard’ versions of the application, or UIs designed for
different locales (discussed in Chapter 7). We will look at the UI layer in more
detail below when we discuss the Model–View–Controller architectural pattern.

Layers immediately below the UI layer provide the application functions
determined by the use cases. Layers at the bottom provide services such as data
storage and transmission. This is illustrated in Figure 9.3(a).

Figure 9.8 An example deployment diagram
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Most operating systems are built according to the
Multi-Layer architectural pattern, as shown in Figure
9.3(b). A low-level kernel layer deals with such functions
as process creation, swapping, and scheduling. Higher-
level layers deal with such functions as user account
management, screen display, etc. The layers are often
further subdivided into smaller subsystems.

Most communications systems exhibit a layered
architecture. A simplified illustration of this is shown in
Figure 9.3(c). At the bottom level, there are facilities for
transmitting and receiving signals. Above this is a layer
that deals with splitting messages into packets and
reconstructing messages that are received. Still higher is
a layer that deals with handling ongoing connections
with a remote host (e.g. using sockets). At the top is a
layer that handles various protocols, such as http, used
by application programs.

The SimpleChat system uses a layered architecture to
separate the user interface from the core of the system.
For example, the class ChatClient is separated from the

class ClientConsole. The Observable layer of the OCSF allows the core of a client
or server to be further separated into a layer that has the application logic, and
one that deals with client–server communication.

Although the normal assumption is that the communication between layers
will be by procedure calls, it can also be performed in some systems using inter-
process communication. In other words, the lower layers can become servers
and the higher layers can become clients. This illustrates how the Multi-Layer
and Client–Server architectural patterns (discussed next) can be used together.
If we did use inter-process communication to implement a layered architecture,
we would typically redraw Figure 9.3 using a component diagram.

The Multi-Layer architectural pattern helps you adhere to many of the design
principles discussed earlier, in particular:

B Divide and conquer. The separate layers can be independently designed.

C Increase cohesion. Well-designed layers have layer cohesion; in other words,
they contain all the facilities to provide a set of related services, and nothing
else.

D Reduce coupling. Well-designed lower layers do not know about the higher
layers. The higher layers can therefore be replaced without impacting the lower
layers. Also, the only connection between layers is through the API.

E Increase abstraction. When you design the higher layers, you do not need to
know the details of how the lower layers are implemented. This makes
designing high-level facilities much easier.

Patterns at different levels of 
abstraction
Patterns can be created for any activity
involving human expertise. In software
engineering, they occur at many levels
of abstraction.

At the lowest level are pro-
gramming idioms; these describe
preferred ways to solve detailed
programming problems, and are out
of the scope of this book. Moving up
the abstraction scale are the design

patterns such as Delegation and
Observer, and the modeling patterns

such as Abstraction–Occurrence
presented in Chapter 6.  At the top
of the abstraction scale are the
architectural patterns discussed here.
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F Increase reusability. The lower layers can often be designed generically so that
they can be used to provide the same services for different systems.

G Increase reuse. You can often reuse layers built by others that provide the
services you need – a layer for loading and storing from a database, for
example.

H Design for flexibility. Designing in layers gives you the flexibility to add new
facilities that build on lower-level services, or to replace higher-level layers.

I Anticipate obsolescence. Databases and UI systems tend to change; by isolating
these in separate layers, the system becomes more resistant to obsolescence.

J Design for portability. All the facilities that are dependent on a particular
platform can be isolated in one of the lower layers.

1) Design for testability. Individual layers, particularly the UI layer, database layer
and communications layer, can be tested independently.

1! Design defensively. The APIs of layers are natural places to build in rigorous
checks of the validity of inputs. You can design a system so that if a higher layer
fails, the lower layers continue to run. The opposite can also be made true; for
example, if a database layer crashes, it could be made to restart automatically.

Exercise

E180 Describe how you might divide a video-game system into layers. Consider that
the system has components which do some of the following activities: display
graphics, manage the objects that are displayed on the screen, compute object
position and speed, keep track of scores, keep track of various stages of the
game. 

The Client–Server and other distributed architectural patterns
We discussed the Client–Server architectural pattern in detail in Chapter 3. Its
basic principles are: a) there is at least one component that has the role of server,
waiting for and then handling connections, and b) there is at least one
component that has the role of client, initiating connections in order to obtain
some service.

An important variant of the client–server architecture is the three-tier model
under which a server communicates with both a client (usually through the
Internet) and a database server (usually within an intranet, for security reasons).
The server acts as a client when accessing the database server.

A further extension to the Client–Server architectural pattern is the Peer-to-
Peer architectural pattern. A peer-to-peer system is composed of various
software components that are distributed over several hosts. Each of these
components can be both a server and a client. Any two components can set up
a communication channel to exchange information as required. Figure 9.9
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shows a peer-to-peer architecture for instant messaging. Messages no longer
have to be sent through a central server. However, before two peers can
communicate, they have to discover each other’s existence. A central server may
still be used for this.

Distributed architectures help you adhere to design principles such as the
following:

B Divide and conquer. Dividing the system into client and server processes is a
very strong way to divide the system. Each can be separately developed.

C Increase cohesion. The server can provide a cohesive service to clients. For
example, it can provide a single service with no side effects and therefore be
functionally cohesive. A server also acts as a lower-level layer that the client
accesses.

D Reduce coupling. There is usually only one communication channel between
distributed components, and the data being passed is usually simple messages.
This helps reduce coupling, although there is normally control coupling
(commands sent by the client control what the server does).

E Increase abstraction. Separate distributed components are often good
abstractions. For example, you do not need to understand the details of how a
server operates.

G Increase reuse. It is often possible to find suitable frameworks on which to build
good distributed systems (e.g. OCSF). However, reusability may not be high
since client–server systems are often very application specific.

H Design for flexibility. Distributed systems can often be easily reconfigured by
adding extra servers or clients. Furthermore, as discussed in Chapter 3, clients
and servers can be developed by competing organizations, giving the customer
a choice. However, changing the protocol of the system can be difficult.

J Design for portability. You can write clients for new platforms without having to
port the server.

1) Design for testability. You can test clients and servers independently.

Figure 9.9 A peer-to-peer architecture for instant messaging, retaining a central server only to 
look up the addresses of clients

exchange
messages look up

addresses

Client2:

Client1:

Server:

exchange
messages



 

Section 9.6 351The Broker architectural pattern

1! Design defensively. You can put rigorous checks in the message handling code to
ensure that no matter what messages you receive, your component will not
crash.

Exercise

E181 The original Napster was the most famous and controversial of many peer-to-
peer systems for sharing files; in its architecture, it retained a central registry of
users. Other peer-to-peer file sharing systems, such as Gnutella and KAZAA,
do not require a central registry. Do some research to determine how the
various current file-sharing systems work, and how some are able to dispense
with a central server. What are the advantages and disadvantages of the two
approaches?

The Broker architectural pattern
The idea of the Broker architectural pattern is to distribute aspects of the
software system transparently to different nodes. This is illustrated in
Figure 9.10.

Using the Broker architecture, an object can call methods of another object
without knowing that this object is remotely located. The use of the Proxy
design pattern (discussed in Chapter 6) can help achieve this goal. A Proxy
object calls the broker, which determines where the remote object can be found.

CORBA is a well-known open standard that allows you to build this kind of
architecture – it stands for Common Object Request Broker Architecture. Java
has many classes that allow you to use CORBA facilities. There are also several
other commercial architectures that also provide broker capabilities.

The Broker pattern is particularly useful in helping you follow these design
principles:

B Divide and conquer. The remote objects can be independently designed.

F Increase reusability. It is often possible to design the remote objects so that
other systems can use them too.

G Increase reuse. You may be able to reuse remote objects that others have created.

H Design for flexibility. The broker objects can be updated as required, or you can
redirect the proxy to communicate with a different remote object.

J Design for portability. You can write clients for new platforms while still
accessing brokers and remote objects on other platforms.

Figure 9.10 The Broker architectural pattern
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1! Design defensively. You can provide careful assertion checking in the remote
objects.
Note that the separation of data between a proxy and a remote object tends to
reduce communicational cohesion.

Exercise

E182 Do some research to determine the main broker platforms and their
differences. 

The Transaction Processing architectural pattern
In the Transaction Processing architectural pattern, a process reads a series of
inputs one by one. Each input describes a transaction – a command that
typically makes some change to the data stored by the system. There is a
transaction dispatcher component that decides what to do with each
transaction; this dispatches a procedure call or message to a component that will
handle the transaction.

For example, in the airline system, transactions might be used to add a new
flight, add a booking, change a booking or delete a booking. This is illustrated
in Figure 9.11.

The dynamic binding and dispatching of polymorphic methods is a further
example. In fact, it is best to design a system to use this implicit transaction-
processing mechanism where possible, rather than designing an explicit
version.

Transaction processing systems are often embedded in servers. A typical
example is a database engine, where the transactions are various types of queries
and updates. The command handler mechanisms in SimpleChat’s server and
client classes are, in fact, transaction dispatchers, although the pattern would be
more strongly followed if they dispatched each command to a separate method.

Transactions themselves vary in their level of complexity. In many cases an
update transaction requires that several separate changes be made to a database.
For example, as we saw in Chapter 5, booking a passenger on a flight requires
creating a Booking object, as well as creating bi-directional links from it to a
SpecificFlight and a PassengerRole. It is essential that this whole transaction be
fully completed, or else not done at all. Transaction dispatchers and handlers
therefore work together to assure the atomicity of transactions.

Figure 9.11 The transaction processing architecture used in an airline system
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Many transaction processing systems work in environments where several
different threads or processes can attempt to perform transactions at once. In
these environments the data to be modified by the transaction must be locked
first, and the lock must be released afterwards. The situation is further
complicated by the fact that an application may need to do a query transaction,
then process the data, and finally do an update transaction on the data, while
being assured that another thread has not changed the data in the meantime. If
a lock is used, then other transactions are delayed until the whole process is
complete. There are several strategies for handling this situation – you should
read a database design book to learn about them. However, in the next chapter
we will raise some relevant issues when we talk about testing systems that have
multiple threads.

The Transaction Processing pattern is particularly useful in helping you
follow these design principles:

B Divide and conquer. The transaction handlers are suitable system divisions that
you can give to separate software engineers.

C Increase cohesion. Transaction handlers are naturally cohesive units. They may
exhibit functional, sequential or procedural cohesion. However, they tend not
to exhibit communicational cohesion.

D Reduce coupling. Separating the dispatcher from the handlers tends to reduce
coupling. However, you have to be careful that the coupling among the
transaction handlers is kept under control.

H Design for flexibility. You can readily add new transaction handlers.

1! Design defensively. You can add assertion checking in each transaction handler
and/or in the dispatcher.

The Pipe-and-Filter architectural pattern
The Pipe-and-Filter architectural pattern is also often called the
transformational architectural pattern. It works as follows. A stream of data, in
a relatively simple format, is passed through a series of processes, each of which
transforms it in some way. The series of processes is called a pipeline. Data is
constantly fed into the pipeline; the processes work concurrently (conceptually
at least) so that data is also constantly emerging from the pipeline.

The strength of this pattern is that the system can be modified easily by
adding or changing the transformational processes. This is easiest if, at most
stages of the pipeline, the data has the same general form. For example, the data
might be simply a stream of characters. The processes might do such things as
converting the characters to upper case; removing unneeded characters; or
encrypting the text.

Another example of a pipe-and-filter architecture is a speech transmission
system. This would continuously read sound coming from microphones,
process it in various ways, compress it, transmit it over a network and then
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regenerate sound at a remote location. It would use several different
transformational components to do this. The architecture is illustrated in
Figure 9.12.

Some of the transformational processes are true filters: ‘cancel echo’, ‘cancel
noise’, ‘remove non-voice frequencies’ and ‘equalize dynamic range’ simply
remove some of the information, but leave it in the same format. The other
processes convert the information into distinctly different formats.

The ‘cancel noise’ process illustrates how two pipelines can join together. It is
also possible for a pipeline to split into two.

In Chapter 3, we saw the use of the classes ObjectOutputStream,
DataOutputStream, OutputStream, and the corresponding input streams. These act
like filters passing data to each other: for example ObjectOutputStream will
convert an arbitrary object into bytes which it then passes to OutputStream for
transmission; after transmission, an InputStream will receive the data and pass it
to an ObjectInputStream for reconstruction of the original objects.

A pipe-and-filter system provides fulfils the following principles:

B Divide and conquer. The separate processes can be independently designed.

C Increase cohesion. The processes generally have functional cohesion.

D Reduce coupling. The processes have only one input and one output, normally
using a standard format, therefore coupling is very low. Type use coupling can
become an issue if the format of the data needs to change.

E Increase abstraction. The pipeline components are often good abstractions,
hiding their internal details.

F Increase reusability. The processes can often be used in many different contexts.

G Increase reuse. It is often possible to find reusable components to insert into a
pipeline.

Figure 9.12 A pipe-and-filter architecture for sound processing
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H Design for flexibility. There are several ways in which the system illustrated in
Figure 9.12 is flexible:

❏ Almost all the components could be removed. For example, ‘cancel echo’ or
‘cancel noise’ could be removed. In fact the encoder for microphone input
could be directly connected to the decoder for speaker output, drastically
shortening the pipeline.

❏ Components could be replaced with different implementations. For
example the ‘transmit’ and ‘receive’ components could be replaced in order
to allow communication over a different type of network. The ‘compress’
and ‘decompress’ components could also be replaced in order to use
different algorithms.

❏ New components could be inserted, for example to perform encryption.

❏ Certain components could be reordered. For example, removing non-voice
frequencies could be done before canceling noise.

❏ The encoders for microphone input and for ambient noise could be
instances of the same component type.

1) Design for testability. It is normally easy to test the individual processes.

1! Design defensively. You can rigorously check the inputs of each component, or
else you can use design by contract, writing careful preconditions and
postconditions for each component.

Exercise

E183 Outline the design of a pipe-and-filter system to analyze a continuous stream of
quotations from the stock market. One filter might extract only those stocks in
which you are interested. Another process might add information to each stock
quote, such as the total number of stocks you own, and the amount of profit or
loss you have made on the stock. Some components might analyze quotes
traveling through the pipe, and might alert you about whether you should buy
or sell the stock. 

The Model–View–Controller (MVC) architectural pattern
Model–View–Controller, or MVC, is an architectural pattern used to help
separate the user interface layer from other parts of the system. Not only does
MVC help enforce layer cohesion of the user interface layer, but it also helps
reduce the coupling between that layer and the rest of the system, as well as
between different aspects of the UI itself.

The MVC pattern separates the functional layer of the system (the model)
from two aspects of the user interface, the view and the controller. This is
illustrated in Figure 9.13. Although the three components are normally



 

356 Chapter 9
Architecting and designing software 

instances of classes, we use a component diagram to emphasize the fact that the
components could also be separate threads or processes.

The model contains the underlying classes whose instances are to be viewed
and manipulated.

The view contains objects used to render the appearance of the data from the
model in the user interface. The view also displays the various controls with
which the user can interact.

The controller contains the objects that control and handle the user’s
interaction with the view and the model. It has the logic that responds when the
user types into a field or clicks the mouse on a control.

The model does not know what views and controllers are attached to it. In
particular, the Observer design pattern is normally used to separate the model
from the view. The MVC architectural pattern therefore exhibits layer cohesion
and is a special case of the Multi-Layer architectural pattern.

Figure 9.13 The Model–View–Controller (MVC) architectural pattern for user interfaces
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MVC in web architectures
Web architectures generally use MVC as follows:

1. The View component generates html for display by the browser. 

2. There is a component that interprets http ‘post’ transmissions coming back from the
browser – this is the Controller. 

3. There is an underlying system for managing the information – this is the Model.

Examples of View generation technology are JSP and ASP – you will often see web pages
that have these suffixes. These technologies start with an outline of an html document and
use programs to fill in missing pieces. Each time the page is displayed, it can therefore have
different content (at the very least, advertisements are often inserted). The original
Controller technology was called ‘CGI’ (Common Gateway Interface); there are now,
however, many others available.

The View and Controller technologies can be combined: a program that interprets a ‘post’
transmission will often then generate a new page.  The model, however, should always be kept
separate.
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Sometimes no specific controller component is created – the most important
aspect of the MVC pattern is separation of the model and the view. The term
model-view separation is used to describe this situation.

The MVC architectural pattern allows us to adhere to the following design
principles:

B Divide and conquer. The three components can be somewhat independently
designed.

C Increase cohesion. The components have stronger layer cohesion than if the
view and controller were together in a single UI layer.

D Reduce coupling. The communication channels between the three components
are minimal and easy to find.

G Increase reuse. The view and controller normally make extensive use of reusable
components for various kinds of UI controls. The UI, however will become
application specific, therefore it will not be easily reusable.

H Design for flexibility. It is usually quite easy to change the UI by changing the
view, the controller, or both.

1) Design for testability. You can test the application separately from the UI.

Exercise

E184 Imagine you are designing a system where a user can select a given company
and obtain the price of its stock; the stock price is refreshed at regular intervals.
Identify the model, the view and the controller in this application. Draw a high-
level sequence diagram of a typical interaction.

MVC in Java
Several of the Swing GUI components of the Java API are based on the MVC architectural pattern.

For example, JList (the view) is a graphical component used to visualize a list of items. This
list is the visual representation of data handled by an AbstractListModel (the model). It contains
the data and notifies the JList whenever a change is made to the data by the application. These
two classes follow the Observer pattern (see Chapter 6); the JList registers itself as an
observer of the AbstractListModel instance as follows (note that in the Java API, observers are
usually called listeners):

listModel.addListDataListener(jList)

Finally, each time a modification is made to the list, the method fireIntervalAdded or
fireIntervalRemoved is called by the controller.
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The Service-Oriented architectural pattern
Now that the Internet has become so pervasive, a new architectural pattern has
become prominent: Service-oriented architecture. This architecture organizes an
application as a collection of services that communicate with each other
through well-defined interfaces. In the context of the Internet, the services in
question are called Web services.

A Web service is an application accessible through the Internet that can be
integrated with other web services to form a Web-based application. To use a web
service, you send a correctly formatted http request to an http server. Unlike
normal http requests this is done ‘behind the scenes’ by the Web application
program, not a browser being used by an end user. The server will run the
service application and return the response as a document, typically structured
using a language called XML. This is illustrated in Figure 9.14.

In Figure 9.14, a client program we are developing obtains information from
a Web service provided by some company on the Internet. This in turn calls
upon two other Web services, A and B, also available on the Internet. In
addition, it uses Web-services protocols to access a local server operated by the
same company. 

A key aspect of the Web service architecture is that its different components
communicate with each other using open Web standards. You build applications
whose components are bound together over the Internet. The result is that a
Web service can be accessed by many applications in many locations. 

Web services can perform a wide range of tasks. Some may handle simple
requests for information while others can perform more complex business
processing. Enterprises can use Web services to automate and improve their
operations. For example, an electronic commerce application can make use of
web services to:

■ access the product databases of several suppliers;

■ process credit cards using a Web service offered by a bank;

■ arrange for delivery using a Web service offered by a shipping company. 

Figure 9.14 The Service-oriented architectural pattern

Web service A (Custom code) Web service B

local service

Web client

Web service

<<http communication>>

<<http communication>>

<<http communication>> <<http communication>>



 

Section 9.6 359The Service-Oriented architectural pattern

The toughest challenge facing the developer of a Web service is security. The
service opens the enterprise’s business operations and data to remotely
distributed clients. Special care must therefore be taken to protect both
customer and business information. Other important considerations are
reliability, availability and scalability of the Web service.

Two examples of well-known platforms you can use to build web-services-
based applications are Sun’s J2EE platform and Microsoft’s .NET Framework.
These can be seen as large horizontal frameworks providing, among many other
things, the required functionality to build interoperable services. They both
provide flexible security models and offer other mechanisms to assist with
scalability and reliability.

The Web services pattern helps you to adhere to the following design
principles:

B Divide and conquer. The application is made of independently designed Web
services, which are distributed and accessible through the Internet.

C Increase cohesion. Normally, the Web services are structured as layers, where
high-level services are built on top of lower-level services. Some Web services
can also exhibit functional cohesion. 

D Reduce coupling. Web-based applications are loosely-coupled applications built
by binding together distributed components. 

E Increase abstraction. Since the clients communicate with each Web service
through well-defined interface, no details about the particular implementation
of a given Web service need to be known. However, communication with a
Web service can sometimes be quite complex if the protocol is not defined at
the right level of abstraction.

F Increase reusability. A Web service is a highly reusable component.

G Increase reuse. Web-based applications are built by reusing existing Web
services.

I Anticipate obsolescence. If the technology used inside a given Web service
becomes obsolete, then a new implementation of this service can be offered
without impacting the applications that use it. The web-service architecture
can be seen as a client–server architecture where the obsolescence risk is
reduced by relying on open communication standards.

J Design for portability. A service can be implemented on any platform that
supports the required standard protocols.

1) Design for testability. Each service can be tested independently.

1! Design defensively. Web services enforce defensive design, since many different
applications, written by various developers (including malicious ones), can
access the service. Each Web service has therefore no choice but to detect and
reject any inappropriate or improperly formatted request for service.
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Exercise

E185 Search the web for a company offering a public Web service. Describe the
service offered and give an example of an application that could use it.

The Message-Oriented architectural pattern
Also known as Message-Oriented Middleware (MOM), this architecture is
based on the idea that since humans can communicate and collaborate to
accomplish some task by exchanging emails or instant messages, then software
applications should also be able to operate in a similar manner. The core of the
architecture is an application-to-application messaging system. Senders and
receivers need only to know what are the message formats; that is, a receiving
(or sending) application does not have to know anything about the software
component that sent (or received) the message. Moreover, the two
communicating applications do not even have to be available at the same time.
This is illustrated in Figure 9.15.

The message, which is central to MOM architectures, is a self-contained
package containing application data plus some network routing headers used by
the messaging system to transmit the message across the network. The messages
are sent through virtual channels, also called topics. Software components that
send messages to topics are called publishers. To receive messages, an application
must subscribe to a topic. In general, any message sent to a given topic is
delivered to all the topic’s subscribers, each of them receiving a copy of the
message. This has similarities to the Observer design pattern discussed in
Chapter 6.

The application can choose to ignore a received message or react to it by, for
instance, sending a reply containing requested information. The exchange of
these messages is governed by two important principles. First, message delivery
is completely asynchronous; that means the exact moment at which a given

Figure 9.15 The Message-Oriented architectural pattern
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message is delivered to a given subscribing application is unknown. Secondly,
reliability mechanisms are in place such that the messaging system can offer the
guarantee that a given message is delivered once and only once.

Text messaging using cellular phones can be seen as a simple message-
oriented application, but more complex systems can also adopt this architecture.
Consider, for example, a sales company where various vendors sell products to
consumers. When an item is sold, the vendor’s software system can
automatically send a message to the appropriate topic. The inventory
component, one of the subscribers of this topic, would then be informed and
initiate the product delivery process. At the same time, the sales office will
receive the same message and use it to, let’s say, accumulate statistics about sales
trends. The accounting department would calculate the vendor’s commission
from the information received. And finally, another subscriber could be the
factory that would adjust the production rate based on the number of products
sold. 

Clearly, the effectiveness of such system depends on the messaging system
that is used to deliver the messages. Two approaches can be taken when
designing such a system. The first is to use a centralized architecture where all
messages transit through a message server that is responsible for delivering
messages to the subscribers. This is the simpler model, but all functionality then
relies on the server. The alternative is to use a decentralized architecture where
message routing is delegated to the network layer and where some of the server
functionality is distributed among all message clients. The Java Message Service
(JMS) is an API providing all the required features to develop and deploy
message-oriented applications. JMS-based components are portable and can be
used by different applications that communicate using different messaging
system service providers.

This pattern allows us to adhere to the following design principles:

B Divide and conquer. The application is made of isolated software components,
independently designed and distributed across a network.

D Reduce coupling. The components are loosely coupled since they share only
data format (a form of data coupling). 

E Increase abstraction. The quality of the abstraction mainly resides in the
prescribed format for the messages. These are generally fairly simple to
manipulate, all the application details being hidden behind the messaging
system.

F Increase reusability. A component will be reusable if its underlying prescribed
message formats are flexible enough to adapt to different contexts.

G Increase reuse. The different components can be reused as long as the new
system can adhere to the formats proposed by each reused component.
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H Design for flexibility. It is always easy to update or enhance the functionality of a
message-oriented system just by adding, removing or replacing components in
the system.

1) Design for testability. Each component can be tested independently.

1! Design defensively. Defensive design in the context of message-oriented systems
consists of validating all received messages before processing them and ignore
the ones that cannot be properly interpreted.

Exercise

E186 Draw a diagram showing the components of an online auction application
designed using a message-oriented architecture. Describe the messages to be
exchanged.

E187 Sketch a possible architecture for the following systems. It will be helpful first
to sketch the most important use cases. Describe which architectural patterns
you are using.

(a) A corporate payroll system. All the information about employees,
including their monthly salary and bank account, is kept in a database.
Every two weeks, the system pays employees by depositing their salary in
their bank account.

(b) A system to buy stocks on the Internet. Clients perform their transactions
using a web browser. They are to access their accounts by providing a user
ID and password. When an order is made, the system must process it by
communicating with the appropriate stock market. The system also has to
interact with the bank account of the client once the amount of the
transaction is determined.

(c) The GANA system whose requirements were described in Chapter 4.

(d) A system for analyzing signals from a radio-telescope to see if there are
signs of extra-terrestrial intelligence. This system takes tapes containing
radio signal data, and divides them up into small ‘work units’ that are
distributed to hundreds of thousands of computers running screen savers.
These screen savers filter and transform the data in various ways, and then
analyze it to detect different kinds of signals. Results are returned to the
central site for further analysis. See setiathome.ssl.berkeley.edu for a real
implementation of such a system. 

9.7 Writing a good design document

Design documents serve two main purposes. Firstly, they help you, as a designer
or a design team, to make good design decisions. The process of writing down
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your design helps you to think more clearly about it and to find flaws in it.
Secondly, they help you communicate the design to others.

We will now examine both of these purposes.

Design documents as an aid to making better designs
Design documents help you, as a designer, because they force you to be explicit
and to consider the important issues before starting implementation. They also
allow a group of people to review the design and therefore to improve it.

There has been a tendency among software developers to omit design
documentation or to document the design only after it is complete. In other
branches of engineering, doing this has always been considered completely
unacceptable: engineers know that it would lead to serious mistakes and in
most cases would make planning for construction impossible. For example,
without creating plans in advance of building construction it would be
impossible to know what building supplies to order, and nobody would be able
to review the design to ensure it adheres to standards, such as having adequate
fire exits.

Unfortunately, because software is intangible, it is sometimes possible to jump
directly into programming without any design documents. This does not,
however, make doing so a good idea. Plunging directly into programming
without writing a design document tends to result in an inflexible and overly
complex system.

Design documents as a means of communication
When writing anything, it is important to know the audience for your work.
Design documents are used to communicate with three groups of individuals.
In general, you can expect most documents to be read by all three groups:

■ Those who will be implementing the design, that is, the programmers.

■ Those who will need, in the future, to modify the design.

■ Those who need to create systems or subsystems that interface with the system
being designed.

Knowing that these are the audiences for the design document can help the
designer decide what information to include. For example, to communicate
with designers of other systems, you can make explicit the services that your
system provides and how to use them. To communicate with future maintainers,
you can give a high-level overview of your design to help them understand it,
and explain areas where your design was made flexible to allow for
enhancement.

It is crucial to not only include the design as it exists, but also to include the
rationale for the design: that is, the reasoning you used when making your
design decisions. Providing the rationale allows the reader to better understand
the design. It also allows reviewers to determine whether good decisions were
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made, and helps the maintainers determine how to change the design. A
maintainer may be tempted to change the design so that it reflects one of the
alternatives you rejected. Knowing your reasoning means that the maintainer
will not do this capriciously, but with the benefit of your prior insight.

Contents of a design document

We suggest that a design document should contain the following information.
As with all the documentation types described in this book, you should use this
as a general guide only. Each company should have specific formats you need to
follow so as to be consistent with other design documents. You will also need to
vary the kinds of information in each section depending on the kind of design
(e.g. architectural or detailed) that you are producing.

A. Purpose. Specify what system or part of the system this design document
describes. Make reference to the requirements that are being implemented by
this design – doing so ensures that there is traceability from the requirements to
the design.

B. General priorities. Describe the priorities used to guide the design process.
For example, how important was maintainability or efficiency as the design was
being prepared?

C. Outline of the design. Give a high-level description of the design that allows
the reader to get a general feeling for it quickly. A diagram can often serve this
purpose.

D. Major design issues. Discuss the important issues that had to be resolved. Give
the possible alternatives that were considered, the final decision and the
rationale for the decision.

E. Details of the design. Give any other details the reader will need to know that
have not yet been mentioned. These might include detailed descriptions of the
protocol used to communicate between client and server, the overviews of data
structures and algorithms, as well as how to use various APIs.

In general, when writing a design document, ensure that it is neither too short
nor too long. In keeping the document at the right length, be guided by the
intended audience; ensure that the information the readers will need to learn is
readily available. At the same time, remember that there is no point writing
information that would never be read because the reader already knows it or can
easily find it from some other source. In particular:

■ Avoid documenting information that would be readily obvious to a skilled
programmer or designer.

■ Avoid writing details in a design document that would be better placed as
comments in the code.
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■ Avoid writing details that can be extracted automatically from the code, such as
the list of public methods.

The latter two points deserve some elaboration. When you are doing design, you
can actually create skeletons for the files that will contain the code. You write in
these skeletons some of the high-level code comments as well as the templates
for public methods. If instead you were to write this material in design
documents, then when you transfer it to the code, you would have to maintain
the information in both places, since it will inevitably change.

9.8 Design of a feature for the SimpleChat instant messaging application

This section presents a short design document that extends the detailed
requirements example that was presented in Section 4.12.

A. Purpose. This document describes important aspects of the implementation of
the #block, #unblock, #whoiblock and #whoblocksme commands of the SimpleChat
system.

For the requirements, see Section 4.12.

B. General priorities. Decisions in this document are made based on the
following priorities (most important first): Maintainability, Usability,
Portability, Efficiency.

C. Outline of the design. Blocking information will be maintained in the
ConnectionToClient objects. The various commands will update and query the
data using setValue and getValue.

D. Major design issues.

Issue 1: Where should we store information regarding the
establishment of blocking?

Option 1.1: Store the information in the ConnectionToClient object
associated with the client requesting the block.

Option 1.2: Store the information in the ConnectionToClient object
associated with the client that is being blocked.

Decision: Point 2.2 of the specification requires that we be able to block a
client even if that client is not logged on. This means that we must
choose option 1.1 since no ConnectionToClient will exist for clients
that are logged off.

E. Details of the design:

Client side:

❏ The four new commands will be accepted by handleMessageFromClientUI and
passed unchanged to the server.
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❏ Responses from the server will be displayed on the UI. There will be no
need for handleMessageFromServer to understand that the responses are replies
to the commands.

Server side:

❏ Method handleMessageFromClient will interpret #block commands by adding a
record of the block in the data associated with the originating client. This
method will modify the data in response to #unblock.

❏ The information will be stored by calling setValue("blockedUsers", arg)
where arg is a Vector containing the names of the blocked users.

❏ Method handleMessageFromServerUI will also have to have an implementation
of #block and #unblock. These will have to save the blocked users as elements
of a new instance variable declared thus: Vector blockedUsers;

❏ The implementations of #whoiblock in handleMessageFromClient and
handleMessageFromServerUI will straightforwardly process the contents of the
vectors.

❏ For #whoblocksme, a new method will be created in the server class that will
be called by both handleMessageFromClient and handleMessageFromServerUI.
This will take a single argument (the name of the initiating client, or else
‘server’). It will check all the blockedUsers vectors of the connected clients
and also the blockedUsers instance variable for matching clients.

❏ The #forward, #private and simple message commands will be modified as
needed to reflect the specifications. Each of these will each examine the
relevant blockedUsers vectors and take appropriate action.

9.9 Difficulties and risks in design

■ Like modeling, design is a skill that requires considerable experience.
Design requires weighing many alternatives; however, to do so requires
knowing about the alternatives and also being able to evaluate their
consequences.
Resolution. Do not attempt to design large systems until you have experienced a
wide variety of software development projects. Actively study designs of other
systems, including designs that have been found to be both good and bad.

■ Poor designs can lead to expensive maintenance. A system with high
coupling and low cohesion will be very difficult to change, will have many
more defects and will deteriorate more rapidly than a well-designed system.
Resolution. Follow the principles discussed in this chapter. Also, use the modeling
techniques and patterns discussed in this book. Hold design reviews so that others
can find flaws in your designs.
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■ Ensuring that a software system’s design remains good throughout its life
requires constant effort. Design tends to deteriorate as a result of adding new
features that were not anticipated in the original design. The design also
deteriorates as a result of people not understanding it when they make
modifications.
Resolution. Make the original design as flexible as possible so as to anticipate
changes and extensions. Ensure that the design documentation is usable and at
the correct level of detail so that maintainers will be able to make effective use of
it. Ensure that change is carefully managed, with all changes to the requirements
and design undergoing review. If it appears that implementing a new requirement
would necessitate undermining the integrity of the architecture, then perform re-
engineering to change and improve the architecture first.

9.10 Summary

In this chapter we have discussed principles, techniques and patterns that, if
applied carefully, should lead to software that is flexible and maintainable.

Four of the most important principles are: divide up the system so that you
can better handle its complexity, increase cohesion so that each component has
a clearly identifiable purpose, reduce coupling so that there is minimal
dependency between components, and increase abstraction so that you can
work with the design without having to understand its details.

It is important to try to build components that have functional cohesion (the
component computes just one output with no side effects), layer cohesion (the
component provides a unified set of services at a certain level of abstraction) or
communicational cohesion (the component manages all the interaction with a
particular class of data). It is also important to reduce content coupling
(surreptitious modification of data that is internal to a component), common
coupling (use of global data) and control coupling (one component completely
controls what another component does).

Other important principles are: strive for high flexibility, reusability, reuse,
portability and testability. You should also anticipate obsolescence and design
defensively.

Techniques for making good design decisions include carefully analyzing
each option against the objectives and priorities, as well as performing cost–
benefit analysis to determine whether a particular option is worthwhile.

Software architecture is a cornerstone of any software engineering project.
The architectural model forms the basis on which the rest of the system is built.
It allows you to divide the system into subsystems, and to distribute the work to
team members. It also allows those team members to communicate effectively,
and to plan for eventual extension of the system.

The architecture describes the subsystems, the interfaces between those
subsystems, as well as their dynamic behavior, interactions and shared data. The
architectural model can use all the various kinds of UML diagrams, including
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the package diagrams, deployment diagrams and component diagrams which
we introduced in this chapter.

When building an architecture, you should try to compose the system from
various well-known architectural patterns. These include the Multi-Layer
pattern, the Client–Server and other distributed patterns, the Pipe-and-Filter
pattern, and the Broker pattern.

All aspects of design should be communicated to readers using carefully
written documentation. The readers will include those who are implementing
the design, those who will modify it and those who will develop other systems
that interface with it. Remember to include rationale in your documentation.

9.11 For more information

■ J. Bosch, Design and Use of Software Architectures, Addison-Wesley, 2000

■ M. Jazayeri, A. Ran, F. Van Der Linden and Philip Van Der Linden, Software
Architecture for Product Families: Principles and Practice, 2nd edition, Addison-
Wesley, 2003

■ L. Bass, P. Clements, R. Kazman and K. Bass, Software Architecture in Practice,
Addison-Wesley, 1998

■ C. Hofmeister, Robert Nord and Dilip Soni, Applied Software Architecture,
Addison-Wesley, 1999

■ D. Smith, Designing Maintainable Software, Springer Verlag, 1999

■ A. Rollings and Dave Morris, Game Architecture and Design: A New Edition,
Coriolis Group, 2003

■ M. Fowler, UML Distilled, 3rd edition, Addison-Wesley, 2003

■ R. Monson-Haefel, D. Chappell, Java Message Service, O’Reilly, 2000

■ Software architecture resources on the web: http://www.serc.nl/people/florijn/
interests/arch.html

■ Bredemeyer’s resources for software architects: http://www.bredemeyer.com

■ CORBA: http://www.corba.org

■ The Microsoft web services developer center: http://msdn.microsoft.com/
webservices/

■ The Sun web site on the J2EE technology: http://java.sun.com/j2ee/

Project exercises

E188 Create requirements documents for the following advanced features of the
SimpleChat system.
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(a) A capability to allow several servers to be linked together. A user could
connect his or her client to any of the servers. The functions of the system
would appear to the end-users to work in the same way as if there was just
one server.

(b) A capability to allow users to send files to each other. The receiving user
would have to acknowledge that he or she is willing to accept the file.

(c) A ‘buddy-list’ capability. A client can ask to be notified when any of a
particular subset of other clients is logged on (currently the system tells you
the complete set of people who are logged on).

(d) The ability to conduct votes among all the people on a channel. One user,
who proposes a vote, specifies the question and several alternative answers
that people can vote for. Voting can be done in a way that is visible to
everybody, or else secretly (at the discretion of the proposer). Whenever
the proposer desires, the results can be tabulated and transmitted to
everybody.

E189 Create a design for each of the features you specified in the last exercise. If you
discover defects in the requirements, then update them.

E190 Implement the features you designed in the last exercise. If you discover flaws
in the requirements or design, then update those documents as needed.

E191 This exercise requires you to do some research into basic cryptographic
techniques. Specify and design an extension to SimpleChat that would allow
you to encrypt all the communication that occurs in a particular channel.

E192 Create a complete design document, including an architectural model, for the
Small Hotel Reservation System.



 



 
1010Testing and inspecting to ensure

high quality 

Disciplined attention to requirements analysis, modeling and design helps
produce good quality software that solves the customers’ problems. However,
any human activity, no matter how carefully performed, will involve mistakes. It
is therefore necessary to verify meticulously that the system performs as
required. In this chapter we discuss two important verification techniques,
testing and inspection. We will also put these in the context of quality assurance
as a whole.

10.1 Basic definitions

People often talk rather interchangeably about such things as ‘errors’,
‘mistakes’, ‘bugs’, ‘failures’ and ‘defects’. It is important, however, carefully to
define and distinguish among these terms so that the discussion in the
remainder of the chapter is clearer.

An extreme and easily understood kind of failure is an outright crash.
However, any violation of requirements should be considered a failure,

In this chapter you will learn about the following

■ The distinction between such terms as ‘failure’ and ‘defect’.

■ Strategies for efficiently and effectively finding defects in software, by testing
and inspecting it.

■ Particular types of defects and how to detect them.

■ How to write test cases.

■ Other ways to help ensure quality such as root cause analysis, and
implementing a process standard.
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including such things as the production of incorrect outputs, the system
running too slowly, or the user having trouble finding online help.

The frequency of failures, as encountered by testers and end-users, allows you
to measure the reliability of a system. An important design objective is to achieve
a very low failure rate, and hence high reliability.

Most failures are violations of requirements that are stated explicitly in a
requirements document. However, it is possible to have a failure resulting from
a violation of an implicit requirement – something not written in the
requirements document, but which the user or tester discovers when running
the system. Such a failure indicates that the requirements need improving.
Remember that failures may arise from violations of either functional or quality
requirements.

The techniques presented in this chapter are intended to enable software
engineers to discover and remove defects.

Often it takes several defects, working together, to cause a particular failure.
For example, imagine in the SimpleChat program that a user tries to forward
messages to himself or herself. It would be a design defect if it were possible to
set up such a forwarding situation to start with. Imagine, nevertheless, that this
first defect existed. In the worst case, such a defect would result in an infinite
loop, and a resulting ‘hang’ or crash, as the system tries to forward the same
message over and over again. However, this worst case could only occur if there
were a second defect, where the system does not detect, during the actual
sending of a message, that it is forwarding a message around a loop. A tester
would only be able to uncover the second defect if the first were present. On the
other hand, an inspector, studying the code in detail, might notice both. In this
chapter we will study both testing and inspecting.

An error can be made at any stage of the software development process, from
requirements to implementation and maintenance. Improved education and
disciplined approaches to software engineering should lead to fewer errors, and
hence fewer defects and fewer failures.

Definition: a failure is an unacceptable behavior exhibited by a system.

Definition:  a defect is a flaw in any aspect of the system including the requirements, the 

design and the code, that contributes, or may potentially contribute, to the 

occurrence of one or more failures.  A defect is also known as a fault.

Definition: an error is a slip-up or inappropriate decision by a software developer that 

leads to the introduction of a defect into the system.
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Exercise

E193 Categorize the following according to whether each describes a failure, a defect
or an error:

(a) A software engineer, working in a hurry, unintentionally deletes an
important line of source code.

(b) On 1 January 2040 the system reports the date as 1 January 1940.

(c) No design documentation or source code comments are provided for a
complex algorithm.

(d) A fixed size array of length 10 is used to maintain the list of courses taken
by a student during one semester. The requirements are silent about the
maximum number of courses a student may take at any one time.

10.2 Effective and efficient testing

Testing is the process of deliberately trying to cause failures in a system in order
to detect any defects that might be present. As with all engineering activities,
efficiency and effectiveness are both important. To test effectively, you must use
a strategy that uncovers as many defects as possible. To test efficiently, you must
find the largest possible number of defects using the fewest possible tests. An
effective and efficient testing strategy is often called a high-yield strategy.

Black-box and glass-box testing
Most of the time, testers treat a system as a black box. This means they provide
the system with inputs and observe the outputs, but they cannot see what is

Pejorative words for bad things
There are a wide variety of words for ‘bad’ things that happen in software engineering, and the words
are often used with subtly different meanings.

In colloquial speech, ‘failures’ and ‘defects’ are often not distinguished from each other –
they are both simply called ‘bugs’ or ‘problems’. However, software developers should make
an effort to distinguish consciously between failures and defects. Doing so helps them to think
more clearly about the quality, or the lack of quality, in a system. It also allows them to
monitor and measure that quality, and thus improve both the product and the development
process.

In addition to meaning a ‘mistake’ made by a person, the word ‘error’ also has a second
meaning: the amount of deviation from the correct value in a numerical calculation, due to
rounding off or truncation. We will discuss such errors later in this chapter.  When a software
engineer makes an error, it is a ‘bad thing’; however, when a round-off error occurs, it is only
bad (i.e. a defect) if it is not anticipated and correctly handled.
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going on inside. In particular, they can see neither the source code, the internal
data, nor any of the design documentation describing the system’s internals.

An alternative approach to testing is to treat the system as a glass box. In glass-
box testing, the tester can examine the design documents and the code, as well
as observe at run time the steps taken by algorithms and their internal data. He
or she can therefore design tests that will exercise all aspects of each algorithm
and data structure. Glass-box testing is widely referred to as white-box testing or
structural testing; however, we prefer the term glass-box testing since the notion
of looking inside a glass box clearly provides a better metaphor.

Glass-box testing is more time-consuming than black-box testing, but
removes much of the guesswork, and allows the tester to be more thorough.
When performing glass-box testing, a tester can analyze the code to ensure that
his or her testing strategy has reached a targeted coverage of statements and
branches: the tester can ensure that, for example, 90 per cent of all statements
are executed and 80 per cent of all branches are taken.

Individual programmers often informally employ glass-box testing when they
are verifying their own code. It is only used as part of a formal testing process
when testing critical or complex components. Therefore, most of the techniques
we will discuss in this chapter are oriented towards black-box testing.

Example 10.1 Discuss how you would employ glass-box testing to test the run method of the
OCSF AbstractServer class found on the book’s web site (www.lloseng.com). 

Using glass-box testing means that you will base your testing strategy on the
actual implementation, rather than the requirements.

To help do this systematically, you can first draw a flow graph of the code as
shown in Figure 10.1. This graph has a node for all the possible places where the
code can make a branch (such as if statements, while statements and statements
that can throw an exception), the places where those branches can lead (the
bodies of loops, if or else clauses, and catch statements), and the places where
two separate paths come together (the statements after a loop or if-then-else
body, as well as finally clauses or the statements after catch clauses).

Properly handled exceptions are not failures
Object-oriented programs throw ‘exceptions’; these should not be confused with failures. In most
cases, exceptions are thrown in situations that are anticipated by programmers, such as reaching the
end of a file.

It is a failure, however, when an unexpected exception is thrown. The corresponding
defect is the absence of code to handle the exception. Even in these cases, though, it is better
that an exception is thrown, and debugging information captured, rather than the program
crashing with no clue as to what happened.

It is particularly bad practice to blindly catch all exceptions without justification; defects
can then remain hidden. In particular, code like the following should be avoided if possible:

try {...} catch(Exception e) {/* do nothing */}
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In Figure 10.1, we have labeled each node with a letter. This letter is also
shown as a comment in the code. We show calls to callback methods in
appropriate nodes.

Once you have a flow graph you must then choose from the following
strategies for glass-box testing:

■ Covering all possible paths. This is infeasible in graphs with loops since there
would be an infinite number of paths (i.e. repeatedly looping).

■ Covering all possible edges. This is probably the most efficient strategy. You
devise a sufficient set of tests to make sure that each of the outgoing edges of all
nodes is taken. The following tests would ensure edge coverage of Figure 10.1; a
black-box tester would most likely not be able to devise a similar set of tests.
The most difficult aspect of executing these tests is to force I/O exceptions to be
thrown at the correct time, as in tests 3 through 6. Bold text is used below to
show the first time a given edge is covered.

Figure 10.1 Flow graph of the OCSF AbstractServer run method. The code is extracted from 
that found on the book’s web site (http://www.lloseng.com)

A    enter / serverStarted

C   do / serverSocket.accept

D

F
enter / create

ConnectionToClient

E

J  enter / serverStopped

[readyToStop]

[IOException][InterruptedIOException]

[readyToStop]

[connectionFactory
           ==null]

[!readyToStop]

[IOException]

   readyToStop= false;
   serverStarted();     // A
   try
   {
     while(!readyToStop)  // B
     {
       try
       {
         Socket clientSocket = serverSocket.accept();  // C
         synchronized(this)
         {
           if (!readyToStop) // D
           {
             if (connectionFactory == null) {  // E
               new ConnectionToClient(         // F
                 this.clientThreadGroup, clientSocket, this);
             } else {
               connectionFactory.createConnection(    // G
                 this.clientThreadGroup, clientSocket, this);
             }
           }
         }
       }
       catch (InterruptedIOException exception) { }
     }
   }
   catch (IOException exception)
   {
     if (!readyToStop)   // H
     {
       listeningException(exception);  // I
     }
   }
   finally
   {
     readyToStop = true;  // J
     connectionListener = null;
     serverStopped();
   }

[IOException]

H

B

I  enter / listeningException

G
enter / create
using factory
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1. A-B-C-B-C-…-B-C-D-E-F-B-C-…-B-C-B-J: run the server, connect a
client, and send the stop command.

2. A-B-C-B-C-…-B-C-D-E-G-B-C-…-B-C-B-J: repeat the same sequence, but
this time use a connection factory.

3. A-B-C-B-C-…-B-C-H-I-J: same as 2, but force an I/O exception to occur
while accepting the connection.

4. A-B-C-B-C-…-B-C-D-E-G-H-J: same as 2, but force an exception to occur
during creation of the connection class (e.g. during stream creation); also
send the stop command at the same time so that path H-J is taken.

5. A-B-C-B-C-…-B-C-D-E-F-H-J: same as 4, but with a regular
ConnectionToClient.

6. A-B-C-B-C-…-B-C-D-B-J: same as 1, except send the stop command just
after the connection is accepted.

■ Covering all nodes. This is a less exhaustive, and therefore less effective
strategy. For example, in the above, tests 1, 3 and 4 together cover all nodes, but
the remainder are needed to cover all the edges.

Testing is like detective work
The job of the tester has certain similarities with that of the detective:

■ A detective must try to understand the criminal mind. Similarly, the tester
must try to understand how programmers, designers and users think, so as to
better find defects. For example, detectives know that criminals tend to
repeat certain patterns of behavior (their modus operandi); if detectives know
these patterns, they can more easily track down the criminals. Similarly,
testers know that software developers implement algorithms in certain ways
and tend to have habits that can lead to errors, and hence to defects. Testers
can uncover defects by anticipating typical errors made by developers. Testers
can also uncover defects by anticipating unusual things that users might try
to do.

■ Detective work is painstaking. The detective must not leave anything
uncovered, and must be suspicious of everything. Similar suspicion and
attention to detail are the hallmark of an effective tester. However, like
detective work, it does not pay to take an excessive amount of testing time –
as we mentioned earlier, both tester and detective have to be efficient.

Equivalence classes: a strategy for choosing what to test
Imagine you are asked to test a Java method validMonth that takes an int
argument that is supposed to correspond to a valid month. The method
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returns true if the input is in the range 1 to 12 inclusive, and false otherwise.
We will look at how you should test such a month-validation method to
make sure it behaves correctly.

To confirm correct behavior, it is equally as important to check that the
method returns false in the case of an invalid month, as it is to check that it
returns true in the case of a valid month.

One possible testing strategy would be to use brute force, i.e. to test the
method using every possible value of Java’s int datatype – all integers from -
231 to 231−1. Common sense, however, tells us that such testing of all
possibilities would not only take such a huge amount of time as to be
impractical, but would also be pointless. It would be pointless because any
given defect is likely to cause failures with many different input values. For
example, if a failure always occurs with input 243, then it is almost certain
that a failure will also occur with input 245. Hence you do not need to test
both values. Our knowledge of software design and programming tells us
that there is no reason to believe 243 and 245 would be treated any
differently by any reasonable algorithm that might be used to validate a
month number.

Therefore, in order to test efficiently, you should divide the possible inputs
into groups that you believe will be treated similarly by reasonable
algorithms. Such groups are called equivalence classes. A tester needs only to
run one test per equivalence class, using a representative member of that
equivalence class as input (plus boundary tests that we will discuss later).
For the month-validation problem, there are three equivalence classes, as
shown in Table 10.1.

As mentioned, determining equivalence classes helps the tester to do
efficient yet thorough black-box testing. However, determining the
equivalence classes is often not easy. The tester has to understand the
required input and the domain-specific rules that govern what input is
acceptable. Also, the tester has to have knowledge of computer science and
software design. For example, he or she would have to know about the ranges
of integer data types in order to determine the upper and lower bounds of
the two invalid equivalence classes in the month-validation problem.

Table 10.1 Equivalence classes for month validation, where the input value is a Java iiiinnnntttt

Equivalence class Range of values

Invalid – larger 13 to 231−1 (can be loosely expressed as 13 to ∝)

Valid 1 to 12 

Invalid – smaller −231 to 0 (can be loosely expressed as −∝ to 0 )
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Exercise

E194 Create a table of equivalence classes for each of the following single-input problems.
Some of these might require some careful thought and/or some research.
Remember: put an input in a separate equivalence class if there is even a slight
possibility that some reasonable algorithm might treat the input in a special way.

(a) A telephone number to be used by an automatic dialer.

(b) A person’s name (written in a Latin character set).

(c) A time zone, which can be specified either numerically as a difference from
UTC (i.e. GMT), or alphabetically from a set of standard codes (e.g. EST,
BST, PDT).

(d) The speed of a vehicle, which is a 3-digit integer. This may be followed by
the units ‘km/h’, ‘m/s’ or ‘mph’. ‘km/h’ is the default.

(e) A credit card number.

(f) An FM broadcast radio frequency.

(g) A URL. 

Combinations of equivalence classes
Imagine you are designing a system that is to contain information about all
kinds of land vehicles, including passenger vehicles and racing vehicles. Such a
system might require the user to enter specifications of a new type of vehicle.

Your job is to decide how to divide this system into equivalence classes for
testing. You are told that the user can enter the following data:

1. Whether the manufacturers give data about the vehicle in metric or traditional
(Imperial or US) units. The user selects this using pair of ‘radio buttons’. This
impacts how the rest of the data will be interpreted (two equivalence classes;
there is no possibility of invalid input).

2. Maximum speed, an integer ranging from 1 to 750 km/h or 1 to 500 mph (four
equivalence classes: [−∝..0], [1..500], [501..750], [751..∝]).

3. Type of fuel, one of a set of 10 possible strings that the user explicitly types (11
equivalence classes – the eleventh class is any string other than the 10 valid ones).

4. Average fuel efficiency, a fixed-point value with one decimal place, ranging
from 1 to 240 L/100 km or 1 to 240 mpg (three equivalence classes).

5. Time to accelerate to 100 km/h or 60 mph. This is a fixed-point value with one
decimal place, ranging from 1 to 100s (three equivalence classes).

6. Range, an integer from 1 to 5000 km or 1 to 3000 miles (four equivalence
classes: [−∝..0], [1..3000], [3001..5000], [5001..∝]).
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The first thing to notice is that each of the six inputs has its own set of equivalence
classes. A second thing to notice is that some of the inputs depend on the values of
others. In particular, the valid values for inputs 2 and 6 depend on whether metric
or traditional units has been specified as input 1. This adds an extra equivalence
class for inputs 2 and 6, giving them four each instead of three.

A string-valued input, such as input 3, would have just one equivalence class
if any arbitrary string were valid and no algorithm would actually try to process
the string. However, in the case of input 3, every legal value should be
considered a separate equivalence class because the tester must verify that the
designer has explicitly written code to recognize every valid type of fuel. Since
the user types strings, the program must do string comparisons to determine
which fuel type is entered; a common bug in the code would be to misspell one
of the fuel types in the code that makes the comparison.

The set of equivalence classes for the system as a whole is the set of all possible
combinations of inputs. The total number of equivalence classes for the system
is therefore the product of the number of classes of the individual inputs; in this
case 2×4×11×3×3×4 = 3168. Since, like this system, most systems have many
distinct inputs, the total number of system equivalence classes can become very
large. This is called a combinatorial explosion of the space of required tests.

The combinatorial explosion implies that you cannot realistically test every
possible system-wide equivalence class. A reasonable approach to testing is
therefore as follows. You should first make sure that at least one test is run with
every equivalence class of every individual input. Then you should also, where
possible, test all combinations where one input is likely to affect the interpretation
of another. Therefore, for example, you should use both metric and traditional
units (specified by input 1) when running tests for inputs 2 and 6.

Using the above strategy, the number of tests for the vehicles example can be
reduced to 11. You run one test for each equivalence class of input 3; while doing
this you also vary the eight possible combinations of inputs 1 and 2, the eight
combinations of inputs 1 and 6, and the three possible equivalence classes of the
other two inputs. You should test a few other random combinations of
equivalence classes.

In addition to testing representative values from each equivalence class, you
should also test values at the boundaries of equivalence classes. This is discussed
in the next subsection.

Exercise

E195 Describe a good set of equivalence class tests for the following situations:

(a) A personal information form that asks for family name, first name, date of
birth, street address, city, country, postal code and home telephone
number.

(b) The set of commands available in the client side of SimpleChat Phase 2.
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(c) The GANA system. Hint: inputs come from other places than just the user
interface. 

Testing at boundaries of equivalence classes
More errors in software occur at the boundaries of equivalence classes than in
the ‘middle’. For example, when testing a method that inputs an integer and
checks whether a valid day number has been entered for the month of
November, the valid equivalence classes are integers less than 1, integers from 1
to 30 and integers greater than 30. However, the most likely error is that the
number 31 is accepted as valid (i.e. the system treats it the same way as integers
from 1 to 30). Another common error might be the acceptance of zero as a valid
day number.

Therefore we should expand the idea of equivalence class testing to
specifically test values at the extremes of each equivalence class.

Exercise

E196 Expand each of your answers to include equivalence class boundary values that
should be tested. 

Detecting specific categories of defects
As mentioned earlier, a tester must act like a detective, trying to uncover any
defects that other software engineers might have introduced. This means not
only testing at equivalence classes and their boundaries, but also designing tests
that explicitly try to catch a range of specific types of defects that commonly
occur.

The next few sections give a non-exhaustive list of some of these most
common categories of defects. This list will help you to design appropriate test
cases. It will also be useful when designing software, since it will help you to
create designs that avoid these defects.

10.3 Defects in ordinary algorithms

The following subsections list some of the most common kinds of defects found
in all types of algorithms. In some cases, these algorithmic defects can be found
in the specification, but they are more often introduced by the designer or the
programmer.

Incorrect logical conditions

Defects The logical conditions that govern looping and if-then-else statements are
wrongly formulated. Sometimes a condition needs completely restructuring,
but often the defect is more subtle, such as nesting parentheses incorrectly,
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reversing comparison operators (e.g. > becomes < ), or mishandling the equality
case (e.g. >= becomes > or vice versa).

Testing

strategy

Use equivalence class and boundary testing. To compute the equivalence classes,
consider each variable used in the logical condition as an input.

Example Imagine that an aircraft’s alarm is supposed to sound if the landing gear is not
deployed when the aircraft is close to the ground. The specifications might state
this as follows: ‘The landing gear must be deployed whenever the plane is within
2 minutes from landing or take-off, or within 2000 feet from the ground. If
visibility is less than 1000 feet, then the landing gear must be deployed whenever
the plane is within 3 minutes from the landing or lower than 2500 feet.’ Note that
in this case a false alarm is just as bad as a failure of the alarm to sound when it
should.

Java code for the alarm might be written as follows (in deliberately bad style):

if(!landingGearDeployed &&
  (min(now-takeoffTime,estLandTime-now))<
    (visibility < 1000 ? 180 :120) ||
  relativeAltitude <
    (visibility < 1000 ? 2500 :2000)
  )
{
  throw new LandingGearException();
}

Unfortunately, this type of bad style that gives rise to defects is rather a common
practice. There is at least one critical defect in this code – see if you can
understand the code and find the defect. It is likely that a programmer might not
notice it due to the nested parentheses and the overall complexity of the
condition.

As shown in Table 10.2, the inputs are the variables used in the condition. The
total number of system equivalence classes in the aircraft example would be
3×3×3×2×2 = 108. Since this number is manageably small, and since this is a
safety-critical system, all the classes should be tested.

Figure 10.2 shows how the equivalence classes relate to each other. The gray
area indicates the classes where the alarm should sound if the landing gear is not
deployed. The most critical classes are those next to the boundary of the gray
area, each of which is marked with a letter. In these classes, a change in a single
variable can affect the outcome. Table 10.3 describes the equivalence classes we
need to test areas a and d.    

We also need to perform boundary tests for each of the equivalence classes.
For example, testing what happens if the visibility is zero, very close to 1000
feet, and unlimited. Particularly important boundary cases occur while the
plane is on the ground, since it is likely that special processing might take
place while there.
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Table 10.2 Equivalence classes of conditions that can lead to a decision about whether 
the landing-gear alarm should sound

Variable affecting condition Equivalence classes

Time since take-off 3: Within 2 minutes after take-off, 2–3 minutes
after take-off, more than 3 minutes after
takeoff

Time to landing 3: Within 2 minutes prior to landing, 2–3
minutes prior to landing, more than 3
minutes prior to landing

Relative altitude 3: < 2000 feet, 2000 feet to 2500 feet, 2500 feet

Visibility 2: < 1000 feet, 1000 feet

Landing gear deployed 2: true, false

Figure 10.2 Venn diagram, with shading showing situations where the landing gear must be 
down, and hence the alarm must sound if it is not down. Conversely, the alarm 
should never sound in the unshaded areas

Table 10.3 The eight system equivalence classes corresponding to the boundary between 
regions a and d of Figure 10.2

Flight stage Visibility Landing gear Required result

2–3 minutes after take-off ≤ 1000 ft Deployed No alarm

2–3 minutes prior to landing ≤ 1000 ft Deployed No alarm

2–3 minutes after take-off ≤ 1000 ft Not deployed No alarm

2–3 minutes prior to landing ≤ 1000 ft Not deployed No alarm

2–3 minutes after take-off < 1000 ft Deployed No alarm

2–3 minutes prior to landing < 1000 ft Deployed No alarm

2–3 minutes after take-off < 1000 ft Not deployed Alarm sounds

2–3 minutes prior to landing < 1000 ft Not deployed Alarm sounds

Ground

< 2 mins

2–3 mins after or prior
to takeoff

altitude
< 2000 ft

altitude 2000–2500 ft

a c

f

g

i

d

h

j

e

visibility < 1000 ft

b
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You might ask the question, how can I test a landing-gear system like this
since it is to be embedded in a real aircraft? The answer is that the alarm module
needs to be thoroughly tested in a simulated environment before being tested in
a real aircraft.

Exercises

E197 Write Java code for the aircraft landing-gear example and test it according to
the equivalence classes and boundary cases suggested. Record and fix any
defects. Note that to save time, you should write a program to test it
automatically (this is called a test harness). 

E198 Create tables that will help you test the conditions corresponding to the
following requirements.

(a) User C sends a message to A. The message must be forwarded from A to B
if the following are all true: 1) A has requested that his or her messages be
forwarded to B; 2) B is logged on; and 3) B has neither requested that
messages from A be blocked nor that messages from C be blocked.
Furthermore, if the message is declared to be an emergency message then
no blocking occurs.

(b) Applicants under the age of 18 should use form A, while those 18 or above
should use form B. However, disabled people of any age, except those on
social assistance, should use form C. People on social assistance should
complete form D in addition to either A or B. Senior citizens should
complete form E in addition to the other forms, unless they are on social
assistance or are living in a subsidized nursing home. Anybody who is not
disabled and not a senior citizen, and who earns over £15,000 per year,
should complete form F in addition to other forms.

(c) The navigation system must announce to drivers that they have to turn
onto a new road two minutes in advance of the required turn. Exceptions
arise in the following circumstances. Firstly, if a driver is still completing a
previous turn, then the warning of the new turn should be delayed until the
first turn is complete – although 15 seconds warning must still be given.
Secondly, in a city environment (where a driver driving at the speed limit
would encounter at least one possible turn every 30 seconds), the system
should warn the driver only 30 seconds before the turn is required.

(d) The burglar alarm system should sound the alarm immediately if a
movement of magnitude greater than 4 is detected while the alarm is
activated. An alarm should also sound if a movement of magnitude 3
persists for more than 5 seconds, or a movement of magnitude 2 persists
for more than 15 seconds. Additionally, an alarm should sound if the total
amount of magnitude 2 or 3 movement exceeds 30 seconds in any 2-minute
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period. If two or more sensors detect movement simultaneously, as might
be the case in an earthquake, then the above time-periods are doubled. The
alarm is never sounded within 1 minute of activation.

Performing a calculation in the wrong part of a control construct

Defect The program performs an action when it should not, or does not perform an
action when it should. These are typically caused by inappropriately excluding
the action from, or including the action in, a loop or if-then-else construct.

Testing

strategies

Design tests that execute each loop zero times, exactly once, and more than once.
Also, ensure that anything ‘bad’ or ‘unusual’ that could happen while looping is
made to occur on the first iteration and the last iteration.

This kind of defect is not always reliably caught using black-box testing; in
such cases glass-box testing or inspections may be more effective.

Examples The following Java code illustrates a typical case:

while(j<maximum)
{
  k=someOperation(j);
  j++;
}
if(k==-1) signalAnError();

In this case, signalAnError was supposed to be called if any of the calls to
someOperation resulted in a value of −1. Unfortunately, here it can only be called
following the last call to someOperation. The final line should therefore have been
placed inside a loop. This kind of defect may be missed if the loop normally
executes only once.

Another common type of control-construct defect occurs in the following
situation (using deliberately bad style):

if(j<maximum)
  doSomething();
if(debug) printDebugMessage();
else doSomethingElse();

Here, the lack of curly brackets and proper indenting has obscured the logic. A
programmer added the third line while debugging, but that means that while
not debugging, doSomethingElse() is always called, which was not intended.
Diligent testing should be able to detect this.

Not terminating a loop or recursion

Defect A loop or a recursion does not always terminate, that is, it is ‘infinite’.

Testing

strategies

Although the programmer should have analyzed all loops or recursions to
ensure they reach a terminating case, a tester should nevertheless assume that



 

Section 10.3 385Defects in ordinary algorithms

the programmer has made an error. The tester should analyze what causes a
repetitive action to be stopped, and should run test cases that the tester
anticipates might not be handled correctly.

Example Imagine that a program is supposed to count the total number of atoms in a
complex organic molecule. It might do this by starting at an arbitrary molecule
and traversing it from bond to bond, walking down each branch.

A tester might wonder, however, whether the algorithm would work correctly
if there were one or more circular structures in the molecule; he or she might be
suspicious that a circular structure could cause the algorithm to try to loop
forever, counting ever higher as it went round and round the molecule. Of
course, any reasonable programmer should also have thought of this situation,
but the tester must not trust this.

Not setting up the correct preconditions for an algorithm

Defect When specifying an algorithm, one specifies preconditions that state what must
be true before the algorithm should be executed. A defect would exist if a
program proceeds to do its work, even when the preconditions are not satisfied.

Testing

strategy

Run test cases in which each precondition is not satisfied. Preferably its input
values are just beyond what the algorithm can accept.

Example In the organic chemistry program, a precondition might be that the input is a
single molecule. The tester should therefore try to test by giving as input two
disjoint molecules.

Not handling null conditions

Defect A null condition is a situation where there normally exists one or more data
items to process, but sometimes there are none. It is a defect when a program
behaves abnormally when a null condition is encountered. In these situations,
the program should ‘do nothing, gracefully’.

Testing

strategy

Determine all possible null conditions and run test cases that would highlight
any inappropriate behavior.

Examples Imagine you want to calculate the average sales of members of each division in
an organization. But what if some division has no members? Perhaps they all
quit, or the division has just been formed and nobody has been hired. A typical
defect would be that this relatively unusual situation results in an attempt to
divide by zero (zero sales, divided by zero members).

As a related example, imagine you are asked to find the salesperson who has
sold the most in the above division. In attempting to perform this calculation,
an algorithm might loop zero times and hence never actually set the maximum
value, or leave it set to some arbitrary, but incorrect value.
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Not handling singleton or non-singleton conditions

Defect A singleton condition is like a null condition. It occurs when there is normally
more than one of something, but sometimes there is only one. A non-singleton
condition is the inverse – there is almost always one of something, but
occasionally there can be more than one. Defects occur when the unusual case
is not properly handled.

Testing

strategy

Brainstorm to determine unusual conditions and run appropriate tests.

Examples The following are two examples of these conditions:

❏ Imagine that in a web browser you can set up a series of ‘personal profiles’.
Each user of the computer has their own personal profile that includes their
name, bookmarks list, and ‘cookies’. Imagine you created a personal profile
under your name, ‘John Smith’. Later on you accidentally created another
profile, using the same name. Then you decided to get rid of one of the two
profiles; you therefore selected a profile and issued the ‘delete’ command.
Unfortunately, the deletion operation might assume that there can be only
one profile using a given name, so that it simply traverses the list of profiles,
deleting all the profiles by that name. The result? Both of the profiles are
deleted. Anticipating this kind of defect, a tester can enter several
identically-named profiles and make sure that only one is deleted.

❏ Imagine that a program is designed to randomly assign members of a sports
club into pairs who will play against each other. Does the program do
something intelligent with the left-over person when there is an odd
number of members? And what happens if there is only one member?
(Maybe the club should be disbanded, but it would still be best if the
program did not crash.)

Off-by-one errors

Defect A program inappropriately adds or subtracts 1, or inappropriately loops one too
many times or one too few times. This is a particularly common type of defect.

Testing

strategy

Develop boundary tests in which you verify that the program computes the
correct numerical answer, or performs the correct number of iterations.

Since graphical applications are common places where off-by-one errors are
found, study the display to see if objects slightly overlap or have slight gaps.

Examples Assuming 0-based indexing, as is the case in Java, then the following loop would
always skip the first element, and loop one too few times.

for (i=1; i<arrayname.length; i++) { /* do something */ }

If 1-based indexing had been used, as in some other programming languages,
then the code would inappropriately skip the last element. Note that the use of
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the Iterator class in Java helps prevent such coding defects, but the job of the
tester is to assume the worst and guess that designers have made errors like this.

Similar errors can occur when using a prefix operator instead of the postfix
operator in certain calculations. In the following example, the variable val is
probably being incremented too early, so that its initial value is not actually
passed to anOperation.

while (iterator.hasNext())
{
  anOperation(++val);
}

Operator precedence errors

Defect An operator precedence error occurs when a programmer omits needed
parentheses, or puts parentheses in the wrong place. Operator precedence errors
are often extremely obvious, but can occasionally lie hidden until special
conditions arise.

Testing

strategy

In software that computes formulae, run tests that anticipate defects such as
those described in the example below. However, code inspections, discussed
later, are likely to be better at catching this kind of defect.

Example A program may compute z+(x*y), when it was supposed to compute (z+x)*y. In
this case, the programmer probably wrote z+x*y and forgot that multiplication
takes precedence over addition. If z is normally zero, or all three variables are
normally 1, then this defect could remain hidden. Testing for errors like this
therefore means thinking carefully about which values of x, y and z to use.

Use of inappropriate standard algorithms

Defect An inappropriate standard algorithm is one that is unnecessarily inefficient or
has some other property that is widely recognized as being bad.

Testing

strategies

The tester has to know the properties of algorithms and design tests, such as
those in the following examples, that will determine whether any undesirable
algorithms have been implemented.

Examples There is not enough space in this book to discuss choice of algorithms and
algorithm analysis – that is the subject of separate books. Nevertheless, the
following are some bad choices of algorithms that testers should try to detect:

❏ An inefficient sort algorithm. The most classical ‘bad’ choice of algorithm
is sorting using a so-called ‘bubble sort’ instead of a more efficient approach
to sorting. A tester can test for such a defect by increasing the number of
items being sorted and observing how execution time is affected. A bad
sorting algorithm will increase with the square of the number of items – if
you double the number of items a bad sorting algorithm will take about four
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times as long. A better algorithm will normally increase much more slowly.
Imagine, for example, that you sort 10,000 items and notice that the system
takes 5 seconds. Then you double the number of items to 20,000. If a bad
algorithm were being used, you would expect the time to increase to about
20 seconds. On the other hand, if a better quality algorithm were being
used, you would expect sorting time to be instead about 11 seconds on
average, which is slightly more than double the time.

❏ An inefficient search algorithm. You would expect that searching through
a very large list of sorted items should be done quite rapidly. You can test for
this in a similar manner to testing for an inefficient sort algorithm. Ensure
that the search time does not increase unacceptably as the list gets longer.
Also check that the position in the list of the item you are looking for does
not have a noticeable impact on search time.

❏ A non-stable sort. A non-stable sort will take equal elements and
sometimes switch their order after the sorting process. For example,
imagine that you start with a list of people ordered alphabetically by their
name. If you now sort the people alphabetically by city, you would normally
want to see the people in each city still sorted by name. A tester should
therefore deliberately run an experiment like this to see if the results are as
expected. A non-stable sort would make the names of people in each city
appear randomly, or at best imperfectly ordered.

❏ A search or sort that is case sensitive when it should not be, or vice versa.
The tester should test algorithms with mixed-case data to see if the
algorithm behaves as expected.

Note that the first two types of inappropriate algorithm will only be noticed by
users when the amount of data to be handled is very large. In either of these
cases, if only a few dozen items are ever likely to be in a list, then the tester need
not worry about the algorithm.

Exercise

E199 Java has a built-in sorting capability, found in classes Array and Collection. Test
experimentally whether these classes contain efficient and stable algorithms. 

10.4 Defects in numerical algorithms

Numerical computation defects are a special class of algorithmic defect. They
can occur in any software that performs mathematical calculations, especially
calculations involving floating point values. Whole books are devoted to
numerical algorithms; the following are some of the typical classes of defects
that testers should try to find.
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Not using enough bits or digits to store maximum values

Defect A system does not use variables that are capable of representing the largest
possible values that could be stored. When the capacity of a data type is
exceeded, an unexpected exception might be thrown, or else the data may be
stored incorrectly.

Testing

strategies

Test using very large numbers to ensure that the system has a wide enough
margin of error.

Example Imagine that you were going to be storing the monthly salary of an employee in
a short integer (whose value ranges up to 32765). Although this limit would
work for most employees, failures would occur in the case of a) highly-paid
executives, b) a period of high inflation, or c) a foreign currency that has
previously experienced high inflation and now uses very large numbers for
ordinary transactions.

Using insufficient places after the decimal point or too few significant figures

Defects This problem occurs with floating point or fixed-point values. A floating-point
value might not be ‘wide’ enough to store enough significant figures. A fixed-point
value might not store enough places after the decimal point. These defects force
the system to round excessively, which can mean that data is stored inaccurately
and can also lead to a build-up of errors as discussed in the next defect category.

Testing

strategies

Perform calculations that involve many significant figures, and large differences
in magnitude. Verify that the calculated results are correct in such cases.

Example Imagine an investment application that tracks a portfolio of shares. Typical
shares are quoted using three or four significant digits, hence, prices might be
$135.5 or $33.16. However, if a share ‘crashes’ in value for some reason, it might
drop to only a few cents. In such a case, your system might have to record its
value as $0.0344. If your system were only able to record values to two decimal
places after the point, then it could not correctly manipulate such stocks.

Ordering operations poorly so that errors build up

Defects This defect occurs when you do small operations on large floating-point
numbers, and excessive rounding or truncation errors build up. In particular, if
you take a very large floating-point number, for example 3.54×1028, and add or
subtract a very small number from it, for example 1, then the answer will be
exactly equal to the large number. This is because the large floating-point
number does not store enough significant figures for the operation to have any
effect on it. It is not, per se, a defect that this occurs. However, it is a defect if the
programmer intended the large number to be modified. Although the above
example was an extreme case, this kind of defect can also occur in less obvious
situations, as illustrated in the examples below.
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Testing

strategies

If a numerical application is designed to work with floating-point numbers,
then make sure it works with inputs that vary widely in magnitude, including
both large positive and large negative exponents. Pay particular attention to the
accuracy of the result when a floating-point value is being repeatedly
decremented or incremented by small amounts.

Examples Imagine a fictitious processor that stored only four significant figures. Now
imagine you stored the value 9876 in a variable and wanted to subtract the
following values from it: 0.42, 0.35, 0.27 and 0.47. If you subtracted these values
from 9876 one after the other, the result would remain 9876. This is a defect
because you know that subtracting any very small value from 9876 will always
result in 9876, to four decimal places. On the other hand, if you perform the
calculation by first adding the small values to each other (result = 1.51) and then
subtracting this from 9876, the result will be 9874, which is correct.

A similar example: imagine you are adding a large number of small credits to
an account. If the account’s total were in the thousands of dollars, you might
always round it to the nearest dollar. However, in this situation, small
transactions of a few cents would never affect the account balance.

Assuming a floating-point value will be exactly equal to some other value

Defect If you perform an arithmetic calculation on a floating-point value, then the
result will very rarely be computed exactly. It is therefore a defect to test if a
floating-point value is exactly equal to some other value. You should instead test
if it is within a small range around that value.

Testing

strategies

Standard boundary testing should detect this type of defect.

Example The following is at risk of resulting in an infinite loop, since d may never equal
precisely 10.0, but may instead equal 9.99999999999 after 10 iterations.

for (double d = 0.0; d != 10.0; d+=2.0) {...}

The correct expression should have been:

for (double d = 0.0; d < 10.0; d+=2.0) {...}

Exercise

E200 Describe the type of numerical defects present when the following are
implemented in a program. Assuming you did not actually know the
implementation, describe how you would attempt to detect such defects.

(a) double x, y;... if(x/3.0 == y) {...}

(b) int totalCorporateAssets; // In Euros

(c) short priceOfOil; // In US 10ths of a cent per gallon
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(d) You run a web site that implements micro-payments; it charges users a
third of a cent for every page click. You accumulate each client’s bill in an
integer where each unit represents a 10th of a cent. However, you record
the money earned by each page in a float value. 

10.5 Defects in timing and co-ordination: deadlocks, livelocks and critical races

Timing and co-ordination defects arise in situations involving some form of
concurrency. They occur when several threads or processes interact in
inappropriate ways. In this section we will use the word ‘thread’ to mean both
‘thread’ and ‘process’.

The three most important kinds of timing and co-ordination defects are
deadlocks, livelocks and critical races. Ways to design software so as to avoid
these situations are discussed in books on real-time and concurrent software.
Here we present the concepts of these defects and some thoughts about how to
test for them.

Deadlock and livelock

Defects A deadlock is a situation where two or more threads or processes are stopped,
waiting for each other to do something before either can proceed. Since neither
can do anything, they permanently stop each other from proceeding. A classic
example of real-life deadlock is the ‘gridlock’ sometimes encountered in busy
cities. This is illustrated in Figure 10.3. Vehicles waiting to move in one direction
hold up vehicles waiting to travel in other directions; however, each set of
vehicles is ultimately delaying itself. Everybody therefore waits indefinitely.

As a software example of deadlock, imagine that thread A is waiting to access
object O. Object O is locked by thread B, perhaps using Java’s synchronization
mechanism. Thread B, however, might be waiting to access object P, which is in turn
locked by thread A. Neither thread can ever continue its work unless some outside
thread forces a break in the deadlock. This situation is illustrated in Figure 10.4.     

Figure 10.3 Two examples of gridlock: a form of deadlock



 

392 Chapter 10
Testing and inspecting to ensure high quality 

Livelock is similar to deadlock, in the sense that the system is stuck in a
particular behavior that it cannot get out of. The difference is as follows: whereas
in deadlock the system is normally hung, with nothing going on, in livelock, the
system can do some computations, but it can never get out of a limited set of
states.

The left part of Figure 10.5 shows livelock in traffic. Several cars are trapped
in a grid of one-way streets, in which some directions are blocked, perhaps by
accidents or road construction. The cars can keep moving round and round in
circles, but they cannot go anywhere outside of the loop.

The right part of Figure 10.5 shows a livelock situation in a state diagram.
There are several transitions leading into states A and B; but once there, the
system can only alternate backwards and forwards between the two states.

Both deadlocks and livelocks can appear as ‘hung’ systems. The difference is
that in livelock the system can continue to consume CPU time. When you
encounter a hung system it is certainly a failure, but it is not necessarily caused
by a deadlock or livelock: the hang could result from a single thread waiting for
an unavailable resource, an infinite loop, or a crash. Also, not all deadlocks and
livelocks will completely hang a system, since other threads may still be running.

Testing

strategies

Deadlocks and livelocks tend to occur as a result of unusual combinations of
conditions that are hard to anticipate or reproduce. It is often most effective to
use inspection to detect such defects, rather than testing alone. There are some

Figure 10.4 A deadlock situation in software
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tools that can be used to detect deadlock potential, but these are beyond the
scope of this book.

Whether testing or inspecting, a person with a background in real-time
systems should be employed – such a person can apply his or her knowledge and
experience to best anticipate timing and co-ordination defects.

If its cost is justifiable, glass-box testing is one of the best ways to uncover
these defects, since you can actually study the progress of the various threads.

If black-box testing is the only possibility, then you can try some of the
following tactics:

❏ Vary the time consumption of different threads by giving them differing
amounts of input, or running them on hardware that varies in speed.

❏ Run a large number of threads concurrently.

❏ Deliberately deny resources to one or more threads (e.g. temporarily cut a
network connection, or make a file unreadable).

Critical races

Defects A critical race is a defect in which one thread or process can sometimes
experience a failure because another thread or process interferes with the
‘normal’ sequence of events. The defect is not that the other thread tries to do
something, but that the system allows interference to occur. Critical races are
often simply called ‘race conditions’, although the word ‘critical’ should be used
to distinguish a defect from a race that has no bad consequences.

One type of critical race occurs when two processes or threads normally work
together to achieve some outcome; however, if one is sped up or slowed down
then the outcome is incorrect. This is illustrated in Figure 10.6, where in the
abnormal case the data is read by thread B before it is created by thread A.

A second type of critical race occurs when one thread unexpectedly changes
data that is being operated on by another thread, resulting in incorrect results.
This is illustrated in Figure 10.7.

Designers can prevent critical races by using various mechanisms that allow
data items to be locked so that they cannot be accessed by other threads when
they are not ready. One widely used locking mechanism is called a semaphore.

(a) (b)

Figure 10.6 A critical race situation caused by a change in speed of execution
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In Java, the synchronized keyword can be used to ensure that no other thread can
access an object until the synchronized method terminates.

Unfortunately, overuse of locking can result in deadlocks or livelocks.
Locking can also dramatically slow performance since it takes a lot of extra work
to manipulate and check the locks.

Testing

strategies

Testing for critical races is done using the same strategies as testing for
deadlocks and livelocks. Once again, inspection is often a better solution.

It is particularly hard to test for critical races using black-box testing alone,
since you often do not know the extent of the concurrency going on inside the
system, and you cannot always manipulate the various threads to cause race
conditions. The timing differences that can give rise to problems can be on the
order of milliseconds. Therefore, even if you detect a critical race during testing,
you may not be able to reproduce the problem reliably. One possible, although
invasive, strategy is to deliberately slow down one of the threads by adding a call
to the sleep method.

Exercise

E201 Write a short program to generate a critical race situation. Your program will
start two threads that sleep for a random amount of time and then do a
calculation based on a stored value. They also update the stored value. The
result of the calculations should be different depending on which thread sleeps
for the longest period of time. This exercise is designed to heighten your
awareness of critical races, not to teach you good practice! 

10.6 Defects in handling stress and unusual situations

The defects discussed in this section are encountered only when a system is
being heavily used, or forced to its limits in some other way. These defects
represent a lack of robustness. To test for such defects you must run the system

(a) (b)

Figure 10.7 A critical race situation caused by a second thread unexpectedly accessing non-
synchronized data
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intensively, supply it with a very large amount of input, run many copies of it,
run it on a computer or network that is busy running other systems, and run it
in atypical environments.

The following subsections give some of the most important categories of
stress defects. Many of the kinds of defects discussed here are not explicitly
discussed in typical requirements documents. However, they should be in the
requirements since designers need to arrange explicitly for them to be handled,
and testers need to write test cases for them.

Insufficient throughput or response time on minimal configurations

Defect A minimally configured platform is one that barely conforms to the
environment specified in the requirements. It has exactly the minimum amount
of memory and disk space specified, the slowest CPU, the oldest permitted
release of the operating system and other support software, as well as the slowest
allowed network connection.

It is a defect if, when the system is tested on a minimal configuration, its
throughput or response time fails to meet requirements.

Testing

strategy

Perform testing using minimally configured platforms. For extra reliability, you
could test the system in an environment that has a configuration that is worse
than the minimum. In such conditions, it should report that it could not run
properly.

Incompatibility with specific configurations of hardware or software

Defect It is extremely common for a system to work properly with certain
configurations of hardware, operating systems and external libraries, but fail if
it is run using other configurations.

Testing

strategy

Extensively execute the system with a wide variety of configurations that might
be encountered by users. By a ‘configuration’ we mean a particular combination
of hardware, operating system and other software.

Examples A system might fail if a different graphics card is installed, if certain fonts are
missing, or a newer or older version of a web browser is installed.

Defects in handling peak loads or missing resources

Defects If a computer becomes short of resources such as memory, disk space or
network bandwidth, then programs cannot be expected to continue running
normally. However, it is a defect if the system does not gracefully handle such
situations.

Other types of shortage of resources include missing files or data, lack of
permission to perform certain operations, inability to start new threads, or
running out of space in a fixed size data structure. Such problems might be
temporary, resulting from a peak in the workload of the software system, of the
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computer or of the network. On the other hand, the problem might be more
permanent, resulting from a failure of some other system.

No matter what the cause, the program being tested should report the
problem in such a way that the user will understand. It should then either wait
for the problem to be resolved, terminate gracefully or deal with the situation in
some other sensible way.

Testing

strategies

In any of these cases, the tester has to deny the program under test the resources
it normally uses, by employing such methods as deleting files, concurrently
running other resource-hungry programs, making less memory available, or
disconnecting the system from the network. The tester can also run a very large
number of copies of the program being tested, all at the same time. To do this
effectively, you have to write a special program called a load generator that
constantly provides input to the system. Load generators are available
commercially.

Inappropriate management of resources

Defect A program does not manage resources effectively if it uses certain resources but
does not make them available to other programs when it no longer needs them.

Testing

strategy

Run the program intensively over a long period of time in such a way that it uses
many resources, relinquishes them and then uses them again repeatedly.

Examples A program might open many files, but not close them so as to enable other
programs to open them. Or a program might abusively consume a very large
amount of bandwidth on a network.

A memory leak is a special case of in-appropriate management of resources.
Programs written in C, C++ and certain other languages can request memory
but not release it when it is no longer needed. If this occurs repeatedly and a
program runs for an extended period of time, the computer can eventually
begin to perform poorly or even run out of memory. To detect a memory leak,
a tester has to run a program for an extended period, and use a utility (see the
sidebar) that indicates the amount of memory being used. If the amount of
memory steadily increases, this suggests that a memory leak is present.

Although memory leaks are a widespread problem in languages such as C++,
you can also get a similar effect in Java if you add objects to an instance of some
collection class, and then do not remove them when no longer needed – the
garbage collector only removes objects that are not referenced by any other
object.

Defects in the process of recovering from a crash

Defects Any system will undergo a sudden failure if its hardware fails, or if its power is
turned off. When this occurs, it is a defect if the system is left in an unstable state
and hence is unable to recover fully once the power is restored or the hardware
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repaired. It is also a defect if a system does not correctly deal with the crashes of
related systems.

Testing

strategies

An approach for testing for defects in the recovery process is to kill either your
program or the programs with which it communicates, at various times during
execution. You could also try turning the power off; however, operating systems
themselves are often intolerant of doing that.

Examples Unstable states occur when data is half-written, or if a client program does not
detect that a server has been restarted.

It is often permissible for a system that recovers from a catastrophic failure to
lose the data that was in the process of being entered. However, any earlier
transactions should be fully recoverable.

Exercises

E202 Run the SimpleChat server (Phase 3 or higher) and connect a few clients to it.
Then make the passwords.txt file write-protected so that the server cannot
register new clients. Try to connect a new guest client. Does the server react in
a sensible way? 

E203 If you were designing the following types of software, what stress tests and
unusual situations should you subject the system to?

(a) A new web browser.

(b) A flight simulator.

(c) The SimpleChat system.

(d) The GANA navigation system. 

How to determine if a program has a memory leak
The most definitive way to determine whether a program has a memory leak is to run it for a period
of time and watch how much memory it uses. If the amount of memory steadily increases, yet the
application is not dealing with larger volumes of data, then there is probably a leak.

Most computers allow you to study the memory usage of a computer in detail. On Unix,
Linux, and Mac OS X you can type ppppssss    ----aaaauuuuxxxx or ttttoooopppp in a terminal window to get memory usage
data. You can also find out the complete memory map of a process using ppppmmmmaaaapppp on Solaris
systems. Several programs are available to do similar things in the Windows environment.

Besides the above, there are also software libraries that you can link with C or C++ code
that replace the normal memory management utilities.  These will allow you to obtain a listing
of all blocks of allocated memory and make leaks easier to find.  An example of such a package
is Purify from IBM Rational Software http://www.ibm.com/software/awdtools/purify/.
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10.7 Documentation defects

In the previous sections we have discussed how to detect classes of defects that
arise from errors on the part of designers. However, we pointed out at the
beginning of the chapter that a failure occurs any time a user has difficulty – and
one source of difficulty is using the documentation. You therefore need to ‘test’
the documentation carefully.

Defect The software has a defect if the user manual, reference manual or online help
gives incorrect information or fails to give information relevant to a problem.

Testing

strategy

Examine all the end-user documentation (in both paper and online forms),
making sure it is correct. In particular, make sure it has correct solutions to
problems that users might encounter, and correct instructions to help beginners
learn how to use the software. Work through the use cases, making sure that
each of them is adequately explained to the user. You should use the strategies
we discussed in Chapter 7 for evaluating usability: ask users to read the
documentation and tell you what they do not understand or do not like.

10.8 Writing formal test cases and test plans

A test case is an explicit set of instructions designed to detect a particular class
of defect in a software system, by bringing about a failure.

A test case can give rise to many tests. Each test is a particular run of the test
case on a particular version of the system.

A test plan is a document that contains a complete set of test cases for a system,
along with other information about the testing process. The test plan is one of
the standard types of documentation that should be produced in most software
engineering projects. If a project does not have a test plan, then testing will
inevitably be done in an ad-hoc manner, leading to poor quality software.

The test plan should be written long before the testing starts. You can start to
develop the test plan once you have developed the requirements. A set of use
cases can help you design test cases, as discussed in Chapter 4.

Information to include in a formal test case
Each test case should have the following information:

A. Identification and classification. Each test case should have a number, and
may also be given a descriptive title that indicates its purpose. The system,
subsystem or module being tested should also be clearly indicated, with a
reference to the related requirements and design documents. Finally, the
importance of the test case should be indicated, as discussed in the next
subsection.

B. Instructions. These tell the tester exactly what to do. The instructions must tell
the tester how to put the system into the required initial state and what inputs
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to provide. The tester should not normally have to refer to the specifications or
to any other documentation in order to execute the instructions.

C. Expected result. This tells the tester how the system should behave in response
to the instructions – i.e. what it should output and what state it should then be
in. The tester reports a failure if he or she does not encounter the expected
result.

D. Cleanup (when needed). This tells the tester how to make the system go ‘back
to normal’ or shut down after the test. For example, if a test case requires that
some erroneous data be added to a database, then the cleanup section of the
test case would require that the data be deleted (or that the database be
reloaded from a backup) so as not to disrupt future tests.

Test cases can be organized into groups or tables, and some of the classification
information and instructions can be associated with an entire group, rather than
repeated for each test case.

It is becoming increasingly common to completely automate the testing
process. Each test case then may become a method that throws an exception if
the test fails. The same information described above would still be needed; for
example, the test case method would need to report an identification of what
failed.

Levels of importance of test cases
It is a good idea to classify test cases according to their importance, or severity
level. The most important test cases are executed first, and are designed to detect
the most severe classes of defect. A typical scheme for levels of importance is as
follows, although each organization may develop its own scheme:

Level 1 First pass critical test cases. These are designed to verify that the system runs
and is safe. Any level 1 failure normally means that no further testing is
possible.

Level 2 General test cases. These verify that the system performs its day-to-day
functions correctly and is therefore a ‘success’. A level 2 failure, while important
to fix, may still permit testing of other aspects of the system to continue in the
meantime.

Level 3 Test cases of lesser importance. For example, these may test ‘cosmetic’ aspects
of the user interface such as the whether a button or
menu item is ‘grayed out’ when it cannot be used. If
desired, level 3 test cases can also be used to provide
some redundancy – for example, extra testing of
additional combinations of input. If there are many
failures of level 3 test cases then the system can
probably be used, but is lacking in overall quality.

JUnit
JUnit is a Java framework
for automated testing. It
is becoming widely used
among Java developers.
See http://junit.org.
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Determining test cases by enumerating attributes

It is important that the test cases test every aspect of the requirements. Each
detail in the requirements is called an attribute – an attribute can be thought of
as something that is testable. A good first step when creating a set of test cases is
to enumerate the attributes.

A simple approach to enumerating attributes is to circle all the important
points in the requirements document. However, there are often many attributes
that are implicit. For example, the requirements may simply state that the look
and feel of a program will conform to Microsoft Windows look and feel
guidelines. That means that the guidelines contain hundreds of implicit
attributes to be tested. The requirements may be silent about all the various
versions of software and hardware on which the system should run, and will
probably not mention that the program should have no memory leaks.
Nevertheless, these should be considered attributes, since a good test plan will
include test cases to detect these situations.

Structuring the requirements as a set of use cases (using the format discussed
in Chapter 4) can often make the explicit attributes easy to determine. For
example, the system’s responses to each step performed by the user become
attributes, as do the postconditions. Since exceptional situations are listed as
separate use cases, these give rise to their own sets of attributes.

Once you have determined the attributes, the next thing to do is to think of all
the various tests you need to create to actually test the attributes. You will need
to consider equivalence class and boundary tests, as well as tests that try to
discover the sets of defects discussed in the last few sections.

Example 10.2 Create a list of attributes for the following example: a dialog box is to be displayed
when the user quits an email program before sending a message he or she is
composing. The dialog is to say, ‘You have not yet sent your mail, do you want to
send it before quitting?’ The user has the option of selecting, ‘Cancel’, ‘Send then
quit’, or ‘Quit without sending’. The last is the default. 

Here are some of the testable attributes of this example. Most of these are
implicit. These would expand into a much longer list of test cases.

■ Are the three buttons lined up at the bottom of the screen?

■ Does the dialog box follow the standard appearance of the platform?

■ Is the ‘Quit without sending’ button darkened, indicating that it is the default,
and is its action taken when the user hits the return key?

■ Can the user (in Windows) press the ALT key plus a letter to invoke any of the
options without the mouse?

■ Does the dialog box fail to appear when the user quits while not in the middle
of composing mail?
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■ Does the dialog box appear when the user has just started composing mail, but
has not yet typed anything? (The requirements need clarifying about this –
note that it is not sensible to actually send such a message.)

■ Are ‘tool tips’ displayed when the user passes the mouse over each button?

■ When each button is clicked, does it do what it says it will do?

■ Does the system behave reasonably when the user selects ‘Send then quit’, but
the system encounters an error when trying to send (the requirements are
unclear whether the quitting is abandoned or not)?

■ Does the system behave reasonably if the user tries to switch to another
program while this dialog is displayed?

■ Does the system behave reasonably when the dialog box is brought up and
dismissed many times (this helps detect memory leaks)?

Example 10.3 Discuss the attributes that will need to be tested to test a method with the
following specification: method mutPrime(x,y) takes two int values and returns
true if x and y are mutually prime (have no common divisors except 1 ) and
returns false otherwise. 

It will be necessary to test situations in which either or both of x and y are a)
equal to one, b) equal to zero, c) negative, d) prime, e) non-prime, but mutually
prime with respect to the other, and f) non-mutually-prime. 

Exercises

E204 Write four complete test cases for each of the testing situations listed in
Exercise E198. 

E205 Expand Table 10.3 into a complete test plan.

Test-first development
It has always been recommended to develop test cases well before testing starts.
However, there is a trend now towards developing test cases even earlier, and
using the process to drive design and programming. This is particularly popular
when following an agile process.

In test-first development you first write an automated set of tests for the next
iteration of development. Then you design and write the code such that the tests
will pass. The tests are therefore basically a re-stating of the requirements in an
automated, testable form. In agile test-first development, the tests may actually
be the only way that the requirements are stated in detail. 
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A recommended practice in test-first development is to run the test cases
prior to developing the code. This helps test the test cases themselves – they
should all, of course, fail at this point.

A key advantage of test-first development is that writing the automated tests
helps ensure the requirements are properly understood.

10.9 Strategies for testing large systems

In the earlier sections we have discussed the kinds of defects to find, as well as
how to write clear and effective test cases. But what strategy should you use to
test an entire system that has many subsystems and thousands of test cases? In
this section we discuss several approaches to testing such a system.

Integration testing: big bang versus incremental approaches
Testing how the parts of a system or subsystem work together is commonly
called integration testing. It can be contrasted with unit testing, which is testing
an individual module or component in isolation.

The simplest approach to integration testing is big bang testing. In this
approach, you take the entire integrated system and test it all at once. This
strategy can be satisfactory when testing a small system; however, when a
failure occurs while testing a larger system, it may be hard to tell in which
subsystem a defect lies.

Testing programs versus proving programs correct
When engineering artifacts are built, engineers try to use analysis techniques to prove that they will
behave as expected.  As engineering has advanced, engineers have learned increasingly sophisticated
analysis techniques. In the early days of aviation, for example, it was essential to experiment with and
extensively test new aircraft to make sure they flew properly.  Today, we understand how to analyze
and simulate aerodynamics so well that engineers can be confident that a new aircraft will fly properly
when it first takes off.  Some testing is still performed in case the analytical and simulation techniques
(or control software) have defects, but the time and cost to test a new aircraft is greatly reduced.

Many people yearn for the day when we will be able to use similarly powerful analytic
techniques to prove that software adheres to its specifications, and that we will thus be able
to reduce the need for software testing. In fact, there are tools that allow you to prove certain
assertions about programs, although there are some things that cannot be completely proved,
such as whether an arbitrary program will terminate.

However, economics dictate that the extra effort to prove most programs correct is
currently not worth the benefits. This is because the analytic techniques for software are
labor-intensive, and testing is relatively cheap. This contrasts with testing aircraft, where a
failure results in an expensive crash. Formal proof techniques should, however, be used for
safety-critical software – such as an aircraft’s control software.
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A better integration testing strategy in most cases is incremental testing. In this
approach, you first test each individual subsystem in isolation, and then
continue testing as you integrate more and more subsystems.

The big advantage of incremental testing is that when you encounter a failure,
you can find the defect more easily. You know it is most likely to be in the
subsystem you most recently added.

Incremental testing can be performed horizontally or vertically, depending on
the architecture of the system. Horizontal testing can be used when the system
is divided into separate sub-applications, such as ‘adding new products’ and
‘selling products’; you simply test each sub-application in isolation. However, for
any sub-application that is complex, it is necessary to divide it up vertically into
layers.

There are several strategies for vertical incremental testing: top-down,
bottom-up and sandwich. The various strategies are illustrated in Figure 10.8.

Top-down testing

In top-down testing, you start by testing only the user interface, with the
underlying functionality simulated by stubs. Then you work downwards,
integrating lower and lower layers, each time creating stubs for the layers that
remain un-integrated. As you integrate each lower layer, you test the system again.

Stubs are pieces of code that have the same interface (i.e. API) as the lower-level
layers, but which do not perform any real computations or manipulate any real
data. Any call to a stub will typically immediately return with a fixed default value.

If a defect is detected while performing top-down testing, the tester can be
reasonably confident that the defect is in the layer that calls the stubs. It could
also be in the stubs, but that is less likely since stubs are so simple.

Figure 10.8 Vertical strategies for incremental integration testing
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The big drawback to top-down testing is the cost of writing the stubs.
However, there are a few automated testing tools that can help generate skeleton
code for stubs, relieving the software engineer of some of the tedium of writing
them.

Bottom-up testing
To perform bottom-up testing, you start by testing the very lowest levels of the
software. This might include a database layer, a network layer, a layer that
performs some algorithmic computation, or a set of utilities of some kind.

You need drivers to test the lower layers of software. Drivers are simple
programs designed specifically for testing; they make calls to the lower layers.
Drivers in bottom-up testing have a similar role to stubs in top-down testing,
and are time-consuming to write. A driver that fully automates the testing of
lower layers is called a test harness.

Example 10.4 Drivers to test OCSF. 

Because of the infinite number of possibilities in the chaining of events, writing
a complete set of independent test cases that would exhaustively test the OCSF
framework is not possible. The glass-box testing described in Example 10.1 tests
several crucial aspects of the framework that might not be thought of in black-
box testing. But, as mentioned in that example, it is impossible to cover all paths
using glass-box testing. Also, timing and co-ordination failures are more likely
to occur under stress situations where several clients are connected; therefore
the robustness of the server in these cases has to be assessed.

We have therefore written a test harness consisting of two drivers. This
simulates a SimpleChat session where several clients connect to the server and
exchange messages. These drivers bypass the user interfaces normally used by
end users. They automate the execution of several timing, co-ordination and
stress test cases.

On the server side, the EchoServer class written using OCSF is put under the
control of the first driver. This driver simply calls the service methods, causing
the server to transition from one state to another (see Figure 3.3 on page 82). It
uses the following sequence of actions in order to take all possible transitions:
Listen–Close–Listen–Stop–Close–Listen–Stop. This sequence is infinitely
repeated, the server staying in each state for a random period of time. A
complete log of all server actions, including any exceptions thrown, is displayed
for the tester. 

The role of the second driver is to randomly generate and control a set of
clients. A Frame containing information about each created client is displayed on
a grid (Figure 10.9). At random intervals, the client driver takes one of the
following actions:

■ It creates a new client and connects it to the server. Information about this
client is put in a panel of the grid that is not already running a client.
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■ It randomly selects a client and makes it send a message (the simple string
‘Message from X’, where X is the grid number).

■ It disconnects a random client.

Figure 10.9 is a snapshot of the client driver window. A color convention has
been used to help identify each client’s state (although the colors are shown here
using shades of gray).

At the time the snapshot was taken, six clients were simultaneously connected
– these are shown in medium-gray. The panels in dark gray correspond to
clients that have been killed by the server. The panels in light gray show other
situations such as when the client closed itself, or unsuccessfully attempted to
connect. Any exceptions thrown by the OCSF AbstractClient class while trying
to connect, disconnect or send messages are also displayed in the corresponding
panel.

To perform a more severe stress test, the client side of this testing system
should be run simultaneously on several machines. The two drivers can be
found on the book’s web site (www.lloseng.com). You should experiment with
these to learn about how to write and use test drivers.

Sandwich testing
Sandwich testing is a hybrid between bottom-up and top-down testing – it is
sometimes therefore called mixed testing. A typical approach to sandwich testing
is to test the user interface in isolation, using stubs, and also to test the very lowest-
level functions, using drivers. Then, when the complete system is integrated, only
the middle layer remains on which to perform the final set of tests.

Figure 10.9 Test driver for the OCSF client
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For many systems, sandwich testing will be the most effective form of
integration testing.

The test–fix–test cycle and regression testing
When a failure occurs during testing or after deployment, most organizations
follow a carefully planned process. Each failure report is entered into a failure
tracking system. It is then is screened and assigned a priority. It is often too
expensive to fix every defect, therefore low-priority failures might be put on a
known bugs list that is included with the software’s release notes. Some failure
reports might be merged if they appear to result from the same defects.

When a decision is made to resolve a failure, somebody is assigned to
investigate it, track down the defect or defects that caused it, and fix those
defects. Finally a new version of the system is created, ready to be tested again.

Unfortunately, there is a high probability that efforts to remove defects will
actually add new ones – either because the maintainer tries to fix problems
without fully understanding the ramifications of the changes, or because he or
she makes ordinary human errors. This phenomenon is known as the ripple
effect, because new defects caused by erroneous fixes of other defects tend to
spread through a system like a ripple. The system regresses into a more and
more failure-prone state.

You can minimize the ripple effect by applying a very disciplined approach to
the process of fixing defects. For example, you can perform impact analysis to
carefully explore and document all possible effects of a change. You can then
have others inspect each change before it is made. However, experience shows
that the ripple effect will still persist if you do not have an appropriate testing
strategy.

After making any change, you must therefore not only re-run the test case that
led to the detection of the defect, but you must also re-test the rest of the system’s
functionality. This latter process is called regression testing. It is normally far too
expensive to re-run every single test case whenever a change is made to
software, so regression testing involves running a subset of the original test
cases. The regression tests are carefully selected to cover as much of the system
as possible.

Deciding when to stop testing
You might imagine that you should go on re-testing software until all the test
cases have passed. Unfortunately, this is not a practical approach. For the
reasons discussed in the last subsection, it is too expensive, and perhaps futile,
to try to remove every last bug from most systems. Perfection will normally
remain forever elusive.

However, it is also a poor strategy to stop testing merely because you have run
out of time or money. This will result in a poor-quality system.

You should, instead, establish a set of criteria like the following to decide when
testing should be considered complete:
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■ All of the level 1 test cases must have
been successfully executed.

■ Certain predefined percentages of
level 2 and level 3 test cases must
have been executed successfully.
Suitable levels will vary from system
to system. In a non-critical system
used by a small number of people,
test case pass targets of 95% for level
2 and 75% for level 3 might be
appropriate. In a more critical
system, or one used by a large
number of people, then test case pass
targets of 99% for level 2 and 90% for
level 3 might be set. Ultimately the targets will depend on the cost of failures
versus the cost of continued testing and fixing of defects.

■ The targets must have been achieved and then maintained for at least two
cycles of ‘builds’. A build involves compiling and integrating all the components
of the software, incorporating any changes since the last build. Many
organizations do this on a daily or weekly basis; they then perform regression
testing on the build. Failure rates can fluctuate from build to build as different
sets of regression tests are run or new defects are introduced. It might be by
chance that the targets are reached one day but are not met the next day.

The roles of people involved in testing
Testing is an intellectual exercise that is just as challenging and creative as
design. All software engineers should develop their testing skills, although some
have a particular talent for testing and may specialize in it. 

In a software development organization, the first pass of unit and integration
testing is often called developer testing. This is preliminary testing performed by
the software developers who do the design and programming. Organizations
should then employ an independent testing group that runs the complete set of
test cases, seeking defects left by the developers.

An advantage of having a separate group perform testing is that they do not
have a vested interest in seeing as many test cases pass as possible. Although it
would be unprofessional for developers to claim that a test case has passed when
it has not, they may nevertheless be less hard on themselves than an independent
group. Also, an independent group that specializes in testing will develop specific
expertise in how to do good testing, and how to use testing tools.

Testing performed by users and clients: alpha, beta and acceptance
So far, our discussion of testing has assumed that it is performed by software
engineers in the development organization. However, the testing process also

The law of conservation of bugs
The ‘law of conservation of bugs’
states that the number of bugs remain-
ing in a large system is proportional to
the number of bugs already fixed. In
other words, a defect-ridden system
will always tend to remain a defect-
ridden system.  This is because a
poorly designed system will not only
have more defects to start with, but
will also be harder to fix correctly and
hence will suffer more strongly from
the ripple effect.
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normally involves users. We have already seen in Chapter 7 that users should be
heavily involved in testing and evaluating prototypes. In this section we will
discuss the involvement of users in testing versions of the system that are almost
ready to be put into production. Such testing should occur once the developers
believe that the software has reached a sufficient level of quality (it is
approaching the quality targets specified in the non-functional requirements).

Alpha testing is testing performed by users and clients, under the supervision of
the software development team. The development team normally invites some
users to work with the software and to watch for problems that they encounter.

Beta testing is testing performed by the user or client in their normal work
environment. It can be initiated either at the request of the software developers,
or at the request of users who want to try the system out. Beta testers are selected
from the potential user population and given a pre-release version of the
software. They know that the software will contain more defects than the final
version, but they have the benefit of using the features of the software before
others have access to them. Beta testers are responsible for reporting problems
when they discover them.

The advantages of alpha and beta testing are the following. You typically are
able to have a much larger volume of testing performed, and the users use the
software in the same manner that they will use it when it is formally released.
Very often, the users do things that the developers of the test plan never
anticipated; hence users encounter failures that no test case was written to
detect. In the worst case, discovery of these defects during alpha and beta testing
may require major changes to the software – but it is better that the defects be
found at this stage, rather than following the software’s general release.

Some organizations rely very heavily on beta testing, and will release low-
quality software to the general population in what is called an open beta release.
If the software is in heavy demand, this can result in the effective discovery of
problems. It may make economic sense to do this from the perspective of the
developers, but it is not good engineering practice. It results in wasted time on
the part of the users, since many people will discover the same problems. It can
also damage the reputation of the developers if many failures occur.

Acceptance testing, like alpha and beta testing, is performed by users and
customers. However, the customers do it on their own initiative – to decide
whether software is of sufficient quality to purchase. Many large organizations also
perform acceptance testing before they will pay a developer they have contracted
to develop custom software for them. Other organizations use acceptance testing
in order to choose between several competing generic products.

Exercise

E206 Discuss how integration testing could be performed in the SimpleChat system.
What stubs or drivers could be written to permit separate testing of individual
layers? 
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10.10 Inspections

An inspection is an activity in which one or more people systematically examine
source code or documentation, looking for defects. Normally, inspection
involves a meeting, although participants can also inspect alone at their desks.

Roles on inspection teams
Typically an inspection team will consist of software engineers, who fill the
following roles:

■ The author.

■ A moderator. This person calls and runs the meeting and makes sure that the
general principles of inspection are adhered to. These principles are discussed
in the next subsection.

■ A secretary. He or she is responsible for recording the defects when they are
found. This is not an office administrative assistant, but rather a software
engineer just like the other inspectors. It takes a thorough knowledge of
software engineering to understand and record defects.

■ Paraphrasers. These people will step through the document explaining it in
their own words. We will explain the paraphrasing process in more detail
below.

In a small inspection team, an individual can perform more than one of the
latter three roles.

Principles of inspecting
Some general principles of inspecting are as follows:

■ Inspect the most important documents of each type. Inspection should be
performed on code, design documents, test plans and requirements. It is not
always necessary or economical to inspect every single piece of code or every
document, but the most important ones should certainly be inspected. Quality
will be higher if more are inspected, but costs will also be higher. When

Object-oriented testing
All of the testing strategies we have discussed work just as well for object-oriented software as for
non-OO software. Nevertheless, there is a special set of techniques called object-oriented testing.
These techniques focus on the properties of object-oriented programs. Examples include:
■ Writing methods within each class to act as drivers that will test the methods of that class.  We

mentioned this in the discussion of Design Principle 10 in the last chapter.
■ Testing to ensure that the behavior of a subclass is consistent with the behavior of its superclass.

This can be done by running, in each subclass, the driver methods of the superclass.
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inspecting code, all aspects of code should be considered, including the
comments.

■ Choose an effective and efficient inspection team. Two or more people
should participate in an inspection, since more pairs of eyes are better than
one. However it is uneconomical to have a very large number of people
involved; between two and five people (including the author) is probably a
good range; the exact number can depend on the importance of the item being
inspected. The inspection team should include experienced software engineers,
who are more likely to uncover defects.

■ Require that participants prepare for inspections. The inspection team
should study the code or other documents prior to the meeting and come
prepared with a list of defects. If a participant has not prepared, then he or she
will spend most of his or her mental energy at the inspection meeting trying to
understand the document, rather than helping to find defects.

■ Only inspect documents that are ready. Inspections should be held once
specifications, design documents or code are believed by their authors to be
final. However, when preparing for an inspection meeting, the inspectors
might immediately realize that the document represents very poor design, that
its layout is messy and hard to read, or that it needs some other major change;
in these circumstances it is probably best to call off the meeting. The author
should be asked to make changes before a new attempt is made at inspection.
Attempting to inspect a very poor document will result in defects being missed
– and the document will have to be re-inspected anyway.

■ Have ‘finding defects’ as the only goal. It is best not to mix inspection
meetings with meetings in which other activities are involved. For example, if
you are inspecting code, you should not at the same time be teaching
newcomers how the system works. Having the secondary goal would detract
from the primary goal, which is to find defects. You should also not mix
inspections with meetings whose primary role is to make decisions. For
example, requirements and design reviews are often arranged so that the teams
can debate alternatives – doing this should not be confused with inspecting.

■ Avoid discussing how to fix defects. Fixing defects is a design issue that can be
left to the author. There is no need to consume the time of the entire team
during the meeting. If the author needs help with a particular defect, he or she
can always ask for it later.

■ Avoid discussing style issues. It is important that inspections do not become
bogged down debating such issues as the naming convention used for variables,
or whether the ‘{’ and ‘}’ should always line up with each other vertically or not.
Issues such as these may be important, but should be discussed separately, in
the context of the project as a whole. A good rule of thumb is the following: an
issue should be raised in an inspection meeting only if it may represent a
defect. Note, however, that bad style is often a maintainability defect.
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■ Do not rush the inspection process. The schedule should be arranged so that
there is time both to complete the necessary inspections and to fix the defects
found. A common problem is to be rushing to meet deadlines and hence to
skip inspection or to fail to properly fix the defects found. A good speed to
inspect is about 200 lines of code per hour (including comments), or ten pages
of text per hour.

■ Avoid making participants tired. Since inspection is very mentally taxing, it is
best not to inspect for more than two hours at a time, or for more than four
hours a day.

■ Keep and use logs of inspections. Logs of inspections should be kept. These
will list what was inspected and the defects found. Follow-up should be done
after every inspection session to ensure that all the defects have, in fact, been
resolved. You can also use the logs to track the quality of the design process –
ideally as a team gets better at design, the number of defects found per line of
code will decrease.

■ Re-inspect when changes are made. You should re-inspect any document or
code that is changed more than 20% for any reason; for example, as a result of
adding new features, or fixing problems arising from testing or inspection.

A peer-review process: managers are normally not involved
It is common practice to exclude managers from inspection activities, that is, to
have inspections performed only by the peers of the author. The rationale for
this is that it may allow the participants to express their criticisms more openly,
not fearing repercussions from the manager. 

In small organizations, however, there may not be enough people to perform
inspections if the manager is not involved. Also, if the team members are
professional in their work practices, then management involvement may have
no negative consequences. It may also be beneficial for managers to participate
since it can help them stay involved in the team’s work and hence make better
management decisions.

Whether or not a manager participates in inspections, the members of an
inspection team should feel they are all working together to create a better
document. The author should be made to feel comfortable, and not ‘blamed’
when defects are found.

Conducting an inspection meeting
The following is a suggested approach to running an inspection meeting:

1. The moderator calls the meeting and distributes the documents to be inspected.

2. As mentioned above, the participants prepare for the meeting in advance.

3. At the start of the meeting, the moderator explains the procedures and verifies
that everybody has prepared.
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4. At the meeting, paraphrasers take turns explaining the contents of the
document or code, without reading it verbatim. Paraphrasing forces everybody
to think about what they are reading; merely reading verbatim can become a
mindless exercise that can be done while almost asleep. Requiring that the
paraphraser not be the author ensures that the paraphraser says what he or she
sees, rather than what the author intended to say. Differences between these two
views will therefore become clear and thus highlight defects. The author, in
particular, may notice the paraphraser say something different from what he or
she thought was written.

5. Everybody speaks up when they notice a defect or when the paraphrasing
reaches a defect that they had found while preparing. There may be a very brief
discussion to ensure that it really is a defect, and then the secretary makes a
record of it. After this, paraphrasing continues.

As an alternative to paraphrasing, the inspectors can simply walk through the
lists of defects found while each member was preparing. Some organizations
even dispense with meetings entirely, and have the moderator gather lists of
defects produced by individual inspectors working alone.

Inspecting compared to testing

Inspection is a quality assurance activity that is complementary to testing:

■ Both testing and inspection rely on different aspects of human intelligence. To
test effectively, testers have to develop a good set of test cases. They need an
aptitude for thinking of what could go wrong without actually studying the
software. In an inspection meeting, on the other hand, the participants have to
uncover defects by understanding what would happen if the system were run –
they have to mentally execute the software. Both activities require attention to
detail, and people can make mistakes in both activities. However, the chances
of mistakes are reduced if both activities are performed, since chances of the
same defect slipping by both activities are greatly reduced.

■ Testing can find defects whose consequences are obvious but which are buried
in complex code, and thus will be hard to detect when inspecting. Inspecting,
on the other hand, can more easily find defects whose consequences might be
subtle; hence the tester might not have thought to test for them. They become
clear when reading the source code or design documents.

■ Inspecting can find defects that relate to maintainability or efficiency that are
not readily detectable when testing. For example, a tester may observe that the
results of a computation take one second. He or she may not be able to tell,
without inspecting the code, that an inefficient algorithm is being used, and
that the computation time could be dramatically reduced by changing the code.
Similarly, very messy code might work adequately when tested; but the
maintainability problems would only be noted during an inspection.
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Testing or inspecting, which comes first?
It is important to inspect software before extensively testing it. This considerably
speeds up the overall verification process. The reason for this is that inspecting
allows you to get rid of many defects quickly. Not only would testing take a lot
longer to find the same number of defects, but then every one of them must be
individually investigated and fixed. Also, if you test before inspecting, and the
inspectors then recommend that redesign is needed, the testing work has been
wasted. 

There is a growing consensus that it is most efficient to inspect software
before any testing is done – even before developer testing.

Exercise

E207 Working in groups of four or five, conduct inspections of some code and
documents you have produced while working on the exercises in this book.
Each member of the group should have their turn as author, presenting the
group with one item of about 100 lines of code or five pages of text. The
members of the group should exchange material several days before the
inspection meeting. Group members should prepare for the meeting by
making sure they understand what is to be inspected. The meetings themselves,
which should last for about half an hour for each author, should be conducted
as discussed above. The role of moderator can be rotated among the various
group members. The deliverables from this exercise are the inspection logs. 

10.11 Quality assurance in general

In this chapter, so far, we have looked at two important and inter-related
approaches to ensuring the quality of software: testing and inspecting. Both of
these are disciplined processes that software engineers and their organizations
should implement.

Quality assurance should, however, be an activity that pervades all aspects of
software development. In Chapter 4, for example, we discussed how you can
review requirements to ensure that they are valid.

In the following subsections we will look at some other things that can be
done to help increase software quality.

Root cause analysis
The objective of root cause analysis is to determine why a software engineer
made the error that resulted in a defect occurring. It might have been simple
human error – it will never be possible to completely prevent all such errors.
However, often there are one or more root causes that you can correct in order
to reduce the number of errors made.
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The following are examples of root causes. 

■ Lack of training and experience.

■ Schedules that are too tight.

■ Building on poor designs or reusable technology.

There are other possible root causes, including unanticipated design complexity,
failure to adhere to design or management principles, lack of discipline in the
process, failure to properly review requirements and designs, and failure to keep
track of the details of the project. These, however, are often not root causes, but
rather are due to lack of training and experience. Even too-tight schedules and
building on poor designs are signs of project management failure, and hence
have lack of training or experience as the ultimate root cause.

Measuring quality as a means to strive for continuous improvement
It is essential to measure quality of both the product and the process. This allows
you to plot the quality over a period of time and to determine whether it is
improving or not. Measuring quality allows you to set objectives for quality
improvement and to motivate yourself and others to meet those objectives.

Entire books have been written about metrics; the following are some of the
things you can measure regarding the quality of a software product, and
indirectly of the quality of the process.

■ The number of failures encountered by users.

■ The number of failures found when testing a product.

■ The number of defects found when inspecting a product.

■ The percentage of code that is reused (more is better, but don’t count clones).

■ The number of questions posed by users to the help-desk (as a measure of
usability and the quality of documentation).

Two historic software failures that could have been prevented
Better quality assurance could have prevented a number of high-profile disasters, such as the
following.  To learn more, see the ‘For more information’ section.
■ Therac-25. The Therac-25 was a machine designed for radiation therapy in cancer patients.

Unfortunately, a software defect resulted in it delivering far more radiation than intended under
certain circumstances, with several resulting deaths.

■ Ariane-5. In 1996 the first flight of the $500 million French Ariane-5 Launcher failed due to a
software defect.  The failure occurred due to an attempt to fit an integer greater than 215 into a
16-bit integer.  That, in turn, was caused by reusing an older piece of code without verifying that
the code would work properly in the new release
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You can compare how these change
over time. You can also compare the
quality of two systems, after normal-
izing by dividing by the size of the
system.

Post-mortem analysis
Post-mortem analysis involves looking
back at a project after it is complete, or
after a release. You look at the design
and the development process and
identify those aspects, which, with
benefit of hindsight, you could have
done better. You then make plans to do
better next time.

Process standards
Organizations can collectively improve
software quality by following the
guidelines found in several different
standards. The following is a list of
standardized approaches; the first three
of these were developed at the Software
Engineering Institute of Carnegie
Mellon University.

■ The Personal Software Process (PSP™). This defines a disciplined approach
that an individual software developer can use to improve the quality and
efficiency of his or her personal work. Two of the key tenets of the psp are
personally inspecting your own work, and measuring the progress you make
towards improving the quality of your work.

■ The Team Software Process (TSP™). This describes how teams of software
engineers can work together effectively.

■ The Software Capability Maturity Model (CMM™). This contains five levels.
Organizations start at level 1, and as their processes become better they can
move up towards level 5.

■ ISO 9000-3. This is an international standard that lists a large number of things
an organization should do to improve its overall software process.

These standards include testing and inspecting among the things to do;
however, they include a great many other best practices as well. In this book we
do not have the space to discuss these standards in detail, but references to these
and other standards are found in the ‘For more information’ section at the end
of the chapter.

 Spectacular software successes
In several places in this book we have
pointed to software projects or
systems that have failed and resulted
in disasters. However, the quality and
reliability of many systems is
remarkable. The software that runs
the space shuttle is a key example:
although shuttles have suffered tragic
accidents, the software that controls
all aspects of space flight has worked
with flying colors, despite its
incredible complexity. The shuttle
software team was one of the first to
achieve a CMM level 5 rating. Highly
reliable and complex software also
controls airplanes, railway systems,
telecommunications systems and
banking systems. Failures of hardware
tend to be at least as common as
software failures in these types of
systems.
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Any practicing software engineer should have a good understanding of these
standards and their suitability for his or her organization.

10.12 Test cases for phase 2 of the SimpleChat instant messaging system

On the book’s web site (http://www.lloseng.com) you will find a complete set of
test cases to test Phases 1 and 2 of SimpleChat. The following is a selection of
those test cases.

General setup for test cases in the 2000 series

System: SimpleChat/ocsf Phase: 2
Instructions:

1. Install Java, minimum release 1.2.0, on Windows 95, 98 or ME.

2. Install Java, minimum release 1.2.0, on Windows NT or 2000.

3. Install Java, minimum release 1.2.0, on a Solaris system.

4. Install the SimpleChat – Phase 2 on each of the above platforms.

Test Case 2001
System: SimpleChat Phase: 2
Server startup check with default arguments
Severity: 1
Instructions:

1. At the console, enter: java EchoServer.

Expected result:

1. The server reports that it is listening for clients by displaying the following
message:
Server listening for clients on port 5555

2. The server console waits for user input.

Cleanup:

1. Hit ctrl+c to kill the server.

Test Case 2002
System: SimpleChat Phase: 2
Client startup check without a login
Severity: 1
Instructions:

1. At the console, enter: java ClientConsole.
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Expected result:

1. The client reports it cannot connect without a login by displaying:
ERROR – No login ID specified. Connection aborted.

2. The client terminates.

Cleanup: (if client is still active)

1. Hit ctrl+c to kill the client.

Test Case 2003
System: SimpleChat Phase: 2
Client startup check with a login and without a server
Severity: 1
Instructions:

1. At the console, enter: java ClientConsole <loginID> where <loginID> is the
name you wish to be identified by.

Expected result:

1. The client reports it cannot connect to a server by displaying:
Cannot open connection. Awaiting command.

2. The client waits for user input

Cleanup: (if client is still active)

1. Hit ctrl+c to kill the client.

Test Case 2007
System: SimpleChat Phase: 2
Server termination command check
Severity: 2
Instructions:

1. Start a server (Test Case 2001 instruction 1) using default arguments.

2. Type #quit into the server’s console.

Expected result:

1. The server quits.

Cleanup: (If the server is still active):

1. Hit ctrl+c to kill the server.

Test Case 2013
System: SimpleChat Phase: 2
Client host and port setup commands check



 

418 Chapter 10
Testing and inspecting to ensure high quality 

Severity: 2

Instructions:

1. Start a client without a server (Test Case 2003).

2. At the client’s console, type #sethost <newhost> where <newhost> is the name
of a computer on the network.

3. At the client’s console, type #setport 1234.

Expected result:

1. The client displays
Host set to: <newhost>
Port set to: 1234.

Cleanup:

1. Type #quit to kill the client.

Test Case 2016
System: SimpleChat Phase: 2

Multiple remote client disconnections and re-connections

Severity: 2

Instructions:

1. Start a server (Test Case 2001, instruction 1).

2. On different computers, start clients (1 or 2 per computer) and connect
them to the server.

3. Exchange data among all the clients and the server.

4. Close the server using the #close command.

5. Change the server’s listening port by using the #setport <newport> command.

6. Restart the server using the #start command.

7. Change the ports of the clients, using #setport, to correspond to the new
port of the server.

8. Reconnect the clients to the server by using the #login <loginID> command.

Expected results:

1. The first set of connections occur normally.

2. When the server is closed, all clients are disconnected.

3. The server displays the following message when the #setport command is
used:
port set to: <newport>.
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4. The server restarts and displays:
Server listening for connections on port <newport>.

5. The clients change port as in Test Case 2013.

6. The clients reconnect normally.

Cleanup:

1. Type #quit to kill the clients.

2. Type #quit to kill the server.

Test Case 2017

System: SimpleChat Phase: 2

Client changing hosts

Severity: 2

Instructions:

1. On two different computers, start servers on the default port.

2. On a third computer, start a client and connect it to one of the two servers.

3. Logoff from that server using the #logoff command.

4. Change the host name by using the #sethost <otherhost> where <otherhost>
is the name of the computer running the other server.

5. Log the client on again using the #login <loginID> command.

Expected results:

1. The two servers start up normally.

2. The client connects to the first server normally.

3. When the client disconnects it displays
Connection closed.

4. When the client disconnects, the server displays:
<loginID> has disconnected.

5. The client changes host as in Test Case 2013.

6. The client reconnects normally as in Test Case 2016.

Cleanup (Unless proceeding to Test Case 2018):

1. Type #quit to kill the servers.

2. Type #quit to kill the client.
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Test Case 2019

System: SimpleChat Phase: 2

Different platform tests

Severity: 3

Instructions:

1. Repeat test cases 2001 to 2018 on Windows 95, 98, NT or 2000, and Solaris.

Expected results:

1. The same as before.

10.13 Difficulties and risks in quality assurance

■ It is very easy to forget to test some aspects of a software system. In some
projects, the team members feel that ‘running the code a few times’ is
sufficient. Even when a formal test plan is in place, testers often forget to do
such things as stress tests and documentation tests. Forgetting certain types
of tests diminishes the system’s quality.
Resolution. Use all the testing strategies described in this chapter.

■ There is a conflict between achieving adequate quality levels, and
‘getting the product out of the door’. Although almost everybody
recognizes the importance of quality, those activities that can ensure
quality are often sacrificed in order to meet deadlines. In particular,
companies often judge developers or project managers purely on when they
deliver product, not on its quality level. Quality assurance activities are
often seen as an overhead expense to be reduced. The result is poor-quality
software.
Resolution. Create a separate department to oversee quality assurance.
Publish statistics about quality (within the organization) so that people will
be motivated to increase their quality. Build adequate time for all quality
assurance activities into the schedule. Consider quality assurance to be an
integral and ongoing part of development. Publish cost–benefit analyses to
demonstrate to everyone that deadlines should not override a need for
quality.

■ People have different abilities and knowledge when it comes to quality.
Some people have a natural tendency to pay attention to detail, whereas
other people are better at seeing the ‘big picture’. When it comes to testing,
the former people might help uncover more problems. Many people are not
trained adequately in various aspects of quality, particularly usability and
maintainability.
Resolution. Give people tasks that fit their natural personalities. Train people
in testing and inspecting techniques. Give people feedback about their
performance in terms of producing quality software so that they have
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something measurable to improve. Have developers and maintainers work for
several months on a testing team; this will heighten their awareness of quality
problems they should avoid when they return to designing software.

10.14 Summary

In this chapter we have given you an overview of several important strategies
for efficiently verifying that a system is of sufficient quality, as well as for
supporting quality development more generally.

We discussed key terminology, in particular that human errors cause
defects, and defects cause failures.

We then looked at strategies for testing. Black-box testing allows you only
to control a system’s inputs and observe its outputs, whereas glass-box (or
white-box) testing allows you to examine the system’s internals. Big bang
testing involves testing an integrated system all at once, whereas incremental
approaches to integration testing involve first testing individual subsystems,
and then testing repeatedly as subsystems are put together to create the
complete system.

Testing a selected member of each equivalence class, as well as equivalence
class boundaries, allows you to detect different defects without exhaustively
trying all possible inputs. However, determining suitable equivalence classes
is hard. In particular, it is necessary to apply knowledge of the most common
types of defects and program design strategies. Typical types of defects to
seek include algorithmic defects (such as incorrect logical conditions, or not
handling null conditions), defects in which the system cannot handle stress,
and defects resulting from failure to adhere to standards.

We discussed how to systematically write both test cases and complete test
plans, and to consider test-first development where an automated test plan
is used to drive development. We also pointed out that it is important to plan
in advance when to stop testing. In addition, we looked at regression testing,
which is testing with a subset of tests when the system is changed, alpha
testing, which is testing by users under the supervision of developers, and
beta testing, which is testing by users in their own environment.

Inspections are another way of verifying software that should be used in
conjunction with, and prior to, testing. We suggested a strategy for
inspection that involves a team. Team members include the author, a
paraphraser and a moderator. The paraphraser proceeds through the code
or other documents, explaining the material in his or her own words. The
Personal Software Process is a disciplined approach to individual software
development that, among other things, emphasizes careful inspection of
your own work.

Finally, we looked at quality assurance as a whole, including the notion of
continuous improvement.
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10.15 For more information

Software quality assurance in general

■ Hotlist about software quality assurance and process improvement: http://
www.tantara.ab.ca/info.htm

■ G. Gordon Schulmeyer (Ed), Handbook of Software Quality Assurance, Prentice
Hall, 1999

Important software failures

■ Peter G. Neumann’s Risks Digest. http://catless.ncl.ac.uk/Risks/. Contains
numerous reports of software failures. Software engineers should study these
failures to ensure they do not re-create them

■ N. G. Leveson and C. S. Turner, ‘An Investigation of the Therac-25 Accidents’,
IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18–41

■ J-M. Jézéquel and B. Meyer, ‘Design by Contract: The Lessons of Ariane’, IEEE
Computer, Vol. 30, No. 2, January 1997, pp. 129–130

Software testing

■ T. Koomen, M. Pol, H. W. Broeders and H. Voorthuyzen, Test Process
Improvement: A Practical Step-by-Step Guide to Structured Testing, Addison-
Wesley, 1999

■ W. E. Lewis, Software Testing and Continuous Quality Improvement, CRC Press,
2000

■ C. Kaner, H. Q. Nguyen and J. Falk, Testing Computer Software, 2nd edition,
Wiley, 1999

■ Software testing online resources by Roland Untch at Middle Tennessee State
University: http://www.mtsu.edu/~storm

■ Newsgroup comp.software.testing and its FAQ: http://www.faqs.org/faqs/
software-eng/testing-faq

■ The DMOZ Open Directory on software testing: http://dmoz.org/Computers/
Programming/Software_Testing

■ Aptest’s software testing links; a particularly strong list of testing tools: http://
www.aptest.com/resources.html
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Software inspection

■ D. A. Wheeler, B. Brykczynski, and R. N. Meeson, Jr. (Eds.), Software Inspection
An Industry Best Practice, IEEE CS Press, 1996

■ T. Gilb, D. Graham and S. Finzi, Software Inspection, Addison-Wesley, 1993

Books about process standards

■ P. Jalote, CMM in Practice: Processes for Executing Software Projects at Infosys,
(SEI Series in Software Engineering), Addison-Wesley, 1999

■ W. Humphrey, Introduction to the Personal Software Process, (SEI Series in
Software Engineering), Addison-Wesley, 1996

■ W. Humphrey, M. Lovelace and R. Hoppes, Introduction to the Team Software
Process, (SEI Series in Software Engineering), Addison-Wesley, 1999

■ D. Hoyle, ISO 9000 Quality Systems Handbook, 4th edition, Butterworth-
Heinemann, 2000

Standards

The following are some of the IEEE and British standards covering quality
assurance and testing. As mentioned in Chapter 4, access to these requires a
subscription. See: http://www.standards.ieee.org/software/index.html for the
IEEE standards, and bsonline.techindex.co.uk for the British standards.

■ ISO 9126, Software Product Quality Characteristics

■ IEEE Standard 730, Software Quality Assurance Plans

■ IEEE Standard 829, Software Test Documentation

■ IEEE Standard 1012, Software Verification and Validation

■ IEEE Standard 1028, Software Reviews

■ British Standard 7925, Software Testing

Project exercises

E208 Perform a test case inspection of the test cases for Phase 2 of the SimpleChat
system. The purpose of this inspection will be to detect defects in the test cases,
not in SimpleChat itself. A legitimate part of an inspection is to uncover
important test cases that are missing from the set, therefore make sure the test
plan has tests that detect all the types of defects discussed in this chapter. 

E209 Create a set of test cases for Phase 3 of the SimpleChat system. This is the
version of SimpleChat you created at the end of Chapter 4. Once you have
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created your test plan, use it to test your work, recording any failures when they
occur. (Suggestion: test the work of another group while they test your work.)

E210 Perform a root cause analysis of the failures you encountered in the last
exercise.

E211 Stress test the SimpleChat program by having a very large number of people
connect clients to the same server and issue many different commands. Try to
determine the capacity of the server (or the network) before it slows down to an
unacceptable level of performance. Write a summary of your experiences.

E212 Create a complete set of test cases for the Small Hotel Reservation System.
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Earlier in this book, we made the point that software engineering is a labor-
intensive activity. Performing software engineering successfully therefore
means carefully managing the people who perform it and organizing the tasks
they perform. Project management is an activity that all software engineers will
perform to some extent, even though they might not be officially given the title
of manager or leader. In this chapter we introduce some of the basic principles
of project management that all software engineers should know.

11.1 What is project management?

Project management encompasses all the activities needed to plan and execute
a project. The following are specific activities often done by a project manager:

1. Deciding what needs to be done. Finding customers; working with customers
to determine their problem and the scope of the project; prioritizing the work;
selecting the overall processes that will be followed, and negotiating contracts.

2. Estimating costs. The most important aspect of this is estimating the amount
of elapsed time and effort that will be required to complete the project. We will
discuss this in Section 11.3.

In this chapter you will learn about the following

■ The different process models and methodologies that can be used to plan and
conduct a software project.

■ Techniques for estimating the amount of work it will take to develop a
system.

■ The basics of organizing software engineering teams.

■ Techniques for planning, scheduling and tracking the work.
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3. Ensuring there are suitable people to undertake the project. This includes
finding people, and ensuring that people have appropriate training. It can also
include firing people who are not performing adequately.

4. Defining responsibilities. Determining how people will work together in
teams and who will be responsible for what. Teams are the subject of
Section 11.4.

5. Scheduling. Determining the sequence of tasks, plus setting deadlines for
when tasks must be complete. Major deadlines are called milestones.
Scheduling is discussed in Section 11.5.

6. Making arrangements for the work. Initiating the paperwork involved in
hiring or subcontracting; setting up training courses; finding office space;
ensuring that hardware and software is available; ensuring that people have the
requisite security clearance, etc.

7. Directing. Telling subordinates and contractors what to do. Many of the other
activities in this list involve making decisions; but acting on those decisions by
ordering people to do things is a distinct activity. Directing is not as simple as
issuing orders – you have to get people to commit to deliver what they promise.

8. Being a technical leader. Giving advice about engineering problems; helping
people solve problems by leading discussions; pointing people to appropriate
sources of information; acting as a mentor, and making high-level decisions
about requirements and design.

9. Reviewing and approving decisions made by others. In certain types of
projects, the project manager will have to take the ultimate legal responsibility
for declaring that proper engineering practice has been followed, and that the
manager believes the resulting system will be safe. However, a certain amount
of reviewing and approving is a part of every project.

10. Building morale and supporting staff. Helping resolve interpersonal
conflicts; ensuring that people feel rewarded, respected and motivated; giving
people feedback to help them improve their work; and ensuring that people
always have somebody to talk to about problems.

11. Monitoring and controlling. Finding out what is going on, determining how
the plans need to change, and taking action to keep the project on track. The
risk management process, which we have talked about throughout this book, is
a central aspect of this.

12. Co-ordinating the work with managers of other projects.

13. Reporting. Telling customers and higher-level managers what they need and
want to know.

14. Continually striving to improve the process.
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In some organizations, the role of ‘project manager’ is separated from the role of
‘departmental manager’. Activities such as hiring, building morale, and issuing
the final directions may then be performed by the latter individual instead.

We are introducing project management in this book since all software engineers
need to have a basic understanding of how their managers run projects.
Furthermore, all software engineers from time to time perform project
management tasks. For example, software engineers have to estimate the amount of
time their personal work will take; schedule their personal work; help to define the
project by working on requirements analysis; act as a leader in their area of technical
expertise; review the work of others; participate in risk management; co-ordinate
with others; report to managers and work with others to improve the process.

In the next four sections, we will look at key project management skills:
choosing an overall process model, estimating costs, building a team and
scheduling. We will conclude the chapter by describing the project plan – an
essential document maintained by the project manager.

Exercise

E213 Review the work you performed while you were doing group-oriented exercises
in this book. For each of the project management activities, listed above, write
down a) what you did (if anything), and b) how you believe you could do better. 

Project management disasters
Periodically in the news, there are reports of major failures of software projects: projects that are
canceled, in whole or in part, after spending large amounts of money and running far over budget
and behind schedule.  There are always many contributing factors to these failures, such as changing
requirements or unexpected technological problems. However, with improved project management,
the problems could have been detected and resolved without wasting so much money.

■ The United States Internal Revenue Service struggled for years to update its software.  The cost
overruns and opportunity costs (failure to collect revenue) were estimated to exceed $50 billion
per year.

■ Attempts from the early 1980s to the mid-1990s to update the air traffic control systems in the
United States met with many failures. One after another, components of the system were
abandoned after billions of dollars had been spent and many years of elapsed time had passed.

■ Early in 1993, the London Stock Exchange abandoned the development of its Taurus paperless
share settlement system after 10 years and £400m were wasted.

■ In 1995, the Canadian Auditor General’s annual report found that large amounts of money had
been wasted due to poorly managed projects in the Canadian Federal Government (see http://
www.oag-bvg.gc.ca/domino/reports.nsf/html/9512ce.html).

Other references that discuss project management failures such as these can be found under the
‘Important software failures’ heading of the ‘For more information’ section in the previous chapter.
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11.2 Software process models

Software process models are general approaches for organizing a project into
activities. They help the project manager and his or her team to decide what
work should be done and in what sequence to perform the work. The models
should be seen as aids to thinking, not rigid prescriptions of the way to do things
– each project will end up with its own unique plan.

Organizations that don’t follow good software engineering practices often end
up following what is often called an opportunistic approach, illustrated in
Figure 11.1. In the opportunistic approach, developers keep on modifying the
software until they or their users are satisfied. This approach has several
important problems:

■ It does not acknowledge the great importance of working out the requirements and
the design before starting implementation. The system might satisfy certain user
needs, but reaching a high level of user satisfaction will require many changes.

■ The design of software deteriorates faster if it is not well designed. In the
opportunistic model, design is an ad-hoc activity, therefore rapid deterioration
is to be expected.

■ Since there are no plans, there is nothing to aim towards. Since there is nothing
to aim towards, you can never know if you are doing well or poorly. Therefore
there is no control of costs or schedule in an opportunistic project. 

■ There is no explicit recognition of the need for systematic testing and other
forms of quality assurance. Many undetected defects therefore remain, giving
rise to never-ending changes that make the system worse and worse. As a
result, the system most often collapses at some point and becomes unusable
and irreparable. The only solution is then to rebuild the system from scratch
(until it collapses again).

■ The above problems make the cost of developing and maintaining software
very high.

The waterfall model
The waterfall model is a significant improvement over the opportunistic approach.
It is a classic way of looking at software engineering that accounts for the importance
of requirements, design and quality assurance. The model is so named because
diagrams of it, such as Figure 11.2, tend to look like cascading waterfalls.

Figure 11.1 The opportunistic approach, a poor model for software development
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Rather than jumping in and immediately developing a product, the waterfall
model suggests that software engineers should work in a series of stages. Before
completing each stage, they should perform quality assurance (verification and
validation) so that the next stage can be built on a good foundation. The
waterfall model also recognizes, to a limited extent, that you sometimes have to
step back to earlier stages when you discover a problem in a subsequent stage.

The waterfall model forms the foundation of many software development
methodologies in use today. However, it has some limitations and, if followed
too strictly, can lead to the following types of problems:

■ The model implies that you should attempt to complete the entire specification
before moving on to the design, and the entire design before moving on to
implementation. This is an overly rigid viewpoint since it does not account for
the fact that requirements constantly change. It also means that customers
cannot use anything until the entire system is complete.

■ The waterfall model makes no allowances for prototyping and implies that you
can get the requirements right by simply writing them down and reviewing
them. In practice, this only works for simple, well-understood types of software
development.

■ The model implies that once the product is finished, everything else is
maintenance. Relegating maintenance to be the ‘last step’ makes it appear that
all you have to do at that point is to make minor adjustments, perhaps without
requirements and design. Unfortunately, most of the costs occur after the initial
system is developed as the system is repeatedly changed.

Figure 11.2 The waterfall model
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The phased-release model
The phased-release model of software development, shown in Figure 11.3,
rectifies some, but not all, of the problems of the waterfall model. The most
important change is that it introduces the notion of incremental development. It
suggests that, after requirements gathering and planning, the project should be
broken into separate subprojects, or phases. Each phase can then be released to
customers when ready. Parts of the system will be available earlier than would
have been possible when using a strict waterfall approach.

The phased-release model still retains some of the important weaknesses of
the waterfall model. It continues to suggest that all requirements be finalized at
the start of development, and it continues to downplay the possibility of
prototyping. When the time comes to develop Phase 2, and subsequent phases,
the design is based on the original specifications – in other words, the model
does not facilitate learning lessons from Phase 1, which could result in
improvements to subsequent phases.

The spiral model
The spiral model, as shown in Figure 11.4, is another view of incremental
development that explicitly embraces prototyping and an iterative approach to
software development. This model takes the position that you should start to

Figure 11.3 The phased-release model
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develop software by developing a small prototype (innermost loop of the spiral).
This first prototype follows a mini-waterfall process, but is very quickly
developed and serves primarily to gather requirements. The last stage of this
inner loop is review, or evaluation, of the first prototype.

Project managers embrace the spiral model because it acknowledges one of
the most famous quotations in software engineering. It was Fred Brooks who
said, ‘The question is not whether to build a pilot system and throw it away. You
will do that. The question is whether to plan in advance to build a throwaway.’

In subsequent loops of the spiral, the project team performs further
requirements, design, implementation and review. There may be several cycles
of prototyping; however, subsequent cycles become official releases.

Before each cycle of the spiral ends, a review is held. At this review, the
stakeholders discuss their experiences with the previous release and decide
whether to proceed to another cycle.

The spiral model also adds the notion of risk analysis to process modeling.
The first thing to do before embarking on each new loop of the spiral is to decide
what are the major difficulties to be handled. After determining these, you then
make adjustments to the architecture, the requirements or the project plan as
necessary.

When following the spiral model, a project undergoes a large number of
cycles. The cycling only ends when the system is finally retired. This model
therefore incorporates the idea that maintenance is simply a type of ongoing
development.

The evolutionary model
The evolutionary model (Figure 11.5) shows software development as a series of
hills, each representing a separate loop of the spiral. This is a third way of
thinking about incremental development.

This model shows two things that are not always clear from the spiral model.
First, it shows that loops, or releases, tend to overlap each other. As testing and

Figure 11.4 The spiral model
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preparations for deployment of one release are under way, planning for the next
release has already started.

Secondly, the evolutionary model makes it clear that development work tends
to reach a peak, at around the time of the deadline for completion of
implementation. Finally, the model shows that each prototype or release can take
different amounts of time to deliver, and can take differing amounts of effort.

The concurrent engineering model
The concurrent engineering model (Figure 11.6) explicitly accounts for the divide
and conquer principle. Each team works on its own component, typically
following a spiral or evolutionary approach.

In the concurrent engineering model, there has to be some initial planning,
and periodic integration. The diagram therefore only shows a picture of a single
iteration.

The Rational Unified Process
Many of the features of the above models are embodied in what is known as the
Rational Unified Process (RUP). This is the most widely known published
methodology that embraces UML and most of the other techniques discussed
in this book.

RUP is designed to be adaptable: it suggests a framework and a set of
disciplined practices to follow, but encourages you to vary the level of rigor
depending on your organization’s needs.

Figure 11.5 The evolutionary model
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See the ‘For more information’ section at the end of Chapter 5 for the
definitive book about RUP.

Agile approaches
We have discussed agile approaches periodically throughout this book. These
approaches embrace the iterative model, encouraging the development of
particularly small iterations, and the reassessment of the direction of the project
as each new iteration is being considered. The techniques also explicitly disavow
‘big’ processes: by which we mean processes that require the development of lots
of documentation and have delivery dates far in the future.

Agile approaches are gaining popularity for small projects that involve
uncertain, changing requirements and other sources of high risk. Risk is reduced
because nothing big is produced – if a small iteration fails to meet the needs of the
users and has to be re-done, only a small amount of money is wasted.

Some people, upon initially hearing of agile techniques, think that they are
perhaps throwing away all the discipline inherent in some of the other
techniques we have talked about. This misconception is far from the truth: all
the agile approaches promote using disciplined techniques; the key is that each
of these techniques is lightweight – that is, it is not something that will bog down
the project or cost a lot of money. In fact many of the techniques are explicitly
designed to save money.

The most famous of the agile techniques is eXtreme Programming (XP).
Some of the tenets of eXtreme Programming are:

■ The development team includes all the stakeholders, who work very closely
together. In particular, it is considered important to have a customer or user on
site.

■ You do not develop large requirements documents. Instead, you write a series
of up to about 80 user stories that describe things the users want the system to
do for them (see the sidebar in Section 4.8). Each user story must take a couple
of weeks to develop and test; if developers estimate it would take longer, then it
must be broken down into smaller stories.

■ Project planning is based on the user stories. There must be a series of small
and frequent releases. A release is divided into iterations of between 1 and 3
weeks. The stakeholders work together to determine which stories will be
released in each iteration. Planning takes place just before the start of each
iteration, and project velocity is measured and used to gauge how much time a
set of user stories will actually take to develop. During each iteration,
programmers sign up to do tasks that must take between 1 and 3 days –
programmers do their own estimates of how much time each task should take.

■ There are three project variables that can be changed: scope, resources and time.
Management is only allowed to dictate any two of these; the developers
determine the third. Quality, a fourth variable, should not be sacrificed.
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■ In order to ensure high quality, design for testability and test-first development
(see Chapter 10) are emphasized: automated test cases are written before the
software is developed. As failures occur, new automated test cases are written.
Acceptance testing is based on the user stories.

■ A large amount of refactoring is encouraged. Refactoring means transforming
the design to ensure internal qualities such as maintainability are promoted.
Simple examples of refactoring include adding a superclass that contains
common features of existing classes, and adding a Façade design pattern
around a package to reduce coupling. Frequent refactoring ensures the design
retains high internal quality despite the fact that design only considers one
small iteration at a time. We will have more to say about refactoring in the
context of re-engineering below.

■ Pair programming is recommended. The idea behind this is that defects are
much less likely to creep into code if two people are involved in its creation.
Both people also keep each other engaged and focused on the task.

Extreme programming also promotes many other ideas, such as the use of CRC
cards, a focus on simplicity, creation of ‘spike’ throwaway prototypes when
difficult technical issues are encountered, frequent integration, and continual
improvement. Another part of the philosophy is that software developers should
not need to be overworked; overtime is therefore frowned on.

There are some drawbacks to agile methods. It is harder to write a contract for
development of a system when neither party knows the direction the project will
take. Also, some of the techniques become less and less appropriate as the
system becomes larger and larger. Nevertheless, many developers and managers
now enthusiastically support the use of agile techniques for a wide variety of
types of project. 

The open source model
A model that is widely used for software development is the open source model.
In this model software is distributed for free along with the source code, and
interested people contribute improvements, without being paid by users.

Many open source projects were founded by enthusiasts who initially developed
a system largely as a hobby, or perhaps as a student research project. People who
contribute to the projects often benefit because they are users of the software and
want it to become better and better. The idea is that community members will
make the software ever better for themselves and others in the community.

The open source movement has resulted in a wide variety of important
systems, including the Linux operating system and the GNU tools. Some
companies allow their developers to participate in open source projects; IBM,
for example, has heavily promoted the Eclipse software development tool.

In the open source model, a small group of leaders must retain control of
which contributions make it into the final release. Quality assurance is



 

Section 11.3 435Cost estimation

performed by the community: those interested in the project scrutinize and
criticize any suggested contributions.

Choosing a process model
When planning a particular project, the important thing to recognize is that you
can combine the features of the models that apply best to your current project.

From the waterfall model, you will always incorporate the notion of stages,
but you will most likely want to avoid having a single cascade ending in
maintenance.

From the phased-release model, you can incorporate the notion of doing
some initial high-level analysis, and then dividing the project into releases. You
can also incorporate the notions of prototyping and risk analysis from the spiral
model.

Next, from the evolutionary model you can incorporate the notion of varying
amounts of time and work, with overlapping releases. And from the concurrent
engineering model, you can break the system down into components and
develop them in parallel.

Finally, even if you are developing a large system, you can adopt many of the
features of the agile model: smaller releases, on-site users, test-first development
and frequent refactoring can all be adopted in projects both large and small.

Re-engineering
No matter what process model you use, in any large or long-lived project, the
design will deteriorate. Periodically, therefore, project managers should set
aside some time to re-engineer part or all of the system. The extent of this work
can vary considerably: it could include cleaning up the code to make it more
readable, completely replacing a layer, or refactoring part of the design.

In general, the objective of a re-engineering activity is to increase
maintainability. It should not normally involve adding any new features for
users, but should make the system more flexible so that adding such features in
the future becomes easier.

Although periodic re-engineering will reduce long-term costs, it is often hard
to convince managers and customers of this. You need to present them with a
detailed analysis of how much the re-engineering will cost, and what cost
savings will result. As with many aspects of software engineering, you should
follow the 80–20 rule: you can get 80 per cent of the benefits of re-engineering
with only 20 per cent of the work, therefore focus re-engineering efforts on the
parts of the system most in need of it.

11.3 Cost estimation

One of the biggest challenges in software engineering is accurately forecasting
how much time and effort it will take either to develop a system, or to make a
specific set of changes. All software developers have to participate in cost
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estimation, no matter whether they are the managers or
architects of a large system, or whether they are the
engineers responsible for the design and programming
of a single component.

There is an old cliché that ‘time is money’. In software
project management, this is literally true. When you
estimate the cost of doing some work, you focus on
estimating how much software-engineering time will
be required. However, there are two distinct aspects of
time. The first is elapsed time; this is the difference in
time from the start date to the end date of a task or
project. The second aspect of time is probably better
called development effort (or simply effort); this
measures the amount of labor used and is expressed in
person-months or person-days.

When planning a project, you budget a certain
amount of effort for each task, and you schedule the start and end times for
that task. If you schedule a task to take two weeks of elapsed time, but take six
person-weeks of effort, that means that you must also ensure that an average
of three people are working on the task at any given point in time.

The elapsed time of a project is important – you might have a contractual
obligation to deliver software by a certain day, or you might want to ensure
that your product reaches the market before the competition. However, the
actual cost of a project is primarily a function of development effort.

To convert an estimate of development effort to an amount of money, you
multiply it by the weighted average cost (also called the burdened cost) of
employing a software engineer for a month (or a day). The weighted average
cost not only includes the average salary of a software engineer, but also the
cost of providing that person with benefits, an office, a desk, a computer as
well as technical and managerial support. The weighted average cost is
therefore often two to three times average salary.

Example 11.1 In your organization, although the average salary is $4,000 /month, the weighted
average salary for cost estimation purposes is $11,000/month. You have
determined that a particular project will take 7 person-months to complete. How
much would you estimate this project will cost financially? 

You estimate that the project will cost 7×$11,000 = $77,000.

Principles of effective cost estimation
Cost estimation is notoriously difficult, as witnessed by the large number of
projects that are completed behind schedule and over budget, or are not
completed at all. There are several key principles that can help you to make
better estimates. These can be applied whether you are estimating the time for
your personal work, or for an entire project.

Chaos in project management
The Standish Group’s reports on
project management chaos contain
some of the most respected statistics
about software project failures.
According to the Standish Group, the
average project exceeds its budget by
90%, and its schedule by 120%.
Furthermore, over 30% of projects
are canceled before completion. In
the United States alone, this
represents about $100 billion in
wasted money per year. See http://
www.standishgroup.com.
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Cost Estimation Principle 1: Divide and conquer
In Chapter 9, we said that divide and conquer was one of the essential principles
of design. In Chapter 10, we said it also applies to testing. It turns out to be just
as important to cost estimation.

If you try to estimate the entire cost of a project as a single number, you are
likely to be very inaccurate. To make a better estimate, you should divide the
project up into individual subsystems, and then divide each subsystem further
into the activities that will be required to develop it. Next, you make a series of
detailed estimates for each individual activity, and sum the results to arrive at the
grand total estimate for the project.

Although your detailed estimates may be inaccurate, your final estimate will
be more accurate, for two reasons. Firstly, you will be more likely to account for
all the subsystems and activities. Secondly, if you underestimate the time
required for some subsystems or activities, this should be at least partly
compensated for by overestimates in other places.

Although it will help you improve estimates, the divide and conquer principle
is not a panacea. You might miss activities or systematically underestimate each
activity, leading to a total estimate that is too low. The other principles listed
below will help to combat this.

Cost Estimation Principle 2: Include all activities when making estimates
If you do not appreciate the amount of effort required for certain activities, or
omit them entirely, then your estimate of total effort will be too low.

For example, when asked to estimate the cost of a new feature for SimpleChat,
a beginner might focus primarily in the amount of time required to write the
requirements document and the code. However, the time required for all
development activities must be taken into account, including prototyping,
design, inspecting, testing, debugging, writing user documentation and
deployment.

Cost Estimation Principle 3: Base your estimates on past experience combined with what you 
can observe of the current project

The only way to predict the future is to reason by analogy with the past. If you
are developing a project that has many similarities with a past project, then you
can expect it to take a similar amount of work.

In practice, no two projects are the same. However, the more you follow
Principle 1 and divide the estimation task into fine-grained detailed estimates,
the more likely you are to be able to find similarities with aspects of past
projects.

There are two general strategies for using past experience. The first is to base
your estimates purely on the personal judgment of experts within your team. Such
people will have worked on other projects and can extrapolate their experience to
the current project. The second strategy is to use algorithmic models that have
been developed in the software industry as a whole by analyzing a wide range of
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development projects. They take into account various aspects of a project’s size
and complexity, and provide formulas to compute anticipated cost.

The algorithmic models allow you to systematically base your estimate of
development effort on an estimate of some other factor that you can measure, or
that is easier to estimate. Project managers base their estimates on factors such
as the following:

■ The number of use cases.

■ The number of distinct requirements.

■ The number of classes in the domain model.

■ The number of widgets in the prototype user interface.

■ An estimate of the number of lines of code.

Which of the above factors you use as a basis for your estimate depends on how
far you have progressed in development. For example, you may have completed
an initial use case model, but have not yet finalized the detailed requirements or
developed a prototype user interface.

Example 11.2 You have been asked to estimate the cost of a project for which you developed a
system domain model composed of 24 classes. In a recent similar project, the
average development effort (including all testing etc.) was 10 person-days per
class. What would be your cost estimate for the current project? 

You might first assume from past experience that the system domain model
classes represent half of the total number of classes in the final system. The other
classes would be user interface and architectural classes. The development effort
estimate would therefore be 24×2×10 = 480 person-days = 16 person-months.
Using the burdened cost from Example 11.1, this results in a cost estimate of
16x$11000 = $176,000.

Project managers often use lines of code to give an intermediate estimate of
system size that people can easily understand. For example, you might convert
an estimate of use cases to an estimate of lines of code, and then convert the lines
of code to an effort estimate using one of the formulas discussed below.
However, you can only effectively base cost estimates on lines of code when you
have almost completed design.

Example 11.3 Your records of previous projects show that an average class has 6 attributes, and
14 methods, averaging 6 lines of code each. The average lines of code per class is
90. How many lines of code would you expect to have to develop in the system of
Example 11.2?

You would expect to develop 90×48 = 4.3KLOC.



 

Section 11.3 439Cost estimation

A typical algorithmic model uses a formula such as the following:

E = a + bNc

In this formula, E is the effort estimate and N is the estimate or measure being
used as the basis for the effort estimate (e.g. number of use cases or lines of
code). The values a, b and c are obtained by extensive analysis of past projects,
and determinations of the differences that will effect the current project (these
will be discussed in Cost Estimation Principle 4).

The exponent c is particularly interesting. If it is not equal to one, it means
that the effort increases non-linearly. If c < 1, there would be economies of scale
as a project gets larger, which turns out not to be the case in software. In real
projects c > 1, which means that the effort grows increasingly rapidly relative to
project size; this is due to the increasingly large amount of co-ordination and
complexity involved.

Figure 11.7 shows the effect of typical values of the c parameter used by one
of the best-known algorithmic cost estimation models, COCOMO II
(COnstructive COst Model, version II). COCOMO II computes effort, in
person-months, from an estimate of size, measured in lines of code.

Another important algorithmic method is Function Point Analysis. In this
approach, and several related approaches, you count features of the
requirements and use these to compute an estimate of the system’s size. You can
then apply COCOMO to the size estimates.

The basic equation used by approaches like Function Point Analysis is:

S = W1F1 + W2F2+W3F3 +… 

The Fi represent counts of features of the requirements such as number of
inputs, number of tables in the database, number of use cases etc. These counts
are multiplied by weights (the Wi values) calculated using industry-wide
experience. The results are summed to produce a system size, S.

To find out more about Function Points and COCOMO, see the references in
the ‘For more information’ section at the end of the chapter.

Figure 11.7 Effect of non-linearity in cost estimation
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Cost Estimation Principle 4: Be sure to account for differences when extrapolating from 
other projects

Although experience from other projects can be a good guide, there are often
many subtle differences between projects. You have to consider carefully the
effect of differences such as the following when making an estimate for a new
project:

■ Different software developers. People differ dramatically in their skill and
experience levels; a skilled programmer can be up to ten times as productive as
a less skilled programmer. In projects with only a few people, this can therefore
significantly influence the accuracy of estimates.

■ Different development processes and maturity levels. Teams that have skilled
management and a mature development methodology that includes such
things as quality assurance, risk management and iterative development will be
able to work more efficiently than organizations that follow an ad-hoc
approach.

■ Different types of customers and users. Project teams that have good access to
and rapport with both their customers and users can often proceed faster than
organizations lacking these advantages. In the latter case, delays are caused by
slow or poor decision making. Projects that have a single user or customer will
often also proceed faster than projects with many users and customers. Not
only does it take time to negotiate decisions when many people are involved,
but the resulting compromises may be difficult to develop efficiently.

Estimating the cost of construction – false analogies
Some people yearn for the day when it will be as easy to estimate software development time as it
is for a civil engineer to estimate the cost to construct a small building. Civil engineers and builders
have tables that allow them, for example, to calculate how much time it will take to lay a certain
amount of concrete, or to perform each of the other construction tasks.

Why can’t we do this in software engineering? The answer, as we hinted in Chapter 1, is
that it is false to draw analogies between ‘construction’ of buildings and the latter stages of
software development that are sometimes (unadvisedly we believe) also called ‘construction’.

Software development is an intensely mental activity. Like the design of buildings, it is full
of decision-making and other intellectual challenges, all the way to the end of programming
and testing. Constructing a building should actually be seen as analogous to the printing of
disks or making the executables available for downloading. Because software is largely
intangible, this real construction process is very inexpensive.

The dominant costs in software engineering are therefore design costs, which are hard to
estimate.  The dominant costs in many other branches of engineering are true construction
costs, which are much easier to estimate.

This does not mean we are doomed to failure; it just means that we should expect a
realistic level of uncertainty in our estimates, and that we should practice iterative
development and risk management so as to mitigate the effects of those uncertainties.
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■ Different schedule demands. Ironically, if a project team is under intense
pressure to deliver software by a certain date they may cut corners and make
mistakes that actually end up delaying them. On the other hand, a certain
amount of deadline pressure can have a positive effect.

■ Different technology. The effort required can be affected by changes in
hardware, other software systems with which your system must interact,
database management systems, operating systems and programming
languages. For example, if you change to a new programming language, that
language can take considerable time to learn. Also, some languages are known
to be less productive than others. For example, programming in assembler is
unproductive because it takes many statements to express a given computation,
and furthermore the complexity of assembler gives rise to more bugs.
Programming in C or C++ is likely to result in faster development. Using Java
or C# is likely to decrease development time still further.

■ Different technical complexity of the requirements. Some systems are
intrinsically more complex than others, because they require greater reliability,
are distributed, or for many other reasons.

■ Different domains. A team embarking on a project in a domain in which it has
not worked before will undoubtedly take more time than a team that has been
working in the same domain for years.

■ Different levels of requirement stability. Some projects are easier to define in
advance. On the other hand, some projects must proceed in an exploratory
fashion since the requirements will not be clearly known until prototyping is
complete. The total effort will thus vary substantially. Also, some domains are
more prone to changes in requirements than others.

The algorithmic cost-estimation techniques explicitly take into account factors
such as the above, by multiplying the estimate by a small factor, or increasing the
value of an exponent.

In COCOMO II, the basic value of the exponent c in the formula presented
earlier is 1.01. You add to this exponent amounts ranging from 0.00 to 0.05
depending on the impact you expect from: a) the level of experience with this
kind of project; b) the amount of flexibility you have in the development
process; c) the amount of risk management performed; d) the quality of the
development team, and e) the process maturity of the organization.

COCOMO II also has a series of multiplicative factors that modify the value
of b in the formula. These factors are divided into four categories: Personnel,
Product, Project and Platform attributes. Typical initial values of b might be 2.4
for a small project and 3.0 for a medium-sized project.

Example 11.4 This example continues examples 11.2 and 11.3. Assume that you are working on
a small project and will use 2.4 as your multiplicative value, b. To compute the
exponent, suppose we have, for this project, good experience with similar project
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(0.01), no involvement of the client in the process (0.00), little risk analysis carried
out (0.04), a relatively good team of developers (0.02) and an average process
maturity (0.03). Use this data to compute a cost estimate in person-months.

The exponent value will be 1.01+0.10 = 1.11. The effort would then be
2.4×4.31.11 = 12.1 person months.

Example 11.5 Looking up in COCOMO II tables, you find that the following multiplicative
factors need to be applied to adjust the value of the b (multiplicative) parameter:

(a) Personnel factor: your team has good experience with the programming
language to be used: 0.95

(b) Product factor: the system will be running under very tight memory
constraints: 1.21

(c) Project factor: you have to put up with a schedule that is a bit tight: 1.04

(d) Platform factor: particularly high reliability is required: 1.4

Revise your effort estimate from Example 11.4, given this new data, and convert
the result to dollars.

The effort estimate is 0.95×1.21×1.04×1.4×12.1 = 20 person-months, for a cost
of 20×$11,000 = $220,000.

Exercise

E214 Using your judgment, what would be reasonable multiplicative parameters for
the following (you could do this with reference to the COCOMO II
documents).

(a) Personnel factor: your team has in the past developed many similar
applications.

(b) Product factor: the system includes a particularly large database.

(c) Project factor: some of your development team will be located in the US,
some in Canada, some in India and some in South Africa.

(d) Platform factor: the application will run under the Linux operating system.

Cost Estimation Principle 5: Anticipate the worst case and plan for contingencies
In accordance with Murphy’s Law, if something can go wrong in a project, it
probably will. For example, you might have difficulty deciding on the
requirements; there might be unexpected technical challenges in the design
process; or somebody might quit or not perform up to expectations.

One way to plan for contingencies is to prioritize all the use cases according
to their benefit to the customer. If, as the project progresses, your revised cost
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estimates show that you will exceed your budget or deliver the software too late,
you can drop the lowest priority use cases, and update your estimates
accordingly.

Another important thing to do is to build enough ‘cushion’ into your cost
estimate so as to account for typical delays. One way to do this is as follows. For
every detailed estimate, make an ‘optimistic’ (O) estimate, a ‘likely’ (L) estimate
and a ‘pessimistic’ (P) estimate. Your O estimate suggests the minimum time
you reasonably think the activity might take. Your L estimate accounts for what
you think would be a typical number of things going wrong. Your P estimate
suggests what you think the activity would consume if many difficulties were
experienced. You then add up the O estimates, the L estimates and the P
estimates separately to arrive a global estimates of the best-case, typical-case and
worst-case cost for the project.

Having these three separate estimates ensures that you are not making the
mistake of providing only a best-case estimate. Your pessimistic estimate also
helps you to become conscious of all the things that could go wrong, so that you
can take active steps to avoid them.

Example 11.6 You are asked to estimate the cost of developing the Release 2 of the GANA system
introduced in Chapter 4. The new release would:

■ Constantly update the estimated time of arrival at the destination, based on
typical travel speeds on the roads to be taken, the time of day, and day of the week
(accounting for rush hours).

■ Dynamically adjust the scale of the map based on the local population density, the
distance of the driver to his or her origin or destination, and the driver’s speed.
The map would not jump from one scale to another but would smoothly increase
or decrease its scale.

The following table shows Optimistic, Likely and Pessimistic estimates for the
work required, expressed in person-months. Note that more detailed estimates
could be created if some of the tasks were divided into subtasks.

 Optimistic Likely Pessimistic

Requirements gathering 2.5 3 4 

Prototyping 2 3 5 

Specification 1 1.5 3 

Design 4 6 8 

Implementation 5 8 16 

Software inspection and testing 6 10 13 

Hardware integration and system test 1.5 2.5 4 

Total Time 22 34 53 
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Exercise

E215 Evaluate the cost estimates presented in Example 11.6; discuss potential
sources of error in these estimates. 

E216 Search the Internet for the source code of an open-source Java project (you can
also select a package from the Java API). Then do the following:

(a) Compute some basic metrics: the average number of attributes and
methods per class; and the average number of lines per method.

(b) Imagine you are planning to add a new subsystem of 40 classes very similar
to the system you have studied. Use the numbers computed in part a) to
derive likely, optimistic and pessimistic estimates for the number of lines of
code you would expect to find in this system.

(c) Use the COCOMO approach discussed earlier to arrive at optimistic, likely
and pessimistic estimates for the effort required to develop the subsystem. 

Cost Estimation Principle 6: Combine multiple independent estimates
No matter how good your estimation process, you are likely to have overlooked
some factors that will affect the accuracy of your estimate.

You should therefore use several different techniques and compare the results.
If there are discrepancies, you can analyze your calculations to discover what
factors are causing the differences. For example, you can make one estimate
based on your experience with a similar project; you can then use COCOMO or
Function Points to make a second estimate.

A well-respected approach to making multiple estimates is the Delphi
technique. To use this technique, several individuals initially make cost
estimates in private. They then share their estimates to discover the
discrepancies. Each individual repeatedly adjusts his or her estimates until a
consensus is reached.

Example 11.7 Discuss the discrepancies between the cost estimates presented in Examples 11.2
and 11.5, and suggest a course of action.

The estimate of $176,000 from example 11.2 was based purely on extrapolating
from this organization’s typical costs per class developed. The $220,000 estimate
of example 11.5 was based on a much more sophisticated sequence of
computations, with a lines-of-code estimate as an intermediate value. In
particular, the specific attributes of the current project that differentiate it from
previous projects were taken into account. You should probably therefore put
more weight on the second estimate, although it has one weakness: some factors
used in the calculations were based on industry-wide data, not your own
company’s data.
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You should probably attempt to use other cost-estimation techniques to see if
they provide any more evidence that would help make the estimate more
accurate. You should also closely monitor progress and revise your estimate
regularly. 

Cost Estimation Principle 7: Revise and refine estimates as work progresses
When you set out to solve a customer’s problem you will have very little idea
what software is needed (if any), therefore your estimate of the amount of work
required can only be very rough. You will refine your estimates for three reasons:

■ As you add detail. As you gather requirements and begin specifying details,
you will be able to increase the accuracy of your estimate. As you move into the
design phase, you can again increase the accuracy of your estimates.

■ As the requirements change. You will adjust your estimates as requirements
change, or features are dropped in order to meet a budget or deadline.

■ As the risk management process uncovers problems. Similarly, as you
encounter problems during design and implementation, you will be able to
adjust your estimates to take these into account.

Cost estimation should therefore be a continuous activity. Updated estimates
should be reported regularly to other members of the team, to management and
to customers. A classic project management failure is to keep reporting that the
project is ‘on time and on budget’ until the expected delivery date, and then to
announce that the project is six months behind schedule.

Exercise

E217 Working in groups of four, estimate the cost of developing Release 1 of the
GANA software, whose requirements were described in Chapter 4. Use as
many of the techniques described in this section as possible. Among other
things, this means you will use the ‘divide and conquer’ strategy to divide the
software into parts, and divide the development process into detailed activities.
You should also make optimistic, likely and pessimistic estimates. Each group
should initially split into pairs, with each pair doing the estimation
independently. Then the two pairs can come together to compare and reconcile
their estimates. 

11.4 Building software engineering teams

Software engineering is a human process. Choosing appropriate people for a
team, and assigning roles and responsibilities to the team members, is therefore
an important project management skill.
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Strict hierarchy versus more flexible arrangements

Software engineering teams can be organized in many different ways. One
approach is to use a hierarchical manager–subordinate structure. In this
approach, each individual reports to a manager and is responsible for
performing the tasks delegated by that manager. At the opposite extreme is the
egoless team: in such a team everybody is equal, and the team works together to
achieve a common goal. In most organizations today, software engineering is
performed using teams that fall in the middle of the spectrum.

In the egoless approach, decisions are made by consensus; this can lead to
more creative solutions, since group members spontaneously get together to
solve problems when they arise. In general, the egoless approach is most suited
to difficult projects with many technical challenges. However, it is dependent on
the personalities of the individuals, and hence is more likely to run into trouble
if personal conflicts arise. Also, the assumption that everybody is equal is often
wrong when a team is composed of people whose levels of skill and knowledge
vary widely.

The hierarchical approach is reminiscent of the military, or large bureaucratic
organizations. It is suitable for large projects with a strict schedule and where
everybody is well trained and has a well-defined role. However, since everybody
is responsible only for their own work, problems may go unnoticed.

The ‘chief programmer team’ is a model that is midway between egoless and
hierarchical. It works very much like the surgical team in an operating room.
The chief programmer leads and guides the project; however, he or she consults
with, and relies on, individual specialists. As with the egoless approach,
everybody’s goal is the success of the project.

Figure 11.8 shows how the main channels of communication differ among the
team structures. In each case the same eight people are involved. In the idealized
egoless approach shown on the left, everybody communicates with everybody
else: this can result in a lot of communication, which may be reasonable when
difficult technical problems are to be solved. The total number of potential
communication channels is (n2−n)/2. The rightmost diagram shows the

Software development contracts based on uncertain cost estimates
Customers often want a contract for custom software development to have a ‘fixed price’ so that
they are not exposed to the risk of inaccurate estimates. On the other hand, software developers
want a contract to allow them to charge for whatever ‘time and materials’ they use; this protects the
developers from inaccurate cost estimates but exposes the customers to all the risk.

A solution to this conflict is to make an estimate for the entire project, but only initially
sign a fixed-price contract for the first step. After each step, the developers and the customer
revise the estimates. Either party can walk away if they believe their risk is growing too high;
otherwise they repeat the process, signing a new fixed price contract for each successive step.

This approach reduces risk for both parties. It also encourages the developers to control
costs, and discourages the customers from trying to add requirements.
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idealized hierarchical approach, where communication links are dramatically
reduced (to n−1), but the risk is run that important information will not be
communicated.

In reality, whatever team structure is formally adopted, people will tend to
consult people with whom they do not have a formal relationship, and may fail
to communicate details to people who need to know them. A project manager
should therefore monitor and encourage all necessary communication.

Choosing an effective size for a team
We have already discussed the fact that you should divide a system into
subsystems. Each subsystem is then assigned to a team; the various teams have
to co-ordinate their work.

For a given estimated development effort in person-months there is an optimal
team size. Doubling the size of a team will not halve the development time.

Making subsystems, and hence teams, too large or too small tends to make the
development more complex and lead to designs that have higher coupling.
Subsystems and teams should be sized such that the total amount of required
knowledge and exchange of information is reduced – each team needs to
understand only the overall software architecture, the details of its own
subsystem, plus the interfaces to related subsystems.

For a given project or project iteration, the number of people on a team will
not be constant. Initially, just a few people will be involved in defining the scope;
later on, additional people will become involved as requirements, design,
implementation and testing get under way. As the project or iteration nears
completion, people will start moving on to the next iteration or to other work,
leaving only a few people to undertake deployment. This change in team size is
illustrated in Figure 11.5.

It is important to remember the following rule, however: if your team has an
appropriate number of people to start with, then you cannot generally add
people if you get behind schedule, in the hope of catching up. In fact, in his book
The Mythical Man Month, Fred Brooks made one of the most well-known
statements in software project management: ‘Adding more people to a late
project makes it even later.’ This occurs because the new people will take time to

(a) Egoless (b) Chief programmer (c) Strict hierachy

Figure 11.8 Idealized communication patterns in different team structures
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learn what has been done, and will require support from the other people in the
meantime, slowing them down. Furthermore, as mentioned above, if the team
was the ‘right’ size to start with, adding more people may well be making it too
big and inefficient.

Skills needed on a team

No matter how the team is organized, individual people are often assigned
specific roles based on their particular skills. The following are some of the more
common roles found on a development team:

■ Architect. This person is responsible for leading the decision making about the
architecture, and maintaining the architectural model.

■ Project manager. Responsible for doing the project management tasks
described in this chapter. Even in an egoless team, somebody has to be the
custodian of the cost estimates and the schedule.

■ Configuration management and build specialist. This person ensures that, as
changes are made, no new problems are introduced. Everyone relies on builds
as the baselines for quality assurance and subsequent development. This
person also makes sure that documentation for each change is properly
updated.

■ User interface specialist. Although everybody should interact with users, this
person has the particular responsibility to make sure that usability is kept at the
forefront of the design process.

■ Technology specialist. Such a person has specialized knowledge and expertise
in a technology such as databases, networking, operating systems etc.

■ Hardware and third-party software specialist. This person makes sure that
the development team has appropriate types of hardware and third-party
software on which to develop and test the software. This person will install and
perform acceptance testing on any reusable components the team plans to use.

■ User documentation specialist. This person, who should have a technical
writing background, ensures that online help and user manuals are well
written.

■ Tester. Even though there should be an independent test group, the
development group may have a person who is responsible for the first stage of
testing.

Within any development team, the same individual may have more than one of
these roles. The important point, from a project management perspective, is that
the needed roles be filled. If not, then some of these tasks may not be properly
done. It is also important that there be at least two people capable of performing
each role, so that if somebody leaves or is sick, the project is not paralyzed.
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The roles listed above require specific skills and knowledge. The project
manager can either select people with appropriate background, or ensure that
people obtain appropriate training. The project manager should also ensure that
all team members continue to augment their education in software engineering,
as well as in general skills such as leadership, technical writing, and running
meetings. 

Exercises

E218 Discuss what you think the best team structure would be for each of the
following projects:

(a) The replacement of the income tax system of a country.

(b) The GANA software, whose requirements we introduced in Chapter 4.

(c) The control software for a new interplanetary probe.

(d) Software to provide a more useful front-end to a university registration
system, so that students can make better choices of courses.

E219 Design a team for implementing Release 1 of the GANA software whose cost
you estimated in Exercise E217. Specify an appropriate team structure, the
number of people you believe should be on the team, how the team structure
would evolve as the project progresses, and the skills you believe team
members should have. 

11.5 Project scheduling and tracking

Scheduling is the process of deciding in what sequence a set of activities will be
performed, as well as when they should start and be completed. Tracking is the
process of determining how well you are sticking to the cost estimate and
schedule.

Two types of diagram are particularly important in scheduling: PERT charts
and Gantt charts. Earned value charts are useful for tracking. In this section, we
will show you how to use all three diagram types. A variety of commercial tools
are available to help draw these diagrams.

PERT charts
A PERT chart shows the sequence in which tasks must be completed. Each task
has zero or more predecessors on which it depends, and zero or more
successors, which depend on it. The whole diagram therefore forms a graph,
whose nodes are tasks, and whose arcs are dependencies.

In each node of a PERT chart, you typically show the elapsed time and effort
estimates. You can also show optimistic, likely and pessimistic estimates.
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One of the most important uses of a PERT chart is to
determine the critical path. The critical path indicates
the minimum time in which it is possible to complete
the project. It is computed by searching for the path
through the chart that has the greatest cumulative
elapsed time and no idle time. If any task on the critical
path is delayed, then the completion date of the project

will be delayed.
Figure 11.9 shows a PERT chart for Release 2 of the GANA system,

corresponding to the cost estimates in Example 11.6. Note that some of the tasks
have been broken down into subtasks. Each task box shows both the expected
elapsed time, in weeks, as well as the expected effort in person-months. The
critical path is shown in bold. You can calculate the minimum elapsed time (35
weeks) by summing the elapsed times on this path.

Gantt charts
A Gantt chart is used to graphically present the start and end dates of each
software engineering task. A Gantt chart is like a UML sequence chart: one axis
shows time and the other axis shows the activities that will be performed.

Figure 11.10 shows a Gantt chart for Release 2 of the GANA system. The black
bars are the top-level tasks; the white bars are subtasks, and the diamonds are
milestones – important deadline dates, at which specific events may occur.

Note how requirements gathering and prototyping overlap each other. Also
note that inspection can be started as soon as the first parts of the
implementation are complete, and testing can start as soon as some inspection
is complete.

This chart does not yet show the allocation of people to the tasks. Nor have we
chosen to show the breakdown of implementation and testing by layer; this
latter detail can be added once requirements are clearer.

Figure 11.9 A PERT chart for Release 2 of the GANA system
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PERT
PERT stands for ‘Program Evaluation
Review Technique’ and is very similar
to techniques called the ‘Critical Path
Method’ and ‘Precedence Networks’.
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Earned value charts
Earned value is the amount of work completed, measured according to the
budgeted effort that the work was supposed to consume. It is also called the
budgeted cost of work performed. As each task is completed, the number of
person-months originally planned for that task is added to the earned value of
the project.

For example, in the GANA Release 2 project, the total planned effort for all
the tasks is 32.5 person-months. Therefore, when the project is complete, its
earned value will be 32.5 person-months.

However, tasks may be completed late, and may take more effort than
planned. An earned value chart such as Figure 11.11 can be used to measure the
extent to which the project is behind schedule and over budget.

An earned value chart has three curves:

■ The budgeted cost of work scheduled. This is the planned amount of effort
that was supposed to have been expended by any point in time. It is computed
by examining at the cost estimates and the Gantt chart. It is shown here as the
solid black curve.

■ The earned value – that is, the budgeted cost of the work performed. This is
shown here as the dotted curve.

■ The actual cost of the work performed so far. This is shown as a dashed
curve.

At any point in the project, you can tell how far behind schedule you are by
measuring the horizontal distance between the earned value curve and the
budgeted cost of work scheduled. You can also tell the extent to which you are
over budget by measuring the vertical distance between the earned value curve
and the actual cost curve. Armed with this information, you can take steps to get
the project back on track, for example by postponing less important
requirements.

Figure 11.10 A Gantt chart for Release 2 of the GANA system
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Exercises

E220 Draw a PERT and a Gantt chart for the project to develop Release 1 of the
GANA software, whose cost you estimated in Exercise E217. Make sure you
show the critical path on your PERT chart. 

E221 In light of the last exercise, review your proposed cost estimate and team
structure for the GANA system. Explain any changes you would make. 

11.6 Contents of a project plan

You should write a project plan document that has the following types of
information. This document should be regularly updated as the project
progresses. As with other documents, when writing a project plan, be concise
and understand the audience. The audience will be all the team members, the
customers, the project managers of related projects, anybody else who has to
implement aspects of the plan, and anybody who has to take over as project
manager for any reason.

Figure 11.11 Earned value chart showing how development of Release 2 of the GANA system 
was 8 weeks behind schedule and cost 10 person-months more than expected

0 4 8 12 16 20 24 28 32 36 40

The project is
6 weeks behind

schedule at
week 23

The completed work
is 2 person-months

over budget at
week 23

Planned
elapsed

time

Actual
elapsed

time
Actual
effort

Budgeted
effort

Elapsed time (weeks)

Ef
fo

rt
 (

p
er

so
n-

m
o

nt
hs

)

40

35

30

25

20

15

10

5

0

Budgeted cost of work scheduled

Earned value

Actual cost of work performed



 

Section 11.7 453Difficulties and risks in project management

A. Purpose. Describe the problem to be solved, as in the requirements document.
State the business objectives for the project, including anticipated benefits.
Quantify the benefits as much as possible.

B. Background information. Give a brief history of the project to date – you can
update this as the project proceeds. Describe the stakeholders. Give references
to related projects and any documents produced so far, such as requirements
definitions.

C. Processes to be used. Describe the overall process model (e.g. spiral model,
eXtreme Programming, etc.). Outline the techniques to be employed for
requirements gathering, design, implementation, quality assurance, change
management, risk management, and ongoing project management. Also
describe the documents to be produced, including the contents of these
documents, and how you will measure and track the project. Some of this
information can be given as pointers to standards.

D. Subsystems and planned releases. Show the division of the system into
subsystems and releases that can be allocated to people or teams. This can be
provided as a reference to the architectural model.

E. Risks and challenges. Describe the risks and difficulties that are expected to be
most critical to this project, or to specific subsystems. Indicate how they are to
be monitored and resolved. This will be updated as the project progresses.

F. Tasks. List the tasks to be completed for each subsystem and release.

G. Cost estimates. Give the present cost estimates for the tasks and subsystems.
Show all calculations, and include pessimistic and optimistic values.

H. Team. Describe the team structure, the skills needed on that team, the plan for
ongoing training and the allocation of general responsibilities to team
members.

I. Schedule and milestones. Give reasonable deadlines for completion of tasks.
Use Gantt and PERT charts showing the allocations of tasks to people, the
periods of time they will work on each task, as well as the critical path(s).

11.7 Difficulties and risks in project management

The problems faced by software engineers in general, as discussed in earlier
chapters, are also faced by project managers. The following are some of the
particular difficulties faced by those given management tasks.

■ Accurately estimating costs is a constant challenge. As discussed in this
chapter, there are many sources of uncertainty that result in inaccurate
estimates.
Resolution. Follow the cost estimation guidelines presented in this chapter.
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■ It is very difficult to measure progress and meet deadlines. Despite your best
planning efforts, last-minute problems and inaccurate progress reports can
confound attempts to meet deadlines with a high-quality result. Quite often,
members of a team have a false sense of optimism, blindly ignore some of the
tasks that lie ahead, or are fearful to report potential delays.
Resolution. Improve your cost estimation skills so as to account for the kinds of
problems that may occur. Develop a closer relationship with other members of the
team so that you are more keenly aware at all times about the progress achieved,
and the potential risks. Be realistic in initial requirements gathering, and follow
an iterative approach, since smaller projects are easier to deliver on time. Use
earned value charts to monitor progress.

■ It is difficult to deal with lack of human resources or technology that is
needed to successfully run a project. People differ widely in skills, and there
may be a shortage of software developers with the skills you need. Much of the
technology that we use also has deficiencies.
Resolution. When determining the requirements and the project plan, take into
realistic consideration the resources available. If you cannot find skilled people or
suitable technology then you must limit the scope of your project.

■ Communicating effectively in a large project is hard. Many people lack
training in the listening and communications skills needed to exchange
information effectively with other stakeholders. This results in errors and
delays. Both lack of information and information overload are equally
problematic.
Resolution. Take courses in communication, both written and oral. Learn how to
run effective meetings. Review what information everybody should have, and
make sure they have it. Make sure that project information is readily available for
browsing, e.g. using an intranet web site. Use ‘groupware’ technology to help
specific groups of people exchange the information they need to know.

■ It is hard to obtain agreement and commitment from others. People have
different ideas about the requirements, the design and the project plan.
Progress can be paralyzed by indecision. People can be reluctant to commit to
plans if they feel they have too much work to do, or if they feel there are not
enough benefits accruing from the plan as compared to the costs.
Resolution. Take courses in negotiating skills and leadership. Ensure that
everybody understands the position of everybody else, the costs and benefits of
each alternative, and the rationale behind any compromises. Ensure that
everybody’s proposed responsibility is clearly expressed. Listen to everybody’s
opinion, but take assertive action, when needed, to ensure progress occurs.

Exercise

E222 Now you have completed this chapter, go back and review your answer to
Exercise E213. What have you learned in the chapter that would have enabled
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you to do a better job, if you could go back in time and repeat the group work
you did in this book? 

11.8 Summary

In this chapter we have briefly introduced some important techniques required
to manage a software project.

We started by discussing process models. Although the waterfall model is the
classic model, it is recognized today that a more iterative approach is generally
superior, and an agile approach may be ideal for a smaller project.

Next we discussed cost estimation, an activity that all software engineers need
to perform to some extent, but which is particularly difficult. We outlined a
series of principles you can apply, including: dividing and conquering, making
sure you account for all activities, basing your estimates on past experience,
combining estimates from different people, making pessimistic and optimistic
estimates, and regularly revising estimates.

Software patents: a big source of risk
A patent is a license, given by a government, to hold a monopoly on a new invention for a limited
time, typically 20 years.  Although laws differ from country to country, you can generally obtain a
patent if you can show that your invention is new, useful and non-obvious.

In the past, patents have been very important, ensuring that those who invest effort in
developing an innovation will not be immediately undercut in price by people who merely
copy their idea.  Within the last 20 years, however, patents on software have become available
in many jurisdictions. The majority of software engineers see this as a bad thing, although
many patent holders will obviously hold the opposite opinion.

Software patents certainly are a big source of risk for developers. In the early days of
technology, if you marketed an innovation it tended to represent a single invention, or perhaps
a few.  You could therefore reasonably easily tell whether you were infringing on someone’s
patent. Developing software, however, involves building a system by composing vast numbers
of ideas; therefore you are quite likely to accidentally infringe on patents and hence risk being
sued by patent holders.

Many people feel software patents should be disallowed since research has shown they
probably have the opposite effect from what was intended.  They most likely stifle invention
– they consume time and money as people defend themselves against claims, or file their own
patents so that they can counter-claim against others.  They also result in people having to be
very cautious in their development and therefore avoid innovation.

To make matters worse, it seems that many patents that have been issued have in fact been
neither new nor non-obvious. However, patent examiners have often lacked the time or the
sources of information to determine this.  Although a bad patent can be overturned in court,
doing so is very expensive.  This means that if you are sued for infringement of a patent that
you know should be invalid, it may still put you out of business.
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Then we discussed structuring teams. Members of a rigid, hierarchical team
will consume less time communicating with each other, but may not exchange
essential information. More flexible team structures such as chief programmer
or egoless teams work best, especially for smaller and high-risk projects.

We discussed using Gantt, PERT and Earned Value charts for scheduling and
tracking projects. Gantt charts show a series of timelines for each task, whereas
PERT charts show the interrelationships among tasks, including the critical
path. Earned value charts help you determine the extent to which the project is
behind schedule and over budget.

All of the information discussed above should be summarized in a project
plan that team members can read.

11.9 For more information

The following are some important resources related to project management:

■ B. Hughes and M. Cotterell, Software Project Management, 3rd edition,
McGraw-Hill, 2002. http://www.mcgraw-hill.co.uk/hughes

■ S. McConnell, Software Project Survival Guide, Microsoft Press, 1997, http://
www.stevemcconnell.com/sg.htm

■ R. L. Glass, Software Runaways, Prentice Hall, 1998

■ F. Brooks, The Mythical Man-Month, 20th Anniversary Edition, Addison-
Wesley, 1995

■ R. M. Belbin, Beyond the Team, Butterworth-Heinemann, 2000, http://
www.belbin.com/book-btt.html

■ A good website for COCOMO: http://sunset.usc.edu/research/COCOMOII/

■ Dave Farthing’s software project management page at the University of
Glamorgan: http://www.comp.glam.ac.uk/pages/staff/dwfarthi/projman.htm

■ The Extreme Programming web site: http://www.extremeprogramming.org.
This web site is a particularly good project management resource, whether or
not you are currently thinking of doing eXtreme Programming

■ M. Stephens and D. Rosenberg, Extreme Programming Refactored: The Case
Against XP, Apress, 2003. http://www.softwarereality.com/lifecycle/xp/
case_against_xp.jsp

■ All project management: http://www.allpm.com

■ The project management institute http://www.pmi.org. They have also
published their Project Management Body of Knowledge in book form as A
Guide to the Project Management Body of Knowledge
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Standards

The following are some of the IEEE, British and ISO standards covering project
management. As mentioned in Chapter 4, standards require a subscription. For
ISO standards, see http://www.iso.ch. For IEEE standards, see: http://
www.standards.ieee.org/software/index.html. For British standards, see: http://
bsonline.techindex.co.uk.

■ IEEE Standard 828, Software Configuration Management Plans

■ IEEE Standard 1219, Software Maintenance

■ IEEE Standard 1490, Adoption of the Project Management Institute’s Project
Management Body of Knowledge

■ ISO Standard/British Standard/ IEEE Standard 12207, Software Lifecycle
Processes

■ ISO Standard/British Standard 15504, Software Process Assessment

Project exercises

E223 Look back over all the work you and your group have performed on project
work from this book, and write a report about the results. Include the following
information:

(a) How much effort you spent in total, for all aspects of the work.

(b) How much you produced, measured in use cases implemented, test cases
written, and lines of code.

(c) Your productivity: how much you produced, per person-hour.

(d) Sources of inaccuracy in your estimation of the above.

(e) The technological problems you encountered.

(f) The project management problems you encountered.

E224 Compare your results of the previous exercise with the results of other groups.
Explain any differences.

E225 Develop an outline of requirements and a project plan for the following
problem. Imagine you were asked to extend SimpleChat Phase 5 so that it can
be used to transmit low-resolution, low frame-rate video images of the people
participating in a channel. The objective is to make SimpleChat work like
video-conferencing software. Include in your project plan the information
suggested in Section 11.6. Use data from the last exercise to help calibrate your
cost estimates, and use OLP and Delphi estimating techniques.
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We have incorporated nine themes into many of the chapters in this book. These
themes will serve in this chapter as a way to gather together and relate many of
the concepts we have discussed.

12.1 Theme 1: Understanding the customer and user

We have emphasized in this book that software engineers must continually
focus on the customers and users. Customers are those who pay, while users are
those who use. In some cases they are the same people, but often not.

The definition we gave of software engineering from Chapter 1 places
customers at the center – we must ensure that everything we do is directed
towards solving their problems.

Solving customers’ problems is difficult: software engineers must spend
considerable effort trying to understand their problems and then develop
requirements that address the problems. Techniques for doing this were
discussed in detail in Chapter 4; these include domain analysis, interviewing,
brainstorming, use case analysis and prototyping.

In Chapter 7, we focused on the users. Unless the users can learn the software
effectively, and work efficiently with it, the customer’s problem will not be
adequately solved. We emphasized that involving users in all activities, and
designing the user interface effectively, will ensure that both utility and usability
are maximized.

12.2 Theme 2: Basing development on solid principles and reusable technology

We have emphasized throughout the book that software engineering is an
engineering activity. Like other engineers, a software engineer solves problems
by applying well-understood knowledge and technology in a disciplined way.
However, the types of knowledge and technology required for the different
engineering disciplines differ: other engineers design artifacts made of atoms
and are subject to the laws of physics, whereas software engineers design
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artifacts made of bits, and are subject to the principles of logic, computability
and human psychology.

The following are some of the types of knowledge and technology applied –
i.e. reused – by software engineers:

■ Software engineering principles: reuse of experience. Table 12.1 reiterates the
general principles that we have encountered throughout the book. This book
has discussed only a sample of the principles you can apply while developing
software, but if you focus on the principles listed here you will be well on your
way to being a good software engineer.

Table 12.1 Summary of software engineering principles presented in this book 

Principles for gathering good requirements (Chapter 4)

1. Perform domain analysis so that you know enough to communicate effectively and avoid 
misunderstandings

2. Keep the scope of the system narrow enough by understanding and focusing on the 
customers’ real problem

3. Keep the system general enough by finding out the higher-level goals of the customers and 
users

4. Gather all kinds of requirements: functional, quality, platform and process requirements

5. Combine techniques such as interviewing, brainstorming, use case analysis and prototyping 
to gather requirements most effectively

Principles for writing good requirements documents (Chapter 4)

1. Ensure that the benefit of each requirement outweighs its cost

2. Ensure that each requirement contributes to the solution of the problem

3. Ensure that each requirement is expressed clearly and consistently

4. Ensure that each requirement is unambiguous

5. Ensure that each requirement is consistent with each of the others

6. Ensure that each requirement contributes to a system that has a sufficient level of quality

7. Ensure that it is possible to develop each requirement with the resources available

8. Ensure that each requirement is written in a verifiable way

9. Ensure that each requirement is uniquely identifiable

10.Ensure that no requirement over-constrains the design of the system

11.Ensure that the requirements document as a whole is sufficiently complete

12.Organize the requirements document effectively

13.Give clear rationale for requirements that needed careful analysis or may be controversial

14.Obtain agreement from all stakeholders for the requirements document

Principles of user-centered design (Chapter 7)

1. Design software based on an understanding of users’ tasks
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2. Ensure users are involved in decision-making processes

3. Have users work with, and give feedback about, prototypes of the system and documentation

4. Design the user interface following guidelines for good usability (such as those below)

Principles that lead to good usability (Chapter 7)

1. Do not rely only on usability guidelines – always test with users

2. Base UI designs on users’ tasks, as expressed in use cases

3. Ensure that the sequences of actions to achieve a task are as simple as possible

4. Ensure that the user always knows what he or she can and should do next, and what will 
happen when he or she does it

5. Provide good feedback including effective error messages

6. Ensure that the user can always get out, go back or undo an action

7. Ensure that response time is adequate

8. Use understandable labels and other encoding techniques

9. Ensure that the UI’s appearance is neat and uncluttered

10.Consider the needs of different groups of users

11.Provide all necessary help

12.Be consistent

Principles for making good design decisions (Chapter 9)

1. Use priorities and objectives to decide among alternatives

2. Use cost–benefit analysis to choose among alternatives

Principles of effective design (Chapter 9)

1. Divide and conquer

2. Increase cohesion where possible

3. Reduce coupling where possible

4. Keep the level of abstraction as high as possible

5. Increase reusability where possible

6. Reuse existing designs and code where possible

7. Design for flexibility

8. Anticipate obsolescence

9. Design for portability

10.Design for testability

11.Design defensively

Principles of testing (Chapter 10)

1. Treat testing like detective work: be suspicious of everything

2. Be both effective and efficient while testing

Table 12.1 Summary of software engineering principles presented in this book (cont.)
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■ Patterns: reuse of problem-solving experience. Patterns express well-
understood solutions to problems. In this book we introduced some useful
modeling and design patterns in Chapter 6; we also presented some
architectural patterns in Chapter 9. Table 12.2 summarizes the main features of
the patterns we discussed. There are many hundreds of other patterns – as you
develop your software engineering knowledge, you will become familiar with
more of them.

■ Frameworks: reuse of implemented technology. In Chapter 3, we discussed
the benefits of basing design on frameworks. To reinforce this, we based the
project work on the Object Client–Server Framework (OCSF).

3. Divide the inputs into equivalence classes, based on whether the inputs may cause different 
code to execute, and run tests in each equivalence class and their boundaries

4. Test for all categories of defects, including algorithmic defects, timing and co-ordination 
defects, defects in handling unusual situations, and defects in documentation

Principles of inspecting (Chapter 10)

1. Inspect the most difficult documents of each type

2. Choose an effective and efficient inspection team

3. Require that participants prepare for inspections

4. Only inspect documents that are ready

5. Have ‘finding defects’ as the only goal

6. Avoid discussing how to fix defects

7. Avoid discussing style issues

8. Do not rush the inspection process

9. Avoid making participants tired

10.Keep and use logs of inspections

11.Re-inspect when changes are made

Principles of cost estimation (Chapter 11)

1. Divide and conquer

2. Include all activities when making estimates

3. Base your estimates on past experience combined with what you can observe of the current 
project

4. Be sure to account for differences when extrapolating from other projects

5. Anticipate the worst case and plan for contingencies

6. Combine multiple independent estimates

7. Revise and refine estimates as work progresses

Table 12.1 Summary of software engineering principles presented in this book (cont.)
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Table 12.2 The patterns discussed in this book 

Type of pattern Description

Design patterns (Chapter 6)

Abstraction–Occurrence Represents abstract sets and their occurrences, while avoiding 
duplication of information

General Hierarchy Represents hierarchies of objects (as opposed to hierarchies of classes)

Player–Role Allows an object to change roles or play multiple roles, avoiding 
multiple inheritance

Singleton Guarantees that a certain class can have only one instance

Observer Reduces coupling by ensuring that an object can communicate with 
others without knowing their class

Delegation Reduces coupling and increases reusability by providing methods that 
do nothing but call methods in neighboring classes

Adapter Improves reuse and flexibility by translating the interface of a class so 
that its facilities can be used polymorphically

Façade Provides a simplified interface for a subsystem, reducing coupling

Immutable Allows you to create instances that cannot be changed

Read-only Interface Allows you to select which classes can modify instances of a given 
class

Proxy Provides a lightweight stand-in for a heavyweight object

Factory Allows a framework to create instances of an application-specific class

Architectural patterns (Chapter 9)

Multi-Layer Adds flexibility by separation of concerns: in particular, ensuring that 
the user interface is kept separate from the functional layer

Client–Server The simplest pattern for distributed computing (discussed in detail in 
Chapter 3)

Broker Transparently distributes aspects of a software system to different 
nodes 

Transaction Processing Provides a uniform interface for handling transactions, permitting 
easy addition of new types of transaction

Pipe-and-Filter Divides the system into units where input data is in a relatively simple 
form, and output data in a similar form, so that sets of the units can be 
chained together in different ways

Model–View–Controller Builds on the multi-layer pattern, allowing for separation of concerns 
within the user interface

Service-Oriented Enables creation of applications that call on distributed services 
available on the Internet using standard protocols, and which return 
their results as XML documents

Message Oriented Allows applications to be built that communicate transparently 
through ‘topics’ to which other applications or subsystems may 
subscribe
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Frameworks are skeletal applications or subsystems on which many different
applications can be built. They contain the essential services needed by a class
of systems. Software engineers adapt them to the needs of a particular system by
writing code that fills slots (required functionality missing from the framework)
or hooks (places where the system explicitly anticipates you may want to add
extensions). The code written to fill slots and hooks will call the services of the
framework.

Since the designers of frameworks have already done much of the hard work,
developing applications based on them should be much easier than designing
from scratch.

12.3 Theme 3: Object orientation

We introduced the basic principles of object orientation in Chapter 2. We
pointed out that an object-oriented system benefits from the synergy arising out
of abstraction, inheritance and polymorphism. Under the object-oriented
paradigm, both data and procedural abstractions are grouped together into the
cohesive units, the classes.

In Chapter 3, we presented the OCSF as an illustration of an object-oriented
framework. In Chapters 5 and 6 we discussed class diagrams and patterns,
which provide abstract views of the static relationships among classes in a
system. Chapter 8 presented several other diagrams that can be used to describe
the dynamic aspects of an object-oriented system. In Chapter 9 we showed how
object-oriented principles help to achieve better design.

12.4 Theme 4: Visual modeling using UML

All engineers model their products visually. Mechanical engineers and civil
engineers have an advantage: since their products are very tangible, most of
their diagrams are direct projections of their finished products. Software
engineers, in a similar manner, draw pictures of their user interfaces. 

However, like electrical engineers with their circuit diagrams, software
engineers have to do most of their diagramming using notations that represent
abstractions of their product. Over the 50-year history of computing, many
different types of diagram have been used to represent software, but the UML
notations are now becoming standardized for most purposes.

In this book we gave you a taste of UML in Chapters 2 and 3. We then formally
introduced use case diagrams in Chapter 4, class diagrams in Chapter 5,
interaction, state and activity diagrams in Chapter 8, and the remaining
diagrams in Chapter 9. As a software engineer, you should feel fluent at using
these diagrams to represent any design that comes to your mind.

We have also pointed out that the diagrams are more than just pretty pictures:
they should be used to help you create better designs and implementations. In
Chapters 5 and 6, for example, we showed many examples of good object-
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oriented design that would have been hard to communicate without UML class
diagrams. In Chapter 8, we showed an example piece of code that implements a
state and a sequence diagram: without the diagrams, we would have been much
more likely to make a mistake in the code. 

In Appendix A, we provide a summary of the parts of UML syntax we have
introduced in this book.

12.5 Theme 5: Evaluation of alternatives in requirements and design

In Chapter 9, we pointed out that design is a systematic problem-solving
process. Many engineering problems involve evaluating the advantages and
disadvantages of several alternatives, and then deciding which alternative leads
to the best solution to the problem.

As early as Chapter 2, we started to train you to think in this way. There were
several exercises where we asked you to evaluate the pros and cons of different
design alternatives for a Point class. In Chapter 3 we presented the client–server
architecture and discussed the pros and cons of thin-client versus fat-client
alternatives.

In Chapter 4, we pointed out that you should evaluate competing software
when doing domain analysis. We also showed you examples of carefully
documenting the rationale for decisions you make when establishing
requirements.

In Chapters 5and 6, we emphasized the process of evaluation while modeling.
For example, we asked you to justify your multiplicity decisions. We also
pointed out that the process of choosing a pattern requires evaluating whether
that pattern correctly balances the ‘forces’.

Evaluation of alternatives is central in user interface design. In Chapter 7 we
suggested that you follow a process of parallel design so as to explicitly capture
different alternatives. You can then evaluate these alternatives by observing
users, and by determining the extent to which the designs adhere to usability
principles.

In Chapter 9, we presented several principles of design that can serve as a
guide in making design decisions, and we discussed cost–benefit analysis as a
systematic evaluation process.

12.6 Theme 6: Incorporating quantitative and logical thinking

We taught you to think in a quantitative way in several places in this book. We
introduced metrics in Section 2.10, describing them as well-defined methods and
formulae for computing values of interest to a software engineer. We pointed out
that computing metrics for its own sake is not very useful: it is important to have
a goal, and compute metrics that will help you achieve that goal.

In Chapter 2 we introduced a variety of metrics you can use to judge the
internal quality of your programs.
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In Chapter 4 we introduced quality requirements, pointing out that it is
essential to specify them in a quantitative way. We suggested ways to measure
such things as response time, throughput, reliability, and availability.

In Chapter 7 we discussed usability metrics, such as the time taken to learn a
particular set of features, or the number of instances of a specific task that the
user can do per hour (to measure efficiency of use).

In Chapter 9 we talked about cost–benefit analysis, and considered the
various things you should measure when doing this.

In Chapter 10 we discussed metrics that can be used to evaluate various
aspects of external quality: examples include the number of failures encountered
by users, or the number of questions to the help desk.

Finally, in Chapter 11, we discussed metrics in the context of cost estimation.
We gave several examples of the use of COCOMO II. 

The other aspect of mathematics we applied in this book was logic. In Chapter
5, we showed how you can specify details of UML models using OCL, which is
based on logic and set theory.

12.7 Theme 7: Iterative and agile development

Although we discussed the waterfall process model in Chapter 11, we made it
clear that modern software engineering should almost always be based on an
iterative approach, such as the spiral or agile models. In the iterative approach,
you develop a small version of the final system with fewer features; then you
continue creating versions, each one with small improvements over the last. In
most iterative approaches, the first versions are prototypes, designed purely for
requirements analysis. The prototypes are then deliberately thrown away once
their lessons are learned. 

There are several major advantages to the iterative approach:

■ Risks are reduced, for several reasons. Each piece of development is smaller
and simpler; the requirements are less likely to change in the period of time it
takes to deliver a small iteration; and you will rapidly detect problems with
earlier exposure of the system to customers.

■ Customers are happier since they get something in their hands sooner.

■ If the project fails in a later iteration, at least you have delivered earlier ones.

In Chapter 4, we discussed the 80–20 rule, also called the Pareto Principle,
which says, among other things, that 80 per cent of the value to the customer is
delivered with 20 per cent of the work. Therefore, you can solve most of the
customer’s problem in the first iteration.

In the project work in this book, we asked you to practice iterative development:
you were given the first iteration of the SimpleChat system in Chapter 3. In several
subsequent chapters you then added particular features to it.
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12.8 Theme 8: Communicating effectively using documentation

Communication is central to software engineering. You must communicate
with customers and users in order to develop requirements and refine the user
interface. You must communicate with managers and subordinates as part of
project management. And you must communicate your designs to other
software engineers who will be implementing them, interfacing to them or
modifying them in future.

All of these communication activities require writing some form of
documentation. Throughout the book, we suggested the kinds of information
that should be put in each type of document. In Chapter 2 we trained you to
become used to using documentation by looking up information about Java.
Looking up specifications in reference manuals is a hallmark of engineering. In
Chapter 4 we described domain analysis documents and requirements documents,
and gave detailed examples of the latter. In Chapter 9 we presented design
documents, and again gave an example. In Chapter 10 we discussed how to write
a test plan and test cases. Finally, in Chapter 11, we indicated the kind of
information that should be present in a project plan.

Although we suggested what should be contained in each type of document,
we pointed out that organizations tend to have their own standards. The
content, and the accessibility of that content to your audience, should be given
priority over rigidly following a format.

We also stressed the importance of carefully reviewing documents. In
Chapter 4 we gave a long list of things to look for in a requirements document.
In Chapter 10 we discussed inspecting documents.

12.9 Theme 9: Risk management in all software engineering activities

We have presented a selection of software engineering risks at the end of each
chapter. According to Barry Boehm (in ‘Software risk management: principles
and practices’, IEEE Software 8 (1), pp. 32–41, January 1991), the following are
the top ten risks that software engineers have to face. Note that this is an
extension of the list of root causes of software defects, given in Section 10.11.

1. Personnel shortfalls. Software developers and project managers often lack
sufficient training or experience to develop a system successfully. This in turn
leads to many of the risks listed below. Improving personnel training and
education is probably, therefore, the easiest way to reduce long-term risk. If
people with sufficient skill are simply not available, however, then the only
solution is to reduce the scope of the project. Planning and development effort
estimation as presented in Chapter 11 are therefore the key to reduce this
important risk.

2. Unrealistic schedules and budgets. There is a tendency, probably intrinsic to
human nature, to believe you can get more done than is really possible. This is
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partly due to not fully appreciating the details and complexity of the proposed
system, and partly due to the fact that the early prototyping stages can appear
to produce results extremely fast, leading to over-optimism. Sometimes, belief
in an unrealistic schedule can persist up to the planned delivery date, giving
rise to a well-known ‘joke’ that would be funny if it were in fact false: many
software developers estimate their percent done in stages – they report that
they are 20% done, 40% done, 80% done, 99% done, 99% done, 99% done…
The solution to this problem is to better understand the requirements, as
discussed in Chapter 4, and to better manage the project using the techniques
from Chapter 11.

3. Developing the wrong software functions. This arises from inadequate
requirements analysis. The consequences are software that does not solve the
customer’s problem, software that is not used, and endless requests for change,
leading to deterioration of the design. The solution is better requirements
analysis, following the principles discussed in Chapter 4, as well as developing
in smaller iterations. It is particularly important to develop prototypes and to
interact closely with users, as discussed in Chapter 7.

4. Developing the wrong user interface. This means developing a user interface
that is not usable for the task at hand and for the intended users. It might be the
case, for example, that the interface is efficient for use by experts, yet most
users are not experts and find it hard to learn. The solution to this problem is to
follow the user-centered design techniques and usability principles discussed in
Chapter 7.

5. Gold-plating. We mentioned this in Chapter 4: gold-plating occurs when you
have requirements that are not necessary to solve the problem. The solution is
to be disciplined about cutting such requirements and to focus on developing
software that is ‘good enough’.

6. Permitting a continuing stream of requirements changes. This was another
problem we discussed in Chapter 4. It takes considerable discipline to specify a
good set of requirements initially so as to minimize the need for changes. It
also takes discipline to say no to requests for non-critical changes (or to defer
them). Often the requester of the change has a good argument about why the
change would be good idea, and it is hard to comprehend the fact that, one by
one, a series of changes can seriously impact your ability to deliver the system
on time. There is a well-known saying: ‘How does a project get to be one year
late? One day at a time.’ In Chapter 4 we emphasize the importance of clearly
defining the scope of the problem; sticking to this definition helps to keep the
project focused and to resist the temptation of adding extra features.

7. Shortfalls in externally performed tasks. ‘Contracting out’ is an accepted
management approach to reduce costs and take advantage of external
expertise. However, if you contract out the development of part of your system,
you must ensure that your contractor follows the software engineering
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principles discussed in this book. One way to do that is to require that they be
certified under ISO-9000 or the CMM, as discussed in Chapter 10. You should
also carefully and regularly evaluate the work done by contractors, and take
corrective action if shortfalls are detected. Performing integration tests and
acceptance tests, as discussed in Chapter 10, is a good way to assess the quality
of the work done.

8. Shortfalls in externally furnished components. As mentioned in Chapter 3,
reusing components developed by others is essential to reduce development
costs and simplify design. However, you need to perform acceptance testing
and other quality assurance activities, as discussed in Chapter 10, to ensure the
reused components do not become an Achilles’ heel for you.

9. Real-time performance shortfalls. In Chapter 4, we pointed out that it is
essential to define real-time performance in the requirements. Designing real-
time systems so as to ensure that their timing constraints are always met,
however, is a very difficult technical problem. There are advanced techniques
to help prevent such failures, but when failures occur they can be catastrophic.
We briefly discussed testing for such problems as deadlocks and critical races
in Chapter 10, but you should read a real-time design book if you intend to
design or test such systems.

10. Straining computer science capabilities. This means trying to compute things
that intrinsically take an increasingly large amount of CPU time or memory, or
would naturally require a very complex design. Some kinds of problems are
known to be ‘difficult’ using today’s technology. Technology being developed at
the forefront of computer science may in the future help resolve some of these
problems; examples of such technology include DNA computing, quantum
computing and artificial intelligence techniques. Meanwhile, learning about
algorithm analysis and advanced design techniques will help you avoid this
risk. Also, as we mentioned in Chapter 4, producing prototypes is a good way
to determine the feasibility of very challenging requirements.

12.10 Where next?

This brings us to the end of the book. However, we hope you will continue your
studies in software engineering. As we mentioned at the beginning of the book,
our intent has been to give you a broad overview of software engineering, with
enough depth in areas such as UML and object orientation, so that you can
immediately apply what you have learned in the work environment.

After reading this book, you should now be primed to learn about many areas
of software engineering in much more depth. For example, there is much more
to be learned about software design and architecture, user interface design,
quality assurance and project management. You will also want to learn about
advanced techniques in which discrete mathematics or statistics can be applied
to software engineering, such as formal specification methods and reliability
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engineering. Many of you will want to study specialized techniques that can be
applied to develop real-time or data-processing systems. Finally, you will want
to learn more about how to conduct your work in a professional manner – with
concern for customers, users, your employer, your peers and society as a whole. 

We therefore hope you will continue your studies, both as your formal
education continues, and as you embark on a lifelong professional development
process.



 
AASummary of the UML notation

used in this book 

Since this is an introductory textbook, we have discussed only a subset of UML
features. The following provides a simple overview of what has been covered.
The reader is invited to examine a more complete guide to UML in order to
learn about features we have omitted.

Classes (Section 5.2)
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Aggregations (Section 5.6)

Generalizations (Section 5.4) and interfaces (Section 5.6)

Object diagram (Section 5.5)

Sequence and communication diagrams (Section 8.1)
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State diagrams (Section 8.2)

Activity diagrams (Section 8.3)

Use case diagrams (Section 4.6)
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Package diagrams (Section 9.4)

Component diagrams (Section 9.5)

Deployment diagrams (Section 9.5)
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BBSummary of the documentation

types recommended in this book

Throughout this book we have suggested what various types of documentation
should contain. The following is a quick reference guide that will help software
engineers remember the kinds of information they should include. Each
organization should adopt more comprehensive format standards so as to
ensure uniformity, although overly rigid formats should be avoided.

When writing documents, remember that their objective is effective
communication, therefore keep the intended audience in mind, be as concise as
possible, and pay attention to organization and clarity of the writing. Each
document should also include, at the beginning, the name of the authors, a
version number and a history of changes. This will ensure that change
management is done properly. 

Domain analysis document (Chapter 4)

A. Introduction. Name of the domain; reasons for the analysis.

B. Glossary. Meanings of terms used in the domain.

C. General knowledge about the domain. Important facts or rules: scientific
principles; business processes; analysis techniques; how any technology works.

D. Customers and users. Those who will or might buy the software, and in what
industrial sectors they operate. Others who work in the domain.

E. The environment. Equipment and systems used.

F. Tasks and procedures currently performed. What people do as they go about
their work, including shortcuts they take.
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G. Competing software. Software already in use, and on the market.

H. Similarities across domains and organizations. What is generic versus what is
specific to this organization.

Requirements document (Chapter 4)

A. Problem. A succinct description of the problem the system is solving.

B. Background information. Whatever will help readers understand the
requirements – references to domain analysis documents, standards and
the requirements of related subsystems; important issues you considered,
and the rationale for your decisions.

C. Environment and system models. Context and global overview; hardware on
which the system will run; other subsystems or software with which it will
interact.

D. Functional requirements. The services provided to the user and to other
systems – inputs, outputs, computations and timing.

E. Non-functional requirements. Constraints that must be imposed on the design
of the system – response time; resource usage; reliability; availability; recovery
from failure; allowances for maintainability; enhancement and reusability;
platform; technology and development process to be used.

Use case (Chapter 4)

A. Name. Short and descriptive.

B. Actors. Users or other systems that can perform this use case.

C. Goals. What the actor or actors are trying to achieve.

D. Preconditions. The state of the system before the use case – any conditions that
must be true before an actor can initiate this use case.

E. Summary. What occurs as the actor or actors perform the use case.

F. Related use cases. Use cases that may be generalizations, specializations,
extensions or inclusions.

G. Steps. Use a two-column format, with the left column showing the actions
taken by the actor, and the right column showing the system’s responses.

H. Postconditions. The state the system is in following completion of the use case.

Design document (Chapter 9)

A. Purpose. The system or part of the system this design document describes;
references to the requirements.
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B. General priorities. Priorities used to guide the design process.

C. Outline of the design. High-level description of the design.

D. Major design issues. For each issue, the alternatives that were considered, the
final decision and the rationale for the decision.

E. Details of the design. Whatever else should be understood by implementers,
maintainers and those who will interface to the system.

Test case (Chapter 10)
A. Identification and classification. Test case number; descriptive title; the system,

subsystem or module being tested; reference to related requirements and
design documents; importance of the test case.

B. Instructions. Tell the tester exactly what to do – how to put the system into the
required initial state and what inputs to provide.

C. Expected result. What the system should do in response to the instructions.

D. Cleanup (when needed). How to make the system go ‘back to normal’.

E. Purpose. Problem to be solved; business objectives.

Project plan (Chapter 11)
A. Background information. Brief history of the project to date; stakeholders;

references to related projects and any documents produced so far, such as
requirements definitions.

B. Processes to be used. Overall process model; techniques for requirements
gathering, design, implementation, quality assurance, change management,
risk management, and project management; documents to be produced; ways
to measure and track the project. (These can all be pointers to standards.)

C. Subsystems and releases. Division of the system into subsystems and releases
that can be allocated to people or teams. (This can employ references to the
requirements or architectural model.)

D. Risks and challenges. Risks and difficulties that are expected to be most critical
to this project; how they are to be monitored and resolved.

E. Tasks. List of tasks to be completed.

F. Cost estimates. Cost estimates for the tasks and subsystems.

G. Team. Team structure; skills needed; training plan; allocation of
responsibilities.

H. Schedule and milestones. Deadlines for completion of tasks; Gantt and PERT
charts allocating tasks to people, showing the times they will work on each task,
and showing the critical path(s).



 



 
CCSystem descriptions 

In several places in this book there are examples and exercises demonstrating
analysis and design. Below are short outlines of the requirements for these
systems. Additional similar requirements descriptions are available on the
book’s web site (http://www.lloseng.com). This will enable instructors to vary
the details of the assignments they give students.

Additional system descriptions can be found in the body of the book:

■ Small Hotel Reservations: Exercises at the end of Chapter 4.

■ SimpleChat: Introduction in Section 3.9; requirements for a feature in
section 4.12. 

Police Information System
This system helps the Java Valley police officers keep track of the work they are
assigned to do. Officers may be assigned to investigate particular cases, to patrol
particular areas or to attend particular events such as court cases. Some work
assignments are regular ongoing assignments, while others are for a particular
period of time. The system information is updated by the logistics
administrator, but individual officers have an interface to display their assigned
work.

Household Alarm System
This software will be embedded in an alarm system controller built by Use Case
Industries. In conjunction with various hardware devices, it will be able to detect
and report such problems as intruders and fires.

GPS-Based Automobile Navigation System (GANA)
This system, manufactured by Use Case Industries, will be used by drivers to
navigate around the state of Ootumlia. It uses GPS (Global Positioning System)
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technology and Internet access to a map database to provide a driver with route
maps of various levels of detail, as well as spoken directions to guide the driver
to his or her destination.

Airline Reservation System
Ootumlia Airlines runs sightseeing flights from Java Valley, the capital of
Ootumlia. The reservation system keeps track of passengers who will be flying
in specific seats on various flights, as well as people who will form the crew. For
the crew, the system needs to track what everyone does, and who supervises
whom. Ootumlia Airlines runs several daily numbered flights on a regular
schedule. Ootumlia Airlines expects to expand in the future, therefore the
system needs to be flexible; in particular, it will be adding a frequent-flier plan.

Bank Accounts Management System
This system provides the basic services to manage bank accounts at a bank
called OOBank. OOBank has many branches, each of which has an address and
branch number. A client opens accounts at a branch. Each account is uniquely
identified by an account number; it has a balance and a credit or overdraft limit.
There are many types of accounts, including: a mortgage account (which has a
property as collateral), a checking account, and a credit card account (which has
an expiry date and can have secondary cards attached to it). It is possible to have
a joint account (e.g. for a husband and wife). Each type of account has a
particular interest rate, a monthly fee and a specific set of privileges (e.g. ability
to write checks, insurance for purchases etc.). OOBank is divided into divisions
and subdivisions (such as Planning, Investments and Consumer); the branches
are considered subdivisions of the Consumer Division. Each division has a
manager and a set of other employees. Each customer is assigned a particular
employee as his or her ‘personal banker’.

Elections Management System
The Ootumlia Elections Commission is designing a system to manage elections.
The system will manage elections for a variety of different elected bodies (e.g.
school boards, city councils, etc.). Each elected body can have various positions
(also called seats, e.g. mayor, councilor, etc.). Elections are scheduled for a
specific date, and usually several (or all) positions are voted on together;
however, sometimes there may be the need for a by-election (e.g. to elect a
particular councilor because the incumbent – the previous person who held the
position – has resigned).

The system will keep track of candidates for each seat. The system will also
record who is the incumbent for a seat, since newspaper reporters are interested
in reporting whether incumbents have won again or lost. The system records the
name and address of each candidate and incumbent.

The system will also keep track of the list of eligible voters. Each voter can only
vote for certain positions (e.g. a particular council seat that represents their
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area). Each voter is also assigned to vote at a specific poll – each poll has a
number and is located in a polling station. The system records the name and
address of each voter.

Finally, the system will keep track of the number of votes for each candidate
at each poll. However, under no circumstance will it record which voter voted
for which candidate, nor whether a voter voted at all.

Geographical Information System
A system used by map makers at the Government of Ootumlia contains
information about various maps. Each map has a scale, a name and a set of
features. Each map also has information that defines the latitude and longitude
of the top left corner of the map, and the height and width of the map in meters.

Features can be of three types: point features, curve features and region
features. In general, all features have a name that is displayed on the map next to
the feature.

A point feature has a single coordinate, the location at which it is to appear on
the map. Examples of point features include transmission towers, mountain
peaks, etc. Each type of point feature has a special symbol associated with it; this
symbol is a simple bitmap.

A curve feature contains a list of points that define its path. Examples of curve
features are roads, railways and rivers. Each type of curve feature has a line
pattern associated with it. The line pattern specifies the color, the line thickness,
the length of dashes in the line, and the length of gaps in the line.

A region feature is very similar to a curve feature, except that when drawn on
the map, it encloses a complete region (the last point connects to the first point).
Additionally, it has an optional fill pattern which is a simple bitmap or a color.

Investments System for OOBank
OOBank has a separate investment division. This division manages various
mutual funds in which investors may invest and also looks after the investment
portfolios of investors.

An investor may at any point in time have several investment advisors. These
help the investor decide in what to invest. Different investment advisors
specialize in different types of investments.

Investors make a series of transactions and may have to pay a commission on
each transaction. The commission is paid to the investment advisor that
arranged the transaction.

For each investment the system must keep track of the number of shares (also
called units) in addition to the amount the investment is worth today and the
amount originally invested.

Each mutual fund invests its money in various securities. The securities can
be stocks, bonds or other mutual funds. We must be able to calculate the original
amount invested in each security as well as how much that investment is worth
today. Each mutual fund may have several investment advisors that help the
fund decide what securities in which to invest.
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The mutual funds in which investors invest may be managed by OOBank or
by some other company. Each mutual fund company may manage several
mutual funds.

Manufacturing Plant Controller
This system will be used to manage and control the production processes at Use
Case Industries’ manufacturing plant. The plant makes several types of
mechanical devices. It has 10 assembly lines, each of which can be used in the
manufacturing of any of its products. An assembly line is allocated to a product
for a fixed period of time (anywhere from a few hours to a few days) – this is
called a product run. During a product run, the assembly line makes a specified
number of units of the product.

Each product is assembled in several steps. As the product-under-
construction moves down the assembly line, it will be worked on in turn by a
series of robots. Each robot completes one step before the product moves on to
the next step (and a different robot). Each robot is dedicated to just one
manufacturing step.

Each product is composed of parts. Parts may be bought from suppliers, or
they may in fact be smaller products that are built by this company (in earlier
product runs). In each manufacturing step, a given subset of these parts is put
together. Parts waiting for assembly are kept in numbered bins; the robots know
which bins to go to in order to get the required parts.

Each completed assembly is given a serial number. When orders for products
are filled, the serial numbers of the products sold are recorded with the order.

Corporate Event Information System
This program will allow the employees of Ootumlia airlines to keep themselves
informed of the various events that are organized by and for company
management and employees. Events can be meetings as well as social events.

Woodworking design system
This program is designed to let carpenters, cabinet makers and other wood
craftspeople perform computer aided design. The system allows you to make
and store any number of designs. Designs can also have design variants (most of
the design is the same) but some parts have substitutions.

A design comprises a series of atomic components (pieces of wood, metal
hardware attached to the wood, and a few other types of things). Designs are
also broken down into a hierarchy of assemblies. Assemblies and components
can also be reused in different assemblies.

Each piece of wood is described in terms of its 3-D geometry, the
recommended type of wood, and the sequence of cuts and other operations
required in order to make it. The 3-D geometry is described in terms of arcs and
line-segments that connect to each other at vertices. A group of arcs or line-
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segments outline a face. Junctions between pieces of wood are described in
terms of the faces that touch each together.

The system allows its users to do a wide variety of operations to create and edit
designs. Also, the system can visually display a design (or assembly, or
component) in three dimensions (allowing the user to rotate it in space), and as
various two-dimensional projections.
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The numbers in square brackets are the sections where each
item is discussed. Words in italics are cross-references to other
glossary items. You will find an extended cross-linked
‘knowledge base’ containing this information and much more
on the book’s web site (www.lloseng.com). 

80–20 rule [4.9] A rule that states that 80% of the benefit can often be
obtained with 20% of the work; the remaining 20% of the
benefit then takes 80% of the work. Also called the Pareto
principle, it is used to justify cutting less important requirements
to significantly reduce costs. It also applies in many other
situations; for example 80% of the CPU time is spent executing
20% of the statements.

Abstract class [2.6] A class that cannot have any instances, and defines a set of
methods that must be implemented. Contrast with concrete
class, and interface.

Abstract operation [2.6] An operation in a class that makes logical sense for all
subclasses, but that is not implemented (i.e. has no method) in
the class.

Abstraction [2.1 and 9.2] A representation that captures only essential
aspects of something, reducing the complexity apparent to the
abstraction’s user.

Abstraction–Occurrence [6.2] A pattern in which two classes are related by a 1–many
association, and the first class represents an abstraction of the
second.

Acceptability [7.3] The extent to which customers and users like a system.

Acceptance testing [10.9] Testing performed by customers, on their own initiative,
to decide whether software is sufficiently acceptable to pay for.
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Action [8.2] In a state diagram, something that takes place effectively
instantaneously when a transition occurs, or upon entry or exit
from a state.

Activation box [8.1] A box on a lifeline in a sequence diagram indicating the
period of time during which an object is performing work. See
live activation.

Activity [8.2] Something that occurs over a period of time and takes
place while the system is in a state.

Activity diagram [8.3] A UML diagram showing sequences of activities; it
typically shows multiple threads.

Actor [4.6] A role that a user or some other system plays when
interacting with your system; a class of user of a system.

Adapter [6.8] A pattern found in class diagrams in which you are able to
reuse an ‘adaptee’ class by providing a class (the adapter) that
delegates to the adaptee. It is useful when the adaptee could not
have been used directly because its interface does not match
what users of the adapter expected.

Adaptive maintenance [1.6] A type of maintenance performed to change software so
that it will work in an altered environment, such as when an
operating system, hardware platform, compiler, software
library or database structure changes. Maintenance that is
purely adaptive does not result in new capabilities for the user,
except the ability to operate the software in the changed
environment.

Affordance [7.3] The set of operations that the user can do in a user
interface at any given point in time.

Aggregate [5.6] The class on the ‘whole’ side of an aggregation.

Aggregation [5.6] An association which specifies that instances of one class
contain instances of the other class as parts. In a UML class
diagram, an aggregation is shown as a diamond next to the
‘whole’ end of the association.

Agile approach [1.8, 11.2] A development process that is disciplined but
lightweight. Such approaches are characterized by many short
iterations, test-first development, and similar techniques.
eXtreme Programming (XP) is the most well-known such
approach.

Algorithmic cost

estimation

[11.3] An approach to cost estimation such as COCOMO or
Function Points, which uses mathematical formulas whose
parameters are based on industrial experience.
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Alpha testing [10.9] Testing performed by users and clients, under the
supervision of the software development team.

API [9.2] See application programming interface.

Application framework [3.3] A framework that provides many of the functions needed
by a particular class of applications, and which is designed to be
reused in the development of such applications. A near-
synonym for vertical framework.

Application programming

interface

[9.2] The set of public procedures or methods through which a
layer provides its services. Also called API.

Architect [9.5 and 11.4] The person responsible for leading the decision-
making about the architecture, and maintaining the
architectural model.

Architectural model [9.5] The document produced as a result of performing
software architecture.

Architectural pattern [9.6] A pattern used in software architecture. Also called
architectural style.

Architectural style [9.6] See architectural pattern.

Architecture [9.5] See software architecture.

Architecture design [9.5] See software architecture.

Assertion [9.2] A statement that must be true; if it becomes false then the
software has encountered a failure.

Association [2.2 and 5.3] A relationship between two classes. It represents
the existence of a set of links between objects of the two classes.
In a UML class diagram, an association is drawn as a line
between two classes.

Association class [5.3] A class whose instances are associated with links of a
(usually many-to-many) association. In a UML class diagram, it
is drawn as an ordinary class with a dotted line connecting it to
the association in question.

Asymmetric reflexive

association

[5.3] A reflexive association in which the roles at either end are
different.

Atomicity [9.6] A property of a transaction that ensures it is completed
entirely, or not at all.

Attribute (1) [2.2] A simple piece of information representing a property
that is present in the all instances of a class. The term attribute
is used in the analysis and design stage before it is known how
the attribute will be implemented (in contrast to instance
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variable). (2) [10.8] In testing, something that is testable; a
detail of the requirements.

Availability [4.5] A quality that measures the amount of time that a system
is running and able to provide services to its users. See also
reliability.

Beta testing [10.9] Testing performed by the user or client in their normal
work environment.

Big bang testing [10.9] An inappropriate approach to integration testing in which
you take the entire integrated system and test it as a unit.

Black-box testing [10.3] A form of testing in which you manipulate inputs and
observe outputs, but cannot observe the internals of the entity
being tested. In contrast to glass-box testing.

Bottom-up design [9.1] An approach to design in which you start by designing the
low-level details such as the utilities, and then decide how these
will be put together to create successively higher-level
components, and ultimately the entire system. In contrast to
top-down design.

Bottom-up testing [10.9] A incremental testing strategy in which you start by
testing the very lowest levels of the software using drivers, and
then work upwards, as you integrate successive layers.

Boundary testing [10.3] A testing strategy based on testing at the boundaries of
equivalence classes, where most defects occur.

Brainstorming [4.7] The process of obtaining ideas, opinions, and answers to a
question in a group environment in which all members of the
group are given the opportunity to contribute.

Broker [9.6] An architectural pattern in which parts of the system are
transparently distributed to different nodes of a network.

Budgeted cost of work

performed

[11.5] See earned value.

Bug [10.1] A colloquial term for defect or failure.

Build [10.9] The process of compiling and integrating all the
components of the software, incorporating any changes since
the last build.

Burdened cost [11.3] See weighted average cost.

Business process [4.10] A process performed by people in an organization.
Software systems often automate business processes.
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Capability Maturity Model [10.11] A process standard containing five levels of maturity;
developed at Carnegie Mellon University.

Chartered Engineer [1.3] A term used in the United Kingdom, and certain other
jurisdictions, that is equivalent to professional engineer.

Chief programmer team [11.4] A team structure midway between a hierarchical team
and an egoless team, in which a chief programmer leads and
guides the project, in consultation with experts in various
specialties.

Class [2.1 and 2.2] A software module that provides both procedural
and data abstraction. It describes a set of similar objects, called
its instances.

Class design [9.1] The design of the various features of classes such as
associations, attributes, interactions and states.

Class diagram [5.1] A UML diagram that primarily indicates classes and the
associations between those classes.

Class method [2.8] A method that, unlike an instance method, does not
execute in the context of a particular instance of a class. It is
normally used for such functions as initializing a class, or
operating on the complete set of instances of a class.

Class variable [2.3] A data item present in a class that is shared by all instances
of that class; also called a static variable. (In contrast with
instance variable).

Classifier A UML entity that can have instances. Examples are classes,
associations and use cases.

Client (1) [1.4] A synonym of customer. (2) [3.4] A program or process
that connects to another program or process, using a
communication channel, in order to request a service. See also
server and client–server.

Client–server [3.4 and 9.6] An architectural pattern in which the system is
divided into clients and servers.

Cloning [9.2] (1) The practice of duplicating chunks of code; considered
something to avoid unless the benefits can clearly be shown to
outweigh the costs. (2) Duplicating an object using the
Cloneable interface in Java.

COCOMO [11.3] An algorithmic cost estimation method that computes
effort, in person-months, from an estimate of size, measured in
lines of code.
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Cohesion [9.2] A measure of the extent to which related aspects of a
system are kept together in the same module, and unrelated
aspects are kept out. An important design principle is to
increase cohesion. See also coupling and modularity, as well as
the various types of cohesion: functional, layer,
communicational, sequential, procedural, temporal and utility.

Communication diagram [8.1] A UML interaction diagram showing a set of objects
connected by communication links. Formerly called a
collaboration diagram.

Combinatorial explosion [10.3] In the context of testing, the observation that the number
of required tests for exhaustive testing will increase
exponentially as the number of inputs increases.

Combined Fragment [8.1] A group of messages in a sequence diagram that are treated
specially; for example they may be optional or repeated.
Represented by a box with a code in the top-left corner
indicating the kind of fragment.

Commercial off-the-shelf

software

[1.1] A term for generic software, often abbreviated as COTS.

Common coupling [9.2] A form of coupling in which components share data using
a global variable and thus become dependent on each other.

Communication link [8.1] In a communication diagram, a line drawn between each
pair of objects involved in the sending of a message.

Communicational cohesion [9.2] A form of cohesion in which procedures that access the
same data are kept together.

Component [9.1] Any piece of software or hardware that has a clear role and
can be isolated, allowing you to replace it with a different
component with equivalent functionality.

Component diagram [9.5] A UML diagram showing components and their
relationships.

Composite [6.3] A specialization of the general hierarchy pattern that uses
an aggregation instead of an ordinary association.

Composition [5.6] A strong kind of aggregation in which if the aggregate is
destroyed, then the parts are destroyed as well.

Concrete class [2.6] A class that can have instances. In contrast to abstract class.

Concurrent engineering

model

[11.2] A process model in which each team works on its own
component, typically following a spiral or evolutionary
approach.



 

491Glossary

Configuration

management

[1.7] The process of identifying all the components that
constitute a system or subsystem, and ensuring that changes to
these components and to the configuration are made
systematically.

Constraint [5.6] A small block of text in curly brackets embedded in a UML
diagram. It is normally written in a formal language which can
be interpreted by a computer. See also Object Constraint
Language.

Construction [11.3] A term often applied to the latter stages of design and to
programming, even though the analogy with construction in
other areas of engineering is weak.

Content coupling [9.2] An undesirable form of coupling in which a component
surreptitiously modifies internal data of another component.

Contracting-out [1.1] Paying to have software (typically custom software)
developed by some other organization. Also known as
outsourcing.

Control [7.3] In a user interface, a near-synonym for user interface
component and widget.

Control coupling [9.2] A form of coupling in which one component affects the
sequence of execution in another.

Controller [9.6] In the MVC architectural pattern, the class or classes used
to control and handle the user’s interaction with the view and
the model.

CORBA [9.6] A well-known standard broker architecture.

Corrective maintenance [1.6] A type of maintenance performed to correct a defect in
software.

Cost–benefit analysis [9.3] The process of deciding whether to do something by
evaluating the costs of doing it and the benefits of doing it, and
then choosing to do it if the benefits sufficiently exceed the
costs.

Cost estimation [11.3] The process of estimating the effort and elapsed time of an
activity or project.

COTS [1.1] Commercial off-the-shelf software. A term for generic
software.

Coupling [9.2] A measure of the extent to which interdependencies exist
between software modules. An important design principle is to
reduce coupling. See also cohesion and modularity, as well as the
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various types of coupling: content, common, control, stamp,
routine call, type use, data, inclusion, import, and external.

Coverage [10.3] A measure of the percentage of either paths, statements
or branches taken by a set of tests.

Critical path [11.5] A path through a PERT chart indicating the minimum
time in which it is possible to complete a project, and the tasks
that, if delayed, will delay the whole project.

Critical race [10.5] A defect in which one thread or process can sometimes
experience a failure because another thread or process
interferes with the ‘normal’ sequence of events.

Custom software [1.1] Software that is developed to meet the specific needs of a
particular customer (in contrast to generic software).

Customer [1.4] A person who makes decisions about ordering and paying
for software (in contrast to a user); the customer is the one who
has the problem that is being solved by the development of
software. Also called a client.

Data coupling [9.2] A form of coupling in which one component passes simple
data to another as an argument.

Data processing software [1.1] Software used for running businesses, managing data such
as payroll, purchases, sales, product inventory etc.

Decision Node [8.3] A diamond-shape node in an activity diagram that
represents a decision. It has one incoming arrow, and multiple
outgoing arrows, each with a guard. Flow must follow one of the
outgoing paths. Compare to fork and merge node.

Deadlock [10.5] A failure in which two or more processes or threads are
stopped, waiting for each other to do something before either
can proceed.

Defect [10.1] A flaw in any aspect of the system, including the
requirements, the design or the code, that contributes, or may
potentially contribute, to the occurrence of one or more
failures. A defect is also known as a fault. See also error.

Defensive design [9.2] Design with awareness that other components cannot be
trusted.

Delegation [6.7] A pattern in which one procedure does nothing more than
call another in a neighboring class.

Delphi technique [11.3] An approach to cost estimation in which several
individuals initially make cost estimates in private, and then
share their estimates to discover the discrepancies.
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Deployment [1.7] The process of distributing and installing software as well
as any other components of a system; deployment also includes
managing the transition from any previous system.

Deployment diagram [9.5] A UML diagram showing hardware nodes, how they are
interconnected, and what components will exist on them at run
time.

Design [9.1] The problem-solving process whose objective is to find
and describe a way to implement the system’s functional
requirements, while respecting the constraints imposed by the
quality requirements, platform requirements and process
requirements, and while adhering to general principles of
good quality. Often the term is used to refer to a design
document.

Design by contract [9.2] An approach to design in which each method has a
contract with its callers regarding preconditions, postconditions
and invariants.

Design decision [9.1] A decision made in the process of design which involves
listing design options, evaluating them according to pre-
determined criteria, and choosing the alternative that has the
best cost–benefit trade-off.

Design document [9.1] Documentation produced as a result of design.

Design issue [9.1] A sub-problem of the overall design problem.

Design option [9.1] An alternative solution to a design issue.

Design pattern [6.1] A pattern useful for the design of software.

Design space [9.1] The space of possible design options.

Detailed design [1.7] The design of the internals of individual subsystems.

Deterioration [1.1] The tendency of software to accumulate defects as time
passes due to errors being made during maintenance.

Development effort [11.3] See effort.

Development process [4.5 and 11.2] The process used by a particular project,
normally following some process model.

Dialog [7.4] (1) A specific window with which a user can interact, but
which is not the main UI window; also called a dialog box. (2)
The back-and-forth interaction between user and computer. 

Distributed system [3.4] A system in which computations are performed by
separate programs that co-operate to perform the task of the
system as a whole.
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Divide and conquer [9.2 and 11.3] The principle of dividing something large into
smaller units, so that it can be dealt with more easily. Applies to
cost estimation, design and testing.

Domain (1) [3.5] A named computer network. Individual hosts on the
network are identified by prepending characters to the domain’s
name. (2) [4.1] A general field of business or technology in
which users work, and which is learned by the software
engineer during domain analysis.

Domain analysis [4.1] The process by which a software engineer learns enough
background information so that he or she can understand the
problem and make good decisions during requirements analysis
and other stages of the software engineering process. See also
domain.

Domain expert [4.1] Somebody with expertise in a given domain, but who may
or may not have expertise in software.

Driver [10.9] In the context of testing, a simple program that tests
services of lower-level layers when performing bottom-up or
sandwich testing.

Dynamic binding [2.6] The process of binding a call to a particular method. This
is performed dynamically at run time due to the presence of
polymorphism. Also called late binding or virtual binding.

Earned value [11.5] The amount of work completed, measured according to
the budgeted effort that the work was supposed to consume
(also called budgeted cost of work performed).

Earned value chart [11.5] A diagram used in project tracking, that allows you to
compute the amount by which you are behind schedule and
over budget; it shows elapsed time on one axis, and effort
expended on the other axis. See also earned value.

Economies of scale [11.3] Sub-linear growth in effort as size increases. Not the case
in software engineering.

Efficiency [1.5] The extent to which a product or process can operate
using the fewest possible resources. Efficiency is an important
quality attribute.

Effort [11.3] The amount of labor used in a task or project, expressed
in person-months or person-days.

Egoless team [11.4] A team structure in which everybody is equal, decisions
are made by consensus, and the team works together to achieve
a common goal.
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Elapsed time [11.3] The difference in time from the start date to the end date
of a task or project.

Elapsed-time transition [8.2] A transition that occurs in a state diagram due to the
passage of a period of time.

Elicitation See requirements elicitation.

Embedded software [1.1] Software that is designed to run specific hardware devices,
and thus is embedded in the devices, usually in a form of read-
only memory (ROM). Much embedded software is also real-
time software.

Encapsulation [2.7] Creating a module to contain some algorithm or data
structure, thus hiding its details behind the module’s interface.
See also information hiding.

Encoding technique [7.3] In a user interface, a way of representing information so as
to communicate it to the user; e.g. using text, color, icons,
grouping, sound etc. Also known as ‘coding technique’.

Engineer [1.3] A person who performs engineering. The term engineer is
legally reserved, in many jurisdictions, for those who have
obtained engineering education and experience, and perform
engineering within a company or else have been granted a
license, or some other form of certification, to offer engineering
services to the public. See also professional engineer.

Engineering [1.3] The process of solving problems by applying, in a
disciplined, systematic and ethical way, scientific and economic
knowledge and principles to the design and maintenance of
products or processes. See also software engineering.

Enhancement [1.6] A type of maintenance performed to add a new capability
to software.

Equivalence class [10.3] A set of inputs that a tester believes will be treated
similarly by reasonable algorithms.

Equivalence class testing [10.3] A testing strategy based on determining the possible
equivalence classes and creating a test case for each.

Error [10.1] (1) A slip or inappropriate decision made by a software
engineer that leads to the introduction of a defect into the
system. (2) A mistake made by a user. (3) An inaccuracy in a
numerical computation. See also failure and defect.

Event [8.2] In a state diagram, something that causes a system or
object to change state. May be a message, the passage of elapsed
time, a condition becoming true, or completion of an activity.
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Evolution [1.6] The process by which software is modified over the course
of its lifetime to meet changing requirements and as problems
are fixed or re-engineering is performed. This term is often
preferred in place of maintenance when describing the entire set
of changes made to a system.

Evolutionary model [11.2] A process model that views development as a series of
hills, each representing a separate loop of the spiral model.

Exception [2.6] A situation that arises in a program requiring special
handling, and hence deviation from the normal path of control.

Extension use case [4.6] A use case that makes optional interactions explicit or
handles exceptional cases.

External coupling [9.2] A form of coupling in which a software component has a
dependency to software written by a third party, to the
operating system, or to a particular type of hardware.

eXtreme programming [11.2] An agile process model and methodology that provides a
disciplined approach to highly incremental and user-centered
development of small projects.

Façade [6.9] A pattern in which you create a class that provides a
simplified interface to a package. Users of the Façade class will
have reduced coupling to the package.

Factory [6.13] A pattern that enables a framework to create instances of
an application specific class.

Failure [10.1] An unacceptable behavior exhibited by a system. See also
defect and error.

Fat-client system [3.4] A client–server system in which the client does a large
amount of computation. In contrast to thin-client system.

Feature (1) [1.6] An identifiable set of requirements that can be added
to (or removed from) a system as a unit; (2) [2.5] A method or a
variable defined in a class. Also sometimes called a member or
property.

Feedback [7.3] Any response in the system’s user interface to a user’s
actions.

Filter [9.6] A component that inputs simple data, processes it and
outputs data of a similar kind. See the pipe-and-filter
architectural pattern

Flow graph [10.3] A graph showing all possible paths through an algorithm.
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Force [6.1] In a pattern, an issue or concern that you need to consider
when solving the problem, including criteria for evaluating a
good solution.

Fork [8.3] A symbol in an activity diagram indicating splitting of
control into multiple threads.

Formal method [5.7] An approach to software engineering in which everything
is specified in logic, and mathematical techniques are used to
verify the logic.

Formal language [4.8 and 5.7] A language that uses mathematics for the purpose
of modeling.

Framework [3.3] A skeletal software component that performs functions
needed by a class of systems, and which is intended to be
incorporated into the design of such systems. See also reuse.

Function Points [11.3] An algorithmic cost estimation method in which you
count features of the requirements and use these to compute an
estimate of the system’s size.

Functional cohesion [9.2] A form of cohesion in which modules which together
perform a function (a computation that returns a result and has
no side effects) are kept together, and everything else is kept out.

Functional requirement [4.5] A requirement that describes a service provided by a
system. See also quality requirement, platform requirement,
process requirement and non-functional requirement.

Gantt chart [11.5] A diagram used to graphically present the start and end
dates of each software engineering task; it shows time on one
axis, and tasks on the other.

General hierarchy [6.3] A pattern in which two classes are related both by a
generalization and by a one to many association, such that the
generated graph of instances forms a hierarchy.

Generalization [2.5 and 5.4] (1) The relationship between a classifier and
another classifier that contains a subset of the features of the
former. The former is considered a kind of the latter. In a UML
class diagram, the generalization relationship between a
subclass and a superclass is indicated by a small triangle pointing
towards the superclass. Generalizations are also found in use
case diagrams. (2) The process of creating the above.

Generalization set [5.4] A label on a group of generalizations that describes the
criteria used to specialize a superclass into two or more subclasses.
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Generic software [1.1] Software designed to be sold on the open market and to
perform functions on general-purpose computers that many
people need (in contrast to custom software). Generic
software is also often called commercial off-the-shelf soft-
ware (COTS).

Glass-box testing [10.3] A form of testing in which the tester can examine the
design documents and the code, as well as analyze and possibly
manipulate the internal state of the entity being tested. Also
called white-box or structural testing. In contrast to black-box
testing.

Glue code [3.1] Code that is written to connect reused COTS (commercial
off-the-shelf) applications.

Goal [4.6] What the user hopes to accomplish by using a system.

Gold-plating [4.9] Building a list of requirements that does more than needed.

Green-field development [1.6] Development of a completely new system, as opposed to
evolution of an existing system.

Guard condition [8.2] A condition that determines whether a certain transition
will occur in a state diagram when an event happens.

Heuristic evaluation [7.5] The process of systematically looking for usability defects in a
user interface, based on a set of usability guidelines or principles.

Hierarchy See general hierarchy, inheritance hierarchy.

Hierarchical team [11.4] A rigid team structure in which each individual reports
to a manager and is responsible for performing the tasks
delegated by that manager.

High-yield testing [10.2] A testing strategy that is both efficient and effective.

Hook [3.3 and 9.2] An aspect of the design deliberately added to allow
other designers to add additional functionality. It does nothing
in the basic version of the system, but is designed to be
implemented or overridden when the system is extended or
reused. See also hook method.

Hook method [3.7] A method that does nothing other than returning to its
caller, but is designed to be overridden in subclasses. See also
hook.

Horizontal framework [3.3] A framework that provides facilities that many different
types of applications will need. In contrast to vertical
framework.
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Host [3.5] A computer on a network.

Host name [3.5] An alphanumeric name given to a host, normally divided
into several components separated by dots. The components of
the name following the first dot are called the domain. The host
name can often be used interchangeably with the computer’s IP
address.

Hung system [10.5] A system that appears to the user to not be doing
anything, caused by such things as a crash, a deadlock, a livelock
or an infinite loop.

Identity [2.7] The characteristic of having a distinct existence, such that
each entity can be uniquely referred to.

Immutable [6.10] A pattern in which the instances of a class cannot change
state after creation.

Impact analysis [10.9] The process of exploring and documenting all possible
effects of a change.

Implementation [1.7] The process of converting a design into an executable
software system by programming and related activities.

Implicit requirement [10.1] A requirement not stated explicitly in the requirements
document.

Import coupling [9.2] A form of coupling in which one component declares that
it imports (makes use of the definitions in) another. Import
coupling, as found in Java, is similar to inclusion coupling, as
found in C++.

Inclusion [4.6] A use case that captures commonality among a set of other
use cases.

Inclusion coupling [9.2] A form of coupling in which one component includes the
source code of another component. All the includers of a
component are coupled to each other and to the included file.
See also import coupling.

Incremental development [11.2] A process model in which the software is developed in a
series of releases.

Incremental testing [10.9] A integration testing strategy in which you test
subsystems in isolation, and then continue testing as you
integrate more and more subsystems (see also top-down testing,
bottom-up testing, and sandwich testing). In contrast to big bang
testing.
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Information hiding [2.7 and 9.2] Hiding details so as to reduce complexity.
Achieved by abstraction, modularity and encapsulation.

Inheritance [2.5] The possession by one class of features defined in another
class, by virtue of the fact that the former class is defined to be
a subclass of (to extend) the latter.

Inheritance hierarchy [2.5] The hierarchy formed by the generalization relationships
among a set of classes.

Inspecting [10.10] A verification process that involves several people
systematically proceeding through a document searching for
defects. See also reviewing.

Instance [2.2] A role term referring to object that is a member of a class;
can also be applied to other classifiers, i.e. a scenario is an
instance of a use case. This term is used when talking about an
object in the context of its class, as in, ‘Object X is an instance
of class Y’.

Instance diagram [5.5] See object diagram. 

Instance method [2.4] A method that executes in the context of a particular
object; it has access to the instance variables of the given object,
and can refer to the object itself using the ‘this’ keyword (in Java
and C++).

Instance variable [2.3] A data item present in each instance of a class, normally
used to implement associations and attributes. In contrast with
class variable.

Integration testing [10.9] Testing during or following the process of integrating a
system. See also incremental testing.

Interaction diagram [8.1] A sequence diagram or communication diagram used to
model the dynamic aspects of a software system.

Interface [2.6] (1) The public operations provided by a module for other
modules to use (see also Application Program Interface). (2) A
software module in which these are listed. A class can
implement many interfaces.

Internationalization [7.4] The process of ensuring that a system can be easily
adapted to different locales.

IP [3.5] Abbreviation for ‘Internet Protocol’, the low-level
protocol used by all computers on the Internet, in which
messages are divided into packets for delivery to a remote
host. See also TCP/IP.



 

501Glossary

IP address [3.5] The address of a computer (i.e. a host) connected to an IP
network. It is composed of a series of numbers. Instead of the IP
address, a more human-readable host name is often used.

Isa hierarchy [2.5] Another term for inheritance hierarchy.

ISO 9000-3 [10.11] An international standard describing activities an
organization should perform in order to have an effective
software development process.

Iterative development [1.8 and 11.2] An approach to development by which software
is developed in stages, with the first stage being very simple, and
subsequent stages adding more features. See also incremental
development.

JAD [4.7] Abbreviation for ‘Joint Applications Development’. An
approach to defining requirements, in which all the stakeholders
meet intensively for several days in a secluded location.

Join [8.3] A symbol in an activity diagram indicating a point where
several threads wait for each other. When all threads reach the
join, control continues in a single thread.

Layer [9.2] A subsystem that provides a set of services and has layer
cohesion.

Layer cohesion [9.2] A form of cohesion in which the facilities for providing or
accessing a set of services through an API or hardware interface
are kept together. There must also be a strict hierarchy in which
higher-level layers can access only lower-level layers.

Leaf class [2.6] A class at the very bottom of an inheritance hierarchy.

Learnability [7.3] The speed with which a new user can become proficient
with the system. An aspect of usability.

Learning curve [7.3] A curve on a diagram that plots the time spent learning on
one axis, and the amount of functionality learned on the other
axis.

Legacy system [1.6] A software system which is still undergoing evolution, but
on which some or all of the original developers are no longer
working.

License [1.3] A legal document authorizing the holder to perform some
activity. In many jurisdictions an engineer must hold a license
to offer engineering services to the public. See also professional
engineer.

Lifeline [8.1] A dashed line in a sequence diagram indicating the period
of time during which an object exists.
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Link [5.3] A reference from one object to another. An instance of an
association. In a UML object diagram, a link is drawn as a line
connecting two objects. In a communication diagram there are
also communication links.

Listening [3.4] A state in which a server is waiting for clients to connect.

Live activation [8.1] The period of time when an object is performing work.
See activation box.

Livelock [10.5] A failure in which a system can never get out of a limited
set of states, although it is not in deadlock.

Locale [7.4] An environment where the language, culture, laws,
currency and many other factors may be different.

Localhost [3.5] A special host name that always refers to the current
computer.

Localization [7.4] The process of adapting a system to a specific locale.

Locking [10.5] A mechanism for reserving a resource so as to avoid
inappropriate concurrent access.

Maintainability [1.5] An important internal quality of software that measures
the extent to which the software can be modified at the lowest
possible cost, that is, maintenance can be made easier.

Maintenance [1.6] In the context of software, any process involving
modifying software following its general release to users. See
also evolution. Important types of maintenance include
adaptive maintenance, corrective maintenance, enhancement
and re-engineering.

Memory leak [10.6] A situation in which a program requests memory but
does not release it when it is no longer needed.

Merge Node [8.3] A diamond-shape node in an activity diagram that
represents the coming together of two non-concurrent paths.
Contrast with join and decision node. 

Message [8.1] Any information sent as a component interacts with
another, including using procedure calls, or network
communication. Explicitly shown in interaction diagrams.

Message-Oriented

Architecture

[9.6] An architectural pattern in which subsystems
communicate by sending messages to virtual topics; other
subsystems subscribe to these topics.

Method [2.4] A concrete implementation of an operation; a procedure in
a class.
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Methodology [5.1] A description of a process; it usually prescribes how to do
things in a step-by-step manner.

Metric [2.10, 10.11] A well-defined method and formula for
computing some value that helps a software engineer answer a
question about a software product or process.

Milestone [11.5] An important deadline date, at which a specific event
may occur, and when a specific deliverable may be required.

Mixed testing [10.9] See sandwich testing.

Modal dialog [7.4] A dialog (1) that the user must dismiss before interacting
with any other window. While in the modal dialog, the system
is in a very restrictive mode.

Mode [7.3] In the context of user interfaces, a state in which the UI
restricts the affordance.

Model (1) [5.1] A representation of a system that conveys one or more
aspects of it in an analyzable way. (2) [9.6] The functional layer
in the MVC architectural pattern – the underlying classes
whose instances are to be viewed and manipulated. See also
view and controller.

Model Driven Development [9.4]. An approach to software development in which the
architecture and design are specified by developing models. The
implementation of the software is then generated automatically
from the models. A special case of this is called Model Driven
Architecture.

Model–View–Controller [9.6] A architectural pattern used to separate the functional
layer of the system (the model) from two aspects of the user
interface, the view and the controller. Normally abbreviated as
MVC.

Modeling [5.1] The process of creating a model. Modeling is performed
both in design and requirements analysis. Modeling may use
formal languages or diagrams.

Modularity [2.7] The extent to which software is divided into components,
called modules, which have high internal cohesion, low coupling
between each other, and simple interfaces. A factor contributing
to maintainability.

Module [9.1] A component that is defined at the programming language
level, such as file, method or package.

Multi-Layer [9.6] An architectural pattern in which a system is divided into
layers.
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Multiple inheritance [5.4] Inheritance from more than one superclass. Best avoided if
possible, e.g. by using the player–role pattern.

Multiplicity [5.3] Information placed at each end of an association
indicating how many instances of one class can be related to
instances of the other class. In UML class diagrams it is shown
as a range separated by two dots (e.g. 1..∗). The asterisk
represents ‘any number’.

MVC [9.6] The abbreviation normally used for Model–View–
Controller.

Non-functional

requirement

[4.5] An old term for quality requirements, platform
requirements and process requirements; i.e. all requirements
except the functional requirements.

Object [2.1] A data element in an object-oriented system, which has its
own identity, belongs to a particular class, and has behavior and
properties. In a UML object diagram, an object is drawn as a
rectangle containing the name of the class, which is underlined.
See also instance.

Object Constraint

Language

[5.7] A language used to write Boolean constraints and
assertions in UML. Also called OCL.

Object diagram [5.5] A UML diagram that shows objects and the links between
them. Common alternative name: instance diagram.

Object orientation [2.1] A near-synonym for the object-oriented paradigm.

Object-oriented analysis [2.2] The process of deciding which classes will be important to
the users, and working out the structure, relationships and
behavior of these classes.

Object-oriented paradigm [2.1] An approach to software design and programming in
which software is primarily thought of as a collection of classes
that each have responsibilities for various operations, and
which are instantiated at run time to create objects. See also
object orientation (in contrast to the procedural paradigm).

Object-oriented testing [10.9] Testing that focuses on the specific properties of object-
oriented programs.

Observer [6.6] A pattern found in class diagrams in which instances of one
class are informed of changes to instances of a second class.

Obsolescence [9.2] The tendency for a technology to reach a state where it is
no longer useful, is superseded by better technology or must be
upgraded in order to continue to function correctly.

OCL [5.7] An abbreviation for Object Constraint Language.
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Off-by-one error [10.4] A defect in which a program inappropriately adds or
subtracts one, or inappropriately loops one too many times or
one too few times.

Open beta release [10.9] A version of a system released for beta testing by any
member of the general public who wishes to participate.

Open source [11.2] A process model in which software is developed by a
community, and source code is distributed with the software, so
that community members can change it.

Operation [2.4] The abstract notion of something that can be done by
one or more classes. An operation is implemented as a set of
methods. The word is also used in the context of what the
user can do in the user interface, i.e. part of the affordance.

Operator precedence error [10.4] A defect in which an expression in a program lacks
needed parentheses, or has parentheses in the wrong place.

Opportunistic approach [11.2] An unsatisfactory process model in which developers keep
on modifying the software until they or their users are satisfied.

Optimistic–likely–

pessimistic estimation

[11.3] An approach to cost estimation in which you make three
estimates for each task and for the project as a whole: an
optimistic estimate (in which everything goes well), the likely
estimate and a pessimistic estimate (where you account for
everything that could go wrong).

Over-constrain [4.8] To make a decision that constrains future choices, with
insufficient justification. A typical mistake made during
requirements analysis.

Overriding [2.6] The situation where a method local to a class is used in
place of a method that otherwise would have been inherited.

Package (1) [9.5] A collection of modeling elements that are grouped
together because they are logically related. (2) [2.8] A Java
facility for grouping a set of classes.

Package diagram [9.5] A type of UML class diagram showing packages and their
relationships.

Paper prototype [4.6] A set of pictures of the user interface of a system used to
demonstrate how the system would work if implemented.

Parallel design [9.1] See parallel development.

Parallel development [9.1] Independent development of a system or subsystem by
several developers, with the objective of exploring design space
and generating a variety of different design ideas; the best ideas
are generally chosen for further development.
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Paraphraser [10.10] A person in an inspection who steps through the
document explaining it in their own words.

Pareto principle [4.9] See 80–20 rule.

Pattern [6.1] A widely understood and well-defined solution to a
particular type of problem. See also design pattern and
architectural pattern.

Pattern language [6.1] A group of interrelated patterns. 

Peer-to-peer [9.6] A variant of the client–server architectural pattern in
which components can serve as both servers and clients to each
other.

Perfective maintenance [1.6] A type of maintenance that includes re-engineering, and is
sometimes applied more broadly to include enhancement.

Person-month [11.3] A measure of effort. One person-month is the amount of
work done by one person in one month if they are working full
time.

Personal Software Process [10.11] A disciplined approach that an individual software
developer can use to improve the quality and efficiency of his or
her personal work.

PERT chart [11.5] A diagram showing the sequence in which tasks must be
completed.

Phased-release model [11.2] An approach to incremental development in which, after
requirements gathering and planning, the project is broken into
separate subprojects, or phases.

Pilot system [11.2] A synonym for prototype.

Pipe [9.6] A connection between two filters in a pipe-and-filter
architecture. It joins the output of one filter to the input to
another.

Pipe-and-Filter [9.6] An architectural pattern in which data in a standard
format is passed through a series of processes (filters) that
transform it in some way. Also called a transformational
architectural pattern.

Pipeline [9.6] A series of processes that transform data in the pipe-and-
filter architectural pattern.

Platform requirement [4.5] A type of requirement that specifies an aspect of the
technology that must be used or the deployment platform for
the software. See also quality requirement.
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Player–role [6.4] A pattern found in class diagrams in which one class (the
player) has several associated role classes. Instances of the role
classes can change over the lifetime of a player. The pattern
reduces the need for multiple inheritance.

Polymorphism [2.4] A property of object-oriented software by which an
abstract operation may be performed by different methods in
different classes. Polymorphism exists when several classes
which each implement the operation either have a common
superclass in which the operation exists, or else implement an
interface that contains the operation.

Port [3.5] A number associated with a server on a host, used by a
client that wishes to connect to that server. Each server on a
host must have a different port number.

Portability [9.2] The ability for software to be run in a variety of different
hardware or software environments with no or minimal changes.

Postcondition [4.6] A statement that is guaranteed to be true following the
successful completion of some algorithm, method or use case. In
contrast to precondition.

Post-mortem analysis [10.11] The process of looking back at a completed project’s
design and its development process, in order to identify those
aspects where improvements can be made in future projects.

Precondition [4.6 and 10.4] A statement that must be true before some
algorithm, method or use case is executed. In contrast to
postcondition.

Problem [1.2] In the broad context of software engineering, a difficulty,
challenge, need or desire faced by a customer that is to be solved
by developing software.

Procedural cohesion [9.2] A form of cohesion in which procedures that are called one
after another are kept together.

Procedural paradigm [2.1] An approach to software design and programming in
which software is primarily thought of as a hierarchy of
procedures – the root of the hierarchy is typically a main
procedure, which calls other procedures, etc. (in contrast to the
object-oriented paradigm).

Process Anything that operates for a period of time, normally
consuming resources during that time and using them to create
a useful result. In software engineering, the word is also applied
to mean the development process of a software project.



 

508 Glossary

Process model [11.2] A general approach for organizing a project into
activities; an aid to thinking, not a rigid prescription of the way
to do things.

Process requirement [4.5] A type of requirement that specifies an aspect of the process
model that must be followed. Must be measurable. See also
quality requirement.

Process standard [10.11] A document describing a well-respected way of
developing software.

Product line [3.3]. A set of products based on a common framework,
designed with different sets of features so as to satisfy different
market needs. 

Professional engineer [1.3] A person who has been issued a license, by some
jurisdiction, to perform engineering. See also chartered engineer.

Project management [11.1] All the activities needed to plan and execute a project.

Project manager [11.4] The person responsible for performing project
management tasks.

Project plan [11.6] A document used in project management describing all
aspects of the project’s process, including the process model,
tasks, risks, cost estimates, team structure and schedule.

Propagation [5.6] A mechanism whereby an operation in an aggregate is
implemented by having the aggregate perform that operation
on its parts – in other words, the operation is propagated to the
parts.

Property See feature (2).

Protocol [3.4] The languages and rules by which two programs or
processes communicate, as in a client–server system.

Prototype [1.8 and 4.7] A version of a system created primarily to learn
more about the requirements, and not intended to be the final
product. It normally contains only certain aspects of the
system’s eventual functionality.

Prototyping [4.7] The process of developing prototypes.

Proxy [6.12] A pattern found in which a lightweight object stands in
place of a heavyweight object that has the same interface. It
transparently loads the heavyweight object when needed.

Quality [1.5] An attribute of a product or process that, if improved, would
better satisfy one or more of the stakeholders of that product or
service. Examples of qualities relevant to software engineering
include: usability, efficiency, reliability and maintainability. When
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performing engineering, it is desirable to set measurable
objectives for quality and perform quality assurance.

Quality assurance [1.7 and 10.11] The process of ensuring that the quality of a
product or process is sufficient to meet the needs of the
stakeholders. Quality assurance includes both validation and
verification; important techniques include reviewing, inspecting
and testing.

Quality requirement [4.5] A type of requirement that specifies an aspect of software
quality. Must be measurable. See also functional requirement,
platform requirement and process requirement.

Race condition [10.5] See critical race.

Rationale [4.9 and 9.7] The reasoning underlying requirements or design
decisions. It should be documented.

Read-only interface [6.10] A pattern in which an interface is used to restrict which
classes have privileges to call update methods of a class.

Real-time software [1.1 and 10.5] Software that must react immediately to stimuli
from the environment.

Re-engineering [1.6 and 11.2] A type of maintenance performed to improve or
replace some part of a software system so that it has higher
maintainability. In general, no new features are added for users.
See also perfective maintenance.

Refactoring [11.2] Changing part of the design by following systematic rules
that result in an equivalent design with an increase in certain
desirable qualities; performed as part of re-engineering and
promoted in agile approaches.

Reflexive association [5.3] An association in which both ends connect to the same
class. See also symmetric reflexive associations and asymmetric
reflexive association.

Regression testing [10.9] The process of re-testing a system, using a selected subset
of test cases, after changes are made.

Release notes [10.9] A document describing a particular release of software,
including a known bugs list.

Reliability [10.1] An important quality of software that measures the
frequency of failures, as encountered by testers and end-users.

Rendezvous [8.3] In concurrent programming, a situation where several
threads meet and wait for each other. See also join and fork.

Requirement [4.4] A statement describing either 1) an aspect of what the
proposed system must do, or 2) a constraint on the system’s
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development; it must contribute in some way to adequately
solving the customer’s problem; the set of requirements as a
whole represent a negotiated agreement among all stakeholders.

Requirement stability [11.3] A measure of the extent to which requirements are likely
to change.

Requirements analysis [4.7] The process of deciding on the requirements of a software
system. See also requirements gathering.

Requirements creep [4.10] The tendency for the set of requirements to relentlessly
increase in size during the course of development, resulting in
a system that is more expensive and complex than originally
intended.

Requirements definition [4.8] A high-level requirements document that describes
requirements using language understandable by customers and
end users. See also requirements specification.

Requirements document [4.8] Any document describing a set of requirements.
Requirements definitions and requirements specifications are
specific kinds of requirements document.

Requirements elicitation [4.7] The process of actively asking stakeholders to describe
their view of the requirements; an important aspect of
requirements gathering.

Requirements gathering [4.7] A step in requirements analysis in which information is
obtained that will form the basis of the requirements. See also
requirements elicitation.

Requirements review [4.9] The process of systematically evaluating a requirements
document.

Requirements specification [4.8] A specification of requirements; i.e. a requirements
document that is more detailed than a requirements definition.

Resource [1.5] Anything consumed in the development, operation or
maintenance of a product or process. Important resources used
in software engineering include the time and money of the
stakeholders, and the CPU-time, memory and files of
computers. See also efficiency.

Response time [7.4] The time that elapses from when a user issues a command
to when the system provides enough results so that the user can
continue his or her work.

Responsibility [5.8] Something a system is required to do that is allocated to a
particular class.
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Reusability [3.2 and 9.2] A quality that measures of the extent to which a
product or process can be used in different contexts from which
it was originally designed.

Reuse [3.2 and 9.2] The practice of using the same code or design in
more than one place. In contrast to cloning. See also reusability.

Reviewing [4.9] The process of systematically proceeding through a
software document to perform a function such as validation, or
verification.

Ripple effect [10.9] The situation in which removing defects causes new ones
to be added.

Risk management [1.8] The process of evaluating risks and taking corrective
action, including revising plans, on a regular basis.

Role (1) [5.3] A name given to one end of an association that acts as
a synonym for the class at that end. (2) [6.4] A class in the
player–role pattern whose instances can be attached to player
objects.

Root cause analysis [10.11] The process of determining the ultimate reason why a
software engineer made the error that introduced a defect.

Routine call coupling [9.2] A form of coupling in which one routine calls another.

Sandwich testing [10.9] An incremental testing strategy in which you test the top
layers and bottom layers, and finally test the integrated system.
It is partially bottom-up and partially top-down, hence is also
called mixed testing.

Scenario [4.6] An instance of a use case, involving a specific actor
instance, at a specific time and using specific data.

Schedule [11.3] (1) The allocation of tasks to time periods. (2) The total
elapsed time of a project.

Scheduling [11.1, 11.5] Determining the sequence of tasks, plus deciding
when the tasks should start, and setting deadlines for when they
must be complete.

Scope [4.3] The extent of a software project.

Sequence diagram [8.1] A UML interaction diagram showing the sequence of
messages exchanged by the set of objects and optionally an actor.
Actors and objects are on one axis, and time is on the other.

Sequential cohesion [9.2] A form of cohesion in which a series of procedures, where
one provides input to the next, are kept together.
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Server [3.4] A program or process that, in response to requests from
clients, provides some kind of service.

Server socket [3.5] Data in a server used to generate connections on a port.

Service-Oriented

Architecture

[9.6] An architectural pattern in which subsystems obtain
information by calling on standard services available on the
Internet, called Web Services. The information is typically
delivered in XML format.

Severity level [10.8] A number given to a failure, defect or test case, indicating
the amount of impact it has on the user or customer.

Shelfware [4.7] Software that is not used.

Shrink-wrapped software [1.1] A term for generic software, so-called because it is often
sold in boxes tightly wrapped in plastic.

Side effect [9.2] A change to the state of the system made by a procedure,
other than merely returning a result. See also functional
cohesion.

Signature [5.2] The format of an operation or message, including
arguments and return value.

Singleton [6.5] (1) A pattern that ensures that a certain class can have only
one instance. (2) A class for which only one instance should
exist.

Slot [3.3] A missing part in a framework that is filled in by the
application developer who is adapting the framework to suit his
or her needs. See also hook.

Socket [3.5] Data in a client or server that represents an end of a TCP/
IP connection. A complete connection has two sockets, one in
the client and one in the server.

Software [1.1] Programs and related data that run on a computer. See
also custom, data processing, embedded, generic and real-time
software.

Software architecture [9.5] (1) The process of designing the global organization of a
software system, including dividing software into subsystems,
deciding how these will interact, and determining their
interfaces. (2) Documentation produced as a result of this
process (the architectural model). (3) The field of study of how
to effectively do the above.

Software construction [11.3] See construction.
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Software crisis [1.1] The situation that is said to have existed since at least the
late 1970s, characterized by an inability of software developers
to deliver good quality software on time and on budget.

Software developer [1.4] A person involved in the development of software. These
include software engineers, but may also include others who
have specific technical training, but may not be considered to
be software engineers.

Software engineer [1.1] A person who has education in, and experience performing,
software engineering. An engineer who specializes in software.

Software engineering [1.2] (1) The process of solving customers’ problems by the
systematic development and evolution of large, high-quality
software systems within cost, time and other constraints. The
application of engineering to software systems of any kind. (2)
The field of study of how to effectively do the above.

Software process model [11.2] See process model.

Specialization [5.4] The inverse of generalization. 

Specification [4.8] A document that gives complete detail about something.
Normally implicitly means requirements specification, but the
term design specification is sometimes also used to mean a
detailed and precise design document.

Spiral model [11.2] An incremental process model that explicitly embraces
prototyping and an iterative development approach.

Stable architecture [9.5] An architecture that permits changes to a system to be
made without the architecture having to change.

Stable sort [10.4] A sort algorithm that leaves equal items in the same order
they were in prior to sorting.

Stakeholder [1.4] A person or organization that may be affected by the
success or failure of a project or organization. Stakeholders for
software projects include users, customers, software developers
and managers of the development team.

Stamp coupling [9.2] A form of coupling in which one of the argument types of
a method is an application class. In contrast to data coupling.

Standard [10.11] A document describing a body of well-respected
information that engineers should conform to in order to
ensure they are following best practice, and will consistently
produce good-quality products. See also process standard.
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State [8.2] A situation in which a system or object behaves in a
specific way in response to any events that occur.

State diagram [8.2] A UML diagram showing states and transitions, used to
describe the externally visible behavior of a system or of an
individual object. Near-synonyms include ‘state machine’,
‘statechart diagram’ and ‘finite state machine’.

Static method [2.9] A synonym for class method, so named because one
declares a method to be a class method in Java and C++ using
the ‘static’ keyword.

Static variable [2.3] A class variable. The term class variable is normally
preferred; in C++ and Java, such variables are labeled with the
keyword ‘static’.

Stereotype [5.6] A way to use some of the standard UML notation to
represent something special. Created using a label in
«guillemets».

Stress testing [10.6] Testing on minimal configurations and at peak loads or
with missing resources.

Structural testing [10.3] See glass-box testing.

Stub [10.9] A piece of code that has the same interface (i.e. API) as
the lower-level layers, but which does not perform any real
computations or manipulate any real data. Used in top-down
testing.

Subclass [2.5] A class that is an extension of another class, and hence
inherits from the other class. See generalization.

Substate [8.2] A state within a state.

Subsystem [9.1] A system that is part of a larger system, and which has a
well-defined interface.

Superclass [2.5] A class of which another class is an extension, and hence
defines features that are inherited by the other class.

Swimlane [8.3] A division in a UML activity diagram showing the
activities performed by a particular object.

Symmetric reflexive

association

[5.3] A reflexive association in which the roles and multiplicity
at either end are identical.

Synchronization [3.8] A mechanism to guarantee that only one thread can access
an object at a time.

System [9.1] A logical entity, having a set of definable responsibilities or
objectives, and consisting of hardware, software or both.
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Systems engineering [1.7] A type of design that involves deciding which requirements
should be implemented using hardware, and which using
software.

Task analysis [4.6] The process of determining the detailed steps needed to
perform a task effectively and efficiently. See also use case
analysis.

TCP [3.5] Transmission Control Protocol. An important protocol
used to establish and manage connections between computers.
See also TCP/IP, IP and Socket.

TCP/IP [3.5] Transmission Control Protocol/Internet Protocol. An
important pair of protocols used to establish connections and
send data between computers. See also TCP and IP separately.

Temporal cohesion [9.2] A form of cohesion in which aspects of a system are
grouped together which are used during the same phase of
execution of a program, i.e. they execute close together in time.

Test [10.8] A particular run of a test case on a particular version of a
system.

Test case [10.8] An explicit set of instructions designed to detect a
particular class of defect in a software system, by bringing about
a failure.

Test-first development [10.8] An approach, commonly used in agile approaches, in
which you first define the test cases, then design the software to
make the test cases pass.

Test harness [10.9] A program that automates testing of a system. See also
driver.

Test plan [10.8] A document that contains a complete set of test cases for a
system, along with other information about the testing process.

Test–fix–test cycle [10.9] The cycle in which software developers repeatedly run
tests, discover and fix defects, and then re-test. This continues
until quality objectives are met.

Testability [9.2] The ability for software to be instrumented so that it can
be automatically tested using a test harness. An important
internal quality of software.

Testing [10.2] An approach to verification that involves systematically
executing software to detect defects.

Thin-client system [3.4] A client–server system in which the client is as small as
possible and the server does most of the computation. In
contrast to fat-client system.
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Thread [3.4] In general, a path of execution that can run concurrently
with other paths of execution. In Java, a class that implements
the general concept of a thread. A lightweight process.

Top-down design [9.1] An approach to design in which one starts with the high-
level architecture of the system, then works downwards until
finally designing the low-level details such as the structure of
individual classes. In contrast to bottom-up design.

Top-down testing [10.9] An incremental testing strategy in which you start by
testing only the user interface, with the underlying
functionality simulated by stubs, then you work downwards,
integrating lower and lower layers.

Topic [9.6] The channels by which subsystems communicate in the
Message-Oriented Architecture.

Traceability [4.9] The ability to determine the information that led to a
decision being made. For example, aspects of a design should be
traceable to specific requirements.

Tracking [11.5] In the context of project management, the process of
determining how well you are sticking to the cost estimate and
schedule. See earned value chart.

Transaction-processing [9.6] An architectural pattern in which a transaction dispatcher
inputs transactions and dispatches them to handlers.

Transformational

architectural pattern

[9.6] A near-synonym for Pipe-and-Filter architectural pattern.

Transition [8.2] A change of state in response to an event.

Type use coupling [9.2] A form of coupling in which several components make use
of the same globally-defined data type.

UML [5.1] Abbreviation for the Unified Modeling Language.

Unified Modeling Language [5.1] A standard language for modeling various aspects of
software, which includes, among other things, a set of
diagrammatic notations. UML was invented by Booch,
Rumbaugh and Jacobson.

Unit testing [10.9] Testing an individual module or component in isolation.
In contrast to integration testing.

Usability [7.3] An important quality of software that measures the extent
to which a product or process is learnable, enables users to be
productive and avoid errors, and also subjectively satisfies them
(in contrast to utility).
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Usability testing [7.5] The process of evaluating a user interface by having users
perform tasks and observing them, noting any usability defects.

Use case [4.6] A way in which a system can be used, described as a step-
by-step sequence of actions, along with the system’s response
and certain other information.

Use case analysis [4.6] The process of dividing up the functionality of the system
into use cases, and determining the relationships among those
use cases. A useful technique for requirements analysis. Very
similar to task analysis.

Use case diagram [4.6] A UML diagram showing actors, use cases and their
relationships.

Use case instance [4.6] See scenario.

Usefulness [7.3] The extent to which a system can be used to perform a
task; combines usability and utility.

User [1.4] A person who uses software (in contrast to customer). One
of the stakeholders.

User-centered design [7.1] An approach to software engineering using techniques
that focus on users and their needs.

User interface component [7.3] A component used to create the user interface such as a
menu, list, input field etc. Also called a control or widget.

User interface design [7.3] The design of the user interface of a software system.

Utility (1) [9.2] A method or class that has wide applicability to many
different subsystems and is designed to be reusable. (2) [7.3]
The extent to which, independent of usability, a product or
process provides capabilities needed to solve a customer’s
problem.

Utility cohesion [9.2] A form of cohesion in which utilities (1) which cannot be
logically placed in other cohesive units are kept together.

Validation [1.7] The process of ensuring that requirements and designs solve
the customer’s problem (in contrast to verification).

Verification [1.7] The process of ensuring that the design or implementation
conforms to the requirements; the process of ascertaining that
the software has no defects (in contrast to validation). See also
inspecting and testing.

Vertical framework [3.3] A complete framework for a particular class of
applications. A near-synonym for application framework.
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View [9.6] In the MVC architectural pattern, the class or classes used
to render the appearance of the data from the model in the user
interface.

Waterfall model [11.2] A process model in which the software engineer works in
a series of stages. The basis for many process models, but not
the recommended model to use in modern software
engineering. In contrast to incremental development and
iterative development.

Weighted average cost [11.3] The cost of employing a person, including the cost of
benefits, office and management support. Also called burdened
cost.

Web service [9.6] A service available on the Internet, delivered using the
http protocol, and designed to be used by applications, as
opposed to end users. Data is normally delivered in XML
format. See service-oriented architecture.

White-box testing [10.3] A synonym for glass-box testing or structural testing.

Widget [7.4] A synonym for user interface component and control.

XML [9.6] A textual markup language in which tags are used to
provide meanings to various types of information.
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programming 64
project management 456
requirements 166
reuse 103
software engineering 27–8
standards 423, 457
testing 422
UI 282
UML 219
usability 282

bottom-up design 313
bottom-up testing 404–5
brainstorming, gathering requirements 

technique 142–4
Broker architectural pattern 351–2
bugs

law of conservation of bugs 407
modification side effect 3
see also defects; error; testing

C++, terminology 38, 49
Canadian Standards Association, software 

engineering definition 8
change

class 184–5
constant 25
requirements 155–6

class diagrams
airline system 207, 215–17
CRC cards 212–13
developing 212–13
difficulties 218
vs. entity–relationship diagrams 199
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essentials 172–3
exercises 185, 187–8, 215
features 188–93
genealogy 196–8
generalization 185
Java 216–17
object diagrams 186–8
risks 218
sequence of activities 201–2
summary of notation 471–2
symbols 172–3

Class–Responsibility–Collaboration (CRC) 
cards 212–13

class variables
vs. instance variables 37–8
terminology 37–8

classes 52, 53, 173
airline system 204
changing 184–5
geometric points 57–60
identifying 202–5
inheritance hierarchies 39–45
instances 33–5
modeling with 169–220
and objects 31–6
organizing 39–45
responsibilities, allocating 210–12
terminology 35–6

client capabilities, client–server systems 82–3
client–server architecture 77–87

alternatives 78–80
architectural pattern 349–51
client capabilities 82–3
concurrency 83–4
examples 79
exercises 80–7
fat-client systems 84–5
Internet sites 104
messages 86–7
network concepts 87–9
project exercises 104–7
protocols 86–7
risks 102
server capabilities 81–2
systems 77
tasks 87

technology 87–90
thin-client systems 84–5

client side, OCSF 92–5
clients see customers
cloning

design 331, 332
objects vs. code 332

clutter, usability 266
CMM™ see Software Capability Maturity Model
co-ordination defects 391–4
cohesion principle, design 315–21
collaborations, communication diagrams 292
common coupling 323, 324
communication diagrams 290–2

choosing 291–2
collaborations 292
patterns 292

communication, documentation 467
communication systems, client–server systems 79
communicational cohesion 316, 318–19
complexity 24

measuring 60–2
component diagrams 346
components

defining 311–12
projects 15–16

Composite pattern 228
composition 188–92
concurrent engineering model 432
configuration management 20
configurations defects 395
ConnectionToClient

private internals 98–9
public interface 97
using 98

constraints 192–3
content coupling 322–4
contingencies, cost estimation 442–4
control constructs, algorithm defects 384
control coupling 323, 325
controls, UI 261
conventional development, vs. agile development 18
corrective projects 15
cost–benefit analysis, design 339–40
cost estimation 435–45

conflict resolution 446
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contingencies 442–4
divide and conquer principle 437
experience principle 437–40
extrapolation pitfalls 440–2
false analogies 440
inclusion principle 437
independent estimates 444–5
Murphy’s Law 442
non-linearity 439
principles 436–45
project management 435–45
revising/refining principle 445
software process 435–45
uncertainty 446
worst case anticipation 442–4

coupling
design 321–9
exercises 328–9

course registration, frameworks 73
crash recovery defects 396–7
CRC cards see Class-Responsibility-

Collaboration cards
creep, requirements 156
critical races 393–4
custom software 3–6
customers

software engineering stakeholders 10–11
testing 407–8
understanding 20, 256–8

data abstraction 30–1
data coupling 323, 326–7
data processing software 5–6
database systems, client–server systems 79
deadlock 391–3
decimal defects, algorithms 389–91
decisions, design 310–11, 336–40
defects

algorithms 380–91
co-ordination 391–4
defining 372
documentation 398
numerical algorithms 388–91
stress 394–7
timing 391–4
unusual situations 394–7

defensive design 334–6
defining the problem 16

Delegation pattern 234–6
Law of Demeter 236

Demeter, Law of 236
demographics, users 257
dependencies, UML 196
deployment 19–20
deployment diagrams 347
descriptive text 192–3
design 17–18, 309–69

abstraction 329
alternatives 336–40
books 368
bottom-up 313
cloning 331, 332
cohesion principle 315–21
cost–benefit analysis 339–40
coupling 321–9
decisions 310–11, 336–40
defensive 334–6
defining 310
design space 310–11
deterioration 25
difficulties 366–7
divide and conquer principle 314–15
documentation 362–5
evaluation 336–40
exercises 320–1
flexibility 331–2
instant messaging 365–6
Internet sites 368
objectives 336–9
obsolescence 332–3
portability 333–4
principles 314–36
prioritizing 336–9
process 310–13
project exercises 368–9
reusability 330
reuse 331
risks 366–7
SimpleChat 365–6
special types 313
subsystems 312
testability 334
top-down 313

design patterns 221–52
Abstraction–Occurrence 223–6
Adapter 236–8
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Composite 228
Delegation 234–6
Façade 238–9
Factory 243–6
General Hierarchy 226–8
Immutable 239–40
Observer 232–4
Player–Role 228–31
Proxy 241–3
Read-Only Interface 240–1
Singleton 231–2
summary 463

detailed design 17
deterioration, design 25
developing requirements 109–68
development managers, software engineering 

stakeholders 10–11
diagrams, frames/labels 178
dialog, UI 261
difficulties

behavior 306
class diagrams 218
design 366–7
domain analysis 164–5
interactions 306
patterns 250–1
project management 453–5
QA 420–1
requirements 164–5
reusable technology 101–2
software engineering 24–6
UCD 280

directionality, associations 181
disabilities, usability 267
disasters

Ariane-5; 414
British Midland Flight 92; 258
project management 427
radiation therapy 414
spaceflight 414
Therac-25; 414
USS Vincennes 281
see also failure

discriminators, terminology 182
distributed systems 77
divide and conquer principle

cost estimation 437
design 314–15

documentation
agile 23, 145
communication 467
defects 398
design 362–5
project management 452–3
project plan 452–3
requirements 145–8
summary 475–7

domain analysis 16, 109–14
benefits 110
difficulties 164–5
document 112–13
exercises 113–14
risks 164–5
sections 110–13

domain models 199–201
dynamic and behavioral modeling 18
dynamic binding, variables 50–1

e-commerce, frameworks 73
earned value charts, project scheduling/tracking 

451–2
efficiency 11–14, 62–3, 259–61
elapsed-time transitions, state diagrams 294–5
email, client–server systems 79
embedded software 3–6
encapsulation 53
encoding techniques, UI 261–2
engineering profession, Internet sites 28
enhancement 124
enhancement projects 15
entity–relationship diagrams, vs. class diagrams 199
equivalence classes

boundaries 380
combinations 378–80
strategy 376–8
testing 376–80

error build up, algorithms 389–91
error, defining 372
error handling 259–61

see also bugs; testing
error messages, usability 264
ethics 9

networks 103
usability testing 276

evaluation
algorithms 337–9
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alternatives 21–2
design 336–40
heuristic 273–4
vs. quality assurance 273
UI 273–6
usability testing 274–6

evolution, languages 62–3
evolutionary model 431–2
evolutionary projects 14–15
exceptions, testing 373
experience principle, cost estimation 437–40
expertise, reuse 68
exploratory domain models 199–201
external attributes, quality 11–14
external coupling 323
extrapolation pitfalls, cost estimation 440–2
eXtreme Programming (XP) 18

tenets 433–4
users 254

Façade pattern 238–9
Factory pattern 243–6
failure

defining 372
Internet sites 422
recovery from 124
see also disasters

fat-client systems 84–5
feedback

UI 261
usability 264

first order logic 194
flexibility

design 331–2
teams 446–7

flight booking associations 177–8
floating-point errors, algorithms 389–91
formal methods 194
frames/labels, diagrams 178
frameworks

books 103
course registration 73
defining 72
e-commerce 73
examples 75–6
exercises 76–7
frequent buyer clubs 73
horizontal 74–5

object-oriented 75
payroll management 72
product lines 73
projects 15–16
reuse 68, 71–7
vertical frameworks 74–5

frequent buyer clubs, frameworks 73
functional cohesion 315–17
functional requirements 119–23, 154–5

GANA see GPS-based Automobile Navigation 
Assistant

Gantt charts, project scheduling/tracking 450–1
gathering requirements 17, 138–45
genealogy

class diagram 196–8
exercises 198

General Hierarchy pattern 226–8
generalization 39, 182–5

airline system 209
class diagrams 185
generalization sets 182–4
identifying 208–9
unnecessary 182

generic software 3–6
geometric points, classes 57–60
glass-box testing 373–6
glossary 485–518
glue code 16, 68–9
Goals, Questions, Metrics (GQM) 61
goals, users 256
GPS-based Automobile Navigation Assistant 

(GANA) 156–60, 340, 443, 450–2, 480
GQM see Goals, Questions, Metrics
graphical user interface (GUI)

implementing 276–80
Java 276–80

green field projects 15
guard conditions, state diagrams 299
GUI see graphical user interface

heuristic evaluation 273–4
hierarchies, teams 446–7
history, object-orientation

methods and notations 172
programming languages 54

horizontal frameworks 74–5
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hotel reservation system, project exercises 167–8, 
220, 252, 283, 308, 424

identity 52
IEEE Computer Society

ethics 9
software engineering definition 8

Immutable pattern 239–40
implementing classes 51–2
import coupling 323, 328
inclusion coupling 323, 328
inclusion principle, cost estimation 437
incremental testing 402–3
independent estimates, cost estimation 444–5
information hiding 53
inheritance 52

defining 40
multiple 184

inheritance hierarchies
classes 39–45
effects 45–52
exercises 43–5
mathematical objects 42
polymorphism 45–52
variable declarations 45–52

inspection 409–13
meetings 411–12
peer-review process 411
principles 409–11
roles 409
cf. testing 412
see also reviews; testing

instance variables 36–8
vs. class variables 37–8
terminology 37–8

instances
associations see links
classes 33–5
terminology 35

instant messaging
design 365–6
GUI 276–80
OCSF 99–100
requirements 160–4
test cases 416–20

integration testing 402–3
interaction diagrams 285–92

implementing classes 302–6

messages 286
interactions

difficulties 306
Internet sites 307–8
modeling 285–308
project exercises 308
risks 306

interface, user see user interface
internal criteria, quality 13–14
internationalization, usability 267
Internet, Internet site 104
Internet sites

behavior 307–8
client–server architecture 104
design 368
engineering profession 27
failure 422
interactions 307–8
Internet 104
Java 64
patterns 251
product lines 104
project management 456
QA 422, 423
requirements 166
reuse 103
software engineering 27
standards 457
testing 422
UML 219–20

interviewing, gathering requirements 
technique 139–41

IP (Internet Protocol) addresses, finding 87–9
isa hierarchies 39
ISO 9000-3, QA 415
iterative development 22–3, 466

JAD see Joint Application Development
Java

class diagrams 216–17
connections 89–90
GUI 276–80
Internet sites 64
JUnit 399
MVC 357
principles, books 63–4
project exercises 64–5
tools 64
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Joint Application Development (JAD), gathering 
requirements technique 144

JUnit, Java 399

knowledge, prior, users 257

landing-gear, aircraft, algorithms defects 380–3
language evolution 62–3
large systems, testing 402–9
law of conservation of bugs 407
Law of Demeter, Delegation pattern 236
layer cohesion 316, 317–18
learnability 259–61
libraries, reuse 68
library system 127–8
links, associations 181
Liskov Substitution Principle 41
livelock 391–3
localization, usability 267, 268
logical conditions, algorithm defects 380–4
logical thinking 22, 465–6
long-term quality 14
loops, algorithm defects 384–5

magazines, software engineering 26–7
maintainability 11–14, 124
managing projects 20
many-to-many associations 176–7
mathematical objects, inheritance hierarchy 42–3
maximum values storage, algorithms 389–91
MDA see Model Driven Architecture
measuring 22, 436, 439

complexity 60–2
GQM 61
quality 60–2, 123–4, 372, 414
usability 259–60

memory leaks 397
Message-Oriented architectural pattern 360–2
Message-Oriented Middleware (MOM) 360–2
messages

client–server systems 86–7
interaction diagrams 286
see also instant messaging

methodologies, terminology 171
methods 38–9, 53

terminology 171
metrics see measuring

minimal configurations, defects 395
modal dialog, UI 261
mode, UI 261
Model Driven Architecture (MDA) 341
model driven development 340–2
Model-View-Controller (MVC) architectural 

pattern 355–7
models/modeling

agile approaches 433–4
approaches 18
choosing 435
with classes 169–220
concurrent engineering model 432
contents 343–4
developing 344–5
domain models 199–201
evolutionary model 431–2
importance 342–3
open source model 434–5
phased-release model 430
project management 428–35
RUP 432–3
skills 218
software process 428–35
software process models 428–35
spiral model 430–1
waterfall model 22–3, 428–9
see also Unified Modeling Language

modularity 53
modules, defining 312
MOM see Message-Oriented Middleware
Multi-Layer architectural pattern 347–9
multiple inheritance 184
multiplicity 173–81

exercises 178–9
Murphy’s Law, cost estimation 442
MVC see Model-View-Controller architectural 

pattern

N-ary associations 196
nested substates, state diagrams 299
network concepts, client–server systems 87–9
network file systems, client–server systems 79
networks, ethics 103
Newton, Isaac 69
non-functional requirements 123
non-linearity, cost estimation 439
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non-singleton conditions, algorithm defects 386
notes 192–3
null conditions, algorithm defects 385
numerical algorithms, defects 388–91

Object Client–Server Framework (OCSF) 91–100
client side 92–5
instant messaging 99–100
Observable layer 247–50
patterns 246–50
server side 95–9
testing 404–5

Object Constraint Language (OCL)
basics 193–6
exercises 195

object diagrams
class diagrams 186–8
exercises 187–8

Object Management Group (OMG) 172
object-orientation (OO)

history 172
review 29–65

object-oriented analysis (OOA) 32
object-oriented development processes, books 

219–20
object-oriented frameworks 75
object-oriented paradigm, defining 31
object-oriented testing 409
objectives, design 336–9
objects 53

and classes 31–6
examples 32
terminology 35
vs. variables 37

Observable layer, OCSF 247–50
Observer pattern 232–4
observing, gathering requirements technique 139
obsolescence, design 332–3
OCL see Object Constraint Language
OCSF see Object Client–Server Framework
off-by-one errors, algorithm defects 386–7
offshoring 2
OMG see Object Management Group
one-to-many associations 176
one-to-one associations 177–8
operations 38–9, 53

identifying 213–15

operator precedence errors, algorithm defects 387
opportunistic approach, software development 428
overriding 48–9

extension 49
optimization 49
restriction 48–9

packages 345–6
pair programming 19, 434
patents, software 455
patterns

abstraction levels 348
books 251–2
communication diagrams 292
defining 222, 223
difficulties 250–1
exercises 228
Internet sites 251
OCSF 246–50
patterns community 223
project exercises 252
resources 251–2
risks 250–1
summary 463
see also architectural patterns; design patterns

patterns of use, users 256–7
payroll management, frameworks 72
peak loads defects 395–6
peer-to-peer systems 77
perfection 150
perfective projects 15
Personal Software Process (PSP™), QA 415
PERT charts, project scheduling/tracking 449–50
phased-release model 430
physical ability, users 257
PIM see Platform Independent Model (PIM)
Pipe-and-Filter architectural pattern 353–5
Platform Independent Model (PIM) 341–2
platform requirements 124–7
Platform Specific Model (PSM) 341–2
Player–Role pattern 228–31

exercises 231
political risks 25–6
polymorphism 38–9, 52

defining 38
inheritance hierarchies 45–52

portability, design 333–4
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post-mortem analysis, QA 415
postal codes 55–7
preconditions, algorithm defects 385
principles

basing development 21
cost estimation 436–45
design 314–36
inspection 409–11
Java 63–4
summary 460–2
usability 262–72

prioritizing, design 336–9
problem, defining 115–19
procedural abstraction 30–1
procedural cohesion 316, 320
procedural paradigm 30–1
process requirements 124–7
process standards

books 423
QA 415–16

processes, terminology 171
product lines

frameworks 73
Internet sites 104

programming 18–19
pair 19
project exercises 64–5

project exercises
behavior 308
client–server systems 104–7
design 368–9
hotel reservation system 220
interactions 308
Java 64–5
patterns 252
programming 64–5
project management 457
requirements 167–8
UI 282–3
see also exercises

project management 425–57
activities 425–7
books 456
chaos 436
cost estimation 435–45
difficulties 453–5
disasters 427
documentation 452–3

Internet sites 456
models/modeling 428–35
project exercises 457
project scheduling/tracking 449–52
risks 453–5
teams 445–9

project plan, documentation 452–3
project scheduling/tracking

earned value charts 451–2
Gantt charts 450–1
PERT charts 449–50

projects
activities 16–20
components 15–16
evolutionary 14–15
frameworks 15–16
green field 15
managing 20
problem, defining 115–19
scope 115–19
software engineering 14–16
starting points 114–15

protocols, client–server systems 86–7
prototyping, gathering requirements 

technique 144–5
proving correct, vs. testing 402
Proxy pattern 241–3
PSM see Platform Specific Model
PSP™ see Personal Software Process
psychological traits, users 257
publications, software engineering 26–8

QA see quality assurance
qualifiers, UML 196
quality

attributes 11–14
external attributes 11–14
internal criteria 13–14
long-term 14
measuring 60–2
short-term 14
software 3, 7, 11–14

quality assurance (QA) 19, 413–16
continuous improvement 414–15
difficulties 420–1
vs. evaluation 273
Internet sites 422, 423
post-mortem analysis 415
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process standards 415–16
risks 420–1
root cause analysis 413–14

quality requirements 123–4
quantitative thinking 22, 465–6

radiation therapy, disasters 414
Rational Unified Process (RUP), models/

modeling 432–3
re-engineering projects 15
re-engineering, software process 435
Read-Only Interface pattern 240–1
real-time software 5–6
recovery from failure 124
recursions, algorithm defects 384–5
refactoring 18, 434
reflexive associations 180–1
regression testing 406
reliability 11–14, 124
remote display systems, client–server systems 79
requirements 16–17

acceptable 149–51
agile approaches 145
analysis 17, 164–5
books 166
changing 155–6
creep 156
defining 119
developing 109–68
difficulties 164–5
documentation 145–8
example 153–4, 156–164
exercises 154–5
functional 119–23, 154–5
gathering 17, 138–45
instant messaging 160–4
Internet sites 166
measuring 156
non-functional 123
platform 124–7
process 124–7
project exercises 167–8
quality 123–4
restaurant advisor system 153–4
reviewing 148–55
risks 164–5
SimpleChat 160–4
standards 167

subsystems 148
types 119–27
uncertainty 25
unnecessary 150

resource management defects 396
resource usage 123
response time 123

usability 265–6
responsibilities

airline system 211–12
allocating to classes 210–12
attributes 202

restaurant advisor system, requirements 153–4
reusability 11–14, 21

allowances 124
design 330
incorporating 69–71

reusable technology 67–107
difficulties 101–2
risks 101–2

reuse 68–9
algorithms 68
books 103
complete applications 68–9
design 331
expertise 68
finding components 71
frameworks 68, 71–7
incorporating 69–71
Internet sites 103
libraries 68
standard designs 68
vicious cycle 70–1

review, themes 459–70
reviwing

requirements 148–53
see also inspections

revising/refining principle, cost estimation 445
ripple effect, testing 406–7
risk management 24, 467–9
risks

behavior 306
choice, programming languages 62–3
class diagrams 218
client–server systems 102
design 366–7
domain analysis 164–5
interactions 306
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patterns 250–1
political 25–6
project management 453–5
QA 420–1
requirements 164–5
reusable technology 101–2
software engineering 24–6
UCD 280

root cause analysis, QA 413–14
routine call coupling 323, 327
RUP see Rational Unified Process

sandwich testing 405–6
satellite navigation 156–60
scenarios, use cases 138
scope, defining 115–19
sequence diagrams 286–90

choosing 291–2
sequence of activities, class diagrams 201–2
sequential cohesion 316, 319
server capabilities, client–server systems 81–2
server side, OCSF 95–9
Service-Oriented architectural pattern 358–60
short-term quality 14
SimpleChat

design 365–6
GUI 276–80
OCSF 99–100
requirements 160–4
test cases 416–20

singleton conditions, algorithm defects 386
Singleton pattern 231–2

exercises 232
skills

teams 448–9
uncertainty 25

software
crisis 3
custom 3–6
data processing 5–6
embedded 3–6
generic 3–6
nature of 1–6
quality 3, 7, 11–14
real-time 5–6
terminology 5
types 3–6

software architecture 17, 338–9, 342–7
defining 342

Software Capability Maturity Model (CMM™), 
QA 415

software developers, software engineering 
stakeholders 10–11

software engineering
defining 6–8
difficulties 24–6
as engineering profession branch 8–10
ethics 9
Internet sites 27
projects 14–16
risks 24–6
stakeholders 10–11

software patents 455
software process

cost estimation 435–45
managing 425–57
models/modeling 428–35
re-engineering 435

software projects, starting points 114–15
spaceflight

disaster 414
successes 415

specialization 39
specification 16–17
spiral model 430–1
stakeholders

software engineering 10–11
software quality 12

stamp coupling 323, 325–6
standard designs, reuse 68
standards

books 423, 457
Internet sites 457
requirements 167

starting points, software projects 114–15
state diagrams 292–300

actions 297–8
activities 297–8
elapsed-time transitions 294–5
exercises 296–7, 299–302
guard conditions 299
implementing classes 302–6
nested substates 299

state, UI 261
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stress defects 394–7
structural modeling 18
subclasses 39
subsystems

defining 312–13
requirements 148

successes, software 415
summary

architectural patterns 463
design patterns 463
documentation 475–7
patterns 463
principles 460–2
UML notation 471–4

superclass 39, 53
synergy 45–52
system descriptions 479–83
system domain models 199–201
system models 199–201
systems, defining 312
systems engineering 17

tagged values 213
task analysis, vs. use case 129
TCP/IP (Transmission Control Protocol/Internet 

Protocol) 87–9
Team Software Process (TSP™), QA 415
teams

exercises 449
flexibility 446–7
hierarchies 446–7
size 447–8
skills 448–9
team building 445–9

technology uncertainty 25
templates, UML 196
temporal cohesion 316, 320
terminology

C++ 38, 49
class variables 37–8
classes 35–6
discriminators 182
instance variables 37–8
instances 35
methodologies 171
methods 171
objects 35

processes 171
software 5
UI 261–2

ternary associations 196
test cases 398–402

attributes 400–1
contents 398–9
importance levels 399
instant messaging 416–20
SimpleChat 416–20

test-first development 401–2
test-fix-test cycle 406
test plans 398–402
testability, design 334
testing 371–424

AbstractServer 374–6
acceptance 407–8
algorithms 380–91
alpha 407–8
beta 407–8
big bang approach 402–3
black-box 373–6
books 422
bottom-up 404–5
customers 407–8
definitions 371–3
as detective work 376–8
effective 373–80
efficient 373–80
equivalence classes 376–80
exceptions 373
glass-box 373–6
incremental approach 402–3
cf. inspection 412
integration testing 402–3
Internet sites 422
large systems 402–9
object-oriented 409
OCSF 404–5
project exercises 423–4
vs. proving correct 402
regression 406
ripple effect 406–7
roles 407
sandwich 405–6
stopping 406–7
strategies 402–9
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test-fix-test cycle 406
top-down 403–4
users 407–8
see also inspection

themes 20–4
review 459–70

Therac-25, disasters 414
thin-client systems 84–5
throughput 123
timing defects 391–4
tools, Java code 64
top-down design 313
top-down testing 403–4
trade-offs 13
traffic lights, elapsed-time transitions 294–5
Transaction-Processing architectural pattern 

352–3
transaction processing systems, client–server 

systems 79
transformational architectural pattern 353–5
TSP™ see Team Software Process
type use coupling 323, 327–8

UCD see user-centred design
UI see user interface
UML see Unified Modeling Language
uncertainty, cost estimation 446
understanding users 20, 256–8
Unified Modeling Language (UML) 21, 169–72

resources 219–20
tools 220

unusual situations, defects 394–7
usability 11–14

aspects 259–61
backing out 265
books 282
clutter 266
disabilities 267
error messages 264
feedback 264
internationalization 267
Internet sites 281–2
localization 267, 268
principles 262–72
response time 265–6
vs. utility 259

usability testing
ethics 276
evaluation 274–6

use case modeling 18
use cases 127–38

benefits 137–8
defining 127
describing 129–32
diagrams 132
extension 132–7
generalization 132–7
inclusion 132–7
modeling 129
modeling processes 136
scenarios 138
vs. task analysis 129

user-centred design (UCD) 254–6
difficulties 280
risks 280

user interface (UI) 51–2, 191–2
books 282
design 17, 258–62
evaluation 273–6
example 269–73
exercises 272
GUI, Java 276–80
identifying 208–9
project exercises 282–3
terminology 261–2

users
characteristics 256–8
demographics 257
focusing on 253–83
goals 256
interacting with 264
knowledge, prior 257
patterns of use 256–7
physical ability 257
psychological traits 257
software engineering stakeholders 10–11
testing 407–8
understanding 20, 256–8
XP 254

utility cohesion 316, 320
utility, vs. usability 259
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valid associations 176–80, 205
valid attributes 205–8
variable declarations, inheritance hierarchies 45–52
variables

dynamic binding 50–1
vs. objects 37

vertical frameworks 74–5
vicious cycle, reuse 70–1
visual modeling 21, 464–5

waterfall model 22–3, 428–9
websites see Internet sites
widgets, UI 261
World Wide Web, client–server systems 79
worst case anticipation, cost estimation 442–4

XP see eXtreme Programming

Z, logic 194
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