José Julio Alferes, Luis Moniz Pereira

Reasoning with
Logic Programming

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Preface

The book and its readership

The present book! provides a rigorous treatment and coherent presentation of
the consolidated results of the authors’ work, over the past four years, on the
employment of logic programming as a representational and reasoning tool.
It comes out of a background of a world-wide research effort for at least the
past six years on the improvement of the semantical basis, the procedures,
and the applications of logic programs, thereby showing how they can be
used to enact ever wider forms of reasoning by virtue of their rich knowledge
representation ability.

The book is a research monograph intended for a diverse public at the
post-graduate level: for Al researchers looking for a representation language
and implementation vehicle for carrying out reasoning tasks; for those inter-
ested in the relationships between logic programming and non-monotonic rea-
soning, both from a theoretical and an implementation viewpoint; for those of
the logic programming persuasion wishing to use logic programming for non-
monotonic reasoning; for the Prolog aficionados looking to overcome some of
its limitations.

The book also serves as a good platform for understanding the exciting
innovations and ongoing research in this rapidly evolving field. It is suitable
as well for a MSc level course, and the material has in fact been used by us
for just that purpose.

Because our theoretical developments have been implemented — and an
interpreter listing is included here — this book functions as a reference book
for a readily usable tool.

The book is self-contained: it includes a brief historical overview with
pointers to main references, it reviews and compares the main approaches in
the field to our own, and it contains all proofs and basic definitions, though
the interest reader will want to consult, e.g., [200, 201, 172, 131, 16], for more
extensive overviews of its subject matter and surrounding areas.

It shows a variety of applications that illustrate the use, wide scope, and
potential of logic programming for performing various types of reasoning,

1 'We are honoured to have been awarded in 1995 for this book “Prémio Boa
Esperanga”, the highest science prize from the Portuguese government.

VI

namely non-monotonic ones such as: dealing with incomplete information;
default, hypothetical and counterfactual reasoning; contradiction handling;
belief revision; and abduction. And it shows a variety of knowledge represen-
tation forms such as: falsity, both via explicit negation and (implicit) default
negation (or by failure); constraints (denials); default rules; exceptions to
defaults; preferences among defaults; hypothetical possibility rules; etc.

Consequently, the book emphasizes the relationships between logic pro-
gramming and non-monotonic reasoning formalisms, such as default logic,
auto-epistemic logic, and circumscription. Non-monotonic reasoning for-
malisms provide elegant semantics for logic programming, especially in what
regards the meaning of negation as failure (or by default); non-monotonic
reasoning formalisms help one understand how logic programming can be
used to formalize and solve several problems in AI; non-monotonic reasoning
formalisms benefit from the existing procedures of logic programming; and,
finally, new problems of non-monotonic reasoning are raised and solved by
logic programming.

All the examples have been successfully run using the Prolog interpreter
that implements top-down procedures for our language, inserted in the ap-
pendix. The application domains include: taxonomies with exceptions and
preferences, reasoning about actions, model based diagnosis, and declarative
debugging.

The detailed structure and contents of the book are presented further
below.

The title explained

For some time now, programming in logic has been shown to be a viable
proposition. Since the mid-1950s, the desire to impart the computer with the
ability to reason logically has led to the development of automated theorem
proving, which took up the promise of giving logic to artificial intelligence.
As a result of the effort to find simple and efficient theorem proving strate-
gies, Horn clause programming under SLD resolution was discovered and
implemented [106, 44].

However, because Horn clauses admit only positive conclusions or facts,
they give rise to a monotonic semantics, i.e. one by which previous conclu-
sions are never questioned in spite of additional information, and thus the
number of derived conclusions cannot decrease — hence the monotonicity.
Also, nothing can be concluded false, except by assuming that that which is
not finitely proven true is false. But this condition prevents, by definition,
the appearance of any and all contradictions.

Thus, although Horn clause programming augmented with the NOT op-
erator (i.e. Prolog), under the SLDNF derivation procedure [118], does allow
negative conclusions; these are only drawn by default (or implicitly), just
in case the corresponding positive conclusion is not forthcoming in a finite

VII

number of steps, when taking the program as it stands — hence the specific
form of Closed World Assumption (CWA) [187] of the completion semantics
given to such programs [42].

This form of negation is capable of dealing with incomplete information,
by assuming false exactly what is not true in a finite manner. However, there
remains the issue of non-terminating computations, even for finite programs.
To deal with this and other problems of the completion semantics, a spate of
semantic proposals were set forth from the late 1980s onwards, of which the
well-founded semantics of [76] is an outcome. It deals semantically with non-
terminating computations by assigning such computations the truth value
“false” or “undefined”, and thereby giving semantics to every program. More-
over it enjoys a number of desirable structural properties spelled out further
below.

The well-founded semantics deals with normal programs, i.e. those with
only negation by default, and thus it provides no mechanism for explicitly
declaring the falsity of literals. As argued in Chapter 2, this can be a se-
rious limitation. In fact, several authors have recently stressed and shown
the importance of including a second kind of negation “=” in logic programs,
for use in deductive databases, knowledge representation, and non-monotonic
reasoning [18, 80, 81, 91, 104, 107, 141, 154, 157, 159, 162, 209].

Our own Well-Founded Semantics with eXplicit negation, WFSX, incor-
porates into the language of logic programs an explicit form of negation, in
addition to the previous implicit negation, relates the two, and extends to
this richer language the well-founded semantics.

Of course, introducing explicit negation now requires dealing in addition
with veritable contradiction. Indeed, information is not only normally incom-
plete but contradictory to boot. Consequently, not all negation by default
assumptions can be made, but only those not leading to contradiction. This
is tantamount to the ancient and venerable logical principle of “reductio ad
absurdum”: if an assumption leads to contradiction withdraw it. One major
contribution of our work is that of tackling this issue within our semantics of
extended logic programs.

The two forms of negation, default and explicit, are related: our “coher-
ence principle” stipulates that the latter entails the former. Whereas default
negation, and the revision of believed assumptions in the face of contradiction,
are the two non-monotonic reasoning mechanisms available in logic program-
ming, their use in combination with explicit negation adds on a qualitative
representational expressivity that can capture a wide variety of logical rea-
soning forms, and serve as an instrument for programming them. Hence the
title of the book.

Furthermore, it should be noted that our explicit negation differs from
classical negation. In particular, the principle of the excluded middle is not
adopted, and so neither is classical case analysis, whereby given p if ¢, and
given p if not ¢, then p. Indeed, propositions are not just true or false, exclu-

VIII

sively. For one, they may be both true and false. Moreover, once contradiction
is removed, even so a proposition and its negation may both be undefined.
In fact, truth in logic programming should be taken in an auto-epistemic
sense: truth is provability from an agent’s knowledge, and possibily neither
a proposition nor its negation might be provable from its present knowledge
— their truth-value status’ might be undefined for both. Hence case analysis
is not justified: p may rest undefined if ¢ is undefined as well.

This is reasonable because the truth of ¢ is not something that either
holds or not, inasmuch as it can refer to the agent’s ability to deduce ¢, or
some other agent’s view of ¢q. For that matter, the supposition that either ¢
holds or does not hold might be contradictory with the rest of the agent’s
knowledge in either case.

There’s a crucial distinction to be made between ontological, real world
truth, and epistemic, internal world truth. If an agent wants to posit that,
about some particular propositional symbol g, either ¢ or the negation of ¢
is held by the agent then this should be duly and explicitly expressed by the
disjunction ¢ V —¢, and not by some general, and implicit, excluded middle
principle.

Also, the procedural nature of logic programming requires that each con-
clusion be supported by some identifiable rule with a true body whose con-
clusion it is, not simply by alternatively applicable rules, as in case analysis.
Conclusions must be procedurally grounded on known facts. This require-
ment is conducive to a sceptical view of derived knowledge, which disallows
jumping to conclusions when that is not called for.

A formal analysis and clarification of the auto-epistemic nature of logic
programming is an important contribution of this book.

Innovations

The main original contributions of the present work are:

— The WFSX, a new semantics for logic programs with explicit negation (i.e.
extended logic programs), which compares favorably in its properties with
other extant semantics.

— A generic characterization schema that facilitates comparisons among a
diversity of semantics of extended logic programs, including WFSX.

— An autoepistemic and a default logic corresponding to WFESX, which solve
existing problems of the classical approaches to autoepistemic and default
logics, and clarify the meaning of explicit negation in logic programs.

— A framework for defining a spectrum of semantics of extended logic pro-
grams based on the abduction of negative hypotheses. This framework
allows for the characterization of different levels of scepticism/credulity,
consensuality, and argumentation. One of the semantics of abduction coin-
cides with WFESX. The techniques used for doing so are applicable as well
to the well-founded semantics of normal logic programs.

IX

— By introducing explicit negation into logic programs contradiction may ap-
pear. We present two approaches for dealing with contradiction, and prove
their equivalence. One of the approaches consists in avoiding contradiction,
and is based on restrictions in the adoption of abductive hypotheses. The
other approach consists in removing contradiction, and is based on a trans-
formation of contradictory programs into noncontradictory ones, guided by
the reasons for contradiction.

— Finally, we proffer an innovative top-down derivation procedure for WFSX,
of which those for well-founded semantics are a special case, and prove its
correctness. Based on it, a query evaluation procedure and an optimized
contradiction removal method are defined. 2 For generality, and because
contradiction checking and removal is available, the implementation deals
with the paraconsistent case too.

Over our semantics several approaches to disjunction might be con-
structed. We have not adopted any one approach because the ongoing re-
search on disjunction for logic programs is still stabilizing, though we favor
one similar to that of [184, 31, 33, 32]. One problem is that none of the
proposals to date include explicit negation as we define it. Another is that
contradiction removal methods when disjunction is involved have yet to be
devised and given a semantics. We are working towards a satisfactory solu-
tion to these issues. Until one is found it would premature to incorporate
fully fledged disjunction. For the moment though, denials can capture the
intended effect of some uses of disjunction.

Main advantages of our approach

We’ve developed an evolved semantical tool for logic programs (WFSX) that
we feel constitutes a qualitative leap for expressing knowledge in logic pro-
gramming, that handles loops, and that characterizes and propitiates a vari-
ety of reasoning forms.

Because of its properties, which other approaches do not fully enjoy, it
is a natural candidate to be the semantics of choice for logic programs ex-
tended with explicit negation (as opposed to having just an implicit default
negation).

Namely, WFSX exhibits the structural properties of simplicity, cumula-
tivity, rationality, relevance, and partial evaluation. By simplicity we mean
that it can be simply characterized by two iterative fixpoint operators, with-
out recourse to three-valued logic. By cumulativity [108, 53, 57] we refer to
the efficiency related ability of using lemmas, i.e. the addition of lemmas
does not change the semantics of a program. By rationality [108, 53, 57] we
refer to the ability to add the negation of a non-provable conclusion without

2 Very special thanks go to our colleague Carlos Viegas Damésio, who co-authors
the procedural and implementational work.

X

changing the semantics, this being important for efficient default reasoning.
By relevance [54, 58] we mean that the top-down evaluation of a literal’s
truth-value requires only the call-graph below it. By partial evaluation we
mean that the semantics of a partially evaluated program keeps to that of
the original?.

Also, it has the implementational properties of amenability to both top-
down and bottom-up procedures, and the complexity for finite DATALOG
programs is polynomial?.

It is adequate for these forms of reasoning: incomplete information, con-
tradiction handling, belief revision, default, abductive, counterfactual, and
hypothetical.

It is adequate for these knowledge representation forms: rules, default
rules, constraints (denials), exceptions to defaults, preferences among de-
faults, hypothetical possibilities, and falsity (whether via explicit or default
negation).

It is the only well-founded based semantics with explicit negation which
has been given default theory and auto-epistemic logic readings.

Structure of the book

This work is divided into three quite distinct parts: the first gives a brief
historical overview of the field of logic programming semantics; the second
presents a new semantics for extended logic programming; and the third
illustrates the usefulness of the semantics in several examples from distinct
domains.

For the sake of completeness we present, in Appendix A, a Prolog top-
down interpreter for our semantics WFSX, and in Appendix B a Prolog
pre-processor for removing contradictions; Appendix C contains the proofs
of theorems that, for the sake of continuity, were not inserted along the way
in the text.

The aim of the first part is to sensitize the reader to the issue of logic
programming semantics, provide background and notation, and make clear
the state of the art in the area at the inception of the work reported in this
book.

In Chapter 1, we begin by defining the language of normal logic programs.
Then we briefly describe several approaches to the semantics of normal pro-
grams, and their treatment of negation as failure. Special attention is given

3 Stable model based approaches, such as answer-sets, enjoy neither cumulativity,
nor rationality.

4 Not so for stable model based approaches: there are no iterative top-down or
bottom-up operators, and the complexity for computing the stable models of a
program is NP-complete, even for DATALOG.

XI

to the stable models and well-founded semantics, for which the formal defi-
nitions are presented.

In Chapter 2, we start by providing some motivation for extended logic
programs, i.e. normal logic programs extended with explicit negation, and
define their language. Next, we present several extant semantics for such pro-
grams.

The structure of the second part is as follows:

We begin, in Chapter 3, with the motivation for a new semantics of ex-
tended logic programs. There, we point out why we are not completely satis-
fied with other present-day semantics, and proffer some intuitively appealing
properties a semantics should comply with.

In Chapter 4, we expound WFSX, a semantics for extended logic programs
that subsumes the well founded semantics of normal programs. We begin by
providing definitions of interpretation and model, for programs extended with
explicit negation. Next we introduce the notion of stability in models, and
use it to define the WFSX. Finally, some of its properties are examined, with
a special focus on those concerning its existence.

The first part of Chapter 5 is devoted to contrasting and characterizing a
variety of semantics for extended logic programs, including WFSX, in what
concerns their use of a second kind of negation and the meaning ascribed it,
and how the latter negation is related to both classical negation and default
negation (or negation as failure). For this purpose we define a parametrizeable
schema to characterize and encompass a diversity of proposed semantics for
extended logic programs. In the second part of that chapter, and based on
the similarities between the parametrizable schema and the definitions of
autoepistemic logics, we proceed to examine the relationship between the
latter and extended logic programs. By doing so, an epistemic meaning of
the second kind of negation is extracted. The relationship results clarify the
use of logic programs for representing knowledge and belief.

Chapter 6 presents a semantics for default theories, and shows its rapport
with WFSX. First we point out some issues faced by semantics for default
theories, and identify some basic principles a default theory semantics should
enjoy. Second, we present a default semantics that resolves the issues whilst
respecting the principles (which other semantics don’t). Afterwards we prove
the close correspondence between default theories under such a semantics
and WFSX. Based on this correspondence result, in Section 6.7 we supply
an important alternative definition of WFSX not relying on 3-valued logic
but instead on 2-valued logic alone, by means of a variation of Gelfond and
Lifschitz’s I" operator. The reader interested in this I'-like formulation may
skip other sections of Chapter 6 and go directly to Section 6.7.

Subsequently, in Chapter 7, we characterize a spectrum of more or less
sceptical and credulous semantics for extended logic programs, and determine
the position of WFSX in this respect. We do so by means of a coherent,

XII

flexible, unifying, and intuitive appealing framework for the study of explicit
negation in logic programs, based on the notion of admissible scenarios. The
main idea of the framework is to consider default literals as abducibles, i.e.
they can be hypothesized. In the same chapter we also bring out the intimate
relationship between this approach and argumentation systems.

With the introduction of explicit negation into logic programs contradic-
tion may arise. In Chapter 8, we put forth two approaches for dealing with
contradiction: one persists in avoiding it, based on a generalization of the
framework of Chapter 7, whereby additional restrictions on the adoption of
abductive hypotheses are imposed; the other approach consists in removing
contradiction, and relies on a transformation of contradictory programs into
noncontradictory ones, guided by the reasons for contradiction. Moreover we
show that the contradiction avoidance semantics of a program P is equivalent
to the WFSX of the program resulting from P by transforming it according
to the contradiction removal methods.

In Chapter 9, we produce additional properties of WFSX, including com-
plexity, and make further comparisons with other semantics on the basis of
those properties (which are essentially structural in nature).

Lastly in this part, in Chapter 10 we provide a top-down derivation pro-
cedure for WFSX.

The aim of the third part is to employ the theoretical results of the second
part in several illustrative examples from distinct domains. Its structure is
as follows:

We begin, in Chapter 11, by showing how to cast in the language of ex-
tended logic programs different forms of nonmonotonic reasoning such as de-
feasible reasoning, abductive reasoning and hypothetical reasoning, and apply
it to several classical problems in diverse domains of knowledge representation
such as hierarchies and reasoning about actions and counterfactuals.

In Chapter 12, and with the help of examples, we illustrate the usefulness
of extended logic programming and our semantics in diagnosis, in declarative
debugging, and in knowledge base updates. To do so we begin by general-
izing the contradiction removal methods of Chapter 8 to 2-valued revision,
i.e. revision whereby when unassuming some hypothesis its complement is
assumed instead.

The best way to read this book is by going through the chapters in the
sequence they appear. However, if the reader is not interested in the whole
work, or is more keen on some issues than others, alternative reading paths
are possible; they are shown in Figure 0.1.

If you are familiar with the issue of extended logic programs semantics
you might skip the first part, i.e. Chapters 1 and 2.

XIIT

—>» 5

—>» 6
—>» 11

1—»2—>»3—>»4—>»—>7—>»8—>

R R

—>» 10

Fig. 0.1. Reading paths, and three possible entry points.

If you are familiar with the issue of normal logic programs semantics, but
not with explicit negation, you might skip Chapter 1 and start with Chapter
2. Otherwise, you should start by reading the first part.

The table below indicates, for different possible interests, the correspond-
ing reading paths of Figure 0.1:

Definition of WEFSX 3—4—6.7

Extended logic programs and autoepistemic logics | 3 — 4 — 5

Extended logic programs and default logic 3—4—6
ELPs abduction, and argumentation 3—4—-7
Extended logic programs and belief revision 3—4—-7-38

WFSX, its structural properties, and complexity 3—4—9

Top-down derivation procedures for WESX 3—4—10
Application to classical NMR, problems 3—-4—-7—-8—11
Application to diagnosis 3—54—-7—-8—12

Application to Prolog debugging 3—4—-7—-8—12

XIvV

June 1996 [José Julio Alferes and Luis Moniz Pereira]

Acknowledgements

This book has grown out of part of one author’s PhD thesis [12], supervised
by the other author. The thesis itself was based on joint work over three
years and more than twenty papers published together in conferences and
journals. Some of the papers whose material was used in the thesis, as well
as additional ones, were co-authored either by Joaquim Nunes Aparicio or
Carlos Viegas Damasio, both at the time PhD students of Luis Moniz Pereira
at Universidade Nova de Lisboa, and under the support of the European
ESPRIT basic research projects COMPULOG and COMPULOG 2. To both
our colleagues we express our gratitude, for all their stimulus and effort put
in the work done together, and for their permission to use our joint results
in this book.

We thank too all our colleagues in the two COMPULOG projects who,
with their opinions, ideas and publications over the years, have helped us to
better forge and shape our own. Special thanks are due to Tony Kakas, Bob
Kowalski, and Paolo Mancarella, for such reasons.

We thank Phan Minh Dung, from the Asian Institute of Technology in
Bangkok, for permission to use important material from a joint paper, [4],
for his influential pioneering opinions, and for his camaraderie.

We thank also our colleagues in the USA, Michael Gelfond, Vladimir
Lifschitz, Halina Przymusinska, and Teodor Przymusinski, for all their ground
breaking work in this field, and for their helpful discussions with us.

Finally, we wish to acknowledge the organizational and financial support
of the AI Centre of UNINOVA, of the Department of Computer Science of
Universidade Nova de Lisboa, and of the Junta Nacional de Investigagao
Cientifica e Tecnolégica, in Portugal.

XVI

Table of Contents

Preface ... A%
The book and its readership i, A%
The title explained VI
Innovations VIII
Main advantages of our approach IX
Structure of the book. X

Acknowledgements XV

Part I. Semantics of Logic Programs: A brief overview

1. Normal logic programs 5
1.1 Language.t 5

1.1.1 Interpretations and models 6
1.2 Semanticsttt 8
1.2.1 Stable model semanticscoc.o... 11
1.2.2 Well-founded semantics 14

2. Extended logic programs 17
2.1 Languageot 20
2.2 SemantiCsot 21

2.2.1 Stable Models based semantics 21
2.2.2 Well-founded based semantics...................... 26
2.2.3 Other approaches 27

Part II. A New Semantics for Extended Logic Programs

3. Why a new semantics for extended programs? 31

4. WFSX — A well founded semantics for extended logic pro-
BTAINIS . ..ottt 37
4.1 Interpretations and models 37

XVIII Table of Contents

4.2 The definition of WESX 39
4.3 Existence of the semantics 45

5. WFSX, LP semantics with two negations, and autoepistemic

logics . ..o 49
5.1 Generic semantics for programs with two kinds of negation .. 50
5.1.1 Preliminaries 51
5.1.2 Stationary and stable semantics for programs with two
kinds of negation il 51
Stationary semantics for programs with two kinds of
negation il 51
The parametrizeable schema 57
5.1.3 Properties required of = oo 58
5.1.4 Fixing the set AX_, and the condition noteond(L) 60
WFSX and strong negation 63
5.1.5 Logic programs with —-negation and disjunction. 65
5.2 Autoepistemic logics for WFSX 67
5.2.1 Moore’s and Przymusinski’s autoepistemic logics 68
5.2.2 A logic of belief and provability 72
Provability in extended definite programs............ 72
Belief and provability L 74
Relation to extended logic programs 78
5.2.3 Provability versus knowledge....................... 79
5.2.4 Further developments 80
6. WFSX and default logic 83
6.1 The language of defaults 84
6.1.1 Reiter’s default semantics 85
6.1.2 Well-founded and stationary default semantics for nor-
mal logic programs i 86
6.2 Some principles required of default theories 87
6.3 f2-default theory i, 90
6.4 Comparison with Reiter’s semantics....................... 97
6.5 Comparison with stationary default semantics.............. 99
6.6 Relation between the semantics of default theories and logic
programs with explicit negation 99
6.7 A definition of WFSX basedon I" 101
7. WFSX and hypotheses abduction.......................... 107
7.1 Admissible scenaria for extended logic programs............ 110
7.2 A sceptical semantics for extended programs 117
7.3 The semantics of complete scenaria 120
7.4 Properties of complete scenaria............ 123
7.4.1 Complete scenaria and WFSX 125

7.5 More credulous semantics. i 125

Table of Contents XIX

7.5.1 Comparisons among the semantics.................. 127

8. Dealing with contradiction................................ 129
8.1 Logic programming with denials............. 132

8.2 Contradiction avoidance 133
8.2.1 Primacy in optative reasoning...................... 139

8.3 Contradiction removal i 142
8.3.1 Paraconsistent WFSX.......... 144

8.3.2 Declarative revisions 149

8.3.3 Contradiction support and removal 157

8.4 Equivalence between avoidance and removal 164

9. Further properties and comparisons 167
9.1 Properties of WESX 167
9.1.1 Cumulativity and rationality 168

9.1.2 Partial evaluation and relevance 173

9.1.3 Complexity results, 181

9.2 COmMPATiSOMS . .+« vttt ettt ettt 182

10. Top-down derivation procedures for WFSX................ 187
10.1 Semantic tree characterization of WEFSX................... 188
10.2 SLX — a derivation procedure for WFSX 193
10.2.1 Correctness of SLX i 195

10.3 On guaranteeing termination of SLX 200
10.4 CompariSONS vttt et et e e 203
10.5 Further developments 205

Part III. Illustrative Examples of Application

11. Application to classical nonmonotonic reasoning problems 209

11.1 Summary of our representation method 209
11.2 Defeasible Reasoning., 211
11.2.1 Exceptionst 213
Exceptions to predicates 213

Exceptions torules 214

Exceptions to exceptions 214

11.2.2 Preferences among rules........................... 214

11.3 Hierarchical taxonomies, 215
11.4 Hypothetical reasoning i, 218
11.4.1 The birds world 218
11.4.2 Hypothetical facts and rules 219
Hypothetical facts i 220
Hypothetical rules 221

11.5 Reasoning about actions......... 223

XX Table of Contents
11.5.1 The Yale shooting problem 224
11.5.2 Multiple extensions 225
11.5.3 The Stolen car problem 226
11.5.4 Other reasoning about action problems.............. 226
11.6 Counterfactual reasoning, 227
11.6.1 Lewis’s counterfactuals............ 228
11.6.2 Counterfactual reasoning by revising assumptions 229
11.6.3 Lewis’s similarity precepts obeyed 232
12. Application to diagnosis and debugging 235
12.1 Two-valued contradiction removal 237
12.1.1 Computing minimal two-valued revisions 239
12.2 Application to diagnosis 242
12.3 Application to debugging 253
12.3.1 Declarative error diagnosis.c..coovon.. 255
12.3.2 What is diagnostic debugging? 257
12.3.3 Diagnosis as revision of program assumptions 261
12.4 Updating Knowledge Bases 266
References. 271

Part IV. Appendices

A.

B.

C.

Prolog top-down interpreter for WFSX.................... 285
A Prolog pre-processor for contradiction removal 287
Proofs of theorems 305

List of Figures

0.1

8.1
8.2
8.3
8.4

11.1
11.2
11.3
11.4
11.5
11.6

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Possible reading paths i XIIT
Submodels lattice with indissociables.......................... 152
Submodels lattice example. i i 153
Revisions of a program i i 155
Sceptical submodels and MNSs........... 156
A hierarchical taxonomy i i 216
Model of the hierarchy 218
The birds example submodels lattice 219
The Nixon diamond i, 222
Submodels of the nixon-diamond problem using hypothetical rules 222
Counterfactuals example i i, 231
Simple circuito 235
Two valued revisions 241
The three or problem i, 245
A simple logic circuit i 246
Diagnosis of the circuit i 248
Two inverters circuit o 248
Three bulbs circuit 250
Causal model in a mechanical domain 251
One inverter circuitt 265

Part I

Semantics of Logic Programs: A brief overview

3

Computational Logic arose from the work, begun by logicians in the
1950’s, on the automation of logical deduction, and was fostered in the 1970’s
by Colmerauer et al. [44] and Kowalski [101, 102] as Logic Programming. It
introduced to computer science the important concept of declarative — as op-
posed to procedural — programming. Ideally, a programmer should only be
concerned with the declarative meaning of his program, while the procedu-
ral aspects of program’s execution are handled automatically. The Prolog
language [44] became the privileged vehicle approximating this ideal. The
first Prolog compiler [214] showed that it could be a practical language and
disseminated it worldwide.

The developments of the formal foundations of logic programming began
in the late 1970’s, especially with the works [69, 42, 187]. Further progress in
this direction was achieved in the early 1980’s, leading to the appearance of
the first book on the foundations of logic programming [118]. The selection of
logic programming as the underlying paradigm for the Japanese Fifth Gen-
eration Computer Systems Project led to the rapid proliferation of various
logic programming languages.

Due to logic programming’s declarative nature, it quickly became a can-
didate for knowledge representation. Its adequateness became more apparent
after the relationships established in the mid 1980’s between logic programs
and deductive databases [189, 73, 120, 121, 130].

The use of both logic programming and deductive databases for knowl-
edge representation is based on the so called “logical approach to knowledge
representation”. This approach rests on the idea of providing machines with
a logical specification of the knowledge that they possess, thus making it
independent of any particular implementation, context-free, and easy to ma-
nipulate and reason about.

Consequently, a precise meaning (or semantics) must be associated with
any logic program in order to provide its declarative specification. The perfor-
mance of any computational mechanism is then evaluated by comparing its
behaviour to the specification provided by the declarative semantics. Finding
a suitable declarative semantics for logic programs has been acknowledged as
one of the most important and difficult research areas of logic programming.

In this part we make a quick historical overview of the results in the last
15 years in the area of logic program’s declarative semantics. This overview is
divided into two chapters. In the first we review some of the most important
semantics of normal logic programs. In the second we motivate the need for
extending logic programming with a second kind of negation, and overview
recent semantics for such extended programs.

1. Normal logic programs

Several recent overviews of normal logic programming semantics can be found
in the literature (e.g. [200, 201, 172, 131, 16, 59]). Here, for the sake of this
monograph’s self-sufficiency and to introduce some motivation, we distill a
brief overview of the subject. In some parts we follow closely the overview of
[172].

The structure of the chapter is as follows: first we present the language
of normal logic programs and give some definitions needed in the sequel.
Then we briefly recapitulate the first approaches to the semantics of normal
programs and point out their problems. Finally, we expound in greater detail
two of the more recent and important proposed semantical basis, namely
stable models and well-founded semantics.

1.1 Language

By an alphabet A of a language £ we mean a (finite or countably infinite) dis-
joint set of constants, predicate symbols, and function symbols. In addition,
any alphabet is assumed to contain a countably infinite set of distinguished
variable symbols. A term over A is defined recursively as either a variable,
a constant or an expression of the form f(¢,...,t,), where f is a function
symbol of A, and the t;s are terms. An atom over A is an expression of the
form p(ty,...,t,), where p is a predicate symbol of A, and the ¢;s are terms.
A literal is either an atom A or its negation not A. We dub default literals
those of the form not A.

A term (resp. atom, literal) is called ground if it does not contain variables.
The set of all ground terms (resp. atoms) of A is called the Herbrand universe
(resp. base) of A. For short we use H to denote the Herbrand base of A.

A normal logic program is a finite set of rules of the form:

He—1Ly,....L, (n>0)

where H is an atom and each of the L;s is a literal. The comma operator is
understood as conjunction. In conformity with the standard convention we
write rules of the form H <« also simply as H.

6 1. Normal logic programs

A normal logic program P is called definite if none of its rules contains
default literals.

We assume that the alphabet A4 used to write a program P consists pre-
cisely of all the constants, and predicate and function symbols that explicitly
appear in P. By Herbrand universe (resp. base) of P we mean the Herbrand
universe (resp. base) of A.

By grounded version of a normal logic program P we mean the (possibly
infinite) set of ground rules obtained from P by substituting in all possible
ways each of the variables in P by elements of its Herbrand universe.

In this work we restrict ourselves to Herbrand interpretations and models'.
Thus, without loss of generality (cf. [172]), we coalesce a normal logic program
P with its grounded version.

1.1.1 Interpretations and models

Next we define 2 and 3-valued Herbrand interpretations and models of nor-
mal logic programs. Since non-Herbrand interpretations are beyond the scope
of this work, in the sequel we sometimes drop the qualification Herbrand.

Definition 1.1.1 (2-valued interpretation). A 2-valued interpretation I
of a normal logic program P is any subset of the Herbrand base H of P.

Clearly, any 2-valued interpretation I can be equivalently viewed as a set
T Unot F 2

where T' = [and is the set of atoms which are true in I, and F = H—T is the
set of atoms which are false in I. These interpretations are called 2-valued
because in them each atom is either true or false, i.e. H =T U F.

As argued in [172], interpretations of a given program P can be thought
of as “possible worlds” representing possible states of our knowledge about
the meaning of P. Since that knowledge is likely to be incomplete, we need
the ability to describe interpretations in which some atoms are neither true
nor false but rather undefined, i.e. we need 3-valued interpretations:

Definition 1.1.2 (3-valued interpretation). By a 3-valued interpretation
I of a program P we mean a set

T Unot F

where T and F are disjoint subsets of the Herbrand base H of P.

The set T (the T-part of I) contains all ground atoms true in I, the set
F (the F-part of I) contains all ground atoms false in I, and the truth value
of the remaining atoms is unknown (or undefined).

! For the subject of semantics based on non-Herbrand models, and solutions to the
problems resulting from always keeping Herbrand models see e.g. [109, 178, 76].
2 Where not {ai1,...,an} stands for {not ai,...,not an}.

1.1 Language 7

It is clear that 2-valued interpretations are a special case of 3-valued ones,
for which H = T'U F' is additionally imposed.

Proposition 1.1.1. Any interpretation I = T Unot F can equivalently be
viewed as a function I : H — V where V = {O L 1}, defined by:

)92
0 if notAel
I(A)={ 1 if Ael
1

5 otherwise

Of course, for 2-valued interpretations there is no atom A such that
I(A) = %
Models are defined as usual, and based on a truth valuation function:

Definition 1.1.3 (Truth valuation). If I is an interpretation, the truth
valuation I corresponding to I is a function I : C' — V where C' is the set of
all formulae of the language, recursively defined as follows:

— if A is a ground atom then I(A) = I(A).
— if S is a formula then I(not S) =1—I(S).
—if S and V' are formulae then

~ 1(5,V)) = min(I(8), I(V)).
—I(V<—8)=141(5) <I(V), and 0 otherwise.

Definition 1.1.4 (3-valued model). A 3-valued interpretation I is called
a 3-valued model of a program P iff for every ground instance of a program
rule H «— B we have I(H «— B) = 1.

The special case of 2-valued models has the following straightforward
definition:

Definition 1.1.5 (2-valued model). A 2-valued interpretation I is called
a 2-valued model of a program P iff for every ground instance of a program
rule H «— B we have I(H «— B) = 1.

Some orderings among interpretations and models will be useful:

Definition 1.1.6 (Classical ordering). If I and J are two interpretations
then we say that I < J if I(A) < J(A) for any ground atom A. If T is a
collection of interpretations, then an interpretation I € T is called minimal
in I if there is no interpretation J € I such that J < I and I # J. An
interpretation I is called least in T if I < J for any other interpretation
J € Z. A model M of a program P is called minimal (resp. least) if it is
minimal (resp. least) among all models of P.

Definition 1.1.7 (Fitting ordering). If I and J are two interpretations
then we say that I <p J [72] iff I C J. If T is a collection of interpretations,
then an interpretation I € T is called F-minimal in Z if there is no inter-
pretation J € T such that J <p I and I # J. An interpretation I is called

8 1. Normal logic programs

F-least in T if I <p J for any interpretation J € Z. A model M of a program
P is called F-minimal (resp. F-least) if it is F-minimal (resp. F-least) among
all models of P.

Note that the classical ordering is related with the amount of true atoms,
whereas the Fitting ordering is related with the amount of information, i.e.
nonundefinedness.

1.2 Semantics

As argued above, a precise meaning or semantics must be associated with any
logic program, in order to provide a declarative specification of it. Declarative
semantics provides a mathematically precise definition of the meaning of a
program, which is independent of its procedural executions, and is easy to
manipulate and reason about.

In contrast, procedural semantics is usually defined as a procedural mech-
anism that is capable of providing answers to queries. The correctness of such
a mechanism is evaluated by comparing its behaviour with the specification
provided by the declarative semantics. Without the latter, the user needs an
intimate knowledge of the procedural aspects in order to write correct pro-
grams.

The first attempt to provide a declarative semantics for logic programs
is due to [69], and the main motivation behind their approach is based on
the idea that one should minimize positive information as much as possible,
limiting it to facts explicitly implied by a program, making everything else
false. In other words, their semantics is based on a natural form of “closed
world assumption” [187].

Ezample 1.2.1. Consider program P :

able_mathematician(X) <« physicist(X)
physicist(einstein)
president(soares)

This program has several (2-valued) models, the largest of which is the model
where both Einstein and Soares are at the same time presidents, physicists
and able mathematicians. This model does not correctly describe the intended
meaning of P, since there is nothing in P to imply that Soares is a physicist
or that Einstein is a president. In fact, the lack of such information should
instead indicate that we can assume the contrary.

This knowledge is captured by the least (2-valued) model of P :

{physicist(einstein), able_mathematician(einstein), president(soares)}

1.2 Semantics 9

The existence of a unique least model for every definite program (proven in
[69]), led to the definition of the so called “least model semantics” for definite
programs. According to that semantics an atom A is true in a program P iff
it belongs to the least model of P; otherwise A is false.

It turns out that this semantics does not apply to programs with default
negation. For example, the program P = {p < not ¢} has two minimal mod-
els, namely {p} and {¢}. Thus no least model exists.

In order to define a declarative semantics for normal logic programs with
negation as failure®, [42] introduced the so-called “Clark’s predicate comple-
tion”. Informally, the basic idea of completion is that in common discourse
we often tend to use “if” statements when we really mean “iff” ones. For in-
stance, we may use the following program P to describe the natural numbers:

natural _number(0)
natural_number(succ(X)) <« natural number(X)

This program is too weak. It does not imply that nothing but 0,1,... is a
natural number. In fact what we have in mind regarding program P is:

natural_number(X) & X =0V
(Y : X = suce(Y) A natural_number(Y'))

Based on this idea Clark defined the completion of a program P, the
semantics of P being determined by the 2-valued models of its completion.

However Clark’s completion semantics has some serious drawbacks. One
of the most important is that the completion of consistent programs may be
inconsistent, thus failing to assign to those programs a meaning. For example
the completion of the program {p < not p} is {p < not p}, which is incon-
sistent.

In [72], the author showed that the inconsistency problem for Clark’s com-
pletion semantics can be elegantly eliminated by considering 3-valued models
instead of 2-valued ones. This led to the definition of the so-called “Fitting
semantics” for normal logic programs. In [109], Kunen showed that that se-
mantics is not recursively enumerable, and proposed a modification.

Unfortunately, the “Fitting semantics” inherits several of the problems
of Clark’s completion semantics, and in many cases leads to a semantics
that appears to be too weak. This issue has been extensively discussed in
the literature (see e.g. [200, 178, 76]). Forthwith we illustrate some of these
problems with the help of examples:

Ezample 1.2.2. * Consider program P :

3 In this work we adopt the designation of “negation by default”. Recently, this des-
ignation has been used in the literature instead of the more operational “negation
as failure”.

* This example first appeared in [76].

10 1. Normal logic programs

edge(a,b)
edge(c,d)
edge(d, c)
reachable(a)

reachable(X) <« reachable(Y),edge(X,Y)

that describes which vertices are reachable from a given vertice a in a graph.

Fitting semantics cannot conclude that vertices c and d are not reachable
from a. Here the difficulty is caused by the existence of the symmetric rules
edge(c,d), and edge(d, c).

FEzxzample 1.2.3. Consider P :

bird(tweety)
fly(X) «— bird(X),not abnormal(X)
abnormal(X) <« irregular(X)
irregular(X) <« abnormal(X)

where the last two rules just state that “irregular” and “abnormal” are syn-
onymous.

Based on the fact that nothing leads us to the conclusion that tweety
is abnormal, we would expect the program to derive not abnormal(tweety),
and consequently that it flies. But Clark’s completion of P is:

bird(X) < X =tweety
fly(X) < bird(X),not abnormal(X)
abnormal(X) & irregular(X)

from which it does not follow that tweety isn’t abnormal.
It is worth noting that without the last two rules both Clark’s and Fit-
ting’s semantics yield the expected result.

One possible explanation for such a behaviour is that the last two rules
lead to a loop. This explanation is procedural in nature. But it was the idea of
replacing procedural programming by declarative programming that brought
about the concepts of logic programming in first place and so, as argued in
[172], it seems that such a procedural explanation should be rejected.

The problems mentioned above are caused by the difficulty in representing
transitive closure using completion. In [110] it is formally showed that both
Clark’s and Fitting’s semantics are not sufficiently expressive to represent
transitive closure.

In order to solve these problems some model-theoretic approaches to
declarative semantics have been defined. In the beginning, such approaches
did not attempt to give a meaning to every normal logic program. On the
contrary, they were based on syntactic restrictions over programs, and only
programs complying with such restrictions were given a semantics. Exam-
ples of syntactically restricted program classes are the stratified [15], locally

1.2 Semantics 11

stratified [176] and acyclic [14] ones, and examples of semantics for restricted
programs are the perfect model semantics [15, 176, 75], and the weakly per-
fect model semantics [171]. Here we will not review any of these approaches.
For their overview, the reader is referred to e.g. [172].

1.2.1 Stable model semantics

In [78], the authors introduce the so-called “stable model semantics”. This
model-theoretic declarative semantics for normal programs generalizes the
previously referred semantics for restricted classes of programs, in the sense
that for such classes the results are the same and, moreover, for some non-
restricted programs a meaning is still assigned.

The basic ideas behind the stable model semantics came from the field
of nonmonotonic reasoning formalism. There, literals of the form not A are
viewed as default literals that may or may not be assumed or, alternatively,
as epistemic literals ~BA expressing that A is not believed.

Informally, when one assumes true some set of (hypothetical) default lit-
erals, and false all the others, some consequences follow according to the
semantics of definite programs [69]. If the consequences completely corrobo-
rate the hypotheses made, then they form a stable model. Formally:

Definition 1.2.1 (Gelfond-Lifschitz operator). Let P be a normal logic
program and I a 2-valued interpretation. The GL-transformation of P modulo
I is the program ? obtained from P by performing the following operations:

— remove from P all rules which contain a default literal not A such that
Ael,
— remove from the remaining rules all default literals.

Since ? is a definite program, it has a unique least model J. We define

(=

It turns out that fixed points of the Gelfond-Lifschitz operator I" for a
program P are always models of P. This result led to the definition of stable
model semantics:

Definition 1.2.2 (Stable model semantics). A 2-valued interpretation I
of a logic program P is a stable model of P iff I'(I) = I.

An atom A of P is true under the stable model semantics iff A belong to
all stable models of P.

FEzxzample 1.2.4. The program P:

not b
not a
not d
not e

a
b

a

T

"YW a0 o

12 1. Normal logic programs

has two stable models: Iy = {p,a,d} and Ir = {p,b,d}, and so, under to the
stable models semantics, both p and d are true.
Note that % is:

a
b

and so I'(I1) = {p,a,d} = I. Similarly for I5.

T

One of the main advantages of stable model semantics is its close rela-
tionship with known nonmonotonic reasoning formalisms:

As proven in [23], the stable models of a program P are equivalent to
Reiter’s default extensions [188] of the default theory obtained from P by
identifying each program rule:

H «— By,...,By,not Cy,...,not Cy,

with the default rule:
Bl,...7Bn . Ncl,...,NCm
H
where ~ denotes classical negation.

Moreover, from the results of [77], it follows directly that stable models are
equivalent to Moore’s autoepistemic expansions [132] of the theory obtained
by replacing in P every default literal not A by ~LA and then reinterpreting
the rule connective <+ as material implication. This translation of programs
into theories is hereafter refered to as Gelfond’s translation.

In spite of the strong relationship between logic programming and non-
monotonic reasoning, in the past these research areas were developing largely
independently of one another, and the exact nature of their relationship was
not closely investigated or understood.

The situation has changed significantly with the introduction of stable
models, and the establishment of formal relationships between these and
other nonmonotonic formalisms. In fact, in recent years increasing and pro-
ductive effort has been devoted to the study of the relationships between
logic programming and several nonmonotonic reasoning formalisms. As a
result, international workshops have been organized, in whose proceedings
[136, 164, 122] many works and references to the theme can be found.

Such relationships turn out to be mutually beneficial. On the one hand,
nonmonotonic formalisms provide elegant semantics for logic programming,
specially in what regards the meaning of default negation (or negation as fail-
ure), and help one understand how logic programs can be used to formalize
several types of reasoning in Artificial Intelligence. On the other hand, those
formalisms benefit from the existing procedures of logic programming, and
some new issues of the former are raised and solved by the latter. Moreover,

1.2 Semantics 13

relations among nonmonotonic formalisms themselves have been facilitated
and established via logic programming.

Despite its advantages, including that of being defined for more programs
than any of its predecessors, stable model semantics still has some important
drawbacks:

— First, some programs have no stable models. For example, the program:
P ={a < not a}

has no stable models. To prove that this is the case, assume such a stable
model I exists. Then either a € I or a € I. In the first case the rule is
delete in £, and so a & I'(I). Thus I # I'(I) and I is not a stable model.
In the latter case, in ? not a is removed from the body of the rule, and so
a € I'(I). Thus, also in this case I # I'(I).

— Even for programs with stable models, their semantics do not always lead
to the expected intended results. For example consider program P :

a <« notb
b «— nota
c «— nota
¢ «— notc

Its only stable model is I = {c, b}.
In fact ?, obtained by deleting the first and last rules and removing all
other default literals from the body of rules, is:

b —

C «—

whose least model is clearly {c,b}. Thus b and ¢ are consequences of the
stable model semantics of P.

However, if one adds ¢ to P as a lemma, the semantics changes, and b
no longer follows. In fact, the resulting program has two stable models
I = {¢,b} and I = {c,a}. Note that in Piiic} the second, third, and

fourth rule of P are deleted. So Ptjiic} = {a, c}, whose least model equals
I,. Also mark that I is not a stable model of P alone: % = {a}, so

I'(Is) = {a} # I5. This issue is related to the property of cumulativity,
and is studied in Chapter 9.

Moreover, it is easy to see that in the above program it is impossible to
derive b from P using any derivation procedure based on top-down (SL-
like) rewriting techniques. This is because such a procedure, beginning with
the goal < b would reach only the first two rules of P, from which b cannot
be derived.

In fact, the program Ps:

14 1. Normal logic programs

a <« mnotb
b «— nota

has two stable models: {a}, and {b}. % = {a <} (the second rule is
deleted because a € {a}, and not b is removed from the body of the first
rule because b ¢ {a}) and so I'({a}) = {a}. Similarly for the stable model
{b}.

This issue is related with the property of relevance, and is also studied in
Chapter 9.

— The computation of stable models is NP-complete [124] even within simple
classes of programs, such as propositional logic programs. This is an im-
portant drawback, specially if one is interested in a program for efficiently
implementing knowledge representation and reasoning.

— Last but not least, by always insisting on 2-valued interpretations, stable
model semantics often lacks expressivity. This issue will be further explored
in Section 5.2.

1.2.2 Well-founded semantics

The well-founded semantics was introduced in [76], and overcomes all of the
above problems. This semantics is also closely related to some of the major
nonmonotonic formalisms (cf. Sections 5.2.1, 6.1.2, and 7.2).

Many different equivalent definitions of the well-founded semantics exist
(e.g. [177, 179, 36, 172, 62, 182, 20, 131]). Here we use the definition intro-
duced in [172] because, in our view, it is the one most technically related
with the definition of stable models above®. Indeed, it consists of a natural
generalization for 3-valued interpretations of the stable model semantics. In
its definition the authors begin by introducing 3-valued (or partial) stable
models, and then show that the F-least of those models coincides with the
well-founded model as first defined in [76].

In order to formalize the notion of partial stable models, Przymusinski
first expands the language of programs with the additional propositional con-
stant u with the property of being undefined in every interpretation. Thus it
is assumed that every interpretation I satisfies:

R . 1
I(u) = I(not u) = 3

A non-negative program is a program whose premises are either atoms
or u. In [172], it is proven that every non-negative program has a 3-valued
least model. This led to the following generalization of the Gelfond-Lifschitz
I'-operator:

5 For a more practical introduction to the well-founded semantics the reader is
referred to [148].

1.2 Semantics 15

Definition 1.2.3 (I"*-operator). Let P be a normal logic program, and let
I be a 3-valued interpretation. The extended GL-transformation of P modulo
I is the program ? obtained from P by performing the operations:

— remove from P all rules which contain a default literal not A such that

I(A)=1;
— replace in the remaining rules of P those default literals not A such that
I(A) =3 by w

— remove from the remaning rules all default literals.

Since the resulting program is non-negative, it has a unique 3-valued least
model J. We define I'*(I) = J.

Definition 1.2.4 (Well-founded semantics). A 3-valued interpretation I
of a logic program P is a partial stable model of P iff ' (1) = 1.

The well-founded semantics of P is determined by the unique F-least par-
tial stable model of P, and can be obtained by the (bottom-up) iteration of I'*
starting from the empty interpretation.

Ezample 1.2.5. Consider again the program P of examplel.2.4. Tts well-
founded model is obtained by iterating I'* starting from the empty inter-
pretation.

— I'*({}) is the least 3-valued model of:

a — u
b «— u
c — u
d «— u
p < a
p o b

ie. I'({}) = {not e}

— I'({not e}) is the least 3-valued model of:
a — u
b «— u
¢ — u
d <
p = a
p = b

i.e. I'*({not e}) = {d, not e}
— I'*({d,not e}) is the least 3-valued model of:

a «— u
b «— u
d «—

p < a
p < b

16 1. Normal logic programs

ie. I'({d,not e}) = {d,not e,not c}
— I'*({d,not e,not c}) is the least 3-valued model of:

a u

-
b «— u

d <
p < a
p < b

i.e. I'*({d,not e,not c}) = {d,not e,not c}.

Thus, the well-founded model of P is {d,not e,not c}. In it d is true, e
and c¢ are false, and a, b and p are undefined.

2. Extended logic programs

Recently several authors have stressed and shown the importance of including
a second kind of negation — in logic programs, for use in deductive databases,
knowledge representation, and non-monotonic reasoning [18, 80, 81, 91, 104,
107, 141, 154, 157, 159, 162, 209].

In this chapter we begin by reviewing the main motivations for introduc-
ing a second kind of negation in logic programs. Then we define an extension
of the language of programs to two negations, and briefly overview the main
proposed semantics for these programs.

In normal logic programs the negative information is implicit, i.e. it is not
possible to explicitly state falsity, and propositions are assumed false if there
is no reason to believe they are true. This is what is wanted in some cases. For
instance, in the classical example of a database that explicitly states flight
connections, one wants to implicitly assume that the absence of a connection
in the database means that no such connection exists.

However this is a serious limitation in other cases. As argued in [141, 209],
explicit negative information plays an important role in natural discourse and
commonsense reasoning. The representation of some problems in logic pro-
gramming would be more natural if logic programs had some way of explicitly
representing falsity. Consider for example the statement:

“Penguins do not fly”

One way of representing this statement within logic programming could
be:

no_fly(X) «— penguin(X)
or equivalently:
fly (X) — penguin(X)

as suggested in [79].

But these representations do not capture the connection between the pred-
icate no_fly(X) and the predication of flying. This becomes clearer if, addi-
tionally, we want to represent the statement:

“Birds fly”

18 2. Extended logic programs

Clearly this statement can be represented by
Fly(X) « bird(X)

But then, no connection whatsoever exists between the predicates no_fly(X)
and fly(X). Intuitively one would like to have such an obvious connection
established.

The importance of these connections grows if we think of negative infor-
mation for representing exceptions to rules [104]. The first statement above
can be seen as an exception to the general rule that normally birds fly. In
this case we really want to establish the connection between flying and not
flying.

Exceptions expressed by sentences with negative conclusions are also com-
mon in legislation [103, 105]. For example, consider the provisions for depriv-
ing British citizens of their citizenship:

40 - (1) Subject to the provisions of this section, the Secretary of
State may by order deprive any British citizen to whom this subsec-
tion applies of his British citizenship if |...]

(5) The Secretary of State shall not deprive a person of British
citizenship under this section if [..]

Clearly, 40.1 has the logical form “P if Q” whereas 40.5 has the form “—
P if R”. Moreover, it is also clear that 40.5 is an exception to the rule of 40.1.

Above we argued for the need of having explicit negation in the head of
rules. But there are also reasons that force us to believe explicit negation is
needed also in their bodies. Consider the statement!:

“ A school bus may cross railway tracks under the condition that there is no
approaching train”

It would be wrong to express this statement by the rule:
cross «— not train

The problem is that this rule allows the bus to cross the tracks when there
is no information about either the presence or the absence of a train. The
situation is different if explicit negation is used:

cross «— —train

Then the bus is only allowed to cross the tracks if the bus driver is sure
that there is no approaching train. The difference between not p and —p in a
logic program is essential whenever we cannot assume that available positive

! This example is due to John McCarthy, and was published for the first time in
[80].

2. Extended logic programs 19

information about p is complete, i.e. we cannot assume that the absence of
information about p clearly denotes its falsity.

Moreover, the introduction of explicit negation in combination with the
existing default negation allows for greater expressivity, and so for represent-
ing statements like:

“If the driver is not sure that a train is not approaching then he should
wait”

in a natural way:
wait <— not —train

Examples of such combinations also appear in legislation. For example
consider the following article from “The British Nationality Act 1981”7 [88]:

(2) A new-born infant who, after commencement, is found aban-
doned in the United Kingdom shall acquire british citizenship by
section 1.2 if it is not shown that it is not the case that the person
is born [..]

Clearly, conditions of the form “it is not shown that it is not the case that
P” can be expressed naturally by not —P.

Another motivation for introducing explicit negation in logic programs
relates to the symmetry between positive and negative information. This is
of special importance when the negative information is easier to represent
than the positive one. One can first represent it negatively, and then say that
the positive information corresponds to its complement.

In order to make this clearer, take the following example [80]:

Ezample 2.0.6. Consider a graph description based on the predicate
arc(X,Y)

expressing that in the graph there is an arc from vertex X to vertex Y. Now
suppose that we want to determine which vertices are terminals. Clearly, this
is a case where the complement information is easier to represent, i.e. it is
much easier to determine which vertices are not terminal. By using explicit
negation in combination with negation by default, one can then easily say
that terminal vertices are those which are not nonterminal:
—terminal(X) <« are(X,Y)
terminal(X) <« not —terminal(X)

Finally, another important motivation for extending logic programming
with explicit negation is to generalize the relationships between logic pro-
grams and nonmonotonic reasoning formalisms.

As mentioned in Section 1.2, such relationships, drawn for the most recent
semantics of normal logic programs, have proven of extreme importance for

20 2. Extended logic programs

both sides, giving them mutual benefits and clarifications. However, normal
logic programs just map into narrow classes of the more general nonmonotonic
formalisms. For example, simple default rules such as:

~a :~b a:b a: b

c c ~c
cannot be represented by a normal logic program. Note that not even nor-
mal nor seminormal defaults rules can be represented using normal logic
programs. This is so because these programs cannot represent rules with
negative conclusions, and normal rules with positive conclusions have also
positive justifications, which is impossible in normal programs.

Since, as shown below, extended logic programs also bear a close rela-
tionship with nonmonotonic reasoning formalisms, they improve on those of
normal programs as extended programs map into broader classes of theories
in nonmonotonic formalisms, and so more general relations between several
of those formalisms can now be made via logic programs.

One example of such an improvement is that the introduction of explicit
negation into logic programs makes it possible to represent normal and semi-
normal defaults within logic programming. On the one side, this provides
methods for computing consequences of normal default theories. On the other,
it allows for the appropriation in logic programming of work done using such
theories for representing knowledge.

2.1 Language

As for normal logic programs, an atom over an alphabet A is an expression of
the form p(ty,...,t,), where p is a predicate symbol, and the ¢;s are terms. In
order to extend our language with a second kind of negation, we additionally
define an objective literal over A as being an atom A or its explicit negation
—A. We also use the symbol = to denote complementary literals in the sense
of explicit negation. Thus ——A = A. Here, a literal is either an objective
literal L or its default negation not L. We dub default literals those of the
form not L.

By the extended Herbrand base of A, we mean the set of all ground objec-
tive literals of .A. Whenever unambigous we refer to the extended Herbrand
base of an alphabet, simply as Herbrand base, and denote it by H.

An extended logic program is a finite set of rules of the form:

H<—L1,...,Ln (nZO)

where H is an objective literal and each of the L;s is a literal. As for normal
programs, if n = 0 we omit the arrow symbol.

By the extended Herbrand base H of P we mean the extended Herbrand
base of the alphabet consisting of all the constants, predicate and function
symbols that explicitly appear in P.

2.2 Semantics 21

Interpretation is defined as for normal programs, but using the extended
Herbrand base instead.

Whenever unambigous, we refer to extended logic programs simply as
logic programs or programs. As in normal programs, a set of rules stands for
all its ground instances.

In the sequel we refer to some special forms of programs:

Definition 2.1.1 (Canonical program). An extended logic program P is
a canonical program iff for every rule in P

H «— Body
if L € Body then (not —L) € Body, where L is any objective literal.

Definition 2.1.2 (Semantics kernel). An extended logic program P is a
semantics kernel iff every rule in P is of the form:

H «—not Ly,...,not L, (n>0)

2.2 Semantics

2.2.1 Stable Models based semantics

The first semantics defined for extended logic programs was the so-called
“answer-sets semantics” [80]. There the authors defined for the first time the
language of logic programs with two kinds of negation — default negation not
and what they called classical negation —.

The answer-sets semantics is a generalization of the stable model seman-
tics for the language of extended programs. Roughly, an answer-set of an
extended program P is a stable model of the normal program obtained from
P by replacing objective literals of the form —L by new atoms, say —_L.
Formally we have:

Definition 2.2.1 (The I'-operator). Let P be an extended logic program
and I a 2-valued interpretation®. The GL-transformation of P modulo I is
the program ? obtained from P by:

— first denoting every objective literal in H of the form —A by a new atom,
say —_A;
— replacing in both P and I these objective literals by their new denotations;

2 Recall that by 2-valued, or total, interpretation we mean one that contains not L
whenever it does not contain L, and vice-versa. In other other the interpretations
considered in the definition of answer-sets are 2-valued with respect to the nega-
tion not . It might happen that an interpretation be not 2-valued with respect
to the negation — (i.e. for some atom A, both A and - A may be simultaneously
absent from the interpretation).

22 2. Extended logic programs

— then performing the following operations:
— removing from P all rules which contain a default literal not A such that
Ael;
— removing from the remaning rules all default literals.
p

Since T is a definite program it has a unique least model J.

If J contains a pair of complementary atoms, say A and —_A, then I'(I) =
H.

Otherwise, let J' be the interpretation obtained from J by replacing the
newly introduced atoms —_A by —=A. We define I'(I) = J'.

Definition 2.2.2 (Answer-set semantics). A 2-valued interpretation I of
an extended logic program P is an answer-set of P iff I'(I) = I.

An objective literal L of P is true under the answer-set semantics iff
L belongs to all answer-sets of P; L is false iff ~L is true; otherwise L is
unknown.

Ezample 2.2.1. Consider the following program (taken from [80]):

eligible(X) «— highGPA(X)
eligible(X) «— minority(X), fairGPA(X)
—eligible(X) «— —fairGPA(X)
interview(X) <« not eligible(X),not —eligible(X)
fairGPA(ann)
highGP A(peter) «
—fairGPA(john) <

stating that:

— every student with a high GPA is eligible for a scholarship;

— every minority student with a fair GPA is also eligible;

— No student with a GPA which is not at least fair is eligible;

— the students whose eligibility is not determined by these rules are inter-
viewed by a scholarship comunity;

— Ann has a fair GPA; Peter has a high GPA; and John has a GPa which is

not fair.
Its only answer-set is (where default literals are omitted, for brevity):

fairGPA(ann), interview(ann)
I =< highGPA(peter), eligible(peter)
= fairGPA(john), —eligible(john)

In fact ? is:

2.2 Semantics 23

eligible(ann) «— highGPA(ann)
eligible(ann) «— minority(ann), fairGPA(ann)
—_eligible(ann) <« —_fairGPA(ann)
interview(ann) <«
fairGPA(ann) «
eligible(peter) <« highGP A(peter)
eligible(peter) <« minority(peter), fairGP A(peter)
—_eligible(peter) «— —_fairGPA(peter)
highGP A(peter) <«
eligible(john) «— highGPA(john)
eligible(john) «— minority(john), fairGPA(john)
—_eligible(john) «— —_fairGPA(john)
—_fairGPA(john) «

whose least model (after replacing atoms of the form —_A by the correspond-
ing objectives literals —A) is exactly I.

Thus, according to the answer-sets semantics, Peter is eligible, John is
not eligible, and it is unknown whether Ann is eligible though, according to
the fourth rule, she should be interviewed. Notice that Ann has a fair GPA,
and it is unknown (there is no information about) whether she is a minority
student.

Ezample 2.2.2. The program:

flies(X) «— bird(X),not —flies(X)
—flies(X) <« penguin(X),not flies(X)

bird(X) < penguin(X)
penguin(tweety) <«

has two answer-sets, namely:

I, = {flies(tweety), bird(tweety), penguin(tweety)}
I, = {—flies(tweety), bird(tweety), penguin(tweety)}

I; is an answer-set: I—F: deletes the second rule for X = tweety (because
not flies(tweety) is in its body, and flies(tweety) € I;), and removes

not — flies(tweety)

from the body of the first rule (since —flies(tweety) ¢ I1); it is easy to
check that the least model of the resulting definite program coincides with
I;. Similarly for I5, where the first rule is deleted (not —flies(tweety) is in
its body, and —flies(tweety) € I), and not flies(tweety) is removed from
the body of the second rule (since flies(tweety) € I1).

24 2. Extended logic programs

From the definitions, it is trivial to verify that for programs without ex-
plicit negation, answer-sets coincide with stable models.

An extended program is called contradictory with respect to the answer-
sets semantics (hereafter dubbed AS-contradictory programs) if it has no
consistent answer-sets. For example, the program containing the two facts a
and —a has a single answer-set {a, ~a} which is inconsistent. So this program
is AS-contradictory.

Ezample 2.2.3. Let P be the program:
fly(X) «— bird(X),not abnormal(X).

bird(tweety)
= fly(tweety)

stating that:

—
“«—

— Birds, not shown to be abnormal, fly.
— Tweety is a bird and does not fly.

This program has no consistent answer-sets. In fact, since there are
no rules defined for abnormal(tweety) and, by definition, ? does not add
rules to P, independently of I, the least model of ? can never contain
abnormal (tweety). So, every “candidate” S for answer-sets must not con-
tain abnormal(tweety). Thus, £ always has the rule

fly(tweety) — bird(tweety)

Since bird(tweety) and — fly(tweety) are true, a contradiction is reached.

Clearly, normal logic programs (i.e. without explicit negation) can never
be AS-contradictory. Moreover, AS-contradictory programs always have a
single answer-set.

Proposition 2.2.1. Every AS-contradictory program has exactly one con-
tradictory answer-set, which coincides with its Herbrand base H.

As imposed by the definition, any answer-set with a complementary pair
of objective literals coincides with H. The fact that no other answer-set exists
for contradictory programs follows from:

Lemma 2.2.1. No extended program can have two answer-sets of which one
is a proper subset of the other.

Being non-AS-contradictory does not guarantee the existence of answer-
sets. Note that normal programs can never be AS-contradictory and, as
pointed out in Section 1.2.1, some do not have answer-sets (or stable models,
since for normal programs these semantics coincide). This is, in our opinion,

2.2 Semantics 25

one of the important shortcomings of the answer-sets semantics (cf. Chap-
ter 3).

Gelfond and Lifshitz [80] showed that the answer-sets of an extended
program P are equivalent to Reiter’s default extensions of the default theory
obtained from P by identifying each program rule:

H <« Bl,...,Bn,_\Cl,...,_\Cm,
not Dq,...,not Dy,not =Ey,...,not -E;

with the default rule:
Bl,...,Bn7NCh...,N Cm : NDl,...,N Dk,E17...,Ej
Hl
where H' = H if H is an atom, or H' =~ L if H = =L, and ~L denotes the
classical negation of L.

This is the reason why the newly introduced negation was called “classi-
cal” — it coincides with classical negation in default theories.

However, the negation used in answer-sets does not exhibit some well
known properties of classical negation. For example, the explicit negation
of answer-sets does not comply with the “excluded middle” property, i.e. in
general AV—A is not true in an answer-set for every atom A. This can be seen
in Example 2.2.1, where neither eligible(Ann) nor —eligible(Ann) is true in
the only answer-set of the program.

Some authors have argued against ascribing the designation of “classical”
to the explicit form of negation used in answer-sets [11, 140, 210]. In [140],
Pearce showed that instead of classical negation, answer-sets use in fact Nel-
son’s strong negation [135]. In particular, in [140] it is shown that Nelson’s
constructive logic with strong negation is a monotonic deductive basis® for
the answer-sets semantics (where default negation is equated with intuitionis-
tic negation, and explicit negation with Nelson’s strong negation). Moreover,
the author shows that answer-sets can be completely characterized as partic-
ular kinds of minimal models of N2 — an extension of Nelson’s constructive
logic.

Regarding the relationship between answer-sets semantics and auto-
epistemic logics, [39, 117, 123] noted that Gelfond’s translation (cf. page
1.2.1) cannot be generalized to extended programs. A suitable translation
between extended logic programs with answer-sets semantics and reflexive
autoepistemic theories was proposed independently in [117] and [123]. Re-

“

flexive autoepistemic logic, introduced in [198], views the operator £ as “is

3 Roughly, a (monotonic) logic £ is a deductive basis for a (nonmonotonic) se-
mantics S if for every program P: all consequences of £ are consequences of S;
closing the consequences of the semantics under the inference operation C of
the logic has no effect over the former; and the result of the semantics of P equals
that of the closure of P under C,.

26 2. Extended logic programs

known” instead of the “is believed” of Moore’s autoepistemic logic [132]. In

[117, 123] the authors choose a translation of extended logic programs into
theories of reflexive autoepistemic logic, and prove that the answer-sets of an
extended logic program correspond to the reflexive expansions of its transla-
tion. The translation renders an objective literal A (resp. —A) as LA (resp.
L ~A, where ~ denotes classical negation), i.e. “A is known to be true” (resp.
“A is known to be false”), and renders not L as L ~LL, i.e. “it is known that
L is not known”. The embedding of extended logic programs into reflexive
autoepistemic logic can also be defined for (non-reflexive) autoepistemic logic
[117, 123], by translating any objective literal L into L A LL. This translation
was proposed in [39] too. This issue is further detailed in section 5.2 below.

Another semantics generalizing stable models for the class of extended
programs is the e-answer-set semantics of [107]. There, the authors claim that
explicitly negated atoms in extended programs play the role of exceptions.
Thus they impose a preference of negative over positive objective literals.

The e-answer-set semantics is obtainable from the answer-set semantics
after a suitable program transformation. For the sake of simplicity, here we do
not give the formal definition of e-answer-sets, but instead show its behaviour
in an example:

Example 2.2.4. Consider program P :
fly(X) «— bird(X)

-fly(X) «— penguin(X)
bird(X) <« penguin(X)
penguin(tweety)

This program allows for both conclusions fly(tweety) and —fly(tweety).
Thus its only answer-set is H.

In e-answer-set semantics, since conclusions of the form =L are preferred
over those of the form L, = fly(tweety) overrides the conclusion fly(tweety),
and thus

{penguin(tweety), bird(tweety), - fly(tweety) }

is an e-answer-set of P.
The rationale for this overriding is that the second rule is an exception to
the first one.

2.2.2 Well-founded based semantics

In [180], the author argues that the technique used in answer-sets for general-
izing stable models is quite general. On the basis of that technique he defines
a semantics which generalizes the well-founded semantics for the class of ex-
tended programs?, as follows:

4 In the sequel we refer to this semantics as “well-founded semantics with pseudo
negation”. The justification for this name can be found in Section 5.1.4.

2.2 Semantics 27

Definition 2.2.3 (Well-founded semantics with pseudo negation).
A S-valued interpretation I is a partial stable model of an exrtended logic
program P iff I' is a partial stable model of the normal program P', where I'
and P’ are obtained respectively from I and P, by replacing every objective
literal of the form —A by a new atom, say —_A.

The well-founded semantics with pseudo negation of P is determined by
the unique F-least partial stable model of P.

As in the answer-sets semantics, also in this semantics the meaning of
- does not correspond to that of classical negation. In fact, consider the
following program P :

b «— a
b «— -a

If real classical negation were used then b would be a consequence of
P, because for classical negation a V —a is a tautology. However, it is
easy to check that the well-founded model (with pseudo negation) of P is
{not a,not —a,not b,not —b}, and so b is not a consequence of P under that
semantics.

In order to introduce real classical negation into logic programs, in [183]
the author defined the “stationary semantics with classical negation”. This
semantics is a generalization of the well-founded semantics, and is capable
of deriving b in P. For brevity we do not present here its formal definition.
However, the definition can be found in Section 5.1, where we compare it
with our WFSX.

2.2.3 Other approaches

Unlike normal logic programs, none of the semantics of extended programs
is defined for every program, i.e. some programs are contradictory. While for
some programs this seems reasonable (e.g. a program containing contradic-
tory facts, say P = {a <, —a <}), for others this can be too strong:

FEzample 2.2.5. Let P :

-p «— notq
p «—

In all the above semantics this program is not assigned a meaning.
Roughly, this is because ¢ has no rules, and thus not ¢ must be true. So,
by the first rule, —p must also be true, and since there is a fact p in P, a
contradiction appears.

However, if we see default literals as hypotheses that may or may not be
assumed (viz. in [62]), this contradiction seems strange since it relies on the
assumption of not q.

28 2. Extended logic programs

Motivated by this [68] presented a semantics generalizing “well-founded
semantics with pseudo negation” which, in order to assign a meaning to
more programs, does not assume hypotheses (default literals) that lead to a
contradiction®. For instance, the semantics of P above does not assume not g,
and is {p}.

Another approach to deal with contradictory programs is the one taken
by paraconsistent semantics. In these, the contradictory information is ac-
cepted into the semantics and reasoning tasks that take it into account are
performed. This is not our nor Dung’s concern. On the contrary, we wish to
remove contradiction whenever it rests on withdrawable assumptions®.

The ideas for introducing in logic programming paraconsistent reason-
ing are not all new. Since paraconsistent reasoning seems to be fundamental
for understanding human cognitive processes, it has been studied in philo-
sophical logic by several authors [47, 21, 193, 13, 170]. Their intuitions and
results have been brought to the logic programming setting mainly by Blair,
Pearce, Subrahmanian, and Wagner [26, 142, 138, 139, 212, 213]. With the
introduction of (a non-classical) explicit negation in logic programming other
researchers addressed this issue for extensions of well-founded and answer sets
semantics, e.g Sakama and Inoue [196, 197].

5 At the same conference, we presented a paper [146] exploring similar ideas. The
details of that independent work are not presented in this overview but are
expounded at length in Chapter 8.

5 For a more detailed survey on paraconsistent semantics for extended programs
see [49].

Part 11

A New Semantics for Extended Logic
Programs

29

3. Why a new semantics for extended
programs?

The overview above showed that several semantics exist for extended logic
programs. In our view none correctly captures the meaning of extended pro-
grams. This is why we think a new semantics for extended programs is re-
quired. Let’s take a look at their shortcomings:

The answer-set semantics [80], being based on the stable model semantics
of normal program [78], suffers at least from the same structural and compu-
tational problems of the latter. We briefly recall some of those problems (as
pointed out in Section 1.2.1):

— Some noncontradictory programs have no answer-sets, e.g.
P ={a — not a}.

— Even for programs with answer-sets, their semantics does not always ren-
der the expected intended results. In particular, the addition of lemmas
changes the semantics of the program (this is related with the property
of cumulativity mentioned in the preface, and studied in Chapter 9). The
problem is illustrated in the example of page 13.

— Derivation procedures for answer-sets cannot be based on top-down (SL-
like) rewriting techniques, even for consistent programs (this is related
with the property of relevance also mentioned in the preface, and studied
in Chapter 9). For example consider the program:

a <« notb

b «— nota

c «— nota
-c

whose only answer-set is {—c,a}.

Though a is a consequence of this program, a does not follow from the
rules “below”! a, which in this case are the first two. Thus, a derivation
for a cannot be solely based on top-down (SL-like) rewriting techniques.
Indeed, the program containing only the first two rules has two answer-sets:
{a} and {b}. Thus neither a nor b are true in this program.

! For the formalization of what we mean by “below” see Section 9.1.2.

32 3. Why a new semantics for extended programs?

Moreover, as shown in [61, 60], it is not easy to modify answer-sets seman-
tics to incorporate this property?.

— The computation of answer-sets is NP-complete, even within simple classes
of programs such as propositional logic programs. Moreover, for non-pro-
positional programs, in general it is impossible to compute answer-sets by
finite approximations (as shown in Section 7.5).

— By always insisting on 2-valued interpretations, answer-set semantics often
lacks expressibility. This issue is further explored in Section 5.2.

The e-answer-sets semantics of [107] also inherits the same problems of
stable models. Moreover, we think that explicitly negated atoms do not al-
ways represent exceptions. For example consider the statements:

— Animals do not fly.
— Birds fly.

— Birds are animals.
— Ozzy is a bird.

Here the second statement (with a positive conclusion) is an exception to
the first (with a negative conclusion). Of course, in this case we can repre-
sent these statements using a predicate no_fly(X), thereby making the first
rule have a positive conclusion and the second a negative one. However this
technique cannot be used if, additionally, we want to represent:

— Penguins do not fly.
— Penguins are birds.
— Tweety is a penguin.

If one represents all the statements using predicate fly(X) :
-fly(X) «— animal(X)
fly(X) «— bird(X)
~fly(X) « penguin(X)

animal(X) «— bird(X)
bird(X) <« penguin(X)
bird(ozzy)
penguin(tweety)

then the only e-answer-set contains - fly(ozzy) because it is an animal, which
is not intuitively correct since ozzy is a bird and so it should fly.

If one represents the statements using predicate no_fly(X), then the only
e-answer-set contains —no_fly(tweety) because it is a bird, which again is
not intuitively correct since tweety is a penguin and so it should not fly.

2 Indeed, by redefining answer-sets just focusing on the part of the program below
the literals in consideration (i.e. where a literal belongs to the semantics if it
belongs to all answer-sets of the program below that literal), it might happen
(ct. [61, 60]) that for some rules the body is true and the head isn’t. This violates
the classical notion of models, and is quite unintuitive.

3. Why a new semantics for extended programs? 33

In our view, a declarative semantics for extended programs should not
impose any preference between positive and explicit negative information.
Their treatment should be symmetric. It is up to the programmer to, for
each specific case, write his program in such a way that the desired pref-
erences are made. The systematization of a representation method for rules
and exceptions using extended logic programs is presented in Section 11.1.

The semantics of [180] based on the well-founded semantics does not suffer
from the problems of answer-sets. Moreover it does not impose any preference
of negative atoms over positive ones.

Unfortunately, because [180] uses the same technique for adding explicit
negation to well-founded semantics as answer-sets for stable models seman-
tics, important properties which relate both negations, obeyed by answer-sets,
are lost:

Example 3.0.6. Consider program P :

a <« notb
b «— nota
-q

If —a were simply to be considered as a new atom symbol, say, —_a, and
well-founded semantics were used to define the meaning of P (as suggested
in [180]), the result would be

{—a,not —b}

so that —a is true and a is undefined. This clearly severs the connection
between both negations.

In our view, —a is an explicit declaration of the falsity of a. Thus, it can
always be assumed that « is false by default, i.e. not a should also be true.

Ezample 3.0.7. Consider a program containing the rules:

tryBus <« not driversStrike
—driversStrike

advising to plan a trip by bus if it can be assumed the bus drivers are not
on strike, and stating bus drivers are not on strike. No matter what the rest
of the program is (assuming it is noncontradictory on the whole), it is clear
that it should be assumed the bus drivers are not on strike, and of course the
trip should be planned by bus.

Intuitively, —driversStrike implies not driversStrike.

In order to relate both negations in extended logic programs, we introduce
the “coherence principle”:

“Let L be an objective literal of an extended logic program P.
If =L belongs to the semantics of P then not L must also belong
to the semantics of P.”

34 3. Why a new semantics for extended programs?

and argue that every semantics should comply with this principle?.

Answer-set semantics complies with coherence. Simply note that, for non-
contradictory programs, if =L is in an answer-set then L is not in that answer-
set and so, answer-sets being two valued, not L is true.

The semantics presented in [68], being a generalization of the semantics
of [180], also does not comply with coherence.

The issue, dealtwith by [68], of assigning meaning to more programs by
unassuming default literals leading to contradiction is, in our view, an impor-
tant one. However, we think this should be done on the basis of a coherent
semantics, and that its result should also comply with coherence. In Chapter
8, we show how to deal with contradictory programs, when the contradic-
tion is brought about by default literals. There we present a more sceptical
semantics (in the spirit of [68]) that avoids contradiction and complies with
coherence. Then we show this same semantics can be obtained by using in-
stead a contradiction removal process that transforms programs considered
contradictory. The advantages of using the latter instead of the former ap-
proach are presented in Section 8.4.

Finally, also the “well-founded semantics with classical negation” of [183]
does not capture the intuitive meaning of extended programs. This happens
because of its very first motivation, i.e. the introduction of real classical nega-
tion.

Consider again the program:

b «— a
b «— -a

whose well-founded semantics with classical negation entails b.

We recall that the intended meaning of —L is that L is explicitly false or,
in other words, L is known to be false. With this reading of explicit negation,
the rules of the program state that if a is known to be true then b is known to
be true, and if a is known to be false then b is known to be true. Given that
the knowledge about literals is not always complete, i.e. it might happen that
a is neither known to be false nor true, the formula a V —a is not a tautology.
So the law of excluded middle does not apply, and b does not follow from
these statements.

Our stance is that if the law of excluded middle is desired of some atom
A then so much should be explicitly stated by adding the disjunctive rule
A Vv —A. This expresses that the knowledge about A is complete, i.e. A is
known to be either true or false. We have yet to enlarge our language for
rules to accomodate such expressiveness.

In Section 5.2 we further explore this view of explicit negation, by compar-
ing extended programs with logics of provability and belief. There, we argue

3 More arguments in favour of the coherence principle can be found spread along
this work.

3. Why a new semantics for extended programs? 35

that explicit negation —L should have the reading “L is provenly false”, and
justify that classical negation in extended program corresponds to “it is false
that L is provenly true” or “L is not provenly true” or, conflating knowledge
with truth, as classical logic does, “L is not true”; whereas not L reads “L
believed to be false”.

Another property not obeyed by classical negation in logic program is
supportedness. Roughly, a semantics complies with supportedness if, for every
program P, an objective literal L is true only if there is an identifiable rule
for L whose body is true?. Clearly, this property closely relates to the use of
logic as a programming language. One does not expect an objective literal
to be true unless some identifiable rule with true body concludes it; in other
words, every true objective literal must be solely supported on other definitely
true objective literals or on the truth of default literals. Such is the nature
of epistemic truth or knowledge. Ontological truth is concerned with truth
in the world, not with the epistemically justifiable knowledge an agent may
hold. Thus, in the ontological stance LV ~ L is true regardless of whether
any of the cases is supported.

4 For a formal definition of this property see Section 5.1.3.

36 3. Why a new semantics for extended programs?

4. WFSX — A well founded semantics for
extended logic programs

In this chapter we present a new semantics for normal logic programs (i.e.
with negation by default) extended with explicit negation, that subsumes the
well founded semantics [76] of normal programs.

4.1 Interpretations and models

We begin by providing definitions of interpretation and model for programs
extended with explicit negation.

Definition 4.1.1 (Interpretation). An interpretation I of a language L is
any set

TUnot F 1

where T and F are disjoint subsets of objective literals over the Herbrand
base, and:

if =L € T then L € F (Coherence Principle)?.

The setT contains all ground objective literals true in I, the set F' contains all
ground objective literals false in I. The truth value of the remaining objective
literals is undefined.

Notice how the two types of negation become linked via coherence: for any
objective L, if =L € I then not L € I. Other semantics introducing a second
negation in WFS do not relate the two negation in this way (cf. Chapter 5
on comparisons).

This definition of interpretation not only guarantees that every interpre-
tation complies with coherence but also with noncontradiction.

Proposition 4.1.1 (Noncontradiction condition). If I = T Unot F is
an interpretation of a program P then there is no pair of objective literals A,
—A of P such that A€ T and A€ T.

L Where not {a1,...,an,...} stands for {not a1,...,not an,...}.
2 For any literal L, if L is explicitly false L must be false. Note that the comple-
mentary condition “if L € T then =L € F” is implicit.

38 4. The WFSX semantics

Proof. (by contradiction) Consider that I = T Unot F is such that A € T
and - A € T. By the coherence condition A € F and —=A € F. So [is not an
interpretation because T and F' are not disjoint.

Ezample 4.1.1. {a,—a,—b} is not an interpretation because a and —a belong
to it (contradiction) and also because not b does not belong to it although
—b does (incoherence).

An interpretation I can be read intuitively in the following way:

— An atom A is true (resp. explicitly false) in I iff A € I (resp. A € I).

— A positive (resp. negative) objective literal A (resp. —A) is false in I iff
not A € I (resp. not ~A € I).

— An atom A is undefined in I otherwise.

As in [172], an interpretation can be equivalently viewed as a function
I:H-V
where H is the set of all objective literals in the language and V = {0, %, 1}.

Proposition 4.1.2. Any interpretation I = T Unot F can be equivalently
viewed as a function I : H — V where V = {0 L 1}, defined by:

)92
I(A)=0 if notAel;
I(A)=1 if A€l

I(A) =1 otherwise.

Based on this function we can define a truth valuation of formulae.

Definition 4.1.2 (Truth valuation). If I is an interpretation, the truth
valuation I corresponding to I is a function I : C'— V where C is the set of
all formulae of the language, recursively defined as follows:

— if L is an objective literal then I(L) = I(L).

— if S =not L is a default literal then I(not L) =1 — I(L).
—if S and V are formulae then I((S,V)) = min(I1(S),I(V)).
— if L is an objective literal and S is a formula then:

- 1 WfI(S) < I(L) or I(=L) =1 and I(S) # 1
KL < 8)= { 0 otherwise

The only additional condition with respect to WFS (cf. Definition 1.1.3
above), I(-L) = 1 and I(S) # 1, does not affect the valuation of formu-
lae without —. Its purpose is to allow a conclusion ¢ to be independently
false when the premises are undefined for some rule, on condition that —c
holds. This allows, in particular, explicit negation — to override with false
the undefinedness of conclusions of rules with undefined bodies.

4.2 The definition of WFSX 39

Definition 4.1.3 (Model). An interpretation I is called a model of a pro-
gram P iff for every ground instance of a program rule H «— B we have

I(H < B)=1.

Ezample 4.1.2. The models of the program:

Y b «— a ¢ < not —c
a <« mnota,notc -c <« notc

are:

M; = {=b,not b}

My, = {=b,not b,c,not —c}

M; = {=b,not b,c,not —c,not a}

My = {=b,not b,not ¢,—c}

Ms = {-b,not b,—a,not a}

MG = {—|b, not b, -a, not a,c, not —|C}

M; = {=b,not b,not —a}

Mg = {=b,not b,c,not —c,not ~a}

My = {=b,not b,c,not —c,not a,not -a}
My = {=b,not b,not ¢,c,not —a}

Only M3, Mg, and My are models in the usual sense (i.e. classical models
in the sense of Definition 1.1.4).

— My, My, My, M7, Mg, and M;(are not classical models, because in all of
them the body of the rule b + a is undefined and the head is false, i.e. the
truth value of the head is smaller than that of the body.

— M5 is not a classical model since in it the truth value of the head (false)
of rule a « not a,not c is smaller than that of the body (undefined).

4.2 The definition of WFSX

Next we introduce the notion of stability in models, and using it we define
the WFSX semantics.

As in [172], in order to define the semantics, we expand the language
by adding to it the proposition u such that every interpretation I satisfies
I(u) = 3. By anon-negative program we also mean a program whose premises
are either objective literals or u.

We extend with an additional operation the P modulo I transformation
of [172], itself an extension of the Gelfond-Lifschitz modulo transformation
[78].

Definition 4.2.1 (% transformation). Let P be an extended logic pro-

gram and let I be an interpretation. ?, P modulo I, is the program obtained
from P by performing in the sequence the following four operations:

40 4. The WFSX semantics

— Remove from P all rules containing a default literal L = not A such that
Ael

— Remove from P all rules containing in the body an objective literal L such
that =L € I.

— Remowve from all remaining rules of P their default literals L = not A such
that not A € 1.

— Replace all the remaining default literals by proposition u.

Note that the new operation, the second one, is not applicable to non-
extended programs, and is only needed by some extended programs. It is
required by the coherence principle, as illustrated below in this section.

The resulting program ? is by definition non-negative.

Definition 4.2.2 (Least operator). We define least(P), where P is a
non-negative program, as the set of literals T'Unot F obtained as follows:

— Let P’ be the non-negative program obtained by replacing in P every neg-
ative objective literal =L by a new atomic symbol, say '—_L'.

— Let T Unot F' be the least 3-valued model of P' (cf. Definition 1.1.6).

— TUnot F is obtained from T’ Unot F' by reversing the replacements
above.

The least 3-valued model of a non-negative program can be defined as
the least fixpoint of the following generalization of the Van Emden-Kowalski
least model operator ¥ for definite logic programs:

Definition 4.2.3 (U* operator). Suppose that P is a non-negative pro-
gram, I is an interpretation of P and A and the A; are all ground atoms.
Then U*(I) is a set of atoms defined as follows:

—U*(I)(A) =1 iff there is a rule A — Ay, ..., Ay, in P such that I(A;) =1
for alli <mn.

— U*(I)(A) = 0 iff for every rule A — Ay,..., A, there is an i < n such that
I(A;) =0.

— U*(I)(A) = 1/2, otherwise.

Theorem 4.2.1 (3-valued least model). The 3-valued least model of a
non-negative program 1s:
o 1% (not H)

The generalization of the Van Emden-Kowalski theorem set forth in [172]
is also valid for extended logic of programs.

Theorem 4.2.2. least(P) uniquely exists for every non-negative program P.

Proof. Since P’ is a non-negative program without explicit negation its least
3-valued model M exists and is unique (by theorem 6.24 of [172] page 357).
The theorem follows since least(P) is univocally obtained from M.

4.2 The definition of WFSX 41

Note that least(P) isn’t always an interpretation in the sense of Definition
4.1.1. Conditions about noncontradiction and coherence may be violated.

Ezample 4.2.1. Consider the non-negative program P :

a — —a «— -b

b — b «— u

where least(P) = {a, ~a,~b}. This set is not an interpretation (cf. Example
4.1.1). Noncontradiction and coherence are violated.

Ezample 4.2.2. Consider the program P :

a <« notb
b «— notbd
-q

and the interpretation I = {—a,not a,not —b}.

p a — u
—= b <« u
I —a

So, least(£) = {-a,not —b}.
Although noncontradictory this set of literals violates coherence.

To impose coherence, when contradiction is not present, we define a par-
tial operator that transforms any noncontradictory set of literals into an
interpretation.

Definition 4.2.4 (The Coh operator). Let QI = QT Unot QF be a set
of literals such that QT does not contain any pair of objective literals A, —A.
Coh(QI) is the interpretation T Unot F such that

T=QT and F=QFU{-L|LeT}.
The Coh operator is not defined for contradictory sets of literals.

The result of Coh applied to least(?) is always an interpretation. The
noncontradiction and coherence conditions are guaranteed by definition. T'
and F are disjoint because Q7 and QF are disjoint and none of the objective
literals added to F' are in T since T is noncontradictory.

However, it is not enough to simply define the semantics as the result of
Coh applied to the WFM as in [180]. This yields quite unintuitive results:

Ezample 4.2.3. Consider the program of Example 3.0.6.

a <« notb
b «— nota
-

whose WEM according to [180] is M = {—a,not —b}. In this case:

42 4. The WFSX semantics

Coh(M) = {—a, not a,not —b}

Although Coh(M) is coherent, it does not take into account the conse-
quences of literals introduced by Coh. In fact, not a is added, but b (a direct
consequence of not a) isn’t.

Note that Coh(M) is not a model of the program: it makes the body of
the second rule true, and its head undefined.

To take into account the consequences of Coh, we generalize the I'™* op-
erator of [172].

Definition 4.2.5 (The ¢ operator). Let P be a logic program, I an inter-
pretation, and J = least(?),
If Coh(J) ewists then @p(I) = Coh(J). Otherwise $p(I) is not defined.

Definition 4.2.6 (WFSX, PSM and WFM). An interpretation I of an
extended logic program P is called an Partial Stable Model (PSM) of P iff

®p(I)=1.

The F-least Partial Stable Model is called the Well Founded Model(WFM).
The WFSX semantics of P is determined by the set of all PSMs of P.

It is easy to see that some programs may have no WFSX semantics.
Ezample 4.2.4. The program P = {a <, —a <} has no semantics.

Definition 4.2.7 (Contradictory program). An extended logic program
P is contradictory iff it has no semantics, i.e. there exists no interpretation
I such that @p(I) =1.

Theorem 4.3.3 below expresses an alternative, more illustrative definition
of contradictory program. The issue of handling contradictory programs is
further discussed in Chapter 8.

Ezample 4.2.5. Consider again the program of Example 3.0.6. Now
{—a,not —b}

is no longer a PSM as in [180] (where —a and —b are simply considered new
atoms), because it is not an interpretation, and thus @ does not apply to it.
Its only PSM, and consequently its WFM, is:

I ={-a,b,not a,not —b}.

P b «—

I —aq

Indeed, its least model is I, Coh(I) = I, and &p(I) = I.

4.2 The definition of WFSX 43

Remark 4.2.1. According to [180], the above program has two PSMs:
{—a,not =b} and {-a,b,not a,not —b}

only the second being coherent. It is not enough though to throw out those
of his models not complying with coherence. Although that’s true for this
example, Example 4.2.6 shows that’s not the general case.

Ezample 4.2.6. Consider program P:

c <« notb a <« nota
b «— nota b —

Applying the semantics to P we have the model:
PSM = {=b, ¢, not b,not —c¢,not —a}.
Indeed:

P ¢ « a «— u
PSM b — u b «

its least model is {¢, =b,not —¢,not —a}, and consequently
&p(PSM) = PSM3.

By simply considering —b as a new atom (as suggested in [180]) this non-
extended program would have a single PSM, {—b}, which is not a coherent
interpretation.

It is also interesting to notice in this example that PSM is not a model
in the classical sense because for the second rule of P the value of the head
(PSM(b) = 0) is smaller than the value of the body (PSM (not a) = 1).

The intuitive idea is that the truth of =b (or the independent falsity of b)
overrides any rule for b with undefined body, so that not b becomes true (and
b false), rather than undefined. This is important to allow if we consider the
existence of the fact —b in the program instrumental in specifying the falsity
of b in it. In Chapter 5 Section 5.2 this issue is further discussed.

Even though PSMs are not models in the classical sense, they are models
as defined above in this chapter (Definition 4.1.3).

Theorem 4.2.3 (PSMs are models). Every PSM of a program P is a
model of P.

Proof. (by contradiction) Let I be a PSM and not a model of P. By definition
of model:

I(L— B)#1
only if

I(L) < I(B) and I(B) =1, or I(L)<I(B)and I(-L) # 1.

44 4. The WFSX semantics

If the first disjunct holds, then since I(B) = 1 and I is a PSM, L € I (i.e.

I(L) = 1), so the disjunct cannot hold.

If the second disjunct holds, then
cither [(B)=1 or I(B)=-=.

The first case is impossible, as just shown. If /(B) = 4 then:

-2
cast() 1)~

and since I(—L) # 1 :

con(ieas(7)) 0= 1
(

As Iis a PSM, I(L) = 1= I(B), so the disjunct cannot hold.

Ezample 4.2.7. Consider Example 4.1.2. The only PSMs of that program
correspond exactly to models M7, My and M.

We now come back to the question of the need for the extra operation
introduced in the modulo transformation.

Ezample 4.2.8. Consider program P :

c «— a a <+« b
—a b «— notb

Its only PSM is I = {—a, not a,not ¢, not —b,not —c}. In fact,

P a «— b
I —a <« b «— u

P
least<l> = {—a,not ¢,not —b,not —c}

and consequently @(I) = I.

If the new operation for the modulo transformation were absent, ? would
contain the rule ¢ «+ a, and ¢ would be undefined rather than false. This would
go against the coherence principle, since —a entails not a, and as the only
rule for ¢ has a in the body, it should also entail not c. The role of the new
operation is to ensure the propagation of false as a consequence of any not L
implied by a =L through coherence.

Consider now a similar program P’, in the canonical (cf. Definition 2.1.1)
form:

¢ «— a,not ~a a <« bnot—b
—a b «— notb

4.3 Existence of the semantics 45

Its only PSM is again I = {—a,not a,not ¢, not —b,not —c}.

P a < b

I —a b «— u

Because of the canonical form the new operation of the modulo transfor-
mation is irrelevant. Even without it the rule ¢ < a,not —a is removed by
applying the first operation, given that —a € I and that not —a is part of its
body.

In general, for programs in the canonical form the second operation of the
modulo operator is no longer required.

Theorem 4.2.4 (Compact version of £). Let P be a canonical extended
logic program, and I an interpretation. Then ? can be equivalently defined as
the program obtained from P by performing in sequence the three operations:

— Remove from P all rules containing a default literal L = not A such that
Ael.

— Remove from all remaining rules of P their default literals L = not A such
that not A € 1.

— Replace all the remaining default literals by proposition u.

Proof. Trivial, given the definitions of canonical program, of interpretation,
and of Z.
T

4.3 Existence of the semantics

In the above definition of the semantics (Definition 4.2.6) we define the WFM
as the F-least PSM. This is possible because:

Theorem 4.3.1 (Existence of the semantics). For noncontradictory
programs there always exists a unique F-least PSM. Moreover a literal L
belongs to every PSM of a noncontradictory program P iff L belong to the
F-least PSM of P.

Proof. The proof follows directly from Theorem 4.3.2 below.

Theorem 4.3.2 (Monotonicity of). Let P be a noncontradictory pro-
gram. Then the operator @p is monotonic with respect to set inclusion, i.e.
AC B= ®p(A) CPp(B) for any interpretations A and B.

Proof. Since &p(I) = Coh(least(?)) we prove this theorem by proving
two lemmas, concerning respectively the monotonicity of Coh and that of
least(%).

46 4. The WFSX semantics

Lemma 4.3.1. Consider a program P and let
I =Ty Unot Fr and J =T;Unot F;
be two interpretations of P such that I C J. Coh(I) C Coh(J) holds.
Proof. Coh(I) C Coh(J) is equivalent, by definition of Coh, to
TrUnot (FfU{-L|LeT;}) CTyUnot (F;U{-L|LeTy})
since 17 C T'; by hypothesis, the above is true if:
FruU{-L|LeT;}CF;U{-L|LeT}U{~-L|LeT;—Tr}
which is equivalent to
FrCF;U{-L|LeT;-1Tt}
which holds because, by hypothesis, F; C F}.
Lemma 4.3.2. Consider a program P and let
I =T Unot Fr and J =T;Unot F;
be two interpretations of P such that I C J.
least(?) C least(g) holds.

Proof. In [172] this is proven considering the modulo transformation without
the second rule. Since this rule does not introduce new undefined literals, it
does not affect the monotonicity of the operator.

Now it is easy to complete the proof of the theorem. By lemma 4.3.2:

P P
C — | C —
ACB = Zeast(A) least(B)

and by lemma 4.3.1:

il il il il
least(> - least = Coh (least<)) C Coh (least(B>>

for a noncontradictory program P.

Definition 4.3.1 (Iterative construction of the WFM).

In order to obtain a constructive bottom-up definition of the WFM of a given
noncontradictory program P, we define the following transfinite sequence {I,}
of interpretations of P:

L = {}
Ia+1 - QSP(IQ)
Iy = U{la|a<d} foralimit ordinal &

By Theorem 4.3.2, and according to the Knaster-Tarski theorem [204],
there must exist a smallest ordinal A such that Iy is a fixpoint of ®p, and
WFM = 1.

4.3 Existence of the semantics 47

Top-down procedures computing this semantics can be easily obtained by
adapting existing procedures for WFS of programs without explicit negation,
such as [177, 215, 155, 40, 153], as follows: replace every literal of the form
—A by a new literal, say A’; include two new rules “not A rewrites to A'”
and “not A’ rewrites to A”. If A and A’ are both derivable then the program
is contradictory. A top-down derivation procedure for WFSX can be found
in Chapter 10.

The constructive bottom-up definition requires one to know a priori if the
given program is contradictory. This requirement is not needed if we consider
the following theorem.

Theorem 4.3.3. A program P is contradictory iff in the sequence of I, there
exists a X such that ®p(Iy) is not defined, i.e. least(%) has a pair of objec-
tive literals A, —A.

Proof. The theorem is equivalent to: P is noncontradictory iff in the sequence
of I, there exists no A such that @p(Iy) is not defined.

If P is noncontradictory then @p is monotonic, and so no such A exists.
If there is no such A then there exists an I and a smallest « such that
I= @}f‘({}), and I is a fixpoint of ®p. Thus, a fixpoint of @p exists, and so
P is noncontradictory.

In order to (bottom-up) compute the WFM of a program P start by
building the above sequence. If at some step @p is not applicable then end
the iteration and conclude that P is contradictory. Otherwise, iterate until
the least fixpoint of @p, which is the WFM of P.

Ezample 4.3.1. Consider program P:

a <« nota

—Q «—

Let us build the sequence:

Iy =
L = oh least()) = Coh(least({a — u, —a <}))
= Coh({—-a}) = {—a,not a}
L, = Coh(least(m) = Coh(least({a «, —a «}))

Coh({a,—a})

which is not defined. So P is contradictory.

Example 4.3.2. Consider program P of Example 4.2.5. The sequence is:

48 4. The WFSX semantics

Iy, =
I

oh(least()) = Coh(least({a —u, b—u, -a<}))
Coh({—a,not —b}) = {—a,not a,not —b}
L, = Coh(least(L

{—a,not a,not —b}

Coh(least({a —u, b+, -a+}))
= Coh({b, ~a,not —b}) = {b, —a,not a,not b} = I3

and thus the WFM of P is {b, —a, not a,not —b}.

It is worth noting that this semantics is a generalization of the well-
founded semantics to programs with explicit negation.

Theorem 4.3.4 (Generalization of the well-founded semantics). For
programs without explicit negation WESX coincides with well-founded seman-
tics.

Proof. As noted before, the modulo transformation coincides with the one
defined for stationary semantics for the case of non-extended programs. Fur-
thermore, the additional conditions imposed on interpretations are void for
those programs and, finally, the C'oh operator reduces to identity.

5. WFSX, LP semantics with two negations,
and autoepistemic logics

In recent years increasing and productive effort has been devoted to the
study of the relationships between logic programming and several nonmono-
tonic reasoning formalisms'. Such relationships are mutually beneficial. On
the one hand, nonmonotonic formalisms provide elegant semantics for logic
programming, specially in what regards the meaning of default negation (or
negation as failure), and help one understand how logic programs are used
to formalize several types of problems in Artificial Intelligence. On the other
hand, those formalisms benefit from the existing procedures of logic program-
ming, and some new issues of the former are raised and solved by the latter.
Moreover, relations among nonmonotonic formalisms have been facilitated
and established via logic programming.

For normal logic programs, their relationship with default theories [188]
was first proposed in [22]. In [70] default negation of normal programs was
first formalized as abduction, and in [62] the idea was further explored in
order to capture stable models [78] and the well-founded semantics [76] of
normal programs.

The idea of viewing logic programs as autoepistemic theories first ap-
peared in [77] where the author proposed to view every negated literal not L
of logic programs as ~BL,% i.e. not L has the epistemic reading: “there is
no reason to believe in L”. In [28], different transformations between default
negation literals and belief literals are studied, in order to show how different
logic programming semantics can be obtained from autoepistemic logics.

The establishment of relationships between nonmonotonic formalisms and
extended logic programs improve on those for normal programs since ex-
tended programs map into broader classes of theories in nonmonotonic for-
malisms, and so more general relations between several of those formalisms
can now be made via logic programs. Moreover, the relationships also provide
a clearer meaning of the —-negation and its relation to default negation in
extended logic programming.

! As a result, international workshops have been organized, in whose proceedings
[136, 164] many additional references can be found.

2 In the sequel we refer to this transformation, between default negation literals
and belief literals, as the Gelfond transformation.

50 5. WFSX and autoepistemic logics

In this and the next chapters we explore the relationship between ex-
tended logic programs and several nonmonotonic formalisms: autoepistemic
logic, default theory, abduction, and belief revision.

The first part of this chapter is devoted to contrasting and characteriz-
ing a variety of semantics for extended logic programs, including WFSX, in
what concerns their use and meaning of —-negation, and its relation to both
classical negation and the default negation, not , of normal programs.

For this purpose we define a parametrizeable schema to encompass and
characterize a diversity of proposed semantics for extended logic programs,
where the parameters are two: one the axioms AX_ defining —-negation;
another the minimality conditions not..,q, defining not -negation.

By adjusting these parameters in the schema we can then specify several
semantics involving two kinds of negation [80, 143, 180, 183, 209], including
WFSX. Other semantics, dealing with contradiction removal [152, 68, 146,
196], are not directly addressed by the schema. The issue of contradiction in
extended logic programming is studied in length in Chapter 8.

In the second part of this chapter, and based on the similarities between
the parametrizable schema and the definitions of autoepistemic logics, we
proceed to examine the relationship between them and extended logic pro-
grams.

In the above mentioned comparative study, concerning the use and mean-
ing of —-negation in different semantics, no epistemic meaning is assigned to
each of the uses of —. By relating extended logic programs to autoepistemic
logics such a meaning is extracted for some cases. In particular, we show that
=L in WFSX can be read as “L is provenly false”. Other semantics give dif-
ferent readings to —, e.g. in the stationary semantics with classical negation
of [183] —L has the epistemic reading: “L is not provenly true”.

These results also clarify the use of logic programs for representing knowl-
edge and belief.

5.1 Generic semantics for programs with two kinds of
negation

The structure of this section is as follows: we begin with preliminary defi-
nitions and subSection 5.1.2 presents the parametrizeable schema; next we
present properties important for the study of extended logic program se-
mantics, and show for various AX_, whether or not the resulting semantics
complies with such properties; afterwards, in subSection 5.1.4, we reconstruct
the plurality of semantics for extended logic programs in the schema by spec-
ifying, for each, their set AX_ and their condition not.y,q; finally we briefly
address the issue of introducing disjunction in extended logic programs.

5.1 Generic semantics 51

5.1.1 Preliminaries

In the sequel, we translate every extended logic program P into a set of
general clauses —_P, which we dub clausal logic program. A set of general
clauses is, as usual, a set of clauses:

LiV...V Ly,

where each L; is either an atom A or its classical negation ~ A. Here, by
classical negation we mean the negation of classical logic. Just as it was
important to distinguish between classical negation and negation by default
in order to develop the relationship between normal logic programming and
nonmonotonic reasoning, here it is equally important to distinguish between
explicit negation — and real classical negation ~, specially because our concern
is to better characterize the former.

The models and interpretations of clausal logic programs are simply the
classical models and interpretations of sets of general clauses.

Propositions of the form not_A (the translation in the clausal logic pro-
gram —_P for not A in P) are called default ones, all other propositions being
objective ones.

5.1.2 Stationary and stable semantics for programs with two
kinds of negation

Within this section we present the above mentioned parametrizeable schema.
We begin by defining two generic semantics for normal logic programs ex-
tended with an extra kind of negation: one extending the stationary semantics
[181, 183] for normal programs (itself equivalent to well founded semantics
[76]); another extending the stable model semantics [78]. We dub each of these
semantics generic because they assume little about the extra kind of negation
introduced. The meaning of the negation by default is however completely
determined in each of the two generic semantics (both stationary and stable
models) that we present.

Subsequently we generalize the schema in order to parametrize it w.r.t.
negation by default as well.

Stationary semantics for programs with two kinds of negation. Here
we redefine the stationary semantics of [183] in order to parametrize it with a
generic second type of negation, in addition to negation by default. We start
by defining stationary expansion of normal programs as in [183].

Definition 5.1.1 (Minimal models). A minimal model of a theory (or set
of general clauses) T is a model M of T with the property that there is no
smaller model N of T' which coincides with M on default propositions.

If a formula F is true in all minimal models of T then we write:

T %IRC’ F

and say that F is minimally entailed by T.

52 5. WFSX and autoepistemic logics

This amounts to McCarthy’s Parallel Circumscription [125]:
CIRC(T;O;D)

of theory T in which objective propositions O are minimized and default
propositions D are fixed.

Definition 5.1.2 (Stationary expansion of normal programs).
A stationary expansion of a mormal program P is any consistent theory P*
which satisfies the fixed point condition:

P*=-PU {not,A | P E, .. NA} U {Nnot,A | P E, .. A}

where A is any arbitrary atom, —_P is the program obtained from P by re-
placing every literal of the form not L by not_L.

Note that =_P and P* are always sets of Horn clauses.

Example 5.1.1. Consider program P :

a <« nota
b «— nota,c
d <« notb

whose clausal program is —_P :

aV ~not_a
bV ~not_aV ~c
dV ~not_b

The only expansion of P is
P* = ~_P U {not_b, not_c, ~not_d}

In fact the minimal models of P* are (for clarity throughout the examples
we exhibit all literals, both positive and negative):

{ nota, notb, notec, ~notd, —a, ~b, ~c, d }
{ ~nota, notd, notc, ~notd, ~a, ~b, ~c, d }

As P* entails ~b, ~¢, and d, it must contain {not_b, not_c, ~not_d} and no
more default literals.

As proven in [183], the least stationary expansion of a normal program
gives its well-founded semantics (via a definition of meaning similar to Defini-
tion 5.1.4), and now we wish to extend WFS with explicit negation to obtain,
among others, WFSX.

In order to extend this definition to logic programs with a generic second
kind of negation —, we additionally transform any such negated literals into
new atoms too:

5.1 Generic semantics 53

Definition 5.1.3 (Clausal program —_P of P).
The clausal program —_P of an extended logic program P is the clausal set of
Horn clauses obtained by first denoting every literal in ‘H of the form.:

—-A by a new atom —_A
not A by a new atom not_A
not =A by a new atom not_—_A

then replacing in P such literals by their new denotation and, finally, rein-
terpreting the rule connective «— as material implication, expressed by = .

Ezample 5.1.2. Let P = {a «+ —b}. The clausal program —_P is:
- P={-b=a}
or equivalently:

~_P = {aV ~—_b}.

The models of an extended program are determined by the models of its
clausal program expansions via an inverse transformation:

Definition 5.1.4 (Meaning of a clausal program P*). The meaning of
a clausal program expansion P* is the union of the sets of all atoms:

A such that P*EA
-A such that P*E-_A
not A such that P* =not_ A
not =A such that P* = not—_A

where P* |= L means that literal L belongs to all (classical) models of (the
set of general clauses) P*.
Note that negative literals do not translate over.

In order to specify the second kind of negation one introduces in —_P the
axioms AX_, defining it. For example, if we want the second negation to be
classical negation we must add to —_P the set of clauses

(~Ao~A|AcH)

where < denotes material equivalence, and is used as shorthand for both
clauses -_A =~A and ~A = —_A. In this case, the semantics of P is the
same whether or not the first part of the transformation to —_P takes place.

We want this generic semantics to be an extension of stationary semantics.
So we must guarantee that the semantics of a program without any occurence
of —-negation is the same as for stationary semantics, whatever kind of —-
negation axioms are used and defined in the generic schema. To that end, we
must first minimize by circumscription the atoms in the language of P, and
only afterwards do we minimize the bar-ed atoms.

54 5. WFSX and autoepistemic logics

Definition 5.1.5 (M<N). Let M and N be two models of a program —_P
and Mpos (Tesp. Npos) be the subset of M (resp. N) obtained by deleting from
it all literals of the form —_L.

We say that M<N iff:

MPOS - NPOS N (Mpos = Npos ANM C N)

This definition is similar to the classical one plus a condition to the effect
that, say, model M; = {—_a} is smaller than model My = {a}.

Minimal models are now defined as in 5.1.1 but with this new < relation.
The equivalence between minimality and circumscription is made through
the ordered predicate circumscription CTRC(T; O;D) of the theory T, in
which objective propositions O are minimized, but minimizing first proposi-
tions not of the form —_A, and only afterwards the latter, and where default
propositions D are fixed parameters.

The definition of stationary expansion of an extended programs is then
a generalization of Definition 5.1.2, parametrized by the set of axioms AX_,
defining —_A, plus this new notion of ordered minimality.

Definition 5.1.6 (Stationary AX_ expansions). A stationary expansion
of an AX_, extended program P is any consistent theory P* which satisfies
the following fixed point condition.:

P' =~ PUAX-U{not.L| P* ko, ~LyU{~notD| P i, L}

where L is any arbitrary objective proposition, and AX-, is the set of axioms
for =-negation in P.

A stationary expansion P* of a program P is obtained by adding to the
corresponding clausal program —_P the axioms defining —-negation, and the
negations by default not_L of those and only those literals L which are false
in all minimal models of P*. The meaning of negation by default is that, in
any stationary expansion P*, not_L holds if and only if P* minimally entails
~L. Note that the definition of AX_, can influence, by reducing the number
of models, whether ~L is in all minimal models of P*.

It is known (cf. [113, 71, 82]) that for any positive proposition A of any
theory T, the above definition of %mc implies:

TE, A=TEA
Thus, and directly from Definition 5.1.6:

Proposition 5.1.1. A consistent theory P* is a stationary expansion of an
AX_ extended program P iff:

— P* is obtained by augmenting —_P U AX_, with some default propositions
not_A and ~not_A where A is an objective proposition;

5.1 Generic semantics 55

— P* satisfies the conditions:

Pl notA = P ~A and
P* = ~not A = P* A

for any objective proposition A.

Example 5.1.3. Consider program P :

b < a
p «— —Qa
q < notp

where — in P is classical negation, i.e.
AX_ ={-_a &~a, 7pnp, g &gl

The clausal program of P is:

p VvV ~a
p vV ~a
qg V ~notp

The only stationary expansion of P is:
P} =-_PUAX_ U{~not_p,not_—_p,not_q, ~not_—_q,not_a, ~not_—_a}
In fact, the only minimal model of P} is:

{~not_p, not_—_p, not_q, ~not_—_q, not_a, ~not_—_a,
Py~ ™, g, ~a, }

and the conditions of proposition 5.1.1 hold.

Note how the < relation prefers this model to other models that would
be minimal if the usual < were to be enforced. For example, the classically
minimal model:

{~not_p,not_—_p, not_q, ~not_—_q, not_a, ~not_—_a,
P, ~ps 4, g, ~a, TG }

is not minimal when the < relation is considered.

If = in P is defined by :
AX_‘ = {ﬁia :>r'\/a7 ‘Lp :}Np7 ﬁiq éwq}

i.e. min P is a strong negation in the sense that it implies classical negation
in —_P, then the only stationary expansion of P is:

Py = -_PUAX_ U{not_p,not_—_p, ~not_q, not_—_q, not_a, not_—_a}
In fact, the only minimal model of P5 is:

{not_p, not_—_p, ~not_q, not_—_q, not_a, not_—_a,
~Ps TP, €y T NG, }

and the conditions of proposition 5.1.1 hold.

56 5. WFSX and autoepistemic logics

We now define the semantics of a program based on its stationary expan-
sions relative to some AX_..

Definition 5.1.7 (Stationary AX_ semantics). A stationary AX_, model
of a program P is the meaning of P*, where P* is a stationary AX_, expansion
of P.

The stationary AX-, semantics of an extended program P is the set of all
stationary AX_ models of P.

If S = {My, | k € K} is the semantics of P, then the intended meaning of
P is:

M = ﬂ M.
keK

Example 5.1.4. The meaning of the program of Example 5.1.3 is:
{p, —q, —a,not q,not a,not —p}

if we use classical negation, and:
{g,not p,not —p,not —q,not a,not —a}

if we use strong negation.

Ezxzample 5.1.5. Consider P :

a <« notb
—a

where — is a weak form of negation determined by:

AX ={~A=-A|AeH}

The only stationary expansion of P is:

P* =-_PUAX_U{~not_a,~not_—_a,not_b, ~not_—_b}
determining thus the meaning of P as

M = {a,—a,not b, ~b}.

The fact that both @ and —a belong to M is not a problem since the weak
form of negation allows that. Note that ~A = —_A is equivalent to AV —_A,
and allows models with both A and —_A. Literal —b also appears in M forced
by the weak negation.

Now we state in what sense this semantics is a generalization of stationary
semantics:

Proposition 5.1.2 (Generalization of stationary semantics). Let P
be a (non-extended) normal logic program, and let AX_, be such that no clause
of the form

A1 V...V A, where {A;,...,4,} CH

5.1 Generic semantics 57

s a logical consequence of it.
M is a stationary AX_, model of P iff M (modulo the —-literals) is a
stationary model of P.

The reader can check that all sets of axioms AX_ used in the sequel
satisfy the restriction imposed in the proposition. This restriction on the form
of AX_ is meant to avoid unusual definitions of —-negation where positive
literals are just a consequence of the axioms independently from the program.
For instance:

Ezample 5.1.6. Let P = {a < b}, and
AX_ = {aV ~=b,~b}.
P has a stationary AX_ model
{a,not —a,not b, —b}

which is not a stationary model of P. Note however that a is in the model
because it is a logical consequence of AX_, irrespective of the program.

The parametrizeable schema. Stable models [78] have a one-to-one cor-
respondence with stable expansions [132], and the latters can be obtained
simply by replacing %mc by %WA in the definition of stationary expansion
of normal programs, where CWA denotes Reiter’s closed world assumption
[187], as shown in [183].

As with the stationary semantics of extended programs, a generic defi-
nition of stable semantics for extended programs can also be obtained, with
p* }%WA ~L as the condition for adding negation by default.

So, in general a new parameter in the schema is desirable in order to
specify how default negation is to be added to an expansion.

Definition 5.1.8 ((AX_,noteconq) expansion). A (AX_ noteond) expan-
sion of an extended program P is any consistent theory P* which satisfies the
following fixed point condition:

P*=-_PUAX_U{not_L | noteona(L)} U{~not_L | P* = L}
where L is any arbitrary objective proposition.

The definition of a generic semantics is similar to that of stationary se-
mantics.

Definition 5.1.9 ((AX_,noteonq) semantics). A (AX_, noteonq) model
of a program P is the meaning of P*, where P* is a (AX_,n0tcond) erpansion
of P.

The semantics of a program P is the set of all (AX_,noteonq) models of
P. The intended meaning of P is the intersection of all models of P.

58 5. WFSX and autoepistemic logics

We define Stable AX_ Semantics as the generic semantics where:

Nnoteond(L) = P* = ~L.

CWA

With this definition, propositions 5.1.1 and 5.1.2 are also valid for stable
models.

5.1.3 Properties required of —

In this section we present some of the properties of extended logic programs
and show for some AX_, whether or not the resulting semantics comply with
such properties. Here we examine the cases of:

e classical negation ie. AX_={ —-_Ae~A|AecH}
e strong negation ie. AX_ ={ - A=>~A|AeH}
e weak negation ie. AX_={ ~A=-_A|AcH}
e pseudo negation ie. AX_ ={}.
for both the stationary and stable semantics generic schemes. In Section 5.1.4
we redefine WF S X, introducing explicit negation, by imposing;:
AX-={} and notena(l)=P" [, ~LVP" E-L

Alternatively, we can define WFSX via stationary AX_, semantics with:
e cxplicit negation ie. AX_ ={-_A=not A| A€ H}

We concentrate next only on properties concerning the —-negation. For
a comparative study of semantics also concerning negation by default see
Section 9.2.

Property 5.1.1 (Intrinsic consistency). A semantics is intrinsically consistent
iff, for any program P, if M is a stationary (resp. stable) model of P then
for no atom A € H :

{A,—A} C M.

In other words, a semantics is intrinsically consistent if there is no need
for testing for consistency within the final (stationary or stable) models of a
program.

Fxample 5.1.7. Let P be:

a <« notb
—a <« notb

where — is weak negation.
The only stationary expansion of P is:

P*=-_PU{~A= —_A| AeH}U{notb,not_—_b}.

The only minimal model of P* is:

5.1 Generic semantics 59

{a, ~not_a,—_a,~not_—_a,~b,~—_b,not_b, not_—_b}

and is consistent.
However the meaning of P* :

{a, —a,not_b, not_—_b}
is inconsistent.

As shown with the previous example, semantics with weak negation might
not be intrinsically consistent. The same happens with semantics with pseudo
negation.

Semantics with classical or strong negation are intrinsically consistent
because, by the very definition of AX_,, for every atom A € H,

~AV ~—_A € P*,

for every expansion P* of any program P, and thus no model of P* has A
and —_A. So the meaning of P* can never contain both A and —A.

Property 5.1.2 (Coherence). A semantics is coherent iff, for any program P
and objective literal L, whenever M is a stationary (resp. stable) model of
P:

— if =L € M then not L € M?3.

As argued above, this property plays an important role if we consider the
second kind of negation instrumental for specifying the falsity of literals. In
that case coherence can be read as:

if A is declared false then it must be assumed false by default.

It turns out that, for both stationary and stable semantics, coherence is
equivalent to consistency:

Theorem 5.1.1. A stationary (or stable) semantics is coherent iff it is con-
sistent.

Proof. In appendix.

Property 5.1.8 (Supportedness). A semantics is necessarily supportive iff, for
any program P, whenever M is a stationary (resp. stable) model of P then,
for every objective literal L, if L € M there exists in P at least one identifiable
rule of the form:

L+~ By,...,B,,not Cy,...,not Cy,
such that:
{Bh...,Bn,TLOt 017...,n0t Cm} Q M.

3If L = —A, this reads as =—A = A € M then not —A € M.

60 5. WFSX and autoepistemic logics

Since for any program P :
-_PU {not,L P, NL}

is a Horn clause program, a stationary (or a stable) semantics such that
AX_ does not contain any clause with positive propositions is necessarily
supportive. Thus, semantics with pseudo or strong negation are necessarily
supportive.

Semantics that introduce in AX_ such clauses might not be necessarily
supportive. For example, if — is classical negation necessary supportedness
does not hold:

Example 5.1.8. Consider program P :

a «— b
—a

The only stationary {—_A <~A} model is:
M = {not a,—a,not b, —b}.
As —b € M, and there is no rule for —b, the semantics is not necessarily

supportive.

This property closely relates to the use of logic as a programming lan-
guage. One does not expect objective literals to be true unless rules stat-
ing their truth condition are introduced; in other words, except for default
propositions, no implicit information should be expected. We argue that if
one wants the result of the previous program one should write:

—|b «— —Q

-a

or, if disjunction is introduced:

a «— b
—a
b Vv =b

5.1.4 Fixing the set AX_, and the condition not.onq(L)

In this section we reconstruct some semantics for extended programs simply
by specifying the set AX_ and the condition noteonq(L) w.r.t. the generic
semantics defined above. We contribute this way for a better understanding
of what type of second negation each of those semantics uses, what are the
main differences among them, and how they compare to WFSX.

We begin by reconstructing answer-sets semantics [80] for programs with
consistent answer-sets (equivalent to the semantics of [209]).

5.1 Generic semantics 61

Theorem 5.1.2 (Answer-sets semantics). An interpretation M is an
answer-set of a program P iff M is a stable

AX ={-A=>~A|AcH}
model of P (modulo the syntactic representation of models*).

Proof. Since:

— stable models correspond to stable expansions for normal logic programs,
and

— answer sets are the consistent stable models of the normal program ob-
tained by considering every objective literal of the form —L as a new atom
—_L, i.e. consistent stable {} models of P,

for proving this theorem it is enough to prove that:

1. All stable {-_A =~A | A € H} expansions are consistent
2. Consistent stable {} models are equivalent to stable {-_4 =~A | A € H}
models.

The first point is clear given that, as shown in Section 5.1.3, stable se-
mantics with strong negation are always consistent.

If P* is a consistent stable {} expansion, then for every objective propo-
sition =_A :

pr ': - A by corgstency p* l?é A by <g>WA

P*)%WA NA
Thus, formulae of the form:
- A =~A

are theorems in all consistent stable {} models.
So, by adding them to expansions the results remain unchanged, i.e. point
2 holds.

This theorem leads to the conclusion that answer-sets semantics extends
stable models semantics with strong negation. Thus, from the results of Sec-
tion 5.1.3, we conclude that answer-sets semantics is consistent, coherent and
supportive.

Note that if instead of strong negation one uses pseudo negation and a test
for consistency in the final models, the result would be the same. However,
we think that the formalization as in Theorem 5.1.2 is more accurate because
the consistency there is intrinsic and dealt within the fixpoint condition, with
no need for meta-level constraints, and the properties exhibited are those of

4 Recall that in the definition of answer-sets, default literals are not included in
models. By “modulo the syntactic representation of models” we mean removing
all default literals in models according to this definition.

62 5. WFSX and autoepistemic logics

strong negation and not of pseudo negation. For example, coherence and in-
trinsic consistency (properties of strong negation but not of pseudo negation)
are obeyed by answer-sets semantics.

One semantics extending well founded semantics with —-negation is pre-
sented in [180], and reviewed in Section 2.2 above. It claims that the method
used in [80] can be applied to semantics other than stable models, and so
that method is used to define the proposed semantics. It happens that the
meaning of — is not the same as for answer-sets, in the sense that different
AX_s are used:

Theorem 5.1.3 (WFS plus — as in [180]). An interpretation M is an
extended stable model of a program P iff M 1is a consistent stationary
AX_ = {} model of P.

Proof. Trivial, given that for normal logic programs WFS corresponds to
stationary models, and WFS plus — as in [180] is just the WFS of the normal
program obtained by considering literals of the form =L simply as new atoms
-_L.

Note the need for testing consistency in stationary models of the seman-
tics so that L and —L are related in the end. As seen in Section 5.1.3, this
semantics does not comply with coherence, which imposes a permanent rela-
tionship between L and —L in the computation of models.

Next we reconstruct the stationary semantics with classical negation pre-
sented in [183]. This semantics was originally defined similarly to the generic
definition above, but where AX_ is absent and literals of the form —A and
not —A are just transformed into ~A and ~mnot A, respectively. From this
similarity the reconstruction follows easily:

Theorem 5.1.4 (Stationary semantics with classical negation).
An interpretation M is a stationary model (in the sense of [183]) of a program
P iff M is a stationary

AX ={-Ae~A|AcH}
model of P.
Proof. In appendix.

From the results of Section 5.1.3 we conclude that this semantics does
not comply with supportedness. Nevertheless, this semantics is the only one
reconstructed here that introduces real classical negation into normal logic
programs. We argue that, comparing it with other semantics with strong
negation, this is not a big advantage since, once disjunction is added to logic
programs with strong negation, a programmer can state in the language that
the negation is classical rather than strong. This can be done simply by

5.1 Generic semantics 63

adding rules of the form A vV —A for every atom. Moreover, the programmer
has the opportunity of stating which negation, strong or classical, is desired
for each of the atoms in the language, by choosing whether to add or not, for
each atom, such a disjunctive rule.

WFSX and strong negation. Since WFSX exhibits all the above mentioned
properties of strong negation (cf. Section 9.1) and is defined as an extension
of WFS, it seems that it should be closely related to stationary semantics
with strong negation. In fact:

Theorem 5.1.5 (WFSX and strong negation). If an interpretation M
18 a stationary

AX ={-A=~A|AcH}
model of a program P then M is a WFSX partial stable model of P.
Proof. Trivial, given the proof of Theorem 5.1.6 below.

Thus WFSX gives semantics to more programs and, whenever both se-
mantics give a meaning to a program, the WF model of WFSX is a (possibly
proper) subset of that of stationary semantics with strong negation. The dif-
ferences between WFSX and stationary semantics with strong negation are
best shown with the help of examples.

Ezample 5.1.9. Consider program P :

shaves(john, X) <« not shaves(X, X)
go_dine_out(X) <« shaves(Y,X)
—go_dine_out(john)

stating that “John shaves everyone not does not shave themselves”; “If x has
been shaved (by anyone) then z will go out to dine”; and“John has not gone
out to dine”.

According to WFSX its well founded model (and only partial stable
model) is M:

{—go_dine_out(john), not go_dine_out(john),not —shaves(john, john)}.

Note that M is not even a model in the (usual) sense of [172], because for
the second rule the truth value of the head (false) is smaller than the truth
value of the body (undefined).

Recall that in WFSX —-negation overrides undefinedness (of, in this case,
go_dine_out(john)). The truth of —~L is an ezplicit declaration that L is false.

Any semantics complying with proposition 5.1.1, and in particular the
stationary semantics with strong negation, cannot have M as a model of the
program: not_go_dine_out(john) is in an expansion iff ~ go_dine_out(john)
is in all minimal models of that expansion, but if this is the case then (by
the second rule) ~shaves(john, john) should also be in all minimal models,
which would necessarily entail not shaves(john, john) in the expansion.

64 5. WFSX and autoepistemic logics

Example 5.1.10. Take the program:

god_exists <« not ngod_exists
—god_exists <« not god_exists
—go_to_church <« not god_exists
go_to_church

where the first two rules represent two conflicting default rules about the
existence of God, the third rule states that “if I assume God does not exist
then I do not go to church”, and the last that “I go to church”.

According to WFSX, the well-founded model of this program is:

{go_to_church,not —~go_to_church}

whilst according to stationary semantics with strong negation the well-
founded model is:

{go_to_church, god_exists,not —go_to_church,not —god_exists}

In fact, since go_to_church belongs to all minimal models, by the strong
negation axiom, ~—_go_to_church also belongs to all minimal models. Thus,
by the third rule ~not_god_exists, must belong to all minimal models. So,
~god_exists also belongs to all minimal models (by the second rule), and the
result above follows.

This example also shows that the stationary semantics with strong nega-
tion does not comply with the property of relevance. In fact god_exists be-
longs to the semantics of the whole program, but not to the semantics of the
program containing only the rules “below” god_exists, i.e. only containing
the first two rules.

In order to reconstruct WFSX in the generic schema, a new condition for
adding default negation is required, forcing a default literal not_L to assuredly
belong to an expansion also in the case where the explicit negation —_L is in
all models.

Theorem 5.1.6 (WFSX semantics). An interpretation M is a partial sta-
ble model of a canonical program® P iff M is a stationary

AX_ ={-_A=not A| AeH}

model of P.
Alternatively, M is a partial stable model of P iff M is the meaning of a
P* such that:

P*=-_PU {not,L | P* ks, ~Lor P* | iL} U{~not L | P* |= L}

CcrI
Proof. In appendix

5 This restriction to canonical programs is done without loss of generality, cf.
corollary 9.1.1 which show that for every program P there is a canonical program
P’ whose WFSX semantics is equivalent to that of P.

5.1 Generic semantics 65

FEzample 5.1.11. The program P of Example 5.1.9, abbreviating go_dine_out
to gdo, john to j, and shaves to s, has a single expansion:

P* = —_P U {not_gdo(j), ~not_—_gdo(j),not_—_s(4,5)}.
In fact its minimal models are:

{ nOt*S(jvj)a ’I”LOt,_LS(j,j), nOtﬁng(j)a NnOt*_‘*ng(j%
S(]?])? N_‘*S(Jaj% ng(]), _'*ng(J)}

{~not_s(j, j), not—s(j, j), not_gdo(j), ~not-~gdo(j),
~s(j,5), ~ms(4,4), ~gdo(j), —_gdo(j)}

In all these models we have:

— ~—.5(7,7) so we must introduce not_—_s(J,5);

— —1_gdo(j) so we must introduce ~not_—_gdo(j) and, by the second disjunct,
not_gdo(j). Note that there is no need for adding not_gdo(j) in the first
alternative of Theorem 5.1.6 since it follows as a consequence, given the
axioms in AX_,.

The semantics of P is the meaning of P*, i.e.

{=gdo(j),not gdo(j), not —s(j,j)}-
giving its WFSX single partial model.

5.1.5 Logic programs with —-negation and disjunction

Based on the similarities between the generic definition of stationary seman-
tics for extended programs and that of stationary semantics for normal logic
programs, it is easy to extend the former for extended disjunctive logic pro-
grams based on the extension of the latter for disjunctive normal programs
[183], where the rule syntax is enlarged to include disjunctive conclusions.
First we have to extend the definition of —_P for the case of disjunctive
programs. This extension is obtained simply by adjoining to Definition 5.1.3:

9. ..] reinterpreting the connective V in logic programs as classical
disjunction”.
With this new context we define:
Definition 5.1.10. A stationary AX_ expansion of an extended disjunctive
program P is any consistent theory P* which satisfies the following fixed

point condition (where the distributive axiom not (A A B) = not AV not B
is assumed):

P* = ‘!,PUAX—‘ U {TLOt F | P I?IRC NF}

where F is an arbitrary conjunction of positive (resp. negative) objective lit-
erals.

66 5. WFSX and autoepistemic logics

Given this definition the semantics follows similarly to Section 5.1.2.

Example 5.1.12. Consider program P :

p <« nota
p <« not b
aV —b

and let AX_, be the axioms for strong negation. The only stationary AX_
expansion of P is:

P*=-_PUAX_U
{not_—_a,not_b, ~not_p, not_—_p, not_a V not_—_b, ~not_aV ~not_—_b}

Thus the only stationary AX_ model is {p, not —p, not —a,not b}.

Henceforth, the way is open for the study of the interaction between —
and disjunction in semantics of extended programs, and comparisons among
those semantics via disjunction. One such result concerning the latter is the
comparison between the use of classical or strong negation mentioned above
in page 63.

Example 5.1.13. In Example 5.1.8 it is shown that the program P :

a «— b
—a

considering — as classical negation, has the single stationary model:
M = {not a,—a,not b, —b}.

This fails to comply with the property of supportedness. There we argue
that if one wants the result of M then the program should be written as P, :

a «— b
-

bV —b

It is easy to see that, with the above definition of stationary expansion of
extended disjunctive programs, the only stationary model of P, when — is
strong negation, is M.

It is known [183] that a definition such as 5.1.10 makes program disjunc-
tions exclusive. This is seen in Example 5.1.12. In order to treat disjunctions
as inclusive rather than exclusive, in non-extended disjunctive programs, it
suffices to replace £, by E__ in the definition of expansions [183],
where WECW A stands for Weak Extended Closed World Assumption [194]
or Weak Generalized Closed World Assumption [186].

Further developments on the introduction of disjunction in extended logic
programs, including that of inclusive disjunction, are beyond the scope of this
work.

5.2 Autoepistemic logics for WFSX 67

5.2 Autoepistemic logics for WFSX

In the previous section we identified distinct acceptations of —-negation in
different semantics for extended logic programs. Some properties of each of
those —-negations were presented. However no epistemic meaning was given
to such —-negations.

The main goal of this section is to establish a nonmonotonic epistemic
logic with two modalities — provability and belief — capable of expressing the
distinct acceptations of —-negation described in the previous section.

As noted by [39, 117, 123], Gelfond’s translation cannot be generalized to
extended programs. A suitable translation between extended logic programs
with answer-sets semantics and reflexive autoepistemic theories was proposed
independently in [117] and [123]. Reflexive autoepistemic logic, introduced in
[198], views the operator £ as “is known” instead of the “is believed” of
Moore’s autoepistemic logic [132]¢. In [117, 123] the authors choose a trans-
lation of extended logic programs into theories of reflexive sutoepistemic logic,
and prove that the answer-sets of an extended logic program correspond to
the reflexive expansions of its translation. The translation renders an ob-
jective literal A (resp. =A) as LA (resp. L ~A, where ~ denotes classical
negation), i.e. “A is known to be true” (resp. “A is known to be false”), and
renders not L as L ~LL, i.e. “it is known that L is not known”. The embed-
ding of extended logic programs into reflexive autoepistemic logic can also be
defined for (non-reflexive) autoepistemic logic [117, 123], by translating any
objective literal L into L A LL. This translation was proposed in [39] too.

The embedding of stable model semantics into autoepistemic logic was
generalized to well-founded semantics [182], with Gelfond’s translation, but
where Generalized Closed World Assumption (GCWA) [129] replaces the
Closed World Assumption (CWA) [187] in what regards the adoption of de-
fault literals. No study of embeddings of well-founded semantics with —-
negation exists to date. This is one purpose of this section. Significantly, the
embedding proposed in [39, 117, 123] does not generalize to well-founded se-
mantics based extende logic programs semantics. Indeed, that translation is
too specific, and can only be applied to semantics based on the stable model
semantics (i.e. that are two-valued).

Ezample 5.2.1. Program P = {a <« not a} translates into the non-reflexive
autoepistemic theory

T ={~La= LaNa}={La}

It is easy to see that this theory has no expansion, even when GCWA is taken
up instead of CWA.

5 Roughly, this is achieved by adding F = LF, instead of just £LF when F holds.

68 5. WFSX and autoepistemic logics

In contradistinction, our stance is that the second kind of negation intro-
duced in logic programs represents and requires an additional modality to the
one necessary for interpreting negation by default. Thus, in order to define
a general translation between extended programs and some epistemic logic,
the latter must include two modalities”. In our view, an objective literal —A
(resp. A) should be read “A is proven false”, denoted by & ~A (resp. “A is
proven true”); and not L should be read “it is believed that L is not proven”,
denoted by B ~EL. £ refers to epistemic knowledge as defined by proposi-
tional provability, and relates to the consistency modality M by E =~M ~.
The belief operator of this logic is B, inspired by the one introduced in [184].

The structure of this section is as follows: we begin by reviewing Moore’s
autoepistemic logic, introduced in [132], and the autoepistemic logic of closed
beliefs introduced in [182]. In Section 5.2.2 we define an autoepistemic logic
augmented with the modality £, which is capable of expressing and comparing
various semantics of extended logic programs. The flexibility and generality
of our approach are brought out in Section 5.2.3, by establishing how different
notions of provability and knowledge, and different semantics for extended
programs are captured by it, providing for a better understanding of the
different kinds of negation. The greater generality of the autoepistemic lan-
guage provides a tool for examining further generalizations of extended logic
programming. This is discussed in Section 5.2.4.

5.2.1 Moore’s and Przymusinski’s autoepistemic logics

A propositional autoepistemic language is any propositional language Lang
with the property that for any proposition A in Lang, hereafter called objec-
tive, its alphabet also contains the corresponding belief proposition LA, i.e.
the proposition whose name is a string beginning with the symbol £ followed
by A. The intended meaning of LA is “A is believed”.

An autoepistemic theory is any theory T over an autoepistemic language®.
The following definition of stable autoepistemic expansion can be easily
shown equivalent to Moore’s:

Definition 5.2.1 (Stable autoepistemic expansion). A consistent the-
ory T* is a stable autoepistemic expansion of the autoepistemic theory T iff:

— T* =T UB, where B is a (possibly empty) set of belief literals, i.e. literals
of the form LA or ~LA, where A is an objective proposition, and

7 In [116] the author also proposes a bi-modal logic (MBNF) for interpreting ex-
tended programs. There is a MBNF rendering of answer-sets which, as shown
in [39, 117], is equivalent to the AEL-unimodal translations already discussed
above that express answer-sets too.

8 Like in the previous section, we use the symbol ~ to denote classical negation in
theories.

5.2 Autoepistemic logics for WFSX 69

— T* satisfies the following conditions:

T = LA " = A
T ~LA T £ A

This definition expresses positive and negative introspection of a rational
agent: an agent believes in some proposition A iff A belongs to all models of
its knowledge; and has no reason to believe in A (~£LA) iff A doesn’t belong
to all models of its knowledge.

Remark 5.2.1. In the original definition of Moore, the belief operator £ can
be applied to any formula, and thus the definition of expansion is modified
accordingly. In [182] it is shown the restriction to propositions in the above
definition doesn’t influence generality. Moreover, as our interest is focused
on autoepistemic logic for logic programming, such general formulae do not
occur in theories (cf. Gelfond’s translation below).

Example 5.2.2. Consider the following autoepistemic theory 7', modeling the
so called birds fly situation:

abnormal(b)
Its only stable expansion is (with obvious abbreviations):
T U{Lb(a), Lb(b), Lab(b), Lf(a), ~Lab(a),~Lf(b)}

stating that an agent with knowledge T believes that a and b are birds, b is
an abnormal bird and a flies, and has no reason to believe that a is abnormal,
and that b flies.

Of course, some autoepistemic theories might have several stable expan-
sions:

Ezample 5.2.3. The theory T :

a V Lb
b VvV La

has two expansions, namely:

T U{La,~Lb}
TU{Lb,~La}

Each of these can be envisaged as a belief state, i.e. an agent with knowledge
T has two possible states of belief: either he believes in a and in that case has
no reason to believe in b, or vice-versa. A sceptical agent with these belief
states should have no reason to believe nor disbelieve neither a nor b.

70 5. WFSX and autoepistemic logics

In [182] Przymusinski argues, and we concur, that Moore’s autoepistemic
logic has some important drawbacks:

e First, quite reasonable theories have no stable expansions [133, 179].
For example the theory:

broken_car
can_fix_it V Lcan_fix_it

has no stable expansion, because no consistent addition of beliefs to the the-
ory entail believing can_fiz_it, and disbelieving that it can be fixed leads to
an inconsistency?, the agent should rest agnostic about that, neither believ-
ing nor disbelieving it can be fixed. However, one expects a reasoner with
this knowledge at least to believe that the car is broken.

e Another important drawback is that, even for theories with stable ex-
pansions, Moore’s autoepistemic logic does not always lead to the expected
intended semantics. For instance consider the example!?:

Example 5.2.4. A robot is programmed to carry some money from bank 1 to
bank 2. There are two possible routes, denoted a and b; the robot chooses one
of them, provided that it has no reason to believe there is trouble along the
route. If it can choose any route then it should prefer route a. After choosing
a route, the robot signals “ I'm leaving” and tries to reach bank 2. This task
can be naturally formalized by the autoepistemic theory:

Litrouble(a)A\ ~Ltrouble(b) = choose(b)
Ltrouble(b)A ~Ltrouble(a) = choose(a)
~Ltrouble(a)\ ~Ltrouble(b) = choose(a)
choose(a) = signal
choose(b) = signal

Given this knowledge, its unique stable expansion captures the intended
meaning, i.e. the robot has no reason to believe that there is trouble in any
of the routes, and thus chooses route a and signals.

Supposed now one adds to the theory the knowledge that there is some
trouble in one of the routes, but it is not known which, expressed by:

trouble(a) V trouble(b)

The resulting theory has two stable expansions, both of which con-
tain L£signal, and where one contains L choose(a) and the other contains
Lchoose(b). According to the stable expansions a sceptical reasoner would
believe neither in choose(a) nor in choose(b), i.e. the robot wouldn’t choose
any of the routes, which is reasonable. However such a reasoner would believe

9 Note that by adding ~Lcan_fiz_it to the theory, can_fiz_it follows as a conse-
quence, and thus Lcan_fiz_it must be added (inconsistency).
19 This example first appeared in [29], in the form of a logic program.

5.2 Autoepistemic logics for WFSX 71

in signal, i.e. the robot says “ I'm leaving”, which clearly doesn’t express the
intended meaning.

e Stable expansions cannot be effectively computed even within simple
classes of theories, such as propositional logic programs [96]. This is an im-
portant drawback, specially if one is interest in a theory for implementing
knowledge representation and reasoning.

e Last but not least, by always insisting on completely deciding all of an
agent’s beliefs, stable expansions often lack expressibility. This issue will be
further explored in this section.

In order to overcome these drawbacks Przymusinski introduced in [182]
the general notion of autoepistemic logics of closed beliefs, and presented the
circumscriptive autoepistemic logics as an important special case.

The notion of autoepistemic logics of closed beliefs arises naturally as
a generalization of Moore’s autoepistemic logics. First Przymusinski points
out that in the definition of stable expansion, T* [~ A can be replaced by
T* %WANA’ and proceeds to argue that stable expansions are a special
case of expansions based on the general notions of positive and negative
introspection.

Definition 5.2.2 (Autoepistemic expansion). A consistent theory T* is
an autoepistemic expansion of a theory T iff

— T* =TUB, where B is a (possibly empty) set of belief literals, i.e. literals
of the form LA or ~LA, where A is an objective proposition, and
— T* satisfies the following conditions:
™ E LA T =, A
™ E ~LA T Eg4 ~A

where |=op 45 a general entailment operator of open beliefs (or positive in-
trospection) and =, is a general entailment operator of closed beliefs (or
negative introspection).

Depending on the chosen positive and negative introspection entailment
operators different autoepistemic logics are obtained.

Based on this general definition, Przymusinski defines Circumscriptive
Expansions simply by choosing = as the positive and |= ' as the negative
introspection operators. He also shows that with this definition of expan-
sion, all of the above pointed out drawbacks are overcome, and that, through
Gelfond’s transformation between normal logic programs and autoepistemic
theories (whereby not L is construed as ~£LL), the least expansion is equiv-
alent to the well-founded semantics of [76].

! Here |=

CIRC
sitions are of the form LA instead of not_A.

is as in the previous section (cf. page 54), but where the fixed propo-

72 5. WFSX and autoepistemic logics
5.2.2 A logic of belief and provability

In this section we define an epistemic logic, £B, with provability and belief
modalities, and show how it captures the WFSX semantics.

We begin by analyzing definite extended logic programs (i.e. extended
logic programs without negation by default), and by defining a modal logic
to interpret such programs. We then extended this logic to deal with belief
propositions. Finally, we relate the £B logic to WFSX.

Provability in extended definite programs. To motivate and make clear
the meaning of the provability modality, we begin with the simpler problem
of how to capture the meaning of extended logic programs without negation
by default, i.e. sets of rules of the form:

LO%Ll,...,Ln ’ILZO (51)

where each L; is an atom A or its explicit negation —=A. Without loss of gen-
erality, as in [172] we assume that all rules are ground.

The semantics of these programs is desireably monotonic, and must be
noncontrapositive, i.e. distinguish between

a<—b
and

=b «+— —a

so that rules are viewed as (unidirectional) “inference rules”; Gelfond’s trans-
lation does not capture this distinction: both rules translate to

b=a

Ezample 5.2.5. According to Gelfond’s translation, P :

a «— b
—a

is rendered as the theory T :

b = a
~a

This theory entails {~a, ~b}, and the semantics of P (both under WFSX and
answer-sets) is {—a}. Note how ~b is derived in T via the contrapositive of
the first rule.

The cause of the problem is that —A translates into “A is false”, and rule
connective < as material implication. In contrast, the semantics of extended
logic programs wants to interpret = A as “A is provenly false”, in a grounded
sense, and < as an inference rule. To capture this meaning we introduce the

5.2 Autoepistemic logics for WFSX 73

modal operator &, referring to (propositional) “provability”, or “epistemic
knowledge”, and translate rule (5.1) into:

EL1N...NEL,, = ELy (52)

where any explicitly negated literal = A is translated into £ ~A and reads
“A is provenly false”, and any atom A is translated into €A and reads “A4 is
provenly true”.

This translation directly captures the intuitive meaning of a rule, “if all
Lq,...,L, are provable then L is provable”, and does not conflate contra-
positives: a « b becomes £b = £a, whilst —b «— —a gives £ ~a = £ ~b.

Note the similarities to the translation defined in [117, 123] into reflexive
AEL, where an atom A is translated into LA, and —A into £ ~A, and where
L is the knowledge operator of modal logic SW5.

We need to assume little about £, and this guarantees flexibility. £ is
defined as the necessity operator of the smallest normal modal system, modal
logic K. This logic includes only modus ponens, necessitation, distribution

over conjunctions, and the axiom'?:

K: EF=G) = (EF = £G)

In logic K, £ is the dual of the modal consistency operator M, i.e.
E =~M ~. This weak modal logic, although sufficient for WFSX when
combined with a belief modality and nonmonotonicity (as shown below), can
also express other meanings of £ just by introducing more axioms for it. In
Section 5.2.3 in particular, we interpret £ as knowledge by introducing the
additional axioms for logic SW5.

Since at this stage we are simply interested in the semantics of monotonic
(definite) extended logic programs, we do not require a nonmonotonic version
of this logic.

Above we said that translation (5.2) can capture the semantics of ex-
tended logic programs. The next theorem makes this statement precise for
answer-sets and WFSX semantics. It generalizes for almost every semantics
of extended logic programs, the only exception being, to our knowledge, the
“stationary semantics with classical negation” defined in [183], which is con-
trapositive.

Theorem 5.2.1. Let P be an extended logic programs, and T the theory
obtained from P by means of translation (5.2). If for no atom A, T bg
EANE ~A then:

Tk EA PEas A PEwrsx A

TI—K(SNA P':AS -A P':WFSX —-A

where Fg denotes, as usual, the consequence relation in modal logic S, and
P l=as L, resp. P Ewrsx L, means that L belong to all answer-sets, resp.
all WFSX partial stable models, of P.

12 For a precise definition of logic K and its properties see [38, 89].

74 5. WFSX and autoepistemic logics

Otherwise, the only answer-set is the set of all objective literals, and P is
contradictory with respect to WFSX.

Belief and provability. Besides explicit negation extended logic programs
also allow negation by default, which is nonmonotonic and usually under-
stood as a belief proposition. Thus, we need to enlarge modal logic K with a
nonmonotonic belief operator.

Before tackling the more general problem, we begin by defining what be-
liefs follow from definite extended logic programs. Such programs are readily
translatable into sets of Horn clauses, thereby possessing a unique minimal
model. So, as a first approach consider: “the agent believes in every formula
belonging to the minimal model of the theory”, i.e. if T =i F then BF
(introspection).

Ezample 5.2.6. The program of Example 5.2.5 translates into T :

Eb = E&a
£ ~a

whose least model is (apart irrelevant literals) {€ ~a}.
Thus an agent with knowledge T believes all of BE ~a, B ~Ea, B ~&Eb,
and B ~& ~b.

Moreover we insist that, for rational agents, if T = €L then B ~& ~L
(coherence). In this context, coherence states that whenever L is provenly
true then it is mandatory to believe that L is not provenly false!®. In the
above example this rule does not interfere with the result. This is not in
general the case:

Ezample 5.2.7. Cousider T = {€a; & ~a} whose least model is
{€a,& ~a}

BEa and BE ~a hold by introspection. Moreover, by coherence, an agent
should sustain both B ~£ ~a and B ~&a.

This kind of reasoning may seem strange since the agent believes in com-
plementary formulae (e.g. in £a and in ~&a.). But, as shown below, when
axioms for B are introduced, they will detect inconsistency out the intuitively
inconsistent theory T, i.e. belief cannot be held of proven complements.

As for &, also for Blittle is assumed about it, for the sake of flexibility and,
we shall show, because it is enough for characterizing WFSX. More precisely,
we assume the axioms introduced in [184] for the belief operator:

— For any tautologically false formula F: ~BF.
— For any formulae F' and G: B(F A G) = BF A BG.

13 Note that B ~£ ~L = BML.

5.2 Autoepistemic logics for WFSX 75

As proven in [184], from these axioms it follows for every formula F' that
BE =~B ~F

Consequently, from believing two complementary formulae, BF and B ~F,
inconsistency follows, because B ~F =~BF.
In summary, for a theory T resulting from a definite extended logic pro-

gram, the set of beliefs of an agent is the closure under the above axioms
of:

{BF | T |=min FYU{B ~E ~F | T |= £F}

as required by introspection and coherence, respectively.

In order to enlarge the logic K with a nonmonotonic belief operator we
proceed as above, but now consider the case where formulae of the form BF
or ~BF (hereafter called belief formulae) occur in theories. In this case, it
is not adequate to obtain the belief closure as above. To deal with belief
formulae in theories we must consider, as usual in AEL, the expansions of a
theory.

An expansion of a theory T is a fixpoint of equation T* = T'U Bel, where
Bel is a set of belief formulae depending on 7. Intuitively, each expansion
stands for a belief state of a rational agent. By so doing one new problem
arises:

which nonmonotonicity to introduce in such theories or, in other

words, under what conditions is an agent to augment his set of beliefs
?

In this respect two main approaches have been followed in the literature:
One, present in Moore’s AEL and reflexive AEL, is based on CWA and cap-
tures two-valued (or total) semantics of logic programs. The other approach
is based on GCWA and captures three-valued (or partial) semantics of LPs.
The latter is followed in the AEL of closed beliefs [182], and in the static
semantics [184]'4. Here, and based on the reasons presented in Section 5.2.1
above, we adopt the second approach.

In the sequel we formally define our epistemic logic: first we extend the
language of propositional logic with modal operators £ and B, standing for
“provability” and “belief”. Theories are recursively defined as usual. More-
over we assume every theory contains all axioms of logic K for £, and the
two axioms above for B.

Definition 5.2.3 (Minimal models). A minimal model of a theory T is a
model M of T such that there is no smaller model N of T coinciding with M
on belief propositions.

14 Note that the question of distinguishing between these two approaches is not rel-
evant for definite programs, since in them nonderivability coincides with deriving
the complement in the (single) minimal model.

76 5. WFSX and autoepistemic logics

If F is true in all minimal models of T then we write T =i F.

An expansion T* corresponds to a belief state where the agent believes
in F if T* =, F, and does not believe in F' if T* &,,;,~F. Note that,
with the axioms introduced for B, the second statement is subsumed by the
first. In fact, by the first statement, if T* =, ~F then B ~F, and from the
axioms for B it follows that ~BF.

As argued for definite extended programs, when considering theories with
provability and belief one new form of obtention of beliefs (coherence) is in
order, namely that if T* = £F then B ~& ~F. Thus expansions should
formalize the following notion of belief B:

BF = F is minimally entailed, or ' =~& ~G and £G is entailed.

Definition 5.2.4 (Expansion). An expansion of a theory T is a consistent
theory T™* satisfying the fived point condition:

T* = TU{BF | T* |emin F} U {B ~E ~G | T* | G}

Ezample 5.2.8. Consider the following autoepistemic theory 7', which is a
modification of the birds fly situation of Example 5.2.2:

~BE ~fly(X) A Ebird(X) = Efly(X)
Ebird(a)
Ebird(b)
& ~fly(b)

where the last clause expresses that b is proven not to fly.
Its only expansion is (with obvious abbreviations):

T U{BEb(a), BEL(Y), BE f(a), BE ~(b), B ~E ~b(a), B ~E ~b(b),
B ~E ~f(a), B ~Ef(b)}

stating that an agent with knowledge T believes that a and b are birds, b
doesn’t fly, a flies, and disbelieves that a and b are not birds, that a doesn’t
fly, and that b flies.

Ezample 5.2.9. *® Consider an agent with the following knowledge:

— Peter is a bachelor;

— A man is proven not to be married if he is provenly a bachelor;

— Susan is proven to be married to Peter, if we do not believe she’s married
to Tom.

— Susan is proven to be married to Tom, if we do not believe she’s married
to Peter.

— It is proven that no one is married to oneself.

!5 This example first appeared in [212], in the form of a logic program.

5.2 Autoepistemic logics for WFSX 7

rendered by the autoepistemic theory T' (with obvious abbreviations):

£€b(p)
EX) = £~m(X,)Y)
B~Em(t,s) = Em(p,s)
B ~Em(p,s) = Emf(t,s)
E ~m(X,X)
The only expansion of T' contains, among others, the belief propositions:

{ng(p)v BE Nm(pa S)a B Ngm(pv 8)7 Bgm(ta 3)}

In both the above examples all of an agent’s beliefs are completely decided,
in the sense that for any proposition A the agent either believes or disbelieves
A. This is not in general the case.

Ezample 5.2.10. Consider the statements:

— if it is believed that the car cannot be fized then it is proven that it can be

fixzed.

— If it is not believed that one can fix the car then it is proven that an expert
1s called for.
— It is proven that an expert is not called for.
rendered by the autoepistemic theory T :

B ~Ecan_fix_car = Ecan_fix_car
B ~Ecan_fix_car = Ecall_expert
& ~call_expert

The only expansion of T is:
T U {BE ~call_expert, B ~Ecall_expert}

stating that an agent believes that an expert is not called and that he disbe-
lieves an expert is called.

Like Moore’s autoepistemic theories, £B theories might have several ex-
pansions:

Example 5.2.11. Consider the theory T, describing the so-called Nixon dia-
mond situation:
Erepublican(nizon)
Equaker(nizon)
Erepublican(X), B ~Epacifist(X) = & ~pacifist(X)
Equaker(X), B ~& ~pacifist(X) = Epacifist(X)
T has three expansions, namely those resulting from 7" union with:

{BEr(n),BEq(n),BEp(n), B ~E ~r(n),B ~E ~q(n),B ~E ~p(n)}
{BEr(n),BEq(n), BE ~p(n),B ~& ~r(n),B ~E ~q(n), B ~Ep(n)}
{BEr(n), BEq(n), B ~& ~r(n), B ~& ~q(n)}

78 5. WFSX and autoepistemic logics

The first states that it is believed that Nixon is a pacisfist; the second that
it is believed that Nixon is not a pacifist; and the third remains undefined in
what concerns Nixon being or not a pacisfist.

When confronted with several expansions (i.e. several possible states of
beliefs) a sceptical reasoner should only conclude what is common to all. Here
that coincides with the third expansion.

Relation to extended logic programs. Recall that an extended program
is as set of rules of the form:

Lo« Ly,...,Lyp,not Lipy1,...,n0t Ly, (5.3)

where each L; is an objective literal, i.e. an atom A or its —-negation —A.

As argued above, an atom A is translated into £ A, and an explicitly
negated atom —A into & ~A. In [117, 123] literals of the form not L are
translated into £ ~LL in reflexive AEL. [123] gives an intuitive reading of
this formula: “it is known that L is not known”. In our approach we translate
not L into B ~EL, i.e. “it is believed (or can be assumed) that L is not
proven”. So, each rule of the form (5.3) is translated into:

SLl,,(‘:Lm,BN(‘:Lm_i_l,,B NgLnigLo (54)

Definition 5.2.5 (Models and expansion). A model M of an extended
logic P corresponds to an expansion T iff:

— For an objective literal L : L € M iff T* = BEL.
— For a literal not L: not Le M iff T* =B ~EL.

Theorem 5.2.2 (WFSX, provability and belief). LetT be the theory ob-
tained from a canonical extended logic program P by means of translation
(5.4). Then there is a one-to-one correspondence between the WFSX partial
stable models of P and the expansions of T.

This relationship brings mutual benefits to both WFSX and the £B logic.
On the one hand, the logic allows for a more intuitive view of WFSX, spe-
cially in what concerns its understanding as modeling provability and belief
in a rational agent. This allows for a clearer formalation within WFSX of
some problems of knowledge representation and reasoning, and for a better
understanding of WFSX’s results. In particular, it shows that explicit nega-
tion stands for proving falsity, default negation for believing that the literal is
not proven, and undefinedness for believing neither the falsity nor the verity
of a literal. The relationship also sheds light on several extensions of WFSX
(cf. Section 5.2.4).

On the other hand, for the class of theories resulting from some extended
programs, the logic can be implemented using the procedures defined for
WFSX in Chapter 10. Moreover, for this class, the logic enjoys the properties
of cumulativity, rationality, relevance [54, 58|, and others proven for WFSX
below. In addition, the relationship also raises new issues in epistemic logics,

5.2 Autoepistemic logics for WFSX 79

and points towards their solution via the techniques in use in extended logic
programming (cf. Section 5.2.4).

5.2.3 Provability versus knowledge

Above we claimed logic £B is flexible and general. Next we express in it dif-
ferent meanings for £, and hence a variety of semantics for extended logic.

The logic K introduced for £ is the simplest normal modal system. With
additional axioms in our theories we can define other meanings for £. In
particular, with the axioms of logic SW5!6 & represents “knowledge” in its
sense [198, 123]. Other formalizations of knowledge, such as that of logic
S4.2'7, are similarly obtainable.

Using the SW5 meaning of £, but keeping with the same translation, a
different semantics for extended programs is obtained:

Theorem 5.2.3 (Knowledge and strong negation). LetT be the theory
obtained from an ELP P by means of translation (5.4), augmented with the
SW5 axioms for £. Then there is a one-to-one correspondence between ex-
pansions of T and the partial stable models of P according to the WFS with
strong negation.

Example 5.2.12. Program P :

-q
a <« notb
b «— notbd

translates into the theory T :

E ~a
B~Eb = Ea
B~EL = &b

Using logic K, there is one expansion
T =TU{BE ~a,B ~Ea,B ~E ~b}.

If logic SW5 is used instead there is no expansion. This happens because, by
axiom T, £ ~a entails ~€a, and by the second clause ~€a entails ~B ~Eb.
Thus, by the third clause, every minimal model of every possible expansion
has ~&b, and so B ~&b must be added. This is inconsistent with having
~B ~&Eb in all models, and so no expansion exists. WFSX assigns a meaning,
namely {—a,not a,not —b}, to P because axiom T is not assumed.

16 Te. axioms T: EF = F, 4: EF = EEF, and W5: ~ ~F = (F = £F).
17 [111] uses S4.2 to formalize knowledge in a logic which also includes belief. We
intend to compare this logic with ours when the final version becomes available.

80 5. WFSX and autoepistemic logics

From Theorem 5.2.3 and the results of Section 5.1 regarding classical
negation it follows that:

Theorem 5.2.4 (Classical negation). Let T be the theory obtained from
an ELP P by means of translation (5.4), augmented with the SW5 axioms for
&, and the axiom ~EF = £ ~F. Then there is a one-to-one correspondence
between expansions of T and the partial stable models of P according to the
“stationary semantics with classical negation”.

Since answers-sets are the total stable models of WFS with strong nega-
tion:

Definition 5.2.6 (Total expansions). An expansion T* is total iff for ev-
ery formula F :

T*KEBF = T*EB~F

Theorem 5.2.5 (Answer-sets). Let T be the theory obtained from an ELP
P by means of translation (5.4), augmented with the SW5 azioms for E. Then
there is a one-to-one correspondence between total expansions of T and the
answer-sets of P.

5.2.4 Further developments

Since the language of £B is more general than that of extended programs, our
logic is a tool for further generalizations of extended logic programming, for
for instance disjunction. All is required is to define a translation of disjunctive
extended programs into the logic. The study of possible translations, and
the relationship between the resulting and extant semantics for disjunctive
programs is the subject of ongoing investigations.

Another possible direct generalization of extended logic programming is
with the modal operators of the logic, allowing for conjunction and disjunc-
tion within their scope. Examples of the use and usefulness of the belief
operator for normal disjunctive programs can be found in [184].

With the relationship between £B logic and extended logic programming
now established, some issues already tackled in the latter can also be raised
in the former. Furthermore, the former can profit from adapting techniques
employed in the latter. One of the issues presented here in more detail is
contradiction removal, or belief revision.

Recently, several authors have studied this issue in extended logic pro-
gramming [10, 68, 92, 144, 146, 152]. The basic idea behind these approaches
is that not L literals be viewed as assumptions, so that if an assumption
partakes in a contradiction then its revision is in order. In epistemic logics
this idea translates into:

“If the results of introspection lead to the inexistence of expan-
sions then revise your beliefs”.

5.2 Autoepistemic logics for WFSX 81

Example 5.2.13. The theory T :

B~Eab = Efly
E~fly

is consistent but has no expansion. This is so because ~Eab is true in all
minimal models and thus, by introspection, B ~€ab must be added causing
a contradiction. In fact, a typical case where the result of introspection leads
to contradiction'®.

In order to assign a meaning to consistent theories without expansions
two approaches are possible: to define a more sceptical notion of expansion,
introducing less belief propositions by introspection; or to minimally revise
the theory in order to provide for expansions.

Contradiction avoidance in the £B logic amounts to weakening the condi-
tion for introspection. This can be accomplished by introducing belief propo-
sitions solely for a chosen subset of the formulae minimally entailed by the
theory. Of course, not all subsets are allowed. In particular, we are only in-
terested in maximal subsets. The study of additional preference conditions
among these subsets is tantamount to the one in extended logic program-
ming. This issue is studied in length in Chapter 8 for logic programs, and is
thus not further explored in this section for the corresponding autoepistemic
theories.

Contradiction removal in the £B logic amounts to minimally adjoining, to
a consistent theory without expansions, new clauses that inhibit the addition,
by introspection, of belief propositions responsible for contradiction. Again,
by the equivalence between this autoepistemic logic and WFSX, the study
of extra such mechanism is tantamount to contradiction removal in logic
programming as studied in Chapter 8.

8 Note this problem is not peculiar to our logic. The same also occurs in e.g.
Moore’s autoepistemic logic and reflexive autoepistemic logic.

82 5. WFSX and autoepistemic logics

6. WFSX and default logic

A relationship between logic programs and default theories was first proposed
in [22] and [23]. The idea is to translate every program rule, into a default one
and then compare the extensions of the default theory with the semantics of
the corresponding program.

The main motivations for such a relationship are, on the one hand, the
use of logic programming as a framework for nonmonotonic reasoning and, on
the other hand, the computation of default logic extensions by means of logic
programming implementations algorithms. Moreover, having already the re-
lationship established for some semantics of logic programs, it is important
to keepup with such a relationship, for mutual clarification.

In [23] stable model semantics [78] was shown equivalent to a special case
of default theories in the sense of Reiter [188]. This result was generalized
in [80] to programs with explicit negation and answer-set semantics, where
they make explicit negation correspond to classical negation used in default
theories.

Well Founded Semantics for Default Theories [19] extends Reiter’s seman-
tics of default theories, resolving some issues of the latter, namely that some
theories have no extension and also that some theories have no least exten-
sion. Based on the way such issues were resolved in [20], the well founded
semantics for programs without explicit negation was shown by them equiva-
lent to a special case of the extension classes of default theories in the sense of
[19]. It turns out that in attempting to directly extend this result to extended
logic programs with explicit negation one gets some unintuitive results and
no semantics of such logic programs relates to known default theories.

To overcome that, here we first identify principles a default theory se-
mantics should enjoy to that effect, and introduce a default theory semantics
that extends that of [20] to the larger class of extended logic programs, but
still complying with those principles.

Such a relationship to a larger program class improves the cross-fertiliza-
tion between logic programs and default theories, since we generalize previous
results concerning their relationship [19, 20, 22, 23, 80, 173, 174]. Moreover,
there is an increasing use of logic programming with explicit negation as a

84 6. WFSX and default logic

nonmonotonic reasoning tool [18, 80, 154, 156, 157, 162, 163, 209], which can
thus be a vehicle for implementing default theories as well. The relationship
also further clarifies the meaning of logic programs combining both explicit
negation and negation by default. In particular, it shows in what way ex-
plicit negation corresponds to classical negation in our default theory, and
elucidates the use of rules in extended logic programs. Like defaults, rules are
unidirectional, so their contrapositives are not implicit: the rule connective
< is not material implication but has rather the flavour of an inference rule.

Implementationwise, since WFSX is definable by a monotonic fixpoint
operator, it has desirable computational properties, including top-down and
bottom-up procedures. As the default semantics is sound with respect to Re-
iter’s default semantics, whenever an extension exists, we thus provide sound
methods for computing the intersection of all extensions for an important
subset of Reiter’s default theories.

The semantics for default theories presented here is restricted to the lan-
guage where prerequisites and justifications are finite sets of ground literals,
the conclusion is a literal, and all formulas not in default rules are literals as
well. Note that when relating defaults to logic programming in the usual way,
the language of theories corresponding to programs is already thus restricted.
Furthermore, in Section 6.6 we show that default theories with this language
restriction are nevertheless as powerful as logic programs with explicit nega-
tion.

In this chapter we present a semantics for default theories, and show its
relationship with WFSX. Based on this relationship, we give an alternative
definition of WFSX which does not rely on 3-valued logic but on 2-valued
logic alone.This is achieved by resorting to a variant of Gelfond and Lifschitz’s
I" operator, whose connection to Reiter’s defaults is well-known. The reader
more interested in this I'-like definition of WFEFSX than in the default theory
may skip directly to Section 6.7.

This definition of WFSX is also an important consequence of the estab-
lished relationship. It allows for viewing WFSX as a partial 2-valued seman-
tics, where undefined literals are those that can neither be proven true nor
false, i.e. those whose truth in a 3-valued logic is “unknown”.

6.1 The language of defaults

First we review the language of propositional defaults, and some known de-
fault logics.

Definition 6.1.1 (Default rule). A propositional default d is a triple
d = (p(d), j(d), c(d))

where p(d) and c(d) are propositional formulas and j(d) is a finite subset of
propositional formulas. p(d) (resp. j(d), resp. ¢(d)) is called the prerequisite

6.1 The language of defaults 85

(resp. justification, resp. consequence) of default d. The default d is also
denoted by
p(d) : j(d)
c(d)
Definition 6.1.2 (Default theory). A default theory A is a pair (D, W)
where W is a set of propositional formulas and D is a set of default rules.

As remarked above the definition of the semantics of default theories is
herein defined only for a restricted language, though powerful enough to map
extended logic programs. Accordingly we define:

Definition 6.1.3 (Restricted default theory). A restricted default rule
is a default rule

p(d) : j(d)
c(d)
where p(d), j(d), and c(d) are literals.
A restricted default theory A is a pair (D, W) where W is a set of literals
and D is a set of restricted default rules.

Next we review, for the case of propositional defaults, some known default
theory semantics. We start by reviewing Reiter’s classical default logic [188].
Then we review (partly following [20]) the well-founded [20] and stationary
[174] default logics, which correspond respectively to the well founded [76]
and stationary semantics [180] of (nonextended) logic programs.

6.1.1 Reiter’s default semantics

To every default theory A Reiter associates the operator I'a, acting on sets
of objective literals called contexts:

Definition 6.1.4 (The I'a operator). Let A = (D, W), be a propositional
default theory and let E be any set of objective literals, called a context. ['a(FE)
is the smallest context which:

1. contains W; .
2. is closed under all derivation rules of the form pld) phere W eD

c(d)’
and —f € E, for every f € j(d).

Intuitively, I'a(F) represents all objective literals derivable from W plus
FE, closed under all default rules whose justifications are consistent with F.

Definition 6.1.5 (Reiter’s default extensions). A context E is an ex-
tension of a default theory A iff:

E =TA(E)

The cautious default semantics of A is the context consisting of all objective
literals which belong to all extensions of A.

86 6. WFSX and default logic

As argued in [174], default extensions can be viewed as rational sets of
conclusions deducible from A.

One problem of Reiter’s default logic is that it may have multiple exten-
sions and in that case the cautious default semantics is not an extension. If
one views extensions as the only rational sets of conclusion then, surprisingly,
the (cautious) semantics is not itself one such set.

Example 6.1.1. Consider the default theory A :

({c :bﬂa’ c :aﬂb},{c}>

which has two extensions:

E, = {a,b,c}
E2 = {b7 _'aac}

The cautious default semantics is {c}, itself not an extension, and thus,
according to Reiter’s semantics, is not a rational set of conclusions.

Another problem is that, in cases where a definite meaning is expected,
no extensions exist (and thus no meaning is given).

Example 6.1.2. The default theory:

(7))

has no extensions. However p is a fact, and we would expect it to be true.

6.1.2 Well-founded and stationary default semantics for normal
logic programs

Here we review two approaches which relate normal logic programs with
default theories, and resolve the above mentioned issues of Reiter’s default
logic.

Baral and Subrahmanian [20] introduced the well founded semantics for
(propositional) default theories giving a meaning to default theories with
multiple extensions. Furthermore, the semantics is defined for all theories,
identifying a single extension for each.

Let A = (D, W) be a default theory, and let I'a(E) be as above. Since
T'A(E) is antimonotonic I'}(E) is monotonic [20], and thus has a least
fixpoint®.

Definition 6.1.6 (Well founded semantics).

— A formula F is true in a default theory A with respect to the well-founded
semantics iff F € lfp(I"?).

! Least with respect to set inclusion in contexts.

6.2 Some principles required of default theories 87

— F is false in A w.r.t. the well founded semantics iff F & gfp(I'?).
— Otherwise F' is said to be unknown (or undefined).

This semantics is defined for all theories and is equivalent to the Well
Founded Model semantics [76] of normal logic programs.
More recently [174], Przymusinska and Przymusinski generalized this

work by introducing the notion of stationary default extensions?.

Definition 6.1.7 (Stationary extension). Given a default theory A, E is
a stationary default extension iff:

— E=T3(E)
— ECTA(E)

Definition 6.1.8 (Stationary default semantics). Let E be a stationary
extension of a default theory A.

— A formula L is true in E iff L € E.
— A formula L is false in E iff L &€ TA(E).
— Otherwise L is said to be undetermined (or undefined).

This semantics has been shown equivalent to stationary semantics of nor-
mal logic programs.

Remark 6.1.1. Note that every default theory has at least one stationary
default extension. The least stationary default extension always exists, and
corresponds to the well founded semantics for default theories above. More-
over, the least stationary default extension can be computed by iterating the
monotonic operator I'3.

Ezample 6.1.3. Consider the default theory of Example 6.1.2. We have
Ta({p}) = {p,q} and I'3({p}) = {p}. p is true in the theory A.

6.2 Some principles required of default theories

Next we argue about some principles a default theory semantics should enjoy,
and relate it to logic programs extended with explicit negation, where the said
principles are also considered desirable.

Property 6.2.1 (Uniqueness of minimal extension). We say that a default
theory has the uniqueness of minimal extension property if when it has an
extension it has a minimal one.

It is well known that Reiter’s default theories do not comply with this
principle, which plays an important réle, specially if we consider the so called
cautious version of a default semantics [127]:

2 In [174] the work of [20] is also generalized to deal with nonpropositional default
theories.

88 6. WFSX and default logic

Example 6.2.1. Consider the default theory
republican(X) : —pacifist(X) quaker(X) : pacifist(X)
—paci fist(X) ’ pacifist(X)

{republican(nizon), quaker(nixon)}

where Reiter’s semantics identifies two extensions:

E, = { pacifist(nizon), republican(nizon), quaker(nizon) }
Ey = { -pacifist(nizon), republican(nizon), quaker(nizon) }

Thus the cautious Reiter’s semantics is
{republican(nizon), quaker(nizon)}

As noted in [174], if we view an extension as a rational set of conclusions,
it is strange that the cautious semantics itself does not constitute one such
set.

By obeying the uniqueness of minimal extension property, a default se-
mantics avoids this problem. Moreover, this property also eases finding iter-
ative algorithms to compute the cautious version of a default semantics.

Definition 6.2.1 (Union of theories). The union of two default theories
Ay = (D1, W) and Ay = (Dy, Wh)

with languages L(A1) and L(As) is the theory:
A=A UA; = (DyUDy, Wy UWs)

with language L(A) = L(A;) U L(Ag).

Example 6.2.2. Consider the two default theories:

A= ({=2 =20 0)
4, = ({5hH)

Classical default theory, well-founded semantics, and stationary semantics
all identify {b} as the single extension of As.

Since the languages of the two theories are disjoint, one would expect
their union to include b in all its extensions. However, both the well founded
semantics as well as the least stationary semantics give the value undefined
to b in the union theory; therefore they are not modular® . There is an ob-
jectionable interaction among the default rules of both theories when put
together. In this case, classical default theory is modular but has two exten-
sions: {—a,b} and {a, b}, failing to give a unique minimal extension to the
union.

3 This shortcoming of least stationary semantics was detected independently in
[56].

6.2 Some principles required of default theories 89

Property 6.2.2 (Modularity). Let Ay, As be two default theories with con-
sistent extensions such that L(A;) N L(Ay) = {} and let A = A; U A, with
extensions EY E’ and E%. A semantics for default theories is modular iff:

Va(ViA € B}y = VA € ER)
VA(VJ'A S EJAQ = VA € EZ)

Informally, a default theory semantics is modular if any theory resulting
from the union of two consistent theories with disjoint language contains the
consequences of each of the theories alone.

Proposition 6.2.1. Reiter’s default logic is modular.

Proof. Since a modular theory must be consistent by definition, the disjoint
alphabets of two theories can never interact.

Consider now the following examples:

Example 6.2.3. The default theory

(s ——

has two classical extensions, {a} and {b}. Stationary default semantics has
one more extension, namely {}.

Ezample 6.2.4. Let (D, W) be:

(-2 557}).

The only classical extension is {—a,b}. In the least stationary extension,
E= FZ(E) = {ﬁa},](dz) € F but C(dg) ¢ FE.

Definition 6.2.2 (Applicability of defaults). Given an extension E:

— a default d is applicable in E iff p(d) C E and —j(d) N E = {}
— an applicable default d is applied in E iff ¢(d) € E

In classical default semantics every applicable default is applied. This
prevents the uniqueness of a minimal extension. In Example 6.2.3, because
one default is always applied, one can never have a single minimal extension.
In [20, 173, 174], in order to guarantee a unique minimal extension, it becomes
possible to apply or not an applicable default. However, this abandons the
notion of maximality of application of defaults of classical default theory.
But, in Example 6.2.4, we argue that at least rule dy should be applied.

We want to retain the principle of uniqueness of minimal extension cou-
pled with a notion of maximality of application of defaults we call enforced-
ness.

90 6. WFSX and default logic

Property 6.2.3 (Enforcedness). Given a theory A with extension E, a default
d is enforceable in E iff p(d) € E and j(d) C E. An extension is enforced if
all enforceable defaults in D are applied.

We argue that, whenever F is an extension, if a default is enforceable then
it must be applied. Note that an enforceable default is always applicable.

Another way of viewing enforcedness is that if d is an enforceable default,
and F is an extension, then the default rule d must be understood as an
inference rule p(d), j(d) — ¢(d) and so ¢(d) € E must hold.

The well founded semantics and stationary semantics both sanction mini-
mal extensions where enforceable defaults are not applied, viz. Example 6.2.4.
However, in this example they still allow an enforced extension {b, ~a}. This
is not the case in general:

Ezample 6.2.5. Let (D,W) = ({2, +52, =2} {-b}). The only sta-

c b 7 a
tionary extension is {—b}, which is not enforced.

Based on this notion of enforcedness (first presented in [150]), in [174],
Przymusinska and Przymusinki defined saturated default theories:

Definition 6.2.3 (Saturated default theory). A default theory
A= (D,W)
1s saturated iff for every default rule

p(d) = j(d)
@ <P

if p(d) € W and j(d) C W, then c(d) € W.

For this class of default theories they prove that both stationary and well
founded default semantics comply with enforcedness. However considering
only saturated default theories is a severe restriction since it requires a kind
of closure in the theory W.

6.3 (2-default theory

Next we introduce a default theory semantics which is modular and enforced
for every (restricted) default theory. Moreover, when it is defined it has a
unique minimal extension.

In the sequel, whenever unambigous, we refer to restricted default rules
and theories, simply as default rules and theories.

In order to relate default theories to extended logic programs, we must
provide a modular semantics for default theories, except if they are contra-
dictory, as in the example below:

6.3 (2-default theory 91

Example 6.5.1. In the default theory:

(1=) 0)

its two default rules with empty prerequesites and justifications should always
be applied, which clearly enforces a contradiction. Note that this would also
be the case if the default theory were to be written as ({}, {a, —a}).

Consider now Example 6.2.2, that alerted us about nonmodularity in
stationary default semantics, where D = {-=—%, =4, :Tb}, and {} is the
least stationary extension.

This result is obtained because I'a({}), by having a and —a forces, via
the deductive closure, —b (and all the other literals) to belong to it. This
implies the non-applicability of the third default in the second iteration. For
that not to happen one should inhibit —b from belonging to I'a({}), which
can be done by preventing, in the deductive closure in I', the explosion of
conclusions in presence of inconsistency®. This is one reason why [20]’s use
of I'3 does not extend to programs with explicit negation.

In our restricted language this is not problematic, because as formulae are
just literals, the inhibition of that principle can simply be made by renaming
negative literals, without side-effects.

Definition 6.3.1 (I'4(E)). Let A = (D,W) be a propositional default the-
ory and E a context. Let E' be the smallest set of atoms which:

1. contains W';
2. s closed under all derivation rules of the form %, such that

and ~f & E, for every f € j(d)', and f € E for every —_f € j(d)'.

where W' (resp. p(d)’, j(d)', and ¢(d)’) is obtained from W (resp. p(d), j(d),
and c(d)) by replacing in it every negative literal =A by a new atom —_A.

I'\(E) is obtained from E' by replacing every atom of the form —_A by
—A.

Reconsider now Example 6.2.4, that showed that stationary default ex-
tensions are not always enforced. The non-enforced extension is (the least
extension) £ = I'*(E) = {-a}, where I'(E) = {—a,a,b}. The semantics
obtained is that —a is true and a is undefined.

To avoid this counterintuitive result we want to ensure that, for an ex-
tension E :

4 By the explosion of conclusions we mean the principle “FEz Contradictione Se-
quitur Quot Libet” (From a contradiction everything follows), which is a prop-
erty of the deductive closure in classical logic. Wagner [210] argues against this
principle.

92 6. WFSX and default logic

Vde D —c(d) € E=c(d) ¢ I'(E),

i.e. if =c(d) is true then c(d) is false®.

It is easily recognized that this condition is satisfied by seminormal default
theories: if —¢(d) belongs to an extension then any seminormal rule with
conclusion ¢(d) cannot be applied. This principle is exploited in the default
semantics.

Definition 6.3.2 (Seminormal version of a default theory). Given a
default theory A, its seminormal version® A® is obtained by replacing each

default rule d = %:d)j@ in A by the default rule

o2 jd)eeld)
c(d) ’

Definition 6.3.3 ({24 operator). For a theory A we define:

Qa(E) = T4 (Th. (E)).

Definition 6.3.4 (2-extension). Let A be a default theory. E is an exten-
ston iff:

— B =04(E)

~ ECI).(E)

Based on (2-extensions we define the semantics of a default theory.

Definition 6.3.5 ({2-default semantics). Let A be a default theory, E an
extension of A, and L a literal.

— L is true w.r.t. extension E iff L€ E
— L is false w.r.t. extension E iff L ¢ I'}.(E)
— Otherwise L is undefined

The 2-default semantics of A is determined by the set of all £2-extensions
of A.

The cautious §2-default semantics of A is determined by the least §2-
extensions of AT.

5 Note the similarity with the coherence principle.
6 In Reiter’s formalization a default is seminormal if it is of the form

p(d) @ j(d) Ac(d)
c(d) '
The definitions are equivalent because only ground versions of the defaults are

considered.
" The existence of a least extension is guaranteed by Theorem 6.3.2 below.

6.3 (2-default theory 93

Like in [174], we also require that each extension E be a subset of I'. (E)3.

By not doing so (i.e. considering as extensions all the fixpoints of (2), the
semantics would allow for an objective literal to be both true and false in
some extensions.

Example 6.3.2. For the default theory

:-a b a: —a b —b
A=
<{ a b b b c bl c }7{})

there are four fixpoints of 24 :

B, = {} I'\.(Er) = {a,bc}
E, = {a,c} I'\.(E2) = {b,c}
E; = {bc} I'\.(E3) = {a,c}
Ey = {a,bc} Ih(Esy) = {}

Only Fj is an extension, and thus it determines the (2-default semantics
of A..

Note how, for instance, a € Ey and a ¢ I'y.(E2). Thus, if Ey were to be
considered as an extension a would be both true and false in Es.

Moreover, intuitively no extension should contain ¢, since for each rule
with conclusion ¢, the prerequisites are incompatible with the justification.
In Fs5 cis true because a being true satisfies the prerequisites, and a being
false satisfies the justifications.

This definition of extension guarantees that no pair of contradictory lit-
erals belongs to E.

Proposition 6.3.1. If E is a 2-extension of a default theory A then:
AL|{L,~L} CE.

Proof. Assume the contrary, i.e. 3L | {L,~L} C E and F is an extension.
By seminormality, L ¢ I').(E) and =L & I',.(E). Thus E € I'\.(E), and

so is not an extension.

Example 6.3.3. Consider the default theory

A:({ :c—|c’ :a—|b’ :bﬂa7ﬁ:a}’{}>.

Its only extension is {-a, b}.

In fact:
]j/Ag ({"CL, b}) = {Ca ba —|CL} and
F/A({Cv b, _‘a}) = {_'a7 b}

Thus —a and b are true, c¢ is undefined, and a and —b are false.

8 In [174] the requirement is with respect to I'a(E) instead of with respect to
I\s(E).

94 6. WFSX and default logic

It is easy to see that some theories may have no (2-extension.
Example 6.3.4. The theory A = ({7, Ta}7 {}) has no f{2-extension.

Definition 6.3.6 (Contradictory theory). A default theory A is contra-
dictory iff it has no (2-extension.

In order to guarantee the existence of a least extension we prove:

Theorem 6.3.1 (2 is monotonic). If A is a noncontradictory theory then
24 is monotonic.

Proof. We begin by stating two lemmas:
Lemma 6.3.1. Let A = (D, W) be a noncontradictory default theory, and

r_ =
a=(pu{—-irew}).
E is an 2-extension of A iff is an 2-extension of A'.

Proof. Tt is easy to see that every 2-extension of A and of A’ contains W.
Thus for each {2-extension of one of the theories the set of rules in D applied
is the same as in the other theory.

Lemma 6.3.2. If A is a noncontradictory default theory then I\ is anti-
monotonic.

Proof. Without loss of generality (cf. lemma 6.3.1 above) we consider

A:(Dv{})

First we define two transformations over sets of objective literals, and one
over default theories.

— A~ is a set of atoms obtained from a set of objective literals A by replacing
every negative literal =L by the new atom —_L.

— AT is a set of objective literals obtained from a set of atom A by replacing
every atom of the form —_L by the objective literal —L.

— A~ is the default theory obtained from A = (D, W) by replacing in D
every occurence of a negative literal =A by the new atom —_A.

Clearly, the first two transformations are monotonic, i.e.:
ACB= AT CB"
ACB= A" CB~

Directly from the definition of I, and given that we are assuming W =
{}, and A is noncontradictory:

IH(A) = (s (A7) ()

Now we prove that:

6.3 (2-default theory 95

AC B = I'\(B) C Th(A)
By monotonicity of A~ :
ACB= A" CB~
Given that I is antimonotonic for any default theory:
AT CB” = I'x—-(B7)CTa—-(A7)
By monotonicity of AT :
[y (B7)C Iy (AT)= (Ia (BO)* C Iy (A7)
By the result of (x) :
(Fa——(B7))* C (s (A7) = I(B) C I (4)
i.e. I')y is antimonotonic.

Since {24 is the composition of two antimonotonic operators, it is mono-
tonic.

Definition 6.3.7 (Iterative construction). To obtain a constructive def-
inition for the least (in the set inclusion order sense) (2-extension of a theory
we define the following transfinite sequence {Eq}:

Ey = {}
E..1 = AFE,)
Es = U{Eala<d} for limit ordinal 0
By Theorem 6.3.1, and the Knaster-Tarski theorem [204], there must exist
a smallest ordinal A for the sequence above, such that F) is the smallest

fixpoint of £2. If F) is a {2-extension then it is the smallest one. Otherwise,
by the proposition below, there are no {2-extensions for the theory.

Proposition 6.3.2. If the least fixpoint E of 24 is not a 2-extension of A
then A has no (2-extensions.

Proof. We prove that if there exists an extension E* of 24, then the least
fixpoint of 24 is an extension.

Assume that such an E* exists. Given that, by hypothesis, F is the least
fixpoint of 24, E C E*.

On the assumption that E* is an extension, A is noncontradictory and,
by lemma 6.3.2, I');. is antimonotonic. Thus:

ECE' = I'h.(E*) CTh.(E)
Since, by hypothesis, E* is an extension, E* C I'),,(E*). Thus:
E* C [h(E") C T (B)
Again using the fact that £ C E* :
EC B C I (E") C Iy (B)
Thus E C I',.(E), and so E is an extension of 4.

96 6. WFSX and default logic

Example 6.3.5. Consider the default theory A of Example 6.3.3. In order to
obtain the least (and only) extension of A we build the sequence:

Ey = {}

B = IHIW({)) = Dh(feab-a) = {-a)

By = I4(Ih({~a})) = Ih({eb-a)) = {-ab}

Br = L{-ad) = fhleb-ad) = {med) =
= L2

Because By C I')y.(E2), it is the least {2-extension of A.
Ezxample 6.3.6. Let A = ({7, Ta}7 {}) . Let us build the sequence:

Ey = {}
By = TA(Ih({}) = I'h({a,—a}) = {a,—a}
Ey = Th(I'h.({a,—a})) = Th({}) = {a,ma} = E

Since By € I'y.(E1), A has no 2-extensions.

We will now prove that this new default semantics satisfies all the princi-
ples required above (Section 6.2).

Theorem 6.3.2 (Uniqueness of minimal extension). If A has an ez-
tension then there is one least extension E.

Proof. Trivial, given that {24 is monotonic for noncontradictory program.
Theorem 6.3.3 (Enforcedness). If E is a {2-extension then E is enforced.

Proof. Without loss of generality (cf. lemma 6.3.1 above) we consider
A= (D,{}).
We want to prove that for any default rule d :
p(d) € E and j(d) CE=c¢(d) € E

If j(d) C E then, by seminormality, no rule with a conclusion —f, such
that f € j(d), is applicable in I');, (E). So, given that we are assuming W = {}
for theory A :

for all literals f in j(d), =f & I'4:(E).

Thus the default d is applicable in I'AI'\.(E), i.e., by definition of I
I'\I'",.(E) must be closed under the derivation rule %.

Given that F is an {2-extension:

p(d) € E = p(d) € TZ 5 (E)
and because I'4I".(F) must be closed under that derivation rule:

e(d) € Iy (E)

Again because E is an extension, if ¢(d) € I'\I')\.(E) then ¢(d) € E.

6.4 Comparison with Reiter’s semantics 97

Corollary 6.3.1. If E is an 2-extension of A then for any d = @ € A,
c(d) € E.

Proof. Follows directly from enforcedness for true prerequisites and justifica-
tions.

Theorem 6.3.4 (Modularity). Let La, and La, be the languages of two
default theories. If La, N La, = {} then, for any corresponding extensions
FEy and Es, there always exists an extension E of A = Ay U As such that
E = FE; UE;.

Proof. Since the languages are disjoint, the rules of A; and Ay do not interact
on that count. Additionally, since there is no explosion of conclusions in the
presence of inconsistency, one can never obtain the whole set of literals as a
result of a contradictory Iy, and hence they do not interact on that count
either.

6.4 Comparison with Reiter’s semantics

Comparing this semantics for defaults theories with Reiter’s, we prove that for
restricted default theories (cf. Definition 6.1.3) the former is a generalization
of the latter, in the sense that whenever Reiter’s semantics (I'-extension)
gives a meaning to a theory (i.e. the theory has at least one I-extension), 2
semantics provides one too.

Moreover, whenever both semantics give meaning to a theory {2 seman-
tics is sound w.r.t. the intersection of all I'-extensions. Thus we provide a
monotonic fixpoint operator for computing a subset of the intersection of all
I'-extensions. For that purpose we begin by stating and proving:

Theorem 6.4.1. Consider a theory A such that 2-semantics is defined.
Then every I'-extension is a {2-extension.

Proof. First two lemmas:
Lemma 6.4.1. If E is consistent and E = I'a(FE) then E = I').(E).
Proof. By definition of ',

E=TA(E) = (Vacp pld) € E A —=j(d)NE ={} = c(d) € E).
Thus, since E is consistent:

Viep p(d) e EA—j(d)NE={}A-c(d)NE={}=c(d) € E
and so, by definition of I';., it follows easily that E = I').(E).
Lemma 6.4.2. If E is consistent and E = I'A(E) then E = ') (E).

Proof. Similar to the one of lemma 6.4.1.

98 6. WFSX and default logic

Now we prove that for an F such that
E =TA(E)
E = QA(F) holds.
By definition,
2A(E) = T\ (Th: (B)).
By lemma 6.4.1,
Qa(E) = I'A\(E).
And by lemma 6.4.2,
I\(E)=E.
For E to be a f2-extension one more condition must hold:
ECTI).(E).
It is easy to recognize given the hypothesis
E =T\(E).
The next two results follow directly from the above theorem.

Theorem 6.4.2 (Generalization of Reiter’s semantics). If a theory A
has at least one I'-extension, it has at least one (2-extension.

Theorem 6.4.3 (Soundness wrt to Reiter’s semantics). If a theory A
has a I'-extension, whenever L belongs to the least {2-extension it also belongs
to the intersection of all I'-extensions.

It is interesting to note that any other combination of the I'-like operators
that are used to define £2 (i.e. the operators: Iy, Iy, 'z, and I'}) also give
semantics that are sound with respect to Reiter’s, but which are not as close
to the latter as the semantics defined by 2. By “not as close” we mean that
its least fixpoints are subsets of the intersection of all Reiter’s extensions,
that are smaller (with respect to set inclusion) than the least fixpoint of (2.
Thus we say that 2 is the best approximation of Reiter’s default semantics,
when compared to the others.

Proposition 6.4.1. Let A be a noncontradictory default theory. Then:

1 1fp(I'y.ITy) Clfp(I'R)
2. 1fp(I'yT) C Ufp(IR)
3. 1fp(I'R.) C 1fp(£2)
4. Ufp(I'R) S 1fp(92)

Proof. In appendix.

6.5 Comparison with stationary default semantics 99
6.5 Comparison with stationary default semantics

We now draw some brief comparisons with stationary extensions [174]. It
is not the case that every stationary extension is a f{2-extension since, as
noted above, non-modular or non-enforced stationary extensions are not {2-
extensions. As shown in the example below, it is also not the case that every
2-extension is a stationary extension.

Example 6.5.1. Let A be:

(25 22 5}

The only 2-extension of A is {¢, —b}. This is not a stationary extension.

As stated above, for saturated default theories stationary semantics com-
plies with enforcedness. However, even for this class of theories, the two se-
mantics might not coincide. This is because in general stationary default
extensions are not modular.

Example 6.5.2. The default theory of Example 6.2.2 is saturated and has a
non-modular stationary extension.

However, in a large class of cases these semantics coincide. In particular:

Proposition 6.5.1. If for every default d = %&)f@) e(d) is a positive lit-

eral then (2 coincides with I'3.

Proof. For such theories Iy, = I'y = I'a. Thus I'\I"}\. = I'%.

6.6 Relation between the semantics of default theories
and logic programs with explicit negation

Here we state the equivalence of (2-extensions and partial stable models of
extended logic programs as defined in Chapter 4. For the sake of brevity
proofs are in Appendix C.

Definition 6.6.1 (Program corresponding to a default theory).
Let A = (D,{}) be a default theory. We say an extended logic program P
corresponds to A iff:

— For every default of the form:

{a1a~"7an} : {bla"',b’m} cA
C

there exists a rule
C—ay,...,an,not 2by,...,not =b,, € P

where —b; denotes the ~-complement of b;.

100 6. WFSX and default logic

— No rules other than these belong to P.

Definition 6.6.2 (Interpretation corresponding to a context).

An interpretation I of a program P corresponds to a default context E of
the corresponding default theory T iff for every objective literal L of P (and
literal L of T'):

—I(L)=14fLeFE and L € I'\.(F).
—I(L)=%iff LZE and L € I').(E).
—I(L)=04f L&E and L ¢ I').(E).

The main theorem relating both semantics is now presented:

Theorem 6.6.1 (Correspondence). Let A = (D, {}) be a default theory
corresponding to program P. E is a §2-extension of A iff the interpretation
I corresponding to E is a partial stable model of P.

According to this theorem we can say that explicit negation is nothing but
classical negation in (restricted) default theories, and vice-versa. As {2 default
semantics is a generalization of I" default semantics (cf. Theorems 6.4.2 and
6.4.3), and since answer-sets semantics corresponds to I' default semantics
[80], it turns out that answer-sets semantics (and hence the semantics defined
in [209]) is a special case of WFSX. Other properties of {2-extensions can
also be translated into properties of models of extended logic programs, e.g.
modularity, uniqueness of minimal extension, etc.

On the other hand, with this theorem one can rely on the top-down pro-
cedures of logic programming to compute default extensions. In particular, in
accordance with Theorem 6.4.3, the top-down procedures for WESX (namely
those described in Chapter 10) can be used as sound top-down procedures
for Reiter’s default logic.

Example 6.6.1. Consider program P :

c «— notc

«— notb
b «— nota
—Q —

The corresponding default theory is

oo (222).

As calculated in Example 6.3.3, the only 2-extension of A is E = {—a, b}
and I'y. (E) = {—a,b, c}. The PSM corresponding to this extension is

M = {—-a,not a,b,not =b,not =c}°.
It is easy to verify that M is the only PSM of P.

9 Note that ¢ is undefined in M.

6.7 A definition of WFSX based on I" 101

6.7 A definition of WFSX based on I

In [80], it is proven that, with the above correspondences between programs
and default theories, and between interpretations and default contexts, Re-
iter’s I' operator for defaults is equivalent to the Gelfond-Lifschitz (GL) I’
operator for extended logic programs (cf. Definition 2.2.1). Thus, the above
relationship between WEFSX and (2 extensions directly suggests an alternative
definition of WFSX.

Based on this relationship, and on the fact that the GL I" operator is not
based on 2-valued logic, in this section we present an alternative definition of
WFSX not relying in a 3-valued logic, but rather on a partial 2-valued logic.

We begin by defining in logic programs the notion corresponding to semi-
normality in default theories.

Definition 6.7.1 (Seminormal version of a program).
The seminormal version of a program P is the program Ps obtained from P
by adding to the (possibly empty) Body of each rule:

L — Body

the default literal not =L, where —L is the complement of L with respect to
explicit negation.

For short, when P is understood from context, we use I'(S) to denote
I'p(S), and I'x(S) to denote I'p,(S).

Theorem 6.7.1 (Partial stable models). Let P be an extended logic pro-
gram.

M =T Unot F
is a partial stable model of P iff:
(2) TCIT
Moreover F = {L | L & I',T}, and members of [sT not in T are undefined
in M.
In the sequel we refer to T as the generator of M.

Proof. Follows directly from Theorem 6.6.1.

Note that in these alternative definitions each PSM is completely deter-
mined by the objective literals true in it.

Theorem 6.7.2 (Well-founded model). Let P be a noncontradictory pro-
gram.

M =T Unot F is the well-founded model of P iff T is the least fixpoint
of I'Ts and generates M.

102 6. WFSX and default logic

Thus the W FM can be obtained by iterating I'Iy from the empty set'C.
If a fixpoint S is reached, then it contains objective literals true in the W F M.
False literals in it are the ones compatible with I'sS, i.e. those literals not in
I';S. Tt is also possible to define an iterative construction of false literals in
the W FM, and determine instead true literal from false ones.

The next proposition helps us build one such iterative construction.

Proposition 6.7.1. Let P be a noncontradictory program. Then:
L(fp(I'y)) = gfp(IsT)

Proof. First we prove that I's(Ifp(I'Ts)) is a fixpoint of I'sI. By definition:
Ufp(I'Ts) = I'Ts(Ifp(I'Ts))

Thus:
L(Ufp(I'Ty) = LTy (1fp(IT)))

By associativity of function compositions:
Ly(Lfp(I'Ts)) = T L (Ts(Lfp(I'T)))

ie. I's(Ifp(I'Ts)) is a fixpoint of I';I"

Now let S be a fixpoint of I';I. We have to prove that:
S C L(Ifp(I'Ty))

To that proof, we begin by showing that [fp(I'I) C I'S
Given that I'Ts is monotonic, there exists a smallest ordinal A such that:

Ufp(I'Ty) = T}
We now prove by transfinite induction that for any ordinal a
rrje{ycrs
— For limit ordinal §: Suppose that for all o < ¢
rrl*yycrs
Then clearly
U{rrl*y1a<sycrs
i.e.
rrl’gycrs

10 In the case of normal programs I'Is reduces to I'2. This I'? characterization of
the WEFM of normal programs was first set forth in [20]. Note that the effect of
Is is to ensure the Coherence Principle. Indeed, it is easily seen that one can
replace I'Ts by I'>Coh, where Coh is a new operator that takes a program P
and transforms it with respect to some interpretation I, by deleting from P all
rules for any objective literal L such that —L is in I. Consequently, not L will
belong to the semantics of the transformed program. I's achieves the same effect
by falsifying the body of such rules in Ps.

6.7 A definition of WFSX based on I" 103

— Induction step: Assume that for some ordinal 4
rriycrs
Then, given that I'[s is monotonic:
T (IT]){} C I'TL(IS)
By associativity of function compositions, this inequality is equivalent to:
rrl™{} c n(r.rs)
Given that by hypothesis S is a fixpoint of ;I :
rrltt{ycrs
At this point we’ve proven that [fp(I'I;) C I'S. From this result, and
given that Iy is antimonotonic, it follows that:
I,T'S C T,(1fp(T'T,))
Again because by hypothesis S is a fixpoint of ;I :
S C N(fp(IT)
We now define two (monotonic) operators: one which given a set of true
objective literals, determines additional true objective literals; another which

given a set of false objective literals determines additional false objective
literals.

Definition 6.7.2. For a program P define:

T(S) = IIL(S)
F(R) = H—I.I(H-R)

where H denotes the Herbrand base of P.

Theorem 6.7.3. For any noncontradictory program, both T and F are
monotonic.

Proof. The proof of monotonicity of 7 is trivial given that of {2 for defaults
(Theorem 6.3.1), and that a program is noncontradictory iff the correspond-
ing default theory is also noncontradictory. This last results follows directly
from Theorem 6.6.1.

Similarly to the proof of Theorem 6.3.1, one can prove that I'sI" is also
monotonic. So:

ACB = H-B C H-A =
= sJT(H—B) C I, (H-A) =
= H- F I'H-A) € H-I,IT(H-B) =
= F(4) < F(B)

i.e. F is monotonic.

104 6. WFSX and default logic

Theorem 6.7.4. Let P be a noncontradictory program. Then:
WFM(P) =1fp(T)Unot lfp(F)
Proof. We begin with the lemma:
Lemma 6.7.1. For any noncontradictory program:
Up(F) =H—gfp(I.T)
Proof. We begin by proving by transfinite induction that:
Floly = H — (I D)**H
— For limit ordinal 6: Suppose that for all @ < d :
Flefy = H — (IL,D)'*H
Then, clearly:

U{F" 0 la <6} =H - ({LD) ! H | a < 8}

FL =H—(I,)"YH
— Induction step: Assume that for some ordinal 4

F'{} =H - (L D)''H

Then:
FIFLY = F(FIHY) = F(H - (1L1))

Applying the definition of F :
FUY = H - LI (H — (K~ (IL1) "))

Given that for any two sets A and B, B— (B—A)=BnNA:
FUHO = H - [.LD(HN(I.D)YH)

Since the result of I'sI" is a subset of the Herbrand base, i.e. for any S,
HDI,TS:

FUH}y =H - LD(I D) Y H) = H — (I.D) PR

Given this result, the proof follows directly from the iterative construction
of least and gretaest fixpoints of monotonic operators.

According to this lemma and proposition 6.7.1:
Lfp(F) =M — Is(Lfp(I'L}))

From Theorem 6.7.2:
WEM(P) = 1fp(T) Unot (K — I,(Lfp(I'T.)))

6.7 A definition of WFSX based on I" 105

Example 6.7.1. Consider the program P :

¢ < b,notc

a <« notb
b «— nota

—a

Next we show two alternative ways of computing the WFM.

1. Start from an empty set of true objective literals, and iterate consec-
utively, in order to get more objective literals true, until a fixpoint is

reached:
To =
Ty
Ty
T3 =
Then:
WEM

{

I'r.{} = I'{c,a,b,ma} = {-a}

I'T{-a} = TI{ecb,—a}
I'ry{b,—~a} = I{c,b,—a}

{b7 _'a}
{b’ —\CL}

T3 U not (H - [;Ty,)
{b,ma} U not (H—{cb,—a})
{b,ma} U {not a,not —b,not —c}

2. Start from an empty set of false objective literals and iterate consec-
utively, in order to get more objective literals false, until a fixpoint is

reached:

Iy =
P =

F =
Then:
WEM

{}

H —
H —
H —
H —

LI(H—{}) = H-T-a}
{¢,b,—a} = {a,—b,—c}
I'sI'{c,b,ma} = H—TI4{b —a}
{¢,b,—a} = {a,—b,—c}
I'H-F,) U not Fy

I'{c,b,—a} U {not a,not —b,not —c}
{b,ma} U {not a,not —b,not —c}

106 6. WFSX and default logic

7. WFSX and hypotheses abduction

Approaches to nonmonotonic reasoning semantics clash on two major intu-
itions: scepticism and credulity [207]. In normal logic programming the cred-
ulous approach includes semantics such as stable models [78] and preferred
extensions [62], while the well-founded semantics [76] is the sole representa-
tive of scepticism [62].

In extended logic programming, while generalizations of stable models se-
mantics are clearly credulous in their approach, no semantics whatsoever has
attempted to seriously explore the sceptical approach. A closer look at some
of the works generalizing well-founded semantics [68, 180, 183, 196] shows
these generalizations to be rather technical in nature, where the different
techniques introduced to formally characterize the well-founded semantics of
normal logic programs are slightly modified in some way to become applica-
ble to the more general case.

In this chapter we characterize a spectrum of more or less sceptical and
credulous semantics for extended logic programs, and determine the position
of WFSX in this respect.

We do so by means of a coherent, flexible, unifying, and intuition ap-
pealing framework for the study of explicit negation in logic programs, based
on the notion of admissible scenaria. This framework extends the approach
originally proposed in [62] for normal logic programs.

The basic idea of the framework is to consider default literals as ab-
ducibles, i.e. they must be hypothesized. This idea was first proposed in [70],
and in [62] it was further explored in order to capture stable models [78]
and the well-founded semantics [76] of normal programs. There, an hypoth-
esis is acceptable iff there is no evidence to the contrary: roughly no set of
hypotheses derives its complement!. Semantics are then defined by adding
to a program sets of acceptable hypotheses, according to additional specific
choice criteria. Depending on the chosen criteria, more sceptical or credulous
semantics are obtained.

! Tn [30] the authors develop an assumption-based argumentation framework for
logic programming where a variety of alternative of evidence to the contrary

notions are studied. In our approach the notion of evidence to the contrary is
kept fixed.

108 7. WFSX and hypotheses abduction

In trying to extend these notions to extended logic programs, a new kind
of hypotheses appears — mandatory hypotheses.

Example 7.0.2. Consider a program containing the rules:

tryBus <« not driversSrike
—driversStrike

advising to plan a trip by bus if it can be assumed the bus drivers are not
on strike, and stating bus drivers are not on strike. No matter what the rest
of the program is (assuming it is consistent on the whole), it is clear that
a rational agent assumes the bus drivers are not on strike, and of course he
plans his trip by bus.

In this case it is mandatory to assume the hypothesis not driversSrike.

Intuitively, an hypothesis not L is mandatory if —L is a consequence
of the program, i.e. if objective literal L is explicitly stated false then the
hypothesis that assumes it false must per force be accepted. This amounts to
the coherence principle.

In other words, in extended programs default literals can be view as hy-
potheses, where an objective literal L inhibits the hypothesis not L (as in
normal programs), and —L makes the assumption of hypothesis not L imper-
ative.

Moreover, viewing default literals as hypotheses that may or may not be
accepted, helps us provide semantics for contradictory programs where con-
tradiction is brought about by such hypotheses?. Indeed, if default literals
are just hypotheses, and if some of them cause contradiction, then it seems
natural not to accept these in order to assign a meaning to a program. Even
though there may be no specific evidence to the contrary of a hypothesis, if
its adoption leads to a global contradiction then its acceptance is question-
able. This is an instance of the “reductio ad absurdum” principle.

In this section to begin we define, in a simple way, an ideal sceptical
semantics and its well-founded (or grounded) part; in fact an entirely declar-
ative semantics able to handle programs like:

a +— notp b «— notr
—a <+ notq

and assigning it the semantics {b, not r}.

WFESX cannot deal with such programs because, as neither p nor ¢ have
rules, it assumes both not p and not ¢ without regard to the ensuing contra-
diction, except as an after-the-fact filter. In our ideal sceptical semantics this
program is not contradictory at all.

2 Note that these are the cases presented above, where WFSX provides no meaning
and we argue that it might be natural to provide one.

7. WFSX and hypotheses abduction 109

However, the issue of dealing with such contradictory programs within
WFSX, and assigning to them a semantics is explored in detail in Chapter
8, where we use the framework of this chapter, plus the additional notion of
optative hypothesis, as its basis.

One advantage of viewing logic programs as abduction is its close re-
lationship with argumentation system and dialogue games. In [67, 93], the
authors have pointed out the similarities between the ideas of acceptability
of hypotheses and evidence to the contrary, and the notions of arguments
and attacks of argumentation systems. Based on that they sustain that [62]
is in fact an argumentational approach to normal logic programs. In the same
way, our approach can be viewed as an argumentational approach to extended
logic programs.

The problem of understanding the process of argumentation (or dia-
logue games) has been addressed by many researchers in different fields
[206, 25, 128, 87, 43, 166]. The understanding of the structure and accept-
ability of arguments is essential for a computer system to be able to engage
in exchanges of arguments with other systems.

The ability of viewing extended logic programs as argumentation systems
opens the way for its use in formalizing communication among reasoning
computing agents in a distributed framework [134].

A dialogue game is an exchange of arguments between two players where
each alternately presents arguments attacking the arguments of the oppo-
nent. The player who fails to present counterarguments looses the game. As
shown in [63, 65, 66] a game theoretical semantics for logic programming
can be defined by interpreting programs as schemas for forming arguments,
where a literal can be concluded if it is supported by acceptable arguments
constructed according to the rules of the program:

Example 7.0.3. Consider program P :

-fly(X) «— animal(X),not ab_a(X) animal (tweety)
ab_a(X) «— bird(X),not ab_b(X) bird(tweety)
ab b(X) «— penguin(X) penguin(tweety)

P can be viewed as the rules for constructing the arguments:

1. Tweety does not fly since it is an animal and animals normally do not
fly.

2. Tweety is an abnormal animal since it is a bird and normally birds are
abnormal animals with respect to flying.

3. Tweety is an abnormal bird since it is a penguin and penguins are ab-
normal birds with respect to flying.

A dialogue game to determine whether or not tweety flies proceeds as
follows:

110 7. WFSX and hypotheses abduction

— Player 1 presents argument 1 supporting the conclusion that tweety cannot
fly. His argument is based on the assumption that animals normally do not
fly.

— In the next move player 2 presents argument 2 which “attacks” argument
1 by defeating the assumption made by the latter. His argument is based
on the assumption that normally birds are abnormal animals.

— Then player 1 presents argument 3 “counterattacking” the argument of
player 2.

— As player 2 cannot find any argument counterattacking the argument of
player 1, he looses the game and gives up his claims.

In the framework we present in this chapter, hypotheses can be viewed
as arguments, that may or may not be accepted, in the same way arguments
may or may not be winning ones. An argument is acceptable if every attack
against it can be counterattacked by it. As we point out below, this is tan-
tamount to the acceptance of hypotheses, where an hypothesis is acceptable
in the context of other hypotheses if every set of hypotheses that constitutes
evidence to its contrary is in turn defeated by the context where it is ac-
cepted. To make this clearer we explain, for the program of Example 7.0.3,
why not ab_a(tweety) is acceptable:

The hypotheses not ab_a(tweety) is acceptable because the only evidence
to the contrary, i.e. to ab_a(tweety), is the hypothesis not ab_b(tweety), and
this evidence is defeated by not ab_a(tweety) : in the context where this as-
sumption is made true in the program ab_b(tweety) follows as a consequence.

A detailed study of logic programming as dialogue games and argumenta-
tion systems is not in the scope of this work. However, the intuitions behind
the relationship between the concepts introduced here and those of dialogue
games and argumentation systems can be found throughout this chapter.

7.1 Admissible scenaria for extended logic programs

In this section we generalize the notions of scenario and evidence for normal
logic programs given in [62], to those extended with explicit negation. They
are reminiscent of the notions of scenario and extensions of [167].

In [62, 35, 67] a normal logic program is viewed as an abductive framework
where literals of the form not L (NAF-hypotheses) are considered as new
atoms, say not_L, and are abducibles, i.e. they must be hypothesized. The
set of all ground NAF-hypotheses is not ‘H, where H denotes the Herbrand
base of the program, as usual, and not prefixed to a set denotes the set

7.1 Admissible scenaria for extended logic programs 111

obtained by prefixing not to each of its elements®. Here we generalize these
notions to extended logic programs.

In order to introduce explicit negation we first consider negated objective
literals of the form —A as new symbols (as in [78]). The Herbrand base is now
extended to the set of all such objective literals. Of course, this is not enough
to correctly treat explicit negation. Relations among —A, A, and not A, must
be established, as per the definitions below.

Definition 7.1.1 (Scenario). A scenario of an extended logic program P
is the Horn theory P U H, where H C not H.

For scenaria we define a derivability operator in a straightforward way,
given that every scenario is a Horn theory:

Definition 7.1.2 (- operator). Let P be an extended logic program and H
a set of NAF-hypotheses.

P’ is the Horn theory obtained from P by replacing:

— every objective literal of the form —L by the atom —_L
— every default literal of the form not L by the atom not_L
— every default literal of the form not =L by the atom not_—_L

where —_L, not_L, and not_—_L are new atoms not appearing in P.
A set H' is obtained from H using the same replacement rules.

By definition P' U H' is a Horn theory, and so it has a least model M.
We define &= in the following way (where A is any atom of P):

PUHK A iff AeM
PUHF A iff ~AeM
PUHLE not A iff not_ A € M
PUHFnot -A iff not—-_Ae M

In argumentation systems a scenario can be viewed as a possible set of
arguments. In particular the arguments corresponding to a scenario P U H
are those engendered by the hypotheses in H.

When introducing explicit negation into logic programs one has to recon-
sider the notion of NAF-hypotheses, or simply hypotheses. As the designation
“explicit negation” suggests, when a scenario P U H entails —A it is explic-
itly stating that A is false in that scenario. Thus the hypothesis not A is
enforced in the scenario, and cannot optionally be held independently. This
is the “coherence principle”, which relates both negations.

3 1n [35] the authors dub these programs open positive ones. Positive because all
negated literals are transformed into new atoms, and open because the program
can be completed with additional information, i.e. default literals can be added
(or hypothesized) in order to give the program a meaning.

112 7. WFSX and hypotheses abduction

Definition 7.1.3 (Mandatory hypotheses wrt PU H).
The set of mandatory hypotheses (or mandatories) with respect to a scenario

PUH is:
Mand(H) ={not L| PUHU{not K — -K | K € H} - =L}

where L or K is any objective literal, and —K (resp. =L) denotes the comple-
ment of K (resp. L) with respect to explicit negation. The extra rules enforce
coherence.

Alternatively, the set of mandatory hypotheses with respect to P U H is
the smallest set Mand(H) such that:

Mand(H) = {not L | PUH U Mand(H) - —L}.
Example 7.1.1. Consider program P :

q <« notr
-r << notp
-p
Then:
Mand({}) = {not p,not r,not —q}.

Indeed, the Horn theory:

q <+ notr not_—_.q <+ (¢ not.—p <« p
o < notp not.q <« -—q not.p <« -—p
-p not_—.r <« r

not.r <« -

derives {not_p, not_r,not_—_q} and no more hypotheses.

Ezample 7.1.2. Consider the program P :

b(p)

-m(X,Y) — b(X)
m(p,s) <« mnot m(t,s)
m(t,s) < not m(p,s)

-m(X, X)

obtained from the autoepistemic theory of Example 5.2.9.
The mandatory hypotheses with respect to P U {} are:

— from the last rule, all ground instances of literals of the form not m(X, X);

— from the first rule, not —b(p);

— from the first and second rules P + —-m(p,Y), and thus ground instances
of literals of the form not m(p,Y) are mandatories;

— from the above points and the third rule it follows that P and its manda-
tories derive m(t, s), and so not —-m(t, s) is also mandatory.

7.1 Admissible scenaria for extended logic programs 113

Mandatory hypotheses correspond in argumentation systems to argu-
ments that cannot be directly attacked because they are sustained by
conclusions. For instance, the fact —fly(tweety) in a program states that
Tweety does not fly. Since no argument can attack this fact, the argument
not fly(tweety) is unattackable.

Ezample 7.1.3. Consider a program containing the rules:

newsAboutStrike <« driversStrike
—driversStrike

stating that newspapers publish news about the strike if the drivers are on
strike, and that the bus drivers are definitely not on strike.

For a rational reasoner the second rule should not provide a pretext for
newspapers to publish news about a strike by possibly assuming it, since in-
deed the first rule (or some other) may actually state or conclude the contrary
of that assumption.

Note how this is accomplished by using always programs in the canonical
form (Definition 2.1.1), where any true rule head has the effect of falsifying
the body of all rules containing its complement literal with respect to explicit
negation.

Recall that, within a program in the canonical form, any objective literal
L in the body of a rule is to be considered shorthand for the conjunction
L,not =L. This allows for technical simplicity in capturing the relation be-
tween —L and not L (cf. justification in the compact version of the modulo
operator in Chapter 4). Thus, without loss of generality (cf. corollary 9.1.1),
and for the sake of technical simplicity, whenever refering to a program in
this section we always mean its canonical form. In all examples we expressly
use the canonical program.

Definition 7.1.4 (Consistent scenario). A scenario P U H is consistent
iff for all objective literals L such that:

PUHUMand(H)F L
then
not L ¢ HU Mand(H)

Note that, by the definition of mandatory hypotheses, for every consistent
scenario:

if PUHUMand(H)FL then PUHUMand(H)t —L.

Unlike the case of non-extended logic programs, an extended logic pro-
gram may in general have no consistent scenaria:

114 7. WFSX and hypotheses abduction

Example 7.1.4. Program

G R
D — notp

has no consistent scenario.
Note that PU{} is not consistent since Mand({}) = {not p,not —p} and
P U {not p,not —p} + p.

A notion of program consistency is needed. Intuitively, a program is con-
sistent iff it has some consistent scenario. Because for a given H, if PU H is
consistent then P U {} U Mand({}) is also consistent, we define:

Definition 7.1.5 (Consistent program). An extended logic program P is
consistent iff

P U Mand({})

15 a consistent scenario.

Inconsistent programs are those that derive a contradiction even without
assuming any hypotheses (except, of course, for those for which it is manda-
tory to do so, i.e. the mandatories). The role of the semantics here being to
determine sets of hypotheses that can be added to a program without mak-
ing it inconsistent, and since no set whatsoever is in these conditions for an
inconsistent program, no semantics is given it.

By adding to the body of each rule a private default literal not L', where
L' is a new atom not appearing elsewhere in the program, every program
becomes consistent. This operation, similar to the naming device of [167],
renders every rule hypothetical because its condition is contingent on the prior
acceptance of its private “naming” default literal. Ultimately, inconsistency
can thus be always avoided. Semantics that assign meaning to inconsistent
programs by considering consistent subsets of its rules can be “simulated” in
ours via the naming device.

Thus, from now on, unless otherwise stated, we restrict programs to con-
sistent ones only.

Not every consistent scenario specifies a consensual semantics for a pro-
gram [167], in the same way that not every set of arguments is a winning set
in dialog games. For example [62] the program P :

p «— not q

has a consistent scenario PU{not p} which fails to give the intuitive meaning
of P. Tt is not consensual to assume not p since there is the possibility of p
being true (if not ¢ is assumed), and —p is not explicitly stated (if this were
the case then not ¢ could not be assumed).

7.1 Admissible scenaria for extended logic programs 115

Intuitively, what we wish to express is that a hypothesis can be assumed
only if there can be no evidence to the contrary.

Clearly a hypothesis not L is only directly contradicted by the objective
literal L. Evidence for an objective literal L in a program P is a set of hy-
potheses which, if assumed in P together with its mandatories, would entail
L.

Definition 7.1.6 (Evidence for an objective literal L). A subset E of
not H is evidence for an objective literal L in a program P iff:

ED Mand(E) and PUEFILA

If P is understood and E is evidence for L we write E ~ L.

Note here the similarities between evidence to the contrary of an hypoth-
esis and attack to an argument.

As in [62] a hypothesis is acceptable with respect to a scenario iff there
is no evidence to the contrary, i.e. iff all evidence to the contrary is itself
defeated by the scenario:

Definition 7.1.7 (Acceptable hypothesis). A hypothesis not L is ac-
ceptable with respect to the scenario P U H iff:

VE:E~ L= 3not Ac E|PUHUMand(H) A,

i.e. each evidence for L is defeated by P U H.
The set of all acceptable hypotheses with respect to P U H is denoted by
Acc(H).

This is tantamount to the acceptability of arguments in dialogue games.
In the latter an argument is acceptable if it can counterattack (i.e. defeat)
every attack made on it (i.e. every evidence to the contrary).

Ezxample 7.1.5. Consider program P :

a <+ notb,not c -c
b «— notd

In the scenario P U {not ¢, not d,not a} :

— not ¢ is mandatory because P F —¢;

— not d (resp. not —a, not —b) is acceptable because there is no evidence for
d (resp. —a, —b);

— not a is acceptable because any evidence for a must contain {not b, not c},
and so is defeated by the scenario since

P U {not ¢,not d,not a} U Mand({not c¢,not d,not a}) - b

* The consistency of P U E is not required; e.g. P U {not A} F A is allowed.

116 7. WFSX and hypotheses abduction

For example, not b is neither mandatory nor acceptable because, respec-
tively:

P U {not ¢,not d,not a} U Mand({not c,not d,not a}) I/ —b
and {not d} is an evidence for b not defeated by the scenario, i.e.:
P U {not d} U Mand({not d}) F b
and

P U {not ¢,not d,not a} U Mand({not ¢,not d,not a}) ¥ d

In a consensual semantics we are interested only in admitting consistent
scenaria whose hypotheses are either acceptable or mandatory. As the desig-
nation “mandatory hypotheses” suggests, any scenario to be considered must
include all its mandatory hypotheses:

Definition 7.1.8 (Admissible scenario). A scenario PUH is admissible
iff it is consistent and:

Mand(H) C H C Mand(H) U Acc(H)

We must guarantee that by considering only admissible scenaria one does
not fail to give semantics to consistent programs, i.e.:

Proposition 7.1.1. Any consistent program P has at least an admissible
scenario.

Proof. By hypothesis P is consistent and so the scenario P U Mand({}) is
also consistent.
By definition Mand(H) is closed under mandatories, i.e.

Mand(H) = Mand(Mand(H))
So PU H, where H = Mand({}), is an admissible scenario:
Mand(Mand({})) = Mand({}) € Mand(Mand({})) U Acc(Mand({}))

The notion of admissible scenario discards all hypotheses which are unac-
ceptable, whatever the semantics of extended logic programs to be defined.

One semantics can be defined as the class of all admissible scenaria, where
the meaning of a program is determined, as usual, by the intersection of all
such scenaria.

However, since P U Mand({}) is always the least admissible scenario
(cf. proof of proposition 7.1.1), this semantics does not include any non-
mandatory hypothesis. Consequently this semantics is equivalent to replacing
every not L by the corresponding objective literal —L.

7.2 A sceptical semantics for extended programs 117

FEzxzample 7.1.6. Let P :

-p
a <« notb

Its admissible scenaria are:

P U {not p}

P U {not p,not —a}

P U {not p,not —b}

P U {not p,not b,not —a}

P U {not p,not —a,not —b}

P U {not p,not b,not —a,not —b}

the least admissible scenario being the first.
Thus the literals entailed by the semantics of admissible scenaria are

{=p,not p}.
Note not b and a are not entailed by this extremely sceptical semantics.

The semantics of admissible scenaria is the most sceptical one for extended
logic programs: it contains no hypotheses except for mandatory ones®. In or-
der to define more credulous semantics, we define classes of scenaria based
on proper subsets of the class of admissible scenaria, as governed by specific
choice criteria. Constraining the set of admissible scenaria reduces undefined-
ness but may restrict the class of programs having a semantics.

In the next sections we define a spectrum of semantics which, by restrict-
ing the set of admissible scenaria, are more credulous, but give meaning to
narrower classes of programs. WFEFSX turns out to be one of the semantics in
that spectrum.

7.2 A sceptical semantics for extended programs

Several proposals, already mentioned above, have been made to generalize
well-founded semantics® to logic programs with explicit negation, in order to
obtain a sceptical semantics for extended logic programs. But a closer look
at these works shows these generalizations to be of a rather technical na-
ture, where different techniques introduced to characterize the well-founded
semantics of normal logic programs (those without explicit negation) are
in someway modified to become applicable to the more general case. So it
would not be surprising if tomorrow some new “sceptical” semantics for pro-
grams with explicit negation were to be presented. So which of them is really

5 This semantics is equivalent to one which only accepts hypotheses if it is explicitly
negated in the program that there is evidence to the contrary. Hence it contains
only the mandatory literals.

5 By its nature the representative of scepticism in normal logic programs.

118 7. WFSX and hypotheses abduction

“sceptical”? And what is the essential difference between them? How many
“sceptical” semantics are we going to have? After all, what makes a semantics
“sceptical”? Certainly not just because it is in some way “technically” similar
to one or other presentation of the well-founded semantics of Van Gelder et
al. [76]".

It is natural and important to ask the question of what is an ideally
sceptical semantics for explicit negation, i.e. one which would be part of the
semantics of every rational reasoner.

Suppose that P U H is this “ideal” sceptical semantics. In the previous
section, we have introduced and argued that an admissible scenario represents
a scenario which is admissible for a rational reasoner. Let one such admissible
scenario be P U K. It is clear that P U K U H is again admissible since H
must be part of this agent’s semantics. This leads to an immediate definition
of the “ideal” or “idealized” sceptical semantics.

Definition 7.2.1 (Ideal sceptical semantics). A set of hypotheses H is
called the ideal sceptical semantics, 1SS, if it is the greatest set satisfying the
condition:

For each admissible scenario PU K, PUK U H is again admissible.

It is clear that if P is consistent then such a set exists, a consequence of
the fact that the union of sets satisfying the above condition satisfies it too.

Ezample 7.2.1. Consider program P :

a <« notp
—a <+ notq
c <« notr

The admissible scenaria are (apart from literals not —p, not —q, and
not —r, which are irrelevant to this example and are omitted):

rPuU{}

P U {not —c} P U {not r,not —c}

P U {not —¢,not p,not ~a} P U{not r,not —c,not p,not —a}
P U {not =¢,not q,not a} P U{not r,not —c,not q,not a}

It is not difficult to see that the greatest admissible scenario whose
union with any other is again admissible is {not r,not —c}, ie. 1SS =
{not r,not —~c}. So we are able to conclude ¢ despite the inconsistency po-
tentially caused by the other rules.

Note that according to WFSX this program is contradictory.

The most sceptical well-founded semantics, or WFSO0, is next construable
as the grounded part of the ideal sceptical semantics. Indeed, in the case of

" Dung [64] has shown that stable model semantics can also be viewed as well-
founded semantics, since it can be defined a similar way.

7.2 A sceptical semantics for extended programs 119

normal programs, the ideal sceptical semantics is determined as the greatest
lower bound of all preferred extensions [62], well-founded semantics being the
grounded part of this ideal sceptical semantics. This corroborates the intu-
itions of other related fields, where a distinction is made between restricted
and ideal scepticism [202]8.

In this context, in order to define the well-founded sceptical semantics for
programs with explicit negation, all we need is introduce the grounded part
of ideal scepticism:

Definition 7.2.2 (WFSO0). Let P be an extended logic program whose ideal
sceptical semantics is PU H. First define a transfinite sequence {K,} of sets
of hypotheses of P :

Ko = {}
Koy = KQU(HHMA(KQ))

where
MA(K,) = Mand(K,) U Acc(K,,).

The well-founded (sceptical) semantics of P, denoted WFSO0, is defined
as:

PUUKa

Hypotheses belonging to WFSO0 belong perforce to ISS, because that is
imposed at each step of the above iterative process by M A(K,), and are
also grounded in the sense that they are obtained by this bottom-up process
starting from {}.

Example 7.2.2. Consider program P :

a <« nota
a <« notb
b «— nota

Apart from literals not —a, and not —b which are irrelevant to this example,
admissible scenaria are:

PuU{} P U {not b}°
Thus I8S = {not b}.

In order to calculate the WFSO let us build the sequence:
— By definition Ky = {}.

8 One other example of such restricted scepticism in logic programming is the
“well-founded semantics with respect to Opt” presented in Chapter 8, which is
even more sceptical then the aforementioned WFSO0.

9 Note that scenario P U {not a} is inconsistent.

120 7. WFSX and hypotheses abduction

— Since the program is normal there are no mandatories with respect to
PuU{}.
— not b is not acceptable because {not a} is evidence for b not defeated by
Pu{},ie. PU{}a;
— Similarly, not a is also not acceptable.
Thus MA(Ky) = Mand({}) U Acc({}) = {}, and

Ky ={}U({not b} N {}) = {} = Ko
So WFS0 = P U{} because not b is not grounded.

Theorem 7.2.1. WFS0 is defined uniquely for every consistent program.

Proof. Trivial since, as stated above, ISS is defined for every consistent pro-
grams and WFSO0 is obtained uniquely from ISS.

The next theorem states this definition of well-foundedness is a general-
ization of the one for non-extended (i.e. normal) programs.

Theorem 7.2.2 (Relation to the WFS of normal programs). If P is
a normal program then the WFS0 and the the well-founded semantics of [76]
coincide.

Proof. Clearly, if a program P has no explicit negation for every scenario
PUH

Mand(H) = {}

Thus the definitions of evidence to the contrary, acceptability, and admissible
scenario are equivalent to those for normal programs presented in [62]. So the
ideal sceptical semantics corresponds to the intersection of preferred exten-
sions and, as proven in [62], its grounded part coincides with the well-founded
semantics of [76].

7.3 The semantics of complete scenaria

In this section we present a semantics less sceptical than WFS0 but failing
to give semantics to all consistent programs. We call it “complete scenaria
semantics” (CSS for short). Then we exhibit and prove some properties of
CSS, in particular that it coincides with WFSX.

For normal programs every acceptable hypothesis can be accepted. In
extended programs an acceptable hypotheses may fail to be accepted, in case
a contradiction is verified.

Example 7.53.1. Consider the consistent program P :

-
a <« notb

7.3 The semantics of complete scenaria 121

The hypothesis not b is acceptable with respect to every scenario of P.
However, by accepting not b the program becomes inconsistent. Thus not b
can never be accepted. In a semantics like WFSO such hypotheses are not
accepted.

ISS and WFS0 model a reasoner who assumes the program correct and so,
whenever confronted with an acceptable hypothesis leading to an inconsis-
tency he cannot accept such a hypothesis; he prefers to assume the program
correct rather than assume that an acceptable hypothesis must be accepted
(cf. Example 7.2.1 where both not p and not ¢ are acceptable, but not ac-
cepted). We can also view this reasoner as one who has a more global notion
of acceptability. For him, as usual, an hypothesis can only be acceptable if
there is no evidence to the contrary, but if by accepting it (along with others)
a contradiction arises, then that counts as evidence to the contrary.

It is easy to imagine a less sceptical reasoner who, confronted with an
inconsistent scenario, prefers considering the program wrong rather than ad-
mitting that an acceptable hypothesis be not accepted. Such a reasoner is
more confident in his acceptability criterium: an acceptable hypothesis is ac-
cepted once and for all; if an inconsistency arises then there is certainly a
problem with the program, not with the acceptance of each acceptable hy-
pothesis. This position is justified by the stance that acceptance be grounded
on the absence of specific contrary evidence rather than on the absence of
global non-specific evidence to the contrary. We come back to this issue in
Chapter 8, where we compare the more sceptical semantics with a revision
process acting over the less sceptical one.

In order to define a semantics modeling the latter type of reasoner we
begin by defining a subclass of the admissible scenaria, which directly imposes
that acceptable hypotheses are indeed accepted.

Definition 7.3.1 (Complete scenario). A scenario PU H is complete iff
is consistent, and

H = Mand(H)U Acc(H)
i.e. PU H 1is complete iff is consistent, and for each not L :

(4) not Le H = mnot L € Acc(H)V
not L € Mand(H)

(#4) not L € Mand(H) = not Le H

(#i7) not L € Acc(H) = mnot L€ H

where (i) and (ii) jointly express admissibility.

FEzample 7.3.2. The only complete scenario of program P :

122 7. WFSX and hypotheses abduction

=b
b < notc
c < notc
a <« b,not —b

is P U {not a,not —a,not b, not —c}. In fact:

the mandatory hypotheses of that scenario are {not b};

— not —a is acceptable because there is no evidence for —a;

not —c is acceptable because there is no evidence for —¢;

not a is acceptable because not —b belongs to every evidence for a, and —b
is entailed by the scenario;

not ¢ is not acceptable because {not ¢} is evidence for c.

Since every acceptable or mandatory hypothesis is in the scenario, and ev-
ery hypothesis in the scenario is either acceptable or mandatory, the scenario
is complete.

Mark that if not —b were not part of the last rule, as required by Definition
2.1.1 of canonical program, then not a would not be acceptable.

As expected, and in contradistinction to WFS0, complete scenaria may
in general not exist, even when the program is consistent.

Example 7.3.3. Program P :

-a <« notbd
a <« notc

has several admissible scenarias:

P U {}
P U {nota,notb} P U {not-a,not c}

None is complete. For example P U {not —a,not ¢} is not complete because
not b is acceptable with respect to that scenario.

Definition 7.3.2 (Contradictory program). A program is contradictory
iff it has no complete scenaria.

Definition 7.3.3 (Complete scenaria semantics). Let P be a noncon-
tradictory program.

The complete scenaria semantics of P is the set of all complete scenaria
of P.

As usual, the meaning of P is determined by the intersection of all such
scenaria.

The inexistence of semantics for some consistent programs might be seen
as showing the inadequacy of CSS in certain cases, specially if compared to
WFS0. As we will see in Chapter 8, this is not the case since less sceptical

7.4 Properties of complete scenaria 123

semantics can be captured using CSS'® and a revision process. The rationale
of this view is:

“If an inconsistency arises then there is certainly a problem with the program,
not with the acceptance of each acceptable hypothesis. If the problem is with
the program then its revision is in order.”

By using CSS one can rely on structural properties that, unlikely those
of WFS0, make it amenable for devising bottom-up and top-down proce-
dures, and also allow for more favourable computational complexity results
(cf. Chapter 9).

7.4 Properties of complete scenaria

In this section we study some properties of this semantics, present a fixpoint
operator for it, and show its relationship with WEFSX.

Theorem 7.4.1. Let CSp # {} be the set of all complete scenaria of non-
contradictory program P. Then:

1. CSp is a downward-complete semilattice, i.e. each monempty subset of
CSp has a greatest lower bound.

2. There exists a least complete scenario.

3. In general, CSp is not a complete partial order'', i.e. mazimal elements
might not exist.

For the sake of simplicity the proof of this theorem is in appendix. However
we would like to present here an example showing that in general maximal
complete scenario might not exist (viz. point 3 above):

Example 7.4.1. Consider the program:

a <« notb

—a <+« notb
b «— not p(X)
p(X) «— notq(X)
q(X) «— not p(X)

with Herbrand base H = {0,1,2,3,...}.
For this program every set of the form

S; = {not (k) | k < i}

is a complete scenario, but there exists no complete scenario containing
Us.
i

10 In Chapter 8 we use WFSX instead of CSS. However, as we prove afore, these
semantics coincides.
1 However, for normal programs C'Sp is a complete partial order.

124 7. WFSX and hypotheses abduction

Given that a least scenario always exists, we define:

Definition 7.4.1 (Well-founded complete scenario). Let P be noncon-
tradictory. The well-founded complete scenario W F(P), is the least complete
scenario of P.

For this semantics we define an operator over scenaria such that every
fixpoint of it is a complete scenario.

Definition 7.4.2 (Vp operator). Given a program P and a set of hypothe-
ses H we define:

Vp(H) = HU Mand(H) U Acc(H)

just in case P U Vp(H) is a consistent scenario; otherwise Vp(H) is not

defined.

The correctness of this operator is shown by the following (trivial) lemma.
Lemma 7.4.1. PUH is a complete scenario iff H = Vp(H).

Another important result regarding the properties of the Vp operator is:
Lemma 7.4.2. Vp is monotonic, by construction of its parts.

From this lemma, and point 2 of Theorem 7.4.1, it follows that:

Theorem 7.4.2. If P is noncontradictory then the least fixpoint of Vp is the
WEF(P).

Theorem 7.4.3 (Construction of the WF complete scenario). In or-
der to obtain a constructive bottom-up iterative definition of the WFE scenario
of a moncontradictory program P, we define the following transfinite sequence
{Hu} of sets of hypotheses of P:

Hy = {}
Ha+1 = VP(Hoc)
Hs = U{Ha|a<d} fora limit ordinal 6

By lemma 7.4.2 and the Knaster-Tarski theorem [204], there exists a
smallest ordinal X such that H) is a fixrpoint of Vp. The WFE complete scenario
is P U Hj.

This constructive definition obliges one to know a prior: whether a pro-
gram is contradictory. This prerequisite is not needed if we employ the fol-
lowing theorem.

Theorem 7.4.4. A program P is contradictory iff in the sequence of the H,
there exists a \ such that P U Vp(H)) is an inconsistent scenario.

7.5 More credulous semantics 125

Thus, in order to compute the W F(P) start building the above sequence.
If, at some step i, H; introduces a pair of complementary objective literals
then end the iteration and P is contradictory. Otherwise iterate until the
least fixpoint of Vp, which is the WF(P).

Note the similarities between this process and the one described in Section
6.7 for WFSX, where the iteration also provides the default literals not F
(here caled hypotheses) true in the model, other literals T being determined
by the former (there T'=I'(H — F'), and here T = {L | P Unot F - L}).

7.4.1 Complete scenaria and WFSX

Next we present the relationship between the complete scenaria semantics
CSS for extended logic programs and WFSX, showing they are the same. The
significance of this result is underscored in the introduction to this chapter.
Proofs of lemmas can be found in Appendix C.

Lemma 7.4.3 (PSMs correspond to complete scenaria). Let
S=TUnot F

be a PSM of a program P, where T and F are disjoint sets of objective
literals. Then:

PUnot F

is a complete scenario.

Lemma 7.4.4 (Complete scenaria correspond to PSMs). If
PUH

is a complete scenario then:
{LIPUH+L}UH

is a PSM of P.

Theorem 7.4.5 (Equivalence). The complete scenaria semantics CSS is
equivalent to WEFSX.

7.5 More credulous semantics

Along the same lines of complete scenaria semantics, we can continue restrict-
ing the set of admissible scenaria, thus defining more credulous semantics.

The most immediate semantics more credulous than CSS (or WFSX) is
the one obtained by considering only maximal (with respect to C) complete
scenaria. We call this semantics “preferred extensions” following the tradition
for normal programs [62].

126 7. WFSX and hypotheses abduction

Definition 7.5.1 (Preferred extensions semantics). The preferred ex-
tensions semantics of an extended program P is the set of its maximal com-
plete scenaria.

Example 7.4.1 shows that maximal elements might not exist for a col-
lection of complete scenaria, hence preferred extensions are defined for less
programs than WFSX. Another straightforward result is that this semantics
is in general more credulous than WFSX.

Example 7.5.1. Consider the program:

a <« mnot p,not —p
p <« not —p
-p <« notp

Complete scenaria are (where the last two are preferred):

P U {not —a}
P U {not —~a,not p,not a}
P U {not —a,not —p,not a}

Thus not a is a consequence of the preferred extensions semantics but not
of complete scenaria semantics.

A reasoner can even be more credulous by considering only preferred
extensions that are two valued (or total), i.e. extensions such that whenever
L is not a consequence of them not L is assumed in them.

Definition 7.5.2 (Total scenario). A scenario PUH is total iff for every
objective literal L :

PUHFL = notL¢H

Definition 7.5.3 (Total scenaria semantics). The total scenaria seman-
tics of an extended program P is the set of its total complete scenaria.

Given the results of [62], where stable models are total complete scenaria
in normal logic programs, it follows easily:

Theorem 7.5.1 (Answer-sets). The total scenaria semantics coincides
with the answer-sets semantics of [80].

Clearly answer-sets semantics is defined for less programs than the previ-
ous semantics, since such total scenaria may in general not exist. The typical
program for which answer-sets semantics is not defined but WFSX is defined
is P = {a < not a}, where assuming not a leads to an inconsistency between
a and not a, and not a cannot be left unassumed because a is not a conse-
quence. This program has only one complete scenario, {not —a}, and it is not
total.

Explicit negation introduces other cases of inexistence of answer-sets ap-
pear.

7.5 More credulous semantics 127

FEzxzample 7.5.2. Let P be:

p <« not —p
-p <« notp
b «— not-p
a <« notp
—q
-b

The only complete scenario is PU{not a,not b}, which is not total. Thus
no answer-sets exist.

Here the inexistence of answer-sets is due to inconsistency between an
objective literal and its explicit negation:

— assuming not p leads to an inconsistency between a and —a;

— the assumption not p can be dropped only if p is a consequence. In order to
make p a consequence not —p must be assumed, and then an inconsistency
between b and —b appears.

Example 7.4.1 shows additional issues regarding the existence of answer-
sets. In particular that example shows that the computation of an answer-set
cannot in general be made by finite approximations.

7.5.1 Comparisons among the semantics

From the Definition 7.2.2 of WFS0 and the iterative construction of the WF
complete scenario of CSS (Theorem 7.4.3) it follows almost directly that:

Theorem 7.5.2 (WFSO0 is more sceptical than WFSX). For any non-
contradictory program P

WFSO(P) CWFESX(P).
Example 7.5.3. Consider program P :

p <+ notq
P — a
-p «— b
a «— notb
b «— nota

whose WFSX is {not ¢} (apart from irrelevant literals such as not —a).
Since P U {not q,not —p}, P U {not a,not p}, and P U {not b, not p} are
all admissible scenaria (though not them all), and neither not a nor not b can
be added to the first scenario, and also not ¢ cannot be added neither to the
second nor to the third scenario above, then 1SS = {}. Thus WFS0 = {}.

128 7. WFSX and hypotheses abduction

Interesting questions are: When do all these semantics coincide? Can we
state sufficient conditions guaranteeing such an equivalence?

In order to answer the second question we introduce the notion of se-
mantically normal (s-normal for short) programs; i.e. those whose admissible
scenaria can all be completed.

Definition 7.5.4 (S-normal program). An extended program is s-normal
iff for each admissible scenario PU H :

PUHUAcc(H)

is consistent.

Lemma 7.5.1. Let P be a s-normal program, P U H be an admissible sce-
nario, and let not A, not B be acceptable with respect to PU H. Then:

1. PUHU{not A} is admissible and
2. not B is acceptable with respect to P U H U {not A}.

Proof. Trivial, given the definition of s-normal program.

From this lemma it follows immediately that the set of all admissible
scenarios (with respect to set inclusion) forms a complete partial order for
s-normal programs. Hence each admissible scenario can be extended into a
complete scenario. Thus, for s-normal programs, ISS is contained in a com-
plete scenario.

Moreover, it is easy to see that for each admissible scenario P U H, P U
H U CSS(P) is again admissible. Therefore:

Theorem 7.5.3. Let P be a s-normal program. Then:

— The set of complete scenaria of P forms a complete semilattice.
— ISS coincides with the intersection of preferred extensions.
— WFSO(P)=CSS(P) C ISS(P).

To define larger classes of programs also guaranteeing these comparability
results is beyond the scope of this work. Of special interest, and subject of
future investigation by the authors, is to determine syntatic conditions over
programs (e.g. a generalization of the notion of stratified normal programs
[15]) guaranteeing the equivalence between answer-sets and WFSX, in the
vein of the work in [64] regarding well founded and stable models semantics
of normal programs.

However, for normal logic programs, since acceptable hypotheses can
never lead to an inconsistency, both WFS0 and WFSX coincide.

Theorem 7.5.4 (Relation to the WFS of normal programs). If P is
a normal (non-extended) program then WFSX, WFS0 and the well-founded
semantics of [76] coincide.

Example 7.2.2 shows this equivalence cannot be extended to ISS. There,
WFSX coincides with WFS0 and with WFS and is {}. ISS is {not b}.

8. Dealing with contradiction

As we'’ve seen before, WFSX is not defined for every program, i.e. some pro-
grams are contradictory and are given no meaning!. While for some programs
this seems reasonable (e.g. Example 4.2.4 in page 42), for others this can be
too strong.

Ezample 8.0.4. Consider the statements:

— Birds, not shown to be abnormal, fly.
— Tweety is a bird and does not fly.
— Socrates is a man.

naturally expressed by the program:
fly(X) «— bird(X),not abnormal(X).

bird(tweety)
- fly(tweety).

man(socrates).

WFSX assigns no semantics to this program. However, intuitively, we
should at least be able to say that Socrates is a man and tweety is a bird.
It would also be reasonable to conclude that tweety doesn’t fly, because the
rule stating that it doesn’t fly, since it is a fact, makes a stronger statement
than the one concluding it flies. The latter relies on accepting an assump-
tion of non-abnormality, enforced by the closed world assumption treatment
of the negation as failure, and involving the abnormality predicate. Indeed,
whenever an assumption supports a contradiction it seems logical to be able
to take the assumption back in order to prevent it — “Reductio ad absurdum”,
or “reasoning by contradiction”.

In Chapter 7 we present semantics more sceptical than WFSX, that avoid
contradiction in many cases where the latter gives no meaning to a program.
For example ISS assigns to the above program the meaning (with the obvious
abbreviations for constants):

1 Other researchers have defined paraconsistent semantics for even contradictory
programs e.g. [47, 26, 99, 196, 212]. This is not our concern. On the contrary, we
wish to remove contradiction whenever it rests on withdrawable assumptions.

130 8. Dealing with contradiction

{man(s), = fly(t), bird(t), not fly(t)}

which exactly corresponds to the intuition above.

Furthermore, there is motivation to consider even more sceptical seman-
tics, where some of the acceptable assumptions or hypotheses might not in
fact be accepted.

For instance, the acceptance of a hypothesis may be conditional upon
the equal acceptance of another. This is typical of hypothesizing faults in
a device, whenever causally deeper faults are to be preferred over hypothe-
sized faults that are simply a consequence of the former: the latter cannot be
hypothesized without the first. Moreover, problem specific and user defined
preference criteria affecting acceptance of hypotheses may also come to bear.
Another case in point is logic program debugging, where one wants to hy-
pothesize about the primitive cause of a bug, and not about the bugginess of
some clause, if there is the possibility that that clause relies in fact on a still
buggy predicate [162, 163, 161]. In general, the clauses of a logic program may
be seen as providing a causal directionality of inference, similar to physical
causality directionality, so that a distinction can sometimes be drawn about
the primacy of one hypothesis over another, cf. [100, 34].

Ezample 8.0.5. Consider this program, describing bycicle behaviour:

—wobbly_wheel «+— not flat_tyre,not broken_spokes
flat_tyre «— leaky_valve
flat_tyre «— punctured_tube
—nolight — not faulty_dynamo

plus the factual observation:
wobbly_wheel
The ISS assigns to it the meaning:

{wobbly wheel, not faulty_dynamo,—no_light,not no_light,
not leaky_valve, not punctured_tube}

neither accepting the hypothesis not flat_tyre nor not broken_spokes because
acceptence of any of them, if the other were accepted too, would lead to a
contradiction. Being sceptical ISS accepts neither. However, one would like
the semantics in this case to delve deeper into the bycicle model and, again
being sceptical, accept neither not leaky_valve nor not punctured_tube as
well.

In order to respond to such epistemological requirements as above, we
begin by introducing into the complete scenario semantics the more flexible
notion of optative acceptance of hypotheses. Optative hypotheses are those
that might or might not be accepted if acceptable at all. On the other hand,
non-optative hypotheses must be accepted if acceptable.

8. Dealing with contradiction 131

First we make no restriction on what the optatives are, and consider that
they are given by the user along with the program. Then we proceed to con-
sider the issue of infering optative hypotheses from the program, given some
specific criteria. In particular we show how to infer optatives when the cri-
teria is to consider as such those hypotheses that do not depend on any other?.

As claimed before, these very sceptical semantics model rational reasoners
who assume the program absolutelly correct and so, whenever confronted with
an acceptable hypothesis leading to an inconsistency cannot accept such a
hypothesis; i.e. they prefer to assume the program correct rather than assume
that an acceptable hypothesis must perforce be accepted.

WFEFSX models less sceptical reasoners who, confronted with an inconsis-
tent scenario, prefer considering the program wrong rather than admitting
that an acceptable hypothesis be not accepted. Such a reasoner is more confi-
dent in his acceptability criterium: an acceptable hypothesis is accepted once
and for all; if an inconsistency arises then there is certainly a problem with the
program, not with the individual acceptance of each acceptable hypothesis.
If the problem is with the program its revision is in order.

This view position can be justified if we think of a program as something
dynamic, i.e. evolving in time. In this position each program results from the
assimilation of knowledge into a previous one. If an inconsistency arises from
the knowledge assimilation then a revision process should be considered so
as to restore consistency.

In [104], Kowalski presents a detailed exposition of the intended behaviour
of this knowledge assimilation processes in various cases. There he claims
the notion of integrity constraints is needed in logic programming both for
knowledge processing, representation, and assimilation. The problem of in-
consistency arises from nonsatisfaction of the integrity constraints. If some
new knowledge can be shown incompatible with the existing theory and in-
tegrity constrains, a revision process is needed to restore satisfaction of those
constraints.

In extended logic programming we can view the requirement of noncon-
tradiction as integrity constraint satisfaction, where constraints are of the
form <« L,—L. But then there is no reason why we should not allow a more
general form of integrity contraints. In this chapter we extend logic programs
with integrity constraints in the form of denials.

Ezample 8.0.6. Suppose we have some program describing political affilia-
tion and don’t want to say that non democrats are republicans and vice-
versa. Thus —republican(X) should not correspond to democrat(X) and
—democrat(X) should not correspond to republican(X). However, no one
must be known both as a republican and a democrat. This knowledge can be
easily represented by the integrity constraint:

2 Considered above as the preferred criterium for the case of fault finding, and
debugging.

132 8. Dealing with contradiction

— democrat(X), republican(X)

Let’s go back now to Example 8.0.4. We can also view that program as the
result of knowledge assimilation into a previous knowledge base expressed by
a program. For example the program can be thought of as the adding to the
previous knowledge the fact that tweety does not fly. According to WFSX
the resulting program is inconsistent. One way of restoring consistency to the
program would be to add a rule stating that ab(tweety) cannot be false, viz.
it would lead directly to a contradiction:

ab(tweety) «— not ab(tweety)

The resulting program is now noncontradictory and its WFSX is:

{man(s), = fly(t), bird(t),not fly(t)}

which corresponds to the intuition.

In this chapter we begin by presenting a sceptical semantics for extended
logic programs plus integrity contraints in the form of denials, based on the
notion of optative hypotheses, which avoids contradiction. We also define
a program revision method for removing contradiction from contradictory
programs under WFSX. Then, we show the equivalence between the (contra-
diction avoidance) semantics and the WFSX of the revised program obtained
by the contradiction removal method.

8.1 Logic programming with denials

As argued by Reiter in [191], the basic idea of integrity constraints is that
only some program (or database) states are considered acceptable, and those
constraints are meant to enforce these acceptable states.

Integrity constraints can be of two types:

Static The enforcement of these constraints depends only on the current
state of the program, independently of any prior state. The demo-
crat/republican constraint above is one such example.

Dynamic These depend on two or more program states. In [191], Reiter gives
as example the knowledge that employee salaries can never decrease.

It is not a purpose of this work to deal with the evolution of a program
in time. Thus dynamic integrity contraints are not addressed. Since we only
want to deal with the problem of inconsistency, it is enough that the only
static integrity constraints considered be in the form of denials. For a study
of different forms of static constraints and their satisfaction see [191].

Next we formally define the language of extended logic programs plus
denials, and the notion of integrity contraint satisfaction adopted in this
chapter.

8.2 Contradiction avoidance 133

A program with integrity rules (or constraints) is a set of rules as defined
in Section 2.1, plus a set of denials, or integrity rules, of the form:

1L« Ay,..., Ay, not By,...,not By,

where Ai,...,A,,B1,..., B, are objective literals, and n + m > 0. The
symbol L stands for falsity.
A program P with a semantics SEM satisfies the integrity constrains iff:

Pltsenm L

8.2 Contradiction avoidance

In this section we present a semantics more sceptical than ISS, based on the
notion of scenaria described in Section 7. Thus the attending notions of pro-
gram transformation (in order to obtain only Horn programs),of consequence
given a scenario, etc., all apply here.

To deal with denials we extend the notion of consistent scenario.

Definition 8.2.1 (Consistent scenario wrt ICs). A scenario PUH of a
program with integrity constraints IC' is consistent iff:

— for all objective literals L such that:
PUHUMand(H) L,
neither
not L € HU Mand(H) nor PUH U Mand(H) + —L,

and
— PUHUMand(H)UIC t/ 13.

If one implicitly adds to a program P constraints of the forms:
1 « L,not L

for every objective literal L of P, then the first condition above is obviously
subsumed by the second one, and thus can be withdrawn.

Proposition 8.2.1. A scenario PUH of a program with integrity constrains
IC is consistent iff:

PUHUMand(H)UNIC L
where:
NIC=ICU{L « Lynot L; L «— L,~L|L € lang(P)}

3 ICs are treated like any other rule for deriving L, hence the designation of “in-
tegrity rule”.

134 8. Dealing with contradiction

Like for extended logic programs before, an extended logic program with
denials may have no consistent scenaria.

Example 8.2.1. Program P :

—democrat(husband(mary))
republican(mary)
democrat(X) <« —democrat(husband(X))

«—
«—

L« democrat(X),republican(X)

has no consistent scenario.

Definition 8.2.2 (Consistent program with ICs). An extended logic
program P with integrity constraints IC' is consistent iff it has some consistent
scenario.

N.B. From now on, unless otherwise stated, we restrict programs to consis-
tent ones only.

In WFSX every acceptable hypothesis must be accepted. Consequently
some programs might have no meaning. In ISS some acceptable hypotheses
are not accepted in order to avoid inconsistency. However, as shown in Exam-
ple 8.0.5, ISS allows no the control over which acceptable hypotheses are not
accepted. Conceivably, any acceptable hypothesis may or may not actually
be accepted, in some discretionary way.

It is clear from Example 8.0.5 that we wish to express that only the
hypotheses not broken_spokes, not leaky_valve, not faulty_dynamo, and
not punctured_tube may be optative, i.e. to be possibly accepted or not,
if at all acceptable. The acceptance of hypotheses like not flat_tyre is to
be determined by the acceptance of other hypotheses, and so we wish them
accepted once acceptable.

Thus we should distinguish between optative hypotheses (or optatives) and
non-optative ones. That distinction made, we can conceive of scenaria that
might not be complete with respect to optatives, but are still complete with
respect to non-optatives, i.e. scenaria which contain all acceptable hypotheses
except for possibly optative ones.

Definition 8.2.3 (Optative hypotheses). The set of optative hypotheses
Opt is any subset of not H.

In general, when not accepting some optative hypothesis not L, i.e. when
not assuming the falsity of L, then some otherwise acceptable hypotheses
become unacceptable. The sense desired is that program models where the
optative is true are not ruled out.

FEzample 8.2.2. Let P :

8.2 Contradiction avoidance 135

p < nota
a «— b

1L «— p

where not b is the only optative, i.e. Opt = {not b}.

In our notion of optative, if not b is not accepted then not a is unaccept-
able, i.e. if optative b is not assumed false, the possibility of it being true
must be considered and so a cannot be assumed false; P U {b} | a counts as
evidence against not a.

Definition 8.2.4 (Acceptable hypothesis wrt Opt). A hypothesis not L
is acceptable with respect to scenario P U H and set of optatives Opt iff

not L is acceptable* both with respect to PUH and PUH UF
where F is the set of facts
not ((Opt N Acc(H)) — H)

i.e. F is the set of complements of acceptable Opts with respect to H which
are not in H (that is which were not accepted).

Accopt(H) denotes the set of acceptable hypotheses with respect to P U H
and Opt.

Ezample 8.2.3. In Example 8.2.2 Accop({not p}) = {}.

not b is not acceptable because, even though acceptable with respect to
PU{not p}, it is not acceptable with respect to PU{not p}U{b}°. The same
happens with not a.

With this new more general notion of acceptability, we can define scenaria
that are partially complete, in the sense that they are complete with respect to

non-optatives, but might not be complete with respect to optatives (condition
(iil) below).

Definition 8.2.5 (Complete scenario wrt Opt). A scenario PU H is a
complete scenario with respect to a set of optatives Opt iff it is consistent,
and for each not L :

(1) mot L € H=not L e Accop(H)V not L € Mand(H)
(15) mnot L € Mand(H) = not L € H
(13i) not L € Accop(H) and not L ¢ Opt = not L € H

Remark 8.2.1. By making Opt = {} the previous definitions of acceptability
with respect to Opt and of complete scenaria with respect to Opt correspond
exactly to those of acceptability and complete scenaria in Section 7.

By making Opt = not ‘H the definitions of acceptability with respect to
Opt and of complete scenaria with respect to Opt correspond exactly to those
of acceptability and admissible scenaria in Section 7.

4 Acceptable cf. Definition 7.1.7.
5 Note that here not ((Opt N Acc(H)) — H) = not ({not b} — {not p}) = {b}.

136 8. Dealing with contradiction

Note that in complete scenario S = PUH with respect to Opt a hypothesis
in Opt which is acceptable with respect to PU H but leads to an inconsistent
scenario, will not be accepted in S to preserve consistency. This amounts to
contradiction avoidance.

Ezample 8.2.4. Recall the wobbly wheel Example 8.0.5. If Opt were {} there
would be no complete scenaria. If (with the obvious abbreviations):

Opt = {not bs,not lv,not pt,not fd}

complete scenaria with respect to Opt are :

{not ~ww} {not —ww, not fd,not bs}
{not —ww, not fd} {not —ww, not lv,not pt,not ft}
{not —ww, not bs} {not ~ww, not fd,not lv}

{not ~ww, not lv} {not ~ww,not lv,not pt,not ft,not fd}
{not —ww, not pt}

Intuitively, it is clear that some of these scenaria are over-sceptical, in the
sense that they fail to accept more optatives than need be to avoid contradic-
tion. For example in the first scenario in order to avoid contradiction none of
the optatives where accepted. This occurs because no condition of maximal
acceptance of optatives has been enforced.

In order to impose this condition we begin by identifying, for each com-
plete scenario with respect to Opt, those optatives that though acceptable
were not accepted.

Definition 8.2.6 (Avoidance set). Let PUH be a complete scenario with
respect to Opt. The avoidance set of P U H 1is (the subset of Opt):

(Opt N Ace(H)) — H

Ezxample 8.2.5. The avoidance set of the first scenario in Example 8.2.4 is:
{not lv,not pt,not fd,not bs}

and of the second one is:

{not lv, not pt,not bs}

In keeping with the vocation of scepticism of WFSX, we are specially
interested in those scenaria which, for some given avoidance set, are minimal.

Definition 8.2.7 (Base scenario wrt Opt). A complete scenario P U H
with respect to Opt, is a base scenario if there exists no scenario PUH' with
the same avoidance, set such that H' C H.

Example 8.2.6. Consider the program P :

8.2 Contradiction avoidance 137

a <« notb
«— nota
«— notd
1l «— ¢

with Opt = {not d}.
Complete scenaria with respect to Opt are:

{ {a,not b} {b,not a}

For all the avoidance set is {not d}. The corresponding base scenario with
respect to Opt is the first.

Proposition 8.2.2. The set of all base scenaria with respect to Opt under
set inclusion forms a lower semi-lattice.

Proof. Let P U Hy, and P U Hs be two base scenaria with avoidance sets S;
and S5 respectively. We prove that there is a single maximal scenario P U H
such that H C H; and H C Hs.

Such a scenario must have an avoidance set S O S;US5. From the defini-
tion of complete scenario with respect to Opt there exists one scenario such
that its avoidance set S = S7 U Ss. It is clear from lemma 8.4.1 below, that
there is a least scenario with S as avoidance set.

Consider now those scenaria comprising as many optatives as possible,
i.e. have minimal avoidance sets:

Definition 8.2.8 (Quasi-complete scenario wrt Opt). A base scenario
P U H with respect to Opt, with avoidance set S, is quasi-complete if there is
no base scenario PU H' with respect to Opt with avoidance set S’, such that

S c 8.

FEzxzample 8.2.7. In Example 8.2.4 the quasi-complete scenaria with respect to
Opt are:

{not —~ww,not fd,not bs,not lv}
{not —ww, not fd,not bs,not pt}
{not ~ww, not fd,not lv,not pt,not ft}

These correspond to minimal faults compatible with the wobbly wheel
observation, i.e. the ways of avoiding contradiction (inevitable if Opt were
{}) by minimally not accepting acceptable optatives. In the first not pt was
not accepted, in the second not lv, and in the third not bs.

As the consequences of all these quasi-complete scenaria are pairwise in-
compatible® the well-founded model, being sceptical, is their meet in the
semi-lattice of proposition 8.2.2, so that its avoidance set is the union of
their avoidance sets.

5 In the sense that neither contains any other.

138 8. Dealing with contradiction

Definition 8.2.9 (Well-founded semantics wrt Opt). The well-founded
model of an extended logic program P with ICs is the meet of all quasi-
complete scenaria with respect to Opt in the semi-lattice of all base scenaria.

For short we use WEFSop: to denote the well-founded model with respect
to Opt.

Ezample 8.2.8. In Example 8.2.4 W FSo,; is:
P U {not ~ww, not fd}

Thus one can conclude:
{ww, —-nl, not —~ww, not fd}

i.e. no other hypothesis can be assumed for certain; everything is sceptically
assumed faulty except for fd. This differs from the result of ISS, shown in
Example 8.0.5.

Ezample 8.2.9. Consider the statements:

— Let’s go hiking if it is not known to rain.

— Let’s go swimming if it is not known to rain.

— Let’s go swimming if the water is not known to be cold.
— We cannot go both swimming and hiking.

They render the set of rules P:

hiking <« not rain
swimming <« not rain
swimming <« not cold_water

1« hiking, swimming

and let Opt = {not rain,not cold_water}.
Complete scenaria with respect to Opt are:

PU{} P U {not cold-water}

where the latter is the well founded with respect to Opt. It entails that
swimming is true. Note that not rain is not assumed because it is optative
to do so, and by assuming it contradiction would be unavoidable.

To obtain less sceptical complete scenaria with respect to Opt, and in the
spirit of the above described partial stable models, we introduce:

Definition 8.2.10 (Partial scenario wrt Opt). Let P be an extended logic
program with 1Cs, and let the well-founded semantics of P with respect to Opt
be PU H.

PUK is a partial scenario of P with respect to Opt iff it is a base scenario
with respect to Opt and H C K.

8.2 Contradiction avoidance 139

FEzample 8.2.10. The partial scenaria of P with respect to Opt in Example
8.2.4 are the union of P with each of:

{not ~ww,not fd} {not —ww, not fd,not bs,not lv}
{not ~ww, not fd,not bs} {not —ww, not fd,not bs,not pt}
{not —ww,not fd,not lv} {not ~ww,not fd,not lv,not pt,not ft}
{not —ww, not fd,not pt}

The first is the WFSop; (cf. Example 8.2.8), which corresponds to the
most sceptical view whereby all possibly relevant faults are assumed. The
other partial scenaria represent, in contrast, all other alternative hypotheti-
cal presences and absences of faults still compatible with the wobbly wheel
observation.

If a program is noncontradictory (i.e. its WFSX exists) then no matter
which are the optatives, the well-founded semantics with respect to Opt is
always equal to the least complete scenario (and so, ipso facto, equivalent to
the WEFSX).

Theorem 8.2.1 (Relation to WFSX). If WFSX is defined for a program
P with empty set of ICs then, for whatever Opt, W F'Sop; is the least complete
scenario of P.

Proof. If WFSX is defined for P then there exists at least one complete
scenario of P. Thus there exists at least one complete scenario with respect
to Opt, PUH, such that its avoidance set is empty. So the only quasi-complete
scenario, and W FSp,, is the base scenario with empty avoidance set.

By definition, the set of complete scenaria with respect to Opt with empty
avoidance set coincides with the set of complete scenaria, and thus the least
complete scenario coincides with the base scenario with respect to Opt.

Since, cf. Theorem 4.3.4, for programs without explicit negation WFSX
is equivalent to the well-founded semantics of [76] (WFS):

Theorem 8.2.2. Let P be a (non-extended) normal program. Then, for
whatever Opt, the well-founded semantics with respect to Opt is equivalent
to its WFS.

8.2.1 Primacy in optative reasoning

Up to now no restriction whatsoever was enforced regarding the optatives of
programs. It is possible for optatives to be identified by the user along with
the program, or for the user to rely on criteria for specifying the optatives,
and expect the system to infer them from the program.

Next we identify a special class of optatives, governed by an important
criterium [100, 34]:

FEzactly the hypotheses not depending on any other are optative.

140 8. Dealing with contradiction

FEzxzample 8.2.11. Let P :

a <« notb
b «— note
c «— notd

Clearly not a depends on not b, not b on not ¢ and not ¢ on not d.
not d alone does not depend on any other hypothesis, thus according to this
criterium, it should be the only optative.

In diagnosis this criterium means hypothesizing as abnormal first the
causally deeper faults.

It is known that in taxonomies with exceptions, this is not the desired
preference criterium. To give priority to the most specific default information
only a hypothesis on which no other depends should be optatives. This way
the relinquishing of default hypotheses to avoid contradiction begins with less
specific ones.

The subject of defining preference criteria to automatically determine
optative hypotheses is complex. It is closely related to that of preference
among defaults [74].

The study of how to infer optatives for criteria different from the one
above, is left as an open problem.

Clearly, every hypothesis which is not acceptable in PU{} depends on the
acceptance of some other hypothesis. In other words, if a hypothesis not L is
acceptable in a scenario P U H, but is not acceptable in P U {}, this means
that in order to make not L acceptable some other hypotheses S C H have
to be accepted first. Thus not L depends on the hypotheses of S, and the
latter are more primal than not L. As a first approximation, let me define
the set of prime optative hypotheses as Acc({}).

Ezxample 8.2.12. In program P of Example 8.2.11 Acc({}) = {not d}. So
the only prime optative hypothesis is not d. Hypothesis not b is not prime
optative because it is only acceptable once not d is accepted, otherwise not ¢
constitutes evidence to the contrary.

In general, not all hypotheses in Ace({}) though are independant of one
another. Hence we must refine our first approximation to prime optatives.

FEzxzample 8.2.153. Consider P :

a «— b
b «— ¢
p <« nota

L« p

Acc({}) = {not a,not b,not c}

8.2 Contradiction avoidance 141

and the WES with respect to Ace({}) is P U {not b, not c}.

However, it is clear from the program that only not ¢ should be prime
optative, since the acceptance of not b depends on the absence of conclusion
c in P, but not vice-versa, and likewise regarding the acceptance of not a.

Any definition of a semantics based on the notions of scenaria and evidence
alone cannot distinguish the optative primacy of not ¢, because it is insensitive
to the groundedness of literals, viz. there being no rules for ¢, and thus its
non-dependance on other hypotheses.

An assymmetry must be introduced, based on a separate new notion, to
capture the causal directionality of inference implicit in logic program rules,
as mentioned in the introduction to this chapter:

Definition 8.2.11 (Sensitive hypotheses). A hypothesis not A € Acc({})
is sensitive to a separate set of hypotheses not S in program P iff

not A ¢ Acc(PUS)
Note that S is a set of facts.

Definition 8.2.12 (Prime optatives). A hypothesis not A € Acc({}) is
prime optative iff for all not S C Ace({}) :

if not A is sensitive to not S then some element of not S is sensitive to
not A.

The set of all prime optatives is denoted by POpt.

As shorthand, we refer to the well-founded semantics with respect to the
set of prime optatives as the prime optative semantics, or POS.

Example 8.2.14. In Example 8.2.13 the only prime optative hypothesis is
not c. For example, not a is not prime optative since not a is sensitive to
not b and not b is not sensitive to not a.

FEzxzample 8.2.15. In the wobbly wheel example:
POpt = {not bs,not pt,not lv,not fd}

For this example Acc({}) = POpt U {not ft}.
However not ft is not prime optative since it is sensitive to both not (v
and not pt.

Example 8.2.16. Consider program P :

p «— nota a «— b c «— notd
ap b < a,notc

where:
Acc({}) = {not a,not b,not d}

All of these are prime optatives:

142 8. Dealing with contradiction

— not d is prime optative because it is insensitive to other hypotheses;

— not b is prime optative because it is only sensitive to not a, and not a is
sensitive to not b;

— similarly for not a.

By insisting on only allowing prime optatives to be possibly accepted, even
if acceptable, one may fail to give meaning to some consistent programs, as
there are less options for avoiding inconsistency.

Example 8.2.17. Consider program P :

c « notb
b «— nota
-
1l «— notc

In this case POpt = Acc({}) = {not a}, and no complete scenario with
respect to POpt exists. Thus neither ISS with respect to POpt nor POS are
defined.

Note that by making Opt = {not ¢}, P U {not a} is now complete with
respect to Opt. In fact this scenario correspont to the W F M, .}, expressing
that contradiction is avoided by not assuming the optative hypothesis not c.
It still allows the conclusions {—a, not a, b}.

8.3 Contradiction removal

It has argued in the introduction to this chapter that, to deal with the issue
of contradiction brought about by closed world assumptions, rather than
defining more sceptical semantics one can rely instead on a less sceptical
semantics and accompany it with a revision process that restores consistency,
whenever violation of integrity contraints occurs.

In this section we define a revision process, that restores consistency for
programs contradictory with respect to WFSX. This process relies on the
allowing to take back assumptions about the truth of negative literals.

The set negative literals on which a revision can be made, i.e. the assump-
tion of their truthfulness can be removed, is the set of revisable literals, and
can be any subset of not H.

In [146] a revision semantics was defined where only base closed world
assumption are revisables. There revisables are default literals whose com-
plement has no rules. In [152] the notion of base closed world assumption
was improved, in order to deal with the case of loops without interposing
not s’. The notion of revisables presented there is similar to the notion of
prime optatives above.

" If not a is considered a base closed world assumption in a program without rules
for a, then there is no reason for not a not being one such assumption in a
program where the only rule for a is a < a.

8.3 Contradiction removal 143

As we show in Section 8.4 the issue of which are the revisables (in contra-
diction removal) is tantamount to that of which are the optatives (in contra-
diction avoidance). Thus the discussion on primacy of optatives is applicable
to the issue of what literals are to be revisables.

So no restriction is made here on which default literals should be con-
sidered revisables. Revisable literal are supposed provided by the user along
with the program®.

For instance, in Example 8.0.5 the revisable literals might be:

{not fd,not lv,not pt,not bs}

By not introducing not fd in this set, we are declaring that, in order to
remove some contradiction, we will not consider directly revising its truth
value. However, this does not mean that by revising some other literal the
truth value of not fd will not change.

We take back revisable assumptions, i.e. assumptions on revisable literals,
in a minimal way, and in all alternative ways of removing contradiction.
Moreover, we identify a single unique revision that defines a sceptical revision
process which includes all alternative contradiction removing revisions, so as
not to prefer one over the other. This is akin in spirit to the approach of
PSMs in [172, 180], where the WFM is the intersection of all the PSMs.

The notions of minimality and contradiction removal employed are useful
for dealing with Belief Revision through WFSX. Consider the noncontradic-
tory program P :

p <« notq
-p <« r,nott

and the additional information: r. Our proposed revision for PU{r} provides
the minimal model {r}, and two extended additional ones, namely:

{r,p,not =p,not g} and {r,—p,not p,not t}.

These two models can be seen as alternative minimal changes to the WFM of
P in order to incorporate the new information: one making ¢ undefined rather
than false by CWA, and the other making ¢ undefined instead. Model {r}
is obtained by making both ¢ and ¢ undefined. It is the one with sufficient
and necessary changes compatible with the new information, whenever no
preference is enforced about which relevant revisable literals to unassume, in
fact by unassuming them all. Revisions can be defined as those programs,
obtained from the original one in a unique way, whose WFSX are each of the
noncontradictory models above. In this example these programs are:

8 The declaration of revisable literals by the user is akin to that of abducible liter-
als. Although some frameworks identify what are the abducible for some partic-
ular problems ([70] where abducibles are of the form a*), theories of abduction,
for the sake of generality, make no restriction on which literals are abducibles,
and assume them provided by the user.

144 8. Dealing with contradiction

P U {r} U {t<nott}
P U {r} U {qg<notq}
P U {r} U {t<—mnott; g« notq}

Notice how a rule of the form L < not L changes the assumption not L from
true to undefined.

The structure of this section is as follows: first we present a paraconsis-
tent extension of WFSX. Then we define the intended revisions declaratively.
Afterwards we define some useful sets for establishing the causes of and the
removal of contradictions within WFSX, and prove that the result of their
use concurs with the intended revisions defined. Finally some hints for the
implementation are given.

8.3.1 Paraconsistent WFSX

In order to revise possible contradictions we need first to identify those con-
tradictory sets implied by a program under a paraconsistent WFSX. The
main idea here is to compute all consequences of the program, even those
leading to contradictions, as well as those arising from contradictions. The
following example provides an intuitive preview of what we intend to capture:

Example 8.3.1. Consider program P :

a<— notb (i) d— nota (i)
—a — notc (i) e«— not-a (iv)

not b and not ¢ hold since there are no rules for either b or ¢

—a and a hold from 1 and rules (i) and (ii)

not a and not —a hold from 2 and the coherence principle

d and e hold from 3 and rules (iii) and (iv)

not d and not e hold from 2 and rules (iii) and (iv), as they are the only
rules for d and e

6. not —~d and not —e hold from 4 and the coherence principle.

G oo =

The whole set of literal consequences is then:
{not b, not ¢, —a,a,not a,not —a,d, e,not d,not e,not —d, not —e}.

Without loss of generality (cf. corollary 9.1.1), and for the sake of sim-
plicity, we consider that programs are always in their canonical form (cf.
Definition 2.1.1).

For the purpose of defining a paraconsistent extension of WFSX, we begin
by defining what an interpretation is in the paraconsistent case.

Definition 8.3.1 (p-interpretation). A p-interpretation I is any set
T Unot F
such that if =L € T then L € F' (coherence).

8.3 Contradiction removal 145

The modification of the C'oh operator is also straightforward:

Definition 8.3.2 (The Coh? operator). Let QI = QT Unot QF be a set
of literals. We define CohP(QI) as the p-interpretation T Unot F such that

T=QT and F=QFU{-L|LeT}.

Note that in both definitions the enforcement of disjointness on sets T'
and F' has been withdrawn.

Now we generalize the modulo transformation (Definition 4.2.1 in page
39) to the paraconsistent case. If we assume, without loss of generality, that
programs are always in their canonical form, according to Theorem 4.2.4 the
generalization can be made in the compact version of the transformation,
thereby simplifying the exposition.

In the compact definition of the ? transformation one can apply the first
two operations in any order, because the conditions of their application are
disjoint for any interpretation. A potencial conflict would rest on applying
both the first and the second operation, but that can never happen because
if some A € I then not A ¢ I, and vice-versa.

This is not the case for p-interpretations pl, where for some objective
literal A both A and not A might belong to pl. Thus if one applies the
transformation to p-interpretations, different results are obtained depending
on the order of the application of the first two operations.

Ezample 8.3.2. Consider program P of Example 8.3.1, and let us compute:
P

{a,~a,not —a,not a,not b,not c}

If one applies the operations in the order they are presented:

— Rules (iii) and (iv) of P are removed since both a and —a belong to the
p-interpretation.

— not b and not ¢ are removed from the bodies of rules since not b and not ¢
belong to the p-interpretation.

and the resulting program is:

a «—

—-Q «—
But if one applies the second operation first:

— not b, not ¢, not a, and not —a are removed from the bodies of rules since
not b, not ¢, not a, and not —a belong to the p-interpretation.
— Since no literals remain in the body of rules no other operation is applicable.

The resulting program in this case is:

a <« d «—

—Q «— e “—

146 8. Dealing with contradiction

In order make the transformation independent of the order of application
of the operations we define the corresponding transformation for the para-
consistent case as being nondeterministic in the order of application of those
rules.

Definition 8.3.3 (?p transformation). Let P be a canonical extended
logic program and let I be a p-interpretation. By a ?p program we mean
any program obtained from P by first non-deterministically applying the op-
erations until they are no longer applicable:

— Remove all rules containing a default literal L = not A such that A € I.
— Remowve from rules their default literals L = not A such that not A € I.

and by next replacing all remaining default literals by proposition u.

In order to get all consequences of the program, even those leading to

contradictions, as well as those arising from contradictions, we consider the

consequences off all possible such ?p programs®.

Definition 8.3.4 (The &? operator). Let P be a canonical extended logic
program, I a p-interpretation, and let Py, such that k € K be all the possible
results of ?p. Then:

@Pp(I) = |) Coh?(least(Py))
keK
Theorem 8.3.1 (Monotonicity of ®P). The P operator is monotonic un-

der set inclusion of p-interpretations.

Proof. We have to prove that for any two p-interpretation A and B such that
A C B, then oP(A) C $P(B).

Let Pa,, k € K, and Pg,, j € J, be the programs obtained from, respec-
tively, £p and £p. Since A C B then for every Py, there exists a P, such
that for every rule

H « Body € Pg,
there exists a rule
H «— Body U Body' € Pa, .

This is necessarily the case because B, having more literals than A, can
always remove more rules and default literals in the bodies than A. Thus:

VPa, 3Pp; | least(Py,) C least(Pg;)
Now we prove that C'oh? is monotonic, i.e for any two p-interpretations

9 As proven in [50], it is enough to consider only two such ?p program: the ones
obtained by the maximal and by the least (according to the classical ordering)
1. Here, for the sake of simplicity, and since it is not essential in the sequel, we
consider all divided programs.

8.3 Contradiction removal 147

I =TrUnot Fr and J =Tj;Unot Fy
such that

Ty C Ty and Fr C Fy,
Coh?(I) C Coh?(J) holds.

Coh?(I) C CohP(J) is equivalent, by definition of Coh?, to
TrUnot (FfU{-L|LeTr}) CTyUnot (F;U{-L|LeTy})
since T C T'; by hypothesis, the above is true if:
Fru{-L|LeT;}CF;U{-L|LeT}U{~L|LeT;—Tr}
which is equivalent to
FrCF;U{-L|LeT;-1Tr}

which holds because, by hypothesis, F; C F);.
With this result, and the other one above:

VP, 3Pp, | Coh(least(Py,)) C Coh?(least(Pp,;))
and consequently:

U CohP (least(Pa,)) C U Coh®(least(Pg;))

keK jeJ

Given that @P is monotonic, then for every program it always has a least
fixpoint, and this fixpoint can be obtained by iterating @ starting from the
empty set:

Definition 8.3.5 (Paraconsistent WFSX). The paraconsistent WFSX of
an (canonical) extended logic program P, denoted by WEFSX,(P), is the least
fixpoint of OP applied to P.

If some literal L belongs to the paraconsistent WFSX of P we write:

PE, L

Proposition 8.3.1 (Existence of WFSX,). WFSX,(P) is defined for
every program with ICs.

Proof. Since no restriction whatsoever has been made on the application of
@P and given the proof of monotonicity of this operator, a least fixpoint of
it exists for every program.

Ezample 8.3.3. Let us compute the paraconsistent WFSX of the program in
Example 8.3.1. P is already in canonical form.

We start with the empty set. The only program obtained from {%p is
P071 .

148 8. Dealing with contradiction

a <~ u d <« u
—a — u e «— u
and Iy = Coh?(least(Py1)) = {not b,not c}
By %p we only get one program, P 1 :
a d «— u
a e «— u
and Iy = Coh?(least(P1 1)) = {a,not —a, ~a,not a,not b,not c}
The result of %p are the four programs:

P2712 a < P272: a < P2,3I a < P2,4Z a <«
I — —Q — —Q — —Q —
d — d — e —
e «—

For example, P» ; was obtained by applying the second operation to both
rules (iii) and (iv), which is possible because both not a and not —a belong
to Iy. Ps 4 was obtained by applying the first operation to both rules (iii) and
(iv), which is possible because both a and —a belong to Is.

It is easy to see that I3 = @P(I) =

{not b,not ¢, ~a,a,not a,not —a,d,e,not d,not e,not —d, not —e}

By applying %p one gets exactly the same program as in %p and thus
PP (I3) = I3. So, I5 is the least fixpoint of $? and, consequently, the paracon-
sistent WESX of P.

Now we can give a definition of a contradictory program with ICs:

Definition 8.3.6 (Contradictory program with ICs). A program P
with language Lang where A is an atom, and a set of integrity constraints
1C is contradictory iff

PUICsU{L— A, —~A|A€ Lang} =p L

In this section we always refer to the paraconsistent WFSX as an extension
of WFSX for noncontradictory programs. This is so because:

Proposition 8.3.2. For a noncontradictory program P the paraconsistent
WESX coincides with WFSX.

Proof. Since interpretations are p-interpretations, and for any noncontradic-
tory set S of literals Coh(S) = Coh?(S), and for any interpretation I Zp is
deterministic and equal to %, the result follows trivially.

8.3 Contradiction removal 149

8.3.2 Declarative revisions

Before tackling the question of which assumptions to revise to abolish con-
tradiction, we begin by showing how to impose in a program a revision that
takes back some revisable assumption, identifying rules of a special form,
which have the effect of prohibiting the falsity of an objective literal in mod-
els of a program. Such rules can prevent an objective literal being false, hence
their name:

Definition 8.3.7 (Inhibition rule). The inhibition rule for a default lit-
eral not L is:

L +—not L
By IR(S) where S is a set of default literals, we mean:
IR(S)={L < not L |not L € S}

These rules state that if not A is true then A is also true, and so a
contradiction arises. Intuitively this is quite similar to the effect of integrity
constraints of form 1 « not A. Technically the difference is that the removal
of such a contradiction in the case of inhibition rules is dealt by WFSX itself,
where in the case of those integrity constraints isn’t.

Proposition 8.3.3. Let P be any program such that for objective literal L,
P W, =L. Then:

PU{L < not L} -, not L

Moreover, if there are no other rules for L, the truth value of L is undefined
in WESX,(P).

Proof. Let P’ = PU{L « not L}. We prove by transfinite induction that:
not L ¢ I,, where I, = #"1*({})
— For limit ordinal 6: Suppose that for all a < ¢
not L & ®*1*({})
Then, clearly:

not L ¢ J {@PW({}) la < 5}

i.e. not L & dPTO({1).
— Induction step Assume that not L & I;, for some ordinal 7. Then:
— if L & I; then every transformed program %p has the rule L « u. Thus
for every transformed program '

P/
not L & least(T p)
and given that by hypothe&s P, -L

ot ¢ Con? (east (1)).

Thus not L & I;11.

150 8. Dealing with contradiction

— if L € I; then by monotonicity of ®P every transformed program has a
rule L <, and thus not L & I; ;.

Since WFSX,(P'") = &#*"*({}) for some smallest ordinal \, then
not L ¢ WFSX,(P).

These rules allows, by adding them to a program, to force default literals
in the paraconsistent WFESX to become undefined. Note that changing the
truth value of revisable literals from true to undefined is less committing
than changing it to false. In order to obtain revisions where the truth value
of revisable literals is changed from true to false, one has to iterate the process
we're about to define. The formal definition of such revisions can be found
in [162].

To declaratively define the intended program revisions void of contradic-
tion we start by first considering the resulting WFSXs of all possible ways of
revising a program P with inhibition rules, by taking back revisable assump-
tions, even if some revisions are still contradictory programs.

However, it might happen that several different revisions in fact corre-
spond to the same, in the sense that they lead to the same consequences.

Ezample 8.3.4. Consider program P :

1l « nota

Q o
TT
o o

with revisables Rev = {not a,not b, not c}.

Note that adding a <« not a, b «— not b, or both, leads to the same
consequences. Intuitively they are the same revision, since undefining a leads
to the undefinedness of b and vice-versa. Considering all three as distinct
can be misleading because it appear that the program has three differente
revisions.

Revisables not a and not b are indissociable, and it is indifferent to intro-
duce inhibition rules for one, the other, or both. Moreover, only one of these
hypotheses should be considered as a revision. In the sequel, we coalesce the
three revisions into a single standard one, that adds both inhibition rules.

Definition 8.3.8 (Indissociable literals). Let P be an extended logic pro-
gram with revisables Rev. The set Ind(S) 2 S of indissociable literals of a
set S of default literals is the largest subset of Rev such that:

— Ind(S) CWFSX,(P) and
- WFSX,(PUIR(S))NInd(S) = {}

8.3 Contradiction removal 151

i.e. Ind(S) is the set of all revisables that change their truth value from true
to undefined, once inhibition rules are added for every default literals of S to
change their truth value.

It is easy to see that such a largest set always exists (since Ind is mono-
tonic), and that Ind is a closure operator. Moreover:

Proposition 8.3.4. Let M = WFSX,(PUIR(S)) for some subset of S of
Rev. Then:

WFSX,(PUIR(Ind(S))) = M

Proof. Let P’ = PUIR(S), and let not L be an arbitrary literal such that
not L € Ind(S) and not L & S.

Directly from the second point of the definition of indissociables, it follows
that not L is undefined in P’. Moreover, it is clear that the addition into any
program P, of an inhibition rule for some literal undefined in WFEFSX,(P)
does not change the well-founded model. Thus:

WFSX,(P') = WFSX,(P' UIR({not L}))
Ezample 8.3.5. In Example 8.3.4:
Ind({not a}) = Ind({not b}) = {not a,not b}

and
Ind({not ¢}) = {not a,not b,not c}

Definition 8.3.9 (Submodels of a program). A submodel of a (contra-
dictory) program P with ICs, and revisable literals Rev, is any pair (M, R)
where R is a subset of Rev closed under indissociable literals, i.e:

VS CR, Ind(S)CR
and M = WFSX,(PU{L « not L | not L € R})*°.
In a submodel (M, R) we dub R the submodel revision, and M are the

consequences of the submodel revision. A submodel is contradictory iff M is
contradictory (i.e. either contains L or is not an interpretation)'!.

The existence of WFEFSX,(P) for any program P (cf. proposition 8.3.1)
grants that M exists for every subset of Rev. Moreover, since Ind is a closure
operator:

Proposition 8.3.5 (Submodels lattice). The set of all submodels (M, R)
of any program P with revisable literals Rev forms a complete lattice under
set inclusion on the submodel revisions.

The submodels lattice of Example 8.3.4 is presented in figure 8.1.

10 For a study of submodels based on the PSMs instead of on the well-founded
model see [147].

11 Note the one-to-one correspondence between submodels and program revisions.

152 8. Dealing with contradiction

{
{not c}
{not a, not b}

{0, not a, not b, not c}

¢

Fig. 8.1. Submodels lattice of Example 8.3.4.

Example 8.3.6. Consider program P :

p <+ notq
-p <« notr
a <« notb

with revisable literals Rev = {not q,not r,not b}. Its submodels lattice is
depicted in figure 8.2, where shadowed submodels are contradictory ones.
For simplicity, contradictory models are not presented in full in the figure.

As we are interested in revising contradiction in a minimal way, we care
about those submodels that are noncontradictory and among these, about
those that are minimal in the submodels lattice.

Definition 8.3.10 (Minimal noncontradictory submodel).

A submodel (M, R) is a minimal noncontradictory submodel (MNS for short)
of a program P iff it is noncontradictory and there exists mo other noncon-
tradictory submodel (M', R'), such that R’ C R.

By definition, each MNS of a program P reflects a revision of P, P U
RevRules'? that guarantees noncontradiction, and such that for any set of
rules RevRules’ C RevRules closed under indissociables, P U RevRules’ is
contradictory. In other words, each MNS reflects a revision of the program
that restores consistency, and which adds a minimal set, closed under indis-
sociables, of inhibition rules for revisables.

Ezxample 8.3.7. Consider program P :

p(X) « p(s(X))
a «— mnotp(s(X))

-a
where s(X) denotes the successor of X, and let Rev = {not p(i) | i > 0}.

12 Where RevRules is the set of inhibition rules for some submodel revision.

8.3 Contradiction removal 153

{
{not g, not r, not b}

{=p, not p, not r}
{not g, not b}

{a, not b}
{notq, notr}

{p, not =p, not g}
{not r, not b}

{=p, not p, notr, a, not b}
{not g}

{p, not =p, not g, a, not b}
{not r}

Fig. 8.2. Submodels lattice of Example 8.3.6

The only sets of inhibition rules that remove the contradiction are I R(S}),
such that:

Sk = {not p(i) | i > k}.

None of them is minimal.
However the closure under indissociable of each of them is:

S = {not p(i) | i > 0}
Thus the only noncontradictory submodel is (M, S), where
M = {—-a,not a}

and so it is also the only MNS.
Note that the revision models of each of the revisions above is indeed M
(cf. proposition 8.3.4).

It is also clear that literals in the submodel revision indeed change their
truth value once the inhibition rules are added:

Proposition 8.3.6. If (M, R) is a MNS of program P then:
RCWFSX,(P)

Proof. Assume the contrary, i.e. (M, R) is a MNS of P and R € WFSX,(P).
Then:

154 8. Dealing with contradiction

dnot L € R | not L ¢ WFSX,(P)

Thus, the addition of inhibition rule L « not L has no effect in WFSX,(P).
Consequently, R — {not L} is a noncontradictory submodel of P, and so
(M, R) is not minimal.

Definition 8.3.11 (Minimally revised program). Let P be a program
with revisable literals Rev, and (M, R) some MNS of P. A minimally revised
program MRP of P is:

PUIR(R)
i.e. P plus one inhibition rule for each element of R.

It is clear that:

Proposition 8.3.7. If P is noncontradictory its single MNS is
(WESX(P),{}),

and P itself is its only minimally revised program

FEzample 8.3.8. The minimally revised programs of the program in Example
8.3.6 are:

MRP, = {p+< not q;—p -« not r;a < not b;q — not q} and
MRP, = {p+«< not q;—p < not r;a < not b;r < not r}.

Each of these two programs is a transformation of the original one that
minimally removes contradiction by taking back the assumption of truth of
some revisables via their inhibition rules'®. In this example, one can remove
the contradiction in p either by going back on the closed world assumption of
falsity of g (or truth of not ¢) or on the falsity of r. The program that has the
first effect is M RP;, the one with the second effect being M RP,. Having no
reason to render ¢ alone, or r alone undefined, it is natural that a sceptical
revision should accomplish the effect of undefining them both.

Definition 8.3.12 (Sceptical revision). The sceptical submodel of a pro-
gram P is the join (M;, R;) of all MNSs of P. The sceptical revised program
of P is the program obtained from P by adding to it an inhibition rule for
each element of R;.

It is important to guarantee that the sceptical revision indeed removes
contradiction from a program. This is so because:

Proposition 8.3.8. Let (M, Ry) and (Ma, R2) be any two noncontradictory
submodels. Then submodel (M, Ry U Rs) is also noncontradictory.

13 Non-minimally revised programs can be defined similarly, by considering all non-
contradictory submodels instead of minimal ones only. We won’t consider them
in the sequel however, though they are useful for other purposes: viz. counter-
factual reasoning, as defined in [154].

8.3 Contradiction removal 155

¢
{not g, not r, not b}

{=p, not p, not r}
{not g, not b}

{a, not b}
{not g, not r}

{p, not =p, not g}
{not r, not b}

{=p, not p, notr, a, not b}
{not q}

{p, not = p, not q, a, not b}
{not r}

Fig. 8.3. The MNSs of the program from Example 8.3.6 are shadowed. Its sceptical
submodel, the join of the MNSs, is in bold. Note that inhibiting b is irrelevant for
revising P, and how taking the join of the MNSs captures what’s required.

Proof. Since it is clear that Ry U Ry is closed under indissociable, we only
have to prove that L ¢ M. Since 1 ¢ M; and L &€ Ms it is enough to prove
that M - M1 n MQ.

By definition:

M =WFSX,(PU{L < not L |not L € R1U R2}).

As the extra rules only make literals undefined, and undefinedness only results
in undefinedness, adding them all leads at most to the same set of literals
being true or false, compared to adding them separately for only R; or Rs.

Example 8.3.9. Consider contradictory program P :

p <« notq -p <« nota
q <« notr -a <« notb
r <« nots

with revisables Rev = {not ¢q,not a,not b}. Figure 8.4 shows its submodels
lattice, where MNSs are shadowed and the sceptical submodels is in bold.

Ezample 8.3.10. Consider the so-called Nixon diamond:

156 8. Dealing with contradiction

{r, not s}
{not a, not b, not g}

0
{not a, not q}

{r, not s, p, not g}
{not a, not b}

{r,nots, =p, —a, not a}
{not b, not q}

{r, not's, =p, —a, not a, not b}
{not g}

Fig. 8.4. Sceptical submodels and MNSs of Example 8.3.9.

1« pacifist(X), hawk(X)
pacifist(X) <« quaker(X),not ab_quaker(X)
hawk(X) <« republican(X),not ab_republican(X)
quaker(nizon)
republican(nixon)

This contradictory program P has two MRPs:

— one by adding to P ab_quaker «— not ab_quaker
— another by adding to P ab_republican «— not ab_republican

Both these programs have noncontradictory WFSXs:

{hawk(nizon), quaker(nizon), republican(nizon),
not ab_republican(nizon)}

{pacifist(nizon), quaker(nixon), republican(nizon),
not ab_quaker(nizon)}

The sceptical submodel of the program results from adding to it both
inhibition rules. Its WFSX is {quaker(nizon), republican(nixon)}.

The importance of having a single sceptical revision can be observed here,
since there is no reason for prefering between Nixon being a pacifist or a hawk.

Nevertheless, the other revisions also give relevant information'.

14 Their WFSXs correspond to the two usual default extensions.

8.3 Contradiction removal 157

It is clear that with these intended revisions some programs have no revi-
sion. This happens when contradiction has a basis on non-revisable literals.

Example 8.3.11. Consider program P :

a <« notb b «— notc
-a c

with revisables Rev = {not c}.
The only submodels of P are:

(WFSX,(P),{}) and (WFSX,(PU {c « not c}),{not c}).

As both these submodels are contradictory P has no MNS, and thus no
revisions. Note that if not b were revisable,the program would have a revision
P U {b < not b}. If not b were absent from the first rule, P would have no
revision no matter what revisables.

Definition 8.3.13 (Unrevisable program). A contradictory program P
with revisables Rev is unrevisable iff it has no noncontradictory submodel.

However it is possible to guarantee that consistent programs have revi-
sions.

Proposition 8.3.9. Let P be a consistent program with ICs and revisable
literals Rev = not H. Then, if P is contradictory it is revisable.

Proof. By definition of consistent program (Definition 8.2.2), if no negative
literal is assumed, the program is noncontradictory. Thus, at least the sub-
model obtained by adding to P an inhibition rule for every objective literal
L in 'H such that P }~, =L, is noncontradictory.

8.3.3 Contradiction support and removal

Submodels characterize which are the possible revisions, and the minimality
criterium. Of course, a procedure for finding the minimal and the sceptical
submodels can hardly be based on their declarative definition: one have to
generate all the possible revisions to select these intended ones. In this section
we define a revision procedure, and show that it concurs with the declaratively
intended revisions.

The procedure relies on the notions of contradiction support, and of con-
tradiction removal sets. Informally, contradiction supports are sets of revis-
able literals present in the W FSX,, which are sufficient to support L (i.e.
contradiction)!. From their truth the truth of L inevitably follows.

Contradiction removal sets are built from the contradiction supports.
They are minimal sets of literals chosen from the supports such that any

5 This notion can be seen as a special case of the notion of Suspect Sets introduced
in declarative debugging in [160].

158 8. Dealing with contradiction

support of L contains at least one literal in the removal set. Consequently,
if all literals in some contradiction removal set were to become undefined in
value then no support of L would subsist. Thus removal sets are the hitting
sets of the supports.

Example 8.3.12. Consider the program of Example 8.3.6. Its only contradic-
tion support is {not ¢, not r}, and its contradiction removal sets are {not ¢}
and {not r}.

Suppose we had ¢ undefined as a result of rules for ¢. In that case 1 would
also be undefined, the program becoming noncontradictory. The same would
happen if r alone were undefined. No other set, not containing one of these
two alternatives, has this property.

Definition 8.3.14 (Support of a literal). The supports'® of a literal L
belonging to WFSX,, of a program P with revisables Rev (each represented
as SS(L)) are obtained as follows:

1. If L is an objective literal:
a) If there is a fact for L then a support of L is SS(L) = {}.
b) For each rule:
L<—Bl,...,Bn nZl
in P such that {B1,...,B,} C WFSX,(P), there exists a support
of L
SS(L) =580 (Bi)

for each combination of one j(i) for each i.
2. If L =not A (where A is an objective literal):

a) If L € Rev then a support of L is SS(L) = {L}.

b) If L € Rev and there are no rules for A then a support of L is
SS(L) = {}.

c) If L ¢ Rev and there are rules for A, choose from each rule de-
fined for A, a literal such that its default complement belongs to
WFSX,(P). For each such choice there exists several SS(L); each
contains one support of each default complement of the choosen lit-
erals.

d) If ~A € WFSX,(P) then there are, additionally, supports

SS(L) = SSi(—A)
for each k.

FEzample 8.3.13. Consider program P of Example 8.3.9, whose paraconsistent
well-founded consequences are:

WFSX,(P) = {not s,r,not g, p,not —p,not b, ~a,not a,—p,not p}

16 An alternative definition of supports relies on a notion of derivation for a literal
in the WFSX,, and doesn’t require the previous availability of the WF Model.
The derivation procedures for WFSX, can be obtained by adapting those of
WESX described in Chapter 10, and can be found in [3].

8.3 Contradiction removal 159

The supports of p are computed as follows:

— From the only rule for p conclude that the supports of p are the supports
of not q.

— Since not g is a revisable then one of its supports is {not ¢}.

— As ~q § WFEFSX,(P), there are no other supports of .

Thus the only support of p is {not ¢}.
The supports of —p are:

— From the only rule for =p conclude that the supports of —p are the supports
of not a.

— Since not a is a revisable then one of its support is {not a}.

— Since ma € WFSX,(P), then supports of —a are also supports of not a.

— From the only rule for —a conclude that the supports of —a are the supports
of not b.

— Identically to not g above, the only support of not b is {not b}.

Thus —p has two supports, namely {not a} and {not b}.

FEzxzample 8.3.14. The supports of a in Example 8.3.7 are:
SS1(a) = {not p(1)}

55;:(a) _ {not p(i)}

Proposition 8.3.10 (Existence of support). A literal L belongs to the
WFSX, of a program P iff it has at least one support SS(L).

Proof. The proof follows directly from the results in [3] regarding derivation
procedures for WFSX,,.

Definition 8.3.15 (Contradiction support). A contradiction support of
a program P is a support of L in the program obtained from P by adding
to it constraints of the form L «— L,—L for every objective literal L in the
language of P.

N.B. From now on, unless otherwise stated, when we refer to a program we
mean the program obtained by adding to it all such constraints.

Ezample 8.3.15. The contradiction supports of program P from Example
8.3.9 are the union of pairs of supports of p and —p.

Thus, according to the supports calculated in Example 8.3.13, P has two
contradiction supports, namely {not g,not a} and {not ¢, not b}.

160 8. Dealing with contradiction

Contradiction supports are sets of revisables true in the WFSX,, of the
program and involved in some support of contradiction (i.e. 1)'7.

Having defined the sets of revisables that together support some literal,
it is easy to produce sets of revisables such that, if all become undefined, the
truth of that literal would necessarily become ungrounded. To coupe with
indissociability, these sets are closed under indissociable literals.

Definition 8.3.16 (Removal set). A pre-removal set of a literal L belong-
ing to the WESX, of a program P is a set of literals formed by the union of
some nonempty subset from each SS(L).

A removal set (RS) of L is the closure under indissociable literals of a
pre-removal set of L.

If the empty set is a SS(L), then the only RS(L) is, by definition, the
empty set. Note that a literal not belonging to W FSX,(P) has no RSs defined
for it.

In view of considering minimal changes to the WF Model, we next define
those RSs which are minimal in the sense that there is no other RS contained
in them.

Definition 8.3.17 (Minimal removal set). In a program P, RS, (L) is
minimal removal set iff there exists no RS;(L) in P such that

RS (L) D RS;(L).
We represent a minimal RS of L in P as MRSp(L).

Definition 8.3.18 (Contradiction removal set). A contradiction remo-
val set (CRS) of program P is a minimal removal set of the (reserved) literal
1, 4.e.a CRS of Pisa MRSp(L).

Ezample 8.8.16. Consider program P of Example 8.3.4. The only support of
1 is SS(L) = {not a}. Thus the only pre-removal set of L is also {not a}.
Since

Ind({not a}) = {not a,not b},
the only contradiction removal set is {not a,not b}.

Example 8.3.17. The removal sets of L in the program of Example 8.3.9 are:

RS, {not ¢} RSy = {not q,not a,not b}
RS3; = {not q,not b} RSy = {not a,not b}

Thus RS and RS, are contradiction removal sets. Note that these correspond
exactly to the revisions of minimal noncontradictory submodels of figure 8.4.

17 Note that there is a close relationship between the SSs of L and the sets of
nogoods of Truth Maintenance Systems.

8.3 Contradiction removal 161

FEzample 8.3.18. The only CRS of Example 8.3.7 is:
CRS = {not p(i) | i > 0}

It is important to guarantee that contradiction removal sets do indeed
remove contradiction.

Lemma 8.3.1. Let P be a contradictory program with contradiction removal
set CRS. Then:

PUIR(CRS)

is moncontradictory.

Proof. By construction of removal set of L,
P'=PU{L < not L |not L € CRS}
has no support of L. Thus, by proposition 8.3.10, L & WFEFSX,(P’).

Now we prove that this process concurs with the intended revisions above.
This is achieved by proving three theorems:

Theorem 8.3.2 (Soundness of CRSs). Let R be a nonempty CRS of a
contradictory program P. Then (M, R) is a MNS of P, where:

M = WFSX(PUIR(R))

Proof. Since by definition R is closed under indissociables, it is clear that
(M, R) is a submodel of P. By lemma 8.3.1, it is also a noncontradictory
submodel of P.

Now, we prove, by contradiction, that there exists no noncontradictory
submodel of P smaller than (M, R).

Let (M’ R') be a noncontradictory submodel, such that R’ C R. If R’
is not closed under indissociables, then (M’, R’) is not a submodel of P.
Otherwise, by construction of minimal removal sets | has at least one support
in the program obtained from P by introducing inhibition rules for elements
of R'. Thus, by proposition 8.3.10, (M’, R') is a contradictory submodel.

Theorem 8.3.3 (Completeness of CRSs). Let (M, R) be a MNS, with
R # {}, of a contradictory program P. Then R is a CRS of P.

Proof. By proposition 8.3.6 R C WFSX,(P). So, by proposition 8.3.10,
every literal of R has at least one support in P.
We begin by proving, by contradiction, that:

Vnot L € R, 3SS(L) | not L € Ind(SS(L))

Assume the contrary. Then there exists a not L € R not belonging to
the indissociables of any support of L. Thus, by definition of support, the
supports of L do not change if L < not L is added to P. Consequently:

162 8. Dealing with contradiction

(WFSX(PUIR(R — {not L})),R — {not L})

is a noncontradictory submodel of P, and so (M, R) is not minimal.

The rest of the proof follows by construction of removal sets, and its
closure under indissociables.

Theorem 8.3.4 (Unrevisable programs). If {} is a CRS of a program P
then P is unrevisable.

Proof. By definition, {} can only be a CRS if it is a support of L. Note that
in the calculus of {} as a support of L, no rules for any of the revisables were
taken into account. Thus if one adds inhibition rules for any combination of
the revisables, {} remains as a support of L in any of the resulting programs.
By proposition 8.3.10, L belongs to the well-founded model of each of those
programs, and so every submodel of P is contradictory.

Theorem 8.3.5 (Sceptical revised program). Let P be a contradictory
program with CRSs, Ry such that k € K. The sceptical revised program of P
18:

PU{L<—notL| not L € URZ}

keK

Proof. The proof follows directly from Theorems 8.3.2 and 8.3.3.

Thus in order to compute the minimal and sceptical submodels:

— One starts by computing all supports of 1. Although the definition of sup-
port requires one to know a priori the paraconsistent WFSX, an alternative
definition exists such that this is not required. This definition is based on a
top-down derivation procedure for WFSX,,, similar to the one for WFSX
described in Chapter 10. Computing all supports of L is like computing
all the derivations for L in WEFSX,,.

— If {} is a support of L then the program is unrevisable.

— If there are no supports of L then the program is noncontradictory.

— Otherwise, after having all supports of |, the rest follows by operations
on these sets, and computing indissociables. For such operations on sets
one can rely on efficient methods known from the literature. For example
the method of [190] for finding minimal diagnosis can be herein applied for
finding CRSs given the supports. Example 8.3.19 shows that the issue of
indissociables is simplified when the approch of CRS is considered.

— Finally, a minimal revised program is obtained by adding to P one inhibi-
tion rule for each element of a CRS, and the sceptical revision is obtained
as the union of all such minimal revised programs.

Example 8.3.19. Consider program P :

8.3 Contradiction removal 163

1l <« nota
a «— b

with Rev = {not a,not b}.
The submodels of P are:

{{not a,not b, 1}, {})

({not b}) {not a})
({} , {not a,not b})

and thus its only MNS (and the sceptical submodel) is the second one.
Note that there exists no submodel with revision {not b} because

Ind({not b}) = {not a}.

If such a revision would be considered then the sceptical submodel would be
the last one.

The only support of L is {not a}, and coincides with the only CRS.
Note how the issue of indissociables becomes simplified, since eventhough for
submodel it is necessary to compute indissociables in order to find correctly
the sceptical submodel, this is not the case for CRSs.

Example 8.3.20. Recall the “birds fly” example from the introduction where
Rev = {not abnormal(X)}.

The only support of L is:
{not abnormal (tweety)}

and so, it coincides with the only CRS.

Thus the only MRP, and sceptical revised program, is the original program
augmented with abnormal(tweety) < not abnormal(tweety), whose WESX
is:

{bird(tweety), - fly(tweety), not fly(tweety), man(socrates)}
as expected.
Ezample 8.3.21. Consider the hiking/swimming program (Example 8.2.9):

hiking <« not rain
swimming <«— not rain
swimming < not cold_water

1« hiking, swimming

and let Rev = {not rain,not cold_water}.
The supports of L are {not rain} and {not rain,not cold-water}. Thus
its two removal sets are:
{not rain} U {not rain}={not rain}
{not rain} U {not rain,not cold_water}={not rain,not cold_water}.

164 8. Dealing with contradiction

The only CRS is {not rain}, so the only MRP of P, and its sceptical revised
program is:

1« hiking, swimming rain <« not rain
hiking <« not rain swimming < not rain
swimming < not cold_water

whose WFSX is:
{not cold_water, swimming}

This results coincides with the W F'So,; calculated in Example 8.2.9.

Ezample 8.3.22. Recall the program P of Example 8.3.11:

a <« notb b «— notec
-q c

with revisables Rev = {not ¢}, whose paraconsistent WFSX), is:
{¢, ma,not a,not b,a,not —a}

The supports of L result from the union of supports of a and supports of
—a. As the only rule for —a is a fact, its only support is {}. Supports of a are
the supports of not b, and supports of not b are the supports of ¢. Again, as
the only rule for ¢ is a fact, its only support is {}.

Thus the only support of L is {}, and so P is unrevisable.

8.4 Equivalence between avoidance and removal

In this section we discuss the equivalence between the approaches of contra-
diction avoidance and contradiction removal described in this chapter.

The need for semantics more sceptical than WFSX can be seen as showing
the inadequacy of the latter for certain problems. The equivalence results
show that this is not case since, by providing a revision process, WFSX can
deal with the same problems as the more sceptical semantics W F'S Xy, and
gives the same results.

The advantages of using WFSX plus the revision process reside mainly
on its simplicity compared to the others, and its properties (studied in Sec-
tion 9.1) that make it amenable for top-down and bottom-up computation
procedures.

The revision procedure can be implemented as a preprocessor of pro-
grams, and the maintenace of noncontradiction might benefit from existing
procedures for Truth Maintenance Systems.

In order to prove the main equivalence theorems, we begin by proving
two important lemmas. These lemmas state that avoiding a hypothesis in
contradiction avoidance is equivalent to adding an inhibition rule for that
hypothesis in contradiction removal.

8.4 Equivalence between avoidance and removal 165

Lemma 8.4.1. If P U H is a complete scenario with respect to Opt of a
program P with avoidance set S then P'U H is a complete scenario of P’ =

PUIR(S).

Proof. Since the inhibition rules are only added for literals in the avoidance
set (thus for literals that do not belong to H) it is clear that P’ U H is
consistent, and every mandatory is in H. It remains to be proven that:

1. if not L is acceptable then not L € H
2. if not L € H and is not mandatory then it is acceptable

For every hypotheses in S this is ensured because they do not belong to
H, and none of them is acceptable once the inhibition rules are added'®.
For hypotheses not in S :

1. If not L ¢ S is acceptable in P’ U H then it is also acceptable in P U
H, because the latter, having less rules, provides less evidence to the
contrary. It’s left to prove that:

if not L € Ace(P U H) then not L € Accop(P U H).
Assume the contrary, i.e.
not L € Acc(PU H) and not L & Accop(P U H).

By definiton 8.2.4, this is the case where not L is acceptable with respect
to PU H Unot S. In this case not L & Acc(P’ U H) because, by having
the inhibiton rules, some not L' € S provides evidence for L. Thus an
hypotheses is contradicted.

2. If not L ¢ S is not mandatory and is in H then it must belong to
Accopt(P U H), and thus, by definition of acceptable hypothesis with
respect to Opt, it also belongs to Acc(P U H). So it can only not belong
to Acc(P" U H) if some of the inhibition rules provide evidence to L,
which can never happen because not L € Accop (P U H).

Lemma 8.4.2. If P' U H is a complete scenario of P = P UIR(R), and
R C Opt, then PU H is complete with respect to Opt.

Proof. Similar to the proof of lemma 8.4.1.

Theorem 8.4.1 (Quasi-complete scenaria and MNSs).
P U H is a quasi-complete scenario with respect to Opt of a program P with
an avoidance set S iff (M, S) is a MNS of P with revisables Opt, where:

M = WEFSX(P UIR(S))

8 Note that for any program with the L < not L rule, not L constitutes evidence
for L, and thus not L can never be acceptable.

166 8. Dealing with contradiction

Proof. = By lemma 8.4.1, if PUH is a quasi-complete scenario with respect
to Opt of P with an avoidance set S then it is a complete scenario of

P'=PU{L < not L|not L €S}

Moreover, given that P U H is a base scenario, by definition of quasi-
complete, it is the least complete scenario with respect to Opt with avoid-
ance set S, and thus the WFSX of P’. By definition of quasi-complete
no smaller combination of Opt exists, i.e. no smaller set of inhibition
rules closed under indissociables removes the contradiction. So (M, S} is
a MNS of P with revisables Opt.

< Since (M, S) is a MNS of P, M is the least complete scenario of PUIR(S).
Thus, by lemma 8.4.2, PU H is complete with respect to Opt. Moreover,
since S is by definition closed under indissociables, P U H is the least
complete scenario with respect to Opt with avoidance set S. Thus it is
a base scenario. By definition of MNS, no smaller combination of Opt
removes the contradiction, and there are no base scenaria with a smaller
subset of Opt, i.e P U H is quasi-complete.

This theorem states that assuming hypotheses maximally and avoiding
the contradiction, corresponds to minimally introducing inhibition rules, and
then computing the WFSX.

Theorem 8.4.2 (Sceptical revision and WFSo,.). PUHis the WF Sopu:
of a program P with an avoidance set S iff (M,S) is the sceptical submodel
of P with revisables Opt.

Proof. The proof follows directly from Theorem 8.4.1 and the fact that the
sceptical submodels is the join of MNSs, and W F'So,: is the meet of quasi-
complete scenaria.

From these theorem it follows that the role of optatives in contradiction
avoidance is the same as the role of revisables in contradiction removal. Thus
the discussion about special criteria to automatically infer optatives from
a program, applies directly in the issue of finding special criteria to infer
revisables from the program.

9. Further properties and comparisons

Throughout the previous chapters, several properties of WFSX were studied,
and many comparisons with other semantics were made. Special importance
was given to epistemic properties, and to comparisons based on epistemic
arguments.

In this chapter we present some additional properties of WFSX, and make
further comparisons with other semantics based on these properties, which
are essentially structural in nature.

9.1 Properties of WFSX

Although most of the properties of WFSX presented up to now are of an
epistemic nature, some structural properties too were already presented:

In Section 4.3, it is shown that a least partial stable model — the well-
founded model — always exists for noncontradictory programs (cf. Theorem
4.3.1), and that that model can be obtained by an iterative bottom-up con-
struction (cf. Theorem 4.3.2 and Definition 4.3.1). Moreover, we produced
an iterative process for finding if a program is contradictory (cf. Theorem
4.3.3). Also in that section, we prove that for normal programs the results of
WFSX are equivalent to the results of the well-founded semantics of [76] (cf.
Theorem 4.3.4).

In Section 5.1.3 some other properties of extended logic programs are
brought out, namely: intrinsic consistency, coherence and supportedness. The
proof that WFSX complies with the first two is trivial. The proof of the third
is to be found below in Section 9.1.2.

In Section 6.3 some properties of (2-default theories are exhibited and
proven. Given the correspondence result of Theorem 6.6.1, all these proper-
ties are verified by WFSX as well. In particular, WFSX complies with the
property of modularity.

In Section 6.7 an alternative definition of WFSX is given, and additional
properties concerning it are supplied. Among these are several different iter-
ative constructions for the well-founded model.

Via the equivalence result of Theorem 7.4.5, all the properties presented
in Section 7.4 for complete scenaria semantics are also properties of WFSX.
In particular, one such property points out that partial stable models under

168 9. Further properties and comparisons

set inclusion are organized into a downward-complete semilattice (cf. point 1
of Theorem 7.4.1), its least element being the well-founded model (cf. point
2 of the same theorem).

In order to make more formal comparisons between the various semantics
for normal programs, in [53, 57] the author submits some abstract properties
a semantics should comply with. He begins by studying the application to
normal logic program semantics of some structural properties defined for
nonmonotonic reasoning formalisms in [108], and points out the importance,
in normal programs, of properties such as cumulativity and rationality, that
provide for a cautious form of nonmonotonicity.

More recently, in [54, 58], this author generalizes his previous work and
presents an assortment of properties he claims must be obeyed by every rea-
sonable semantics of normal programs. The motivation is to provide combi-
nations of properties that guarantee a complete and unique characterization
of a semantics via such properties. In this section we generalize some of the
properties presented in [53, 57, 54, 58] for extended logic programs, and study
whether WFSX complies with them.

Here too, we study the complexity of WFSX, and prove results needed
for the proofs of previous theorems in this work.

The structure of this section is as follows: in Section 9.1.1 we study struc-
tural properties related to the form of nonmonotonicity used by the semantics;
then, in Section 9.1.2, we study properties related to the form and transforma-
tions of programs; finally, in Section 9.1.3 we prove some complexity results
for WFSX.

9.1.1 Cumulativity and rationality

It is well known that semantics for logic programs with negation by default
are nonmonotonic. However, some weak forms of monotonicity can still be
verified by such semantics. Here we point out the importance of two such
weak forms of monotonicity — cumulativity and rationality — for extended
logic programs semantics, and examine whether WFSX complies with them.

Monotonicity imposes that for every program P and every pair of objec-
tive literals A and B of P

B e Sem(P) = BeSem(PU{A})

In semantics of logic programs this property is not verified, and not even
desired, for every such pair of objective literals. However, for some pairs,
this property can be verified by some semantics, and in fact it can be very
computationally useful.

One such case is when A is itself a consequence of P under the semantics
Sem. The imposition of such a restriced form of monotonicity expresses that

9.1 Properties of WFSX 169

the addition of consequences of the semantics does not interfere with other
consequences or, in other words, the consequences of a program, or lemmas,
can safely be added to it. This weak form of monotonicity is usually called
cumulativity.

Before defining cumulativity for extended logic programming we make a
preliminary remark:

Remark 9.1.1. The study of this kind of properties of logic programs is made
in the sceptical version of a semantics (cf. [53, 57]), i.e. L € Sem(P) is un-
derstood as: L belongs to all models determined by the semantics Sem when
applied to the program P. Here this study is simplified since, by Theorem
4.3.1, a literal belongs to all models of the semantics WFSX iff it belongs to
the well-founded model. Thus, in the sequel we use L € WFSX(P) to denote
that L belongs to the well-founded model of P or, equivalently, to all partial
stable models of P.

The generalization of cumulativity for extended logic programs is straight-
forward: it is just a rephrasing of cumulativity for normal programs as it
appears in [53, 57], with the additional proviso that the program be noncon-
tradictory:

Definition 9.1.1 (Cumulativity). A semantics Sem is cumulative® iff for
every noncontradictory program P and any two objective literals A and B of
P:

if A€ Sem(P) and B € Sem(P) then B e Sem(PU{A})

This properties states that whenever an objective literal A has been de-
rived from P, A can be used as a lemma and does not affect the set of
objective literals derivable from P alone. If this condition is not valid, inter-
mediate lemmas are of no use. This indicates that noncumulative semantics
may be computationally very expensive. As shown below, WFSX is a cumula-
tive semantics, and so memoizing techniques can be used in its computation:

Theorem 9.1.1. The WFSX semantics for extended logic programs is cu-
mulative.

Proof. We will prove that the complete scenaria semantics (Definition 7.3.3)
is cumulative. Given the equivalence between this semantics and WFSX (cf.

! This property is usually dubed “cautious monotonicity” (CM). In rigour, cumu-
lativity stands for CM plus Cut, where this last property is defined by:

if A€ Sem(P)and B € Sem(PU{A}) then B € Sem(P)

Since all known semantics for normal and extended programs trivially comply
with Cut, it is equivalent to say that a semantics is cumulative, or that it complies
with CM. Here, for the sake of generality, we use the term cumulativity.

170 9. Further properties and comparisons

Theorem 7.4.5) this proves cumulativity for the latter.

Let PUH be the least complete scenario of the noncontradictory program
P. To prove this theorem, it is enough to show that if PUH + A and PUH + B
then:

~ PUHU{A}F B;
— PUH U{A} is the least complete scenario of P U {A}.

The proof of the first point is trivial since in the scenaria framework a
scenario is a set of Horn clauses, and thus its consequences comply with
monotonicity.

The proof of the second point is made in two steps. First we prove that
PUH U{A} is a complete scenario of P U{A}. Then we prove that there is
no smaller complete scenario of P U {A}.

1. First we have to guarantee that P U H U {A} is noncontradictory, i.e.
it does not derive an objective literal L and its complement —L. Since
PUHFE A, and PU H is a set of Horn clauses, it follows clearly that the
consequences of PU H are the same of those of PUH U{A}. Given that
P U H is by hypothesis a complete scenario, it is also noncontradictory,
and so the same happens with P U H U {A}.

Furthermore, we have to show that every hypothesis in H is either manda-
tory or acceptable, and that all mandatory and acceptable hypotheses are
in H.

Recall that both the definitions of mandatory and acceptable are solely
based on the consequences of the scenario.

Again given that PUH F A and P U H is a set of Horn clauses, the
consequences of PUH are the same of those PUHU{A}. Thus mandatory
and acceptable hypotheses are the same for both PUH and PUH U{A},
and given that the former is a complete scenario, the latter is also one.

2. The proof that it is the least scenario follows easily using the same argu-
ments as in 1.

In [53, 57|, the author presents another property — rationality — also re-
lated to cautious forms of nonmonotonicity. For normal logic programs this
property is stronger than cumulativity, in the sense that every rational seman-
tics is cumulative, but not vice-versa 2. The straightforward generalization
of this property for extended programs, following the same lines of that of
cumulativity, is:

Definition 9.1.2 (Strong rationality). A semantics Sem is strongly ra-
tional iff for every noncontradictory program P and any two objective literals
A and B of P:

2 For example the O-semantics of normal logic programs [149, 151, 8] is not rational
but is cumulative (cf. [55]).

9.1 Properties of WFSX 171

if not A ¢ Sem(P) and B € Sem(P) then B € Sem(PU{A})

The example below shows that this definition might cause some confusion
when applied to extended programs, because then Sem(PU{A}) is not always
defined:

Ezample 9.1.1. Consider program P :
—b

b «— a
a <« nota

For this program not a ¢ WFSX(P) and b € WFSX(P). However, the
program P U {a} is contradictory, i.e. WFSX (P U {a}) is not defined.

At this point we would like to recall the rationale behind rationality.
While cumulativity expresses that the addition of some consequences of the
semantics do not interfere with the other consequences, rationality expresses
that the addition of literals that are compatible with the program does not
interfere with its consequences.

For normal logic programs an atom A is compatible with a program P
iff its negation not A is not in the semantics of P. Note that the same does
not happen for extended programs. For instance, in the program of Example
9.1.1 not a is not a consequence of the semantics, but a is not compatible
with the program.

In extended programs, and in order to guarantee that some objective
literal L is compatible with a program P, we have not only to verify that
not L is not a consequence of P, but also that the program obtained by
adding L to P is noncontradictory, so that the semantics is defined. This
suggests a more cautious version of the rationality for extended programs,
that avoids the possible confusion arising from Sem(P U {A}) not being
defined::

Definition 9.1.3 (Cautious rationality). A semantics Sem is cautiously
rational iff for every noncontradictory program P and any two objective lit-
erals A and B of P, if not A ¢ Sem(P), and PU{A} is a noncontradictory
program, and B € Sem(P), then:

B e Sem(P U{A})

Theorem 9.1.2. The WFSX semantics for extended logic programs is cau-
tiously rational.

Proof. As in the proof of Theorem 9.1.1, here we also prove the property for
WFSX via its equivalence to complete scenaria semantics.

For simplicity, and without loss of generality (cf. corollary 9.1.2), we as-
sume that programs are in the semantic kernel form, i.e. no objective literal
appears in the body of rules.

172 9. Further properties and comparisons

Let P be a noncontradictory program in that form, let P U H be its least
complete scenario, and let A and B be two objective literals of P such that:

(i) not A¢H
(4) P U{A} is noncontradictory
(i) PUHF B

We begin by proving that:
1. if not L is mandatory in P U H, it is also mandatory in P U H U {A}.

Given that PU H is a complete scenario, it contains all its mandatories.
Thus not L is mandatory iff P U H + —L. Given that scenaria are sets
of Horn clauses, PU H U {A} F —L, and so, by definition of mandatory,
not L is mandatory in P U H U {A}.

2. if not L is acceptable in P U H it is also acceptable in P U H U {A}.

By definition of acceptable hypothesis, not L is acceptable in P U H iff

VE,PUEFL=3not ' e E|PUHRL

Again given that a scenario is a set of Horn clauses, its consequences are
monotonic, and so the above formula entails that:

VE,PUEVL=3not ' € E|PUHU{A}F I/

By condition (4) it follows that not A is not acceptable in P U H. Thus
we can assume in the formula above that L is different from A. Given
that by hypotheses the program is in the semantic kernel form, for every
objective literal L different from A :

PUEFL & PUEU{A}FL

So, if not L is acceptable in P U H then:
VE,PUEU{A}+-L=3not L' e E|PUHU{A}+ L

i.e., by definition of acceptable, not L is acceptable in P U H U {A}.

By condition (#i7), and given that consequences of a scenario are mono-
tonic, it follows that

PUHU{A}+ B

Since, by points 1 and 2 above, mandatory and acceptable hypotheses
subsist in P U H U {A}, and consistency is guaranteed by condition (i), it
follows that the least complete scenario of P U {A} is of the form:

PUH' U{A}

where H' D H.
Thus PUH' U{A} F B, i.e. B € WFSX(P U {A}).

9.1 Properties of WFSX 173
9.1.2 Partial evaluation and relevance

Here we study properties related to the form of programs, and with the preser-
vation of the semantics when some transformations are applied to programs.

One such important property is the so called principle of partial evaluation
[54, 58]. This principles states that the semantics of every program should
be preserved under unfolding of objective literals. The example below shows
that WFSX is not preserved under the usual unfolding techniques® for normal
programs:

Ezample 9.1.2. Recall program P of Example 4.2.8:

c «— a a <« b
—q b «— notb

whose WFSX is:
{—a,not a,not ¢,not —b,not —c}

By unfolding the objective literal a in the rule for ¢ we obtain the program
P
c — b a
—a b
whose WFSX is:
{—a,not a,not —b,not —c}

Note that the truth value of ¢ is not preserved.

This happens because the unfolding of a did not take into account the
fact that —a is a consequence of the program. In order to define an unfolding
technique for extended logic programs care must be taken in such cases. One
has to guarantee that the unfolding of some atom A does not interfere with
the fact that = A belongs to the consequences of the program.

We shall see that one way of guaranteeing this is by adjoining to objec-
tive literal L the default literal not =L, before using the usual techique for
unfolding L. Note that program P” :

c «— not-a,b a «— b
—a — b «— notb

has indeed the same WFSX of program P.
In order to define the unfolding technique for extended programs we first
prove the theorem:

3 In this work we do not give a formal definition of unfolding for normal programs,
and assume that this is known to the reader.

174 9. Further properties and comparisons

Theorem 9.1.3. Let P be any extended logic program, and let P’ be the a
program obtained from P by adding to the body of some rule:

H«— By,...,By,not Cq,...,not Cy,

the default literal not —B;, where 1 < i < n and —B; denotes the objective
complement of B;.
Then:

— M is a PSM of P iff M is a PSM of P'.
— P is contradictory iff P' is contradictory.

Proof. In appendix.

From this theorem there follows an important corollary, already used
above in this work (e.g. in the definition of scenaria):

Corollary 9.1.1. For every program P and its canonical program P’
WFESX(P)=WFSX(P)

Proof. Follows directly from the theorem and the Definition 2.1.1 of canonical
program.

Let us define now the principle of partial evaluation for extended pro-
grams:

Definition 9.1.4 (Principle of partial evaluation). Let P be an exten-
ded logic program, and let:

L «— Bodyl,

L < BodyL,

be all rules of P with head L. Assume further that BodyL., ..., BodyL, do
not contain L.

We denote by unfold(P, L) the program obtained from P by replacing
each rule H <+ L, BodyH (i.e. each rule with L in the body) by:

H <« not —L,BodyL:, BodyH

H <« not —L,BodyL,,BodyH

The principle of partial evaluation states that the semantics of P is equal
to the semantics of unfold(P, L).

Theorem 9.1.4. WFESX complies with the principle of partial evaluation.

9.1 Properties of WFSX 175

Proof. Let P! = unfold(P,L).
Recall that, according to Theorem 6.7.1, T U not F'is a PSM of a program
P iff

T = IplpT
T C I'pT
F = {L|L¢gIpT}

and that I'pS is the least Herbrand model of the positive program ggl ob-
tained by deleting from P all rules with a literal not A in the body such that
A € S, and then deleting all default literals from the body of the remaining
rules.

We begin by proving that for any set of objective literals S :

If =L ¢ S then the default literals not —L introduced by the partial

. . 1 gl . . . gl
evaluation are deleted in % , and so this program is obtainable from g

via unfolding of L. Given that unfolding preserves the least Herbrand model
of a positive program, I'p, S = I'p/S.

. . l s gl

If =L € S then the only possible difference between the %g and %g is
that rules with not =L in the body are deleted in the latter but not in the
former. Given that the program is seminormal, by definition all rules with

head L are deleted in both positive programs.

. gl . gl .
The rules that remain in § and are deleted in % , have in the former

the objective literal L in their bodies. Thus, since no rules for L exist in gg ,

the remaining rules are useless to determine the least Herbrand model of that
program, and so I'p, S = I'p/S.

Now, let us assume that T'Unot I is a PSM of P. Then T' = I'pI'p,T.
By (%):

T=TIplpT

If =L ¢ I'p,/T then the default literals not —L introduced by the partial
evaluation are deleted in %S:Tgl, and so this program is obtainable from

L. .
Fng via unfolding of L. Thus, for the same reasons as before, I'p['p/T =

FP/ FPS/ T.

If =L € I'p,T then L ¢ T, since otherwise L would be true in the PSM
and —L undefined, which is impossible because every PSM complies with
coherence. So the rules that are deleted in FL/TQZ but not in %gl are useless

P/ Py
to determine the least Herbrand model (for the same reasons as before) and
thus FPFPS{T = Fp/pr{T.

So:

176 9. Further properties and comparisons

T=TIpIpT
Directly from (x) it follows that:

T C IpT
F = {L|Lg¢InT}

Thus T U not F is a PSM of P'.
The proof that if T'Unot F is a PSM of P’ then it is also a PSM of P, is
quite similar to the one above and is omitted for brevity.

Another property presented in [54, 58] is equivalence. It is especially im-
portant in this work because, together with the partial evaluation principle,
it allows us to prove a result that has been widely used to simplify the proofs
of theorems throughout this work.

Definition 9.1.5 (Equivalence). Let P’ be the extended logic program ob-
tained from P by deleting every rule:

L — L, Body

i.e. every rule whose head is contained in the body.
Equivalence states that the semantics of P’ is equal to the semantics of
P.

Theorem 9.1.5. WFSX complies with equivalence.

Proof. Given the equivalence between this semantics and WFSX (cf. Theo-
rem 7.4.5), we prove that the complete scenaria semantics (Definition 7.3.3)
complies with equivalence.

By definition, scenaria are sets of Horn clauses, and rules of the form
L «— L, Body result in tautologies in the scenaria framework. Thus for any
program P, any set of hypotheses H and any objective literal A :

PU{L —L,Body}UHFA < PUHFA (%)

So, by their respective definitions, it follows directly that for every hypo-
thesis not A :

—not A€ Mand(PUH) iff not A€ Mand(PU{L <« L,Body}U H).
—not A€ Ace(PUH) iff not A € Ace(PU{L < L, Body}UH).

By definition of complete scenario:

P UH is a complete scenario < H = Mand(PUH) U Acc(PUH)
By the results above, H = Mand(P U H) U Ace(P U H) iff

H = Mand(PU{L «— L,Body} UH) U Acc(P U{L < L, Body}U H)

Again, by definition of complete scenario:

9.1 Properties of WFSX 177

H = Mand(PU{L <« L,Body} U H) U Acc(PU{L «+ L, Body} U H)
=4
PU{L « L,Body} U H is a complete scenario of PU{L « L, Body}

Thus the complete scenaria of P are the same as the complete scenaria of
PU{L « L, Body}.

By (%) it follows also that the consequences of those scenaria are the same in
both programs.

Given the results of Theorems 9.1.4 and 9.1.5, we next define a bottom-
up process that transforms every extended program into another with no
objective literals in the body of rules, and with the same WFSX.

Intuitively, in order to obtain such a transformed program, we begin by
recording all rules with no objective literals in the body (hereafter called rules
in the desired form). Then we unfold all literals such that all of its rules are
in the desired form. By performing this partial evaluation more rules become
of that form. The process is iterated until a fixpoint is reached.

In order to formally define this process we begin with some preliminary
definitions:

Definition 9.1.6. Let P be an extended logic program. We define:

— sk_lits(P) is the set of objective literals L such that there is no rule in P
with head L and with objective literals in the body.

— sk_rules(P) is the set of all rules in P such that their heads belong to
sk_lits(P).

Definition 9.1.7 (Semantic kernel transformation). Let P and P’ be
two extended logic programs with the same Herbrand base, such that P’ does
not contain any objective literal in the body of its rules.

Additionally, let heads(P’) be the set of all objective literals in the head of
some rule of P’, and let P, be the program obtained from P by first deleting
from it every rule whose head is in heads(P’), and then making the union of
the result with P’.

We define:

SKp(P') = P' U sk_rules(unfold(P,, heads(P')))

The semantic kernel transformation SKp of program P is the least fix-
point of the sequence:

Py = sk_rules(P)
Pyy1 = SKp(P,)

Theorem 9.1.6. The semantic kernel transformation SKp of an extended
program P uniquely exists, and is in the semantic kernel form, i.e. it is a set
of rules with no objective literal in their bodies.

Moreover the WFSX of SKp is equal to the WFSX of P.

178 9. Further properties and comparisons

Proof. The existence, uniqueness, and semantic kernel form of SKp are guar-
anteed by its construction.

The WFEFSX equivalence with the program P follows easily from the fact
that the transformation is solely based on partial evaluations, and that the
rules that are never added are clearly those that for some partial evaluation
their head is contained in the body. Thus Theorems 9.1.4 and 9.1.5 guarantee
such an equivalence.

From this theorem it follows directly that:

Corollary 9.1.2. For every program P there exists one program P’ with no
objective literals in the body of its rules, such that the WFSX of P is equal
to the WFSX of P’.

Ezxample 9.1.3. Consider program P :

a <« ~bnotc p — q

-b «— d,note q <« p,notc
-b «— notp

d «— f

f

and let us calculate SKp.

— sk_rules(P) = {f}, and so Py = {f}. Note that —=b <« not p does not
belong to Py. This is because there is another rule with head -6 and with
an objective literal in its body.

— By unfolding f in P (cf. Definition 9.1.4) we obtain:

a <« ~bnotc p — q
-b «— d,note q <« p,notc
-b «— notp

d <« not—f

f

and thus P; = {d < not =f; f}.
— By unfolding both d and f in the program, using their rules in P; we
obtain:

a <+« ~bnotc p — q
=b «— not —-d,not —f,note q <« p,notc
-b «— notp

d <« not—f

f

So Py = Py U {=b « not —~d,not —f; —b+« not p}.
— By also unfolding —b we get:

9.1 Properties of WFSX 179

a <« mnot b,not ~d,not —f,not e,not c p — q
a <« not b,not p,not c
=b <« not —d,not —f,not e q <« p,notc
-b «— notp
d «— not—f
f
and thus:
Py = Py U a <« not b,not —d,not —f,not e, not c
a <+ not b,not p,not c

— It is easy to see that Py = Ps.

Thus SKp is the program:

a <+« not b,not —d,not —f,not e, not ¢
a <« not b,not p,not c
=b «— not ~d,not —f not e
-b «— notp
d < not-f
!

Note that in fact WFSX(P) = WFSX(SKp).

Relevance is another property of semantics, related with transformations
over programs, and also studied in [54, 58] for comparing semantics of normal
logic program. Intuitively, a semantics complies with relevance iff the truth
value of any literal in it is determined by the rules on which that literal
depends. In order to formalize this notion we first define the dependency
relation:

Definition 9.1.8 (Dependency relation). An objective literal A depends
on a literal L in an extended logic program P iff L = A or there is a rule in
P with head A and L’ in its body and L' depends on L.

A default literal not A depends on a literal L in P iff L =not A, L =—-A
or there is a rule in P with head A and not L' in the body and not L’
depends on L. Here, by = A (resp. not L") we mean the objective (resp. default)
complement of A (resp. L').

By dep_on(A, P) we mean the set of all literals L such that A depends on
L.

Ezxample 9.1.4. Consider program P :

(1) a < bmnotc ¢ «— d,note (3)
(2) —¢ < notg e — f (4)

The reader can check that, for example:

180 9. Further properties and comparisons

dep-on(a,P) = {a,b,not ¢,—c,not g,—~g,not d,—d,e, f}
dep_on(not a, P) {not a,—a,not b, b, c,d,not e,—e,not f,-f}
dep_on(b, P) {b}
)
)

dep_on(not b, P) = {not b,—b}
dep-on(c,P) = {e¢,d,not e,not f}
dep-on(not ¢, P) = {not ¢,—ec,not g,not d,—d, e, f}

Definition 9.1.9 (Relevant rules). The set of relevant rules of program
P for literal L,

rel_rul(P, L)

is the set of all rules with head H such that H € dep_on(L, P) or not H €
dep_on(L, P).

Ezample 9.1.5. For program P of Example 9.1.4, the set of relevant rules for
the literals whose dependencies were calculated there, are (where for brevity
only their identifying numbers are presented):

relrul(Poa) = {(1),(2),(3), (4)}

rel_rul(Pynot a) = {(1),(3),(4)}
rel.rul(P,b) = {}

rel_rul(P,not b) = {}
rel-rul(P,e) = {(3),(4)}

rel_rul(P,not ¢) = {(2),(3),(4)}

Definition 9.1.10 (Relevance). A semantics Sem complies with the prin-
ciple of relevance iff for every noncontradictory program P and every literal
L

L e Sem(P) <« L& Sem(relorul(P,L))

The importance of this structural property is well recognizable if we think
of top-down procedures for deciding the truth value of some literal. A se-
mantics not complying with this principle cannot have a purely top-down
procedure based on rewriting techiques.

Theorem 9.1.7. WFESX complies with the principle of relevance.

Proof. Tt is easy to see that for the definition of support (Definition 8.3.14)
of some literal L in any program P, only rules of rel_rul(P, L) are used. Since
the truth value of a literal can be determined from the existence or not or a
support for it (cf. proposition 8.3.10), it follows easily that WFSX complies
with relevance.

Another property mentioned above in this work (in Section 5.1.3) is sup-
portedness. Recall that a semantics complies with supportedness if an objec-
tive literal L is true in the semantics of P iff there is rule in P with head L
and whose body is also true in the semantics of P.

9.1 Properties of WFSX 181

Theorem 9.1.8. WFSX complies with supportedness.

Proof. Trivial in the complete scenario semantics (which is equivalent to
WEFSX by Theorem 7.4.5).

9.1.3 Complexity results

Several times in this work we’ve said that we are interested in a computable
semantics, and that computational cost is for us an important issue.

Unfortunately WFSX is not recursively enumerable (cf. Definition 4.3.1).
This is a difficulty WFSX shares with most reasonable semantics for normal
logic programs, including the well-founded semantics (WFS) of [76].

However, as proven in [76], the complexity of the decision problem in WF'S
for Datalog programs (i.e. programs without function symbols) is polynomial.
In this section we show that the addition of explicit negation into WFS does
not increase the complexity of the latter.

We begin by showing that if one knows a priori that some Datalog pro-
gram P is noncontradictory then the decision problem? in WFSX of P is
polynomial.

Theorem 9.1.9. The decision problem for any noncontradictory Datalog
program P under WFSX is polynomial in the size of the ground version of
P.

Proof. This proof follows closely the proof about the complexity of WFS in
[76].

We show that the well-founded model can be constructed in polynomial
time, after which any query can be answered immediately. We do this proof
using the equivalent definition of WFEFSX, of Theorem 6.7.2.

According to that theorem, the positive part of the well-founded model
T is the least fixpoint of the operator I'[, the negative part F' being the
complement of the application of I's to that least fixpoint.

At each stage T, of the induction, until the fixpoint is reached, at least
one element of the Herbrand base is added to T,41, so the fixpoint must be
reached in a number of steps polynomial in the size of the H®. So we need
only show that I'TT, can be found in polynomial time and that, given T,
F' can also be found in polynomial time.

It is clear that for these proofs it is enough to show that, for any set S of
objective literals, the computation of both I''S and I'sS is polynomial. Since
I,S is equal to I'S applied to a seminormal version of the program, and
clearly the seminormal version is computable in linear time, we only show
that the computation of I'S is polynomial.

4 As usual, by decision problem we mean the problem of deciding whether some
literal L belongs to the semantics of the program.
5 This kind of argument is standard, viz. [37, 208, 85, 90, 76].

182 9. Further properties and comparisons

— The computation of I'S starts by deleting all rules whose body contains
a default not L such that L € S. It is clear that this computation is
O(S| +| PJ).

— Then all default literals in the bodies of the remaining rules are deleted.
This computation is O(] P |).

— Finally, the Tp of the resulting positive program is computed. It is well
known that the computation of Tp of a positive program is polynomial.

Thus the computation of I'S is polynomial.

According to this theorem we can only say that if one knows that some
program P is noncontradictory then it can be decided in polynomial time
whether some literal is true in WFSX (P). However the result can be gener-
alized by withdrawing the a priori knowledge about the noncontradiction of
P. This is so because:

Theorem 9.1.10. The problem of determining whether a Datalog extended
program P is contradictory under WFSX is polynomial in the size of the
ground version of P.

Proof. From the correspondence Theorem 6.6.1 and proposition 6.3.2 it fol-
lows directly that a Datalog program P is contradictory iff the least fixpoint
of the sequence:

T, = {}
Ta+1 = FF‘;(TOL)

contains some objective literal L and its complement —L.

Since the computation of that fixpoint is polynomial (cf. Theorem 9.1.9),
it follows easily that to determine whether P is contradictory is also polyno-
mial.

9.2 Comparisons

Throughout the text above, several comparisons were made between WFSX
and other semantics for extended logic programs.

Comparisons with the semantics of [180] were made in Chapter 3 and
Section 5.1 where we argued that this semantics does not impose any con-
nection between the two types of negations. In fact, as mentioned in Chapter
3, our insatisfaction with the semantics of [180] in what concerns that desired
connection was one of the main motivations for defining a new semantics for
extended logic programs.

Also in Section 5.1, some comparisons were made with the semantics of
[183]. There we point out that that semantics does not comply with support-
edness. Epistemic comparisons with that semantics were made not only in
that very section, where we argued that supportedness closely relates to the

9.2 Comparisons 183

use of logic as a programming language, but also in Section 5.2 where we
related the use of classical negation ~L of [183] with the epistemic reading
“L is not provenly true”. In contradistinction, explicit negation =L of WFSX
has the reading “L is provenly false”. In Section 5.2 we compared these two
readings and argued in favour of the latter.

Epistemic comparisons with answer-set semantics [80] were drawn indi-
rectly in Section 5.2 (via the correspondence between answer-set semantics
and Moore’s autoepistemic logic), and in Chapter 6 (via the correspondence
between answer-set semantics and Reiter’s default logic).

However no detailed comparisons between WFSX and answer-set seman-
tics concerning structural properties were made yet. The only structural prop-
erties pointed out for answer-sets were the ones studied in Section 5.1, where
we found out that intrinsic consistency, coherence and supportedness are ver-
ified by both answer-sets and WFSX.

Recall that, as mentioned in Chapter 3, one of our main qualms with
answer-set semantics was in what regards its structural and computational
properties. In this section we make additional comparisons between WFSX
and answer-sets. These comparisons are made either using the properties in
the previous section, or via structural properties of nonmonotonic formalisms
that correspond to answer-sets.

We start by comparing the complexity results of both semantics. In the
previous section we have shown that for Datalog programs the complexity
of both the decision problem and the problem of finding if some program
is contradictory in WFSX is polynomial. In contrast, in [124] the authors
show that, even for Datalog programs, the problem of finding if a program
has answer-sets is NP-complete, and the decision problem for programs with
answer-sets is co-NP-complete.

As proven above, WFSX enjoys some structural properties with regard to
the organization of its models. In particular:

— partial stable models under set inclusion are organized into a downward-
complete semilattice, its least element being the well-founded model;

— the intersection of all partial stable models is equal to the well-founded
model, and can be computed by an iterative bottom-up process.

None of these properties is enjoyed by answer-set semantics. In fact, by its
very definition, no answer-set is comparable (with respect to C) with other
answer-sets. Thus, for deciding if some literal is a consequence of a program
under the answer-set semantics one cannot rely on a single least model (as
in WFSX) and, in contrast, have first to compute all answer-sets and then
their intersection.

Given that answer-set semantics corresponds to Reiter’s default logic (cf.
[80]), this problem is related with the property of uniqueness of minimal
extension studied in Section 6.2. There we point out more problems with

184 9. Further properties and comparisons

Reiter’s default logic (and given the correspondence results of [80], also with
answer-set semantics) that result from the inexistence of a unique minimal
extension. In particular, we argue it is undesirable that the cautious (or scep-
tical) version of the semantics not be itself a model of it. Next we present
some other undesirable properties of the sceptical version of answer-set se-
mantics.

By the sceptical version of the answer-set semantics we mean (as usual)
the semantics AS(P) determined by:

L e AS(P) iff L isin all answer-sets of P
not L € AS(P) iff there is no answer-set of P containing L

where L is any objective literal of the extended program P.

Cumulativity is one structural property obeyed by WFSX (cf. Theorem
9.1.1) and not by the sceptical version of answer-sets. The example below
shows this is indeed the case:

Example 9.2.1. Consider program P :

a < notb
b «— nota
c «— nota
c <« mnotc

whose only answer-set is {c, b}. Thus ¢ € AS(P), and b € AS(P). However
b AS(P U{c}).
In fact P U {c} has two answer-sets:

{p,a} and {p,b}
Since one of them does not contain b, b ¢ AS(P U {c}).

This very same example also shows that answer-set semantics is neither
strongly nor cautiously rational. In fact not ¢ ¢ AS(P), b € AS(P), and
P U {c} is noncontradictory, but b ¢ AS(P U {c}).

Being noncumulative, answer-set semantics not only gives in some cases
very unintuitive results, but also some added problems in its computation
accrue. In particular, even for propositional programs, the computation of
answer-sets cannot be made by approximations®: once it is found that an
objective literal is in every answer-set, that literal cannot be added as a fact
to the program.

This also points out problems in finding an iterative bottom-up process
for computing answer-set semantics, since usually such methods use already

5 For nonpropositional programs, it was already shown (in Section 7.5) that
the computation of an answer-set cannot in general be made by finite
approximations.

9.2 Comparisons 185

computed results as lemmas.

Another structural property studied in the previous section and obeyed
by WFSX is relevance. The example below shows that answer-set semantics
does not comply with relevence.

Example 9.2.2. Consider program P :

a <« notb

b «— nota

c «— nota
—c

whose only answer-set is {—c,a}. The rules relevant for a are the first two.
However a is not in the answer-set semantics of just those relevant rules.

In fact, rel_rul(P, a) has two answer-sets: {a}, and {b}. Since one of them
does not contain a, a € AS(rel_rul(P,a)).

This shows that, in contradistinction with WFSX, there can be no purely
top-down procedure for determining if some literal is true under the answer-
set semantics. Such a procedure would have to examine more rules than the
ones on which the literal depends.

Another interesting result concerning comparisons between WFSX and
answer-sets is:

Theorem 9.2.1. If an extended logic program has at least one answer-set it
has at least one partial stable model.

Proof. Follows directly from Theorem 6.4.2, given the correspondence be-
tween {2-extensions and PSMs (cf. Theorem 6.6.1), and the correspondence
between Reiter’s extensions and answer-sets (cf. [80]).

From this theorem it follows that WFEFSX gives semantics to at least the
same programs answer-sets does. Examples in Section 7.5 show that some
programs have partial stable models and no answer-set. Thus we say that
WFSX generalizes answer-set semantics, in the sense that it assigns meaning
to more programs.

For programs where both answer-set semantics and WESX assign a mean-
ing, the computational methods of the latter can be viewed as sound methods
for the former:

Theorem 9.2.2 (Soundness wrt to answer-set semantics). Let P be
an extended logic program with at least one answer-set. Then WFSX is sound
with respect to the answer-set semantics, i.e. for every literal L :

LeWFSX(P) = LeAS(P)

186 9. Further properties and comparisons

Proof. Follows directly from Theorem 6.4.3, given the correspondence be-
tween {2-extensions and PSMs (cf. Theorem 6.6.1), and the correspondence
between Reiter’s extensions and answer-sets (cf. [80]).

This theorem only guarantees soundness for programs with answer-sets.
As stated above in this section, the problem of determining whether a pro-
gram has answer-sets is NP-complete. Thus, even though the methods of
WFSX seem to be good sound computational methods for answer-sets, they
are not as good for that purpose because one first has to determine the exis-
tence of answer-sets.

One way to define good computational methods for the decision problem
in answer-set semantics is to restrict the class of programs (based on some
syntatic criteria, in the spirit of [64]) where those methods can be applied, and
then use WFSX. The study of syntatic properties guaranteeing the existence
of answer-sets and its equivalence to WFSX, i.e. guaranteeing that WFSX
can be used to correctly compute answer-set semantics, is however beyond
the scope of this work.

10. Top-down derivation procedures for WFSX

This chapter, which is not a pre-requisite for the understanding of the appli-
cations in Part III, concerns the definition of top-down derivation procedures
for WFSX. Such procedures are indispensable in practice for the goal ori-
ented querying of a program about the truth of literals, with no the need
to compute the whole WFM beforehand. One can hardly overemphasize the
importance of the structural properties enjoyed by WFESX for this purpose,
that make the existance of such procedures possible, and which other com-
peting semantics do not share. This was discussed at length in Section 9.1.

We begin the chapter by defining a sound and complete top-down seman-
tic tree characterization of WFSX. Based on this characterization, we proceed
with the definition of the SLX derivation procedure, and prove its soundness
and (theoretical') completeness with respect to WFSX.

To guarantee termination, (at least) for finite ground programs, we next
introduce rules that prune the search space, and eliminate both cyclic positive
recursion as well as cyclic recursion through negation by default.

The procedures and pruning rules described in this section are amenable
to a simple implementation (in Appendix A) which, by its nature, readily
allows pre-processing into Prolog, and has shown promise as an efficient basis
for further development.

It is not the purpose of this chapter to resolve with full generality the is-
sues and problems pertaining to the execution of nonground logic programms.
A whole gamut of research in the last years exists, and is still underway,
tackling just such issues. These are by no means easy, nor have generally ac-
cepted solutions. Accordingly, our stance is to keep to the ground case, with
the expectancy that, in due course, it shall be shown how, and under what
circumstances and restrictions, the generalizing move from the ground to the
nonground case can be made. This generalization and implementation for the
nonground case, involving tabulation and constructive negation, is ongoing
work not reported in this book.

! In practice completeness cannot be achieved because in general the WFM is not
computable [76]. However, in theory, and with the possible need of constructing
more than w derivations, completeness is obtained.

188 10. Top-down derivation procedures for WFSX

10.1 Semantic tree characterization of WFSX

In this section we define a top-down semantic tree characterization of WFSX
which is sound and complete (and consequently also with respect to WFS
when the program contains no explicit negation) for (possibly infinite) ground
programs. It is not our aim in this section to address the problems of loops
and of termination for programs without function symbols. These are dealt
with further down, by means of pruning rules.

The top-down characterization relies on the construction of AND-trees
(T-Trees), whose nodes are either assigned the status successful or failed. A
successful (resp. failed) tree is one whose root is successful (resp. failed). If
a literal L has a successful tree rooted in it then it belongs to the WFM;
otherwise, i.e. when all trees for L are failed, L does not belong to the WFM.
Unlike other top-down methods for WFS [40, 41, 27, 16], we deliberately do
not assign the status unknown to nodes. We do not do so because this way the
characterization is most similar to SLDNF, and to avoid the complications
of other approaches, involved in returning three distinct truth values. Thus,
in our approach, failure does not mean falsity, but simply failure to prove
verity.

We start by examining the simpler case of programs without explicit nega-
tion. It is well known [155, 195, 40, 41, 27] that the main issues in defining
top-down procedures for WFS are those of infinite positive recursion, and of
infinite recursion through negation by default. The former results in the truth
value false (so that the query L should fail and the query not L succeed, for
some L involved in the recusion), and the latter results in the truth value
undefined (so that verity proofs for both L and not L should fail).

Apart from these problems we mainly follow the ideas of SLDNF, where
atoms with no rules fail, true succeeds?, atoms resolve with program rules,
and the negation as failure rule that not L succeeds if L fails, and fails if L
succeeds.

In order to solve the problem of positive recursion we follow the same
approach as in SLS-resolution [177], i.e. we consider a failure rule for not
necessarily finite branches.

Ezample 10.1.1. Let P = {p < p}. The only tree for p,
p

|
p
|
is infinite. So p fails and consequently not p succeeds.

2 In the sequel we assume, without loss of generality, that the only fact of a program
is true. Other facts of programs are translated into rules with true in the body.

10.1 Semantic tree characterization of WFSX 189

For recursion through negation by default the solution is not so simple
because, as noted above, in this case we want to fail both L and not L, which
violates the negation as failure rule. To deal with this problem we introduce a
new kind of tree, TU-Tree, that rather than proving verity, proves nonfalsity?.
TU stands for true or undefined, i.e. non-false. Now, for any L, the verity
proof of not L fails iff there is a nonfalsity proof of L.

TU-Trees are contructed similarly to T-Trees: atoms with no rules are
failed leafs (as they fail to be true or undefined), ¢rue succeeds, atoms resolve
with program rules (since a literal L is true or undefined if there is a rule for
L whose body is true or undefined), and not L fails if L succeeds in a verity
proof, and succeeds otherwise (note that not L is true or undefined iff L is
true).

Having these two kinds of trees, it becomes easy to assign a status to an
occurrence of a literal L involved in recursion through negation by default.
Indeed, and this is the crux of our method, since in this case, L is undefined
according to WF'S, it must be assigned the status failed if it is in a T-Tree,
and successful if it is in a TU-Tree.

Ezample 10.1.2. Let P = {p < not p}. In order to prove the verity of p we
build its T-Trees. In this case the only tree is

p

not p

The node labeled not p is failed if there is a successful TU-Tree for p, and
successful otherwise.
The only TU-Tree for p is*:

p

not p

and so there is a recursion in p through negation by default. So p in the TU-
Tree is assigned the status successful, and consequently not p in the T-Tree
is failed. Thus the proof of verity for p fails.

The formalization of these solutions, presented below, yields a correct
characterization of WFS for normal programs (cf. Theorem 10.1.3). Now we
show how to generalize the characterization to deal with explicit negation in
WFSX.

In a lot of points, the treatment of extended programs is akin to that of
normal ones, where instead of atoms we refer to objective literals, namely
because, as expected, objective literals are treated exactly like atoms are in
WES.

3 A similar idea, but in the context of bottom-up procedures, is expounded in [97].
4 In the sequel, to better distinguish between T and TU-trees, the latter will be
shown inside a box.

190 10. Top-down derivation procedures for WFSX

The main difference in the generalization to extended programs resides
in the treatment of negation by default. In order to fulfill the coherence
requirement there must be an additional way to succeed a proof of not L. In
fact not L must succeed if =L does.

Example 10.1.3. Recall program P of Example 3.0.6:

a < mnotb
b <« nota
—qa

whose WFSX is (cf. Example 4.2.5):
{—a,b,not a,not —b}
The only T-Tree for b is:

b
|

not a

According to the methods described for normal programs in order to prove
not a we have to look at all possible TU-Trees for a. The only one is:

a

not b

Since this is a case of recursion through negation by default, not b succeeds
and consequently not a fails. However, since —a is true, by coherence not a
(and thus also b) must succeed, by the additional required proof method for
default literals.

Thus, for extended programs, in a T-Tree not L succeeds iff all TU-Trees
for L fail or if there is a successful T-Tree for =L, and fails otherwise. Re-
garding TU-Trees, not L succeeds in the same cases of normal programs, plus
the case when —L is true (i.e. there is a succesful T-Tree for —=L). =L being
undefined is irrelevant for the nonfalsity of not L (e.g. in Example 10.1.3
where the undefinedness of ¢ does not prevent not —c).

Care must also be taken in nonfalsity proofs because the coherence re-
quirement overrides undefinedness. The problem is akin to that of partial
evaluation of objective literals within WFSX, discussed in Section 9.1.2:

Ezample 10.1.4. Recall program P of Example 4.2.8:

c «— a a <+« b
—a b «— notbd

whose WFSX is:

{=a,not a,not ¢,not —b, not —c}

10.1 Semantic tree characterization of WFSX 191

As shown in Example 9.1.2, if a in the first rule is replaced by b (the body
of the single existing rule for a), then the truth value of ¢ is not preserved.

The problem of unfolding objective literals without changing the seman-
tics was solved in Section 9.1.2, by adjoining to each objective literal L the
default literal not —L, before using the usual technique for unfolding L. Simi-
larly, in the semantic tree characterization, when expanding tree nodes there
must be additional sucessors, corresponding to the negation by default of the
complements of objective literals in the chosen rule, i.e. making the adjoining
of not =L implicit rather than explicit.

In this example, without the additional sucessors, the only T-Tree for
not c is one with the single node not c. Since there are no rules for —¢, all T-
Trees for —c fail. Thus, in order to prove not ¢ we have to look at all possible
TU-Trees for c. The only one is:

—>c—22 — 0

not b

which succeeds because not b in the TU-Tree is involved in a recursion through
negation. So the T-Tree for not c¢ fails, which is an incorrect result since not ¢
belongs to the WFM. Note that the problem here is that a in the TU-Tree
is expanded to b. Accordingly, the result for a becomes the same as the one
for b. However b and a of different truth value in the WFM (b is undefined
whilst a is false).

If the additional sucessors are added then the TU-Tree for ¢ is:

s

c
\
not ~a a
|

e
not =b b

not b

This tree is failed because not —a fails. Thus not ¢ in the T-Tree succeds, as
desired.

Summarizing, and formally:

Definition 10.1.1 (T-Tree, TU-Tree). A T-Tree T (A) (resp. TU-Tree
TU (A)), for an arbitrary fized ground extended logic program P, is an AND
tree with root labeled A and nodes labeled by literals.

T-Trees (resp. TU-Trees) are constructed top-down starting from the root
by successively expanding new nodes using the following rules:

192 10. Top-down derivation procedures for WFSX

1. For a node n labeled with an objective literal A: if there are no rules for A
in P then n is a leaf; otherwise, select (non-deterministically) one rule:

A« By,...,Bj,not Bjy1,...,not By from P
where the B;s are objective literals. In a T-Tree the successors of n are
By,...,Bj,not Bjiq,...,not By.
In a TU-Tree there are, additionally, the successors
not =By,...,not —B;.
2. Nodes labeled with default literals are leaves.

Definition 10.1.2 (Success and failure for WFSX). Each node in a T-
Tree (resp. TU-Tree) has an associated status that can be either failed or suc-
cessful. All infinite trees are failed. A finite T-Tree (resp. TU-Tree) is success-
ful if its root is successful and failed if its root is failed. The status of a node
in a finite tree is determined according to the following rules:

1. A leaf node n labeled with true is successful;

2. A leaf node n labeled with an objective literal (distinct from true) is failed;

3. A leaf node n in a T-Tree (resp. TU-Tree) labeled with the literal not A
is successful if all TU-Trees (resp.T-Trees) with root A (subsidiary trees
of n) are failed or if there is a successful T-Tree with root —=A (the only
other subsidiary tree of n);

4. A leaf node n in a T-Tree (resp.TU-Tree) labeled with the literal not A
is failed if there is a successful TU-Tree (resp.T-Tree) with root A (the
subsidiary trees of n);

5. An intermediate node n in a T-Tree (resp. TU-Tree) is successful if all its
children are successful, and is failed if one of its children is failed.

After applying the previous rules some nodes may still have their status
undetermined due to infinite recursion through negation by default. To unde-
termined nodes in T-Trees the status failed is assigned, and in TU-Trees the
status successful is assigned.

Theorem 10.1.1 (Correctness wrt WEFSX). Let P be a ground (possi-
bly infinite) extended logic program, M its well-founded model according to
WEFESX, and let L be an arbitrary fized literal. Then:

— if there is a successful T-Tree with root L then L € M (soundness);
— if L € M then there is a successful T-Tree with root L (completeness).

Proof. The proof of this theorem follows easily from the correctness of SLX
(Theorems 10.2.1 and 10.2.2).

This theorem only guarantees correctness for noncontradictory programs.
However, it is possible to determine with the above characterization whether
a program is contradictory:

10.2 SLX — a derivation procedure for WFSX 193

Theorem 10.1.2 (Contradictory programs). An extended program P is
contradictory iff there exists some objective literal L of P such that there is
a successful T-Tree for L and a successful T-Tree for —L.

The above definition is directly presented for extended programs. But
since extended programs are a generalization of normal ones, and in these
WFSX coincides with WF'S, the definitions also characterize the WFM of
normal programs. However, for such programs some simplifications can be
made. Namely, and since proofs of literals of the form —L fail in normal
programs (and hence not —L literals succeed), point 3 can be simplified to:

A leaf node n in a T-Tree (resp. TU-Tree) labeled with the literal
not A is successful if all TU-Trees (resp.T-Trees) with root A are
failed;

and, furthermore, in the construction of TU-Tree the additional sucessors are
not needed.

Theorem 10.1.3 (Correctness wrt WFS). The above method, even with
the prescribed simplifications, is correct with respect to the well-founded se-
mantics of normal programs.

10.2 SLX — a derivation procedure for WFSX

Based on the above semantic tree characterization, we can easily proceed to
define a top-down derivation for WFSX, SLX(where X stands for eXtended,
and SL stands for Selected Linear). This is done in the usual way, where
expansion of tree nodes is equated with replacement of a goal in a resolvent,
success is equated with refutation, etc.

Given the similarities of the semantic tree characterization and SLX, we
present the SLX definition directly, without any further considerations on the
way it is defined. The rest of this section is devoted to the correctness proofs
of SLX.

Definition 10.2.1 (SLX-T-derivation). Let P be an extended program,
and R an arbitrary but fived computational rule. A SLX-T-derivation

Go, G, . ..
for G in P via R is defined as follows: Gy = G. Let G; be
—Ly,...,L,
and suppose that R selects the literal Ly (1 < k <n). Then:
— if Ly is an objective literal, and the input rule is

Ly« Bi,...,Bm

194 10. Top-down derivation procedures for WFSX

the derived goal is
— Lla'"aLk—laBla"'7BM7Lk+17-~~Ln-

— if Ly is not A then, if there is a SLX-T-refutation for —=A in P or there is
no SLX-TU-refutation for A in P, the derived goal is:

—Li,...,Lg—1,Lgt1,--- Ln
— otherwise G; is the last goal in the derivation.

Definition 10.2.2 (SLX-TU-derivation). Let P be an extended program,
and R an arbitrary but fired computational rule. A SLX-T-derivation

Go, G, - ..

for G in P via R is defined as follows: Gy = G. Let G; be < Lq,...,Ly, and
suppose that R selects the literal Ly, (1 <k <mn). Then:

— if Ly is an objective literal then
— if there exists a SLX-T-refutation for — Ly then G; is the last goal in the
derivation.
— otherwise, if the input rule is
Ly« By,...,Bn,
the derived goal is
<—L17...,kal,Bh...,Bm,Lk+1,...Ln
— if there is no rule for Ly then G; is the last goal in the derivation.
— if Ly is not A then:
— if there is a SLX-T-refutation for «— A in P then G; is the last goal in
the derivation.
— if all SLX-T-derivations for «— A are SLX-T-failures then the derived
goal s
— Ll,. .. 7Lk—1aLk+1; .. Ln
— due to infinite recursion through default negation, it might happen that
the previous cases are not enough to determine the derived goal. In such
a case, by definition, the derived goal is also
—Ly,....,Lg—1,Lks1,... Ly.

Definition 10.2.3 (SLX refutation and failure). A SLX-T-refutation
(resp. SLX-TU-refutation) for G in P is a finite SLX-T-derivation (resp.
SLX-TU-derivation) which ends in the empty goal («— O).

A SLX-T-derivation (resp. SLX-TU-derivation) for G in P is a SLX-T-
failure iff it is not a refutation, i.e. it is infinite or it ends with a goal other
than the empty goal.

10.2 SLX — a derivation procedure for WFSX 195

10.2.1 Correctness of SLX

In order to prove the soundness, and theoretical completeness of the SLX
derivation procedure, we assign ranks to derivations. The proofs of correctness
essentially rely on two lemmas proven by transfinite induction on the rank
of derivations. To trim the proof we begin by making some simplifications in
the above definitions of derivations:

In Definition 10.2.1 of SLX-T-derivation one possible way of removing a
selected default literal not A from a goal is to find a SLX-T-refutation for
«— —A. However this case is redundant. Note that the other case for removing
not A is when there is no SLX-TU-refutation for « A. But Definition 10.2.2
states that in a SLX-TU-derivation, if there is a SLX-T-refutation for the
explicit complement of a selected objective literal then the goal is the last
in the derivation. Thus, if there is a SLX-T-refutation for « —A, the only
SLX-TU-derivation for «— A is this single goal and is a failure, and so, even
when not considering the first possibility, not A is nevertheless removed from
the goal. Thus, in Definition 10.2.1 the case Ly = not A can be simplified to:
if there is no SLX-TU-refutation for A in P then the derived goal is

—Ly,...;Ly 1, L1, Ly

Now let’s look at the cases for a selected objective literal Ly in Definition
10.2.2. Clearly the first one corresponds to introducing not =Ly in the derived
goal. This is so because if there is a SLX-T-refutation for < —L the derivation
will become a failure (and this is equivalent to the first case), and if there is
no such refutation it is simply removed (and this is equivalent to the second
case). Consequently, in Definition 10.2.2 we remove the first case for a selected
objective literal, keep the third, and modify the second to: if the input rule
is Ly < Bq,..., By, the derived goal is

— Ll,...,Lk_l,TLOt —‘Lk,Bl,...,Bm,L]H_l,...Ln

Now we assign ranks to these simplified derivations. As the proofs shall
show, we do not need to assign a rank neither to SLX-T-failures nor to SLX-
TU-refutations. These do not contribute towards proving literals that belong
to the WEMP.

Intuitively, the rank of a SLX-T-refutation reflects the depth of “calls”
of subsidiary derivations that are considered in the refutation. Its definition,
below, can be seen as first assigning to each literal removed from a goal an
associated rank. When removing an objective literal no subsidiary derivation
is considered, and so the rank is not affected. The empty goal has rank 0.
When removing a default literal, the depth of subsidiary derivations that has
to be considered is the maximum (more precisely, the least upper bound for
the infinite case) of the depth of all SLX-TU-failures®. The depth needed

5 This is tantamount to having no need to assign a rank to indetermined nodes in
[195].

5 Note that for removing a default literal all SLX-TU-failures must be considered.
This is the reason behind “maximum?”.

196 10. Top-down derivation procedures for WFSX

for finally removing all literals from a goal is the maximum of the ranks
associated with each of the literals in the goal.

Definition 10.2.4 (Rank of a SLX-T-refutation). The rank of a SLX-
T-refutation is the rank of its first goal. Ranks of goals in the refutation are:

— The rank of «— O is 0.

— Let G; be a goal in a refutation whose next selected literal is objective. The
rank of G; is the rank of G;41.

— Let G; be a goal in a refutation whose next selected literal is a default one,
not L, and let a be the least ordinal upper bound (i.e. maximum in the
finite case) of the ranks of the SLX-TU-failures for «+ L7. The rank of G;
is the mazimum of o and the rank of G;y1.

Ranks of SLX-TU-failures reflect the depth of “calls” that is needed to fail
the subsidiary derivations. Note that the failure of a derivation is uniquely
determined by the last goal in it, and more precisely by its selected literal. If
that literal is objective then no subsidiary derivation is needed to fail it, and
thus its rank is 0. For failing a default literal not L one has to find a SLX-T-
refutation for < L. Several might exist, but it is enough to consider the one
with minimum depth. Moreover, in this case one has to increment the rank,
since the default literal not L was failed, and caused an extra “call”. Note
that, for SLX-T-refutations this increment is not considered. The issue of
incrementing the rank only for one kind of derivations is tantamount to that
of considering the increment of levels of I;s in the sequence for constructing
the WFM only after the application of the two operators, I" and I, defined
in Section 6.7.

Definition 10.2.5 (Rank of a SLX-TU-failure).

An infinite SLX-TU-failure has rank 0. The rank of a finite SLX-TU-failure
is the rank of its last goal. Let G,, be the last goal of the derivation, and Ly
be its selected literal:

— if Ly, is an objective literal then the rank is 0.
—if Ly 1s a default literal, not A, then the rank is a + 1, where « is the
minimum of the ranks of all SLX-T-refutations for «— A.

The following lemma is used in the proofs of correctness. This lemma
relates the existence of sequences where some default literals are removed to
the I" operator by which some default literals are removed from the body of
rules:

Lemma 10.2.1. Let I be an interpretation, and let («— L),G1,... be a se-
quence of goals constructed as per Definition 10.2.2 (resp. Definition 10.2.1),
except that selected default literals not Ly such that Ly & I are immediately
removed from goals. Then: L € I'sI (resp. L € I'T) iff the sequence is finite
and ends with the empty goal.

7 Since we are in a SLX-T-refutation, all SLX-TU-derivations for < L are failures.

10.2 SLX — a derivation procedure for WFSX 197

Proof. Here we omit the proof for L € I'l with Definition 10.2.1, which is
similar. If L € I';I then, as per the definition of Iy, there must exist a finite
set of rules in % such that L belongs to its least model. According to the
definition of % and of semi-normal program, there is a finite set of rules in
P such that for each default literal not L in their bodies L ¢ I, and for each
such rule with head H, =H ¢ I. Let P* be the subset of P formed by those
rules. The only default literals to be considered by Definition 10.2.2 will be
those in the bodies, plus the default negations of —-complements of the heads
of rules used in the derivation. So, given the completeness of SL-resolution®
[118], and the fact that all these introduced literals are not in I (as shown
above), a sequence of goals considering only the rules in the finite P* exists
by

and ends in « 0. Thus the least model of + contains L.

Lemma 10.2.2. Let P be a noncontradictory extended logic program, L an
objective literal, and {I,} be the sequence constructed for the WFM of P,
according to the WFSX definition in Section 6.7. In that case:

1. if there is a SLX-T-refutation for < L in P with rank < i then L € I;.
2. if all SLX-TU-deriwations for < L in P are failures with rank < i then
L& Il;.

Proof. For point 1, by transfinite induction on i(for point 2 the proof is
similar, and omitted here for brevity):

1 is a limit ordinal é: Assume that there is a SLX-T-refutation for « L with
rank < 8. Thus, there is a o < ¢ for which such a refutation exists with
rank < . Then, 3o<5L € I. Thus, L € |J, 51, ie. L € I5.

Induction step: If there is a SLX-T-refutation for «— L with rank < i+1 then,
by definition of ranks for these refutations, all subsidiary derivations for
default literals not L; in the refutation are failed and of rank < 7 41
(and thus < 4) and are simply removed. So, given point 2, Vj, L; & I'sI;.
From lemma 10.2.1, by tacking there the interpretation I = I';I;, and by
removing all not L; literals, it follows that L € I'IsI;, i.e. L € L.

Theorem 10.2.1 (Soundness of SLX). Let P be a noncontradictory ex-
tended logic program, L an arbitrary literal from P. If there is an SLX-T-
refutation for «— L in P then L € WFM(P).

Proof. If L is an objective literal, then the result follows immediately from
lemma 10.2.2, and the monotonicity of I'[%.

Let L = not A. If there is a SLX-T-refutation for « not A with rank i
then, by definition of SLX-T-refutation, all SLX-TU-derivations for « A are
failures of rank < i. By point 2 of lemma 10.2.2, A & I';I;.

Let M be the least fixpoint of I'I's. Given that I'[’s is monotonic, I; C M,
i.e. for any objective literal A, A € I; = A € M. By antimonotonicity of Ik,

8 For definite programs both T and TU derivations reduce to SL-derivation.

198 10. Top-down derivation procedures for WFSX

AeTl'sM = A€ Il Thus, since A & I',I;, A& ;M i.e., by definition of
the WFM, not A € WFM(P).

Given the soundness of WFSX with respect to the answer-sets semantics
(Theorem 9.2.2) and the soundness of SLX with respect to WFSX, it follows
easily that SLX can be used as a sound derivation procedure for the answer-
sets semantics.

Corollary 10.2.1 (Soundness wrt answer-sets). Let P be an extended
logic program with at least one answer-set, and L an arbitrary objective literal
from P. If there is an SLX-T-refutation for < L in P then L belongs to all
answer-sets of P. If there is an SLX-T-refutation for <— not L in P then
there is no answer-set of P with L.

Next we prove the theoretical completeness of SLX. To do so we begin by
presenting a lemma that, like lemma 10.2.1 (and with a similar proof), relates
sequences with the I' operator. Then we prove completeness for objective
literals by transfinite induction on the ranks for a particular class of selection
rules. Finally we lift this restriction, and prove completeness also for default
literals.

Lemma 10.2.3. Let I be an interpretation, and L an objective literal. If
L & I,I (resp. L & I'I) then each possible sequence of goals starting with < L
and constructed as per Definition 10.2.2 (resp. Definition 10.2.1), except that
selected default literals not Ly, such that Ly & I are immediately removed from
goals, is either: infinite; ends with a goal where the selected literal is objective;
ends with a goal where the selected literal is not A and A € I.

Lemma 10.2.4. Let P be an extended logic program, L an objective literal,
and {I,} be the sequence constructed for the WFM of P. Then, there exists
a selection rule R such that:

1. if L € I; then there is a SLX-T-refutation for < L in P with rank < i.
2. if L & I'sI; then all SLX-TU-derivations for < L in P are failures with
rank < 1.

Proof. Let R be a selection rule that begins by selecting all objective literals,

and then default ones subject to that it selects a not L before a not L' if

there is a j in the sequence of the {I,} such that L ¢ I';I; and L’ € I,I;.
By transfinite induction on i:

7 is a limit ordinal é: For point 1 the proof is similar to the one presented in
lemma 10.2.2 when i = §.
For point 2 assume that L & I'sIs5. By lemma 10.2.3, making the I in that
lemma equal to I5, each SLX-TU-derivation for « L is either: infinite,
and in this case a failure of rank 0; ends with a goal where the selected
literal is objective, i.e. a failure of rank 0; ends with a goal where the
selected literal is not A and A € Is. In this case, and given that point 1 is

10.2 SLX — a derivation procedure for WFSX 199

already proven for ¢ = §, there is a SLX-T-refutation for « A with rank
< a such that a < §. Thus, and according to the definition of ranks, the
rank of this derivation is < 4.
Note that, by considering the special selection rule R in the sequences
mentioned in lemma 10.2.3, these become indeed equal to derivations,
where the not Li such that Ly & I are never selected.

Induction step: Assume points 1 and 2 of the lemma hold. We begin by
proving that point 1 also holds for ¢ + 1.
Assume that L € I'[I;. By lemma 10.2.1, there exists a sequence end-
ing with the empty goal, constructed as per Definition 10.2.1, except that
selected default literals not Ly such that Ly ¢ I'sI; are immediately re-
moved from goals. By point 2, for any Ly, all SLX-TU-derivations for
«— Ly, are failures with rank < ¢. Therefore the sequence is a refutation.
Moreover its rank is < ¢ and thus also < ¢. This proves point 1.

Now we prove that point 2 also holds for ¢ + 1. Assume that L & I's1;11.
By lemma 10.2.3, considering the I in that lemma equal to I;41, each
SLX-TU-derivation for < L is either: infinite, and in this case a failure
of rank 0; ends with a goal where the selected literal is objective, i.e. a
failure of rank 0; ends with a goal where the selected literal is not A and
A € I;11. In this case, and given that point 1 is already proven, there is
a SLX-T-refutation for « A with rank < ¢ 4+ 1. Thus, and according to
the definition of ranks, the rank of this derivation is < ¢ + 2, i.e. <7+ 1.
The argument for saying that the sequences of lemma 10.2.3 are deriva-
tion is similar to the one used above for limit ordinals.

Mark that, in the proof of point 1 above, we never use the special selection
rule R. Thus, for SLX-T-derivations an arbitrary selection rule can be used.

Moreover, in point 2, the only usage of R is to guarantee that the rank of
all SLX-TU-failures is indeed < i. This is needed for proving the lemma by
induction. However, it is clear that if by using R all SLX-TU-derivations are
failures, although with a possibly greater rank, the same happens with an
arbitrary selection rule®. This is why there is no need to consider the special
selection rule in the theorem below.

Theorem 10.2.2 (Theoretical completeness of SLX). Let P be a non-
contradictory extended program, and L an arbitrary literal from P. If L €
WFM(P) then there exists a SLX-T-refutation for < L in P.

Proof. If L is an objective literal the proof follows from lemma 10.2.4.

Let L = not A. By definition of WFM there exists an ordinal A such that
I is the least fixpoint of I'Ts. Thus, again by definition of WFM, A & I';1,,
and by point 2 of lemma 10.2.4 all SLX-TU-derivations for < A in P are

9 Literals involved in infinite recursion through negation do not give rise to SLX-
TU-failures.

200 10. Top-down derivation procedures for WFSX

failures. Consequently, the SLX-T-derivation consisting of the single goal «
not A is a refutation.

This theorem requires one to know “a priori” whether the program is
contradictory. However this is not problematic since SLX can detect contra-
dictions:

Theorem 10.2.3 (Contradictory programs). If P is contradictory, there
exists a L € H for which there are SLX-T-refutations for both «— L and

«— —L.

10.3 On guaranteeing termination of SLX

Although sound and complete for WFSX, SLX is not effective (even for fi-
nite ground programs). In fact, and because it furnishes no mechanism for
detecting loops, termination is not guaranteed. Completeness here is only
ideal completeness. In order to provide an effective implementation of SLX
we have first to tackle the issue of guaranteeing termination.

As for the WFS of normal programs, WFSX too is in general not com-
putable. Thus, it is not possible to guarantee termination in the general case.
In this section we modify SLX such that termination is guaranteed (at least)
for finite ground programs'°.

This modified SLX procedure can be easily implemented via a Prolog
meta-interpreter’!. Due to its SLDNF-resemblance, it has also been rather
easy to implement a pre-processor that compiles WFEFSX programs into Pro-
log, using a format corresponding to the specialization of the interpreter rules,
plus a small number of general “built-in” predicates. The code of the pre-
processor is available from the authors on request.

To guarantee termination (at least) for finite ground programs, we in-
troduce rules that prune SLX-derivations, and eliminate both cyclic positive
recursion and cyclic recursion through negation by default (hereafter simply
called cyclic negative recursion).

To detect both kinds of cyclic recursions we use two kinds of derivation
ancestors:

— Local ancestors are assigned to literals in the goals of a derivation, and are
used for detecting cyclic positive recursion. For the purpose of including
local ancestors, we replace literals in goals by pairs L; : S;, where L; is a
literal and S; is the set of its local ancestors.

10 The technique we’re about to define also guarantees termination for allowed
bounded-term nonground programs. The discussion of guaranteeing termination
for these cases is, however, beyond the scope of this work.

11 This can be simply done by mimicking the definition of SLX-derivations with
ancestors, considering a left-most selection rule, and is presented in Appendix

A.

10.3 On guaranteeing termination of SLX 201

— Global ancestors are assigned to derivations, and are used to detect cyclic
negative recursion.

Intuitively, and if one thinks of a derivation as the expanding of an AND-
tree, the local ancestors of a literal’s occurrence are the literals appearing in
the path from the root of the tree to that occurrence.

Global ancestors of a subsidiary derivation are the local ancestors of the
literal L that invoked it, plus the ancestor goal of the derivation in which L
appears. The top-goal derivation has no global ancestors. Moreover we divide
global ancestors into two sets: global T-ancestors and global TU-ancestors.
Global T-ancestors (resp. TU-ancestors) are those that were introduced in a
SLX-T-derivation (resp. SLX-TU-derivation).

To deal with the non-termination problem of cyclic positive recursion it
suffices to guarantee that no such infinite derivations are generated. This can
be achieved if no selected literal belonging to its set of local ancestor is ever
expanded. It leads to the following pruning rule:

1. Let G; be a goal in a SLX-derivation (either T or TU), and let Ly, be the
literal selected by R. If Lj belongs to its local ancestors then G; is the
last goal in the derivation.

To treat cyclic negative recursion, tests over the global ancestors are nec-
essary. It is easily shown that any form of this recursion reduces to one of four
combination cases, depending on the cycle occurring between the two possi-
ble derivation types. In SLX-TU-derivations the selected literal is removed
from the goal, and in SLX-T-derivations the goal is the last in the derivation.
Moreover, all these combinations can be reduced to just one:

Lemma 10.3.1 (Reduction of negative cycles). All cyclic negative re-
cursions can be detected in SLX-T-deriwvations by looking only at its global
T-ancestors.

The same does not hold for any other combination case, i.e. there are
cycles that are only detectable with the test of lemma 10.3.1:

Example 10.3.1. The negative cycle in P :

a <« notb
b «— nota

is not detectable by only testing if goals in a SLX-T-derivation belong to its
global TU-ancestors, nor by only testing if literals in a SLX-TU-derivation
belong to its global T-ancestors.

The following derivations are constructed:

SLX-T-der. SLX-TU-der. SLX-T-der. SLX-TU-der.
—a —b —a —b

«— not b — not a «—not b — not a

202 10. Top-down derivation procedures for WFSX

and no ocurrence of the objective literal a in the SLX-T-derivations appears
in the SLX-TU-derivations. The same is applicable to b but exchanging SLX-
T-derivations with SLX-TU-derivations. Notice that all SLX-T-derivations
for —a are failed.

Only testing whether literals in SLX-TU-derivations belong to its global
TU-ancestors does not detect the recursion in:

—a < nota
-a
because successive SLX-T-derivations (< —a, <« not a) are generated.

Lemma 10.3.1 yields pruning rule 2:

2. Let G; be a goal in a SLX-T-derivation, and let Ly be the literal selected
by R. If L belongs to the set of global T-ancestors then G; is the last
goal in the derivation.

Theorem 10.3.1 (Elimination of cyclic recursion for WFSX).
Pruning rules 1 and 2 are necessary and sufficient for guaranteeing that all
positive and negative cyclic recursions are eliminated.

We now embed these two pruning rules in the definitions of SLX-
derivation (refutations and failures remain as before). Note that the pruning
rules do not make use of TU-ancestors. So they will not be considered in the
definitions:

Definition 10.3.1 (SLX-T-derivation with ancestors). Let P be an ex-
tended program, and R an arbitrary but fized computational rule. A SLX-T-
derivation Go,G1, ... for G in P via R, with T-ancestors ST is defined as
follows: Go = G : {}. Let G; be — Ly : Sy,...,L, : S, and suppose that R
selects Ly, : S, (1 <k <mn). Then:

— if Ly, is an objective literal, Ly & Sy U ST, and the input rule is
Ly« By,...,B,
the derived goal is

— L1 . Slw-ka—l . Sk-—laBl : S/,...,Bm . S/,
Lk+1 : Sk+1, . ..Ln : Sn
where 8" = S U{Ly}.
— if Ly, is not A then, if there is a SLX-T-refutation for «— —A : {} in P with
T-ancestors ST U Sy, or there is no SLX-TU-refutation for — A : {} in P
with the same ancestors, the derived goal is

— Ll : Sla"'7Lk7—l : Sk—l;Lk—i—l : Sk-{-la---Ln : Sn

— otherwise G; is the last goal in the derivation.

10.4 Comparisons 203

Definition 10.3.2 (SLX-TU-derivation with ancestors). Let P be an
extended program, and R an arbitrary but fixzed computational rule. A SLX-
TU-derwation Gy, Gy, ... for G in P via R, with T-ancestors ST is defined
as follows: Gy = G : {}. Let G; be «+ Ly,..., L, and suppose that R selects
Ly:S, 1<k<n). Then:

— if L is an objective literal then
— if Ly € Sk or there is no rule for Ly then G; is the last goal in the
derivation.
— else if there exists a SLX-T-refutation for «— =Ly : {} with T-ancestors
ST then G; is the last goal in the derivation.
— otherwise, if the input rule is Ly <— B1,..., By, the derived goal is:
— L1 : S17"'7Lk—1 : Sk—laBl : S/,...,Bm : S,,
Lk+1 : Sk_H, .. Ln : Sn
where S" = S U{Ly}.
— if Ly is not A then:
— if there is a SLX-T-refutation for — A : {} in P with T-ancestors ST
then G; is the last goal in the derivation.
— otherwise the derived goal is

<—L1 : Sl;u-aLk—l :Sk—17Lk‘+1 :Sk+17---Ln : Sn

Theorem 10.3.2 (Correctness for SLX with ancestors). Let P be a
noncontradictory extended program. Then:

— If L € WFM(P) then there is a SLX-T-refutation for — L : {} with
empty T-ancestors. Moreover, all the subsidiary derivations needed in the
refutation are finite, and in finite number.

— If L ¢ WEM(P) then all SLX-T-derivations for — L : {} with empty
T-ancestors are finite and end with a goal different from «— 0. Moreover,
all the subsidiary derivations needed are finite, and in finite number.

Proof. Follows from Theorems 10.3.1, 10.2.1, and 10.2.2.

10.4 Comparisons

To the best of our knowledge [205] is the only paper in the literature that
addresses the topic of proof procedures for extended logic programs. The au-
thor uses the notion of conservative derivability [211] as the proof-theoretic
semantics for extended programs. The paper provides a program transfor-
mation from such programs to normal ones. Then it is proved that Kunen
semantics [109] applied to the transformed program is sound and complete
with respect to conservative derivability. This approach has several problems
mainly motivated by the interpretation of default negation as finite failure as
recognized by the author. For instance, in the program {a < a} the literal
—q is false but a is undefined, contrary to the results obtained by answer sets

204 10. Top-down derivation procedures for WFSX

and WFSX where not a is true. As a final remark, conservative derivability
is not defined for programs with functor symbols. Therefore the approach is
only applicable to extended programs without functor symbols. WFSX solves
all these problems properly.

From now on we will restrict our comparisons to the scope of normal logic
programs. We start by considering SLDNF-resolution [42, 118]. The non ter-
mination problems of SLDNF, even for finite ground programs, motivated the
development of the semantics that correctly handles both types of infinite re-
cursion (positive and negative). Przymusinski in [178] showed that SLDNF
is sound with respect to WFS, i.e. it can be seen as a crude approximation
to WFS. Our method can be seen as a generalization of SLDNF, because
all recursion problems are reduced to and solved with the notions of fail-
ure and success of trees, interpreting not L true in SLX-T-derivations (resp.
SLX-TU-derivations) when all possible SLX-TU-derivations for L (resp. SLX-
T-derivations) fail. This (re-)understanding of not greatly simplifies the con-
struction of meta-interpreters and enables the compilation of logic programs
directly into Prolog code.

Przymusinski in [178] introduced SLS-resolution, which extends SLDNF
to stratified programs. This is achieved by understanding negation by default
as negation as (possibly infinite) failure, instead of finite failure. An extension
of SLS for normal programs is defined in [177] but assumes the existence
of the dynamic stratification. Przymusinski argues that the use of dynamic
stratification made is effectively computable in some cases and reduces to
avoiding negative recursion in the derivations. But the author doesn’t show
how this can be implemented in practice. Further extensions of this work
[175, 185, 195] implicitly or explicitly assume a positivistic selection rule that
selects negative literals in parallel as stated in [16]. For more details the
reader is referred to [16]. The definition of SLX doesn’t impose any order on
the selection of the literals, i.e. it is independent of the selection rule.

Apt and Bol [16] present a definition of SLS that deals with all general
programs and all selection rules. Their approach rests on the definition of
oracle SLS-trees. But to build such trees it is necessary to know the WFM “a
priori”. Then they define a SLS-tree as the limit of a sequence of oracle SLS-
trees. The authors argue that the use of the WFM to solve default literals
will be justified “at the end” in the SLS-tree. We don’t agree with this claim
because in the SLS-tree undefined default literals will justify themselves, i.e.
if there is recursion through negation then it is necessary to know the WFM
in order to “determine” the WFM. However, as recognized by the authors, it
is not at all clear how these trees could be constructed in a top-down way.

A top-down procedure for finite ground programs was presented in [155].
This procedure suffers from severe efficiency problems. When expanding a
not goal an exponential number of resolvents in the size of the program can
be generated, because all (minimal) combinations of literals are generated for
failing all the rule bodies for the literal of a default goal, and so a procedure

10.5 Further developments 205

that has polynomial complexity turns out to be exponential. Also, the pro-
cedure is not easily extendable to handle infinite ground programs because
infinite resolvents can be generated. Furthermore, simple extensions of this
procedure to the nonground case introduce more floundering problems then
SLX.

Another way of detecting loops is to use tabulation techniques. Several
approaches use them to define query evaluation procedures for WFS. These
methods are more general than ours in the case of function free nonground
programs, but for important classes of normal programs the aforesaid tech-
niques are unnecessary. Our main criticism is that they do not draw a clear
border between their use of tabulation and the overall method incorporating
it.

These techniques were first defined for stratified programs where only one
table needs to be constructed to deal with positive recursions. For normal
programs, subsequent methods introduce rather complicated mathematical
structures to deal with negative recursion [24, 40].

Bol and Degerstedt’s [27] method constructs only one table but the treat-
ment of negation by default literals supposes them undefined at first, only to
be forced to a complex filtering stage later.

For further and more extended comparisons, the reader is referred to [16]
and [41] which defines SLG resolution. SLG relies on program transforma-
tions based on modular partial evaluation rewrite rules for top-down query
evaluation under WFS; it focuses on positive goals, and delays nonground
negative ones.

The notion of doubled program was first introduced in [97] but in the
context of bottom-up evaluation. They showed that magic-sets transforma-
tions do not preserve well-founded semantics and described a technique in
[98] applicable to the class of normal programs.

Eshgi and Kowalski’s abductive procedure [70], corrected in [62], is sound
with respect to preferred extensions. In spite of not treating positive re-
cursion and non-cyclic negative recursion, it has several similarities with our
method. The “abductive derivations” and “consistency derivations” resemble
our SLX-T-derivations and SLX-TU-derivations. The big difference is in how
negative cyclic recursion is treated: they succeed abductive derivations when
the former kind of recursion is detected. Accordingly, they do not compute
the WFM, but the preferred extensions of [62].

10.5 Further developments

In theory, SLX is only applicable to (infinite) ground programs. A natural
required generalization of SLX is that for nonground programs.

A straightforward generalization method for nonground programs would
be to proceed as usual in the expansion of goals with rule variants, and

206 10. Top-down derivation procedures for WFSX

keeping the test for inclusion in the ancestors lists. However it has two prob-
lems: first, as shown in [17], this loop detection method does not guarantee
termination in the nonground case, even for term-bounded programs; sec-
ond, the procedure flounders on nonground default literals. Nevertheless, its
correctness and termination are guaranteed for call-consistent term-bounded
programs.

To guarantee termination for nonground term-bounded programs, we in-
tend to introduce tabulation methods into SLX'2. Another subject of future
work is that of introducing in SLX constructive negation techniques for solv-
ing the floundering problem.

The present SLX implementation relies on a top-down left-to-right search
strategy. However, and since our procedure imposes no restrictions on the way
goals are selected from the resolvent, other search strategies can be used.
In particular, we are keen on the application of sidetracking based search
strategies.

The sidetracking principle is an instance of the principle of procrastina-
tion, advising postponement of the problematic until the inevitable has been
dealt with. A sidetracking strategy for definite programs was first detailed
in [165], where determinate calls (i.e. those that unify with at most one rule
head) are executed first. The same approach can be applied in the context
of SLX. Moreover, nonground default literals can be postponed, so that the
floundering problem may be abated; notably there are cases of determinate
nonground default literal calls, e.g. not p(X) where p(X) as no rules, that
need not be postponed.

2 Mark that by being cumulative, WFSX is amenable to such methods. In fact, tab-
ulation requires the addition of intermidiate lemmas, i.e. it requires cumulativity.

Part 111

Illustrative Examples of Application

207

11. Application to classical nonmonotonic
reasoning problems

In this chapter we show how to cast in the language of extended logic pro-
grams different forms of nonmonotonic reasoning such as defeasible reasoning,
abductive reasoning and hypothetical reasoning, and apply it to diverse do-
mains of knowledge representation such as hierarchies and reasoning about
actions.

Our main purpose in this chapter is to abstract out and exhibit a modu-
lar and systematic method of representing nonmonotonic reasoning problems
with the above presented contradiction removal semantics. We argue that
logic programming extended with the concept of undefinedness and a suit-
able form of explicit negation, is very rich to represent such problems.

This chapter is organized as follows: First we identify simple forms of com-
monsense reasoning (e.g. defeasible reasoning with exceptions, hypothetical
reasoning) and show how they are represented by extended logic programs.
Using the notion of defeasibility and exception rules we then show how to
formalize hierarchical reasoning where exceptions are also present. Next we
represent problems where hypothetical reasoning is used to capture brave
reasoning.

Afterwards we use our approach to represent additional classical non-
monotonic problems in reasoning about actions, arguing that it is sufficiently
generic. Finally, we show how to cast counterfactual reasoning.

11.1 Summary of our representation method

In this section we summarize and systematize the representation method
adopted in all examples in this chapter. The type of rules for which we propose
a representation is, in our view, general enough to capture a wide domain
of nonmonotonic problems. Each type of rule is described in a subsection by
means of a schema in natural language and its corresponding representation
rule.

— Definite Rules If A then B. The representation is: B «— A.
— Definite Facts A is true. The representation is: A. A is false.
The representation is: —A.

210 11. Application to classical NMR, problems

— Defeasible (or maximally applicable) Rules Normally if A then B.
The representation is:

B «— A, not ab.

where not ab is a new predicate symbol. As an example consider the rule
”Normally birds fly”. Its representation is:

fly(X) < bird(X),not ab(X).

— Defeasible Facts are a special case of Defeasible Rules where A is absent.
— Exceptions to Defeasible Rules Under certain conditions COND there
are exceptions to the defeasible rule Hy «— Bi,not ab;.

aby — COND.

As an example, the representation of the exception ”Penguins are excep-
tions to the "normally birds fly” rule (i.e. rule f « b, not abdb)” is:

abb — penguin.

Preference rules are a special kind of exception to defeasible rules:
— Preference Rules Under conditions COND, prefer to apply the defeasible
rule Hi < Bi,not aby instead of the defeasible rule Hy «— Bo,not abs.

aby — COND,not ab,.

As an example consider "For penguins, if the rule that says "normally
penguins don’t fly” is applicable then inhibit the ”normally birds fly” rule”.
This is represented as:

ab_b — penguin(X),not ab_penguin(X).
— Unknown Possible Fact F might be true or not (in other words, the

possibility or otherwise of F' should be considered).

F «— not —F.
-F <« not F.

— Hypothetical (or possibly applicable) Rules Rule "If A then B” may
or may not apply. Its representation is:
B — Ahyp
hyp <« not —hyp
—-hyp <« not hyp

where hyp is a new predicate symbol. As an example consider the rule
”Quakers might be pacifists”. Its representation is:

pacifist(X) « quaker(X), hypgp(X).

hypgp(X) <« mnot ~hypgp(X).
—hypgp(X) <« not hypgp(X).

11.2 Defeasible Reasoning 211
11.2 Defeasible Reasoning

In this section we show how to represent defeasible reasoning with logic pro-
grams extended with explicit negation. We want to express defeasible reason-
ing and give a meaning to sets of rules, (some of them being defeasible) when
contradiction arises from the application of the defeasible rules. In this case
we suggest how to explicitly represent exceptions and preference rules. We do
not intend to address the problem of automatic generation of exception rules
or preference rules' in order to restore consistency, but only to show how
exceptions and preferences may be represented in the language. For instance,
we want to represent defeasible rules such as birds normally fly and penguins
normally don’t fly. Given a penguin, which is a bird, we adopt the skeptical
point of view and none of the conflicting rules applies. Later on we show how
to express preference for one rule over another in case they conflict and both
are applicable. Consider for the moment a simpler version of this problem:

Ezxample 11.2.1. Consider the statements:
(1) Normally birds fly. (i) Penguins don’t fly.
(7i1) Penguins are birds. (iv) a is a penguin.

represented by the program P (with obvious abbreviations, where ab stands
for abnormal):

f(X) <« b(X),notab(X) (i)
~f(X) — p(X) (i)
b(X) — p(X) (iif)
p(a) (iv)

Since there are no rules for ab(a), not ab(a) holds and f(a) follows. On
the other hand we have p(a) and —f(a) follows from rule (ii). Thus the
program is contradictory. In this case we argue that the first rule gives rise
to a contradiction depending on the assumption of not ab(a) and so must not
conclude f(a). The intended meaning requires —f(a) and not f(a). We say
that in this case a revision occurs in predicate instance ab(a), which must
turn to be undefined. not f(a) follows from —f(a) in the semantics.

In this case the contradiction removal semantics identifies, when the re-
visables are Rev = {not ab(X)}, one contradiction removal set CRS =
{not ab(a)}.

The corresponding minimally revised program (which in this case coin-
cides with the sceptical revision) is

P U {ab(a) « not ab(a)}
whose WFSX is:
{p(a),not —p(a),b(a),not —b(a),~f(a),not f(a),not —ab(a)}

! See [107] where an implicit preference for negative information over positive
information is introduced in the semantics of logic program

212 11. Application to classical NMR, problems

In the example above the revision process is simple and the information
to be revised is clearly the assumption about the abnormality predicate, and
something can be said about a flying. However this is not always the case, as
shown in the following example:

Ezample 11.2.2. Consider the following statements:

(i) Normally birds fly. (i1) Normally penguins don’t fly.
(#it) Penguins are birds. There is a penguin a, a bird b,
and a rabbit ¢ which does not fly.

The program P corresponding to this description is:

f(X) < b(X),not abi(X) (i) p(a)
-f(X) «— p(X),not aba(X) (i) b(b)
b(X) «— p(X) (iii) }“Ec;

Remark 11.2.1. In program P above the facts and rule (ii7) play the role of
non-defeasible information, and should hold whichever the world view one
may choose for the interpretation of P together with those facts.

— About the bird b everything is well defined and we have:

{ not p(b), b(b), not r(b), not abi(b), not abz(b), f(b) }
not —p(b),not —b(b),not —r(b),not —abi(b),not —aba(b),not —f(b)

which says that bird b flies, f(b), and it can’t be shown it is a penguin,
not p(b). This is the intuitive result, since we may believe that b flies
(because it is a bird) and it is not proven to be a penguin, and so rules (i)
and (ii) are noncontradictory w.r.t. bird b.

— About the penguin a, the use of rules (i) and (ii) leads to a contradiction:
by rule (i) we have f(a) and by rule (ii) we have —f(a). Thus nothing
can be said for sure about a flying or not, and the only non-ambiguous
conclusions we may infer are:

p(a), bla), notr(a),
{ not —p(a),not —b(a),not —r(a),not —aby(a),not —abs(a) }
Note that we are being skeptical w.r.t. abi(a) and abs(a) whose negation
by default would rise a contradiction.
— About ¢ rules (i) and (ii) are noncontradiction producing since not p(c)
and not b(c) both hold, and we have:

{ not p(c), not b(c), r(c), mot abi(c), not aba(c), —f(c) }

not —p(c),not —b(c),not —r(c),not —aby (c),not —aby(c),not f(c)
The view of the world given by the paraconsistent WFSX is?:

2 Note that the difference between the paraconsistent WFSX presented and the set
of literals considered as the intuitive result in the previous remark differ precisely
in the truth valuation of predicate instances abi(a), abz(a) and f(a).

11.2 Defeasible Reasoning 213

p(a), b(a‘)v not T(a)v not ab: (a)v not abs (CL), f(a‘)7 _'f(a’)a

not —p(a),not —b(a),not —r(a),not —abi(a),not —abz(a),not —=f(a),not f(a),
not p(b), b(b), not r(b), not abi(b), not abz(b), f(b),
not —p(b),not —b(b),not —r(b),not —abi(b),not —abz(b),not —f(b),

not p(c), not b(c), r(c), not abi(c), mot abz(c), =f(e),

not —p(c),not —b(c),not —r(c),not —abi(c),not —abz(c), not f(c)

A contradiction arises about penguin a (f(a) and —f(a) both hold) be-
cause of the assumptions on ab;(a) and abs(a). The contradiction removal
sets of this program, when Rev = {not aby(X),not abs(X)}, are:

CRS; = {not abi(a)}
CRSy; = {not abs(a)}

The sceptical revised program is:
P U {aby(a) < not abi(a),abz(a) < not abz(a)}

and it makes preference about abnormalities involving a.
In fact, in the sceptical revised program a is a penguin and a bird, and it
is undefined whether it flies.

11.2.1 Exceptions

In general we may want to say that a given element is an exception to a
normality rule. The notion of exception may be expressed in two different
ways.

Exceptions to predicates.

Ezample 11.2.8. We express that the rule flies(X) < bird(X) applies when-
ever possible but can be defeated by exceptions using the rule:

flies(X) « bird(X),not ab(X)
If there is a bird b and a bird a which is known not to fly (and we don’t
know the reason why) we may express it by - flies(a). In this case = flies(a)
establishes an exception to the conclusion predicate of the defeasible rule, and
the meaning of the program? is:

bird(b),not ab(b),not —ab(b),not —bird(b),not —flies(b), flies(b),
bird(a), not —ab(a),not —bird(a), —flies(a),not flies(a)

Note that nothing is said about ab(a), i.e. the assumption not ab(a) is
avoided in the revised program, since it would give rise to a contradiction
on flies(a). This is the case where we know that bird a is an exception to
the normally birds fly rule, by observation of the fact that it does not fly:

—flies(a).

3 This is a simplified version of Example 11.2.1.

214 11. Application to classical NMR, problems

Exceptions to rules. A different way to express that a given animal is some
exception is to say that a given rule must not be applicable to the animal.
To state that an element is an exception to a specific rule rather than to
its conclusion predicate (more than one rule may have the same conclusion),
we state that the element is abnormal w.r.t. the rule, i.e. the rule is not
applicable to the element:

if element a is an exception to the flying birds rule we express it
as ab(a).

In general we may want to express that a given X is abnormal under
certain conditions. This is the case where we want to express penguins are
abnormal w.r.t. the flying birds rule above, as follows:

ab(X) « penguin(X) (11.1)

Remark 11.2.2. Rule (11.1) together with the non-defeasible rule bird(X) «
penguin(X) add that penguins are birds which are abnormal w.r.t. flying.

Similarly of dead birds; i.e.
ab(X) «— bird(X), dead(X)
adding that dead birds are abnormal w.r.t. flying.

Remark 11.2.8. Alternatively, given —flies(X) < dead(X), the non-abnor-
mality of dead bird a w.r.t. flying, i.e. not ab(a), may not be consistently
assumed since it leads to a contradiction regarding flies(a) and —flies(a).

Exceptions to exceptions. In general we may extend the notion of ex-
ceptioned rules to exception rules themselves, i.e. exception rules may be
defeasible. This will allow us to express an exception to the exception rule
for birds to fly, and hence the possibility that an exceptional penguin may
fly, or that a dead bird may fly. In this case we want to say that the exception
rule is itself a defeasible rule:

ab(X) « bird(X),dead(X), not ab_deadbird(X)

11.2.2 Preferences among rules

We may express now preference between two rules, stating that if one rule
may be used, that constitutes an exception to the use of the other rule:

Example 11.2.4. Consider again the flying birds example:

f(X) « b(X),not aby(X) (1)
-f(X) « p(X),not aby(X) (ii)
b(X) <« pX) (iii)

11.3 Hierarchical taxonomies 215

In some cases we want to apply the most specific information; above, there
should be (since a penguin is a specific kind of bird) an explicit preference of
the non-flying penguins rule over the flying birds rule:

aby(X) «— p(X), not abz(X) (11.2)
If we have also penguin(a) and bird(b) the unique model contains:

{ p(a), ba), aby(a), not f(a), not aby(a), }
not p(b), b(b), not aby(b), f(b), not —f(b), not aba(b)

Rule (11.2) says that if a given penguin is not abnormal w.r.t. non-flying
then it must be considered abnormal w.r.t. flying. In this case we infer that
b is a flying bird, and a is a penguin and also a bird, and there is no evidence
(assume it is false) that it flies not f(a).

11.3 Hierarchical taxonomies

Here we illustrate how to represent taxonomies with extended logic programs.
In this representation we wish to express general absolute (i.e. non-defeasible)
rules, defeasible rules, exceptions to defeasible rules and to exceptions, explic-
itly making preferences among defeasible rules. We also show how to express
preference for one defeasible rule over another whenever they conflict. In tax-
onomic hierarchies we wish to express that in the presence of contradictory
defeasible rules we prefer the one with most specific* information (e.g. for a
penguin, which is a bird, we want to conclude that it doesn’t fly).

Example 11.3.1. The statements about the domain are:

(1) Mammals are animals.
(2) Bats are mammals.

(6) Normally animals don’t fly.
(
(3) Birds are animals. (
(
1

Normally bats fly.

Normally birds fly.

Normally penguins don’t fly.
Normally dead animals don’t fly.

(4) Penguins are birds.
(5) Dead animals are animals. (

N2 N 2N

7
8
9
0
and the following elements:

(11) Pluto is a mammal. (12) Tweety is a bird.
(13) Joe is a penguin. (14) Dracula is a bat.
(15) Dracula is a dead animal.

depicted as in fig. 11.1, and the preferences:

(16) Dead bats do not fly though bats do.
(17) Dead birds do not fly though birds do.
(18) Dracula is an exception to the above preferences.

4 In [137], the author suggests using this notion of more specific information to
resolve conflicts between contradictory defeasible rules.

216

Absolute rules

11. Application to classical NMR problems

Defeasible rules

e >
fiies !
[J
AW
. (6)
- —
(o

(1)

Fig. 11.1. A hierarchical taxonomy

Negated rules
-
(5 (10)
(7 dead
. ani mal
bat (15)
(14)

dracul a

11.3 Hierarchical taxonomies 217

The above hierarchy can be represented by the program:

animal(X) «— mammal(X) (1)
mammal(X) « bat(X) (2)
animal(X) «— bird(X) (3)
bird(X) « penguin(X) (4)
animal(X) «— dead_animal(X) (5)
~flies(X) «— animal(X),not aby (X) (6)
flies(X) « bat(X),not abs(X) (7)
flies(X) « bird(X),not abs(X) (8)
~flies(X) « penguin(X),not aby(X) 9)
—flies(X) « dead_animal(X),not abs(X) (10)
mammal (pluto) (11)
bird(tweety) (12)
penguin(joe) (13)
bat(dracula) (14)
dead_animal(dracula) (15)

with the implicit hierarchical preference rules (not shown in fig. 11.1):

aby1(X) « bat(X),not aba(X)
aby(X) « bird(X),not abs(X)
abs(X) <« penguin(X),not aby(X)

and the explicit problem statement preferences:

aby(X) «— dead_animal(X),bat(X), not abs(X) (16)
abs(X) « dead_animal(X),bird(X),not abs(X) (17)
abs (dracula) (18)

As expected, this program has exactly one partial stable model (coinciding
with its well founded model), no choice being possible and everything being
defined in the hierarchy. The model is given by the table in figure 11.2 where
/ means that the predicate (in the row entry) is true about the element (in
the column entry), e.g. penguin(joe) holds in the model.

Thus pluto doesn’t fly, and isn’t an exception to any of the rules; tweety
flies because it’s a bird and an exception to the “animals don’t fly” rule; joe
doesn’t fly because it’s a penguin and an exception to the “birds fly” rule.

Although dracula is a dead animal, which by default don’t fly (cf. rule
(10)) it is also considered an exception to this very same rule. Furthermore
rule (16) saying that “dead bats normally do not fly” is also exceptioned by
dracula and thus the “bats fly” rule applies and dracula flies.

Note that preferences rules must be present in order to prevent contradic-
tion to arise, thus preference rules play the role of removing contradictions
arising in the initial specification of the problem.

218 11. Application to classical NMR, problems

individ. joe dracula pluto tweety

predicat.

dead_animal || not , not — v, not = not ,not - | not , not —
bat not , not — v , not = not ,not - | not , not -
penguin v , not = not ,not - | not ,not— | not ,not-—
mammal not , not — v , not = v/, not = not , not —
bird v, not = not ,not - | not ,not— v, not =
animal v , not = v , not = v/ , not = v, not =
aby not ,not - | not ,not— | not ,not—- | not ,not-—
abs not ,not - | not ,not = | not ,not— | not ,not—
abs v, not = not ,not = | not ,not— | not ,not-—
aby not , not — v, not = not , not — V/ , not =
abs not , not = v , not = not ,not = | not , not—
flies =, not v , not = =, not v , not =

Fig. 11.2. The well founded model of the hierarchy

11.4 Hypothetical reasoning

In this section we capture hypothetical reasoning in extended programs and
interpret the results under the WFSX and the contradiction removal. In hi-
erarchies everything is defined as seen, leaving no choices available (a unique
model is identified as the meaning of the program). This is not the case in
hypothetical reasoning situations.

11.4.1 The birds world

In Example 11.2.1 we showed that the cautious or sceptical revision of de-
feasible rules gives a minimal model where no defeasible rule is used. There
are however two other (non-minimal) models corresponding to alternative
(non-cautious or hypothetical) meanings of the program (corresponding to
alternative defeasible rules being applied or, equivalently, alternative revi-
sions) when different assumptions are made.

Ezample 11.4.1. Consider the program:

f(X) <« b(X),not abi(X) (i)
=f(X) <« p(X),not aby(X) (ii)
b(X) < p(X)

p(a)

Here we may consider two alternative hypothetical worlds (note there
is no preference rule present). In one of them (model M;) we consider the
hypothesis that a is not an abnormal bird, not ab;(a), and so it flies, f(a).
In this case we must also assume that not abs(a) does not hold.

Another alternative (model Ms) suggests that a is not an abnormal pen-
guin, not aby(a), and thus it does not fly, =f(a). Per force, not ab;(a) does

11.4 Hypothetical reasoning 219

not hold. A third model Mj3 accounts for the case where no assumption is
made.

The submodels lattice is shown in figure 11.3, where the shadowed sub-
model corresponds to the most sceptical view.

{p(a), b(a),...}
{not ab1(a), not ab2(a)}

{p(a), b(a), not ab1(a), f(a),...}
{not ab2(a)}

{p(a), b(a), not ab2(a), - f(a),...}
{not ab1(a)}

Fig. 11.3. The birds example submodels lattice

Remark 11.4.1. Note that every model with not ab;(a) is also a model with
f(a), that is,

P =5 not aby(a) = f(a)
The same holds for the other assumption, that is,
P = not abz(a) = —f(a)

Another way of interpreting these rules is by saying that if we hypothesize
that, say rule (ii) has an exception in a, in the sense that aby(a) < not abs(a)
viz. not aby(a) cannot hold, then f(a) holds; i.e.

P U {abs(a) < not abs(a)} EFwrsx f(a)

Compare model M5 above with the unique model where an explicit pref-
erence was made (c.f. Section 11.2.2 in page 214).

11.4.2 Hypothetical facts and rules

In some cases we want to be make a rule hypothetically applicable, in the
sense that we may consider the case where the rule is used to reason with,
as well as the case where the rule is not considered in force. The same is
desired of some facts, i.e. we want to be able to explicitly represent that some
unknown fact may be hypothesized true as well as false. If no hypothesis is
made about the fact the information it conveys is unknown or undecided,
just like the conclusion of a hypothetical rule which is not hypothesized.

220 11. Application to classical NMR, problems

Hypothetical facts. Similarly to rules about which we are undecided re-

garding their applicability, we might be unsure about some facts. Note that

this is different from not having any knowledge at all about such a fact.
Consider this simple example:

John and Nixon are quakers. John is a pacifist.
represented by the program P;:
quaker(john). pacifist(john). quaker(nixzon).

The WFSX well-founded model (which is the only partial stable model)
is:
quaker(nizon) quaker(john)
not pacifist(nizon) pacifist(john)
not = quaker(nizon) mnot - quaker(john)
not = pacifist(nizon) not = pacifist(john)

and expresses exactly what is intended, i.e. John and Nixon are quakers, John
is a pacifist and we don’t have reason to believe Nixon is a pacifist, in this or
any other model (there aren’t any others in fact). Now suppose we want to
add:

Nizon might be a pacifist (11.3)

In our view we wouldn’t want in this case to be so strong as to affirm
paci fist(nizon), thereby not allowing for the possibility of Nixon not being
a pacifist. What we are prepared to say is that Nixon might be a pacifist if
we don’t have reason to believe he isn’t and, vice-versa, that Nixon might
be a non-pacifist if we don’t have reason to believe he isn’t one. Statement
(11.3) is expressed as:

pacifist(nizon) <« mnot —pacifist(nizon) (11.4)

—pacifist(nizon) «— not pacifist(nizon) (11.5)

The first rule states that Nixon is a pacifist if there is no evidence against
it. The second rule makes a symmetric statement. Let P, be the program P
together with these rules. P, is noncontradictory, and its WFSX is:

quaker(nizon) quaker(john)
paci fist(john)

not = quaker(nizon) mnot - quaker(john)
not - pacifist(john)

P> has two more partial stable models:

PSM; = WFSX(P,) U{pacifist(nizon),not —pacifist(nizon)}
PSMs; = WFSX(Py) U {—pacifist(nizon),not pacifist(nizon)}

11.4 Hypothetical reasoning 221

which is the result we were seeking. Statements of the form of (11.3) we call
unknown possible facts, and are expressed as by (11.4) and (11.5). They can
be read as a fact and its negation, each of which can be assumed only if it is
consistent to do so.

Hypothetical rules. Consider now the well known nixon-diamond example
using now hypothetical rules instead of defeasible ones.

We represent these rules as named rules (in the fashion of [167]) where
the rule name may be present in one model as true, and in others as false.

Normally quakers are pacifists. Pacifists are non hawks.
Normally republicans are hawks. Hawks are non pacifists.
Nixon is a quaker and a republican. Pacifists are non hawks.
There are other republicans. There are other quakers.

The corresponding logic program is:

pacifist(X) <« quaker(X),hypgp(X)
hypgp(X) «— not ~hypgp(X)
hawk(X) <« republican(X), hyprh(X)
hyprh(X) <« mnot —hyprh(X)
—hawk(X) <« pacifist(X)
—pacifist(X) <« hawk(X)
quaker(nizon)
republican(nizon)
)

quaker(another_quaker
republican(another _republican)

where the following rules are also added making, each normality instance
rule about Nixon hypothetical rather than defeasible (c.f. the representation
of defeasible rules in Section 11.2):

hypgp(nizon) <« not —hypgp(nizon)
—hypgp(nizon) <« not hypgp(nizon)

hyprh(nizon) <« mnot —hyprh(nizon)
—hyprh(nizon) <« not hyprh(nizon)

which is represented as in fig. 11.4.

The minimal noncontradictory submodels, the sceptical revision M7, and
submodels between the formers and the latter are represented in figure 11.5,
where edge labels represent the hypothesis being made when going from one
model to another.

The submodels (with obvious abbreviations) are:

222 11. Application to classical NMR, problems

paci fi st «—— hawk
A - A
quaker republ i can
anot her N anot her
quaker NEXON v epublican

Fig. 11.4. The Nixon diamond

= hypgp(n) hyprh(n) —hyprh(n) - hypgp(n) hypgp(n) = hyprh(n)

hyprh(n) = hypgp(n) - hyprh(n) hypgp(n)

Fig. 11.5. Submodels of the nixon-diamond problem using hypothetical rules

11.5 Reasoning about actions 223

M, = { qua(n),rep(n),not ~qua(n), not —rep(n),
qua(a_qua),not ~qua(a_qua), not rep(a_qua), not —rep(a_qua),
hypgp(a-qua), not ~hypgp(a-qua), pac(a-qua), not —pac(a_qua),
hyprh(a_qua), not —hyprh(a_qua),not —pac(a_qua),
not hawk(a_qua), rep(a_rep),not —rep(a-rep),not qua(a-rep),
not —qua(a_rep), hyprp(a_rep), not =hyprp(a_rep),rep(a_rep),

not —rep(a-rep), hypgp(a-rep), not ~hypgp(a-rep),
not pac(a_rep),not —hawk(a_rep)}

My = MU {hyprh(n),not —hyprh(n), hawk(n),not —hawk(n),
—pac(n), not pac(n)}

M3 = MU {—hypgp(n), not hypgp(n), not pac(n),not —hawk(n)}

My = MU {=hyprh(n),not hyprh(n),not hawk(n),not —pac(n)}

Ms = MU {hypgp(n), not =hypgp(n), pac(n), not —pac(n), ~hawk(n),
not hawk(n)}

Mg = MU {=hypgp(n),not hypgp(n),not pac(n),not —hawk(n)}

M7 = M4U {hypgp(n), not =hypgp(n), pac(n),not —pac(n), not —hawk(n)}

Mg = MsU {=hyprh(n), not hyprh(n),not hawk(n),not ~pac(n)}

The models My and Mg consider the applicability of the republicans are
hawks normality rule, whereas the models M,, M5, and Mg explore not ap-
plying it. Model M7, being the most skeptical one, remains undefined about
the applicability of the rule. The rationale for this undefinedness is that since
the application and the non-application of the rule are equally plausible, one
should remain undecided about it.

Note here the distinction between “hypothetical rules” and “defeasible
rules”. While the latter are applied “whenever possible” unless their applica-
tions leads to contradiction, the former provide equally plausible alternative
extensions.

Remark 11.4.2. Note that with this form of representation we might as well
add abgp or —abgp, and thus the treatment of explicit negative information
becomes similar to that of positive information. In this case we may now
hypothesize about the applicability and non-applicability of each normality
rule. However, the most sceptical model (where no hypotheses are made) is
still identical to the one where normality rules were interpreted as defeasible
rules, the difference being that in this case revision is enforced since the
program is noncontradictory.

In this form of representation of the nixon-diamond problem there is no
need for revision since the program is noncontradictory.

11.5 Reasoning about actions

Here we study one classical problem of reasoning about actions using the
situation calculus, and show how the major drawbacks of other representa-
tions can be easily solved by using WFSX with the contradiction removal
procedures introduced.

224 11. Application to classical NMR, problems

Situation calculus has three kinds of entities: fluents, actions and situa-
tions. We use the predicate h(F,S) to say that fluent F' holds in situation
S, and a term r(A,S) represents the new situation obtained as the result of
performing action A in situation S. It’s also necessary to add a frame axiom
which expresses the “common sense law of inertia” [126] stated in [115] as:

“In the absence of information to the contrary, properties of ob-
jects can be assumed to remain unchanged after an action is per-
formed”

which can be formalized as [h(F,r(4,S5)) < h(F,S)] < not ab(A, F,S) and
will be represented by the four rules:
h(F,r(A,S)) <« h(F,S),not ab(A, F,S)
-h(F,r(A,S)) « =h(F,S),not ab(A,F,S)
h(F,S) «— h(F,r(A,S)),not ab(A, F,S)
—h(F,S) <« -h(F,r(A,S)),not ab(A,F,S)

As [81] explains, the first two rules are used to apply the law of inertia in
reasoning from past to future and the other two from future to past.

If the negation of the abnormality predicate is interpreted as classical
negation, as in McCarthy’s original formulation, it becomes necessary to have
the following two extra rules added to the program:

ab(A,F,S) «— =h(F,S),h(F,r(4,S))
ab(A,F,S) «— h(F,S),-h(F,r(4,5))

But as we shall see, our approach automatically infers the situations that
are exceptions to the frame axiom. This is the essence of the frame problem:
Having incomplete knowledge about the world, what properties of objects
(fluents) are changed as a result of action A in situation S ?

11.5.1 The Yale shooting problem

This problem, supplied in [86], will be represented in a form nearer to the
one suggested in [107].

FEzxzample 11.5.1. The problem and its formulation are as follows:
— Initially (in situation s0) a person is alive:
holds(alive, s0)
— After loading a gun the gun is loaded:
holds(loaded, result(load, S))
— If the gun is loaded then after shooting it the person will not be alive:

—holds(alive, result(shoot, S)) «— holds(loaded, S)

11.5 Reasoning about actions 225

Consider the question ”What holds and what doesn’t hold after the loading
of a gun, a period of waiting, and a shooting ?” represented as two queries:

— holds(P, result(shoot, result(wait, result(load, s0))))
— =holds(P, result(shoot, result(wait, result(load, s0))))

With this formulation the WFSX well-founded model is the only partial
stable model. The subset of its elements that match with at least one of the
queries is®:

{ holds(loaded, s3), not —holds(loaded, s3),
—holds(alive, $3), not holds(alive, s3) }

which means that in situation s3 the gun is loaded and the person is not
alive. This result coincides with the one obtained in [104] for holds.

11.5.2 Multiple extensions

Ezample 11.5.2. To get the result given by circumscription [126] and default
logic [188], we must reformulate the problem by adding the sentence:

— the wait event might not preserve the persistence of the loaded property;
in other words, after a wait event the gun might (or might not) be loaded.

This clearly means an unknown but hypothetical application of (pp). So
the rules to add are:

ab(loaded, wait, S) <« not —ab(loaded, wait, S)
—ab(loaded, wait, S) not ab(loaded, wait, S)

Now the WFSX contains not —holds(loaded, s3). This means that in it
we have no proof that the gun is not loaded. This is acceptable because there
is no evidence for it to be unloaded. All other properties are unknown in the
WEFSX.

The rules above state that it is equally possible for load to be abnormal
with respect to the wait event, as well as to be non-abnormal. We have two
partial stable models corresponding to the two extensions. One extension
contains:

{ holds(alive, s3), not ~holds(alive, s3),not —holds(loaded, s3) }

and the other contains:

{ —holds(alive, s3),not holds(alive, s3),
holds(loaded, s3), not —holds(loaded, s3) }

® Where s3 denotes the term result(shoot, result(wait, result(load, s0))).

226 11. Application to classical NMR, problems
11.5.3 The Stolen car problem

Here we discuss a (new) version of the stolen car problem [95] showing how
it is handled using contradiction removal with intuitive results. For sake of
simplicity, we do not present other instances of this problem (c.f. [199]) that
are also correctly handled and easily represented in extended logic programs
with contradiction removal.

The formulation of the stolen car problem (SCP) is:

You leave your car parked, return after a while, and your car is gone.
How can you explain that ¢

This problem is easily represented in situation calculus. In the initial situ-
ation, sg, the car is parked. After a finite number of wait actions, for instance
4, the car has disappeared. Now suppose that after two wait actions the car
was still seen parked by someone. This problem statement is represented by
the logic program:

h(Cp, SO)

h(ep, r(w, r(w, sp)))

—h(ep, r(w, r(w,r(w,r(w, 50)))))
plus the above four frame axiom rules.

First we must determine what are the supports of contradiction. There
are only two:

SS1 = {not ab(w, cp, $2), not ab(w, cp, s3)}
SSy = {not ab(w, cp, sp), not ab(w, cp, s1),not ab(w, cp, s2),
not ab(w, cp, s3)}
with s; = r(w, s;—1),%7 > 1. Thus there are two CRS's:

CRS; = {not ab(w,cp,s2)}
CRS; = {not ab(w,cp,ss3)}

corresponding to the intuitive result that something abnormal happened dur-
ing either the third or fourth wait action.

11.5.4 Other reasoning about action problems

In this section we represent problems D2 and D6 of [114] which are clas-
sified as “Reasoning about Action - Temporal Projection” and “Reasoning
about Action - Temporal Explanations with Actions of Unknown Kinds”,
respectively.

Example 11.5.3. The assumption of problem D2 and its representation are
as follows:

11.6 Counterfactual reasoning 227

— After an action is performed things normally remain as they were: repre-
sented with the four rules in the beginning of this section.
— When the robot grasps a block, the block will normally be in the hand:

holds(hand(B), result(grasp(B),S)) < not ab(hand(B), grasp(B), S)

— When the robot moves a block onto the table, the block will normally be
on the table:

holds(table(B), result(move(B),S)) «
holds(hand(B), S),
not ab(table(B), move(B), S)

— Initially block A is not in the hand and not on the table.
—holds(table(a), sO) —holds(hand(a), s0)

The conclusion ” After the robot grasps block a, waits, and then moves it
onto the table, the block will be on the table” can be represented by:

— holds(table(a), result(move(a), result(wait, result(grasp(a), s0))))
and belongs to the WFSX of the program.

Example 11.5.4. The assumptions of problem D6 are those of D2 plus ” After
the robot performed two actions, a was on the table”. The conclusion is ” The
first action was grasping a, and the second was moving it onto the table”.
We reach this conclusion by verifying that

— holds(table(a), result(move(a), result(grasp(a), s0)))
is the only goal of the form

— holds(table(a), result(Action2, result(Actionl, s0)))
which is in the WFSX of the program.

11.6 Counterfactual reasoning

In this section we present a semantics for counterfactual implication rela-
tive to definite extended programs with integrity constraints and protected
rules (unrevisable), and show the adequacy of the contradiction removal se-
mantics to define the notion of similarity needed for defining counterfactual
truth. The concepts introduced in chapther 8 are adequate to support the
revision process required by contravening hypoteses [192] when evaluating
counterfactuals.

228 11. Application to classical NMR, problems
11.6.1 Lewis’s counterfactuals

Counterfactuals are usually defined based on a notion of possible (or alter-
native) worlds (or simply worlds), and the definition of the truth value of
a counterfactual p > ¢ considers the possible worlds “maximally similar” to
the world S, where the counterfactual is being evaluated. We don’t need to
quantify how similar two worlds S; and Sy are, but only to define a partial
order between worlds, enabling to determine whether S; is more similar than
S with respect to §.

Given a similarity relation >p that nests layers of similar worlds relative
to F, obeying some reasonable precepts, Lewis [112] defines a counterfactual
p > q to be true in some world F only in either of two cases:

— (A) if there exists some world U such that:
— (Al) pis true in U and
— (A2) p — g is true in any world V with V' > U (i.e. if V is any world
at least as similar to F as U is, ¢ will hold in V if p does);
— (B) if there is no world U in which p holds p > ¢ is vacuously true.

Lewis uses UJ— in place of >. Let p-world mean a world where p holds. He
also provides a “might” counterfactual defined as pd— ¢ =gc5 ~(pO— —q),
meaning “there is a nearest p-world where p — q”.

Counterfactual implication is also equivalently defined by Lewis [112] in
a different way, which we adopt, directly based on a notion of maximally
similar worlds. Let f(p,w) stand for the set of nearest p-worlds from w.

P >w ¢ =dey f(p,w) C [dq]

where f is a selection function [112], [¢] represents the set of worlds in which
q is true, and meaning: “the counterfactual implication p > ¢ is true in world
w iff in all the nearest p-worlds from w, ¢ is also true”; in other words, if the
set of the nearest p-worlds is a subset of the g-worlds (if the set of nearest
p-worlds is empty then p > ¢ is vacuously true).

Definition 11.6.1 (Selection function). A function f from sentences and
worlds to sets of worlds is a selection function if and only if, for all sentences
¢ and v and for each world i, the following four conditions hold.

i) If ¢ is true at ¢ then f(¢,i) is the set {i} having i as its only member.

it) f(¢,4) is included in [¢].

iii) If [#] is included in [¢] and f(¢,i) is nonempty then f(,4) is also
nonempty.

w) If [P] is included in [] and [@] overlaps f(w,i) then f(¢,i) is the
intersection of [¢] and f(1,14).

11.6 Counterfactual reasoning 229

11.6.2 Counterfactual reasoning by revising assumptions

Definition 11.6.2 (Program Base). A Program Base PB = (K; S;IC),
where K is a definite extended program® (cf. Section 5.2.2), S is a set of
protected rules, with S C K, and a set IC of definite integrity constraints.

The semantics of a Program Base is defined by the M = least(K UIC U
NIC) where least(P) is the least operator of Definition 4.2.2 and NIC is as
definied in proposition 8.2.1.

Definition 11.6.3 (Contradictory PB). A Program Base PB is contra-
dictory iff

1 eleast(K UICUNIC)

Definition 11.6.4 (Program associated with a Program Base).
The program P associated with a Program Base PB = (K;S;IC) is an
extended logic program obtained from PB as follows:

— for each unprotected rule
H«— By,...,B, (n>0)
i K, P contains instead the rule
H«— By,...,B,,not A

where A is a new atom.
— P contains all the other rules in K and IC.

This defines a transformation 7 : PB — P from program bases to logic
programs.

Ezample 11.6.1. Consider the “flying birds (and penguins)” Program Base,
with K :

[b (3
-f — p (1)

b (iid)

p (iv)

and facts b and p protected, i.e. S = {b,p}.

The associated logic program is Ppp = 7 (PB) :
f < bnotbdbf (i)

~f « pnotpnf (i)
P (iv)

which is contradictory.
6 This definition is not more general, i.e. applicable to general extended logic
programs, because it can be shown that the properties Lewis’s original selection

function must obey are only guaranteed for this type of Program Base. A new
type of selection function is needed to account for the presence of not .

230 11. Application to classical NMR, problems

The inverse transformation 7! may be defined as follows:

Definition 11.6.5 (Inverse transformation-7 —!). Given a logic program
P associated with a Program Base PB = (K, S, IC) the latter may be obtained
as follows:

— For each definite rule H «<— By, ..., B, in P there is a similar rule both in
K and in S.

— For each non definite rule H «— By, ..., B,,not A in P such that not A €
W FM(P) there is instead the rule H < By,...,B,, in K.

— IC is the set of all integrity constraints in P.

Given a PB = (K; S; IC), by the current world i we mean the (possibly
contradictory W FSX (7T (PB)) which may be contradictory.

Definition 11.6.6 (Counterfactual value). Given « PB = (K,S,IC)
and Ppp = T (PB) we define a counterfactual implication ¢ > 1 to be true,
iff ¥ holds in all minimal noncontradictory submodels of Ppp U {¢}, i.e.

¥ € ﬂMN&-(T(PPB U {¢}))

Definition 11.6.6 implicitly specifies the set of most similar ¢-worlds as
follows:

Definition 11.6.7 (Most similar ¢-worlds). Given a Program Base PB
with associated program Ppp, the set of most similar g-worlds f(¢,i) is de-
fined as:

f(9,1) = {M|M = MNS;(T(PB) U{¢})}

Given the results in Section 8.3.3, the selection function f(¢,4) in the
above definition may also be equivalently defined as:

£(6.1) = {M;|M; = WFSX(T(PB) U {6} U TR(CRS;))}
or, by definition:

f(¢,9) = {least(T~1(8;))|S; = T(PB) U {¢} UIR(CRS;)}
Since 7 (P; U {¢}) = T (Ppp) U {¢}7

£(6.1) = {least(T~(5,)|S; = P U {¢} U TR(CRS;)}

This means that, given a Program Base PB, in order to obtain a counter-
factual implication ¢ > 1, first obtain program P, then add {¢} and evaluate
the minimal noncontradictory submodels of the new program. The counter-
factual is true iff ¥ holds in all such minimal noncontradictory submodels,
which are the most similar ¢-worlds of i.

" This follows easily from the definiton of 7.

11.6 Counterfactual reasoning 231

Remark 11.6.1. Note that the transformation result does not depend on any
particular counterfactual antecedent, i.e. the associated logic program P is
independent of the counterfactual being evaluated. This plays an important
role if we consider the logic program as an implementation of the Program
Base. Moreover, for any Program Base PB; and PBs we have 7(PB; U
PB;) =7 (PBy)UT(PBz), a modular construction.

Ezample 11.6.2. Consider the counterfactual premise ww and

PB = (K,S{})
where K :
—~ww <« —pt,—bs (i)
—bs (#4i)

and S = {-ww «— —pt, ~bs}. The associated logic program is 7 (PB) = Ppp :

~ww <« —pt,—bs (i)
-pt — notpt’ (i1)
-bs «— not bs’ (dit)
The submodels lattice of Ppp U {ww} is depicted in figure 11.6. In this

case the counterfactual ww > bs is false, since bs does not belong to all MNSs
of the program.

{ww}
{not pt’, not bs’}

{ww, —pt}
{not bs’}

{ww, ~bs}
{not pt}

Fig. 11.6. Counterfactuals example

232 11. Application to classical NMR, problems
11.6.3 Lewis’s similarity precepts obeyed

In this section we prove that the notion of similarity introduced in Defini-
tion 11.6.7 satisfies lewis precepts of similarity. To that purpose we begin by
presenting some trivial to prove propositions:

Proposition 11.6.1. Let PB = (K;IC;S) be a Program Base and a an
objective literal. Then

a€least(KUIC)=ae€ WFSX,(T(PB))

Corollary 11.6.1. A Program Base PB is contradictory iff T (PB) is con-
tradictory.

Proposition 11.6.2. Let P be a logic program, IC a set of integrity con-
straints and a an objective literal. Then:

a € WFSX,(P) iff a € least(T(P)).

Corollary 11.6.2. A program P is contradictory w.r.t. a set of ICs iff
T ~Y(P) is contradictory.

Proposition 11.6.3. Let PB = (K;IC;S) be a Program Base and a an
objective literal. Then

T(PB)U¢=T({(PU{o};1C;SU{s}))

In the sequel we consider the current world (i.e. the WFSX (Ppg)) to be
noncontradictory.

Lewis’s selection function properties.

i) If ¢ is true at ¢, then f(¢,4) is the set {i} having i as its only member.

Proof. As i |= ¢ then least(i) = least(i U {¢}). So iU {¢} is noncontra-
dictory. By proposition 11.6.1, the program 7 (i U{¢}) is also noncontra-
dictory. Thus:

F(9,0) = {least(TH(T (1 U {¢})))}
which by, proposition 11.6.2, is equal to {i}.
ii) f(¢,4) is included in [¢].

Proof. According to contradiction removal every fact of a program be-
longs to the WFESXof the sceptically revised program (and to all its
MNS’s). As

T(pu{i})

has ¢ as a fact, ¢ belongs to all its M N Ss. By proposition 11.6.2 elements
of f(¢,7) have ¢, i.e. are ¢-worlds.

11.6 Counterfactual reasoning 233

iii) If [#] is included in [¢] and f(¢,4) is nonempty, then f(v,4) is also
nonempty.

Proof.
(1Jf ¢ € least(i), i.e. i € [¢]: by hypothesis i € [¢)] and by proposition
11.6.1:
F(i) = (v} # {3
(2]f ¢ & least(i): by hypothesis 35S, s.t. T7(i U {¢}) U S, is a noncontra-
dictory program (where S, is a set of inhibition rules). Then:
IS, | T(E)U{s}US, is noncontradictory.
S, |[T(E)U{Y} U{¢} US, is noncontradictory by the 1st hyp
S, |[T(EU{y}) U{¢}US, is noncontradictory.
For T(i U {4}) U S, to be contradictory there should exist one S =
SS(L) such that:
not ¢ € SS(L)in TGEU{¢})US,
By definition of inhibition rule none of the S, literals belong to the
WFSX. So for not ¢ to belong to S it must belong to 7 (i U {¢}).
By definition of 7, the only literals negative in WFSX (7 (PB)) that
appears in a body of any rule in 7(PB) are new atoms. So not ¢
cannot be in any SS of any positive literal (in particular of L). Thus:
3S, | T(i U {y}) U S, is noncontradictory

iv) If [¢] € [¢] and f(v,7) N [¢] # {} then f(¢,i) = f(x,4) N [¢].
Proof. It f(1,i) N [¢] is non-empty then f(v,i) # {} and:

1w, 0 o] =
{least(T (SJ))| ;=T (iU{y)}) UIR(CRS;) N\ WFSX(S;)}

= {least(T1(S)))|S; = T (i U{¢}) U{¢} UIR(CRS;)}

= {east(T~'(5,))I5, = TV (4]0 IRCRS) |
= 8{least(T~1(5;))|S; = T (i) U{¢} UIR(CRS;)}

= f(¢,1) by definition

8 By cumulativity.

234 11. Application to classical NMR, problems

12. Application to diagnosis and debugging

The aim of this chapter is to illustrate the usefulness of extended logic pro-
gramming, and the semantics defined above, to diagnosis, to declarative de-
bugging, and to knowledge base updates.

In Section 8.3 the contradiction removal is achieved by unassuming some
default literal that lead to contradiction. This is enough to deal with diagnosis
problems without fault mode, i.e. only with the description of the correct
behaviour of the system to be diagnosed.

When rules describing (some) incorrect behaviours of the system are
added to the description of the problem, i.e. some fault mode is introduced,
unassuming default literals in order to remove the contradiction is not enough.
This is so because, in order to both use the fault mode and explain the in-
correct behaviour, faults must be assume.

Ezample 12.0.3. Consider the simple one-inverter circuit of figure 12.1, de-
scribed by the program P:

1ab¢o

Fig. 12.1. Simple circuit

inv(G,1,0) «— node(I,1),not ab(G)
inv(G,1,1) « mnode(I,0),not ab(G)
node(b,V) «— inv(gl,a,V)
and the input and output observations:
node(a, 1)
—node(b, 0)
The program together with these facts is contradictory and, by considering
as revisables all literals of the form not ab(G), has one minimal revisions:

236 12. Application to diagnosis and debugging

P U {ab(gl) < not ab(gl)}

This revision accords with the expect result for the circuit, i.e. since the
output of the inverter is not 0 it can not be assumed that the gate is behaving
normally.

Now assume that, additionally to the specification of the circuit, one adds
that when an inverter gate is abnormal it returns as output the input value
(fault model). This can be described by the rules:

inv(G,1,0) « mnode(I,0),ab(G)
(G, I,1) «— node(I,1),ab(G)

The program obtained by adding these rules to P is contradictory, and it
has a unique minimal revision, also obtained by adding ab(gl) < not ab(gl).
Note that this revision does not capture the expected result since from it does
not follow that the value of node b is 1, as suggested by the fault model. In
fact, in well-founded model of the revised program assigns the value undefined
to both ab(gl) and node(b, 1).

In order to make use of fault modes, and thus explain incorrect behaviours
of systems, in this chapter we begin by generalizing the contradiction removal
techniques defined in Section 8.3 to deal with two valued revisions. In two-
valued revision, assumptions are changed into their complements instead of
being undefined. In the example above this would provide for a single revision
consisting of adding to the program the fact ab(g1l), thus deriving node(b, 1).

Then we apply this theory to diagnosis. Because [46] unifies the abduc-
tive and consistency based approaches to diagnosis for generality we present a
methodology that transforms any diagnostic problem of [46] into an extended
logic program, and solve it with our contradiction removal methods. Another
unifying approach to diagnosis with logic programming [169] uses Generalised
Stable Models [94]. The criticisms they voice of Console and Torasso’s ap-
proach do not carry over to our representation, ours having the advantage of
a more expressive language: explicit negation as well as default negation®.

In addition, we apply our theory to debugging, setting forth a method
to debug normal Prolog programs, and showing that declarative debugging
[119] can be envisaged as contradiction removal, and so providing a simple
and clear solution to this problem. Furthermore, we show how diagnostic
problems can be solved with contradiction removal applied to the artifact’s
representation in logic plus observations. Declarative debugging can thus be
used to diagnose blueprint specifications of artifacts.

Our final application concerns the problems of updating knowledge bases
expressed by logic programs. We compare with previous work and show, as

! In [48], we further extend the expressivity by introducing preferences and strate-
gies in the diagnosis framework. This is, however, beyond the scope of this book

12.1 Two-valued contradiction removal 237

before, the superiority of the results obtained by our theoretical developments
regarding the semantics of the extended logic programs and its attending con-
tradiction removal techniques.

All the reported application examples were successfully run in our imple-
mentation available on request. A simplified implementation of our contra-
diction removal techniques is presented in Appendix B.

The structure of this chapter is as follows:

We begin by defining two-valued contradiction removal similarly to the
contradiction removal defined in Section 8.3. Simultaneously, we provide al-
gorithms that implement these techniques and all of soundness, completeness
and termination properties are stated.

In Section 12.2 we illustrate the application of those techniques to solve
general diagnosis problems. We start by reporting a major theorem that
defines the contradiction removal applicability spectrum to diagnosis. In
essence, we have shown that we can capture an unifying framework of the two
main streams of model-based diagnosis: the consistency-based and abductive
approaches. The proposed method defines a translation from this framework
into the language of extended logic programming with integrity constraints.
This section closes with several illustrative application examples of our ap-
proach to diagnosis.

Subsequently, in Section 12.3, we show how the debugging of normal logic
programs can be fruitfully understood as a diagnosis/contradiction removal
problem. We describe and analyse these two views, the main achievement
being a program transformation that is able to identify all the possible min-
imal sets of bugs that can explain the abnormal behaviour of an erroneous
program.

We conclude this chapter with a small section that exhibits how the above
debugging transformation can be used for the view update problem in de-
ductive databases, and compare to previous work.

12.1 Two-valued contradiction removal

In this section we define a two-valued contradiction removal procedure. In-
stead of revising assumptions from true to undefined we change their truth-
value to false. Contradiction removal is achieved by adding to the original
program the complements of some revisable literals.

238 12. Application to diagnosis and debugging

Definition 12.1.1 (Revision facts). The revision fact for a default literal
not L 1is: L
By RF(S) where S is a set of default literals, we mean:

RF(S)={L|not L € S}

These facts allows, by adding them to a program, to force default literals
in the paraconsistent WFSX to become false.

Definition 12.1.2 (Submodels of a program). A submodel of a (contra-
dictory) program P with ICs, and revisable literals Rev, is any pair (M, R)o
where R is a subset of Rev:

M = WFSX,(PURF(R))

In a submodel (M, R)2 we dub R the submodel revision, and M are the
consequences of the submodel revision. A submodel is contradictory iff M is
contradictory (i.e. either contains L or is not an interpretation).

As we are interested in revising contradiction in a minimal way, we care
about those submodels that are noncontradictory and among these, about
those that are minimal in the sense of set inclusion.

Definition 12.1.3 (Two-valued revision). A submodel (M, R)s is a two-
valued revision of a program P iff it is noncontradictory.

Definition 12.1.4 (Minimal two-valued revision).
A two-valued revision (M, R)s is a two-valued minimal revision, of a program
P iff there exists no other two-valued revision (M’ R')o, such that R’ C R.

Example 12.1.1. Consider contradictory program P:

a < notbnotc L «— a,—a
—a <« notd L« b
c «— e 1« d,not f

Intuitively literals not b, not d and not e are true, entailing a and —a, and
thus | via violation of the integrity rule 1 < a, —a.

The revisions of the above program are {e}, {d, f}, {e, f} and {d,e, f}.
The minimal ones are {e} and {d, f}.

Even for very simple programs it is possible to have three-valued revisions
and no two-valued revision.

Ezample 12.1.2. Given the set of revisables {not a}, the program

1l «— nota
1l «— a

has the unique three-valued revision < {not —a},{not a} >2 and no two-
valued revision.

12.1 Two-valued contradiction removal 239

Also a sceptical revision is no longer defined for the two-valued case: the
join of two minimal revisions may be contradictory:

FEzample 12.1.3. Consider program

a <+ notb,not c

a

1 «—
1L« b

If the revisables are {not b,not c} the two-valued minimal revisions are:

< A{not a,b,not c,...},{not b} >4 and < {not a,c,not b,...},{not c} >

The submodel corresponding to the revision facts {b, ¢} is contradictory.

12.1.1 Computing minimal two-valued revisions

Based on the above, we have devised an iterative algorithm to compute the
minimal revisions of a program P with respect to to revisables R, and shown
its soundness and completeness for finite R. The algorithm is a repeated
application of an algorithm to compute contradiction removal sets.

The algorithm starts by finding out the CRSs of the original program
plus the empty set of revision facts (assuming the original program is revis-
able, otherwise the algorithm stops after the first step). To each CRS there
corresponds a set of revision facts obtained by taking the complement of their
elements. The algorithm then adds, non-deterministically and one at a time,
each of these sets of assumptions to the original program. One of three cases
occurs: (1) the program thus obtained is non-contradictory and we are in the
presence of one minimal revising set of assumptions; (2) the new program is
contradictory and non-revisable (and this fact is recorded by the algorithm
to prune away other contradictory programs obtained by it); (3) the new pro-
gram is contradictory but revisable, and this very same algorithm is iterated
until we finitely attain one of the two other cases. For the formal description
see algorithm 12.1.5.

The sets of revision facts employed to obtain the revised non-contradictory
programs are the minimal revisions of the original program. The algorithm
can terminate after executing only one step when the program is either non-
contradictory, or contradictory but non-revisable. It can be shown this algo-
rithm is NP-hard.

The algorithm tries to restore consistency by looking at each step to the
set of integrity rules currently violated. After satisfying these constraints, by
adding a set of revision facts to the original program, the algorithm tests if
new integrity constraints are violated. If all the denials are satisfied then the
algorithm reports a minimal revision. Mark that there is a non-deterministic
step in the selection of revision facts to add to the program.

240 12. Application to diagnosis and debugging

Definition 12.1.5 (Algorithm for Minimal revisions of a program).

Input: A possibly contradictory program P and a set R of revisables.

550 := {{}}
Cs:={}
1:=0
repeat
SSiy1 = {}
for each A € SS;
if-3CeCs: CCA
if Rev(P,A) E L
if Rev(P, A) is revisable
for each CRS;(R) of PUA
Let NAs := AUnot CRS;(R)
S5Siy1: =88+ U {NAS}
endfor
else
C's := MinimalSetsO f(Cs U {A})
endif
else
SSi+1 =884 U {A}
endif
endif
endfor
SSi+1 := MinimalSetsOf(SSi+1)
ti=14+1
until SSZ = SSifl.

Output: SS;, the collection of all minimal revisions of P with respect to R.

12.1 Two-valued contradiction removal 241

FEzample 12.1.4. In Example 12.1.1, the integrity rule 1 « a, —a is violated.
By adding to P any of the sets of facts {b}, {d}, or {e}, this rule becomes
satisfied.

Program Rev(P, {e}) is non-contradictory: thus {e} is a revision of P. But
Rev(P,{b}) and Reuv(P,{d}) still entail L, respectively violating integrity
rules L «— band L « d,not f. In Rev(P,{b}) integrity rule L «— b cannot be
satisfied: {b} is not a revision. In Rev(P,{d}) integrity rule can be satisfied
by adding to {d} the assumption f, to obtain also the revision {d, f} (cf. Fig.
12.2).

2nd
iteration

1st
iteration

Fig. 12.2. Revision of Example 12.1.1.

Ezxample 12.1.5. Detailed execution for contradictory program P:

p <« nota T
-p <« notc -xr <« c¢,not a,notb

with set of revisables R = {not a, not —a,not b,not —b,not ¢, not —c}.

—i=0:85 ={{}},Cs={}.
The only A in SSp is {}. As L € SubM({}), with CRS; = {not a} and
CRSsy = {not ¢}, SS1 = {{a},{c}}.

—1=1:55 ={{a},{c}},Cs={}.
For A = {a}, SubM ({a}) is non-contradictory. The other option is A =
{c}, with L € SubM ({c}), so CRS1 = {not a} and CRS; = {not b}. Thus
SSy = {{a}, {b, c}} since {a} is in {a, c}.

—i=2:85 = {{a},{b,c}},Cs = {}.
With A = {a} and A = {b, ¢} SubM (A) is non-contradictory, which implies
5S35 = 585, and so the algorithm stops.

242 12. Application to diagnosis and debugging

The sets of minimal two-valued revisions for this program with respect to
R are A1 = {a} and Ay = {b, c}. Note the need for retaining only minimal sets
of revision facts to get the desired result without making useless computation.

We can guarantee soundness, completeness and termination when a finite
number of revisables is employed.

Theorem 12.1.1 (Soundness). If algorithm 12.1.5 terminates in iteration
1, SS; is the collection of all sets of minimal revising assumptions of P with
respect to R.

Theorem 12.1.2 (Completeness). For finite R algorithm 12.1.5 stops.
If the set of revisables is not finite two distinct situations may occur:

— The program has no CRSs and the algorithm aborts;
— Some (partially) revised program has an infinite number of CRSs. The
algorithm returns the minimal revisions after infinite time has elapsed.

12.2 Application to diagnosis

In this section we describe a general program transformation that translates
diagnostic problems (DP), in the sense of [46], into logic programs with
integrity rules. By revising this program we obtain the diagnostic problem’s
minimal solutions, i.e. the diagnoses. The unifying approach of abductive
and consistency-based diagnosis presented by these authors enables us to
represent easily and solve a major class of diagnostic problems using two-
valued contradiction removal. Similar work has been done by [169] using
Generalised Stable Models [94].

We start by making a short description of a diagnostic problem as defined
in [46, 52]. A DP is a triple consisting of a system description, inputs and
observations. The system is modelled by a Horn theory describing the devices,
their behaviours and relationships. In this diagnosis setting, each component
of the system to be diagnosed has a description of its possible behaviours with
the additional restriction that a given device can only be in a single mode of a
set of possible ones.There is a mandatory mode in each component modelled,
the correct mode, that describes correct device behaviour; the other mutually
exclusive behaviour modes represent possible faulty behaviours.

Having this static model of the system we can submit to it a given set of
inputs (contextual data) and compare the results obtained with the observa-
tions predicted by our conceptualized model. Following [46] the contextual
data and observation part of the diagnostic problem are sets of parameters
of the form parameter(value) with the restriction that a given parameter can
only have one observed valued.

12.2 Application to diagnosis 243

From these introductory definitions [46] present a general diagnosis frame-
work unifying the consistency-based and abductive approaches. These au-
thors translate the diagnostic problem into abduction problems where the
abducibles are the behaviour modes of the various system components. From
the observations of the system two sets are constructed: ¥+, the subset of
the observations that must be explained, and ¥~ = {-f(X) : f(Y) is an
observation, for each admissible value X of parameter f other than Y}. A
diagnosis is a minimal consistent set of abnormality hypotheses, with addi-
tional assumptions of correct behaviour of the other devices, that consistently
explain some of the observed outputs: the program plus the hypotheses must
derive (cover) all the observations in ¥ consistent with ¥ ~. By varying the
set T a spectrum of different types of diagnosis is obtained.

We show that it is always possible to compute the minimal solutions of
a diagnostic problem by computing the minimal revising assumptions of a
simple program transformation of the system model.

Example 12.2.1. Consider the following partial model of an engine, with only
one component oil_cup, which has behaviour modes correct and holed [46]:

holed(oil_cup)
holed(oil_cup)

oil _below_car(present)
—
— correct(oil_cup)
-
-

)
oil level(low)
oil_level(normal)
engine_temperature(high)
engine_temperature(normal)

oil level(low), engine(on)
oillevel(normal), engine(on)

An observation is made of the system, and it is known that the engine
is on and that there is oil below the car. The authors study two abduction
problems corresponding to this DP :

1. T = {oil_below_car(present)} and ¥~ = {} (Poole’s view of a diagnos-
tic problem [168]) with minimal solution Wi = {holed(oil_cup)}.
2. ¥t =y~ = {} (De Kleer’s DP view [51]) with minimal solution W5 =

{}-

To solve abduction problem 1 it is necessary to add the following rules:

1L« not oil_below_car(present)
correct(oil_cup) «— not ab(oil_cup)
holed(oil_cup) <« ab(oil_cup), fault_mode(oil_cup, holed)

The above program has only one minimal revision
{ab(oil_cup), fault_-mode(oil_cup, holed)}

as wanted.

To solve the second problem, the transformed program has the same rules
of the program for problem P, except the integrity constraint — it is not
necessary to cover any set of observations. The program thus obtained is
noncontradictory having minimal revision {}.

244 12. Application to diagnosis and debugging

Next, we present the general program transformation which turns a diag-
nostic abduction problem into a contradiction removal problem.

Theorem 12.2.1. Given an abduction problem (AP) corresponding to a di-
agnostic problem, the minimal solutions of AP are the minimal revising as-
sumptions of the modelling program plus contextual data and the following
rules:

1. L « not obs(v), for each obs(v) € UT.
2. —obs(v), for each —obs(v) € ¥~ .

and for each component c; with distinct abnormality behaviour modes b; and
by.:

3. correct(c;) — not ab(c;).
4. bj(ci) — ab(c;), fault-mode(c;, b;).
5. L« fault-mode(c;, bj), fault_mode(c;, by) for each b;, by.

with revisables fault_mode(c;,b;) and ab(c;).

We don’t give a detailed proof of this result here but take into consider-
ation the following direct mappings of problem specification:

— Rule 1 ensures that, for each consistent set of assumptions, obs(v) € ¥
must be entailed by the program.

— Rule 2 guarantees the consistency of the sets of assumptions with ¥~.

— Rules 4 and 5 deal and generate all the possible mutually exclusive be-
haviours of a given component.

Finally, in no revision there appears the literal fault-mode(c, correct), thus
guaranteeing that minimal revising assumptions are indeed minimal solutions
to the DP.

The concept of declarative debugging, see Section 12.3, can be used to
aid in the development of logic programs and in particular to help the con-
struction of behavioural models of devices. Firstly, a Prolog prototype or
blueprint of the component is written and debugged using the methodology
presented in that section. After the system is constructed, the diagnostic
problems can be solved using contradiction removal as described above, in
the correct blueprint.

In the rest of this section we’ll present several examples of diagnosis prob-
lems. Whenever possible, we’ll try to write the logic programs as close as
possible to the ones obtained by the previous program transformation. We
start by a very simple example which shows how difficult the modelization
task can be.

Ezample 12.2.2. Consider the simple logic circuit of figure 12.3. We’ll present
two models of the circuit. Both are correct for predicting the behaviour of
the circuit, but only one can be used to perform correctly the diagnosis task.

12.2 Application to diagnosis 245

Fig. 12.3. The three or problem

The naive solution would model an or gate with the following program:

or_gate(G,1,1,1) «— correct(G)
or_gate(G,0,1,1) «— correct(G)
or_gate(G,1,0,1) «— correct(G)
or_gate(G,0,0,0) «— correct(G)

correct(G) «— not ab(G)
The topology of the circuit is captured by:

node(e, E) «— node(a,A),node(b, B),or_gate(gl, A, B, E)
node(f,F) « mnode(c,C),node(d, D), or_gate(g2,C, D, F)
node(g,G) <« node(e, E),node(f,F),or_gate(g3,E, F,G)

Given the inputs, this program correctly predicts the outputs. But our
main concern is diagnosis, and this program can not be used to do it !!!
Suppose the situation where the value at nodes “a”, “b”, “c¢” and “d” is 1
and the output at node “g” is 0. Obviously, we cannot explain this wrong
output because we have no description of the behaviour of an or gate when it
is abnormal, i.e. there are no fault-models. So we only require the consistency
with the observed output (¢+ = {} and ¥~ = {-mnode(g,1)}):

node(a,1) mnode(c,1) —mode(g,1)
node(b,1) node(d,1)

If we apply the contradiction removal method, with the revisables being
the ab literals, we obtain as minimal revisions:

{ab(g1)} {ab(g2)} {ab(gs)}

Intuitively, the first two diagnoses are incorrect. For instance, consider
the diagnosis {ab(g1l)}. In this situation gate 3 still has an input node with
logical value 1, therefore its output should be also 1. The problem is that in
the program above an “or” gate to give its output must have both inputs de-
termined, i.e. the absorption property of these gates is not correctly modeled.
An alternative and correct description of this circuit is given below:

246 12. Application to diagnosis and debugging

or_gate(G,11,12,1) «— mnode(I1,1),correct(Q)
or_gate(G,11,12,1) «— mnode(12,1),correct(Q)
or_gate(G,I1,12,0) «— node(I1,0),node(12,0),correct(G)

correct(G) «— not ab(G)
The connection’s representation part is slightly simplified:

node(e, E) <« or_gate(gl,a,b, E)
node(f,F) « or_gate(g2,c,d, F)
node(g,G) <« or_gate(g3,e, f,G)

Now, with the same set of inputs and constraints we obtain the expected
diagnosis:

{ab(g1),ab(g2)} {ab(gs)}

Finally, notice that using this new model it is also not possible to explain
the output of gate g3. If we set ¥ = {node(g,0)} and ¥~ = {-node(g,1)},
translated according to Theorem 12.2.1 to:

1« not node(yg,0)
—node(g, 1)

This new program (plus the input and circuit description) is contradictory,
i.e. there is no two-valued revision.

Other solution is given to the previous problem is described in the next
example: we mantain the wrong model of the gates an add a particular fault
model to it. Besides, the example will exemplify in a concrete situation the
distinction between three-valued revision and two-valued revision.

Ezample 12.2.3. Consider the circuit of figure 12.4, with inputs a =0, b =1,

Fig. 12.4. Logic circuit of Example 12.2.3

c=1,d=1, h =1 and (incorrect) output 0. Its behavioural model is:

12.2 Application to diagnosis 247

% Normal behaviour of and gates

and_gate(G,1,1,1) «— correct(Q)
and_gate(G,0,1,0) «— correct(G)
and_gate(G,1,0,0) «— correct(G)
and_gate(G,0,0,0) «— correct(G)

% Faulty behaviour
and_gate(G,1,1,0) « abnormal(G)
and_gate(G,0,1,1) «— abnormal(G)
and_gate(G,1,0,1) «— abnormal(G)
and_gate(G,0,0,1) «— abnormal(G)

And a similar set of rules for or gates, as in Example 12.2.2. According
to the program transformation two auxiliary rules are needed:

correct(G) «— not ab(G)
abnormal(G) « ab(QG)

and the description of the circuit and its connections:

node(a,0) node(b,1) mnode(c,1)
node(d,1) mnode(h,1)

Connections

node(e, E) «— node(a,A),node(b, B),or_gate(gl, A, B, E)

node(f,F) <« mnode(c,C),node(d, D),and_gate(g2,C, D, F)

node(g,G) <« node(e, E),node(f,F),or_gate(g3,E, F,G)
node(i,I) «— mnode(g,G),node(h, H),and_gate(g4,G, H,T)

Selecting a consistency-based approach, i.e W1 = {}:
—node(i, 1)

The minimal solutions to this problem are highlighted in figure 12.5. The
two-valued minimal revisions , ab(¢g3) and

{ab(g1),ab(g2)} {ab(g3)} {ab(g4)}

are the minimal solutions to the diagnosis problem. The above representation
does not suffer from the problems of the Example 12.2.2. This is due to the
fact that when an abnormality assumption is made the gate’s fault-model
become “active”, an output value is produced which can be used by other
gates in the circuit. Notice that this program is able to explain the outputs: if
an integrity rule enforcing that the output at node “g” should be 0 is added
to the program then the minimal revisions are the same as before.

If instead of two-valued contradiction removal the three-valued one is used
four (with two intuitively incorrect) single-fault diagnoses are found:

{ab(g1)} {ab(g2)} {ab(g3)} {ab(g4)}

248 12. Application to diagnosis and debugging

{ab(g4)}

Fig. 12.5. Diagnoses of Example 12.2.3

Remember that these literals are revised to undefined, blocking the prop-
agation of values from inputs to outputs. This short example shows again
that the naive model of logical gates is not adequate for diagnosis. More dif-
ferences between three-valued and two-valued contradiction will be drawn in
the next example.

In Example 12.2.4 we’ll show how to represent and reason with fault-
models in the diagnosis task.

Ezample 12.2.4. Consider the situation in figure 12.6, where two inverters
are connected in series. This particular situation can be represented by the
program below:

mv(T,G,1,1) «— node(T,I,0),not ab(G) 1
inw(T,G,1,0) «— node(T,I,1),not ab(G) 2
node(T,b,B) «— inv(T,gl,a,B) 3
node(T,c,C) «— inv(T,g2,b,C) 4
node(0, a, 0) 5
—node(0, ¢, 0) 6

a b c
0 @c % 1

Fig. 12.6. Two inverters circuit

12.2 Application to diagnosis 249

Rules 1-2 model normal inverter behaviour, where correct has been re-
placed by not ab. Rules 3-4 specify the circuit topology. Rule 5 establishes the
input as 0. Rule 6 specifies the observed output should not be 0 (consistency-
based approach). The extra parameter 7" in all rules is a time-stamp that let
us encode multiple observations. For the time being suppose that the pre-
vious observation was made at time 0. The revisables are, as usual, the ab
literals.

Revising this program, using either contradiction removal methods, these
minimal revisions are obtained:

{ab(g1)} {ab(g2)}
Now, trying to explain the output, via integrity rule L < not node(0, ¢, 1),
the program is contradictory and non-revisable. It is necessary to add a fault-
model to the program:

mu(T,G,1,0) — fault-mode(G, s0) 7
mu(T,G,I,1) «— fault-mode(G, sl) 8
inv(T,G,I,V) «— node(T,1,V), fault_-mode(G, sh) 9

1L «— fault-mode(G, M1), fault_mode(G, M2),
M1 # M2 10

Rules 7-9 model three fault modes: one expresses the output is stuck at
0, the other that it is stuck at 1, whatever the input may be, and the other
that the output is shorted with the input. According to rule 10 the three
fault modes are mutually exclusive. If a pure consistency-based diagnosis is
performed the revisions are the same as before. Whereas, the observed output
can be explained:

1« notnode(0,¢,1) 11

The program consisting of rules 1-11 is revisable with minimal diagnosis
(with either of the contradiction removal techniques):

{ab(gl), fault_-mode(gl, sh)} {ab(gl), fault-mode(gl,s0)}
{ab(g2), fault_-mode(g2,s1)} {ab(g2), fault-mode(g2, sh)}

Regardless of the minimal revisions being the same with both methods,
they have different consequences. The two-valued approach really explains the
output, i.e. node(0, ¢, 1) is entailed by any of the revised programs. The three-
valued method doesn’t: it satisfies the constraints by (indirectly) undefining
the literals node(0,¢,0) and node(0, ¢, 1). The distinct effects will be clear
soon.

Suppose now that an additional experiment is made at time 1, by setting
the input to 1 and observing output 1. This test is modeled by the rules:

node(1,a, 1) 12
—node(1, ¢, 0) 13
1« notnode(l,c,1) 14

250 12. Application to diagnosis and debugging

With the third-valued contradiction removal method the minimal diag-
noses are the same as before, whereas with the two-valued one they are:

{ab(g1), fault-mode(gl,s0)} {ab(g2), fault-mode(g2,s1)}
{ab(g1), fault-mode(gl, s1)ab(g2), fault_mode(g2, sh)}

Next, a typical and problematic problem is presented and correctly (and
easily) solved.

Ezample 12.2.5. [203] Three bulbs are set in parallel with a source via con-
necting wires and a switch (cf. figure 12.7), as specified in the first three rules
(where ok is used instead of correct). Normality is assumed by default in the
rule for ok. The two integrity rules enforce that the switch is always either
open or closed. Since both cannot be assumed simultaneously, this program
has two minimal revisions, with ab, open, closed being the revisables: one ob-
tained by revising the assumption of not open (i.e. adding open); the other
by revising the assumption of not closed (i.e. adding closed). In the first
open, not on(bl), not on(b2),not on(b3) are true in the model; in the second
closed, on(bl), on(b2), on(b3) do.

TR

Fig. 12.7. Three bulbs circuit

on(bl) «— closed, ok(s), ok(wl), ok(bl)
on(b2) «— closed,ok(s), ok(wl), ok(w2), ok(b2)
on(b3) «— cdosed,ok(s),ok(wl), ok(w2), ok(w3), ok(b3)
ok(X) < not ab(X)
1L« not open,not closed
1L« open,closed

Further integrity rules specify observed behaviour to be explained. For in-
stance, to explain that bulb 1 is on it is only necessary to add L « not on(bl)
to obtain the single, intuitive, minimal revision {closed}.

Suppose instead we wish to explain that bulb 2 is off (i.e. not on). Adding
1« on(b2), five minimal revisions explain it, four of which express faults:

{closed,not ab(s)} {closed,not ab(w;)}
{closed,not ab(by)} {closed,not ab(wsy)}

{open}

12.2 Application to diagnosis 251

Adding now both integrity rules, only two of the previous revisions remain:

both with the switch closed, but one stating that bulb 2 is abnormal and the
other that wire 2 is.

Finally, we show a more extensive example due to [45].

Ezample 12.2.6. [45] Causal nets are a general representation schema used
to describe possibly incomplete causal knowledge, in particular to represent

the faulty behaviour of a system. Consider the (simple) causal model of a car
engine in figure 12.8.

oil_cup_holed old_spark_plugs

oil_loss spark_plugs_used_up

lubric_oil_burning
N
AY

|

N I
A |
N |

Y
dirty_spark_plugs

irreg_oil_consumpt
irreg_ignition

-~y
mumbling_engine

oil_lack

MAY
ine_temp

high_engi

-
-
-

temp_indic_red

coolant_evaporation

power_decrease |- - - —)/ lack_of_accel

.
Yy
melted_pistons vapour
|
|

— CAUSAL ARC —>

- ~- - ~-HAMARC - - >»

Fig. 12.8. Causal model in a mechanical domain
A causal net is formed by nodes and arcs connecting nodes. There are (at
least) three types of nodes:

— Initial Cause nodes - represent the deep causes of the faulty behaviour. It
is assumed that the initial perturbations are not directly observable;

252 12. Application to diagnosis and debugging

— State nodes - describe partial states of the modeled system;
— Finding nodes - observable manifestations of the system.

There are two kinds of arcs: causal arcs that represent cause/effect rela-
tionships and has manifestations arcs connecting states with their observable
manifestations. These arcs can be labeled by a MAY tag, stating some sort
of incompleteness in the model.

This formalism can be easily translated to logic programming:

lubric_oil_burning <« piston_rings_-used
stack_smoke «— lubric_oil_burning

irreg_oil_consumpt <« lubric_oil_burning
oil_loss oil _cup_holed
oil_below_car «— oil_loss, may(oil_below_car, 0il loss)

1

oil_lack «— oil loss
oil lack «— irreg_oil_consumpt

high_engine_temp <« oil_lack
temp_indic.red <« high_engine_temp

coolant_evaporation <« high_engine_temp
vapour coolant_evaporation

1

power_decrease <« high_engine_temp,
may(power_dec, high_eng_temp)
lack_of _accel <« power_decrease

melted_pistons <« coolant_evaporation,
may(melted_pistons, cool_evap)
smoke_from_eng <« melted_pistons

If the findings “dirty spark plugs”, “lack of acceleration”, “temperature
indicator is red” and “vapour” are observed the following integrity rules are
added to the program:

1L« not dirty_spark_plugs 1« not vapour
1« notlack_of _accel 1« not temp_indic_red

By revising the program, with the revisables being the initial cause nodes
and may literals, the minimal revisions are:

12.3 Application to debugging 253

old_spark_plugs, may(irreg_ignition, spark_plugs_used_up)
piston_rings_used, may(power_decrease, irreg_ignition) }
oil _cup_holed, may(irreg_ignition, spark_plugs_used_up),
old_spark_plugs, may(power_decrease, irreg_ignition) }
oil _cup_holed, old_spark_plugs,

may(power_decrease, high_engine_temp) }
old_spark_plugs, piston_rings_used,

may(power_decrease, high_engine_temp) }

e e e T

12.3 Application to debugging

It is clear that fault-finding or diagnosis is akin to debugging. In the context
of logic, both arise as a confrontation between theory and model. Whereas in
debugging one confronts an erroneous theory, in the form of a set of clauses,
with models in the form of input/output pairs, in diagnosis one confronts a
perfect theory (a set of rules acting as a blueprint or specification for some
artifact) with the imperfect input/output behaviour of the artifact (which, if
it were not faulty, would behave in accordance with a theory model).

What is common to both is the mismatch. The same techniques used in
debugging to pinpoint faulty rules can equally be used to find the causes,
in a perfect blueprint, which are at odds with artifact behaviour. Then, by
means of the correspondence from the blueprint’s modelization to the arti-
fact’s subcomponents whose i/o behaviour they emulate, the faulty ones can
be spotted.

Declarative debugging then is essentially a diagnosis task, but until now
its relationship to diagnosis was unclear or inexistent. We present a novel
and uniform technique for normal logic program declarative error diagnosis
by laying down the foundations on a general approach to diagnosis using logic
programming. In so doing the debugging activity becomes clarified, thereby
gaining a more intuitive appeal and generality. This new view may beneficially
enhance the cross-fertilization between the diagnosis and debugging fields.
Additionally, we operationalize the debugging process via a contradiction
removal (or abductive) approach to the problem. The ideas of this work
extend in several ways the ones of [119].

A program can be thought of as a theory whose logical consequences
engender its actual input/output behaviour. Whereas the program’s intended
input/output behaviour is postulated by the theory’s purported models, i.e.
the truths the theory supposedly accounts for.

The object of the debugging exercise is to pinpoint erroneous or missing
axioms, from erroneous or missing derived truths, so as to account for each
discrepancy between a theory and its models. The classical declarative de-
bugging theory [119] assumes that these models are completely known via an
omniscient entity or “oracle”.

254 12. Application to diagnosis and debugging

In a more general setting, that our theory accounts for, these models may
be only partially known and the lacking information might not be (easily)
obtainable. By hypothesizing the incorrect and missing axioms that are com-
patible with the given information, possible incorrections are diagnosed but
not perfected, i.e. sufficient corrections are made to the program but only
virtually. This process of performing sufficing virtual corrections is the crux
of our method.

From the whole set of possible diagnoses we argue that the set of minimal
ones is the expected and intuitive desired result of the debugging process.
When the intended interpretation (model) is entirely known, then a unique
minimal diagnosis exists which identifies the bugs in the program. Whenever
in the presence of incomplete information, the set of minimal diagnoses cor-
responds to all conceivable minimal sets of bugs; these are exactly the ones
compatible with the missing information; in other words, compatible with all
the imaginable oracle answer sequences that would complete the information
about the intended model. It is guaranteed one of these sets pinpoints bugs
that justify the disparities observed between program behaviours and user
expectations. Mark that if only one minimal diagnosis is obtained then at
least part of the bugs in the program were sieved, but more may persist.

Diagnostic debugging can be enacted by the contradiction removal meth-
ods introduced in Section 12.1 [162]. Indeed, a simple program transformation
affords a contradiction removal approach to debugging, on the basis of revis-
ing the assumptions about predicates’ correctness and completeness, just for
those predicates and goals that support buggy behaviour. We shall see this
transformation has an effect similar to that of turning the program into an
artifact specification with equivalent behaviour, whose predicates model the
components, each with associated abnormality and fault-mode literals. When
faced with the disparities between the expected and observed behaviour, the
transformed program generates, by using contradiction removal methods, all
possible virtual corrections of the original program This is due to a one-to-
one mapping between the (minimal) diagnoses of the original program and
the (minimal) revisions of the transformed one.

These very same methods can be applied to the updating of knowledge
bases with integrity constraints represented as logic programs. By only par-
tially transforming the program the user can express which predicates are
liable to retraction of rules and addition of facts. The iterative contradiction
removal algorithm of Section 12.1.1 ensures that the minimal transactions
thus obtained do satisfy the integrity constraints.

These ideas on how debugging and fault-finding relate are new, the at-
tractiveness of the approach being its basis on logic programs. In the same
vein that one can obtain a general debugger for normal logic programs, ir-
respective of the program domain, one can aim at constructing a general
fault-finding procedure, whatever the faulty artifact may be, just as long

12.3 Application to debugging 255

as it can be modelled by logic programs not confined to being normal logic
programs, but including more expressive extensions such as explicit negation.

However we must still go some way until this ultimate goal can be
achieved. The current method applies only to a particular class of normal logic
programs where the well-founded model [76] and SLDNF-resolution [118] co-
incide in meaning. The debugging of programs under WFSX is also foreseen,
where new and demanding problems are yet to be solved. On the positive
side, the loop detection properties of well-founded semantics will allow for a
declarative treatment of otherwise endless derivations.

We examine here the problem of declarative error diagnosis, or debugging,
for the class of normal logic programs, where SLDNF-Resolution can be used
to finitely compute all the logic consequences of these programs, i.e. SLDNF-
Resolution gives the complete meaning of the program. In the sequel we
designate this particular class of programs as source programs.

Well-founded semantics plays an important réle in our approach to declar-
ative debugging. By considering only source programs, we guarantee that
the well-founded model is total and equivalent to the model computed by
SLDNF-Resolution. In [177], Przymusinski showed that SLDNF-Resolution
is sound with respect to well-founded semantics. Thus, for these programs it
is indifferent to consider the WFM or Clark’s completion semantics [42].

On the other hand, we intend to further develop this approach, and then
deal with the issue of debugging of programs under WFS. By using WF'S, loop
problems are avoided. Conceivably, we could so debug symptoms in loop-free
parts of a normal program under SLDNF, even if some other parts of it have
loops.

Last, but not least, the basis of our declarative debugging proposal con-
sists in applying the two-valued contradiction removal method defined in
Section 12.1.

12.3.1 Declarative error diagnosis

Next we present the classical theory of declarative error diagnosis, following
mainly [119], in order to proceed to a different view of the issue.

It would be desireable that a program gave all and only the correct answers
to a user’s queries. Usually a program contains some bugs that must be
corrected before it can produce the required behaviour.

Let the meaning of a logic program P be given by the normal Herbrand
models for comp(P), Clark’s completion of P [42]. Let the ultimate goal of
a program be for its meaning to respect the user’s intended interpretation of
the program.

Definition 12.3.1 (Intended interpretation [119]). Let P be a program.
An intended interpretation for P is a normal Herbrand interpretation for
comp(P).

256 12. Application to diagnosis and debugging

Definition 12.3.2 (Program correct [119]). A logic program P is cor-
rect with respect to an intended interpretation In; iff Ipr is a model for
comp(P).

Errors in a terminating logic program manifest themselves through two
kinds of symptoms (we deliberately ignore for now the question of loop de-
tection).

Definition 12.3.3 (Symptoms). Let P be a logic program, Iy its intended
interpretation, and A an atom in the Herbrand base of P.

—if PFsrpnr A and A€ Iy then A is a wrong solution for P with respect
to IM .

— if PYsppNnr A and A€ Iy then A is a missing solution for P with respect
to IM.

Of course, if there is a missing or a wrong solution then the program is
not correct with respect to its intended interpretation, and therefore there
exists in it some bug requiring correction. In [119] two kinds of errors are
identified: uncovered atoms and incorrect clause instances. As we deal with
ground programs only, we prefer to designate as incorrect rules the latter
type of error.

Definition 12.3.4 (Uncovered atom). Let P be a program and Ips its in-
tended interpretation. An atom A is an uncovered atom for P with respect to

Ing iff A€ Iy but for no rule A «— W in P, Iy EW.

Definition 12.3.5 (Incorrect rule). Let P be a program and Ip; its in-
tended interpretation. A rule A «— W is incorrect for P with respect to Ipg

Theorem 12.3.1 (Two types of bug only [119]). Let P be a program
and Iy; its intended interpretation. P is incorrect with respect to Iny iff there
is an uncovered atom for P with respect to Ipn; or there is an incorrect rule
for P with respect to Ipy.

Thus, if there is a missing or a wrong solution there is, at least, an un-
covered atom or an incorrect rule for P.

Ezample 12.3.1. Let P be the (source) program with model {not a,b,not c} :

a <« notb
b «— notece

Suppose the intended interpretation of P is
Iy = {not a,not b, c}

i.e. b is a wrong solution, and ¢ a missing solution for P with respect to ;.
The reader can check, ¢ is an uncovered atom for P with respect to I, and
a < not b is an incorrect rule for P with respect to Ip;.

12.3 Application to debugging 257

12.3.2 What is diagnostic debugging?

We now know (cf. Theorem 12.3.1) that if there is a missing or a wrong
solution then there is, at least, an uncovered atom or an incorrect rule for P.
In classical declarative error diagnosis the complete intended interpretation is
always known from the start. Next we characterize the situation where only
partial knowledge of the intended interpretation is available but, if possible
or wanted, extra information can be obtained. To formalise this debugging
activity we introduce two entities: the user and the oracle.

Definition 12.3.6 (User and Oracle). Let P be a source program and Ip
the intended interpretation for P. The user is identified with the limited
knowledge of the intended model that he has, i.e. a set U C Iy;.

The oracle is an entity that knows everything, that is, knows the whole
intended interpretation Iny.

By definition, the user and the oracle share some knowledge and the user
is not allowed to make mistakes nor the oracle to lie. The user has a diagnosis
problem and poses the queries and the oracle helps the user: it knows the
answers to all possible questions. The user may coincide with the oracle as a
special case.

Our approach is mainly motivated by the following obvious theorem: if the
incorrect rules of a program? are removed, and a fact A for each uncovered
atom A is added to the program, then the model of the new transformed
program is the intended interpretation of the original one.

Theorem 12.3.2. Let P be a source program and Ip; its intended interpre-
tation.
IfWFM(P) # Iy, and

Unc = { A : Aisan uncovered atom for P wrt In}
InR = {A«< B: A< Bisincorrect for P wrt I}

then WEM((P — InR) UUnc) = Ip.
Ezample 12.3.2. Consider the source program P

a <« notb
b «— note

The WFM(P)is {not a,b,not c}.If In; = {not a,not b, ¢} is the intended
interpretation, then ¢ is an uncovered atom for P with respect to I, and
a < not b is an incorrect rule for P with respect to Ip;. The WFM of the
new program,

b «— note
c

obtained by applying the transformation above, is I;.

2 In this section program means source program, unless stated otherwise.

258 12. Application to diagnosis and debugging

Definition 12.3.7 (Diagnosis). Let P be a source program, U a set of lit-
erals of the language of P, and D the pair (Unc,InR) where Unc C Hp,
InR C P.

D is a diagnosis for U with respect to P iff

UCWFM((P— InR)UUnc).

Ezample 12.3.3. In Example 12.3.2, the diagnoses for U = {not a,c} with
respect to P are:

Dy = ({b.c}, {)
Dy = ({b, ¢}, {a « not b})
Ds = <{b,C}, {bHTLOt C} >
Dy = {({b,c},{a + not b; b+ not c})Ds = ({c},{a + not b})

Dg = ({c} ,{a < not b; b~ not c})

Each one of these diagnoses can be viewed as a virtual correction of the
program. For example, D; can be viewed as stating that if the program is
corrected so that b and ¢ become true, by adding them as facts say, then the
literals in U also become true. Another possibility is to set ¢ true and correct
the first rule of the original program. This possibility is reflected by Ds.

However some of these diagnoses are redundant: for instance in Dg there
is no reason to consider the second rule wrong; doing so is redundant.

This is even more serious in the case of D3. There, the atom b is considered
uncovered and all rules for b are considered wrong.

Definition 12.3.8 (Minimal Diagnosis). Let P be a source program and
U a set of literals. Given two diagnosis D1 = (Unci,InR;) and Dy =
(Unca, InRs) for U with respect to P we say that D1 < Do iff UncyUInRy C
Uncoy U InRsy.

D is a minimal diagnosis for U with respect to P iff there is no diagnosis
Dy for U with respect to P such that Dy =< D. ({},{}) is called the empty
diagnosis.

Ezample 12.3.4. The minimal diagnoses of Example 12.3.2 for U = {not a, c}
with respect to P are Dy and Dy above.

Obviously, if the subset of the intended interpretation given by the user
is already a consequence of the program, we expect empty to be the only
minimal diagnosis: i.e. based on that information no bug is found. This is
stated by the following trivial theorem:

Theorem 12.3.3. Let P be a source program, and U a set of literals. Then
U C WFM(P) iff the only minimal diagnosis for U with respect to P is
empty.

A property of source programs is that if the set U of user provided literals
is the complete intended interpretation (the case when the user knowledge

12.3 Application to debugging 259

coincides with oracle’s), a unique minimal diagnosis exists. In this case the
minimal diagnosis uniquely identifies all the errors in the program and pro-
vides one correction to all the bugs.

Theorem 12.3.4. Let P be a source program and Iy its intended interpre-
tation. Then D= (Unc, InR), where

Unc = { A : Aisan uncovered atom for P wrt I}
InR = {A« B: A< Bisincorrect for P wrt Iy}

is the unique minimal diagnosis for Iy with respect to P.

Proof. 1t is clear from Theorem 12.3.2 that D is a diagnosis. We prove that
D is the unique minimal diagnosis in two steps: first we prove that it is mini-
mal; then we prove that no other minimal diagnosis exists. The proof of both
steps is made by contradiction.

D is minimal: Let D’ = (Unc’, InR’) be a diagnosis such that D’ < D.
Since D’ < D then either there exists at least one A ¢ Unc’ uncovered for
P with respect to Ip; or at there exists at least one rule A «— B & InR’
incorrect for P with respect to I,;. It is clear in both cases that:

Iny C WEM((P = InR') U Unc)

i.e. D' is not a diagnosis (contradiction).

There is no other minimal diagnosis: Let now D’ = (Unc’, InR’) be a mini-
mal diagnosis such that D’ # D.
Again, and since D € D’, then either there exists at least one A € Unc’
uncovered for P with respect to Ip; or at there exists at least one rule
A «— B ¢ InR’ incorrect for P with respect to Ip;. Thus D’ is not a
diagnosis (contradiction).

The next lemma helps us show important properties of minimal diagnosis:

Lemma 12.3.1. Let P be a source program, and Uy and Uy sets of literals.
If Uy C Us and if there are minimal diagnosis for Uy and Us with respect to
P then there is a minimal diagnosis for Uy with respect to P contained in a
minimal diagnosis for Uy with respect to P.

Proof. To prove this lemma it is enough to prove that for all minimal diag-
nosis D for Us there exists a minimal diagnosis D’ for U; such that D’ < D.

Let D = (Unc, InR) be any fixed minimal diagnosis for Us. By definition
of diagnosis:

Uy CWFM((P — InR)UUnc)

Then, since Uy C Uy, also Uy € WFM((P—InR)UUnc), i.e. D is a diagnosis
for U1 .
So, clearly, there exists a minimal diagnosis D’ for U; such that D’ < D.

260 12. Application to diagnosis and debugging

Let us suppose the set U provided by the user is a proper subset of
the intended interpretation. Then it is expectable that the errors are not
imediately detected, in the sense that several minimal diagnoses may exist.
The next theorem guarantees that at least one of the minimal diagnoses finds
an error of the program.

Theorem 12.3.5. Let P be a source program, Iy; its intended interpreta-
tion, and U a set of literals. If U C Iy; and if there are minimal diagnosis
for U with respect to P then there is a minimal diagnosis (Unc, InR) for U
with respect to P such that for every A € Unc, A is an uncovered atom for
P with respect to Iy, and for every rule A «+— B € InR, A «— B is incorrect
for P with respect to Ip;.

Proof. Follow directly from lemma 12.3.5.

As a special case, even giving the complete intended interpretation, if one
single minimal diagnosis exists then it identifies at least one error.

Corollary 12.3.1. Let P be a source program, Iy its intended interpreta-
tion, and U a set of literals. If there is a unique minimal diagnosis (Unc, InR)
for U with respect to P then for every A € Unc, A is an uncovered atom for
P with respect to Iy, and for every rule A «— B € InR, A — B is incorrect
for P with respect to Ip;.

In a process of debugging, when several minimal diagnoses exist, queries
should be posed to the oracle in order to enlarge the subset of the intended
interpretation provided, and thus refine the diagnoses. Such a process must
be iterated until a single minimal diagnosis is found. This eventually happens,
albeit when the whole intended interpretation is given (cf. Theorem 12.3.4).

Example 12.8.5. As mentioned above, minimal diagnoses, of Example 12.3.2,
for U = {not a,c} with respect to P are:

Dl <{b7 C}7 {}>
Ds = ({{c},{a < not b})

By Theorem 12.3.5, at least one of these diagnoses contains errors. In D1,
b and c¢ are uncovered. Thus, if this is the error, not only literals in U are
true but also b. In Ds, ¢ is uncovered and rule a <« not b is incorrect. Thus,
if this is the error, b is false.

By asking about the truthfulness of b one can, in fact, identify the error:
e.g. should the answer to such query be yes the set U is augmented with b and
the only minimal diagnosis is D;; should the answer be no U is augmented
with not b and the only minimal diagnosis is Ds.

The issue of identifying disambiguating oracle queries is dealt with in the
next section.

In all the results above we have assumed the existence of at least one
minimal diagnosis. This is guaranteed because:

12.3 Application to debugging 261

Theorem 12.3.6. Let P be a source program, Iy its intended interpreta-
tion, and U a finite set of literals. If U C Iny and U € WEM(P) then there
is a non-empty minimal diagnosis (Unc, InR) for U with respect to P such
that, for every A € Unc, A is an uncovered atom for P with respect to Iy,
and for every rule A — B € InR, A «— B is incorrect for P with respect to
Iy

12.3.3 Diagnosis as revision of program assumptions

In this section we show that minimal diagnosis are minimal revisions of a
simple transformed program obtained from the original source one. Let’s
start with the program transformation and some results regarding it.

Definition 12.3.9. The transformation T that maps a source program P
mto a source program P’ is obtained by applying to P the following two
operations:

— Add to the body of each rule
H<—B1,...,Bn,n0t01,...,7’LOt Cm epP

the literal not incorrect(H «— By, ..., Bp,not Cy,...,not Cy,).
— Add the rule

p(X1, Xo, ..., X,) <« uncovered(p(X1, Xa, ..., Xp))
for each predicate p with arity n in the language of P.

It is assumed predicate symbols incorrect and uncovered don’t belong to the
language of P.

It can be easily shown that the above transformation preserves the truths
of P: the literals not incorrect(...) and uncovered(. ..) are, respectively, true
and false in the transformed program. The next theorem captures this intu-
itive result.

Theorem 12.3.7. Let P be a source program. If L is a literal with predicate
symbol distinct from incorrect and uncovered then L € WFM(P) iff L €
WFEM(T(P)).

Proof. Trivial since there are no rules for predicates incorrect and uncovered
in WFM(Y(P)).

Ezample 12.3.6. By applying transformation 7" to P of Example 12.3.2, we
get:

a <« not b,not incorrect(a < not b)
b «— mnot ¢,not incorrect(b — not c)
a <+ wuncovered(a)
b «— wuncovered(b)

— uncovered(c)

262 12. Application to diagnosis and debugging

The reader can check that the WFM of 7'(P) is

{not a,b,not c,not uncovered(a),not uncovered(b), not uncovered(c),
not incorrect(a < not b), not incorrect(b — not c¢)}

A user can employ this transformed program in the same way he did
with the original source program, with no change in program behaviour. If
he detects an abnormal behaviour of the program, in order to debug the
program he then just explicitly states what answers he expects:

Definition 12.3.10 (Debugging transformation). Let P be a source pro-
gram and U a set of user provided literals. The debugging transformation
Yaebug(P,U) converts the source program P into an object program P’. P’
is obtained by adding to T(P) the integrity rules L «— not a for each atom
a €U, and L «— a for each literal not a € U.

Our main result is the following theorem, which links minimal diagnosis
for a given set of literals with respect to a source program with minimal
revisions of the object program obtained by applying the debugging trans-
formation.

Theorem 12.3.8. Let P be a source program and U a set of literals from
the language of P. The pair (Unc,InR) is a diagnosis for U with respect to
P iff

{uncovered(A) : A € Unc} U {incorrect(A «— B): A — B € InR}

is a revision of Yaepug(P,U), where the revisables are all literals of the form
not incorrect(...) or of the form not uncovered(...).

The proof is trivial and it is based on the facts that adding a positive
assumption incorrect has an effect similar to removing the rule from the
program, and adding a positive assumption uncovered(A) makes A true in
the revised program. The integrity rules in Ygepuqg(P,U) guarantee that the
literals in U are “explained”.

For finite U, algorithm 12.1.5 can be used to compute the minimal diag-
nosis for the buggy source program.

Theorem 12.3.9 (Correctness). Let P be a source program, Ip; its in-
tended interpretation, and U a finite set of literals. Algorithm 12.1.5 is sound
and complete with respect to the minimal revisions of Yaepuq (P, U), using as
revisables all the not incorrect(_) and not uncovered(-) literals.

Proof. Follows directly from Theorem 12.3.8 and the correctness of algorithm
12.1.5 (cf. Theorems 12.1.1 and 12.1.2).

Corollary 12.3.2. Let P be a source program, In; its intended interpreta-
tion, and U a finite set of literals. If U C Ipy and U € WFM(P) then
there is a non-empty minimal revision R of Vaepug (P, U), using as revisables

12.3 Application to debugging 263

all the not incorrect(_) and not uncovered(.) literals, such that for every
uncovered(A) € R, A is an uncovered atom for P with respect to Ipr, and for
every incorrect(A «— B) € R, A — B is incorrect for P with respect to I;.

From all minimal revisions a set of questions of the form “What is the
truth value of < AN ATOM > in the intended interpretation ?” can be
compiled. The oracle answers to these questions identify the errors in the
program.

Definition 12.3.11 (Disambiguating queries). Let D = (Unc,InR) be
a diagnosis for finite set of literals U with respect to the source program P,
Iy its intended interpretation, and let (the set of atoms)

Query = (UncU Atomp,g) — U

where Atomp,r is the set of all atoms appearing in rules of InR.
The set of disambiguating queries of D is:

{What is the truth value of A in In?7| A € Query}

The set of disambiguating queries of a set of diagnoses is the union of
that for each diagnosis.

Now the answers, given by the oracle, to the disambiguating questions to
the set of all diagnoses can be added to the current knowledge of the user,
i.e. atoms answered true are added to U, and for atoms answered false their
complements are added instead. The minimal diagnoses of the debugging
transformation with the new set U are then computed and finer information
about the errors is produced. This process of generating minimal diagnoses,
and of answering the disambiguating queries posed by these diagnoses, can
be iterated until only one final minimal diagnosis is reached:

Definition 12.3.12 (Algorithm for debugging of a source program).

1. Transformation T (P) is applied to the program.

2. The user detects the symptoms and their respective integrity rules are
inserted.

3. The minimal diagnosis are computed. If there is only one, one error or

more are found and reported. Stop>.

The disambiguating queries are generated and the oracle consulted.

Its answers are added in the form of integrity rules.

Goto 3.

S S

3 We conjecture that termination occurs, in the worst-case, after the first time
the oracle is consulted, i.e. the algorithm stops either the first or second time it
executes this step.

264 12. Application to diagnosis and debugging

Example 12.3.7. After applying T to P of Example 12.3.2, the user detects
that b is a wrong solution. He causes the integrity rule 1 « b be added
to 7 (P) and provokes a program revision to compute the possible expla-
nations of this bug. He obtains two minimal revisions: {uncovered(c)} and
{incorrect(b — not c)}.

Now, if desired, the oracle is questioned:

— What is the truth value of ¢ in the intended interpretation ? Answer: true.

Then the user (or the oracle...) adds to the program the integrity rule 1 —
not ¢ and revises the program. The unique minimal revision is {uncovered(c)}
and the bug is found.

The user now detects that solution a is wrong. Then he adds the integrity
rule 1. « a too and obtains the only minimal revision, that detects all the
erTors.

{incorrect(a « not b),uncovered(c)}

Example 12.3.8. Consider the slight variation of Example 12.2.4:

mu(T,G,1,1) «— node(T,I,0),not ab(G) 1
inv(T,G,1,0) «— node(T,I,1),not ab(G) 2
node(T,b,B) «— inv(T,gl,a,B) 3
node(T,c,C) «— inv(T,g2,b,C) 4
node(0, a, 0) 5
—node(0, ¢, 0) 6
inv(T,G,1,0) «— fault-mode(G, s0) 7
inv(T,G,I,V) <« node(T,I,.),V #0,missing(G,V) 12
1L — fault-mode(G, M1), fault_mode(G, M2), 10

M1 # M2
1L« not node(0,c,1) 11

We made the fault model partial by, withdrawing rules 8 and 9. So that
we can still explain all observations, we “complete” the fault model by intro-
ducing rule 12, which expresses that in the presence of input to the inverter,
and if the value to be explained is not equal to 0 (since that is explained by
rule 7), then there is a missing fault mode for value V. Of course, missing
has to be considered a revisable too.

Now the following expected minimal revisions are produced:

{ab(gl), fault_-mode(gl,s0)} {ab(g2), missing(g2,1)}

12.3 Application to debugging 265

The above fault model “completion” is a general technique for explaining
all observations, with the advantage, with respect to [100]’s lenient explana-
tions, that missing fault modes are actually reported. In fact, we are simply
debugging the fault model according to the methods of the previous section:
we’ve added a rule that detects and provides desired solutions not found by
the normal rules, just as in debugging. But also solutions not explained by
other fault rules: hence the V # 0 condition. The debugging equivalent of
the latter would be adding a rule to “explain” that a bug (i.e. fault mode)
has already been detected (though not corrected). Furthermore, the reason
node(I,_) is included in 12 is that there is a missing fault mode only if the
inverter actually receives input. The analogous situation in debugging would
be that of requiring that a predicate must actually ensure some predication
about goals for it (eg. type checking) before it is deemed incomplete.

The analogy with debugging allows us to debug artifact specifications.
Indeed, it suffices to employ the techniques of the previous section. By adding
not ab(G, R, Head Arguments) instead of not ab(G) in rules, where R is the
rule number, revisions will now inform us of which rules possibly produce
wrong solutions that would explain bugs. Of course, we now need to add
not ab(G, R) to all other rules, but during diagnosis they will not interfere
if we restrict the revisables to just those with the appropriate rule numbers.
With regard to missing solutions, we’ve seen in the previous paragraph that
it would be enough to add an extra rule for each predicate. Moreover the
same rule numbering technique is also applicable.

We now come full circle and may rightly envisage a program as just an-
other artifact, to which diagnostic problems, concepts, and solutions, can
profitably apply:

Ezample 12.3.9. The (buggy) model of the inverter gate of figure 12.9 entails
node(b,0), and also (wrongly) node(b, 1), when its input is 1.

1a{>cbo

Fig. 12.9. One inverter circuit

inv(G,1,0) < node(I,1),not ab(G)
inv(G,1,1) « mnode(I,1),not ab(G) % bug : node(I,0)
node(b,V) «— inv(gl,a,V

node(a, 1)

~—

After the debugging transformation:

266 12. Application to diagnosis and debugging

inv(G,1,0)
inv(G,I,1)

— mnode(1,1),not ab(G,1,[G,1,0])
— mnode(1,1),not ab(G,2,[G,1,1])
node(b,V) «— inv(gl,a,V),not ab(3,[b,V])
node(a,1) <« not ab(4,a,V])

Now, adding to it L <« node(b,1), and revising the now contradictory
program the following minimal revisions are obtained:

{ab(g1,2,[g1,a,1])} {ab(3,[b,1])} {ab(4,]a,1])}

The minimal revision {ab(gl,2,[gl,a,1])} states that either the inverter
model is correct and therefore gate 1 is behaving abnormally or that rule
2 has a bug.

12.4 Updating Knowledge Bases

In this section we exhibit a program transformation to solve the problem
of updating knowledge bases. Recall that a logic program stands for all its
ground instances.

As stated in [83, 84] the problem of updating knowledge bases is a general-
isation of the view update problem of relational databases. Given a knowledge
base, represented by a logic program, an integrity constraint theory and a first
order formula the updating problem consists in updating the program such
that:

— It continues to satisfy the integrity constraint theory;

— When the existential closure of the first-order formula is not (resp., is)
a logical consequence of the program then, after the update, it becomes
(resp., no longer) so.

Here, we restrict the integrity constraint theory to sets of integrity rules
and the first-order formula to a single ground literal. The method can be
generalised as in [84], in order to cope with first-order formulae.

We assume there are just two primitive ways of updating a program:
retracting a rule (or fact) from the program or asserting a fact. A transaction
is a set of such retractions and assertions.

Next, we define a program transformation in all respects similar to the
one used to perform declarative debugging;:

Definition 12.4.1. The transformation T that maps a logic program P into
a logic program P’ is obtained by applying to P the following two operations:

— Add to the body of each rule
H«— By,...,B,,not Cy,...,not C,, €P
the literal not retract_inst((H «— By,..., By, not C1,...,not Cy)).

12.4 Updating Knowledge Bases 267

— Add the rule
p(X1, Xo, ..., X,) <« assert_inst(p(X1, Xa, ..., X,))
for each predicate p with arity n in the language of P.

It is assumed that the predicate symbols retract_inst and assert_inst don’t
belong to the language of P. The revisables of the program P’ are the re-
tract_inst and assert_inst literals.

If an atom A is to be inserted in the database P, then the integrity rule
1 « not A is added to T'(P). The minimal revisions of the latter program
and integrity rule are the minimal transactions ensuring that A is a logical
consequence of P. If an atom A is to be deleted, then add the integrity
rule 1 «— A instead. With this method the resulting transactions are more
“intuitive” than the ones obtained by [84]:

Ezample 12.4.1. Consider the following program and the request to make
pleasant(fred)

a logical consequence of it (insertion problem):

pleasant(X) «— not old(X),likes_fun(X)
pleasant(X) « sports_person(X),loves_nature(X)

sports_person(X)
sports_person(X)

— swimmer(X)
— not sedentary(X)
old(X) < age(X,Y),Y >55
swimmer(fred)
age(fred, 60)

The transactions returned by Guessoum and Lloyd’s method [84] are:

. {assert(pleasant(fred))}

. {assert(likes_fun(fred)), retract((old(X) «— age(X,Y),Y > 55))}
. {assert(likes_fun(fred)), retract(age(fred,60))}

. {assert(sports_person(fred)), assert(loves_nature(fred))}

. {assert(swimmer(fred)), assert(loves_nature(fred))}

. {assert(loves_nature(fred))}

S T W N =

Notice that transactions 4 and 5 assert facts (sports_person(fred), re-
spectively swimmer(fred)) that are already conclusions of the program. Also
remark that in transaction 2 the whole rule is being retracted from the pro-
gram, rather than just the appropriate instance. On the contrary, our method
returns the transactions:

1. {assert_inst(pleasant(fred))}

268 12. Application to diagnosis and debugging

2. {assert_inst(likes_fun(fred)),

retract_inst((old(fred) «— age(fred,60),60 > 55))}
3. {assert_inst(likes_fun(fred)), retract_inst(age(fred, 60))}
4. {assert_inst(loves_nature(fred))}

If the second transaction is added to the program then it is not necessary
to remove the rule

old(X) < age(X,Y),Y > 55

from it. Only an instance of the rule is virtually retracted via assertion of the
fact

retract_inst(age(fred, 60))*

Another advantage of our technique is that the user can express which
predicates are liable to retraction of rules and addition of facts by only
partially transforming the program, i.e. by selecting to which rules the
not retract_inst is added, or to which predicates the second rule in the trans-
formation is applied.

In [83] is argued that the updating procedures should desirably return
minimal transactions, capturing the sense of making “least” changes to the
program. These authors point out a situation where minimal transactions do
not obey the integrity constraint theory:

Ezample 12.4.2. [83] Consider the definite logic program from where r(a)
must not be a logical consequence of it (the deletion problem):

r(X) <« pX)
r(X) «— p(X),q(X)
p(a)
q(a)

and the integrity constraint theory

Vx (p() — q(x))

Two of the possible transactions that delete r(a) are:

T, = {retract_inst(p(a))}
Ty = {retract_inst(p(a)), retract_inst(q(a))}

Transaction 77 is minimal but the updated program does not satisfy the
integrity contrainst theory. On the contrary, the updated program using 15
does satisfy the integrity constraint theory.

4 Tt may be argued that we obtain this result because we consider only ground
instances. In fact, we have devised a sound implementation of the contradiction
removal algorithm that is capable of dealing with non-ground logic programs
such as this one. For the above example the transactions obtained are the ones
listed.

12.4 Updating Knowledge Bases 269

With our method, we first apply 7" to the program, obtaining (notice how
the integrity constraint theory is coded):

r(X) <« p(X),not retractinst((r(X) <« p(X)))

r(X) <« p(X),q(X),not retract_inst((r(X) — p(X),q(X)))
p(a) <« not retract_inst(p(a))
q(a) «— mnot retract_inst(q(a))

p(X) «— assertiinst(p(X))

q(X) <« assertinst(q(X))

r(X) « assertinst(r(X))

1« notp(X),q(X)

The request to delete r(a) is converted into the integrity rule L «— r(a)
which is added to the previous definition. As the reader can check, this pro-
gram is contradictory. By computing its minimal revisions, the minimal trans-
actions that satisfy the integrity theory are found:

1. {retract_inst(p(a)), retract_inst(q(a))}
2. {retract_inst(r(a) < p(a)), retract_inst((r(a) < p(a),q(a)))}
3. {retract_inst(q(a)), retract_inst((r(a) < p(a)))}

Remark that transaction 77 is not a minimal revision of the previous
program.

Due to the uniformity of the method, i.e. both insert and delete requests
are translated to integrity rules, the iterative contradiction removal algorithm
ensures that the minimal transactions obtained, when enacted, do satisfy the
integrity constraints.

270 12. Application to diagnosis and debugging

References

1

10.

11.

12.

13.

. J. J. Alferes, C. V. Damasio, and L. M. Pereira. SLX — A top-down derivation
procedure for programs with explicit negation. In M. Bruynooghe, editor,
International Symposium on Logic programming. MIT Press, 1994.

J. J. Alferes, C. V. Damésio, and L. M. Pereira. Top-down query evaluation for
well-founded semantics with explicit negation. In A. Cohn, editor, European
Conference on Artificial Intelligence, pages 140-144. Morgan Kaufmann, 1994.
J. J. Alferes, C. V. Damésio, and L. M. Pereira. A logic programming system
for non-monotonic reasoning. Journal of Automated Reasoning, Special Issue
on Implementation of NonMonotonic Reasoning(14):93-147, 1995.

J. J. Alferes, P. M. Dung, and L. M. Pereira. Scenario semantics of extended
logic programs. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP
& NMR, pages 334-348. MIT Press, 1993.

J. J. Alferes and L. M. Pereira. On logic program semantics with two kinds of
negation. In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages 574-588.
MIT Press, 1992.

J. J. Alferes and L. M. Pereira. Belief, provability and logic programs. In
D. Pearce and L. M. Pereira, editors, International Workshop on Logics in
Artificial Intelligence, JELIA’94, volume 838 of Lecture Notes in Artificial
Intelligence, pages 106—121. Springer—Verlag, 1994.

J. J. Alferes and L. M. Pereira. Contradiction: when avoidance equal removal.
Part 1. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of LP, volume 798
of LNAI Springer-Verlag, 1994.

J. J. Alferes and L. M. Pereira. An argumentation theoretic semantics based
on non-refutable falsity (extended version). In J. Dix, L. M. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming,
volume 927 of LNAI, pages 3—22. Springer—Verlag, 1995.

J. J. Alferes and L. M. Pereira. Belief, provability and logic programs (extended
version). Journal of Applied Nonclassical Logics, 5(1):31-50, 1995.

J. J. Alferes, L. M. Pereira, and T. Przymusinski. Belief revision in non-
monotonic reasoning and logic programming. In N. Mamede and C. Pinto-
Ferreira, editors, Proceedings of the 7th Portuguese Al Conf., volume 990 of
Lecture Notes in Artificial Intelligence, pages 41-56. Springer—Verlag, 1995.
J. J. Alferes, L. M. Pereira, and T. Przymusinski. “Classical” negation in
non monotonic reasoning and logic programming. In H. Kautz and B. Selman,
editors, 4th Int. Symposium on Artificial Intelligence and Mathematics. Florida
Atlantic University, January 1996.

José Julio Alferes. Semantics of Logic Programs with Ezxplicit Negation. PhD
thesis, Universidade Nova de Lisboa, October 1993.

A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. JSL,
49:231-233, 1984.

272

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

References

K. Apt and M. Bezem. Acyclic programs. New Generation Computing,
29(3):335-363, 1991.

K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-142. Morgan Kaufmann, 1988.

K. Apt and R. Bol. Logic programming and negation: a survey. Journal of
LP, 20:9-71, 1994.

K. Apt, R. Bol, and J. Klop. On the safe termination of Prolog programs. In
Levi and Marteli, editors, Proc. ICLP’89, pages 353-368. MIT Press, 1989.
C. Baral and M. Gelfond. Logic programming and knowledge representation.
Journal of LP, 20:73-148, 1994.

C. Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default logics. In Int. Ws. on Nonmonotonic Reasoning, 1990.
C. Baral and V. S. Subrahmanian. Dualities between alternative semantics
for logic programming and nonmonotonic reasoning. In A. Nerode, W. Marek,
and V. S. Subrahmanian, editors, LP & NMR, pages 69-86. MIT Press, 1991.
N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn,
editors, Modern Uses of Many-valued Logic, pages 8-37. Reidel, 1977.

N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and circum-
scription in stratified logic programming. In Symp. on Principles of Database
Systems. ACM SIGACT-SIGMOD, 1987.

N. Bidoit and C. Froidevaux. General logic databases and programs: default
logic semantics and stratification. Journal of Information and Computation,
1988.

N. Bidoit and P. Legay. Well!: An evaluation procedure for all logic programs.
In Int. Conf. on Database Technology, pages 335-348, 1990.

L. Birnbaum, M. Flowers, and R. McGuire. Towards an Al model of argu-
mentation. In Proceedings of AAAI’80, pages 313-315. Morgan Kaufmann,
1980.

H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. The-
oretical Computer Science, 68:135—154, 1989.

R. Bol and L. Degerstedt. Tabulated resolution for well founded semantics. In
Proc. ILPS’93. MIT Press, 1993.

P. Bonatti. Autoepistemic logics as a unifying framework for the semantics of
logic programs. In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages
417-430. MIT Press, 1992.

P. Bonatti. Autoepistemic logic programming. In L. M. Pereira and A. Nerode,
editors, 2nd Int. Ws. on LP & NMR, pages 151-167. MIT Press, 1993.

A. Bondarenko, F. Toni, and R. Kowalski. An assumption—based framework
for nonmonotonic reasoning. In L. M. Pereira and A. Nerode, editors, 2nd Int.
Ws. on LP & NMR, pages 171-189. MIT Press, 1993.

Stefan Brass and Jiirgen Dix. A disjunctive semantics based on unfolding and
bottom-up evaluation. In Bernd Wolfinger, editor, Innovationen bei Rechen-
und Kommunikationssystemen, (IFIP '94-Congress, Workshop FG2: Disjunc-
tive Logic Programming and Disjunctive Databases), pages 83-91, Berlin, 1994.
Springer.

Stefan Brass and Jiirgen Dix. A General Approach to Bottom-Up Computation
of Disjunctive Semantics. In J. Dix, L. Pereira, and T. Przymusinski, editors,
Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 127-155.
Springer, Berlin, 1995.

Stefan Brass and Jiirgen Dix. Disjunctive Semantics based upon Partial and
Bottom-Up Evaluation. In Leon Sterling, editor, Proceedings of the 12th Int.
Conf. on Logic Programming, Tokyo. MIT Press, June 1995.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

References 273

G. Brewka and K. Konolige. An abductive framework for generalized logic
programs and other nonmonotonic systems. In Int. Joint Conf. on AI. Morgan
Kaufmann, 1993.

A. Brogi, E. Lamma, P. Mancarella, and P. Mello. Normal logic programs as
open positive programs. In K. Apt, editor, Int. Joint Conf. and Symp. on LP,
pages 783-797. MIT Press, 1992.

F. Bry. Logic programming as constructivism: a formalization and its applica-
tions to databases. In Symp. on Priciples of Database Systems, pages 34—50.
ACM SIGACT-SIGMOD, 1989.

A. Chandra and D. Harel. Structure and complexity of relational queries.
JCSS, 25(1):99-128, 1982.

B. Chellas. Modal Logic: An introduction. Cambridge Univ. Press, 1980.

J. Chen. Minimal knowledge + negation as failure = only knowing (sometimes).
In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP € NMR, pages
132-150. MIT Press, 1993.

W. Chen and D. S. Warren. A goal-oriented approach to computing well-
founded semantics. In K. Apt, editor, Int. Joint Conf. and Symp. on LP,
pages 589-603. MIT Press, 1992.

W. Chen and D. S. Warren. Query evaluation under the well founded seman-
tics. In PODS’93, 1993.

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, 1978.

R. Cohen. Analyzing the structure of argumentative discourse. Computational
Linguistics, 13:11-24, 1987.

A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un systéme de commu-
nication homme-machine en francgais. Technical report, Groupe de Recherche
en Intelligence Artificielle, Université d’Aix—Marseille 11, 1973.

L. Console, D. Dupré, and P. Torasso. A theory of diagnosis for incomplete
causal models. In 11th Int. Joint Conf. on Artificial Intelligence, pages 1311—
1317, 1989.

L. Console and P. Torasso. A spectrum of logical definitions of model-based
diagnosis. Computational Intelligence, 7:133-141, 1991.

N. Costa. On the theory of inconsistency formal system. Notre Dame Journal
of Formal Logic, 15:497-510, 1974.

C. V. Damésio, W. Nejdl, L. M. Pereira, and M. Schroeder. Model-based diag-
nosis preferences and strategies representation with logic meta-programming.
In K. Apt and F.Turini, editors, Meta-logics and Logic Programming, pages
311-338. MIT Press, 1995.

C. V. Damasio and L. M. Pereira. A survey on paraconsistent semantics for
extended logic programs. Technical report, UNL, 1995.

Carlos Viegas Damésio. Logic programming at work (provisional title). PhD
thesis, Universidade Nova de Lisboa, 1995. In preparation.

J. de Kleer and B.C. Williams. Diagnosing multiple faults. A, 32:97-130,
1987.

J. de Kleer and B.C. Williams. Diagnosis with behavioral modes. In Proc.
1JCAI’89, pages 1329-1330. Morgan Kaufmann, 1989.

J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek, and
V. S. Subrahmanian, editors, LP €& NMR, pages 166-180. MIT Press, 1991.
J. Dix. A framework for representing and characterizing semantics of logic
programs. In B. Nebel, C. Rich, and W. Swartout, editors, 3rd Int. Conf. on
Principles of Knowledge Representation and Reasoning. Morgan Kaufmann,
1992.

274 References

55

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

. J. Dix. A framework for representing and characterizing semantics of logic
programs (extended version). Technical report, Institute for Logic, Complexity
and Deduction Systems. Univ. of Karlsruhe, December 1992.

Jirgen Dix. Default Theories of Poole-Type and a Method for Constructing
Cumulative Versions of Default Logic. In Bernd Neumann, editor, Proceedings
ECAI pages 289-293. John Wiley & Sons, 1992.

Jiirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs:
1. Strong Properties. Fundamenta Informaticae, XXI1(3):227-255, 1995.
Jiirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs:
II. Weak Properties. Fundamenta Informaticae, XXI1(3):257-288, 1995.
Jirgen Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. An Overview. In Andre Fuhrmann and Hans Rott, editors, Logic, Action
and Information. Proceedings of the Konstanz Colloquium in Logic and Infor-
mation (LogIn ’92), pages 241-329. DeGruyter, 1995.

Jirgen Dix and Martin Miiller. Partial Evaluation and Relevance for Approx-
imations of the Stable Semantics. In Z.W. Ras and M. Zemankova, editors,
Proceedings of the 8th Int. Symp. on Methodologies for Intelligent Systems,
Charlotte, NC, 1994, LNAI 869, pages 511-520, Berlin, 1994. Springer.
Jirgen Dix and Martin Miiller. The Stable Semantics and its Variants: A
Comparison of Recent Approaches. In L. Dreschler-Fischer and B. Nebel,
editors, Proceedings of the 18th German Annual Conference on Artificial In-
telligence (KI °94), Saarbriicken, Germany, LNAI 861, pages 82-93, Berlin,
1994. Springer.

P. M. Dung. Negation as hypotheses: An abductive framework for logic pro-
gramming. In K. Furukawa, editor, 8th Int. Conf. on LP, pages 3—17. MIT
Press, 1991.

P. M. Dung. Logic programming as dialog—games. Technical report, Division
of Computer Science, Asian Institute of Technology, December 1992.

P. M. Dung. On the relations between stable and well-founded models. The-
oretical Computer Science, 105:7-25, 1992.

P. M. Dung. An argumentation semantics for logic programming with explicit
negation. In D. S. Warren, editor, 10th Int. Conf. on LP, pages 616-630. MIT
Press, 1993.

P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning and logic programming. In Int. Joint Conf. on Al
Morgan Kaufmann, 1993.

P. M. Dung, A. C. Kakas, and P. Mancarella. Negation as failure revisited.
Technical report, Asian Institute of Technology, Univ. of Cyprus, and Univ. of
Pisa, 1992. Preliminary Report.

P. M. Dung and P. Ruamviboonsuk. Well founded reasoning with classical
negation. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP &
NMR, pages 120-132. MIT Press, 1991.

M. Van Emden and R. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of ACM, 4(23):733-742, 1976.

K. Eshghi and R. Kowalski. Abduction compared with negation by failure. In
6th Int. Conf. on LP. MIT Press, 1989.

D. Etherington, R. Mercer, and R. Reiter. On the adequacy of predicate
circumscription for closed—world reasoning. Journal of Computational Intelli-
gence, 1:11-15, 1985.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of LP,
2(4):295-312, 1985.

H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: a deductive ap-
proach. ACM Computing Surveys, 16:153-185, 1984.

74.

75.
76.
7.

78.

79.

80.

81.

82.

83.
84.
85.
86.
87.
. HMSO. British Nationality Act. Her Majesty’s Stationery Office, 1981.
0
91.
92.
93.
94.
95.

96.

References 275

P. Geerts and D. Vermeir. A nonmonotonic reasoning formalism using implicit
specificity information. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws.
on LP & NMR, pages 380-396. MIT Press, 1993.

A. Van Gelder. Negation as failure using tight derivations for general logic
programs. Journal of LP, 6(1):109-133, 1989.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620-650, 1991.

M. Gelfond. On stratified autoepistemic theories. In AAAI’87, pages 207-211.
Morgan Kaufmann, 1987.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on LP, pages
1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic
programs. In M. Reinfrank, J. de Kleer, M. Ginsberg, and E. Sandewall,
editors, Non—Monotonic Reasoning: 2nd Int. Ws., pages 74-99. LNAI 346,
Springer—Verlag, 1989.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th Int. Conf. on LP, pages 579-597. MIT Press, 1990.
M. Gelfond and V. Lifschitz. Representing actions in extended logic programs.
In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages 559-573. MIT
Press, 1992.

M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship be-
tween circumscription and negation as failure. Artificial Intelligence, 38:75-94,
1989.

A. Guessoum and J. W. Lloyd. Updating knowledge bases. New Generation
Computing, 8(1):71-89, 1990.

A. Guessoum and J. W. Lloyd. Updating knowledge bases II. New Generation
Computing, 10(1):73-100, 1991.

Y. Gurevich and S. Shelah. Fixed—point extensions of first order logic. Annals
of Pure and Applied Logic, 32:265-280, 1986.

S. Hanks and D. McDermott. Default reasoning, non-monotonic logics and the
frame problem. In AAAI pages 328-333, 1986.

J. Hintikka. The Game of Language. Reidel Publishing Company, 1983.

G. Hughes and M. Cresswell. A companion to modal logic. Methuen, 1984.
N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68(1):86-104, 1986.

K. Inoue. Extended logic programs with default assumptions. In Koichi Fu-
rukawa, editor, 8th Int. Conf. on LP, pages 490-504. MIT Press, 1991.

K. Jonker. On the semantics of conflit resolution in truth maintenance systems.
Technical report, Univ. of Utrecht, 1991.

A. Kakas, R. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2:719-770, 1993.

A. C. Kakas and P. Mancarella. Generalised stable models: A semantics for
abduction. In Proc. ECAI’90, pages 401-405, 1990.

H. Kautz. The logic of persistence. In AAAI’86, pages 401-405. Morgan
Kaufmann, 1986.

H. A. Kautz and B. Selman. Hard problems for simple default logics. In
R. Brachman, H. Levesque, and R. Reiter, editors, 1st Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning, pages 189-197. Morgan
Kaufmann, 1989.

276

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.
110.

111.

112.
113.

114.

115.
116.
117.
118.
119.
120.

121.

References

D. B. Kemp, P. J. Stuckey, and D. Srivastava. Magic sets and bottom-up
evaluation of well-founded models. In Proc. ILPS’91, pages 337-351. MIT
Press, 1991.

D. B. Kemp, P. J. Stuckey, and D. Srivastava. Query Restricted Bottom—up
Evaluation of Normal Logic Programs. In Proc. JICSLP’92, pages 288-302.
MIT Press, 1992.

M. Kifer and E. L. Lozinskii. A logic for reasoning with inconsistency. In 4th
IEEE Symp. on Logic in Computer Science, pages 253-262, 1989.

K. Konolige. Using default and causal reasoning in diagnosis. In B. Nebel,
C. Rich, and W. Swartout, editors, 3rd Int. Conf. on Principles of Knowledge
Representation and Reasoning. Morgan Kaufmann, 1992.

R. Kowalski. Predicate logic as a programming language. In Proceedings of
IFIP’7}, pages 569-574, 1974.

R. Kowalski. Algorithm = logic + control. Communications of the ACM,
22:424-436, 1979.

R. Kowalski. The treatment of negation in logic programs for representing
legislation. In 2nd Int. Conf. on Al and Law, pages 11-15, 1989.

R. Kowalski. Problems and promises of computational logic. In John Lloyd,
editor, Computational Logic, pages 1-36. Basic Research Series, Springer—
Verlag, 1990.

R. Kowalski. Legislation as logic programs. In Logic Programming in Action,
pages 203-230. Springer—Verlag, 1992.

R. Kowalski and D. Khuener. Linear resolution with selection function. Arti-
ficial Intelligence, 5:227-260, 1971.

R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and
Szeredi, editors, 7th Int. Conf. on LP. MIT Press, 1990.

S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44:167-207, 1990.

K. Kunen. Negation in logic programming. Journal of LP, 4:289-308, 1987.
K. Kunen. Some remarks on the completed database. In R. Kowalski and
K. A. Bowen, editors, 5th Int. Conf. on LP, pages 978-992. MIT Press, 1988.
P. Lamarre and Y. Shoham. On knowledge, certainty, and belief (draft).
Personal communication of the second author, Stanford Univ., 1993.

D. Lewis. Counterfactuals. Harvard, 2nd edition, 1973.

V. Lifschitz. Computing circumscription. In Int. Joint Conf. on Al pages
121-127. Morgan Kaufmann, 1985.

V. Lifschitz. Benchmarks problems for formal non—monotonic reasoning. In
M. Reinfrank, J. d. Kleer, M. Ginsberg, and E. Sandewall, editors, Non Mono-
tonic Reasoning: 2nd International Workshop, pages 202—219. Springer—Verlag,
1988.

V. Lifschitz. Logic and actions. In 5th Portuguese AI Conf., 1991. Invited
talk.

V. Lifschitz. Minimal belief and negation as failure. Technical report, Dep. of
Computer Science and Dep. of Philisophy, Univ. of Texas at Austin, 1992.

V. Lifschitz and G. Schwarz. Extended logic programs as autoepistemic the-
ories. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP & NMR,
pages 101-114. MIT Press, 1993.

J. Lloyd. Foundations of Logic Programming. Springer—Verlag, 1984.

J. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2), 1987.
J. Lloyd and R. Topor. A basis for deductive database systems. Journal of
LP, 2:93-109, 1985.

J. Lloyd and R. Topor. A basis for deductive database systems II. Journal of
LP, 3:55-67, 1986.

122

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

References 277

. V. Marek and M. Truczczinski, editors. Logic Programming and Non—
monotonic Reasoning: Proceedings of the Int. Conf., Lexington, USA, 1995.
Springer-Verlag.

V. Marek and M. Truszczynski. Reflexive autoepistemic logic and logic pro-
gramming. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP &
NMR, pages 115-131. MIT Press, 1993.

W. Marek and M. Truszczynski. Autoepistemic logics. Journal of the ACM,
38(3):588-619, 1991.

J. McCarthy. Circumscription - a form of non—monotonic reasoning. Artificial
Intelligence, 13:27-39, 1980.

J. McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 26:89-116, 1986.

D. McDermott. Non-monotonic logic II. Journal of the ACM, 29(1):33-57,
1982.

R. McGuire, L. Birnbaum, and M. Flowers. Towards an Al model of argu-
mentation. In Int. Joint Conf. on Al pages 58-60. Morgan Kaufmann, 1981.
J. Minker. On indefinite databases and the closed world assumption. In
M. Ginsberg, editor, Readings in Nonmonotonic Reasoning, pages 326-333.
Morgan Kaufmann, 1987.

J. Minker. Foundations of Deductive Databases and Logic Programming. Mor-
gan Kaufmann, 1988.

L. Monteiro. Notes on the negation in logic programs. Technical report, Dep.
of Computer Science, Univerdade Nova de Lisboa, 1992. Course Notes, 3rd
Advanced School on Al, Azores, Portugal, 1992.

R. Moore. Semantics considerations on nonmonotonic logic. Artificial Intelli-
gence, 25:75-94, 1985.

P. H. Morris. Autoepistemic stable clousure and contradiction resolution. In
2nd Ws. on Nonmonotonic Reasoning, pages 60-73, 1988.

W. Nejdl, G. Brewka, L. Consolle, P. Mancarella, and L. M. Pereira. LAP —
Logic Agents Programming. ESPRIT BRA proposal (no. 8099), April 1993.
D. Nelson. Constructible falsity. JSL, 14:16-26, 1949.

A. Nerode, W. Marek, and V. S. Subrahmanian, editors. Logic Programming
and Non—monotonic Reasoning: Proceedings of the First Int. Ws., Washington
D.C., USA, 1991. The MIT Press.

D. Nute. Ldr : A logic for defeasible reasoning. Technical report, Advanced
Computational Center, Univ. of Georgia, 1986.

D. Pearce. Reasoning with Negative Information, II: hard negation, strong
negation and logic programs. In D. Pearce and H. Wansing, editors, Nonclassi-
cal logic and information processing, LNAI 619, pages 63—79. Springer—Verlag,
1992.

D. Pearce. Answer sets and constructive logic, II: Extended logic programs
and related nonmonotonic formalisms. In L.M. Pereira and A. Nerode, editors,
2nd Int. Ws. on LP & NMR, pages 457-475. MIT Press, 1993.

D. Pearce. Safety, stability and deductive basis. Technical report, German
Research Center for Artificial Intelligence (DFKI), 1994.

D. Pearce and G. Wagner. Reasoning with negative information I: Strong
negation in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto,
editors, Language, Knowledge and Intentionality, pages 430-453. Acta Philo-
sophica Fennica 49, 1990.

D. Pearce and G. Wagner. Logic programming with strong negation. In
P. Schroeder-Heister, editor, Eztensions of LP, pages 311-326. LNAI 475,
Springer—Verlag, 1991.

278

143

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

References

. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In B. Neumann, editor, European Conf. on Al, pages
102-106. John Wiley & Sons, 1992.

L. M. Pereira and J. J. Alferes. Optative reasoning with scenario semantics.
In D. S. Warren, editor, 10th Int. Conf. on LP, pages 601-615. MIT Press,
1993.

L. M. Pereira and J. J. Alferes. Contradiction: when avoidance equal removal.
Part II. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of LP, volume 798
of LNAI Springer-Verlag, 1994.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradiction Removal within
Well Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian,
editors, LP & NMR, pages 105-119. MIT Press, 1991.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. The extended stable models of
contradiction removal semantics. In P. Barahona, L. M. Pereira, and A. Porto,
editors, 5th Portuguese AI Conf., pages 105-119. LNAI 541, Springer—Verlag,
1991.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. A practical introduction to
well founded semantics. In B. Mayoh, editor, Scandinavian Conf. on Al 10S
Press, 1991.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Adding closed world assump-
tions to well founded semantics. In Fifth Generation Computer Systems, pages
562-569. ICOT, 1992.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Default theory for well founded
semantics with explicit negation. In D. Pearce and G. Wagner, editors, Logics
in Al. Proceedings of the Furopean Ws. JELIA’92, pages 339-356. LNAT 633,
Springer—Verlag, 1992.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Adding closed world as-
sumptions to well founded semantics (extended improved version). Theoretical
Computer Science. Special issue on selected papers from FGCS’92, 122:49-68,
1993.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradiction removal seman-
tics with explicit negation. In M. Masuch and L. Pélos, editors, Knowledge
Representation and Reasoning Under Uncertainty, volume 808 of LNAI, pages
91-106. Springer-Verlag, 1994.

L. M. Pereira, J. J. Alferes, and C. Damdsio. The sidetracking meta principle.
In Simpdsio Brasileiro de Inteligéncia Artificial, pages 229-242, 1992.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Counterfactual reasoning
based on revising assumptions. In Ueda and Saraswat, editors, Int. LP Symp.,
pages 566-577. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. A derivation procedure for
extended stable models. In Int. Joint Conf. on AL Morgan Kaufmann, 1991.
L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Hypothetical reasoning with
well founded semantics. In B. Mayoh, editor, Scandinavian Conf. on Al 10S
Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Nonmonotonic reasoning with
well founded semantics. In Koichi Furukawa, editor, 8th Int. Conf. on LP,
pages 475-489. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Non-monotonic reasoning
with logic programming. Journal of Logic Programming. Special issue on Non-
monotonic reasoning, 17(2, 3 & 4):227-263, 1993.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Logic programming for non-
monotonic reasoning. In M. Masuch and L. Pdlos, editors, Knowledge Rep-

160.

161.

162.

163.

164.

165.

166.
167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

References 279

resentation and Reasoning Under Uncertainty, volume 808 of LNAI, pages
107-122. Springer-Verlag, 1994.

L. M. Pereira and M. Calejo. A framework for Prolog debugging. In R. Kowal-
ski, editor, 5th Int. Conf. on LP. MIT Press, 1988.

L. M. Pereira, C. Damésio, and J. J. Alferes. Debugging by diagnosing
assumptions. In P. A. Fritzson, editor, Automatic Algorithmic Debugging,
AADEBUG’93, volume 749 of Lecture Notes in Computer Science, pages 58—
74. Springer—Verlag, 1993.

L. M. Pereira, C. Damadsio, and J. J. Alferes. Diagnosis and debugging as
contradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws.
on LP & NMR, pages 316-330. MIT Press, 1993.

L. M. Pereira, C. Damaésio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal in logic programs. In L. Damas and M. Filgueiras, editors,
6th Portuguese AI Conf. Springer—Verlag, 1993.

L. M. Pereira and A. Nerode, editors. Logic Programming and Non—monotonic
Reasoning: Proceedings of the Second Int. Ws., Lisboa, Portugal, 1993. The
MIT Press.

L. M. Pereira and A. Porto. Intelligent backtracking and sidetracking in Horn
clause programs - the theory. Technical report, DI/UNL, 1979.

J. L. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1-42, 1992.
D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27-47, 1988.

D. Poole. Normality and faults in logic-based diagnosis. In Proc. IJCAI-89,
pages 1304-1310. Morgan Kaufmann, 1989.

C. Preist and K. Eshghi. Consistency-based and abductive diagnoses as gen-
eralised stable models. In Proc. FGCS’92. ICOT, Omsha 1992.

G. Priest, R. Routley, and J. Norman. Paraconsistent logics. Philosophia
Verlag, 1988.

H. Przymusinska and T. Przymusinski. Weakly perfect model semantics. In
R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on LP, pages 1106-1122.
MIT Press, 1988.

H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases
and logic programs. In R. Banerji, editor, Formal Techniques in Al, a Source-
book, pages 321-367. North Holland, 1990.

H. Przymusinska and T. Przymusinski. Nonmonotonic reasoning and logic
programming - Advanced Tutorial. Technical report, Dep. of Computer Sci-
ence, California State Polytechnic and Dep. of Computer Science, Univ. of
California at Riverside, 1991.

H. Przymusinska and T. Przymusinski. Stationary default extensions. Tech-
nical report, Dep. of Computer Science, California State Polytechnic and Dep.
of Computer Science, Univ. of California at Riverside, 1993.

H. Przymusinska, T. C. Przymusinski, and H. Seki. Soundness and complete-
ness of partial deductions for well-founded semantics. In A. Voronkov, editor,
Proc. of the Int. Conf. on Automated Reasoning. LNAT 624, 1992.

T. Przymusinski. On the declarative semantics of stratified deductive
databases. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 193-216. Morgan Kaufmann, 1988.

T. Przymusinski. Every logic program has a natural stratification and an
iterated fixed point model. In 8th Symp. on Principles of Database Systems.
ACM SIGACT-SIGMOD, 1989.

T. Przymusinski. On the declarative and procedural semantics of logic pro-
grams. Journal of Automated Reasoning, 5:167-205, 1989.

280

179

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.
193.

194.

195.

196.

197.

198.

199.

200.

201.

References

. T. Przymusinski. Three—valued non—monotonic formalisms and logic program-
ming. In R. Brachman, H. Levesque, and R. Reiter, editors, 1st Int. Conf. on
Principles of Knowledge Representation and Reasoning, pages 341-348. Mor-
gan Kaufmann, 1989.

T. Przymusinski. Extended stable semantics for normal and disjunctive pro-
grams. In Warren and Szeredi, editors, 7th Int. Conf. on LP, pages 459-477.
MIT Press, 1990.

T. Przymusinski. Stationary semantics for disjunctive logic programs and
deductive databases. In Debray and Hermenegildo, editors, North American
Conf. on LP, pages 40-57. MIT Press, 1990.

T. Przymusinski. Autoepistemic logic of closed beliefs and logic programming.
In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP & NMR, pages
3-20. MIT Press, 1991.

T. Przymusinski. A semantics for disjunctive logic programs. In Loveland,
Lobo, and Rajasekar, editors, ILPS’91 Ws. in Disjunctive Logic Programs,
1991.

T. Przymusinski. Static semantics for normal and disjunctive programs. An-
nals of Mathematics and Artificial Intelligence, 1994.

T. Przymusinski and D.S. Warren. Well-founded semantics: Theory and im-
plementation. Draft, 1992.

A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world assump-
tions. Automated Reasoning, 5:293-307, 1989.

R. Reiter. On closed—world data bases. In H. Gallaire and J. Minker, editors,
Logic and DataBases, pages 55-76. Plenum Press, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:68-93, 1980.
R. Reiter. Towards a logical reconstruction of relational database theory. In
M. Brodie and J. Mylopoulos, editors, On Conceptual Modelling, pages 191—
233. Springer—Verlag, 1984.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57-96, 1987.

R. Reiter. On asking what a database knows. In John Lloyd, editor, Compu-
tational Logic, pages 96-113. Basic Research Series, Springer—Verlag, 1990.
N. Rescher. Hypothetical Reasoning. North—Holland, 1964.

N. Rescher and R. Brandom. The logic of inconsistency. Basil Blackwell,
1980.

K. Ross and R. Topor. Inferring negative information from disjunctive
databases. Automated Reasoning, 4:397—424, 1988.

K. A. Ross. A procedural semantics for well-founded negation in logic pro-
grams. Journal of Logic Programming, 13:1-22, 1992.

C. Sakama. Extended well-founded semantics for paraconsistent logic pro-
grams. In Fifth Generation Computer Systems, pages 592-599. ICOT, 1992.
C. Sakama and K. Inoue. Paraconsistent Stable Semantics for extended dis-
junctive programs. Journal of Logic and Computation, 5(3):265-285, 1995.
G. Schwarz. Autoepistemic logic of knowledge. In A. Nerode, W. Marek, and
V. S. Subrahmanian, editors, LP & NMR, pages 260—274. MIT Press, 1991.
M. Shanahan. Explanations in the situation calculus. Technical report, Dep.
of Computing, Imperial College of Science, Technology and Medicine, 1992.
J. Shepherdson. Negation in logic programming for general logic programs.
In J. Minker, editor, Foundations of Deductive Databases and LP. Morgan
Kaufmann, 1988.

J. Shepherdson. Negation as failure, completion and stratification. In Hand-
book of AI and LP, 1990.

202

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

References 281

. L. J. Stein. Skeptical inheritance: computing the intersection of credulous
extensions. In Int. Joint Conf. on Al pages 1153-1158. Morgan Kaufmann
Publishers, 1989.

P. Struss and O. Dressler. Physical negation: Integrating fault models into the
general diagnostic engine. In 11th Int. Joint Conf. on Artificial Intelligence,
pages 1318-1323, 1989.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

F. Teusink. A proof procedure for extended logic programs. In Proc. ILPS’93.
MIT Press, 1993.

S. Toulmin. The uses of arguments. Cambridge Univ. Press, 1958.

D. S. Touretzky, J. F. Horty, and R. H. Thomason. A clash of intuitions:
the current state of nonmonotonic multiple inheritance systems. In Int. Joint
Conf. on AL Morgan Kaufmann Publishers, 1987.

M. Vardi. The complexity of relational query languages. In 14th ACM Symp.
on Theory of Computing, pages 137-145, 1982.

G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H-D. Gerhardt, editors, Mathematical Foundations of
Database Systems, pages 357-371. LNCS 495, Springer—Verlag, 1991.

G. Wagner. Ex contradictione nihil sequitur. In Int. Joint Conf. on AL
Morgan Kaufmann, 1991.

G. Wagner. Neutralization and preeemption in extended logic programs. Tech-
nical report, Freien Universitat Berlin, 1993.

G. Wagner. Reasoning with inconsistency in extended deductive databases.
In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP & NMR, pages
300-315. MIT Press, 1993.

G. Wagner. Vivid logic: Knowledge-based reasoning with two kinds of nega-
tion. Lecture Notes on Artificial Intelligence, 764, 1994.

D. H. Warren, L. M. Pereira, and F. Pereira. Prolog: The language and
its implementation compared with Lisp. In Symp. on AI and Programming
Languages, pages 109-115. ACM SIGPLAN-SIGART, 1977.

D.S. Warren. The XWAM: A machine that integrates Prolog and deductive
databases. Technical report, SUNY at Stony Brook, 1989.

282 References

Part IV

Appendices

283

A. Prolog top-down interpreter for WFSX

Here, for the sake of completeness, we present a Prolog top-down interpreter
for WFSX.

This interpreter is based on the SLXderivation procedure, and its correct-
ness for propositional programs follows directly from the results in Chapter
10.

For this interpreter, programs are sets of rules of the form:

H<-B1, ..., Bn, not C1, ..., not Cm.

where H, B1, ..., Bn, C1, ..., and Cm are predicates or terms of the form -P
where P is a predicate. -P stands for the explicit negation of P.

The goal demo(G) succeeds if the literal G is true in the well-founded
model of the program, and fails otherwise.

% Operators definition

:- op(950,fy , ’-7). % Explicit negation
:— op(950,fy , not). % Negation as failure
:- op(1110,xfy, ’<-=7). % Rule symbol

% demo(Goal, Ancestors for Loop Ckecking, Global Ans, Mode)
% If Mode=t then tests if Goal is true,
% otherwise tests if Goal is true or undef

demo(G) :- demo(G,[]1,[],t).

demo(true, _, _, _) :—= .
demo((G,Cont), AnsL, AnsG, M) :-

!, demo(G, AnsL, AnsG,M), demo(Cont, AnsL, AnsG,M).
demo(not G, _, AnsG, _) :-

compl_neg(G, CG), demo(CG, AnsG, AnsG, t).
demo(not G, _, AnsG, t) :-

', \+ demo(G, [], AnsG, tu).
demo(not G, _, AnsG, tu) :-

', \+ demo(G, AnsG, AnsG, t).
demo(G, Ans, _, _) :-

loop_detect(G, Ans), !, fail.

286 A. Prolog top-down interpreter for WFSX

demo(G, AnsL, AnsG, t) :-

(G <- Body), demo(Body, [GlAnsL], [G|AnsG], t).
demo(G, AnsL, AnsG, tu) :-

compl_neg(G, NG), \+ demo(NG, AnsG, AnsG, t),

(G <- Body), demo(Body, [GlAnsL], [G|AnsG], tu).

% Loop Detection
loop_detect(X,[YI_1) :- X ==Y, !.
loop_detect (X, [_IT]) :- loop_detect(X,T).

% Auxiliary predicates
compl_neg(- G, G) :- !.
compl_neg(G, - G).

B. A Prolog pre-processor for contradiction
removal

Here we present a Prolog pre-processor for contradictory programs, and the
implementation of a Prolog predicate that returns either 2 or 3-valued revi-
sions of the pre-processed program.

Programs are sets of rules of the form:

H<-B1, ..., Bn, not C1, ..., not Cm.

where H, B1, ..., Bn, C1, ..., and Cm are predicates or terms of the form -P
where P is a predicate. -P stands for the explicit negation of P. Rules with
empty body can simply be represented by one of the two forms:

H.
H <- true.

Integrity constraints are rules of the form:
<- B1, ..., Bn, not C1, ..., not Cm.

By default, no literal is revisable. To declare revisable the predicate say
p/2, add to the program the fact:

rev(p(_,_)).
The user predicates are:

readfile(File) - Reads and pre-processes the program in the file
File

revise(M,Rev) - Returnsin Rev the program revisions. Revision are
2-valued if M=2, and 3-valued otherwise.

288 B. Contradiction removal implementation

% Operators declaration

:— op(950,fy , ’-’). % Explicit negation
:- op(950,fy , not). % Negation as failure
:— op(1110,xfy, ’<-7). % Rule symbol

:— op(1110,yf , °<=?). % Rule symbol

:= op(1110,fy , ’<-7). % Rule symbol

% Dynamic predicates (for Sictus only)
:— dynamic ’<-’/2.

;- dynamic ’$revisable’/1.

:— dynamic ’$indissoc’/2.

bl hhhhhhhhhhhhhhhhhhhhhhhhh k%% k%% %%k %%
yA Reading program clauses %

%%i

% readfile(FileName) reads a program from a file, and
% adds the implicit integrity rules of the form <- L, -L
% for literals L and -L appearing in the heads of rules
readfile(File) :-

clean_database,

see(File), read_clauses, seen,

write(’File: ’),

write(File), write(’ reconsulted.’),

add_implicit_ir.

% clean_database clears all the global information of the
% previous loaded program.
clean_database :-

remove_clauses, clean_rev_data,

retractall(’$revisable’(_)),

retractall(’$indissoc’(_, _)).

remove_clauses :-
recorded(_, (_ <= _), Ref),
erase(Ref),
fail.

remove_clauses.

clean_rev_data :-
recorded(’$rev_rule’, _, R2),
erase(R2),
fail.

clean_rev_data.

% read_clauses reads a term at a time and asserts it to
% the database.
read_clauses :-

repeat,

read(Term),

assert_term(Term, End),

B. Contradiction removal implementation
End, !.

% assert_term(Term, End) does the job. End is set to
% fail if there are more terms to read, otherwise is set
% to true. Term is the new term to assert to the

% database.

% End of File reached.
assert_term(end_of_file, true) :- !.

% Revisables declaration
assert_term(rev(X), fail) :-
functor(X, _, _), !,
assert(’$revisable’(not X)).

% Asserts program rules to the program.
assert_term((<- Body), fail) :- !,
assert_clause(false, Body).
assert_term((Head <- Body), fail) :- !,
assert_clause(Head, Body).
assert_term(Fact, fail) :-
assert_clause(Fact, true).

% Assert the program clauses

assert_clause(H, B) :-
recordz(H, (H <- B), _).

assert_clause(H, B, Ref) :-
recordz(H, (H <- B), Ref).

% add_implicit_ir adds the implicit integrity rules of
% the current program to the database.
add_implicit_ir :-
\+ get_clause(_, _), !.
add_implicit_ir :-
get_heads(PH,NH), !,
nl, write(’Adding constraints...’),
assert_cons(PH,NH) .

% get_clause unifies an head and a body with an existent
% clause.
get_clause(H, B) :-

recorded(H, (H <- B), _).

% get_heads(PosHeads, NegHeads) gets all the heads of
% the current program in memory and splits them in
% positive and negative heads
get_heads(PosHeads,NegHeads) :-

findall (HF,

(get_clause(HF,_), \+ (HF = -(_))),
PosHeads),
findall(HF,get_clause(- HF, _), NegHeads).

% The predicate assert_cons(PosHeads, NegHeads)

289

290

B. Contradiction removal implementation
% generates all the possible implicit integrity rules
% obtained by combination of a positive literal with its
% explicit complement appearing in the heads of
% some rule in the current program.This predicate
% only traverses the list of positive literals.
% The rest of the job is done by assert_cons_lit.
assert_cons([], _) :- !.
assert_cons([LIP], N) :-

assert_cons_lit(N, L),

assert_cons(P, N).
assert_cons([_|P], N) :- assert_cons(P, N).

% assert_cons_lit(NegHeads, PosLit) for each literal in
% NegHeads that unifies with PosLit a new integrity rule
% is added to the program.
assert_cons_1lit([, _) :- !.
assert_cons_1it([L|_], L) :-

assert_clause(false, (L, -L)),

fail.
assert_cons_lit([_|RestNeg], L) :-

assert_cons_lit(RestNeg, L).

Tl T To T T T o o o o o T To T o oo o o o o T T T o oo oo o 2o 2 T T oo
% Program revision YA

Tolohlllhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

% revise(R,L) returns the list of all revisions of the
% loaded program. Two valued revisions are obtained by
% making R=2.
revise(2,L) :- !,

two_valued_revision([[1], [1, [0, L), !.
revise(_,L) :-

three_valued_revision(L), !.

Totohhh
% 3-valued Program revision %

Totohhh

three_valued_revision(CRSs) :-
dss_rev_ind(DerInfo),
\+ DerInfo = [],
assumption_support_sets(DerInfo, ASs, Contr),
compute_crs(Contr, ASs, CRSs).
three_valued_revision([[]]).

% compute_crs computes the minimal hitting sets of the
% assumption sets, and their closure w.r.t. the
% indissociables.
compute_crs(false, ASs, CloCRSs) :-
find_mhs(ASs, CRSs),
ind_closure(CRSs, CloCRSs).

B. Contradiction removal implementation

compute_crs(true, _, [1).

Toto ot To oo o 1o To oo o T oo o oo oo oo oo o o oo o o oo o o oo
% 2-valued Program revision %

%%i

two_valued_revision(ASi, Cs, Rev, MinRev) :-
revision_step(ASi, Cs, Rev, AuxASi, NewCs, NewRev),
remove_redundant (AuxASi, NewASi),
(\+ NewASi = [] ->
! b
two_valued_revision(NewASi, NewCs, NewRev, MinRev)
MinRev = NewRev

).

% revision_step(Assump,CSs,CurrRevs,
% NewAssump,NewContrSets,NewRevs)
h
% This predicate expands one complete level in the
% search-tree. If there is no element remaining to be
% expanded then the predicate ends, returning the new set
% of contradictory assumptions and the new set of minimal
% revisions. If the set of assumptions to be expanded
% contains a contradictory set of assumptions or a
% minimal revision, then it is not expanded. Otherwise,
% the revisions of the program plus the current set of
% assumptions are computed. If the revised program is
% non-contradictory then we are in the presence of a
% minimal revision. This minimal revision is added to the
% other ones (last rule in the definition of
% revision_step).
%
% If the program is contradictory and non-revisable then
% the current set of assumptions is added to the list of
% minimal sets contradictory of assumptions. If it is
% revisable then the current set of assumptions is added
% to each CRS of the revised program(expansion of a set
% of assumptions). All the expansions are collected
% together and returned at the end in the fourth argument
% of revision_step.
revision_step([1, Cs, Rev, []1, Cs, Rev).
revision_step([AIR], Cs, Rev, NewAS, NewCs, NewRev) :-
(non_minimal(Cs, A) ; non_minimal(Rev, A)), !,
revision_step(R, Cs, Rev, NewAS, NewCs, NewRev).
revision_step([AIR], Cs, Rev, NewAS, NewCs, NewRev) :-
compute_revisions(A, Contr, CRSs), !,
(Contr = false ->
add_assumptions(CRSs, A, NewAS-DNewAs), !,
revision_step(R, Cs, Rev, DNewAs, NewCs, NewRev)

minimal_insertion(A, Cs, AuxCs), !,

291

292 B. Contradiction removal implementation

revision_step(R, AuxCs, Rev, NewAS, NewCs, NewRev)
).
revision_step([AIR], Cs, Rev, NewAS, NewCs, [AINR]) :-
!, revision_step(R, Cs, Rev, NewAS, NewCs, NR).

% compute_revisions(A, Contr, CloCRSs) finds the
% contradiction removal sets of the program plus the set
% of assumptions A. If the current assumptions are
% contradictory and non-revisable then Contr is set to
% true, otherwise is set to false. The CRSs are returned
% on the last argument. This predicate fails if the
% program plus assumptions is non-contradictory.
compute_revisions(A, Contr, CloCRSs) :-
get_derivations(A, Info),
\+ Info = [],
assumption_support_sets(Info, ASs, Contr),
(Contr = false ->
find_mhs(ASs, CRSs),
ind_closure(CRSs, CloCRSs)

’ CloCRSs = []
).

% get_derivations(Assumptions, Info) returns all the
% derivation for bottom.
get_derivations(Assumptions, Info) :-
add_revision_facts(Assumptions),
dss_rev_ind(Info),
remove_revision_rules.

% add_assumptions(CRSs, CurrentAssump, NewAssump)

h

% add_assumptions adds to each CRS in the list the set of

% current assumptions. A difference list is returned in

% order to be possible to add new CRSs of other sets of

% assumptions at the same level.

add_assumptions([1, _, X-X).

add_assumptions([CRS|RestCRSs], A, [NewA|NewAS]-DAs) :-
union_set(CRS, A, NewA), !,
add_assumptions(RestCRSs, A, NewAS-DAs).

% add_revision_facts(Assumpt) adds to the database the
% assumptions.
add_revision_facts([]).
add_revision_facts([Lit|RestLits]) :-
add_revision_fact(Lit), !,
add_revision_facts(RestLits).

% add_revision_fact(Lit) turns Lit to true, by adding a
% fact to the program. The fact added is recorded in the
% database ’$rev_rule’.
add_revision_fact(not Lit) :-

assert_clause(Lit, true, Refl),

B. Contradiction removal implementation

recordz(’$rev_rule’, Refl, _).

% remove_revision_rules removes from the (extended)
% program all the revision facts.
remove_revision_rules :-

recorded(’$rev_rule’, R1, R2),

erase(R1), erase(R2), fail.
remove_revision_rules.

T I Tt to el T ToToto o o o T T To To o o o oo o T To T o 1o o o o o T To o 1o o o
% Assumption Support Sets A
T I Tt to o oo T T ToToto o o o T T To To o o o oo o T To T o 1o o o o o T T To o 1o o o

% dss_rev_ind(Der) returns for each possible derivation
% of false a 2-element list containing the dependency
% sets, and partial indissociables. These pairs are all
% collected together in the list Der.
dss_rev_ind(Der) :-
findall([DSs,Ind], demo_crsx(false, DSs, Ind), Der).

% assumption_support_sets(DerRevInd, ASs) computes the
% assumption sets of a given program.
assumption_support_sets(DerInd, ASs, Contr) :-—
compute_ind(DerInd, [], SSs),
compute_as(SSs, ASs, Contr), !.

% compute_rev_ind(DerInfo, CurrInd, SupportSets)

h

% compute_rev_ind computes the indissociables.

% It also returns the support sets of false. In order to

% compute the indissociables it uses predicate

% indissociables/3. Given the current partition of

% literals (indissociables) it updates the list with the

% self-supported sets returned by the derivation

% procedures on arguments Ind. This process is iterated

% until the list of derivation data is exhausted (=

% number of ways of deriving false). In the end the

% indissociables are added to the database

compute_ind([], Ind, []1) :- !,
assert_indissociables(Ind).

compute_ind([[SS,Ind]|Ds], ClassInd, [SSISSs]) :-
indissociables(Ind, ClassInd, NewClassInd),
compute_ind(Ds, NewClassInd, SSs).

% compute_as(DSs, ASs, Contr)

% For each dependency set given a correspondent

% assumption set is computed. The work is done by

% predicate compute_one_ass. If there is one empty

% assumption set the program is contradictory and

% non-revisable. In this case the flag Contr is set to
% true, otherwise it is set to false.

compute_as([1, [], false).

293

294

B. Contradiction removal implementation

compute_as([DS|DSs], [AS|ASs], Contr) :-
compute_one_as(DS, AS),
(As =101 -
Contr = true
compute_as(DSs, ASs, Contr)
).

% compute_one_as(DS, AS) traverses the dependency set

% until the first revisable literal on each and-branch is
% reached (computed and declared by the user). The

% assumption set is obtained by collection these

% literals.

compute_one_as([1, [1).

compute_one_as([not Lit|_], [mot Lit]) :-
’$revisable’ (not Lit), !.

compute_one_as([and(Conjl, Conj2)], ASAnd) :- !,
compute_one_as(Conjl, ASAndl),
compute_one_as(Conj2, ASAnd2),
union_set(ASAnd1l, ASAnd2, ASAnd).

compute_one_as([_|RestDSs], AS) :-
compute_one_as(RestDSs, AS).

% demo_crsx(Lit, DSs, Ind) does some initializations,
% and calls the meta-interpreter.
demo_crsx(Lit, DSs, Ind) :-

initial_cx(CxIn),

demo(Lit, CxIn, DSs, rev(_, _, Ind-[1)).

% If the goal is true then the meta-interpreter succeeds
% with an empty dependency set, loops, partial support
% set, and partial indissociables.

demo (true, _, [], rev(Loop-Loop, SS-SS, Ind-Ind)) :- !.
% Literal not true = false always fails.
demo(not true, _, _, _) :-

!, fail.

% To prove a conjunction it is necessary to prove both
% conjuncts. All the auxiliary sets are merged together.
demo((A,B), Cx, [and(DSsL, DSsR)],
rev(LoopC-DLoop, SSC-DSS, IndC-DInd)) :- !,
demo(A, Cx, DSsL,
rev(LoopC-LoopR, SSC-SSR, IndC-IndR)),
demo(B, Cx, DSsR,
rev(LoopR-DLoop, SSR-DSS, IndR-DInd)).

demo([A], Cx, DSs, Revs) :- !,
demo(A, Cx, DSs, Revs).
demo([A|B], Cx, [and(DSsL, DSsR)],
rev(LoopC-DLoop, SSC-DSS, IndC-DInd)) :- !,
demo(A, Cx, DSsL,

B. Contradiction removal implementation

rev(LoopC-LoopR, SSC-SSR, IndC-IndR)),
demo(B, Cx, DSsR,
rev(LoopR-DLoop, SSR-DSS, IndR-DInd)).

% Rewriting of the negation of a conjunction:
% To prove the negation of a conjunction it is enough to
% prove that one of the conjuncts is false.
demo(not (A,_), CxIn, DSs, Revs) :-
compl(A, Negh),
demo(NegA, CxIn, DSs, Revs).
demo(not (_,B), CxIn, DSs, Revs) :- !,
compl(B, NegB),
demo(NegB, CxIn, DSs, Revs).

%% Default Literals
% Fails if a negative non-direct loop is found.
demo(not Lit, cx([_|OtherLevels],_), _, _) :-

loop(not Lit, OtherLevels), !, fail.

% Succeeds if a negative direct loop is found .
% The literal is put in the dependency set and the
% literals in the loop are collected and it is returned
% in the rev argument.
demo(not Lit, cx([LevelOl|_],_), [mot Lit],
rev([loop(not Lit,Loop) |L]I-L, SS-SS, Ind-Ind)) :-
same_sign(not Lit, LevelO),
dir_loop(not Lit, LevelO, Loop), !.

% WFSX’s Coherence Principle: - Lit => not Lit.
demo(not Lit, CxIn, DSs, Revs) :-

complx(Lit, NotLit),

add_to_cx(not Lit, CxIn, NewCx),

demo(NotLit, NewCx, DSs, Revs).

% not Lit succeeds if there are no rules for Lit
demo(not Lit,cx(_,_),[not Lit],
rev(L-L, SS-SS, [[not Lit]|Ind]l-Ind)) :-
\+ get_clause(Lit, _), !.

% There are rule for Lit. Collect all the Lit rule
% bodies, complement them and make its conjunctions. To
% prove not Lit this conjunction must be proved.
demo(not Lit, CxIn, [not Lit|DSs], Revs) :-
add_to_cx(not Lit, CxIn, NewCx),
collect_negbodies(Lit, NegBodies),
demo(NegBodies, NewCx, DSs, RevNeg),
pindiss(not Lit, RevNeg, Revs).

%% Objective Literals
% Fails if a positive loop is found
demo(Lit, CxIn, _, _) :-

\+ (Lit = not(_)),

loop(Lit, CxIn), !, fail.

295

296

B. Contradiction removal implementation

% For each rule head that unifies with the goal, expand
% the goal to the body of this rule. A test for positive
% loops is made after the unification. The literal is
% added to the dependency set. The revisable information
% is simply passed back.
demo(Lit, CxIn, [Lit|DSs], Revs) :-

\+ (Lit = not()),

add_to_cx(Lit, CxIn, NewCx),

get_clause(Lit, BodyLit),

positive_loop(Lit, CxIn),

demo(BodyLit, NewCx, DSs, Revs).

% pindiss/3 updates partial sets of indissociables.
pindiss(Lit, rev(L, S-Aux, I), NewRev) :-
del_loops(L, Lit, Loops, Aux-DS),
rev_ind(Loops, S-DS, I, Lit, NewRev).

% Separates the loops in partial revisables and
% indissociables.
rev_ind(Loops, SS, Ind, _, rev(Loops, SS, Ind)) :-
\+ empty_dl(Loops), !.
rev_ind(Loops, SS, I-DI, Goal,
rev(Loops, SS, [[Goall |I]-DI)) :-
empty_d1(SS), !.
rev_ind(Loops, SS-[], I-DI, _,
rev(Loops, S-S, [NewSS|I]-DI)) :-
list2set(SS, NewSS).

A
h
% From the list of loops 0ldLoops the literals on Lit are
% returned on the last argument and the rest of them on
% RestOfLoops. All the lists are difference lists for
% efficiency.
del_loops(L, _, NL-NL, ExpL-ExpL) :-
empty_d1(L), !.
del_loops([loop(Goal,Loop-DLoop) |L]-DL, G, NewL,
Loop-ExpL) :- !,
del_loops(L-DL, G, NewL, DLoop-ExpL).
del_loops([Loop|L]-DL, G, [Loop|NewL]-DNL, ExpL) :- !,
del_loops(L-DL, G, NewL-DNL, ExpL).

del_loops(0ldLoops, Lit, RestOfLoops, ListOnLit)

% Empty context and initial level 1
initial_cx(cx([[11,1)).

% add_to_cx(Lit, 01dCx, NewCx)

h

% A context is formed by a level and by a list of sets of
% literals. All the literals in each one of these sets of
% have the same sign. When a new literal is added to a

% context the level is incremented by one. If the literal
% has the same sign of the first set then the literal is

B. Contradiction removal implementation

% added to this list, otherwise a new singleton set with
% the literal in it is added to the list.
add_to_cx(G,cx(Cx,Level),cx(NewCx,NextLevel)) :-
NextLevel is Level+l,
add2cx(G,Cx,NewCx) .

add2cx(G, [[11,[[G]11) :- !.

add2cx (G, [[LIRI]|0Others], [[G,LIRI]|Others]) :-
same_sign(G, [LIRI]), !.

add2cx(G,Cx, [[G]ICx]).

% in_other_cx(Lit, Cx)
%
% tests if Lit occurs in Cx. The implementation
% automatically skips the contexts of opposite signs.
in_other_cx(G,[[G1I_]11_]1) :- G == G1, !.
in_other_cx (G, [[HIT] [Cx]) :-
\+ same_sign(G, [HIT]), !,
in_other_cx(G,Cx).
in_other_cx(G,[[_IS]ICx]):-!,
in_other_cx (G, [SICx]).
in_other_cx (G, [[]1ICx]) :-
in_other_cx(G,Cx).

% same_sign(Lit, Cx) tests if the literal and the
% context have the same sign
same_sign(not _,[not _|_]) :- !.
same_sign(G, [C|_]) :-
\+ functor(G, not, 1),
\+ functor(C, not, 1).

% loop(Lit, Cx) tests if Lit belongs to Cx. Uses
% predicate in_other_cx
loop(Lit, cx(Context,_)) :-
in_other_cx(Lit, Context), !.
loop(Lit, Context) :-—
in_other_cx(Lit, Context).

% dir_loop(Lit, SignInter, Loop)
% Succeeds if a direct loop is found and returns the
% loop.
dir_loop(X, [YI|_1, [YIDL]-DL) :-
X ==1Y.
dir_loop(X, [HIT], [HINT]-DL) :-
dir_loop(X, T, NT-DL).

% collect_negbodies(Lit, NegBodies) collects all the
% bodies of rules with Lit in their head.
collect_negbodies(Lit, NegBodies) :-
findall(NegBody,
(get_clause(Lit, Body), compl(Body,NegBody)),
NegBodies).

297

298 B. Contradiction removal implementation

% If a positive loop is detected the goal fails
positive_loop(Lit, CxIn) :-

loop(Lit, CxIn),

!, fail.
positive_loop(_, _).

TototoaTo o Too To o To o fo o fo o oo o oo To o Fo o Fo o Fo o fo o Fo o oo o o o oo oo o
% Indissociable literals %

Totohhh

% ind_closure closes a given set of CRSs with the
% indissociables. Predicate crss_closures does the job
% and then the redundant sets of CRSs are removed.
ind_closure(CRSs, CloCRSs) :-
crss_closures(CRSs, ClosedCRSs),
remove_redundant (ClosedCRSs, CloCRSs).

% crss_closures calls close_ind for each CRS in its first
% argument, the closure is returned on the second
% argument.
crss_closures([1, [1).
crss_closures([CRS|RestCRSs], [C1CRS|RestClCRSs]) :-
close_ind(CRS, CICRS),
crss_closures(RestCRSs, RestClCRSs).

% close_ind for each literal in its first argument picks
% from the database the previously computed
% indissociables.
close_ind([1, [1).
close_ind([Lit|RestCRS], CloCRS) :-
close_ind(RestCRS, CloRest),
indissociables(Lit, Ind),
union_set(Ind, CloRest, CloCRS).

% indissociables/2 returns the set of indissociables of a
% given literal (maximal indissociable set where it
% belongs). This set is a class of equivalence of an
% intuitive binary relation between default literals.
indissociables(Lit, Ind) :-

’$indissoc’(Lit, Ind), !.
indissociables(Lit, [Lit]).

% indissociables(Loops, 01dInd, NewInd) adds a loop one
% at a time to the indissociable partition. After adding
% all the loops the new partition is returned.
indissociables([], NewInd, NewInd) :- !.
indissociables([Loopl|RestLoops], Ind, NewInd) :-
add_new_loop(Ind, Loop, Loop, Loop, AuxInd),
indissociables(RestLoops, AuxInd, NewInd).

% add_new_loop(01dInd,Loop,CurrInter,CurrUnion,NewInd)
% combines a new loop with the existing indissociable

B. Contradiction removal implementation

% partition. This partition is organized in pairs
% [Inter,Union] where Union containssets of literals in
% loops that can access each other (closure of the loops)
% and Inter the literals common to these loops (possible
% indissociables) .
% To add a new loop the set of pairs [Inter,Union] such
% that Union intersected with the Loop is non-empty.
% These pairs are removed and a new one introduced in the
% list with NewInter the intersection of all the
% collected Inters with the given loop and NewUnion the
% union of the loop with all the collected Unions.
add_new_loop([], _, Inters, Union, [[Inters,Union]]).
add_new_loop([[IndI,IndU] |RestInd],Loop,Int,Uni,
[[IndI,IndU] |[NewInd]) :-

inter_set(Loop, IndU, []), !,

add_new_loop(RestInd, Loop, Int, Uni, NewInd).
add_new_loop([[IndI,IndU] |RestInd], Loop, Int, Uni,

NewInd) :-

inter_set(Int, IndI, NewInters),

union_set(IndU, Uni, NewUnion),

add_new_loop(RestInd, Loop, NewInters, NewUnion,

NewInd).

% assert_indissociables(Ind) adds to the database the
% diverse maximal sets of indissociable literals. The
% predicate add_indissociable is used to add a class one
% at a time. This predicate asserts to the database a
% fact of the form$indissoc(Lit, Class) where Lit
% belongs to Class.
assert_indissociables([]).
assert_indissociables([[[_],_]|RestInd]) :- !,
assert_indissociables(RestInd).
assert_indissociables([[Ind,_]|RestInd]) :- !,
add_indissociable(Ind),
assert_indissociables(RestInd).

% add_indissociable(Ind) records information of a set
% of indissociables. It adds to the database facts of
% the form$indissoc(Lit, Ind),where Lit is a literal
% belonging to Ind, in order to optimize search of
% indissociable sets.
add_indissociable(Ind) :-

member(Lit, Ind),

assert(’$indissoc’(Lit, Ind)),

fail.
add_indissociable(_).

Totohlhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
% Minimal Hitting Sets A
Tohh

% find_mhs(Cs, HSs) has two arguments. This predicate

299

300 B. Contradiction removal implementation

% returns in the second argument the list of minimal
% hitting sets of the collection of sets given in its
% first argument, Cs.
find_mhs(Cs, HSs) :-
remove_redundant(Cs, MinimalCs),
pruned_hs_tree([[]|DL]-DL, [], HSs, MinimalCs).

% remove_redundant(Cs, MinimalCs) removes from set

% collection Cs the non-minimal sets, returning in

% its second argument only

% the mininal sets of Cs. The order used is set

% inclusion.

remove_redundant([1, []).

remove_redundant ([Set|RestSets], MinimalSets) :-
check_minimality(RestSets, Set, NewRestSets, IsMin),
new_minimal_sets(IsMin, Set, NewRestSets, MinimalSets).

% new_minimal_sets(IsMin, Set, RestSets, MinimalSets)

% is an auxiliary predicate to predicate

% remove_redundant/2. If Set is not a minimal

% (IsMin=false), this predicates computes the minimal

% sets of collection RestSets and returns them in its

% last argument. Otherwise, Set is a minimal set

% (IsMin=true) and it is added to the previously

% collection of minimal sets.

new_minimal_sets(false, _, RestSets, MinimalSets) :-
remove_redundant (RestSets, MinimalSets).

new_minimal_sets(true,Set RestSets, [Set|MinimalSets]) :-
remove_redundant (RestSets, MinimalSets).

% check_minimality(Set, Cs, NewCs, IsMin) tests if Set
% is contained in other set of Cs. Simultaneously it
% deletes from the collection Cs all the sets in which
% Set is contained, returning this new collection in
% argument NewCs. IsMin is true if the given set is
% minimal, false otherwise.
check_minimality([1, _, [1, true).
check_minimality([Setl|RestOfSets], Set,
[Set1|Rest0fSets], false) :-
in_set(Setl, Set), !.
check_minimality([Setl|RestOfSets], Set, NewCs, IsMin) :-
in_set(Set, Setl), !,
check_minimality(Rest0fSets, Set, NewCs, IsMin).
check_minimality([Setl|RestOfSets], Set, [Setl|NewRest],
IsMin) :-
check_minimality(RestOfSets, Set, NewRest, IsMin).

% pruned_hs_tree(ToExpand, Leaves, MHS, Cs) creates a
% pruned HS-tree.

% It has 4 arguments :

%

% - The first one is the (difference) list of nodes

% remaining to be expanded which is generated

B. Contradiction removal implementation

% breadth-first.

% - The second argument is the current list of leaf

% nodes.

% - In the third argument are returned the minimal

% hitting sets.

% - The last argument contains the collection of sets

% Cs.

h

% If the list of labels to expand is empty, then the

% algorithm stops, with MHS being the current set of

% leaves. If the list of labels remaining to expand is

% non-empty then the head label is selected to be

% expanded. If it is a leaf, it is added to the current

% set of leaves (expanded labels), where only minimal

% leaves are retained, and the tree is pruned by removing
% labels to be expanded that are"bigger" than this new

% leaf. If the selected label is not a leaf, then it is

% expanded and the HS-tree is pruned. This algoritm is

% iterated until we have no more labels to expand.

"

).
)/

Notice that this implementation doesn’t reuse node
labels (step 2 of Reiter’s algorithm) because the set
% collection is kwnown from the start. Tree pruning’s
% step (iii) is not necessary, because the non-minimal
% sets of the collection are removed "a priori".
pruned_hs_tree(L-DL, Closed, Closed, _) :-

L ==DL, !.
pruned_hs_tree([Label|ToExpand] -DL, Expanded, MHS, Cs) :-
new_labels(Label, Cs, ExpNodes, IsLeaf),

(IsLeaf ->
1

L]

prune_non_minimal(ToExpand-DL, Label,
MinimalLabels),
pruned_hs_tree(Minimallabels, [Label|Expanded],
MHS, Cs)

]
prune_tree(ExpNodes, Expanded, ToExpand-DL,
Exp-DExp),
DL = Exp,
pruned_hs_tree(ToExpand-DExp, Expanded, MHS, Cs)
).

% new_labels(Label, Cs, ExpNodes, IsLeaf) expands Label
% by finding a set in Cs such that the label and this set
% are disjoint. If it can’t find this set the node is

% closed (IsLeaf=true), otherwise IsLeaf is set to fail

% and the label is expanded using the previously set,

% returning the new nodes in argument ExpNodes.
new_labels(Label, Cs, ExpLabels, fail) :-

member (Set, Cs),

inter_set(Label, Set, []), !,

expand_label(Set, Label, ExpLabels).

301

302

B. Contradiction removal implementation

new_labels(_, _, _, true).

% expand_label(Set, Label, ExpNodes) expands Label. One
% particular label expansion is obtained by adding to
% Label one element belonging to Set. All these new
% labels are returned in ExpLabels.
expand_label([1, _, [1).
expand_label(Set, Label, [NewLabel|ExpLabels]) :-
del_set(Nd, Set, NewSet),
ins_set(Nd, Label, NewLabel), !,
expand_label(NewSet, Label, ExpLabels).

% prune_non_minimal(Labels, ExpLabel, NewLabels)
% applies pruning rule 3i to the hs_tree removing from
% Labels all the labels containing Label, giving
% NewLabels. Labels and NewLabels are difference lists.
prune_non_minimal(L-DL, _, X-X) :-
L ==DL, !.
prune_non_minimal([Label|RestLabels]-DR, ExpLabel,
NewLabels) :-
in_set(ExpLabel, Label), !,
prune_non_minimal (RestLabels-DR, ExpLabel, NewLabels).
prune_non_minimal([Label|RestLabels]-DR, ExpLabel,
[Label |NewLabels]-DNL) :-
prune_non_minimal(RestLabels-DR, ExpLabel,
NewLabels-DNL).

% prune_tree(NewExpLabels, ExpLabels, ToExpand,
% NewToExpand), applies
% pruning rules 3i and 3ii to the new generated labels
% (NewExpLabels), the remaining ones are returned in the
% difference list NewToExpand.
prune_tree([, _, _, L-L).
prune_tree([Hn|RestOfHn], Expanded, ToExpand, DL) :-
member (ExpHn, Expanded),
in_set(ExpHn, Hn), !,
prune_tree(RestOfHn, Expanded, ToExpand, DL).
prune_tree([Hn|RestOfHn], Expanded, ToExpand, DL) :-
member_d1(Hn, ToExpand), !,
prune_tree(RestOfHn, Expanded, ToExpand, DL).
prune_tree([Hn|RestOfHn], Exp, ToExpand, [Hn|L]-DL) :-
!, prune_tree(RestOfHn, Exp, ToExpand, L-DL).

ToloToto oo ool ToToTo o o o o o Jo ToTo o 1o o o o o To T Fo o 1o o oo o o To Fo o 1o o o
yA Set Operations %
ToToToto oo oo o ToToToto o o o o To ToTo o 1o o oo o To T FoFo 1o o oo o o To Fo o 1o o o

% list2set(List, Set) casts a list to a set
list2set([X], [X]) :- !.
list2set(List, Set) :-

sort(List, Set).

B. Contradiction removal implementation

% ins_set(E1l, Set, NewSet) inserts El in Set giving
% NewSet. It’s the auxiliary predicate $ins_set(Set, EI,
% NewSet)that does the job...
ins_set(E1, Set, NewSet) :-
’$ins_set’(Set, E1l, NewSet).

’$ins_set’([1, E1, [E1]) :- !'.

’$ins_set’([ES|Rest0fSet], El1l, [El,ES|Rest0fSet]) :-
El @< ES, !.

’$ins_set’ ([ES|Rest0fSet], E1l, [ES|RestOfSet]) :-
El == ES, !.

’$ins_set’ ([ES|Rest0fSet], E1l, [ES|NewRest]) :-
!, ’$ins_set’ (RestO0fSet, E1l, NewRest).

% del_set(E1, Set, NewSet) removes (one ocurrence) of
% El from Set giving NewSet.

del_set(E1, [El|Rest0fSet], RestOfSet).

del_set(E1, [ES|Rest0fSet], [ES|NewRest]) :-

\+ \+ (E1 =ES), !, del_set(El, RestOfSet, NewRest).
del_set(E1, [ES|Rest0fSet], [ES|NewRest]) :-
ES @< E1, !, del_set(E1, RestOfSet, NewRest).

% in_set(Setl, Set2) tests if Setl is contained in Set2
in_set([1, _).
in_set([El|Rest0fSet1], [El|Rest0fSet2]) :-

in_set(RestO0fSetl, Rest0fSet2).
in_set([El|Rest0fSet1], [_|Rest0fSet2]) :-

var(E1), !, in_set([El|RestOfSet1], Rest0fSet2).
in_set([El1|Rest0fSet1], [E12|Rest0fSet2]) :-

E12 @< El1, !, in_set([El1|Rest0fSet1], RestOfSet2).

% union_set(Setl, Set2, NewSet) NewSet is the union of
% Setl with Set2
union_set([J, X, X) = '.
union_set(X, [1, X) := '.
union_set([X|RestOfSetl], [Y|RestOfSet2], [X|NewSet]) :-
Xey, !,
union_set(RestOfSetl, [Y|RestO0fSet2], NewSet).
union_set([X|RestOfSetl1], [Y|RestOfSet2], [Y|NewSet]) :-
Y e< X, !,
union_set([X|RestOfSet1], Rest0fSet2, NewSet).
union_set([X|RestOfSet1], [Y|RestOfSet2], [X|NewSet]) :-
Y=X, !,
union_set(RestOfSetl, Rest0fSet2, NewSet).

% inter_set(Setl, Set2, NewSet) NewSet is the
% intersection of Setl with Set2.
inter_set([1, _, [1) = '.

inter_set(_, [1, [1) := '.
inter_set([X|RestOfSet1], [Y|RestOfSet2], NewSet) :-
Xey, !,

inter_set(Rest0fSetl, [Y|RestOfSet2], NewSet).
inter_set([X|RestOfSet1], [Y|RestOfSet2], NewSet) :-

303

304 B. Contradiction removal implementation

Y e< X, !,

inter_set([X|RestOfSet1], Rest0fSet2, NewSet).
inter_set([X|RestOfSet1], [Y|RestOfSet2], [X|NewSet]) :-

Y=X, !,

inter_set(Rest0fSetl, Rest0fSet2, NewSet).

Totohhh
% Auxiliary predicates %

Totohhh

% member_dl(X, DL) tests if X is a member of difference
% list DL.
member_d1(_, L-DL) :-
L == DL, !, fail.
member_d1(X, [X|_1-_).
member_d1(X, [_IT]-DL) :-
member_d1(X, T-DL).

% Default complement of a literal
compl(not (G),G) :- !.
compl (G, not (@)).

% Classical complement of a literal
complx(- G,G) :- !.
complx(G,- G).

% Non-deterministic member

member(X, [XI_1).

member(X, [_IY]) :-
member(X, Y).

% Tests if the (difference) list is empty
empty_dl(X-Y) :-
X ==

% non_minimal(Sets, Set) tests if there is a set in
% Sets smaller than Set(in the sense of set inclusion).
non_minimal([X|_], Y) :-

in_set(X, Y), !.
non_minimal([_|Xs], Y) :-

non_minimal(Xs, Y).

% minimal_insertion(ContrAssumpt, ContrSets,

% NewContrSets) adds a new set of contradictory

% assumptions and retains only the minimal ones.

minimal_insertion(A, Cs, [A]AuxCs]) :-
check_minimality(Cs, A, AuxCs, true), !.

minimal_insertion(_, Cs, Cs).

C. Proofs of theorems

Proof of Theorem 5.1.1: We prove this theorem here only for the case of
a stationary semantics. The proof for stable semantics is quite similar and is
omitted.

= If a stationary semantics is coherent then for any P* every model M of
P* having —_A also has not_A. By proposition 5.1.1:

not A e M <~A e M.
Similarly we conclude that for every M :
AeMiff ~—_Ae M.

Thus, given that models of clausal programs are always total, every model
containing A does not contains —_A, and every model containing —_A
does not contain A, which is the consistency requirement.

< If a stationary semantics is consistent then for any P* every model M of
P* having =_A does not have A, and vice-versa. By proposition 5.1.1:

AgMe~Aec M < not_Ae M.
Similarly we conclude that for every M :

—“A¢gM s~—_Ae M & not—Ae M.
Thus:

“AeM=A¢M=not Ac M
and

AeM=-_A¢gM=not - Aec M

which, by definition of AX_ model, is equivalent to coherence.

Proof of Theorem 5.1.4: Consider the fixpoint equation:
P' =~ PuAX U{not L| P* |, ~Lhu{~not LI P, L.

By definition, the expansions of the stationary semantics with classical
negation are the fixpoints of the equation obtained from the one above by

306 C. Proofs of theorems

deleting the set of axioms AX_, and replacing in —_P every occurence of an
objective literal —_L by ~L. Hereafter we denote such programs by ~_P.

Let Pf = - PUAX_US be a stationary AX_ expansion of P, and let
Py =~_PUS. We prove that P; is an expansion of the stationary semantics
with classical negation.

For every objective proposition L, by the axioms in AX_,, -_L <~L. So,
it is clear that the models of P are the models of Py modulo propositions
of the form —_L. Thus for every atom A :

PrEAeP EA (+)
We now prove that for every atom A:
P Bpe~Ae By 5 .~4 (&)

(=) Let M{, ..., M/, be all the minimal models of P}, and let M/ be the
model obtained from M/ by removing all propositions of the form —_L.
As we’ve seen above, all such M/ are models of Py and, as only positive
propositions are removed, they are also the minimal models of Py. Thus,
if ~A is a consequence of all minimal models of Py it is also a consequence

of all minimal models of P.
(<) Let My, ..., M) be all the minimal models of Py, and let

M! =M/ U{~L|L¢gM".

All such M/ are models of Pj.

Let us assume that one M/ is not a minimal models of Pj, i.e. there
exists a model N of P} such that N<M/, and N # M. In such a case,
by definition of <:

Npos € M!"V (Npos = M NN C M)

where Ny, is the subset of N obtained by deleting from it all literals of
the form —_L.

Clearly N, is a model of Py. Thus, if the first disjunct holds, M/ is not
a minimal model of P;, which contradicts one of our hypotheses.

If Nyos = M/ then for N to be a model of Py, by the axioms in AX_,
for every atom A :

Ag Npos = AEN
So, by definition of M/ :
M/ 2>N

which also contradicts our hypotheses.

C. Proofs of theorems 307

With the results above we now finalize the proof that P is an expansion.
Since P; is an expansion:

S = {not,L | P, NL} U {Nnoth | Pl 5 e L}
By (&) :
Pl* '%IRC ~L Pl* '%IRC ~L

As already mentioned in page 54, it is known (cf. [113, 71, 82]) that for
any proposition A of any theory T :

Tk, . .A=TEA
Thus:
* * b, JF) * *
P, LePELl") peLepE L
Replacing in S these equivalence results:

S = {not,L 1Pk, NL} U {Nnot,L | Py L}

CIRC

Recall that by definition Py =~_P U S so, replacing S by its value:
Py =~_PU {not,L 1Pk, NL} U {Nnot,L 1Pk, L}

i.e. Py is an expansion of the stationary semantics with classical negation.
The proof that every expansion of the stationary semantics with classical

negation corresponds to a stationary AX_ expansion is similar to the one
above, and is omitted.

Proof of Theorem 5.1.6:

Proving the equivalence between the two alternative definitions is trivial.
Thus we only prove the equivalence between WFEFSX and the second definition
presented in the theorem.

Without loss of generality (cf. Theorem 9.1.2) we assume that programs
are in the semantic kernel form, i.e. a program is a set of rules of the form:
L—not Ay,...,not A, n=>0
We begin by proving a lemma:
Lemma C.0.1. Let —_P be a clausal program and let P be:
Pt =-PUS,US,

where Sy, is a set of default literals of the form not_L, and S, is a set of
default literals of the form ~not_L.
For every clause with L in —_P, i.e. of the form:

308 C. Proofs of theorems

LV ~not_ A1V ...V ~not_A,, € -_P
there exists ~not_A; € Sy, iff

+
P ’%IRC NL

Proof. (=) Let ~not_A; be one literal in the j-th clause with L such that
~not_A; € Spt.
Then all models of P™ contain a set of such ~not_4; :

{~not_Ay,...,~not_A,,}

where m is the number of clauses with literal L.
Thus every clause with L is satisfied by all models of PT independently
of the truth value of L, and thus:

+
P %mc ~L

(<) Assume the contrary, i.e. there exists a clause:
LV ~not_A; V...V ~not_A,, € ~_P
such that {~not_A;,...,~not_A,} NS, ={}, and Pt = ~L.

CIRC

Then, given that, by the form of programs, literals of the form ~not L
can only be a consequence of PT if they belong to S,, there exists a
model M of the circumscription such that

{not_Ay,...,not_A,} C M
and thus L belongs to that model. So P [£ ~L.

CIRC

Given that complete scenaria (Definition 7.3.1 in Section 7) correspond
to partial stable models (cf. Theorem 7.4.5), it is enough to prove that there
is a one to one correspondence between the fixpoints of:

P* = PU {not,L [P . ~Lor P*l ﬁ,L} U {~not L | P* |= [}2

and complete scenaria.
This correspondence is proven in two parts:

— first we prove that if P U H is a complete scenario then
P*=-_PUHU{~not.L| PUHF L}

is an expansion.
— then we prove that if P* is an expansion then

PU {not L| P ~Lor P iL}

is a complete scenario.

! By hypothesis such a literal always exists.
2 Within this proof we designate expansions as such fixpoints

C. Proofs of theorems 309

Let us assume that P U H is a complete scenario. i.e.

(1) mot L€ H=not L e Mand(H) or not L € Acc(H)
(49) mnot L € Mand(H) = not L € H
(#91) not L € Acc(H) = not L € H

We show that
P*=-_PUHU{~not.L| PUHF L}

is an expansion of the clausal program —_P of P, i.e.
HU{~not.L | PUHF L} =
{not,L | P* %mc ~L or P* E ﬁ,L} U{~not L | P* =L}
We’ll do that by separately proving the two equalities:
{~not_.L| PUHF L} ={~not L | P* = L} (eql)
H= {not,L | P* '%mc ~L or P* E —\,L} (eq2)
To prove the first equality we have to show that
PUHFL& P EL
By definition of -, P U H - L iff there exists a rule
L—not Ay,...,not A, € P
such that
{not Ay,...,not A,} CH
By definition of clausal program —_P of a program P, such a rule exists
iff
LV ~not_A1 V...V ~not_A, € -_P
And, by construction of P*,
{not Ay,...,not A,} CH < {not Ay,...,not A,} C P*
Thus, clearly P* |= L.

For the equality (eq2), we have to prove that:

P*=-L=notLecH

Pt ~L=mnotLeH

not Le H=P*= ~Lor P*=-_L
C

CIR

W=

1. By equality (eql):
P'=-L<s PUHF-L
and by definition of Mand(H) :

PUHF ~L = not L € Mand(H) "= not L €

310 C. Proofs of theorems

2. By lemma C.0.1, P* '?mc ~L iff

VLV ~not_ Ay V...V ~not_A, € =_P | 3 ~not_A; € P*

By construction of P*, ~not_A; € P* < PUH + A;.
By definition of clausal program —_P of a program P :

LV ~not_ A1 V...V ~not_A, € -_P
=4
L« not Ay,...,not A, € P

By definition of acceptable hypotheses, if for every rule
L« not Ay,...,not A, € P

there exists an A; such that PU H F A;, then not L € Acc(H).
Thus:

P ~L=mnot L€ Acc(H) Y ot L e H
3. By (i) :
not L € H = not L € Mand(H) or not L € Acc(H)
If not L € Mand(H) then, by definition of Mand(H) :
PUHEF L
and, by equality (eql), P* = —_L.
If not L € Acc(H) then, by definition of Acc(H), for every rule of the
form
L «— not Ay,...,not A, € P

there exists an A; such that PU H - A;.
By construction of P*, if PUH + A; then ~not_A; € P*. Thus, for every
clause

LV ~not_A; V...V ~not_A,, € -_P
there exists ~not_A; € P*, and by lemma C.0.1, P* & ~L.

CIRC

e Let us assume that P* is an expansion, i.e.

P*=-_PU {not,L |P*E, _~Lor P ﬁ,L} U{~not L | P* |= L}

CIR

We prove now that
PU {not L| Pk, ~Lor P* iL}

cr

is a complete scenario, i.e. by making

CcrI

H= {not L| P, ~LorP*E ﬂ,L}

the above conditions (i), (i¢), and (¢i7) hold.

C. Proofs of theorems 311

(i) By definition of H :
not L € H = P* %IRCNL or P*=—-_L
Similarly to the proof in point 2 above, it is easy to prove that if
P |~ L then not L € Acc(H), and that if P* | —_L then
not L € Mand(H). So:

not L € H = not L € Mand(H) or not L € Acc(H)
(#4) By definition of Mand(H) :
not L € Mand(H) = PUH + -L
Thus there exists a rule in P of the form
=L «— not Ay,...,not A,
such that
{not Ay,...,not A,} CH

So, by definition of H and given that P* is an expansion, there is a clause
in —_P of the form

ALV ~not_A1 V...V ~not_A,,
such that
{not_Ai,...,not_A,} C P*

and clearly P* = —_L. Thus, by definition of H, not L € H.
(#i) It not L € Acc(H) then, by definition of Acc(H), for every rule of the
form

L «— not Ay,...,not A, € P

there exists an A; such that PU H A;.
If PUHF A; for some A;, then there is a rule in P of the form

A; < not By,...,not B,
such that
{not By,...,not B,,} CH

Thus, by definition of H and given that P* is an expansion, there is a
clause in —_P of the form

A;NV ~not_By V...V ~not_B,,
such that
{not_By,...,not_By,} C P*

So P* = A; and, because it is an expansion, ~not_A; € P*.

According to lemma C.0.1, P* '?mc ~L and, by definition of H, not L €
H.

312 C. Proofs of theorems

Proof of proposition 6.4.1: We begin by proving a lemma:

Lemma C.0.2. For every noncontradictory default theory A, and any con-
text E of A :

I').(E) € TA(E)
Proof. In A® every default rule has more literals in the justifications than

the corresponding rule in A. Thus for every context E, in A® less rules are
applicable, and so Iy, (E) C I'4(E).

Now we prove separately each of the points in the proposition:

1. Let S be the least fixpoint of I'4.I".
By lemma C.0.2:

IA(S) 2 I'h-(S)
By the antimonotonicity of Iy, (lemma 6.3.2):
L (T (8)) € Ty (T (9))
i.e., given that S is by its definition a fixpoint of I'), I :
S CI?(S)
So:
Up(ThTh) C TR (Lfp(Th:T4))

i.e. the least fixpoint of Iy, 1", is a pre-fixpoint of I'Z., and thus by the
properties of monotonic operators:

Lfp(IhTh) CUfp(I%-)

2. Again let S be the least fixpoint of I'y,I"}y, and let GS = I',,(.5).
By lemma C.0.2:

I'\.(GS) C I')\(GS)
i.e., by the definition of GS :
)+ (TA(S)) € TA(T'A(S))
So:
Up(IhTh) € TR(Ufp(TheTh))

i.e. the least fixpoint of I"y.I", is a pre-fixpoint of I'%.
3. Now let S be the least fixpoint of I'Z, and let GS = I').(95).
By lemma C.0.2:

I'h:(GS) C TA(GS)
i.e., by the definition of G\S :
Ih (I3 (8)) € TA(I'4:(9))

C. Proofs of theorems 313

So:
Ifp(I'E) € QU fp(I'3))

i.e. the least fixpoint of /2, is a pre-fixpoint of £2.
4. Finally, let S be the least fixpoint of I'’{.
By lemma C.0.2:

I'%(8) 2 I’y (5)

By the antimonotonicity of Iy (lemma 6.3.2):
PA(TA(S)) € Th(Tau(8))

i.e., given that S is by its definition a fixpoint of I'} :
S C 0(S)

So:
p(I2) € 20 Fp(I2))

i.e. the least fixpoint of I} is a pre-fixpoint of £2.

Proof of Theorem 6.6.1: We begin by stating some propositions useful in
the sequel.

Proposition C.0.1. Let A = (D,{}) be a default theory and E a context
such that I'\(E) is noncontradictory. Then:

L eI (B) & 3t} {ovend ¢ oy b e TW(E)A—¢; & E

Proof. Tt is easy to see that under these conditions I')(E) = I'a(E). Thus
the proof follows from properties of the I'y operator.

Proposition C.0.2. Let E be an extension of a default theory A = (D, {}).
Then:

L€ 2(E) & 3t} Hnerment ¢ b gyen that
Vi,j, b; € ENb; EF’AS(E)/\CJ‘ QF’AS(E)

Proof. By definition of Iy, and given that W = {}, it follows from propo-
sition C.0.1 that for L € 2(F) there must exist at least one default in D
applied in the second step, i.e. with all prerequesites in 2(F) and all nega-
tions of justifications not in I').(E). By hypothesis F is an extension; thus
E = (F) and E C I'),.(E); so for such a rule all prerequesites are in E and
in I').(E), and all negations of justifications are not in I').(E).

Proposition C.0.3. Let E be an extension of a default theory A = (D, {}).
Then:

314 C. Proofs of theorems

LgE =yl ereacenl ¢ p 345 b, ¢ Eve; € Ty (E)

Proof. If L ¢ E then, given that E is an extension, L & {24(E). Thus no de-
fault rule for L is applicable in the second step, i.e. given that W = {}, and by
proposition C.0.1, no rule with conclusion L is such that all its prerequisites
are in 24(F) and no negation of a justification is in I').(E).

Proposition C.0.4. Let E be an extension of a default theory A = (D, {}).
Then:

L ¢ Iy (B) & it fonenen} ¢ p
Eliaj7 b; gF/As(E)\/CJ cFEv-LeF

Proof. Similar to the proof of C.0.3 but now applied to the first step, which
imposes the use of seminormal defaults. Thus the need for =L € F.

We now prove the main theorem:

(=) E is a {2-extension of A = I is a PSM of P.
Here we must prove that for any (objective and default) literal F', F' €
I & F € §(I). We do this in three parts: for any objective literal L :
1. LeI=Led();
2. LgI=Lgo);
3. not Lel <& not Led(l).
Each of these proofs proceeds by: translating conditions in [into condi-
tions in F via correspondence; finding conditions in A given the condi-
tions in F, and the fact that F is an extension; translating conditions in
A into conditions in P via correspondence; using those conditions in P
to determine the result of operator &.
1. Since I corresponds to F and E is a {2-extension:
Lel © I(L)=1 = LeE & LeA(E)
By proposition C.0.2:
LeQa(E) & 3lmsbel:enien) ¢ p
Vl,bl S .E/\bZ (S F/Aé,(E) and
Vj,cj & I« (E).
By translating, via the correspondence definitions, the default and
the conditions on E into a rule and conditions on I:
LeFE = dL«<b,...,by,notcqy,...,c;m € P,
Vi, I(b;) =1 and Vj,I(c;) =0
= Le¢ least(?)
by properties of least(£) .
Given that the operator Coh does not delete literals from I :
Lel=Led().

C. Proofs of theorems 315

2. Since I corresponds to F :
Ll LEE.
By proposition C.0.3:
L%E:V{bl’”"bn} s {-er, . em) c

where either a b; ¢ E or a ¢; éF’AS(E), :
Translating, via the correspondence definitions, the default and the
conditions on E into a rule and conditions on I :
LeédE = VL<—by,....,bp,notcy,...,cm €P,
i, 1(bi) # 1V I(ej) # 0
= L¢ least(?)
by properties of least(?) .
Given that the operator Coh does not add objective literals to I :
Lgl=L¢go().
3. Given that E corresponds to I :
not Lel < L¢TI'L.(E)
By proposition C.0.4:
LgTIh(E) & vyliblifasasmlcp
327j bz gF’AS(E)\/Cj cEVv-LecFE
Translating into logic programs:
L¢Ir,\.(E) & VL«—by,...,by,notcy,...,cm €P,
(Hi,j I(bz) = OVI(Cj) = 1) v-LekFE.
By properties of the least operator.

not L €l < not L e least(};) VoL eE (%)

D

It was proven before that:
-LeFE < 3-L«<by,...,b,,no0tcq,...,no0t c,, € P,
3,5 I(b;)) =1V I(c;) =0.
By properties of least? :

P
-Le F& L e least(I

Using correspondence, we can simplify the equivalence (x) to:
notLel & notlce least(?) V-Le least(?) &
< not L € P(1)
this last equivalence being due to the definitions of operators Coh
and @.
(<) I'isaPSM of P = FE is a {2-extension of T.

By definition of correspondence between interpretations and contexts, it
is easy to see that E is consistent and E C I'4.(F). So we only have to
prove that F' = 24(F). We do this by proving that:

VLLeE & LeNAE).
By definition of corresponding context:

LeEsI(L) =1

316 C. Proofs of theorems

Since I is a PSM of P :
I(L)=1 < 3L« by,...,by,not ¢1,...,n0t ¢, € P,
Vi I(b;) =1and Vj I(c;) =0
where n,m > 0.

By translating, via the correspondence definitions, the rule and the con-
ditions on [into a default and conditions on E:

I(L) -1 = H{bl’m’bn} :i{/ﬁcl,“.,ﬁcm} c D7
Vib;e ENDb; € F/AS(E) and
Vjci & ENcy & Ih.(E)

Given that such a rule exists under such conditions, it follows easily from
proposition C.0.1 that:

LeE<s LeA(E)

C. Proofs of theorems 317

Proof of Theorem 7.4.1:

1. Let C be a (possibly infinite) set of complete scenaria, i.e.
CCCSp and C#{}.

Let C| be the set of all admissible scenaria contained in all scenaria of C,
and let Sy be the union of all elements in C|.
Since that:

vSelC|SyCS

it is clear that Sy is admissible. It remains to prove that Sy is also com-
plete.
Let not L be a literal acceptable with respect to Sp. Then S’ = Sy U
{not L} is again admissible and so, by definition, S’ € C;. Thus not L €
So.
If not L is mandatory with respect to Sy then, since Sy is admissible,
not L € Sy. Thus Sy is complete.

2. The proof of this point is obvious given the previous one.

3. The program in Example 7.4.1 shows that in general a maximal element
might not exist.

Proof of lemma 7.4.3: Without loss of generality (by Theorem 9.1.2) we
consider that P is in semantic kernel form, i.e. P is a set of rules of the form:

L+ not Ay,...,not A, n>0

Let S = TUnot F be a PSM of P, i.e. (according to the equivalent
definition of PSMs (Theorem 6.7.1) in Section 6.7):

() T=TIT.T
(i) T C LT
(iii) AL|{L,~L}CT

and additionally F = {L | L ¢ I',T}.
Let H={not L | L ¢ I';T}3. We prove that PUH is a complete scenario,
i.e. for all not L :

.not Le H=PUHLIWL

.not L € H=not L € Mand(H)V not L € Acc(H)
.not L € Mand(H) = not L€ H

. not L € Acec(H) = not L € H

N

This proof is accomplished by proving separately each of the conditions
above.

3 le. H=notF.

318 C. Proofs of theorems

1. By definition of H :
not Le H< LEIT.
Given that the P is in the semantic kernel form:
LgTI,;T=-LeTVVL—notA,...,not A, |JA; €T
Let us assume the first disjunct:

iii

Ler ™ g™ LernT
Again because P is in semantic kernel form:
1st disjunct = VL <« not Ay,...,not A, | 3A; € [T
By definition of H :
1st disjunct = VL« not Ay,...,not A, | Inot A; ¢ H
" pPUHKL
Now let us assume the second disjunct. Then:

Arer ™ 4 e nr ™ LN

Thus:

2nd disjunct = VL <« not Ay,...,not A, | Inot A; ¢ H
N PUHKL

not A; ¢ H

2. As proven at the begining of 1 above:
not L€ H=-LeTVVYL <+« not Ay,...,not A, |3A; €T
Let us assume the first disjunct:
~Ler " _perrnr
= 3-L <« not By,...,not By, |VB;, B; ¢ I'\T

By definition of H, B; & I'sT = not B; € H. Thus trivially:

by def of Mand(H)
=

1st disjunct == PUH - —-L not L € Mand(H)

Now let us assume the second disjunct:
Acer"S A e rnr
2nd disjunct = 3A; <—not C1,...,not C |
vC;, C; ¢ IsT=PUHF A,
Thus the second disjunct implies:
VL «— not Ay,...,not A, | 34,, PUHF A;
by def gACC(H) not L € Acc(H)

C. Proofs of theorems 319

3. By definition of Mand(H) :

not L € Mand(H) =
= 3L < not Ay,...,not A, | Vnot A;, not A; € H

By definition of H, not A; € H < A; € I',T. Thus:

hyp. N ~Lerr,t™ —Ler

by semingrmelli o N7 s not L € H
4. By definition of Acc(H) :

not L € Acc(H) = VL < not Ay,...,not A, | 3A;, PUH I A;.
Now:

PUHF A, = 3A;, «— not Byq,...,not By, | Ynot B;, not B; € H
By definition of H :

not B; € H = B; € LT
Thus A; € I'TT, and by (i) A; € T. So:

not L € Acc(H) = VI «— not Aq,...,not A, | Inot A;, A; €T =

=Lgl,T=notlLecH

Proof of lemma 7.4.4: Given that P U H is a complete scenario then, for
all not L :

(i) not Le H=PUHV/-L

(ii) not L € H = not L € Mand(H) V not L € Acc(H)
(iii) not L € Mand(H) = not L € H

(iv) not L € Acc(H) = not L € H

Let S = {L| PUHF L}. According to Theorem 6.7.1 we must prove
that:

1.VL|LeS=-L¢gS§5
2. 5CIS
3.8 =TIT.S
4. H={not L | L & I';S}

In order to prove this lemma we begin by proving that
I',S={L|not L¢g H} (C.1)
This is achieved by proving (where U = {L | not L ¢ H}):

(a) VL|L&I,S=L¢U
(b) VL |L¢U = L¢TI,S

320 C. Proofs of theorems

(a) By definition of I’ :
LgIsS=-LeSVVYL«—notAy,...,not A, |34, €8
We prove that both disjuncts imply L ¢ U :

def of S

Le 8 S pyp g e of Mand()

not L € Mand(H)

Since P U H is a complete scenario:

not L € Mand(H) = not Le H ¥ YL ¢U

Since:
A€ S PUHE 4
the second disjunct implies:
VL <« not Ay,...,not A, | 34,, PUHF A;

def oL gec ot L e Acc(H)
Given that P U H is a complete scenario:
not L € Acc(H) =>not Le Ho L H
(b) By definition of U :
L&U<=not Le H
Since H is complete scenario then by (ii):

L¢U = PUHF-LV
VL «— not Ay,...,not A, | 34;, PUH} A;

Both disjuncts lead to the conclusion that L & I'sS :

b i 1lit
_Pqu__\Ldef:OfS_\LESysemlgrmalngpsS
def of S

—PUHFA =" A e€eS=LEI,S
Now we prove the four points above:

1. Trivial because P U H is a consistent scenario.
2. Since IS = U, we have to prove that:

S={L|PUHVLYC{L|not L¢H} =T.S

which is also trivial because P U H is a consistent scenario.
3. The proof of this point is divided into two parts.
a) VL| LgI'lsS=L¢gS, ie SCITS.
LgTI'T,S=VL«—not Ay,...,not A, | 3A; € I'sS
If A; € I'yS then by equivalence (C.1) above not A; ¢ H. Thus:

VL <« not Ay,...,not A, | Inot A;¢ H=PUHVIL

def:ngLgs

C. Proofs of theorems 321

b) VL|LeIl,S=LeS, ie SDITIS. Thus:
Lel'Tl,S= 3L« not Ay,...,not A, |VA; A; € I'xS
If A; & I'sS then by equivalence (C.1) above not A; € H. Thus:
AL «— not Ay, ...,not A, | Vnot A;, not A; € H

= PUHFL®S S cg

4. From equation C.1, for every objective literal L :
LelsS<not L H
or equivalently:
LgI,S<snotlLeH
ie.

H={not L|L¢TI,S}

322 C. Proofs of theorems

Proof of Theorem 9.1.3:
Let P be an extended logic program and let P’ be the program obtain
from P by replacing the rule r of P

H«— By,...,B,,not C,...,not C,,
by the rule ' :
H «— not =By, B1,...,B,,not Cq,...,not Cp,

We begin by proving that if M is a PSM of P, and B; and —Bj are not
both undefined in M* then % = %5. Since the modulo transformation is
made rule by rule, and P —r = P’ — 7/, to prove that it is enough to show
that 7 = TM/

Assume that M is a PSM of P. Then:

— If By € M then, since M is a PSM and thus also an interpretation,
not ~B; € M, and so the default literal not —B; is deleted from 7’ in
TM’. Thus, trivially, TM, =17

— If =By € M, then it is clear that the rule is deleted in both cases, and so
5= =)

— If not By € M then both rules again are deleted.

— If not =By € M then the literal is deleted from 7/, and so J% =17

— Since we are assuming that B; and —B; are not both undefined in M, no
other case can occur.

So for these cases:

P P’
M = Coh (least(M>) = M = Coh <least(M>>

i.e. M is a PSM of P’.

Now let M be a PSM of P’, such that:
M N {By,~Bi,not By,not =B} = {}

If the rule r is deleted in %, then it is clear that 7’ is also deleted in %,

and so % = %. Thus we are in a similar situation as the one before, and M
is a PSM of P.
Otherwise let:
r

M:HHBl,...,Bn,not Ci,...,not C;

where {not C;,...,not C;} C {not C1,...,not Cy,}. Then:

,,,/

— =H «u,By,...,B,,not C;,...,not Cj
M
*Le. M N {B1,—~B1,not Bi,not ~B1} # {}.

® Where £ is as in Definition 4.2.1.

C. Proofs of theorems 323

From the definition of the least operator, and the hypothesis that B is
undefined in M, it is clear that the rule y; does not provide a way of proving
H in % and not H does not b/elong to least(ﬁ) . /

Since u is in the body of §; the same happens in %.

From this result it follows trivially that also in this case M is a PSM of

P’. So in every case, if M is a PSM of P it is also a PSM of P’.

The proof that if M is a PSM of P’ it is also a PSM of P, is quite similar
and is omitted for brevity.

The proof that “P is contradictory iff P’ is contradictory” follows di-
rectly from the proof above. Note that the statement is equivalent to “P is
noncontradictory iff P’ is noncontradictory”.

If P is noncontradictory then it has at least one PSM. Let M be one
PSM of P. Then, as proven above, M is also a PSM of P’, i.e. P’ is non-
contradictory. Similarly, if P’ is noncontradictory P is also noncontradictory.

324 C. Proofs of theorems

Proof of Theorem 12.1.1: In order to prove the soudness theorem of the
two-valued contradiction removal algorithm we need to state and prove four
lemmas.

Lemma C.0.3. Let A be a set of assumptions. If SubM (A) is contradictory
and PUA is not revisable then for any set of assumptions B such that A C B,
B is not a revision.

Proof. If P U A is not revisable then contradiction is not supported in any
assumption. So, adding any other assumption can not remove it.

Lemma C.0.4. Let P be a program and C a proper subset of a contradiction
removal set of P. Then PUC I L.

Proof. This lemma is a direct result of the properties of contradiction removal
sets.

Lemma C.0.5. Let A and B be two sets of assumptions with A C B of a
program P. If SubM (A) is contradictory and SubM (B) is noncontradictory
then there exists a non-empty contradiction removal set C' of PUA such that:

AUnot C C B

Proof. If A is contradictory then it must be revisable because, otherwise,
since A C B, lemma C.0.3 would be contradicted. So PU A has contradiction
removal sets.

The contradiction removal sets are minimal sets of default literals which
must not be false in order for PU A to be noncontradictory, by lemma C.0.4.
These sets, if the program is revisable, are non-empty.

The CRS's of a program are used in three-valued contradiction removal
semantics to eliminate the support of contradiction by making these literals
undefined by adding for each such literal L the inhibition rule L <« not L.

The set B is obtained by adding to A sets of assumptions. Since B is non-
contradictory it must contain at least the literals in a contradiction removal
set in order to be able to remove the contradiction of P U A.

Lemma C.0.6. Let B be a revision of a program P. Then:
V;:i>0,34] A€ SS;and ACB

with SS; the value of the variable with the same name in algorithm 12.1.5.

Proof. The proof is by induction on 3.

—i=0
SSo = {{}} then the only A that can verify the condition is the empty set.
Then, if B is a revision

}cB=4CB

C. Proofs of theorems 325

— Induction step: P(i) = P(i+ 1)

With P(i) = [B is a revision = J4: A€ 5S; and A C B].

Assume that P(7) is true. Let A be a set belonging to S.S; such that A C B.

This set exists by hypothesis. There are only two cases:

1. If A is a revision algorithm 12.1.5 adds A to SS;41, therefore P(i + 1)
is true.

2. If A is not a revision then by lemma C.0.5 there exists a CRS such that
AUnot C C B. The algorithm adds to SS;41 the union of A with each
of the CRSs of PUA so, by lemma C.0.4, 34 : A’ € SS;11 and A’ C B,
ie. P(i+ 1) is true.

Now, if we retain only the minimal sets of SS; 1 property P(i+ 1) continues
to hold.

Next we prove the soundness of algorithm 12.1.5.

First case, S.S; is non-empty. In this case in iteration ¢ the algorithm didn’t
add or remove any set of assumptions from S.S;. This means that all the sets
of assumptions with respect to R belonging to SS; are revisions (if one of
these sets is not a revision the algorithm either adds new sets of assumptions
or it removes the set from SS;_1). But if all the sets of assumptions SS; are
revisions they must be minimal by lemma C.0.6.

To complete the proof of this case we must guarantee that AS; contains
all the minimal revisions. Suppose that A is a minimal revision that doesn’t
belong to SS;. By lemma C.0.6,

Ja | A€ AS; and A C Aand A" # A

But then A is not minimal. Contradiction, thus A must be in S.S;.

Second case, S'S; is empty. We are going to prove that S.5; is empty iff P
has no revisions. It’s necessary to show that if SS; is empty then P has no
revisions and vice-versa.

The first implication is equivalent to

“if P has a revision then AS; is not empty”.

This was already proven because if there are revisions then there are minimal
revisions.

Now we must prove that if P has no revisions then SS; is empty. If P has
no revisions then, for all A which is a set of assumptions of P, SubM (A) is
contradictory. In each step of algorithm 12.1.5 only sets of assumptions are
kept for which PU A is either noncontradictory or has three-valued revisions.
By hypothesis, the algorithm has terminated, therefore SS; = S5;_1. But
this is only possible if:

SSl = SSi_l = {}

326 C. Proofs of theorems

Suppose that S.S;_; is non-empty, then let A be a set of assumptions such
that A € §5;_1, implying that A € SS;. But if A € §5;_1 it cannot belong
to S.S; because PU A either has non-empty C'RS's and the algorithm adds to
SS;_1 the new sets of assumptions A Unot C for each CRS of PU A, which
are different from A, or removes A from S.S; because P U A is not revisable.

Proof of Theorem 12.1.2: If the set of revisables is finite then the set of
possible revisions is also finite.

Notice that in each step of algorithm 12.1.5, either at least a new as-
sumption is added to each contradictory set of assumptions belonging to S.S;
or the set of assumptions is removed from SS; or kept there because it is
noncontradictory.

The only case of interest is the first one, when new sets of assumptions
are added to S5;. Now, if there is a finite number of revisions the algorithm
can add new assumptions to the existing sets only a finite number of times.
Thus, algorithm 12.1.5 must terminate after a finite number of steps, in the
worst-case after n iterations, with n being the number of possible assump-
tions.

