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Foreword

Constraint satisfaction and constraint programming have shown themselves to
be very simple but powerful ideas. A constraint is just a restriction on the allowed
combinations of values for a set of variables. If we can state our problem in terms
of a set of constraints, and have a way to satisfy such constraints, then we have
a solution. The idea is general because it can be applied to several classes of
constraints, and to several solving algorithms. Moreover, it is powerful because
of its unifying nature, its generality, its declarative aspects and its application
possibilities. In fact, many research and application areas have taken advantage
of constraints to generalize and improve their results and application scenarios.

In the last 10 years, however, this simple notion of constraint has shown
some deficiencies concerning both theory and practice, typically in the way over-
constrained problems and preferences are treated. When a problem has no so-
lution, classical constraint satisfaction does not help. Also, classical constraints
are not able to model conveniently problems which have preferences, for example
over the selection of the most relevant constraints, or about the choice of the
best among several solutions which satisfy all the constraints.

Not being able to handle non-crisp constraints is not just a theoretical prob-
lem, but it is also particularly negative for applications. In fact, over-constrained
and preference-based problems are present in many application areas. Without
formal techniques to handle them, it is much more difficult to define a procedure
which can easily be repeated to single out an acceptable solution, and sometimes
it is not even possible.

For this reason, many researchers in constraint programming have proposed
and studied several extensions of the classical concepts in order to address these
needs. This has led to the notion of soft constraints. After several efforts to define
specific classes of soft constraints, like fuzzy, partial and hierarchical, the need for
a general treatment of soft constraints became evident, a treatment that could
model many different classes altogether and to prove properties for all of them.
Two of the main general frameworks for soft constraints were semiring-based soft
constraints and valued constraints.

This book is a revised, extended version of the Ph.D. thesis of Stefano
Bistarelli, whom we had the pleasure to supervise at the University of Pisa.
It focuses mainly on the semiring-based soft constraint formalism, also com-
paring it with many of the specific classes and also with valued constraints.
Semiring-based soft constraints are so called because they are based on an un-
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derlying semiring structure, which defines the set of preferences, the way they
are ordered, and how they can be combined. This concept is very general and
can be instantiated to obtain many of the classes of soft constraints that have
already been proposed, including their solution algorithms, and also some new
ones.

The book includes formal definitions and properties of semiring-based soft
constraints, as well as their use within constraint logic programming and concur-
rent constraint programming. Moreover, it shows how to adapt to soft constraints
some existing notions and techniques, such as abstraction and interchangeability,
and it shows how soft constraints can be used in some application areas, such
as security.

This book is a great starting point for anyone interested in understanding the
basics of semiring-based soft constraints, including the notion of soft constraint
propagation, and also in getting a hint abut the applicability potential of soft
constraints. In fact, it is the first book that summarizes most of the work on
semiring-based soft constraints. Although most of its content also appears in
published papers, this is the only place where this material is gathered in a
coherent way.

This book is the result of several threads of collaborative work, as can be
seen from the many publications that are cited in the bibliography and whose
content is reflected in the book. Therefore many authors have contributed to
the material presented here. However, Stefano Bistarelli succeeded in providing
a single line of discourse, as well as a unifying theme that can be found in
all the chapters. This uniform approach makes the material of this book easily
readable and useful for both novice and experienced researchers, who can follow
the various chapters and find both informal descriptions and technical parts, as
well as application scenarios.

November 2003 Ugo Montanari1 and Francesca Rossi2

1 Dipartimento di Informatica
Universita’ di Pisa

Italy
2 Dipartimento di Matematica Pura ed Applicata

Universita’ di Padova
Italy



Preface

The Soft Constraints idea is able to capture many real-life situations that
cannot be represented and solved with the classical crisp constraint framework.
In this book we first describe a general framework for representing many soft
constraint systems, and then we investigate the related theoretic and application-
oriented issues.

Our framework is based on a semiring structure, where the carrier of the
semiring specifies the values to be associated with each tuple of values of the
variable domain, and the two semiring operations, + and ×, model constraint
projection and combination, respectively. The semiring carrier and operations
can be instantiated in order to capture all the non-crisp constraints representing
fuzziness, optimization, probability, hierarchies, and others. The solution of each
instance of the soft Constraint Satisfaction Problem (CSP) is computed by using
the appropriate × and + semiring operation.

This uniform representation can be used to give sufficient conditions for the
correctness and applicability of local consistency and dynamic programming al-
gorithms. In particular:

– We show that using an idempotent × operator the classical local consis-
tency (and also dynamic programming) techniques can be used to reduce
the complexity of the problem without modifying its solution.

– We adapt to the soft framework partial local consistency and labeling tech-
niques, which require fewer pruning steps of the domain. This means that,
although they are able to remove fewer non-optimal solutions than classi-
cal algorithms can, partial local consistency algorithms can be beneficial
because they are faster and easier implemented.

– We extend general local consistency algorithms that use several pruning
rules until the fix-point is reached.

Solving a soft CSP is generally harder than solving the corresponding crisp
CSP. For this reason we introduce an abstraction/concretization mapping over
soft CSPs in order to solve a problem in an easier environment and then use the
abstract results to speed up the search of solutions in the concrete one. Several
mappings between existing soft frameworks are given. These mappings will es-
pecially be useful for applying soft local consistency techniques in a safe, easy,
and faster way. Also useful, when looking for optimal solutions, are the notions
of substitutability and interchangeability. In crisp CSPs they have been used as
a basis for search heuristics, solution adaptation, and abstraction techniques.

The next part of the book involves some programming features: as classical
constraint solving can be embedded into Constraint Logic Programming (CLP)
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systems, so too can our more general notion of constraint solving be handled
within a logic language, thus giving rise to new instances of the CLP scheme.
This not only gives new meanings to constraint solving in CLP, but it also
allows one to treat in a uniform way optimization problem solving within CLP,
without the need to resort to ad hoc methods. In fact, we show that it is possible
to generalize the semantics of CLP programs to consider the chosen semiring
and thus solve problems according to the semiring operations. This is done by
associating each ground atom with an element of the semiring and by using the
two semiring operations to combine goals. This allows us to perform in the same
language both constraint solving and optimization. We then provide this class of
languages with three equivalent semantics, model-theoretic, fix-point, and proof-
theoretic, in the style of CLP programs. The language is then used to show how
the soft CLP semantics can solve shortest-path problems. In a way similar to the
soft CLP language we also extend the semantics of the Concurrent Constraints
(cc) language. The extended cc language uses soft constraints to prune and direct
the search for a solution.

The last part of the book aims to describe how soft constraints can be used
to solve some security-related problems. In the framework, the crucial goals of
confidentiality and authentication can be achieved with different levels of secu-
rity. In fact, different messages can enjoy different levels of confidentiality, or a
principal can achieve different levels of authentication with different principals.

Acknowledgement. This monograph is a revised and extended version of my doctoral
dissertation which was submitted to the University of Pisa Computer Science Depart-
ment and accepted in March 2001.

The results presented here have been influenced by many people and I would like
to take this opportunity to thank them all.
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I want also to thank Francesca Rossi, my unofficial supervisor; she shared with me
the passion for constraints. Many of the ideas collected in this book came from ideas
we developed together.

A special thanks is also due to all the friends who shared with me some of the
results I collected in this book: Giampaolo Bella, Boi Faltings, Rosella Gennari, Hélène
Fargier, Yan Georget, Nicoleta Neagu, Elvinia Riccobene, Thomas Schiex, and Gérard
Verfaillie.

Many thanks are due to the external reviewers of my Ph.D. thesis, Philippe
Codognet and Pascal Van Hentenryck; they carefully read a preliminary version of
the thesis and provided many useful comments and suggestions.

My warmest thanks go to my friend Olga Petosa; she was so kind to read all the
conversational parts of my work, correct some typing errors, and make it just a little
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helped to improve the final presentation.
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December 2003 Stefano Bistarelli



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 From the Beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Assignment Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Personnel Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Scheduling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.5 Transport Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Crisp Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Constraint Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Non-crisp Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Partial Constraint Satisfaction Problems . . . . . . . . . . . . . . . 15
1.4.2 Constraint Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Fuzzy, Probabilistic and Valued CSPs . . . . . . . . . . . . . . . . . . 16

1.5 Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 Structure of Subsequent Chapter . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 The Origin of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2. Soft Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 C-semirings and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Constraint Systems and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Instances of the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Classical CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Fuzzy CSPs (FCSPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Probabilistic CSPs (Prob-CSPs) . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.4 Weighted CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.5 Egalitarianism and Utilitarianism . . . . . . . . . . . . . . . . . . . . . 39
2.3.6 Set-Based CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.7 Valued Constraint Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.8 N-dimensional C-semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



X Contents

3. Towards SCSPs Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Soft Local Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Applying Local Consistency to the Instances . . . . . . . . . . . . . . . . . . 59

3.2.1 Classical CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Fuzzy CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Probabilistic CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4 Weighted CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.5 Egalitarianism and Utilitarianism . . . . . . . . . . . . . . . . . . . . . 60
3.2.6 Set-Based SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 About Arc-Consistency in SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Classical Arc-Consistency vs. Semiring-Based One . . . . . . . 62
3.3.2 Removing Hidden Variables in SCSPs . . . . . . . . . . . . . . . . . . 65
3.3.3 Tree-Shaped SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Cycle-Cutsets in SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Labeling and Partial Local Consistency for SCSPs . . . . . . . . . . . . . 70
3.4.1 Labeling in SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Partial Local Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.3 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Constraint Propagation: Generalization and Termination Condi-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.1 Some Useful Orderings over Semiring Constraints . . . . . . . 83
3.5.2 Order-Related Properties of Soft Local Consistency Rules 86
3.5.3 The Generic Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . 86
3.5.4 Generalized Local Consistency for SCSPs via Algorithm GI 87
3.5.5 Termination of the GI Algorithm over Soft Constraints . . . 89

3.6 Dynamic Programming for SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4. SCSP Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Abstracting Soft CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Properties and Advantages of the Abstraction . . . . . . . . . . . . . . . . . 105

4.3.1 Relating a Soft Constraint Problem
and Its Abstract Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Working on the Abstract Problem . . . . . . . . . . . . . . . . . . . . . 111
4.4 Some Abstraction Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Abstraction vs. Local Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5. Higher Order Semiring-Based Constraints . . . . . . . . . . . . . . . . . . . 125
5.1 Domains and Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Constraint Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 A Small Language to Program with Soft Constraints . . . . . . . . . . . 130
5.4 Solving SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Dynamic Programming Techniques . . . . . . . . . . . . . . . . . . . . 133



Contents XI

5.4.2 Local Consistency Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.3 Extending Local Propagation Rules . . . . . . . . . . . . . . . . . . . . 134

5.5 Constraint Problem as Semiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6. Soft CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.1 Syntax of SCLP Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Model-Theoretic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Fix-Point Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Proof-Theoretic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.1 Universal Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Existential Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 A Semi-decidability Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 SCLPs with no Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.7 An Operational Model for the SCLP Language Using ASM . . . . . 162

6.7.1 The Gurevich’s Abstract State Machine . . . . . . . . . . . . . . . . 163
6.7.2 The Abstract Operational Model of SCLP . . . . . . . . . . . . . . 164

6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7. SCLP and Generalized Shortest Path Problems . . . . . . . . . . . . . . 171
7.1 Classical SP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2 Partially-Ordered SP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3 Modality-Based SP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4 An SP Algorithm for a Class of SCLP Programs . . . . . . . . . . . . . . 182
7.5 Best-Tree Search in and-or Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.5.1 and-or Graphs and Best Solution Trees . . . . . . . . . . . . . . . 184
7.5.2 and-or Graphs Using SCLP . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8. Soft Concurrent Constraint Programming . . . . . . . . . . . . . . . . . . . 191
8.1 Concurrent Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.2 Concurrent Constraint Programming over Soft Constraints . . . . . 195
8.3 Soft Concurrent Constraint Programming . . . . . . . . . . . . . . . . . . . . 199
8.4 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.5 Observables and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.5.1 Capturing Success Computations . . . . . . . . . . . . . . . . . . . . . . 204
8.5.2 Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.6 An Example from the Network Scenario . . . . . . . . . . . . . . . . . . . . . . 208
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9. Interchangeability in Soft CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.1 Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2 Interchangeability in Soft CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9.2.1 Degradations and Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2.2 Properties of Degradations and Thresholds . . . . . . . . . . . . . 221



XII Contents

9.2.3 Computing δ/α/α−set-Substitutability/Interchangeability . 225
9.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.4 Partial Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10. SCSPs for Modelling Attacks to Security Protocols . . . . . . . . . . 237
10.1 Constraint Programming for Protocol Analysis . . . . . . . . . . . . . . . . 240

10.1.1 The Security Semiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.1.2 The Network Constraint System. . . . . . . . . . . . . . . . . . . . . . . 242
10.1.3 Computing the Security Levels by Entailment . . . . . . . . . . . 243
10.1.4 The Initial SCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.1.5 The Policy SCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.1.6 Assessing the Expected Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.1.7 The Imputable SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.1.8 Formalising Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.1.9 Formalising Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.2 An Empirical Analysis of Needham-Schroeder . . . . . . . . . . . . . . . . . 252
10.3 The Kerberos Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.4 Analysing Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.4.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.4.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

11. Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . . 263
11.1 Summary and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11.2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.2.2 High Order Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.2.3 SCLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.2.4 SCLP for Operational Research Problems . . . . . . . . . . . . . . 266
11.2.5 Soft Concurrent Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.2.6 Soft Constraints for Security . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.2.7 Soft Constraint Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.2.8 Soft Web Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



List of Figures

1.1 A possible solution to the 8-queens problem . . . . . . . . . . . . . . . . . . . 6
1.2 A CSP which is not solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Tuple redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 The CLP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Two SCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 A CSP and the corresponding SCSP . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Combination and projection in classical CSPs . . . . . . . . . . . . . . . . . . 36
2.4 From SCSPs to VCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 From VCSP to SCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 From SCSP to VCSP and back to SCSP again . . . . . . . . . . . . . . . . . 46
2.7 From VCSP to SCSP, and to VCSP again . . . . . . . . . . . . . . . . . . . . . 47
2.8 Diagrams representing the thesis of Theorem 2.3.11 and 2.3.11 . . . 49

3.1 A CSP which is not AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 A fuzzy CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 An SAC-consistent FCSP and the corresponding

AC-consistent CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Redundant hidden variables in CSPs. . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Redundant hidden variables in SCSPs . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 New semiring value for the extended tuple . . . . . . . . . . . . . . . . . . . . . 67
3.7 A tree-shaped SCSP and a top-down instantiation order . . . . . . . . 68
3.8 An SCSP with a cycle over x, y, z and a tree shape over the other

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 The search tree for the SCSP of Figure 3.8 . . . . . . . . . . . . . . . . . . . . 70
3.10 Disjunction example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.11 AC and labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.12 A fuzzy CSP and its solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13 The set of the {x, y}-labelings corresponding to the problem . . . . . 74
3.14 A 3-up-down-stair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 A Galois insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 A fuzzy CSP and its solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 The concrete and the abstract problem . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 An example of the abstraction fuzzy-classical . . . . . . . . . . . . . . . . . . 107
4.5 An abstraction which is not order-preserving . . . . . . . . . . . . . . . . . . 108



XIV List of Figures

4.6 The general abstraction scheme, with × idempotent . . . . . . . . . . . . 112
4.7 The scheme when f̃ does not modify anything . . . . . . . . . . . . . . . . . 113
4.8 The scheme when the concrete semiring has a total order . . . . . . . . 114
4.9 An example with × idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.10 The scheme when × is not idempotent . . . . . . . . . . . . . . . . . . . . . . . . 115
4.11 An example with × not idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.12 Several semirings and abstractions between them . . . . . . . . . . . . . . . 119

5.1 A 3-variable fuzzy CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 The fuzzy CSP after the application of rule r1 . . . . . . . . . . . . . . . . . 134

7.1 An SP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 An SP problem with labeled arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3 A multi-criteria SP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4 An SP problem with modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.5 An example of an and-or graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.6 An example of an and tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.7 A weighted and-or graph problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.8 A typical connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.9 The best tree corresponding to the program in Table 7.5.2 . . . . . . . 188

8.1 The SCSP describing part of a process network . . . . . . . . . . . . . . . . 210
8.2 The ordered process network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.1 An example of CSP with interchangeable values . . . . . . . . . . . . . . . . 214
9.2 An example of CSP with computation of neighborhood inter-

changeable values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.3 A fuzzy CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.4 Example of a CSP modeling car configuration with 4 variables . . . 230
9.5 Example of how δ-substitutability and α-substitutability varies

in the weighted CSP over the values
of variable E from Fig. 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.6 Example of how α−set-substitutability varies in the weighted
CSP over the values of variable E from Fig. 9.4 . . . . . . . . . . . . . . . . 231

9.7 Example of how δ-substitutability and α-substitutability varies
in the opposite-fuzzy CSP over the values of variable E
from Fig. 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

9.8 Example of how α−set-substitutability varies in the opposite-
fuzzy CSP over the values of variable E from Fig. 9.4 . . . . . . . . . . . 232

9.9 Example of a search of α-interchangeability computing by the use
of discrimination trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.1 Computation rules for security levels . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.2 Algorithm to construct the policy SCSP for a protocol P . . . . . . . . 246
10.3 Implementation for a simple risk function . . . . . . . . . . . . . . . . . . . . . 247
10.4 Algorithm to construct an imputable SCSP for P (fragment) . . . . . 249



List of Figures XV

10.5 The asymmetric Needham-Schroeder protocol . . . . . . . . . . . . . . . . . . 252
10.6 Lowe’s attack to the Needham-Schroeder Protocol . . . . . . . . . . . . . . 253
10.7 Fragment of the initial SCSP for Needham-Schroeder protocol . . . 253
10.8 Fragment of the policy SCSP

for the Needham-Schroeder protoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
10.9 Fragment of the Imputable SCSP corresponding to Lowe’s attack 255
10.10 The Kerberos layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.11 The Kerberos protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.12 The initial SCSP for Kerberos (fragment) . . . . . . . . . . . . . . . . . . . . . 257
10.13 The policy SCSP for Kerberos (fragment) . . . . . . . . . . . . . . . . . . . . . 258
10.14 An imputable SCSP for Kerberos (fragment) . . . . . . . . . . . . . . . . . . 259



List of Tables

5.1 Relationships between semiring elements. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 BNF for the SCLP syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Soft n-queens problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Clauses for the 5-queens problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 Our running example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5 The TP operator applied at the running example. . . . . . . . . . . . . . . . . . . 148

7.1 The SCLP program representing the SP problem in Figure 7.1. . . . . . . 173
7.2 The SCLP program representing the multi-criteria SP problem in

Figure 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 The SCLP program representing the SP problem with modalities. . . . 181
7.4 The general form of an SCLP program representing an SP problem. . 182
7.5 The system of equations corresponding to the SCLP program form

of Table 7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.6 The SCLP program representing the and-or graph problem in Figure

7.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1 cc syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2 scc syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3 Transition rules for scc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.4 Failure in the scc language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



1. Introduction

“Constraint programming represents one of the closest
approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the
computer solves it.”
Eugene C. Freuder, Constraints, April 1997

Overview

Constraint programming is an emergent software technology for declara-
tive description and effective solving of large, particularly combinatorial, prob-
lems especially in areas of planning and scheduling. It has recently emerged
as a research area that combines researchers from a number of fields, includ-
ing Artificial Intelligence, Programming Languages, Symbolic Computing and
Computational Logic. Constraint networks and constraint satisfaction prob-
lems have been studied in Artificial Intelligence starting from the seventies.
Systematic use of constraints in programming has started in the eighties. In
constraint programming the programming process consists of the generation of
requirements (constraints) and solution of these requirements, by specialized
constraint solvers.

Constraint programming has been successfully applied in numerous do-
mains. Recent applications include computer graphics (to express geometric
coherence in the case of scene analysis), natural language processing (construc-
tion of efficient parsers), database systems (to ensure and/or restore consis-
tency of the data), operations research problems (like optimization problems),
molecular biology (DNA sequencing), business applications (option trading),
electrical engineering (to locate faults) and circuit design (to compute layouts).

This book is centered around the notion of constraint solving [189] and pro-
gramming [141]. The interest in constraint satisfaction problems can be easily
justified, since they represent a very powerful, general, and declarative knowl-
edge representation formalism. In fact, many real-life situations can be faithfully
described by a set of objects, together with some constraints among them. Ex-
amples of such situations can be found in several areas, like VLSI, graphics,
typesetting, scheduling, planning, as well as CAD, decision-support systems and
robotics.

1.1 From the Beginning . . .

The constraint idea comes from the early 1960’s when Sutherland introduced
Sketchpad [187], the first interactive graphical interface that solved geometric

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 1–20, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 1. Introduction

constraints. After that came Fikes’ REF-ARF [97] and at the beginning of 1970’s
Montanari described fundamental properties of the constraints when applied to
picture processing [149]. Another study in finite domain constraint satisfaction
was done at the end of 1970’s in Laurière’s ALICE [133], a system developed to
solve prediction/detection problems in geology. After these, several constraint
languages have been proposed in the literature: the language of Steele ( [184]),
CONSTRAINTS [186] of Sussman & Steele, Thinglab ( [60]) and Bertrand (
[134]).

From Sketchpad until now, a lot of research has been done and improvements
made, and the classical constraint satisfaction problems (CSPs) [139, 150] have
been shown to be a very expressive and natural formalism to specify many kinds
of real-life problems.

1.2 Applications

Today, the use of the constraint programming idea to solve many real-life prob-
lem is reality. Many important companies develop tools based on the constraint
technology to solve assignment, network management, scheduling, transport and
many other problems:

1.2.1 Assignment Problems

Assignment problems were one of the first type of industrial applications that
were solved with the CLP technology. These problems usually have to handle two
types of resources, and constraints among them, and try to assign one resource
of the first kind to one of the second kind such that all constraints are satisfied.

An example is the stand allocation for airports, where aircrafts (the first
kind of resources) must be parked on the available stands (the second kind of
resources) during their stay at the airport. The first industrial CLP application
was developed for the HIT container harbor in Hong Kong [161], using the
language CHIP: the objective was to allocate berths to container ships in the
harbor, in such a way that resources and stacking space for the containers is
available. Other Hong Kong applications are at the airport, where a CHIP-
based system is used to solve the counter allocation problem [69], and another
constraint-based system, which uses the ILOG libraries, is used for the stand
allocation problem since mid-1998 [70]. Another system, called APACHE [88],
was a demonstrator for stand allocation at Roissy airport in Paris: the objective
was to replan the allocation when a change of arrival/departure times occurred.

1.2.2 Personnel Assignment

Personnel assignment problems are a special case of assignment problems where
one resource type consists of humans. This peculiarity makes them specific
enough to be considered separately. In fact, changing work rules and regula-
tions impose difficult constraints which evolve over time. Also, user preferences
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often lead to over-constrained problems, which have no solution satisfying all
constraints. Another important aspect is the requirement to balance the work
among different persons, which leads to hard optimization problems.

The Gymnaste system [65] produces rosters for nurses in hospitals, and is
used in many hospitals in France. Around 250 technicians and journalists of
the French TV and radio station RFO are scheduled with the OPTI-SERVICE
system [73], which generates weekly workplans from the individual activities
which must be covered by different persons with different qualifications. The
personnel for the TGV high-speed train bar and restaurant services is scheduled
with the EPPER application [92]: all services for a month are covered by a
team of 250 people. Recently a distributed CLP system has been used to tackle
a workforce management problem within British Telecom [131]. Also Telecom
Italia is using a constraint-based system to schedule all its technical tasks (about
100.000 tasks involving 20.000 technicians) over its territory [113]; the system
which controls the whole workforce management has a scheduling module, called
ARCO, which dispatches activities to technicians, and which makes extensive use
of constraint propagation techniques.

1.2.3 Network Management

Another application domain for finite domain CLP is network management,
where many different problems can be addressed and solved using CLP.

The LOCARIM system was developed by COSYTEC for France Telecom:
starting from an architectural plan of a building, it proposes a cabling of the
telecommunication network of the building. The PLANETS system, developed
by the University of Catalonia in Barcelona for the Spanish electricity company,
is a tool for electrical power network reconfiguration which allows to schedule
maintenance operations by isolating network segments without disrupting cus-
tomer services. The company Icon in Italy produces a load-balancing application
which is controlling network flow for the inter-banking system in Italy. The Esprit
project CLOCWiSe (IN 10316I) is using CHIP for the management and oper-
ational control of water systems. The planning of wireless digital networks for
mobile communication has been tackled by the system POPULAR [110], written
in ECLiPSe and then in CHR: the main advantages with respect to other ap-
proaches to this same problem (using traditional imperative programming) are
a good balance among flexibility, efficiency, and rapid prototyping.

1.2.4 Scheduling Problems

Perhaps the most successful application domain for finite domain CLP are
scheduling problems. Given a set of resources with given capacities, a set of
activities with given durations and resource requirements, and a set of temporal
constraints between activities, a “pure” scheduling problem consists of deciding
when to execute each activity, so that both temporal constraints and resource
constraints are satisfied.
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A typical example of a constraint-based scheduling application is ATLAS
[181], which schedules the production of herbicides at the Monsanto plant in
Antwerp. The PLANE system [26] is used by Dassault Aviation to plan the
production of the military Mirage 2000 jet and the Falcon business jet. The ob-
jective is to minimize changes in the production rate, which has a high set-up
cost, while finishing the aircraft just in time for delivery. The MOSES applica-
tion was developed by COSYTEC for an animal feed producer in the UK: it
schedules the production of compound food for different animal species, elimi-
nating contamination risk and satisfying costumer demand with minimal cost.
The FORWARDC system is a decision support system, based on CHIP, which is
used in three oil refineries in Europe to tackle all the scheduling problems occur-
ring in the process of crude oil arrival, processing, finished product blending and
final delivery [115]. Recently, Xerox has adopted a constraint-based system for
scheduling various tasks in reprographic machines (like pothocopiers, printers,
fax machines, etc.); the role of the constraint-based scheduler is to determine
the sequence of print making and to coordinate the time-sensitive activities of
the various hardware modules that make up the machine configuration [109].
Recent results on the tractability of classes of constraint problems have shown
that such scheduling problems are indeed tractable, and thus amenable for an
efficient solution [164].

1.2.5 Transport Problems

A variety of transport problems have been tackled using constraints. These prob-
lems are often very complex due to their size, the number and variety of con-
straints, and the presence of complex constraints on possible routes. Moreover,
often these problems have a personnel allocation problem as a sub-aspect, usually
with complex safety and union regulations.

The COBRA system [180] generates diagrams representing workplans for
train drivers of North Western Trains in the UK. For each week, around 25.000
activities must be scheduled in nearly 3.000 diagrams, taking a complex route
network into account. The DAYSY Esprit project (8402) and the SAS-Pilot
program [14] considers the operational re-assignment of airline crews to flights.
This same problem is tackled also by another system [100], which uses a combi-
nation of CLP and OR techniques. A recently developed system uses the ILOG
constraint libraries to produce and optimize train operating plans for a freight
railway company, by creating transport movements for rolling stock between
sources, hubs and sinks while satisfying transport requirements [143].

1.3 Crisp Constraints

In this section we review some definitions and notions which will be fundamental
for our work. The section is divided in three parts: In the first one we define the
Constraint Satisfaction Problems (CSPs) and we introduce the classical solv-
ing techniques; In the second one, we introduce Constraint Logic Programming
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(CLP) framework; lastly, we describe the concurrent constraint (cc) framework.
There is also some other background material that will be used later in the book.
That material, however, will be introduced only when needed.

1.3.1 CSPs

Constraint Satisfaction Problems (CSPs) are a very powerful and general knowl-
edge representation formalism, since many real situations can be faithfully de-
scribed by a set of objects, together with some constraints among them. They
were a subject of research in Artificial Intelligence for many years starting from
the 1970s. From that date several classes of constraints were studied (e.g., tem-
poral constraint problems, constraint problems over intervals and over reals,
linear constraints) but in this book we will concentrate on the specific class of
constraints over Finite Domain.

We believe that finite domain constraint problems [85,105,138,150,152], i.e.,
constraint problems where the objects may assume a finite number of distinct
configurations, are of special interest, since they are significantly simpler to an-
alyze than general constraint problems, while still being able to express, either
faithfully or through a certain degree of abstraction, the main features of several
classes of real life problems.

Before providing the formal definition of the CSP and its solution methods,
let’s look at some examples [168], also to illustrate the variety of the potential
application fields.

Example 1.3.1 (8-queens). Famous test-problem popular also in the CSP world
is the 8-queens problem: place 8 queens on the chess board such that they do
not attack each other (see Figure 1.1. In order to formulate this problem as a
CSP, the location of the queens should be given by variables, and the “do not
attack each other” requirement should be expressed in terms of a number of
constraints. A simple way to do this is to assign a variable to each queen.

As the 8 queens must be placed in 8 different columns, we can identify each
queen by its column, and represent its position by a variable which indicates the
row of the queen in question. Let xi stand for the row of the queen in the i-th
column. The domain of each of the variables x1, . . . , x8 is {1, 2, ...8}. For any two
different variables the following two constraints must hold, expressing that the
queens should be in different rows and on different diagonals:

xi �= xj

|xi − xj | �= |i− j|

In this formulation of the problem, we have to find a solution out of the total
possible instantiations of the variables, which is 88. This formulation, though
seems natural, does contain a trick: a part of the requirements of the problem
is reflected in the representation, not in the constraints. We could have used the
most straightforward representation, namely identifying the squares of the chess
board by the 1, 2, . . . , 64 numbers, and having 8 variables for the 8 queens all
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Fig. 1.1. A possible solution to the 8-queens problem

with the domain {1, 2, . . . , 64}. In this case, the “different columns” requirement
should be expressed too by constraints, and all the three types of constraints
become more intrinsic to formulate. The total number of possible arrangements
becomes as large as 6464 , containing a configuration of queens multiple times
due to the identification of the 8 queens. So we have many reasons to prefer the
first representation over the second one. It is true in general that a problem can
be formulated as a CSP in a number of ways. The resulting CSPs may differ
significantly considering the number and complexity of the constraints and the
number of the possible instantiations of the variables, and thus may require very
different amount of time and memory to be dealt with. Hence when modelling a
problem as a CSP, one has to pay attention to different possibilities, and try to
commit to the one which will be the easiest to cope with. The in-depth analysis
of the different solution methods and of the characteristics of the CSPs may
provide a basis to make a good choice. Several cases have been reported when
a notoriously difficult problem could be solved finally as a result of change of
the representation. Both representations of the 8-queens problem are pleasantly
regular: the domain of all the variables is the same, all the constraints refer
to 2 variables, and for each pair of variables the same type of constraints are
prescribed. Hence the 8-queens problem is not appropriate as a test case for
solution algorithms developed to solve general CSPs. In spite of this intuitive
observation, earlier the 8-queens had been a favourite test problem: there had

figure/scacchiera.eps
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been a race to develop search algorithms which were able to solve the problem
for bigger and bigger n. (It is possible to construct a solution analytically.) This
practice was stopped by two discoveries. On the one hand, Sosic [183] came
up with a polynomial-time search algorithm, which was heavily exploiting the
above mentioned special characteristics of the problem. On the other hand, by
analysing the search space of the n-queens problem, it was shown that the general
belief that “the bigger the n the more difficult the problem is” does not hold -
in fact, the truth is just the opposite [153].

Example 1.3.2 (graph colouring). Another, equally popular test problem is graph
colouring: colour the vertices of a given graph using k colours in such a way that
connected vertices get different colours. It is obvious how to turn this problem
into a CSP: there are as many variables as vertices, and the domain for each
variable is {1, 2, . . . , k}, where k is the allowed number of colours to be used.
If there is an edge between the vertices represented by the variables xi and xj ,
then there is a constraint referring to these two variables, namely: xi �= xj .
Though for the first sight graph colouring may seem to be just as a toy problem
as the n-queens, there are basic differences between the two problems. First
of all, graph colouring is known to be NP-complete, so one does not expect a
polynomial-time search algorithm to be found. Secondly, it is easy to generate
a great number of test graphs with certain parameters, which are more or less
difficult to be coloured, so the family of graph colouring problems is appropriate
to test algorithms thoroughly. Finally, many practical problems, like ones from
the field of scheduling and planning, can be expressed as an appropriate graph
colouring problem.

Let’s now provide a formal definition of constraint satisfaction problem:

Definition 1.3.1 (constraint satisfaction problem). A Constraint Satis-
faction Problem is a tuple 〈V,D,C, con, def, a〉 where

– V is a finite set of variables, i.e., V = {v1, . . . , vn};
– D is a set of values, called the domain;
– C is a finite set of constraints, i.e., C = {c1, . . . , cm}. C is ranked, i.e.
C =

⋃
k Ck, such that c ∈ Ck if c involves k variables;

– con is called the connection function and it is such that

con :
⋃
k

(Ck → V k),

where con(c) = 〈v1, . . . , vk〉 is the tuple of variables involved in c ∈ Ck;
– def is called the definition function and it is such that

def :
⋃
k

(Ck → ℘(Dk)),

where ℘(Dk) is the powerset of Dk, that is, all the possible subsets of k-tuple
in Dk;
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– a ⊆ V , and represent the distinguished variables of the problem.

In words, function con describes which variables are involved in which con-
straint, while function def specifies which are the domain tuples permitted by
the constraint. The set a is used to point out the variables of interest in the
given CSP, i.e., the variables for which we want to know the possible assign-
ments, compatibly with all the constraints.

Note that other classical definitions of constraint problems do not have the
notion of distinguished variables, and thus it is as if all variables are of interest.
We choose this definition, however, for two reasons: first, the classical definition
can be trivially simulated by having a set of distinguished variables containing
all the variables, and second, we think that this definition is much more realistic.

In fact, it is reasonable to think that the CSP representation of a problem
contains many details (in terms of constraints and/or variables) which are needed
for a correct specification of the problem but are not important as far as the
solution of the problem is concerned. In other words, the non distinguished
variables play the role of existential variables: we want to assure that they can
be assigned to values consistently with the constraints, but we do not care to
know the assignment.

The solution Sol(P ) of a CSP P = 〈V,D,C, con, def, a〉 is defined as the set
of all instantiations of the variables in a which can be extended to instantiations
of all the variables which are consistent with all the constraints in C.

Definition 1.3.2 (tuple projection and CSP solution). Given a tuple
of domain values 〈v1, . . ., vn〉, consider a tuple of variables 〈xi1, . . ., xim〉
such that ∀j = 1, . . . ,m, there exists a kj with kj ∈ {1, . . . , n} such that
xij = xkj . Then the projection of 〈v1, . . . , vn〉 over 〈xi1, . . . , xim〉, written
〈v1, . . . , vn〉|〈xi1,...,xim〉 , is the tuple of values 〈vi1, . . . , vim〉. The solution Sol(P )
of a CSP P = 〈V,D,C, con, def, a〉 is defined as

{〈v1, . . . , vn〉|a such that

{
vi ∈ D for all i;
∀c ∈ C, 〈v1, . . . , vn〉|con(c) ∈ def(c).

}

The solution to a CSP is hence an assignment of a value from its domain to
every variable, in such a way that every constraint is satisfied. We may want to
find just one solution, with no preference as to which one, or all solutions.

To give a graphical representation of a CSP problem, we use a labelled hy-
pergraph which is usually called a constraint graph ( [85]).

Definition 1.3.3 (labelled hypergraph). Given a set of labels L, a hyper-
graph labelled over L is a tuple 〈N,H, c, l〉, where N is a set of nodes, H is a set
of hyperarcs, c :

⋃
k(Hk → Nk), and l :

⋃
k(Hk → ℘(Lk)). I.e., c gives the tuple

of nodes connected by each hyperarc, and l gives the label of each hyperarc.

Definition 1.3.4 (from CSPs to labelled hypergraphs). Consider a CSP
P = 〈V, D, C, con, def, a〉. Then the labelled hypergraph corresponding to
P , written G(P ), is defined as the hypergraph G(P ) = 〈V,C, con, def〉 labelled
over D.
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In the hypergraph corresponding to a CSP, the nodes represent the variables
of the problem, and the hyperarcs represent the constraints. In particular, each
constraint c can be represented as a hyperarc connecting the nodes representing
the variables in con(c). Constraint definitions are instead represented as labels
of hyperarcs. More precisely, the label of the hyperarc representing constraint c
will be def(c).

The representation of a CSP by a hypergraph turns out to be very useful when
focusing on properties of the CSP which involve notions of sparseness and/or
locality. In particular, locality can be defined in term of subgraphs, where a
subgraph of a given graph consists of a subset S of the nodes together with
some of the hyperarcs connecting subsets of S. For example, the theory of local
consistency techniques for discrete CSPs (which we will review later), whose
aim is to remove local inconsistencies, can be given in terms of operations on
hypergraphs.

As for the notion of solution of a finite domain CSP, consider for example
the CSP depicted in Figure 1.2, where each arc is labeled by the definition of the
corresponding constraint, given in terms of tuples of values of the domain, and
the distinguished variables are marked with a *. The solution of this problem is
the set {〈a, b〉}.
Solution Techniques. The methods to generate a solution for a CSP fall
mainly into two classes [168]. In the first class are the variants of backtracking
search. These algorithms construct a solution by extending a partial instantia-
tion step by step, relying on different heuristics and using more or less intelligent
backtracking strategies to recover from dead ends. The reduction of a problem
is advantageous, resulting in a smaller solution space to be searched. The sec-
ond class are the so-called constraint propagation algorithms do eliminate some
non-solution elements from the search space. In general, these algorithms do not
eliminate all the non-solution elements, hence, they do not produce a solution
on their own. They are used either to pre-process the problem before another
type of algorithm is applied, or interwoven with steps of another kind of - e.g.
backtracking search - algorithm to boost its performance.

All the algorithms from the above three classes investigate the solution space
systematically. Hence all those algorithms of the above classes which are meant
to find a solution, in theory really do the job as long as there is a solution. These
algorithms are:

x y z

<a,b> <b,b>

<a,a>

<b>

<a>

<b>

<a>

<b>

<a>

* *

Fig. 1.2. A CSP which is not solved

figure/excsp.eps
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– sound, that is if they terminate with a complete instantiation of the variables
than it is a solution;

– complete, that is capable to investigate the entire search space and hence
find all the solutions.

These requirements seem to be very essential, however, often one has to be
satisfied with algorithms which do not fulfill one or both of them. The systematic
search algorithms require exponential time for the most difficult CSPs. A CSP is
difficult if (almost) the entire search space has to be investigated before finding
a solution or concluding that the problem has none. If the search space is large,
then it may take days or weeks to run a complete and sound algorithm. This
can be forbidding in case of applications where a solution can be used only if
provided within a short time.

In such cases a compromise is made, by using an algorithm which provides
an answer fast, but the answer is not guaranteed to be a solution. However, it
is “good enough” in the sense that not all the constraints are satisfied, but the
number of non-satisfied constraints the and degree of violations can be accepted.
Though such an algorithms cannot be used to generate all the (good) solutions
for sure, usually it is possible to generate several quite different “almost solu-
tions” (if they exist). The so-called local stochastic search algorithms have in
common that they explore the solution space in a non-systematic way, stepping
from one complete instantiation to another, based on random choices, and may
navigate on the basis of heuristics, often adopted from systematic search meth-
ods. In the recent years such algorithms have been used with success to solve
large practical problems, and they are suitable to handle CSPs extended with
some objective function to be optimised.
Constraint Propagation. By eliminating redundant values from the problem
definition, the size of the solution space decreases. Reduction of the problem
can be done once, as pre-processing step for another algorithm, or step by step,
interwoven with the exploration of the solution space by a search algorithm. In
the latter case, subsets of the solution space are cut off, saving the search algo-
rithm the effort of systematically investigating the eliminated elements, which
otherwise would happen, even repeatedly. If as a result of reduction any domain
becomes empty, then it is known immediately that the problem has no solu-
tion. One should be careful with not spending more effort on reduction than
what will “pay off” in the boosted performance of the search algorithm to be
used to find a solution of the reduced problem. The reduction algorithms elim-
inate values by propagating constraints. The amount of constraint propagation
is characterised by the consistency level of the problem, hence these algorithms
are also called consistency-algorithms. The iterative process of achieving a level
of consistency is sometimes referred to as the relaxation process, which should
not be mixed up with relaxation of constraints. Constraint propagation has a
long tradition in CSP research. Below we introduce the most well-known and
widely used algorithms.
Node- and arc-consistency. A CSP is node-consistent, if all the unary constraints
hold for all the elements of the domains. The straightforward node-consistency
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algorithm (NC), which removes the redundant elements by checking the domains
one after the other has O(dn) time complexity, where d is the maxim of the size
of the domains and n is the number of the variables. A CSP is arc-consistent, if
for any u value from the domain of any variable x, any binary constraints which
refers to x can be satisfied.

k-consistency. Arc-consistency can be also understood as telling something
about how far a partial solution can always be extended. Namely, any partial
solution containing only one instantiated variable can be extended by instantiat-
ing any second variable to a properly chosen value. Applying the same principle
for more variables, we arrive at the concept of k-consistency.

Definition 1.3.5 (k-consistency). A CSP is k-consistent, if any consistent
instantiation of any k − 1 variables can be extended by instantiating any one of
the remaining variables.

It is important to understand clearly the significance of consistency. A CSP
which is k-consistent, is not necessarily solvable, and in the other way around,
the solvability of a problem does not imply any level of consistency, not alone
1-consistency. The consistency as a feature of a problem does guarantee that cer-
tain values and value h-tuples which are not in the projection of the solution set
have been removed form the domains and constraints. The level of consistency,
k indicates for what h-values has this been done.

In general, the main idea is to improve the brute force backtracking by cutting
down the search space. This is done by first modifying the original constraint
network to a more explicit one (by eliminating redundancy), and then to run the
search.

In a finite domain CSP, redundancy can be found mainly in the definitions
of the constraints. In other words, a tuple of domain values in a constraint
definition may be considered to be redundant if its elimination does not change
the solution of the problem.

A sufficient condition for tuple redundancy is that the tuple be inconsistent
with (all the tuples in) some other constraint in the CSP. In fact, if this condition
holds, then the tuple will never be used in any solution of the CSP (otherwise
the other constraint would be violated), and thus the solution will not change if
the tuple is deleted. Consider, for example, a CSP which, among other variables
and constraints, contains the variables x, y, and z, and the two constraints as
depicted in Figure 1.3.

Then, tuple 〈a, a〉 of the constraint between x and y is inconsistent with the
constraint between y and z. In fact, if x and y are both instantiated to a, then
there is no way to instantiate z so as to satisfy the constraint between y and
z. Therefore, tuple 〈a, a〉 is redundant and may be eliminated from the CSP,
yielding a new CSP which is obviously equivalent to the old one. More precisely,
given a CSP P1 , the aim is to obtain a new CSP P2 such that P1 and P2 have
the same solution and the same constraint graph, and P2 has smaller constraint
definitions.
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x y z

<a,b> <b,b>

<a,a>

Fig. 1.3. Tuple redundancy

Given that in order to check the redundant status of a tuple we look at
some constraints which are adjacent to the one containing that tuple (because
constraints not sharing variables with the given one would not help), usually
this kind of redundancy is also called local inconsistency. In fact, we do not
look at the whole CSP, but only at some small portion of it (which contains the
constraint with the tuple under consideration). Local inconsistency obviously
implies global inconsistency, and this is why the condition of local inconsistency
is sufficient for redundancy.

1.3.2 Constraint Logic Programming

As far as we know, even though some languages for handling special kinds of
constraints were developed in the past (like ThingLab [60], Bertrand [134], and
ALICE ( [133]), no general linguistic support were given to constraint solving and
constraint propagation until the development of the constraint logic program-
ming (CLP) scheme. This scheme can be seen as a logic programming shell,
supported by an underlying constraint system which may handle and solve any
kind of constraints. For this reason the CLP scheme can be denoted by CLP(X),
where X specifies the class of constraints we want to deal with.

In this section we describe the basic concepts and the operational semantics
of the constraint logic programming framework. For a longer and more detailed
treatment, which also includes other kinds of semantics, we refer to [125,126,127].
We assume the readers to be already familiar with the logic programming formal-
ism, as defined in [135]. The main idea in CLP is to extend logic programming,
in such a way that

– substitutions are replaced by constraints,
– unification is replaced by a constraint solution, and
– all the semantic properties of logic programming (mainly, the existence of

declarative, denotational, and procedural semantics and the equivalence of
these three objects) still hold.

Figure 1.4 describes informally the CLP framework. As we can see, the logic
programming shell and the underlying constraint system communicate by means

figure/redunda.eps


1.3 Crisp Constraints 13

of consistency checks, which are requested by the shell and performed by the
constraint system.

In constraint logic programs the basic components of a problem are stated as
constraints. The problem as a whole is then represented by putting the various
constraints together by means of rules.

Definition 1.3.6 (constraint rule, goal, programs). Consider a particular
instance of the CLP(X) framework.

– A constraint rule is of the form

A : −c, B1, . . . , Bn.

where n ≥ 0, c is a constraint over the class X, and A and all Bi s are
atoms over the Herbrand Universe. A is called the head of the rule, and
c, B1, . . . , Bn the body. If n = 0 then such a constraint rule can also be called
a fact.

– A goal is a constraint rule without the head, i.e of the form : : −c. or :
−c, B1, . . . , Bn.

– A constraint logic program is a finite set of constraint rules.

Let us now describe how the CLP system works to decide if a given goal is a
logical consequence of the program; i.e., how the operational semantics of logic
programming, which we assume is given by SLD-resolution, has to be extended
in order to deal with constraints instead of (or, better, besides) substitutions.

Definition 1.3.7 (derivation step). Given a CLP(X) program P, a deriva-
tion step takes a goal

: −(c, A1, . . . , An)

logic programming shell

constraint system

Fig. 1.4. The CLP framework

figure/clp.eps
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and a (variant of a) constraint rule

A : −c′, B1, . . . , Bm.

in P. If (c ∪ c′) ∪ (Ai = A) is satisfiable, then the derivation step returns a new
goal

: −((c ∪ c′) ∪ (A = Ai), A1, . . . , Ai−1, B1, . . . Bm, Ai+1, . . . An)

Definition 1.3.8 (derivation, answer constraint). A derivation is a se-
quence of derivation steps. Derivation sequences are successful (and are called
refutations) when the last goal therein contains only constraints. These answer
constraints constitute the output of a CLP program.

The satisfiability of Ai = A is the problem of finding, if there is one, an mgu,
and thus, it is a task which can be accomplished by the logic programming engine
that underlies the CLP system. On the contrary, to check the satisfiability of
(c∪c′) we need to use the particular constraint solver corresponding to the chosen
structure X . If, for example, we are considering arithmetic inequality constraints
over the reals, then the constraint solver could be a simplex algorithm. Thus,
at each derivation step two constraint solvers are needed: one for the Herbrand
universe and one for the chosen class of other constraints.

The fact that CLP can be interpreted as the possibility of using logic pro-
gramming as a logic “shell” where to formally reason about constraints and
solve constraint problems intuitively implies that logic programming is not only
an instance of CLP, but it is always “present” in the CLP framework. More pre-
cisely, since a constraint is simply a relation which must hold among a collection
of objects, then term equalities, which are handled in logic programming while
performing unification, are a special case of constraints. Therefore, it is safe to
say that any logic program is a CLP program where the only allowed constraints
are term equalities. On the other hand, it is also true that any CLP instance
needs to perform unifications, and thus term equalities must always be among
the allowed constraints.

1.4 Non-crisp Constraints

All this constraint application, however, have some obvious limitations, mainly
due to the fact that they do not appear to be very flexible when trying to
represent real-life scenarios where the knowledge is neither completely available
nor crisp. In fact, in such situations, the ability to state whether an instantiation
of values to variables is allowed or not, is not sufficient or sometimes not even
possible. For these reasons, it is natural to try to extend the CSP formalism in
this direction.

For example [91, 165, 167], CSPs have been extended with the ability to as-
sociate with each tuple, or to each constraint, a level of preference, and with the
possibility of combining constraints using min-max operations. This extended
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formalism was called Fuzzy CSPs (FCSPs). Other extensions concern the ability
to model incomplete knowledge of the real problem [96], to solve over-constrained
problems [108], and to represent cost optimization problems [24, 31].

The constraints in classical constraint satisfaction problems are crisp, i.e.,
they either allow a tuple (of values of involved variables) or not. In some real-
life applications, this is not a desired feature and, therefore, some alternative
approaches to constraint satisfaction were proposed to enable non-crisp con-
straints, probabilities or weights respectively. These extensions can be used to
solve optimization problems as well as over-constrained problems as they allow
relaxing of constraints.

1.4.1 Partial Constraint Satisfaction Problems

The Partial Constraint Satisfaction (PCSP) [108] scheme of Freuder and Wallace
is an interesting extension of CSP, which allows the relaxation and optimization
of problems via the weakening of the original CSP.

A theory of Partial Constraint Satisfaction Problems (PCSPs) were devel-
oped to weaken systems of constraints which have no solutions (over-constrained
systems), or for which finding a solution would take too long. Instead of search-
ing for a solution to a complex problem, we consider searching for a simpler
problem that we know we can solve.

Definition 1.4.1 (Partial Constraint Satisfaction Problems). The notion
of a partial CSP is formalized by considering three components: 〈(P,U), (PS,≤),
(M, (N,S))〉 where:

– (PS,≤) is a problem space with PS a set of problems and ≤ a partial order
over problems,

– P ∈ PS is a constraint satisfaction problem (CSP), U is a set of ’universes’
i.e. a set of potential values for each of the variables in P ,

– M is a distance function over the problem space, and (N,S) are Necessary
and Sufficient bounds on the distance between the given problem P and some
solvable member of the problem space PS

A solution to a PCSP is a problem P ′ from the problem space and its solution,
where the distance between P and P ′ is less than N . If the distance between P
and P ′ is minimal, then this solution is optimal.

1.4.2 Constraint Hierarchies

Constraint hierarchies [61] were introduced for describing over-constrained sys-
tems of constraints by specifying constraints with hierarchical strengths or pref-
erences. It allows one to specify declaratively not only the constraints that are
required to hold, but also weaker, so called soft constraints at an arbitrary but
finite number of strengths. Weakening the strength of constraints helps in find-
ing a solution of a previously over-constrained system of constraints. Intuitively,
the hierarchy does not permit the weakest constraints to influence the result.
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Moreover, constraint hierarchies allow “relaxing” of constraints with the same
strength by applying, for example a weighted-sum, least-squares or similar com-
parators.

Definition 1.4.2 (Constraint Hierarchies). In constraint hierarchies, one
uses labeled constraints which are constraints labeled with a strength or pref-
erence. Then, a constraint hierarchy is a (finite) multiset of labeled con-
straints. Given a constraint hierarchy H, let H0 denote the set of required con-
straints in H, with their labels removed. In the same way, we define the sets
H1, H2, . . . for levels1, 2, . . ..

A solution to a constraint hierarchy H will consist of instantiations for vari-
ables in H, that satisfies the constraints in H respecting the hierarchy. Formally
(U , V are instantiations):

SH,0 = {U | for each c in H0, c is satisfied by U}
SH = {U | U ∈ SH,0 and ∀V ∈ SH,0, V is not better than U respecting H}.

The set SH,0 contains instantiations satisfying required constraints in H and
SH , called a solution set for H, is a subset of SH,0 containing all instantiations
which are not worse than other instantiations in SH,0.

1.4.3 Fuzzy, Probabilistic and Valued CSPs

The Fuzzy [91, 165, 167], Probabilistic [96] and Valued CSPs [174] use values
to express fuzzyness, probability or several preference values in the problem. In
particular, Fuzzy CSPs are a very significant extension of CSPs since they are
able to model partial constraint satisfaction (PCSP [108]) and also prioritised
constraints (Constraint hierarchies [61]), that is, constraints with different levels
of importance .

We will give a detailed description of the fuzzy, probabilistic and VCSP
framework in the next chapter, when will also show how to represent all this
non-crisp extension in our framework.

1.5 Overview of the Book

In this book we describe a constraint solving framework where most of these
extensions, as well as classical CSPs, can be cast. The main idea is based on
the observation that a semiring (that is, a domain plus two operations satisfying
certain properties) is all that is needed to describe many constraint satisfaction
schemes. In fact, the domain of the semiring provides the levels of consistency
(which can be interpreted as either cost, degrees of preference, probabilities, or
others), and the two operations define a way to combine constraints together.
More precisely, we define the notion of constraint solving over any semiring.
Specific choices of the semiring will then give rise to different instances of the
framework, which may correspond to known or new constraint solving schemes.
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With the definition of the new framework, we also need to extend the classical
AI local consistency techniques [104, 105, 138, 139, 150, 152] that have proven to
be very effective when approximating the solution of a problem in order to be
applied in the semiring framework. We may say that all of them are variants
or extensions of two basic algorithms, which started the field. One is the arc
consistency algorithm (used for the first time in [193] but studied and named
later in [138], where we may say that inconsistency is eliminated by each unary
constraint (i.e., involving only one variable); or, that each unary constraint (i.e.,
connecting only one variable, say v) is propagated to all variables attached to
the variable v by some binary constraint. The other pioneering algorithm is the
path-consistency algorithm (which was proposed in [150]), where inconsistency
is eliminated by each binary constraint; or, in other words, where each binary
constraint connected to variables v and v′ is propagated to all other variables
attached to v and v′ by some binary constraint. Then, a more general one is the
k-consistency algorithm scheme [104], where inconsistency is eliminated by each
set of constraints involving k variables (it is easy to see that arc-consistency is
2-consistency and that path-consistency is 3-consistency).

We generalize these techniques to our framework, and we provide sufficient
conditions over the semiring operations which assure that they can also be fruit-
fully applied to the considered scheme. By “fruitfully applicable” we mean that
1) the algorithm terminates and 2) the resulting problem is equivalent to the
given one and it does not depend on the nondeterministic choices made during
the algorithm. The advantage of the SCSP framework is that one can hopefully
see one’s own constraint solving paradigm as an instance of SCSP over a certain
semiring, and can inherit the results obtained for the general scheme. In par-
ticular, one can immediately see whether a local consistency and/or a dynamic
programming technique can be applied.

Also the study of generalized versions of AI algorithms for the SCSP frame-
work seems to be very important. In particular, the partial local consistency
algorithms seem to be efficient and useful.

Moreover, we study the behavior of a class of algorithms able to eliminate
from a semiring-based constraint problem some solutions that are not interesting
(where interesting might mean optimal) and we will study their application to
SCSPs. To solve an SCSP problem in a faster way, we try to “simplify” it by
changing the structure of the semiring. The solutions obtained in the easier
semiring have to be mapped back and used to solve the original problem. In order
to capture some interesting properties we use a notion of abstract interpretation
to represent this mapping. The idea is to take an SCSP problem P and map
it over a new problem P ′ which is easier to handle and solve. As soon as we
have solved (or partially solved) P ′ we have to map back the solutions (or the
partial solutions) over the original problem. Depending on the properties of the
semiring operations, we can perform some simplification steps over the original
problem.

Next we demonstrate how to extend the logic programming paradigm to deal
with semiring based constraints. One of the ways to program with constraint is
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to dip the constraints in the logic programming theory obtaining the CLP frame-
work. Programming in CLP means choosing a constraint system for a specific
class of constraints (for example, linear arithmetic constraints, or finite domain
constraints) and embedding it into a logic programming engine. This approach
is very flexible because one can choose among many constraint systems without
changing the overall programming language, and it has been shown to be very
successful in specifying and solving complex problems in terms of constraints of
various kinds. It can, however, only handle classical constraint solving. Thus, it
is natural to try to extend the CLP formalism in order to be able to also handle
SCSP problems. We will call such an extension SCLP (for Semiring-based CLP).

In passing from CLP to SCLP languages, we replace classical constraints with
the more general SCSP constraints. By doing this, we also have to modify the
notions of interpretation, model, model intersection, and others, since we have to
take into account the semiring operations and not the usual CLP operations. For
example, while CLP interpretations associate a truth value (either true or false)
to each ground atom, here, ground atoms must be given one of the elements
of the semiring. Also, while in CLP the value associated to an existentially
quantified atom is the logical or among the truth values associated to each of
its instantiations, here we have to replace the or with another operation which
refers to one of the semiring ones. The same reasoning applies to the value of a
conjunction of atomic formulas: instead of using the logical and we have to use
a specific operation of the semiring.

After describing the syntax of SCLP programs, we define three equivalent
semantics for such languages: model-theoretic, fix-point, and operational. These
semantics are conservative extensions of the corresponding ones for Logic Pro-
gramming (LP), since by choosing a particular semiring (the one with just two
elements, true and false, and the logical and and or as the two semiring opera-
tions) we get exactly the LP semantics. The extension is in some cases predictable
but it possesses some crucial new features. We also show the equivalence of the
three semantics. In particular, we prove that, given the set of all refutations
starting from a given goal, it is possible to derive the declarative meaning of
both the existential closure of the goal and its universal closure. Moreover, we
investigate the decidability of the semantics of SCLP programs and we prove
that if a goal has a semiring value greater than a certain value in the semiring,
then we can discover this in finite time.

Classical Operational Research (OR) problems and their embedding in the
SCLP framework are also studied. The embedding seems to be able to 1) give a
new semantics w.r.t. the algorithmic one and 2) give some hints towards an ex-
tension of the SCLP framework to handle multilevel and multisorted problems.
More precisely, the “levels of preference” together with a constraint framework
can be used fruitfully to describe and solve optimization problems. In fact, solv-
ing a problem does not mean finding “a solution”, but finding the best one (in
the sense of the semiring). This intuition suggests we investigate around the op-
erational research field in order to find out how to describe and solve classical
problems that usually are solved using OR techniques.
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In the last part of the book we describe some new results related to the
semiring framework. An extension of the concurrent constraint language (cc)
is presented. The language is able to deal with soft constraints instead of with
the crisp ones. The idea of thresholds is added to the new language, and a new
“branch&bound” semantics is given.

Using the introduced language we show how to use the SCSP framework to
discovery security problems in the network. In particular we study what happens
while a protocol session is executed. To do this we first model the policy of the
protocol and the initial state of the network as SCSPs, and then we compare the
policy SCSP with the initial one, modified by the protocol session.

Then a notion of Neighborhood Interchangeability for soft constraints is in-
troduced. As in the crisp case, detecting interchangeabilities among domain val-
ues improve the performance of the solver. Interchangeability can also be used
as a basis for search heuristics, solution adaptation and abstraction techniques

1.5.1 Structure of Subsequent Chapter

In Chapter 1 we introduce some background material: some basic notions re-
lated to Constraint Satisfaction Problems (CSPs) and to the Constraint Logic
Programming (CLP) framework.

In Chapter 2 we introduce the Soft CSP (SCSP) framework. The framework
is based on the notion of semiring, that is, a set plus two operations. Different
instantiations of the two operations give rise to different existing frameworks
(Fuzzy CSP, Probabilistic, Classical, VCSP, etc.). Each of these frameworks
satisfies specific properties that are useful in testing the applicability of the
constraint preprocessing and solving techniques described in Chapter 3.

In Chapter 3 the properties studied in the previous chapter are applied to the
different frameworks in order to prove the applicability of soft local consistency
and dynamic programming techniques. These techniques are defined starting
from the classical ones, by using the semiring operations. We also generalize the
local consistency technique by reducing the needed properties of the semiring
operators and by using different functions in the local consistency steps. Some
ideas on the efficient applicability of these techniques are given, by looking at
the graph structure of the problem.

In Chapter 4 classical techniques of abstraction are applied to SCSPs. The
problem is mapped in an ”easier” one, some solution related information is found
and mapped back to the original problem. The soft local consistency techniques
are also proven to be useful in the abstract framework to find the set of optimal
solutions or one of its approximations.

In Chapter 5 a more structured view of the SCSP framework is given: do-
mains and semirings are used as basic elements for building high order functions
representing solution or preprocessing algorithms.

In chapter 6 the CLP framework is extended to deal with soft constraints.
We define the Soft CLP (SCLP) framework and we give an operational, model-
theoretic and fix-point semantics. Some equivalence and properties of the se-
mantics are proven.
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In Chapter 7 we show how the ability of the CLP language to deal with soft
constraints can be used to represent and solve in a declarative fashion OR prob-
lems. As an example we consider general shortest path problems over partially
ordered criteria and we show how the SCLP framework can easily represent and
solve them. Moreover, we give a semantics to a class of SCLP programs by using
a classical shortest-path algorithm.

In Chapter 8 the extension of the concurrent constraint language (cc) able to
deal with soft constraints is presented. We first give a functional formalization
of the semiring framework that will also be used in the next two chapter. Then
syntax and semantics of the new language is given.

In Chapter 9 we describe the notion of soft Neighborhood Interchangeability.
As in the crisp case interchangeabilities are very rare. For this reason we extend
the interchangeability definition with a notion of threshold and degradation.

In Chapter 10 we try to enlarge the applicability domain of the constraint
framework, by defining a mapping between a network of agents executing a
protocol and an SCSP. Some security properties of the network are translated
into specific properties of the SCSP solutions.

In Chapter 11 we give some final remarks and some directions for future
research.

1.5.2 The Origin of the Chapters

Many chapters of this book are based on already published papers, jointly with
Giampaolo Bella, Philippe Codognet, Boi Faltings, Helene Fargier, Rossella Gen-
nari, Yan Georget, Ugo Montanari, Nicoleta Neagu, Elvinia Riccobene, Francesca
Rossi, Thomas Schiex and Gerard Verfaillie. In particular:

– The basic definitions and properties of the soft constraints’ framework de-
scribed in Chapter 2 appear in [45,47]; moreover the mapping between SC-
SPs and VCSPs is based on the ideas developed in [38, 39];

– The solutions and preprocessing techniques described in Chapter 3 are in-
stead introduced in [45, 47] and extended in [34, 43, 44, 54];

– Chapter 4 describe the abstraction framework and develops the ideas pre-
sented in [33, 35, 36];

– Chapter 5 is only based on some preliminary work presented in [49];
– The logic language to program with soft constraints of Chapter 6 is intro-

duced in [46, 53]; an extended version of the work appeared in [50];
– Chapter 7 is based on the ideas developed in [48, 51];
– The soft concurrent constraint framework described in Chapter 8 appeared

in [52];
– Chapter 9 is based on the ideas developed in [37, 55].
– The use of soft constraints for security protocol quantitative analysis intro-

duced in Chapter 10 is based on the works presented in [17, 18, 19].
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Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,

Nine for the Mortal Men doomed to die,
One for the Dark Lord on his dark throne.

In the Land of Mordor where the Shadows lie.
One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them.
In the Land of Mordor where the Shadows lie.

Tolkien, J.R.R. The Lord of the Rings

Overview

We introduce a general framework for constraint satisfaction and opti-
mization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint
satisfaction, and others can be easily cast. The framework is based on a se-
miring structure, where the carrier set of the semiring specifies the values to
be associated with each tuple of values of the variable domain, and the two
semiring operations (+ and ×) model constraint projection and combination
respectively.

Classical constraint satisfaction problems (CSPs) [139, 150] are a very ex-
pressive and natural formalism to specify many kinds of real-life problems. In
fact, problems ranging from map coloring, vision, robotics, job-shop scheduling,
VLSI design, and so on, can easily be cast as CSPs and solved using one of the
many techniques that have been developed for such problems or subclasses of
them [104,105,138,140,150].

They also, however, have evident limitations, mainly due to the fact that
they do not appear to be very flexible when trying to represent real-life scenarios
where the knowledge is neither completely available nor crisp. In fact, in such
situations, the ability of stating whether an instantiation of values to variables is
allowed or not, is not enough or sometimes not even possible. For these reasons,
it is natural to try to extend the CSP formalism in this direction.

For example, in [91,165,167] CSPs were extended with the ability to associate
with each tuple, or to each constraint, a level of preference, and with the possibil-
ity of combining constraints using min-max operations. This extended formalism
were called Fuzzy CSPs (FCSPs). Other extensions concern the ability to model
incomplete knowledge of the real problem [96], to solve over-constrained prob-
lems [108], and to represent cost optimization problems [31].

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 21–50, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In this chapter we describe a constraint solving framework where all such
extensions, as well as classical CSPs, can be cast. We do not, however, relax the
assumption of a finite domain for the variables of the constraint problems. The
main idea is based on the observation that a semiring (that is, a domain plus two
operations satisfying certain properties) is all that is needed to describe many
constraint satisfaction schemes. In fact, the domain of the semiring provides the
levels of consistency (which can be interpreted as cost, or degrees of preference,
or probabilities, or others), and the two operations define a way to combine
constraints together. More precisely, we define the notion of constraint solving
over any semiring. Specific choices of the semiring will then give rise to different
instances of the framework, which may correspond to known or new constraint
solving schemes.

The notion of semiring for constraint solving was used also in [114]. However,
the use of such a notion is completely different from ours. In fact, in [114] the
semiring domain (hereby denoted by A) is used to specify the domain of the
variables, while here we always assume a finite domain (hereby denoted by D)
and A is used to model the values associated with the tuples of values of D.

The chapter is organized as follows. Section 2.1 defines c-semirings and their
properties. Then Section 2.2 introduces constraint problems over any semirings
and the associated notions of solution and consistency. Then Section 2.3 studies
several instances of the SCSP framework, and in particular studies the differences
between the framework presented in [174] and ours.

The basic definitions and properties of the soft constraints’ framework de-
scribed in this chapter appear in [45,47]; moreover the mapping between SCSPs
and VCSPs [174] is based on the ideas developed in [38, 39].

2.1 C-semirings and Their Properties

We extend the classical notion of constraint satisfaction to allow also for 1) non-
crisp statements and 2) a more general interpretation of the operations on such
statements. This allows us to model both classical CSPs and several extensions
of them (like fuzzy CSPs [91, 167], partial constraint satisfaction [108], and so
on). To formally do that, we associate a semiring with the standard notion of
constraint problem, so that different choices of the semiring represent different
concrete constraint satisfaction schemes. In fact, such a semiring will give us
both the domain for the non-crisp statements and also the allowed operations
on them.

Definition 2.1.1 (semiring). A semiring is a tuple 〈A, sum,×,0,1〉 such that

– A is a set and 0,1 ∈ A;
– sum, called the additive operation, is a commutative (i.e., sum(a, b) =
sum(b, a)) and associative (i.e., sum(a, sum(b, c)) = sum(sum(a, b), c)) op-
eration with 0 as its unit element (i.e., sum(a,0) = a = sum(0, a));

– ×, called the multiplicative operation, is an associative operation such that
1 is its unit element and 0 is its absorbing element (i.e., a×0 = 0 = 0×a);
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– × distributes over sum (i.e., for any a, b, c ∈ A, a× sum(b, c) = sum((a×
b), (a× c))).

In the following we will consider semirings with additional properties of the
two operations. Such semirings will be called c-semiring, where “c” stands for
“constraint”, meaning that they are the natural structures to be used when
handling constraints.

Definition 2.1.2 (c-semiring). A c-semiring is a tuple 〈A,+,×,0,1〉 such
that

– A is a set and 0,1 ∈ A;
– + is defined over (possibly infinite) sets of elements of A as follows1:

– for all a ∈ A,
∑

({a}) = a;
–

∑
(∅) = 0 and

∑
(A) = 1;

–
∑

(
⋃
Ai, i ∈ I) =

∑
({∑(Ai), i ∈ I}) for all sets of indices I (flattening

property).
– × is a binary, associative and commutative operation such that 1 is its unit

element and 0 is its absorbing element;
– × distributes over + (i.e., for any a ∈ A and B ⊆ A, a× ∑

(B) =
∑

({a×
b, b ∈ B})).
Operation + is defined over any set of elements of A, also over infinite sets.

This will be useful later in proving Theorem 2.1.4. The fact that + is defined over
sets of elements, and not pairs or tuples, automatically makes such an operation
commutative, associative, and idempotent. Moreover, it is possible to show that
0 is the unit element of +; in fact, by using the flattening property we get∑

({a,0}) =
∑

({a} ∪ ∅) =
∑

({a}) = a. This means that a c-semiring is a
semiring (where the sum operation is +) with some additional properties.

It is also possible to prove that 1 is the absorbing element of +. In fact, by
flattening and by the fact that we set

∑
(A) = 1, we get

∑
({a,1}) =

∑
({a} ∪

A) =
∑

(A) = 1.
Let us now consider the advantages of using c-semirings instead of semirings.

First, the idempotency of the + operation is needed in order to define a partial
ordering ≤S over the set A, which will enable us to compare different elements
of the semiring. Such partial order is defined as follows: a ≤S b iff a + b = b.
Intuitively, a ≤S b means that b is “better” than a, or, from another point of
view, that, between a and b, the + operation chooses b. This ordering will be
used later to choose the “best” solution in our constraint problems.

Theorem 2.1.1 (≤S is a partial order). Given any c-semiring S =
〈A,+,×,0,1〉, consider the relation ≤S over A such that a ≤S b iff a + b = b.
Then ≤S is a partial order.

Proof. We have to prove that ≤S is reflexive, transitive, and antisymmetric:
1 When + is applied to a two-element set, we will use the symbol + in infix notation,

while in general we will use the symbol
∑

in prefix notation.
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– Since + is idempotent, we have that a + a = a for any a ∈ A. Thus, by
definition of ≤S , we have that a ≤S a. Thus ≤S is reflexive.

– Assume a ≤S b and b ≤S c. This means that a+ b = b and b + c = c. Thus
c = b+ c = (a+ b)+ c = a+(b+ c) = a+ c. Note that here we also used the
associativity of +. Thus ≤S is transitive.

– Assume that a ≤S b and b ≤S a. This means that a+ b = b and b + a = a.
Thus a = b+ a = a+ b = b. Thus ≤S is antisymmetric.

The fact that 0 is the unit element of the additive operation implies that 0
is the minimum element of the ordering. Thus, for any a ∈ A, we have 0 ≤S a.

It is important to note that both the additive and the multiplicative opera-
tions are monotone on such an ordering.

Theorem 2.1.2 (+ and × are monotone over ≤S). Given any c-semiring
S = 〈A,+,×,0,1〉, consider the relation ≤S over A. Then + and × are mono-
tone over ≤S. That is, a ≤S a′ implies a+ b ≤S a′ + b and a× b ≤S a′ × b.

Proof. Assume a ≤S a′. Then, by definition of ≤S , a+ a′ = a′.
Thus, for any b, a′ + b = a + a′ + b. By idempotency of +, we also have

a′ + b = a + a′ + b = a + a′ + b + b, which, by commutativity of +, becomes
a′ + b = (a+ b) + (a′ + b). By definition of ≤S , we have a+ b ≤S a′ + b.

Also, from a + a′ = a′ derives that, for any b, a′ × b = (a′ + a) × b =(by
distributiveness) (a′ × b) + (a× b). This means that (a× b) ≤S (a′ × b).

The commutativity of the × operation is desirable when such an operation is
used to combine several constraints. In fact, were it not commutative, it would
mean that different orders of the constraints would give different results.

Since 1 is also the absorbing element of the additive operation, then a ≤S 1
for all a. Thus 1 is the maximum element of the partial ordering. This implies
that the × operation is intensive, that is, that a × b ≤S a. This is important
since it means that combining more constraints leads to a worse (w.r.t. the ≤S
ordering) result.

Theorem 2.1.3 (× is intensive). Given any c-semiring S = 〈A,+,×,0,1〉,
consider the relation ≤S over A. Then × is intensive, that is, a, b ∈ A implies
a× b ≤S a.
Proof. Since 1 is the unit element of ×, we have a = a× 1. Also, since 1 is the
absorbing element of +, we have 1 = 1+b. Thus a = a×(1+b). Now, a×(1+b)
= { by distributiveness of × over + } (a× 1) + (a× b) = {1 unit element of ×}
a + (a × b). Thus we have a = a + (a × b), which, by definition of ≤S , means
that (a× b) ≤S a.

In the following we will sometimes need the × operation to be closed on a
certain finite subset of the c-semiring.

Definition 2.1.3 (AD-closed). Given any c-semiring S = 〈A, +, ×, 0, 1〉,
consider a finite set AD ⊆ A. Then × is AD-closed if, for any a, b ∈ AD,
(a× b) ∈ AD.
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We will now show that c-semirings can be assimilated to complete lattices.
Moreover, we will also sometimes need to consider c-semirings where × is idem-
potent, which we will show equivalent to distributive lattices. See [80] for a deep
treatment of lattices.

Definition 2.1.4 (lub, glb, (complete) lattice [80]). Consider a partially
ordered set S and any subset I of S. Then we define the following:

– an upper bound (resp., lower bound) of I is any element x such that, for all
y ∈ I, y ≤ x (resp., x ≤ y);

– the least upper bound (lub) (resp., greatest lower bound (glb)) of I is an upper
bound (resp., lower bound) x of I such that, for any other upper bound (resp.,
lower bound) x′ of I, we have that x ≤ x′ (resp., x′ ≤ x).

A lattice is a partially ordered set where every subset of two elements has a lub
and a glb. A complete lattice is a partially ordered set where every subset has a
lub and a glb.

We will now prove a property of partially ordered sets where every subset
has the lub, which will be useful in proving that 〈A,≤S〉 is a complete lattice.
Notice that when every subset has the lub, then also the empty set has the lub.
Thus, in partial orders with this property, there is always a global minimum of
the partial order (which is the lub of the empty set).

Lemma 2.1.1 (lub ⇒ glb). Consider a partial order 〈A,≤〉 where there is the
lub of every subset I of A. Then there exists the glb of I as well.

Proof. Consider any set I ⊆ A, and let us call LB(I) the set of all lower bounds
of S. That is, LB(I) = {x ∈ A | for all y ∈ I, x ≤S y}. Then consider a =
lub(LB(I)). We will prove that a is the glb of I.

Consider any element y ∈ I. By definition of LB(I), we have that all elements
x in LB(I) are smaller than y, thus y is an upper bound of LB(I). Since a is
by definition the smallest among the upper bounds of LB(I), we also have that
a ≤S y. This is true for all elements y in I. Thus a is a lower bound of I, which
means that it must be contained in LB(I). Thus we have found an element of
A which is the greatest among all lower bounds of I.

Theorem 2.1.4 (〈A,≤S〉 is a complete lattice). Given a c-semiring S = 〈A,
+, ×, 0, 1〉, consider the partial order ≤S. Then 〈A,≤S〉 is a complete lattice.

Proof. To prove that 〈A,≤S〉 is a complete lattice it is enough to show that
every subset of A has the lub. In fact, by Lemma 2.1.1 we would get that each
subset of A has both the lub and the glb, which is exactly the definition of a
complete lattice.

We already know by Theorem 2.1.1 that 〈A,≤S〉 is a partial order. Now,
consider any set I ⊆ A, and let us set m =

∑
(I) and n = lub(I). Given any

element x ∈ I, we have that x + m =(by flattening)
∑

({x} ∪ I) =
∑

(I) = m.
Therefore, by definition of ≤S , we have that x ≤S m. Thus also n ≤S m, since m
is an upper bound of I and n by definition is the least among the upper bounds.
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On the other hand, we have that
m+ n = (by definition of sum)∑

({m} ∪ {n}) = (by flattening and since m =
∑

(I))∑
(I ∪ {n}) = (by giving an alternative definition of the set I ∪ {n})∑
(
⋃
x∈I({x} ∪ {n})) = (by flattening)∑

({∑({x} ∪ {n}), x ∈ I}) = (since x ≤S n and thus
∑

({x} ∪ {n}) = n)∑
({n}) = n.

Thus we have proven that m ≤S n, which, together with the previous result
(that n ≤S m) yields m = n. In other words, we proved that

∑
(I) = lub(I) for

any set I ⊆ A. Thus every subset of A, say I, has a least upper bound (which
coincides with

∑
(I)). Thus 〈A,≤S〉 is a lub-complete partial order.

Note that the proof of the previous theorem also says that the + operation
coincides with the lub of the lattice 〈A,≤S〉.
Theorem 2.1.5 (× idempotent). Given a c-semiring S = 〈A,+,×,0,1〉,
consider the corresponding complete lattice 〈A,≤S〉. If × is idempotent, then
we have that:

1. + distributes over ×;
2. × coincides with the glb operation of the lattice;
3. 〈A,≤S〉 is a distributive lattice.

Proof.

1. (a+ b) × (a+ c) = {since × distributes over +}
((a+ b) × a) + ((a+ b) × c)) = {same as above}
((a× a) + (a× b)) + ((a+ b) × c)) = {by idempotency of ×}
(a+ (a× b)) + ((a+ b) × c)) = {by intensivity of × and definition of ≤S}
a+ ((a+ b) × c)) = {since × distributes over +}
a+ ((c× a) + (c× b)) = {by intensivity of × and definition of ≤S}
a+ (c× b).

2. Assume that a × b = c. Then, by intensivity of × (see Theorem 2.1.3), we
have that c ≤S a and c ≤S b. Thus c is a lower bound for a and b. To show
that it is a glb, we need to show that there is no other lower bound c′ such
that c ≤s c′. Assume that such c′ exists. We now prove that it must be
c′ = c:
c′ = {since c ≤S c′}
c′ + c = {since c = a× b}
c′ + (a× b) = {since + distributes over ×, see previous point}
(c′+a)× (c′ +b) = {since we assumed c′ ≤S a and c′ ≤S b, and by definition
of ×}
a× b = {by assumption}
c.

3. This comes from the fact that + is the lub, × is the glb, and × distributes
over + by definition of semiring (the distributiveness in the other direction
is given by Lemma 6.3 in [80], or can be seen in the first point above).
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Note that, in the particular case in which × is idempotent and ≤S is total, we
have that a+ b = max(a, b) and a× b = min(a, b).

2.2 Constraint Systems and Problems

We will now define the notion of constraint system, constraint, and constraint
problem, which will be parametric w.r.t. the notion of c-semiring just defined.
Intuitively, a constraint system specifies the c-semiring 〈A,+,×,0,1〉 to be used,
the set of all variables and their domain D.

Definition 2.2.1 (constraint system). A constraint system is defined as a
tuple CS = 〈S,D, V 〉, where S is a c-semiring, D is a finite set, and V is an
ordered set of variables.

Now, a constraint over a given constraint system specifies the involved vari-
ables and the “allowed” values for them. More precisely, for each tuple of values
(of D) for the involved variables, a corresponding element of A is given. This
element can be interpreted as the tuple’s weight, or cost, or level of confidence,
or other.

Definition 2.2.2 (constraint). Given a constraint system CS = 〈S, D, V 〉,
where S = 〈A, +, ×, 0, 1〉, a constraint over CS is a pair 〈def, con〉, where

– con ⊆ V , it is called the type of the constraint;
– def : Dk → A (where k is the cardinality of con) is called the value of the

constraint.

A constraint problem is then just a set of constraints over a given constraint
system, plus a selected set of variables (thus a type). These are the variables of
interest in the problem, i.e., the variables of which we want to know the possible
assignments’ compatibly with all the constraints.

Definition 2.2.3 (constraint problem). Consider any constraint system
CS = 〈S,D, V 〉. A constraint problem P over CS is a pair P = 〈C, con〉,
where C is a set of constraints over CS and con ⊆ V . We also assume that
〈def1, con′〉 ∈ C and 〈def2, con′〉 ∈ C implies def1 = def2. In the following we
will write SCSP to refer to such constraint problems.

Note that the above condition (that there are no two constraints with the
same type) is not restrictive. In fact, if in a problem we had two constraints
〈def1, con′〉 and 〈def2, con′〉, we could replace both of them with a single con-
straint 〈def, con′〉 with def(t) = def1(t)× def2(t) for any tuple t. Similarly, if C
were a multiset, e.g. if a constraint 〈def, con′〉 had n occurrences in C, we could
replace all its occurrences with the single constraint 〈def ′, con′〉 with

def ′(t) = def(t) × . . .× def(t)︸ ︷︷ ︸
n times
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for any tuple t. This assumption, however, implies that the operation of union
of constraint problems is not just set union, since it has to take into account
the possible presence of constraints with the same type in the problems to be
combined (at most one in each problem), and, in that case, it has to perform
the just-described constraint replacement operations.

When all variables are of interest, like in many approaches to classical
CSP, con contains all the variables involved in any of the constraints of the
given problem, say P . Such a set, called V (P ), is a subset of V that can
be recovered by looking at the variables involved in each constraint. That is,
V (P ) =

⋃
〈def,con′〉∈C con

′.
As for classical constraint solving, SCSPs as defined above also can be graph-

ically represented via labeled hypergraphs where nodes are variables, hyperarcs
are constraints, and each hyperarc label is the definition of the corresponding
constraint (which can be seen as a set of pairs 〈 tuple, value 〉). The variables of
interest can then be marked in the graph.

Note that the above definition is parametric w.r.t. the constraint system
CS and thus w.r.t. the semiring S. In the following we will present several
instantiations of such a framework, and we will show them to coincide with
known and also new constraint satisfaction systems.

In the SCSP framework, the values specified for the tuples of each constraint
are used to compute corresponding values for the tuples of values of the variables
in con, according to the semiring operations: the multiplicative operation is used
to combine the values of the tuples of each constraint to get the value of a tuple
for all the variables, and the additive operation is used to obtain the value of the
tuples of the variables in the type of the problem. More precisely, we can define
the operations of combination (⊗) and projection (⇓) over constraints. Analogous
operations were originally defined for fuzzy relations in [196], and used for fuzzy
CSPs in [91]. Our definition is, however, more general since we do not consider
a specific c-semiring (like that which we will define for fuzzy CSPs later) but a
general one.

To define the operators of combination (⊗) and projection (⇓) over con-
straints we need the definition of tuple projection (which is given here in a more
general way w.r.t. that given in Definition 1.3.2 where it was used only for the
definition of CSP solutions).

Definition 2.2.4 (tuple projection). Given a constraint system CS =
〈S,D, V 〉 where V is totally ordered via ordering ≺, consider any k-tuple2

t = 〈t1, . . . , tk〉 of values of D and two sets W = {w1, . . . , wk} and W ′ =
{w′

1, . . . , w
′
m} such that W ′ ⊆ W ⊆ V and wi ≺ wj if i ≤ j and w′

i ≺ w′
j if

i ≤ j. Then the projection of t from W to W ′, written t ↓WW ′ , is defined as the
tuple t′ = 〈t′1, . . . , t′m〉 with t′i = tj if w′

i = wj .

Definition 2.2.5 (combination). Given a constraint system CS = 〈S,D, V 〉,
where S = 〈A, +, ×, 0, 1〉, and two constraints c1 = 〈def1, con1〉 and c2 =
2 Given any integer k, a k-tuple is just a tuple of length k. Also, given a set S, an

S-tuple is a tuple with as many elements as the size of S.
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〈def2, con2〉 over CS, their combination, written c1 ⊗ c2, is the constraint c =
〈def, con〉 with

con = con1 ∪ con2

and

def(t) = def1(t ↓concon1
) × def2(t ↓concon2

).

Since × is both commutative and associative, so too is ⊗. Thus this operation
can be easily extended to more than two arguments, say C = {c1, . . . , cn}, by
performing c1 ⊗ c2 ⊗ . . .⊗ cn, which we will sometimes denote by

⊗
C.

Definition 2.2.6 (projection). Given a constraint system CS = 〈S,D, V 〉,
where S = 〈A, +, ×, 0, 1〉, a constraint c = 〈def, con〉 over CS, and a set I
of variables (I ⊆ V ), the projection of c over I, written c ⇓I , is the constraint
〈def ′, con′〉 over CS with

con′ = I ∩ con
and

def ′(t′) = Σ{t|t↓conI∩con=t′}def(t).

Proposition 2.2.1 (c ⇓I= c ⇓I∩con). Given a constraint c = 〈def, con〉 over
a constraint system CS and a set I of variables (I ⊆ V ), we have that c ⇓I=
c ⇓I∩con.
Proof. Follows trivially from Definition 2.2.6.

A useful property of the projection operation is the following.

Theorem 2.2.1 (c ⇓S1⇓S2= c ⇓S2). Given a constraint c over a constraint
system CS, we have that c ⇓S1⇓S2= c ⇓S2 if S2 ⊆ S1.

Proof. To prove the theorem, we have to show that the two constraints c1 =
c ⇓S1⇓S2 and c2 = c ⇓S2 coincide, that is, they have the same con and the
same def . Assume c = 〈def, con〉, c1 = 〈def1, con1〉, and c2 = 〈def2, con2〉. Now,
con1 = S2 ∩ (S1 ∩ con). Since S2 ⊆ S1, we have that con1 = S2 ∩ con. Also,
con2 = S2 ∩ con, thus con1 = con2. Consider now def1. By Definition 2.2.6, we
have that def1(t1) = Σ{t′|t′↓S1

S2
=t1}Σ{t|t↓conS1

=t′}def(t), which, by associativity of

+, is the same as Σ{t|t↓conS2
=t1}def(t), which coincides with def2(t1) by Definition

2.2.6.

We will now prove a property which can be seen as a generalization of the
distributivity property in predicate logic, which we recall is ∃x.(p∧q) = (∃x.p)∧q
if x not free in q (where p and q are two predicates). The extension we prove for
our framework is given by the fact that ⊗ can be seen as a generalized ∧ and ⇓
as a variant3 of ∃. This property will be useful later in Section 3.6.
3 Note, however, that the operator corresponding to ∃x is given by ⇓W

W−{x}.
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Theorem 2.2.2. Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉
over a constraint system CS, we have that (c1 ⊗ c2) ⇓(con1∪con2)−x= c1 ⇓con1−x
⊗c2 if x ∩ con2 = ∅.
Proof. Let us set c = (c1 ⊗ c2) ⇓(con1∪con2)−x= 〈def, con〉 and c′ = c1 ⇓con1−x
⊗c2 = 〈def ′, con′〉. We will first prove that con = con′: con = (con1 ∪ con2) − x
and con′ = (con1 − x) ∪ con2, which is the same as con if x ∩ con2 = ∅, as we
assumed. Now we prove that def = def ′. By definition,

def(t) = Σ{t′|t′↓con1∪con2
con1∪con2−x=t}(def1(t

′ ↓con1∪con2
con1

) × def2(t′ ↓con1∪con2
con2

)).

Now, def2(t′ ↓con1∪con2
con2

) is independent from the summation, since x is not
involved in c2. Thus it can be taken out. Also, t′ ↓con1∪con2

con2
can be substituted

by t ↓con1∪con2
con2

, since t′ and t must coincide on the variables different from x.
Thus we have:

(Σ{t′|t′↓con1∪con2
con1∪con2−x=t}def1(t

′ ↓con1∪con2
con1

)) × def2(t ↓con1∪con2−x
con2

).

Now, the summation is done over those tuples t′ that involve all the variables
and coincide with t on the variables different from x. By observing that the
elements of the summation are given by def1(t′ ↓con1∪con2

con1
), and thus they only

contain variables in con1, we can conclude that the result of the summation does
not change if it is done over the tuples involving only the variables in con1 and
still coinciding with t over the variables in con1 that are different from x. Thus
we get:

(Σ{t1|t1↓con1
con1−x=t↓

con1∪con2−x
con1−x }def1(t1)) × def2(t ↓con1∪con2−x

con2
).

It is easy to see that this formula is exactly the definition of def ′.

Using the properties of × and +, it is easy to prove that: ⊗ is associative
and commutative; ⊗ is monotone over �S. Moreover, if × is idempotent ⊗ is
idempotent.

Using the operations of combination and projection, we can now define the
notion of solution of an SCSP. In the following we will consider a fixed constraint
system CS = 〈S,D, V 〉, where S = 〈A,+,×,0,1〉.
Definition 2.2.7 (solution). Given a constraint problem P = 〈C, con〉 over
a constraint system CS, the solution of P is a constraint defined as Sol(P ) =
(
⊗
C) ⇓con.
In words, the solution of an SCSP is the constraint induced on the variables

in con by the whole problem. Such constraint provides, for each tuple of values
of D for the variables in con, a corresponding value of A. Sometimes, it is enough
to know just the best value associated with such tuples. In our framework, this
is still a constraint (over an empty set of variables), and will be called the best
level of consistency of the whole problem, where the meaning of “best” depends
on the ordering ≤S defined by the additive operation.



2.2 Constraint Systems and Problems 31

Definition 2.2.8 (best level of consistency). Given an SCSP P = 〈C, con〉,
we define blevel(P ) ∈ S such that 〈blevel(P ), ∅〉 = (

⊗
C) ⇓∅. Moreover, we say

that P is consistent if 0 <S blevel(P ), and that P is α-consistent if blevel(P ) =
α.

Informally, the best level of consistency gives us an idea of how much we can
satisfy the constraints of the given problem. Note that blevel(P ) does not depend
on the choice of the distinguished variables, due to the associative property of the
additive operation. Thus, since a constraint problem is just a set of constraints
plus a set of distinguished variables, we can also apply function blevel to a set
of constraints only. More precisely, blevel(C) will mean blevel(〈C, con〉) for any
con.

Note that blevel(P ) can also be obtained by first computing the solution and
then projecting such a constraint over the empty set of variables, as the following
proposition shows.

Proposition 2.2.2. Given an SCSP P , we have that Sol(P ) ⇓∅=
〈blevel(P ), ∅〉.
Proof. Sol(P ) ⇓∅ coincides with ((

⊗
C) ⇓con) ⇓∅ by definition of Sol(P ). This

coincides with (
⊗
C) ⇓∅ by Theorem 2.2.1, thus it is the same as 〈blevel(P ), ∅〉

by Definition 2.2.8.

Another interesting notion of solution, more abstract than the one defined
above, but sufficient for many purposes, is the one that does not consider those
tuples whose associated value is worse (w.r.t. ≤S) than that of other tuples.

Definition 2.2.9 (abstract solution). Given an SCSP P = 〈C, con〉, con-
sider Sol(P ) = 〈def, con〉. Then the abstract solution of P is the set ASol(P ) =
{〈t, v〉 | def(t) = v and there is no t′ such that v ≤S def(t′)}.

Note that, when the ≤S ordering is a total order (that is, when, for any a
and b, a + b is either a or b), then the abstract solution contains only those
tuples whose associated value coincides with blevel(P ). In general, instead, an
incomparable set of tuples is obtained, and thus blevel(P ) is just an upper bound
of the values associated with the tuples.

By using the ordering ≤S over the semiring, we can also define a correspond-
ing ordering on constraints with the same type.

Definition 2.2.10 (constraint ordering). Consider two constraints c1, c2
over CS, and assume that con1 = con2 and |con1| = k. Then c1 �S c2 if
and only if, for all k-tuples t of values from D, def1(t) ≤S def2(t).

Notice that, if c1 �S c2 and c2 �S c1, then c1 = c2.

Theorem 2.2.3 (�S is a partial order). The relation �S over the set of
constraints over CS is a partial order.



32 2. Soft Constraint Satisfaction Problems

Proof. By definition, such a relation is antisymmetric. Also, it is easy to see that
it is reflexive and transitive.

The notion of constraint ordering, and the fact that the solution is a con-
straint, can also be useful to define an ordering on problems.

Definition 2.2.11 (problem ordering and equivalence). Consider two SC-
SPs P1 = 〈C1, con〉 and P2 = 〈C2, con〉 over CS. Then P1 �P P2 if Sol(P1) �S
Sol(P2). If P1 �P P2 and P2 �P P1, then they have the same solution. Thus we
say that P1 and P2 are equivalent and we write P1 ≡ P2.

Theorem 2.2.4 (�P is a preorder and ≡ is an equivalence). The relation
�P over the set of constraint problems over CS is a preorder. Moreover, ≡ is
an equivalence relation.

Proof. It is trivial to see that �P is reflexive and transitive, due to the definition
of constraint ordering �S . Thus �P is a preorder. From this it derives that ≡ is
reflexive and transitive as well. Moreover, it is trivially symmetric.

The ordering �P can also be used for ordering sets of constraints, since a set
of constraint is just a problem where con contains all the variables.

It is interesting now to note that, as in the classical CSP case, also the SCSP
framework is monotone. That is, if some constraints are added, the solution of
the new problem precedes that of the old one in the ordering �S . In other words,
the new problem precedes the old one w.r.t. the preorder �P .

Theorem 2.2.5 (monotonicity). Consider two SCSPs P1 = 〈C1, con〉 and
P2 = 〈C1 ∪C2, con〉 over CS. Then P2 �P P1 and blevel(P2) ≤S blevel(P1).

Proof. P2 �P P1 follows from the intensivity of × and the monotonicity of +.
The same holds also for blevel(P2) ≤S blevel(P1), since both Sol and blevel(P )
are obtained by projecting over a subset of the variables (which is always empty
in the case of blevel(P )).

When one is interested in the abstract solution rather than in the solution of
an SCSP, then the above notion of monotonicity is lost. In fact, it is possible that
by adding some constraints the best level of consistency gets worse, while the set
of tuples in the abstract solution grows. See for example Figure 2.1, where there
is a problem P1 with one constraint and both variables as type, and a problem
P2 with the same constraint plus another one, and the two leftmost variables
as type. Assume also that × is min and that + is max. As we will see later,
this amounts to considering the fuzzy constraint satisfaction framework (FCSP)
(with the set of reals as carrier set instead of the set [0, 1]. Now, it is easy to
see that blevel(P1) = 3 and blevel(P2) = 2. The abstract solution of P1 contains
the tuples 〈a, a〉 and 〈b, a〉, while that of P2 contains also 〈a, b〉 and 〈b, b〉. Thus,
adding one constraint in this case makes the best level of consistency worse while
enlarging the set of tuples in the abstract solution.

Another notion of monotonicity holds, however, but only when the best level
is not changed by the addition of some constraints and the order ≤S is total.
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Fig. 2.1. Two SCSPs

Theorem 2.2.6 (subset-monotonicity vs. Asol). Consider two SCSPs P1 =
〈C1, con〉 and P2 = 〈C1 ∪ C2, con〉 over CS, and assume that ≤S is total and
that blevel(P1) = blevel(P2). Then Asol(P2) ⊆ Asol(P1).

Proof. If ≤S is total, then the abstract solution is a set of tuples with associated
value exactly the best level. Take a tuple t in ASol(P2). This means that the
value associated with t in P2 is blevel(P2). Then, by Theorem 2.2.5, the value
associated with t in P1, say v, is such that blevel(P2) ≤S v. By assumption,
blevel(P1) = blevel(P2). If v �= blevel(P2), then this assumption is violated. Thus
it must be v = blevel(P2) = blevel(P1). Thus t is also in Asol(P1). Therefore
Asol(P2) ⊆ Asol(P1).

2.3 Instances of the Framework

We will now show how several known, and also new, frameworks for constraint
solving may be seen as instances of the SCSP framework. More precisely, each
of such frameworks corresponds to the choice of a specific constraint system
(and thus of a semiring). This means that we can immediately know whether
one can inherit the properties of the general framework by just looking at the
properties of the operations of the chosen semiring, and by referring to the
theorems in the previous sections. This is interesting for known constraint solving
schemes, because it puts them into a single unifying framework and it justifies
in a formal way many informally taken choices, but it is especially significant for
new schemes, for which one does not need to prove all the properties that it has
(or not) from scratch.

Note that the constraint systems of different instances differ only in the choice
of the semiring. Therefore, in the following we will only specify the semiring that
has to be chosen to obtain a particular instance of the SCSP framework.

2.3.1 Classical CSPs

As described in Section 1.3 a classical CSP problem [139, 150] is just a set of
variables and constraints, where each constraint specifies the tuples that are

figure/non-mon.eps
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allowed for the involved variables. Assuming the presence of a subset of distin-
guished variables, the solution of a CSP consists of a set of tuples that represent
the assignments of the distinguished variables, which can be extended to total
assignments (for all the values) while satisfying all the constraints.

Since constraints in CSPs are crisp, that is, they either allow a tuple or
not, we can model them via a semiring domain with only two values, say 1
and 0: allowed tuples will have associated the value 1, and not-allowed ones
the value 0. Moreover, in CSPs, constraint combination is achieved via a join
operation among allowed tuple sets. This can be modeled here by assuming the
multiplicative operation to be the logical and (and interpreting 1 as true and 0
as false). Finally, to model the projection over some of the variables (for example
the distinguished ones), as the k-tuples (assuming we project over k variables)
for which there exists a consistent extension to an n-tuple, it is enough to assume
the additive operation to be the logical or. Therefore, a CSP is just an SCSP
where the semiring is

SCSP = 〈{0, 1},∨,∧, 0, 1〉.
Theorem 2.3.1. SCSP = 〈{0, 1},∨,∧, 0, 1〉 is a c-semiring.

Proof. It is easy to see that it is a semiring. Thus, we will only prove the addi-
tional properties needed in a c-semiring:

– the additive operation must be idempotent; it is trivially true since the
additive operation is ∨, and a ∨ a = a for any a ∈ {0, 1};

– the multiplicative operation must be commutative; trivially from the defini-
tion of ∧;

– 1 is the absorbing element of the additive operation, that is 1∨a = 1, which
is trivially true.

The ordering ≤S here reduces to 0 ≤S 1.

Example 2.3.1. Consider the CSP P in Figure 2.2a), where the distinguished
variables are marked and the constraints are arcs labeled by the allowed tuples.
The solution of such a CSP is the singleton set containing tuple 〈a, a〉 (which
means x = a and y = a). This CSP can be seen as an SCSP P ′ over the semiring
SCSP in Figure 2.2b). It can then be shown, by using the semiring operations,
that the solution of P and that of P ′ coincide (modulo the semiring domain
value). To compute the solution of P ′, we have to assign a value to each tuple
for the distinguished variables. This is done by first considering all 3-tuples and
assigning a value to them, and then by projecting (via the ∨ operation) such
values over the distinguished variables. To assign a value to a 3-tuple, one has to
combine (via the ∧ operation) the values of all the subtuples corresponding to
subsets of variables which are connected by some constraint. In Figure 2.3, for
each 3-tuple we have written the values of its subtuples: subtuples are pointed
out by underlining them, and subtuples of one element only are not indicated,
since they all have value 1. Then the value for the tuple itself can be seen to
the right as a combination of the subtuple values (again, for simplicity of the
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picture one-value subtuples are not considered since they always have value 1),
and the value for each 2-tuple which is a projection of some 3-tuples onto the
variables x and y can be seen to the left, as a combination of the values of the
two tuples which have the same projection over x and y. It is easy to see that
a 3-tuple gets the value 1 only when it satisfies all the constraints (due to the
definition of ∧), and that a 2-tuple gets a value 1 when there exists a possible
extension to a 3-tuple whose value is 1 (due to the definition of ∨). From Figure
2.3, one can see that the only group of tuples that gets value 1 is the first one,
thus the solution of the CSP is the projection of this group of tuples onto x and
y, that is, x = a and y = a.

It is easy to see, also from the example above, that the chosen c-semiring
allows us to faithfully represent any given CSP. That is, taken the given CSP
P and the SCSP P ′ obtained by applying a suitable transformation to P , the
solutions of P and P ′ are the same modulo a similar transformation.

It is possible to check that an alternative way to represent CSPs in the SCSP
framework is by using the following c-semiring: 〈℘({a}),⋃,⋂, ∅, {a}〉, where
℘(S) is the powerset of a set S, and a is any value.

2.3.2 Fuzzy CSPs (FCSPs)

Fuzzy CSPs (FCSPs) [91,165,167] extend the notion of classical CSPs by allowing
non-crisp constraints, that is, constraints which associate a preference level with
each tuple of values. Such level is always between 0 and 1, where 1 represents the
best value (that is, the tuple is allowed) and 0 the worst one (that is, the tuple
is not allowed). The solution of a fuzzy CSP is then defined as the set of tuples
of values (for all the variables) which have the maximal value. The way they
associate a value with an n-tuple is by minimizing the values of all its subtuples.
The reason for such a max-min framework relies on the attempt to maximize
the value of the least preferred tuple.

Fuzzy CSPs are already a very significant extension of CSPs. In fact, they
are able to model partial constraint satisfaction (as described in Section 1.4.1),
so as to get a solution even when the problem is overconstrained, and also pri-
oritised constraints, that is, constraints with different levels of importance (see
Section 1.4.2).
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Fig. 2.2. A CSP and the corresponding SCSP

figure/csp.eps


36 2. Soft Constraint Satisfaction Problems

1 0

a   a   a

a   a   b

1 1
1 + 1 = 1

1 + 0 = 0

1 - 0 = 1

1 0

1

b   b   a

0

b   b   b 1 + 0 = 0

1 + 0 = 0

0 - 0 = 0

0

0

a   b   a

0

a   b   b

0

0 + 0 = 0

0 + 0 = 0

0 - 0 = 0
00

0

b   a   a

b   a   b

1

0 + 0 = 0

0 + 1 = 0

0 - 0 = 0

Fig. 2.3. Combination and projection in classical CSPs

Definition 2.3.1 (Fuzzy CSPs). A Fuzzy Constraint Satisfaction Problem
(FCSP) consist of:

– a set of variables X = {x1, . . . , xn},
– for each variable xi, a finite set Di of possible values (its domain),
– a set of constraints; each constraint c is defined by a function fuzzy level
fl(c, A), that assigns a real number between 0 and 1 to each tuple A of
domain values.

A solution to a FCSP is an assignment of a value from its domain to every
variable such that the expression min{fl(c, A) | c is a constraint in FCSP} is
maximized among all possible assignments A of domain values.

It is easy to see that fuzzy CSPs can be modeled in our framework by choosing
the semiring

SFCSP = 〈{x | x ∈ [0, 1]},max,min, 0, 1〉.
Theorem 2.3.2. SFCSP is a c-semiring.

Proof. It is easy to see that it is a semiring. Thus we will only prove the additional
properties that are needed in a c-semiring:

– the additive operation must be idempotent; this is trivially true since the
additive operation is max, and max(a, a) = a for any a;

– the multiplicative operation must be commutative; trivially from the defini-
tion of min;

– 1 is the absorbing element of the additive operation, that is max(1, a) = 1,
which is true since 0 ≤ a ≤ 1.

The ordering ≤S here reduces to the ≤ ordering on reals. It is also easy to see
that any FCSP P can be rewritten as an SCSP P ′ over the semiring SFCSP such
that sol(P ) = sol(P ′) (modulo a suitable transformation between the problems
and the solutions).
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Fuzzy CSPs are much closer to our framework than classical CSPs, since they
already introduce the notion of preference levels. This means that they have to
generalize the notions of constraint combination and projection as well, so as to
get the appropriate definition of solution. We are, however, obviously much more
general in that we do not make any assumption on the semiring operations.

2.3.3 Probabilistic CSPs (Prob-CSPs)

Probabilistic CSPs (Prob-CSPs) [96] were introduced to model those situations
where each constraint c has a certain probability p(c), independent from the
probability of the other constraints, to be part of the given problem (actually, the
probability is not of the constraint, but of the situation which corresponds to the
constraint: saying that c has probability pmeans that the situation corresponding
to c has probability p of occurring in the real-life problem).

This allows one to also reason about problems which are only partially known.
The probability levels on constraints then gives to each instantiation of all the
variables, a probability that it is a solution of the real problem. This is done by
first associating with each subset of constraints the probability that it is in the
real problem (by multiplying the probabilities of the involved constraints), and
then by summing up all the probabilities of the subsets of constraints where the
considered instantiation is a solution. Alternatively, the probability associated
with an n-tuple t can also be seen as the probability that all constraints that t
violates are indeed in the real problem. This is just the product of all 1 − p(c)
for all c violated by t. Finally, the aim is to get those instantiations with the
maximum probability.

Definition 2.3.2 (Probabilistic CSPs). A Probabilistic Constraint Satisfac-
tion Problem (Prob-CSP) consists of:

– a set of variables X = {x1, . . . , xn},
– for each variable xi, a finite set Di of possible values (its domain),
– a set of constraints restricting the values that the variables can simultane-

ously take; each constraint c is also assigned a certain probability p(c) to be
part of the given problem.

There are two alternative approaches to define the solution to a Prob-CSP.
Again, the solution is an assignment of a value from its domain to every variable
such that

1. the expression Sum{Product{p(c) | c is a constraint in S} | S is a subset
of the set of all constraints satisfied by A} is maximized among all possible
assignments A of values, or

2. the expression Product{(1−p(c)) | c is a constraint in FCSP violated by A}
is maximized among all possible assignments A of values.

The relationship between Prob-CSPs and SCSPs is complicated by the fact
that Prob-CSPs contain crisp constraints with probability levels, while SCSPs
contain non-crisp constraints. That is, we associate values with tuples, and not to
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constraints. It is still possible however to model Prob-CSPs, by using a transfor-
mation which is similar to that proposed in [91] to model prioritised constraints
via soft constraints in the FCSP framework. More precisely, we assign probabil-
ities to tuples instead of constraints. Consider any constraint c with probability
p(c), and let t be any tuple of values for the variables involved in c. Then p(t) = 1
if t is allowed by c, otherwise p(t) = 1 − p(c). The reasons for such a choice are
as follows: if a tuple is allowed by c and c is in the real problem, then t is allowed
in the real problem; this happens with probability p(c); if instead c is not in
the real problem, then t is still allowed in the real problem, and this happens
with probability 1−p(c). Thus, t is allowed in the real problem with probability
p(c) + 1 − p(c) = 1. Consider instead a tuple t which is not allowed by c. Then
it will be allowed in the real problem only if c is not present; this happens with
probability 1 − p(c).

To give the appropriate value to an n-tuple t, given the values of all the
smaller k-tuples, with k ≤ n and which are subtuples of t (one for each con-
straint), we just perform the product of the value of such subtuples. By the
manner in which values have been assigned to tuples in constraints, this coin-
cides with the product of all 1− p(c) for all c violated by t. In fact, if a subtuple
violates c, then by construction its value is 1−p(c); if instead a subtuple satisfies
c, then its value is 1. Since 1 is the unit element of ×, we have that 1 × a = a
for each a. Thus we get Π(1 − p(c)) for all c that t violates.

As a result, the semiring corresponding to the Prob-CSP framework is

Sprob = 〈{x | x ∈ [0, 1]},max,×, 0, 1〉.
Theorem 2.3.3. Sprob is a c-semiring.

Proof. It is a semiring. To be also a c-semiring, we need the following:

– the additive operation must be idempotent; this is trivially true since the
additive operation is max, and max(a, a) = a for any a;

– the multiplicative operation must be commutative; trivially from the defini-
tion of ×;

– 1 is the absorbing element of the additive operation, that is max(1, a) = 1,
which is true since 0 ≤ a ≤ 1.

The associated ordering ≤S here reduces to ≤ over reals.

It is easy to see that any Prob-CSP P can be rewritten as a n SCSP P ′

over the semiring Sprob, such that sol(P ) = sol(P ′) (modulo a suitable transfor-
mation between the problems and the solutions). Note that the fact that P ′ is
α-consistent means that in P there exists an n-tuple which has probability α to
be a solution of the real problem.

2.3.4 Weighted CSPs

While fuzzy CSPs associate a level of preference with each tuple in each con-
straint, in weighted CSPs (WCSPs) tuples come with an associated cost. This
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allows one to model optimization problems where the goal is to minimize the
total cost (time, space, number of resources, and so on) of the proposed solution.
Therefore, in WCSPs the cost function is defined by summing up the costs of all
constraints (intended as the cost of the chosen tuple for each constraint). Thus,
the goal is to find the n-tuples (where n is the number of all the variables) which
minimize the total sum of the costs of their subtuples (one for each constraint).

Another way to understand the difference between WCSPs and FCSPs is
that FCSPs have an egalitarianistic approach to optimization problems (that is,
they aim at maximizing the overall level of consistency while balancing the levels
of all constraints), while WCSPs have an utilitarianistic approach (that is, they
aim at getting the minimum cost globally, even though some constraints may be
neglected and thus present a big cost) [154]. We believe that both approaches
present advantages and drawbacks, and thus one may be preferred to the other,
depending on the real-life situation to be modeled.

According to the informal description of WCSPs given above, the associated
semiring is

SWCSP = 〈R+,min,+,+∞, 0〉.

Theorem 2.3.4. SWCSP is a c-semiring.

Proof. It is easy to see that it is a semiring. To be a c-semiring, we need:

– the additive operation must be idempotent; this is trivially true since the
additive operation is min, and min(a, a) = a for any a;

– the multiplicative operation must be commutative; trivially from the defini-
tion of +;

– 0 is the absorbing element of the additive operation, that is min(0, a) = 0,
which is true since a ≥ 0.

The associated ordering ≤S reduces here to ≥ over the reals. This means
that a value is preferred to another one if it is smaller.

Note that the same properties hold also for the semirings 〈Q+,min,+,+∞, 0〉
and 〈Z+, min,+, +∞, 0〉 (which can be proved to be c-semirings).

2.3.5 Egalitarianism and Utilitarianism

As noted above, the FCSP and the WCSP systems can be seen as two different
approaches to giving a meaning to the notion of optimization. In fact, the two
models correspond on two definitions of social welfare in utility theory [154]:
egalitarianism, which maximizes the minimal individual utility, and utilitarian-
ism, which maximizes the sum of the individual utilities. FCSPs are based on
the egalitarian approach, while WCSPs are based on utilitarianism.

In this section we will show how our framework also allows for the com-
bination of these two approaches. In fact, we will construct an instance of the
SCSP framework where the two approaches coexist, and allow us to discriminate
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among solutions which otherwise would result indistinguishable. More precisely,
we can first compute the solutions according to egalitarianism (that is, using a
max-min computation as in FCSPs), and then discriminate more among them
via utilitarianism (that is, using a max-sum computation as in WCSPs).

The resulting semiring is the following:

Sue = 〈{〈l, k〉 | l ∈ [0, 1] and k ∈ R−},max,min, 〈0,−∞〉, 〈1, 0〉〉
where max and min are defined as follows:

– 〈l1, k1〉max〈l2, k2〉 =
{ 〈l1,max(k1, k2)〉 if l1 = l2
〈l1, k1〉 if l1 > l2

– 〈l1, k1〉min〈l2, k2〉 =
{ 〈l1, k1 + k2〉 if l1 = l2
〈l2, k2〉 if l1 > l2

That is, the domain of the semiring contains pairs of values: the first element
is used to reason via the max-min approach, while the second one is used to
further discriminate via the max-sum approach. The operation min (which is
the multiplicative operation of the semiring, and thus is used to perform the
constraint combination) takes two elements of the semiring, say a = 〈a1, a2〉 and
b = 〈b1, b2〉) and returns the one with the smallest first element (if a1 �= b1),
otherwise it returns the pair that has the sum of the second elements as its
second element (that is, 〈a1, a2 + b2〉). The operation max performs a max on
the first elements if they are different (thus returning the pair with the max-
imum first element), otherwise (if a1 = b1) it performs a max on the second
elements (thus returning a pair which has such a max as second element, that is,
〈a1,max(a2, b2)〉). More abstractly, we can say that, if the first elements of the
pairs differ, then the max-min operations behave like a normal max-min, other-
wise they behave like max-sum. This can be interpreted as the fact that, if the
first elements coincide, it means that the max-min criterion cannot discriminate
enough, and thus the max-sum criterion is used.

One can show that Sue is a c-semiring.

2.3.6 Set-Based CSPs

An interesting class of instances of the SCSP framework that are based on set
operations like union and intersection is the one which uses the c-semiring

Sset = 〈℘(A),
⋃
,
⋂
, ∅, A〉

where A is any set. It is easy to see that Sset is a c-semiring. Also, in this case the
order ≤Sset reduces to set inclusion (in fact, a ≤ b iff a∪ b = b), and therefore it
is partial in general. Furthermore, × is

⋂
in this case, and thus it is idempotent.

A useful application of such SCSPs based on a set occurs when the variables
of the problem represent processes, the finite domain D is the set of possible
states of such processes, and A is the set of all time intervals over reals. In this
case, a value t associated to a pair of values 〈d1, d2〉 for variables x and y can



2.3 Instances of the Framework 41

be interpreted as the set of all time intervals in which process x can be in state
d1 and process y in state d2. Therefore, a solution of any SCSP based on the
c-semiring Sset consists of a tuple of process states, together with (the set of) the
time intervals in which such system configuration can occur. This description of
a system can be helpful, for example, to discover if there are time intervals in
which a deadlock is possible.

2.3.7 Valued Constraint Problems

The framework [174] described in this subsection is based on an ordered monoid
structure (that is, an ordered domain plus one operation satisfying some proper-
ties). The values of the domain are interpreted as levels of violation (which can
be interpreted as cost, or degrees of preference, or probabilities, or others) and
can be combined using the monoid operator. Specific choices of the monoid will
then give rise to different instances of the framework.

Elements of the set of the monoid, called valuations, are associated with each
constraint and the monoid operation (denoted �) is used to assign a valuation
to each assignment, by combining the valuations of all the constraints violated
by the assignment. The order on the monoid is assumed to be total and the
problem considered is always to minimize the combined valuation of all violated
constraints. The reader should note that the choice of associating one valuation
to each constraint rather than to each tuple (as in the SCSP framework) is done
only for the sake of simplicity and is not fundamentally different.

In this section, a classical CSP is defined by a set V = {v1, . . . , vn} of
variables, each variable vi having an associated finite domain di. A constraint
c = (Vc, Rc) is defined by a set of variables Vc ⊆ V and a relation Rc between
the variables of Vc i.e., a subset of the Cartesian product

∏
vi∈Vc di. A CSP is

denoted by 〈V,D,C〉, where D is the set of the domains and C the set of the
constraints. A solution of the CSP is an assignment of values to the variables in
V such that all the constraints are satisfied: for each constraint c = (Vc, Rc), the
tuple of the values taken by the variables of Vc belongs to Rc.

Valuation Structure. In order to deal with over-constrained problems, it is
necessary to be able to express the fact that a constraint may eventually be
violated. To achieve this, we annotate each constraint with a mathematical item
which we call a valuation. Such valuations will be taken from a set E equipped
with the following structure:

Definition 2.3.3 (Valuation structure). A valuation structure is defined as
a tuple 〈E,�,�〉 such that:

– E is a set, whose elements are called valuations, which is totally ordered by
�, with a maximum element noted � and a minimum element noted ⊥;

– � is a commutative, associative closed binary operation on E that satisfies:
– Identity: ∀a ∈ E, a� ⊥ = a;
– Monotonicity: ∀a, b, c ∈ E, (a � b) ⇒ (

(a� c) � (b� c)
)
;

– Absorbing element: ∀a ∈ E, (a� �) = �.
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Valued CSP. A valued CSP is then simply obtained by annotating each con-
straint of a classical CSP with a valuation denoting the impact of its violation
or, equivalently, of its rejection from the set of constraints.

Definition 2.3.4 (Valued CSP). A valued CSP is defined by a classical CSP
〈V,D,C〉, a valuation structure S = (E,�,�), and an application ϕ from C to
E. It is denoted by 〈V,D,C, S, ϕ〉. ϕ(c) is called the valuation of c.

An assignmentA of values to some variablesW ⊂ V can now be simply evaluated
by combining the valuations of all the violated constraints using �:

Definition 2.3.5 (Valuation of assignments). In a Valued CSP P = 〈V, D,
C, S, ϕ〉 the valuation of an assignment A of the variables of W ⊂ V is defined
by:

VP(A) = �
c∈C,Vc⊂W
A violates c

[ϕ(c)]

The semantics of a VCSP is a distribution of valuations on the assignments of
V (potential solutions). The problem considered is to find an assignment A with
a minimum valuation. The valuation of such an optimal solution will be called
the CSP valuation. It provides a gradual notion of inconsistency, from ⊥, which
corresponds to consistency, to �, for complete inconsistency.

From SCSPs to VCSPs. The SCSP and the VCSP framework are similar,
but, however, they are not completely equivalent: only if one assumes a total
order on the semiring set, it will be possible to define appropriate mappings to
pass from one of them to the other.

In this section we compare the two approaches. Some more details related to
the two approaches can be found in [38, 39].

We will consider SCSPs 〈C, con〉 where con involves all variables. Thus we
will omit it in the following. An SCSP is, therefore, just a set of constraints C
over a constraint system 〈S,D, V 〉, where S is a c-semiring S = 〈A,+,×,0,1〉,
and D is the domain of the variables in V . Moreover, we will assume that the
+ operation induces an order ≤S which is total. This means that + corresponds
to max, or, in other words, that it always chooses the value which is closer to 1.

Given an SCSP, we will now show how to obtain a corresponding VCSP,
where by correspondence we mean that they associate the same value with each
variable assignment, and that they have the same solution.

Definition 2.3.6. Given an SCSP P with constraints C over a constraint sys-
tem 〈S,D, V 〉, where S is a c-semiring S = 〈A,+,×,0,1〉, we obtain the VCSP
P ′ = 〈V,D,C′, S′, ϕ〉, where S′ = 〈E,�,�〉, where E = A, � = ×, and ≺=>S.
(Note that � = 0 and ⊥ = 1.)

For each constraint c = 〈def , con〉 ∈ C, we obtain a set of constraints
c′1, . . . , c′k, where k is the cardinality of the range of def . That is, k = |{a s.t.
∃t with def (t) = a}|. Let us call a1, . . . , ak such values, and let us call Ti the
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set of all tuples t such that def (t) = ai. All the constraints ci involve the same
variables, which are those involved in c. Then, for each i = 1, . . . , k, we set
ϕ(c′i) = ak, and we define c′i in such a way that the tuples allowed are those not in
Ti. We will write P ′ = sv(P ). Note that, by construction, each tuple t is allowed
by all constraints c1, . . . , ck except the constraint ci such that ϕ(ci) = def (t).

Example 2.3.2. Consider an SCSP which contains the constraint c = 〈def, con〉,
where con = {x, y}, and def(〈a, a〉) = l1, def(〈a, b〉) = l2, def(〈b, a〉) = l3,
def(〈b, b〉) = l1. Then, the corresponding VCSP will contain the following three
constraints, all involving x and y:

– c1, with ϕ(c1) = l1 and allowed tuples 〈a, b〉 and 〈b, a〉;
– c2, with ϕ(c2) = l2 and allowed tuples 〈a, a〉, 〈b, a〉 and 〈b, b〉;
– c3, with ϕ(c3) = l3 and allowed tuples 〈a, a〉, 〈a, b〉 and 〈b, b〉.

Figure 2.4 shows both c and the three constraints c1, c2, and c3.

First we need to make sure that the structure we obtain via the definition
above is indeed a valued CSP. Then we will prove that it is equivalent to the
given SCSP.

Theorem 2.3.5 (from c-semiring to valuation structure). If we consider
a c-semiring S = 〈A,+,×,0,1〉 and the structure S′ = 〈E,�,�〉, where E = A,
� = ×, and ≺=>S (obtained using the transformation in Definition 2.3.6), then
S′ is a valuation structure.

Proof. First, � is a total order, since we assumed that ≤S is total and that
≺=>S. Moreover, � = 0 and ⊥ = 1, from the definition of ≤S . Then, since �
coincides with ×, it is easy to see that it is commutative, associative, monotone,
and closed. Moreover, 1 (that is, ⊥) is its unit element and 0 (that is, �) is its
absorbing element.
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Fig. 2.4. From SCSPs to VCSPs
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Theorem 2.3.6 (equivalence between SCSP and VCSP). Consider an
SCSP P and the corresponding VCSP problem P ′. Consider also an assignment
t to all the variables of P , with associated value a ∈ A. Then VP ′(t) = a.

Proof. Note first that P and P ′ have the same set of variables. In P , the value of
t is obtained by multiplying the values associated with each subtuple of t, one for
each constraint of P . Thus, a =

∏{defc(tc), for all constraints c = 〈defc, conc〉 in
C and such that tc is the projection of t over the variables of c}. Now, VP ′(t) =∏{ϕ(c′) for all c′ ∈ C′ such that the projection of t over the variables of c′

violates c′}. It is easy to see that the number of values multiplied in this formula
coincides with the number of constraints in C, since, as noted above, each tuple
violates only one of the constraints in C′ that have been generated because of
the presence of the constraint c ∈ C. Thus, we just have to show that, for each
c ∈ C, defc(tc) = ϕ(ci), where ci is the constraint violated by tc. But this is easy
to show by what we have noted above. In fact, we have defined the translation
from SCSP to VCSP in such a way that the only constraint of the VCSP violated
by a tuple is exactly the one whose valuation coincides with the value associated
with the tuple in the SCSP.

Note that SCSPs that do not satisfy the restrictions imposed at the beginning
of the section, that is, that con involves all the variables and that ≤S is total,
do not have a corresponding VCSP.

Corollary 2.3.1 (same solution). Consider an SCSP P and the correspond-
ing VCSP problem P ′. Then P and P ′ have the same solution.

Proof. It follows from Theorem 2.3.6, from the fact that P uses + = max which
goes towards 1, that P ′ uses min which goes towards ⊥, that 1 = ⊥, and that
a solution is just one of the total assignments.

From VCSPs to SCSPs. Here we will define the opposite translation, which
allows one to get an SCSP from a given VCSP.

Definition 2.3.7. Given the VCSP P = 〈V,D,C, S, ϕ〉, where S = 〈E,�,�
〉, we will obtain the SCSP P ′ with constraints C′ over the constraint system
〈S′, D, V 〉, where S′ is the c-semiring 〈E,+,�,�,⊥〉, and + is such that a+b = a
iff a � b. It is easy to see that ≥S=�. For each constraint c ∈ C with allowed
set of tuples T , we define the corresponding constraint c′ = 〈con′, def ′〉 ∈ C′

such that con′ contains all the variables involved in c and, for each tuple t ∈ T ,
def ′(t) = ⊥, otherwise def ′(t) = ϕ(c). We will write P ′ = vs(P ).

Example 2.3.3. Consider a VCSP which contains a binary constraint c con-
necting variables x and y, for which it allows the pairs 〈a, b〉 and 〈b, a〉, and
such that ϕ(c) = l. Then, the corresponding SCSP will contain the constraint
c′ = 〈con, def〉, where con = {x, y}, def(〈a, b〉) = def(〈b, a〉) = ⊥, and
def(〈a, a〉) = def(〈b, b〉) = l. Figure 2.5 shows both c and the corresponding
c′.
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Fig. 2.5. From VCSP to SCSP

Again, we need to make sure that the structure we obtain via the definition
above is indeed a semiring-based CSP. Then we will prove that it is equivalent
to the given VCSP.

Theorem 2.3.7 (from valuation structure to c-semiring). If we consider
a valuation structure 〈E,�,�〉 and the structure S = 〈E,+,�,�,⊥〉, where +
is such that a + b = a iff a � b (obtained using the transformation in Defini-
tion 2.3.7), then S is a c-semiring.

Proof. Since � is total, + is closed. Moreover, + is commutative by definition,
and associative because of the transitivity of the total order �. Furthermore, 0 is
the unit element of +, since it is the top element of �. Finally, + is idempotent
because of the reflexivity of �, and 1 is the absorbing element of + since 1
= ⊥. Operation × of S coincides with �. Thus it is closed, associative, and
commutative, since � is so. Also, � is its absorbing element and ⊥ is its identity
(from corresponding properties of �). The distributivity of � over + can easily
be proved. For example, consider a, b, c ∈ E, and assume b � c. Then a�(b+c) =
a � b (by definition of +) = (a � b) + (a � c) (by the definition of + and the
monotonicity of �). The same reasoning applies to the case where c � b.

Theorem 2.3.8 (equivalence between VCSP and SCSP). Consider a
VCSP problem P and the corresponding SCSP P ′. Consider also an assign-
ment t to all the variables of P . The value associated with such an assignment is
A = VP (t) = �{ϕ(c) for all c ∈ C such that the projection of t over the variables
of c violates c}. Instead, the value associated with the same assignment in P ′ is
B = �{defc′(tc′), for all constraints c′ = 〈defc′ , conc′〉 in C′ and such that tc′
is the projection of t over the variables of c′}. Then, A = B.

Proof. The values multiplied to produce A are as many as the constraints vi-
olated by t; instead, the values multiplied to produce B are as many as the
constraints in C′. By construction, however, each tuple tc involving the vari-
ables of a constraint c ∈ C has been associated, in P ′, with a value that is either
ϕ(c) (if tc violates c), or ⊥ (if tc satisfies c). Thus, the contribution of tc to the
value of B is important only if tc violated c in P , because ⊥ is the unit element
for �. Thus A and B are obtained by the same number of significant values.
Now we have to show that such values are the same. But this is easy, since we
have defined the translation in such a way that each tuple for the variables of c
is associated with the value ϕ(c) exactly when it violates c.
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Normal Forms and Equivalences. Note that, while passing from an SCSP
to a VCSP the number of constraints in general increases, in the opposite di-
rection the number of constraints remains the same. This can also be seen in
Example 2.3.2 and 2.3.3. This means that, in general, going from an SCSP P
to a VCSP P ′ and then from the VCSP P ′ to the SCSP P ′′, we do not get
P = P ′′. In fact, for each constraint c in P , P ′′ will have in general several
constraints c1, . . . , ck over the same variables as c. It is easy to see, however,
that c1 ⊗ · · · ⊗ ck = c, and thus P and P ′′ associate the same value with each
variable assignment.

Example 2.3.4. Figure 2.6 shows how to pass from an SCSP to the corresponding
VCSP (this part is the same as in Example 1), and then again to the correspond-
ing SCSP. Note that the starting SCSP and the final one are not the same. In
fact, the latter has three constraints between variables x and y, while the former
has only one constraint. One can see, however, that the combination of the three
constraints yields the starting constraint.

Consider now the opposite cycle, that is, going from a VCSP P to an SCSP
P ′ and then from P ′ to a VCSP P ′′. In this case, for each constraint c in P ,
P ′′ has two constraints: one is c itself, and the other one is a constraint with
associated value ⊥. This means that violating such a constraint has cost ⊥,
which, in other words, means that this constraint can be eliminated without
changing the behaviour of P ′′ at all.

Example 2.3.5. Figure 2.7 shows how to pass from a VCSP to the corresponding
SCSP (this part is the same as in Example 2), and then again to the correspond-
ing VCSP. Note that the starting VCSP and the final one are not the same. In
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Fig. 2.6. From SCSP to VCSP and back to SCSP again
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fact, the latter one has two constraints between variables x and y. One is the
same as the one in the starting VCSP, while the other one has the value ⊥ as-
sociated with it. This means that violating such constraint yields a cost of value
⊥.

Let us now define normal forms for both SCSPs and VCSPs, as follows. For
each VCSP P , its normal form is the VCSP P ′ = nfv(P ) which is obtained by
deleting all constraints c such that ϕ(c) = ⊥. It is easy to see that P and P ′ are
equivalent.

Definition 2.3.8. Consider P = 〈V,D,C, S, ϕ〉, a VCSP where S = 〈E,�,�〉.
Then P is said to be in normal form if there is no c ∈ C such that ϕ(c) = ⊥.
If P in not in normal form, then it is possible to obtain a unique VCSP P ′ =
〈V,D,C−{c ∈ C | ϕ(c) = ⊥}, S, ϕ〉, denoted by P ′ = nfv(P ), which is in normal
form.

Theorem 2.3.9 (normal form). For any VCSP P , P and nfv(P ) are equiva-
lent.

Proof. The theorem follows from the fact that ∀a, (⊥ � a) = a and from the
definitions of VP (A) and VP ′(A).

Also, for each SCSP P , its normal form is the SCSP P ′ = nfs(P ), which is
obtained by combining all constraints involving the same set of variables. Again,
this is an equivalent SCSP.

Definition 2.3.9. Consider any SCSP P with constraints C over a constraint
system 〈S,D, V 〉, where S is a c-semiring S = 〈A,+,×,0,1〉. Then, P is in
normal form if, for each subset W of V , there is at most one constraint c =
〈def, con〉 ∈ C such that con = W . If P is not in normal form, then it is possible
to obtain a unique SCSP P ′, as follows. For each W ⊆ V , consider the set CW ⊆
C, which contains all the constraints involving W . Assume CW = {c1, . . . , cn}.
Then, replace CW with the single constraint c =

⊗
CW . P ′, denoted by nfs(P ),

is in normal form.

Theorem 2.3.10 (normal forms). For any SCSP P , P and nfs(P ) are equiv-
alent.
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Fig. 2.7. From VCSP to SCSP, and to VCSP again
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Proof. It follows from the associative property of ×.

Even though, as noted above, the transformation from an SCSP P to the
corresponding VCSP P ′ and then again to the corresponding SCSP P ′′ does not
necessarily yield P = P ′′, we will now prove that there is a strong relationship
between P and P ′′. In particular, we will prove that the normal forms of P and
P ′′ coincide. The same holds for the other cycle, where one passes from a VCSP
to an SCSP and then to a VCSP again.

Theorem 2.3.11 (same normal form 1). Given any SCSP P and the cor-
responding VCSP P ′ = sv(P ), consider the SCSP P ′′ corresponding to P ′, that
is, P ′′ = vs(P ′). Thus nfs(P ) =nfs(P ′′).

Proof. We will consider one constraint at a time. Take any constraint c of P .
With the first transformation (to the VCSP P ′), we get as many constraints as
the different values associated with the tuples in c. Each of the constraints, say
ci, is such that ϕ(ci) is equal to one of such values, say li, and allows all tuples
that do not have value li in c. With the second transformation (to the SCSP
P ′′), for each of the ci, we get a constraint c′i, where tuples which are allowed
by ci have value ⊥ while the others have value li. Now, if we apply the normal
form to P ′′, we combine all the constraints c′i, getting one constraint that is the
same as c, since, given any tuple t, it is easy to see that t is forbidden by exactly
one of the ci. Thus, the combination of all c′i will associate with t a value, which
is the one associated with the unique ci that does not allow t.

Theorem 2.3.12 (same normal form 2). Given any VCSP problem P and
the corresponding SCSP P ′ = vs(P ), consider the VCSP P ′′ corresponding to
P ′, that is, P ′′ = sv(P ′). Then we have that nfv(P ) =nfv(P ′′).

Proof. We will consider one constraint at a time. Take any constraint c in P ,
and assume that ϕ(c) = l and that c allows the set of tuples T . With the first
transformation (to the SCSP P ′), we get a corresponding constraint c′ where
tuples in T have value ⊥ and tuples not in T have value l. With the second
transformation (to the VCSP P ′′), we get two constraints: c1, with ϕ(c1) = ⊥,
and c2, with ϕ(c2) = l and which allows the tuples of c′ with value ⊥. It is
easy to see that c2 = c. Now, if we apply the normal form to both P and P ′′,
which implies the deletion of all constraints with value ⊥, we get exactly the
same constraint. This reasoning applies even if the starting constraint has value
⊥. In fact, in this case the first transformation will give us a constraint where
all tuples have value ⊥, and the second one gives us a constraint with value ⊥,
which will be deleted when obtaining the normal form.

The statements of the above two theorems can be summarized by the two
diagrams represented in Figure 2.8. Note that in such diagrams each arrow rep-
resents one of the transformations defined above, and all problems in the same
diagram are equivalent (by the theorems proved previously in this section).



2.3 Instances of the Framework 49

V CSP

nfv

��

vs �� SCSP

sv

��
V CSP V CSP

nfv
��

SCSP

nfs

��

sv �� V CSP

vs

��
SCSP SCSP

nfs
��

Fig. 2.8. Diagrams representing the thesis of Theorem 2.3.11 and 2.3.11

2.3.8 N-dimensional C-semirings

Choosing an instance of the SCSP framework means specifying a particular
c-semiring. This, as discussed above, induces a partial order, which can be inter-
preted as a (partial) guideline for choosing the “best” among different solutions.
In many real-life situations, however, one guideline is not enough, since, for ex-
ample, it could be necessary to reason with more than one objective in mind,
and thus choose solutions which achieve a good compromise w.r.t. all such goals.

Consider, for example, a network of computers, where one would like to both
minimize the total computing time (thus the cost) and also to maximize the
work of the least used computers. Then, in our framework, we would need to
consider two c-semirings, one for cost minimization (see Section 2.3.4 on weighted
CSPs), and another one for work maximisation (see Section 2.3.2 on fuzzy CSPs).
Then one could work first with one of these c-semirings and then with the other
one, trying to combine the solutions which are the best for each of them. A
much simpler approach, however, consists of combining the two c-semirings and
only then work with the resulting structure. The nice property is that such a
structure is a c-semiring itself, thus all the techniques and properties of the SCSP
framework can be used for such a structure as well.

More precisely, the way to combine several c-semirings and getting another
c-semiring simply consists of vectorizing the domains and operations of the com-
bined c-semirings.

Definition 2.3.10 (composition of c-semirings). Given n c-semirings
Si = 〈Ai, +i, ×i, 0i, 1i〉, for i = 1, . . . , n, let us define the struc-
ture Comp(S1, . . . , Sn) = 〈〈A1, . . . , An〉,+,×, 〈01, . . . ,0n〉, 〈11 . . .1n〉〉. Given
〈a1, . . . , an〉 and 〈b1, . . . , bn〉 such that ai, bi ∈ Ai for i = 1, . . . , n, 〈a1, . . . , an〉
+ 〈b1, . . . , bn〉 = 〈a1 +1 b1, . . . , an +n bn〉, and 〈a1, . . . , an〉 × 〈b1, . . . , bn〉 =
〈a1 ×1 b1, . . . , an ×n bn〉.
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We will now prove that by composing c-semirings we get another c-semiring.
This means that all the properties of the framework defined in the previous
sections hold.

Theorem 2.3.13 (a c-semiring composition is a c-semiring). Given
n c-semirings Si = 〈Ai, +i, ×i, 0i, 1i〉, for i = 1, . . . , n, the structure
Comp(S1, . . . , Sn) is a c-semiring.

Proof. It is easy to see that all the properties required for being a c-semiring
hold for Comp(S1, . . . , Sn), since they directly follow from the corresponding
properties of the component semirings Si.

According to the definition of the ordering ≤S (in Section 2.1), such an order-
ing for S = Comp(S1, . . . , Sn) is as follows. Given 〈a1, . . . , an〉 and 〈b1, . . . , bn〉
such that ai, bi ∈ Ai for i = 1, . . . , n, we have 〈a1, . . . , an〉 ≤S 〈b1, . . . , bn〉 if
and only if 〈a1 +1 b1, . . . , an +n bn〉 = 〈b1, . . . , bn〉. Since the tuple elements are
completely independent, ≤S is in general a partial order, even if each of the ≤Si
is a total order. This means (see Section 2.2) that the abstract solution of a
problem over such a semiring in general contains an incomparable set of tuples,
none of which has blevel(P ) as its associated value. Therefore, if one wants to
reduce the number of “best” tuples (or to get just one), one has to specify some
priorities among the orderings of the component c-semirings.

Notice that, although the c-semiring discussed in Section 2.3.5 may seem a
composition of two c-semirings, as defined in Definition 2.3.10, this is not so,
since the behaviour of each of the two operations on one of the two elements of
each pair (we recall that that semiring is a set of pairs) is not independent from
the behaviour of the same operation on the other element of the pair. Thus, it
is not possible to define two independent operations (that is, +1 and +2, or ×1

and ×2), as needed by Definition 2.3.10. For example, operation max returns
the maximum of the second elements of two pairs only when the first elements
of the pairs are equal.

2.4 Conclusions

In this chapter we have introduced the SCSP framework and we have shown
how it can be instantiated to represent several non-crisp constraint formalisms.
We have described the different semirings that are needed to represent fuzziness,
probabilities and optimizations. Furthermore, we have shown how to build new
semirings by combining the existing ones.

The structure that we have defined in this framework will be the starting
point for the results of the next chapters. In particular, in the next chapter we
will review several solution techniques used in the classical frameworks, and we
will prove their applicability to SCSPs, by looking only to the properties of the
semiring operations.
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Overview

Local consistency algorithms, as usually used for classical CSPs, can be ex-
ploited in the SCSP framework as well, provided that certain conditions on the
semiring operations are satisfied. We show how the SCSP framework can be
used to model both old and new constraint solving and optimization schemes,
thus allowing one to both formally justify many informally taken choices in
existing schemes, and to prove that local consistency techniques can also be
used in newly defined schemes. We generalize to soft constraints the approx-
imation techniques usually used for local consistency in classical constraint
satisfaction and programming. The theoretical results show that this is in-
deed possible without losing the fundamental properties of such techniques
(and the experimental results (on partial arc-consistency) [111] show that this
work can help develop more efficient implementations for logic-based languages
working with soft constraints). Then, we consider dynamic programming-like
algorithms, and we prove that these algorithms can always be applied to SC-
SPs, and have a linear time complexity when the given SCSPs can be provided
with a parsing tree of bounded size. Finally, we provide several instances of
SCSPs which show the generality and also the expressive power of the frame-
work.

In classical CSPs, so-called local consistency techniques [104,105,138,139,140,
150,152] have been proven to be very effective when approximating the solution
of a problem. In this chapter we study how to generalize these techniques to our
framework, and we provide sufficient conditions over the semiring operations
which assure that they can also be fruitfully applied to the considered scheme.
Here, by “fruitfully applicable” we mean that 1) the algorithm terminates and
2) the resulting problem is equivalent to the given one and it does not depend
on the nondeterministic choices made during the algorithm. In particular, such
conditions rely mainly on having an idempotent operator (the × operator of the
semiring).

The advantage of our framework, that we call SCSP (for Semiring-based
CSP), is that one can hopefully see one’s own constraint solving paradigm as an
instance of SCSP over a certain semiring, and can inherit the results obtained
for the general scheme. In particular, one can immediately see whether a local
consistency technique can be applied. In fact, our sufficient conditions, which
are related to the chosen semiring, guarantee that the above basic properties
of local consistency hold. Therefore, if they are satisfied, local consistency can
safely be applied. Otherwise, it means that we cannot be sure, in general, that
local consistency will be meaningful in the chosen instance.

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 51–98, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In this chapter we consider several known and new constraint solving frame-
works, casting them as instances of SCSP, and we study the possibility of apply-
ing local consistency algorithms. In particular, we confirm that CSPs enjoy all
the properties needed to use such algorithms, and that they can also be applied
to FCSPs. Moreover, we consider probabilistic CSPs [96] and we see that local
consistency algorithms might be meaningless for such a framework, as well as
for weighted CSPs (since the above-cited sufficient conditions do not hold).

We also define a suitable notion of dynamic programming over SCSPs, and
we prove that it can be used over any instance of the framework, regardless of
the properties of the semiring. Furthermore, we show that when it is possible
to provide a whole class of SCSPs with parsing trees of bounded size, then the
SCSPs of the class can be solved in linear time.

To complete our study of the local consistency algorithms, we extend to the
soft case some of the partial solving techniques that have proved useful for clas-
sical constraints. In fact, such techniques are widely used in current constraint
programming systems like clp(FD) [72], Ilog Solver [163] and CHIP [5].

To do this, we define a class of Partial Local Consistency (PLC) algorithms,
which perform less pruning than (complete) local consistency but can, neverthe-
less, be rather useful in reducing the search. Some instances of these algorithms
are able to reduce the domains of the variables in constant time, and can work
with a convenient representation of the domains of the variables. Using PLC to-
gether with labeling, the aim is to find the solutions of a problem with a better
practical complexity bound. Moreover we study the termination condition in the
SCSP framework of the general local consistency algorithms whose rules have to
be only monotone and extensive (we eliminate the hypothesis of idempotency).

The chapter is organized as follows. Section 3.1 introduces the concept of
local consistency for SCSPs and gives sufficient conditions for the applicability
of the local consistency algorithms. Section 3.2 proves the applicability, or not,
of the local consistency algorithms to several instances. Then in Section 3.3 we
show some properties of the soft version of the Arc Consistency, and in Section
3.4 we describe some approximated algorithms of local consistency. Moreover
Section 3.5 describes local consistency algorithms as a set of rules and gives
sufficient conditions for the termination of the soft version of the GI schema
[10, 11, 12]. Finally Section 3.6 describes a dynamic programming algorithm to
solve SCSPs that can be applied to any instance of our framework, without any
condition.

The firsts two section of this chapter appeared as part of [45, 47]. Moreover
Section 3.4, 3.3 and 3.5, already appeared respectively in [54], [34] and [43, 44].

3.1 Soft Local Consistency

Computing any of the previously defined notions (the best level of consistency,
the solution, and the abstract solution) is an NP-hard problem. Thus, it can be
convenient in many cases to approximate such notions. In classical CSPs, this is
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done using the so-called local consistency techniques [104,105,132,152]. The main
idea is to choose some subproblems in which to eliminate local inconsistency, and
then iterate such elimination in all the chosen subproblems until stability. The
most widely know local consistency algorithms are arc-consistency [138], where
subproblems contain just one constraint, and path-consistency [150], where sub-
problems are triangles (that is, they are complete binary graphs over three
variables). The concept of k-consistency [104], where subproblems contain all
constraints among subsets of k chosen variables, generalizes them both. All sub-
problems are, however, of the same size (which is k). In general, one may imagine
several algorithms where, instead, the considered subparts of the SCSP have dif-
ferent sizes. This generalization of the k-consistency algorithms were described
in [152] for classical CSPs. Here we follow the same approach as in [152], but we
extend the definitions and results presented there to the SCSP framework, and
we show that all the properties still hold, provided that certain properties of the
semiring are satisfied.

Applying a local consistency algorithm to a constraint problem means making
explicit some implicit constraints, thus possibly discovering inconsistency at a
local level. In classical CSPs, this is crucial, since local inconsistency implies
global inconsistency. We will now show that such a property also holds for SCSPs.

Definition 3.1.1 (local inconsistency). Consider an SCSP P = 〈C, con〉.
Then we say that P is locally inconsistent if there exists C′ ⊆ C such that
blevel(C′) = 0.

Theorem 3.1.1 (necessity of local consistency). Consider an SCSP P
which is locally inconsistent. Then it is not consistent.

Proof. We have to prove that blevel(P ) = 0. We know that P is locally incon-
sistent. That is, there exists C′ ⊆ C such that blevel(C′) = 0. By Theorem
2.2.5, we have that blevel(P ) ≤S blevel(C′), thus blevel(P ) ≤S 0. Since 0 is the
minimum in the ordering ≤S , then we immediately have that blevel(P ) must be
0 as well.

In the SCSP framework, we can be even more precise, and relate the best
level of consistency of the whole problem (or, equivalently, of the set of all its
constraints) to that of its subproblems, even though such a level is not 0. In fact,
it is possible to prove that if a problem is α-consistent, then all its subproblems
are β-consistent, where α ≤S β.

Theorem 3.1.2 (local and global α-consistency). Consider a set of con-
straints C over CS, and any subset C′ of C. If C is α-consistent, then C′ is
β-consistent, with α ≤S β.

Proof. The proof is similar to the previous one. If C is α-consistent, it means, by
definition, that blevel(C) = α. Now, if we take any subset C′ of C, by Theorem
2.2.5 we have that blevel(C) ≤S blevel(C′). Thus α ≤S blevel(C′).
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In order to define the subproblems to be considered by a local consistency
algorithm, we use the notion of local consistency rules. The application of such
a rule consists of solving one of the chosen subproblems. To model this, we need
the additional notion of typed location. Informally, a typed location is just a
location l (as in ordinary store-based programming languages) which has a set
of variables con as type, and thus can only be assigned a constraint c = 〈def, con〉
with the same type. In the following we assume to have a location for every set
of variables, and thus we identify a location with its type. Note that at any stage
of the computation the store will contain a constraint problem with only a finite
number of constraints, and thus the relevant locations will always be in a finite
number.

Definition 3.1.2 (typed location). A typed location l is a set of variables.

Definition 3.1.3 (value of a location). Given a CSP P = 〈C, con〉, the value
[l]P of the location l in P is defined as the constraint 〈def, l〉 ∈ C if it exists, as
〈1, l〉 otherwise. Given n locations l1, . . . , ln, the value [{l1, . . . , ln}]P of this set
of locations in P is defined instead as the set of constraints {[l1]P , . . . , [ln]P }.
Definition 3.1.4 (assignment). An assignment is a pair l := c where c =
〈def, l〉. Given a CSP P = 〈C, con〉, the result of the assignment l := c is the
problem [l := c](P ) defined as:

[l := c](P ) = 〈{〈def ′, con′〉 ∈ C | con′ �= l} ∪ c, con〉.

Thus an assignment l := c is seen as a function from constraint problems
to constraint problems, which modifies a given problem by changing just one
constraint, the one with type l. The change consists in replacing such a constraint
with c. If there is no constraint of type l, then constraint c is added to the given
problem.

Definition 3.1.5 (local consistency rule). Given an SCSP P = 〈C, con〉,
a local consistency rule r for P is defined as r = l ← L, where L is a set of
locations, l is a location, and l �∈ L.

Applying r to P means assigning to location l the constraint obtained by
solving the subproblem of P containing the constraints specified by the locations
in L ∪ {l}.
Definition 3.1.6 (rule application). Given a local consistency rule r = l ← L
and a constraint problem P , the result of applying r to P is

[l ← L](P ) = [l := Sol(〈[L ∪ {l}]P , l〉)](P ).

Since a rule application is defined as a function from problems to problems, the
application of a sequence S of rules to a problem is easily provided by function
composition. Thus we have that [r1;S](P ) = [S]([r1](P )).
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Notice for example that [l ← ∅](P ) = P .
In other words, a local consistency rule, written also rLl , is a function rLl

which, taken any problem P and , returns rLl (P ) = [l := Sol(〈[L]P , l〉)](P ).

Theorem 3.1.3 (equivalence for rules). Given an SCSP P and a rule r for
P , we have that P ≡ [r](P ) if × is idempotent.

Proof. Assume that P = 〈C, con〉, and let r = l ← L. Then we have P ′ =
[l ← L](P ) = [l := Sol(〈[L ∪ {l}]P , l〉)](P ) = 〈{〈def ′, con′〉 ∈ C | con′ �= l}
∪ Sol(〈[L ∪ {l}]P , l〉), con〉. Let now C(r) = [L ∪ {l}]P , and C′ = C − C(r).
Then P contains the constraints in the set C′ ∪ C(r), while P ′ contains the
constraints in C′ ∪ (C(r) − c) ∪ ((

⊗
C(r)) ⇓l), where c = 〈def, l〉 = [l]P . In

fact, by definition of solution, Sol(〈[L∪{l}]P , l〉) can be written as (
⊗
C(r)) ⇓l.

Since the set C′ is present in both P and P ′, we will not consider it, and we
will instead prove that the constraint cpre =

⊗
C(r) coincides with cpost =

(
⊗

(C(r) − {c})) ⊗ ((
⊗
C(r)) ⇓l). In fact, if this is so, then P ≡ P ′.

First of all, it is easy to see that cpre and cpost have the same type⋃
(L ∪ {l}). Let us now consider the definitions of such two constraints. Let

us set ci = [li]P = 〈defi, li〉 for all li ∈ L, and assume L = {l1, . . . , ln}. Thus,
C(r) = {c, c1 . . . , cn}. We have that, taken any tuple t of length | ⋃

(L ∪ {l}) |,
defpre(t) = def(t ↓l) × (Πidefi(t ↓li)), while defpost(t) = (Πidefi(t ↓li
))×Σt′|t′↓l=t↓l(def(t′ ↓l)× (Πidefi(t′ ↓li))). Now, since the sum is done over all
t′ such that t′ ↓l= t ↓l, we have that def(t′ ↓l) = def(t ↓l). Thus def(t′ ↓l) can
be taken out from the sum since it appears the same in each factor. Thus we have
defpost(t) = (Πidefi(t ↓li))×def(t ↓l)×Σt′|t′↓l=t↓l(Πidefi(t′ ↓li)). Consider now
Σt′|t′↓l=t↓l(Πidefi(t′ ↓li)): one of the t′ such that t′ ↓l= t ↓l must be equal to t.
Thus the sum can be written also as (Πidefi(t ↓li)+Σt′|t′↓l=t↓l,t′ �=t(Πidefi(t′ ↓li
)). Thus we have defpost(t) = (Πidefi(t ↓li)) × def(t ↓l) × (Πidefi(t ↓li
) +Σt′|t′↓l=t↓l,t′ �=t(Πidefi(t′ ↓li))).

Let us now consider any two elements a and b of the semiring. Then it is easy
to see that a× (a+ b) = a. In fact, by intensivity of × (see Theorem 2.1.3), we
have that a × c ≤S a for any c. Thus, if we choose c = a + b, a× (a+ b) ≤S a.
On the other hand, since a + b is the lub of a and b, we have that a + b ≥S a.
Thus, by monotonicity of ×, we have a× (a+ b) ≥S a×a. Now, since we assume
that × is idempotent, we have that a× a = a, thus a× (a+ b) ≥S a. Therefore
a× (a+ b) = a. This result can be used in our formula for defpost(t), by setting
a = (Πidefi(t ↓li)) and b = Σt′|t′↓l=t↓l,t′ �=t(Πidefi(t′ ↓li)). In fact, by replacing
a×(a+b) with a, we get defpost(t) = (Πidefi(t ↓li))×def(t ↓l), which coincides
with defpre(t).

Definition 3.1.7 (stable problem). Given an SCSP P and a set R of local
consistency rules for P , P is said to be stable w.r.t. R if, for each r ∈ R,
[r](P ) = P .

A local consistency algorithm consists of the application of several rules to
the same problem, until stability of the problem w.r.t. all the rules. At each step
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of the algorithm, only one rule is applied. Thus the rules will be applied in a
certain order, which we call a strategy.

Definition 3.1.8 (strategy). Given a set R of local consistency rules for an
SCSP, a strategy for R is an infinite sequence S ∈ R∞. A strategy S is fair if
each rule of R occurs in S infinitely often.

Definition 3.1.9 (local consistency algorithm). Given an SCSP P , a set R
of local consistency rules for P , and a fair strategy S for R, a local consistency
algorithm lc(P,R, S) applies to P the rules in R in the order given by S. Thus,
if the strategy is S = s1s2s3 . . ., the resulting problem is

P ′ = [s1; s2; s3; . . .](P )

The algorithm stops when the current SCSP is stable w.r.t. R.

Note that this formulation of local consistency algorithms extends the usual
one for k-consistency algorithms [104], which can be seen as local consistency
algorithms where all rules in R are of the form l ← L, where L = {l1, . . . , ln}
and | ⋃

i=1,...,n li |=| l |= k − 1. That is, exactly k − 1 variables are involved in
the locations1 in L.

Arc-consistency [29, 122] (AC) is an instance of local consistency
where one propagates only the domains of the variables. With our nota-
tions, this type of algorithm deals only with rules of the form {x} ←
{{x, y1, . . . , yn}, {y1}, . . . , {yn}}. In fact, an arc-consistency rule considers a con-
straint, say over variables x, y1, . . . , yn, and all unary constraints over these vari-
ables, and combines all these constraints to get some information (by projecting)
over one of the variables, say x2. Let us call AC this set of rules. In the following,
we will write ac(P ) to denote lc(P,AC, S).

When a local consistency algorithm terminates3, the result is a new problem
that has the graph structure of the initial one plus, possibly, new arcs represent-
ing newly introduced constraints (we recall that constraints posing no restrictions
on the involved variables are usually not represented in the graph structure), but
where the definition of some of the constraints has been changed. More precisely,
assume R = {r1, . . . , rn}, and ri = li ← Li for all i = 1, . . . , n. Then the algo-
rithm uses, among others, n typed locations li of type coni. Assume also that each
of such typed locations has value defi when the algorithm terminates. Consider
also the set of constraints C(R) that have type coni. That is, C(R) = {〈def, con〉
such that con = coni for some i between 1 and n}. Informally, these are the con-
straints that may have been modified (via the typed location mechanism) by the
algorithm. Then, if the initial SCSP is P = 〈C, con〉, the resulting SCSP is P ′

= lc(P,R, S) = 〈C′, con〉, where C′ = C − C(R) ∪ (
⋃
i=1,...,n〈defi, coni〉).

1 We recall that locations are just sets of variables.
2 Actually, this is a generalized form of arc-consistency, since originally arc-consistency

was defined for binary constraints only [138].
3 We will consider the termination issue later.
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In classical CSPs, any local consistency algorithm enjoys some important
properties. We now will study these same properties in the SCSP framework,
and point out the corresponding properties of the semiring operations that are
sufficient for them to hold. The desired properties are as follows:

1. any local consistency algorithm returns a problem which is equivalent to the
given one;

2. any local consistency algorithm terminates in a finite number of steps;
3. the strategy, if fair, used in a local consistency algorithm does not influence

the resulting problem.

Theorem 3.1.4 (equivalence). Consider an SCSP P and the problem P ′ =
lc(P,R, S). Then P ≡ P ′ if the multiplicative operation of the semiring (×) is
idempotent.

Proof. By Definition 3.1.9, a local consistency algorithm is just a sequence of
applications of local consistency rules. Since by Theorem 3.1.3 we know that
each rule application returns an equivalent problem, by induction we can con-
clude that the problem obtained at the end of a local consistency algorithm is
equivalent to the given one.

Theorem 3.1.5 (termination). Consider any SCSP P = 〈C, con〉 over the
constraint system CS = 〈S,D, V 〉 and the set AD =

⋃
〈def,con〉∈C R(def), where

R(def) = {a | ∃t with def(t) = a}. Then the application of a local consistency
algorithm to P terminates in a finite number of steps if AD is contained in a
set I which is finite and such that + and × are I-closed.

Proof. Each step of a local consistency algorithm may change the definition of
one constraint by assigning a different value to some of its tuples. Such value is
strictly worse (in terms of ≤S) since × is intensive. Moreover, it can be a value
which is not in AD but in I − AD. If the state of the computation consists of
the definitions of all constraints, then at each step we get a strictly worse state
(in terms of �S). The sequence of such computation states, until stability, has
finite length, since, by assumption, I is finite and thus the value associated with
each tuple of each constraint may be changed at most |I| times.

An interesting special case of the above theorem occurs when the chosen
semiring has a finite carrier set A. In fact, in that case the hypotheses of the
theorem hold with I = A.

Corollary 3.1.1. Consider any SCSP P over the constraint system CS =
〈S,D, V 〉, where S = 〈A,+,×,0,1〉, and A is finite. Then the application of
a local consistency algorithm to P terminates in a finite number of steps.

Proof. Easily holds with I = AD by Theorem 3.1.5.

We will now prove that, if × is idempotent, no matter which strategy is used
during a local consistency algorithm, the result is always the same problem.
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Theorem 3.1.6 (order-independence). Consider an SCSP P and two dif-
ferent applications of the same local consistency algorithm to P , producing re-
spectively the SCSPs P ′ = lc(P,R, S) and P ′′ = (P,R, S′). Then P ′ = P ′′ if the
multiplicative operation of the semiring (×) is idempotent.

Proof. Each step of the local consistency algorithm, which applies one of the
local consistency rules in R, say r, were defined as the application of a function
[r] that takes an SCSP P and returns another problem P ′ = [r](P ), and that may
change the definition of the constraint connecting the variables in l (if the applied
rule is r = l ← L). Thus the whole algorithm may be seen as the repetitive
application of the functions [r], for all r ∈ R, until no more change can be done.
If we can prove that each [r] is a closure operator [80], then classical results
on chaotic iteration [76] allow us to conclude that the problem resulting from
the whole algorithm does not depend on the order in which such functions are
applied. Closure operators are just functions which are idempotent, monotone,
and intensive. We will now prove that each [r] enjoys such properties. We remind
that [r] just combines a constraint with the combination of other constraints.

If × is idempotent, then [r] is idempotent as well, that is, [r]([r](P )) = [r](P )
for any P . In fact, combining the same constraint more than once does not change
the problem by idempotency of ×. Also, the monotonicity of × (see Theorem
2.1.2) implies that of [r], that is, P � P ′ implies [r](P ) � [r](P ′). Note that,
although � has been defined only between constraints, here we use it among
constraint problems, meaning that such a relationship holds among each pair of
corresponding constraints in P and P ′. Finally, the intensivity of × implies that
[r] is intensive as well, that is, [r](P ) � P . In fact, P and [r](P ) just differ in one
constraint, which, in [r](P ), is just the corresponding constraint of P combined
with some other constraints.

Note that the above theorems require that × is idempotent for a local con-
sistency algorithm to be meaningful. There is, however, no requirement over the
nature of ≤S . More precisely, ≤S can be partial. This means that the semiring
operations + and × can be different from max and min respectively (see note
at the end of Section 2.1).

Note also that, by definition of rule application, constraint definitions are
changed by a local consistency algorithm in a very specific way. In fact, even in
the general case in which the ordering ≤S is partial, the new values assigned to
tuples are always smaller than or equal to the old ones in the partial order. In
other words, local consistency algorithms do not “jump” in the partially ordered
structure from one value to another one that is unrelated to the first one. More
precisely, the following theorem holds.

Theorem 3.1.7 (local consistency and partial orders). Given an SCSP
P , consider any value v assigned to a tuple in a constraint of such problem.
Also, given any set R of local consistency rules and strategy S, consider P ′ =
lc(P,R, S), and the value v′ assigned to the same tuple of the same constraint
in P ′. Then we have that v′ ≤S v.
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Proof. By definition of rule application (see Definition 3.1.6) the formula defining
the new value associated to a tuple of a constraint can be assimilated to (v ×
a)+ (v× b), where v is the old value for that tuple and a and b are combinations
of values for tuples of other constraints in the graph of the rule. Now, we have
(v × a) + (v × b) = v + (a × b) by distributivity of + over × (see Theorem
2.1.5). Also, (v× c) ≤S v for any c by intensivity of × (see Theorem 2.1.3), thus
v + (a× b) ≤S v.

One could imagine other generalizations with the same desired proper-
ties as the ones proven above (that is, termination, equivalence, and order-
independence). For example, one could design an algorithm which avoids (or
compensates) the effect of cumulation coming from a non-idempotent ×. Or
also, one could generalize the equivalence property, by allowing the algorithm to
return a non-equivalent problem (but, nonetheless, being in a certain relation-
ship with the original problem). Finally, the order-independence property states
that any order is fine, as far as the resulting problem is concerned. Another
desirable property, related to this, could be the existence of an ordering that
makes the algorithm belong to a specific complexity class.

3.2 Applying Local Consistency to the Instances

3.2.1 Classical CSPs

Let us now consider the application of a local consistency algorithm to CSPs.
As predictable, we will show that all the classical properties hold. First, ∧ is
idempotent. Thus, by Theorem 3.1.4, the problem returned by a local consistency
algorithm is equivalent to the given one, and from Theorem 3.1.6, the used
strategy does not matter. Also, since the domain of the semiring is finite, by
Corollary 3.1.1 any local consistency algorithm terminates in a finite number of
steps.

3.2.2 Fuzzy CSPs

Let us now consider the properties that hold in the FCSP framework. The mul-
tiplicative operation (that is, min) is idempotent. Thus, local consistency algo-
rithms on FCSPs do not change the solution of the given problem (by Theorem
3.1.4), and do not care about the strategy (by Theorem 3.1.6). Moreover, min
is AD-closed for any finite subset AD of [0,1]. Thus, by Theorem 3.1.5, any local
consistency algorithm on FCSPs terminates.

Thus FCSPs, although providing a significant extension to classical CSPs,
can exploit the same kind of algorithms. Their complexity will, of course, be
different due to the presence of more than two levels of preference. It can be
proven. however, that if the actually used levels of preference are p, then the
complexity of a local consistency algorithm is just O(p) times greater than that
of the corresponding algorithm over CSPs (as also discussed above and in [91]).
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An implementation of arc-consistency, suitably adapted to be used over fuzzy
CSPs, is given in [173]. No formal properties of its behavior, however, are proven
there. Thus our result can be seen as a formal justification of [173].

3.2.3 Probabilistic CSPs

The multiplicative operation of Sprob (that is, ×) is not idempotent. Thus the
result of Theorem 3.1.4 cannot be applied to Prob-CSPs. That is, by apply-
ing a local consistency algorithm one is not guaranteed to obtain an equivalent
problem. Theorem 3.1.6 cannot be applied as well. Therefore the strategy used
by a local consistency algorithm may matter. Also, × is not closed on any fi-
nite superset of any subset of [0, 1]. Hence the result of Theorem 3.1.5 cannot
be applied to Prob-CSPS. That is, we cannot be sure that a local consistency
algorithm terminates.

As a result of these observations, local consistency algorithms should make
no sense in the Prob-CSP framework. As a result, we are not sure that their
application has the desired properties (termination, equivalence, and order-
independence). However, the fact that we are dealing with a c-semiring implies
that, at least, we can apply Theorem 3.1.2: if a Prob-CSP problem has a tuple
with probability α to be a solution of the real problem, then any subproblem has
a tuple with probability at least α to be a solution of a subproblem of the real
problem. This can be fruitfully used when searching for the best solution. In fact,
if one employs a branch-and-bound search algorithm, and in one branch we find
a partial instantiation with probability smaller than α, then we can be sure that
such a branch will never lead to a global instantiation with probability α. Thus,
if a global instantiation with such a probability has already been found, we can
cut this branch. Similar (and possibly better) versions of branch-and-bound for
non-standard CSPs may be found in [108,174].

3.2.4 Weighted CSPs

The multiplicative operation of SWCSP (that is, +) is not idempotent. Con-
sequently the results of Section 3.1 on local consistency algorithms cannot be
applied to WCSPs. As in Prob-CSPs, however, the fact that we are dealing with
a c-semiring implies that, at least, we can apply Theorem 3.1.2: if a WCSP prob-
lem has a best solution with cost α, then the best solution of any subproblem
has a cost smaller than α. This can be fruitfully used when searching for the
best solution in a branch-and-bound search algorithm.

Note that the same properties hold also for the semirings 〈Q+,min,+,+∞, 0〉
and 〈Z+, min,+, +∞, 0〉 (which can be proved to be c-semirings).

3.2.5 Egalitarianism and Utilitarianism

One can show that Sue is a c-semiring. However, since it uses a combination of
the operations of the semirings SFCSP and SWCSP , and since the multiplicative
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operation of SWCSP is not idempotent, also the multiplicative operation of Sue,
that is, min, is not idempotent. This means that we cannot guarantee that
local consistency algorithms can be used meaningfully in this instance of the
framework.

Note that also the opposite choice (that is, first perform a max-sum and
then a max-min) can be made, by using a similar c-semiring. Due however to
the same reasoning as above, again the multiplicative operation would not be
idempotent, thus we cannot be sure that the local consistency techniques possess
the properties of Section 3.1.

3.2.6 Set-Based SCSPs

The set-based SCSPs are represented by the c-semiring

Sset = 〈℘(A),
⋃
,
⋂
, ∅, A〉

where A is any set. It is easy to see that Sset is a c-semiring. Also, in this case
the order ≤Sset reduces to set inclusion (in fact, a ≤ b iff a ∪ b = b), and,
therefore, it is partial in general. Furthermore, × is

⋂
in this case, and thus it is

idempotent. Therefore, the local consistency algorithms possess all the properties
stated in Section 3.1 and, therefore, can be applied. We recall that when a local
consistency algorithm is applied to an SCSP with a partially ordered semiring,
its application changes the constraints such that the new constraints are smaller
than the old ones in the ordering �S .

3.3 About Arc-Consistency in SCSPs

In this section we study the properties and possible advantages of the extension
to SCSPs of the most successful of the local consistency techniques, called arc-
consistency [138, 193], although we claim that all our results can be extended
to higher levels of consistency. What arc-consistency (AC) does over a CSP is
considering each pair of variables and checking whether there are values for one
of these variables, which are inconsistent with all the values for the other one.
If so, such inconsistent values are deleted from the CSP, since they cannot par-
ticipate in any solution. Semiring-based arc-consistency (SAC) works similarly
over SCSPs, considering, however, also the semiring values, and the final effect
is not a deletion, but a worsening of the semiring value assigned to some domain
element of a variable.

Here we study the relationship between AC and SAC over SCSPs, showing
that they discover the same inconsistencies. That is, the domain elements whose
semiring value gets replaced by the worst value (that is, the minimum of the
semiring) are exactly those elements which are deleted by AC in the correspond-
ing CSP, obtained by the given SCSP by forgetting the semiring values. Thus
sometimes it may be reasonable to apply just a classical AC instead of SAC,
since AC is more efficient, although less informative. This can lead to an original
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methodology where, instead of preprocessing a given SCSP via SAC and then
solving it, we can first obtain the corresponding CSP, then preprocess this CSP
via AC (or some other form of local consistency), and then bring back to the
initial SCSP the information obtained by AC over the inconsistencies. In partic-
ular, if AC discovered an inconsistency, we can safely assign to such an element
the worst semiring value. Note that we could also make this method more flex-
ible, by replacing the given SCSP not with a CSP but with a simpler SCSP,
that is, an SCSP over a simpler semiring. In this way, there could be a whole
range of possible simplifications, in the line of [169], and the results of SAC over
the simpler problem could be brought back to the given problem via established
techniques like abstract interpretation [79]. In Chapter 4 we will show how the
usual Galois connection of abstract interpretation is used to pass from an SCSP
to an ”easier” one.

Moreover, we consider SCSPs with visible and hidden variables, and we show
that, if such SCSPs are SAC, then some hidden variables can be removed without
changing the set of solutions and associated semiring values. In particular, we
show that all hidden variables of degree 1 can be removed. The reason behind this
result is that, by achieving SAC, all the information provided by the variables
of degree 1 is put into the other (connected) variables. If such variables are not
hidden, then we can still gain from the application of SAC, because they can
be instantiated without the need for any backtracking. Moreover, since in a tree
all leaves have degree 1, and the other variables get degree 1 once the leaves
are removed, tree-shaped SCSPs can be solved without backtracking, provided
that we follow an instantiation order that visits the tree top-down. For SCSPs
which are not tree-shaped, we can still use this result, on the parts which are
tree-shaped. Therefore, such SCSPs can be solved by searching (possibly with
backtracking) over the part with cycles, and then by continuing the instantiation
process over the tree-shaped parts without backtracking.

These results are extensions of similar results already existing for the CSP
case [105, 166]; however, here they are particularly interesting both because of
the generality of the SCSP framework, and also because SCSPs usually express
constraint optimization, and not just satisfaction, problems.

The Section is organized as follows. Subsection 3.3.1 compares the power
of classical arc-consistency with that of semiring-based arc-consistency. Then,
Subsection 3.3.2 studies the possibility of removing hidden variables in an arc-
consistent SCSP, subsection 3.3.3 shows that tree-shaped SCSPs can be solved
easily, and Section 3.3.4 extends this result to SCSPs with cycles with bounded
size.

3.3.1 Classical Arc-Consistency vs. Semiring-Based One

Consider an SCSP P = 〈C, con〉. Let us now construct a corresponding CSP
cut(P ) by simply forgetting the semiring values associated with all the tuples
in all constraints of P , except for those values which are the minimum of the
semiring. That is, if a tuple has a semiring value different from the minimum we
say that such tuple satisfies the constraint in cut(P ), otherwise we say that it
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does not satisfy it. For example, the CSP in Figure 3.1 is the CSP corresponding
to the FCSP of Figure 3.2 according to function cl.

Then, let us apply SAC over P and AC over cut(P ). As a result of that,
some element in the domain of some variables in P will get a smaller semiring
value, possibly the minimum of the semiring, and some domain elements of some
variables in cut(P ) will be eliminated. Then, the main result is the following one:

Theorem 3.3.1 (SAC vs. AC). In an SAC-consistent SCSP P , if the order
≤S induced by the + operation is total, then the domain elements which will get
the minimum of the semiring in P by applying an SAC algorithm are exactly
those that will be eliminated in cut(P ) by applying an AC algorithm.

In fact, consider what happens during the SAC algorithm: for each pair of
variables x and y, to see which value has to be given to the domain element tx for
x, that now has value ax, we have to consider also all the pairs txy that extend
tx over y. Let us assume there are n of them, and let us call them t1xy, . . . , t

n
xy.

Assume also that each tixy is given the semiring value aixy. Finally, consider all
domain elements of y, say t1y, . . . , t

n
y , and assume that they now have the semiring

values a1
y, . . . , a

n
y . What we have to do now to perform SAC over this constraint

is to compute the following:
∑

i=1,...,n(ax× aixy× aiy). This is the semiring value
to be associated with tx. That is, if tx has a different semiring value, the problem
is not SAC-consistent.

Now the question is: when does this value coincide with the minimum of the
semiring? In general we don’t know. We know, however, that if the ≤S order is
total, then a× b is always equal to either a or b, for any a, b in the semiring, and
the same is for a+ b. In fact, the glb and the lub of two elements in a total order
is always one of the two elements.

a

a a
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x y

a
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Thus, the only way that the above formula coincides with the minimum of
the semiring is such a minimum appears somewhere in the formula. That is,
either ax, or aixy for some i, or aiy for some i, is already the minimum of the
semiring. In other words, if none of these values coincides with the minimum of
the semiring, then we can be sure that the result of the above formula does not
coincide with the minimum of the semiring.

Now, by the way we have constructed cut(P ), tuples that have the minimum
of the semiring do not appear in cut(P ). That is, they do not satisfy the corre-
sponding constraint. Therefore, by the way AC works, they will create a local
inconsistency and they will cause the deletion of an element from the domain of
a variable. More precisely, in cut(P ), to see whether element tx of the domain
of x has to be eliminated, we have to look at all pairs txy that extend tx over
y and that satisfy the constraint between x and y, and for each of such pairs
we have to see whether its second element (that is, its projection over y) is in
the domain of y or not. If all such elements are not in the domain of y, then tx
has to be eliminated by the domain of x. This means that for all pairs txy that
extend tx over y, either txy does not satisfy the constraint between x and y, or
the projection of txy onto y is not in the domain of y. But if this is so, then, by
the way cut(P ) was constructed, the element tx in P will get the minimum of the
semiring by SAC. The opposite is also easily provable: if tx gets the minimum
of the semiring in P via SAC, then it will be eliminated in cut(P ) via AC.

Figure 3.3 shows the FCSP obtained by applying SAC onto the FCSP of
Figure 3.2 and the CSP obtained by applying AC onto the CSP of Figure 3.1.

Why is this result interesting? Because applying AC over cut(P ) is more
efficient, both in space and in time, than applying SAC over P . In fact, domains
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Fig. 3.3. An SAC-consistent FCSP and the corresponding AC-consistent CSP
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could have a more compact representation, and each step of the algorithm could
deal with a smaller set of tuples (only those that have semiring value true).

Therefore, one could use AC instead of SAC if he/she is interested only
in discovering local inconsistencies. Of course some information will be lost,
because the semiring values that are present in the problem after AC and which
are different from the minimum are not as accurate, but in some cases this could
be a reasonable trade-off between pruning power and space/time efficiency.

In fact, this approach could also be seen as the extreme case of a flexible ab-
straction technique, where, given an SCSP over a certain semiring S, we replace
SAC over such a semiring with SAC over a simpler semiring, not necessarily
SCSP (as we proposed in this section) which is the simplest semiring of all.
More details in this direction are given in Chapter 4 and in [33,35,36] where the
usual Galois connection of abstract interpretation is used to pass from an SCSP
to an ”easier” one.

3.3.2 Removing Hidden Variables in SCSPs

An SCSP, as defined above, is a pair 〈C, con〉, where con is a subset of the
variables, and specifies the variables of interest as far as solutions are concerned.
Variables in con can then be called the visible variables, while all the others are
hidden.

Since the solution set of such problems is defined as (⊗C) ⇓con, this means
that a solution is an assignment of the visible variables, with an associated
semiring value, such that it can be extended to the hidden variables in a way
that the overall assignment (to all the variables) has the same semiring value.
Since, however, we do not really care to know the values for the hidden variables,
but just that there is a way to instantiate them, in some cases some of these
variables can be found to be redundant. This means that their elimination would
not change the solutions of the overall problem. This, of course, can be very
convenient in terms of the search for one or the best solution, because the depth
of the search tree coincides with the number of variables. In particular, this
section shows the following:

Theorem 3.3.2 (hidden variable removal). If we have an SCSP which is
SAC-consistent, and if the order ≤S is total, then all hidden variables with degree
1 (or 0) are redundant and thus can be eliminated, without changing the set of
solution-value pairs for the problem.

This is an extension to SCSP of a result which has been shown already for
CSPs [166]. For example, Figure 3.4 shows the case of a CSP where, assuming
that the problem is AC, variable v is redundant. Here is, however, more inter-
esting, since we are dealing with optimization and not satisfaction problems.

Let us now prove the statement of the above theorem. Consider an SCSP
that is SAC-consistent, and assume that there is a hidden variable, say z, with
degree 1. Figure 3.5 shows an example of such an SCSP.

What we have to prove is that, given an instantiation of x and y, which
satisfies the constraints between them, for example 〈x = a, y = a〉, which has
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value 0.8, there is an extension to z, say d, such that 〈x = a, y = a, z = d〉 has
value 0.8 and all other extensions have a worse value. In fact, if this is the case,
then we can safely delete z without changing the solution set.

More generally, let us consider an instantiation of the visible variables with
a corresponding semiring value, which is given by combining all constraints in-
volving subsets of the visible variables: say it is 〈d1, . . . , dn〉 (there are n visible
variables) with semiring value v. To show that z is redundant, we have to show
that such a tuple can be extended to z without making its semiring value worse.
In other words, there is a value for z, say dz , such that the tuple 〈d1, . . . , dn, dz〉
has semiring value v.

To compute the semiring value for this tuple, once we have the semiring
value v for the shorter tuple, we need to multiply (by using the × operator of
the semiring) v by the semiring value given by cxz (we assume that x is the i-th
visible variable) to 〈x = di, z = v〉, say vxz, and also by the semiring value given
by cz to z = v, say vz. Notice that if z is indeed connected to x, this is the only
constraint connected to z, otherwise we will just consider a null constraint which
assigns the maximum of the semiring to each tuple. Thus, we get v × vxz × vz ,
and we have to prove that this coincides with v. Figure 3.6 shows the three
components of this new value for the example in Figure 3.5, to be compared to
v.

Now, by the extensivity of × (that is, a× b ≤ a for any a, b), we know that
(v× vxz× vz) ≤ v. We will now prove that this disequality is in fact an equality,
that is, (v×vxz×vz) = v. We know that any SAC algorithm enforces the formula
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y z

  v v vyz z

x

Fig. 3.6. New semiring value for the extended tuple

cx = (⊗{cy, cxy, cx}) ⇓x for each pair of variables x and y. Thus, this also applies
to the pair of variables x and z of our example. Therefore, the semiring values
associated with elements of the domain of x, such as di, have been computed
during the SAC algorithm by also considering cxz and cz. In other words, the
information that we are now adding to v, that is, vxz×vz, is already in v, because
of SAC. Of course there are many ways to instantiate z, but if the order ≤S is
total, one of them, that is, the best one, has been inserted in v. By choosing that
value for z, by the idempotency of the × operation, which has to be assumed if
we want to be sure that local consistency has the desired properties, we get that
v = v × vxz × vz. Therefore, there exists a way to extend 〈d1, . . . , dn〉 to z such
that its semiring value is not changed.

Notice also that once some variables are eliminated the degree of other vari-
ables may be reduced and thus satisfy the redundancy condition. Thus these
other variables can be eliminated as well, until no variable has degree 1.

Notice also that it is not necessary to achieve SAC all over the problem
to eliminate some hidden variable, but that it is enough to achieve it on the
neighborhood (just two variables) of the variable to eliminate. Also, in such a
neighborhood, SAC could be achieved just in one direction, because we have to
make sure that a solution involving the visible variables can be extended to the
hidden variables, but we do not care about the opposite direction.

Again, we claim that the result of this section can easily be generalized to a
higher level of consistency, allowing the elimination of variables of higher degree.
That is, the generalization should say that, if an SCSP is k-consistent, then all
hidden variables with degree up to k − 1 are redundant.

3.3.3 Tree-Shaped SCSPs

The result of the previous section says that, if we have an SCSP with a total
order over the semiring values, and if the SCSP is SAC-consistent, then any
tuple involving the visible variables can be extended to any hidden variable with
degree 1 without changing the semiring value of the tuple.

Consider now the same situation, except that the variable with degree 1 is
not hidden, but visible. Still, the extension works just the same, and the only
thing that is different here is that we have to constructively find that extension,
and we cannot be satisfied with just knowing that it exists. Let us see what we
have to do to find the (or a) domain element for z (the variable with degree 1),
which does not change the semiring value of the given tuple. Since the difference
between the semiring value of the new tuple and that of the old one depends
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only on the constraint connecting z, say cxz, and on the domain of z, say cz,
we just have to look at all pairs of values for x and z such that x = di (that
is, the value that x has in the short tuple), and for each of such pairs we have
to multiply the value given by cxz by that given by cz. Now, the best of such
values is the one to choose. That is, we choose z = dz if cxz(di, dz) × cz(dz) is
the best among all cxz(di, d′z)× cz(d′z) for all d′z other values for z (where given
a constraint c = 〈def, con〉, c(d) means the application of the definition function
to the domain value d4, that is the value def(d)).

This operation is linear in the domain size, since for each element of the
domain of z, say dz , we just need to compute cxz(di, dz)×cz(dz). More important,
if the tuple we started with (that is, 〈d1, . . . , dn〉) was the best one for the first
n variables, then the new tuple, 〈d1, . . . , dn, dz〉 is still the best one for the n
initial variables plus z. In fact, it is impossible to find a tuple which has a better
semiring value for such n+1 variables. Otherwise the assumption that the initial
tuple was the best one for the n variables will be contradicted.

This discussion leads to the following theorem, which again is an extension
of a result already known for classical CSPs [105]:

Theorem 3.3.3 (linear time for trees). If we have an SCSP with a total
order over the semiring values, and such an SCSP is SAC-consistent and tree-
shaped, then the optimal solution can be found in time linear in the number of
its variables.

In fact, in a tree-shaped SCSP, all variables have either degree 1 (the leaves)
or can get degree 1 when the current leaves are eliminated. Therefore, the exten-
sion result just discussed can be applied at every step of the search, provided that
we choose an instantiation order that visits the tree from top to bottom. Figure
3.7 shows a tree-shaped SCSP and a possible top-down instantiation order.

That is, at every step during the search, we have a partial solution involving
only the previous variables, and we have to extend it to the next variable. By
what we said before, this extension can be done without changing the semiring
value of the solution, and also without the need to come back to check whether
there is a better solution. Therefore, a complete best solution can be found
without backtracking.

w

v

z

y

x

wv

zy

x

Fig. 3.7. A tree-shaped SCSP and a top-down instantiation order
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An interesting remark is that the semiring value for the best solution can be
found without even finding the best solution. In fact, since each step does not
change the semiring value of the current incomplete solution, the best value of a
complete solution coincides with the best value for the first variable in the order.
In fact, by choosing the best value for the first variable, we know that we can
complete the solution maintaining that value.

Proposition 3.3.1 (best value). Given an SCSP with a total order over the
semiring values, which is SAC-consistent and tree-shaped, the semiring value
for the optimal solutions is the best value among those assigned to the domain
elements of the first variable in a top-down instantiation order for this problem.

Even for this result we can easily see that SAC is not really necessary, we
just need a directional version of SAC that goes bottom-up in the tree.

3.3.4 Cycle-Cutsets in SCSPs

By stretching the discussion of the previous section even more, we can consider
SCSPs, which in general do not have a tree shape, where, however, we identify
in some way the part of the SCSP that creates the cycles. In such problems,
we can first find the best solution for the difficult part (the one with cycles),
and after that we can complete the solution on the rest of the variables, which
is tree-shaped. Therefore, the overall search for the best solution will possibly
backtrack over the first part of the problem, to find the best solution for that
part, but then will not backtrack at all on the rest of the problem. Figure 3.8
shows an SCSP with a cycle over variables x, y, and z, and then a tree shape
over the rest of the problem (not completely drawn), and Figure 3.9 shows the
search tree for this SCSP.

In classical constraint solving this technique is called cycle-cutset [85], since
the first part of the problem (that possibly involves some backtracking) is iden-
tified by a subset of the variables whose elimination allows to remove all cycles
of the problem. Here we can use the same technique and get similar results,
which, however, as noted before, deal with optimization instead of satisfaction.
Therefore, here we can say something about the time complexity to find not

. . .
. . .

. . .

. . .

wvz

yx

Fig. 3.8. An SCSP with a cycle over x, y, z and a tree shape over the other
variables
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v
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. . . 

no backtracking here

z

x

y

Fig. 3.9. The search tree for the SCSP of Figure 3.8

a solution, but the best solution. Moreover, as in the previous section, we have
an additional result which allows us to know the semiring value associated with
the best solution before we actually compute the solution itself. In fact, once all
variables in the cycle-cutset have been instantiated and we have found the best
solution for them, the semiring value for this partial solution will coincide with
the semiring value for the best complete solution.

More interesting results can be obtained if one applies the SAC algorithm
not only before the search but also during the search, after each instantiation. In
fact, instantiating a variable is like eliminating that variable for the problem to
be solved, and thus new variables could become of degree 1 with respect to the
set considered at the beginning of the search. By maintaining SAC at each step
during the search, we could, therefore, exploit the presence of this variables to
dynamically augment the set of variables over which the search does not need any
backtracking. Again, this idea has been generated by recent results on classical
CSPs [170], which, however, we claim can be extended to SCSPs as well.

3.4 Labeling and Partial Local Consistency for SCSPs

The aim of this section is to extend the local consistency algorithms, defined
in the previous sections for SCSPs, in order to capture some approximated
algorithms which have been proven useful for classical constraints, so much
so that they are widely used in current constraint programming systems like
clp(FD) [72], Ilog Solver [163] and CHIP [5].

The SCSP framework comes with a class of local consistency (LC) algorithms,
which are useful to perform a simplification of the problem, cutting away some
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tuples of domain values that are shown to be useless w.r.t. the solutions of the
problem.

This scheme is in theory very useful but experiments show that even the
simplest non-trivial LC algorithm (which corresponds to Arc-Consistency [29,
122] extended to SCSPs) has a heavy complexity for most applications. Moreover,
one has to apply it several times if used during the labeling phase. Hence, the
reduction of its complexity is a crucial point.

To go in this direction, we define a class of Partial Local Consistency (PLC)
algorithms, which perform less pruning than (complete) local consistency but
can nevertheless be rather useful in reducing the search. Some instances of these
algorithms are able to reduce the domains of the variables in constant time, and
can work with a convenient representation of the domains of the variables. Using
PLC together with labeling, the aim is to find the solutions of a problem with a
better practical complexity bound.

From this point of view, our work is related to the one of K. Apt [9]. In fact,
he studied a class of filtering functions for classical CSPs, which can express
both local consistency and also less pruning notions.

Summarizing, here are our results that appear also in [34]:

1. the extension of the definitions and properties of the labeling procedure from
classical CSPs to SCSPs;

2. a general scheme for approximating local consistency in SCSPs, and prop-
erties that are sufficient for the correctness of the approximations;

3. some implementations issues in the particular case of arc-consistency;
4. experimental results for partial arc-consistency.

The rest of the section is organized as follows. In Section 3.4.1 we introduce
some properties about labelings, we describe their interaction with usual filtering
algorithms, and we define the generalization of the labeling procedure to SCSPs.
Then, we introduce the notion of rule approximations and study the correctness
of such rules in Section 3.4.2 and we discuss some implementations issues in
Section 3.4.3.
Another operation.. Besides combination and projection, we need, in this
section, another operator, which we will call the disjunction operator. Given two
constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉 over CS, their disjunction
c1 ⊕ c2 is the constraint c = 〈def, con〉 with con = con1 ∪ con2 and def(t) =
def1(t ↓concon1

) + def2(t ↓concon2
).

The informal meaning of the disjunction operator is to give more possibility
to (or to enhance the level of preference of) certain instantiations. If we consider
the semiring Bool which corresponds to classical CSPs, the meaning of having
the disjunction of two constraints C1 and C2 is to have the possibility of choosing
not only the tuples permitted by C1 but also those permitted by C2. Figure 3.10
shows an example using the semiring Fuzzy, where, we recall, the operation +
is the maximum.

Using the properties of × and +, it is easy to prove that: ⊕ is associative,
commutative and idempotent; ⊗ distributes over ⊕; ⊕ is monotone over �S .
Moreover, if × is idempotent: ⊕ distributes over ⊗.



72 3. Towards SCSPs Solutions
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Fig. 3.10. Disjunction example

Let us also give some new definition that will be useful in the following of
this section.

Definition 3.4.1 (constraint type). Given a constraint c = 〈def, con〉, we
call type(c) the set con of the variables of c. Given a constraint set C, type(C) =
{type(c)/c ∈ C} and V (C) =

⋃
c∈C type(c) is the set of all the variables appear-

ing in the constraints of C.

3.4.1 Labeling in SCSPs

Local consistency algorithms, when applied to an SCSP P , can reduce the search
space to find its solutions. Solving the resulting problem P ′, however, is still NP-
hard. This scenario is similar to what happens in the classical CSP case, where,
after applying a local consistency algorithm, the solution is found by replacing
P ′ with a set of subproblems {P1, . . . , Pn} where some of the variables have
been instantiated such that P ′ is “equivalent” to {P1, . . . , Pn}, in the sense that
the set of solutions of P ′ coincides with the union of the sets of solutions of
P1, . . . , Pn. Usually, problems Pi are obtained by choosing a variable, say x, and
instantiating it to its i-th domain value. Then, the local consistency (usually
arc-consistency) algorithm is applied again [121]. By doing this, one hopes to
detect the inconsistency of some of the subproblems by detecting their local
inconsistency (via the local consistency algorithm). When all the variables of the
initial problem are instantiated, arc-consistency becomes complete in the sense
that if the problem is not consistent then it is not arc-consistent. Therefore, at
that point arc-consistency implies global consistency.

Let us consider, for example, the following problem:

X ∈ [1, 3], Y ∈ [1, 2], Z ∈ [1, 2], X �= Y, Y �= Z,Z �= X.

Figure 3.11 shows the interaction between AC and the labeling procedure, since
each node of the search tree (except the root) shows the CSP obtained after the
application of an arc-consistency algorithm. In this particular case we have two
solutions (the dashed line indicates the second solution found by the labeling).

We will now study the properties of the labeling procedure when applied to
SCSPs.
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3.4 Labeling and Partial Local Consistency for SCSPs 73

X: 1..3

Y: 1..2

Z: 1..2

Y: 1..2
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Z: 2

Y: 2
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Fig. 3.11. AC and labeling

In the following we assume to work with a constraint system CS = 〈S,D, V 〉,
where S = 〈A,+,×,0,1〉.

Given a set P = {P1, · · · , Pn} of SCSPs, the solution of P is the constraint
defined as Sol(P) = Sol(P1) ⊕ · · · ⊕ Sol(Pn).

Given x ∈ V , d ∈ D and v ∈ A, we call cx,d,v the unary constraint 〈def, {x}〉
where def(d) = v and def(d′) = 0 if d′ �= d. In practice, cx,d,v instantiates x to d
with semiring value v. We call this constraint a simple instantiation constraint.

Given a total order ≺ on V , let W = {x1, . . . , xn} be a subset of V , and
assume that x1 ≺ · · · ≺ xn. Given an n-tuple of domain values d = 〈d1, . . . , dn〉
and an n-tuple of semiring values v = 〈v1, . . . , vn〉, we define: Id,vW = {cxi,di,vi |
i ∈ [1, n]}. We write IdW for Id,1W , and we call it a W -instantiation set. In practice,
IdW gives the best semiring value (1) to the assignment of di to variable xi.
Instead, Id,vW gives semiring value vi to the assignment of di to variable xi.

Given a problem P = 〈C, con〉, let W be a subset of V (C) and t be a |W |-
tuple. We call aW -labeling of the problem P the problem P tW = 〈C∪ItW , con〉. In
words, a W -labeling of P adds to P some additional constraints which identify a
specific partial labeling for P (partial because it involves only the variables inW ).
A complete labeling of P is thus written P tV (C). Also, LW (P ) = {P tW | t ∈ D|W |}
is the set of all W -labelings of P . We call it the W -labeling of P .

Figure 3.12 presents a fuzzy SCSP and shows its solution, while Figure 3.13
shows the {x, y}-labeling corresponding to the original problem and the set of
possible partial solutions, whose disjunction gives rise to the complete solution.
Notice that the problem set solution coincides with the solution of the problem
in Figure 3.12.

figure/ac-labeling.eps
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Fig. 3.12. A fuzzy CSP and its solution
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Fig. 3.13. The set of the {x, y}-labelings corresponding to the problem

This is true also in general; therefore, we can compute the solution of an
SCSP by computing the disjunction of the solutions associated with the labeling.
This is important, since it means that we can decompose an SCSP and solve
it by solving its sub-problems. The following theorem formalizes this informal
statement.

Theorem 3.4.1 (disjunction correctness). Given an SCSP P = 〈C, con〉,
a subset W of V (C), and a set {c1, . . . , cn} of constraints over W such that⊕

i ci = 〈1,W 〉, we have that Sol(P ) =
⊕

i Sol(〈C ∪ {ci}, con〉). Moreover,
P ≡ LW (P ).

Proof. By the assumptions, and by the distributivity of × over +, for any tuple
t of domain values for all the variables, we get:

We note V the set V (C) and p the size of W . We assume
⊗
C = 〈defC , V 〉,

ci = 〈defi,W 〉 and
⊕

i Sol(〈C ∪ ci, con〉) = 〈def, con〉. We have:

def(t) =
∑
i

∑
{t′|t′↓V∪W

con =t}
defi(t′ ↓V ∪W

W ) × defC(t′ ↓V ∪W
V )

Since W ⊆ V , we have:

figure/problem.eps
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def(t) =
∑
i

∑
{t′|t′↓Vcon=t}

defi(t′ ↓VW ) × defC(t′)

Now, by distributivity of × over +, we get:

def(t) =
∑

{t′|t′↓Vcon=t}
defC(t′) × (

∑
i

defi(t′ ↓VW ))

Since
⊕

i ci = 〈1,W 〉, we have
∑

i defi(t
′ ↓VW ) = 1. Thus:

def(t) =
∑

{t′|t′↓Vcon=t}
defC(t′)

that coincides with Sol(P ).

This result allows us to compute the solution of an SCSP using the labeling
procedure. Moreover, if all the variables are instantiated, i.e. when the labeling L

is complete (W = V (P )), then the values found for the variables contain all the
informations needed to compute (very easily) the exact solution of the problem:

Theorem 3.4.2 (solution of a complete labeling). We suppose given a
problem P = 〈C, con〉 where C = {ci|i ∈ [1, n]} and ∀i ∈ [1, n], ci = 〈defi, coni〉.
Let P tV (C) = 〈C ∪ ItV (C), con〉 be a complete labeling of P . Then Sol(P tV (C)) =
〈def, con〉 with:

– def(t ↓V (C)
con ) =

∏
i∈[1,n] defi(t ↓V (C)

coni ),

– def(t′) = 0 if t′ �= t ↓V (C)
con .

Moreover, blevel(P tV (C)) =
∏
i∈[1,n] defi(t ↓V (C)

coni ).

Proof. We denote by p the size of V (C). By definition of a complete labeling
problem:

Sol(P tV (C)) = ((
⊗
j∈[1,n]

cj) ⊗ (
⊗
k∈[1,p]

cxk,tk,1)) ⇓con

By associativity and idempotency of ⊗, we have:

Sol(P tV (C)) = (
⊗
j∈[1,n]

(cj ⊗ (
⊗
k∈[1,p]

cxk,tk,1)) ⇓con

Let 〈def ′, V (C)〉 = cj ⊗ (
⊗

k∈[1,p] cxk,tk,1). Then:

– def ′(t) = defj(t ↓V (C)
conj ),

– def ′(t′) = 0 if t′ �= t.

The statement of the theorem easily follows.

As in the CSP case ( [122]), it is sufficient to maintain AC during the labeling
procedure to completely solve the problem (after a complete labeling has been
obtained).
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Theorem 3.4.3 (correctness of AC). Given an SCSP P = 〈C, con〉 and
a total order ≺ between the variables, assume that V (C) = {x1, . . . , xp} with
x1 ≺ · · · ≺ xp, and let P tV (C) = 〈C ∪ ItV (C), con〉 be a complete labeling of P .
Also, let P ′ = ac(P tV (C)) be the arc-consistent problem obtained starting from
P tV (C). Then:

– for each i in [1, p], the value [{xi}]P ′ of location xi in problem P ′ is a simple
instantiation constraint cxi,ti,vi ,

– blevel(P tV (C)) =
∏
i∈[1,p] vi.

Proof. It is easy to see that the value [{xi}]P ′ of location xi in problem
P ′ is still a simple instantiation constraint of the form cxi,ti,vi . Let us now
prove that blevel(P tV (C)) =

∏
i∈[1,p] vi. One should first notice that ∀i ∈

[1, p], blevel(P tV (C)) ≤S vi. Thus blevel(P tV (C)) ≤ ∏
i∈[1,p] vi. We will now prove

that blevel(P tV (C)) ≥ ∏
i∈[1,p] vi. With the notations of Theorem 3.4.2, we

have to prove that
∏
j∈[1,n] defj(t ↓V (C)

conj ) ≥ ∏
i∈[1,p] vi. It is easy to see that

∀i ∈ [1, p], ∀j | xi ∈ conj , vi ≤ defj(t ↓V (C)
conj ). Thus, we have ∀i ∈ [1, p], vi ≤∏

j|xi∈conj defj(t ↓
V (C)
conj ). The statement of the theorem follows from the idem-

potency of ×.

3.4.2 Partial Local Consistency

In this section we introduce the notion of approximate local consistency algo-
rithms, and we give some sufficient conditions for such algorithms to terminate
and be correct.

Notice that a local consistency algorithm is already an approximation in
itself. In fact, because of its incompleteness, it approximates a complete solution
algorithm. Usually, however, local consistency algorithms (as we have defined
them in this section and as they are usually used in practice) replace a constraint
by the solution of a set of other constraints. Here we want to approximate this
aspect of such algorithms, by allowing them to replace a constraint by a superset
of the solution of a set of other constraints. To preserve the nice properties of
local consistency, however, we must assure that such a superset is not too big,
so as not to introduce any additional solution of the whole problem.

Approximated Rules. The idea of an approximation function is to replace the
real computation (that is, the solution of the subproblem defined by a rule) with
a simpler one. The following definition states that a “correct” and “complete”
approximation function should not enlarge the domains and also it should not
lose any solution. Given a rule r = l ← L, an approximation function φ for r is
a function from type−1(L) × type−1(l) to type−1(l) such that:

– for all constraint set C of type L, for all constraint c of type l, Sol(〈C ∪
{c}, l〉) �S φ(C, c) �S c,
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– for all constraint sets {c1, . . . , cp}, {c′1, . . . , c′p} of type L, for all constraints
c, c′ of type l, (∀i ∈ [1, p], ci �S c′i, c �S c′) ⇒ (φ({c1, . . . , cp}, c) �S
φ({c′1, . . . , c′p}, c′)).

As trivial examples, one can consider the approximation function that does no
approximation (let us call it φbest) and also the one that does no domain reduc-
tion (φworst).

Example 3.4.1. Let r = l ← L be a rule. Let φbest such that ∀C ∈
type−1(L), ∀c ∈ type−1(l), φbest(C, c) = Sol(〈C ∪ {c}, l〉). It is easy to see that
φbest is an approximation function for r. It is the “best” approximation function
(in fact, there are no rule that compute an approximation closer to the solution).

Example 3.4.2. Let r = l ← L be a rule. Let φworst such that ∀C ∈ type−1(L),
∀c ∈ type−1(l), φworst(C, c) = c, It is easy to see that φworst is an approximation
function for r. It is the “worst” approximation function (in fact, the rule does
not change any information over the constraints).

Given a rule r = l ← L and an approximation function φ for r, the ap-
proximation of rule r by function φ is defined as rφ = l ←φ L. Given an ap-
proximated rule rφ = l ←φ L, the application of rφ to problem P is defined by
[l ←φ L](P ) = [l := φ([L]P , [l]P )](P ). That is, we apply to P the approximated
rules instead of the original ones.

This notion of rule approximation can be used to modify the definition of a
constraint without changing the solution of the problem. In fact, as the following
theorem states, applying the approximated rule leads to a problem which has
better values than the problem obtained by applying the rule. Thus, we cannot
lose any solution, since we obtain an SCSP that is “between” the original problem
and the problem obtained by using the non-approximated rules, which, we know
by definition of local consistency, do not change the solution set.

Theorem 3.4.4. [l ← L](P ) �P [l ←φ L](P ) � P .

Proof. By definition of rule application [l ← L](P ) = [l := Sol(〈[L∪{l}]P , l〉)](P )
and [l ←φ L](P ) = [l := φ([L]P , [l]P )](P ). Now, since the problem [l ← L](P )
and the problem [l ←φ L](P ) differ only for the constraint over the variable
set l and since, by definition of an approximation function, Sol(〈C ∪ {c}, l〉) �S
φ(C, c), the statement obviously holds.

It is easy to verify that φbest computes the same problem as the rule itself
while φworst does not change the problem.

Theorem 3.4.5 (equivalence for rules). Given a problem P and an approx-
imated rule rφ, P ≡ [rφ](P ).

Proof. From [r](P ) �P [rφ](P ) �P P and [r](P ) ≡ P , it follows that P ≡
[rφ](P ).

Example 3.4.3. Let r = l ← L be a rule. We have [l ←φbest L](P ) = [l ← L](P )
and [l ←φworst L](P ) = P .
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We remind the reader that in order to fruitfully apply the local consistency
scheme the × operation of the semiring has to be idempotent ( [45, 47]) so in
every statement regarding local consistency in the following we assume to have
an idempotent × operation.

Since the application of an approximated rule does not change the solution of
the problem, we can define a correct and complete semiring-based partial local
consistency algorithm, by applying, following a given strategy, several approxi-
mated rules to a given SCSP.

Given a set of rules R, an approximation scheme Φ for R associates to each
rule r = l ← L of R an approximation Φ(r) = l ←φ L. Given a problem P , a set
R of local consistency rules, an approximation scheme Φ for R, and a fair strategy
S for R, a local consistency algorithm applies to P the Φ-approximations of the
rules in R in the order given by S. Thus, if the strategy is S = s1s2s3 . . ., the
resulting problem is P ′ = [Φ(s1);Φ(s2);Φ(s3); . . .](P ). The algorithm stops when
the current problem is stable w.r.t. R. In that case, we denote by plc(P,R, S, Φ)
the resulting problem.

Proposition 3.4.1 (equivalence). P ≡ plc(P,R, S, Φ).

Proof. Trivially follows from Theorem 3.4.5 and by transitivity of ≡.

Theorem 3.4.6 (termination). Consider an SCSP P over a finite semiring.
Then the application of a partial local consistency algorithm over P terminates
in a finite number of steps.

Proof. Trivially follows from the intensivity of × and finiteness of A.

Theorem 3.4.7 (order-independence). Consider an SCSP P and two differ-
ent applications of the same partial local consistency algorithm to P , producing
respectively the problem P ′ = plc(P,R, S, Φ) and P ′′ = plc(P,R, S′, Φ). Then,
P ′ = P ′′. Thus, we will write P ′ = plc(P,R, Φ).

Proof. It is easy to verify that [Φ(r)] is intensive and monotone, which is sufficient
to apply the chaotic iteration theorem [76].

Partial Arc-Consistency. Given an SCSP P and an approximation scheme
Φ for AC, we will write pac(P,Φ) instead of plc(P,AC,Φ).

Let φ be an approximation function for r = {x} ← {{x, y1, . . . , yn},
{y1}, . . . , {yn}} (which, we recall, is the scheme for the AC rules). Let Y =
{y1, . . . , yn} and V = {x} ∪ Y . We say that φ is instantiation-correct if, for all
constraints c of type V , for all Id,vV = {cx} ∪ Id

′,v′
Y , we have

φ({c} ∪ Id′,v′Y , cx) = Sol(〈{c} ∪ Id,vV , {x}〉).
Informally, φ is instantiation-correct if the rule Φ(r) performs an exact compu-
tation as soon as all the variables appearing in such a rule are instantiated. For
example, φbest is instantiation-correct, but φworst is not.

For approximation functions satisfying the previous definition, partial AC
performs the same domain reductions as AC, as soon as all the variables of the
problem are instantiated.
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Theorem 3.4.8 (correctness of PAC). Given an SCSP P = 〈C, con〉, and
an approximation scheme Φ for AC that is instantiation-correct, assume that
V (C) = {x1, . . . , xp} with x1 ≺ · · · ≺ xp. Let P tV (C) = 〈C ∪ ItV (C), con〉 be a
complete labeling of P . Let P ′′ = pac(P tV (C), Φ) and P ′ = ac(P tV (C)). Then, for
each i in [1, p], [{xi}]P ′ = [{xi}]P ′′ .

Proof. We will study the computation of the two algorithms (ac and pac). Be-
cause of the property of order-independence, we can assume that the rules are
applied with the same strategy. Φ is correct w.r.t. to the instantiation. Hence,
for each step (rule application and approximation of a rule application), the two
algorithms compute the same domains (since all the variables are instantiated).
Finally, for each i in [1, p], [{xi}]P ′ = [{xi}]P ′′ .

Corollary 3.4.1. With the notations of Theorem 3.4.8, for each i in [1, p], the
value [{xi}]P ′′ of location xi in problem P ′′ is a simple instantiation constraint
cxi,ti,vi . Moreover, blevel(P tV (C)) =

∏
i∈[1,p] vi.

Proof. Easily follows from the previous theorem and from Theorem 3.4.3.

3.4.3 Domains

We have seen that it is possible to approximate the computation of AC. We are
now going to restrict our attention to certain kinds of approximations for AC,
for which there exists a “good” representation for the variable domains. Then,
we will adapt the computation of the approximations to these representations.

In the following we will always assume to have a constraint system CS =
〈S,D, V 〉 where D is totally ordered. This means that there must be a way to
compare any two elements of the domain D.

We call a domain any unary constraint. Given a set of domains E, we are
looking for approximations schemes that build domains in E. Because of the
properties of approximations, the set E has to satisfy the following three prop-
erties:

– for each domain, there must be a bigger domain in E;
– for each domain, there must be a smaller domain in E;
– E has to contain instantiation constraints (by instantiation-correctness); or,

equivalently: E ⊇ {〈1, {x}〉|x ∈ V } ∪ {cx,i,v|x ∈ V, i ∈ D, v ∈ S}.
We will call an approximation domain set a set satisfying the above properties.
The following proposition states that the notion of approximation domain is
sufficient for the purpose of this work.

Proposition 3.4.2. Given an approximation domain set E, there exists an ap-
proximation scheme Φ such that the application of an approximation function
(corresponding to Φ) builds domains in E.
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Proof. To prove this proposition, just take Φ such that, for each rule r = {x}
← {{x, y1, . . . , yn}, {y1}, . . . , {yn}}, for each c ∈ type−1({x, y1, . . . , yn})4,
for each i ∈ [1, n], for each cyi ∈ type−1({yi}), for each cx ∈ type−1({x}),
we have Φ(r)({c, cy1 , . . . , cyn}, cx) = Sol(〈{c, cx, cy1 , . . . , cyn}, {x}) if cx and
cyi(∀i ∈ [1, n]) are instantiations constraints, and Φ(r)({c, cy1 , . . . , cyn}, cx) = cx
otherwise.

The choice of an approximation domain set is very open. The approxima-
tion domains, however, should have a fixed memory requirement. Here we will
consider some generalizations of the min-max scheme usually used in current
constraint programming.

An up-down-stair is a domain d = (d(1), . . . , d(n)) such that there exists
k ∈ [1, n] s.t. d(1) ≤S . . . d(k) ≥S . . . d(n). We call m-up-down-stair any up-
down-stair domain such that |d(D)| − 1 ≤ m. We note S(m) the set of m-up-
down-stairs.

Note that the 1-up-down-stair corresponds exactly to the min-max scheme in
the case where the semiring is the boolean one. Figure 3.14 presents an example
of a 3-up-down-stair in the case of the fuzzy semiring.

Note that an m-up-down-stair can be stored using 2m integers and m se-
miring values. A m-up-down-stair is made of m rectangles of decreasing width.
Then, for each k between 1 and m, one has to store the interval [infk, supk] that
defines the kth rectangle and the total height of the k first rectangles. For the
example of Figure 3.14, we get: ([2, 9], 0.2); ([4, 9], 0.4); ([5, 7], 0.5).

Let us now slightly restrict our definition of approximation functions in order
to give some insights for their construction. We suppose m given and we will fo-
cus onm-up-down-stair domains. Let us consider a constraint c over V = {x}∪Y
where Y = {y1, . . . , yn} and y1 ≺ · · · ≺ yn. Let us also consider one of the associ-
ated AC rules: {x} ← {V, {y1}, . . . , {yn}}. We are looking for an approximation
function φ : type−1({V, {y1}, . . . , {yn}})× type−1({x}) → type−1({x}).

Since we do not consider general local consistency but only AC, only the do-
mains can change; this is the reason why the approximation function should not
take the constraint as a parameter. Moreover, because of their presence in many
applications, and also for implementation issues, we will focus on approxima-
tions functions that intersect the new domain with the old one (more precisely,
we will consider the case of a unique intersection function).

Hence, we will focus on the case where φ is defined by:

φ({c, cy1 , . . . , cyn}, cx) = χ(ψ(cy1 , . . . , cyn), cx)

where:

– ψ : S(m) × . . .× S(m) → S(m) computes a new domain (m-up-down-stair)
for variable x;

– χ : S(m) → S(m) intersects5 the new domain and the old one.
4 The function type−1(V ) gives the constraint(s) c s.t. type(c) = V
5 In the general case, ⊗ is not a function from S(m) × S(m) to S(m) (this is true

only in the case where m = 1), hence we have to use χ instead.
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Fig. 3.14. A 3-up-down-stair

In the following, we will assume that the domain of the variable D has the
form [0,∞] where ∞ is the maximal value an integer can take. As a practical
and simple example, let us consider the case where m = 1. Here ⊗ is stable over
S(m), hence we take χ = ⊗, which can be implemented by:

χ(([i1, s1], v1), ([i′1, s
′
1], v

′
1)) = ([max(i1, i′1), min(s1, s

′
1)], v1 × v′1).

Using 1-up-down-stairs, it is also easy to implement the rules for usual con-
straints.

Example 3.4.4 (constraint X ≤ Y ). For example, the two rules corresponding
to constraint x ≤ y can be implemented by:

ψx(([iy, sy], vy)) = ([0, sy], vy)

and
ψy(([ix, sx], vx)) = ([sx,∞], vx).

Example 3.4.5 (constraint X = Y + C). As another example, the two rules
corresponding to constraint x = y + c can be implemented by:

ψx(([iy, sy], vy)) = ([iy + c, sy + c], vy)

and
ψy(([ix, sx], vx)) = ([ix − c, sx − c], vx).

In the case where m > 1, it is also possible to implement χ and the rules as-
sociated with usual constraints. This implementation is more complicated since
there are different representations corresponding to the same up-down-stair.
Hence, one has to define a function that chooses a representation among all
the possible ones.

figure/uds.eps
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3.5 Constraint Propagation: Generalization and
Termination Conditions

As described in Section 3.1 the propagation techniques usually used for classical
CSPs have been extended and adapted to deal with soft constraints, provided
that certain conditions are met. This has led to a general framework for soft
constraint propagation, where at each step a subproblem is solved, as in classical
constraint propagation. By studying the properties of this schema, it is proved
(see Theorem 3.1.3 and 3.1.6) that such steps can be seen as applications of
functions that are monotonic, inflationary, and idempotent over a certain partial
order.

On an orthogonal line of research, the concept of constraint propagation
over classical constraints has been studied in depth in [10,11,12], and a general
algorithmic schema (called GI) has been developed. In such a schema, constraint
propagation is achieved whenever we have a set of functions that are monotonic
and inflationary over a partial order with a bottom.

By studying these two frameworks and comparing them, we noticed that
the GI schema can be applied to soft constraints (see Section 3.5.4), since the
functions and the order used for soft constraints have all the necessary properties
for GI. This is proven in this section by extending the partial order over soft
constraint problems defined in Section 2.2.

By analyzing the features of the GI algorithm, we also realized (see Sec-
tion 3.5.4) that indeed soft constraint propagation can be extended to deal with
functions that are not necessarily idempotent. Notice that this is a double gen-
eralization: we don’t require any longer that each step has to solve a subproblem
(it could do some other operation over the problem), nor that it is idempotent.
This allows us to model several forms of “approximate” constraint propagation,
which were instead not modeled in [47]. Examples are: bounds-consistency for
classical constraints [141], and partial soft arc-consistency for soft constraints [34]
described in Section 3.4.

These two results allow us to use the GI algorithm schema for performing a
generalized form of soft constraint propagation. What is important to study, at
this point, is when the resulting GI schema terminates. In fact, if we work with
classical constraints over finite domains, it is easy to see that the GI algorithm
always terminates. When moving to soft constraints over a semiring, however,
even if the variable domain is finite, we could have an infinite behavior due to an
infinite number of elements in the semiring. For example, fuzzy constraints have
a semiring containing all reals between 0 and 1, and the semiring of weighted
constraints contains all the reals, or all the naturals.

In Section 3.5.5 we identify some sufficient conditions for the termination of
the GI algorithm over soft constraints. The first, predictable, condition that we
consider is the well-foundness of the partial order over soft constraint problems:
if the partial order over which the GI algorithm works has chains of finite length,
since constraint propagation never goes from one chain to another one, obviously
the whole algorithm terminates.
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The second condition is in some sense more precise, although less general:
when the propagation steps are defined via the two semiring operations, then we
can just consider the sub-order over semiring elements obtained by taking the
elements initially appearing in the given problem, and closing it under the two
operations. In fact, in this case the GI algorithm cannot reach other elements.
Therefore, if such a set (or a superset of it) is well-found, the GI algorithm
terminates.

Each of these two conditions is sufficient for termination; however, they could
be difficult to check, unless the partial order has a well-known structure of which
we know the well-foundness. Nevertheless, in a special case we can formally prove
that there exists a well-founded set of the shape required by the second condition
above, and thus we can automatically deduce termination. This special case is
related to the idempotency of the multiplicative operation of the semiring, the
one that we use to combine constraints: if this operation is idempotent, then GI
terminates. For example, in classical constraints the multiplicative operation is
logical and, and in fuzzy constraints it is the minimum, thus we can formally
prove that the algorithm GI over any classical or fuzzy constraint problem al-
ways terminates, provided that the functions are defined via the two semiring
operations.

We believe that the generalizations and termination conditions that we have
developed and proven will make soft constraints more widely applicable, and
soft constraint propagation more practically usable.

3.5.1 Some Useful Orderings over Semiring Constraints

We now review and modify some of the orderings among semiring elements,
constraints, and problems, which have been introduced in the previous chapter;
moreover, we also define new orderings that will be used in the next sections.

All the orderings we will consider in this section are derived from the partial
order ≤S over semiring elements, which, we recall, is defined as follows: a ≤S b
iff a+ b = b. This intuitively means that b is “better” than a.

Definition 3.5.1. Consider any partial ordering 〈D,�〉 and the component-
wise ordering 〈Dn,�n〉, with n ≥ 1, where 〈d1, . . . , dn〉 �n 〈d′1, . . . , d′n〉 iff di � d′i
for each i = 1, . . . , n. Let f be a function from Dn to D. Then:

– f is monotonic iff 〈d1, . . . , dn〉 �n 〈d′1, . . . , d′n〉 implies f(〈d1, . . . , dn〉) �
f(〈d′1, . . . , d′n〉);

– f is inflationary w.r.t. � iff di � f(〈d1, . . . , dn〉) for every i = 1, . . . , n.

Given the definition above, it is easy to see that the following results hold
when D is the semiring set A and the order considered is ≤S :

– ≤S is a partial order;
– 0 is the minimum;
– 1 is the maximum.
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– if × is idempotent, then 〈A,≤S〉 is a distributive lattice where + is the lub
and × is the glb.

– + and × are monotonic with respect to ≤S ;
– + is inflationary with respect to ≤S ; instead × is inflationary with respect

to ≥S .

Constraint Orders. From the ordering ≤S over A, we can also define a cor-
responding order between constraints (that extend the ordering already defined
in the previous chapter). Before introducing the new order we define its domain,
namely the set of all possible constraints over a constraint system.

Definition 3.5.2. Given a semiring S = 〈A,+,×,0,1〉 and a constraint system
CS = 〈S,D, V 〉, we define the Constraint Universe related to the constraint
system CS as follows: CCS =

⋃
con⊆V {〈def, con〉 | def : D|con| → A}.

We will write C (instead of CCS) when the constraint system CS is clear from
the context.

Definition 3.5.3. Consider two constraints c1, c2 over a constraint system CS;
assume that con1 ⊇ con2 and |con1| = k. Then we write c1 �S c2 if and only if,
for all k-tuples t of values from D, def1(t) ≤S def2(t ↓con1

con2
).

Loosely speaking, a constraint c1 is smaller than c2 in the order �S iff it con-
strains possibly more variables and assigns to each tuple a smaller value with
respect to ≤S than c2 does.

Theorem 3.5.1 (�S is a po). Given a semiring S = 〈A,+,×,0,1〉 with ×
idempotent and a constraint system CS = 〈S,D, V 〉, we have the following:

• the relation �S is a partial order over the set CCS;
• its bottom is 〈1, ∅〉, where the 0-arity function 1 : ∅ → A is the constant 1

of the semiring.

Proof. We prove our first claim. We need to demonstrate that �S is a reflexive,
antisymmetric and transitive relation. Reflexivity holds trivially. To prove anti-
symmetry, suppose that c1 �S c2 and c2 �S c1; this yields that con1 = con2.
Now, for all t ∈ D|con1|, we have both def1(t) ≤S def2(t) and def2(t) ≤S def1(t),
hence def1(t) = def2(t) and so c1 = c2. The transitivity of �S follows from the
transitivity of ≤S . The other claim immediately follows from the definition of
�S .

We can easily extend the order �S over constraints to a new order over
constraint sets as follows.

Definition 3.5.4. Consider two sets of constraints C1, C2 over a constraint sys-
tem CS. Suppose furthermore that C1 = {c1i : i ∈ I}, C2 = {c2j : j ∈ J}, J ⊆ I

and that, for every j ∈ J , the relation c1j �S c2j holds. Then we write C1 �C C2.
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The intuitive reading of C1 �C C2 is that C1 is a problem generally “more
constraining” than C2 is, because C1 has (possibly) a larger number of “more
restrictive” constraints than C2 has.

Theorem 3.5.2 (�C is a partial order). Given a semiring S =
〈A,+,×,0,1〉, and a constraint system CS = 〈S,D, V 〉, we have that:

• the relation �C is a partial order over ℘(C);
• the bottom of the relation is ∅.

Proof. We only prove the first claim, the other one being straightforward. Re-
flexivity trivially holds. As far as antisymmetry is concerned, suppose that
C1 = {c1i }i∈I , C2 = {c2j}j∈J and both C1 �C C2 and C2 �C C1 hold; this means
that I = J . Moreover, the following relations hold for every i ∈ I: c1i �S c2i and
c2i �S c1i . Hence c1i = c2i for every i ∈ I, because �S is a partial order relation,
cf. Theorem 3.5.1. Transitivity follows similarly, by exploiting the transitivity of
�S .

So far, we have introduced two partial orders: one between constraints (�S)
and another one between constraint sets (�C). Local consistency algorithms,
however, take constraint problems as input; therefore, we need an ordering re-
lation between problems if we want the GI algorithm to be used for soft local
consistency.

First we define the set of all problems that can be built over a constraint
system CS.

Definition 3.5.5. Given a semiring S = 〈A,+,×,0,1〉 and a constraint system
CS = 〈S,D, V 〉, we define the Problem Set Universe related to the constraint
system CS as PCS = {〈C, con〉 | C ⊆ CCS , con ⊆ var(C)}. When no confusion
can arise, we shall simply write P instead of PCS.

Definition 3.5.6. Given a constraint system CS, consider two problems P1 =
〈C1, con1〉 and P2 = 〈C2, con2〉 in PCS. We write P1 �CP P2 iff C1 �C C2 and
con2 ⊆ con1.

We now need to define a partially ordered structure that contains all SC-
SPs that can be generated by enforcing local consistency, starting from a given
problem.

Definition 3.5.7. Consider a constraint system CS and an SCSP P over it.
The up-closure of P , briefly P ↑, is the class of all problems P ′ on CS such that
P �CP P ′.

Proposition 3.5.1. Consider a constraint system CS, an SCSP P over it and
its up-closure P ↑. Then the following statements hold:

1. if P1 �CP P2 and P1 ∈ P ↑, then P2 ∈ P ↑;
2. if P1 �CP P2, then P2 ↑⊆ P1 ↑.
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Proof. The proof of the above proposition is an immediate consequence of the
previous definition and of the fact that �C is transitive, cf. Theorem 3.5.2.

Theorem 3.5.3 (�CP is a po). Given a constraint system CS = 〈S,D, V 〉
and a problem P on it, we have:

• the relation �CP is a partial order over PCS;
• in particular 〈P ↑,�CP |P↑〉 is a partial ordering, where �CP |P↑ is the re-

striction of �CP to P ↑; when no confusion can arise, we simply write
〈P ↑,�CP 〉;

• the bottom ⊥CS of 〈P ↑,�CP 〉 is P .

Proof. We prove the first claim, the other ones following immediately from the
definition of P ↑ and Proposition 3.5.1. As usual, we only prove that the relation
is antisymmetric, because transitivity can be proven similarly and reflexivity
trivially holds. Hence, suppose that both P1 �CP P2 and P2 �CP P1 hold. This
means that we have the following relations: con2 ⊆ con1, C1 �C C2, con1 ⊆ con2,
C2 �C C1. From the two previous relations and Theorem 3.5.2, it follows that
con1 = con2 and C1 = C2; hence P1 = P2.

3.5.2 Order-Related Properties of Soft Local Consistency Rules

We remind, from Section 2.2, that two problems P1 and P2, which share the
same set of variables, are equivalent if they have the same solution set, and we
write P1 ≡P P2.

Now we can list some useful properties of soft local consistency rules, which
are related to equivalence and to problem ordering. Here we assume that we are
given a constraint system C and a rule r on CS:

– (equivalence) P ≡P rLl (P ) if × is idempotent.
– (inflationarity) P �CP rLl (P ). This means that the new semiring values

assigned to tuples by the rule application are always smaller than or equal
to the old ones with respect to ≤S .

– (monotonicity) Consider two SCSPs P1 = 〈C1, con1〉 and P2 = 〈C2, con2〉
over CS. If P1 �CP P2, then r(P1) �CP r(P2).

It is easy to prove that all the results about local consistency rules hold also
for a whole local consistency algorithm. Moreover, we can also prove that the
strategy does not influence the result, if it is fair (see Section 3.1).

3.5.3 The Generic Iteration Algorithm

In [11, 12] the Generic Iteration (GI) algorithm is introduced to find the least
fixpoint of a finite set of functions defined on a partial ordering with bottom.
This was then used as an algorithmic schema for classical constraint propaga-
tion: each step of constraint propagation was seen as the application of one of
these functions. Our idea is to compare this schema with the one used for soft
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constraints, with the aim of obtaining a new schema which is the most general
(that is, it can be applied both to classical and to soft constraints) and has the
advantages of both of them.

Given a partial ordering with bottom, say 〈D,�,⊥〉, consider now a set of
functions F := {f1, . . . , fk} on D. The following algorithm can compute the least
common fix point of the functions in F .

Generic Iteration Algorithm (GI)

d := ⊥;
G := F ;
while G �= ∅ do

choose g ∈ G;
G := G− {g};
G := G ∪ update(G, g, d);
d := g(d)

od

where for all G, g, d the set of functions update(G, g, d) from F is such that:

A. {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d);
B. g(d) = d implies update(G, g, d) = ∅;
C. g(g(d)) �= g(d) implies g ∈ update(G, g, d).

Assumption A states that update(G, g, d) at least contains all the functions
from F −G for which d is a fix point but g(d) is not. So at each loop iteration
such functions are added to the set G. In turn, assumption B states that no
functions are added to G in case the value of d did not change. Note that,
even though after the assignment G := G − {g} we have g ∈ F − G, still
g �∈ {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} holds. So assumption A does not
provide any information when g is to be added back to G. This information is
provided in assumption C. On the whole, the idea is to keep in G at least all
functions f for which the current value of d is not a fix point.

We now recall the results which state the (partial) correctness of the GI
algorithm, cf. [11, 12]:

i. Every terminating execution of the GI algorithm computes in d a common
fixpoint of the functions from F .

ii. Suppose that all functions in F are monotonic. Then every terminating
execution of the GI algorithm computes in d the least common fixpoint of
all the functions from F .

iii. Suppose that all functions in F are inflationary and that D is finite. Then
every execution of the GI algorithm terminates.

3.5.4 Generalized Local Consistency for SCSPs via Algorithm GI

In this section we will try to combine the two formalisms described so far (soft
constraints and the GI algorithm). Our goal is to exploit the GI algorithm to
perform local consistency over soft constraint problems.
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GI for Standard Local Consistency over Soft Constraints. The functions
that GI needs in input are defined on a partial ordering with bottom. In the
case of local consistency rules for SCSPs, the partial ordering is 〈P ↑,�CP 〉,
and the bottom is the problem P itself, cf. Theorem 3.5.3. Moreover, the local
consistency rules (and also the more general local consistency functions) have all
the “good” properties that GI needs. Namely, those functions are monotonic and
inflationary. Thus, algorithm GI can be used to perform constraint propagation
over soft constraint problems. More precisely, we can see that algorithm GI
and the local consistency algorithm schema for soft constraints obtain the same
result.

Theorem 3.5.4 (GI for soft local consistency rules). Given an SCSP P
over a constraint system CS, consider the SCSP lc(P,R, S) obtained by applying
to P a local consistency algorithm using the rules in R and with a fair strategy S.
Consider also the partial order 〈P ↑,�CP 〉, and the set of functions R, and apply
algorithm GI to such input. Then the output of GI coincides with lc(P,R, S).

Proof. Since we already know that lc(P,R, S) and GI terminate (by the results
appeared in [10, 47], and since the computed fixpoint is the same (by previous
item ii.), their output obviously coincide.

GI for Generalized Local Consistency over Soft Constraints. While all
local consistency rules are idempotent (since they solve a subproblem), algorithm
GI does not need this property. This means that we can define a generalized
notion of local consistency rules for soft constraints, by dropping idempotency.

Definition 3.5.8 (local consistency functions). Consider an SCSP P over
a semiring S. A local consistency function for P is a function f : P ↑→ P ↑
which is monotonic and inflationary over �CP .

With this definition of a local consistency function we relax two conditions
about a local consistency step:

– that it must solve a subproblem;
– that it must be idempotent.

The second generalization has been triggered by the results about the GI al-
gorithm, which have shown that idempotency is not needed for the desired
results. Moreover, many practical local consistency algorithms do not exactly
solve subproblems, but generate an approximation of the solution (see for ex-
ample the definition of bounds consistency in [141] or the notion of partial soft
arc-consistency in [34]). Thus, the first extension allows one to model many more
practical propagation algorithms.

Theorem 3.5.5 (GI for soft local consistency functions). Given a con-
straint system CS and an SCSP P on it, let us apply the GI algorithm to the
partial order 〈P ↑,�CP 〉 and a finite set R of local consistency functions. Then
every terminating execution of the GI algorithm computes in the output problem
P ′ the least common fixpoint of all the functions from R.
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Proof. Easily follows by item i. of the previous section.

What is now important to investigate is when the algorithm terminates. This
is particularly crucial for soft constraints, since, even when the variable domains
are finite, the semiring may contain an infinite number of elements, which is
obviously a source of possible non-termination.

3.5.5 Termination of the GI Algorithm over Soft Constraints

As noted above, the presence of a possibly infinite semiring may lead to a con-
straint propagation algorithm that does not terminate. In the following we will
give several independent conditions which guarantee termination in some special
cases.

The first condition is a predictable extension of the one given in Section
3.5.3: instead of requiring the finiteness of the domain of computation, we just
require that its chains have finite length, since it is easy to see that constraint
propagation moves along a chain in the partial order.

Theorem 3.5.6 (termination 1). Given a constraint system CS and an SCSP
P on it, let us instantiate the GI algorithm with the po 〈P ↑,�CP 〉 and a finite
set R of local consistency functions. Suppose that the order �CP restricted to
P ↑ is well founded. Then every execution of the GI algorithm terminates.

Proof. Easily follows from Theorem 1 in [11,12]. Note that there the author says
to need a finite (and not a well found) partial order, but the proof do not uses
this restriction.

This theorem can be used to prove termination in many cases. For example,
classical constraints over finite domains generate a partial order that is finite
(and thus trivially well-found), so the above theorem guarantees termination.
Another example occurs when dealing with weighted soft constraints, where we
deal with the naturals. Here the semiring is 〈N,min,+, 0,+∞〉. Thus we have
an infinite order, but well-found.

There are also many interesting cases, however, in which the ordering 〈P ↑
,�CP 〉 is not well-found. Consider for instance the case of fuzzy or probabilistic
CSPs. For fuzzy CSPs, the semiring is 〈[0, 1],max,min, 0, 1〉. Thus, the partially
ordered structure containing all problems that are smaller than the given one,
according to the semiring partial order, is not well-found, since we have all
the reals between 0 and a certain element in [0, 1]. Thus, the above theorem
cannot say anything about termination of GI in this case. This does not mean,
however, that GI does not terminate, but only that the theorem above cannot be
applied. In fact, later we will give another sufficient condition that will guarantee
termination in the last two cases as well.

In fact, if we restrict our attention to local consistency functions defined via
+ and ×, we can define another condition on our input problem that guarantees
the termination of the GI algorithm; this condition exploits the fact that the
local consistency functions are defined by means of the two semiring operations,
and the properties of such operations.
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Definition 3.5.9 (semiring closure). Consider a constraint system CS with
semiring S = 〈A,+,×,0,1〉, and an SCSP P on CS. Consider also the set of
semiring values appearing in P : Cl(P ) =

⋃
〈def ′,con′〉∈C{def ′(d) | d ∈ D|con′|}.

Then, a semiring closure of P is any set B such that: Cl(P ) ⊆ B ⊆ A; B is
closed with respect to + and ×; <S restricted to B is well founded.

Theorem 3.5.7 (termination 2). Consider a constraint system CS with se-
miring S = 〈A,+,×,0,1〉, an SCSP P on it and a finite set of local consistency
functions R defined via + and ×. Assume there also exists a semiring closure of
P . Then every execution of the GI algorithm terminates.

Proof. The proof is similar to the one in [11, 12] for the termination theorem;
just replace the order �CP with ≤S and accordingly the set D with B, where B
is a semiring closure of P .

Notice that this theorem is similar to the one in Section 3.1 about termi-
nation; however there we force the set B to be finite in order to guarantee the
termination of a local consistency algorithm; a hypothesis that is implied by
ours.

If we have a fuzzy constraint problem, then we can take B as the set of
all semiring values appearing in the initial problem. In fact, this set is closed
with respect to min and max, which are the two semiring operations in this
case. Moreover, it is well-found, since it is finite. Another example is constraint
optimization over the reals: if the initial problem contains only natural numbers,
then the set B can be the set of all naturals, which is is a well-founded subset
of the reals and it is closed w.r.t. + (min) and × (sum).

Therefore, by using Theorem 3.5.7 we can also prove that constraint prop-
agation over fuzzy constraint problems always terminates, provided that each
step of the algorithm uses a local consistency function, which is defined in terms
of the two semiring operations only.

It is not, however, always easy to find a semiring closure of a given SCSP P ,
mainly because we should check that the order restricted to a tentative set B,
closed and containing Cl(P ), is well-found. Nevertheless, there is a special case
in which we do not have to find such a set, because we can prove that it always
exists (which is what Theorem 3.5.7 requires). This special case occurs when the
multiplicative operation of the semiring is idempotent. In fact, we can prove that
in this case there always exists a finite (and thus well-found) semiring closure of
any given problem over that semiring. This obviously is very convenient, since
it provides us with an easy way to check whether Theorem 3.5.7 can be applied.

Theorem 3.5.8 (idempotency of × and termination). Consider a con-
straint system CS, an SCSP P on it and a finite set of local consistency func-
tions R defined via + and ×. Assume also that × is idempotent. Then there
exists a finite semiring closure of P , and thus every execution of the GI algo-
rithm terminates.

Proof. Consider the set Cl(P ) of all semiring elements appearing in P . If we
combine any subset of them via the + operation, we generate a set of elements,
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which contains Cl(P ), that we denote by Cl+. Notice that this set is finite,
because the number of subsets of Cl(P ) is finite.

Let us now combine any subset of elements of Cl+ via the × operation: in
this way we generate a larger set of elements, containing Cl+, which we denote
by Cl+×. Again, this set is finite. Therefore Cl+× is a finite semiring closure
of P .

Consider again the fuzzy constraint example. Here × is min, thus it is idem-
potent. Therefore, by Theorem 3.5.8, GI over such problems always terminates.
This is an alternative, and easier, way (to Theorem 3.5.7) to guarantee that soft
constraint propagation over fuzzy constraints terminates. In fact, we do not have
to find a semiring closure of the problem, but just check that the multiplicative
operation is idempotent.

Considering all the above results, we can devise the following steps towards
proving the termination of algorithm GI on a soft constraint problem P over a
semiring S:

– If the local consistency functions are defined via the two operations of S,
and the multiplicative operation of S is idempotent, then GI terminates (by
Theorems 3.5.8).

– If instead × is not idempotent, but we still have local consistency functions
defined via the two semiring operations, we can try to find a semiring closure
of P . If we find it, then GI terminates (by Theorem 3.5.7).

– If we cannot find a semiring closure of P , or the local consistency functions
are more general, then we can try to prove that the partial order of problems
is well-found. If it is so, the GI terminates (by Theorem 3.5.6).

While Theorem 3.5.8 applies in a special case of the hypothesis of Theorem
3.5.7, it is interesting to investigate the relationship between the hypothesis
of Theorem 3.5.6 and 3.5.7. What can be proven is that these two conditions,
namely, the well-foundness of the partial order of problems and the existence of
a semiring closure, are independent. In other words, there are cases in which one
holds and not the other one, and vice versa. To prove this result, we need the
following definition.

Definition 3.5.10. Let S = 〈A,+,×,0,1〉 be a semiring and B a subset of A.
The set B is a down-set (or an order ideal) if, whenever a ∈ B, a′ ∈ A and
a′ ≤S a, then a′ ∈ B. Given any subset B of A, the downward closure of B is

B ↓:= {d′ ∈ A : ∃d (d ∈ B and d′ ≤S d)}.
Observe that the class F of down-sets containing a subset B of A is not empty,
since A itself is such a set. Moreover, it is easy to check that the downward
closure of B is the smallest down-set of F; hence the downward closure of a set
is well defined.

Given a semiring S = 〈A,+,×,0,1〉, the following result links the upward
closure of a problem P with the downward closure of Cl(P ), thus allowing us to
compare the conditions in Theorem 3.5.6 and 3.5.7.
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Proposition 3.5.2. Given a constraint system CS and a problem P defined on
it, consider the set B := {def(t) ∈ A : ∃P ′ ∈ P ↑ (c := 〈def, con〉 ∈ P ′, t ∈
D|con|)}. Then B = Cl(P ) ↓.
Proof. It follows immediately from the definition of �CP , of P ↑ and Cl(P ) ↓.

Now we can notice that, given a subset B of a semiring, if <S restricted to
B is well founded, then so is <S restricted to B̂ := B ∪ {0,1}. Furthermore, if
B is finite, so is B̂. In fact it is sufficient to check that the following identities
hold because of the fact that S = 〈A,+,×,0,1〉 is a c-semiring: if a ∈ B then
a+0 = a ∈ B; if a ∈ B then a×1 = a ∈ B; if a ∈ B then a+1 = 1 ∈ B̂; if a ∈ B
then a × 0 = 0 ∈ B̂. Hence, in Theorem 3.5.7, we can replace the hypothesis
“Cl(P ) ⊆ B and B a semiring closure of Cl(P )” with the condition that “Cl(P)
is a subset of a well founded sub-c-semiring B of §S = 〈A,+,×,0,1〉”.

Moreover, + is the least upper bound operation and, if × is idempotent, ×
is the greatest lower bound operation (see chapter 2 and [47]). Hence a sub-
c-semiring is also a sub-lattice of S = 〈A,+,×,0,1〉 and vice versa if × is
idempotent. Thus, a subset B of a semiring can be a down-set and yet it may
be not closed with respect to × and +. For instance, the set of negative real
numbers augmented with −∞ is a down-set in the lattice R∞ of reals extended
with {+∞,−∞} and the usual linear ordering; however, it is not a sub-lattice
itself. Vice versa, there are sub-lattices of R∞ - hence sets that are closed with
respect to the least upper bound and the greatest lower bound operations -
that are not down-sets. For instance, the extended interval [0, 1] ∪ {+∞,−∞}.
Therefore, the two conditions that guarantee the termination of algorithm GI in
Theorems 3.5.6 and 3.5.7 are independent.

3.6 Dynamic Programming for SCSPs

Dynamic programming [24, 25] can be used to solve a problem by solving some
subproblems of it and then combining their solutions to obtain the solution
of the whole problem (see for example [116] for its use in graphs and [151,
152] for its adoption in classical CSPs where is called perfect relaxation). In the
SCSP framework, a suitably instantiated version of dynamic programming can
be fruitfully used as well: at each step, a subset of constraints is chosen and
solved, and its solution (which, we recall, is a constraint) replaces the whole
subset of constraints.

Before defining the algorithm, we need to describe in a tree-like way the
SCSP to be solved, so that the algorithm can then follow the tree structure in a
bottom-up way.

Definition 3.6.1 (parsing tree). Given an SCSP P = 〈C, con〉, a parsing tree
of P is a sequence of local consistency rules S = r1; . . . ; rn, where ri = (li ← Li).
Let

– L = {li, i = 1, . . . , n} ∪ ⋃
i=1,...,n Li (that is, L is the set of all locations

occurring in all rules in S);
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– li ≺ l iff l ∈ Li (that is, rule ri “generates” location l);
– li ≺ v iff v �∈ li and v ∈ l′ with l′ ∈ Li (that is, rule ri “generates” variable
v);

– for any x location or variable, prec(x) = {l | l ≺ x}.
Then we require that

– (tree-like) for any x variable or location, if x = ln or x ∈ ln, then prec(x) =
∅, else prec(x) is a singleton;

– (cover) con = ln, and 〈def, con′〉 ∈ C implies con′ ∈ L;
– (bottom-up parsing) li ≺ lj implies j < i.

In words, the above definition provides a sequence of rules which cover the
whole problem and are connected among them as a tree. Moreover, the sequence
gives a bottom-up visit of the tree. It is now easy to define a dynamic program-
ming algorithm where, at each step, one rule is processed, according to the given
sequence. Note also that the rules we use to explore the tree in a dynamic pro-
gramming fashion have the same structure of the rule used to perform a step of
relaxation of the problem. This means that dynamic programming can be seen
as a special case of relaxation algorithm.

Definition 3.6.2 (dynamic programming algorithm). Given an SCSP P ,
consider a parsing tree S = r1; . . . ; rn of P . Then compute [S](P ).

We will now prove that the value of location ln when the algorithm terminates
coincides with the solution of the given problem P .

Theorem 3.6.1 (solution). Given an SCSP P = 〈C, l〉 and a parsing tree S
for P , we have that Sol(P ) = [l][S](P ).

Proof. We will prove the statement of the theorem by induction on the length of
the parsing tree. For the base case, consider a parsing tree with just one rule, that
is, l ← L. It is easy to see that [l][r](P ) is the solution of P . In fact, applying this
rule means exactly solving the whole problem. Assume now that the statement
holds for all parsings with n − 1 rules, and consider a parsing S1 with n rules
r1, . . . , rn, where ri = li ← Li for all i = 1, . . . , n. Consider now the first rule of
this parsing, that is, r1 = l1 ← L1, and take another rule ri such that l1 = li or
l1 ∈ Li, and there is no other rule rj with j < i and such that l1 = lj or l1 ∈ Lj .
That is, ri is the first rule after r1 which has l1 either in its left hand side or
in its right hand side. Note that such a rule must exist by definition of parsing
tree. In fact, either l1 = ln, and in this case l1 must appear at least in the left
hand side on rn, or l1 �= ln, in which case it must be generated by one rule (ri).
We will now consider the two separate cases: that l1 = li and that l1 ∈ Li.

Assume that l1 ∈ Li. Consider then the sequence S2 =
r2, . . . , ri−1, r1, ri, . . . , rn. It is easy to see that this is still a parsing for
the given problem. Moreover, the constraint of type ln resulting after applying
the rules in S2 coincides with that obtained after applying the rules in S1. In
fact, since l1 can be generated by just one rule (by definition of parsing), all rules
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in {r2, . . . , ri−1} cannot change the definition of l1 and thus applying r1 before
or after them cannot change the resulting constraint. Consider now another
sequence S3 of n− 1 rules r2, . . . , ri−1, r

′
i, ri+1, . . . , rn, where r′i = li ← Li ∪ L1.

It is easy to see that this sequence of rules is again a parsing tree for P , thus
by induction hypothesis the constraint with type ln after the application of S2

is the solution of the problem. Now we have to show that such a constraint
coincides with that obtained at location ln after applying sequence S2 (which
we already know to coincide with that obtained at location ln after sequence
S1). What makes S2 and S3 differ is the fact that rule r1 of S2 has been
“merged” with rule ri to give rule r′i in S3. More precisely, the application of
rule r′i combines all constraints specified by L1 ∪ Li, while the application of
first rule r1 and then rule ri combines first the constraint specified by L1 and
then combines the resulting constraint with those constraints specified by Li.
We will show that these two methods yield the same final constraint.

In the following of this proof, for ease of readability, we will write l instead
of [l]P . On one side (rule r′i) we have the constraint (

⊗
(Li ∪L1 ∪{li})) ⇓li , and

on the other side (rule r1 and then ri) we have the constraint (
⊗

((Li − {l1}) ∪
{li} ∪ {(⊗(L1 ∪ {l1})) ⇓l1})) ⇓li . Thus we have to prove that:

(
⊗

(Li∪L1∪{li})) ⇓li= (
⊗

((Li−{l1})∪{li}∪{(
⊗

L1∪{l1}) ⇓l1})) ⇓li .
We will start from the left hand side of the formula and try to reach the right
hand side. We have:
(
⊗

(Li ∪ L1 ∪ {li})) ⇓li =
{by separating (Li ∪ {li}) − {l1} and L1 ∪ {l1} which are disjoint}
((

⊗
((Li ∪ {li}) − {l1}))

⊗
(
⊗

(L1 ∪ {l1}))) ⇓li =
{by Theorem 2.2.1, and letting Vi =

⋃
(Li ∪ {li}, that is the set of all variables

involved in rule ri }
((

⊗
((Li ∪ {li}) − {l1}))

⊗
(
⊗

(L1 ∪ {l1}))) ⇓Vi⇓li =
{by Theorem 2.2.2, since the variables not in Vi are not involved in Li ∪ {li} −
{l1}}
((

⊗
((Li ∪ {li}) − {l1}))

⊗
(
⊗

(L1 ∪ {l1}) ⇓Vi)) ⇓li =
{by Proposition 2.2.1, since Vi ∩ V1 = l1, where V1 = (

⋃
L1) ∪ l1}

((
⊗

((Li∪{li})−{l1}))
⊗

(
⊗

(L1∪{l1})) ⇓l1) ⇓li . which coincides with the right
hand side of the formula.

Let us now consider the second case, in which l1 = li. Then consider the
sequence S2 = r2, . . . , ri−1, r1, ri, . . . , rn. With a reasoning similar to above,
it is easy to see that S2 is still a parsing tree for P and that the constraint
of type ln obtained via S2 is the same as the one obtained via S1, since by
assumption location l1 does not appear in rules r2, . . . , ri−1. Consider now S3 =
r2, . . . , ri−1, r

′
i, ri+1, . . . , rn where r′i = l1 ← Li ∪ L1. Again, S3 is a parsing

tree for P . Moreover, it has n− 1 rules, thus the constraint of type ln after the
application of S3 coincides with the solution of P . Now we will show that this
is the same as that obtained after the application of S2. More precisely, we have
to show that

(
⊗

(L1 ∪ Li ∪ {l1})) ⇓l1= (
⊗

(Li ∪ (
⊗

(L1 ∪ {l1})) ⇓l1) ⇓l1 .
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This can be easily proven by using reasoning similar to that of the first case.

Note that this dynamic programming algorithm can be applied to any in-
stance of the SCSP framework, even when × is not idempotent (and thus the
local consistency algorithms cannot safely be applied).

Obviously any SCSP has a parsing tree6, but not all classes of SCSPs have
convenient parsing trees for each SCSP of the class (see [142], where it is shown
that the class of rectangular lattices does not have such a property). Here, by
convenient we mean that the size of each rule is smaller than some bound N ,
which is fixed and the same for the whole class of considered SCSPs. In such a
case, each step of the algorithm solves an SCSP with bounded size. Thus, the
complexity of this step may be exponential in the size of such an SCSP, but
constant w.r.t. the size of the overall problem. Therefore, the complexity of the
algorithm is linear in the number of rules of the parsing tree, which is linear in
the number of variables of the problem. Thus, the overall algorithm is linear in
the number of variables of the problem. When applied to standard CSPs, this
algorithm reduces to the perfect relaxation algorithm of [151,152].

Definition 3.6.3 (N-bounded parsing tree). Given an SCSP P = 〈C, con〉
and an integer N , consider a parsing tree S = {l1 ← L1; . . . ; ln ← Ln} for P .
Then S is N -bounded for P if

1. for all i = 1, . . . , n, | li ∪
⋃
l∈Li l |≤ N (that is, the number of variables of a

rule is bounded by N);
2. for all i = 1, . . . , n, there is a variable v such that li ≺ v (that is, each rule

generates at least a variable);
3. VP =

⋃
〈def,con′〉∈C con

′ =
⋃
l∈L l (that is, all the variables occurring in the

rules are present in the constraint problem P ).

Theorem 3.6.2 (linear algorithm when convenient parsing). Given an
integer N , consider the class of all SCSPs which have an N -bounded parsing
tree. Consider now any SCSP P of this class, and let n be the number of its
variables. Then in the worst case P can be solved in time O(n).

Proof. Just apply the dynamic programming algorithm which follows an N -
bounded parsing tree for P , which exists by assumption. Each step of the algo-
rithm applies one of the rules. This is in the worst case O(| D |N ×2N), where D
is the domain of each variable and N is an upper bound to the number of vari-
ables of the rules. In fact, the number of tuples of values for the variables of the
rule is exponential in the number of variables, which by assumption is bounded
by N , and for each tuple one has to check a number of constraints equal to the
number of locations, which again can be exponential in the number of variables
of the rule. Thus, the worst case time complexity of a rule application is con-
stant, since both N and D are fixed. There are as many steps as rules in the
parsing tree. Since each rule by assumption generates at least one variable, the
number of rules is bounded by the number of variables n of the whole problem.
Therefore, in the worst case the number of steps of the algorithm is O(n).
6 Just take the parsing tree with just one rule.
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Conditions 2 and 3 in Definition 3.6.3 are not restrictive for Theorem 3.6.2.
In fact, if we have a parsing for some problem, which satisfies condition 1 but
where some rule, say r = l ← L, does not eliminate any variable, then it is
always possible to obtain another parsing for the same problem that still satisfies
condition 1 but where each rule eliminates at least a variable: just eliminate rule
r and replace every occurrence of l in the other rules with L, and do similarly
for all rules that do not eliminate variables. If instead there are rules containing
variables that do not appear in the problem, then one can always obtain another
parsing where such variables are not there: just remove all locations involving
such “ghost” variables. By doing this, we still have the cover property of the
parsing, since a location involving one or more ghost variables cannot correspond
to any constraint of the given problem.

Theorem 3.6.2 states that in some cases there is an algorithm which is O(n).
One could wonder whether n is a good measure of the size of the given SCSP,
and consider instead the number m of its constraints as more significant. In fact,
in general the number of constraints may be much larger than the number of
variables (for example, in binary CSPs, m is O(n2)). For the classes of SCSPs
that have an N -bounded parsing tree, however, it is possible to show that m is
O(n). In fact, consider an N -bounded parsing tree for a problem P of the class.
Then, each rule may have at most N variables, thus it will contain at most 2N

locations, and there are at most n rules. Thus the total number of locations in
the parsing is n× 2N . Also, since a parsing tree for P covers P , the number of
locations is either the same or greater than the number of constraints in P . Thus
m ≤ (n× 2N ). Therefore we have that m is O(n).

In order to find a parsing tree for a given SCSP, one could adapt the studies on
the secondary problem in dynamic programming (see for example [28]). In some
cases, however, the problem is generated in a way that the parsing tree is already
explicit, like in the case of constraint logic programming (CLP) languages [126].
In fact, during the execution of a CLP program, the use of the clauses of the
program builds a constraint problem with a parsing tree where each node of the
tree directly corresponds to one of the used clauses.

A characterization of what dynamic programming is and when it can be
applied, which is similar to the one given in this section, can be found in [178,
179]. There, valuation-based systems are defined as systems based on variables,
valuations, and two operations, called combination and marginalization. These
two operations are very related, respectively, to our notions of combination and
projection. In valuation-based systems, three axioms are required for the correct
application of a dynamic programming algorithm. These three axioms are indeed
satisfied by our framework as well. In fact, they correspond, respectively, to 1)
commutativity and associativity of ⊗ (see comment after Definition 2.2.5), 2)
Theorem 2.2.1, and 3) Theorem 2.2.2. Note that the proof of Theorem 3.6.1 relies
just on these three properties. In fact, our dynamic programming algorithm,
defined in Definition 3.6.2, can be seen as an extension of the fusion algorithm
defined in [178,179], where the extension consists in the fact that more than one
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variable at a time can be eliminated. In fact, in our algorithm all variables in
the right-hand side of a rule are considered at a time.

Moreover, a related algorithm that solves a constraint problem with a tree-
like shape in a bottom-up way, as in Definition 3.6.2, has been described in [84]
for optimization problems and in [83] for belief maintenance. In those papers, the
idea is to consider either the constraint graph, if it is acyclic, or the dual graph of
a constraint problem (where nodes are constraints and arcs are associated with
variables shared among constraints), and to use techniques like cycle-cutset [85]
or tree-clustering [86] to provide such a dual graph with a tree-like shape. In [84],
however, constraints are combined via the usual and operator, and the value
associated to each tuple is computed in a completely independent way, via a
given utility function. Thus, apart from the tree-structure, our approach and
that in [84] are very different, since we also generalize the way constraints are
combined, via a general notion of combination and projection, of which and and
or are just instances.

Our notion of parsing tree is more general than that of hinge-trees presented
in [119]. In fact, we do not assume anything about the structure of each node of
the tree, which may be a generic graph. On the contrary, in [119] they consider
only nodes that cannot be further decomposed into hinge-trees.

3.7 Conclusions

In this chapter we have generalized the classical solution and preprocessing tech-
niques used for crisp CSPs so they could also be fruitfully used in SCSPs. In
particular, we have shown that sufficient conditions for the effective applica-
bility of local consistency and of dynamic programming algorithms could be
checked just looking at the semiring properties. We have reviewed in this sense
the different non-crisp frameworks and we have given a detailed description of
the applicability of these techniques. Sufficient conditions for the termination
of these (and more general) techniques have been given by just looking at the
partial order structure represented by the constraint system or by the semiring.

Moreover, we have described some methodologies that could be applied to
speed up the search for solutions (by applying labeling and/or partial local con-
sistency) and some topological properties of the constraint graph that have to
be checked to perform special cuts in the search tree.

The techniques of local consistency (or partial local consistency) will also
be used in the next chapter where SCSPs’ abstraction will be introduced. The
idea is that if we are dealing with a framework where the local consistency steps
cannot be safely applied (like in the WCSPs) we can, nonetheless, reduce the
search space. In fact, we can abstract the problem, perform safe local consistency
in the abstract framework, and then take back the collected information over the
concrete problem.

Moreover, these same techniques will be the object of the studies presented
in Chapter 5. There, in fact, a small language will be introduced and each of
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the steps used in the local consistency techniques will be seen as a function plus
an assignment operation that will change the semiring value associated with the
problem.



4. SCSP Abstraction

(Abstraction) The white cross, 1922
Wassily Kandinsky

Overview

We propose an abstraction scheme for soft constraint problems and we
study its main properties. Processing the abstracted version of a soft con-
straint problem can help us in many ways: for example, to find good approx-
imations of the optimal solutions, or also to provide us with information that
can make the subsequent search for the best solution easier. Moreover, we
show how the abstraction framework can be used to import constraint prop-
agation algorithms from the abstract scenario to the concrete one. This may

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 99–123, 2004.
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be useful when we don’t have any (or any efficient) propagation algorithm in
the concrete setting.

Although it is obvious that SCSPs are much more expressive than classical
CSPs, they are also more difficult to process and to solve. Therefore, sometimes
it may be too costly to find all, or even only one, optimal solution. Also, although
classical propagation techniques, like arc-consistency [138], can be extended to
SCSPs (see Chapter 3), even such techniques can be too costly to be used,
depending on the size and structure of the partial order associated to the SCSP.

For these reasons, it may be reasonable to work on a simplified version of the
given problem, trying, however, to not lose too much information. We propose
to define this simplified version by means of the notion of abstraction, which
takes an SCSP and returns a new one that is simpler to solve. Here, as in many
other works on abstraction [191,192], “simpler” may mean many things, like the
fact that a certain solution algorithm finds a solution, or an optimal solution, in
a fewer number of steps, or also that the abstracted problem can be processed
by machinery that is not available in the concrete context.

There are many formal proposals to describe the process of abstracting a
notion, be it a formula, or a problem [192], or even a classical [106] or a soft
CSP [174]. Among these, we chose to use one based on Galois insertions [77],
mainly to refer to a well-know theory, with many results and properties that can
be useful for our purposes. This made our approach compatible with the general
theory of abstraction in [192]. Then, we adapted it to work on soft constraints:
given an SCSP (the concrete one), we get an abstract SCSP by just changing
the associated semiring, and relating the two structures (the concrete and the
abstract one) via a Galois insertion. Note that this way of abstracting constraint
problems does not change the structure of the problem (the set of variables
remains the same, as well as the set of constraints), but just the semiring values
to be associated to the tuples of values for the variables in each constraint.

Once we get the abstracted version of a given problem, we propose to

1. process the abstracted version: this may mean either solving it completely,
or also applying some incomplete solver, which may derive some useful in-
formation from the abstract problem;

2. bring back to the original problem some (or possibly all) of the information
gained in the abstract context;

3. continue the solution process on the transformed problem, which is a con-
crete problem equivalent to the given one.

All this process has the main aim of finding an optimal solution, or an approx-
imation of it, for the original SCSP, within the resource bounds we have. The
hope is that, by following the above three steps, we get to the final goal faster
than just solving the original problem.

A deep study of the relationship between the concrete SCSP and the corre-
sponding abstract one allows us to prove some results that can help in deriving
useful information from the abstract problem and then take some of the de-
rived information back to the concrete problem. In particular, we can prove the
following:
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– If the abstraction satisfies a certain property, all optimal solutions of the
concrete SCSP are also optimal in the corresponding abstract SCSP (see
Theorem 4.3.2). Thus, in order to find an optimal solution of the concrete
problem, we could find all the optimal solutions of the abstract problem,
and then just check their optimality on the concrete SCSP.

– Given any optimal solution of the abstract problem, we can find upper and
lower bounds for an optimal solution for the concrete problem (see Theorem
4.3.3). If we are satisfied with these bounds, we could just take the optimal
solution of the abstract problem as a reasonable approximation of an optimal
solution for the concrete problem.

– If we apply some constraint propagation technique over the abstract prob-
lem, say P , obtaining a new abstract problem, say P ′, some of the informa-
tion in P ′ can be inserted into P , obtaining a new concrete problem, which is
closer to its solution and thus easier to solve (see Theorem 4.3.4 and 4.3.6).
This, however, can be done only if the semiring operation that describes
how to combine constraints on the concrete side is idempotent (see Theorem
4.3.4).

– If instead this operation is not idempotent, we can still bring back some
information from the abstract side. In particular, we can bring back the
inconsistencies (that is, tuples associated with the worst element of the se-
miring), since we are sure that these same tuples are also inconsistent also
in the concrete SCSP (see Theorem 4.3.6).

In both the last two cases, the new concrete problem is easier to solve, in the
sense, for example, that a branch-and-bound algorithm would explore a smaller
(or equal) search tree before finding an optimal solution.

The results of this chapter, already appeared in [33, 35, 36].

4.1 Abstraction

Abstract interpretation [30,77,78] is a theory developed to reason about the rela-
tion between two different semantics (the concrete and the abstract semantics).
The idea of approximating program properties by evaluating a program on a
simpler domain of descriptions of “concrete” program states goes back to the
early’ 70’s. The inspiration was that of approximating properties from the exact
(concrete) semantics into an approximate (abstract) semantics, that explicitly
exhibits a structure (e.g., ordering) which is somehow present in the richer con-
crete structure associated to program execution.

The guiding idea is to relate the concrete and the abstract interpretation of
the calculus by a pair of functions, the abstraction function α and the concretiza-
tion function γ, which form a Galois connection.

Let (C,�) (concrete domain) be the domain of the concrete semantics, while
(A,≤) (abstract domain) be the domain of the abstract semantics. The partial
order relations reflect an approximation relation. Since in approximation theory
a partial order specifies the precision degree of any element in a poset, it is
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obvious to assume that if α is a mapping associating an abstract object in
(A,≤) for any concrete element in (C,�), then the following holds: if α(x) ≤ y,
then y is also a correct, although less precise, abstract approximation of x. The
same argument holds if x � γ(y). Then y is also a correct approximation of x,
although x provides more accurate information than γ(y). This gives rise to the
following formal definition.

Definition 4.1.1 (Galois insertion). Let (C,�) and (A,≤) be two posets (the
concrete and the abstract domain). A Galois connection 〈α, γ〉 : (C,�) � (A,≤)
is a pair of maps α : C → A and γ : A → C such that

1. α and γ are monotonic,
2. for each x ∈ C, x � γ(α(x)) and
3. for each y ∈ A, α(γ(y)) ≤ y.

Moreover, a Galois insertion (of A in C) 〈α, γ〉 : (C,�) � (A,≤) is a Galois
connection where γ · α = IdA.

Property 2 is called extensivity of α · γ. The map α (γ) is called the lower
(upper) adjoint or abstraction (concretization) in the context of abstract inter-
pretation.

The following basic properties are satisfied by any Galois insertion:

1. γ is injective and α is surjective.
2. α · γ is an upper closure operator in (C,�).
3. α is additive and γ is co-additive.
4. Upper and lower adjoints uniquely determine each other. Namely,

γ = λy.
⋃
C

{x ∈ C | α(x) � y}, α = λx.
⋂
A

{y ∈ A | x ≤ γ(y)

5. α is an isomorphism from (γα)(C) to A, having γ as its inverse.

An example of a Galois insertion can be seen in Figure 4.1. Here, the concrete
lattice is 〈[0, 1],≤〉, and the abstract one is 〈{0, 1},≤〉. Function α maps all real
numbers in [0, 0.5] into 0, and all other integers (in (0.5, 1]) into 1. Function γ
maps 0 into 0.5 and 1 into 1.

One property that will be useful later relates to a precise relationship between
the ordering in the concrete lattice and that in the abstract one.

Theorem 4.1.1 (total ordering). Consider a Galois insertion from (C,�) to
(A,≤). Then, if � is a total order, also ≤ is so.

Proof. It easily follows from the monotonicity of α (that is, x � y implies α(x) ≤
α(y), and from its surjectivity (that is, there is no element in A which is not the
image of some element in C via α).

Usually, both the concrete and the abstract lattice have some operators that
are used to define the corresponding semantics. Most of the times it is useful,
and required, that the abstract operators show a certain relationship with the
corresponding concrete ones. This relationship is called local correctness.
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Fig. 4.1. A Galois insertion

Definition 4.1.2 (local correctness). Let f : Cn → C be an operator over the
concrete lattice, and assume that f̃ is its abstract counterpart. Then f̃ is locally
correct w.r.t. f if ∀x1, . . . , xn ∈ C.f(x1, . . . , xn) � γ(f̃(α(x1), . . . , α(xn))).

4.2 Abstracting Soft CSPs

Given the notions of soft constraints and abstraction, recalled in the previous
sections, we now want to show how to abstract soft constraint problems. The
main idea is very simple: we just want to pass, via the abstraction, from an SCSP
P over a certain semiring S to another SCSP P̃ over the semiring S̃, where the
lattices associated to S̃ and S are related by a Galois insertion as shown above.

Definition 4.2.1 (abstracting SCSPs). Consider the concrete SCSP P =
〈C, con〉 over semiring S, where

– S = 〈A,+,×,0,1〉 and
– C = {c0, . . . , cn} with ci = 〈coni, defi〉 and defi : D|coni| → A;

we define the abstract SCSP P̃ = 〈C̃, con〉 over the semiring S̃, where

– S̃ = 〈Ã, +̃, ×̃, 0̃, 1̃〉;
– C̃ = {c̃0, . . . , c̃n} with c̃i = 〈coni, ˜defi〉 and ˜defi : D|coni| → Ã;
– if L = 〈A,≤〉 is the lattice associated to S and L̃ = 〈Ã, ≤̃〉 the lattice asso-

ciated to S̃, then there is a Galois insertion 〈α, γ〉 such that α : L→ L̃;
– ×̃ is locally correct with respect to ×.

Notice that the kind of abstraction we consider in this chapter does not
change the structure of the SCSP. That is, C and C̃ have the same number of
constraints, and ci and c̃i involve the same variables. The only thing that is
changed by abstracting an SCSP is the semiring. Thus, P and P̃ have the same
graph topology (variables and constraints), but different constraint definitions,
since if a certain tuple of domain values in a constraint of P has semiring value a,

figure/gal.eps
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then the same tuple in the same constraint of P̃ has semiring value α(a). Notice
also that α and γ can be defined in several different ways, but all of them have
to satisfy the properties of the Galois insertion, from which it derives, among
others, that α(0) = 0̃ and α(1) = 1̃.

Example 4.2.1. As an example, consider any SCSP over the semiring for opti-
mization

SWCSP = 〈R− ∪ {−∞},max,+,−∞, 0〉
(where costs are represented by negative reals) and suppose we want to abstract
it onto the semiring for fuzzy reasoning

SFCSP = 〈[0, 1],max,min,0,1〉.
In other words, instead of computing the maximum of the sum of all costs, we
just want to compute the maximum of the minimum of all costs, and we want to
normalize the costs over [0..1]. Notice that the abstract problem is in the FCSP
class and it has an idempotent × operator (which is the min). This means that
in the abstract framework we can perform local consistency over the problem
in order to find inconsistencies. As noted above, the mapping α : 〈R−,≤WCSP

〉 → 〈[0, 1],≤FCSP 〉 can be defined in different ways. For example one can decide
to map all the reals below some fixed real x onto 0 and then to map the reals
in [x, 0] into the reals in [0, 1] by using a normalization function, for example
f(r) = x−r

x .

Example 4.2.2. Another example is the abstraction from the fuzzy semiring to
the classical one:

SCSP = 〈{0, 1},∨,∧, 0, 1〉.
Here function α maps each element of [0, 1] into either 0 or 1. For example, one
could map all the elements in [0, x] onto 0, and all those in (x, 1] onto 1, for some
fixed x. Figure 4.1 represents this example with x = 0.5.

In Figure 4.2 we show an example of fuzzy CSP and its solutions.
We have defined Galois insertions between two lattices 〈L,≤S〉 and 〈L̃, ≤̃S̃〉

of semiring values. For convenience, however, in the following we will often use

a b b ... min(1,1) = 1

a b a ... min(1,1) = 1

a a b ... min(0,0.1) = 0

a a a ... min(0,0.3) = 0

Solutions:

x

b a a ... min(0.5,0.3) = 0.3
a b b ... 1

a b a ... 1

Best solutions:

b b b ... min(0.7,1) = 0.7

b b a ... min(0.7,1) = 0.7

b a b ... min(0.5,0.1) = 0.1b b ... 1

y z

b a ... 1

a b ... 0.1

a a ... 0.3

b b ... 0.7

b a ... 0.5

a b ... 1

a a ... 0

Fig. 4.2. A fuzzy CSP and its solutions

figure/fig-one.eps
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Galois insertions between lattices of problems 〈PL,�S〉 and 〈P̃L, �̃S̃〉 where PL
contains problems over the concrete semiring and P̃L over the abstract semiring.
This does not change the meaning of our abstraction, we are just upgrading the
Galois insertion from semiring values to problems. Thus, when we will say that
P̃ = α(P ), it will mean that P̃ is obtained by P via the application of α to all
the semiring values appearing in P .

An important property of our notion of abstraction is that the composition
of two abstractions is still an abstraction. This allows to build a complex ab-
straction by defining several simpler abstractions to be composed.

Theorem 4.2.1 (abstraction composition). Consider an abstraction from
the lattice corresponding to a semiring S1 to that corresponding to a semiring
S2, denoted by the pair 〈α1, γ1〉. Consider now another abstraction from the
lattice corresponding to the semiring S2 to that corresponding to a semiring S3,
denoted by the pair 〈α2, γ2〉. Then the pair 〈α1 · α2, γ2 · γ1〉 is an abstraction as
well.

Proof. We first have to prove that 〈α, γ〉 = 〈α1 · α2, γ2 · γ1〉 satisfies the four
properties of a Galois insertion:

– since the composition of monotone functions is again a monotone function,
we have that both α and γ are monotone functions;

– given a value x ∈ S1, from the first abstraction we have that x �1 γ1(α1(x)).
Moreover, for any element y ∈ S2, we have that y �2 γ2(α2(y)). This
holds also for y = α1(x), thus by monotonicity of γ1 we have x �1

γ1(γ2(α2(α1(x)))).
– a similar proof can be used for the third property;
– the composition of two identities is still an identity .

To prove that ×3 is locally correct w.r.t. ×1, it is enough to consider the
local correctness of ×2 w.r.t. ×1 and of ×3 w.r.t. ×2, and the monotonicity of
γ1.

4.3 Properties and Advantages of the Abstraction

In this section we will define and prove several properties that hold on abstrac-
tions of soft constraint problems. The main goal here is to point out some of the
advantages that one can have in passing through the abstracted version of a soft
constraint problem instead of directly solving the concrete version.

4.3.1 Relating a Soft Constraint Problem
and Its Abstract Version

Let us consider the scheme depicted in Figure 4.3. Here, and in the following
pictures, the left box contains the lattice of concrete problems, and the right
one the lattice of abstract problems. The partial order in each of these lattices is
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shown via dashed lines. Connections between the two lattices, via the abstraction
and concretization functions, is shown via directed arrows. In the following, we
will call S = 〈A,+,×,0,1〉 the concrete semiring and S̃ = 〈Ã, +̃, ×̃, 0̃, 1̃〉 the
abstract one. Thus, we will always consider a Galois insertion 〈α, γ〉 : 〈A,≤S〉 �
〈Ã,≤S̃〉.

In Figure 4.3, P is the starting SCSP. Then with the mapping α we get
P̃ = α(P ), which is an abstraction of P . By applying the mapping γ to P̃ , we
get the problem γ(α(P )). Let us first notice that these two problems (P and
γ(α(P ))) are related by a precise property, as stated by the following theorem.

Theorem 4.3.1. Given an SCSP P over S, we have that P �S γ(α(P )).

Proof. Immediately follows from the properties of a Galois insertion, in partic-
ular from the fact that x ≤S γ(α(x)) for any x in the concrete lattice. In fact,
P �S γ(α(P )) means that, for each tuple in each constraint of P , the semiring
value associated to such a tuple in P is smaller (w.r.t. ≤S) than the correspond-
ing value associated to the same tuple in γ(α(P )).

Notice that this implies that, if a tuple in γ(α(P )) has semiring value 0, then
it must have value 0 also in P . This holds also for the solutions, whose semiring
value is obtained by combining the semiring values of several tuples.

Corollary 4.3.1. Given an SCSP P over S, we have that Sol(P ) �S
Sol(γ(α(P )).

Proof. We recall that Sol(P ) is just a constraint, which is obtained as⊗
(C) ⇓con. Thus the statement of this corollary comes from the monotonic-

ity of × and +.

Therefore, by passing from P to γ(α(P )), no new inconsistencies are intro-
duced: if a solution of γ(α(P )) has value 0, then this was true also in P . It is
possible, however, that some inconsistencies are forgotten (that is, they appear
to be consistent after the abstraction process).

Example 4.3.1. Consider the abstraction from the fuzzy to the classical semiring,
as described in Figure 4.1. Then, if we call P the fuzzy problem in Figure 4.2,

abstract problemsconcrete problems

P

α
γ

α

γ( (P))α
α (P) = P

~

Fig. 4.3. The concrete and the abstract problem

figure/fig1.eps
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Figure 4.4 shows the concrete problem P , the abstract problem α(P ), and its
concretization γ(α(P )). It is easy too see that, for each tuple in each constraint,
the associated semiring value in P is lower than or equal to that in γ(α(P )).

If the abstraction preserves the semiring ordering (that is, applying the ab-
straction function and then combining gives elements that are in the same order-
ing as the elements obtained by combining only), then there is also an interesting
relationship between the set of optimal solutions of P and that of α(P ). In fact,
if a certain tuple is optimal in P , then this same tuple is also optimal in α(P ).
Let us first investigate the meaning of the order-preserving property.

Definition 4.3.1 (order-preserving abstraction). Consider two sets I1 and
I2 of concrete elements. Then an abstraction is said to be order-preserving if∏̃

x∈I1
α(x) ≤S̃

∏̃
x∈I2

α(x) ⇒
∏
x∈I1

x ≤S
∏
x∈I2

x

where the products refer to the multiplicative operations of the concrete (
∏

) and
the abstract (

∏̃
) semirings.

In words, this notion of order-preservation means that if we first abstract and
then combine, or we combine only, we get the same ordering (but on different
semirings) among the resulting elements.

Example 4.3.2. An abstraction that is not order-preserving can be seen in Figure
4.5. Here, the concrete and the abstract sets, as well as the additive operations
of the two semirings, can be seen from the picture. For the multiplicative oper-
ations, we assume they coincide with the glb of the two semirings.

x y z

a a
a b 
b a
b b

a a
a b 
b a
b b

... 1

... 0.5 ... 1
... 1

... 0 ... 0.3
... 0.1

... 0.7

x y z

a a
a b 
b a
b b

a a
a b 
b a
b b

... 1
... 1
... 1

... 0

... 0

... 1

... 0

... 0

γ(α( P)

p)α(

x y z

a a
a b 
b a
b b

a a
a b 
b a
b b

α

γ)

P

... 0.5

... 1

... 0.5

... 1

... 0.5

... 0.5

... 1

... 1

Fig. 4.4. An example of the abstraction fuzzy-classical
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In this case, the concrete ordering is partial, while the abstract ordering is
total. Functions α and β are depicted in the figure by arrows going from the
concrete semiring to the abstract one and vice versa. Assume that the concrete
problem has no solution with value 1. Then all solutions with value a or b are
optimal. Suppose a solution with value b is obtained by computing b = 1×b, while
we have a = 1×a. Then the abstract counterparts will have values α(1)×′α(b) =
1 ×′ 0 = 0 and α(1) ×′ α(a) = 1 ×′ 1 = 1. Therefore, the solution with value a,
which is optimal in the concrete problem, is not optimal anymore in the abstract
problem.

Example 4.3.3. The abstraction in Figure 4.1 is order-preserving. In fact, con-
sider two abstract values that are ordered, that is 0 ≤′ 1. Then 1 = 1 ×′ 1 =
α(x)×′ α(y), where both x and y must be greater than 0.5. Thus their concrete
combination (which is the min), say v, is always greater than 0.5. On the other
hand, 0 can be obtained by combining either two 0’s (therefore the images of two
elements smaller than or equal to 0.5, whose minimum is smaller than 0.5 and
thus smaller than v), or by combining a 0 and a 1, which are images of a value
greater than 0.5 and one smaller than 0.5. Also in this case, their combination
(the min) is smaller than 0.5 and thus smaller than v. Thus the order-preserving
property holds.

Example 4.3.4. Another abstraction that is not order-preserving is the one that
passes from the semiring 〈N ∪{+∞},min, sum, 0,+∞〉, where we minimize the
sum of values over the naturals, to the semiring 〈N ∪ {+∞},min,max, 0,+∞〉,
where we minimize the maximum of values over the naturals. In words, this
abstraction maintains the same domain of the semiring, and the same additive
operation (min), but it changes the multiplicative operation (which passes from
sum to max). Notice that the semiring orderings are the opposite as those usually
used over the naturals: if i is smaller than j then j ≤S i, thus, the best element
is 0 and the worst is +∞. The abstraction function α is just the identity, and
also the concretization function γ.

In this case, consider in the abstract semiring two values and the way they are
obtained by combining other two values of the abstract semiring: for example,
8 = max(7, 8) and 9 = max(1, 9). In the abstract ordering, 8 is higher than 9.

1

a b

0

1

0

γ

γ

α

α

α

α

Fig. 4.5. An abstraction which is not order-preserving
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Then, let us see how the images of the combined values (the same values, since α
is the identity) relate to each other: we have sum(7, 8) = 15 and sum(1, 9) = 10,
and 15 is lower than 10 in the concrete ordering. Thus the order-preserving
property does not hold.

Notice that, if we reduce the sets I1 and I2 to singletons, say x and y, then
the order-preserving property says that α(x) ≤S̃ α(y) implies that x ≤S y. This
means that if two abstract objects are ordered, then their concrete counterparts
will be ordered as well, and in the same way. Of course they could never be
ordered in the opposite sense, otherwise α would not be monotonic; but they
could be incomparable. Therefore, if we choose an abstraction where incompa-
rable objects are mapped by α onto ordered objects, then we do not have the
order-preserving property. A consequence of this is that if the abstract semi-
ring is totally ordered, and we want an order-preserving abstraction, then the
concrete semiring will be totally ordered as well.

On the other hand, if two abstract objects are not ordered, then the corre-
sponding concrete objects can be ordered in any sense, or they can also be not
comparable. Notice that this restriction of the order-preserving property to sin-
gleton sets always holds when the concrete ordering is total. In fact, in this case,
if two abstract elements are ordered in a certain way, then it is impossible that
the corresponding concrete elements are ordered in the opposite way, because,
as we said above, of the monotonicity of the α function.

Theorem 4.3.2. Consider an abstraction that is order-preserving. Given an
SCSP P over S, we have that Opt(P ) ⊆ Opt(α(P )).

Proof. Let us take a tuple t that is optimal in the concrete semiring S, with
value v. Then v has been obtained by multiplying the values of some subtuples.
Suppose, without loss of generality, that the number of such subtuples is two
(that is, we have two constraints): v = v1 × v2. Let us then take the value
of this tuple in the abstract problem, that is, the abstract combination of the
abstractions of v1 and v2: this is v′ = α(v1) ×′ α(v2). We have to show that if v
is optimal, then also v′ is optimal.

Suppose then that v′ is not optimal, that is, there exists another tuple t′′

with value v′′ such that v′ ≤S′ v′′. Assume v′′ = v′′1 ×′ v′′2 . Now let us see the
value of tuple t′′ in P . If we set v′′i = α(v̄i), then we have that this value is
v̄ = v̄1 × v̄2. Let us now compare v with v̄. Since v′ ≤S̃ v′′, by order-preservation
we get that v ≤S v̄. But this means that v is not optimal, which was our initial
assumption. Therefore v′ has to be optimal.

Therefore, in case of order-preservation, the set of optimal solutions of the
abstract problem contains all the optimal solutions of the concrete problem.
In other words, it is not allowed that an optimal solution in the concrete do-
main becomes non-optimal in the abstract domain. Some non-optimal solutions,
however, could become optimal by becoming incomparable with the optimal
solutions.
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Example 4.3.5. Consider again the previous example. The optimal solutions in
P are the tuples 〈a, b, a〉 and 〈a, b, b〉. It is easy to see that these tuples are also
optimal in α(P ). In fact, this is a classical constraint problem where the solutions
are tuples 〈a, b, a〉, 〈a, b, b〉, 〈b, b, a〉, and 〈b, b, b〉.

Thus, if we want to find an optimal solution of the concrete problem, we could
find all the optimal solutions of the abstract problem, and then use them on the
concrete side to find an optimal solution for the concrete problem. Assuming
that working on the abstract side is easier than on the concrete side, this method
could help us find an optimal solution of the concrete problem by looking at just
a subset of tuples in the concrete problem.

Another important property, which holds for any abstraction, concerns com-
puting bounds that approximate an optimal solution of a concrete problem. In
fact, any optimal solution, say t, of the abstract problem, say with value ṽ, can
be used to obtain both an upper and a lower bound of an optimum in P . In
fact, we can prove that there is an optimal solution in P with value between
γ(ṽ) and the value of t in P . Thus, if we think that approximating the optimal
value with a value within these two bounds is satisfactory, we can take t as an
approximation of an optimal solution of P .

Theorem 4.3.3. Given an SCSP P over S, consider an optimal solution of
α(P ), say t, with semiring value ṽ in α(P ) and v in P . Then there exists an
optimal solution t̄ of P , say with value v̄, such that v ≤ v̄ ≤ γ(ṽ).

Proof. By local correctness of the multiplicative operation of the abstract semi-
ring, we have that v ≤S γ(ṽ). Since v is the value of t in P , either t itself is
optimal in P , or there is another tuple that has value better than v, say v̄. We
will now show that v̄ cannot be greater than γ(ṽ).

In fact, assume by absurd that γ(ṽ) ≤S v̄. Then, by local correctness of the
multiplicative operation of the abstract semiring, we have that α(v̄) is smaller
than the value of t̄ in α(P ). Also, by monotonicity of α, by γ(ṽ) ≤S v̄ we get
that ṽ ≤S̃ α(v̄). Therefore, by transitivity we obtain that ṽ is smaller than the
value of t̄ in α(P ), which is not possible because we assumed that ṽ was optimal.

Therefore, there must be an optimal value between v and γ(ṽ).

Thus, given a tuple t with optimal value ṽ in the abstract problem, instead
of spending time to compute an exact optimum of P , we can do the following:

– compute γ(ṽ), thus obtaining an upper bound of an optimum of P ;
– compute the value of t in P , which is a lower bound of the same optimum

of P ;
– If we think that such bounds are close enough, we can take t as a reasonable

approximation (to be precise, a lower bound) of an optimum of P .

Notice that this theorem does not need the order-preserving property in the
abstraction, thus any abstraction can exploit its result.
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Example 4.3.6. Consider again the previous example. Now take any optimal
solution of α(P ), for example tuple 〈b, b, b〉. Then the above result states that
there exists an optimal solution of P with semiring value v between the value of
this tuple in P , which is 0.7, and γ(1) = 1. In fact, there are optimal solutions
with value 1 in P .

4.3.2 Working on the Abstract Problem

Consider now what we can do on the abstract problem, α(P ). One possibility is
to apply an abstract function f̃ , which can be, for example, a local consistency
algorithm or also a solution algorithm. In the following, we will consider functions
f̃ , which are always intensive, that is, which bring the given problem closer to the
bottom of the lattice. In fact, our goal is to solve an SCSP, thus going higher in
the lattice does not help in this task, since solving means combining constraints
and thus getting lower in the lattice. Also, functions f̃ will always be locally
correct with respect to any function fsol that solves the concrete problem. We
will call such a property solution-correctness. More precisely, given a problem
P with constraint set C, fsol(P ) is a new problem P ′ with the same topology
as P whose tuples have semiring values possibly lower. Let us call C′ the set of
constraints of P ′. Then, for any constraint c′ ∈ C′, c′ = (

⊗
C) ⇓var(c′). In other

words, fsol combines all constraints of P and then projects the resulting global
constraint over each of the original constraints.

Definition 4.3.2. Given an SCSP P over S, consider a function f̃ on α(P ).
Then f̃ is solution-correct if, given any fsol which solves P , f̃ is locally correct
w.r.t. fsol.

We will also need the notion of safeness of a function, which just means that
it maintains all the solutions.

Definition 4.3.3. Given an SCSP P and a function f : PL→ PL, f is safe if
Sol(P ) = Sol(f(P )).

It is easy to see that any local consistency algorithm, as defined in [47], can
be seen as a safe, intensive, and solution-correct function.

From f̃(α(P )), applying the concretization function γ, we get γ(f̃(α(P ))),
which therefore is again over the concrete semiring (the same as P ). The fol-
lowing property says that, under certain conditions, P and P ⊗ γ(f̃(α(P ))) are
equivalent. Figure 4.6 describes such a situation. In this figure, we can see that
several partial order lines have been drawn:

– on the abstract side, function f̃ takes any element closer to the bottom,
because of its intensiveness;

– on the concrete side, we have that
– P ⊗ γ(f̃(α(P ))) is smaller than both P and γ(f̃(α(P ))) because of the

properties of ⊗;
– γ(f̃(α(P ))) is smaller than γ(α(P )) because of the monotonicity of γ;
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– γ(f̃(α(P ))) is higher than fsol(P ) because of the solution-correctness of
f̃ ;

– fsol(P ) is smaller than P because of the way fsol(P ) is constructed;
– if × is idempotent, then it coincides with the glb, thus we have that
P ⊗ γ(f̃(α(P ))) is higher than fsol(P ), because by definition the glb is
the highest among all the lower bounds of P and γ(f̃(α(P ))).

Theorem 4.3.4. Given an SCSP P over S, consider a function f̃ on α(P )
which is safe, solution-correct, and intensive. Then, if × is idempotent, Sol(P ) =
Sol(P ⊗ γ(f̃(α(P )))).

Proof. Take any tuple t with value v in P , which is obtained by combining
the values of some subtuples, say two: v = v1 × v2. Let us now consider the
abstract versions of v1 and v2: α(v1) and α(v2). Function f̃ changes these values
by lowering them, thus we get f̃(α(v1)) = v′1 and f̃(α(v2)) = v′2.

Since f̃ is safe, we have that v′1 ×′ v′2 = α(v1) ×′ α(v2) = v′. Moreover,
f̃ is solution-correct, thus v ≤S γ(v′). By monotonicity of γ, we have that
γ(v′) ≤S γ(v′i) for i = 1, 2. This implies that γ(v′) ≤S (γ(v′1) × γ(v′2)), since
× is idempotent by assumption and thus it coincides with the glb. Thus we have
that v ≤S (γ(v′1) × γ(v′2)).

To prove that P and P ⊗ γ(f̃(α(P ))) give the same value to each tuple, we
now have to prove that v = (v1 × γ(v′1))× (v2 × γ(v′2)). By commutativity of ×,
we can write this as (v1×v2)× (γ(v′1)×γ(v′2)). Now, v1×v2 = v by assumption,
and we have shown that v ≤S γ(v′1) × γ(v′2). Therefore v × (γ(v′1) × γ(v′2)) = v.

This theorem does not say anything about the power of f̃ , which could make
many modifications to α(P ), or it could also not modify anything. In this last
case, γ(f̃(α(P ))) = γ(α(P )) � P (see Figure 4.7), so P⊗γ(f̃(α(P ))) = P , which
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Fig. 4.6. The general abstraction scheme, with × idempotent
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means that we have not gained anything in abstracting P . We can, however,
always use the relationship between P and α(P ) (see Theorem 4.3.2 and 4.3.3)
to find an approximation of the optimal solutions and of the inconsistencies of
P .

If instead f̃ modifies all semiring elements in α(P ), then if the order of the
concrete semiring is total, we have that P⊗γ(f̃(α(P ))) = γ(f̃(α(P ))) (see Figure
4.8), and thus we can work on γ(f̃(α(P ))) to find the solutions of P . In fact,
γ(f̃(α(P ))) is lower than P and thus closer to the solution.

Theorem 4.3.5. Given an SCSP P over S, consider a function f̃ on α(P )
which is safe, solution-correct, and intensive. Then, if × is idempotent, f̃ mod-
ifies every semiring element in α(P ), and the order of the concrete semiring is
total, we have that P �S γ(f̃(α(P ))) �S fsol(P ).

Proof. Consider any tuple t in any constraint of P , and let us call v its semiring
value in P and vsol its value in fsol(P ). Obviously, we have that vsol ≤S v.
Now take v′ = γ(α(v)). By monotonicity of α, we cannot have v <S v′. Also,
by solution-correctness of f̃ , we cannot have v′ <S vsol. Thus, we must have
vsol ≤S v′ ≤s v, which proves the statement of the theorem.

Example 4.3.7. Figure 4.9 uses the abstraction in Figure 4.1 and shows a con-
crete problem and the result of the construction of Figure 4.6 over it.

Notice that we need the idempotency of the × operator for Theorem 4.3.4
and 4.3.5. If instead × is not idempotent, then we can prove something weaker.
Figure 4.10 shows this situation. With respect to Figure 4.6, we can see that
the possible non-idempotency of × changes the partial order relationship on
the concrete side. In particular, we do not have the problem P ⊗ γ(f̃(α(P )))
any more, nor the problem fsol(P ), since these problems would not have the
same solutions as P and thus are not interesting to us. We have instead a new
problem P ′, which is constructed in such a way as to “insert” the inconsistencies
of γ(f̃(α(P ))) into P . P ′ is obviously lower than P in the concrete partial order,
since it is the same as P with the exception of some more 0’s, but the most
important point is that it has the same solutions as P .
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Fig. 4.7. The scheme when f̃ does not modify anything
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Theorem 4.3.6. Given an SCSP P over S, consider a function f̃ on α(P )
which is safe, solution-correct and intensive. Then, if × is not idempotent, con-
sider P ′ to be the SCSP which is the same as P except for those tuples which
have semiring value 0 in γ(α(f̃(P ))): these tuples are given value 0 also in P ′.
Then we have that Sol(P ) = Sol(P ′).

Proof. Take any tuple t with value v in P , which is obtained by combining
the values of some subtuples, say two: v = v1 × v2. Let us now consider the
abstract versions of v1 and v2: α(v1) and α(v2). Function f̃ changes these values
by lowering them, thus we get f̃(α(v1)) = v′1 and f̃(α(v2)) = v′2.

figure/fig3.eps
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Fig. 4.10. The scheme when × is not idempotent

Since f̃ is safe, we have that v′1 ×′ v′2 = α(v1) ×′ α(v2) = v′. Moreover, f̃ is
solution-correct, thus v ≤S γ(v′). By monotonicity of γ, we have that γ(v′) ≤S
γ(v′i) for i = 1, 2. Thus we have that v ≤S γ(v′i) for i = 1, 2.

Now suppose that γ(v′1) = 0. This implies that also v = 0. Therefore, if we
set v1 = 0, again the combination of v1 and v2 will result in v, which is 0.

Example 4.3.8. Consider the abstraction from the semiring S = 〈Z− ∪ {−∞},
max, +, −∞, 0〉 to the semiring S′ = 〈Z− ∪ {−∞},max,min,−∞, 0〉, where
α and γ are the identity. This means that we perform the abstraction just to
change the multiplicative operation, which is min instead of +. Then Figure 4.11
shows a concrete problem over S, and the construction shown in Figure 4.10 over
it.

Summarizing, the above theorems can give us several hints on how to use the
abstraction scheme to make the solution of P easier: If × is idempotent, then
we can replace P with P ⊗γ(α(f̃(P ))), and get the same solutions (by Theorem
4.3.4). If instead × is not idempotent, we can replace P with P ′ (by Theorem
4.3.6). In any case, the point in passing from P to P ⊗ γ(α(f̃(P ))) (or P ′) is
that the new problem should be easier to solve than P , since the semiring values
of its tuples are more explicit, that is, closer to the values of these tuples in a
completely solved problem.

More precisely, consider a branch-and-bound algorithm to find an optimal
solution of P . Then, once a solution is found, its value will be used to cut away
some branches, where the semiring value is worse than the value of the solution
already found. Now, if the values of the tuples are worse in the new problem
than in P , each branch will have a worse value and thus we might cut away
more branches. For example, consider the fuzzy semiring (that is, we want to
maximize the minimum of the values of the subtuples): if the solution already
found has value 0.6, then each partial solution of P with value smaller than
or equal to 0.6 can be discarded (together with all its corresponding subtree in

figure/fig5.eps
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Fig. 4.11. An example with × not idempotent

the search tree), but all partial solutions with value greater than 0.6 must be
considered; if instead we work in the new problem, the same partial solution with
value greater than 0.6 may now have a smaller value, possibly also smaller than
0.6, and thus can be disregarded. Therefore, the search tree of the new problem
is smaller than that of P .

Another point to notice is that, if using a greedy algorithm to find the initial
solution (to use later as a lower bound), this initial phase in the new problem
will lead to a better estimate, since the values of the tuples are worse in the new
problem and thus close to the optimum. In the extreme case in which the change
from P to the new problem brings the semiring values of the tuples to coincide
with the value of their combination, it is possible to see that the initial solution
is already the optimal one.

Notice also that, if × is not idempotent, a tuple of P ′ has either the same
value as in P , or 0. Thus, the initial estimate in P ′ is the same as that of P
(since the initial solution must be a solution), but the search tree of P ′ is again
smaller than that of P , since there may be partial solutions, which in P have
value different from 0 and in P ′ have value 0, and thus the global inconsistency
may be recognized earlier.

The same reasoning used for Theorem 4.3.2 on α(P ) can also be applied to
f̃(α(P )). In fact, since f̃ is safe, the solutions of f̃(α(P )) have the same values as
those of α(P ). Thus, also the optimal solution sets coincide. Therefore, we have
that Opt(f̃(α(P ))) contains all the optimal solutions of P if the abstraction is
order-preserving. This means that, in order to find an optimal solution of P , we
can find all optimal solutions of f̃(α(P )) and then use such a set to prune the
search for an optimal solution of P .

figure/ex5.eps
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Theorem 4.3.7. Given an SCSP P over S, consider a function f̃ on P which
is safe, solution-correct and intensive, and let us assume the abstraction is order-
preserving. Then we have that Opt(P ) ⊆ Opt(f̃(α(P ))).

Proof. Easy follows from Theorem 4.3.2 and from the safeness of f̃ .

Theorem 4.3.3 can be adapted to f̃(α(P )) as well, thus allowing us to use
an optimal solution of f̃(α(P )) to find both a lower and an upper bound of an
optimal solution of P .

4.4 Some Abstraction Mappings

In this section we will list some semirings and several abstractions between them,
in order to provide the reader with a scenario of possible abstractions that he/she
can use, starting from one of the semirings considered here. Some of these semir-
ings and/or abstractions have been already described in the previous sections
of the chapter; however, here we will re-define them to make this section self-
contained. Of course many other semirings could be defined, but here we focus
on the ones for which either it has been defined, or it is easy to imagine, a system
of constraint solving. The semirings we will consider are the following ones:

– the classical one, which describes classical CSPs via the use of logical and
and logical or:

SCSP = 〈{T, F},∨,∧, F, T 〉
– the fuzzy semiring, where the goal is to maximize the minimum of some

values over [0, 1]:

Sfuzzy = 〈[0, 1], max, min,0,1〉
– the extension of the fuzzy semiring over the naturals, where the goal is to

maximize the minimum of some values of the naturals:

SfuzzyN = 〈N ∪ {+∞}, max, min, 0,+∞〉
– the extension of the fuzzy semiring over the positive reals:

SfuzzyR = 〈R+ ∪ {+∞}, max, min, 0,+∞〉
– the optimization semiring over the naturals, where we want to maximize the

sum of costs (which are negative integers):

SoptN = 〈Z− ∪ {−∞},max,+,−∞, 0〉
– the optimization semiring over the negative reals:

SoptR = 〈R− ∪ {−∞},max,+,−∞, 0〉
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– the probabilistic semiring, where we want to maximize a certain probability
which is obtained by multiplying several individual probabilities. The idea
here is that each tuple in each constraint has associated with it the proba-
bility of being allowed in the real problems we are modeling, and different
tuples in different constraints have independent probabilities (so that their
combined probability is just the multiplication of their individual probabil-
ities) [96]. The semiring is:

Sprob = 〈[0, 1], max,×,0,1〉
– the subset semiring, where the elements are all the subsets of a certain set,

the operations are set intersection and set union, the smallest element is the
empty set, and the largest element is the whole given set:

Ssub = 〈P(A),
⋃
,
⋂
, ∅, A〉.

We will now define several abstractions between pairs of these semirings. The
result is drawn in Figure 4.12, where the dashed lines denote the abstractions
that have not been defined but can be obtained by abstraction composition.

In reality, each line in the figure represents a whole family of abstractions,
since each 〈α, γ〉 pair makes a specific choice which identifies a member of the
family. Moreover, by defining one of this families of abstractions we do not want
to say that there do not exist other abstractions between the two semirings.

It is easy to see that some abstractions focus on the domain, by passing to
a given domain to a smaller one, others change the semiring operations, and
others change both:

1. from fuzzy to classical CSPs: this abstraction changes both the domain and
the operations. The abstraction function is defined by choosing a threshold
within the interval [0, 1], say x, and mapping all elements in [0, x] to F and
all elements in (x, 1] to T. Consequently, the concretization function maps
T to 1 and F to x. See Figure 4.1 as an example of such an abstraction.
We recall that all the abstractions in this family are order-preserving, so
Theorem 4.3.2 can be used.

2. from fuzzy over the positive reals to fuzzy CSPs: this abstraction changes
only the domain, by mapping the whole set of positive reals into the [0, 1]
interval. This means that the abstraction function has to set a threshold,
say x, and map all reals above x into 1, and any other real, say r, into r

x .
Then, the concretization function will map 1 into +∞, and each element of
[0, 1), say y, into y×x. It is easy to prove that all the members of this family
of abstractions are order-preserving.

3. from probabilistic to fuzzy CSPs: this abstraction changes only the multi-
plicative operation of the semiring, that is, the way constraints are combined.
In fact, instead of multiplying a set of semiring elements, in the abstracted
version we choose the minimum value among them. Since the domain re-
mains the same, both the abstraction and the concretization functions are
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Fig. 4.12. Several semirings and abstractions between them

the identity (otherwise they would not have the properties required by a Ga-
lois insertion, like monotonicity). Thus this family of abstractions contains
just one member.
It is easy to see that this abstraction is not order-preserving. In fact, consider
for example the elements 0.6 and 0.5, obtained in the abstract domain by
0.6 = min(0.7, 0.6) and 0.5 = min(0.9, 0.5). These same combinations in
the concrete domain would be 0.7 × 0.6 = 0.42 and 0.9 × 0.5 = 0.45, thus
resulting in two elements which are in the opposite order with respect to 0.5
and 0.6.

4. from optimization-N to fuzzy-N CSPs: here the domain remains the same
(the negative integers) and only the multiplicative operation is modified.
Instead of summing the values, we want to take their minimum. As noted
in a previous example, these abstractions are not order-preserving.

5. from optimization-R to fuzzy-R CSPs: similar to the previous one but on
the negative reals.

6. from optimization-R to optimization-N CSPs: here we have to map the neg-
ative reals into the negative integers. The operations remain the same. A
possible example of abstraction is the one where α(x) = !x" and γ(x) = x.
It is not order-preserving.

figure/scenario.eps
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7. from fuzzy-R to fuzzy-N CSPs: again, we have to map the positive reals into
the naturals, while maintaining the same operations. The abstraction could
be the same as before, but in this case it is order-preserving (because of the
use of min instead of sum).

8. from fuzzy-N to classical CSPs: this is similar to the abstraction from fuzzy
CSPs to classical ones. The abstraction function has to set a threshold, say
x, and map each natural in [0, x] into F , and each natural above x into
T . The concretization function maps T into +∞ and F into x. All such
abstractions are order-preserving.

9. from subset CSPs to any of the other semirings: if we want to abstract to
a semiring with domain A, we start from the semiring with domain P(A).
The abstraction mapping takes a set of elements of A and has to choose
one of them by using a given function, for example min or max. The con-
cretization function will then map an element of A into the union of all the
corresponding sets in P(A). For reasons similar to those used in Example 3,
some abstractions of this family may be not order-preserving.

4.5 Abstraction vs. Local Consistency

It is now interesting to consider the relationship between our abstraction frame-
work and the concept of local consistency.

In fact, it is possible to show that, given an abstraction 〈α, γ〉 between semir-
ings S and S̄ and any propagation rule r in S̄, the function γ(r(α(P ))) ⊗ P is a
propagation rule for problem P over S. This can be convenient when S does not
have any, or any efficient, propagation algorithms. In fact, in such cases, we can
resort to the propagation algorithms of S̄ to perform propagation also over S.

Notice, however, that, when S has a non-idempotent multiplicative operator,
function γ(r(α(P ))) ⊗P could change the solution of P . To avoid this problem,
we just have to follow the same reasoning as in the previous section, that is, to
replace such a function with a function that just inserts into P the inconsistencies
of γ(r(α(P )). We will denote such a function by using a different combination
operator: ⊗0. Thus, the function to be used in these cases is γ(r(α(P )) ⊗0 P .
Notice that ⊗0 is a non-commutative operator, since it inserts into the right
operand the zeros of the left operand.

This results, however, hold only when the abstraction is order-preserving.
We recall that this means that applying the abstraction function and then com-
bining gives elements that are in the same ordering as the elements obtained
by combining only. In particular, if two abstract elements α(x) and α(y) are
ordered, then also x and y are ordered as well, and in the same direction.

Theorem 4.5.1. Given an order-preserving abstraction 〈α, γ〉 between semiring
S and S̄, assume that S has an idempotent multiplicative operation and consider
any propagation rule r in S̄ and any problem P over S. Then the function
f(P ) = γ(r(α(P ))) ⊗ P is a propagation rule for P .
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Proof. By definition, a propagation rule is an intensive, monotone, and idempo-
tent function that takes a problem and returns an equivalent problem over the
same semiring. Since ⊗ is intensive, also f is so. Moreover, by monotonicity of
γ, r, α, and ⊗, also f is monotone.

For proving idempotency of f , we need the order-preserving property of the
abstraction. In fact, consider what happens when applying function f to P :
some tuple values in α(P ), say v̄ = α(v), will not be changed by r, while others
will receive a lower value, say v̄′ = r(v̄). By order-preservation, the new tuples
values in the concrete semiring (that is, γ(r(α(v)))× v), are equal or lower than
the original values. Let us now apply function f again. Function α will bring
these new concrete values to either v̄ (if we start from v) or v̄′ (if we start from
γ(r(α(v)))). In any case, r will bring such values to v̄′, for Lemma 4.5.1 (see
below). Thus f is idempotent. Finally, f returns an equivalent problem by the
theorem depicted in Figure 4.6.

Lemma 4.5.1. Consider any SCSP P over S and any propagation rule r for
P , with r(P ) = P ′. Then, taken any SCSP P ′′ such that P ′ ≤S P ′′ ≤S P , we
have r(P ′′) = P ′.

Proof. Any rule r solves a subproblem 〈C, con〉 and changes the values of the
tuples connecting the variables in con. Thus, the result of applying r is a new
constraint over con: (C ⊗ Ccon) ⇓con, where Ccon is the original constraint con-
necting the variables in con. This can also be written as Ccon ⊗ C ⇓con. Let
us now take any C′′

con such that (Ccon ⊗ C ⇓con) ≤S C′′
con ≤S Ccon. We can

now multiply all these three constraints by C ⇓con, obtaining: (Ccon ⊗ C ⇓con
⊗C ⇓con) ≤S (C′′

con ⊗ C ⇓con) ≤S (Ccon ⊗ C ⇓con). By idempotency of ⊗, we
get: (Ccon⊗C ⇓con) ≤S (C′′

con⊗C ⇓con) ≤S (Ccon⊗C ⇓con). Thus we have that
(Ccon ⊗ C ⇓con) = (C′′

con ⊗ C ⇓con).
We can now prove a similar result for the case of a non-idempotent multi-

plicative operation in the concrete semiring. As noted above, however, we cannot
combine the new problem with the old one, but we can just insert the zeroes of
the new problem into the old one.

Theorem 4.5.2. Given an order-preserving abstraction 〈α, γ〉 between semiring
S and S̄, assume that S has a non-idempotent multiplicative operation and con-
sider any propagation rule r in S̄ and any problem P over S. Then the function
f(P ) = γ(r(α(P )))⊗0P is a propagation rule for P , where ⊗0 inserts the zeroes
of its left operand into the right one.

Proof. The proof of this theorem is similar to the previous one, and for the
equivalence it refers also to the theorem depicted in Figure 4.10.

By taking several propagation rules in the abstract semiring, we can thus
obtain an equal number of propagation rules over the concrete semiring. This
set of rules can then be used to perform constraint propagation over a concrete
problem. Notice, however, that, while an idempotent multiplicative operation
in the concrete semiring allows us to use such rules until stability, with all the
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desired properties (equivalence, uniqueness, and termination), in the case of a
non-idempotent multiplicative operation we can just apply the various propaga-
tion rules once each to insert several zeroes into the original problem (with the
same properties as above).

4.6 Related Work

We will compare here our work to other abstraction proposals, more or less
related to the concepts of constraints.

Abstracting valued CSPs.. The only other abstraction scheme for soft constraint
problems we are aware of is the one in [169], where valued CSPs (see Sec-
tion 2.3.7) are abstracted in order to produce good lower bounds for the optimal
solutions. The concept of valued CSPs is similar to our notion of SCSPs. In
fact, in valued CSPs, the goal is to minimize the value associated to a complete
assignment. In valued CSPs, each constraint has one associated element, not
one for each tuple of domain values of its variables; however, our notion of soft
CSPs and that in valued CSPs are just different formalizations of the same idea,
since one can pass from one formalization to the other one without changing the
solutions, provided that the partial order is total (see Section 2.3.7). However,
our abstraction scheme is different from the one in [169]. In fact, we are not only
interested in finding good lower bounds for the optimum, but also in finding the
exact optimal solutions in a shorter time. Moreover, we do not define ad hoc ab-
straction functions but we follow the classical abstraction scheme devised in [77],
with Galois insertions to relate the concrete and the abstract domain, and locally
correct functions on the abstract side. We think that this is important in that it
allows to inherit many properties that have already been proven for the classical
case. It is also worth noticing that our notion of an order-preserving abstraction
is related to their concept of aggregation compatibility, although generalized to
deal with partial orders.

Abstracting classical CSPs.. Other work related to abstracting constraint prob-
lems proposed the abstraction of the domains [106, 107, 175], or of the graph
topology (for example to model a subgraph as a single variable or constraint) [94].
We did not focus on these kinds of abstractions for SCSPs in this chapter, but
we believe that they could be embedded into our abstraction framework: we
just need to define the abstraction function in such a way that not only we can
change the semiring but also any other feature of the concrete problem. The
only difference will be that we cannot define the concrete and abstract lattices
of problems by simply extending the lattices of the two semirings.

A general theory of abstraction.. A general theory of abstraction has been pro-
posed in [192]. The purpose of this work is to define a notion of abstraction
that can be applied to many domains: from planning to problem solving, from
theorem proving to decision procedures. Then, several properties of this notion
are considered and studied. The abstraction notion proposed consists of just two
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formal systems Σ1 and Σ2 with languages L1 and L2 and an effective total func-
tion f : L1 → L2, and it is written as f : Σ1 ⇒ Σ2. Much emphasis is placed
in [192] onto the study of the properties that are preserved by passing from
the concrete to the abstract system. In particular, one property that appears
to be very desirable, and present in most abstraction frameworks, is that what
is a theorem in the concrete domain, remains a theorem in the abstract domain
(called the TI property, for Theorem Increasing).

It is easy to see that our definition of abstraction is an instance of this general
notion. Then, to see whether our concept of abstraction has this property, we
first must say what is a theorem in our context. A natural and simple notion
of a theorem could be an SCSP which has at least one solution with a semiring
value different from the 0 of the semiring. We can be more general than this,
however, and say that a theorem for us is an SCSP which has a solution with
value greater than or equal to k, where k ≥ 0. Then we can prove our version of
the TI property:

Theorem 4.6.1 (our TI property). Given an SCSP P which has a solution
with value v ≥ k, then the SCSP α(P ) has a solution with value v′ ≥ α(k).

Proof. Take any tuple t in P with value v > k. Assume that v = v1 × v2. By
abstracting, we have v′ = α(v1)×′ α(v2). By solution correctness of ×′, we have
that v ≤S γ(v′). By monotonicity of α, we have that α(v) ≤S′ α(γ(v′)) = v′.
again by monotonicity of α, we have α(k) ≤S′ α(v), thus by transitivity α(k) ≤S
v′.

Notice that, if we consider the boolean semiring (where a solution has either
value true or false), this statement reduces to saying that if we have a solution in
the concrete problem, then we also have a solution in the abstract problem, which
is exactly what the TI property says in [192]. Thus, our notion of abstraction, as
defined in the previous sections, on the one hand can be cast within the general
theory proposed in [192], while on the other hand it generalizes it to concrete
and abstract domains, which are more complex than just the boolean semiring.
This is predictable, because, while in [192] formulas can be either true (thus
theorems) or false, here they may have any level of satisfaction, which can be
described by the given semiring.

Notice also that, in our definition of abstraction of an SCSP, we have chosen
to have a Galois insertion between the two lattices 〈A,≤〉 (which corresponds to
the concrete semiring S) and 〈Ã, ≤̃〉 (which corresponds to the abstract semiring
S̃). This means that the ordering in the two lattices coincide with those of the
semirings. We could have chosen differently: for example, that the ordering of
the lattices in the abstraction be the opposite of those of those in the semirings.
In that case, we would not have had property TI. We would, however, have the
dual property (called TD in [192]), which states that abstract theorems remain
theorems in the concrete domain. It has been shown that such a property can
be useful in some application domains, such as databases.
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4.7 Conclusions

In this chapter we have described how to apply abstraction to SCSPs. The main
motivation to apply such a transformation is to obtain an easier representation
of the problem, or (and many times) to obtain an SCSP whose semiring satisfied
the needed properties for preprocessing algorithms applications.



5. Higher Order Semiring-Based Constraints

Overview

Semiring-based constraint problems (SCSPs), as described in Chapter 2,
extend classical constraint problems (CSPs) by allowing preferences, costs,
priorities, probabilities, and other soft features. They are based over the notion
of a semiring, that is, a set plus two operations. In this chapter we introduce
a uniform, abstract presentation of (soft) constraint satisfaction concepts and
constructions. Moreover, the soft constraint environment is enriched with the
operation of function abstraction and application that can suitably be used
to give modularity and compositionality to the framework. Finally, a small
language is defined and used to represent and give semantics to general local
propagation and dynamic programming algorithms.

In this chapter the basic structures of the framework are represented as func-
tions, and this gives modularity and compositionality. Many of the algorithms
defined over a constraint system, like constraint propagation and dynamic pro-
gramming techniques, can easily be expressed using expressions and commands
of a suitable language.

The basic elements that we need to consider are the domains and the semir-
ings; the whole structure of an SCSP will be represented as a function between
these elements. As soon as we define constraints and SCSPs as specific functions,
we can use abstraction, application and composition to model SCSP solution,
dynamic programming, and local consistency preprocessing algorithms.

The representation of constraints as functions gives the possibility to repre-
sent a lot of useful features present in real problems. By performing a step-by-step
application of the definitions of the constraints to the resolution function, we can
model environments where the constraints are specified at run time by the user,
or we can compute (partial) solutions for partially instantiated problems.

The chapter is organized as follows. First, in Section 5.1 we define the do-
main and semiring structure and we illustrate how constraints and SCSPs are
represented as specific functions; in Section 5.3 we define a small language useful
to represent algorithms over SCSPs; and in Section 5.4 we define the solution
and the preprocessing algorithms as specific expressions and commands of the
language. Finally in Section 5.5 we give some possible extension of the frame-
work.

This chapter is based on some preliminary work presented in [49].

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 125–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



126 5. Higher Order Semiring-Based Constraints

5.1 Domains and Semirings

All the SCSP’s elements (constraints and problems) are defined here as functions
over the set of domains D and semirings S. A domain can be a set D0 (represent-
ing all the values that can be assigned to variables) or can be constructed using
the cartesian product. Note that the domain of the variables may be different,
so we have a collection D1, . . . , Dn of variable domains.

Definition 5.1.1 (domains). The class of domains is denoted D and it is
defined as

D ::= D1 | · · · | Dn | D ×D

Intuitively, a value d ∈ D represents a domain value for a variable in a given
SCSP, while a value 〈d1, d2〉 ∈ D1 ×D2 and a value 〈d1, . . . , dk〉 ∈ D1 × · · ·×Dk

respectively represents a pair of domain values for a binary constraint and a
k-tuple of domain values for a k-ary constraint.

The semiring structure will be represented as S; note that S represents all the
primitive instances (for example the structures used for fuzzy-CSPs, probabilistic-
CSPs, weighted-CSPs, etc.) and also the semiring obtained by using some special
operators like the cartesian product (described in Section 2.3.8). In this case there
is a collection of basic semiring S1, . . . , Sn (see Chapter 2) and their cartesian
product.

Definition 5.1.2 (semiring). The class of semirings is denoted by S and is
defined as

S ::= S1 | · · · | Sn | S × S

By using the properties of ×, + and of the cartesian product, we can write
down some basic relationships between semiring elements; In Table 5.1 symbol
� denotes any of the semiring operators × and +. The table shows how the
semiring operations of the cartesian product is defined using the corresponding
operations in the primitive semiring.

By using functions from D to S we can now represent (soft) constraints.

Definition 5.1.3 (constraints). The set of constraints (over a semiring S) is
denoted by C and it is defined as

C ::= D → S

a1 ∈ S1, a2 ∈ S2

〈a1, a2〉 ∈ S1 × S2

〈a1, a2〉, 〈b1, b2〉 ∈ S1 × S2

〈a1, a2〉 �S1×S2 〈b1, b2〉 = 〈a1 �S1 b1, a2 �S2 b2〉 ∈ S1 × S2

Table 5.1. Relationships between semiring elements.
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Note that the syntactic category D represents the set of domains of all the
constraints of the problem. For unary constraints (that is, variable domain),
there will be functions Di → S for some i, and for the non unary constraint over
k ≥ 1 variables there will be a function D1 × · · · ×Dk → S.

We can now describe entire constraint problems:

Definition 5.1.4 (constraint problem). Fixed a semiring S and the number
n of constraints, a constraint problem P is defined as

P ::= Cn → C.

where Cn is obtained as the cartesian product of n constraints, that is Cn =
C × · · · × C︸ ︷︷ ︸

n times

Example 5.1.1. Consider the fuzzy CSP represented in Figure 5.1. In this case
the semiring for the problem is

SFCSP = 〈[0, 1],max,min, 0, 1〉.

The domain is the same for all the variables that is D = {a, b}. The constraints
cx, cy, cz are functions {a, b} → SFSCP ,and constraints c1 and c2 are functions
{a, b}2 → SFSCP .

The problem represented in Figure 5.1 is instead a function cx × cy × cz ×
c1 × c2 → (D2 → SFSCSP ).

5.2 Constraint Problems and Solutions

Since both constraints and constraint problems are defined as functions, we are
now able to use function composition, abstraction and application to define in
a general and easy way many solution or preprocessing algorithms. The defini-
tion of a constraint problem P can be split in two parts: the first one is called
constraint graph and describes its topology, and the second one is called solution
and represents its value. Note that problems with different topology can have

a a ... 0.8
a b ... 0.2

b a ... 0

b b ... 0

a a ... 0.3
a b ... 0.5

b a ... 0.1

b b ... 0.7

a ... 1
b ... 1

a ... 1
b ... 0.8

zyx

a ... 0.9
b ... 0.1

cx cy cz

c1 c2

Fig. 5.1. A 3-variable fuzzy CSP

figure/ex-scsp.eps
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the same value, and that many times the same topology corresponds to different
values.

To define the constraint graph in a concise way we need to introduce some
special operators and properties:

Definition 5.2.1 (needed operators and properties).

– The restriction operator ν will be useful to capture the variables of interest
of a problem:

f ∈ D → S

νf =
∑
x∈D f(x)

We will write νx.M instead of ν(λx.M) and ν〈x, y〉 instead of νx.νy, with
the meaning of restricting over pairs (or tuples) of domains instead of single
domains.

– some of its important properties

νx.(t1 � t2) = (νx.t1) � t2 if x �∈ FV (t2) (ν-distributivity)
νx.(t1 +S t2) = (νx.t1) +S (νx.t2) (ν-associativity)

Let us define now the constraint graph and the problem solution.
We also remind (see Section 2.2) that a a constraint system is defined as a

tuple CS = 〈S,D, V 〉, where S is a c-semiring, D is a finite set, and V is an
ordered set of variables. A constraint over CS is a pair 〈def, con〉, where

– con ⊆ V , it is called the type of the constraint;
– def : Dk → A (where k is the cardinality of con) is called the value of the

constraint.

Definition 5.2.2 (Constraint graph). Given an SCSP P = 〈C, con〉 over
a constraint system CS = 〈S,D, V 〉 with C = {c1, . . . , cn}, ci = 〈defi, coni〉,
defi : D|coni| → S and V = {x1, . . . , xk}, a constraint graph is a function
defined as follows:

P = λ〈c1, . . . , cn〉.λ〈con〉.ν〈V − con〉.
∏

i=1...n

ci(coni)

The meaning of this function is to take the constraints {c1, . . . , cn} over the
variables in V and to perform their combination

∏
Si=1...n

ci(coni). Since we
are interested only to a subset of the variable con ∈ V , we need to use the ν
operator to sum up over the variable in V − con. This is not completely correct
because con and V − con are sets of variables and not tuples. Anyway, since we
fix a lexicographic order over the variables in V it is easy to pass from sets to
tuples.

The value of an SCSP is obtained applying the constraint graph to the def-
inition of its constraints. The result of this application represents the problem
solution.
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Definition 5.2.3 (Problem solution). Given an SCSP P = 〈C, con〉 over
a constraint system CS = 〈S,D, V 〉 with C = {c1, . . . , cn}, ci = 〈defi, coni〉,
defi : D|coni| → S, V = {x1, . . . , xk} and the corresponding constraint graph

P = λ〈c1, . . . , cn〉.λ〈con〉.ν〈V − con〉.
∏

i=1...n

ci(coni),

the function solution is defined as

Sol(P ) = P (DEFP ) = λ〈con〉.ν〈V − con〉.
∏

i=1...n

defi(coni)

where DEFP represents the ordered list of all the definitions of the constraints
in P .

Example 5.2.1. Consider again the fuzzy CSP represented in Figure 5.1. The
constraint graph is represented by the function

λ〈c1, c2, cx, cy, cz〉.λ〈x, y〉.νz.c1(x, y) ×S c2(y, z)×S cx(x) ×S cy(y) ×S cz(z).
The structure of this term gives an explicit way to represent an SCSP with 5
constraints and 3 variables, and shows how constraints c1 and c2 share one of the
variables. Note that in this term, the variables x, y and z, and the constraints
c1,c2,cx,cy,cz are bound by λ-abstraction, so any term obtained from this one
via α-renaming represents the same SCSP (i.e., α-renamed terms represent all
the SCSPs with this shape). Note also that the ×S operator in the body of the
function is not instantiated to the corresponding operator of the (fuzzy, in this
case) semiring. This means that only the shape of the problem is represented
and not its value. In other words, the semantical meaning of the × operator
(that is the min) is not used.

To compute the solution of the problem, we first need to apply the definition
of the constraints to the constraint graph, that is, to compute P (DEFP ). In this
way we obtain

λ〈x, y〉.νz.def1(x, y) ×S def2(y, z) ×S defx(x) ×S defy(y) ×S defz(z).
Now, if we want to compute the value of this SCSP we have to instantiate the
variable and to compute the value of the solution function. As an example of
solution, consider the pair x = a and y = b. We obtain the function

νz.0.2 ×S def2(b, z)×S 0.9 ×S 1 ×S defz(z) =

by instantiating the ×S operator to min

νz.min(0.2, def2(b, z), 0.9, 1, defz(z)).

By definition of ν we obtain

maxz∈{a,b}min(0.2, def2(b, z), 0.9, 1, defz(z)) =

max(min(0.2, def2(b, a), 0.9, 1, defz(a)),min(0.2, def2(b, b), 0.9, 1, defz(b))) =

max(min(0.2, 0.1, 0.9, 1, 1), min(0.2, 0.7, 0.9, 1, 0.8)) =

max(0.1, 0.2) = 0.2
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The possibility to write the problem solution as a function, give as the pos-
sibility to compute partial solution for partially instantiated problem. This sit-
uation often arise in reality specially when the problem involve several data and
the user knows only some of them. Another situation that can be represented
by using partial instantiated SCSP is when the data of the problem are sent
sequentially in several steps. In this case we can try to approximate the solution
of the problem also before having all the problem data.

As an example let us consider same problem of Example 5.2.1 but by con-
sidering the case we do not know any information for constraint cy.

Example 5.2.2. Consider again the fuzzy CSP represented in Figure 5.1, but
suppose we do not know the detail of constraint cy.

The solution of the problem is represented by the function

λ〈x, y〉.νz.def1(x, y) ×S def2(y, z) ×S defx(x) ×S defy(y) ×S defz(z).
Let suppose we want as before compute the value of the solution for the pair
x = a and y = b. We obtain the function

νz.0.2 ×S def2(b, z)×S 0.9 ×S defy(b) ×S defz(z) =

by instantiating the ×S operator to min

νz.min(0.2, def2(b, z), 0.9, defy(b), defz(z)).

By definition of ν we obtain

maxz∈{a,b}min(0.2, def2(b, z), 0.9, defy(b), defz(z)) =
max(min(0.2, def2(b, a), 0.9, defy(b), defz(a)),
min(0.2, def2(b, b), 0.9, defy(b), defz(b))) =

max(min(0.2, 0.1, 0.9, defy(b), 1),min(0.2, 0.7, 0.9, defy(b), 0.8))

At this point we can try to make some consideration:

– Sol(P )(a, b) = defy(b) if defy(b) ≤S 0.2
– Sol(P )(a, b) = 0.2 else

So, if we statistically know that the value of defy(b) is always lower than 0.2 we
can give a good approximation of the solution by declaring sol(P )(a, b) = 0.2.

5.3 A Small Language to Program with Soft Constraints

We will now define a small language that will be useful in representing and
solving SCSPs, using local consistency and dynamic programming algorithms.
To define such algorithms, we need to explicitly define the typed locations, which
we remind are just a set of variables, that will be used to identify a subproblem
of a given SCSP.
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Definition 5.3.1 (Typed location). A typed location l is a set of variables.
Given a constraint system 〈S,D, V 〉, the set of locations L is defined as L =
℘(V ).

Locations represent variables of type constraint; that is, each location can
contain a constraint (i.e. a function D → S). Let us now define the (Constraint)
Store.

Definition 5.3.2 (Constraint Store). A constraint store is a function σ such
that σl : D|l| → S, where we have σl〈x1, . . . , x|l|〉 = 1 for all except a finite
number of locations.

Given a constraint Problem P = 〈C, con〉, we can build the corresponding
constraint store σC defined as follows:

σC l =

{
defi if ci = 〈defi, l〉 ∈ C

λ〈v1, . . . , v|l|〉.1 otherwise.

In the following we will write σ instead of σC if the corresponding problem
P = 〈C, con〉 is easy to be recognized.

Let us now define the syntactic structure of our language: the expressions
Expr and the commands Com.

Definition 5.3.3 (Expressions). The expressions we can build with the lan-
guage are:

Expr ::= c | l | Sol(l) | Sol(l, L) | φ(l, L)

The element c represents a constraint (that is, a basic piece of information);
Sol(l) represents the solution of a constraint problem whose variables of interest
are the variables in l. Sol(l, L) represents instead the solution of a subproblem
(whose constraints are those connecting variables in L∪{l}) and will be useful to
define local consistency and dynamic programming algorithms. Finally, φ(l, L)
is a generic monotone and extensive function that will be useful to represent
generic soft local consistency algorithms.

Before giving a semantics to the expressions, let us introduce the syntactic
category of commands.

Definition 5.3.4 (Commands). The commands we can build with the lan-
guage are defined by the following grammar:

Com ::= l := Expr | Com;Com

Note that the assignment command “l := Expr” can be performed only if the
type of the expression Expr is compatible with the location l.

The assignment command is useful to change the value of a location present in
the constraint store, and the ”;” operator is useful to perform several assignments
sequentially.
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To formally compute the semantics of the expressions and of the commands,
we need to define two semantic functions: E for the expressions and C for the
commands.

Function E evaluates an expression on a constraint store and gives as a result
a constraint (that is, an element c ∈ C that assigns to each tuple of elements in
D a value in S).

Definition 5.3.5 (Function E). The semantic function

E : Expr → σ → C

is defined by structural recursion as follows:

E[[ Sol(l) ]]σ = λ〈l〉.ν〈V − l〉.
∏

S
l′∈L

σl′〈l′〉

E[[ Sol(l, L) ]]σ = λ〈l〉.ν〈L〉.
∏

S
l′∈(L∪{l})

σl′〈l′〉

E[[ c ]]σ = ĉ

E[[ l ]]σ = σl

E[[ φ(l, L) ]]σ = φ̂(l, L)

The element ĉ and φ̂(l, L) are basic elements representing respectively a con-
straint definition (that is, its def function) and a generic monotone and ex-
tensive function φ̂(l, L) : (

∏
l′∈(L∪{l})D

|l′| → S) → (D|l| → S). The function

Sol(l, L) is a specific φ̂(l, L), and the function sol(l) is obtained by performing
Sol(l,L) where L is the set of all the locations of the problem.

Since the language we are going to define uses assignments, we need to define
the meaning of store modification:

Definition 5.3.6 (Store modifications). Given a constraint store σ, and a
constraint c : D|l| → S, the store modification operator is defined as follows:

σ[c/l]l′ =

{
c if l′ = l

σl′ otherwise.

Let us now evaluate the commands using the function C.

Definition 5.3.7 (The Function C). The semantic function

C : Com→ σ → σ

is defined by structural recursion as follows:

C[[ l := e ]]σ = σ[E[[ e ]]σ/l]
C[[ com1; com2 ]]σ = C[[ com2 ]](C[[ com1 ]]σ)
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The assignment command l := e change the constraint defined over the variable
in l by using the constraint e. This type of modification of the store usually hap-
pens when a preprocessing algorithm is applied to the problem. In fact, in this
case, the value of the constraints is changed (usually is lowered) by also main-
taining the equivalence with the original problem.
The sequentialisation operator is instead needed since we want to put together
several assignment operation and build several preprocessing (or solving) tech-
niques.

5.4 Solving SCSPs

In this section we will show how the dynamic programming and local consistency
algorithms can be represented as specific expressions of the language defined in
Section 5.3.

5.4.1 Dynamic Programming Techniques

Using dynamic programming techniques, the problem is not solved in one step,
but it is partitioned in subproblems which form a parsing tree S, and then it is
solved by solving such subproblems in a bottom-up visit of S.

A subproblem in a parsing tree S is represented by a rule ri = (li ← Li)
where li represents the location of interest of the problem, and Li represents
all the variables and constraints involved in the subproblem (see Section 3.1).
The parsing tree S = r1; . . . ; rn, as defined in [47], represents a correct way
to decompose the global problem, and also gives a computation order of the
solutions of the subproblems. In our syntax the solution of a subproblem defined
by a rule l ← L is defined as the term Sol(l, L).

Theorem 5.4.1 (Dynamic programming solving). Consider a problem
P = 〈C, con〉 over the constraint system CS = 〈S,D, V 〉, the corresponding con-
straint store σ and one of its parsing trees S = r1; . . . ; rn, where ri = (li ← Li),
we have:

E[[ Sol(con) ]]σ = E[[ ln ]](C[[ l1 := Sol(l1, L1); . . . ; ln := Sol(ln, Ln) ]]σ)

Proof. The proof follows the lines of the Theorem 3.6.1, where the store σ takes
the place of P and the semantics of subproblem solution C[[ l := sol(l, L) ]]σ takes
the place of the rule application [l ← L]P .

Example 5.4.1. Let us review some steps of the dynamic programming technique
applied to the running example of the chapter represented in Figure 5.1.

Suppose to have the strategy S = r1, r2 with r1 = {y} ← {〈y, z〉, z} and
r2 = {〈x, y〉} ← {x, y}. So we need to show that

E[[ Sol(〈x, y〉) ]]σ = E[[ Sol(〈x, y〉, {x, y}) ]](C[[ {y} := Sol({y}, {〈y, z〉, z}) ]]σ).
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Fig. 5.2. The fuzzy CSP after the application of rule r1

By solving the subproblem represented by the first rule, we obtain the con-
straint problem represented in Figure 5.2. Let us call σ′

C the constraint store
represented in the figure.

By definition of the ”;” operator, we now need to solve the problem

E[[ Sol(〈x, y〉, {x, y}) ]]σ′
C .

It is now easy to check that the solution computed in this way is equivalent to
the solution computed by giving semantics to E[[ Sol(〈x, y〉) ]]σ.

5.4.2 Local Consistency Techniques

In this section we show how several soft local consistency algorithms can be cap-
tured and described in a uniform way in the framework described in this chapter.
In section 3.5 we already described in a general way constraint propagation algo-
rithms using monotone functions (extending in this way the techniques described
in Section 3.1 with the results of Apt in [10,11,12]). Here we first represent classi-
cal soft local consistency rules as commands in our language, and then we show
how the language is also able to capture more extended versions of the local
propagation algorithms as depicted in Section 3.4.

For each local consistency rule that we have in our strategy, we define a
suitable assignment that modifies a piece of the constraint store related to the
consistency rule itself. We can claim that the semantics of Sol(con) is the same
if we compute it in the constraint store σ or in a constraint store C[[ Sol(l, L) ]]σ
for any l, L, and σ.

Theorem 5.4.2 (Equivalence for Sol(l, L)). Consider a problem P =
〈C, con〉 and a local consistency rule [l ← L]. Then we have that

E[[ Sol(con) ]]σ = E[[ Sol(con) ]](C[[ l := Sol(l, L) ]]σ).

Proof. Easily follows from Theorem 3.1.3.

5.4.3 Extending Local Propagation Rules

In the classical CSP environment, a local propagation function is defined (fol-
lowing the approach of [10, 11, 12]) as a monotone and extensive function that

figure/ex2-scsp.eps
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transforms the original problem into a new (possibly equivalent) one. This means
that not only a solution over a set of locations L ∪ {l} and a projection oper-
ation over the variables in l are performed but any monotone and extensive
transformation can be applied to the location l using the locations L ∪ {l}.

For this purpose we have introduced in the language the function φ(l, L) with
the meaning to compute any modification over l by using the constraints over
l ∪ L.

More generally, a local propagation function can be seen as a function that
transforms a problem into a new one (possibly by modifying only a subset of it).

Definition 5.4.1 (Local propagation). Given a problem P = 〈C, con〉 and
the corresponding store σ, a local propagation function lc is a monotone and
extensive (w.r.t. the semiring order ≤S) function that transforms (some of) its
constraints obtaining a (possibly equivalent) problem:

lc : σ → σ

The definition of lc is so general that it could match with any of the previously
defined local consistency algorithms. We want to characterize it in a more precise
way, by using a set of general local propagation rules by extending the rules of
Section 3.1.

Definition 5.4.2 (general local propagation rule). A general local propa-
gation rule is defined by a subproblem and a monotone and extensive (w.r.t. the
semiring order ≤S) function φ. To indicate the application of a function φ to a
subproblem defined by a rule r = l ← L, we will write φ(l, L).

In general since the function φ(l, L) is monotone and extensive we have:

Theorem 5.4.3. Consider a problem P = 〈C, con〉 and a general local consis-
tency rule φ(l, L). Then, for any domain tuple l′ we have that

C[[ l := φ(l, L) ]]σl′〈l′〉 ≤S σl′〈l′〉.
Proof. Easily follows by the hypothesis of monotonicity of φ.

5.5 Constraint Problem as Semiring

In this section we illustrate a possible approach to extend the notion of semiring
to constraint problems. This means that we want the semiring to capture non
only the levels of preference of each instantiated constraint but also the constraint
itself.

To do this we define a possible semiring representing Constraint Problems.
We need first to define the operator that represents the combination of two
constraints. Note that since the combination of constraints has an operational
behaviour that depends on the variables that are shared between the two con-
straints, we do not have a unique combination operator, but a collection of them.

Moreover we need also a notion of type for each constraint. In the following we
will write c : (D0 × . . .×Dn) → S if the constraint c involve variable x0, . . . , xn.
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Definition 5.5.1 (Combination: ⊗D).

c1 : (D0 ×D1) → S, c2 : (D0 ×D2) → S

c1 ⊗D0 c2 : (D0 ×D1 ×D2) → S = λ〈x0, x1, x2〉.c1(x0, x1) ×S c2(x0, x2)

The ⊕ operator can be instead defined as follows:

Definition 5.5.2 (Disjunction: ⊕D).

c1 : (D0 ×D1) → S, c2 : (D0 ×D2) → S

c1 ⊕D0 c2 : D0 → S = λx0.ν〈x1, x2〉.c1(x0, x1) +S c2(x0, x2)

We can now claim that the set of constraints C with the combination and
disjunction operations is an enhanced1 semiring.

To define the unit element of the two operation we need the definition of
constant function over a given set of variables:

Definition 5.5.3 (constant function: Ia). Consider a set of variables I. We
define the function Ia : DI → A as the function that assigns to each I-tuple t
the semiring value a.

Theorem 5.5.1 (〈C,⊕,⊗, V0, ∅1〉 is an enhanced semiring).
〈C,⊕,⊗, V0, ∅1〉 is an enhanced semiring.

Proof. It is enough to check all the properties by using the fact that the same
properties holds for the original semiring S.

5.6 Conclusions

In this chapter we have described how the semiring framework can be used
to both embed the constraint structure and topology in a suitable semiring
of functions. We have also described a small language to ”program” with soft
constraints. Starting from basic objects (domains and semirings), we have built
functions able to represent single steps of the local consistency and dynamic
programming algorithms. By using this language we could give a procedural
view of the solving techniques already described in the previous chapters.

This chapter concludes our study of the soft constraint solving framework;
in the next one we will study how to program with soft constraints using a
declarative language.

1 We use the adjective enhanced because the ⊗ and ⊕ operators are overloaded. In
fact, each of them represents a class of operators ⊗D and ⊕D (by varying the domain
D).
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Overview

The framework presented in the previous chapters shows how the soft
constraint idea can give us an easy way to model non-crisp problems. To
program applications we need, nevertheless, a language where we can use soft
constraints. This is why we extend the Constraint Logic Programming (CLP)
formalism in order to handle semiring-based constraints.

This allows us to perform in the same language both constraint solving
and optimization. In fact, constraints based on semirings are able to model
both classical constraint solving and more sophisticated features like uncer-
tainty, probability, fuzziness, and optimization. We then provide this class
of languages with three equivalent semantics: model-theoretic, fix-point, and
proof-theoretic, in the style of classical CLP programs.

Constraint logic programming (CLP) [126] languages extend logic program-
ming (LP) by replacing term equalities with constraints and unification with
constraint solving. Programming in CLP means choosing a constraint system
for a specific class of constraints (for example, linear arithmetic constraints, or
finite domain constraints) and embedding it into a logic programming engine.
This approach is very flexible since one can choose among many constraint sys-
tems without changing the overall programming language, and has shown to
be very successful in specifying and solving complex problems in terms of con-
straints of various kind [190]. It can, however, only handle classical constraint
solving. Thus, it is natural to try to extend the CLP formalism in order to also be
able to handle soft constraints. In fact, this new programming paradigm, which
we will call SCLP (for Semiring-based CLP, or also Soft CLP), has the advan-
tage of treating in a uniform way, and with the same underlying machinery, all
constraints that can be seen as instances of the semiring-based approach: from
optimization to satisfaction problems, from fuzzy to probabilistic, prioritised, or
uncertain constraints, and also multi-criteria problems, without losing the ability
to treat and solve classical hard constraints. This leads to a high-level declara-
tive programming formalism where real-life problems involving constraints of all
these kinds can be easily modeled and solved.

In passing from CLP to SCLP languages, we will replace classical constraints
with the more general SCSP constraints. By doing this, from a technical point of
view, we have to modify the notions of interpretation, model, model intersection,
and others, since we have to take into account the semiring operations and not
the usual CLP operations. For example, while CLP interpretations associate a
truth value (either true or false) to each ground atom, in this case ground atoms

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 137–169, 2004.
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must be given one of the elements of the semiring. Furthermore, whereas in CLP
the value associated with an existentially quantified atom is the logical or among
the truth values associated to each of its instantiations, here we have to replace
the or with another operation that refers to one of the semiring operations.

After describing the syntax of SCLP programs, we will define three equivalent
semantics for such languages: model-theoretic, fix-point, and operational. These
semantics are conservative extensions of the corresponding ones for LP, since by
choosing a particular semiring (the one with just two elements, true and false,
and the logical and and or as the two semiring operations) we get exactly the
LP semantics. The extension is in some cases predictable but it possesses some
crucial new features. For example, the presence of a partial order among the
semiring elements (and not a total order like it is in the LP/CLP case, where
we just have two comparable elements) brings some conceptual complexity in
some aspects of the semantics. In fact, in the operational semantics, there could
be two refutations for a goal leading to different semiring elements that are
not comparable in the partial order. In this case, these elements have to be
combined in order to get the solution corresponding to the given goal, and their
combination could not be reachable by any derivation path in the search tree.
This means that any constructive way to get such a solution by visiting the
search tree would have to follow all the incomparable paths before being able
to find the correct answer. In practice, however, classical branch and bound
techniques can be adapted to this framework to cut some useless branches.

We also show the equivalence of the three semantics. In particular, we prove
that, given the set of all refutations starting from a given goal, it is possible to
derive the declarative meaning of both the existential closure of the goal and its
universal closure.

Additionally, we investigate the decidability of the semantics of SCLP pro-
grams, obtaining an interesting semi-decidability result: if a goal has a semiring
value greater than, or greater than or equal to, a certain value in the semiring,
then we can discover this in finite time. Moreover, for SCLP programs without
functions, the problem is completely decidable: the semantics of a goal can be
computed in finite and bounded time. In fact, in this case we can consider only a
finite number of finite and bounded-length refutations (see Section 6.6): infinite
refutations do not bring more information due to the properties of the semiring
operations. Notice that the absence of functions is obviously a restriction, how-
ever, not all sources of infiniteness are taken away, since nothing is said about
the semiring, which could still be infinite.

The chapter is organized as follows. Section 6.1 defines the syntax of SCLP
programs. Afterwards, sections 6.2, 6.3, and 6.4 provide SCLP programs with a
model-theoretic, a fix-point, and an operational semantics, respectively. Then,
Section 6.5 presents a semi-decidability result for SCLP programs, and Section
6.6 adds some more decidability results that hold for programs without functions.
Section 6.7, instead, presents an abstract model for the operational semantics
of the SCLP language without functions, using the Gurevich’s Abstract State
Machines (ASMs). Finally, Section 6.8 concludes the chapter by discussing the
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relationship with related work. The SCLP framework described in this chapter
appeared in [46, 50].

The chapter is based on the results introduced in [46,53] and extended in [50].

6.1 Syntax of SCLP Programs

For readers familiar with Constraint Logic Programming (CLP) programs, we
can say that SCLP(S) programs (also written SCLP when the semiring is obvious
or not important) are just CLP programs [126] where constraints are defined over
a certain c-semiring S = 〈A,+,×,0,1〉.

As usual, a program is a set of clauses. Each clause is composed by a head
and a body. The head is just an atom and the body is either a collection of atoms,
or a value of the semiring, or a special symbol (�) to denote that it is empty.
Clauses where the body is empty or it is just a semiring element are called facts
and define predicates which represent constraints. When the body is empty, we
interpret it as having the best semiring element (that is, 1).

Atoms are n-ary predicate symbols followed by a tuple of n terms. Each
term is either a constant or a variable or an n-ary function symbol followed by n
terms. Ground terms are terms without variables. Finally, a goal is a collection
of atoms.

The BNF for this syntax follows in table 6.1.
As an example, consider the following SCLP(S) program, represented in Ta-

ble 6.2 where the semiring is S = 〈[0, 1],max,min, 0, 1〉. We recall that this is
the fuzzy semiring, where tuples of values are given values between 0 and 1, and
constraints are combined via the min operator and compared via the max oper-
ator. Note that the ordering ≤S in this semiring coincides with the ≤ ordering
over the reals in [0, 1].

Our example is a generalization of the usual n-queens problem, which can be
found for example in [121]. The classical formulation requires that n queens are
placed on a n×n chessboard in such a way that they do not attack each other. In
our formulation, we allow also attacking queens but we give a higher preference
to solutions where queens attacking each other are farther apart. Thus, if there
are solutions where no queens attack each other, these solutions will remain
the best ones. But there are also other solutions, and among these additional

P :: CL | CL, P
CL :: H : −B
H :: AT where AT is the category of atoms
LAT :: � | LAT ′

LAT ′ :: AT | AT, LAT ′

B :: LAT | a where a ∈ A
G :: : −LAT

Table 6.1. BNF for the SCLP syntax.
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solutions the best ones are those where the queens attacking each other are as
far apart as possible.

We assume here that the reader is familiar at least with the logic program-
ming [135] concepts and notation.

In this program, the n queens are represented by a list of n variables, say
[X1,...,Xn], where variable Xi represents the queen in column i and its value
represents the row index where this queen is located. This is one of the usual
formulations of the n-queens problem, and it is worth noticing that by adopting
this formulation we assume that different queens are in different columns.

The first predicate, myqueens/2, traverses the whole list of n variables
and sets the constraints between any pair of queen, by using the predicate
noattack/4, which sets the constraints between any queen and all the queens
in subsequent columns. The actual constraints are set by predicates row/4,
diag1/4, and diag2/4. In the classical (hard) formulation, these predicates ba-
sically say that different queens cannot stay in the same row, nor in the same
diagonal. In our case, these constraints are made soft by also accepting situa-
tions where different queens are on the same row or diagonal. For example, for
the row constraint, we give the semiring value Nb/N to two queens in the same
row, where Nb is the distance between the two queens (that is, the number of
columns between them) and N is the total number of columns. This means that
the farther apart the two queens are, the higher this value will be. The same
reasoning holds also for the two diagonals, except that the presence of both
queens X and Y on the same diagonal corresponds to having Y = X + Nb or
Y = X −Nb.

Notice that each solution of this generalized n-queens problem has a semiring
value which is obtained by minimizing the semiring values of all its constraints.
This comes from the choice of the fuzzy semiring, where the multiplicative oper-
ation is the min. Therefore, if a solution contains three pairs of attacking queens,

myqueens([],N).
myqueens([X|Y],N) :-

noattack(X,Y,N), myqueens(Y,N).
noattack(X,Xs,N) :-

noattack(X,Xs,N,1).
noattack(X,[],N,Nb).
noattack(X,[Y|Ys],N,Nb) :-

row(X,Y,N,Nb), diag1(X,Y,N,Nb), diag2(X,Y,N,Nb),
noattack(X,Ys,N,Nb+1).

row(X,X,N,Nb) :- Nb/N.
row(X,Y,N,Nb) :- different(X,Y).
diag1(X,X+Nb,N,Nb) :- Nb/N.
diag1(X,Y,N,Nb) :- different(Y,X+Nb).
diag2(X,X-Nb,N,Nb) :- Nb/N.
diag2(X,Y,N,Nb) :- different(Y,X-Nb).

Table 6.2. Soft n-queens problem.
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each of such pairs will have a semiring value given by one of the clauses defining
predicates row/4, diag1/4, or diag2/4 (proportional to the distance between
the two queens), and then the value of this solution will be the minimum among
such three values. Different solutions are then ordered using the other semiring
operation, which in this case is the max. Note that this same program can also
be used with a different semiring, obtaining a different way of computing a so-
lution and a different ordering. For example, we could have chosen the semiring
{R∪+∞,min,+,+∞, 0}, where the value of each solution would have been ob-
tained by summing the values of each attacking pair, and solutions would have
been compared using the min operator.

To use this program over a specific value forN , we need to add some clauses to
set the domain for the constraint variables (from 1 to N) and to define predicate
different/2. For example, for N = 5, we have to write the clauses represented
in Table 6.3:

We now anticipate the behavior of this SCLP program, which obeys the
semantic development of the future sections.

– Given the goal :- fivequeens(L)., the program will instantiate L to be a
list of 5 values, indicating the row positions of the 5 queens. Since there are
solutions where queens do not attack each other, the solution returned by
the program will be one of these, with semiring value 1.

– Given the goal :- fivequeens([1,3,X3,X4,X5])., the program will return
a position for each queen such that the first queen is in row 1 and the second
one in row 3. Given these additional constraints (i.e., the positions of the first
two queens), it is possible that all solutions will have some attacking pairs of
queens. Then, among these possible solutions, the program will return one
with the highest level of preference, which means that the attacking queens
are as far apart as possible.

– Assume to delete one or more of the facts defining predicate domain5. Then,
if we give the goal :- fivequeens(L)., it means that we have five queens
(thus five columns) but a smaller number of domain elements (thus rows).
Even in this case, it is possible that all solutions will have some attacking

fivequeens([X1,X2,X3,X4,X5]) :-
domain5(X1), domain5(X2), domain5(X3),
domain5(X4), domain5(X5),
myqueens([X1,X2,X3,X4,X5],5).

domain5(a) :- 1.
(for all a ∈ {1, . . . , 5})

different(a,b) :- 1.
(for all a, b ∈ {1, . . . , 5} such that a 	= b)

Table 6.3. Clauses for the 5-queens problem.
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pairs of queens. Thus the program will return one where the attacking queens
are as far apart as possible.

While this example of an SCLP program uses semiring values to be able
to find the best quasi-solutions in an otherwise over-constrained problem, other
examples exploit the power of the chosen semiring to express features that are
intrinsic to the considered problem. Consider the problem that can arise when
a client in a restaurant wants to select items from the menu in a way that
his/her preferences over the combinations of drinks and dishes are satisfied in
the best way. In this example, each combination (for example, beer and pizza,
or white wine and fish) is associated with a level of preference, according to the
taste of the client. Then, solving the problem means finding the menu with the
highest level of preference. As in the previous example, here the semiring that
is used is the fuzzy one, but its role is definitely different. This menu problem is
one of those that have been used to show the expressive power of the clp(fd,S)
system [112], a very general implementation of SCLP programming1.

Notice that, by just changing the semiring, but maintaining the same pro-
gram structure of the menu example, we could model rather different situations.
Consider for example the situation in which a conference organizer has to decide
the menu for the conference dinner, trying to satisfy the participants as much as
possible. Of course the organizer cannot ask for their preferences, but can rea-
son with probabilities. Therefore, he/she can associate, with each combination of
drink and dish, the estimated probability that it will please the conference atten-
dees. Then, solving the problem means finding the menu which has the highest
probability to please the participants. To model this situation, it is enough to
keep the same program above (modulo the new semiring values), but choose the
semiring 〈[0, 1],max,×, 0, 1〉, which can represent probabilities combined via ×
(assuming their independence) and compared via the max operator.

6.2 Model-Theoretic Semantics

In this section we will generalize the usual development of the model-theoretic
semantics in logic programming [135] to be able to deal correctly with semiring
values. The main generalization will involve the assignment of semiring values
to atoms and formulas, instead of truth values. As usual, we will just consider
Herbrand interpretations in the following, which, however, we will call just in-
terpretations for sake of conciseness.

Definition 6.2.1. (pre-interpretation) A pre-interpretation maps each
ground term in a program into a chosen domain. More precisely, it consists
of a domain D plus a mapping from each constant to an element of D and, for
each n-ary function, a mapping from Dn to D.
1 We will give a short description of the SCLP(FD,S) framework in a paragraph in

Section 6.8.
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Notice that the domain D of the pre-interpretations contains the domain of
the constraints.

Definition 6.2.2. (interpretation) An interpretation I is a pre-
interpretation plus a function, which takes a predicate and an instantiation of
its arguments (that is, a ground atom), and returns an element of the semiring:

I :
⋃
n

(Pn → (Dn → A)),

where Pn is the set of n-ary predicates and A is the carrier set of the semiring.

This notion of interpretation can now be extended and used to associate
elements of the semiring also to formulas that are more complex than ground
atoms. In the following, this extension of an interpretation I will be called an
interpretation and denoted by I as well, since the extension is uniquely deter-
mined. When we will want to consider the restriction of an interpretation I to
ground atoms we will sometimes write GA(I).

– The value associated with a formula of the form F = ∃x.F ′(x) is computed
by considering the lub of the values associated with all ground formulas
F ′(x/d), where d is any domain element. That is, I(F ) = lub{I(F ′(d)),
for all d ∈ D}. Formulas of this kind occur in SCLP languages since vari-
ables appearing in the body of a clause but not in its head are considered
to be existentially quantified. For example, in the special case of logic pro-
gramming the clause p(a) :- q(X,a) is just a shorthand for the formula
p(a) ← ∃x.q(x, a).

– The value associated with a formula of the form F = ∀x.F ′(x) is computed
by considering the greatest lower bound (glb) of the values associated with
all the ground formulas F ′(x/d), where d is any domain element. That is,
I(F ) = glb{I(F ′(d)),for all d ∈ D}. Formulas of this kind occur when a
variable appears in the head of a clause. In fact, for example, in logic pro-
gramming, a clause like p(X) :- q(X,a) is a shorthand for the formula
∀x.(p(x) ← q(x, a)).

– The value associated with a conjunction of atomic formulas of the form
(A,B) is the semiring product of the values associated to A andB: I(A,B) =
I(A)×I(B). Such formulas appear in the body of the clauses, when the body
contains more than one atom.

– For any semiring element a, I(a) = a. Such elements appear in the body of
the facts.

Note that the meaning associated to formulas by function I coincides with
the usual logic programming interpretation [135] when considering constraints
over the semiring SCSP = 〈{true, false},∨,∧, false, true〉. In fact, in this case
the ordering ≤S is defined by false ≤S true, the lub operation of the lattice
〈{true, false},≤S〉 is ∨, and the glb is ∧. Thus, for example, I(∃x.A(x)) =
lub{I(A(d)), for all d ∈ D} = ∨{I(A(d)), for all d ∈ D}. Thus, it is enough that
one of the A(d) is assigned the value true that the value associated to the whole
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formula ∃x.A(x) is true. Note also that in this special instance the lub and glb
of the lattice coincide with the two semiring operations, but this is not true in
general for the multiplicative operation.

Definition 6.2.3. (clause satisfaction) Given a clause of the form H : −B
and an interpretation I, we say that the clause is satisfied in I if and only if,
for any ground instantiation of H, say Hθ, we have that I(Hθ) ≥S I(∃Bθ).

Note that the existential quantification over the body Bθ is needed, since
there may be variables in B that do not appear in H . Thus Bθ could be not
ground. This definition of clause satisfiability is consistent with the usual treat-
ment of clauses in logic programming, where a clause is considered to be satisfied
if the body logically implies the head, and by noting that logical implication in
the semiring SCSP coincides with the ordering ≤SCSP .

Our running example As our running example in this chapter, we will use the
program represented in Table 6.4, which is not as expressive as the program in
the previous section but is simple enough to be analyzed in detail. This is an
SCLP(S) program over the semiring S = 〈N ∪ {+∞},min,+,+∞, 0〉, where
N is the set of non-negative integers. This semiring allows to model constraint
optimization problems where each tuple of values is assigned an integer, to be
interpreted as its cost, constraints are combined by summing their costs, and are
compared by using the min operator. Note that the ordering ≤S in this semiring
coincides with the ≥ ordering over integers.

In this program, the constraints are represented by predicates t and r. The
intuitive meaning of a semiring value like 3 associated to the atom r(a) is that
r(a) costs 3 units. Thus the set N ∪ {+∞} contains all possible costs, and the
choice of the two operations min and + implies that we intend to minimize the
sum of the costs. This gives us the possibility to select the atom instantiation
that gives the minimal cost overall. �

As an example of clause satisfiability, consider the following four clauses:

– the clause p(a) :- q(b) is satisfied in I if I(p(a)) ≥S I(q(b));
– the clause p(X) :- q(X,a) is satisfied if ∀x.(I(p(x)) ≥S I(q(x, a)));
– the clause p(a) :- q(X,a) is satisfied if I(p(a)) ≥S I(∃x.q(x, a));
– the clause p(X) :- q(X,Y) is satisfied if ∀x.(I(p(x)) ≥S I(∃y.q(x, y))).

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

Table 6.4. Our running example.
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As in logic programming, an interpretation I is a model for a program P
if all clauses of P are satisfied in I. Given a program and all its models, one
would like to identify a unique single model as the representative one. In logic
programming this is done by considering the minimal model [135], which is
obtained by intersecting all the models of the program. This works because
models in logic programming are assimilable to sets of ground atoms, those
with associated value true. Here we follow the same approach, but we have
to generalize the notion of intersection of two models, written as “◦”, as their
greatest lower bound in the lattice 〈A,≤S〉.
Definition 6.2.4. (model intersection) Consider an SCLP program over
the c-semiring 〈A,+,×,0,1〉, the corresponding ordering ≤S and the lattice
〈A,≤S〉. For every ground atomic formula F and a family of models {Mi}i∈I,
we define ◦i∈IMi(F ) = glbi∈I{Mi(F )}, where glb is the greatest lower bound
over the lattice 〈A,≤S〉.
Theorem 6.2.1. (model intersection) Consider a family of models {Mi}i∈I
for a CLP(S,D) program P . Then ◦i∈IMi is a model for P as well.

Proof. Since Mi is a model for P for all i ∈ I, it must be that, for every clause
H : −B, and for all θ such that Hθ is ground, Mi(∃Bθ) ≤S Mi(Hθ). Consider
now the model M = ◦i∈IMi. We need to prove that, for all H : −B, and for all
θ such that Hθ is ground, also M(∃Bθ) ≤S M(Hθ) holds.

Without loss of generality, assume that B = A1, A2. Thus, for all i ∈ I,
Mi(∃Bθ) = lub{Mi(Bθθ′), for all θ′ such that Bθθ′ is ground} = lub{Mi(A1θθ

′)
× Mi(A2θθ

′), for all θ′ such that Bθθ′ is ground}. Moreover, M(∃Bθ) = lub{
M(Bθθ′), for all θ′ such that Bθθ′ is ground} = lub{M(A1θθ

′) × M(A2θθ
′), for

all θ′ such that Bθθ′ is ground}= lub{glbi∈I{ Mi(A1θθ
′)} × glbi∈I{ Mi(A2θθ

′)}
for all θ′}. Also, M(Hθ) = glbi∈I{Mi(Hθ)}.

Consider any model Mj with j ∈ I. Since glbi∈I{Mi(A1θθ
′)} ≤S Mj(A1θθ

′)
and glbi∈I{ Mi(A2θθ

′)} ≤S Mj(A2θθ
′) by definition of glb, and recalling that

× is monotone, we have that M(∃Bθ) ≤S Mj(∃Bθ). By transitivity of ≤S , we
thus get M(∃Bθ) ≤S Mj(Hθ). Since M(Hθ) is the glb of all Mi(Hθ) for i ∈ I,
and since the glb of a set of elements is the greatest among the elements which
are smaller than all of them, we have that M(∃Bθ) ≤S M(Hθ).

It is easy to see that the operation of model intersection is associative, idem-
potent, and commutative.

Definition 6.2.5. (minimal model) Given a program P and the set of all its
models, its minimal model is obtained by intersecting all models: MP = ◦({M |
M is a model for P}). The model-theoretic semantics of a program P is its
minimal model, MP .

Consider our running example program P . The minimal model MP for such
a program must assign an integer to each formula, and when restricted to ground
atoms it is the following function: MP (t(a)) = 2, MP (q(a)) = 2, MP (r(a)) =
3, MP (p(a, c)) = 3, MP (p(a, b)) = 2, MP (s(a)) = min(2, 3) = 2. For each
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atom different from the ones considered above, MP returns +∞. To explain why
function MP returns these values, we give some examples:

– Any model must assign to t(a) a semiring value smaller (that is, better) than
2, because of the clause t(a) :- 2. Since MP is the minimal model, it must
assign to t(a) the glb (that is, the max) of all such values, that is, 2.

– The value assigned to p(a, c) must be smaller than that of r(a), which in turn
must be smaller than 3. Being in the minimal model, we have that the value
of r(a) is exactly 3, and the value of p(a, c) is again 3. The same reasoning
holds also for p(a, b), whose value is 2. Instead, p(a, v), for any v �= b, c, gets
the value +∞, because a model can give any value to p(a, v), since there is
no clause about it, and thus the minimal model gives to it the glb ( that is,
the max) of all values, that is, the worst element of the semiring.

– For s(a), we know that every model must assign to it a value smaller than
the value assigned to ∃y.p(a, y). Now, for any model M , M(∃y.p(a, y)) is the
lub (that is, the min) of all the values assigned by M to p(a, v) for any v in
the domain. We know that p(a, b) has value 2, p(a, c) has value 3, and any
p(a, v), with v �= b, c, has value +∞. Therefore the lub of all such values
is 2. Thus any model must assign to s(a) a value smaller than 2, and the
minimal model MP must give it value 2.

For the same program, it is also useful to notice which semiring value is as-
signed to formulas like ∀y.p(a, y) by the function MP . In fact, this is one of the
kinds of formulas we will consider when studying the relationship between the op-
erational and the model-theoretic semantics, in Section 6.4. By definition, to get
MP (∀y.p(a, y)) we must compute the glb of all the semiring values assigned by
MP to the ground atoms of the form p(a, v) where v is any element of the domain
D. We know, by the paragraph above, that MP (p(a, c)) = 3, MP (p(a, b)) = 2,
and MP (p(a, v)) = +∞ if v is different from both b and c. Thus the glb (that
is, the max) of all these values is +∞. Therefore MP (∀y.p(a, y)) = +∞.

6.3 Fix-Point Semantics

In order to describe the fix-point semantics, we need to define the operator TP
which extends the one used in logic programming [135]. We will do that by
following the same approach as in the previous section. The resulting operator
maps interpretations into interpretations, that is, TP : ISP → ISP , where ISP
is the set of all interpretations for P .

Definition 6.3.1. (TP operator) Given an interpretation I and a ground
atom A, assume that program P contains k clauses defining the predicate in A.
Clause i is of the form A : −Bi1, . . . , Bini . Then

TP (I)(A) =
∑k
i=1(

∏ni
j=1 I(B

i
j)).



6.3 Fix-Point Semantics 147

This function coincides with the usual immediate consequence operator of
logic programming (see [135]) when considering the semiring SCSP .

Consider now an ordering $ among interpretations which respects the semi-
ring ordering.

Definition 6.3.2. (partial order of interpretations) Given a program
P and the set of all its interpretations ISP , we define the structure 〈ISP ,$〉,
where for any I1, I2 ∈ ISP , I1 $ I2 if I1(A) ≤S I2(A) for any ground atom A.

It is easy to see that 〈ISP ,$〉 is a complete partial order, whose greatest
lower bound coincides with the glb operation in the lattice A (suitably extended
to interpretations). It is also possible to prove that function TP is monotone and
continuous over the complete partial order 〈ISP ,$〉.

By using these properties, classical results on partial orders [188] allow us to
conclude the following:

– TP has a least fix-point, lfp(TP ), which coincides with glb({I | TP (I) $ I});
– the least fix-point of TP can be obtained by computing TP ↑ ω. This means

starting the application of TP from the bottom of the partial order of inter-
pretations, called I0, and then repeatedly applying TP until a fix-point.

Consider again our running example program. We recall that in this specific
case the semiring is S = 〈N ∪ {+∞},min,+,+∞, 0〉 and D = {a, b, c}. Thus
function TP is:

TP (I)(A) = min{∑n1
j=1 I(B

1
j ), . . . ,

∑nk
j=1 I(B

k
j )}.

In this semiring the bottom interpretation I0 is the interpretation that maps
each semiring element into itself and each ground atom into the bottom of the
lattice associated to the semiring, that is, +∞. Note that we slightly abused the
notation since interpretations are functions whose domain contains only ground
atoms (see Section 6.2), while here we also included semiring elements. This
simplifies the definition of I0; however, it is possible to obtain the same result
with a more complex definition of I0 which satisfies the definition of interpre-
tation. Given I0, we obtain I1 by applying function TP above. For example,
I1(r(a)) = +3. Instead, I1(p(a, c)) = +∞, and I2(p(a, c)) = I1(r(a)) = +3. The
Table 6.5 gives the value associated by the interpretation Ii to each ground
atom. Some of the atoms2 are not listed because each interpretation Ii gives
them value +∞. All interpretation Ii with i > 4 coincide with I4, thus I4 is the
fix-point of TP .

The most interesting case is the computation of the value associated to
s(a). In fact, I3(s(a)) = min{I2(p(a, a)), I2(p(a, b)), I2(p(a, c))} = min{+∞,
+∞, 3} = 3. Instead, I4(s(a)) = min{I3(p(a, a)), I3(p(a, b)), I3(p(a, c))} =
min{+∞, 2, 3} = 2. Note that the clause s(X) :- p(X,Y) is considered equiva-
lent to all its instantiations. In particular, when x = a, we have the three clauses
2 Actually, an infinite number of them.
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I1 I2 I3 I4

t(a) 2 2 2 2
r(a) 3 3 3 3
q(a) +∞ 2 2 2
p(a,c) +∞ 3 3 3
p(a,b) +∞ +∞ 2 2
s(a) +∞ +∞ 3 2
s(b) +∞ +∞ +∞ +∞
s(c) +∞ +∞ +∞ +∞

Table 6.5. The TP operator applied at the running example.

s(a) :- p(a,a), s(a) :- p(a,b), and s(a) :- p(a,c). These are the clauses
to consider when computing I(s(a)).

We will now prove that the least fix-point of function TP coincides with the
minimal model of program P , when restricted to ground atoms. To do that,
we need an intermediate result that shows that the ground models of a given
program P are the solutions of the equation TP (I) $ I.

Theorem 6.3.1. (models and TP ) Given any interpretation I for a program
P , I is a ground model for P if and only if TP (I) $ I.

Proof. Consider any ground atom H and assume there are two clauses with H as
their head: H : −B1 and H : −B2. By definition of model, each clause H : −Bi
is satisfied in I. Thus I(H) ≥S I(∃Bi). Now, function TP assigns to H the sum
of the values assigned by I to ∃B1 and ∃B2, thus TP (I)(H) = I(∃B1) + I(∃B2).
But the + operation coincides with the lub of the semiring, thus any value of the
semiring which is greater than both I(∃B1) and I(∃B2) is also greater than their
sum. Therefore TP (I)(H) ≤ I(H). A similar reasoning works also for proving
that if TP (I)(H) ≤ I(H) for any ground atom H then I is a model.

Theorem 6.3.2. (ground models and fix-point semantics) Given an
SCLP program P , we have that GA(MP ) = lfp(TP )3.

Proof. By definition of ground minimal model, GA(MP ) = glb({I | I is a model
for P}). By the previous theorem, we get GA(MP ) = glb({I | TP (I) $ I}). By
the classical results cited above [188], this coincides with the least fix-point of
TP .

Notice that the result of Theorem 6.2.1 (that is, the glb of two models is a
model) can be proven also by using Theorem 6.3.1 (which states that a model
is a prefixpoint of TP ) and by easily showing that the glb of two prefixpoints of
a monotone operator (as TP is) is a prefixpoint as well.

3 We recall that, for any interpretation I , GA(I) is the restriction of I to ground
atoms.
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6.4 Proof-Theoretic Semantics

We will define here a proof-theoretic semantics in the style of CLP [126]. We first,
however, rewrite the program into a form that allows us to make the semantics
treatment more uniform and simpler.

First, we rewrite each clause so that the head is an atom whose arguments are
different variables. This means that we must explicitly specify the substitution
that was written in the head, by inserting it in the body. That is, given a clause
of the form p(t1, . . . , tn) : −B, we transform it into p(x1, . . . , xn) : −〈B, θ〉 where
θ = {x1/t1, . . . , xn/tn}. Thus, bodies now have the following syntax:B1 :: 〈B, θ〉.
We recall that B can be either a collection of atoms or a value of the semiring. To
give a uniform representation to bodies, we can define them as triples containing
a collection of atoms (possibly empty), a substitution, and a value of the semiring
(possibly, 1). Thus, bodies are now of the form B2 :: 〈LAT, θ, a〉. If we have a
body belonging to the syntactic category B1 of the form 〈a, θ〉, we get 〈�, θ, a〉.
If instead we have 〈C, θ〉, where C is a collection of atoms, we get 〈C, θ,1〉.
Therefore, clauses have now the syntax CL1 :: H : −B2.

Initial goals need to be transformed as well: given a goal G = (: −C), where
C is a collection of atoms, we get the goal G′ = (: −〈C, ε,1〉). The reason why
we write the value 1 of the semiring is that this element is the unit element w.r.t.
the operation we want to perform on it, that is, constraint combination.

In summary, given a SCLP program, we get a program in an intermediate
language, whose syntax is as follows:

B2 :: 〈LAT, θ, a〉
CL1 :: H : −B2
P1 :: CL1 | CL1, P1
G1 :: B2

Consider again our running example. The transformed program is then

s(X) :- 〈 p(X,Y), ε, 0〉.
p(X,Y) :- 〈 q(a), {X=a,Y=b}, 0〉.
p(X,Y) :- 〈 r(a), {X=a,Y=c}, 0〉.
q(X) :- 〈 t(a), {X=a}, 0〉.
t(X) :- 〈�, {X=a}, 2 〉.
r(X) :- 〈�, {X=a}, 3 〉.

Once we have transformed the given SCLP program into a program in the
syntax just given, we can apply the following semantic rule. This rule defines
the transitions of a nondeterministic transition system whose states are goals
(according to the syntactic category G1).

C = A,Cr
Cl = (A′ : −〈C1, θ1, a1〉) is a variant of a clause or a fact

θ′ = mgu(Aθ,A′θ1)

〈C, θ,a〉 Cl,θ
′

−→ 〈(C1, Cr), (θ ◦ θ′ ◦ θ1), a × a1〉
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If the current goal contains an atom that unifies with the head of a clause,
then we can replace that atom with the body of the considered clause, performing
a step similar to the resolution step in CLP. The main difference here is that we
must update the third element of the goal, that is, the semiring value associated
to the goal: if before the transition this value is a and the transition uses a clause
whose body has value a1, then the value associated to the new goal is a × a1.
The reason for using the × operation of the semiring is that this is exactly the
operation used when accumulating constraints in the SCSP framework.
Notice that we must use a variant of the clause involved in the rule, because we
need fresh variables to avoid confusion between the variables of the clause and
those of the current goal.

Definition 6.4.1. (derivations and refutations) A derivation is a finite
or infinite sequence of applications of the above rule. A refutation is a finite
derivation whose final goal is of the form 〈�, θ, a〉.

Note that in this chapter we give a simplified view of the solver for soft
constraints, where the solver is implemented by some clauses in the program
(see the last two clauses of our running example). These clauses have a special
shape, since they are ground facts. Also, they are in a finite number, since our
constraints have finite domains. Therefore, when executing such a program, the
soft constraints (like t and r in our example) are solved using these clauses and,
thus, they do not appear in the resulting final goal. This allows us to simplify
the usual CLP operational semantic rules (like those in [127]), so that, instead
of having computation states made by a current goal and a store, we can just
have a goal, a substitution for the variables (this would be in the store in CLP)
and a semiring value. Therefore, our operational semantic rule and states are
consistent with those of CLP, in the case that we have 1) finite domain variables
in the constraints, 2) solver specified by program clauses (this again can be done
in this straightforward way only because we have finite domains), and 3) soft
constraints. While the first two points are special cases, the third is an extension
of CLP. Notice also that we can have just one rewriting rule (instead of several
rules, as in [127]) because we first rewrite the program into a syntax that makes
clauses and facts uniform. A last point to notice is that we do not test at each
step if the constraint store is consistent (that is, if the semiring value collected
is greater than 0) because the notion of inconsistency is not so strong in soft
constraints, and we perform this check only at the end.

Definition 6.4.2. (compact refutation set) Given an SCLP program P ,
its compact refutation set S(P ) is defined as follows:

S(P ) = 〈C, θ|var(C)
,a〉 | 〈C, ε,1〉 →∗ 〈�, θ, a〉}.

S(P ) contains all triples representing all refutations for the given program.
Note that we only record the part of θ which involves the variables in C. No-
tice also that a triple 〈C, θ,a〉 may represent more than one refutation, but all
these refutations start from the same goal C, build the same substitution θ,
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and generate the same semiring value a. Thus, we do not mind making them
indistinguishable.

A property of the set S(P ) is that for any triple 〈C, θ,a〉 in this set, there is
also the triple 〈Cθ, ε, a〉. Notice that this is a generalized version of the lifting
lemma of [135].

Theorem 6.4.1. (goal specialization) Given an SCLP program P and the
corresponding set S(P ), let us consider any triple 〈C, θ,a〉 in S(P ). Then also
the triple 〈Cθ, ε, a〉 is in S(P ).

Proof. Triple 〈C, θ,a〉 says that there is a refutation, which starts from C, builds
θ, and obtains the semiring value a. If we start from Cθ, we can construct a
refutation which follows exactly the same steps as the previous one, and thus
obtains the same semiring value, since θ is compatible with all these steps.

Our goal now is to study the correspondence between the operational seman-
tics of a goal and its model-theoretic meaning. In particular, given a goal C, we
will define the operational semantics of C in two different ways, to model the
meaning of both ∀C and ∃C.

6.4.1 Universal Closure

Among all refutations represented by the triples in S(P ), there are some that
have the same first element, say C, and which build the empty substitution, ε,
during the computation. These refutations have to be merged by the operational
semantics since they represent different alternative branches for goal C, which
lead to possibly different semiring values and that hold for any value of the
variables of C. Thus, they naturally correspond to the intuitive meaning of ∀C.

When merging such elements of S(P ), the respective semiring values must
be merged as well. This is done by performing the + operation. Actually, we
should also merge those refutations that start from different goals, say C and
C′, such that C′ is more instantiated than C. That is, such that there exists
a substitution θ such that C′ = Cθ. In fact, the semiring value obtained from
C holds also for all goals that are more instantiated than C. For example, if
we have the triples 〈p(x), ε,v1〉 and 〈p(a), ε,v2〉, the first refutation says that
for all values of x, p(x) gets the semiring value v1. Thus, also p(a) will get this
value. On the other hand, the other refutation says that p(a) gets the value v2.
Therefore, the value to be assigned to p(a) is the lub between v1 and v2, which
is v1 + v2 by definition of +. It is possible, however, to show that if there is the
triple 〈C, ε,v〉 in S(P ), then there is also the triple 〈Cθ, ε,v〉 for any θ. In other
words, if we have a refutation starting from C, building the empty substitution
and obtaining the semiring value v, then there is also a refutation starting from
any goal more instantiated than C (that is, Cθ), which follows the same steps
as the refutation for C and thus obtains the same semiring value. Therefore, we
just need to merge those refutations that start from the same goal.
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Theorem 6.4.2. (more about goal specializations) Given an SCLP pro-
gram P and the corresponding set S(P ), let us consider any triple 〈C, ε,a〉 in
S(P ). Then, for any θ, also the triple 〈Cθ, ε, a〉 is in S(P ).

Proof. The refutation represented by the triple 〈C, ε,a〉 does not bind any vari-
able present in C. By starting from a goal Cθ, which is more instantiated than
C, we can follow exactly the same steps as in the refutation for C. In fact, at
each step we can use the same clause as before, since we know that such a step
did not bind the variables in C.

Let us now define a function OS1P (for Operational Semantics), which, given
a goal, returns a value of the semiring by looking at all refutations for that goal
that build the empty substitution.

Definition 6.4.3. (function OS1P ) Given an SCLP program P , function
OS1P : LAT → A, where LAT is the set of conjunctions of atoms and A is
the semiring set, is defined as follows: OS1P (C) =

∑
〈C,ε,a〉∈S(P ) a.

Note that, when there is no triple 〈C, ε,a〉 ∈ S(P ), function OS1P (C) returns
the unit element of the + operation, that is, 0. This is reasonable, since the
absence of such triples means that there is no refutation starting from C and
builds the empty substitution.

Notice that, if OS1P (C) = a, there is not necessarily a refutation starting
from C and obtaining the semiring value a. In fact, as noted above, the value a
may have been obtained by combining several refutations, which may be incom-
parable with respect to ≤S .

Let us now consider some examples of goal refutations and their operational
semantics via function OS1. By considering the goal 〈s(a), {ε}, 0〉 in our running
example, we get two refutations, which end respectively with the goals 〈�, {ε}, 2〉
and 〈�, {ε}, 3〉. Thus S(P ) contains the triples 〈s(a), {ε}, 2〉 and 〈s(a), {ε}, 3〉.
Therefore OS1P (s(a)) = min(2, 3) = 2. Instead, OS1P (s(b)) = +∞ (which
is the bottom of the semiring), since there is no refutation for 〈s(b), {ε}, 0〉.
Consider now the goal 〈s(x), ε, 0〉. In this case, we get two refutations with the
same final goals as above, and thus S(P ) contains the same elements as above.
More precisely, S(P ) does not contain any triple of the form 〈s(x), ε, a〉, and
therefore OS1P (s(x)) = +∞.

A more complex example is related to the goal 〈p(a, y), {ε}, 0〉, which has
two refutations ending with the goals 〈�, {y = b}, 2〉 and 〈�, {y = c}, 3〉,
which are therefore represented in S(P ) by the triples 〈p(a, y), {y = b}, 2〉
and 〈p(a, y), {y = c}, 3〉. Therefore, the operational semantics of p(a, y) is
OS1P (p(a, y)) = +∞, even if there are refutations starting from p(a, y) and
obtaining a semiring value smaller than +∞. Formally, this is due to the fact
that such refutations all build a substitution different from ε, and thus are not
considered by function OS1P . Intuitively, the fact that the operational seman-
tics assigns to p(a, y) the worst semiring value, even if there are refutations that
lead to better values, can be explained by considering that by only looking at
the refutations, as the operational semantics does, there will be other domain
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values, say d, for which p(a, d) does not hold. We will come back to this issue in
the following paragraph, when we will formally compare the operational and the
model-theoretic semantics. We can, however, already notice that this behavior
leads to the same result (that is, the same semiring value) we computed via the
model-theoretic tools (that is, function MP ) at the end of Section 6.2 for the
formula ∀y.p(a, y).

We now prove formally that in general the operational semantics of SCLP
programs, as just defined via function OS1P , for each goal C, computes the
same semiring value as the model-theoretic semantics of ∀C, defined in Section
6.2, and thus also as the fix-point semantics of Section 6.3 when applied to any
ground instantiation of C.

Before stating and proving the main theorem, however, it is useful to prove
two lemmas, which will be used in the proof of the theorem. The first lemma
basically proves that the operational semantics of a collection of ground atoms is
the same as the multiplication of the operational semantics of the single atoms,
while the second one uses the fact that we have an infinite domain, but a finite
number of domain elements in the program, to prove that the operational se-
mantics of a goal coincides with the glb of the operational semantics of all its
ground instances.

Lemma 6.4.1. (distribution) Given an SCLP program P , consider two col-
lections of atoms C1 and C2. Then we have that OS1P (C1, C2) = OS1P (C1) ×
OS1P (C2).

Proof. By definition of OS1P , we have that OS1P (C1) × OS1P (C2) =
(
∑

〈C1,ε,a〉∈S(P ) a) × (
∑

〈C2,ε,b〉∈S(P ) b). Let us assume that we have n ele-
ments of the form 〈C1, ε,a〉 and m elements of the form 〈C2, ε,b〉 in S′(P ).
Therefore, we will consider the semiring values a1, . . . ,an and b1, . . . ,bm. No-
tice that n and m may be infinite; however, since we work with complete
lattices, the lub (+) and glb are defined also in the infinite case. Thus, we
have OS1P (C1) × OS1P (C2) = (

∑
i=1,...,n ai) × (

∑
j=1,...,m bj). Now, since ×

distributes over + (by the definition of semiring), this can be rewritten as∑
i=1,...,n,j=1,...,m(ai × bj). Consider now any refutation for the goal (C1, C2)

which does not instantiate any variable, and assume, without loss of generality,
that its selection strategy first “consumes” C1 and then C2. Then, after C1 has
been “consumed”, we have a goal of the form 〈C2, ε,ai〉. Then the refutation
continues by “consuming” C2, leading to a final goal of the form 〈�, ε,ai × bj〉.
Now, OS1P (C1, C2) just sums all the semiring values of all such simple refuta-
tions, therefore, we have that OS1P (C1, C2) =

∑
i,j(ai × bj), which is the same

as OS1P (C1) ×OS1P (C2) for what we have said before.

Lemma 6.4.2. (infinite domain) Given an SCLP program P , consider any
collection of atoms C. Then OS1P (C) = glb{OS1P (Cθ), for all θ such that Cθ
is ground}.
Proof. Given a goal C, function OS1P returns the sum of all the semiring values
obtained by all those refutations of C which build the empty substitution. Let
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us call the set of such refutations E(C). Since Cθ is more instantiated than
C, then the refutations of Cθ will be able to use more clauses than those for
C. In fact, if the head of a clause is as instantiated as a subgoal of Cθ but
more instantiated than the corresponding subgoal of C, then a refutation of
Cθ will be able to use it without building a non-empty substitution, while any
refutation of C using such a clause will have to add a non-empty substitution
to the substitution of the current goal. Therefore, we have that E(C) ⊆ E(Cθ),
which, by definition of OS1P and by the fact that the + operation is the lub,
means that OS1P (C) ≤S OS1P (Cθ). Now, this holds for any θ, but it is possible
to show that for some θ we actually have OS1P (C) = OS1P (Cθ). To do that,
it is enough to consider a θ which binds all variables of C to domain elements
not present in P . In this way, the refutations of Cθ will not be able to use more
clauses than those of C. Therefore, the glb of all OS1P (Cθ) for all θ is actually
equal to OS1P (C), since we know that OS1P (C) is smaller than (or equal to)
all elements OS1P (Cθ) and that it is actually equal to one of them.

Theorem 6.4.3. (operational meaning of ∀C) Given a SCLP program P ,
consider a collection of atoms C. Then we have that MP (∀C) = OS1P (C).

Proof. If OS1P (C) = a, it means that S(P ) contains triples of the form 〈C, ε,ai〉,
for i = 1, . . . , n, such that

∑
i=1,...,n ai = a. Again, we recall that n may be

infinite. We work with complete lattices, however, and thus both infinite lub
(that is, sum) and infinite glb are defined.

We will prove the statement of the theorem by induction on the length of
the longest of the refutations corresponding to such triples.

– base case: If all refutations 〈C, ε,ai〉 have length 1, it means that there
are n facts in the program of the form C′ : −〈�, θi, ai〉, where C′ contains
only variables and C′θi is equally or less instantiated than C. In fact, if the
head of such facts would be more instantiated than C, then we would have
a substitution different from ε in the refutation.
By definition of model-theoretic semantics, MP (∀C) is the greatest lower
bound of the values given to each ground instantiation of C by function
MP . Now, consider any of such ground instantiations, say Cθ. Since C′θi is
equally or less instantiated than C, it is also equally or less instantiated than
Cθ. Therefore MP (Cθ) =

∑
i=1,...,n ai +

∑
j=1,...,m bj, where the semiring

values bj are present in other m facts whose head is less instantiated than
Cθ but more instantiated than C. Now we must compute the glb of all such
MP (Cθ) for all θ. But it is possible to see that there is a θ such that MP (Cθ)
involves only the n facts with semiring values ai: just choose a substitution,
say θ′, which binds all variables in C to domain elements not present in P .
Therefore MP (Cθ′) =

∑
i=1,...,n ai. This means that the glb of all MP (Cθ)

is exactly MP (Cθ′), that is, a.
– inductive case: Let us assume that the statement of the theorem holds

when the longest of the refutations of the form 〈C, ε,ai〉 has length n. Let
us now consider a collection of atoms C such that the longest refutations
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for C have length n+ 1. We have two cases to consider: one occurs when C
contains just one atom, and the other one when C has two or more atoms.
– 1st case (one atom): The reasoning we will use in this case is very

similar to that of the base case. To consider the refutation 〈A, ε, a〉, let
us assume to start from the goal 〈A, ε,1〉, where A is an atom. Consider
now the set of n clauses contained in the program P of the form A′ :
−〈Bi, θi,0〉, for i = 1, . . . , n, where Bi is a collection of atoms and A′

contains only variables and the same predicate symbol as A. To be used
to expand our goal, it must be that A′θi is equally or less instantiated
than A. In fact, if the head of such clauses were more instantiated than
A, then we would have a substitution different from ε in the refutation.
By definition of OS1P , we have that OS1P (A) =

∑
i=1,...,nOS1P (Biθi).

By definition of model-theoretic semantics,MP (∀A) is the greatest lower
bound of the values given to each ground instantiation of A by function
MP . Now, consider any of such ground instantiations, say Aθ. Since A′θi
is equally or less instantiated thanA, it is also equally or less instantiated
than Aθ. Therefore MP (Aθ) =

∑
i=1,...,n ai +

∑
j=1,...,m bj, where ai =

MP (∀Biθi) for i = 1, . . . , n, and bj = MP (∀Bjθj) for j = 1, . . . ,m,
with A′ : −〈Bj , θj ,0〉, for j = 1, . . . ,m other clauses where A′θj is more
instantiated than A but less instantiated than Aθ.
Now we must compute the glb of all such MP (Aθ) for all θ. But it is
possible to see that there is a θ such that MP (Aθ) involves only the
n clauses with semiring values ai: just choose a substitution, say θ′,
which binds all variables in A to domain elements not present in P .
Therefore MP (Aθ′) =

∑
i=1,...,n ai = a. This means that the glb of

all MP (Aθ) is exactly MP (Aθ′), that is,
∑

i=1,...,nMP (∀Biθi). Now, by
inductive hypothesis, this coincides with

∑
i=1,...,nOS1P (Biθi), which

is OS1P (A) as we stated before.
– 2nd case (two or more atoms): Let us assume that we start from

the goal 〈C, ε,1〉, and that C = A,C′. Then we have that:
MP (∀C) = {by definition of C }
MP (∀(A,C′)) = {by definition of interpretation over a universally quan-
tified formula}
glbθ{MP ((A,C′)θ)} =
glbθ{MP ((Aθ,C′θ)} = {by definition of interpretation over a conjunc-
tion of formulas}
glbθ{MP (Aθ) ×MP (C′θ)} = {by inductive hypothesis and by the as-
sumption that C′ is not empty}
glbθ{OS1P (Aθ) ×OS1P (C′θ)} = {by 6.4.1}
glbθ{OS1P (Aθ,C′θ)} =
glbθ{OS1P ((A,C′)θ)} = {by 6.4.2}
OS1P (A,C′) = {by definition of C}
OS1P (C).
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6.4.2 Existential Closure

Theorem 6.4.3 relates the operational semantics of a goal C to the model-
theoretic meaning of its universal quantification, that is, ∀C. We will now show
that also the declarative meaning of the existential quantification of C, that is,
∃C, can be computed operationally. First we need to define a function OS2P (C)
which combines all the refutations for C by summing all the corresponding se-
miring values.

Definition 6.4.4. (function OS2P ) Given an SCLP program P , function
OS2P : LAT → A, where LAT is the set of conjunctions of atoms and A is
the semiring set, is defined as follows: OS2P (C) =

∑
〈C,θ,a〉∈S(P ) a.

An intuitive explanation of why OS2P is defined this way is the following:
since we are interested in describing the operational meaning of ∃C, we do not
care which substitution is built during a refutation starting from C. Therefore,
we take all refutations starting from C. Then, we choose the best among all such
refutations by using the + operator.

It is worth noting at this point that this definition of OS2P coincides with
the following one:

∑
〈Cθ,ε,a〉∈S(P ) a. First we need the following lemma.

Lemma 6.4.3. Given an SCLP program P and a conjunction of atoms C, we
have that, if 〈Cθ, ε, a〉 is in S(P ), then there exists θ′ such that 〈C, θ′, a〉, with
θ′ ≤ θ is in S(P ) as well.

Proof. If we start a refutation from C instead of Cθ, we can follow the same
steps as in refutation 〈Cθ, ε, a〉, because we have a more general goal. The only
difference is that we may need to build a substitution, say θ′, different from ε.
Such a substitution, however, will be compatible with θ since we followed the
same steps. Moreover, θ′ cannot be more specific than θ, otherwise the refutation
starting from Cθ would have built a substitution different from ε.

Theorem 6.4.4. Given an SCLP program P and a conjunction of atoms C, we
have that

∑
〈C,θ,a〉∈S(P ) a =

∑
〈Cθ,ε,a〉∈S(P ) a.

Proof. We will prove this theorem by showing that the set S1 of semiring values
reached by refutations of the form 〈C, θ,a〉 coincides with the set S2 of values
reached by refutations of the form 〈Cθ, ε, a〉. In fact, if we show this, then, since
+ is idempotent, the two sums coincide as well.

One direction of the proof has already been proven in Theorem 6.4.1: if
〈C, θ,a〉 is a refutation, then 〈Cθ, ε, a〉 is a refutation as well. Therefore we have
that S1 ⊆ S2. Now we have to prove that S2 ⊆ S1. In general, it is not true
that, if 〈Cθ, ε, a〉 is a refutation, then 〈C, θ,a〉 is a refutation as well. By Lemma
6.4.3, however, we have that, if 〈Cθ, ε, a〉 is a refutation, then there exists θ′ such
that 〈C, θ′,a〉, with θ′ ≤ θ, is a refutation as well. This is enough to prove that
S2 ⊆ S1, since we are proving the equality between sets of semiring values and
not sets of refutations.
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Another alternative way to define OS2P is by using the definition of OS1P ,
as follows.

Theorem 6.4.5. Given an SCLP program P and a conjunction of atoms C, we
have that OS2P (C) =

∑
Cθ ground OS1P (Cθ).

Proof. The statement of the theorem comes from the definition of OS1P , the
associativity and idempotency of +, and Theorem 6.4.2.

Now we formally show that the result of the application of function OS2P
over any goal C is a semiring value that coincides with the model-theoretic
meaning of ∃C.

Theorem 6.4.6. (operational meaning of ∃C) Given an SCLP program
P , consider a collection of atoms C. Then we have that MP (∃C) = OS2P (C).

Proof. By definition of interpretation, MP (∃C) = lub{MP (Cθ) for all θ s.t.
Cθ is ground} =

∑
Cθ groundMP (Cθ). Since Cθ is ground, Theorem 6.4.3 says

that MP (Cθ) = OS1P (Cθ). Therefore, we have that MP (∃C) =
∑

Cθ ground
OS1P (Cθ), which is exactly OS2P (C) by the Theorem 6.4.5.

6.5 A Semi-decidability Result

In logic programming, looking for an answer of a given goal is a semi-decidable
problem: if the goal is satisfiable, then a refutation for such a goal can be found
in finite time; but if the goal is not satisfiable, then there are cases in which we
can go on forever without detecting such an unsatisfiability.

We will now show that a similar semi-decidability result holds also for SCLP
programs. More precisely, if the semantics of an SCLP goal is a semiring value
greater than (or greater than or equal to) a certain semiring value k, then we
can discover this in finite time.

The main idea, as in the logic programming case, is to visit the derivation
tree of the given goal in a breadth-first way. We recall that the derivation tree of
a goal is the tree whose root is the given goal, each node is a state in a derivation,
and each path from the root to a leaf represents a derivation for that goal. If we
visit this tree in a breadth-first way, it means that after k steps (that is, after
examining k levels) we have seen all refutations of length k or less, and the first
k steps of all derivations/refutations longer than k.

During this visit, we construct a sum of semiring values: starting from the 0
of the semiring at the root level, when we are at level k we add to the current
sum the sum of all the semiring values associated to all refutations of length k.
From the fact that the sum always leads to better values, as we go on we get
new values that are better than or equal to the old ones.

Now, the crucial point is that, given any semiring value representing a partial
sum, even though the values better than it are infinite (because a semiring can
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be infinite), the number of times that this value can be improved is finite. Thus,
after examining at most a finite number of refutations, we will have computed
the semiring value of the goal.

To formally prove this result, we will basically define an ordering among
partial sums, and we will show that such an ordering is well-founded. Any partial
sum will be represented by a suitable set of semiring values, obtained from the
refutations examined so far.

We first need to give some formal definitions.

Definition 6.5.1. (C-products) Let C = {ci}i=1,...,k be a finite set of ele-
ments of a semiring S. A (symbolic) product p =

∏
i=1,...,k c

ni
i is called a C-

product and its value in S is denoted by [[p]].

Informally, a C-product represents the semiring value obtained by a refuta-
tion. In fact, such a value is obtained by multiplying all the semiring values of
the various clauses used by the refutation. Such values belong to a specific set:
the set of all semiring values that appear in the given program, which we call C
here. The exponents in the product are needed because each semiring value in C
may be used several times during a refutation, and all these occurrences have to
be considered, since in general the multiplicative operation is not idempotent.

Definition 6.5.2. (partial order of C-products) We define a partial or-
dering � on C-products as

∏
i=1,...,k c

ni
i � ∏

i=1,...,k c
n′
i
i iff ni ≥ n′

i for all
i = 1, . . . , k.

Given two C-products p and p′, if p � p′ it means that all the semiring values
of C have more (or the same number of) occurrences in p than in p′. Thus, the
value of p is worse than that of p′ in the semiring: multiplying more items leads
to worse results, by the intensivity of ×. Formally: p � p′ implies [[p]] ≤S [[p′]].
Thus, we can say that p is “dominated” by p′.

Definition 6.5.3. (saturation of a set of C-products) Given a finite or
countably infinite set P of C-products, its saturation P is defined as P = {p |
∃p′ ∈ P.p � p′}.

By saturating a set of C-products P , we basically add to P all those other
C-products which are dominated by some element in P . Notice that [[P ]] = [[P ]],
where we extended the use of the semantic parenthesis [[]] from C-products to
sets of C-products: [[Q]] =

∑
p∈Q[[p]].

In our method to compute the semantics of a goal, every time we add an
element to the current partial sum, such an element is a C-product. If the se-
miring value of this element is dominated by another one already in the partial
sum, in reality the sum value does not change, because of the properties of the
+ operation: if a ≤S b then a+ b = b.

The main result of this section is that such a chain of partial sums has a
finite number of distinct elements, and that, thus, after such a finite number of
steps we have computed the semantics of a goal in an SCLP program. But before
stating this results we need a lemma.
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Lemma 6.5.1. (well-foundedness) Let PC be the set of all saturated (i.e.,
P = P ) sets of C-products. This set is well-founded under the inverse proper
inclusion relation ⊃, i.e. all the chains P0 ⊂ P1 ⊂ . . . of elements of PC are of
finite length.

Proof. We first consider only chains where Pj = Rj , with Rj finite. Also, without
loss of generality, we assume P0 = R0 = ∅ and Rj = Rj−1 ∪ {pj}, with of course
∀p ∈ Rj−1, pj �� p.

We prove the property by mathematical induction on the number k of con-
stants in C. If k = 1 the property is trivial, since Pj = {cn | n ≥ nj} for some
nj , and thus Pj ⊂ Pj+1 means nj > nj+1.

Let us now assume that the property holds for k − 1 and prove it for k. We
work by absurd, assuming that an infinite chain exists for k and constructing

an infinite chain also for k − 1. Let us now decompose pj as pj = p′j × c
njk
k , with

p′j =
∏
i=1,...,k−1 c

nji
i . Now, since we must have ph �� pj when j < h, we either

have p′h �� p′j or njk > nhk . We now use a colored graph method to help us in the
proof. The nodes of the graph are the indices of the chain, and we draw a red
arc from i to h in the latter case (that is, njk > nhk) or when both conditions
hold, a black arc otherwise. We now construct an infinite subsequence with no
red arcs, i.e. where p′h �� p′j for h > j.

Notice first that there is no infinite red path: in fact our graph is acyclic and
exponent njk cannot be indefinitely decreased. Now assume that we have already
examined a finite initial segment of the chain, and we have already constructed
a set of indexes I, initially empty. We assume inductively that there is no red
arc outgoing from the indexes in I to the indexes of the rest of the chain. To find
a new index to add to I, let us consider the first index of the rest of the chain.
If it has no outgoing red arc, we are done. Otherwise, we follow any outgoing
red arc, and we repeat the above procedure until an index without outgoing red
arcs is found. Since there is no infinite red path, the procedure must terminate.

Finally, it is easy to see that for every P in PC we have P = R, for some
finite R. In fact, let R = {p ∈ P | ∀p′ ∈ P.p �� p′}. If R were infinite (but
of course countable: R = {pj}j=1,2,...), the chain ∅ ⊂ {p1} ⊂ {p1, p2} ⊂ . . . ⊂
{pj | j ≤ h} ⊂ . . . would be infinite.

Theorem 6.5.1. (finite chains) Let P = {pj}j=1,2,... be a finite or count-
ably infinite set of C-products. Then there is a natural number N such that∑

j=1,...,N [[pj ]] =
∑

j=1,2,...[[pj ]].

Proof. The statement is trivial if P is finite. Thus, let us assume that P is
infinite. According to Lemma 6.5.1, the chain Q1 ⊆ Q2 ⊆ . . . ⊆ Qn ⊆ . . . with
Qh = {pj | j ≤ h}, is finite, i.e. there is a natural number N such that Qr = QN
for r ≥ N . Since [[Qh]] =

∑
j=1,...,h[[pj ]] by definition, this proves the theorem.

Summarizing, the formal developments of this section show that, by exam-
ining the refutations of a given SCLP goal while visiting the search tree in a
breadth-first way, the semantics of the goal can be computed in a finite number
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of steps (that is, after examining a finite number of refutations). This result, to-
gether with the property that + is the lub of the lattice, leads us to the following
semi-decidability statement:

It is semi-decidable to decide whether the semantics of a goal is in rela-
tion R with a certain semiring value k, where R ∈ {>,≥}.

In fact, if it is in such a relation, then the theorem of this section tells us that
after a finite number of steps we have computed such semantics. Thus, after a
smaller or equal number of steps the current partial sum will have value k or
more, at which point we can stop and say that the goal has a semantics in relation
R with k. If instead it is not in such a relation, then we do not have a method
to know this in finite time. If there were, however, a method to semi-decide
whether the semantics of a goal is in relation not(R) with a certain semiring
value k, where not(R) ∈ {<,=,≤, �≡}, with �≡ meaning “incompatible with”,
then by Post’s theorem (if a property and its complement are semi-decidable,
then the property is decidable) we would conclude that it is decidable to know
whether the semantics of a goal is equal to a certain semiring value k, which we
know is not true for the special case of logic programming.

6.6 SCLPs with no Functions

In the previous section we have proven that, if a goal of an SCLP program has
a semiring value greater than, or greater than or equal to, some k, then it is
possible to discover this in finite time. In this section we will show that, for the
special class of SCLP programs with no functions, we have the additional result
that once the program is fixed, the time for computing the value of any goal for
this program is finite and bounded by a constant (see Theorem 6.6.2 later in this
section). Thus, the semantics of SCLP programs without functions is decidable.

This result is based on the observation that, in SCLP programs without
functions, we just have to consider a finite subclass of refutations, called in the
following simple refutations, with a bounded length. After having considered all
these refutations up to that bounded length, we have finished computing the
semiring value of the given goal.

Notice that, while the absence of functions in SCLP programs is obviously a
restriction, the underlying semiring could, in general, contain an infinite number
of elements. Thus, this result is not so obvious as it may appear, since not all
source of infiniteness are taken away.

First we define an alternative representation for refutations, which is based
on trees.

Definition 6.6.1. (refutation tree) Given a refutation r as follows:

〈A, ε,1〉 Cl1,θ
′
1→ 〈C1, θ1,a1〉 Cl2,θ

′
2→ . . .

Cln,θ
′
n→ 〈�, θn, an〉

its refutation tree is a labeled tree where each node is labeled by a clause
instantiation of the form 〈Cli, σi〉, for i ∈ {1, . . . , n}, where σi = θ′i restricted
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onto the variables of the head of Cli. More precisely, starting from a single non-
labeled node, the entire tree can be built as follows:
for k:=1 to n do

Select the first non-labeled node (which is a leaf) in a depth-first visit of
the current tree, and label it with 〈Clk, σk〉.
If Clk is H : −B1, . . . , Bm, attach to this node m children.

end-for.

Definition 6.6.2. (simple refutation) Given a refutation tree, a path from
the root to a leaf is called simple if all its nodes have different labels up to variable
renaming. A refutation is a simple refutation if all paths from the root to a leaf
in its refutation tree are simple.

Thus, in a simple refutation it is not possible to use the same clause, instan-
tiated in the same way, more than once on atoms that depend on each other.

We will now show that, if we delete all non-simple refutations from S(P ), we
do not change the value computed by OS1P (C) for any C.

Theorem 6.6.1. (simple refutations only) Consider an SCLP program P
with no functions and its compact refutation set S(P ), and let us call S′(P ) the
subset of S(P ) containing all its simple refutations. Then, for any goal C, we
have that

∑
〈C,ε,a〉∈S′(P ) a = OS1P (C).

Proof. Given any non-simple refutation r1 for a goal, we can obtain a simple
refutation r2 for the same goal: just take the refutation tree of the non-simple
refutation and delete the part of the tree between any two nodes with the same
label up to variable renaming. It is easy to see that this new tree still represents
a refutation, and that such a refutation is simple.

Now we can notice that refutation r2 has fewer steps than r1, and all the
steps in r2 are present in r1. Therefore, by the extensivity of ×, the semiring
value computed by r2 is better than or equal to the one computed by r1.

Now, OS1P (C) sums all the semiring values computed by all refutations
in S(P ) that start from C and build ε. Therefore, considering what we have
said before, the sum of the semiring values associated with r1 and r2 gives the
semiring value of r2, that is, of the simple refutation. Thus, by “forgetting” all
non-simple refutations we do not change the result of the sum of all the semiring
values, which is exactly OS1P (C).

We will now prove that, given a goal C, there is only a finite number of simple
refutations starting from C and building the empty substitution.

Theorem 6.6.2. (finite set of simple refutations) Given an SCLP pro-
gram P with no functions and a goal C, consider the set SR(C) of simple refuta-
tions starting from C and building the empty substitution. Then SR(C) is finite.
Moreover, each refutation in SR(C) has length at most N , where N =

∑c
i=1 b

i,
c is the number of all clauses with head instantiated in all possible ways, and b
is the greatest number of atoms in the body of a clause in program P .
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Proof. Since a program contains a finite number of domain elements and of
clauses, the number of different labels in a path of a simple refutation tree is
finite. Thus the number of different refutation trees for simple refutations of C
is finite. Therefore SR(C) is finite.

Moreover, each simple refutation tree has the property that no two labels in
a path from the root to a leaf are the same. Since such labels are clauses plus
head instantiations, each path is as long as at most the number of all possible
clause head instantiations, say c. Furthermore, the branching factor of a simple
refutation tree depends on the number of atoms in the bodies of the clauses
used in the refutation. Thus, the number of nodes of a simple refutation tree,
and thus of steps in a simple refutation, is bounded by

∑c
i=1 b

i.

Therefore, computing OS1P (C) involves looking at a finite number of
bounded-length simple refutations. Thus, OS1P (C) can be computed in a fi-
nite number of steps.

Corollary 6.6.1. (finite number of steps for OS1P ) Given an SCLP pro-
gram P with no functions, consider a collection of atoms C. Then we have that
OS1P (C) can be computed in a finite number of steps.

Proof. The statement follows directly from the results of Theorem 6.6.1 (we
can forget about the non-simple refutations) and Theorem 6.6.2 (the number of
simple refutations is finite, and the length of each simple refutation is bounded
by a constant N). In fact, we can consider only those refutations with length at
most N , and among these we take only the simple refutations and we sum their
semiring values.

It is also easy to prove that OS2P (C) can be computed in a finite number of
steps as well. Moreover, the TP operator need to be applied only a finite number
of times before reaching the fixpoint and thus computing the fixpoint semantics,
as defined in Section 6.3.

6.7 An Operational Model for the SCLP Language Using
ASM

In this section we develop a simple interpreter for SCLP programs without func-
tions using the Gurevich’s Abstract State Machines (ASMs) (previously called
evolving algebras [118]). This formalism has been applied successfully to specify
real programming languages and architectures, to validate standard language
implementations, to verify real-time protocols, etc. (see annotated ASM bibliog-
raphy in [59]).

We specify an operational semantic model that directly reflects the intuitive
procedural understanding of SCLP programs, but is formulated at the level of
abstract search spaces. This combination of procedural and abstract features,
provides a tool for mathematical description and analysis of the design decisions
for the language, in a machine and proof system independent manner. Moreover,
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it lays the ground for provably correct stepwise refinement, through a hierarchy
of specifications at lower level, down to implementations. Therefore, the ASM
model we propose can be viewed as the first step versus a real implementation
of the language: according to the result presented in [15], that can be reached
through a sequence of (correctly) refined ASMs down to a model that can be
mechanically translated into an executable code.

The model also suggests a possible strategy to optimize the parallel compu-
tation of all possible solutions, formalizing useful techniques that allow to avoid
infinite and/or non optimal computations.

In Subsection 6.7.1 we briefly introduce the reader to the Gurevich’s Abstract
State Machine and then in Subsection 6.7.2 the operational semantics of the
language in terms of ASMs is given.

6.7.1 The Gurevich’s Abstract State Machine

We assume that the reader is familiar with the semantics of the Abstract State
Machine defined in [118], and we quote here only the essential definitions.

Given a program Prog (consisting of a finite number of transition rules) and
a (class of) initial state(s) S0, a Gurevich’s Abstract State Machine A models the
operational behavior of a real dynamic system S in terms of state transitions. A
state is a first-order structure representing the instantaneous configuration of S.

The basic form of a transition rule is the following function update
f(t1, . . . , tn) := t

where f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To
fire this rule to a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update
the function f to t on parameters t1, . . . , tn. This produces another state Si+1

which differs from Si only in the new interpretation of the function f .

There are some rule constructors.

– The conditional constructor which produces “guarded” transition rules of
the form:

if g then R1 else R2

where g is a ground term (the guard of the rule) and R1, R2 are transition
rules. To fire that new rule to a state Si, i ≥ 0, evaluate the guard; if it
is true, then execute R1, otherwise execute R2. The else part may be
omitted.

– The parallel constructor which produces the “parallel” synchronous rule of
form:

var x ranges over U
R(x)

where R(x) is a generalized basic transition rule with a variable x ranging
over the universe U .
The operational meaning of the constructor consists in the execution of the
new rule R(x) for every x ∈ U .
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We also make use of the following construct to let universes grow:
extend U by x1, . . . , xn with Updates endextend

where Updates may (and should) depend on the xi and are used to define certain
functions for (some of) the new objects xi of the resulting universe U .

State transitions of A may be influenced in two ways: internally, through
the rules of the program Prog, or externally through the modifications of the
environment. A non static function f that is not updated in any transition rule
is called oracle function if its values are given non-deterministically by an oracle.

A computation of S is modeled through a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states of A, where S0 is an initial state and each Sn+1

is obtained from Sn by firing simultaneously all of the rules of Prog to Sn.

6.7.2 The Abstract Operational Model of SCLP

Signature. This section explains the basic data types (domains and functions)
which are used in the transition rules of Section 6.7.2.

A SCLP computation can be seen as a parallel search for all solutions (final
goals) of an initially given query, to be found in a space structured as a tree.
Each query’s computation is represented by a branch of the tree and the breadth
search strategy is similar to the OR-Parallel model for Prolog.

The operational result of a computation is the (semiring) sum of the values of
all computed solutions; since some branches might lead to infinite computations
as well as to useless solutions (final goal whose semiring value a is worse than the
sum of the values associated with the already computed solutions), we introduce
some optimization techniques which allow to cut away all ’bad’ branches, thus
avoiding useless computations.

We represent the search space by a set NODE of nodes and the tree struc-
ture on NODE is formalized by a partial function parent : NODE → NODE
(undefined on root), to be dynamically updated through rules.

All possible SCLP computation states intuitively correspond to the levels of
the tree, therefore they are represented by the subset of NODE made up of all
active nodes (see below) at that state.

Each element n of NODE has to carry the relevant information for a complete
description – at this abstraction level – of the (sub)computation in the subtree
rooted at n. This information consists of the current goal G = 〈C, θ, a〉, where C
is the collection of atoms which still have to be computed, θ is the substitution
computed so far and a is the value of the semiring representing the cost (or level
of preference, certainty, probability, etc.) accumulated performing the previous
(part of the) computation.

Hence, we introduce the function
goal : NODE → GOAL

associating with each node the goal which has still to be computed.
GOAL is the set of SCLP goals, and it yields GOAL = AT∗ × SUB × A,

where AT denotes the universe of atoms, SUB denotes the set of substitutions,
A is the set of the semiring S =< A,+,×,0,1 >.
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GOAL comes with the following functions yielding the three components of
a goal:

listatom : GOAL → AT ∗

sub : GOAL → SUB
cost : GOAL→ A

SUB is a set of (not further specified) substitutions and comes together with
three abstract functions

mgu :TERM× TERM→SUB∪{undef}
associating with two terms either their most general unifier substitution or the
answer that there is not any; the substitution applying function

apply :TERM× SUB→TERM
yielding the result of applying the given substitution to a given term; substitution
concatenation

◦ :SUB×SUB→SUB
TERM is the set of generic SCLP terms (atoms or collections of atoms).

CLAUSE denotes the set of program statements and comes with auxiliary
functions yielding head and body of SCLP clauses

clhead :CLAUSE → AT
clbody :CLAUSE → GOAL

The current program is represented by a distinguished element db (database)
of a universe PROGRAM. The candidate clauses, which have to be considered
in a call to define the alternatives of a goal computation, are accessed using an
abstract function

procdef :AT×PROGRAM× N →CLAUSE∗

which yields the (renamed) clauses defining, in the given program, the predicate
having the same functor as the selected atom. N represents the set of natural
numbers and the following function yields the current renaming index

lev :NODE→N
This function is recursively defined as follows:

lev(n) =
{

0 if n = root
1 + lev(parent(n)) otherwise

We also allow the use of the functions head and tail on lists with obvious mean-
ing, and the function proj(i, L) to get the i-th element of a list L.

We use the abbreviation
act(n) ≡ head(listatom(goal(n)))

to select the current atom to compute at the level of the node n.
In order to control the computation of useless solutions, we define the subset

SUCCLEAF = {n ∈ NODE | goal(n) = 〈�, θ, a〉, θ ∈ SUB, a ∈ A} of NODE
containing all the leaf nodes of the search tree whose paths represent successful
computations already performed. We also introduce the global variable

estimate =
{∑

n∈SUCCLEAF cost(goal(n)) if SUCCLEAF �= ∅
0 otherwise
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which yields, at each state, the best semiring value among those associated to the
already computed solutions. If the value a of the current goal 〈C, θ, a〉 is worse
than estimate, this goal computation is not to be carried on. We also make use
of the predicate

admissible :A→ {true, false}
such that

admissible(c) =
{
true if estimate ≤S c
false otherwise

where ≤S is the partial order relation on the semiring S.
Since the SCLP terms do not contain any function symbol and the initial

queries consist of only ground atoms, all infinite computations can be found out
by looking for cycles; a cycle occurs along a branch when there are two nodes
containing the same goal (without considering variable renaming). This strategy
allow us to stop all infinite computations.

Therefore, we introduce the function
double :NODE→ {true, false}

which is true on a given n if there is an ancestor node of n having the same
sequence of atoms to compute. Formally speaking,

double(n) =

⎧⎨
⎩
true if ∃n′ ∈ ancestor(n) : comp(n′)=̇[comp(n)]θ,

for some renamed substitutionθ
false otherwise

where ancestor(n) yields the set of all nodes along the path from n
to the root, =̇ stands for the syntactical equality, and comp(n) ≡
apply(listatom(goal(n)), sub(goal(n))).

To be able to speak about termination we will distinguish between active
and non-active nodes by the function

active :NODE→ {true, false}

A node is born active and becomes non-active either after performing its own
computation step or if one of the following three cases occurs:

– computation failure: when the first atom of the current goal does not unify
with the head of the selected clause;

– the current goal will be a useless solution: when its semiring value is worse
than estimate;

– infinite computation: when the current node already occurs along its path.

To keep information of all computed solutions of the initial query, we define
the subset SOL = {g ∈ GOAL | g = 〈�, θ, a〉} of GOAL.

Transition Rules. We now define the rules by which the system, starting from
an initial state, tries to reach successful execution of the query Q (�= �) by
a given program P. The initial state satisfies the conditions: NODE = {root};
goal(root) = 〈Q, ε,1〉; active(root) = true; SUCCLEAF = ∅; SOL = ∅.

According to the operational semantic rule of a SCLP programs, the basic
computation step consists of splitting the current goal 〈(A,Cr), θ, a〉 associated
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with a node n, into m goals of the form 〈(Ci, Cr), θ ◦ θ′i ◦ θi, a × ai〉, where m
is the number of candidate clauses for A, Ai : −〈Ci, θi, ai〉, 1 ≤ i ≤ m, is the
i-th candidate clause for A and θ′i = mgu(Aθ,Aiθi). All the new m goals are
computed in parallel. We can imagine the tree representing the computational
space grows in breadth at each computation step performed by all the active
nodes.

If an active node n has an admissible semiring value (i.e.
admissible(cost(goal(n)) �= false), and does not belong to an infinite
branch (i.e. double(n) �= true) and its computation has not failed (i.e.
sub(goal(n)) �= undef), by the following Reduction Rule as many child nodes
of n are created as there are the candidate clauses for the activator act(n) of n;
and n becomes non-active. Otherwise the active node becomes non-active, as a
leaf of the tree, without performing any splitting and stopping the computation
along its path. In such a way all the “bad” branches are pruned. This strategy
allows one to avoid the computation of non optimal solutions and infinite
computations, thus optimizing the computation of the initial query.

Each child node is created active and receives as goal the result of the res-
olution between its parent goal and the relative selected candidate clause. This
resolution step is performed by the macro set goal(ti, n) according to the seman-
tic rule of the SCLP language.

Reduction Rule
var n ranges over NODE

If active(n)
then if sub(goal(n)) �= undef

∧ admissible(cost(goal(n)))
∧ ¬double(n)

then let l = length(procdef(act(n), db, lev(n)))
extend NODE by t1, t2, . . . , tl with

parent(ti):= n
active(ti):= true
set goal(ti, n)

endextend
active(n):= false

set goal(ti, n) ≡ let clause = proj(i, procdef(act(n), db, lev(n)))
goal(ti):= 〈 [listatom(clbody(clause)) | tail(listatom(goal(n))],

mgu(apply(act(n), sub(goal(n))),
apply(clhead(clause), sub(clbody(clause))),

cost(goal(n)) × cost(clbody(clause))〉

If the tree cannot grow any more, i.e. if all the nodes are not active, by
the following Collect Rule all the computed solutions of the initial query are
collected into the set SOL.
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Collect Rule
If ∀n ∈ NODE: ¬active(n)
then

SOL:=
⋃
n∈SUCCLEAF goal(n)

According to the OS function definition, we can compute the operational
meaning of the program P with initial query Q as OSP(Q) =

∑
g∈SOL cost(g).

6.8 Related Work

In [98] a bilattice structure is used to model the presence of a family of truth
values in logic programming, and a fixpoint semantics for this kind of programs
is given. In this approach, the meet and join operators of the bilattice are used as
extensions of classical and and or, while in our approach we use such operators
to model the universal and existential quantification, but we adopt a different
operator (the multiplicative operation of the semiring, possibly different from
the meet operator), to extend the logical and. The bilattice structure he uses,
allows one to always have a negation operator, which in general we do not have.
By having less properties for our structure, we can model also situations where
the multiplicative operator is not idempotent, like optimization and probabilistic
problems.

The approach taken in [95] associates a value to each clause. From such
values, taken from [0, 1], a value is also associated to each atom. Then, atoms
are combined by using the min and max operators. Thus, this kind of logic
programming is similar to what we have when using the fuzzy semiring. He
also gives a model-theoretic semantics, a fixpoint semantics, and an operational
semantics based on game theory.

A recent approach to multi-valued logic programming [148] uses bilattices
with two orderings to model both truth and knowledge levels. The resulting
logic programming semantics is just operational and fix-point, while no model-
theoretic semantics is presented. Moreover, the presence in our approach of just
one ordering (modeling truth levels) is not a restriction, since the vectorization
of several semirings is still a semiring (see Section 2.3.8) and thus optimization
based on multiple criteria can be cast in our framework as well.

From another point of view, where classical constraints are extended to have
several degrees of satisfaction, a related approach is HCLP (Hierarchical CLP)
[62], where each constraint has a level of importance (like strong, weak, required),
and these levels are used to decide which constraints to satisfy. A constraint,
however, can only be satisfied or not, and thus HCLP is a crisp formalism.
Moreover, their treatment is only algorithmic, and they do not provide their
language with a fix-point or a model-theoretic semantics.

The CLP(FD,S) System. Strictly related to the language described in
this chapter is the CLP(FD,S) implementation. The CLP(FD,S) language
was developed on top of the existing constraint language CLP(FD) [72]
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by the LOCO research group at INRIA-Roquencourt. At the URL
http://pauillac.inria.fr/~georget/clp fds.html there is the latest ver-
sion of this system, and in [111,112] there is a description of their implementa-
tion.

In this implementation, full semiring-based arc-consistency (as described in
Section 3.1) is used to keep the computation states compact and to check them
for inconsistencies. In general, each domain element, as well as each constraint
tuple, can be assigned a semiring value. They also provide, however, useful built-
ins that assign just two values to each arithmetic constraint: one to the tuples
which satisfy it, and the other one to those which do not satisfy it. In this
way, the modeling is easier and the computation faster, and in some cases it is
expressive enough.

Other plug-ins that we can mention are: arithmetic constraints, boolean con-
straints, meta constraints, optimization constraints, global constraints, predi-
cates for constraints retraction and some facilities to build new constraints.

The kernel of clp(FD,S), is called SFD and is generic with respect to the
semiring. Hence, the users are able to generate new languages (new solvers)
by specifying semirings, the rest of the implementation being unchanged. For
example, clp(FD,S) allows the computation of satisfaction and optimization
of: usual CSPs (clp(FD,Bool)), Fuzzy CSPs, hierarchical CSPs (clp(FD,Fuzzy)),
hypothetical CSPs (clp(FD,Sets)).

The language has been ported over Solaris, SunOS, GNU-Linux (i86) and
requires GNU C (gcc) version 2.4.5 or higher. Some performance statistics may
be found in [111].

6.9 Conclusions

In this chapter a programming framework to deal with soft constraints has been
introduced. We have described its syntax and we give several (equivalent) se-
mantics: the operational, the model-theoretic and the fix-point one. Moreover,
a generalization of the semidecidability result already known for logic programs
has been described and proven: we can decide if the semantics of an SCLP goal
has semiring value greater than k.

In this chapter a detailed semantics of the language has been given but no real
applications to specific problems are given. We will do this in the next chapter
where we will use this language to describe and solve shortest path problems.
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Shortest Path Problems

Overview

In recent years, an increasing number of researchers, from both the Oper-
ations Research (OR) and the Artificial Intelligence (AI) communities, have
investigated the possibility of integrating methodologies of the two fields in
order to obtain better results in solving combinatorial optimization problems.
In this chapter we show how the SCLP paradigm could be useful to merge
together AI and OR interests.

In fact, in this context constraint programming may be imposed as a suit-
able environment for performing such an integration, and the level of pref-
erence introduced can be used to discriminate between several solutions. In
particular, we study the relationship between Constraint Programming (CP)
and Shortest Path (SP) problems. More specifically, we show that classical,
multicriteria, partially ordered, and modality-based SP problems can be nat-
urally modeled and solved within the Soft Constraint Logic Programming
(SCLP) framework, where logic programming is coupled with soft constraints.
In this way we provide this large class of SP problems with a high-level and
declarative linguistic support whose semantics takes care of both finding the
cost of the shortest path(s) and also of actually finding the path(s). On the
other hand, some efficient algorithms for certain classes of SP problems can
be exploited to provide some classes of SCLP programs with an efficient way
to compute their semantics.

Shortest Path (SP) problems [75, 90] are among the most studied network
optimization problems. They are mainly used to represent and solve transporta-
tion problems, where the optimization may involve different criteria, for example
cost, time, resources, and so on. Most interesting is the multi-criteria case, where
the optimization involves a set of criteria to be all optimized [158].

In this chapter, we propose the Soft Constraint Logic Programming (SCLP)
framework [46,112] as a linguistic support and a high-level and flexible program-
ming environment in which to model SP problems naturally and solve them
efficiently.

Here we consider several versions of SP problems, from the classical one to
the multi-criteria case, from partially ordered SP problems to those that are
based on modalities, and we show how to model and solve them via SCLP
programs. The basic idea is that soft constraints allow to faithfully represent the
optimization criteria, and CLP provides a declarative way to describe the given
SP problem. Moreover, this way of modeling and solving SP problems allows to
associate with such problems both a declarative and an operational semantics.

The main results of the chapter are as follows:

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 171–189, 2004.
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– Both classical, multi-criteria, partially-ordered, and modality-based SP
problems are given a modelization as SCLP programs; such programs are
able to find both the cost of the shortest path(s) and also the shortest path
itself.

– A general methodology is provided to find a non-dominated path for both
multi-criteria and partially-ordered SP problems; this methodology is based
on a change of semiring, but does not require any change in the underlying
SCLP syntax and semantics.

– A new algorithm to obtain the semantics for a particular class of SCLP
programs is given, which is obtained by using a generalized version of the
Floyd-Warshall algorithm [99] for SP problems.

The chapter (based on the ideas developed in [48,51]) is organized as follows:
Section 7.1 shows the construction to pass from a classical SP problem to a
CLP program, while Section 7.2 considers multi-criteria and partially-ordered
SP problems, and Section 7.3 deals with modality-based SP problems. Finally,
Section 7.4 concludes the chapter by providing a class of SCLP programs with
an efficient algorithm to compute their semantics.

7.1 Classical SP Problems

A shortest path (SP) problem can be represented as a directed graphG = (N,E),
where each arc e ∈ E from node p to node q (p, q ∈ N) has associated with a
label representing the cost of the arc from p to q.

There are four versions of the problem: the single pair problem, the single
source problem, the single sink problem, and the all pair problem. The single
source and the single sink problems, however, are directional duals of each other,
the single pair problem at least partially solves the single source/sink problem,
and one way to solve the all pair problem is to solve n single source/sink prob-
lems. For these reasons, the single sink (source) is fundamental and we concen-
trate on it. Given a set S of nodes and any node v in S (the sink), a solution of
the problem consists of finding a path (or a set of paths) between any node of
S and v, whose cost is minimal.

Consider for example the SP problem represented in Figure 7.1: each arc has
associated with it a label representing the cost (in money, time, space, . . . ) of
that arc. In this example node v is the sink. Thus, given any node, we want to
find a path from this node to the sink v (if it exists) that minimizes the cost.

To represent the classical version of SP problems, we consider SCLP pro-
grams over the semiring S = 〈N,min,+,+∞, 0〉, which, as noted above, is an
appropriated framework to represent constraint problems where one wants to
minimize the sum of the costs of the solutions.

From any SP problem we can build an SCLP program as follows. For each
arc we have two clauses: one describes the arc and the other one its cost. More
precisely, the head of the first clause represents the starting node, and its body
contains both the final node and a predicate, say c, representing the cost of the
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Fig. 7.1. An SP problem

arc. Then, the second clause is a fact associating with predicate c its cost (which
is a semiring element). For example, if we consider the arc from p to q with cost
2, we have the clause
p :- cpq, q.
and the fact
cpq :- 2.
Finally, we must code that we want v to be the final node of the path. This is
done by adding a clause of the form v :- 0. Note also that any node can be
required to be the final one, not just those nodes without outgoing arcs (like
v is in this example). The whole program corresponding to the SP problem in
Figure 7.1 can be seen in Table 7.1.

To compute a solution of the SP problem it is enough to perform a query in
the SCLP framework; for example, if we want to compute the cost of the path
from r to v we have to perform the query :- r. For this query, we obtain the
value 6, that represents the cost of the best path(s) from r to v.

p :- cpq, q. cpq :- 2.
p :- cpr, r. cpr :- 3.
q :- cqs, s. cqs :- 3.
r :- crq, q. crq :- 7.
r :- crt, t. crt :- 1.
r :- cru, u. cru :- 3.
s :- csp, p. csp :- 1.
s :- csr, r. csr :- 2.
s :- csv, v. csv :- 2.
t :- cts, s. cts :- 3.
u :- cup, p. cup :- 3.
u :- cut, t. cut :- 2.
u :- cuv, v. cuv :- 3.
v :- 0.

Table 7.1. The SCLP program representing the SP problem in Figure 7.1.
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Notice that to represent classical SP problems in SCLP, we do not need any
variable. Thus the resulting program is propositional. This program, however,
while giving us the cost of the shortest paths, does not give us any information
about the arcs which form such paths. This information could be obtained by
providing each predicate with an argument, which represents the arc chosen at
each step.

Figure 7.2 shows the same SP problem of Figure 7.1 where the arcs outgoing
each node have been labeled with different labels to distinguish them. Such labels
can then be coded into the corresponding SCLP program to “remember” the arcs
traversed during the path corresponding to a solution. For example, clause
p :- cpq, q.
would be rewritten as
p(a) :- cpq, q(X).
Here, constant a represents one of the arcs going out of p: the one which goes
to q. If all clauses are rewritten similarly, then the answer to a goal like :-
r(X) will be both a semiring value (in our case 6) and a substitution for X .
This substitution will identify the first arc of a shortest path from r to v. For
example, if we have X = b, it means that the first arc is the one that goes from
r to t. To find a complete shortest path, we just need to compare the semiring
values associated with each instantiated goal, starting from r and following the
path. For example, in our case (of the goal ∃X.r(X)) we have that the answer
to the goal will be X = c with semiring value 6. Thus, we know that a shortest
path from r to v can start with the arc from r to u. To find the following arc of
this path, we compare the semiring values of u(a), u(b), and u(c). The result is
that u(c) has the smallest value, which is 3. Hence, the second arc of the shortest
path we are constructing is the one from u to v. The path is now finished because
we reached v, which is our sink.

Notice that a shortest path could be found even if variables are not allowed
in the program, but more work is needed. In fact, instead of comparing different
instantiations of a predicate, we need to compare the values associated with
the predicates that represent nodes reachable by alternative arcs starting from
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a certain node, and sum them to the cost of such arcs. For example, instead
of comparing the values of p(a) and p(b) (Figure 7.2), we have to compare the
values of q + 2 and of r + 3 (Figure 7.1).

A third alternative to compute a shortest path, and not only its cost, is to
use lists: by replacing each clause of the form
p :- cxy, q.
with the clause
p([a|T]) :- cxy, q(T).
during the computation we also build the list containing all arcs that constitute
the corresponding path. Thus, by giving the goal :- p(L)., we would get both
the cost of a shortest path and also the shortest path itself, represented by the
list L.

An alternative representation, probably more familiar for CLP-ers, of SP
problems in SCLP is one where there are facts of the form
c(p,q) :- 2.
...
c(u,v) :- 3.
to model the graph, and the two clauses
path(X,Y) :- c(X,Y).
path(X,Y) :- c(X,Z), path(Z,Y).
to model paths of length one or more. In this representation the goal :-
path(p,v). represents the cost of the shortest path from p to v. This repre-
sentation is obviously more compact than the one in Table 7.1, and has equiv-
alent results and properties. In this chapter, however, we will use the simpler
representation, used in Table 7.1, where all clauses have, at most, one predicate
in the body. The possibility of representing SP problems with SCLP programs
containing only such kind of clauses is important, since it will allow us to use
efficient algorithms to compute the semantics of such programs (see Section 7.4
for more details).

7.2 Partially-Ordered SP Problems

Sometimes, the costs of the arcs are not elements of a totally ordered set. A
typical example is obtained when we consider multi-criteria SP problems.

In this case the goal of the problem is to find a solution that is Pareto-optimal.
A solution is Pareto-optimal if by reallocation you cannot make someone better
off without making someone else worse off. In Pareto’s words [159]:

We will say that the members of a collectivity enjoy maximium ophe-
limity in a certain position when it is impossible to find a way of moving
from that position very slightly in such a manner that the ophelimity
enjoyed by each of the individuals of that collectivity increases or de-
creases. That is to say, any small displacement in departing from that
position necessarily has the effect of increasing the ophelimity which cer-
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tain individuals enjoy, and decreasing that which others enjoy, of being
agreeable to some, and disagreeable to others.

Perhaps the best description of Pareto-optimality is the underutilized one coined
by Maurice Allais [6]: an allocation is ”Pareto-optimal” if there is an ”absence
of distributable surplus”.

As an example of multi-criteria SP problem we can consider the situation
where an arc represents a piece of highway between two cities; in this case, we
can label each arc both with the cost and with the time needed to follow this
piece. The goal is to find the paths that have both the minimum overall cost
and the minimum overall time. In this example, there may be cases in which the
labels of two arcs are not compatible, like 〈$5, 20′〉 and 〈$7, 15′〉. In general, when
we have a partially ordered set of costs, it may be possible to have several paths,
all of which are not dominated by others, but which have different incomparable
costs.

Consider, for example, the multi-criteria SP problem shown in Figure 7.3:
each arc has associated with it a pair representing the weight of the arc in terms
of cost and time. Given any node, we want to find a path from this node to v (if
it exists) that minimizes both criteria.

We can translate this SP problem into the SCLP program in Table 7.2. This
program works over the semiring

〈N2,min’,+′, 〈+∞,+∞〉, 〈0, 0〉〉,

where min′ and +′ are classical min and +, suitably extended to pairs. In
practice, this semiring is obtained by putting together, via the Cartesian product,
two instances of the semiring 〈N,min,+,+∞, 0〉 (we recall that the Cartesian
product of two c-semirings is a c-semiring as well [47]). One of the instances
is used to deal with the cost criteria, the other one is for the time criteria. By
working on the combined semiring, we can deal with both criteria simultaneously:
the partial order will tell us when a pair 〈 cost, time 〉 is preferable to another
one, and also when they are not comparable.
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Fig. 7.3. A multi-criteria SP problem
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p :- cpq, q. cpq :- < 2,4 >.
p :- cpr, r. cpr :- < 3,1 >.
q :- cqs, s. cqs :- < 3,3 >.
r :- crq, q. crq :- < 7,3 >.
r :- crt, t. crt :- < 1,3 >.
r :- cru, u. cru :- < 3,4 >.
s :- csp, p. csp :- < 1,1 >.
s :- csr, r. csr :- < 2,2 >.
s :- csv, v. csv :- < 2,1 >.
t :- cts, s. cts :- < 3,2 >.
u :- cup, p. cup :- < 3,3 >.
u :- cut, t. cut :- < 2,1 >.
u :- cuv, v. cuv :- < 3,4 >.
v :- < 0,0 >.

Table 7.2. The SCLP program representing the multi-criteria SP problem in
Figure 7.3.

To give an idea of another practical application of partially ordered SP prob-
lems, just think of network routing problems where we need to optimize accord-
ing to the following criteria: minimize the time, minimize the cost, minimize the
number of arcs traversed, and maximize the bandwidth. The first three criteria
correspond to the same semiring, which is 〈N,min,+,+∞, 0〉, while the fourth
criteria can be characterized by the semiring 〈[0, U ],max,min, 0, U〉, where U is
the maximal bandwidth in an arc. In this example, we have to work on a semiring
that is obtained by vectorizing all these four semirings. Each of the semirings
is totally ordered but the resulting semiring, whose elements are four-tuples, is
partially ordered.

Notice that the only difference between the structure of the program in Table
7.2 and the one in the previous section is that here we have costs represented by
pairs of values, and, since we have a partial order, two such pairs may possibly
be incomparable. This may lead to a strange situation while computing the
semantics of a given goal. For example, if we want to compute the cost and time
of a best path from p to v, by giving the query :- p., the resulting answer in
this case is the value 〈7, 7〉. While the semiring value obtained in totally ordered
SCLP programs represented the cost of one of the shortest paths, here it is
possible that there are no paths with this cost: the obtained semiring value is
in fact in general the greatest lower bound of the costs of all the paths from
p to v. This behavior comes from the fact that, if different refutations for the
same goal have different semiring values, the SCLP framework combines them
via the + operator of the semiring (which, in the case of our example, is the min′

operator). If the semiring is partially ordered, it may be that a + b is different
from both a and b. On the contrary, if we have a total order a+b is always either
a or b.

This, of course, is not satisfactory, because usually one does not want to find
the greatest lower bound of the costs of all paths from the given node to the sink,
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but rather prefers to have one of the non-dominated paths. To solve this problem,
we can add variables to the SCLP program, as we did in the previous section,
and also change the semiring. In fact, we now need a semiring that allows us to
associate with each node the set of the costs of all non-dominated paths from
there to the sink. In other words, starting from the semiring S = 〈A,+,×, 0, 1〉
(which, we recall, in our case is 〈N2,min′,+′, 〈+∞,+∞〉, 〈0, 0〉〉), we now have
to work with the semiring PH(S) = 〈PH(A),&,×∗, ∅, A〉, where:

– PH(A) is the Hoare Power Domain [182] of A, that is, PH(A) = {S ⊆ A |
x ∈ S, y ≤S x implies y ∈ S}. In words, PH(A) is the set of all subsets of A
which are downward closed under the ordering ≤S. It is easy to show that
such sets are isomorphic to those containing just the non-dominated values.
Thus, in the following we will use this more compact representation for
efficiency purposes. In this compact representation, each element of PH(A)
will represent the costs of all non-dominated paths from a node to the sink;

– the top element of the semiring is the set A (its compact form is {1}, which
in our example is {〈0, 0〉});

– the bottom element is the empty set;
– the additive operation & is the formal union [182] that takes two sets and

obtains their union;
– the multiplicative operation ×∗ takes two sets and produces another set

obtained by multiplying (using the multiplicative operation × of the original
semiring, in our case +’) each element of the first set with each element of
the second one;

– the partial order of this semiring is as follows: a ≤PH(S) b iff a & b = b, that
is, for each element of a, there is an element in b which dominates it (in the
partial order ≤S of the original semiring).

From the theoretical results in [182], adapted to consider c-semirings, we can
prove that PH(S) and its more compact form are indeed isomorphic. Moreover,
we can also prove that given a c-semiring S, the structure PH(S) is a c-semiring
as well.

Theorem 7.2.1 (PH(S) is a c-semiring). Given a c-semiring S =
〈A,+,×, 0, 1〉, the structure PH(S) = 〈PH(A),&,×∗, ∅, A〉 obtained using the
Power domain of Hoare operator is a c-semiring.

Proof. It easily follows from the properties of the × operator in the c-semiring
S and from the properties (commutativity, associativity, and idempotency) of
the formal union & in PH(S).

Note that in this theorem we do not need any assumption over the c-semiring
S. Thus, the construction of PH(S) can be done for any c-semiring S. Notice also
that, if S is totally ordered, the c-semiring PH(S) does not give any additional
information w.r.t. S. In fact, if we consider together the empty set (with the
meaning that there are no paths) and the set containing only the bottom of
A (meaning that there exists a path whose cost is 0), it is possible to build an
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isomorphism between S and PH(S) by mapping each element p (a set) of PH(A)
onto the element a of A such that a ∈ p and a dominates all elements in the set
p.

The only change we need to make to the program with variables, in order
to work with this new semiring, is that costs now have to be represented as
singleton sets. For example, clause cpq :- < 2, 4 >. will become cpq :- {<
2, 4 >}..

Let us now see what happens in our example if we move to this new semi-
ring. First we give a goal like :- p(X).. As the answer, we get a set of pairs,
representing the costs of all non-dominated paths from p to v. All these costs
are non-comparable in the partial order, thus the user is requested to make a
choice. This choice, however, could identify a single cost or also a set of them.
In this second case, it means that the user does not want to commit to a single
path from the beginning and rather prefers to maintain some alternatives. The
choice of one cost of a specific non-dominated path will thus be delayed until
later. If instead the user wants to commit to one specific cost at the beginning,
say 〈c1, c2〉, he/she then proceeds to find a path that costs exactly 〈c1, c2〉. By
comparing the answers for all goals of the form p(a), where a represents one of
the arcs out of p, we can see which arc can start a path with cost 〈c1, c2〉. In fact,
such an arc will be labeled 〈c1a, c2a〉 and will lead to a node with an associated
set of costs 〈c3, c4〉 such that 〈c3, c4〉 ×〈c1a, c2a〉 = 〈c1, c2〉. Suppose it is the arc
from p to q, which has cost 〈7, 3〉. Now we do the same with goals of the form
q(a), to see which is the next arc to follow. We now, however, have to look for
the presence of a pair 〈c3, c4〉 such that 〈c3, c4〉 ×〈7, 3〉 = 〈c1, c2〉.

Notice that each time we look for the next arc, we choose just one alternative
and we disregard the others. If we used a fixpoint (or any bottom-up) semantics
to compute the answer of the initial goal :- p(X)., then all the other answers we
need for this method have already been computed, thus the method does not
require any additional computational effort to find a non-dominated path.

Notice also that the sets of costs associated with each node are non-
dominated. Thus, the size of these sets in the worst case is the size of the maximal
”horizontal slice” of the partial order: if we can have at most N non-dominated
elements in the partial order, then each of such sets will have size at most N . Of
course, in the worst case N could be the size of the whole semiring (when the
partial order is completely ”flat”).

Most classical methods to handle multi-criteria SP problems find the shortest
paths by considering each criteria separately, while our method deals with all
criteria at once. This allows us to obtain optimal solutions, which are not gen-
erated by looking at each single criteria. In fact, some optimal solutions could
be non-optimal in each of the single criteria, but still are incomparable in the
overall ordering. Thus, we offer the user a greater set of non-comparable opti-
mal solutions. For example, by using the time-cost multi-criteria scenario, the
optimal solution w.r.t. time could be 1 minute (with cost of 10 dollars), while
the optimal solution w.r.t. cost could be 1 dollar (with time of 10 minutes).
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By considering both criteria together, we could also obtain the solution with 2
minutes and 2 dollars!

Finally, this method is applicable not only to the multi-criteria case, but to
any partial order, giving us a general way to find a non-dominated path in a
partially-ordered SP problem. It is important to notice here the flexibility of the
semiring approach, which allows us to use the same syntax and computational
engine, but on a different semiring, to compute different objects.

7.3 Modality-Based SP Problems

Until now we have considered situations in which an arc is labeled by its cost,
be it one element or a tuple of elements as in the multi-criteria case. Sometimes,
however, it may be useful to also associate with each arc information about the
modality to be used to traverse the arc.

For example, interpreting arcs as links between cities, we may want to model
the fact that we can cover such an arc by car, or by train, or by plane. Another
example of a modality could be the time of the day in which we cover the arc,
like morning, afternoon, and night. In all these cases, the cost of an arc may
depend on its modality.

An important thing to notice is that a path could be made of arcs which
are not necessarily all covered with the same modality. For example, the path
between two cities can be made of arcs, some of which are covered in the morning
and others in the afternoon. Moreover, it can be that different arcs have different
sets of modalities. For example, from city A to city B we can use both the car or
the train, and from city B to city C we can only use the plane. Thus, modalities
cannot be simply treated by selecting a subset of arcs (all those with the same
modality).

An example of an SP problem with the three modalities representing car (c),
plane (p), and train (t) can be seen in Figure 7.4. Here the problem is to find
a shortest path from any node to v, and to know both its cost and also the
modalities of its arcs.

This SP problem with modalities can be modeled via the SCLP program in
Table 7.3. In this program, the variables represent the modalities.

If we ask the query :-p(c)., it means that we want to know the smallest
cost for a trip from p to v using the car. The result of this query in our example
is p(c) = 9 (using the path p− r − u− v).

Notice that the formulation shown in Figure 7.3 puts some possibly undesired
constraints on the shortest path to be found. In fact, by using the same variable
in all the predicates of a rule, we make sure that the same modality (in our case
the same transport mean) is used throughout the whole path. If instead we want
to allow different modalities in different arcs of the path, then we just need to
change the rules by putting a new variable on the last predicate of each rule.
For example, rule
p(X) :- cpq(X), q(X).
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Fig. 7.4. An SP problem with modalities

p(X) :- cpq(X), q(X). cpq(t) :- 2.
p(X) :- cpr(X), r(X). cpq(p) :- 3.
q(X) :- cqs(X), s(X). cpr(c) :- 3.
r(X) :- crq(X), q(X). cqs(p) :- 3.
r(X) :- crt(X), t(X). crq(c) :- 7.
r(X) :- cru(X), u(X). crt(t) :- 1.
s(X) :- csp(X), p(X). cru(c) :- 3.
s(X) :- csr(X), r(X). csp(c) :- 1.
s(X) :- csv(X), v(X). csp(t) :- 7.
t(X) :- cts(X), s(X). csr(t) :- 2.
u(X) :- cup(X), p(X). csv(t) :- 2.
u(X) :- cut(X), t(X). csv(c) :- 3.
u(X) :- cuv(X), v(X). cts(p) :- 3.
v(X) :- 0. cts(t) :- 3.

cup(c) :- 3.
cup(t) :- 1.
cut(t) :- 2.
cuv(t) :- 3.
cuv(c) :- 2.

Table 7.3. The SCLP program representing the SP problem with modalities.

would become
p(X) :- cpq(X), q(Y).
Now we can use a modality for the arc from p to q, and another one for the
next arc. In this new program, asking the query :-p(c). means that we want
to know the smallest cost for a trip from p to v using the car in the first arc.

The same methods used in the previous sections to find a shortest path,
or a non-dominated path in the case of a partial order, can be used in this
kind of SCLP programs as well. Thus, we can put additional variables in the
predicates to represent alternative arcs outgoing the corresponding nodes, and
we can shift to the semiring containing sets of costs to find a non-dominated
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path. In particular, a clause like
p(X) :- cpq(X), q(Y).
would be rewritten as
p(X,a) :- cpq(X), q(Y,Z).

7.4 An SP Algorithm for a Class of SCLP Programs

Summarizing what we did in the previous sections, we can say that the general
form of the SCLP programs we use to represent SP problems consists of several
clauses for each predicate pi, where each clause body has one constraint and
one other predicate pj , plus one special clause for the sink predicate (with a 0
in the body), plus the facts defining the costs of the arcs. Table 7.4 shows this
general form (only the clauses and without variables). It is important to notice
that these are not general SCLP programs, since there is always one predicate
symbol in each clause body (since the constraint can be replaced by its cost).
In the logic programming literature, these programs are called linear, because of
the restriction on the number of predicates in the bodies of the clauses.

Given any SCLP program of the form shown in Table 7.4, its semantics can
be obtained using classical methodologies (for the CLP literature). We now,
however, will show an additional method, based on a classical algorithm for SP
problems, suitably adapted to c-semirings, to obtain the same semantics. The
algorithm we will use is the one developed by Floyd and Warshall [99]. To put
the SCLP program into a shape that can be handled by this algorithm, we first
need to transform it into a system of linear equations, one for each predicate: the
left hand side of the equation is the chosen predicate, while the right hand side
is obtained by combining the bodies of all the clauses defining the predicates

p1 :- c12, p2.
...
p1 :- c1n, pn.
p2 :- c12, p1.
p2 :- c13, p3.
...
p2 :- c2n, pn.
...
pv :- 0.
...
pn :- cn1, p1.
...
pn :- cn,n−1, pn−1.

Table 7.4. The general form of an SCLP program representing an SP problem.
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via the + operator, and replacing the comma with the × operator in each body.
The result of this transformation, applied to the program of Table 7.4, can be
seen in Table 7.5.

From this system of equations we can now build a graph with a node i for
each predicate pi, and where the cost of the arc between nodes i and j is given
by predicate cij . In this way, this system of equations can be interpreted also
as the matrix showing, for each pair of nodes, the cost of the arc (if it exists)
between such nodes. In fact, each column (and row) can be associated with one
node.

Given this matrix, the algorithm works by selecting each triple of nodes, say
i, j and k, and performing the following assignment: cij := cij + (cik × ckj),
where the + and × operators in this assignment refer to the operations of the
chosen semiring.

The triples are chosen by first selecting a value for index k (which is the
intermediate node in the two-step path), and then varying the indices i and j in
all possible ways (to consider all two-step paths from i to j). After considering
all values for k, that is, after n3 steps, the value of the element in row i and
column v represents the cost of the shortest path from node i to v. In terms of
SCLP semantics, this is the semantics of predicate pi.

This method to obtain the semantics of an SCLP program of the form in Ta-
ble 7.4 can be used independently of the semiring underlying the given program.
In fact, as noted above, the version we use of the original Floyd-Warshall algo-
rithm does not depend on the meaning of the + and × operators. In particular,
it can also be used for partially ordered semirings. If the semiring we consider
is totally ordered, however, we can also use any other classical algorithm for
solving SP problems.

7.5 Best-Tree Search in and-or Graphs

In this section we extend our reasoning to Best-Tree Search over AND − OR
graphs. The main idea underlying this extension concerns the use of non-linear

p1 = c12 × p2 + . . . + c1n × pn

p2 = c21 × p1 + c23 × p3 + . . . + c2n × pn

...
pv = 0
...
pn = cn1 × pn + . . . + cnn−1 × pn−1

Table 7.5. The system of equations corresponding to the SCLP program form
of Table 7.4.
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clauses in SCLP, that is, clauses which have more than one atom in their body.
In fact, in this way we can represent trees instead of paths.

7.5.1 and-or Graphs and Best Solution Trees

An and-or graph is defined essentially as a hypergraph. Namely, instead of
arcs connecting pairs of nodes there are hyperarcs connecting n-tuple of nodes
(n = 1, 2, 3, . . .). Hyperarcs are called connectors and they must be considered
as directed from their first node to all others. Formally an and-or graph is a
pair G = (N,C), where N is a set of nodes and C is a set of connectors

C ⊆ N ×
k⋃
i=1

N i.

Each k-connector (ni0 , ni1 , . . . , nik) is an ordered (k + 1)-tuple, where ni0 is
the input node and ni1 , . . . , nik are the output nodes. We say that ni0 is the
predecessor of ni1 , . . . , nik and these nodes are the successors of ni0 . Note that
when C ⊆ N2 we have a usual graph whose arcs are the 1-connectors. Note that
there are also 0-connectors, i.e., connectors with one input and no output node.

In Figure 7.5 we give an example of an and-or graph. The nodes are
n0, . . . , n8. The 0-connectors are represented as a line ending with a square,
whereas k-connectors (k ≥ 0) are represented as k directed lines connected
together. For instance, (n0, n1) and (n0, n5, n4) are the 1-connector and 2-
connector, respectively, with input node n0.

An and tree is a special case of an and-or graph, where every node appears
exactly twice in the set of connectors C, once as an input node of some connector,

n 7

n 6

n 5

n 4

n 2

n 0

n 1

n 8

n 3

Fig. 7.5. An example of an and-or graph
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and once as an output node of some other connector. The only exception is a
node called root which appears only once, as an input node of some connector.
The leaves of an and tree are those nodes which are input nodes of a 0-connector.
An example of an and tree is given in Figure 7.6. Here n′

7, n
′
8, n

′′
7 and n′′

8 are
leaves.

Given an and-or graph G, an and tree H is a solution tree of G with start
node n0, if there is a function g mapping nodes of H into nodes of G such that:

– the root of H is mapped in n0; and
– if (ni0 , ni1 , . . . , nik) is a connector of H , then (g(ni0), g(ni1), . . . , g(nik)) is a

connector of G.

Informally, a solution tree of an and-or graph is analogous to a path of an
ordinary graph. It can be obtained by selecting exactly one outgoing connector
for each node. For instance, the and tree in Figure 7.6 is a solution tree of the
graph in Figure 7.5 with start node n0, if we let g(n′

0) = n0, g(n′
5) = n5, g(n′

7) =
n7, g(n′

8) = n8, g(n′
4) = n4, g(n′′

5) = n5, g(n′′
6) = n6, g(n′′

7 ) = n7, g(n′′
8) = n8.

Note that distinct nodes of the tree can be mapped into the same node of the
graph.

A functionally weighted and-or graph is an and-or graph with a k-adic
function over the reals (cost function) associated with each k-connector. In par-
ticular, a constant is associated with each 0-connector. It is easy to see that if
the functionally weighted graph is an and tree H , a cost can be given to it, just

n’0

n’4

n"5

n’6

n"8n"7

n’8

n’5

n’7

Fig. 7.6. An example of an and tree
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evaluating the functions associated with the connectors. Recursively, to every
subtree of H with root in node ni0 a cost ci0 is given as follows:

– If ni0 is a leaf, then its cost is the associated constant.
– If ni0 is the input node of a connector (ni0 , ni1 , . . . , nik), then its cost is ci0 =
fr(ci1 , . . . , cik) where fr is the function cost associated with the connector,
and ci1 , . . . , cik are the costs of the subtrees rooted at nodes ni1 , . . . , nik .

The general optimization problem can be stated as follows: given a function-
ally weighted and-or graph, find a minimal cost solution tree with start node
n0. In general, the function used to assign a value to the input node ni0 of a
k-connector (ni0 , ni1 , . . . , nik) is of the form fr(ci1 , . . . , cik) = ar + ci1 + . . .+ cik
where ar is a constant associated to the connector and ci1 , . . . , cik are the costs
of the subtrees rooted at nodes ni1 , . . . , nik .

In the following we will show that this cost function is only an instantiation
of a more general one based on the notion of c-semiring.

7.5.2 and-or Graphs Using SCLP

In this section we will show how to represent an and-or graph as an SCLP
program over a specific c-semiring. As soon as we have described the and-or
graph as an SCLP program, the problem of finding the best tree in the graph
rooted at ni becomes the problem of finding the best refutation for the goal ni,
and this is exactly what the semantic of the SCLP language does.

To represent the classical problem where the meaning of best tree is the tree
whose sum of the costs of its connectors is minimum, we consider an SCLP
program over the semiring S = 〈N,min,+,+∞, 0〉, which, as noted above, is an
appropriated framework to represent constraint problems where one wants to
minimize the sum of the costs of the solutions.

Consider for example the and-or graph problem represented in Figure 7.7:
each connector (ni1 , . . . , nik) has associated a label fi1,...,ik representing its cost.

From this and-or graph problem we can build an SCLP program as fol-
lows. For each connector we have two clauses: one describes the connector and
the other one its cost. More precisely, the head of the first clause represents
the starting node ni0 , and its body contains both the final nodes and a predi-
cate, say fi0,...,ik , representing the cost of the connector from node ni0 to nodes
ni1 , . . . , nik . Then, the second clause is a fact associating to predicate fi0,...,ik its
cost (which is a semiring element).

For example, if we consider the connector (n0, n1, n2, n3) with label f0 in
Figure 7.8, this can be represented by the two clauses

n0 :- f0, n1, n2, n3.
f0 :- c0.

The whole program corresponding to the and-or graph problem in Figure
7.7 can be seen in Table 7.5.2.

To solve the and-or graph problem it is enough to perform a query in
the SCLP framework; for example, if we want to compute the cost of the best
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Fig. 7.7. A weighted and-or graph problem
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Fig. 7.8. A typical connector

tree rooted at n2 we have to perform the query n2. The operational semantics
machinery finds all trees (modulo some cuts due to heuristics) and then combines
all the solutions via the additive operation of the semiring, which in this case is
min. For this query, we obtain the value 17 that represents the cost of the best
tree rooted at n2.

Notice that to represent classical best tree problems in SCLP, we do not
need any variable. Thus the resulting program is propositional. However, this
program, while giving us the cost of the best tree, does not give us any infor-
mation about the connectors which form such a tree. This information could
be obtained by providing each predicate with an argument which represents

figure/and-or-weighted.eps
figure/connector.eps
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n0 :- f0,5,4,n5, n4. f0,5,4 :- 2.
n0 :- f0,1,n1. f0,1 :- 3.
n1 :- f1,2,n2. f1,2 :- 3.
n1 :- f1,3,n3. f1,3 :- 7.
n2 :- f2,3,n3. f2,3 :- 1.
n2 :- f2,5,4,n5,n4. f2,5,4 :- 3.
n3 :- f3,6,5,n6,N5. f3,6,5 :- 1.
n4 :- f4,5,n5. f4,5 :- 2.
n4 :- f4,8,n8. f4,8 :- 2.
n5 :- f5,6,n6. f5,6 :- 3.
n5 :- f5,7,8,n7,n8. f5,7,8 :- 2.
n6 :- f6,7,8,n7,n8. f6,7,8 :- 3.
n7 :- 4. n8 :- 3.

Table 7.6. The SCLP program representing the and-or graph problem in
Figure 7.7.

the connector chosen at each step, as we did for shortest path problems in the
previous section.

The best tree for the program in Table 7.5.2, with sum of costs 17 as given
by the semantics of the program, is represented in Figure 7.9.

In the examples given so far, we were interested in finding the tree with
the minimum cost. Thus, the constant associated to each connector, that is,
its cost, is in ( and the costs of the subtrees rooted at the sons of a certain
node are combined together using the + operator. More generally, the operation
used to combine the value of the subtrees can be mapped over the c-semiring
structure. More precisely, to describe the operation of combination we will use
the × operator of the semiring; the additive operator will be useful instead to
compare different trees, since the partial order ≤S is induced by + operation of
the semiring.

Notice that we can apply to best tree search all the extensions already defined
in the previous sections for shortest paths. This means that we can use also a

n 5

n’7 n’8
n 8

n 2

n 4

34

2

3

2

3

Fig. 7.9. The best tree corresponding to the program in Table 7.5.2
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partially ordered set for the levels of preference of the connectors. This can be
useful for multi-criteria best tree problems or for general partially ordered best
tree problems. We can also use several classes of connectors and then search for
a best tree where the connectors are all in the same class, or also of different
classes (modality-based best tree problems).

7.6 Conclusions

In this chapter the shortest path problem taken from the operational research
field has been considered and translated in a declarative fashion using the SCLP
framework. This, on the one hand, enriches a class of SCLP programs with a
semantics given using an ”algorithm”, and on the other hand gives a resolu-
tion methodology to the shortest path problems, based upon the semantics of a
declarative language.

Moreover, the encoding of the shortest path in a soft constraint framework
also provides for the possibility to apply all the methodologies of partial solving
described in the previous chapters (that is abstraction, partial local consistency,
and so on) when performing the constraint consistency steps of the resolution
process.



8. Soft Concurrent Constraint Programming

Overview

Soft constraints extend classical constraints to represent multiple consis-
tency levels, and thus provide a way to express preferences, fuzziness, and
uncertainty. While there are many soft constraint solving formalisms, even
distributed ones, by now there seems to be no concurrent programming frame-
work where soft constraints can be handled. In this chapter we show how the
classical concurrent constraint (cc) programming framework can work with
soft constraints, and we also propose an extension of cc languages which can
use soft constraints to prune and direct the search for a solution. We believe
that this new programming paradigm, called soft cc (scc), can be also very use-
ful in many web-related scenarios. In fact, the language level allows web agents
to express their interaction and negotiation protocols, and also to post their
requests in terms of preferences, and the underlying soft constraint solver can
find an agreement among the agents even if their requests are incompatible.

The concurrent constraint (cc) paradigm [171] is a very interesting compu-
tational framework which merges together constraint solving and concurrency.
The main idea is to choose a constraint system and use constraints to model
communication and synchronization among concurrent agents.

Until now, constraints in cc were crisp, in the sense that they could only be
satisfied or violated.

We think that many network-related problem could be represented and solved
by using soft constraints. Moreover, the possibility to use a concurrent language
on top of a soft constraint system, could lead to the birth of new protocols with
an embedded constraint satisfaction and optimization framework.

In particular, the constraints could be related to a quantity to be mini-
mized/maximized but they could also satisfy policy requirements given for per-
formance or administrative reasons. This leads to change the idea of QoS in
routing and to speak of constraint-based routing [13,63,71,128]. Constraints are
in fact able to represent in a declarative fashion the needs and the requirements
of agents interacting over the web.

The features of soft constraints could also be useful in representing routing
problems where an imprecise state information is given [66]. Moreover, since QoS
is only a specific application of a more general notion of Service Level Agree-
ment (SLA), many applications could be enhanced by using such a framework.
As an example consider E-commerce: here we are always looking for establish-
ing an agreement between a merchant, a client and possibly a bank. Also, all
auction-based transactions need an agreement protocol. Moreover, also security

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 191–212, 2004.
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protocol [18,20] and integrity policy analysis [40,41] have shown to be enhanced
by using security levels instead of a simple notion of secure/insecure level . All
these considerations advocate for the need of a soft constraint framework where
optimal answers are extracted.

In this chapter, we first compare the semiring-based framework with con-
straint systems “a la Saraswat” and then we show how use it inside the cc
framework. More precisely, we describe how to use soft constraints instead of
classical ones within the original cc framework. In this scenario, the only addi-
tion to classical cc is the use of a function which transforms preference levels
into a yees/no information of consistency.

The next step is the extension of the syntax and operational semantics of the
language to deal with the semiring levels. Here, the main novelty with respect
to cc is that tell and ask agents are equipped with a preference (or consistency)
threshold which is used to determine their success, failure, or suspension, as well
as to prune the search.

After a short summary of concurrent constraint programming (§8.1) we show
how the concurrent constraint framework can be used to handle also soft con-
straints (§8.2). Then we integrate semirings inside the syntax of the language
and we change its semantics to deal with soft levels (§8.3). Some notions of ob-
servables able to deal with a notion of optimization and with success (§8.5.1)
and fail (§8.5.2) computations are then defined. Some examples (§8.4) and an
application scenario (§8.6) conclude our presentation showing the expressivity
of the new language. Finally, conclusions (§8.7) are added to point out the main
results and possible directions for future research.

8.1 Concurrent Constraint Programming

The concurrent constraint (cc) programming paradigm [171] concerns the be-
haviour of a set of concurrent agents with a shared store, which is a conjunc-
tion of constraints. Each computation step possibly adds new constraints to the
store. Thus information is monotonically added to the store until all agents have
evolved. The final store is a refinement of the initial one and it is the result of
the computation. The concurrent agents do not communicate directly with each
other, but only through the shared store, by either checking if it entails a given
constraint (ask operation) or adding a new constraint to it (tell operation).

Constraint Systems. A constraint is a relation among a specified set of vari-
ables. That is, a constraint gives some information on the set of possible values
that these variables may assume. Such information is usually not complete since
a constraint may be satisfied by several assignments of values of the variables
(in contrast to the situation that we have when we consider a valuation, which
tells us the only possible assignment for a variable). Therefore it is natural to
describe constraint systems as systems of partial information [171].

The basic ingredients of a constraint system (defined following the informa-
tion systems idea [177]) are a set D of primitive constraints or tokens, each
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expressing some partial information, and an entailment relation ) defined on
℘(D)×D (or its extension defined on ℘(D)×℘(D))1 where ℘(D) is the power-
set of D. The entailment relation satisfies:

– u ) P for all P ∈ u (reflexivity) and
– if u ) v and v ) z, then u ) z for all u, v, z ∈ ℘(D) (transitivity).

We also define u ≈ v if u ) v and v ) u.
As an example of entailment relation, consider D as the set of equations over

the integers; then ) could include the pair 〈{x = 3, x = y}, y = 3〉, which means
that the constraint y = 3 is entailed by the constraints x = 3 and x = y. Given
X ∈ ℘(D), let X be the set X closed under entailment. Then, a constraint in
an information system 〈℘(D),)〉 is simply an element of ℘(D).

As it is well known [172], 〈℘(D),⊆〉 is a complete algebraic lattice, the
compactness of ) gives the algebraic structure for ℘(D), with least element
true = {P | ∅ ) P}, greatest element D (which we will mnemonically denote
false), glbs (denoted by +) given by the closure of the intersection and lubs
(denoted by ,) given by the closure of the union. The lub of chains is, however,
just the union of the members in the chain. We use a, b, c, d and e to stand for
elements of ℘(D); c ⊇ d means c ) d.
The Hiding Operator: Cylindric Algebras. In order to treat the hiding
operator of the language (see Definition 8.2.7), a general notion of existential
quantifier for variables in constraints is introduced, which is formalized in terms
of cylindric algebras. This leads to the concept of cylindric constraint system over
an infinite set of variables V such that for each variable x ∈ V , ∃x : ℘(D) → ℘(D)
is an operation satisfying:

1. u ) ∃xu;
2. u ) v implies (∃xu) ) (∃xv);
3. ∃x(u , ∃xv) ≈ (∃xu) , (∃xv);
4. ∃x∃yu ≈ ∃y∃xu.

Procedure Calls. In order to model parameter passing, diagonal elements are
added to the primitive constraints. We assume that, for x, y ranging in V , ℘(D)
contains a constraint dxy. If ) models the equality theory, then the elements dxy
can be thought of as the formulas x = y. Such a constraint satisfies the following
axioms:

1. dxx = true,
2. if z �= x, y then dxy = ∃z(dxz , dzy),
3. if x �= y then dxy , ∃x(c , dxy) ) c.

Note that the in the previous definition we assume the cardinality of the domain
for x, y and z greater than 1 (otherwise, axioms 2 and 3 would not make sense).

1 The extension is s.t. u � v iff u � P for every P ∈ v.



194 8. Soft Concurrent Constraint Programming

The language. The syntax of a cc program is show in Table 8.1: P is the class
of programs, F is the class of sequences of procedure declarations (or clauses),
A is the class of agents, c ranges over constraints, and x is a tuple of variables.
Each procedure is defined (at most) once, thus nondeterminism is expressed via
the + combinator only. We also assume that, in p(x) :: A, we have vars(A) ⊆ x,
where vars(A) is the set of all variables occurring free in agent A. In a program
P = F.A, A is the initial agent, to be executed in the context of the set of
declarations F . This corresponds to the language considered in [171], which
allows only guarded nondeterminism.

In order to better understand the extension of the language that we will
introduce later, let us remind here the operational semantics of the agents.

– agent “success” succeeds in one step,
– agent “fail” fails in one step,
– agent “ask(c) → A” checks whether constraint c is entailed by the current

store and then, if so, behaves like agent A. If c is inconsistent with the
current store, it fails, and otherwise it suspends, until c is either entailed by
the current store or is inconsistent with it;

– agent “ask(c1) → A1 + ask(c2) → A2” may behave either like A1 or like A2

if both c1 and c2 are entailed by the current store, it behaves like Ai if ci
only is entailed, it suspends if both c1 and c2 are consistent with but not
entailed by the current store, and it behaves like “ask(c1) → A1” whenever
“ask(c2) → A2” fails (and vice versa);

– agent “tell(c) → A” adds constraint c to the current store and then, if the
resulting store is consistent, behaves like A, otherwise it fails.

– agent A1‖A2 behaves like A1 and A2 executing in parallel;
– agent ∃xA behaves like agent A, except that the variables in x are local to
A;

– p(x) is a call of procedure p.

A formal treatment of the cc semantics can be found in [58, 171]. Also, a deno-
tational semantics of deterministic cc programs, based on closure operators, can
be found in [171]. A more complete survey on several concurrent paradigms is
given also in [81].

P ::= F.A

F ::= p(x) :: A | F.F

A ::= success | fail | tell(c)→ A | E | A‖A | ∃xA | p(x)

E ::= ask(c)→ A | E + E

Table 8.1. cc syntax
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8.2 Concurrent Constraint Programming over Soft
Constraints

Given a semiring S = 〈A,+,×,0,1〉 and an ordered set of variables V over a
domain D, we will now show how soft constraints over S with a suitable pair
of operators form a semiring, and then, we highlight the properties needed to
map soft constraints over constraint systems “a la Saraswat” (as recalled in
Section 8.1).

We start by giving the definition of the carrier set of the semiring.

Definition 8.2.1 (functional constraints). We define C = (V → D) → A

as the set of all possible constraints that can be built starting from S =
〈A,+,×,0,1〉, D and V .

A generic function describing the assignment of domain elements to variables
will be denoted in the following by η : V → D. Thus a constraint is a function
which, given an assignment η of the variables, returns a value of the semiring.

Note that in this functional formulation, each constraint is a function and
not a pair representing the variable involved and its definition. Such a function
involves all the variables in V , but it depends on the assignment of only a
finite subset of them. We call this subset the support of the constraint. For
computational reasons we require each support to be finite.

Definition 8.2.2 (constraint support). Consider a constraint c ∈ C. We
define his support as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] �= cη[v := d2]},
where

η[v := d]v′ =

{
d if v = v′,
ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [ ] has precedence over application).

Definition 8.2.3 (functional mapping). Given any soft constraint
〈def, {v1, . . . , vn}〉 ∈ C, we can define its corresponding function c ∈ C

s.t. cη[v1 := d1] . . . [vn := dn] = def(d1, . . . , dn). Clearly supp(c) ⊆ {v1, . . . , vn}.
Definition 8.2.4 (Combination and Sum). Given the set C, we can define
the combination and sum functions ⊗,⊕ : C × C → C as follows:

(c1 ⊗ c2)η = c1η ×S c2η and (c1 ⊕ c2)η = c1η +S c2η.

Notice that function ⊗ has the same meaning of the already defined ⊗ operator
(see Section 2.2) while function ⊕ models a sort of disjunction.

By using the ⊕S operator we can easily extend the partial order ≤S over C

by defining c1 �S c2 ⇐⇒ c1 ⊕S c2 = c2. In the following, when the semiring
will be clear from the context, we will use �.

We can also define a unary operator that will be useful to represent the unit
elements of the two operations ⊕ and ⊗. To do that, we need the definition of
constant functions over a given set of variables.
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Definition 8.2.5 (constant function). We define function ā as the function
that returns the semiring value a for all assignments η, that is, āη = a. We will
usually write ā simply as a.

An example of constants that will be useful later are 0̄ and 1̄ that represent
respectively the constraint associating 0 and 1 to all the assignment of domain
values.

It is easy to verify that each constant has an empty support. More generally
we can prove the following:

Proposition 8.2.1. The support of a constraint c ⇓I is always a subset of I(that
is supp(c ⇓I) ⊆ I).

Proof. By definition of ⇓I , for any variable x �∈ I we have c ⇓I η[x = a] = c ⇓I
η[x = b] for any a and b. So, by definition of support x �∈ supp(c ⇓I).
Theorem 8.2.1 (Higher order semiring). The structure SC = 〈C,⊕,⊗,0,1〉
where

– C : (V → D) → A is the set of all the possible constraints that can be built
starting from S, D and V as defined in Definition 8.2.1,

– ⊗ and ⊕ are the functions defined in Definition 8.2.4, and
– 0 and 1 are constant functions defined following Definition 8.2.5,

is a c-semiring.

Proof. To prove the theorem it is enough to check all the properties with the
fact that the same properties hold for semiring S. We give here only a hint, by
showing the commutativity of the ⊗ operator:
c1 ⊗ c2η = (by definition of ⊗)
c1η × c2η = (by commutativity of ×)
c2η × c1η = (by definition of ⊗)
c2 ⊗ c1η.
All the other properties can be proved similarly.

The next step is to look for a notion of token and of entailment relation. We
define as tokens the functional constraints in C and we introduce a relation )
that is an entailment relation when the multiplicative operator of the semiring
is idempotent.

Definition 8.2.6 () relation). Consider the higher order semiring carrier set
C and the partial order �. We define the relation )⊆ ℘(C) × C s.t. for each
C ∈ ℘(C) and c ∈ C, we have C ) c ⇐⇒ ⊗

C � c.

The next theorem shows that, when the multiplicative operator of the se-
miring is idempotent, the ) relation satisfies all the properties needed by an
entailment.

Theorem 8.2.2 (), with idempotent ×, is an entailment relation). Con-
sider the higher order semiring carrier set C and the partial order �. Consider
also the relation ) of Definition 8.2.6. Then, if the multiplicative operation of
the semiring is idempotent, ) is an entailment relation.
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Proof. Is enough to check that for any c ∈ C, and for any C1, C2 and C3 subsets
of C we have

1. C ) c when c ∈ C: We need to show that
⊗
C � c when c ∈ C. This follows

from the intensivity of ×.
2. if C1 ) C2 and C2 ) C3 then C1 ) C3: To prove this we use the extended

version of the relation ) able to deal with subsets of C : ℘(C) × ℘(C) s.t.
C1 ) C2 ⇐⇒ C1 ) ⊗

C2. Note that when × is idempotent we have that,
∀c2 ∈ C2, C1 ) c2 ⇐⇒ C1 ) ⊗

C2. In this case to prove the item we have
to prove that if

⊗
C1 � ⊗

C2 and
⊗
C2 � ⊗

C3, then
⊗
C1 � ⊗

C3. This
comes from the transitivity of �.

Note that in this setting the notion of token (constraint) and of set of tokens
(set of constraints) closed under entailment is used indifferently. In fact, given a
set of constraint functions C1, its closure w.r.t. entailment is a set C̄1 that con-
tains all the constraints greater than

⊗
C1. This set is univocally representable

by the constraint function
⊗
C1.

The definition of the entailment operator ) on top of the higher order
semiring SC = 〈C,⊕,⊗,0,1〉 and of the � relation leads to the notion of soft
constraint system. It is also important to notice that in [171] it is claimed that
a constraint system is a complete algebraic lattice. Here we do not ask for this,
since the algebraic nature of the structure C strictly depends on the properties
of the semiring.

If the constraint system is defined on top of a non-idempotent multiplicative
operator, we cannot obtain a ) relation satisfying all the properties of an entail-
ment. Nevertheless, we can give a denotational semantics to the constraint store,
as described in Section 8.3, using the operations of the higher order semiring.

To treat the hiding operator of the language, a general notion of existential
quantifier has to be introduced by using notions similar to those used in cylindric
algebras. Note however that cylindric algebras are first of all boolean algebras.
This could be possible in our framework only when the × operator is idempotent.

Definition 8.2.7 (hiding). Consider a set of variables V with domain D and
the corresponding soft constraint system C. We define for each x ∈ V the hiding
function (∃xc)η =

∑
di∈D cη[x := di].

To make the hiding operator computationally tractable, we require that the
number of domain elements in D having semiring value different from 0 is finite.
In this way, the sum needed to compute (∃xc)η in the above definition can
consider just a finite number of element (those different from 0) since 0 is the
unit element of the sum.

By using the hiding function we can represent the ⇓ operator defined in
Section 2.2.

Proposition 8.2.2. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the
variables D, an ordered set of variables V , the corresponding structure C and the
class of hiding functions ∃x : C → C as defined in Definition 8.2.7. Then, for
any constraint c and any variable x ⊆ V , c ⇓V−x= ∃xc.
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Proof. Is enough to apply the definition of ⇓V−x and ∃x and check that both
are equal to

∑
di∈D cη[x := di].

Notice that by the previous theorem x does not belong to the support of ∃xc.
We now show how the hiding function so defined satisfies the properties of

cylindric algebras.

Theorem 8.2.3. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the vari-
ables D, an ordered set of variables V , the corresponding structure C and the
class of hiding functions ∃x : C → C as defined in Definition 8.2.7. Then C is a
cylindric algebra satisfying:

1. c ) ∃xc
2. c1 ) c2 implies ∃xc1 ) ∃xc2
3. ∃x(c1 ⊗ ∃xc2) ≈ ∃xc1 ⊗ ∃xc2,
4. ∃x∃yc ≈ ∃y∃xc

Proof. Let us consider all the items:

1. It follows from the intensivity of +;
2. It follows from the monotonicity of +;
3. ∃x(c1 ⊗ ∃xc2) =

(c1 ⊗ ∃xc2) ⇓V−x=
(c1 ⊗ c2 ⇓V−x) ⇓V−x (since con(c2 ⇓V−x) = V − x, and V − x∩ x = ∅, from
Theorem 19 of [47] this is equivalent to)
c1 ⇓V−x ⊗c2 ⇓V−x=
∃xc1 ⊗ ∃xc2;

4. It follows from commutativity and associativity of +.

To model parameter passing we need also to define what diagonal elements
are.

Definition 8.2.8 (diagonal elements). Consider an ordered set of variables
V and the corresponding soft constraint system C. Let us define for each x, y ∈ V
a constraint dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x := a, y :=
b] = 0 if a �= b. Notice that supp(dxy) = {x, y}.

We can prove that the constraints just defined are diagonal elements.

Theorem 8.2.4. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the vari-
ables D, an ordered set of variables V , and the corresponding structure C. The
constraints dxy defined in Definition 8.2.8 represent diagonal elements, that is

1. dxx = 1,
2. if z �= x, y then dxy = ∃z(dxz ⊗ dzy),
3. if x �= y then dxy ⊗ ∃x(c⊗ dxy) ) c.

Proof. 1. It follows from the definition of the 1 constant and of the diagonal
constraint;
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2. The constraint dxz ⊗ dzy is equal to 1 when x = y = z, and is equal to
0 in all the other cases. If we project this constraint over z, we obtain the
constraint ∃z(dxz ⊗ dzy) that is equal to 1 only when x = y;

3. The constraint (c⊗dxy)η has value 0 whenever η(x) �= η(y) and cη elsewhere.
Now, (∃x(c⊗ dxy))η is by definition equal to cη[x := y]. Thus (dxy ⊗∃x(c⊗
dxy))η is equal to cη when η(x) = η(y) and 0 elsewhere. So, since for any c,
0 ) c and c ) c, we easily have the claim of the theorem.

Using cc on Top of a Soft Constraint System. When using a soft constraint
system in a cc language, the notion of consistency should be generalised. In fact,
SCSPs with best level of consistency equal to 0 can be interpreted as inconsistent,
and those with level greater than 0 as consistent, but we can also be more general:
we can define a suitable function α that, given the best level of the current store,
maps such a level over the classical notion of consistency/inconsistency.

More precisely, given a semiring S = 〈A,+,×,0,1〉, we can define a function
α : A → {false, true}. Function α has to be at least monotone, but functions
with a richer set of properties could be used. Whenever we need to check the
consistency of the store, we will first compute the best level and then we will
map such a value by using function α over true or false.

It is important to notice that changing the α function (that is, by mapping in
a different way the set of values A over the boolean elements true and false), the
same cc agent yields different results: by using a high cut level, the cc agent will
either finish with a failure or succeed with a high final best level of consistency
of the store. On the other hand, by using a low level, more programs will end in
a success state.

8.3 Soft Concurrent Constraint Programming

The next step in our work is now to extend the syntax of the language in order
to directly handle the cut level. This means that the syntax and semantics of the
tell and ask agents have to be enriched with a threshold to specify when tell/ask
agents have to fail, succeed or suspend.

Given a soft constraint system 〈S,D, V 〉, the corresponding structure C, and
any constraint φ ∈ C, the syntax of agents in soft concurrent constraint program-
ming is given in Table 8.2. The main difference w.r.t. the original cc syntax is

P :: = F.A

F :: = p(X) :: A | F.F

A :: = success | fail | tell(c)→φ A | tell(c)→a A | E | A‖A | ∃X.A | p(X)

E :: = ask(c)→φ A | ask(c)→a A | E + E

Table 8.2. scc syntax
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the presence of a semiring element a and of a constraint φ to be checked when-
ever an ask or tell operation is performed. More precisely, the level a (resp., φ)
will be used as a cut level to prune computations that are not good enough.

Notice also the we add the fail state but the failure Semantics will be con-
sidered in Section 8.5.2.

We present here a structured operational semantics for scc programs, in the
SOS style, which consists of defining the semantics of the programming language
by specifying a set of configurations Γ , which define the states during execution,
a relation → ⊆ Γ×Γ which describes the transition relation between the configu-
rations, and a set T of terminal configurations. To give an operational semantics
to our language, we need to describe an appropriate transition system.

Definition 8.3.1 (transition system). A transition system is a triple
〈Γ, T,→〉 where Γ is a set of possible configurations, T ⊆ Γ is the set of terminal
configurations and →⊆ Γ × Γ is a binary relation between configurations.

The set of configurations represent the evolutions of the agents and the mod-
ifications in the constraint store. We define the transition system of soft cc as
follows:

Definition 8.3.2 (configurations). The set of configurations for a soft cc sys-
tem is the set Γ = {〈A, σ〉}}, where σ ∈ C. The set of terminal configurations
is the set T = {〈success, σ〉} and the transition rule for the scc language are
defined in Table 8.3.

Here is a brief description of the transition rules:

Valued-tell The valued-tell rule checks for the α-consistency of the SCSP de-
fined by the store σ ⊗ c. The rule can be applied only if the store σ ⊗ c is
b-consistent with b �< a2. In this case the agent evolves to the new agent
A over the store σ ⊗ c. Note that different choices of the cut level a could
possibly lead to different computations.

Tell The tell action is a finer check of the store. In this case, a pointwise com-
parison between the store σ⊗ c and the constraint φ is performed. The idea
is to perform an overall check of the store and to continue the computation
only if there is the possibility to compute a solution not worse than φ. Notice
that this notion of tell could be also applied to the classical cc framework. In
this case the tell operation would succeed when the set of tuples satisfying
constraint φ is a subset of the set of tuples allowed by σ ∩ c.3

Valued-ask The semantics of the valued-ask is extended in a way similar to
what we have done for the valued-tell action. This means that, to apply the
rule, we need to check if the store σ entails the constraint c and also if the
store is “consistent enough” w.r.t. the threshold a set by the programmer.

2 Notice that we use b 	< a instead of b ≥ a because we can possibly deal with partial
orders. The same happens also in other transition rules with 	� instead of �.

3 notice that the ⊗ operator in the crisp case reduces to set intersection.
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(σ ⊗ c) ⇓∅ 	< a

〈tell(c)→a A, σ〉 −→ 〈A, σ ⊗ c〉
(Valued-tell)

σ ⊗ c 	� φ

〈tell(c)→φ A,σ〉 −→ 〈A, σ ⊗ c〉
(Tell)

σ � c, σ ⇓∅ 	< a

〈ask(c)→a A, σ〉 −→ 〈A,σ〉
(Valued-ask)

σ � c, σ 	� φ

〈ask(c)→φ A,σ〉 −→ 〈A, σ〉
(Ask)

〈A1, σ〉 −→ 〈A′
1, σ

′〉
〈A1‖A2, σ〉 −→ 〈A′

1‖A2, σ
′〉

〈A2‖A1, σ〉 −→ 〈A2‖A′
1, σ

′〉

〈A1, σ〉 −→ 〈success, σ′〉
〈A1‖A2, σ〉 −→ 〈A2, σ

′〉
〈A2‖A1, σ〉 −→ 〈A2, σ

′〉
(Parallelism)

〈E1, σ〉 −→ 〈A1, σ
′〉

〈E1 + E2, σ〉 −→ 〈A1, σ
′〉

〈E2 + E1, σ〉 −→ 〈A1, σ
′〉

(Nondeterminism)

〈A[y/x], σ〉 −→ 〈A′, σ′〉
〈∃xA, σ〉 −→ 〈A′, σ′〉

with y fresh (Hidden variables)

〈p(y), σ〉 −→ 〈A[y/x], σ〉 when p(x) :: A (Procedure call)

Table 8.3. Transition rules for scc

Ask Similar to the tell rule, here a finer (pointwise) threshold φ is compared to
the store σ. Notice that we need to check σ �� φ because previous tell could
have a different threshold φ′ and could not guarantee the consistency of the
resultant store.

Nondeterminism and parallelism The composition operators + and ‖ are
not modified w.r.t. the classical ones: a parallel agent will succeed if all
the agents succeeds; a nondeterministic rule chooses any agent whose guard
succeeds.

Hidden variables The semantics of the existential quantifier is similar to that
described in [171] by using the notion of freshness of the new variable added
to the store.

Procedure calls The semantics of the procedure call is not modified w.r.t. the
classical one. Also here we use notion of diagonal constraint (as defined in
Definition 8.2.8) to represent parameter passing.

Eventual Tell/Ask. We recall that both ask and tell operations in cc could be
either atomic (that is, if the corresponding check is not satisfied, the agent does
not evolve) or eventual (that is, the agent evolves regardless of the result of the
check). It is interesting to notice that the transition rules defined in Table 8.3
could be used to provide both interpretations of the ask and tell operations. In
fact, while the generic tell/ask rule represents an atomic behaviour, by setting
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φ = 0 or a = 0 we obtain their eventual version:

〈tell(c) → A, σ〉 −→ 〈A, σ ⊗ c〉 (Eventual tell)
σ ) c

〈ask(c) → A, σ〉 −→ 〈A, σ〉
(Eventual ask)

Notice that, by using an eventual interpretation, the transition rules of the scc
become the same as those of cc (with an eventual interpretation too). This hap-
pens since, in the eventual version, the tell/ask agent never checks for consistency
and so the soft notion of α-consistency does not play any role.

8.4 A Simple Example

In this section we will show the behaviour of some of the rules of our transition
system. We consider in this example a soft constraint system over the fuzzy
semiring. Consider the fuzzy constraints

c : {x, y} → R2 → [0, 1] s.t. c(x, y) =
1

1 + |x− y| and

c′ : {x} → R → [0, 1] s.t. c′(x) =

{
1 if x ≤ 10,
0 otherwise.

Notice that the domain of both variables x and y is in this example any integer
(or real) number. As any fuzzy CSP, the codomain of the constraints is instead
in the interval [0, 1].

Let’s now evaluate the agent

〈tell(c) →0.4 ask(c′) →0.8 success, 1〉
in the empty starting store 1. Note that also here the empty store 1 is just the
store containing the constraint ∅ → ∅ → 1 with empty support and that assign
always the semiring level 1 to any assignment.

By applying the Valued-tell rule we need to check (1 ⊗ c) ⇓∅ �< 0.4. Since
1 ⊗ c = c and c ⇓∅= 1, the agent can perform the step, and it reaches the state

〈ask(c′) →0.8 success, c〉.
Now we need to check (by following the rule of Valued-ask) if c ) c′ and c ⇓∅ �< 0.8.
While the second relation easily holds, the first one does not hold (in fact, for
x = 11 and y = 10 we have c′(x) = 0 and c(x, y) = 0.5).

If instead we consider the constraint c′′(x, y) = 1
1+2×|x−y| in place of c′, then

we have
〈ask(c′′) →0.8 success, c〉.

Here the condition c ) c” easily holds and the agent ask(c′′) →0.8 success can
perform its last step, reaching the success state:

〈success, c⊗ c′′〉.
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8.5 Observables and Cuts

Sometimes one could desire to see an agent, and a corresponding program, ex-
ecute with a cut level which is different from the one originally given. We will
therefore define cutψ(A) the agent A where all the occurrences of any cut level,
say φ, in any subagent of A or in any clause of the program, are replaced by ψ
if φ � ψ. This means that the cut level of each subagent and clause becomes at
least ψ, or is left to the original level. Informally, using the cut ψ we want to
obtain (if possible) a solution not lower than ψ, so, all the ask/tell check have
to be increased in order to cut away computation with a store not better than
ψ.

In this chapter, for simplicity reasons, this cut level change applies only to
those programs with cut levels which are constraints (φ), and not single semiring
levels (a). A similar semantics treatment could be developed also for the other
kind of cut, by suitably changing the notion of observable (see Section 8.5.1).

Definition 8.5.1 (cut function). Consider an scc agent A; we define the func-
tion cutψ : A→ A that transforms ask and tell subagents as follows:

cutψ(ask/tell(c) →φ) =

{
ask/tell(c) →ψ if φ � ψ,

ask/tell(c) →φ otherwise.

By definition of cutψ, it is easy to see that cut0(A) = A.
We can then prove the following Lemma (that will be useful later):

Lemma 8.5.1 (tell and ask cut). Consider the Tell and Ask rules of Table
8.3, and the constraints σ and c as defined in such rules. Then:

– If the Tell rule can be applied to agent A, then the rule can be applied also
to cutψ(A) when ψ � σ ⊗ c.

– If the Ask rule can be applied to agent A, then the rule can be applied also
to cutψ(A) when ψ � σ.

Proof. We will prove only the first item; the second can be easily proved by
using the same ideas. By the definition of the tell transition rules of Table 8.3,
if we can apply the rule it means that A ::= tell(c) →φ A

′ and if σ is the store
we have σ ⊗ c �� φ. Now, by definition of cutψ, we can have

– cutψ(A) ::= tell(c) →ψ cutψ(A′) when φ � ψ.
– cutψ(A) ::= tell(c) →φ cutψ(A′) when φ �� ψ,

In the first case, by hypothesis we have σ⊗c �� φ, which together with φ � ψ
implies σ⊗ c �� φ, which is the required condition for the application of the Tell
rule. In the second case, the statement directly holds by the hypothesis over A
that σ ⊗ c �� φ.

It is now interesting to notice that the thresholds appearing in the program
are related to the final computed stores:
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Theorem 8.5.1 (thresholds). Consider an scc computation

〈A,1〉 → 〈A1, σ1〉 → . . . 〈An, σn〉 → 〈success, σ〉
for a program P . Then, also

〈cutσ(A),1〉 → 〈cutσ(A1), σ1〉 → . . . 〈cutσ(An), σn〉 → 〈success, σ〉
is an scc computation for program P .

Proof. First of all, notice that during the computation an agent can only add
constraints to the store. So, since × is intensive, the store can only monotonically
decrease starting from the initial store 1 and ending in the final store σ. So we
have

1 � σ1 . . . � σn � σ.

Now, the statement follows by applying at each step the results of Lemma 8.5.1.
In fact, at each step the hypothesis of the lemma hold:

– the cut σ is always lower than the current store (σ � σi ⊗ c);
– the ask and tell operations can be applied (moving from agent Ai to agent
Ai + 1).

8.5.1 Capturing Success Computations

Given the transition system as defined in the previous section, we now define
what we want to observe of the program behaviour as described by the transi-
tions. To do this, we define for each agent A the set of constraints

SA = {σ ⇓var(A)| 〈A,1〉 →∗ 〈success, σ〉}

that collects the results of the successful computations that the agent can per-
form. Notice that the computed store σ is projected over the variables of the
agent A to discard any fresh variable introduced in the store by the ∃ operator.

The observable SA could be refined by considering, instead of the set of
successful computations starting from 〈A,1〉, only a subset of them. For example,
one could be interested in considering only the best computations: in this case,
all the computations leading to a store worse than one already collected are
disregarded. With a pessimistic view, the representative subset could instead
collect all the worst computations (that is, all the computations better than
others are disregarded). Finally, also a set containing both the best and the
worst computations could be considered. These options are reminiscent of Hoare,
Smith and Egli-Milner powerdomains respectively [162].

At this stage, the difference between don’t know and don’t care nondeter-
minism arises only in the way the observables are interpreted: in a don’t care
approach, agent A can commit to one of the final stores σ ⇓var(A), while, in a
don’t know approach, in classical cc programming it is enough that one of the
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final stores is consistent. Since existential quantification corresponds to the sum
in our semiring-based approach, for us a don’t know approach leads to the sum
(that is, the lub) of all final stores:

SdkA =
⊕
σ∈SA

σ.

It is now interesting to notice that the thresholds appearing in the program
are related also to the observable sets:

Proposition 8.5.1 (Thresholds and SA (1)). For each ψ, we have SA ⊇
Scutψ(A).

Proof. By definition of cuts (Definition 8.5.1), we can modify the agents only
by changing the thresholds with a new level, greater than the previous one. So,
easily, we can only cut away some computations.

Corollary 8.5.1 (Thresholds and SdkA (1)). For each ψ, we have SdkA ⊇
Sdkcutψ(A).

Proof. It follows from the definition of SdkA and from Proposition 8.5.1.

Theorem 8.5.2 (Thresholds and SA (2)). Let ψ � glb{σ ∈ SA}. Then SA =
Scutψ(A).

Proof. By Proposition 8.5.1, we have SA ⊇ Scutψ(A). Moreover, since ψ is lower
than all σ in SA, by Theorem 8.5.1 we have that all the computations are also
in Scutψ(A). So, the statement follows.

Notice that, thanks to Theorem 8.5.2 and to Proposition 8.5.1, whenever we
have a lower bound ψ of the glb of the final solutions, we can use ψ as a threshold
to eliminate some computations. Moreover, we can prove the following theorem:

Theorem 8.5.3. Let σ ∈ SA and σ �∈ Scutψ(A). Then we have σ � ψ.

Proof. If σ ∈ SA and σ �∈ Scutψ(A), it means that the cut eliminates some
computations. So, at some step we have changed the threshold of some tell
or ask agent. In particular, since we know by Theorem 8.5.1 that when ψ � σ
we do not modify the computation, we need ψ �� σ. Moreover, since the tell and
ask rules fail only if σ � ψ, we easily have the statement of the theorem.

The following theorem relates thresholds and SdkA .

Theorem 8.5.4 (Thresholds and SdkA (2)). Let ΨA = {σ ∈ SA | �σ′ ∈
SA with σ′ � σ} (that is, ΨA is the set of “greatest” elements of SA). Let also
ψ � glb{σ ∈ ΨA}. Then SdkA = Sdkcutψ(A).

Proof. Since we have a+b = b ⇐⇒ a ≤ b, we easily have
⊕

σ∈SA
σ =

⊕
σ∈ΨA σ.

Now, by following a reasoning similar to Theorem 8.5.2, by applying a cut with a
threshold ψ � glb{σ ∈ ΨA} we do not eliminate any computation. So we obtain
SdkA =

⊕
σ∈SA

σ =
⊕

σ∈ΨA σ = Sdkcutψ(A)
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Lemma 8.5.2. Given any constraint ψ, we have:

SdkA � ψ ⊕ Sdkcutψ(A).

Proof. Let S be the set of all solutions; then SdkA = lub(S) and Sdkcutψ(A) = lub(S1)
where S1 ⊆ S. The solutions that have been eliminated by the cut ψ (that is all
the σ ∈ S − S1) are all lower than ψ by Theorem 8.5.3. So, it easily follows that
SdkA � ψ ⊕ Sdkcutψ(A).

Theorem 8.5.5. Given any constraint ψ, we have:

Sdkcutψ(A) � SdkA � ψ ⊕ Sdkcutψ(A).

Proof. From Corollary 8.5.1, we have Sdkcutψ(A) � SdkA . From Lemma 8.5.2 we
have instead SdkA � ψ ⊕ Sdkcutψ(A).

This theorem suggests a way to cut useless computations while generating
the observable SdkA of an scc program P starting from agent A. A very naive
way to obtain such an observable would be to first generate all final states, of
the form 〈success, σi〉, and then compute their lub. An alternative, smarter way
to compute this same observable would be to do the following. First we start
executing the program as it is, and find a first solution, say σ1. Then we restart
the execution applying the cut level σ1.

By Theorem 8.5.4, this new cut level cannot eliminate solutions which in-
fluence the computation of the observable: the only solutions it will cut are
those that are lower than the one we already found, thus useless in terms of the
computation of SdkA .

In general, after having found solutions σ1, . . . , σk, we restart execution with
cut level ψ = σ1 ⊕ . . . ⊕ σk. Again, this will not cut crucial solutions but only
some that are lower than the sum of those already found. When the execution of
the program terminates with no solution we can be sure that the cut level just
used (which is the sum of all solutions found) is the desired observable (in fact,
by Theorem 8.5.5 when Sdkcutψ(A) = ψ we necessarily have Sdkcutψ(A) = SdkA = ψ).

In a way, such an execution method resembles a branch & bound strategy,
where the cut levels have the role of the bounds. Notice also that since classical
crisp constraints can be represent in the soft CSP framework using a suitable
semiring, all the branch & Bound results could be easily extended also to the
original cc.

The following corollary is important to show the correctness of this approach.

Corollary 8.5.2. Given any constraint ψ � SdkA , we have:

SdkA = ψ ⊕ Sdkcutψ(A).

Proof. It easily comes from Theorem 8.5.5.
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Let us now use this corollary to prove the correctness of the whole procedure
above.

Let σ1 be the first final state reached by agent A. By stopping the algorithm
after one step, what we have to prove is SdkA = σ1⊕Sdkcutσ1(A). Since σ1 is for sure
lower than SdkA , this is true by Corollary 8.5.2.

By applying this procedure iteratively, we will collect a superset Ψ ′
A of ΨA =

{σ ∈ SA |� ∃σ′ ∈ SA with σ′ � σ} (Ψ ′
A is a superset of ΨA because we could collect

a final state σi before computing a final state σj � σi; in this case both will be
in Ψ ′

A). Even if Ψ ′
A contains more elements than ΨA, we have

⊕
σ∈Ψ ′

A
=

⊕
σ∈ΨA

(for the extensivity and idempotence properties of +).
The only difference with the procedure we have tested correct w.r.t. the

algorithm is that, at each step, it performs a cut by using the sum of all the
previously computed final state. This means that the algorithm can at each step
eliminate more computations, but by the results of Theorem 8.5.3 the eliminated
computations do not change the final result.

8.5.2 Failure

The transition system we have defined considers only successful computations. If
this could be a reasonable choice in a don’t know interpretation of the language it
will lead to an insufficient analysis of the behaviour in a pessimistic interpretation
of the indeterminism. To capture agents’ failure, we add the transition rules of
Table 8.4 to those of Table 8.3.

σ ⊗ c � φ

〈tell(c)→φ A,σ〉 −→ fail
(Tell1)

(σ ⊗ c) ⇓∅< a

〈tell(c)→a A, σ〉 −→ fail
(Valued-tell1)

σ � φ

〈ask(c)→φ A,σ〉 −→ fail
(Ask1)

σ ⇓∅< a

〈ask(c)→a A, σ〉 −→ fail
(Valued-ask1)

〈E1, σ〉 −→ fail, 〈E2, σ〉 −→ fail

〈E1 + E2, σ〉 −→ fail
〈E2 + E1, σ〉 −→ fail

(Nondeterminism1)

〈A1, σ〉 −→ fail

〈A1‖A2, σ〉 −→ fail
〈A2‖A1, σ〉 −→ fail

(Parallelism1)

Table 8.4. Failure in the scc language
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(Valued)tell1/ask1 The failing rule for ask and tell simply checks if the
added/checked constraint c is inconsistent with the store σ and in this case
stops the computation and gives fail as a result. Note that since we use soft
constraints we enriched this operator with a threshold (a or φ). This is used
also to compute failure. If the level of consistency of the resulting store is
lower than the threshold level, then this is considered a failure.

Nondeterminism1 Since the failure of a branch arises only from the failure of
a guard, and since we use angelic non-determinism (that is, we check the
guards before choosing one path), we fail only when all the branches fail.

Parallelism1 In this case the computation fails as soon as one of the branches
ails.

The observables of each agent can now be enlarged by using the function

FA = {fail | 〈A,1V 〉 →∗ fail}
that computes a failure if at least a computation of agent A fails.

By considering also the failing computations, the difference between don’t
know and don’t care becomes finer. In fact, in situations where we have SA = SdkA ,
the failing computations could make the difference: in the don’t care approach the
notion of failure is existential and in the don’t know one becomes universal [81]:

FdkA = {fail | all computations of A lead to fail}.
This means that in the don’t know nondeterminism we are interested in observing
a failure only if all the branches fail. In this way, given an agent A with an
empty SdkA and a non-empty FdkA , we cannot say for sure that the semantics of
this agent is fail. In fact, the transition rules we have defined do not consider
hang and infinite computations. Similar semi-decibility results for soft constraint
logic programming are proven in [50].

8.6 An Example from the Network Scenario

We consider in this section a simple network problem, involving a set of processes
running on distinct locations and sharing some variables, over which they need
to synchronize, and we show how to model and solve such a problem in scc.

Each process is connected to a set of variables, shared with other processes,
and it can perform several moves. Each of such moves involves performing an
action over some or all the variables connected to the process. An action over a
variable consists of giving a certain value to that variable. A special value “idle”
models the fact that a process does not perfom any action over a variable. Each
process has also the possibility of not moving at all: in this case, all its variables
are given the idle value.

The set of possible moves a process can perform is represented by a constraint.
The constraint assign to each possible move a semiring element representing the
cost of that particular move.
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The desired behavior of a network of such processes is that, at each move of
the entire network:

1. processes sharing a variable perform the same action over it;
2. all processes try to perform a non-idle move.

To describe a network of processes with these features, we use an SCSP where
each variable models a shared variable, and each constraint models a process and
connects the variables corresponding to the shared variables of that process. The
domain of each variable in this SCSP is the set of all possible actions, including
the idle one. Each way of satisfying a constraint is therefore a tuple of actions
that a process can perform on the corresponding shared variables.

In this scenario, softness can be introduced both in the domains and in the
constraints. In particular, since we prefer to have as many moving processes as
possible, we can associate a penalty to both the idle element in the domains, and
to tuples containing the idle action in the constraints. As for the other domain
elements and constraint tuples, we can assign them suitable preference values to
model how much we like that action or that process move.

For example, we can use the semiring S = 〈[−∞, 0],max,+,−∞, 0〉, where 0
is the best preference level (or, said dually, the weakest penalty), −∞ is the worst
level, and preferences (or penalties) are combined by summing them. According
to this semiring, we can assign value −∞ to the idle action or move, and suitable
other preference levels to the other values and moves.

Figure 8.1 gives the details of a part of a network and it shows eight processes
(that is, c1, . . . , c8) sharing a total of six variables. In this example, we assume
that processes c1, c2 and c3 are located on site a, processes c5 and c6 are located
on site b, and c4 is located on site c. Processes c7 and c8 are located on site d. Site
e connects this part of the network to the rest. Therefore, for example, variables
xd, yd and zd are shared between processes located in distinct locations.

As desired, finding the best solution for the SCSP representing the current
state of the process network means finding a move for all the processes such
that they perform the same action on the shared variables, the overall cost
of the moves is minimized, and there is no idle process. However, since the
problem is inherently distributed, it does not make sense, and it might not even
be possible, to centralize all the information and give it to a single soft constraint
solver. On the contrary, it may be more reasonable to use several soft constraint
solvers, one for each network location, which will take care of handling only the
constraints present in that location. Then, the interaction between processes in
different locations, and the necessary agreement to solve the entire problem, will
be modelled via the scc framework, where each agent will represent the behaviour
of the processes in one location.

More precisely, each scc agent (and underlying soft constraint solver) will
be in charge of receiving the necessary information from the other agents (via
suitable asks) and using it to achieve the synchronization of the processes in
its location. For this protocol to work, that is, for obtaining a global optimal
solution without a centralization of the work, the SCSP describing the network
of processes has to have a tree-like shape, where each node of the tree contains
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Fig. 8.1. The SCSP describing part of a process network

all the processes in a location, and the agents have to communicate from the
bottom of the tree to its root. In fact, the proposed protocol uses a sort of
Dynamic Programming technique to distribute the computation between the
locations. In this case the use of a tree shape allows us to work, at each step of
the algorithm, only locally to one of the locations. In fact, a non tree shape would
lead to the construction of non-local constraints and thus require computations
which involve more than one location at a time (this save to the system some
possible backtracking steps).

In our example, the tree structure we will use is the one shown in Fig-
ure 8.2(a), which also shows the direction of the child-parent relation links (via
arrows). Figure 8.2(b) describes instead the partition of the SCSP over the four
involved locations. The gray connections represent the synchronization to be
assured between distinct locations. Notice that, w.r.t. Figure 8.1, we have du-
plicated the variables representing variables shared between distinct locations,
because of our desire to first perform a local work and then to communicate the
results to the other locations. It is important to highlight that we do not need
to perform any backtracking steps for the synchronization of the several local
computations. The computation is performed indipendently in each locations.
Only later the resulting constraint stores are combined giving raise to the final
store. The final store represent the combination of all the requirement imposed
in a distributive fashion over the locations.

The scc agents (one for each location plus the parallel composition of all of
them) are therefore defined as follows:

figure/processnetwork_b.eps
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(b) The SCSP partitioned over the four loca-
tions.

Fig. 8.2. The ordered process network

Aa : ∃ua(tell(c1(xa, ua) ∧ c2(ua, ya) ∧ c3(xa, ya)) →φ1 tell(enda = true)
→ success)

Ab : ∃vb(tell(c5(yb, vb) ∧ c6(zb, vb)) →φ2 tell(endb = true)
→ success)

Ac : ∃wc(tell(c4(xc, wc, zc)) →φ3 tell(endc = true)
→ success)

Ad : ask(enda = true ∧ endb = true ∧ endc = true ∧ endd = true) →φ

tell(c7(xd, yd) ∧ c8(xd, yd, zd) ∧ xa = xd = xc ∧ ya = yd = yb ∧ zb = zd = zc)
→ success)

A : Aa | Ab | Ac | Ad
Agents Aa,Ab,Ac and Ad represent the processes running respectively in the

location a, b, c and d. Note that, at each ask or tell, the underlying soft constraint
solver will only check (for consistency or entailment) a part of the current set of
constraints: those local to one location. Due to the tree structure chosen for this
example, where agents Aa, Ab, and Ac correspond to leaf locations, only agent
Ad shows all the actions of a generic process: first it needs to collect the results
computed separately by the other agents (via the ask); then it performs its own
constraint solving (via a tell), and finally it can set its end flag, that will be used
by a parent agent (in this case the agent corresponding to location e, which we
have not modelled here).

The thresholds φi of the first three agents are used to stop the computation
locally if the best way to assign values to the local variables is not good enough
(at least φi). In this way, the synchronization among sites is not perfomed if a
local agent discovers that there is no satisfactory scenario. If all local agents pass

figure/orderedprocessnetwork_a.eps
figure/orderedprocessnetwork_b.eps
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their threshold check, then the last agent (Ad) can perform the syncronization.
However, it can use a threshold as well (φ) to avoid the syncronization because
of its own satisfactory notion. Notice that the four agents can have different
thresholds, since they run on different sites with possibly different policies. For
example, different administrative domains over the Internet (which would be
represented by sites a,b,c,d in this example) can have different regulations over
quality of services.

8.7 Conclusions

We started our work by realizing the need for handling preferences in Web-related
scenarios. To address this need, we have defined soft cc, where soft constraints
can be used both at the solver level, to make the notion of consistency more
tolerant, and at the language level, to provide an explicit way to deal with
approximations and satisfaction levels.



9. Interchangeability in Soft CSPs

Overview
Substitutability and interchangeability in constraint satisfaction problems

(CSPs) have been used as a basis for search heuristics, solution adaptation and
abstraction techniques. In this chapter, we consider how the same concepts
can be extended to soft constraint satisfaction problems (SCSPs).

We introduce two notions: threshold α and degradation δ for substi-
tutability and interchangeability, (αsubstitutability/interchangeability and
δsubstitutability/ interchangeability respectively). We show that they sat-
isfy analogous theorems to the ones already known for hard constraints. In

αinterchangeability, values are interchangeable in any solution that is better
than a threshold α, thus allowing to disregard differences among solutions
that are not sufficiently good anyway. In δinterchangeability, values are inter-
changeable if their exchange could not degrade the solution by more than a
factor of δ.

We give efficient algorithms to compute (δ/α)interchangeable sets of values
for a large class of SCSPs, and show an example of their application.

Substitutability and interchangeability in CSPs have been introduced by
Freuder [106] in 1991 with the intention of improving search efficiency for solving
CSP.

Interchangeability has since found other applications in abstraction frame-
works ( [67, 106, 120, 194]) and solution adaptation ( [155, 195]). One of the dif-
ficulties with interchangeability has been that it does not occur very frequently.

In many practical applications, constraints can be violated at a cost, and
solving a CSP thus means finding a value assignment of minimum cost. Various
frameworks for solving such soft constraints have been proposed [32, 47, 50, 91,
96,108,167,174]. The soft constraints framework of c-semirings [32,47] has been
shown to express most of the known variants through different instantiations of
its operators, and this is the framework we are considering in this chapter.

The most straightforward generalization of interchangeability to soft CSP
would require that exchanging one value for another does not change the qual-
ity of the solution at all. This generalization is likely to suffer from the same
weaknesses as interchangeability in hard CSP, namely that it is very rare.

Fortunately, soft constraints also allow weaker forms of interchangeabil-
ity where exchanging values may result in a degradation of solution quality
by some measure δ. By allowing more degradation, it is possible to increase
the amount of interchangeability in a problem to the desired level. We define
δsubstitutability/interchangeability as a concept which ensures this quality. This
is particularly useful when interchangeability is used for solution adaptation.

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 213–235, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Another use of interchangeability is to reduce search complexity by group-
ing together values that would never give a sufficiently good solution. In
αsubstitutability/interchangeability, we consider values interchangeable if they
give equal solution quality in all solutions better than α, but possibly different
quality for solutions whose quality is ≤ α.

Just like for hard constraints, full interchangeability is hard to com-
pute, but can be approximated by neighbourhood interchangeability which
can be computed efficiently and implies full interchangeability. We define the
same concepts for soft constraints, and prove that neighborhood implies full
(δ/α)substitutability/interchangeability. We give algorithms for neighborhood
(δ/α)substitutability/interchangeability, and we prove several interesting and
useful properties of the concepts.

Finally, we give two examples where (δ/α)interchangeability is applied to
solution adaptation in configuration problems with two different soft constraint
frameworks: delay and cost constraints, and show its usefulness in these practical
contexts.

9.1 Interchangeability

Interchangeability in constraint networks was first proposed by Freuder [106] to
capture equivalence among values of a variable in a discrete constraint satisfac-
tion problem. Value v = a is substitutable for v = b if for any solution where
v = a, there is an identical solution except that v = b. Values v = a and v = b
are interchangeable if they are substitutable both ways.

Interchangeability offers three important ways for practical applications:

– by pruning the interchangeable values, which are redundant in a sense, the
problem space can be simplified.

– by using it as a solution updating tool; interchangeability can be used during
user-interaction to help users in taking decisions by offering alternatives;

– by structuring and classifying the solution space.

v1

v2

v3

v4

{d}

{a, b, d} {a, b, c}

{c, d, e, f}

	= 	=
	=

	=

Fig. 9.1. An example of CSP with interchangeable values

figure/example1.eps
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Full Interchangeability considers all constraints in the problem and checks if
a value a and b for a certain variable v can be interchanged without affecting the
global solution. In the CSP in Figure 9.1 (taken from [68]), d, e and f are fully
interchangeable for v4. This is because we inevitably have v2 = d, which implies
that v1 cannot be assigned d in any consistent global solution. Consequently, the
values d, e and f can be freely permuted for v4 in any global solution.

There is no efficient algorithm for computing full Interchangeability, as it
may require computing all solutions. The localized notion of Neighbourhood In-
terchangeability considers only the constraints involving a certain variable v. In
this notion, a and b are neighbourhood interchangeable if for every constraint in-
volving v, for every tuple that admits v = a there is an otherwise identical tuple
that admits v = b, and vice-versa. In Figure 9.1, e and f are neighbourhood
interchangeable for v4.

Freuder showed that neighbourhood interchangeability always implies full in-
terchangeability and can therefore be used as an approximation. He also provided
an efficient algorithm (Algorithm 1) for computing neighborhood interchange-
ability [106], and investigated its use for preprocessing CSP before searching for
solutions [27].

Every node in the discrimination tree (Figure 9.2) corresponds to a set of
assignments to variables in the neighbourhood of v that are compatible with
some value of v itself. Interchangeable values are found by the fact that they
follows the same path and fall into the same ending node.

Algorithm 1. Discrimination Tree for variable vi
Create the root of the discrimination tree for variable vi;
Let Dvi = {the set of domain values dvi for variable vi};
Let Neigh({vi}) = {all neighborhood variables vj of variable vi};
for all dvi ∈ Dvi do

for all vj ∈ Neigh({vi}) do
for all dvj ∈ Dvj s.t. dvj is consistent with dvi for vi do

if there exists a child node corresponding to vj = dvj then
move to it,

else
construct such a node and move to it;

Add vi, {dvi} to annotation of the node;
Go back to the root of the discrimination tree.

Figure 9.2 shows an example of execution of Algorithm 1 for variable v4.
Domain values e and f are shown to be interchangeable.

Another form of interchangeability introduced as well in [106] is Partial In-
terchangeability. It allows a subset of the variables V to be affected when inter-
changing the values of v, while the rest of the variables remains the same. To be
more precise, values a and b are partially interchangeable with respect to a set
of variables V ′ if for any solution where v = a, there is another solution where
v = b which otherwise differs only in values assigned to variables in V ′, and vice
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root

V1 = a

V1 = b

V1 = d

V3 = a

V3 = b

V3 = a

V3 = b

V3 = c

V3 = c
V4 = {c}

V4 = {e, f}

V4 = {d}

Fig. 9.2. An example of CSP with computation of neighborhood interchange-
able values

versa. In Figure 9.1, a and b are partial interchangeable for v1 with respect to
the set V ′ = {v3}.

There is no efficient algorithm for computing partial interchangeability,
but a localized form, neighborhood partial interchangeability, was proposed by
Choueiry and Noubir in [68]. They says that values a and b are neighborhood
partial interchangeable with respect to a set of variables V ′ if for every con-
straint between a variable in V ′ and a variable not in V ′ and every tuple t of
value assignments to V ′ that admits v = a there is another tuple t′ that admits
v = b such that t and t′ are consistent with the same value combinations for
variables outside of V ′. Additionally, the same condition must hold with a and
b exchanged.

Neighborhood Partial Interchangeability is a weak and locally computable
form of interchangeability. Locally computable forms of interchangeability may
involve sacrificing some solutions but there are no polynomial algorithms till
now which can compute full interchangeability and partial interchangeability.
A polynomial algorithm for computing neighborhood partial interchangeability
sets was proposed by Choueiry and Noubir in [68].

9.2 Interchangeability in Soft CSPs

In soft CSPs, there is not any crisp notion of consistency. In fact, each tuple
is a possible solution, but with different level of preference. Therefore, in this
framework, the notion of interchangeability becomes finer: to say that values a
and b are interchangeable we have also to consider the assigned semiring level.

More precisely, if a domain element a assigned to variable v can be substi-
tuted in each tuple solution with a domain element b without obtaining a worse
semiring level we say that b is full substitutable for a.

Definition 9.2.1 (Full Substitutability (FS)). Consider two domain values
b and a for a variable v, and the set of constraints C; we say that b is Full

figure/ni-example1.eps
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Substitutable for a on v (b ∈ FS v(a)) if and only if for all assignments η,⊗
Cη[v := a] ≤S

⊗
Cη[v := b]

When we restrict this notion only to the set of constraints Cv that involves
variable v we obtain a local version of substitutability.

Definition 9.2.2 (Neighborhood Substitutability (NS)). Consider two
domain values b and a for a variable v, and the set of constraints Cv involv-
ing v; we say that b is neighborhood substitutable for a on v (b ∈ NSv(a)) if and
only if for all assignments η,⊗

Cvη[v := a] ≤S
⊗

Cvη[v := b]

When the relations hold in both directions, we have the notion of
Full/Neighborhood interchangeability of b with a.

Definition 9.2.3 (Full and Neighborhood Interchangeability (FI and
NI )). Consider two domain values b and a, for a variable v, the set of all con-
straints C and the set of constraints Cv involving v. We say that b is fully in-
terchangeable with a on v (FI v(a/b)) if and only if b ∈ FS v(a) and a ∈ FS v(b),
that is, for all assignments η,⊗

Cη[v := a] =
⊗

Cη[v := b].

We say that b is Neighborhood interchangeable with a on v (NI v(a/b)) if and
only if b ∈ NSv(a) and a ∈ NSv(b), that is, for all assignments η,⊗

Cvη[v := a] =
⊗

Cvη[v := b].

This means that when a and b are interchangeable for variable v they can be
exchanged without affecting the level of any solution.

Two important results that hold in the crisp case can be proven to be
satisfied also with soft CSPs: transitivity and extensivity of interchangeabil-
ity/substituability.

Theorem 9.2.1 (Extensivity: NS =⇒ FS and NI =⇒ FI ). Consider two
domain values b and a for a variable v, the set of constraints C and the set of
constraints Cv involving v. Then, neighborhood (substituability) interchangeabil-
ity implies full (substituability) interchangeability.

Proof. By definition of neighborhood substitutability,

b ∈ NSv(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ≤S
⊗

Cvη[v := b].

Now, since the assignments v := a and v := b only involve constraints in Cv,
and for the extensivity properties of times, we easily have that

∀η,
⊗

Cη[v := a] ≤S
⊗

Cη[v := b],

that is b ∈ FSv(a). Easily, we can extend the result to interchangeability.
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Theorem 9.2.2 (Transitivity: b ∈ NSv(a), a ∈ NSv(c) =⇒ b ∈ NSv(c)).
Consider three domain values a, b and c, for a variable v. Then,

b ∈ NSv(a), a ∈ NS v(c) =⇒ b ∈ NSv(c).

Similar results hold for FS ,NI and FI .

Proof. By definition of neighborhood substitutability,

b ∈ NSv(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ≤S
⊗

Cvη[v := b] and,

a ∈ NSv(c) ⇐⇒ ∀η,
⊗

Cvη[v := c] ≤S
⊗

Cvη[v := a].

Now, for transitivity of ≤S, we easily have that

∀η,
⊗

Cη[v := c] ≤S
⊗

Cη[v := b],

that is b ∈ NSv(c). Easily, we can extend the result for FS ,NI and FI .

As an example of interchangeability and substitutability consider the fuzzy
CSP represented in Figure 9.3. The domain value c is neighborhood interchange-
able with a on x (NI x(a/c)); in fact, c1 ⊗ c2η[x := a] = c1 ⊗ c2η[x := c] for all
η. The domain values c and a are also neighborhood substitutable for b on x
({a, c} ∈ NS v(b)). In fact, for any η we have c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := c]
and c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := a].

9.2.1 Degradations and Thresholds

In soft CSPs, any value assignment is a solution, but may have a very bad
preference value. This allows broadening the original interchangeability concept
to one that also allows degrading the solution quality when values are exchanged.
We call this δinterchangeability, where δ is the degradation factor.

When searching for solutions to soft CSP, it is possible to gain efficiency by
not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better than α. We call α

X Y

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1 〈b〉 → 0.5
〈c〉 → 0.9 〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈a, c〉 → 0.2

〈b, c〉 → 0.1

〈c, c〉 → 0.2

c1

c2

c3

Fig. 9.3. A fuzzy CSP
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the threshold factor. Moreover, sometimes we are just looking for any solution
greater than a certain level α. In this case, also the notion of αinterchangeability
could be too strict. For this motivation we define also a more relaxed notion of
threshold that we call α−set.

Both concepts can be combined, i.e. we can allow both degradation and limit
search to solutions better than a certain threshold (δα/α−setinterchangeability).

By extending the previous definitions we can define thresholds and degrada-
tion version of full/neighbourhood substitutability/interchangeability.

Definition 9.2.4 (δFull/Neighbourhood Substitutability (δFS/NS)).
Consider two domain values b and a for a variable v, the set of constraints
C and a semiring level δ; we say that b is δfully substitutable for a on v
(b ∈ δFSv(a)) if and only if for all assignments η,⊗

Cη[v := a] ×S δ ≤S
⊗

Cη[v := b]

It is δneighbourhood substitutable if the condition holds for C being the subset
of the constraints that have v as a variable.

Definition 9.2.5 (αFull/Neighbourhood Substitutability (αFS/NS)).
Consider two domain values b and a, for a variable v, the set of constraints
C and a semiring level α; we say that b is αfully substitutable for a on v
(b ∈ αFS v(a)) if and only if for all assignments η,⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := a] ≤S
⊗

Cη[v := b]

It is αneighbourhood substitutable if the condition holds for C being the subset
of the constraints that have v as a variable.

Definition 9.2.6 (α−setFull/Neighbourhood Substitutability
(α−setFS/NS)). Consider two domain values b and a, for a variable v, the set
of constraints C and a semiring level α; we say that b is α−setfull substitutable
for a on v (b ∈ α−setFS v(a)) if and only if for all assignments η,⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := b] ≥S α

It is α−setneighbourhood substitutable if the condition holds for C being the
subset of the constraints that have v as a variable.

Definition 9.2.7 (Full/Neighbourhood Soft Interchangeability). Con-
sider two domain values b and a, for a variable v, the set of constraints C.
Values a and b are

– δfully/neighbourhood interchangeable if and only if they are δfully/neigh-
borhood substitutable both ways;

– αfully/neighbourhood interchangeable if and only if they are αfully/neigh-
borhood substitutable both ways;
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– α−setfully/neighbourhood interchangeable if and only if they are α−setfully/
neighborhood substitutable both ways.

It is easy to see from the definitions that

Theorem 9.2.3 (α =⇒ α−set). Consider two domain values a and b, for a
variable v, and a thresholds α. Then,

a ∈ αNS v(b) =⇒ a ∈ α−setNSv(b)

Similar results holds for FS ,NI ,FI .

Proof. By definition of α and α−set substitutability,

b ∈ αFS v(a) ⇐⇒
∀η,

⊗
Cη[v := a] ≥S α =⇒

⊗
Cη[v := a] ≤S

⊗
Cη[v := b], and,

b ∈ α−setFS v(a) ⇐⇒
∀η,

⊗
Cη[v := a] ≥S α =⇒

⊗
Cη[v := b] ≥S α.

Now, when
⊗
Cη[v := a] <S α both the clauses are true; when

⊗
Cη[v := a] ≥S

α, by hypothesis, we have
⊗
Cη[v := a] ≤S

⊗
Cη[v := b]. For transitivity, we

easily have
⊗
Cη[v := b] ≥S α. We can extend the result for NS ,NI and FI .

As an example of the just given definitions, consider Figure 9.3. The domain
values c and b for variable y are 0.2Neighborhood Interchangeable. In fact, the
tuple involving c and b only differ for the tuple 〈b, c〉 that has value 0.1 and for
the tuple 〈b, b〉 that has value 0. Since we are interested only to solutions greater
than 0.2, these tuples are excluded from the match.

We can see also that values a and b for variable y are 0.2−setNeighborhood.
In fact the set of solution tuples with value greater than 0.2 are the same. Notice
that a and b are not 0.2Neighborhood Interchangeable because tuples 〈a, a〉 and
〈a, b〉 have values 0.8 and 0.2 respectively.

The meaning of degradation assume different meanings when instantiated to
different semirings:

1. fuzzy CSP: b ∈ δFS v(a) gets instantiated to:

min(minc∈C(cη[v := a]), δ) ≤ minc∈C(cη[v := b])

which means that changing v := b to v := a does not make the solution worse
than before or worse than δ. In the practical case where we want to only
consider solutions with a quality better than δ, this means that substitution
will never put a solution out of this class.

2. weighted CSP: b ∈ δFS v(a) gets instantiated to:∑
c∈C

cη[v := a] + δ ≥S
∑
c∈C

cη[v := b]
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which means that the penalty for the solution does not increase by more than
a factor of δ. This allows for example to express that we would not want to
tolerate more than δ in extra cost. Note, by the way, that ≤S translates to
≥S in this version of the soft CSP.

3. probabilistic CSP: b ∈ δFS v(a) gets instantiated to:

(
∏
c∈C

cη[v := a]) · δ ≤
∏
c∈C

cη[v := b]

which means that the solution with v = b is not degraded by more than a
factor of δ from the one with v = a.

4. crisp CSP: b ∈ δFSv(a) gets instantiated to:

(
∧
c∈C

cη[v := a]) ∧ δ ⇒ (
∧
c∈C

cη[v := b])

which means that when δ = true, whenever a solution with v = a satisfies
all constraints, so does the same solution with v = b. When δ = false, it is
trivially satisfied (i.e. δ is too loose a bound to be meaningful).

9.2.2 Properties of Degradations and Thresholds

As it is very complex to determine full interchangeability/substitutability, we
start by showing the fundamental theorem that allows us to approximate
δ
/α/α−setFS/FI by δ

/α/α−setNS/NI :

Theorem 9.2.4 (Extensivity). δneighbourhood substitutability implies δfull
substitutability, αneighbourhood substitutability implies αfull substitutability and
α−setneighbourhood substitutability implies α−setfull substitutability.

Proof. – δ: Since the assignments v := a and v := b only involve con-
straints in Cv, and for the extensivity properties of times, we easily have
that

b ∈ NSv(a) ⇐⇒
∀η,

⊗
Cvη[v := a] ×S δ ≤S

⊗
Cvη[v := b]

=⇒
∀η,

⊗
Cη[v := a] ×S δ ≤S

⊗
Cη[v := b]

⇐⇒ b ∈ FSv(a).

– α: When
⊗
Cvη[v := a] < α also

⊗
Cη[v := a] < α, so both the clauses

are true; when
⊗
Cvη[v := a] ≥S α, since

⊗
Cvη[v := a] ≤S

⊗
Cvη[v := b],

we have by extensivity
⊗
Cη[v := a] ≤S

⊗
Cη[v := b].

– α−set: As before, when
⊗
Cvη[v := a] < α also

⊗
Cη[v := a] < α, so

both the clauses are true. When
⊗
Cvη[v := a] ≥S α, since by hypothesis

b ∈ α−setFS v(a), I have
⊗
Cvη[v := b] ≥S α; now per extensivity we have

also
⊗
Cη[v := b] ≥S α.

Easily, we can extend the result to interchangeability.
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This theorem is of fundamental importance since it gives us a way to approx-
imate full interchangeability by neighborhood interchangeability which is much
less expensive to compute.

Theorem 9.2.5 (Transitivity using thresholds and degradations). Con-
sider three domain values a, b and c, for a variable v. Then,

b ∈ δ1NS v(a), a ∈ δ2NSv(c) =⇒ b ∈ δ1×δ2NS v(c) and
b ∈ α1

NS v(a), a ∈ α2
NSv(c) =⇒ b ∈ α1+α2

NS v(c)

Similar results holds for FS ,NI ,FI .

Proof. – δ: By definition

a ∈ δ2NS v(c) ⇐⇒ ∀η,
⊗

Cvη[v := c] ×S δ2 ≤S
⊗

Cvη[v := a].

For monotonicity we have

∀η,
⊗

Cvη[v := c] ×S δ2 ×S δ1 ≤S
⊗

Cvη[v := a] ×S δ1.

Now, by definition

b ∈ δ1NSv(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ×S δ1 ≤S
⊗

Cvη[v := b].

For transitivity we easily have

∀η,
⊗

Cvη[v := c]×S δ2 ×S δ1 ≤S
⊗

Cvη[v := b] ⇐⇒ b ∈ δ1×δ2NSv(c).

– α: By hypothesis we have

b ∈ α1
NS v(a) ⇐⇒⊗

Cvη[v := a] ≥S α1 =⇒
⊗

Cvη[v := a] ≤S
⊗

Cvη[v := b] and,

a ∈ α2
NS v(c) ⇐⇒⊗

Cvη[v := c] ≥S α2 =⇒
⊗

Cvη[v := c] ≤S
⊗

Cvη[v := a].

Since α1 +S α2 ≥S α1 and α1 +S α2 ≥S α2 and transitivity of =⇒ , we have⊗
Cvη[v := a] ≥S α1 +S α2 =⇒

⊗
Cvη[v := a] ≤S

⊗
Cvη[v := b]

and,⊗
Cvη[v := c] ≥S α1 +S α2 =⇒

⊗
Cvη[v := c] ≤S

⊗
Cvη[v := a].

Now for transitivity of ≤S , we have⊗
Cvη[v := c] ≥S α1 +S α2 =⇒

⊗
Cvη[v := c] ≤S

⊗
Cvη[v := b]

⇐⇒ b ∈ α1+Sα2
NS v(c).

Easily, we can extend the result to FS ,NI ,FI .
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In particular when α1 = α2 = α and δ1 = δ2 = δ we have:

Corollary 9.2.1 (Transitivity and equivalence classes). Consider three
domain values a, b and c, for a variable v. Then,

– Threshold interchangeability is a transitive relation, and partitions the set of
values for a variable into equivalence classes, that is

b ∈ αNSv(a), a ∈ αNSv(c) =⇒ b ∈ αNS v(c)

αNI v(b/a), αNI v(a/c) =⇒ αNI v(b/c)
b ∈ α−setNS v(a), a ∈ α−setNSv(c) =⇒ b ∈ α−setNSv(c)

α−setNI v(b/a), α−setNI v(a/c) =⇒ α−setNI v(b/c)

– If the ×S-operator is idempotent, then degradation interchangeability is a
transitive relation, and partitions the set of values for a variable into equiv-
alence classes, that is

b ∈ δNSv(a), a ∈ δNSv(c) =⇒ b ∈ δNS v(c)
δNI v(b/a),

δNI v(a/c) =⇒ δNI v(b/c)

Proof. – δ: Suppose to have δ1 = δ2 = δ. Since times is idempotent, we
have δ1 × δ2 = δ. Using the results of the previous theorem the corollary
easily follows.

– α: Since when α1 = α2 = α we have α1 +S α2 = α, the corollary easily
follows from the previous theorem.

– α−set: By hypothesis we have

b ∈ αNSv(a) ⇐⇒
⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := b] ≥S α and,

a ∈ αNSv(c) ⇐⇒
⊗

Cη[v := c] ≥S α =⇒
⊗

Cη[v := a] ≥S α.

For transitivity of =⇒ , we have⊗
Cη[v := c] ≥S α =⇒

⊗
Cη[v := a] ≥S α.

Interchangeability easily follows.

By using degradations and thresholds we have a nice way to decide when
two domain values for a variable can be substituable/interchangeable. In fact,
by changing the α or δ parameter we can obtain different results.

In particular we can show that an “extensivity” result for the param-
eters holds. In fact, it is straightforward to notice that if two values are
δ
α/α−setsubstitutable, they have to be also δ′

α′/α′−setsubstitutable for any δ′ ≤ δ
and α′ ≥S α.

Theorem 9.2.6 (Extensivity for α and δ). Consider two domain values a
and b, for a variable v, two thresholds α and α′ s.t. α ≤ α′ and two degradations
δ and δ′ s.t. δ ≥S δ′. Then,
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a ∈ δNS v(b) =⇒ a ∈ δ′NS v(b)
a ∈ αNS v(b) =⇒ a ∈ α′NS v(b)

Similar results holds for FS ,NI ,FI .

Proof. – δ: By definition

a ∈ δNSv(b) ⇐⇒ ∀η,
⊗

Cvη[v := b] ×S δ ≤S
⊗

Cvη[v := a].

By monotonicity of times, we have⊗
Cvη[v := b] ×S δ′ ≤S

⊗
Cvη[v := b] ×S δ.

By transitivity of ≤S
∀η,

⊗
Cvη[v := b] ×S δ′ ≤S

⊗
Cvη[v := a] ⇐⇒ a ∈ δ′NSv(b).

– α: By Definition we have

a ∈ αNS v(b) ⇐⇒⊗
Cvη[v := b] ≥S α =⇒

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

Since α′ ≥S α, we have⊗
Cvη[v := b] ≥S α′ =⇒

⊗
Cvη[v := b] ≥S α.

By Transitivity of =⇒ we have⊗
Cvη[v := b] ≥S α′ =⇒

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a]

⇐⇒ a ∈ α′NS v(b).

Easily, we can extend the result to FS ,NI ,FI .

As a corollary when threshold and degradation are 0 or 1 we have some
special results.

Corollary 9.2.2. When α = 0 and δ = 1, we obtain the non approximated
versions of NS.

∀a, b, a ∈ 0NSv(b) and a ∈ 1NSv(b) ⇐⇒ a ∈ NS(b)

Similar results holds for FS ,NI ,FI .

Proof. – When α = 0, we always have
⊗
Cvη[v := b] ≥S α. So to check if

a ∈ 0NSv(b) we need only to check that
⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

– When δ = 1, we have
⊗
Cvη[v := b] ×S δ =

⊗
Cvη[v := b]. So to check if

a ∈ 1NSv(b) we need only to check that
⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

Let us remind that degradations and thresholds can be used together; so we
easily have

– 1
0NS = 0NS = 1NS = NS ;

– NS =⇒ δNS =⇒ δ
αNS for any δ and α;

– NS =⇒ αNS =⇒ δ
αNS for any δ and α.
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9.2.3 Computing δ/α/α−set-Substitutability/Interchangeability

The result of Theorem 9.2.1 is fundamental since it gives us a way to ap-
proximate full substitutability/interchangeability by neighbourhood substitua-
bility/interchangeability which is much less costly to compute.

The most general algorithm for neighborhood substituabil-
ity/interchangeability in the soft CSP framework is to check for each pair
of values whether the condition given in the definition holds or not. This
algorithm has a time complexity exponential in the size of the neighbourhood
and quadratic in the size of the domain (which may not be a problem when
neighbourhoods are small).

Better algorithms can be given when the times operator of the semiring
is idempotent. In this case, instead of considering the combination of all the
constraint Cv involving a certain variable v, we can check the property we need
(NS/NI and their relaxed versions δα/α−setNS/NI ) on each constraint itself.

Theorem 9.2.7. Consider two domain values b and a, for a variable v, and the
set of constraints Cv involving v. Then we have ∀c ∈ Cv:

cη[v := a] ≤S cη[v := b] =⇒ b ∈ NS v(a) (9.1)
(cη[v := a] ≥S α =⇒ cη[v := a] ≤S cη[v := b]) =⇒ b ∈ αNSv(a) (9.2)

If the times operator of the semiring is idempotent we also have:

∀c ∈ Cv.cη[v := a] ×S δ ≤S cη[v := b] =⇒ b ∈ δNSv(a) (9.3)
(cη[v := a] ≥S α =⇒ cη[v := b] ≥S α) =⇒ b ∈ α−setNSv(a) (9.4)

Proof. 1. Easily follows from the monotonicity of times.
2. For extensivity of times we have

⊗
Cvη[v := a] ≤S α =⇒ cη[v := a] ≥S α.

For monotonicity of times we have cη[v := a] ≤S cη[v := b] =⇒ ⊗
Cvη[v :=

a] ≤S
⊗
Cvη[v := b]. The thesis follows from transitivity of =⇒ .

3. For extensivity of times we have easily cη[v := a] ×S δ ≤S cη[v := b] =⇒⊗
Cvη[v := a] ×S δ ≤S

⊗
Cvη[v := b], and this is exactly the definition of

b ∈ δNSv(a).
4. Easily follows from monotonicity and idempotency of times.

By using Theorem 9.2.7 (and Corollary 9.2.1 for δ/α/α−setNS ) we can find
substituable/interchangeable domain values more efficiently. Algorithm 2 shows
an algorithm that can be used to find domain values that are Neighborhood
Interchangeable. It uses a data structure similar to the discrimination trees, first
introduced by Freuder in [106] . Algorithm 2 can compute different versions of
neighbourhood interchangeability depending on the algorithm NI−nodes used.
Algorithm 3 shows the simplest version without threshold or degradation.

We can show that Algorithm 2 with procedure Algorithm 3 is sound (that is
compute correct classes of equivalence for NI ).

Theorem 9.2.8 (Soundness of NI algorithm). Algorithm 2 using Algo-
rithm 3 returns as a result a subset of the neighbourhood interchangeable sets.
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Algorithm 2. Algorithm to compute neighbourhood interchangeable sets for
variable vi
1: Create the root of the discrimination tree for variable vi

2: Let Cvi = {c ∈ C | vi ∈ supp(c)}
3: Let Dvi = {the set of domain values dvi for variable vi}
4: for all dvi ∈ Dvi do
5: for all c ∈ Cv do
6: execute Algorithm NI -Nodes(c, v, dvi) to build the nodes associated with c
7: Go back to the root of the discrimination tree.

Algorithm 3. NI-Nodes(c, v, dvi) for Soft-NI
1: for all assignments ηc to variables in supp(c) do
2: compute the semiring level β = cηc[vi := dvi ],
3: if there exists a child node corresponding to 〈c = ηc, β〉 then
4: move to it,
5: else
6: construct such a node and move to it.
7: Add vi, {dvi} to annotation of the last build node,

Proof. By looking at Algorithm 3, two domain values dvi and d′vi will be in the
same leaf node, if and only if they follow the same path. They follow the same
path if and only if for all η, and for all c ∈ C, cη[vi := dvi ] = cη[vi := d′vi ].
This can be rewritten as cη[vi := dvi ] ≤S cη[vi := d′vi ] and cη[vi := d′vi ] ≤S
cη[vi := dvi ]. Now by Theorem 9.2.7 this is equivalent to dvi ∈ NS vi(d′vi ) and
d′vi ∈ NS vi(dvi ), that is NI vi(dvi/d′vi).

The algorithm is very similar to that defined by Freuder in [106], and when we
consider the semiring for classical CSPs SCSP = 〈{false, true},∨,∧, false, true〉
and all constraints are binary, it computes the same result. Notice that for each
node we add also an information representing the cost of the assignment ηc.

When all constraints are binary, considering all constraints involving variable
v is the same as considering all variables connected to v by a constraint, and our
algorithm performs steps as that given by Freuder.

We can determine the complexity of the algorithm by considering that the
algorithm calls NI − Nodes for each k − ary constraint exactly once for each
value of each the k variables; this can be bounded from above by k ∗ d with d
the maximum domain size. Thus, given m constraints, we obtain a bound of

O(m ∗ k ∗ d ∗O(AlgorithmNI−nodes)).

The complexity of AlgorithmNI−nodes strictly depends on the size of the do-
main d and from the number of variables k involved in each constraint and is
given as

O(AlgorithmNI−nodes) = dk−1.

For complete constraint graphs of binary constraints (k = 2), we obtain the same
complexity bound of O(n2d2) as Freuder in [106].
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Algorithm 4. NI-Nodes(c, v, dvi , α) for Soft αNI
1: for all assignments ηc to variables in supp(c) do
2: compute the semiring level β = cηc[vi := dvi ],
3: if β 	≥ α then
4: β := α {I do not want to discriminate in this case},
5: if there exists a child node corresponding to 〈c = ηc, β〉 then
6: move to it,
7: else
8: construct such a node and move to it.
9: Add vi, {dvi} to annotation of the last build node,

Algorithms for the relaxed versions of NI are obtained by substituting differ-
ent versions of Algorithm 3. For αNI , the algorithm needs to discriminate only
when the semiring value is greater than α, as shown in Algorithm 4.

Theorem 9.2.9 (Soundness of the αNI algorithm). Algorithm 2 using Al-
gorithm 4 returns as a result a subset of the αNeighbourhood interchangeabilities.

Proof. By looking at Algorithm 4, two domain values dvi and d′vi will be in the
same leaf node, if and only if they follow the same path. They follow the same
path if and only if for all η, and for all c ∈ C,

– both cη[vi := dvi ] and cη[vi := d′vi ] have a semiring value less than α, or
– cη[vi := dvi ] = cη[vi := d′vi ]

This can be written as:

(¬(cη[vi := dvi ] ≥ α)∧¬(cη[vi := d′vi ] ≥ α))∨(cη[vi := dvi ] = cη[vi := d′vi ]) (9.5)

which, by distributing the first two terms, is equivalent to:

cη[vi := dvi ] ≥ α =⇒
(cη[vi := dvi ] = cη[vi := d′vi ]) =⇒ (cη[vi := dvi ] ≤ cη[vi := d′vi ])

∧
cη[vi := d′vi ] ≥ α =⇒

(cη[vi := dvi ] = cη[vi := d′vi ]) =⇒ (cη[vi := d′vi ] ≤ cη[vi := dvi ]).

Now by Theorem 9.2.7 this implies dvi ∈ αNS vi(d′vi ) and d′vi ∈ αNS vi(dvi ),
that is αNI vi(dvi/d′vi).

In Algorithm 5 instead, we have to filter out the tuples whose semiring value
is lower than α and we do not make any difference among tuples greater than α.

Theorem 9.2.10 (Soundness of α−setNI algorithm). For semirings with
idempotent × operator, Algorithm 2 using Algorithm 5 returns as result a subset
of the α−setNeighbourhood interchangeabilities.
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Algorithm 5. NI-Nodes(c, v, dvi , α) for Soft α−setNI
1: for all assignments ηc to variables in supp(c) do
2: compute the semiring level β = cηc[vi := dvi ],
3: if β 	≥ α then
4: β := α {I do not want to discriminate in this case},
5: else
6: β := α {Does not matter how bigger than α}.
7: if there exists a child node corresponding to 〈c = ηc, β〉 then
8: move to it,
9: else

10: construct such a node and move to it.
11: Add vi, {dvi} to annotation of the last build node,

Proof. By looking at Algorithm 5, two domain values dvi and d′vi will be in the
same leaf node, only if they follow the same path. If they follow the same path,
means that for all η, and for all c ∈ C,

– both cη[vi := dvi ] and cη[vi := d′vi ] have a semiring value not greater than
α, or

– both have to be bigger than α.

This is is written as:

¬((cη[vi := dvi ] ≥ α) ∨ (cη[vi := d′vi ] ≥ α))
∨

(cη[vi := dvi ] ≥ α) ∧ (cη[vi := d′vi ] ≥ α).

which by distributions transforms into:

(¬(cη[vi := dvi ] ≥ α) ∨ (cη[vi := dvi ] ≥ α))∧
(¬(cη[vi := dvi ] ≥ α) ∨ (cη[vi := d′vi ] ≥ α))∧
(¬(cη[vi := d′vi ] ≥ α) ∨ (cη[vi := dvi ] ≥ α))∧
(¬(cη[vi := d′vi ] ≥ α) ∨ (cη[vi := d′vi ] ≥ α))

and by elimination of tautologies:

(¬(cη[vi := dvi ] ≥ α) ∨ (cη[vi := d′vi ] ≥ α))∧
(¬(cη[vi := d′vi ] ≥ α) ∨ (cη[vi := dvi ] ≥ α))

Using the fact that a =⇒ B ≡ ¬A ∨B this can be rewritten as:

((cη[vi := dvi ] ≥ α) =⇒ (cη[vi := d′vi ] ≥ α))∧
((cη[vi := d′vi ] ≥ α) =⇒ (cη[vi := dvi ] ≥ α)).

Now by Theorem 9.2.7 this means that dvi ∈ α−setNSvi(d′vi) and d′vi ∈
α−setNSvi(dvi), that is α−setNI vi(dvi/d

′
vi).
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Algorithm 6. NI-Nodes(c, v, dvi , δ) for Soft δNI
1: for all assignments ηc to variables in supp(c) do
2: compute the level β = cηc[vi := dvi ], and the bound κ = β × δ,
3: if there exists a child node corresponding to 〈κ̄, (c = ηc), β̄〉 with (κ̄ ≤ β)∧ (κ ≤

β̄) then
4: move to it and change the label to 〈lub(κ̄, κ), (c = ηc), glb(β̄, β)〉,
5: else
6: construct the node 〈κ, (c = ηc), β〉 and move to it.
7: Add vi, {dvi} to annotation of the last build node,

For δNI , the algorithm needs to only consider tuples that can cause a degra-
dation by more than δ, as shown in Algorithm 6. The idea here is to save in each
node the information needed to check at each step δNS in both directions. In a
semiring with total order, the information represents the ”interval of degrada-
tion”. As both algorithms consider the same assignments as Algorithm 3, their
complexity remains unchanged at O(dk−1).

Theorem 9.2.11 (Soundness of the δNI algorithm). For semirings with
idempotent × operator, Algorithm 2 using Algorithm 6 gives as result a subset of
the δinterchangeabilities.

Proof. By looking at Algorithm 6, two domain values dvi and d′vi will be in
the same leaf node if and only if they follow the same path. Consider now for
each node related to constraint c and to the assignment η, cηc[vi := dvi ] = β,
κ = β× δ, cηc[vi := d′vi ] = β′, and κ′ = β′× δ. If they follow the same path, each
of the nodes will have a label 〈lub(κ̄, κ, κ′), c = ηc, glb(β̄, β, β′)〉, where κ̄ and β̄
are determined by other assignments that have passed through the node.

Because of the condition in step 3 of Algorithm 6, the algorithm ensures that
lub(κ̄, κ, κ′) ≤ glb(β̄, β, β′). It follows that (κ′ ≤ β) and κ ≤ β′.

By Theorem 9.2.7 this means that dvi ∈ δNS vi(d′vi ) and d′vi ∈ δNS vi(dvi ),
that is δNI vi(dvi/d

′
vi).

9.3 An Example

Figure 9.4 shows the graph representation of a CSP which might represent a car
configuration problem.

A product catalog might represent the available choices through a soft CSP.
With different choices of semiring, the CSP of Figure 9.4 can represent different
problem formulations:

Example 1 For optimizing the cost of the product, a representation as a
weighted CSP might be most appropriate. Here, the semiring models the cost
of the different options and their integration with the others, using the semiring:
< (+,min,+,+∞, 0 >. We might have the constraints:
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M:{s,m,l} E:{s,l,d}

T:{a,m} A:{y,n}

C1

C2

C4
C3

Fig. 9.4. Example of a CSP modeling car configuration with 4 variables: M =
model, T = transmission, A = Air Conditioning, E = Engine

C1 =

M
s m l

T a ∞ 5 3
m 2 3 50

C2 =

M
s m l

s 3 5 ∞
E l 30 3 3

d 5 5 ∞

C3 =

E
s l d

A y 5 2 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 5

and also unary constraints CM , CE , CT and CA that model the cost of the com-
ponents:

CM =
s m l
10 20 30

CE =
s l d
10 20 20

CT =
a m
15 10

CA =
y n
10 0

Figure 9.5 shows how occurrence of δ/αsubstitutability among values of vari-
able E change w.r.t. δ and α for Example 1. We can see that when δ takes
high values of the semiring, small degradation in the solution is allowed. Thus
for δ = 0 only s can substitute d. As δ decreases in the values of the semiring,
here goes to ∞, there is more degradation allowed in the solution and thus more
δsubstitutability among the values of the variable E.

Let’s now consider the second part of Figure 9.5. For high semiring values of
α all the values are interchangeable. For α = 18 d and l are interchangeable, and
s can substitute l and d.

s s s s

s s s s

δ = 0 δ = 73

α = 18 
Ν β

δ = 15 δ = 

α = 0  
Ν β

α = 30 
30β

α =  
Ν β

l l l l

l l l l

d d d d

d d d d

Fig. 9.5. Example of how δ-substitutability and α-substitutability varies in the
weighted CSP over the values of variable E from Fig. 9.4

figure/CSP-example.eps
figure/weighted-varE2.eps
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Notice that thresholds α and degradation δ are two different notions of ap-
proximations and compute different notions of interchangeabilities. As an exam-
ple, by using degradation δ = 15 we obtain s and d interchangeable, whilst, by
using threshold α = 18 we obtain l and d interchangeable.

In Figure 9.6 we represent the variance of α−setNS depending on the thresh-
old α for weighted CSP example. For small α (between 0 and 17) or big α
(∞ in the Figure) all the values are α−setinterchangeable. The number of
α−setsubstitutable values is decreasing with α takes values of medium size
(α = 36 in the Figure). It is interesting to notice that for this example s is
always α−setsubstitutable for d.

Example 2 Another optimization criterion might be the time it takes to build
the car. Delay is determined by the time it takes to obtain the components and
to reserve the resources for the assembly process. For the delivery time of the
car, only the longest delay would matter. This could be modelled by the semiring
< (+,min,max,+∞, 0 >1, with the binary constraints:

C1 =

M
s m l

T a ∞ 3 4
m 2 4 ∞

C2 =

M
s m l

s 2 3 ∞
E l 30 3 3

d 2 3 ∞

C3 =

E
s l d

A y 5 4 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 3

and unary constraints CM , CE , CT and CA that model the time to obtain the
components:

CM =
s m l
2 3 3

CE =
s l d
3 2 3

CT =
a m
1 2

CA =
y n
3 0

Let us now consider the variable E of Example 2 and compute δ
/αNS/NI

between its values by using Definition 9.2.4 and Definition 9.2.5. In Figure 9.7
directed arcs are added when the source can be δ/αsubstituted to the destination

1 This semiring and the fuzzy one are similar, but the first uses an opposite order. Let
us call this semiring opposite-fuzzy.
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Fig. 9.6. Example of how α−set-substitutability varies in the weighted CSP
over the values of variable E from Fig. 9.4
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node. It is easy to see how the occurrences of δ/αNS change, depending on δ
and α degrees.

We can notice that when δ takes value 0 (the 1 of the optimization semiring),
small degradation is allowed in the CSP tuples when the values are substituted;
thus only value s can be substituted for value d. As δ increases in value (or
decreases from the semiring point of view) higher degradation of the solutions
is allowed and thus the number of substitutabilities increase with it.

In the second part of Figure 9.7 we can see that for α = 0 all the values
are interchangeable (in fact, since there are no solutions better than α = 0, by
definition all the elements are αinterchangeable).

For a certain threshold (α = 4) values s and d are αinterchangeable and value
l can substitute values s and d. Moreover, when α is greater than 5 we only have
that s can substitute d.

Further we consider the same variable E of the Example 2 for fuzzy CSP case
and compute α−setNS/NI by using the definition Definition 9.2.5. In Figure 9.8,
we can see how the occurence of α−setNS varies depending on the threshold α.

When α takes value 0 or ∞ all the domain values of variable E are
α−setinterchangeable. When α varies between 0 and 4, the domain value s is
α−setinterchangeable with values l and d, while only d can be α−setsubstitutable
for value l. For an α between 4 and 29 we can interchange only values s and d,
while for an α above 30 we can substitute also value l for s and d as well.

s l s s sl l l

s s s sl l l l

d d d d

d d d d

α = 0 
β

α = 4 α = 5 
Ν β

α =  

δ = 0 δ = 7 δ = 30 δ =  

Fig. 9.7. Example of how δ-substitutability and α-substitutability varies in the
opposite-fuzzy CSP over the values of variable E from Fig. 9.4
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d

α    [30,       )  α =  
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d

s l

d

Fig. 9.8. Example of how α−set-substitutability varies in the opposite-fuzzy
CSP over the values of variable E from Fig. 9.4
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We will show now how to compute interchangeabilities by using the Discrim-
ination Tree algorithm. In Figure 9.9 the Discrimination Tree is described for
variable M when α = 2 and α = 3. We can see that values m and l for variable
M are 2interchangeable whilst there are no interchangeabilities for α = 3 .

9.4 Partial Interchangeability

Similar to Freuder [106] we define also some notions of substitutability/inter-
changeability that consider more than one variable. In the following definitions
we admit to change the value of the variable v together some other neighborhood
variables to obtain a notion of Full Partial Substitutability (FPS).

Definition 9.4.1 (Full Partial Substitutability (FPS)). Consider two do-
main values b and a, for a variable v, and the set of constraint C; consider also
a set of variable V1 ∈ V . We say that b is partially substitutable for a on v with
respect to a set of variables V1 (b ∈ FPSV1

v (a)) if and only if for all assignment
η there exists η′, η′′ : V1 → D s.t.⊗

Cη[η′][v := a] ≤S
⊗

Cη[η′′][v := b]

Similarly, all the notion of δ/α/α−setNeighborhood Partial Substitutabil-
ity (δ/α/α−setNPS) can be defined (just changing C with Cv). Notion
of δ/α/α−setFull/Neighborhood Partial Interchangeability (δ/α/α−setFPI /NPI )
can be instead defined by considering the relation in both directions (and chang-
ing C with Cv for the neighborhood one).
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Fig. 9.9. Example of a search of α-interchangeability computing by the use of
discrimination trees
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Definition 9.4.2 (δNeighborhood Partial Substitutability (δNPS)).
Consider two domain values b and a, for a variable v, and the set of con-
straint Cv involving v; consider also a set of variable V1 ∈ V . We say that
b is δNeighborhood Partial Substitutable for a on v with respect to a set of
variables V1 (b ∈ δ

FPSV1
v (a)) if and only if for all assignment η there exists

η′, η′′ : V1 → D s.t.⊗
Cvη[η′][v := a] × δ ≤S

⊗
Cvη[η′′][v := b]

Definition 9.4.3 (αNeighborhood Partial Substitutability (αNPS)).
Consider two domain values b and a, for a variable v, and the set of con-
straint Cv involving v; consider also a set of variable V1 ∈ V . We say that
b is αNeighborhood Partial Substitutable for a on v with respect to a set of
variables V1 (b ∈ αFPSV1

v (a)) if and only if for all assignment η there exists
η′, η′′ : V1 → D s.t.⊗

Cvη[η′][v := a] ≥S α =⇒ (
⊗

Cvη[η′][v := a] ≤S
⊗

Cvη[η′′][v := b])

Definition 9.4.4 (α−setNeighborhood Partial Substitutability
(α−setNPS)). Consider two domain values b and a, for a variable v, and
the set of constraint Cv involving v; consider also a set of variable V1 ∈ V . We
say that b is α−setNeighborhood Partial Substitutable for a on v with respect to
a set of variables V1 (b ∈ α−setFPSV1

v (a)) if and only if for all assignment η
there exists η′, η′′ : V1 → D s.t.⊗

Cvη[η′][v := a] ≥S α =⇒
⊗

Cvη[η′′][v := b] ≥S α
Let’s apply the definition of NPI to our running example in Figure 9.3, by

projecting over variable x. It is easy to see that a and c are Neighbourhood
Partial Interchangeable. In fact they have assigned both the semiring level 0.2.
We have also that a, b and c are 0.15NPI and 0.1−setNPI .

The next theorem shows how NI is related to NPI . As we can imagine,
interchangeability implies partial interchangeability.

Theorem 9.4.1. Consider two domain values b and a, for a variable v, and the
set of constraint C involving v; consider also a set of variable V1 ∈ V and its
complement V̄1 = V − V1. Then,

NI v(a/b) =⇒ NPI V1
v (a/b).

Proof. It is enough to show that b ∈ NS v(a) =⇒ b ∈ NPI V1
v (a) (the results for

interchangeability easily follows from substitutability). By definition

b ∈ NSv(a) ⇐⇒
⊗

Cvη[v := a] ≥S
⊗

Cvη[v := b].

It is enough to take η′ = η′′ = ∅, to easily have⊗
Cη[η′][v := a] ≤S

⊗
Cη[η′′][v := b].

Similar results follow for the degradation and the threshold notion of partial
interchangeability.
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9.5 Conclusions

Interchangeability in CSPs is a general concept for formalizing and breaking
symmetries. It has been proposed for improving search performance, for problem
abstraction, and for solution adaptation. In this chapter, we have shown how the
concept can be extended to soft CSPs in a way that maintains the attractive
properties already known for hard constraints.

The two parameters α and δ allow us to express a wide range of practical
situations. The threshold α is used to eliminate distinctions that would not
interest us anyway, while the allowed degradation δ specifies how precisely we
want to optimize our solution. We have shown a range of useful properties of
these interchangeability concepts that should be useful for applying them in
similar ways as interchangeability for hard constraints.

In fact, interchangeability may be practically more useful for soft constraints
as it could be used to reduce the complexity of an optimization problem, which is
often much harder to solve than a satisfaction problem. Furthermore, in the case
of soft interchangeability it is possible to tune the parameters α and δ to create
the levels of interchangeability that are required for the desired application.



10. SCSPs for Modelling Attacks

to Security Protocols

Overview
Security protocols stipulate how remote principals of a computer network

should interact in order to obtain specific security goals. The crucial goals
of confidentiality and authentication may be achieved in various forms. Using
soft (rather than crisp) constraints, we develop a uniform formal notion for
the two goals. They are no longer formalised as mere yes/no properties as in
the existing literature, but gain an extra parameter, the security level. For
example, different messages can enjoy different levels of confidentiality, or a
principal can achieve different levels of authentication with different principals.

The goals are formalised within a general framework for protocol analysis
that is amenable to mechanisation by model checking. Following the applica-
tion of the framework to analysing the asymmetric Needham-Schroeder pro-
tocol [18, 19], we have recently discovered a new attack on that protocol. We
briefly comment on that attack, and demonstrate the framework on a bigger,
largely deployed protocol consisting of three phases, Kerberos.

A number of applications ranging from electronic transactions over the In-
ternet to banking transactions over financial networks make use of security pro-
tocols. It has been shown that the protocols often fail to meet their claimed
goals [4,137], so a number of approaches for analysing them formally have been
developed [1, 3, 23, 56, 57, 101, 102, 136, 160]. The threats to the protocols come
from malicious principals who manage to monitor the network traffic building
fake messages at will. A major protocol goal is confidentiality, confirming that a
message remains undisclosed to malicious principals. Another crucial goal is au-
thentication, confirming a principal’s participation in a protocol session. These
goals are formalised in a mere “yes or no” fashion in the existing literature.
One can just state whether a key is confidential or not, or whether a principal
authenticates himself with another or not.
Security goals are not simple boolean properties. “Security is not a simple
boolean predicate; it concerns how well a system performs certain functions” [8].
Indeed, experience shows that system security officers exercise care in applying
any firm boolean statements to the real world even if they were formal. In gen-
eral, formal security proofs are conducted within simplified models. Therefore,
security officers attempt to bridge the gap between those models and the real
word by adopting the largest possible variety of security measures all together.
For example, firewalls accompany SSH connections. Limiting the access to cer-
tain ports of a server is both stated on the firewall and on the server itself.
Biometric technology recently set aside the use of passwords to strengthen au-
thentication levels of principals. Still, principals’ credentials can be constrained

S. Bistarelli: Semirings for Soft Constraint Solving..., LNCS 2962, pp. 237–262, 2004.
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within a validity time interval. The officer shall balance the cost of an extra
security measure with his perception of the unmanaged risks. Any decision will
only achieve a certain security level.

Security levels also characterise security patches [103]. Each patch in fact
comes with a recommendation that is proportionate to the relevance of the
security hole the patch is meant to fix. Patches may be critical, or recommended,
or suggested, or software upgrade, etc. Depending on the cost of the patch and
on the relevance of the hole, the security officer can decide whether or not to
upgrade the system. It is a security policy what establishes the maximum level
up until a patch can be ignored.

This all confirms that real-world security is based on security levels rather
than on categorical, definitive, security assurances. In particular, security levels
characterise the protocol goals of confidentiality and authentication. Focusing
on the former goal, we remark that different messages require “specific degrees
of protection against disclosure” [117]. For example, a user password requires
higher protection than a session key, which is only used for a single protocol
session. Intuitively, a password ought to be “more confidential” than a session
key. Also, a confidentiality attack due to off-line cryptanalysis should not be
imputed to the protocol design. Focusing on authentication, we observe that
a certificate stating that K is a principal A’s public key authenticates A very
weakly. The certificate only signifies that A is a registered network principal,
but in fact confers no guarantee about A’s participation in a specific protocol
session. A message signed by A’s private key authenticates A more strongly, for
it signifies that A participated in the protocol in order to sign the message.

Our original contributions. We have developed enriched formal notions for the
two goals. Our definitions of l-confidentiality and of l-authentication highlight the
security level l. One of the advantages of formalising security levels is to capture
the real-world non-boolean concepts of confidentiality and authentication.

Each principal assigns his own security level to each message — different lev-
els to different messages — expressing the principal’s trust on the confidentiality
of the message. So, we can formalise that different goals are granted to differ-
ent principals. By a preliminary analysis, we can study what goals the protocol
achieves in ideal conditions where no principal acts maliciously. An empirical
analysis may follow, whereby we can study what goals the protocol achieves on
a specific network configuration arising from the protocol execution in the real
world. Another advantage of formalising security levels is that we can variously
compare attacks — formally.

Our security levels belong to a finite linear order. Protocol messages can
be combined (by concatenation or encryption) or broken down (by splitting
or decryption) into new messages. We must be able to compute the security
levels of the newly originated messages out of those of the message components.
Therefore, we introduce a semiring whose career set is the set of security levels.
Its two functions provide the necessary computational capabilities. Our use of a
semiring is loosely inspired to Denning’s use of a lattice to characterising secure
flows of information through computer systems [87]. The idea of using levels to
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formalise access rights is in fact due to her. Denning signals an attack whenever
an object is assigned a label worse than that initially specified. We formalise
protocol attacks in the same spirit.

Another substantial contribution of the present work is the embedding of
a novel threat model in a framework for protocol analysis. Our threat model
regards all principals as attackers if they perform, either deliberately or not,
any operation that is not admitted by the protocol policy. Crucially, it allows any
number of non-colluding attackers. This overcomes the limits of Dolev and Yao’s
popular threat model [89], which reduces a number of colluding principals to a
single attacker. The example that follows shows the deeper adherence of our
threat model to the real world, where anyone may attempt to subvert a protocol
for his (and only his) own sake.

Let us consider Lowe’s popular attack on the asymmetric Needham-Schroeder
protocol [136] within Dolev and Yao’s threat model. It sees an attacker C mas-
querade as A with B, after A initiated a session with C. This scenario clearly
contains an authentication attack following the confidentiality attack whereby
C learns B’s nonce Nb for A. Lowe reports that, if B is a bank for example, C
can steal money from A’s account as follows [136]

C → B : {|Na,Nb, “Transfer $ 1000 from A’s account to C’s”|}Kb

where {|m|}K stands for the ciphertext obtained encrypting message m with key
K (external brackets of concatenated messages are omitted). The bank B would
honour the request believing it came from the account holder A.

We argue that the analysis is constrained by the limitations of the threat
model. Plunging Lowe’s scenario within our threat model highlights that B has
mounted an indeliberate confidentiality attack on nonce Na, which was meant
to be known to A and C only. As C did previously, B can equally decide to
illegally exploit his knowledge of Na. If A is a bank, B can steal money from
C’s account as follows

B → A : {|Na,Nb, “Transfer $ 1000 from C’s account to B’s”|}Ka

The bank A would honour the request believing it came from the account holder
C.

The details of our findings on the Needham-Schroeder protocol can be found
in Section 10.2. Our empirical analysis of the protocol uniformly detects both at-
tacks in terms of decreased security levels: both C’s security level on Nb and B’s
security level on Na become lower than they would be if C didn’t act maliciously.

The framework presented throughout this chapter supersedes an existing
kernel [18,19] by extending it with five substantial features. I) The principles of
the new threat model that allows all principals to behave maliciously. II) The
combination of preliminary and empirical analyses. III) The study of the authen-
tication goal. IV) The formalisation of an additional event whereby a principal
discovers a secret by cryptanalysis — this allows a larger number of network
configurations to be studied through an empirical analysis. V) A comprehensive
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study of how message manipulation and exposure to the network lowers the se-
curity level of the message — this is implemented by a new algorithm called
RiskAssessment.

Since we only deal with bounded protocols and finite number of principals,
our framework is amenable to mechanisation by model checking, although this
exceeds the purposes of the present chapter.

Findings on the running example — Kerberos. We demonstrate our framework
on a largely deployed protocol, Kerberos. Our preliminary analysis of the pro-
tocol formally highlights that the loss of an authorisation key would be more
serious than the loss of a service key by showing that the former has a higher
security level than the latter. By similar means, the preliminary analysis also
allows us to compare the protocol goals in the forms they are granted to ini-
tiator and responder. It shows that authentication of the responder with the
initiator is weaker than that of the initiator with the responder. To the best of
our knowledge, developing such detailed observations formally is novel to the
field of protocol analysis.

The empirical analysis that follows studies an example scenario in which a
form of cryptanalysis was performed. The analysis highlights how that event low-
ers a number of security levels, and so lowers confidentiality and authentication
for a number of principals.

Chapter outline. Our framework for protocol analysis is described in (§10.1).
Then, the Needham’Schroeder (§10.2) and the Kerberos protocol are studied
(§10.3) and analysed (§10.4). Some conclusions (§10.5) terminate the presenta-
tion.

10.1 Constraint Programming for Protocol Analysis

This section presents our framework for analysing security protocols. Using soft
constraints requires the definition of a c-semiring.

Our security semiring (§10.1.1) is used to specify each principal’s trust on the
security of each message, that is each principal’s security level on each message.
The security levels range from the most secure (highest, greatest) level unknown
to the least secure (lowest) level public. Intuitively, if A’s security level on m is
unknown, then no principal (included A) knows m according to A, and, if A’s
security level on m is public, then all principals potentially know m according
to A. The lower A’s security level on m, the higher the number of principals
knowing m according to A. For simplicity, we state no relation between the
granularity of the security levels and the number of principals.

Using the security semiring, we define the network constraint system
(§10.1.2), which represents the computer network on which the security pro-
tocols can be executed. The development of the principals’ security levels from
manipulation of the messages seen during the protocol sessions can be formalised
as a security entailment (§10.1.3), that is an entailment relation between con-
straints. Then, given a specific protocol to analyse, we represent its assumptions
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in the initial SCSP (§10.1.4). All admissible network configurations arising from
the protocol execution as prescribed by the protocol designers can in turn be
represented in the policy SCSP (§10.1.5). We also explain how to represent any
network configuration arising from the protocol execution in the real world as
an imputable SCSP (§10.1.7).

Given a security level l, establishing whether our definitions of l-
confidentiality (§10.1.8) or l-authentication (§10.1.9) hold in an SCSP requires
calculating the solution of the imputable SCSP and projecting it on certain prin-
cipals of interest. The higher l, the stronger the goal. For example, unknown-
confidentiality is stronger than public-confidentiality, or, A’s security level on
B’s public key (learnt via a certification authority) being public enforces public-
authentication of B with A, which is the weakest form of authentication. We can
also formalise confidentiality or authentication attacks. The definitions are given
within specific methodologies of analysis.

By a preliminary analysis, we can study what goals the protocol achieves in
ideal conditions where no principal acts maliciously, namely the very best the
protocol can guarantee. We concentrate on the policy SCSP, calculate its solu-
tion, and project it on a principal of interest. The process yields the principal’s
security levels, which allow us to study what goals the protocol grants to that
principal in ideal conditions, and which potential attacks would be more serious
than others for the principal. For example, the most serious confidentiality at-
tacks would be against those messages on which the principal has the highest
security level.

An empirical analysis may follow, whereby we can study what goals the
protocol achieves on a specific network configuration arising from the protocol
execution in the real world. We concentrate on the corresponding imputable
SCSP, calculate its solution and project it on a principal of interest: we obtain
the principal’s security levels on all messages. Having done the same operations
on the the policy SCSP, we can compare the outcomes. If some level in the
imputable is lower than the corresponding level in the policy, then there is an
attack in the imputable one. In fact, some malicious activity contributing to the
network configuration modelled by the imputable SCSP has taken place so as to
lower some of the security levels stated by the policy SCSP.

The following, general treatment is demonstrated in §10.3.

10.1.1 The Security Semiring

Let n be a natural number. We define the set L of security levels as follows.

L = {unknown, private, traded1, traded2, . . . , tradedn, public}

Although our security levels may appear to resemble Abadi’s types [2], there
is in fact little similarity. Abadi associates each message to either type public,
or secret, or any, whereas we define n security levels with no bound on n, and
each principal associates a level of his own to each message as explained in the
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following. Also, while Abadi’s public and private cannot be compared, our levels
are linearly ordered.

The security levels express each principal’s trust on the security of each
message. Clearly, unknown is the highest security level. We will show how, under
a given protocol, a principal assigns unknown to all messages that do not pertain
to the protocol, and to all messages that the principal does not know. A principal
will assign private to all messages that, according to himself, are known to him
alone, such as his own long-term keys, the nonces invented during the protocol
execution, or any secrets discovered by cryptanalysis. In turn, a principal will
assign tradedi to the messages that are exchanged during the protocol: the higher
the index i, the more the messages have been handled by the principals, and
therefore the more principals have potentially learnt those messages. So, public
is the lowest security level. These security levels generalise, by the tradedi levels,
the four levels that we have discussed elsewhere [18].

We introduce an additive operator, +sec, and a multiplicative operator,
×sec. To allow for a compact definition of the two operators, and to simplify
the following treatment, let us define a convenient double naming:
– unknown ≡ traded−1

– private ≡ traded0

– public ≡ tradedn+1

Let us consider an index i and an index j both belonging to the closed interval
[−1, n+ 1] of integers. We define +sec and×sec by the following axioms.

Ax. 1: tradedi +sec tradedj = tradedmin(i,j)

Ax. 2: tradedi ×sec tradedj = tradedmax(i,j)

Theorem 10.1.1 (Security Semiring). The structure Ssec =
〈L,+sec,×sec, public, unknown 〉 is a c-semiring.

Proof. Clearly, Ssec enjoys the same properties as the structure Sfinite−fuzzy =
〈{−1, . . . , n+1},max,min,−1, n+1〉. Indeed, the security levels can be mapped
into the values in the range −1, . . . , n+ 1 (unknown being mapped into 0, public
being mapped into n+ 1); +sec can be mapped into function max; ×sec can be
mapped into function min. Moreover, Sfinite−fuzzy can be proved a c-semiring
as done with the fuzzy semiring [47].

10.1.2 The Network Constraint System

We define a constraint system CSn = 〈Ssec,D,V〉 where:

– Ssec is the security semiring (§10.1.1);
– V is bounded set of variables.
– D is an bounded set of values including the empty message {||} and all atomic

messages, as well as all messages recursively obtained by concatenation and
encryption.
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We name CSn as network constraint system. The elements of V stand for the net-
work principals, and the elements of D represent all possible messages. Atomic
messages typically are principal names, timestamps, nonces and cryptographic
keys. Concatenation and encryption operations can be applied a bounded num-
ber of times.

Notice that CSn does not depend on any protocols, for it merely portrays
a computer network on which any protocol can be implemented. Members of V

will be indicated by capital letters, while members of D will be in small letters.

10.1.3 Computing the Security Levels by Entailment

Recall that each principal associates his own security levels to the messages.
Those levels evolve while the principal participates in the protocol and performs
off-line operations such as encryption, concatenation, decryption, and splitting.
We define four rules to compute the security levels that each principal gives
to the newly generated messages. The rules are presented in Figure 10.1, where
function def is associated to a generic constraint projected on a generic principal
A.

Encryption and concatenation build up new messages from known ones. The
new messages must not get a worse security level than the known ones have. So,
the corresponding rules choose the better of the given levels. Precisely, if mes-
sages m1 and m2 have security levels v1 and v2 respectively, then the encrypted
message {|m1|}m2

and the compound message {|m1,m2|}, whose current level be
some v3, get a new level that is the better of v1 and v2, “normalised” by v3. This

Encryption:
def (m1) = v1; def (m2) = v2; def ({|m1|}m2

) = v3

def ({|m1|}m2
) = (v1 +sec v2)×sec v3

Concatenation:
def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3;

def ({|m1, m2|}) = (v1 +sec v2)×sec v3

Decryption:
def (m1) = v1; def (m−1

2 ) = v2; def ({|m1|}m2
) = v3; v2, v3 < unknown

def (m1) = v1 ×sec v2 ×sec v3

Splitting:
def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3

def (m1) = v1 ×sec v3; def (m2) = v2 ×sec v3

Fig. 10.1. Computation rules for security levels
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normalisation, which is done in terms of the ×sec operator, influences the result
only if the new level is better than the current level.

Decryption and splitting break down known messages into new ones. The
new messages must not get a better security level than the known ones have.
So, the corresponding rules choose the worse of the given levels by suitable
applications of ×sec, and assign it to the new messages. Recall that, in case
of asymmetric cryptography, the decryption key for a ciphertext is the inverse
of the key that was used to create the ciphertext. So the rule for decryption
considers the inverse of message m2 and indicates it as m−1

2 . Conversely, in
case of symmetric cryptography, we have m−1

2 = m2. The rule for splitting
presupposes that concatenation is transparent in the sense that, for any index
n, an n-component message can be seen as a 2-component message, namely
{|m1,m2, . . . ,mn|} = {|m1, {|m2, . . . ,mn|}|}. We now define a binary relation be-
tween constraints.

Definition 10.1.1 (Relation )). Consider two constraints c1, c2 ∈ C such that
c1 = 〈def 1, con〉 and c2 = 〈def 2, con〉. The binary relation ) is such that c1 ) c2
iff def 2 can be obtained from def 1 by a number (possibly zero) of applications of
the rules in Figure 10.1 .

Theorem 10.1.2 (Relation ) as entailment relation). The binary relation
) is an entailment relation.

Proof (Hint). Relation ) enjoys the reflexivity and transitivity properties that
are needed to be an entailment relation.

In the following, c� represents the reflexive, transitive closure of the entail-
ment relation ) applied to the constraint c. While other entailment relations
(e.g. [52]) involve all constraints that are related by the partial order ≤S, the
security entailment only concerns the subset of those constraints obtainable by
application of the four rules in Figure 10.1.

10.1.4 The Initial SCSP

The designer of a protocol must also develop a policy to accompany the protocol.
The policy for a protocol P is a set of rules stating, among other things, the
preconditions necessary for the protocol execution, such as which messages are
public, and which messages are private for which principals.

It is intuitive to capture these policy rules by our security levels (§10.1.1).
Precisely, these rules can be translated into unary constraints. For each principal
A ∈ V, we define a unary constraint that states A’s security levels as follows. It
associates security level public to those messages that are known to all, typically
principal names and timestamps; level private to A’s initial secrets, such as keys
(e.g., A’s long-term key if P uses symmetric cryptography, or A’s private key if
P uses asymmetric cryptography, or A’s pin if P uses smart cards) or nonces;
level unknown to all remaining domain values (including, e.g., the secrets that
A will invent during the protocol execution, or other principals’ initial secrets).
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This procedure defines what we name initial SCSP for P, which specifies the
principals’ security levels when no session of P has yet started. Notice that the
constraint store representing each principal’s security levels is computed using
the reflexive, transitive, closure of the entailment relation (§10.1.3). So, when
a new message is invented, the corresponding constraint is added to the store
along with all constraints that can be extracted by entailment.

Considerations on how official protocol specifications often fail to provide a
satisfactory policy [21] exceed the scope of this chapter. Nevertheless, having to
define the initial SCSP for a protocol may help pinpoint unknown deficiencies
or ambiguities in the policy.

10.1.5 The Policy SCSP

The policy for a protocol P also establishes which messages must be exchanged
during a session between a pair of principals while no-one performs malicious
activity. The protocol designer typically writes a single step as A → B : m,
meaning that principal A sends message m to principal B. The policy typically
allows each principal to participate in a number of protocol sessions inventing
a number of fresh messages. Assuming both these numbers to be bounded, a
bounded number of events may take place [93]. Because no principal is assumed
to be acting maliciously, no message is intercepted, so a message that is sent
is certain to reach its intended recipient. Therefore, we only formalise the two
following events.

1. A principal invents a fresh message (typically a new nonce).
2. A principal sends a message (constructed by some sequence of applications

of encryption, concatenation, decryption, and splitting) to another principal,
and the message is delivered correctly.

Clearly, additional events can be formalised to capture protocol-specific de-
tails, such as principal’s annotation of sensitive messages, message broadcast,
SSL-secure trasmission, and so on.

We read from the protocol policy each allowed step of the form A → B : m
and its informal description, which explains whether A invents m or part of it.
Then, we build the policy SCSP for P by the algorithm in Figure 10.2.

The algorithm considers the initial SCSP (line 1) and extends it with new
constraints induced by each of the events occurring during the protocol execution
(line 2). If the current event is a principal A’s inventing a message n (line 3),
then a unary constraint is added on variable A assigning security level private
to the domain value n, and unknown to all other values (line 4). If that event is
a principal A’s sending a message m to a principal B (line 5), then the solution
of the current SCSP p is computed and projected on the sender variable A (line
6), and extended by entailment (line 7). The last two steps yield A’s view of
the network traffic. In particular, also A’s security level on m is updated by
entailment. For example, if m is built as {|Na,Nb|}, the security levels of Na and
Nb derive from the computed solution, and then the level of m is obtained by
the concatenation rule of the entailment relation.
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BuildPolicySCSP(P)

1. p ← initial SCSP for P;
2. for each event ev allowed by the policy for P do
3. if ev = (A invents n, for some A and n) then
4. p ← p extended with unary constraint on A that assigns

private to n and unknown to all other messages;
5. if ev = (A sends m to B not intercepted, for some A, m and B) then
6. c← Sol(p) ⇓{A};
7. let 〈def , con〉 = c� in newlevel← RiskAssessment(def (m));
8. p ← p extended with binary constraint between A and B that assigns

newlevel to 〈{||}, m〉 and unknown to all other tuples;
9. return p;

Fig. 10.2. Algorithm to construct the policy SCSP for a protocol P

At this stage, A’s security level on m is updated again by algorithm
RiskAssessment (line 7). As explained in the next section, this shall assess
the risks that m runs following A’s manipulation and the exposure to the net-
work. The current SCSP can be now extended with a binary constraint on the
pair of variables A and B (line 8). It assigns the newly computed security level
newlevel to the tuple 〈{||},m〉 and unknown to all other tuples. This reasoning is
repeated for each of the bounded number of events allowed by the policy. When
there are no more events to process, the current SCSP is returned as policy SCSP
for P (step 9), which is our formal model for the idealised protocol. Termination
of the algorithm is guaranteed by finiteness of the number of allowed events. Its
complexity is clearly linear in the number of allowed events, which is in turn
exponential in the length of the exchanged messages [93].

10.1.6 Assessing the Expected Risk

Each network event involves some message. The events that expose their mes-
sages to the network, such as to send or receive or broadcast a message, clearly
impose some expected risk on those messages — ideal message security is never
to use that message. The risk function ρ expresses how the expected risk affects
the security levels of the messages that are involved.

The actual definition of the risk function depends on the protocol policy,
which should clearly state the expected risk for each network event when the
protocol is executed in its intended environment. But “often protocols are used in
environments other than the ones for which they were originally intended” [144],
so the definition also depends on the specific environment that is considered.

The risk function should take as parameters the given security level and
the network event that is influencing that level. The second parameter can be
omitted for simplicity from this presentation because of the limited number of
events we are modelling. Indeed, we will only have to compute the function for
the network event whereby a message is sent on the network (either intercepted or
not), whereas if we modelled, for example, a broadcast event, then the assessment
for that particular event would have to yield public.
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The risk function must enjoy the two following properties.

i. Extensivity. This property means that ρ(l) ≤ l for any l. It captures the
requirement that each manipulation of a message decrease its security level
— each manipulation increases the risk of tampering.

ii. Monotonicity. This property means that l1 ≤ l2 implies ρ(l1) ≤ ρ(l2) for any
l1 and l2. It captures the requirement that the expected risk preserve the ≤
relation between security levels.

Notice that we have stated no restrictions on the values of the risk function.
Therefore, an initial total order, e.g. l1 < l2, may at times be preserved, such as
ρ(l1) < ρ(l2), or at other times be hidden, such as ρ(l1) = ρ(l2).

As a simple example of risk function we choose the following variant of the
predecessor function. It takes a security level and produces its predecessor in
the linear order induced by +sec on the set L of security levels, unless the given
level is the lowest, public, in which case the function leaves it unchanged. Our
algorithm RiskAssessment in general serves to implement the risk function.
Figure 10.3 shows the algorithm for our example function.

We remark that all considerations we advance in the sequel of this chapter
merely rely on the two properties we have required for a risk function and are
therefore independent from the specific example function. However, the protocol
analyser may take, depending on his focus, more detailed risk functions, such
as for checking originator(s) or recipient(s) of the current event (conventional
principals, trusted third principals, proxi principals, etc.), the network where it
is being performed (wired or wireless), and so on.

One could think of embedding the risk function at the constraint level rather
than at a meta-level as we have done. That would be possible by embedding
the appropriate refinements in the entailment rules. For example, let us con-
sider an agent’s construction of a message m = {|m1,m2|}, which is currently
tradedi, from concatenation of m1 and m2, which are tradedi1 and tradedi2 re-
spectively. The entailment rule should first compute the maximum between the
levels of the components (that is the minimum between the indexes), obtaining
tradedmin(i1,i2). Then, it should compute the minimum between the level just
computed and that of m (that is the maximum between the indexes), obtaining
tradedmax(min(i1,i2),i). Finally, the rule should apply the risk function. With our
example risk function, it shold yield tradedmax(min(i1,i2),i)+1. But the security
levels would be decremented every time the entailment relation were applied.

RiskAssessment(l)

1. let tradedi = l in
2. if i = n + 1 then l′ ← l
3. else l′ ← tradedi+1;
4. return l′;

Fig. 10.3. Implementation for a simple risk function
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This would violate a general requirement of constraint programming, that is
c� = c��. Hence, the decrement at the meta level is preferable.

10.1.7 The Imputable SCSPs

A real-world network history induced by a protocol P must account for malicious
activity by some principals. Each such history can be viewed as a sequence of
events of four different forms.

1. A principal invents a fresh message (typically a new nonce).
2. A principal sends a message (constructed by some sequence of applications

of encryption, concatenation, decryption, and splitting) to another principal,
and the message is delivered correctly.

3. A principal sends a message (constructed as in the previous event) to another
principal, but a third principal intercepts it.

4. A principal discovers a message by cryptanalysing another message.

Unlike the first two events, which were formalised also for constructing the
policy SCSP, the last two are new, as they are outcome of malicious activity. We
remark that the third event signifies that the message reaches some unexpected
principal rather than its intended recipient.

We can model any network configuration at a certain point in any real-world
network history as an SCSP by modifying the algorithm given in Figure 10.2 as
in Figure 10.4 (unmodified fragments are omitted). The new algorithm takes as
inputs a protocol P and a network configuration nc originated from the protocol
execution. The third type of event is processed as follows: when a message is
sent by A to B and is intercepted by another principal C, the corresponding
constraint must be stated on the pair A,C rather than A,B. The fourth type
of event is processed by stating a unary constraint that assigns private to the
cryptanalyser’s security level on the discovered message.

The new algorithm outputs what we name an imputable SCSP for P. Both the
initial SCSP and the policy SCSP may be viewed as imputable SCSPs. Because
we have assumed all our objects to be bounded, the number of possible network
configurations is bounded and so is the number of imputable SCSPs for P.

10.1.8 Formalising Confidentiality

“Confidentiality is the protection of information from disclosure to those not
intended to receive it” [156]. This definition is often simplified into one that
is easier to formalise within Dolev-Yao’s [89] model with a single attacker: a
message is confidential if it is not known to the attacker. The latter definition is
somewhat weaker: if a principal C who is not the attacker gets to learn a session
key for A and B, the latter definition holds but the former does not. To capture
the former definition, we adopt the following threat model: all principals are
attackers if they perform, either deliberately or not, any operation that is not
admitted by the protocol policy. As we have discussed in the introductory part of
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BuildImputableSCSP(P, nc)

...

2. for each event ev in nc do
...

8.1. if ev = (A sends m to B intercepted by C, for some A, m, B and C) then
8.2. c← Sol(p) ⇓{A};
8.3. let 〈def , con〉 = c� in newlevel← RiskAssessment(def (m));
8.4. p ← p extended with binary constraint betweeen A and C that assigns

newlevel to 〈{||}, m〉 and unknown to all other tuples;
8.5. if ev = (C cryptanalyses n from m, for some C, m and n) then
8.6. p ← p extended with unary constraint on C that assigns

private to n and unknown to all other messages;
...

Fig. 10.4. Algorithm to construct an imputable SCSP for P (fragment)

this chapter, our threat model exceeds the limits of Dolev-Yao’s by allowing us
to analyse scenarios with an unspecified number of non-colluding attackers.

A formal definition of confidentiality should account for the variety of re-
quirements that can be stated by the protocol policy. For example, a message
might be required to remain confidential during the early stages of a protocol but
its loss during the late stages might be tolerated, as is the case with SET [21].
That protocol typically uses a fresh session key to transfer some certificate once,
so the key loses its importance after the transfer terminates.

Another possible requirement is that certain messages, such as those signed
by a root certification authority to associate the principals to their public
keys [21], be entirely reliable. Hence, at least those messages must be assumed
to be safe from cryptanalysis. Also, a protocol may give different guarantees
about its goals to different principals [16], so our definition of confidentiality
must depend on the specific principal that is considered.

Using the security levels, we develop uniform definitions of confidentiality and
of confidentiality attack that account for any policy requirement. Intuitively, if
a principal’s security level on a message is l, then the message is l-confidential
for the principal because the security level in fact formalises the principal’s trust
on the security, meant as confidentiality, of the message (see the beginning of
§10.1). Thus, if an imputable SCSP features a principal with a lower security
level on a message w.r.t. the corresponding level in the policy SCSP, then that
imputable SCSP bears a confidentiality attack.

Here, l denotes a generic security level, m a generic message, A a generic
principal. Also, P indicates the policy SCSP for a generic security protocol, and
p and p′ some imputable SCSPs for the same protocol. We define Sol(P) ⇓{A}=
〈Def A, {A}〉, Sol(p) ⇓{A}= 〈def A, {A}〉, and Sol(p ′) ⇓{A}= 〈def ′

A, {A}〉.
Definition 10.1.2 (l-confidentiality). l-confidentiality of m for A in p ⇐⇒
def A(m) = l.
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Preliminary Analysis of Confidentiality. The preliminary analysis of the
confidentiality goal can be conducted on the policy SCSP for the given protocol.

Let us calculate the solution of the policy SCSP, and project it on some
principal A. Let us suppose that two messages m and m′ get security levels l
and l′ respectively, l′ < l. Thus, even if no principal acts maliciously, m′ must
be manipulated more than m, so A trusts that m′ will be more at risk than m.
We can conclude that the protocol achieves a stronger confidentiality goal on m
than on m′ even if it is executed in ideal conditions. Also, m may be used to
encrypt m′, as is the case with Kerberos (§10.4.1) for example. Therefore, losing
m to a malicious principal would be more serious than losing m′. We address a
principal’s loss of m as confidentiality attack on m. A more formal definition of
confidentiality attack cannot be given within the preliminary analysis because
no malicious activity is formalised. So, the following definition concerns potential
confidentiality attacks that may occur during the execution

Definition 10.1.3 (Potential, worse confidentiality attack). Suppose that
there is l-confidentiality of m in P for A, that there is l′-confidentiality of m′

in P for A, and that l′ < l; then, a confidentiality attack on m would be worse
than a confidentiality attack on m′.

Empirical Analysis of Confidentiality. By an empirical analysis, we con-
sider a specific real-world scenario arising from the execution of a protocol and
build the corresponding imputable SCSP p. If the imputable SCSP achieves a
weaker confidentiality goal of some message for some principal than the pol-
icy SCSP does, then the principal has mounted, either deliberately or not, a
confidentiality attack on the message.

Definition 10.1.4 (Confidentiality attack). Confidentiality attack by A on
m in p ⇐⇒ l-confidentiality of m in P for A ∧ l′-confidentiality of m in p for
A ∧ l′ < l.

Therefore, there is a confidentiality attack by A on m in p iff def A(m) <
Def A(m). The more an attack lowers a security level, the worse that attack,
so confidentiality attacks can be variously compared. For example, let us con-
sider two confidentiality attacks by some agent on a message. If the message
is l-confidential for the agent in the policy SCSP, but is l′-confidential and l′′-
confidential respectively in some imputable SCSPs p and p′ for the same agent,
then l > l′ > l′′ implies that the attack mounted in p′ is worse than that in p.
Likewise, let us consider two messages m and m′ that are both l-confidential for
some agent in the policy SCSP. If m is l′-confidential, and m′ is l′′-confidential
in p, then l > l′ > l′′ implies that the attack mounted on m′ is worse than that
on m.

10.1.9 Formalising Authentication

The authentication goal enforces the principals’ presence in the network and
possibly their participation in specific protocol sessions. It is achieved by means
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of messages that “speak about” principals. For example, in a symmetric cryptog-
raphy setting, given a session key Kab relative to the session between principals
A and B and known to both, message {|A,Na|}Kab received by B informs him
that A is running the session based on nonce Na and key Kab, namely the mes-
sage authenticates A with B. An equivalent message in an asymmetric setting
could be {|Nb|}Ka−1 , which B can decrypt using A’s public key. Also B’s mere
knowledge of Ka as being A’s public key is a form of authentication of A with
B. Indeed, A must be a legitimate principal because Ka is typically certified by
a certificate of the form {|A,Ka|}Kca

, Kca being the public key of a certification
authority. It follows that security protocols may use a large variety of message
forms to achieve the authentication goal — the ISO standard in fact does not
state a single form to use [123].

In consequence, we declare a predicate speaksabout(m,A), but do not provide
a formal definition for it because this would necessarily have to be restrictive.
However, the examples above provide the intuition of its semantics. There is
l-authentication of B with A if there exists a message such that A’s security
level on it is l, and the message speaks about B. This signifies that A received
a message conveying B’s aliveness.

Definition 10.1.5 (l-authentication). l-authentication of B with A in p
⇐⇒ ∃ m s.t. defA(m) = l < unknown ∧ speaksabout(m,B) ∧ def B(m) <
unknown.

The definition says that there is l-authentication of B with A whenever both
A and B’s security levels on a message that speaks about B are less than un-
known, l being A’s level on the message. The intuition behind the definition is
that messages that B sends A for authentication will produce a strong level of
authentication if they reach A without anyone else’s tampering. Otherwise the
level of authentication gets weaker and weaker. Precisely, the lower A’s security
level on m, the weaker the authentication of B with A.

Weaker forms of authentication hold when, for example, B sends a mes-
sage speaking about himself via a trusted third principal, or when a malicious
principal overhears the message (recall that each event of sending decreases the
security level of the sent message). Our definition applies uniformly to both
circumstances by the appropriate security level.

Another observation is that the weakest form, public-authentication, holds for
example of B with A in an asymmetric-cryptography setting by the certificate for
B’s public key in any imputable SCSP where A received the certificate. Likewise,
the spy could always forge a public message that speaks about B, e.g. a message
containing B’s identity. But in fact public-authentication always holds between
any pairs of principals because principals’ names are known to all.
Preliminary Analysis of Authentication. As done with the confidential-
ity goal (§10.1.8), the preliminary analysis of the authentication goal can be
conducted on the policy SCSP for the given protocol.

Once we calculate the solution of that SCSP, we can apply our definition of
l-authentication, and verify what form of authentication is achieved. In particu-
lar, if there is l-authentication of B with A, and l′-authentication of D with C,
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l′ < l, then we can conclude that the protocol achieves a stronger authentication
goal of B with A, than of D with C. We address a principal’s masquerading as B
with A as authentication attack on A by means of B. A more formal definition of
authentication attack cannot be given at this stage, since no principal acts ma-
liciously in the policy SCSP, However, we can compare potential authentication
attacks in case they happen during the protocol execution.

Definition 10.1.6 (Potential, worse authentication attack). Suppose that
there is l-authentication of B with A by m in P, that there is l′-authentication
of D with C by m′ in P, and that l′ < l; then an authentication attack on A by
means of B would be worse than an authentication attack on C by means of D.

Empirical Analysis of Authentication. If the policy SCSP P achieves l-
authentication of B with A by m, and an imputable SCSP p achieves a weaker
form of authentication between the same principals by the same message, then
the latter SCSP bears an authentication attack.

Definition 10.1.7 (Authentication attack). Authentication attack on A by
means of B in p ⇐⇒ l-authentication of B with A in P ∧ l′-authentication of
B with A in p ∧ l′ < l.

If a malicious principal has intercepted a message m that authenticates B
with A, and forwarded m to B in some imputable SCSP p, then, according to
the previous definition, there is an authentication attack on A by means of B in
p.

10.2 An Empirical Analysis of Needham-Schroeder

Figure 10.5 presents the asymmetric Needham-Schroeder protocol, which is so
popular that it requires little comments.

The goal of the protocol is authentication: at completion of a session initiated
by A with B, A should get evidence to have communicated with B and, likewise,
B should get evidence to have communicated with A. Assuming that encryption
is perfect and that the nonces are truly random, authentication is achieved here
by confidentiality of the nonces. Indeed, upon reception of Na inside message
2, A would conclude that she is interacting with B, the only principal who
could retrieve Na from message 1. In the same fashion, when B receives Nb

1. A→ B : {|Na, A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ B : {|Nb|}Kb

Fig. 10.5. The asymmetric Needham-Schroeder protocol
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inside message 3, he would conclude that A was at the other end of the network
because Nb must have been obtained from message 2, and no-one but A could
perform this operation.

Lowe discovers [136] that the protocol suffers the attack in Figure 10.6,
whereby a malicious principal C masquerades as a principal A with a princi-
pal B, after A initiated a session with C. The attack, which sees C interleave
two sessions, indicates failure of the authentication of A with B, which follows
from failure of the confidentiality of Nb. The security levels of all other principals
on the nonces Na and Nb are unknown. So, by Definition 10.1.2, those nonces
are unknown-confidential for any principal different from A or B.

An empirical analysis. We start off by building the initial SCSP, whose fragment
for principalsA andB is in Figure 10.7 (the following only features suitable SCSP
fragments pertaining to the principals of interest).

Then, we build the policy SCSP for the protocol by Build Policy SCSP.
Figure 10.8 presents the fragment pertaining to a single session between princi-
pals A and B. The figure indicates that, while A’s security level on her nonce
Na was initially private, it is now lowered to traded1 by entailment because of
the binary constraint formalising step 2 of the protocol. Similarly, B’s security
level on Nb is now traded2 though it was originally private. The figure omits
the messages that are not relevant to the following discussion.

At this stage, we use Build Imputable SCSP to build the imputable SCSP
given in Figure 10.9. It formalises the network configuration defined by Lowe’s
attack. The solution of this SCSP projected on variable C is a constraint that
associates security level traded4 to the nonce Nb. Following Definition 10.1.2,

1. A→ C : {|Na , A|}Kc

1′. C → B : {|Na , A|}Kb

2′. B → A : {|Na ,Nb|}Ka

2. C → A : {|Na ,Nb|}Ka

3. A→ C : {|Nb|}Kc

3′. C → B : {|Nb|}Kb

Fig. 10.6. Lowe’s attack to the Needham-Schroeder Protocol

A B

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka−1〉 → private 〈Kb−1〉 → private

Fig. 10.7. Fragment of the initial SCSP for Needham-Schroeder protocol

figure/newbefore1.eps
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BA

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka−1〉 → private 〈Kb−1〉 → private

〈Na〉 → private

〈Nb〉 → private

〈Nb〉 → traded1

〈Nb〉 → traded2

〈Na〉 → traded1

〈Na〉 → traded1

〈{||}, {|Na, a|}Kb〉 → traded1

〈{|Na,Nb|}Ka , {||}〉 → traded1

〈{||}, {|Nb|}Kb〉 → traded2

Fig. 10.8. Fragment of the policy SCSP for the Needham-Schroeder protocol

Nb is traded4-confidential for C in this SCSP. Hence, there is a deliberate con-
fidentiality attack by C on Nb in this problem, because Nb got level unknown
in the policy SCSP. This leads to Lowe’s attack.

We discover another attack in the same problem. The problem solution pro-
jected on variable B associates security level traded2 to the nonce Na, which
instead got level unknown in the policy SCSP. This signifies that B has learnt
a nonce that he was not allowed to learn by policy, that there is an indeliberate
confidentiality attack by B on Na. Notice that the two attacks are uniformly
formalised.

As a consequence of the former attack, Lowe reports that, if B is a bank, C
can steal money from A’s account as follows

C → B : {|Na,Nb, “Transfer£1000 from A’s account to C’s”|}Kb

and the bank B would honour the request believing it came from the account
holder A. As a consequence of the attack we have discovered, if A is a bank, B
can steal money from C’s account as follows

B → A : {|Na,Nb, “Transfer£1000 from C’s account to B’s”|}Ka

and the bank A would honour the request believing it came from the account
holder C. In practice, it would be sufficient that B realises what Na is for the
latter crime to succeed.

There are also less serious attacks. The nonce Na is traded3-confidential
for A in this SCSP, while it was traded1-confidential in the policy SCSP. The
discrepancy highlights that the nonce has been handled differently from the
policy prescription — in fact C reused it with B. Also, Nb’s security level for A
is traded3 instead of traded1 as in the policy SCSP. Similar considerations apply
to Nb, whose security level for B is traded4 instead of traded2. This formalises
C’s abusive use of the nonce.
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Fig. 10.9. Fragment of the Imputable SCSP corresponding to Lowe’s attack

10.3 The Kerberos Protocol

Kerberos is a protocol based on symmetric cryptography meant to distribute
session keys with authentication over local area networks. The protocol has
been developed in several variants (e.g. [146]), and also integrated with smart
cards [124]. Here, we refer to the version by Bella and Riccobene [23].

The layout in Figure 10.10 shows that Kerberos relies on two servers, the
Kerberos Authentication Server (Kas in brief), and the Ticket Granting Server
(Tgs in brief). The two servers are trusted, namely they are assumed to be secure
from the spy’s tampering. They have access to an internal database containing
the long-term keys of all principals. The database is in turn assumed to be
secure. Only the first two steps of the protocol are mandatory, corresponding
to a principal A’s authentication with Kas. The remaining steps are optional as
they are executed only when A requires access to a network resource B.

In the authentication phase, the initiator A queries Kas with her identity, Tgs
and a timestamp T1 ; Kas invents a session key and looks up A’s shared key in
the database. It replies with a message sealed by A’s shared key containing the
session key, its timestamp Ta, Tgs and a ticket. The session key and the ticket
are the credentials to use in the subsequent authorisation phase, so we address
them as authkey and authticket respectively.
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Fig. 10.10. The Kerberos layout

Authentication

1. A → Kas : A, Tgs,T1

2. Kas → A : {|authK , Tgs,Ta, {|A, Tgs, authK ,Ta|}Ktgs︸ ︷︷ ︸
authTicket

|}Ka

Authorisation

3. A → Tgs :

authTicket︷ ︸︸ ︷
{|A, Tgs, authK ,Ta|}Ktgs ,

authenticator1︷ ︸︸ ︷
{|A,T2 |}authK , B

4. Tgs → A : {|servK , B,Ts, {|A, B, servK ,Ts|}Kb︸ ︷︷ ︸
servTicket

|}authK

Service

5. A → B :

servTicket︷ ︸︸ ︷
{|A,B, servK ,Ts|}Kb ,

authenticator2︷ ︸︸ ︷
{|A,T3 |}servK

6. B → A : {|T3 + 1|}servK︸ ︷︷ ︸
authenticator3

Fig. 10.11. The Kerberos protocol

Now, A may start the authorisation phase. She sends Tgs a three-component
message including the authticket, an authenticator sealed by the authkey con-
taining her identity and a new timestamp T2 , and B’s identity. The lifetime of
an authenticator is a few minutes. Upon reception of the message, Tgs decrypts
the authticket, extracts the authkey and checks the validity of its timestamp Ta,
namely that Ta is not too old with respect to the lifetime of authkeys. Then, Tgs
decrypts the authenticator using the authkey and checks the validity of T2 with
respect to the lifetime of authenticators. Finally, Tgs invents a new session key
and looks up B’s shared key in the database. It replies with a message sealed by
the authkey containing the new session key, its timestamp Ts , B and a ticket.
The session key and the ticket are the credentials to use in the subsequent service
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phase, so we address them as servkey and servticket respectively. The lifetime of
a servkey is a few minutes.

Hence, A may start the service phase. She sends B a two-component message
including the servticket and an authenticator sealed by the servkey containing
her identity and a new timestamp T3 . Upon reception of the message,B decrypts
the servticket, extracts the servkey and checks the validity of its timestamp Ts .
Then, B decrypts the authenticator using the servkey and checks the validity of
T3 . Finally, B increments T3 , seals it by the servkey and sends it back to A.

10.4 Analysing Kerberos

As a start, we build the initial SCSP for Kerberos. Figure 10.12 shows the frag-
ment pertaining to principals A and B. The assignment allkeys→ private sig-
nifies that the constraint assigns level private to all principals’ long-term keys.

Then, we build the policy SCSP for Kerberos using algorithm BuildPoli-
cySCSP (Figure 10.2). Figure 10.13 shows the fragment pertaining to principals
A and B. The components that are specific of the session between A and B, such
as timestamps and session keys, are not indexed for simplicity. We remark that
the security levels of all other principals on the authkey authK and on the servkey
servK are unknown.

10.4.1 Confidentiality

The preliminary analysis of confidentiality conducted on the policy SCSP in
Figure 10.13 highlights that the late protocol messages get worse security levels
than the initial ones do. For example, by definition 10.1.2, there is traded3-
confidentiality of servK for B. By the same definition, it is crucial to observe that
A gets authK as traded1-confidential, but gets servK as traded3-confidential. So,
if we consider a potential confidentiality attack whereby A looses authK to some
malicious principal other than B, and another potential confidentiality attack
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allkeys → private

A
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〈tgs〉 → public
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〈tgs〉 → public
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Fig. 10.12. The initial SCSP for Kerberos (fragment)
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Fig. 10.13. The policy SCSP for Kerberos (fragment)

whereby A or B loose servK to some malicious principal, the former would be a
worse confidentiality attack than the latter, by definition 10.1.3. Indeed, having
authK available, one can obtain servK from decryption and splitting of message
4.

We also conduct an empirical analysis of confidentiality by considering, as
example a known-ciphertext attack [185] mounted by some malicious principal
C on the authenticator of message 3 to discover the authkey pertaining to a
principal A (and Tgs). We briefly remind how such an attack works. Since both
principal names and timestamps are public, C knows the body of the authen-
ticator with a good approximation — she should just try out all timestamps
of, say, the last day. First, she invents a key, encrypts the known body with it,
and checks whether the result matches the encrypted authenticator fetched from
the network. If not, C “refines” her key [185] and iterates the procedure until
she obtains the same ciphertext as the authenticator. At this stage, she holds
the encryption key, alias the authkey, because encryption is injective. The entire
tampering took place off line.

Along with the authkey for A, principal C also saves a copy of the corre-
sponding authticket by splitting message 3 into its components. Then, C for-
wards message 3, unaltered, to Tgs, so A can continue and terminate the session
accessing some resource B. A glimpse to Figure 10.11 shows that C is now in a
position to conduct, for the lifetime of the authkey, the Authorisation and Service
phases while he masquerades as A with some principal D. To do so, C forges
an instance 3′ of message 3 by using the authticket just learnt, by refreshing
the timestamp inside the authenticator (which he can do because he knows the
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authkey), and by mentioning the chosen principal D. As Tgs believes that the
message comes from A, Tgs replies to A with a message 4′ containing some fresh
servkey meant for A and D. Having intercepted 4′, C learns the servkey and
therefore can forge an instance 5′ for D of message 5. Finally, C intercepts 6′

and the session terminates without A’s participation.
Our algorithm BuildImputableSCSP executed on the network configura-

tion just described produces the imputable SCSP in Figure 10.14. The SCSP
omits the constraint corresponding to the Authentication phase between A and
Kas. Because C intercepts message 3, constraint 3 is stated between A and C.
Projecting that constraint on C, we have that C’s security level on message
authTicket , authenticator1 , b is traded2. By splitting this message, C discovers
the authticket, so the entailment relation states a unary constraint on C assign-
ing traded2 to authTicket . Another unary constraint on C assigns private to
authK , which is found by cryptanalysis.

Constraint 3̄ between C and Tgs assigns traded3 to message 3 because of C’s
rerouting. Projecting that constraint on Tgs, we have by entailment that Tgs’s
security level on authK goes down to traded3, whereas it was traded2 in the
policy SCSP. Constraint 4 formalises Tgs’s reply to A, while the constraints for
the rest of the session between A and B are omitted. Constraints 3′, 4′, 5′, and
6′ formalise the session between C, Tgs, and D.

At this stage, we can conduct an empirical analysis of confidentiality for each
of the agents involved in this imputable SCSP. By definition 10.1.2, authTicket ,
authenticator1 ′, and authK are each traded3-confidential for Tgs in this problem.
Since they were traded2-confidential in the policy SCSP, we conclude by defini-
tion 10.1.4 that there is a confidentiality attack by Tgs on each of these messages
in the imputable SCSP considered here. The attacks signal C’s manipulation of
messsage 3.

authTicket = {|a, tgs, authK , Ta|}Ktgs

authenticator1 = {|a, T2 |}authK

servTicket = {|a, b, servK, Ts|}Kb

servTicket′ = {|a, d, servK ′,Ts′|}Kd

authenticator1′ = {|a,T2
′|}authK

authenticator2′ = {|a,T3
′|}servK′

authenticator3′ = {|T3
′ + 1|}

servK′

3 : 〈authTicket, authenticator1, b〉 → traded2

3̄ : 〈authTicket, authenticator1, b〉 → traded3

4 : 〈{|servK , b,Ts, servTicket|}authK 〉 → traded3

3′ : 〈authTicket, authenticator1′, d〉 → traded3

4′ : 〈{|servK′, d,Ts′, servTicket′|}authK 〉 → traded4

5′ : 〈servTicket′, authenticator2′〉 → traded5

6′ : 〈authenticator3′〉 → traded6

〈authK〉 → private 〈authTicket〉 → traded2

A

C

D
Tgs

33̄

4

3′

4′

5′

6′

Fig. 10.14. An imputable SCSP for Kerberos (fragment)
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The imputable SCSP also achieves private-confidentiality of authK for C,
whereas the policy SCSP achieved unknown-confidentiality of authK for C.
Therefore, there is a confidentiality attack by C on authK in this SCSP. Likewise,
there is a confidentiality attack by C on authTicket . From constraint 4′ we have
by entailment that C’s security level on servTicket ′ and on servK ′ is traded4

rather than unknown as in the policy SCSP, hence we find other confidentiality
attacks by C on each of these messages.

There are also confidentiality attacks by D, who gets servTicket ′,
authenticator2 ′, and servK ′ as traded5, rather than traded4.

10.4.2 Authentication

We now focus on the fragment of policy SCSP for Kerberos given in Figure 10.13
to conduct the preliminary analysis of the authentication goal.

By definition 10.1.5, there is traded2-authentication of A with Tgs in the
policy SCSP. The definition holds for message 3, whose first two components
speak about A. Also, there is traded4-authentication of A with B thanks to
message 5, and traded5-authentication of B with A due to message 6. While
it is obvious that message 5 speaks about A, it is less obvious that message 6
speaks about B. This is due to the use of a servkey that is associated to B.

We observe that authentication of B with A is weaker than authentication
of A with B even in the ideal conditions formalised by the policy SCSP. Intu-
itively, this is due to the fact that the servkey has been handled both by A and
B rather than just by A. Hence, by definition 10.1.6, a principal C’s masquerad-
ing as A with B would be a worse authentication attack than a principal D’s
masquerading as B with A.

An empirical analysis of authentication can be conducted on the imputable
SCSP in Figure 10.14. That SCSP achieves traded5-authentication of A with B
thanks to message 5, and traded6-authentication of B with A due to message
6. Comparing these properties with the equivalent ones holding in the policy
SCSP, which we have seen above, we can conclude by definition 10.1.7 that
the imputable SCSP considered hides an authentication attack on B by means
of A, and an authentication attack on A by means of B. They are due to C’s
interception of message 3, which has lowered the legitimate protocol participants’
security levels on the subsequent messages.

It is important to emphasize that these authentication attacks could not be
captured by an equivalent definition of authentication based on crisp, rather
than soft, constraints. The definition in fact holds in the policy SCSP as well as
in the imputable SCSP. What differentiates the two SCSPs is merely the security
level characterising the goal.

10.5 Conclusions

We have developed a new framework for analysing security protocols, based on
a recent kernel [18,19]. Soft constraint programming allows us to conduct a fine
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analysis of the confidentiality and authentication goals that a protocol attempts
to achieve. Using the security levels, we can formally claim that a configuration
induced by a protocol achieves a certain level of confidentiality or authentication.
That configuration may be ideal if every principal behaves according to the
protocol, as formalised by the policy SCSP; or, it may arise from the protocol
execution in the real world, where some principal may have acted maliciously,
as formalised by an imputable SCSP. We can formally express that different
principals participating in the same protocol session obtain different forms of
those goals. We might even compare the forms of the same goal as achieved by
different protocols.

Our new threat model where each principal is a potential attacker working for
his own sake has allowed us to detect a novel attack on the asymmetric Needham-
Schroeder protocol. Once C masquerades as A with B, agent B indeliberately
gets hold of a nonce that was not meant for him. At this stage, B might decide to
exploit this extra knowledge, and begin to act maliciously. Our imputable SCSP
modelling the scenario reveals that B’s security level on the nonce is lower than
that allowed by the policy.

There is some work related to our analysis of Kerberos, such as Mitchell
et al.’s analysis by model checking [147]. They consider a version of Kerberos
simplified of timestamps and lifetimes — hence authkeys and servkeys cannot
be distinguished — and establish that a small system with an initiator, a re-
sponder, Kas and Tgs keeps the two session keys secure from the spy. Bella
and Paulson [22] verify by theorem proving a version with timestamps of the
same protocol. They do prove that using a lost authkey will let the spy ob-
tain a servkey. On top of this, one can informally deduce that the first key is
more important than the second in terms of confidentiality. By contrast, our
preliminary analysis of the protocol states formally that the authkey is traded1-
confidential and the servkey is traded3-confidential (§10.4.1). Another finding is
the difference between authentication of initiator with responder and vice versa
(§10.4.2).

Some recent research exists that is loosely related to ours. Millen and
Shamatikov [145] map the existence of a strand representing the attack upon
a constraint problem. Comon et al. [74], and Amadio and Charatonik [7] solve
confidentiality and reachability using Set-Based Constraint [157]. By constrast,
we build suitable constraint problems for the analysis of a global network config-
uration where any principals (not just one) can behave maliciously. In doing so,
we also analyse the safety of the system in terms of the consequences of a delib-
erate attack on the environment. The idea of refinements [176] is also somewhat
related to our use of levels. In that case the original protocol must be specialised
in order to be able to map the known/unknown level over the set of levels spec-
ified by the policy. The policy have also to specify how the levels have to be
changed w.r.t. each operation described in the protocol. Abstract interpretation
techniques (much in the spirit of those used by Bistarelli et al. [36]) can be used
as a next step to deal with unbounded participants/sessions/messages.
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While mechanical analysis was outside our aims, we have implementated a
mechanical checker for l-confidentiality on top of the existing Constraint Han-
dling Rule (CHR) framework [42]. For example, when we input the policy SCSP
for the Needham-Schroeder protocol and the imputable SCSP corresponding to
Lowe’s attack, the checker outputs

checking(agent(a))
checking(agent(b))

attack(n_a, policy_level(unknown), attack_level(traded_1))
checking(agent(c))

attack(enk(k(a),pair(n_a,n_b)), policy_level(unknown),
attack_level(traded_1))

attack(n_b, policy_level(unknown), attack_level(traded1))

The syntax seems to be self-explanatory. Line two reveals the new attack
we have found on B, who has lowered his security level on Na from unknown
to traded1. Likewise, line three denounces that not only has C got hold of the
nonce Nb but also of the message {|Na,Nb|}Ka (which was meant for A and not
for B) that contains it.
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You’ll never know how well you’re made until all you had is gone.
Then the good will come out and you’ll be free.

. . . a friend of mine . . .

In this book we explored and added softness to the constraint solving and
programming framework. We have been involved in several research topics; in
the following points we summarize the main results of the book.

11.1 Summary and Main Results

In Chapter 2 we have proposed a general framework for constraint solving where
each constraint allows each tuple with a certain level of confidence (or degree, or
cost, or other). This allows for a more realistic modelization of real-life problems,
but requires a new constraint solving engine that has to take such levels into
account. To do this, we used the notion of semiring, which provides both the
levels and the new constraint combination operations. Different instantiations of
the semiring set and operations give rise to different existing frameworks (Fuzzy
CSP, Probabilistic, Classical, VCSP, etc.).

In Chapter 3 we considered the issue of local consistency in such an extended
framework, and we provided sufficient conditions that assure these algorithms
to work. Then, we considered dynamic programming-like algorithms, and we
proved that these algorithms can always be applied to SCSPs (and have a linear
time complexity when the given SCSPs can be provided with a parsing tree of
bounded size).

We have studied some possible uses of Soft Arc Consistency (SAC) over SC-
SPs, which could make the search for the best solution faster. In particular, we
have analyzed the relationship between AC and SAC. Then we have studied
the relationship between the soft constraint formalism and the constraint prop-
agation schema proposed in [11, 12]. What we have discovered is that the GI
algorithm of [11, 12] can also be used for soft constraints, since soft constraints
provide what is needed for the GI algorithm to work correctly: a partial order
with a bottom, and a set of monotone functions.

Moreover, in studying this relationship we have also discovered that, in soft
constraints, we do not have to restrict ourselves to local consistency functions
which solve a subproblem, but we can use any monotone function. Of course, in
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this more general case, the equivalence of the resulting problem and the initial
one is not assured any more, and has to be studied on a case-by-case basis.

By passing from classical constraints to soft constraints, although on finite
domains, we have more possible sources of non-termination for the GI algorithm,
since the semiring can be infinite. Therefore, we have studied in depth the issue
of termination for GI over soft constraints, finding some convenient sufficient
conditions. In particular, one of them just requires checking, in a certain special
case, that the multiplicative operation of the semiring is idempotent. We show
that indeed it is possible to treat in a uniform way hard and soft constraints.

In Chapter 4 we have proposed an abstraction scheme for abstracting soft
constraint problems, with the goal of finding an optimal solution in a shorter
time. The main idea is to work on the abstract version of the problem and then
bring back some useful information to the concrete one, to make it easier to
solve. We have also shown how to use it to import propagation rules from the
abstract setting to the concrete one.

In Chapter 5 we have described how the semiring framework can be used to
both embed the constraint structure and topology in a suitable semiring of func-
tions. The introduction of the functions enriches the expressivity of the frame-
work and gives the possibility to express in a general way dynamic programming
and general local consistency techniques.

In Chapter 6 we have introduced a framework for constraint programming
over semirings. This allows us to use a CLP-like language for both constraint
solving and optimization. In fact, constraint systems based on semirings are able
to model both classical constraint solving and also more sophisticated features
like uncertainty, probability, fuzziness, and optimization.

We have then given this class of languages three equivalent semantics: model-
theoretic, fix-point, and proof-theoretic, in the style of classical CLP programs.
Finally, we have obtained interesting decidability results for general SCLP pro-
grams and also for those SCLP programs without functions.

In Chapter 7 we have investigated the relationship between shortest path
problems and constraint programming, proposing the soft constraint logic pro-
gramming framework to model and solve many versions of this problem in a
declarative way. In particular, both classical, multi-criteria, partially-ordered,
and modality-based SP problems are shown to be expressible in this program-
ming formalism. We also have shown that certain algorithms that solve SP prob-
lems can be used to efficiently compute the semantics of a certain class of SCLP
programs.

In Chapter 8 a concurrent language for programming with soft constraints is
discussed. The new language extends the concurrent constraints (cc) language
in two ways: first it is able to deal with soft constraints instead of the crisp ones;
to do this the notions of “entailment” and of “consistency” have been suitably
changed. Second, the syntax of the language is extended with the notion of
thresholds; using such a notion we showed how branch of the computation tree
can be removed in advance narrowing the total search space.
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In Chapter 9 we have discussed the notion of Substitutability and Inter-
changeability for soft constraints. Degradation and threshold are introduced to
increase the number of interchangeabilities in a problem. A study of the com-
plexity of some new algorithms to be used to detect when two domain value are
interchangeable is given.

In Chapter 10 we have shown how to use SCSPs for the definition of network
of agents executing a security protocol. Some security properties of the network
are translated into specific properties of the SCSP solution and in particular the
notion of inconsistency is mapped upon the notion of network insecurity.

11.2 Directions for Future Research

The introduction of a general framework to deal with soft constraints could give
suggestions for new research topics, only partially studied up now. Here are some
research directions in already explored fields and also in new ones:

11.2.1 Abstraction

Future work could concern the comparison between our properties and the one
of [169], the generalization of our scheme to also abstract domains and graph
topologies, and an experimental phase to assess the practical value of our pro-
posal. Moreover, an experimental phase may be necessary to check the real prac-
tical value of our proposal. A possibility could be to perform such a phase within
the clp(fd,S) system developed at INRIA [112], which can already solve soft
constraints in the classical way (branch-and-bound plus propagation via partial
arc-consistency).

Interesting would be also to investigate the relationship of our notion of ab-
straction with several other existing notions currently used in constraint solving.
For example, it seems to us that many versions of the intelligent backtracking
search could be easily modeled via soft constraints, by associating some infor-
mation about the variables responsible for the failure to each constraint. Then,
it should be possible to define suitable abstractions between the more complex
of these frameworks and the simpler ones.

11.2.2 High Order Semirings

Future work could try to study the shapes of SCSPs by starting from their func-
tion representation. Moreover, the possibility to also use partially instantiated
functions in the SCSP framework could make it possible to represent and solve
parametric problems.

11.2.3 SCLP

To make SCLP a practical programming paradigm, some efficient techniques to
implement their operational semantics are needed. This would require consider-
ing variants of branch and bound methods, and developing intelligent ways to
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recognize and cut useless search branches. In this respect, a possibility could be
to study the usability of local consistency techniques [47] for a better approx-
imation of the semiring values to be associated to each value combination in
order to obtain better bounds for the search.

Other area of research could be the study of the relationship between
semiring-based arc-consistency and classical arc-consistency, since in some cases
by using classical arc-consistency one loses some information but gains in
speedup.

11.2.4 SCLP for Operational Research Problems

Using structures more complex than semirings, or by considering trees instead
of paths, we could also give semantics using OR algorithms to a greater class
of SCLP programs. In particular, it could be possible to use SCLP programs to
model and solve best tree problems. This methodology could be used to specify
and solve planning problems, since in many cases such problems can be cast as
best tree problems over the graph describing all possible moves of the planning
scenario.

11.2.5 Soft Concurrent Constraints

We see soft cc as a first step towards the possibility of using high level declarative
languages for Web programming. Of course there are many more aspects to
consider to make the language rich enough to be practically usable. However, soft
constraints have already shown their usefulness in describing security protocols
(see [18, 20]) and integrity policies (see [40, 41]). We are already considering the
introduction of some other features in the language. We are also considering the
possibility of adding soft cc primitives inside other concurrent frameworks, such
as Klaim [82].

11.2.6 Soft Constraints for Security

At this stage, integrating our framework with model-checking tools appears to
be a straightforward exercise. The entailment relation must be extended by a
rule per each of the protocol messages in order to compute their security levels.
Hence, our constraints would be upgraded much the way multisets are rewrit-
ten in the work by Cervesato et al. [64] (though they only focus on a single
attacker and their properties are classical yes/no properties). Then, once suit-
able size limits are stated, the imputable SCSPs could be exhaustively generated
and checked against our definitions of confidentiality and authentication. Alter-
natively, the protocol verifier might use our framework for a finer analysis of
network configurations generated using other techniques.
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11.2.7 Soft Constraint Databases

The benefits given by the introduction of fuzziness and costs to constraint could
also be used in the Constraint Databases framework [129,130]. In this framework
the queries and the database objects are represented as constraints; adding levels
of preference (or cost, or probability) could add to the framework a way to
discriminate between several answers for a given query.

In particular, the probability semiring could be used to represent data that
have an intrinsic uncertainty to be (or not to be) in the real problem. A possible
application of this idea is represented by the geographic data bases: in this
framework each object could have a different probability to be in a specific
position.

11.2.8 Soft Web Query

The declarative fashion of constraints together with the levels of preference given
by the semiring structure could be used to represent (and execute) query on web
documents. In fact, the levels of the semiring could be used to represent the levels
of satisfiability of the query, and also the structural properties of the document.
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