
Cognitive Technologies
Managing Editors: D.M. Gabbay J. Siekmann

Editorial Board: A. Bundy J.G. Carbonell
M. Pinkal H. Uszkoreit M. Veloso W. Wahlster
M. J. Wooldridge

Springer-Verlag Berlin Heidelberg GmbH

Thorn Friihwirth Slim Abdennadher

Essentials of
Constraint
Programming

With 27 Figures

, Springer

Authors
Thom FrUhwirth
Universităt Ulm, Fakultăt fUr Informatik
Albert-Einstein-Allee 11,89069 Ulm, Germany
Thom.Fruehwirth@informatik.uni-ulm.de

Slim Abdennadher
Universităt MUnchen, Institut fUr Informatik
OettingenstraBe 67,80538 MUnchen, Germany
Slim.Abdennadher@informatik.uni-muenchen.de

Managing Editors

Prof. Dov M. Gabbay
Augustus De Morgan Professor of Logic
Department of Computer Science, King's College London
Strand, London WC2R 2LS, UK

Prof. Dr. JBrg Siekmann
Forschungsbereich Deduktions- und Multiagentensysteme, DFKI
Stuhlsatzenweg 3, Geb. 43, 66123 SaarbrUcken, Germany

Library of Congress Cataloging-in-Publication Data

Friihwirth, Thom, 1962-
Essentials of constraint programming / Thom Friihwirth, Slim Abdennadher.
p. cm. - (Cognitive technologies)
Includes bibliographical references and index.
ISBN 978-3-642-08712-7 ISBN 978-3-662-05138-2 (eBook)
DOI 10.1007/978-3-662-05138-2
1. Constraint programming (Computer science). 1. Abdennadher, Slim, 1967-
II. Title. III. Series.
QA76.612.F78 2003 005.1'1-dc21

ACM Computing Classification (1998):
D.1.3, D.1.6, D.3.1-3, F.3.2, FA.l, G.2.1, I.2.3, I.2.8

ISSN 1611-2482
ISBN 978-3-642-08712-7

This work is subject to copyright. AII rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German copyright law of September 9, 1965, in
its current version, and permis sion for use must always be obtained from Springer­
Verlag. Violations are liable for prosecution under the German Copyright Law.

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
Softcover reprint of the hardcover 1st edition 2003

The use of general descriptive names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KiinkelLopka, Heidelberg
Typesetting: Camera-ready by authors
Printed on acid-free paper SPIN: 10770657 45/3142 GF- 543210

Preface

The use of constraints had its scientific and commercial breakthrough in
the 1990s. Programming with constraints makes it possible to model and
specify problems with uncertain, incomplete information and to solve combi­
natorial problems, as they are abundant in industry and commerce, such as
scheduling, planning, transportation, resource allocation, layout, design, and
analysis.

This book is a short, concise, and complete presentation of constraint
programming and reasoning, covering theoretical foundations, algorithms,
implementations, examples, and applications. It is based on more than a
decade of experience in teaching and research about this subject.

This book is intended primarily for graduate students, researchers, and
practitioners in diverse areas of computer science and related fields, including
programming languages, computational logic, symbolic computation, and ar­
tificial intelligence. The book is complemented by a web-page with teaching
material, software, links, and more.

We take the reader on a step-by-step journey through the world of
constraint-based programming and constraint reasoning. Feel free to join in ...

Acknowledgements

Thorn thanks his wife Andrea and his daughter Anna - for everything. He
dedicates his contribution to the book to the memory of his mother, Grete.

Slim thanks his wife N abila and his daughters Shirine and Amira for their
ongoing support and patience.

We thank the students in the constraint programming and reasoning
courses at the Ludwig Maximilian University of Munich and the University of
Pisa for their motivating interest, and in particular Alexandra Bosshammer,
Michael Brade, Carlo Sartiani, Luiz C. P. Albini, and Miriam Baglioni for
proof reading parts of the book.

Munich, October 2002 Thom FrUhwirth and Slim Abdennadher

Contents

1. Introduction.. 1

Part I. Constraint Programming

2. Algorithm = Logic + Control. 7

3. Preliminaries of Syntax and Semantics. 9

4. Logic Programming. .. 13
4.1 LP Calculus ... 14

4.1.1 Syntax.. 14
4.1.2 Operational Semantics. .. 15

4.2 Declarative Semantics. .. 19
4.3 Soundness and Completeness. .. 20

5. Constraint Logic Programming .. 23
5.1 CLP Calculus. .. 25

5.1.1 Syntax.. 25
5.1.2 Operational Semantics. .. 26

5.2 Declarative Semantics. .. 29
5.3 Soundness and Completeness. .. 29

6. Concurrent Constraint Logic Programming. 31
6.1 CCLP Calculus .. 32

6.1.1 Syntax.. 32
6.1.2 Operational Semantics. .. 33

6.2 Declarative Semantics. .. 38
6.3 Soundness and Completeness. .. 39

7. Constraint Handling Rules. 41
7.1 CHR Calculus ... 42

7.1.1 Syntax.. 42
7.1.2 Operational Semantics. .. 43

7.2 Declarative Semantics. .. 46

VIII Contents

7.3 Soundness and Completeness. .. 46
7.4 Confluence.. 47
7.5 CHR v: Adding Disjunction. .. 49

Part II. Constraint Systems

8. Constraint Systems and Constraint Solvers 53
8.1 Constraint Systems .. 53
8.2 Properties of Constraint Systems. .. 54
8.3 Capabilities of Constraint Solvers. .. 56
8.4 Properties of Constraint Solvers. .. 58
8.5 Principles of Constraint-Solving Algorithms. 59
8.6 Preliminaries... 61

9. Boolean Algebra B .. 63
9.1 Local-Propagation Constraint Solver. .. 64
9.2 Application: Circuit Analysis 67

10. Rational 'frees RT .. 69
10.1 Variable Elimination Constraint Solver. 70
10.2 Application: Program Analysis. .. 73

11. Linear Polynomial Equations R .. 77
11.1 Variable Elimination Constraint Solver. 78
11.2 Application: Finance. .. 81

12. Finite Domains FD .. 83
12.1 Arc Consistency. .. 84
12.2 Local-Propagation Constraint Solver. .. 86
12.3 Applications: Puzzles and Scheduling 90

13. Non-linear Equations I .. 93
13.1 Local-Propagation Constraint Solver. .. 94
13.2 Applications. ... 97

Part III. Applications

14. Market Overview ... 101

15. Optimal Sender Placement for Wireless Communication .. 105
15.1 Approach .. 105
15.2 Solver ... 106
15.3 Evaluation ... 110

Contents IX

16. The Munich Rent Advisor 111
16.1 Approach .. 111
16.2 Solver ... 112
16.3 Evaluation ... 114

17. University Course Timetabling 117
17.1 Approach .. 118
17.2 Solver ... 118
17.3 Generation of Timetables 121
17.4 Evaluation ... 122

Part IV. Appendix

A. Foundations from Logic 125
A.l First-Order Logic: Syntax and Semantics 125
A.2 Basic Calculi and Normal Forms 129

A.2.1 Substitutions 130
A.2.2 Negation Normal Form and Prenex Form 131
A.2.3 Skolemization 132
A.2.4 Clauses ... 133
A.2.5 Resolution 134

List of Figures .. 135

References .. 137

Index ... 141

1. Introduction

Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it.

Eugene C. Freuder, Inaugural issue of the Constraints Journal, 1997

The idea of constraint-based programming is to solve problems by simply
stating constraints (conditions, properties) which must be satisfied by a solu­
tion of the problem. For example, consider a bicycle number lock. We forgot
the first digit, but remember some constraints about it: The digit was an odd
number, greater than 1, and not a prime number. Combining the pieces of
partial information expressed by these constraints (digit, greater than 1, odd,
not prime) we are able to derive that the digit we are looking for is "9".

Constraints can be considered as pieces of partial information. Constraints
describe properties of unknown objects and relationships between them. Con­
straints are formalized as distinguished, predefined predicates in first-order
predicate logic. The objects are modeled as variables.

Constraints allow for a finite representation and efficient processing of
possibly infinite relations. For example, each of the two arithmetic constraints
X + Y =7 and X - Y =3 admits infinitely many solutions over the integers.
Taken together, these two constraints can be simplified into the solution
X=5 and Y=2.

From the mid-1980's, constraint logic programming combined the advan­
tages of logic programming and constraint solving. Constraint-based program­
ming languages enjoy elegant theoretical properties, conceptual simplicity,
and practical success.

In logic programming languages, problem-solving knowledge is stated in a
declarative way by rules that define relations. A solution is searched for by
applying the rules to a given problem. A fixed strategy called resolution is
used.

In constraint solving, efficient special-purpose algorithms are employed to
solve sub-problems expressed by constraints.

As it runs, a constraint program successively generates constraints. As
a special program, the constraint solver stores, combines, and simplifies the
constraints until a solution is found. The partial solutions can be used to
influence the run of the program.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

2 1. Introduction

The advantages of constraint logic programming are: declarative problem
modeling on a solid mathematical basis, propagation of the effects of decisions
using efficient algorithms, and search for optimal solutions.

The use of constraint programming supports the complete software devel­
opment process. Because of its conceptual simplicity and efficiency executable
specifications, rapid prototyping, and ease of maintainance are achievable.

Already since the beginning of the 1990's, constraint-based programming
has been commercially successful. In 1996, the world wide revenue generated
by constraint technology was estimated to be on the order of 100 million
dollars. The technology has proven its merits in a variety of application areas,
including decision support systems for scheduling, timetabling, and resource
allocation.

For example, the system Daysy performs short-term personnel planning
for Lufthansa after disturbances in air traffic (delays, etc.), such that changes
in the schedule and costs are minimized. Nokia uses constraints for the au­
tomatic configuration of software for mobile phones. The car manufacturer
Renault has been employing the technology for short-term production plan­
ning since 1995.

Overview of the Book

This book is intended as a concise and uniform overview of the fundamentals
of constraint programming: languages, constraints, algorithms, and applica­
tions.

The first part of the book discusses classes of constraint programming
languages. The second part introduces types of constraints and algorithms
to solve them. Both parts include examples. The third part describes three
exemplary applications in some detail. In the appendix, we briefly give syntax
and semantics of first-order predicate logic which constitutes the formal basis
of this book.

In the first part of the book, we introduce the basic ideas behind the
classes of (concurrent) constraint logic programming languages in a uniform
abstract framework.

In Chap. 4, we introduce logic programming. We define syntax, opera­
tional semantics in a calculus, and declarative semantics in first-order logic.
We give soundness and completeness results that explain the formal connec­
tion between operational and declarative semantics. With Prolog we briefly
introduce the best known representative and classic of logic programming
languages.

Step by step we extend this class of programming languages in the follow­
ing chapters. We will keep the structure of presentation and emphasize the
commonalities and explain the differences.

In Chap. 5, we extend logic programming by constraints, leading to con­
straint logic programming. In Chap. 6, constraints present themselves as a

1. Introduction 3

formalism for communication and synchronization of concurrent processes. In
Chap. 7, we introduce a concurrent programming language for writing con­
straint solvers and constraint programs called Constraint Handling Rules.

In the second part of the book, we explain what a constraint solver does
and what it should do. We define the notion of constraint system and explain
the principles behind constraint-solving algorithms such as variable elimi­
nation and local-consistency techniques. We introduce common constraint
systems such as Boolean constraints for circuit design, terms for program
analysis, linear polynomial equations for financial applications, finite domains
for scheduling, and interval constraints for solving arbitrary arithmetic ex­
pressions.

Constraint Handling Rules will come in handy to specify and implement
the corresponding constraint-solving algorithms at a high level of abstraction.
We will analyze termination, confluence, and worst case time complexity
of the algorithms. For each constraint system, we give an example of its
application.

In the third part of the book, we reach the commercial practice of con­
straint programming: We briefly describe the market for this technology,
the involved software companies, applications areas, and sample concrete
projects. Then we present in more detail three applications: from timetabling
to internet-based rent advice and optimal placement of senders for wireless
communication.

References to related literature and a detailed index conclude the book.

Since this book concentrates on the essentials of constraint program­
ming and reasoning, it does not address the following topics: temporal and
spatial constraints, dynamic (undoable) constraints, soft (prioritized) con­
straints, constraint-based optimization techniques, low-level implementation
techniques, programming methodology, non-logic programming languages
(functional, object oriented, imperative) with constraints, and databases with
constraints.

A final remark: The web pages of this book at
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/pisa
contain teaching aids like slides and exercises, as well as links to programming
languages, tutorials, software, further references, and more.

Part I

Constraint Programming

2. Algorithm Logic + Control

With this statement Robert Kowalski [35] stressed the difference between
what (logic) and how (control) in implementing an algorithm in a computer
program. A program consists of a logical component, which specifies the
knowledge of the problem, and a control component, which determines how
this knowledge is used in order to solve a problem.

In conventional programming adhering to the procedural programming
style, a problem is solved by executing a sequence of program instructions.
There is no separation between logic and control of a program.

The central idea of declarative programming, and in particular logic-based
programming, is that the programmer only states (the logic of) the problem
without having to worry about the control. A user of a program is not in­
terested in how the solution to the problem is found (procedural aspect), but
what the solution is (declarative aspect).

In logic-based programming, the problem and the program are both stated
as specific logical formulae. Problem solving in this context means under
which conditions the formula, which represents the problem, follows from the
knowledge and the assumptions which are expressed in the program. Since
the sequence of statements that should be executed to solve a problem is not
given explicitly, declarative programming must include a predefined, general
algorithm for control.

For example, consider sorting a list in ascending order. Procedurally, one
can proceed as follows: go through the list and compare neighboring elements
in the list. If the first element is greater than the second element, swap these
two elements. Repeat the swaps for the complete list until the list does not
change anymore.

From the declarative point of view, we know that S is the sorting of
list L if S is a permutation of L and if the elements of S are arranged in
ascending order. In the same way we can define permutations and orders.
This knowledge forms our assumptions. The formula for stating the problem
reads as follows: X is the sorted list L. For which value of X does this formula
follow from the assumptions?

In logic-based programming, problems are stated logically as formulae,
and these formulae can be regarded as specifications. Thus, logic-based pro­
gramming languages are well suited to rapid prototyping, i.e., the fast devel-

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

8 2. Algorithm = Logic + Control

opment of prototypes on the basis of incomplete, evolving specifications. The
declarativity of logic-based programming also favorably affects debugging,
testing, and the analysis of programs.

3. Preliminaries of Syntax and Semantics

In general, the term logic-based programming languages refers to computer
languages that make (a subset of) a logic executable. There are languages
based on non-classical logics like higher order logic and modal or temporal
logic, but, like in this book, logic programming is mostly used as a synonym
for computing in classical first-order predicate logic. A brief review of first­
order logic and its notation as it forms the basis of this book can be found
in Appendix A.

In this book, we will consider several classes of constraint logic program­
ming languages. We will present them in a uniform and abstract way. We will
give their abstract syntax and two kinds of semantics.

The syntax definitions will use extended Backus-Naur form (EBNF) no­
tation. In EBNF, a production rule is of the form

Name: G, H ::= A I B, Condition

where capital letters stand for syntactical entities. The rule defines the sym­
bols G and H (possibly with indices, e.g., GI , HI or primed, e.g., G' , H')
that have a name Name. G and H can be of the form A or of the form B,
provided the condition Condition holds.

A suitable notion of state transition systems that are able to encode calculi
will define the operational semantics (procedural semantics) of each class of
languages. The declarative semantics refers to the logical reading of a program
as a set of formulae of first-order predicate logic.

We will use small and simple examples, including one running example,
to illustrate the main computational aspects of the programming languages.

Finally, we present results relating the operational and declarative seman­
tics of logic-based programming languages. On one hand, everything that is
derivable, should also logically follow from the program (soundness), on the
other hand, everything that follows should also be derivable (completeness).

In general, the operational semantics of a logic-based programming lan­
guage is based on variations of the resolution method (Sect. A.2.5) that is
concretized as a (logical) calculus.

The execution of a program is seen as a sequence of state transitions.
A state transition system describes how we can proceed from one state of
derivation to the next, and how the derivation starts and ends.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

10 3. Preliminaries of Syntax and Semantics

Definition 3.0.1. A state transition system is a tuple (S, f-+), where S is a
set of states and where f-+ is a binary relation over states, called transition
relation.
There are two distinguished subsets of S, the initial and the final states.
A sequence of states and transitions Sl f-+ S2 f-+ ... f-+ Sn is called a deriva­
tion (computation) of Sn starting from S. S f-+* Sf denotes the reflexive­
transitive closure of f-+.

Reduction is used as a synonym for transition. The transition relation f-+

is usually defined by transition rules of the form

If Condition
then S f-+ Sf.

The notation means that a (state) transition (reduction, derivation step)
from a state S to a state Sf is possible if the condition Condition holds.

It is straightforward to concretize a calculus into a state transition system.

Example 3.0.1. For the resolution calculus defined in Appendix A, a state
is a set of clauses. An initial state consists of the clauses representing the
premises and the negated conclusion, while each clause containing the empty
clause is a final state. The transition operation for the resolution calculus
goes from a clause set S to the clause set S U {F}, where F is a resolvent or
factor of members of S.

In a state transition system there are states that we would like to consider
equivalent for the purpose of computation. Instead of modeling these equiv­
alences with additional transition rules, they are abstracted away using a
congruence. In short, the idea is that congruent states are considered the
same, they are not worth distinguishing. Formally, a congruence has to be an
equivalence relation.

Definition 3.0.2. An equivalence relation == is a reflexive, symmetric, and
transitive relation:

(Reflexivity)
(Symmetry)
(Transitivity)

A==A
If A == B then B == A
If A == Band B == C then A == C

We are now ready to define the class of transition systems that we will
use to define the operational semantics of constraint programming languages.

Definition 3.0.3. A (logical) calculus is a triple (17, ==, T), where:

• 17 is a signature for a first-order logic language.
• == is a congruence on states.
• T = (S, f-+) is a transition system where the states S represent logical

expressions over the signature E.

3. Preliminaries of Syntax and Semantics 11

The actual congruence (Fig. 3.1) that we will use for all classes of con­
straint languages expresses that the order of atoms in a conjunction does
not matter. Also, T in a conjunction is redundant and ..1 makes all other
conjunctions redundant.

Commutativity:
Associativity:
Identity:
Absorption:

G1 /\ G2

G1 /\ (G2 /\ G3)
G/\T
G/\..l

Fig. 3.1. Congruence

G2 /\ G1

(Gl /\ G2) /\ G3

G
..1

We are now ready to consider the first class of constraint logic program­
ming languages. It does not yet contain an explicit notion of constraints but
forms the basis for the following classes of constraint languages.

4. Logic Programming

The first and most popular logic programming (LP) language is Prolog. It
is still the basis of most constraint programming languages. Prolog's origins
can be traced back to early work in automated theorem proving and planning
(Fig. 4.1). Prolog was developed in the early 1970's, first independently and
then jointly by Alain Colmerauer (Marseille) and Robert Kowalski (Edin­
burgh). Then David Warren (London) defined the Warren Abstract Machine
(WAM) that lead to an efficient implementation of Prolog. The ideas behind
the WAM strongly influenced the implementation of more recent languages
like Java.

1964 J.A. Robinson, Resolution calculus
1972 A. Colmerauer, U. Marseille, and R. Kowalski, IC London, Prolog
1975 D.H.D. Warren, IC London, Efficient Prolog, WAM compiler
1982-1994 Fifth-Generation Computing Project, Japan; EC Esprit-Projects
1986-90's Borlands Thrbo-Prolog, Pascal+Prolog hybrid
1982 A. Colmerauer, Prolog II, U. Marseille, equality constraints
1984 Eclipse Prolog, ECRC Munich, later IC-PARC London
1985 Sicstus Prolog, Swedish Insitute of Computer Science (SICS)
1996 ISO Prolog standard

Fig. 4.1. History of logic programming

The high time for Prolog was from 1982 to 1994, when a concurrent
version of the language was chosen as the basis of the ambitious Japanese
fifth-generation computing project that tried to bring artificial intelligence
applications into everyday life. Today, Prolog is mainly used commercially
in expert systems. It is often the language of choice in implementing proto­
types for research in artificial intelligence and computational logic, symbolic
computation, and programming languages.

In the following, we will introduce the concepts behind Prolog and similar
logic-based languages.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

14 4. Logic Programming

4.1 LP Calculus

We start by giving the abstract syntax of this class of languages and then
move on to the operational semantics.

4.1.1 Syntax

The LP syntax is given in the following definitions and summarized in Fig. 4.2.
The signature of the LP logical calculus contains arbitrary function and pred­
icate symbols (Appendix A).

Definition 4.1.1. A goal is either T (top) or -.1 (bottom), or an atom or a
conjunction of goals.

T is also called empty goal.

Definition 4.1.2. A (Horn) clause is of the form A t- G, where A is an
atom and G is a goal. We call A the head and G the body of the clause.
Clauses of the form G t- T are called facts, all others are called rules.
A (logic) program is a finite set of Horn clauses.

A predicate symbol is defined in a program if it occurs in the head of a clause.

Atom: A,B .. - pJiI, ... , tn), n::::O
Goal: G,H .. - TI-LIAI G/\H
Clause: K .. - A+--G
Program: P .. K1 ... K m , m::::O

Fig. 4.2. LP syntax

In the LP logical calculus, states are pairs consisting of a goal and a
substitution. Intuitively, one starts from a goal that represents the given
problem and, by applying the transition rules of the LP calculus, one tries to
end with a substitution that represents the solution to the problem. However,
not every final state represents a solution. We distinguish between successful
and failed final states, and only the successful states are of interest.

Definition 4.1.3. A state is a pair of the form <G, (», where G is a goal
and () is a substitution. An initial state is a state of the form <G, f>, where
f is the identity substitution.
A state is called successful final state if it is of the form <T, (». It is called
failed final state if it is of the form <-.1, f>.

The notions of success and failure are lifted to derivations and goals.

4.1 LP Calculus 15

Definition 4.1.4. A derivation is successful if its final state is successful. A
derivation is failed if its final state is failed. A derivation is infinite if it does
not have a final state. A goal G is successful if it has a successful derivation
starting with <G, E>. A goal G is finitely failed if it has only failed derivations
starting with <G, E>.

States have a logical reading.

Definition 4.1.5. Let <H,O> be a state occurring in a derivation starting
with <G, E>. The formula -::JxHO is the logical reading of <H, 0>, where x
stands for the variables which occur in HO but not in G.

What we are really interested in is the substitution that occurs in a suc­
cessful final state.

Definition 4.1.6. A substitution 0 is the (computed) answer of a goal G if
there exists a successful derivation <G, E> H* <T,O>.

In that context, G is also called initial goal or query.

4.1.2 Operational Semantics

Given a logic program P, we define the transition relation H by introducing
two reduction rules (Fig. 4.3). The main one is the transition Unfold. Only
if it is not possible, the second transition Failure is used. Unfold basically
corresponds to the resolution rule of the resolution calculus (Sect. A.2.5).

Unfold
If
and
then

Failure
If
with
then

(B +- H) is a fresh variant of a clause in P
(3 is the most general unifier of Band AO
<A 1\ G, (» H <H 1\ G, (}(3>

there is no clause (B +- H) in P
a unifier of Band A()
<A 1\ G, (» H <..L, E>

Fig. 4.3. LP transition rules

An Unfold transition starting from a state <G, 0> is possible if, for some
fresh variant of a clause B +- H in the given program P and some atom A
in the goal G, the head Band AO are unifiable with the substitution (3.
In the resulting state, A is replaced by H and the substitutions 0 and (3
are composed. A fresh variant of a clause is a renaming of this clause with
variables that do not previously occur in P. The Failure transition applies
when no clause can be found for the atom A for which Unfold is possible.

16 4. Logic Programming

Non-determinism

Given a state <A 1\ G, B>, there are two degrees of non-determinism in the
calculus when we want to reduce it to another state:

• Any atom in the conjunction A 1\ G can be chosen as the atom A according
to the congruence defined on states.

• Any clause (B +- H) in P for which Band AB are unifiable can be chosen.

Treating non-determinism we would like to make sure that all possible suc­
cessful final states can be computed (completeness). While clause selection
determines the computed answer of a derivation, the selection of the atom
only affects the length of the derivation (infinitely in the worst case). There­
fore, clause selection exhibits a don't-know non-determinism, while atom se­
lection exhibits a don't-care non-determinism.

Both kinds of non-determinism are implicit in the LP calculus. Don't-care
non-determinism for atom selection is expressed by the congruence. Don't­
know non-determinism for clause selection can be made explicit in a refined
version of Unfold (Fig. 4.4), where V denotes choice between states. This

Unfold Split
If

and
then

(Bl +- HI), ... , (Bn +- Hn) are fresh variants
of all those clauses in P for which
Bi (1 ::; i ::; n) is unifiable with A8
(3; is the most general unifier of Bi and A8 (1 ::; i ::; n)
<A 1\ G, 8> >-+ <Hl 1\ G, 8(31 > V ... V <Hn 1\ G, 8(3n>

Fig. 4.4. LP Unfold transition rule with case splitting

modified transition applies to trees of states rather than sequences of states.
The root of the tree is the initial state. Nodes represent states. Every node
has children according to an application of UnfoldSplit. Leaves are final
states. We call such a tree a search tree, since we have to search for successful
computations using the states resulting from an application of UnfoldSplit.

An implementation of the LP calculus has to fix a selection strategy for
clauses and atoms that embodies the implicit control component. According
to the type of non-determinism, one chooses an atom and then makes sure
to try derivations with all possible clauses.

For conceptual simplicity and efficiency, usually selection strategy is fixed
and based on the textual order of clauses and atoms in a program.

In a goal, the atoms are selected from left to right. For the left most
atom, clauses are tried in textual order. If the selected clause leads to failure
(finitely failed final state), the selection and its consequences are undone and
the next clause is tried.

More precisely, (chronological) backtracking (backtrack search) is em­
ployed, which means that always the last clause selection is undone that

4.1 LP Calculus 17

still admits another choice for selecting a clause. The advantage of this strat­
egy is that undoing the last clause choice requires only a minimal change,
while most of the computation (everything before the clause choice) can be
kept.

This selection strategy corresponds to a left-to-right, depth-first explo­
ration of the search tree that is associated with a computation as defined by
the transition U nfoldSplit. It is also called SLD resolution. This strategy
can be efficiently implemented using a stack-based approach, since, at any
point in the computation, it suffices to store the current computation path
instead of the overall search tree.

While simple and time and space efficient, this strategy has the disadvan­
tage that it can get trapped in infinite derivations. A strategy like breadth­
first search would avoid this, but is far too inefficient to be implemented as
the basis of control for logic programming.

Example 4.1.1. To illustrate the LP calculus, we want to examine accessibil­
ity in a directed graph with the help of a logic program.

a __ c

1 1
b--d--e

The edges of the graph are given by facts defining the predicate egde/2.

edge(a,b) ~ T (eI)
edge(a,c) ~ T (e2)
edge(b,d) ~ T (e3)
edge (c ,d) ~ T (e4)
edge(d,e) ~ T (e5)

The direct and indirect paths between the nodes of the graph are given by
rules defining the predicate path/2.

path(Start,End) ~ (pI)
edge (Start ,End)

path (Start ,End) ~ (p2)
edge(Start,Node) A path(Node,End)

The rule p1 says that there is a path from node Start to node End if there
is an edge from Start to End. The recursive rule p2 says that there is a path
from Start to End if there is an edge from Start to Node and a path from
Node to End.

The goal path (b ,Y) computes all nodes Y accessible from node b. If we
select the first rule of the predicate path p1 and a suitable edge, then the
following derivation is possible:

18 4. Logic Programming

<path(b, V), E>
t--+Unfold (pI) <edge(S, E), {St--i b, Et--i Y} >
t--+Unfold (e3) <T, {St--i b, Et--i d, Yt--i d} >

Note that for readability, we only show the substitutions that involve vari­
ables of the query and we rename variables in order to avoid the introduction
of new variables.

A computed answer for the above program and the goal path(b, Y) is
() = {Yt--i d}, which means that node d is accessible from node b. The search
tree for this goal, in Fig. 4.5 shows this successful derivation and also paths
of other derivations.

<path(b, v), c>

y~
<edge(S, E), {S+-I b, E+-I Y} > <edge(S, N) !\ path(N, E), {S+-I b, E+-I Y} >

7-21 ~ .. -1- ..
<1-, c> <1-, c> <T, {S+-I b, E+-I d, Y+-I d} >

Fig. 4.5. Partial search tree for the goal path(b, Y)

If the second rule p2 for path is selected instead, we have the derivation:

<path(b, v), E>
t--+Unfold (p2) <edge(S, N) !\ path(N, E), {St--i b, Et--i Y} >
t--+Unfold (e3) <path(N, E), {St--i b, Et--i Y, Nt--i d}>
t--+Unfold (pI) <edge(N, E), {St--i b, Et--i Y, Nt--i d} >
t--+Unfold (e5) <T, {St--i b, Et--i e, Nt--i d, Yt--i e} >

Hence, a second computed answer is (J = {Yt--i e}.
Consider now the question whether there exists a path between the nodes

f and g, i.e., the goal path(f ,g). With the first rule we get:

<path(f, g), E>
t--+Unfold (pI) <edge(S, E), {St--i f, Et--i g} >
t--+Failure <.1, E>

Selecting the second rule p2 for path also leads to a failed derivation,
provided the goal edge (S, N) is selected for reduction in the second derivation
step. If, however, the goal path (N ,E) is selected and the second rule p2 for
path is selected, we have the derivation:

<path(f, g), E>
t--+Unfold (P2) <edge(S, N) !\ path(N, E), {St--i f, Et--i g} >
t--+Unfold (p2) <edge(S, N) !\ edge(N, N1) !\ path(N1, E), {St--i f, Et--i g} >

4.2 Declarative Semantics 19

Repeated selection of the new goal for path results in an infinite deriva­
tion.

4.2 Declarative Semantics

The declarative semantics gives a logical reading (meaning) to a program as
formulae.

A Horn clause (A f- G) can be understood as an implication (G -7 A)
which corresponds to a definite clause. The logical reading of a program P is
then the universal closure of the conjunction of the clauses of P, denoted by
P--+ .

However, with this simple declarative semantics only positive information
can be derived. One would expect that failure of a goal is reflected in the
declarative semantics in that the negation of the goal follows from the logical
reading of the program.

Example 4.2.1. Let P be the logic program from example 4.l.1 and let G be
the goal path (f ,g). This goal does not have a successful derivation. On the
other hand, in the logical reading of the program, nothing can be concluded:

p--+ ~ path(f ,g) and P--+ ~ 'path(f ,g)

However, if we "complete" P--+ in such a way that it not only contains the
necessary conditions (implications), but also the corresponding sufficient con­
ditions (implications in the other direction), then ,path (f ,g) is a logical
consequence from such a logical reading of the program.

The improved logical reading of a logic program P is given by its Clark's
completion [12].

Definition 4.2.1. Let P be a logic program. Clark's completion of P is the
set of formulae p B U CET.

We have to define the completion p B and the theory CET (Clark's Equal­
ity Theory).

Definition 4.2.2. The completion of P, denoted by pB, is defined as fol­
lows: For each predicate p in P with arity n, defined by the clauses

p(tm) f- Gm ,

we add to p B the formula

20 4. Logic Programming

Vx (p(x) B ::JIh (tl ~ x A Gd V

V

::JYm (tm ~ x A Gm)),

where x stands for a sequence of n pairwise distinct fresh variables which do
not occur in the clauses, the ti stand for a sequence of n terms, and the Yi
for the sequence of the variables occurring in G i and t i .

For each predicate symbol p, which is mentioned in P but not defined, the
formula

Vx .p(x)

is added to PH.

Completion uses syntactic equality ~. It is a predefined binary predicate
symbol and must be defined, too.

Definition 4.2.3. Let E be a signature with infinitely many function sym­
bols, including at least one constant. Then CET is the set of the universal
closure of the formulae:

Reflexivity:
(T ---7 x~x)

Symmetry:
(x~y ---7 y~x)

Transitivity:
(x~y A Y~z ---7 x~z)

Compatibility:
(Xl ~Yl A ... A xn~Yn ---7 f(xl, ... , xn)~f(Yl' ... ' Yn))

Decomposition:
(J(Xl' ... ,xn)~ f(Yl, ... ,Yn) ---7 Xl ~Yl A ... A xn~Yn)

Contradiction (Clash):
(J(Xl, ... ,xn)~g(Yl' ... ,Ym) ---71..) if fi=g or ni=m

Acyclicity:
(x~t ---7 1..) if t is function term and X appears in t

The first three axioms say that ~ is an equivalence relation, the next three
axioms deal with function symbols, namely, the construction and deconstruc­
tion of function terms. The last two axioms define when an equation is un­
satisfiable: If two function terms with different function symbols are equated
or if one side of the equation is properly contained in the other side of the
equation. These formulae are actually formula schemes, because we need one
instance of the formulae for each function symbol of the signature.

4.3 Soundness and Completeness

We present results relating the operational and declarative semantics of LP.
On one hand, everything that is derivable should also logically follow from

4.3 Soundness and Completeness 21

the program (soundness), on the other hand, everything that follows should
also be derivable (completeness).

In the theorems, we distinguish between successful and failed deriva­
tions [8].

Theorem 4.3.1 (Soundness and Completeness of successful deriva­
tions). Let P be a logic program, C be a goal, and 0 be a substitution.

• Soundness: If 0 is a computed answer of G, then P++ U GET F VCO.
• Completeness: If P++ U GET F VCO, then a computed answer a of C

exists, such that 0 = a(3.

The relationship 0 = a(3 means that the computed answer can be more
general. This is because an answer need not instantiate all variables and any
instance of it also follows from the logical reading of the program.

The results on failed derivations require that we avoid trivial cases of
non-termination.

Definition 4.3.1. A derivation is fair if it either fails or if each atom ap­
pearing in a derivation is selected after finitely many reductions.

In other words, given a state, there is no atom that is ignored forever, i.e.,
never selected.

Theorem 4.3.2 (Soundness and Completeness offailed derivations).
Let P be a logic program and C be a goal. Any fair derivation starting with
<C, E> fails finitely if and only if P++ U GET F ,:::lC.

Such a result on failed derivations would not exist without Clark's completion
of a program. Note that SLD resolution does not admit fair derivations in
any case, since always the left most atom of a state is chosen for Unfold.

5. Constraint Logic Programming

Constraint logic programming (CLP) was developed in the mid-1980's as
a natural combination of two declarative paradigms: constraint solving and
logic programming (Fig. 5.1). This makes constraint logic programs more
expressive, flexible, and in general more efficient than logic programs.

1963 I. Sutherland, Sketchpad, graphic system for geometric drawing
1970 U. Montanari, Pisa, Constraint networks
1970 R.E. Fikes, REF-ARF, language for integer linear equations
1972 A. Colmerauer, U. Marseille, and R. Kowalski, IC London, Prolog
1977 A.K. Mackworth, Constraint networks algorithms
1978 J.-L. Lauriere, Alice, language for combinatorial problems
1979 A. Borning, Thinglab, interactive graphics
1980 G.L. Steele, Constraints, first constraint-based language, in LISP
1982 A. Colmerauer, Prolog II, U. Marseille, equality constraints
1984 Eclipse Prolog, ECRC Munich, later IC-PARC London
1985 Sicstus Prolog, Swedish Insitute of Computer Science (SICS)
1987 H. Ait-Kaci, U. Austin, Life, equality constraints
1987 J. Jaffar and J.L. Lassez, CLP(X) - Scheme, Monash U. Melbourne
1987 J. Jaffar, CLP(R), Monash U. Melbourne, linear polynomials
1988 P. v. Hentenryck, CHIP, ECRC Munich, finite domains, Booleans
1988 P. Voda, Trilogy, Vancouver, integer arithmetics
1988 W. Older, BNR-Prolog, Bell-Northern Research Ottawa, intervals
1988 A. Aiba, CAL, ICOT Tokyo, non-linear equation systems
1988 W. LeIer, Bertrand, term rewriting for defining constraints
1988 A. Colmerauer, Prolog III, U. Marseille, list constraints and more

Fig. 5.1. Early history of constraint-based programming

Constraint satisfaction problems (CSP) over finite domains were already
investigated in the 1970's within the context of artificial intelligence. In gen­
eral, a constraint problem consists of a set of variables and constraints. Con­
straints are predicates which express properties of variables, as well as rela­
tions between variables. A solution of a constraint problem is a valuation of
the variables with values such that all constraints are satisfied.

At the end of the 1970's constraints started to be integrated in tools
and programming languages. At the same time, efforts were made to make
logic programming (LP) more declarative (with a flexible selection strategy),

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

24 5. Constraint Logic Programming

faster (with improved search), and more general (with extended equality). A
flexible selection strategy would mean that handling of certain atoms can be
delayed, thus getting away from the fixed left-to-right order. Improved search
would mean to detect failing derivations earlier.

Extending equality would mean to consider interpreted function symbols.
For example, the term 1 + 2 should be equivalent to 3 by interpreting + as ad­
dition. Consequently, syntactic equality is generalized to an equation, which
must be solved.

These equations can be understood as constraints. These constraints are
handled by a special algorithm implemented in a constmint solver. They
are delayed until enough information in the form of other constraints is
available in order to simplify and solve them. If constraints become incon­
sistent, the current derivation fails. For example, the constraint problem
X - Y =3 II X + Y =7 will lead to the solution X =5 II Y =2. The constraint
goal X <Y II Y <X fails without the need to know values for the variables.

Obviously, the easiest way for constraint solving is to generate a possi­
ble solution, i.e., enumerate all possible values for the variables, and then
to test if the constraints are satisfied. This is the so-called genemte-and­
test methodology used in LP. Unfortunately, this methodology is impractical
in most cases. The problem is that this method only uses the constraints
in a passive manner, to test the result of applying values, rather than us­
ing them to infer values that form a solution. In the so-called constmint­
and-genemte methodology, first the constraints are applied to reduce the
search space (i.e., the number of possible solutions) and then (if needed)
a solution is generated. For example the solution of the following problem
XE{l, 2} II YE{l, 2} II ZE{l, 2} II X =Y II X -j.Z II Y>Z is found after seven
choices (i.e., after testing seven possible solutions) using the generate-and-test
method, contrasting with the constraint-and-generate methodology where the
solution can be found without making any choice, i.e., the constraint Y>Z
determines the values of Y and Z to be 2 and 1, respectively. Now, the con­
straint X =Y propagates the information that X =2 and the constraint X-j.Z
remains satisfied.

In 1982, Colmerauers LP language Prolog II already extended unification
by treating infinite, cyclic terms (rational trees). In the second half of the
1980's the first CLP languages, CLP(3t), CHIP and Prolog III were developed.
In 1987, Jaffar and Lassez introduced the CLP(X) scheme that forms the
basis for describing languages independent of the constraint system they use.

CLP(3t) offered a clean, declarative solution for treating arithmetic ex­
pressions in LP languages by introducing equations between linear arithmetic
expressions over floating point numbers. In Prolog III, not only rational trees
but also linear equations existed - but over rational numbers. In CHIP, con­
straints over finite domains were integrated into an LP language, as well as
constraints from Boolean algebra.

5.1 CLP Calculus 25

CLP languages combine the advantages of LP languages (declarative,
for arbitrary predicates, non-deterministic) with those of constraint solvers
(declarative, efficient for special predicates, deterministic). The combination
of search with solving constraints is particularly useful. Combinatorial prob­
lems can be tackled, which usually have exponential complexity, i.e., with
increasing size they become practically unsolvable.

5.1 CLP Calculus

The CLP calculus is a generalization of the LP calculus. It replaces the uni­
fication for treating syntactic equality by the more general constraint solving
for handling constraints.

5.1.1 Syntax

The only difference between CLP syntax and LP syntax is the fact that
constraints are introduced, which can occur in goals and therefore in the
body of a clause.

In the signature of the CLP calculus, the set of predicate symbols is aug­
mented with constraint symbols. We introduce two constraint symbols true
and false that have the same meaning as T and ..1, respectively. Furthermore,
we assume that the constraints include ='=. The set of constraint symbols is
defined by a consistent first-order constraint theory (CT) and handled by a
predefined, given constraint solver. In particular, CT defines ='= as the syntac­
tic equality over Herbrand terms by including GET. Constraints are discussed
in detail in Part II of this book.

Definition 5.1.1. An atom is an expression of the form p(t1 , ... , tn), where
p is an n-ary predicate symbol and h, ... ,tn are terms.
An atomic constraint is an expression of the form c(t 1 , ... , t n), where c is an
n-ary constraint symbol and t 1 , ... ,tn are terms. A constraint is either an
atomic constraint or a conjunction of constraints.
A goal is either T (top) or..1 (bottom) or an atom or an atomic constraint
or a conjunction of goals.

Clauses for CLP are defined in the same way as for LP, except that their
bodies now can contain constraints.

Definition 5.1.2. A (CL) clause is of the form A +- G, where A is an atom
and G is a goal.
A CL program is a finite set of GL clauses.

These syntax definitions are summarized in Fig. 5.2.
In the following, we present the operational semantics of CLP as a state

transition system. We first define states. As in LP, they have two components.

26 5. Constraint Logic Programming

Atom:
Constraint:
Goal:
CL Clause:
CL Program:

A,B
C,D
G,H
K
P

Fig. 5.2. CLP syntax

p~tt, ... ,tn), n 2 0
c(tt, ... , t n) I C 1\ D, n 2 0
TI..lIAICIGI\H
Af-G
K1 ... K m , m > 0

The first component contains the constraints and the atoms that remain to
be solved, and the other contains the constraints accumulated and simplified
so far (whereas in LP we had substitutions).

Definition 5.1.3. A state is a pair <C, C>, where C is a goal and C is a
constraint. C is the goal (store) and C is the (constraint) store.
An initial state is a state of the form <C, true>.
A successful final state is a state of the form <T, C> and C is different from
false. A state is a failed final state if it is of the form <C, false>.

Note that <T,jalse> is a failed final state.
From now on only essential definitions for the calculus are given explicitly.

All other definitions are to be taken from the figures or from a preceding
calculus. In particular, the definitions for successful and failed derivations
and goals from the LP calculus still apply.

5.1.2 Operational Semantics

The transition rules of the CLP calculus (Fig. 5.3) are chosen in order to
stress the commonalities with the LP calculus. The transition rules Unfold
and Failure are generalizations of those from LP. Constraints will be handled
by the additional transition rule Solve.

The Unfold transition behaves as follows: If the equation between head of
the clause and selected atom is consistent together with the current constraint
store, then the atom is replaced by the body of the clause and the equality is
added to the constraint store. Otherwise the derivation fails by applying the
transition rule Failure.

The transition Unfold of the LP calculus computes the most general
unifier between the head B of clause and the atom A in the context of substi­
tution () and adds the unifier to (). In the CLP calculus, we impose an equality
constraint between the B and A in the context of the constraint store C and
add the equality constraint to the store C.

Note that strictly speaking, B~A is incorrect, since equality cannot be
applied to atoms. However, we use B~A to denote the pairwise equating of
the arguments of Band A. If B is of the form P(tl,"" t n) and if A is of the
form P(Sl, ... , sn), then B~A stands for tl ~Sl 1\ ... 1\ tn~sn.

The Solve transition behaves as follows. If the selected goal is a con­
straint, then it will be removed from the goal store and added to the con-

Unfold
If
and
then

Failure
If
with
then

Solve
If
then

5.1 CLP Calculus 27

(B +- H) is a fresh variant of a clause in P
CT f= :3 ((B~A) II C)
<A II G, C> f--t <H II G, (B~A) II C>

there is no clause (B +- H) in P
CT f= :3 ((B~A) II C)
<A II G, C> f--t <l..,false>

CT f= \j ((C II DI) ~ D 2)

<C II G, Dl> f--t <G, D2>

Fig. 5.3. CLP transition rules

straint store. Hereby the constraint store is simplified. The form of simplifica­
tion depends on the constraint system and its constraint solver. It is tried to
simplify inconsistent constraints to false. Thus, a failed final state can also be
reached using the transition rule Solve. Note that by definition, a constraint
need not be atomic, it can also be a conjunction of constraints.

Comparison with LP. While in LP we just accumulate and compose sub­
stitutions during a computation, in CLP we accumulate and simplify con­
straints. Like substitutions, constraints are never removed from the constraint
store, therefore the information in the constraint store increases monotoni­
cally during derivations.

As in the LP calculus, we have two degrees of non-determinism in the
calculus (selecting the goal and selecting the clause). Search trees are defined
in the same way as in LP. Most implementations of the CLP languages also
use depth-first search with chronological backtracking (SLD resolution).

CLP is an extension of LP. Constraint logic programs not containing
constraints are logic programs. A derivation in LP can be expressed as
CLP derivations, when substitutions are expressed by equality constraints.
Substitutions of the form {Xl f--ttl , ... ,Xnf--ttn} are written as equations
Xl ~tl 1\ ... 1\ xn~tn'

CLP also generalizes the form of answers. An answer in LP languages is a
substitution, while in CLP languages it is a constraint. Constraints as answers
are useful, because they can summarize several (even infinitely many) LP an­
swers into one (intensional) answer. For example, the goal X + Y231\X + Y::;3
is simplified into the intensional answer X + Y ~3, where the variables do not
have a value.

The notion of the logical reading of a state is similar to the one in LP,
with the difference that constraints replace substitutions.

28 5. Constraint Logic Programming

Definition 5.1.4. Let <H, C> be a state which occurs in a derivation start­
ing with <G, true>. The formula 3x(H /\C) is the logical reading of the state,
where x stands for the variables which occur in H or C but not in G.

In contrast to LP, an answer in CLP can be defined as the logical reading
of a final state.

Definition 5.1.5. An answer (constraint) of a goal G is the logical reading
of a final state of a derivation starting with <G, true>.

We are now ready to consider a simple example that will guide us through
the various classes of constraint programming languages.

Example 5.1.1. Consider the following constraint logic program which imple­
ments the predicate min/3. min (X, Y, Z) means that Z is the minimum of X
and Y:

min (X, Y, Z) +--- X:;Y /\ X~Z (cl)
min(X, Y ,Z) +--- Y:;X /\ Y~Z (c2)

where :; and ~ are constraints with the usual meaning as total order and
syntactic equality.

For the initial state <min(1,2, C), true>, we have the following derivation:

<min(1,2, C),
MUnfold (el) (X:;Y /\ X~Z,
MSolve (T, C~1)

true>
1~X /\ 2~Y /\ C~Z)

First, the clause (cl) is applied to unfold the initial state. Then, in
the Solve transition a constraint solver simplifies the constraint store af­
ter adding the constraints from the goal store. The derivation is successful
and the answer constraint is C~1. For readability, the answer constraint has
been simplified by removing variables that do not occur in the initial goal.

Using the second clause (c2) on the same initial state leads to an incon­
sistent constraint store, namely 2:;1/\ 2~C. Thus this derivation fails. The
search tree (Fig. 5.4) shows that a depth-first traversal of such tree would
encounter the successful derivation and then the failed one.

The initial goal min (A, 2 , 1) has the derivation:

<min(A, 2,1), true>
MUnfold (el) (X:;Y /\ X~Z, A~X /\ 2~Y /\ 1~Z)
MSolve (T, A~1)

Using the first clause, the goal min(A,2,2) has the answer A~2. The
second clause yields the same answer.

The goal min (A, 2,3) fails. In Prolog, these transitions would lead to an
error message, since no value for A is known yet and the comparison is only
possible between known values.

For the initial goal min(A,A,B) two derivations are possible. Using the
first clause, we have the following derivation:

5.3 Soundness and Completeness 29

<min(l, 2, C), true>

/~
<X~YAX~Z, 1~XA2~YAC~Z> <Y~XAY~Z, 1~XA2~YAC~Z>

<.1, false>

Fig. 5.4. Search tree for the goal min(1,2,C)

<min(A, A, B), true>
HUnfold (r1)(X~Y 1\ X~Z, A~X 1\ A~Y 1\ B~Z)
HSolve (T, A~B)

The intensional answer tells us that the minimum of two equal numbers is
this number itself. Choosing the second clause (c2) leads to the same answer.

The general goal min(A,B,C) 1\ A~B has the answer A~C 1\ A~B if
clause (c1) is selected, but if the second clause (c2) is selected, the answer is
A~C 1\ A~B, this answer happens to be more specific.

5.2 Declarative Semantics

Constraint logic programs can be completed like logic programs [32]. In addi­
tion, however, the meaning of the constraints occurring in the program must
be specified. The declarative semantics of a constraint logic program P is
therefore the union of pH with a constraint theory GT, while in LP we only
extended pH by the special theory GET.

5.3 Soundness and Completeness

The correspondence between operational and declarative semantics is also
quite close in CLP. The theorems of LP and their proofs can be transferred
to CLP: The Herbrand universe is replaced by an arbitrary constraint domain
and GET by an appropriate constraint theory [32].

Theorem 5.3.1 (Soundness and Completeness of successful deriva­
tions). Let P be a CL program and G be a goal .

• Soundness: If G has a successful derivation with answer constraint G,
then pH U GT F V(G -+ G) .

• Completeness: If pH U GT F V(G -+ G) and G is satisfiable in GT,
then there are successful derivations for the goal G with answer constraints
G1 , ••• , Gn such that GT F V(G -+ (G1 V ... V Gn)).

30 5. Constraint Logic Programming

The theorem shows that in contrast to LP several answers must be con­
sidered and combined to achieve completeness.

Example 5.3.1. Let P be the following program:

p(X, Y) ~ XS:;Y
p(X,Y) ~ X~Y

The goal p (X, Y) has two successful derivations with answer constraints XS:;Y
and X~Y, respectively. It holds that P"" U CT F \i(true -+ p(X, V)).

According to the completeness result CT F \i(true -+ XS:;Y V X~Y) must
hold. This is the case, but each answer on its own is not sufficient to show
this: CT ~ \i(true -+ XS:;Y) and CT ~ \i(true -+ X~Y).

If, however, the constraint system is independent (Chap. 8), the disjunc­
tion can be reduced to a disjunct. For example, syntactic equality as used in
LP has the independence property.

The results for failed CLP derivations are as in LP.

Theorem 5.3.2 (Soundness and Completeness offailed derivations).
Let P be a CL program and G be a goal. P"" U CT F ..,3G if and only if each
fair derivation starting with <G, true> fails finitely.

6. Concurrent Constraint Logic Programming

At the end of the 1980's, concurrent constraint logic programming (CCLP)
integrated ideas from concurrent LP [52] and CLP (Fig. 6.1).

Maher [37] proposed the ALPS class of languages. The ambitious Japanese
Fifth-Generation Computing Project relied on a concurrent logic language.
Saraswat [49] developed the ideas of the time further by introducing the ask­
and-tell metaphor and by introducing the CC (concurrent constraints) lan­
guage framework. Smolka proposed a concurrent programming model called
OPM that subsumes functional and object-oriented programming [54].

1981 K. Clark and S. Gregory, Relational Language for Parallel Prog.
1982-94 Japanese Fifth-Generation Computing Project, KL1
1983 E. Shapiro, Concurrent Prolog, FCP (Flat Concurrent Prolog)
1983 K. Clark and S. Gregory, Parlog (Parallel Prolog)
1985 K. Ueda, GHC (Guarded Horn Clauses)
1987 M. Maher, ALPS language class
1989 V. Saraswat, CC language framework (Concurrent constraints)
1990 S. Haridi, AKL (Andorra Kernel Language)
1991 M. Hermengildo, CIAO (Parallel Multi-Paradigm Prolog Extension)
1992 G. Smolka, OZ (integrates functions, objects, and constraints)

Fig. 6.1. Early history of concurrent constraint logic programming

Processes are the main notion in concurrent programming. Processes
(agents) are programs that are executed concurrently and that can inter­
act with each other. Processes can either execute local actions or communi­
cate and synchronize by sending and receiving messages. The communicating
processes build a process network which can change dynamically. For concur­
rency it does not matter if the processes are executed physically in parallel
or if they are interleaved.

In CCLP, concurrently executing processes communicate via a common
constraint store. The processes are defined by predicates. Constraints take
the role of (partial) messages and variables take the role of communication
channels. Usually, communication is asynchronous. Running processes are
goals that place and check constraints on shared variables.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

32 6. Concurrent Constraint Logic Programming

This communication mechanism is based on ask-and-tell of constraints
into a common constraint store. Tell refers to imposing a constraint as we
know it from CLP. Ask is an inquiry whether a constraint already holds. Ask
is realized by an entailment test. This test checks whether a constraint is
implied by the current constraint store. Ask and Tell can be seen as gener­
alizations of read and write from values to constraints. Ask corresponds to a
consumer, Tell corresponds to a producer of constraints.

Processes are building blocks of distributed systems, where data and com­
putations are physically distributed over a network of computers.

Processes can intentionally be non-terminating. Consider an operating
system which usually should keep on running or a monitoring and control
program which continuously processes incoming measurements and periodi­
cally returns intermediate results.

All this means for a process that in general decisions and resulting ac­
tions cannot be undone anymore. Search as in CLP languages (don't-know
non-determinism) cannot be permitted any longer in this context. Instead,
don't-care non-determinism is employed in the choice of clauses. This is also
referred to as committed choice: If there are several applicable clauses, just
one arbitrary clause of them will be chosen, alternative clauses will not be
taken into account anymore. While the avoidance of search leads to a certain
loss in expressiveness, it means a gain in efficiency.

In the context of concurrent distributed computation, failure should also
be avoided. Failure of a goal atom (i.e., a single process) always entails the
failure of the entire computation (i.e., all participating processes). In appli­
cations such as operating or monitoring systems this would be fatal.

In [49] Saraswat presents a general language framework called CC that
permits both don't-care and don't-know non-determinism (search). Imple­
mented CCLP languages are AKL, CIAO and Mozart (former OZ). They
admit programmable search which is encapsulated into one process.

6.1 CCLP Calculus

We restrict our attention to the committed-choice CCLP languages. As we
will see in the following chapter On CHR, an extension with search is relatively
straightforward.

6.1.1 Syntax

The only difference between CCLP syntax and CLP syntax is that clauses are
extended by guards (Fig. 6.2). Guards are preconditions on the applicability
of a clause for unfolding.

Definition 6.1.1. A (CCL) clause is of the form A ~ C I G, where the
head A is an atom, C is a constraint called guard, and the body G is a goal.
A CCL program is a finite set of CCL clauses.

6.1 CCLP Calculus 33

A guard true is often omitted together with the commit symbol I.

Atom: A,B .. - p~tl, ... , t n), n2:0
Constraint: C,D .. - C(tl, ... , t n) I C 1\ D, n 2: 0
Goal: G,H .. T I .L I A I C I GI\H
CCL Clause: K .. A f- GIG
CCL Program: P .. - KI ... K m , m 2: 0

Fig. 6.2. CCLP syntax

6.1.2 Operational Semantics

We present the operational semantics of CCLP as a state transition system.
The definitions of states, derivations, and goals are the same as in the CLP
calculus, with one important exception that is due to different transition
rules. There is a new kind of final state.

Definition 6.1.2. A state <G, C> with G different from T and C different
from false is called deadlocked if no more transitions are possible.

Deadlocked states are the consequence of having no Failure transition any­
more. Since the derivation in a deadlocked state in some sense could not finish
successfully, deadlocks should be avoided and they are usually attributed to
programming errors.

Given a CCLP program P, we define the transition relation H by intro­
ducing two transition rules (d. Fig. 6.3).

Since the CCLP calculus has to rely on committed choice of clauses (in­
stead of search as in CLP), we have to be much more cautious with the
application of a clause because we cannot undo it later. While in the eLP
calculus a consistency test is performed for the application of the Unfold
transition rule, an entailment test has to be performed in the CCLP calcu­
lus. The entailment test checks the implication of a constraint D by a store
C, i.e., CT 1= V (C -+ D).

In the transition rule Unfold for CCLP, entailment is checked for the
guard of the CCL clause.

A clause with head B and guard D is applicable to A in the context of
constraints C, when the condition holds that CT 1= V(C -+ :lx((B~A) 1\ D).
Any of the applicable clauses can be applied, but it is a committed choice, it
cannot be undone. If a clause (B f- D I H) is applied to A, the transition
removes A from the goal store, adds the body H to the goal store and also
adds the equation B~A and the guard D to the constraint store.

We now discuss in more detail the clause applicability condition CT 1=
V(C -+ :lx((B~A) 1\ D). The equation (B~A) is a notational shorthand for
equating the arguments of the head B and the atom A.

34 6. Concurrent Constraint Logic Programming

Unfold
If
and
then

Solve
If
then

(B f- D I H) is a fresh variant of a clause in P with variables x
CT F'i (C -+ :Jx((B~A) /\ D))
<A /\ G, C> >-+ <H /\ G, (B ~ A) /\ D /\ C>

CT F'i ((C /\ D l) f-+ D 2)

<C /\ G, D l > >-+ <G, D2>

Fig. 6.3. CCLP transition rules

Operationally, the clause applicability condition can be checked as follows.
Given the constraints of C, try to solve the constraints (B='=A /\ D) without
further constraining (touching) any variable in A and C. This means that
we first check that A matches B and then check the guard D under this
matching. Thus, matching means that A is an instance of B, i.e., it is only
allowed to instantiate variables of B but not variables of A. This is achieved
by equating B and A by existentially quantifying all variables from the clause,
x. Matching is also called one-sided unification.

The Solve transition is as in CLP. Note that as in CLP, the Solve tran­
sition leads to failure if the resulting store becomes inconsistent.

The following example illustrates the committed-choice behavior of the
transition Unfold in the CCLP calculus.

Example 6.1.1. The following CCL program implements flipping of a coin.

flip (Side) +- Side='=head
flip(Side) f- Side='=tail

Depending on the selected clause, the result is different. The output of coin
flipping is not predictable. In particular, a goal flip (head) can either be
failed or successful.

With the operational semantics given above, it is not possible to express
that two atoms can be unfolded in parallel. It only allows the executions to
be interleaved. Parallelism can be made explicit by the following transition
rule (Fig. 6.4).

Parallel
If
and
then

<Gl,Cl > >-+ <Hl,Dl >
<G2, C2> >-+ <H2, D2>
<G l /\ G2, C l /\ C2> >-+Pa7"allel <HI /\ H2, Dl /\ D2>

Fig. 6.4. CCLP with explicit parallelism

6.1 CCLP Calculus 35

We now consider our running example of computing the minimum again.

Example 6.1.2. We define min with the following CCL program:

min(X, Y ,Z) +- XS:.Y I X~Z (cl)
min(X, Y ,Z) +- YS:.X I Y~Z (c2)

This CCLP implementation of min corresponds more to a usual program in
a conventional programming language. For example, the first rule cl can be
read as if XS:.Y then min (X, Y ,Z) can be simplified to X~Z. We can consider
the argument positions of the head atom that do not contain variables and
the variables of the head that occur in the guard as input parameters, and all
others as output parameters. So there is a notion of directness which is not
presented in the formal model of LP and CLP, where we can also compute
backwards.

However, clauses with guards are still more general than if-then-else or
case statements in conventional programming. A guard entailment generalizes
the notion of a test, as we will see in the following sample goals. In this
sense, also the notion of input and output is generalized. We do not have to
know specific values for the input parameters, it is enough to know certain
constraints about them (those that are expected by the guards). In the case
of min, we have to know the order between X and Y.

Let us consider some derivations now. To the goal min (1,2, C) the first
clause cl is applicable, since the entailment test is fulfilled:

CT F '<:/(true --+:3 X, Y, Z((1~X 1\ 2~Y 1\ C~Z) 1\ X S:. Y))

This leads to the following derivation:

<min(1,2, C), true>
f-tUnfold (ell (X~Z, 1~XI\2~Y I\C~Z)
f-tSolve (T, C~l)

This derivation is the only possible one in the CCLP calculus, while in
the CLP a failure was the result of selecting the second clause.

In contrast to the CLP calculus, some derivations in CCLP will lead in
deadlocked states now: On the initial state <min(A, 2,1), true> no transition
rule can be applied since there is no information about the relationship be­
tween A and 2. This is also the case for the goals min (A, 2,2) and min (A, 2,3).
In the CLP calculus these goals could be completely solved, but it was nec­
essary to try both CL clauses.

For the goal min (A, A, B) both CCL clauses fulfill the entailment test. Only
one of the clauses will be applied. In this case, independent of the selected
clause, the answer constraint is A~B.

The goal min(A, B, C) 1\ AS:.B leads to the answer AS:.B 1\ A~C by selecting
the first clause. Similarly, the goal min(A, B, C) 1\ A2B with the second clause
leads to the answer A2B 1\ B~C.

36 6. Concurrent Constraint Logic Programming

The next example involves an infinite derivation based on a cyclic pro­
ducer and consumer relationship between processes.

Example 6.1.3. We consider the classical Hamming's Problem, which is to
compute an ordered ascending sequence of all numbers whose only prime
factors are 2, 3 or 5. The sequence starts with the numbers 1 0 2 0 3 0 4 0 5 0
608090 10 0 12 0 150 160 180200240250 Two neighboring numbers
later in the sequence are 79164837199872 and 79254226206720.

The idea for solving this problem is based on the following observation:
any element of the sequence can be obtained by multiplying a previous num­
ber of the sequence with 2, 3 or 5. The only exceptions is the initial number
1. Hence, once we have the number 1, we can compute all elements of the
sequence.

We define a non-terminating process hamming(S) that will produce the
numbers as elements of the infinite sequence S. Now we pretend that the (in­
finite!) sequence S is already known (even though we just know that it starts
with 1). We implement three processes mults, which multiply the numbers
of S with 2, 3, and 5, respectively, as soon as the numbers are known. Two
merge processes combine the three resulting sequences into an ordered one
without duplicates. However, this sequence is the desired sequence S.

hamming(S) +---
mults(S,2,S2) A mults(S,3,S3) A mults(S,5,S5) A
merge(S2,S3,S23) A merge(S5,S23,S)

mults(XoS,N,XSN) +--- XSN~X*NoSN A mults(S,N,SN)

merge (Xolnl, Yoln2, XYOut) +--- X~Y I
XYOut~XoOut A merge (Inl, In2, Out)

merge (Xolnl , Yoln2,XYOut) +--- X<Y I
XYOut~XoOut A merge(Inl,Yoln2,Out)

merge (Xolnl , Yoln2,XYOut) +--- X>Y I
XYOut~YoOut A merge(Xolnl,In2,Out)

A process mults (S, N , SN) delays (suspends) until the first argument S is a
sequence with a known first element. It then multiplies this number by Nand
puts the result as the first element of the output sequence SN. The recursion
ensures that all elements of the input sequence are multiplied one after the
other. Note that there is no base case because we assume that the sequence
is infinite. In any case, the mults process will simply suspend if the sequence
ends or if its remainder is not yet known.

A merge process compares the first elements of the two input sequences as
soon as they are known and puts the smaller of them on the output sequence
before recursively continuing. If the two elements are the same, only one of
them is kept (duplicates are removed).

6.1 CCLP Calculus 37

In this way, the mul ts and merge processes synchronizes itself and commu­
nicates via the shared sequence variables. The result is a concurrent-process
network where the processes can be executed in parallel.

If we start by unfolding the goal hamming(S), all mults and merge pro­
cesses will suspend, because nothing about the input sequences of each pro­
cess is known. But when we supply the additional constraint that S starts
with the number 1, i.e., S~ 10Sl, the process network will produce all Ham­
ming numbers.

The goal mults(1oS,2,S2) with the transition rules Unfold and Solve
leads to S2~20S2N 1\ mul t s (S , 2 , S2N) .

Overall, the three mul ts processes yield

S2~20S2N 1\ S3~30S3N 1\ S5~50S5N 1\

mults(S,2,S2N) 1\ mults(S,3,S3N) 1\ mults(S,5,S5N) 1\

merge(S2,S3,S23) 1\ merge(S5,S23,S).

Since the first numbers of the sequences S2 and S3 are known, the goal
merge(S2,S3,S23) can unfold with the second clause for merge. Thus, the
first number of the sequence S23 is computed:

S23~20S23N 1\ merge(S2N,S3,S23N).

Now the goal merge(S5,S23,S) yields S~20SN 1\ merge(S5,S23N,SN).
The determination of the first element of S causes the mul ts processes to

be woken and the next numbers of the Hamming's sequence will be computed;
ad infinitum.

CCLP with Atomic Tell

In the CCLP calculus presented above, the constraints occurring in the body
of a clause are added without any consistency check. So there is still the
danger of failure due to the Solve transition. This kind of tell operation is
called eventual tell.

The CCLP calculus can be extended by atomic tell. In atomic tell opera­
tions, a process may place constraints into the store only if they are consistent
together.

CCL Clause K A+--C:DIG

Fig. 6.5. Extended CCLP syntax of clauses

The syntactic difference to eventual tell is that the constraint to be told
atomically is part of the guard of a clause (Fig. 6.5). Hence, if the constraint
store becomes inconsistent as a consequence of an atomic tell, the operation

38 6. Concurrent Constraint Logic Programming

can be undone and the clause will not be applied (Fig. 6.6). The formalization
and the overall behavior is similar to the consistency test in the CLP calculus
except that there is no search.

Unfold
If
and
and
Then

Solve
If
Then

(B f-- Dl : D2 I H) is a fresh variant of a clause in P
CT F V (C -+ :Jx((B~A) 1\ D 1))

CT F :J((B~A) 1\ Dl 1\ D2 1\ C)
<A 1\ 0, C> 1-7 <H 1\ 0, (B~A) 1\ Dl 1\ D2 1\ C>

CT F (C 1\ D 1) B D2
<C 1\ 0, D 1 > 1-7 <0, D2>

Fig. 6.6. CCLP transition rules extended with atomic tell

The extended CCLP transition rule Unfold can only be applied if adding
the constraint D2 keeps the constraint store C consistent.

With this extended calculus, it is possible to keep the constraint store
consistent and therefore prevent failure by allowing constraints only in the
guard, but not in the body anymore. However, it has been shown that such
languages are strictly less expressive than languages with eventual tell [18].

Example 6.1.4. The min example can be implemented with atomic tell as
follows:

min (X, Y ,Z) +-- X~Y X~Z true
min(X,Y,Z) +-- Y~X Y~Z true

All goals of Example 6.1.2 lead to the same answer constraints. The difference
between both calculi can be illustrated with erroneous goals like min (1,2,3) .
This goal is failed using eventual tell as in Example 6.1.2. Here, with atomic
tell, the goal is deadlocked, i.e., no transition rule can be applied. There­
fore the goal does not cause failure (which would affect all processes in the
network).

6.2 Declarative Semantics

The declarative semantics of CCL programs is analogous to that of CL pro­
grams. The symbols "I" and ":" are interpreted as conjunctions. Thus, a CCL
clause of the form A +-- C : DIG corresponds to the clause A +-- C 1\ D 1\ G.
Clark's completion of a CCL program is defined as in CLP.

6.3 Soundness and Completeness 39

6.3 Soundness and Completeness

In principle, the soundness and completeness theorems of CLP (Sect. 5.3)
would apply for CCLP as well, but the completeness theorem of CLP refers
to several derivations. Since CCLP goals have only one derivation, there is
a discrepancy between operational and declarative semantics. The following
results are due to Maher [37].

The soundness theorem of CLP for successful derivations applies analo­
gously for CCLP.

Theorem 6.3.1 (Soundness of successful derivations). Let P be a eeL
program and G be a goal. If G has a successful derivation with an answer
constraint 0, then P+-+ U OT F 't/(0 ---t G).

The soundness results also applies to deadlocked states.
A class of CCL programs, called deterministic programs, for which com­

pleteness results can be given has been identified by Maher. In a deterministic
program, no two clauses for the same predicate have overlapping guards. Two
guards overlap if their conjunction is consistent. This means that in a deriva­
tion, at most one clause can be chosen for a goal (and that any possible order
of clause applications results in the same final state).

Example 6.3.1. We define min as deterministic CCL predicate:

min(X, Y ,Z) ~ X$Y X~Z true
min(X, Y ,Z) ~ Y<X Y~Z true

The difference to previous versions is that the ask guard of the second clause
is more strict. We can therefore expect that there are cases where a transition
that was possible before is not possible anymore since the guard is stricter.

With one exception the goals of Example 6.1.2 lead to the same answer
constraints. Even though, for the goal min(A,A,B), only the first clause ful­
fills the transition condition, the answer constraint is A~B as before. The
state <min(A, B, C), A:S;B> leads to A:S;B A A~C, as expected. However the state
<min(A, B, C), A2':B> is now deadlocked.

The restriction to deterministic eCL programs and to goals having at
least one fair derivation allows for the desired completeness result.

Theorem 6.3.2 (Completeness of successful derivations). Let P be a
deterministic eeL program and G be a goal with at least one fair derivation.
If P+-+ U OT F 't/ (0 ---t G) and 0 is consistent in OT, then each successful
derivation of G has an answer constraint 0' such that

OT F't/ (0 ---t 0').

40 6. Concurrent Constraint Logic Programming

This completeness theorem does not hold if G has no fair derivations.
Note that a goal with only deadlocked derivations has no fair derivation at
all.

Example 6.3.2. Let P be the eeL program for min from Example 6.1.2 and
let G be the goal min (A, B ,C) .

Then pH, CT F \i(A~B II A~C -7 min(A, B, C)) holds. However, the initial
state <G, true> is deadlocked. Thus, there is no fair derivation and no answer
constraint. Therefore, the theorem is not applicable.

For the class of deterministic eeL programs, the following holds: If a goal
has a finitely failed derivation, then any fair derivation will finitely fail.

Theorem 6.3.3 (Soundness and Completeness of failed derivations).
Let P be a deterministic CCL program and G be a goal with at least one fair
derivation. Then the following statements aTe equivalent:

• PHuCT F ,::3G
• G has a finitely failed derivation.
• Each fair derivation of G fails finitely.

Part II

Constraint Systems

7. Constraint Handling Rules

One lesson learned from applications is that constraints are often heteroge­
neous and application specific. In the beginning of constraint programming,
constraint solving was "hard-wired" in a built-in constraint solver written in
a low-level language. While efficient, this approach makes it hard to modify
a solver or build a solver over a new domain, let alone reason about and
analyze it. As the behavior of the solver can neither be inspected by the user
nor explained by the computer, debugging of constraint-based programs is
hard.

Several proposals have been made to allow more flexibility and customiza­
tion of constraint solvers. The most far-reaching proposal is Constraint Han­
dling Rules (CHR) [22]. CHR is a constraint language originally designed
for writing constraint solvers. CHR is essentially a concurrent committed­
choice language consisting of multi-headed rules that transform constraints
into simpler ones until they are solved.

CHR defines both simplification of and propagation over user-defined con­
straints. Simplification replaces constraints by simpler constraints while pre­
serving logical equivalence, e.g., XYAYX ¢} X=Y. Propagation adds new con­
straints, which are logically redundant but may cause further simplification,
e.g., XYAYZ =? X::;Z.

Besides defining the behavior of constraints, CHR, and also its extension
CHR v, can be and have been used

• for theorem proving and computational logic providing forward and back­
ward chaining, (integrity) constraints, tabulation, abduction, and deduc­
tion,

• as general-purpose concurrent constraint language,
• as flexible production rule system with constraints.

Implementations of CHR are available in Sicstus and Eclipse Prolog, Java
and Haskell, among others.

We introduce CHR in this section and will use CHR in the remainder of
the book to specify and implement constraint solvers. Also, the applications
we introduce in the last part of the book rely on CHR.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

42 7. Constraint Handling Rules

7.1 CHR Calculus

The CRR calculus can be seen as a generalization of the CCLP calculus.

7.1.1 Syntax

The CRR syntax is given in the following definitions and summarized in
Fig. 7.l.

We use two disjoint sets of predicate symbols for two different kinds of
constraints: (built-in) constraint symbols and CHR constraint symbols (user­
defined symbols). Constraints are defined as in CLP. Built-in constraints are
handled by predefined given constraint solvers. CRR constraints are defined
by a CRR program.

Definition 7.1.1. A simplification rule is of the form E B C I G. A propa­
gation rule is of the form E =} C I G, where the head E is a CHR constraint,
the guard C is a built-in constraint, and the body G is a goal.
A goal is either T or -.l or a built-in constraint or a CHR constraint or a
conjunction of goals.
A CRR program is a finite set of rules.

A CRR constraint symbol is defined in a CRR program if it occurs in the
head of a rule. A guard "true" can be omitted together with the commit
symbol!'

Built-in Constraint:
CHR Constraint:
Goal:
CHR Rule:
CHR Program:

Fig. 7.1. CHR syntax

C,D
E,F
G,H
R
P

C(tl, ... , t n) I C /\ D, n;::: 0
e(tl, ... ,tn) I E/\F,n;:::O
TI..LICIEIG/\H
E{=?CIG I E=}CIG
R1 ... Rrn,m > 0

Example 7.1.1. Given the built-in constraints true and ~, we define a CRR
constraint for the partial-order relation -S:

X-SY B X~Y I true (1'1)
X-SY /\ Y-SX B X~Y (1'2)
X-SY /\ Y-SZ =} X-SZ (1'3)
X<:;y /\ X-SY B X-SY (1'4)

The CRR program specifies and implements reflexivity (1'1), antisymmetry
(1'2), transitivity (1'3), and idempotence (r4) in a straightforward way. The
reflexivity rule (1'1) states that X-SY is logically true, provided it is the case
that X~Y. The antisymmetry rule (1'2) means X-SY /\ Y-SX is logically equiva­
lent to X~Y. The transitivity rule (1'3) states that the conjunction of X-SY and
Y-SZ implies X-SZ. The idempotence rule (1'4) states that multiple occurrences
of the same <:; constraint are logically equivalent to one occurrence.

7.1 CRR Calculus 43

7.1.2 Operational Semantics

Like in CLP and CCLP, a state consists of two components: the goal store
and the constraint store.

Definition 7.1.2. A state is a pair <G, C>, where G is a goal and C is a
(built-in) constraint.
An initial state is a state of the form <G, true>.
A state is called successful final state if it is of the form <E, C> and no
transition is applicable, and C is different from false. A state is called failed
final state if it is of the form <G, false>.

Note that unlike CLP and CCLP, a successful state can have a non-empty
goal store, provided the goals are all CRR constraints and no transition is
possible anymore. Indeed, the deadlocked states of CCLP are considered to
be successful states in CRR, because they represent CRR constraints that
could not be further simplified.

Simplify
If
and
then

Propagate
If
and
then

Solve
If
then

(F {=} D I H) is a fresh variant of a rule in P with variables j;
CT F'V (C -t 3j;(F~E II D))
<E II G, C> -t <H II G, (F~E) II D II C>

(F,* D I H) is a fresh variant of a rule in P with variables j;
CT F'V (C -t 3j;(F~E II D))
<E II G, C> >-+ <E II H II G, (F~E) II D II C>

CT F (C II DI) B D2
<C II G, Dl> >-+ <G, D2>

Fig. 7.2. CRR transition rules

Given a CRR program P, we define the transition relation >-+ by intro­
ducing three transition rules (cf. Fig. 7.2).

The Simplify transition of CRR is like the Unfold transition of CCLP,
except that the head of a CRR rule is a conjunction of atoms instead of a
single atom.

To Simplify CRR constraints E means to remove them from the state
<E II G, C> and to add the body H of a fresh variant of a simplification rule
(F (=? D I H) to the goal store and the equation F~E and the guard C to the
constraint store, provided E matches the head F and the guard D is implied
by the built-in constraints C.

44 7. Constraint Handling Rules

Note that the equation F~E in this context corresponds to pairwise
matching of the conjuncts of F and E and that according to the congru­
ence the conjuncts in the goal store and hence in E can be permuted (so that
a proper matching is possible).

The Propagate transition is like the Simplify transition, except that it
keeps the constraints E in the state. Trivial non-termination is avoided by
not applying a rule a second time to the same constraints.

The Solve transition is as in CLP and CCLP.

Example 7.1.2. Recall the program for ~ of example 7.1.1. Operationally,
the rule (rl) removes occurrences of constraints that match X~X. The anti­
symmetry rule (r2) means that if we find X'5:Y as well as Y~X in the current
store, we can replace them by the logically equivalent X~Y. The transitivity
rule (r3) propagates constraints. We add the logical consequence X~Z as a re­
dundant constraint. The idempotence rule (r4) absorbs multiple occurrences
of the same constraint.

A derivation of the goal A~B A C~A A B~C proceeds as follows (CRR
constraints which are considered in the current transition step are under­
lined):

r-+Propagate (r3)

r-+Simplify (r2)

r-+Simplify (r2)

r-+Solve (r2)

<A~B A C'5:A A B~C, true>
<A~B A C~A A B~C A C'5:B, true>
<A~B A B~A, B~C>
<A~B, B~C>

<T,A~B A B~C>

We now consider our running example of min again.

Example 7.1.3. Let ~ and < be built-in constraint symbols now. We now de­
fine min as CRR constraint, where min (X, Y ,Z) means that Z is the minimum
of X and Y:

min(X,Y,Z) <=}X~Y I Z~X (rl)
min(X,Y,Z) <=} Y~X I Z~Y (r2)
min(X, Y ,Z) <=} Z<X I Y~Z (r3)
min(X, Y ,Z) <=} Z<Y I X~Z (r4)
min(X, Y ,Z) =? Z~X A Z~Y (r5)

The first two rules (rl) and (r2) are as in the CCLP program and correspond
to the usual definition of min.

In contrast to the CCLP definition of min, we also want to be able to
compute backwards. In contrast to the CLP definition of min, where this was
achieved by search using two clauses, in CRR this is achieved by committed­
choice rules that explicitely express the cases where a simplification is pos­
sible. So the two rules (r3) and (r4) simplify min if the order between the
result Z and one of the input variables is known.

7.1 CRR Calculus 45

The last rule (r5) propagates constraints. It states that min(X, Y ,Z) un­
conditionally implies Z<::::X 1\ Z<::::Y. Operationally, the transition Propagate
adds these logical consequences as redundant constraints while the min con­
straint is kept.

To the goal min (1,2, M) the first rule is applicable:

<min(1, 2, M), true>
HSirnplify (1"1) <M='=1, true>
HSolve <T,M='=1>

To the goal min (A, B , M) 1\ A<::::B the first rule is applicable:

<min(A, B, M) 1\ A <:::: B, true>
HSolve <min(A, B, M), A <:::: B>
HSirnplify (rl) <M='=A, A <:::: B>
HSolve <T, M='=A 1\ A <:::: B>

Redundancy from a propagation rule is useful, as the goal min(A,2,2)
shows. To this goal only the propagation rule is applicable, but to the result­
ing state the second rule becomes applicable:

Hpropagate (1"5)

HSolve

HSirnplify (,-2)

HSolve

<min(A, 2, 2), true>
<min(A, 2, 2) 1\ 2 <:::: A 1\ 2 <:::: 2, true>
<min(A, 2, 2), 2 <:::: A>
<2='=2,2 <:::: A>
<T,2 <:::: A>

In this way, we find out that for min (A, 2,2) to hold, 2 <:::: A must hold.
Another interesting derivation involving the propagation rule is the fol­

lowing one (we omit the initial state for brevity):

<min(A, B, M), A='=M>
Hpropagate (,-5) <min(A, B, M) 1\ M <:::: A 1\ M <:::: B, A='=M>
HSolve <min(A, B, M), M <:::: B 1\ A='=M>
HSirnplify (,-1) <T, M <:::: B 1\ A='=M>

Let us look at some more goals for min that lead to deadlocked states in
CCLP and in CLP, the goals could only be completely solved by trying both
clauses for min in CLP.

The goal min (A, 2 , 1) leads to A='= 1 via rule (r4). In CLP, we had two
answers for this goal, where one answer was a generalization of the other
one.

The goal min(A, 2,3) leads to failure via rule (r5). In CLP, we had failure
after trying both clauses.

The goal min(A,A,M) leads to A='=M via rule (rl). Alternatively, rule (r2)
is applicable with the same result. However, since CHR is a committed-choice
language, only one of the rules will be applied. In CLP, we had two identical
answers for this goal.

46 7. Constraint Handling Rules

7.2 Declarative Semantics

CRR can be given a declarative semantics (which can be seen as an exten­
sion of the semantics proposed for Guarded Rules [53]). It differs from the
semantics of CLP and CCLP in that Clark's completion is not used. Rather,
each CRR rule alone gives rise to a formula. This "stronge" declarative se­
mantics comes from the fact that CRR is concerned with solving constraints
(that always admit a logical reading) and not with defining arbitrary predi­
cates. (If CRR is used as a general-purpm,e programming language, another
declarative semantics based on linear logic can be more useful.)

The logical reading of a simplification rule of the form E B C I G is a
logical equivalence provided the guard holds:

V(C -+ (E B 3y G)),

where yare the variables that appear only in the body G.
The logical reading of a propagation rule of the form E =? C I G is an

implication provided the guard holds:

V(C -+ (E -+ 3y G)).

As in CLP and CCLP, the logical reading of a CRR program P is the
conjunction of the logical readings of its rules P united with a constraint
theory CT that defines the built-in constraint symbols.

The logical reading of a state and the definition of answer constraints is
the same as in CLP and CCLP.

7.3 Soundness and Completeness

We now relate the operational and declarative semantics of CRR. The proofs
for the following theorems can be found in [2].

Definition 7.3.1. A computable constraint of G is the logical reading of a
state which appears in a derivation of G.

The following results are based on the fact that the transition steps of
CRR preserve the logical reading of states. Lemma 7.3.1 says that all states
in a derivation are logically equivalent.

Lemma 7.3.1 (Equivalence of States). Let P be a CHR program and G
be a goal. Then, for all computable constraints C1 and C2 of G, the following
holds: P U CT F V (C1 B C2).

In the soundness and completeness results, we need not distinguish be­
tween successful and failed derivations.

7.4 Confluence 47

Theorem 7.3.1 (Soundness). Let P be a CHR program and G be a goal.
If G has a derivation with answer constraint C, then P U CT F V (C +-+ G).

Theorem 7.3.2 (Completeness). Let P be a CHR program and G be a
goal with at least one finite derivation. If P U CT F V (C +-+ G), then G has
a derivation with answer constraint C f such that P U CT F V (C +-+ C f).

Theorem 7.3.2 is stronger than the completeness result for CLP languages
as presented in Sect. 5. We can reduce the disjunction in the completeness
theorem presented there to a single disjunct in the completeness theorem of
CHR. This is possible, since the declarative semantics of CHR is stronger
and consequently, according to Lemma 7.3.1, all computable constraints of a
given goal are equivalent.

The completeness theorem does not hold if G has no finite derivation:

Example 7.3.1. Let P be the following CHR program:

p-¢:?p

Let the goal G be p. It holds that P U CT F p +-+ p. However, G has only
one infinite derivation.

From the soundness theorem we can derive the following statement about
failed derivations.

Corollary 7.3.1. Let P be a CHR program and G be a goal. If G has a
finitely failed derivation, then P U CT F ,:::IG.

The converse of Corollary 7.3.1 does not hold in general.

Example 7.3.2. Let P be the following CHR program

p-¢:?q
p ¢:} false

P U CT F 'q, but q has no finitely failed derivation.

We will see that confluence will improve on this situation. Confluence
generalizes the notion of determinism as introduced for CCLP programs.

7.4 Confluence

We have already shown in the previous section that for every CHR program,
the result of a derivation of a given goal will always have the same meaning.
However, it is not guaranteed that the result is syntactically the same. In
particular, a solver may be able to detect inconsistency of constraints with
one order of rule applications but not with another.

The confluence property of a program guarantees that any derivation for
a goal results in the same final state no matter which of the applicable rules
are applied.

48 7. Constraint Handling Rules

Definition 7.4.1. A CHR program is called confluent if for all states 8,81 ,

and 8 2 : If 8 f-t* 8 1 and 8 f-t* 8 2 , then 8 1 and 8 2 are joinable. Two states
8 1 and 8 2 are called joinable if there exist states Tl and T2 such that 8 1 f-t * Tl
and 82 f-t* T2 and Tl and T2 are variants.

To analyze confluence of a given eHR program, we cannot check join­
ability starting from any given state, because in general there are infinitely
many such states. However, for terminating programs, one can restrict the
joinability test to a finite number of "minimal" states.

Definition 7.4.2. Let Rl be a simplification rule and R2 be a (not neces­
sarily different) rule, whose variables have been renamed apart. Let Hi /\ Ai
be the head and C i be the guard of rule Ri (i = 1,2), then a critical ancestor
state of Rl and R2 is

<HI /\ Al/\ H 2, (Al~A2) /\ C l /\ C2>,

provided Al and A2 are non-empty conjunctions and CT 1= ==J((AI ~A2) /\
C l /\ C2).

Let 8 be a critical ancestor state of Rl and R 2. If 8 f-t 8 1 using rule Rl
and 8 f-t 8 2 using rule R 2, then the tuple (81 ,82) is a critical pair of Rl and
R 2. A critical pair (81 ,82) is joinable if 8 1 and 8 2 are joinable.

The following theorem gives a decidable, sufficient, and necessary condi­
tion for confluence of a terminating eHR program [1]. A eHR program is
called terminating if there are no infinite derivations.

Theorem 7.4.1 (Confluence of CRR). A terminating CHR program is
confluent if and only 'if all its crit'ical pairs are joinable.

Example 7.4.1. Recall the program for ~ of Example 7.1.1. The following
critical pair stems from the critical ancestor state <X~Y /\ Y~X /\ Y~Z, true>
of (r2) and (1'3)

(81 ,82) = «X~Y /\ Y~Z, true>, <X~y /\ Y~X /\ Y~Z /\ X~Z, true»

is joinable. A derivation beginning with 8 1 proceeds as follows:

<x~y /\ Y~Z, true>
f-tSolve <y~Z, X~y>

A derivation beginning with 8 2 results in the same final state:

<X~Y /\ Y~X /\ Y~Z /\ X~Z, true>
f-tSim.plify (r2) <x~y /\ Y~Z /\ X~Z, true>
f-tSolve <y~Z /\ X~Z, X~y>
f-tSim.plify (r4) <y~Z, X~y>

The following theorems state that the completeness result of eHR can be
improved for the class of confluent and terminating eHR programs [2].

7.5 CRR v: Adding Disjunction 49

Theorem 7.4.2. Let P be a terminating and confluent CHR program and
G be a goal, then the following are equivalent:

• P U OT F V (0 +-+ G).
• G has a derivation with answer constraint 0' such that

P U OT F V (0 +-+ 0').

• Every derivation of G has an answer constraint 0' such that

P U OT F V (0 +-+ 0').

Corollary 7.4.1. Let P be a terminating and confluent CHR program and
G be a goal with at least one answer constraint consisting of only built-in
constraints, then P U OT F -,:lG if and only if G has a finitely failed
derivation.

7.5 CHR v: Adding Disjunction

CHR was originally intended as a declarative language for rapid proto­
typing and efficient implementation of constraint solvers. As a concurrent
committed-choice language, CHR lacks the don't-know non-determinism of
CLP. However, a simple extension of CHR suffices to be able to subsume the
expressive power of CLP: one allows disjunctions on the right-hand sides of
CHR rules. We call the extended language "CHRv". CHRv allows to write
the entire application in a uniform language [5].

Similar in spirit to the U nfoldSplit rule in CLP, we introduce the fol­
lowing additional transition Split for CHR v, so we can deal with disjunction
V in Fig. 7.3.

Split

Fig. 7.3. CRRv transition rule with case splitting

CHR v will be used in the remainder of this book.

8. Constraint Systems and Constraint Solvers

In this part of the book, we introduce the most common constraint systems.
They are the result of taking a data type together with its operations and
interpreting the resulting expressions as constraints. These constraint systems
use the universal data types of numbers (integers or reals) to represent scalar
data or terms to represent structured data.

8.1 Constraint Systems

A constraint system formally specifies the syntax and semantics of the con­
straints of interest. Constraints are considered as special predicates of first­
order logic. A constraint system states which are the constraint symbols, how
they are defined, and which constraint formulae are actually used in and use­
ful for reasoning. The following definition is based on Hohfeld and Smolka [28]
and Jaffar and Maher [32].

Definition 8.1.1. A constraint system i.s a tuple (17, V, CI, C), where

• 17 is a signature that contain.s the nullary con.straint .symbol.s true and false
and the binary con.straint .symbol = for equality.

• V i.s a domain (universe) together with an interpretation of the function
and con.straint .syrnbol.s in 17.

• CT is a constraint theory that is a non-empty and consistent theory over
17.

• C are the allowed constraints, a .set of formulae that contain.s the con.straint.s
true, false, and ~, and that i.s clo.sed under exi.stential quantification and
conjunction.

CT defines the semantics and C the syntax of the constraint system. The min­
imal requirements on allowed constraints come from their use in constraint
programming languages. The constraints tme, fal.se, and ~ playa prominent
role. In the calculi, we are mainly concerned with conjunctions of atomic con­
straints whose variables are (implicitly) existentially quantified. Closedness
under existential quantification means that the names of variables do not
matter, i.e., it implies closedness under variable renaming. In addition, the

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

54 8. Constraint Systems and Constraint Solvers

atomic constraints may be syntactically restricted so that they can be solved
efficiently.

A minimal and essential example of a constraint system is the one for
syntactic equality. The domain V has been put first for didactic reasons.

Constraint System E

• The domain V is the Herbrand universe
• The signature E contains

- countably infinitely many function symbols (including at least one con­
stant)

- the constraint symbols true, false, and ~
• The constraint theory CT is CET.
• The allowed constraints are given in EBNF-notation:

C ::= true I false I s~t I 3x C I C /l.C

where sand t are terms over the signature of E.

8.2 Properties of Constraint Systems

We now discuss some desirable properties of constraint systems. First of all,
the constraint theory should be decidable for allowed constraints at least.

Satisfaction-completeness means that the constraint theory can deal with
allowed constraints. The property allows the theory to determine the consis­
tency (satisfiability) of all allowed constraints.

Definition 8.2.1. Let (E, V, CT, C) be a constraint system.

• A constraint theory GT is complete if for every constraint G E C, either
GT F G or GT F -.G.

• GT is satisfaction-complete if for every constraint G E C, either GT F 3G
or GT F -.3G.

Completeness in this context refers to arbitrary constraints and is usually too
strong a condition. The constraint theory GET used in the constraint system
E is complete and hence also satisfaction-complete.

A desirable property for the efficient treatment of negated constraints
is the independence of negated constraints. In such a constraint system, a
conjunction of positive and negated constraints is satisfiable if and only if each
negated constraint itself is satisfiable together with the positive constraint.

Definition 8.2.2. A constraint system (E, V, CT, C) has the independence
of negated constraints property if for all constraints G, G1 , ... , Gn E C,

8.2 Properties of Constraint Systems 55

For satisfaction-complete constraint systems, independence of negated
constraints is equivalent to the strong-compactness property. This property
improved the completeness result for CLP languages (Chap. 5).

Definition 8.2.3. A constraint system (17, V,CT,C) has the strong-com­
pactness property if for all constraints G, G1 , ..• ,Gn E C,

GTpV(G -+ G1 V ... V Gn) iffGTpV(G -+ Gi) for some i E {I, ... , n}.

Independence of negated constraints holds for the following constraint
systems with infinite domains:

• Infinite Boolean algebras with positive constraints
• Linear arithmetic equations over real or rational numbers
• Herbrand terms with infinitely many function symbols including at least

one constant (the constraint system E)
• Feature trees with infinitely many sorts and features
• Restricted classes of set constraints (without empty sets)

We now look at some constraint systems that do not have this property.

Example 8.2.1. The independence of negated constraints does not hold in a
constraint system that defines the order relation < over integers. For example,
we have that

• GT P :lX, Y -,(X <Y)
• GT P :lX, Y -,(X ~Y)
• GT P :lX, Y -,(Y <X)

However, we also have

• GT ~ :lX, Y (-,(X <Y) 1\ -,(X ~Y) 1\ -,(Y <X))

Independence of negated constraint does not hold for constraint systems
with a finite set of values.

Example 8.2.2. The independence of negated constraints holds in the con­
straint system E. If we change the signature of E to be finite, then the prop­
erty is lost. For example, consider a signature for E with only one constant
and one unary function symbol:

• GET P :lX, Y (X~f(Y) 1\ -,(Y~a))
• GET P :lX, Y, Z (X~f(Y) 1\ -'(Y~f(Z))).

However, we also have

• GET ~ :lX, Y, Z (X~f(Y) 1\ -,(Y~a) 1\ -'(Y~f(Z)))

Independence of negated constraint does not hold for constraint systems
with non-trivial complementary constraints. A constraint is trivial if it is logi­
cally equivalent to true or false. Two constraints G and D are complementary
if G +-+ -,D.

56 8. Constraint Systems and Constraint Solvers

Example 8.2.3. Consider the constraint system E. If we add a constraint
symbol 'I to the signature and the formula si-t f-+ -.(s~t) to the constraint
theory, then the resulting constraint system does not have the independence­
of-negated-constraints property:

• CT F 3X (true /\ -.(X ~a)),
• CT F 3X (true/\ -.(Xi-a)).

However, we also have

• CT ft= 3X (true /\ -.(X ~a) /\ -.(X i-a)).

Sometimes, independence of negated constraints can be restored by express­
ing one of the complementary constraints as the negation of the other. For
example, if 'I is expressed by negating ~, independence holds. This is not
the case if ~ is expressed by negatingi-.

8.3 Capabilities of Constraint Solvers

A constraint solver implements an algorithm for solving allowed constraints
in accordance with the constraint theory. A constraint solver collects the
constraints that arrive incrementally from one or more running programs. It
puts them into the constraint store. It tests their satisfiability, simplifies and
if possible solves them.

More precisely, a constraint solver should be able to perform the following
reasoning services (in order of importance):

Satisfiability (Consistency) test
The solver returns false if C is inconsistent: CT F -.3C.

Example. X>X is inconsistent, X>Y is not.

In words, the solver implements a decision procedure for satisfiability of
allowed constraints. Syntactic equality and linear polynomial equations
admit a satisfaction-complete algorithm, an efficient Boolean constraint
solver does not. Boolean satisfiability is NP-complete and thus has ex­
ponential worst case time complexity. This means there is no efficient
algorithm to solve it.

Simplification
The solver tries to transform a given constraint C into a logically equiv­
alent, but simpler constraint D: CT F V(C f-+ D).

Example. X <:::2/\ X <:::4 is simplified into X <:::4, 2*X =6 into X =3.

The intuition is that a simpler constraint can be handled more efficiently
when new constraints arrive. It may also improve the presentation of the
answer constraint. However, what simpler exactly means depends on the

8.3 Capabilities of Constraint Solvers 57

constraint system, and is often in the eye of the beholder. For example,
we may prefer a formulation with the least number of variables, but this
may not be the formulation with the least possible size (see variable
projection/elimination below). Finding the most simple representation
of a constraint can be substantially harder than solving it.

Determination
Detect that a variable X occurring in a constraint C can only take a
unique value: CT F \/(C --t X=v), where v is a value.

Example. X:::;2 1\ 2:::;X implies X =2, X 2=X 1\ X < 1 implies X =0.

This special case of simplification is important for representing answer
constraints as solutions that give values to variables. Determination also
supports a simple way of communication between different constraint
solvers via shared variables by exchanging values for those variables.

Variable projection/elimination
Eliminate a variable X by projecting a constraint C onto all other vari­
ables: CT F :lX C +-+ D, where D does not contain X.

Example. Projection of :lY(X <Y 1\ Y <Z) onto X and Z results in X <Z
over the reals and X + 1 <Z over the integers. In the constraint system E,
in the formula :lY (X = f (Y)), the variable Y cannot be eliminated.

Projection may keep the constraint store small and simplify the answer
constraint by eliminating local variables. However, in some cases, the
elimination of variables may yield a significant increase in the size and
number for constraints. For example, elimination of Y in :lY(X1 <Y 1\

... 1\ Xm<Y 1\ Y1 <Z 1\ ... 1\ Yn<Z) yields n*m constraints of the form
Xi<lj.

Entailment test
Check whether a constraint C implies D: CT F \/(C --t D)?

Example. X <Y entails X :::;Y, but not vice versa.

Entailment is required for guard checks in concurrent constraint lan­
guages like CCLP and CHR.
An (incomplete) entailment test can be implemented as follows: if C 1\ D
simplifies to C, then C --t D.

All the reasoning services can be regarded and implemented as variations
of simplification that maintains a normal form of the constraints.

The constraint solver is expected to implement these reasoning services
efficiently, more precisely, the average time complexity should be a polynomial
of low degree, typically not worse than cubic. To achieve this efficiency, one is
conten with incomplete implementations of reasoning services that otherwise
would take exponential time.

58 8. Constraint Systems and Constraint Solvers

8.4 Properties of Constraint Solvers

We regard the constraint solver as a function solve that takes an allowed
constraint and returns its simplified form. In particular, solve should be

Correct
If solve(C) = D, then CT F \f(C +-+ D)

Failure-preserving
If solve(C) = false, then solve(C II D) = false

Satisfaction-complete
If CT F .3C, then solve(C) = false

Satisfaction-completeness implies failure-preservation.

Idempotent
solve(solve(C)) = solve(C)

In words, the function solve computes a fixpoint. There is no gain in
simplifying simplified constraints again.

Independence of variable naming
If C and D are variants of each other, then solve(C) = solve(D)

Surprisingly, this condition is not always satisfied. Algorithms that are
based on variable elimination (e.g., for solving linear polynomial equa­
tions) often rely on an order of variables. This order may change if vari­
ables are renamed, and this may lead to different results.

Congruence respecting
Associative solve((C II D) II E) = solve(C II (D II E))
Identity solve(C II true) = solve(C)
Commutative solve(C II D) = solve(D II C)

The constraint solver should respect the properties of conjunction as
expressed by the congruence relation used in the operational semantics for
CLP (Chap. 5). Associativity and identity hold easily. For commutativity,
similar remarks as for independence of variable renaming apply.

Incremental
solve(solve(C) II D) = solve(C II D)

In words, simplifying C and then simplifying the result together with
newly arrived constraints D should give the same result as simplifying
C II D. Ideally, the incremental computation solve(solve(C) II D) should
not be more costly than solve(C II D).

Canonical
If CT F \f(C +-+ D), then solve(C) = solve(D)

This is a very strong condition, since it implies all the previous ones and
thus is seldom met.

8.5 Principles of Constraint-Solving Algorithms 59

If the constraint solver is implemented by a terminating and confluent CHR
program, then it will be failure-preserving, idempotent, congruence respect­
ing, and incremental.

8.5 Principles of Constraint-Solving Algorithms

There are two main approaches for constraint-solving algorithms, variable­
elimination and local-consistency (local-propagation) techniques. Variable
elimination is usually satisfaction-complete, while local-consistency tech­
niques have to be interleaved with search to achieve completeness.

Variable Elimination

Typically, the allowed constraints are equations. Other constraints will be
transformed into equations if possible. The transformation may introduce
auxiliary variables and simple constraints On them. For example, we may
replace X>Y by X=Y +Z 1\ Z>O.

Given an equation el =e2, we call el l.h.s. (left-hand side) and e2 r.h.s.
(right-hand side) of the equation. A normal form for an equation is typically
of the form X =e, where X is a variable and e is an expression of some specific
syntactic form. For example, the linear polynomial 2X + 3Y is the normal
form of the arithmetic expression Y + 2(X + Y).

A solved (normal) form or solution of constraints is a logically equivalent
formulation of the constraints that determines variables (gives values to vari­
ables) and that is, if possible, unique. A solution is usually a conjunction of
syntactic equality constraints of the form X =v, where X is the only l.h.s.
occurrence of the variable and v is a value.

For example, X =Y 1\ X =Z is not in solved form, because X occurs
twice on the l.h.s. of an equation. X =Y 1\ Y =Z is in solved form, as is
X =Z 1\ Z=Y. Hence, this solved form is not unique.

Variable-elimination algorithms compute the solved form by eliminating
multiple occurrences of variables. We repeatedly choose an equation X =e
and replace all other occurrences of X bye. We simplify the resulting new
expressions such that the normal form is maintained. A well-known variable­
elimination algorithm is Gaussian elimination for solving linear polynomial
equations (Chap. 11). For example, in X=7-Y 1\ X=3+Y, we can remove
the second occurrence of X. This may result in X =7 - Y 1\ Y =2. Removing
Y finally leads to the solution X =5 1\ Y =2.

To ensure termination of variable elimination, we may rely On an or­
der of variables and expressions. Because the results of variable elimination
may change depending On the chosen equation and On the order of vari­
ables, solvers based On variable elimination are usually not confluent. For
example, X=7-Y-2Z 1\ X=3+Y may lead to X=3+Y 1\ Y=2-Z or
X=5-Z 1\ Y=2-Z.

60 8. Constraint Systems and Constraint Solvers

Local Consistency (Local Propagation)

In this method, small fixed-size sub-problems of the initial problem are con­
sidered repeatedly until a fixpoint is reached. The sub-problems are simplified
and new implied (redundant) constraints are computed (propagated) from
them. The constraints are added hoping that they cause simplification.

For example, we may consider sub-problems consisting of two constraints.
Given X>Y II Y>Z II Z>X, the first two constraints imply X>Z. This
constraint and the third initial constraint Z>X imply false.

For any given problem, there is only a polynomial number of small sub­
problems. So if we can deal with sub-problems in polynomial time, the overall
algorithm will also be polynomial.

Classical consistency algorithms were first explored for constraint net­
works in artificial intelligence research in the late 1960's. The main algo­
rithms are arc consistency (Chap. 12.1) and path consistency. Originally, the
algorithms involved unary and binary constraints over finite sets of values
only.

Local-consistency methods often require that expressions arc in flat nor­
mal form, where variables are the only arguments of functions (i.e., functions
are not allowed to be nested).

A term is flat if it is a variable or a function symbol applied to variables.
Every term can be flattened by performing the opposite of variable elimina­
tion. Each non-variable sub-expression is replaced by a new variable that is
equated with the sub-expression. For example, X + X + Y>5 is flattened into
W>F II X+V=W /\ X+Y=V /\ F=5. The fiat normal form of X 2 >3Y
is L>R II L=XT II T=2 II R=Z+F II F=4.

The advantage of the flat normal form is the uniform treatment of the
allowed constraints in the constraint solver. The disadvantage is the intro­
duction of auxiliary variables. Consistency methods are sensitive to the rep­
resentation of the constraints, but there is usually no efficient way to find an
optimal representation.

Search

Local-consistency methods must be combined with search to achieve satis­
faction-completeness, i.e., global consistency. Search brings back exponential
complexity to combinatorial and other NP-complete constraint problems, be­
cause dependencies between choices are not and cannot be fully taken care
of. Search is also called branching because it will introduce branches in the
search tree. Search is a case analysis, that is case splitting by introducing
choices.

Usually, search is interleaved with constraint solving. A search step is
performed, it adds a new constraint, that is simplified together with the
existing constraints. This process is repeated until a solution is found.

8.6 Preliminaries 61

Search can be done by trying possible values for a variable
X =VI V ... V X =Vn . Such a search routine/procedure is called a labeling pro­
cedure or enumeration procedure.

Often, a labeling procedure will use heuristics to choose the next variable
and value for labeling. The chosen sequence of variables is called a variable
ordering. For example, we may count the occurrences of variables in a con­
straint problem. Then we choose the variable that occurs most for labeling
in the hope that this will cause most simplification. Choosing the most con­
strained variable first is called first-fail principle, since we may expect that
labeling this variable will lead to failure quickly, thus pruning the search tree
early.

Similarly, since the next value for labeling a variable must be chosen, there
is also a value ordering. For an example, see the Boolean constraint solver in
Chap.9.

In the general case, a search routine replaces a constraint by a logically
equivalent disjunction of constraints, where the disjuncts are pairwise un­
satisfiable (or at least do not imply each other). For example, X y!oY can be
expressed as X<Y V X>Y.

8.6 Preliminaries

In the next chapter, we introduce the common constraint systems. For each
constraint system, we will give its allowed constraints, its constraint theory,
an algorithm to implement it, properties of the algorithm, and an example
of a typical application.

A variety of algorithms exists for constraint systems, mostly adapted from
artificial intelligence and operations research. For didactic reasons, we will
concentrate on the basic principles of these algorithms. We will use the CRR
language extended with disjunction CRRv (Chap. 7) to specify and imple­
ment these algorithms. In this way, we can describe the algorithms in a con­
cise and compact manner. This makes it easier to analyze their termination,
confluence, and worst case time complexity. Due to space limitations, the
analyses will be somewhat informal at times.

For convenience and uniformity, we will assume that a CRR rule is never
applied a second time to the (syntactically) same conjunction of constraints.
In CRR implementations, a similar behavior is achieved in an efficient way
by the use of hybrid, so-called simpagation rules, relying on textual rule ap­
plication order, compiler options, and/or additional constraints in the guards
of rules.

The programs have been tested with the Sicstus Prolog implementation of
CRR and should run in other CRR implementations with little modification.
Implementation-specific details like compiler settings have been omitted for
the sake of generality.

62 8. Constraint Systems and Constraint Solvers

The programs will use concrete syntax of Prolog implementations of
CRR v. Instead of {=} and =} for rules, the notation <=> and ==> is used.
Conjunction 1\ is written as comma ','. Disjunction V is written as semi­
colon' ; , . Rules are terminated with a period' . ' . One-line comments start
with' %' . Lists have a special notation in Prolog, e.g., [1,2,3,4] is a list of
four elements. The empty list is []. The term [X I L] denotes the list whose
first element is X and whose remainder (tail) is the list L.

The constraint symbol = will be implemented either as = if it refers to
built-in syntactical equality of Prolog, or as eq if it is a CRR constraint. The
constraint symbols <,::::;, >, 2::, i- will be implemented either as <, =<, >,
>=, \= if they refer to built-in arithmetic constraints of Prolog, or as 1 t,
1e, gt, ge, ne if they are CRR constraints. The Prolog built-in X is E
computes the result of the arithmetic expression E and equates it with the
variable X. The built-in prefix operator not negates its argument, a conjunc­
tion of built-in constraints.

Before we introduce specific constraint systems, we introduce the notions
of constraint systems and constraint solvers together with their desirable
properties and the principles behind constraint reasoning and solving algo­
rithms.

9. Boolean Algebra B

We start with the Boolean constraint system that admits a simple algorithm
to solve constraints [41].

Constraint System B

Domain
Truth values 0 and 1

Signature

• Function symbols.
- Truth values 0 and 1
- Unary connective,
- Binary connectives n, U, EEl, --+, B

• Constraint symbols.
- Nullary symbols true, false
- Binary symbol =

Constraint theory
Instances of 'x =Z and X '8 Y =Z according to the following truth table,
where '8 E {n, u, EEl, --+, B}.

X Y ,X xnY XuY XEElY X--+Y XBY
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 1

Allowed atomic constraints

C ::= true I false I X = Y I ,x = Y I X '8 Y = Z,

where X, Y, and Z are variables or truth values.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

64 9. Boolean Algebra B

The domain consists of the truth values 0 for falsity, 1 for truth. The
signature includes these constants and the usual logical connectives of propo­
sitional logic as function symbols. To avoid confusion with the connectives
/\ and V used for conjunctions and disjunctions of arbitrary constraints, the
symbols nand U are used for the logical connectives inside Boolean con­
straints.

The constraint theory is given by a truth table. Boolean expressions are
equal if they denote the same truth value. The theory is decidable and com­
plete. Despite its simplicity, the problem of determining whether a Boolean
constraint is satisfiable is NP-complete, i.e., the worst case running time of
any algorithm solving this problem is exponential in the size of the problem.

The allowed atomic constraints are in fiat normal form, each constraint
contains at most one logical connective. Non-flat constraints can be flattened.
For example, (XnY)uz=...,W can be flattened into (UUZ=V)/\(XnY =U)/\
(...,W=V).

As the allowed atomic constraints correspond to Boolean functions, we
call the arguments X and Y of the allowed atomic constraints inputs and the
last one, Z, output.

9.1 Local-Propagation Constraint Solver

In the Boolean constraint solver a local-consistency algorithm is used. It
simplifies one atomic Boolean constraint at a time into one or more syntactic
equalities (i.e., built-in constraints) whenever possible. The rules for X n Y =
Z, which is represented in relational form as and (X, Y ,Z), are as follows. For
the other connectives, they are analogous.

and(X,Y,Z) <=> x=o z=o.
and(X,Y,Z) <=> y=o z=o.
and(X,Y,Z) <=> X=l Y=Z.
and(X,Y,Z) <=> Y=l X=Z.
and(X,Y,Z) <=> X=Y Y=Z.
and(X,Y,Z) <=> Z=1 X=1, Y=1.

For example, the first rule says that the constraint and (X, Y ,Z), when it is
known that the input X is 0, can be reduced to asserting that the output Z
must be o. Hence, the constraint and(X, Y, Z), x=o will result in X=O, z=o.
Note that a rule for z=o is missing, since this case admits no simplification.

The above rules are based on the idea that, given a value for one of the
variables in a constraint, we try to detect values for other variables. This ap­
proach of determining variables is called value propagation and is similar in
spirit to constant propagation as used in data flow analysis of programs. Value
propagation is frequently used in constraint-based graphical user interfaces

9.1 Local-Propagation Constraint Solver 65

to maintain invariants of the layout. Apt [6] has shown that value propaga­
tion for satisfiable Boolean constraints corresponds to performing hyper-arc
consistency (Chap. 12) on the constraints.

Value propagation is also related to unit propagation, a special case of
resolution as used in the Davis-Putnam-Loveland procedure [17]. Resolution
uses a different representation of Boolean constraints, namely clauses. These
satisfiability (SAT) problems are one of the most well-studied problems in
computer science.

However, the Boolean solver goes beyond propagating values, since it
also propagates equalities between variables. For example, and e 1, Y ,Z) ,
negey, Z) will reduce to false, and this cannot be achieved by value propa­
gation alone.

It should be noted that rules such as these can be generated automatically
from the constraint theory [7, 4].

Termination. The above rules obviously terminate, since a CHR constraint
is always reduced to built-in constraints.

Confluence. The solver is also confluent. The critical pairs are easy to con­
struct, since all the heads are identical. For example, the rules (and ex, Y ,Z)
<=> Z=1 I X=1, Y=1) and (and ex, Y, Z) <=> X=Y I Y=Z) lead to the critical
pair (X=1, Y=1, X=Y, Z=1) and (Y=Z, X=Y, Z=1). Both states simplify to (X=1,
Y=1, Z=1).

Complexity. We will give an informal derivation of the worst case time
complexity. Let c be the number of atomic Boolean constraints in a query.
In each derivation step, one rule is applied and it will remove one constraint.
Hence, there can be at most c derivation steps.

In each derivation step, in the worst case, we check each of the at most
c constraints in the current state against the given set of rules. Checking
the applicability of one constraint against one rule can be done in quasi­
constant time. Rule application is also possible in quasi-constant time. This
assumes that the syntactical equality is handled in quasi-constant time using
the classical union-find algorithm [16].

So the worst case time complexity of applying the above rules is slightly
worse than O(c2) [23].

Search

The above solver is incomplete. (It must be, since it has polynomial com­
plexity and solving Boolean constraints has exponential complexity.) For ex­
ample, the solver cannot detect inconsistency of and ex, Y ,Z), and ex, Y ,W) ,
negez,w).

For Boolean constraints, search can be done by trying the values 0 or 1 for
a variable. The search routine for Boolean constraints can be implemented in
CHR v by a labeling procedure enurn that takes a list of variables as argument.
The order of the variables in the list determines the variable order.

66 9. Boolean Algebra B

enum([]) <=> true.
enum([XIL]) <=> bool(X) , enum(L).

bool(X) <=> (X=O ; X=l).

An efficient implementation has to make sure that constraint solving and
search are interleaved. In Prolog, this can be achieved by putting the search
part at the end of a query.

For example, consider the query and (X, Y ,Z), and (X, Y , W), neg (Z, W) ,
enum ([X, Y ,Z, W]). The derivation will reach enum without simplifying any
constraints. enum will call bool (X), which will try to impose the constraint
x=o. This will cause the constraint solver to simplify the and constraints into
X=O, Z=O, W=O, which will in turn cause neg (Z, W) to fail. Backtracking will
undo x=o and its consequences, and X=l will be tried. This time we get Y=Z,
Y=W, and hence neg will fail again. There are no more choices for X, so the
query fails finitely and false is returned as a result.

To improve the labeling, we can introduce a variable ordering. We count
the occurrences of variables in a given Boolean constraint problem. Then
we choose the variable that occurs most for labeling in the hope that this
will cause most simplification. This heuristic is an instance of the first-fail
principle.

We can also introduce a value ordering. We count the cases in which the
values 0 and 1 cause simplification. In particular, choosing 0 for the last
argument of and does not cause any simplification. Based on the counts, we
may decide to try one of the values first.

Other Approaches

We briefly discuss other approaches for solving Boolean constraints .

• Generic Consistency Methods (Local Propagation)
Boolean constraints can be translated into a constraint problem over finite
integer domains (Chap. 12) that are solved using consistency techniques.
This avoids the need for special-purpose Boolean constraint propagation al­
gorithms and increases expressiveness, since arithmetic functions are avail­
able. The resulting constraints are called pseudo-Boolean.

• Theorem Proving
The famous SAT problems can be regarded as propositional Boolean con­
straint problems in clausal form. Already the 3-SAT problem (conjunction
of clauses with at most three variables) is NP-complete.
Boolean constraints can be transformed into clauses in linear time and vice
versa. For example, X n Y =Z (i.e., X n Y B Z) is logically equivalent to
(X u ,Z) n (Y U ,Z) n (,X u ,Y U Z).
Variants of resolution can be employed to solve problems in clausal form.
However, the currently most successful algorithms for SAT problems do

9.2 Application: Circuit Analysis 67

not fit the requirements for constraint solvers, since they are based on
randomly flipping the truth value of a variable in attempted solutions.

• Integer Programming
This technique from operations research uses linear programming methods
to solve Boolean problems expressed as linear polynomial equations over
the integers. A wide range of methods exist, but the algorithms are often
not incremental, i.e., all constraints have to be known from the beginning.
On the other hand, it is often possible to compute best solutions that
maximize a given function (optimization) (Chap. ll). Another variable
elimination method that has been used is the Grobner basis method [ll].

• Boolean Unification
An extension of syntactic unification is used to solve Boolean equalities.
Boolean unification computes a single, most general solution. The problem
is that Boolean variable elimination requires the introduction of auxiliary
variables, and the size of the final solution may be exponential in the size
of the original problem. The Boolean expressions are encoded efficiently as
binary decision diagrams (BDD).

9.2 Application: Circuit Analysis

Boolean constraints are mainly used to model digital circuits. They are ap­
plied to generate, specialize, simulate, and analyze (verify and test) the cir­
cuits.

We consider the full-adder circuit. It adds three single-digit binary num­
bers 11,12,13, where 13 is called the carry-in, to produce a single number
consisting of two digits 01,02, where 02 is called the overflow or carry-out.
Several full-adders can be interconnected to implement a n-bit adder.

A circuit consist of (logical) gates, which correspond to allowed atomic
constraints. The full-adder circuit can be implemented by the rule:

add(Il,I2,I3,01,02) <=>
and (I 1 ,I2,Al),
xor(Il,I2,Xi) ,
and(Xl,I3,A2),
xor(Xl,I3,01),

or(Al,A2,02).

For example, the constraint add(11,I2,I3,01,02) ,13=0,02=1 will reduce
to 13=0,02=1,11=1,12=1,01=0. The derivation proceeds as follows: because
13=0, the output A2 of the and gate with input 13 must be o. As 02=1 and
A2=0, the input Al of the or gate must be 1. Al is the output of an and gate,
so its inputs 11 and 12 must be both 1. Hence, the output Xl of the first xor
gate must be 0, and therefore also the output 01 of the second xor gate must
be 0.

68 9. Boolean Algebra B

Fault Analysis

We want to find the fault in a given hardware circuit that does not behave
according to its logical specification (as given by Boolean constraints). If there
is a mismatch between the expected and observed input-output behavior, we
say that the circuit is faulty.

For fault analysis, each gate G i is associated with a Boolean variable Fi
with the meaning:

• If G i is faulty, then Fi = 1.
• If Fi = 0, then G i is not faulty.

Note that a faulty gate can still be correct for some inputs. For the full­
adder, this leads to the following logical specification. For simplicity, we do
not transform the Boolean expressions into allowed constraints.

-,Fl --+ (h n h = Ad
-,F2 --+ (h ffi h = Xl)
-,F3 --+ (Xl n 13 = A2)

-,F4 --+ (Xl ffi h = Od
-,F5 --+ (AI U A2 = O2)

And gate G l

Xor gate G2

And gate G3

Xor gate G4

Or gate G5

Under the hypothesis of minimal conflict we assume that at most one gate
in a faulty circuit is faulty:

-,(Fl n F2) A -,(Fl n F3) A -,(Fl n F4) A -,(Fl n F5) A -,(F2 n F3)A

-,(F2 n F4) A -,(F2 n F5) A -,(F3 n F4) A -,(F3 n F5) A -,(F4 n F5)

For example, given the inputs h =0,12 =0 and h=l, we observe the out­
put 0 1 =0 and O2 =1. According to the above specification, the Boolean con­
straints will simplify and compute the following values for the fault variables:
Fl =0, F2 =1, F3=0, F4=0, F5=0. This means that the xor gate G2 is faulty.

The rule below is a possible implementation of this specification.

faultanalysis(X,Y,Z,Dl,D2,Fl,F2,F3,F4,F5) <=>
and(X,Y,Al), xor(Al,Il,NF1), imp(NF1,Fl),
xor(X,Y,XD1), xor(XD1,I2,NF2), imp(NF2,F2),
and(I2,Z,A2), xor(A2,I3,NF3), imp(NF3,F3),
xor(Z,I2,XD1), xor(XD1,Dl,NF4), imp(NF4,F4),
or(Il,I3,DR2), xor(DR2,D2,NF5), imp(NF5,F5),

and(Fl,F2,O), and(Fl,F3,O), and(Fl,F4,O), and(Fl,F5,O),
and(F2,F3,O), and(F2,F4,O), and(F2,F5,O),
and(F3,F4,O), and(F3,F5,O),
and(F4,F5,O),

enum([Fl,F2,F3,F4,F5]).

10. Rational Trees RT

We have already introduced the constraint system E dealing with Herbrand
terms (or: first-order terms, finite trees) and the syntactic equality constraint.
Here, we consider an important variation of E.

Constraint System RT

Domain
Herbrand universe

Signature

• Infinitely many function symbols.
• Constraint symbols.

- Nullary symbols true, false
- Binary symbol ~

Constraint theory
Reflexivity:
V(true -+ x~x)
Symmetry:
V(x~y -+ y~x)
Transitivity:
V(x~y /\ y~z -+ x~z)
Compatibility:
V(XI ~YI /\ ... /\ xn~Yn -+ f(xI, ... , xn)~f(YI' ... ' Yn))
Decomposition:
V(f(XI' ... ,xn)~ f(YI, ... ,Yn) -+ Xl ~YI /\ ... /\ xn~Yn)
Contradiction (Clash):
V(f(XI, ... , xn)~g(Yl' ... ' Ym) -+ false) if f # 9 or n # m

Allowed atomic constraints

C ::= true I false I s~t

where sand t are terms over the signature E.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

70 10. Rational Trees RT

In early Prolog implementations, the occur-check was omitted for effi­
ciency reasons. The result was a unification algorithm that could go into an
infinite loop. In Prolog II, an algorithm for properly handling the resulting
infinite terms was introduced [14]. This class of infinite terms is called rational
trees.

A rational tree is a (possibly infinite) tree which has a finite set of sub­
trees. For example, the infinite tree f(l(l(.. .))) only contains itself. It has
a finite representation as a directed (possibly cyclic) graph or as an equality
constraint, e.g., X~f(X).

The constraint system RT for rational trees is based on the one for finite
trees, the constraint system E. In particular, the constraint theory is just
CET with the acyclicity axiom (occur-check) omitted.

The domain is the Herbrand universe (Appendix A) of all terms that can
be built out of the function symbols in the signature.

Like CET, the constraint theory is decidable and satisfaction-complete.
However, it is not complete. For example, ::lX, Y (X~f(X) 1\ Y~f(Y) 1\
-,X ~Y) does not follow from the theory, nor does its negation. One more
axiom concerning implied equalities is needed for a complete theory [38].

A conjunction of allowed constraints is solved (in solved normal form) if
it is of the form

• false or
• Xl ~tl 1\ ... 1\ Xn~tn (n ?:: 0), where

- X I, ... , X n are pairwise distinct
- Xi is different to tj if i ::; j

Note that an empty conjunction (n=O) is equivalent to true. In words, if a
variable occurs on the l.h.s of an equation, it does not occur as the l.h.s. or
r.h.s. of any subsequent equation.

For example, the equation f(X, b)~f(a, Y), the equations X~tI\X ~s and
X ~Y 1\ Y ~X are all not in solved form, while X ~Z 1\ Y ~Z 1\ Z ~t is solved.
The solved form is not unique, e.g., X~Y and Y~X are logically equivalent
but syntactically different solved forms, as are X~f(X) and X~f(l(X)).

From the solved form we can read off the most general unifier of the given
set of initial equations by interpreting each equation Xi~ti as a substitution
Xi f-t k We can verify this by replacing, in a fair way, in the initial equations
each occurrence of Xi by ti until the l.h.s. and r.h.s. of each equation are
syntactically identical. If infinite rational trees are involved, the resulting
equations will still contain variables.

10.1 Variable Elimination Constraint Solver

The following algorithm to solve equations over rational trees is similar to the
one in [14], but unlike this and most other algorithms for unification, it does

10.1 Variable Elimination Constraint Solver 71

not rely on substitutions (that can cause exponential blow-up of the size of
terms). Dealing with infinite terms, it is the most difficult solver of the book.

The implementation relies on a total order on terms, expressed by the
built-in constraint X©<Y. In that order, terms of smaller size are smaller, and
variables are smallest and totally ordered. The size of a term is the number
of occurrences of function symbols in the term. The order s©<t must hold if

• sand t are both variables and s is ordered before t.
• s is a variable and t is a function term.
• sand t are both function terms and the size of s is less than the size of t.

Note that with the total order ©<, the conditions for the solved normal form
can be restated as Xi©<Xi+l and Xi©<ti, since ©< is transitive and implies
#. The built-in constraint X©=<Y holds if Y©<X does not hold.

We need some more auxiliary built-in constraints if we want to be inde­
pendent of the representation of terms in the implementation: var (X) tests if
X is a variable, nonvar (X) tests if X is not a variable. same_functor (Tl, T2)
tests if Tl and T2 have the same function symbol and the same arity.
args2list (Tl, L1) holds if Ll is the list of arguments of the term T1.

The auxiliary eRR constraint same_args (Ll, L2) pairwise equates the
elements of the two lists.

reflexivity © X eq X <=> var(X) I true.

orientation © T eq X <=> var(X),X©<T I X eq T.

decomposition © T1 eq T2 <=> nonvar(T1),nonvar(T2)
same_functor(T1,T2),
args21ist(T1,L1),args21ist(T2,L2),
same_args(L1,L2) .

confrontation © X eq T1, X eq T2 <=> var(X),X©<T1,T1©=<T2 I
X eq T1, T1 eq T2.

same_args([], []) <=> true.

same_args([T1IL1], [T2IL2]) <=> T1 eq T2, same_args(L1,L2).

It is easy to see that the logical readings of the rules reflexi vi ty and
orientation are consequences of the corresponding axioms Reflexivity and
Symmetry in the constraint theory. The rule decomposition implements the
axioms Compatibility, Decomposition, and Contradiction (Clash). When there
is a clash, same_functor will fail. The rule confrontation is a consequence of
Transitivity and Symmetry. The rule was chosen over transitivity for efficiency
(it does not increase the number of equations). It performs a limited amount
of variable elimination by only considering l.h.s. of equations.

72 10. Rational Trees RT

If no more rule of the solver is applicable, the final conjunction of equa­
tions is in solved form. This can be proven by contradiction: if the equations
were not solved, one of the rules would be applicable.

Example 10.1.1. We equate two terms. The constraints that are rewritten by
a transition are underlined. For readability, we do not show the intermediate
states involving the auxiliary eHR constraint same_args.

f--t decomposi tion f--t *
Horientation

t----fdecomposition H *
t----forientation

t----fconfrontation

r----tdecompos it ion 1----7 *

H confrontation

r----tdecomposition H *

h(Y,f(a),g(X,a)) eq h(f(U),Y,g(h(Y),U)))
Y eq feU),
Y eq f(U),
Y eq iCU),
Y eq feU),
Y eq iCU),
Y eq iCU) ,
Y eq iCU),
Y eq f (U) ,

f(a) eq Y, g(X,a) eq g(h(Y),U)
Y eq f(a), g(X,a) eq g(h(Y),U)
Y eq f(a), X eq hey), a eq U

Y eq f(a), X eq hey), U eq a
feU) eq f(a), X eq hey), U eq a
U eq a, X eq hey), U eq a
U eq a, X eq hey), a eq a
U eq a, X eq hey)

Example 10.1.2. Here is a simple example involving infinite rational trees.

1----7 confrontation

H decomposi tion 1----7 *

r--+ confrontation

r---7decomposition H *
I--+reflexi vi ty

X eq f(X), X eq f(f(X))
X eq f(X), f(X) eq f(f(X))
X eq f(X), X eq f(X)
X eq f(X), f(X) eq f(X)
X eq f(X), X eq X
X eq f(X)

i.e., the second constraint is redundant.

Termination. The solver terminates, the proof of [14] or the proof of [19]
can be adapted. It is based on the following observations.

• The solver only produces equations between given terms or their subterms.
• The reflexi vi ty rule removes an equation.
• The orientation is only applicable at most once to an equation, since its

arguments can only be reversed at most once.
• The decomposition rule produces equations between the arguments of the

initial equations, thus the new equations have arguments of smaller size.
• The confrontation rule does not change the first equation and replaces

the second equation X eq T2 by T1 eq T2. The guard of the rule ensures
that T1 is between X and T2 in the order ©<. This means that with repeated
applications of the rule to the second equation, the current T1 gets closer
from below to T2 but can never exceed it. Since there is only a finite
number of equations and terms up to a given size in any given problem,
the confrontation rule cannot be applied infinitely often.

10.2 Application: Program Analysis 73

Confluence. For a given equation, the guards of the rules exclude each
other pairwise, so at most one type of rule is applicable to a given equation.
However, in a conjunction of equations there may be several ways of apply­
ing the confrontation rule. Indeed, the solver is not confluent due to the
confrontation rule. For example, depending on the order of rule applica­
tions, applying the confrontation rule to exhaustion to the equations X eq
Y1, X eq Y2, X eq Y3, where variables are ordered according to their first
occurrence, may yield X eq Y1, Y1 eq Y2, Y2 eq Y3 or X eq Y1, Y1 eq
Y3, Y2 eq Y3.

Complexity. The auxiliary built-in constraints can be implemented such
that they take constant time. For the order constraints this can be achieved by
computing the sizes of the terms and their subterms in a given problem once
and storing them. For a single equation, the reflexi vi ty and orientation
rule need constant time. The decomposition rule can be repeatedly applied
to the terms in an equation until it fails or one of the arguments is a variable.
This complete decomposition will at worst take time linear in the number
of function symbols and variables in the initial equation. The number of
variables also gives an upper bound on the number of equations that can be
produced by the rule. Applying the confrontation rule to exhaustion to two
given equations will take time linear in the number of different variables in
the given problem, because the rule replaces a variable by a larger variable
until a function term is reached where each rule application can be made in
constant time using indexing on variables.

Due to the intricate interaction between the decomposition rule and
the confrontation rule, the complexity of the overall solver is worse than
linear. It is an open problem if the worst case time complexity of the solver
is polynomial in the number of function symbols and variables that occur in
a given problem.

Classical Algorithms

Herbrand [27] gave an informal description of a unification algorithm, [47]
rediscovered a similar algorithm when he introduced his resolution procedure
for first-order logic. There are quasi-linear time algorithms for unification.
They can be considered as extensions of the union-find algorithm [16] from
constants to trees. For finite trees (Herbrand terms), see [39] and [45]. For
rational trees, see [30].

10.2 Application: Program Analysis

Syntactic equality of terms is an essential constraint system for (constraint)
logic programming, since terms are the universal data structure and equalities
can be used to build, access, and take apart terms.

74 10. Rational Trees RT

In program analysis, one represents and reasons about properties of pro­
grams. We will use an infinite rational tree to represent a recursive data type
and to type check terms.

A list is defined recursively:

• the constant nil is a list.
• A binary list constructor cons applied to a term of type Element and to a

list results in a list.

The type of lists can be defined by a rational tree:

List eq (nil or cons(Element,List)).

where or is a binary infix operator separating alternatives that is only used
in type expressions. A term is of type list if we can map it onto this rational
tree.

The following type checker defines a constraint Term of Type that holds
if Term is of type Type.

Term of (Typel or Type2) <=>
(Term of Typel ; Term of Type2).

Term of Type <=> nonvar(Term),nonvar(Type)
same_functor(Term,Type),
args2list(Term,Args) ,args2list(Type,Types) ,
check_args(Args,Types) .

Term of Type, Type eq Typel <=> var(Type)
Term of Type 1 , Type eq Typel.

check_args([], []) <=> true.

check_args([ArgIArgs], [TypeITypes]) <=>
Arg of Type, check_args(Args,Types).

Note the similarity with the rational tree solver.
We may use the constraint list (List, Element) to generate the type

tree for lists:

list(List, Element) <=> List eq (nil or cons(Element,List)).

Then the constraint list (NumberList, (0 or 1 or ... or 9)) defines a
list over single-digit numbers. The constraint cons (3, cons (0 ,nil)) of
NumberList performs a type check together with the list constraint. Af­
ter simplifying list into an equation eq, the last rule of of will generate the
new constraint (abbreviating NumberList do NL):

cons(3,cons(0,nil)) eq (nil or cons((O or 1 or ... or 9),NL))

The first rule of of will first try

cons(3,cons(O,nil)) of nil

10.2 Application: Program Analysis 75

This will lead to failure with the second rule of of, on backtracking

cons(3,cons(O,nil)) of cons(O or 1 or ... or 9,NL)

is tried. This leads to

check_args([3,cons(O,nil)],[O or 1 or ... or 9,NL])

which leads to

3 of ° or 1 or ... or 9, cons(O,nil) of NL

This will finally lead to success.

11. Linear Polynomial Equations H

One motivation for introducing constraints in the LP language Prolog was
the non-declarative nature of the built-in predicates for arithmetic computa­
tions. Therefore, the first CLP languages included constraint solvers for linear
polynomial equations and inequations over the real numbers (CLP(~) [33])
or rational numbers (Prolog-III [15], CHIP [20]).

Constraint System ~

Domain
The set ~ of real numbers

Signature

• Function symbols.
- The real numbers 0 and 1
- Unary prefix operators + and -
- Binary infix operators + and *

• Constraint symbols.
- Nullary symbols true, false
- Binary symbols =, <, :::;, >, ~,i-

Constraint theory
The linear existential fragment of Tarski's axiomatic theory of real closed
fields for elementary geometry.

Allowed atomic constraints
Linear equations and inequations:

C ::= true I false I al * Xl + ... + an * Xn + b 8 0,

where n ~ 0, ai, b E ~, the coefficients ai i- 0, the variables Xl, ... ,Xn are
totally ordered in strictly descending order, and 8 E {=, <,:::;, >,~, i-}. The
l.h.s. of the equation is called (linear) polynomial.

Tarski's theory of real closed fields covers linear and non-linear polyno­
mials [55]. It only refers to the real numbers 0 and 1, which are included

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

78 11. Linear Polynomial Equations ~

in the signature. The interpretation will map arithmetic expressions to the
real numbers, which form the domain. The theory is complete and decid­
able, but intractable. However, the linear existential fragment is decidable in
polynomial time.

11.1 Variable Elimination Constraint Solver

Typically, in constraint solvers, incremental variants of classical variable elim­
ination algorithms [31] like Gaussian elimination for equations and Dantzig's
Simplex algorithm for equations and inequations are implemented. Gaussian
elimination has cubic complexity in the number of different variables in a
problem. The Simplex algorithm has exponential worst case complexity but
is polynomial on average.

For the implementation of these and similar algorithms, it does not matter
if real or rational numbers are used. However, there are technicalities. In
implementations, reals are represented by floating-point numbers. Therefore,
rounding errors are unavoidable. A partial remedy is to avoid using variables
for elimination that have a small coefficient. Rational numbers are precise,
but their size can grow exponentially in the size of the problem (due to
multiplication operations), thus they cause efficiency problems.

To illustrate the principle of variable elimination, we first consider con­
junctions of equations only. It is in solved form if the left-most variable of
each equation does not appear in any other equation. We compute the solved
form by eliminating multiple occurrences of variables.

• Choose an equation a1 * Xl + ... + an * Xn + b = O.
• Make its left-most variable explicit: X I = - (a2 * X 2 + ... + an * Xn + b) / al·
• Replace all other occurrences of Xl by -(a2 * X 2 + ... + an * Xn + b)/al'
• Simplify the resulting equations into allowed constraints (this is always

possible).
• Repeat until solved.

Actually, since constraints should be processed incrementally, we cannot
eliminate a variable in all other equations at once, but rather consider the
other equations one by one. Also, we do not make a variable explicit, but
keep the original equation.

eliminate © Al*X+Pl eq 0, PX eq ° <=>
find(A2*X,PX,P2) I
normalize(A2*(-Pl/Al)+P2,P3),
Al*X+Pl eq 0, P3 eq 0.

empty © B eq ° <=> number(B) I zero(B).

The eliminate rule performs variable elimination. It takes any pair of equa­
tions with a common occurrence of a variable, X. In the first equation, the

11.1 Variable Elimination Constraint Solver 79

variable appears left-most. This equation is used to eliminate the occurrence
of the variable in the second equation. The first equation is left unchanged.

In the guard, the built-in constraint find (A2*X, PX, P2) tries to find the
expression A2*X in the polynom PX, where X is the common variable. The poly­
nom P2 is PX with A2*X removed. The built-in constraint normalize (E, P)
normalizes an arithmetic expression E into a linear polynomial P.

The empty rule says that if the polynomial contains no more variables,
then the number B must be zero.

The solver is satisfaction-complete since it produces the solved form. (If
a set of equations is not in solved form, then one of the rules of the solver is
applicable.)

Example 11.1.1. The two equations

match the eliminate rule, the variable X in the second equation is removed
via

normalize(3*(-(3*Y+5)/1) + (2*Y+8), P3).

The resulting equations are

This means that Y is -1. The eliminate rule is once again applicable, this
time the order of the matching equations is reversed and Y is removed from
the first equation via

normalize(3*(-(-7)/-7) + (1*X+5), P3)

The final result is:

1*X+2 eq 0, -7*Y+ -7= °
This means that X is -2.

Termination. The solver terminates. There is a finite number of variables
for any given constraint problem and no new variables are introduced during
derivation. The variables in each polynomial equation are ordered in strictly
descending order. Hence, in the eliminate rule, the left-most, i.e., largest,
variable of an equation is replaced by several strictly smaller ones.

Confluence. The solver is not confluent. Consider two equations with the
same left-most variable. The rule eliminate can be applied in two different
ways, resulting in different pairs of equations.

80 11. Linear Polynomial Equations R

Complexity. Consider a problem with c equations and v different variables.
c and v do not increase during derivation. So there can be at most cv occur­
rences of variables in a state of the derivation.

The complexity is determined by the cost of applying the eliminate rule.
Each application of the rule removes a single occurrence of a variable from
one equation. Hence, there are at most cv rule applications.

Every rule application introduces exactly one new constraint. If we want
to apply the eliminate rule to it, we have to look for a partner constraint
among the other O(c) constraints. So there are O(c) rule application attempts
in the worst case.

The guard of the eliminate rule uses find, which can be implemented
with a complexity linear in v. (If the rule is applied, normalize incurs a
cost also linear to v.) So trying to apply the rule to a given constraint has
complexity O(C1)).

Hence, the overall complexity is 0(C21)2), i.e., quadratic in the size of the
problem.

Determined Variables

The solver can be extended by a rule to detect determined variables:

determine @ A*X+B eq 0 <=> number(B) I X is -B/A.
determined @ P eq 0 <=> find(A*X,P,P1),number(X) I

normalize(A*X+P1,P2), P2 eq O.

The second rule is needed to deal with newly determined variables.

Inequations

We extend our solver to inequations. The idea is to use flattening to transform
an inequation into an equation and an inequation on one variable: As in the
Simplex algorithm, an inequation is replaced by an equation with the help
of an additional variable, called a slack variable, that stands for the value of
the polynom and captures the inequality with an additional constraint. For
example, P ?: 0 is rewritten into P = 51\5 ?: O. In general, P80 is rewritten
into P = 51\ 580, where 8 E {<,:S;, >,?:, #}.

After normali;dng the equation into an allowed constraint, one may apply
the solver for equations and ignore the simple inequations until values for
the slack variables are known (determination). However, this method alone is
not satisfaction-complete anymore. A set of equations consisting only of slack
variables (called slack-only equations) may be inconsistent even if different
from false in solved form. For example, the conjunction of constraints 3 *
51 +4 * 52+0=01\ 51 ?: 01\52 > 0 is inconsistent.

To achieve satisfaction-completeness in the presence of slack-only equa­
tions, one can either introduce a more strict solved form (as done in CHIP),

11.2 Application: Finance 81

or do more variable elimination to derive all implicit equalities (as done in
CLP(~)).

For the improved solved form used in CHIP, the slack variables in all
equations have to be reordered (and resolved) such that the coefficient of the
left-most slack variable of an equation has a different sign than the constant.
If this reordering is not possible, the equations are inconsistent. For example,
2 * 8 1 + 3 * 8 2 + 1 = 0 1\ 8 1 ~ 01\82 ~ 0 is inconsistent.

Optimization and Related Approaches

The Simplex algorithm can do more than solving equations. It can be used
for optimization: it finds the solution of the equations that maximizes the
value of a given objective function. This function is a linear polynom that
we add to the problem. This problem is well studied in operations research,
under the name of linear programming [51].

Another method for solving such optimization problems is the barrier or
interior-point method, which was adapted from non-linear programming [34].
Both methods move from one solution to the next better one, until an opti­
mum is found. These algorithms are therefore not directly suitable for imple­
mentation inside constraint solvers.

Symbolic arithmetic software packages like Mathematica, Maple and
CPLEX offer even more solving power than these algorithms, but they are
not tightly integrated in a programming language for solving conjunctions of
allowed constraints incrementally and efficiently. However, such systems have
been successfully loosely coupled with the CLP language Eclipse at IC-PARC
and in the ILOG Optimization Suite.

11.2 Application: Finance

Mortgage

The calculation of a mortgage is one of the classic examples of CLP. The
scenario is that one takes a loan and pays back a certain amount for a certain
number of months at a certain interest rate. The mortgage calculation can
be concisely expressed by a recursive rule in CHR v:

% D: Amount of Loan, Debt, Principal
% T: Duration of loan in months
% I: Interest rate per month
% R: Rate of payments per month
% s: Balance of debt after T months

mortgage(D, T, I, R, S) <=>
T eq 0,

82 11. Linear Polynomial Equations R

D eq S

T gt 0,
Tl eq T - 1,
Dl eq D + D*I - R,
mortgageCD1, Tl, I, R, S).

The base case is that we do not pay back any more, i.e., T eq o. Then the
current debt is the final balance, i.e., D eq S. Otherwise T gt 0, and we
calculate the remaining debt Dl in the next month (Tl eq T-l) taking into
account the repayment R and the interest rate I.

The query mortgage (100000,360,0.01,1025, S) results in S~12625. 90
(rounded). This demonstrates the effect of accumulation of interest: even
though we have paid back 360 times 1025 over time, there is still a final debt
of 12625.90.

A characteristic of constraint programming is the lack of a notion of in­
puts and outputs. With the same rule, we can also compute what initial
loan we can pay back completely under the conditions above: the query
mortgage CD, 360,0.01,1025,0) results in D~99648. 79, only a slightly lower
amount.

But how much longer would we have to pay for the original loan of
100000? The query S Ie 0, mortgage (100000, T, 0.01,1025,0) is unsat­
isfiable. This is because the repayment does not exactly add up to the loan
with the accumulated interest. The query
-1025 It S, S Ie 0, mortgageCl00000,T,0.01,1025,S)
results in T~37 4, S~-807. 96, so the repayment in the final, 374th month is
not the full rate, it is just 1025 - 807.96.

We may also be interested in the general relationship between ini­
tial loan and monthly rate of repayment under our initial conditions: The
query mortgage CD, 360,0.01 ,R, 0) results in R eq o. 0102861198*D, i.e., the
monthly payment is about 1% of the loan.

However, if the interest rate I is left unknown, the equation Dl eq D +
D*I - R will be non-linear after one recursion step, since Dl, the new D, is
not known. Proceeding with the recursion will thus not determine Dl and D,
the equation remains non-linear.

12. Finite Domains FD

In this constraint system, variables are constrained to take their value from a
given, finite set. Choosing integers for values allows for arithmetic expressions
as constraints. Constraint propagation proceeds by removing values from the
sets of possible values that do not participate in any (partial) solution.

Constraint System FD

Domain
The set Z of integers

Signature

• Function symbols.
- The integers 0 and 1
- Lists
- Binary infix operators +, and .. for intervals

• Constraint symbols.
- Nullary symbols true, false
- Binary symbols =, <, :S, >, 2':, -1-, and in for domains

Constraint theory
Presburger's arithmetic extended by

• X:sy f-7 3ZX + Z = Y
• X in n .. m f-7 n:SX 1\ X:Sm
• X in [k1 , ... ,kzj f-7 X=k1 V ... V X=k1

Allowed atomic constraints
Linear equations and inequations:

C ::= true I false I X in n .. m I X in [k1, ... , kzl I X8Y I X+Y=Z

where n, m, k1 , ... , k1(l2': 0) are integers, 8 E {=, <, >,:S, 2':, -I-} and X, Y
and Z are pairwise distinct variables.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

84 12. Finite Domains FD

Finite domains are one of the success stories of CLP. Many real-life com­
binatorial problems can be expressed in this constraint system, most promi­
nently scheduling and planning applications. This constraint system appeared
in one of the first CLP languages CHIP [20]. It was the result of a synthesis
of LP and finite-domain constraint networks as explored in artificial intelli­
gence research since the late 1960's. Other influential CLP languages based
on finite domains are clp(FD) [13] and cc(FD) [58].

The theory underlying this constraint system is Presburger's arithmetic.
It axiomatizes the linear fragment of arithmetic over natural numbers with +
and =. It is complete and decidable. The theory only refers to the numbers 0
and 1, which are included in the signature. The interpretation will map arith­
metic expressions to the integers, which form the domain. Linearity means
that there is no multiplication between variables. Presburger's theory can be
extended to accommodate the additional constraints and negative numbers.

The domain constraint X in D means that the variable X takes its value
from the given finite domain D. More precisely, X in [k1 , ... ,kd denotes an
enumeration domain constraint, where the possible values of X are explicitly
enumerated. X in n .. m denotes an inter-val domain constraint, where the
values of X must be in the given interval n .. m (bounds included). According
to the constraint theory, a domain constraint with the empty domain, X in []
or X in n .. m (n > m), is unsatisfiable.

The difference between an interval domain and an enumeration domain is
in their algorithmic use. In the former, constraint simplification is performed
only on the interval bounds, while in the latter each element in the enumera­
tion is considered. For example, from X in [1,2,3] AX i=2 we can derive the
tighter domain constraint X in [1,3], while from X in 1..3 A X i=2 no con­
straint propagation is possible, since proper intervals cannot have "holes".
Thus, enumeration domains allow more simplification (tighter domains). On
the other hand, they are only tractable for sufficiently small enumerations.

The allowed atomic constraints are in fiat nor-mal jor-m and integers are
not allowed in the place of variables. A determined variable (X =v) is ex­
pressed by a domain constraint X in [v] or X in v .. v.

Any linear polynomial equation can be expressed as a conjunction of
allowed constraints. First, the coefficients of the polynomial are multiplied
with a number such that they are all become integers. Then the multipli­
cations are rewritten as sums, e.g., 3X becomes X + X + X. Finally, the
resulting expression is flattened. For example, X + X + Y>5 is flattened into
W>F /\ X+V=W /\ X+Y=V /\ Fin [5].

12.1 Arc Consistency

Ar-c consistency is a classical local-consistency algorithm from constraint net­
works in artificial intelligence that originally was restricted to enumeration

12.1 Arc Consistency 85

domain constraints and binary constraints. Hyper-arc consistency extends arc
consistency from binary to arbitrary n-ary constraints.

We will employ forms of arc consistency enforcement to simplify finite­
domain constraint problems. In an arc-consistent atomic constraint, every
value of every domain takes part in a solution of the constraint. To achieve
arc consistency, it suffices to find and remove those values that do not par­
ticipate in any solution. Similar to propagating values in the case of Boolean
constraints (Chap. 9), we propagate sets of possible values.

Let X I, ... , Xn be pairwise distinct variables. An atomic constraint
C(XI"'" Xn) is (hyper-)arc consistent with respect to a conjunction of
enumeration domain constraints Xl in DI A ... A Xn in Dn, if for all
i E {l, ... ,n} and for all values Vi in Di (Vi E {kli, ... ,kli }) the constraint
3(XI in DI A ... A Xi=Vi A ... A Xn in Dn A c(XI, ... , Xn)) is satisfiable.
A conjunction of constraints is arc consistent if each atomic constraint in it
is arc consistent.

In other words, an atomic constraint is arc consistent if for each variable
in the constraint and for each value in the domain of the variable, there
exist values in the domains of the other variables such that the constraint is
satisfied.

For example, X in [1,2,3] A X=/:-2 is not arc consistent, but X in [1,3] A
X =/:-2 is. The constraint X in [1,2,3] A Y in [1,2,3] A X <Y is not arc
consistent, but X in [1,2] A Y in [2,3] A X <Y is.

The definition of arc consistency requires that the variables in each atomic
constraint are pairwise distinct. Multiple occurrences of the same variable
must be renamed apart. For example, the constraint X =/:-X is represented by
X=/:-Y A X=Y. Note that the unsatisfiable constraint X in DAY in D A
X =/:-Y A X =Y is arc consistent for all domains D with more than one value.
Arc consistency does not imply satisfiability.

Because arc consistency is sensitive to flattening, propagation in the flat
normal form can be weaker than otherwise. For example, the constraint
X in [1,2] A Z in [2,3,4] A 2X =Z is not arc consistent, but its flattened
normal form X in [1,2] A Yin [1,2] A Z in [2,3,4] A X=Y A X+Y=Z
is.

An atomic constraint can be made arc consistent by deleting those values
from the domain of its variables that do not participate in any solution of the
constraint. A conjunction of constraints can be made arc consistent by making
each atomic constraint arc consistent. Obviously, this approach describes a
local-consistency algorithm (Chap. 8), because we consider sub-problems of
one atomic constraint together with the domain constraints of its variables.

The worst case time complexity of (hyper-)arc consistency is O(cdn) for
arbitrary n-ary constraints [36, 43, 44], where c is the number of constraints
and d is the size of the largest domain.

The finite-domain constraints of the programming language CHIP include
global constraints that can take an arbitrary number of variables as argu-

86 12. Finite Domains FD

ment and where domain propagation is performed on them simultaneously.
For example, the constraint alldijJerent(X l , ... , Xn) is logically equivalent to
1\ Xi=f.Xj (1 :::; i < j :::; n). However, arc consistency does not detect the un­
satisfiability of Xl =f.X2 AX 1 =f.X3 AX2 =f.X3 when the variables are constrained
to the same domain of two values. On the contrary, the sophisticated algo­
rithms that are employed with alldifferent achieve more propagation than arc
consistency and detect unsatisfiability in this case [46].

For interval domains, a weaker but analogous form of arc consistency
proves useful.

Let Xl,"" Xn be pairwise distinct variables. An atomic constraint
c(Xl , ... , Xn) is bounds (or: box) consistent with respect to a conjunction
of interval domain constraints Xl in Dl A ... A Xn in Dn, if for all
i E {I, ... , n} and for all bounds Vi in Di (Vi E {ni' mi}) the constraint
3(Xl in Dl A ... A Xi=Vi A ... A Xn in Dn A c(Xl , ... , Xn)) is satisfiable.
A conjunction of constraints is bounds consistent if each atomic constraint
in it is bounds consistent.

For example, X in 1..3 A X =f.2 is bounds consistent. X in 1..3 A Y in 1..3A
X <Y is not bounds consistent, but X in 1..2 A Y in 2 .. 3 A X <Y is. The
constraint X in DAY in D A X =f.Y A X =Y is bounds consistent for all
interval domains D with more than one value.

Analogously to arc consistency enforcement, constraints can be made
bounds consistent by tightening their interval domains.

12.2 Local-Propagation Constraint Solver

For simplicity, we start with the bounds consistency algorithm for interval
constraints [56, lO]. The implementation is based on interval arithmetic.

Interval Domains

In the solver, in, Ie, eq, and add are eHR constraints, the inequalities <,
>, =<, >=, and \= are built-in arithmetic constraints, and min, max, +, and -
are built-in arithmetic functions. Intervals of integers are closed under com­
putations involving only these functions. The rules for bounds consistency
affect the interval constraints only, the constraints Ie, eq, and add remain
unaffected.

inconsistency © X in A .. B <=> A>B I false.
intersection © X in A .. B, X in C .. D <=>

X in max(A,C) .. min(B,D).

The inconsistency rule detects inconsistency due to an empty interval. The
intersection rule intersects two intervals for the same variable.

Here are some sample rules for inequalities:

12.2 Local-Propagation Constraint Solver 87

le © X le Y, X in A .. B, Y in C .. D <=> B>D
X le Y, X in A .. D, Y in C .. D.

le © X le Y, X in A .. B, Y in C .. D <=> C<A I
X le Y, X in A .. B, Y in A .. D.

eq © X eq Y, X in A .. B, Y in C .. D <=> A\=C I
X eq Y, X in max(A,C) .. B, Y in max(C,A) .. D.

eq © X eq Y, X in A .. B, Y in C .. D <=> B\=D I
X eq Y, X in A .. min(B,D), Y in C .. min(D,B).

ne © X ne Y, X in A .. B, Y in C .. D <=> A=C,C=D
X ne Y, X in (A+1) .. B, Y in C .. D.

X le Y means that X is less than or equal to Y. Hence, X cannot be larger
than the upper bound D of Y. Therefore, if the upper bound B of X is larger
than D, we can replace B by D without removing any solutions. Analogously,
one can reason on the lower bounds to tighten the interval for Y. The eq con­
straint enforces the intersection of the intervals associated with its variables
provided the bounds are not yet the same. The ne constraint can only cause a
domain tightening if one of the intervals denote a unique value that happens
to be the bound of the other intervals.

Example 12.2.1. Here is a sample derivation involving le:
A in 2 .. 3, B in 1 .. 2, A le B

Hie B in 1. .2, A le B, A in 2 .. 2
Hie A le B, A in 2 .. 2, B in 2 .. 2.

Finally, we implement the ternary constraint for addition, where X + Y =Z
is represented in relational form as add ex, Y, Z):

add © add(X,Y,Z), X in A .. B, Y in C .. D, Z in E .. F <=>
not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)
add(X,Y,Z),
X in max(A,E-D) .. min(B,F-C),
Y in max(C,E-B) .. min(D,F-A),
Z in max(E,A+C) .. min(F,B+D).

For addition, we use interval addition and subtraction to compute the interval
of one variable from the intervals of the other two variables. Note that when
an interval is subtracted, its bounds have to be interchanged. This is because
-(n .. m) = (-m .. - n). These computed intervals are intersected with the
existing intervals using min and max. The guard ensures that at least one
interval becomes smaller whenever the rule is applied. (The built-in prefix
operator not negates its argument, a conjunction of built-in constraints.)

Example 12.2.2. Here is an example derivation involving add:

88 12. Finite Domains FD

A in 1 .. 3, B in 2 .. 4, C in O .. 4, add(A,B,C) f-7add

A in 1 .. 3, B in 2 .. 4, C in O .. 4, add(A,B,C),
A in -1. .2, B in O .. 3, C in 3 .. 7 t--+ ~ntersection
add(A,B,C), A in 1 .. 2, B in 2 .. 3, C in 3 .. 4

Termination. The rules inconsistency and intersection remove one in­
terval constraint each. We assume that the remaining rules deal with non­
empty intervals only. This can be enforced by additional guard constraints on
the interval bounds which have been omitted from the code for readability.
We can use the inequalities in the guards of the rules to show that in each rule,
at least one interval in the body is strictly smaller than the corresponding
interval in the head, while the other intervals remain unaffected.

Confluence. The solver is confluent provided the intervals are given.

Complexity. We assume that the arithmetic built-in constraints take con­
stant time to compute. Given a variable, its associated domain constraint can
be found in constant time using indexing on that variable. (There is only one
such domain if the first two rules of the program are always applied first.)

Given a constraint problem, let w = m-n+ 1 be the maximum width (size)
of an interval constraint X in n .. m, v be the number of different variables
and c be the number of constraints. c and v do not increase during derivation.

Since each rule application makes at least one interval smaller, the worst
number of rule applications is O(vw), it is not dependent on the number of
constraints. Note that O(v) may not exceed O(c), since each allowed atomic
constraint has at most three different variables.

Each rule application will generate a fixed number of new interval domain
constraints. What is the cost of processing a new interval constraint? Its
variable may appear in all c constraints, so there may be up to O(c) rule
tries (rule application attempts). Each rule try has constant cost.

So the worst case time complexity is O(cvw).

Enumeration Domains

The rules for enumeration domains are similar to the ones for interval do­
mains. Instead of interval arithmetic, we have to perform arithmetic opera­
tions on enumerations, i.e., sets of values, by performing the operations on
each possible tuple of values.

In the exemplary rules below we assume that all domains are enumeration
domains. We also assume that the arithmetic functions max and min are also
applicable to lists of values. filter-.max removes all values from a list that
are larger than any value in another list.

inconsistency @ X in [] <=> false.
intersection @ X in L1, X in L2 <=>

intersection(L1,L2,L3), X in L3.

12.2 Local-Propagation Constraint Solver 89

le © X le Y, X in L1, Y in L2 <=> max(L1) > max(L2) I
filter_max(L1,L2,L3),
X le Y, X in L3, Y in L2.

Example 12.2.3. The query X le Y, X in [4,6,7], Y in [3,7] leads to
X le Y, X in [4,6,7], Y in [7]. The query X le Y, X in [2,3,4,5],
Y in [1,2,3] leads to X le Y, X in [2,3], Y in [2,3]. The query X le
Y, X in [2,3,4], Y in [0,1] leads to false.

The built-in constraint diff holds if its argument are lists with different
elements.

eq © X eq Y, X in L1, Y in L2 <=> diff(L1,L2) I
intersection(L1,L2,L3),
X eq Y, X in L3, Y in L3.

The rule for addition of enumeration domains is as follows. The built-in con­
straints alLsubstractions and alLaddi tions pairwise subtract and add
their list arguments, respectively. The constraints return a list of all values
computed, but without duplicates.

add © add(X,Y,Z), X in L1, Y in L2, Z in L3 <=>
all_substractions(L3,L2,L4),
all_substractions(L3,L1,L5),
all_additions(L1,L2,L6),
not (L1=L4,L2=L5,L3=L6),
I
X in L4, Y in L5, Z in L6.

The arguments for termination, confluence, and complexity of this enu­
meration domain solver are similar to the interval domain solver. The com­
plexity changes. Instead of the interval width w, we use the maximum size
of an enumeration domain denoted by d. Because operations on arbitrarily
large enumeration domains as performed by the built-in constraints may take
up to O(d2), the overall complexity is thus O(cvd3).

Search

To achieve satisfaction-completeness, search must be employed. We im­
plement the search routine analogous to the one for Boolean constraints
(Chap. 9).

enum([]) <=> true.
enum([XIXs]) <=> indomain(X), enum(Xs).

For enumeration domains, each value in the enumeration domain is tried.
Note that X =V is expressed as the allowed constraint X in [V].

90 12. Finite Domains FD

indomain(X), X in [VIL] <=> L=[_I_] I
(X in [V] ; X in L, indomain(X)).

The guard ensures termination.
For interval domains, search is usually done by splitting intervals in two

halves. This splitting can be repeated until the bounds of the interval are the
same.

indomain(X), X in A .. B <=> A<B I
C is (A+B)//2,

(X in A .. C ; X in (C+l) .. B), indomain(X).

The guard ensures termination.

Implementations

In practice, a hybrid, compact form of domains is used in implementations.
The domain is a list of intervals, so an interval can have holes since it can be
split if a value inside the interval needs to be removed. For small enumeration
domains, bit vectors have also been used.

12.3 Applications: Puzzles and Scheduling

n-Queens Problem

The famous n-queens problem asks to place n queens ql, ... , qn on an n x n
chess board, such that they do not attack each other. This means that there
are no two queens on the same row, column or diagonal. Since n queens are
to be placed on a nxn chess board, each row and each column must have ex­
actly one queen, and each diagonal at most one queen. We will use a variable
qi to denote the row position of the queen in the i-th column:

ql q2 q3 q4

4

231 EEEE ql, .. ·,qn E {1, ... ,n}. EEEE
For any two queens, it holds that they are not on the same row and not

on the same diagonal: \j i=l=j. qi#qj II Iqi - qjl=l=li - jl.
The problem can be solved with a eRR program, where N is the size of

the chess board and Qs is a list of N queen position variables:

so!ve(N,Qs) <=> make_domains(N,Qs), queens(Qs), enum(Qs).

queens([]) <=> true.
queens([QIQs]) <=> safe(Q,Qs,l), queens(Qs).

12.3 Applications: Puzzles and Scheduling 91

safe(X, [] ,N) <=> true.
safe(X, [YIQs] ,N) <=> no_attack(X,Y,N), safe(X,Qs,N+1).

no_attack(X,Y,N) <=> X ne Y, X+N ne Y, Y+N ne X.

The constraint make_domains (N, Qs) introduces an enumeration domain con­
straint with values from 1 to N for each queen in Qs. queens and safe are used
to introduce a no_attack constraint between each ordered pair of queens. The
parameter N is the value for Ii - jl, the distance between the columns associ­
ated with the pair of queens. Finally, each no_attack constraint enforces the
condition't:/ i"i-j. qi"i-qj!\ Iqi -qj I"i-li-jl expressed as finite-domain constraints.
(For simplicity, non-allowed constraints are used.)

A derivation starting from solve (4, [Q 1, Q2 , Q3 , Q4]) proceeds as follows.
make_domains produces
Q1 in [1,2,3,4] ,Q2 in [1,2,3,4] ,Q3 in [1,2,3,4] ,Q4 in [1,2,3,4].
The safe predicate adds the noattack constraints, which in turn produce
ne constraints. As they involve variables with no fixed value, no propagation
occurs. Then, for labeling, enum is called.

The first variable to be labeled is Q1. Trying the first value in the initial
domain, 1, propagation reduces the domains of Q2, Q3, and Q4, resulting in
Q2 in [3,4], Q3 in [2,4], Q4 in [2,3].

Labeling with enum and constraint propagation continues until a solution
is found: [Ql, Q2, Q3, Q4] = [2,4,1,3]. The other solution is [Ql, Q2, Q3, Q4]
= [3,1,4,2].

Scheduling

Scheduling is concerned with planning of the temporal order of tasks (jobs) in
the presence of limited resources. A task may be a production step or lecture,
the resource may be a machine, electrical energy, or lecture room. Typically,
tasks compete for resources, because they are limited. The problem is to find
a schedule with an optimal value for a given objective function (measuring
time or use of other resources).

The classical job shop scheduling problem assumes that tasks have a fixed
duration and cannot be interrupted. Resources are machines that can process
at most one task at a time. The objective is to minimize the overall production
time that is needed to accomplish all the tasks.

This problem can be expressed as a finite-domain constraint problem.
Each task Ti is associated with

92 12. Finite Domains FD

• Si: Starting time
• di : Duration (known)
• E i : End time

This is modeled by the constraint

Si + di = Ei

where the temporal variables Si and Ei range between 0 and a maximum
value.

There is a partial order between tasks which is expressed by precedence
constraints. Task Ti must terminate before task T j starts:

Si + di ::; Sj

Again this constraint can be easily expressed as allowed constraint of FD.
Finally, a capacity constraint (in the simplest case) expresses that two

tasks Ti and T j cannot be processed at the same time

Si + di ::; Sj V Sj + dj ::; Si

Since the disjunction should not be implemented by search (this would im­
mediately lead to exponential complexity), the capacity constraint is often
encoded by a special finite-domain constraint.

Additional constraints can model set-up times, release times, deadlines,
as well as renewable resources, and non-availability or resources at certain
times.

13. Non-linear Equations I

A simple way to tackle non-linear polynomial equations is to replace non­
linear expressions by variables such that as many equations as possible be­
come linear (as in CLP(lR) [33]). As with the introduction of slack variables,
solving linear equations alone does not yield a complete method.

In constraint programming, complete methods like Grabner Bases over
complex numbers (CAL [48]) and Partial Cylindrical Algebraic Decomposi­
tion (RISC-CLP(Real) [29]) have been used. The Grabner Bases [11] method
can be seen as an extension of variable elimination to non-linear polynomials.
It has much worse than double exponential time complexity.

Constraint System I

Domain
The set lR of real numbers

Signature

• Function symbols:
- The real numbers 0 and 1
- Arithmetic function symbols +, *, log, sin, exp, ... as well as ' . .' for

intervals.
• Constraint symbols:

- Nullary symbols true, false
- Binary symbols =, <, :S, >, ~,i- as well as in for domains.

Constraint theory
An extension of the linear existential fragment of Tarski's axiomatic theory
ofreal closed fields [55], including X in n .. m f--+ n:SX 1\ X:Sm

Allowed atomic constraints
Arithmetic equations and inequations:

C ::= true I false I X in n .. m

where nand m are real numbers, 8 E {=,<,::;,>,~,i-}, X, Y, Z and
Xl"'" Xl (l~O) are pairwise distinct variables and f(X l , ... , XL) is flat
term, i.e., a function symbol from the signature applied to variables.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

94 13. Non-linear Equations I

Another approach is to use a local-consistency method based on interval
arithmetic as pioneered in CLP(BNR) [10], and Numerica [57]. In this case,
logarithmic and trigonometric functions can also be dealt with. This approach
can be seen as a sophisticated extension of finite interval domains to the
reals and to arbitrary arithmetic functions. While the time complexity is
polynomial, the method can only approximate the values that form a solution,
it is incomplete.

The constraint theory is an extension of the one for linear polynomials, ~.
The theory becomes undecidable once trigonometric functions are introduced.
Their periodicity can express the integer number property. This means that
the theory must include a model of Peano arithmetic, which is Presburger's
arithmetic extended by multiplication. Codel has shown that any consistent
extension of Peano arithmetic is incomplete and thus there are undecidable
formulae. However, these formulae are not expressible with the allowed con­
straints.

13.1 Local-Propagation Constraint Solver

The rules of the finite-interval domain solver (Chap. 12) can be modified to
work for intervals of real numbers. However, unlike integer intervals, non­
trivial real-number intervals admit infinitely many values. To avoid non­
termination, intervals that are too small are not made smaller by the rules
anymore. In other words, we limit the precision by choosing a certain granu­
larity. However, there are only heuri:stics to determine the size of the smallest
useful interval. Rounding errors in arithmetic computations with the fioating­
point representation are avoided by rounding the bounds of an interval out­
ward.

The inclusion of multiplication, exponentiation, logarithmic and trigono­
metric functions introduces problems, because these functions are not mono­
tonic anymore. This means that interval propagation is difficult to implement
and not very effective.

Multiplication

We illustrate these problems with multiplication. The constraint mul t (X, Y ,Z)
means X *Y =Z. Multiplication is not monotonic, e.g., -2 * -3 is larger than
2 * 2 but smaller than 3 * 3, even though negative numbers are smaller than
positive numbers. However, it suffices to consider multiplications between the
interval bounds to account for this problem. We use propagation rules for the
implementation.

mult_z @ mult(X,Y,Z), X in A .. B, Y in C .. D ==>
Ml is A*C, M2 is A*D, M3 is B*C, M4 is B*D,
Z in min(Ml,M2,M3,M4) .. max(Ml,M2,M3,M4).

13.1 Local-Propagation Constraint Solver 95

If we compute backwards, starting from the interval of Z, we have to
avoid division by zero. In fact, if the interval of X (or Y) contains a zero, any
value for the other input variable Y (or X) is possible. x=o cannot constrain Y
since o*y=o for any value of Y. The constraint has_zero checks if an interval
contains a zero.

has_zero(A .. B) <=> A=<O, O=<B.

mult_y @ mult(X,Y,Z), X in A .. B, Z in E .. F ==>
not has_zero(A .. B) I
Ml is E/A, M2 is E/B, M3 is F/A, M4 is F/B,
Y in min(Ml,M2,M3,M4) .. max(Ml,M2,M3,M4).

mult_x @ mult(Y,X,Z), X in A .. B, Z in E .. F ==> ...

Example 13.1.1. Interval propagation for the query A in O .. ° .3, B in
O .. 0.3, C in O .. 0.3, A eq B, B eq C, mult(A,B,C) results in inter­
vals A in 0.0 .. 1. Oe-07, B in 0.0 .. 1. Oe-07, C in 0.0 .. 1. Oe-07, as­
suming the size of the smallest intervals is 1.0e-07. It cannot be discovered
that the variables are determined, they can only take the value O.

Solving A in 2 .. 2, B in 0 .. 1, C in 0 .. 1, B eq C, mult(A,B,C)
(2B=B) will half the intervals for B in each step, stopping if the interval is
too small, but never reaching O.

There is one special case to consider when intervals contain zeros. Since
X =0 or Y =0 implies Z =0, we conversely have that Z ~O implies X ~O
and Y ~O. While we cannot remove a zero from inside an interval, we
can sometimes remove the complete positive or negative sub-interval for X
orY.Forexample,mult(X,Y,Z), X in -2 .. 3, Yin -3 .. 4, Z in 7 .. 12
should simplify to mult (X, Y, Z), X in 1. 75 .. 3, Y in 2.33, Z in 7 .. 12,
since -2*-3 is only 6.

The propagation rules accomplish this behavior together with the previous
rules:

mult_xyz @ mult(X,Y,Z), X in A .. B, Y in C .. 0, Z in E .. F ==>
has_zero(A .. B), has_zero(C .. 0), not has_zero(E .. F)
multO(X,Y,Z).

multO(X,Y,Z), X in A .. B, Y in C .. 0, Z in E .. F ==>
MC<E I 0>0, X in E/O .. B.

multO(X,Y,Z), X in A .. B, Y in C .. D, Z in E .. F ==>
B*O<E I C<O, X in A .. E/C.

multO(X, Y ,Z), X in A .. B, Y in C .. 0, Z in E .. F ==>
F<A*O I C<O, X in F/C .. B.

multO(X,Y,Z), X in A .. B, Y in C .. 0, Z in E .. F ==>
F<B*C I 0>0, X in A .. F/D.

96 13. Non-linear Equations I

TerIllination. As in the case of finite interval domains, the solver termi­
nates, because intervals get smaller with each rule application. Intervals that
are too small will not be considered by the rules.

Confluence. Due to stopping at small intervals and rounding, the solver
is not confluent. Depending on the order of rule applications, the resulting
intervals may be different due to accumulated roundings or because a rule ap­
plication was not possible anymore because the interval was too small, while
with another rule application the smaller interval was reached immediately.

COIllplexity. The complexity can be derived in the same way as for finite
interval domains (Chap. 12). Let v be the number of different variables. We
only have to adapt the definition of the width (size) w of an interval n .. m.
Let the width be w defined as the number of floating point numbers between
nand m on the computer of interest. The worst case time complexity is
O(cvw).

DeterIllined Variables

Due to stopping at small intervals and outward rounding, variables in the
constraint system I will practically never be determined. Hence, the domains
almost always admit infinitely many possible values.

Search

Search can be employed to make all intervals small. However, the solver
remains incomplete, since the resulting interval will usually not determine
its variable. However, in general, smaller intervals are more informative than
larger ones.

For search, as with finite domain intervals, one divides intervals in halves
until they are too small (domain splitting). An additional method is probing.
It means to tryout the interval bounds as values for the associated variable.
Since unique values are not possible due to the limits of the floating-point
representation, the smallest possible interval that encloses a bound is used. If
a bound results in unsatisfiability, it can be removed from the interval. This
is called shaving.

IIllproving and Extending Interval Propagation

The propagation behavior of the solver can be improved by changing the rep­
resentation of the problem (to be non-flat) by removing or adding variables.
However, there is no tractable method to determine the best representation
of a problem.

Convergence acceleration refers to a method that watches the sequence of
smaller and smaller intervals that are produced for a variable by propagation.

13.2 Applications 97

Based on this observation, an approximation function is computed to predict
the future, shrunken interval.

Interval propagation alone, even with search, is too weak to solve interest­
ing non-linear problems. One cannot always tell if there are no, one, or more
solutions in a non-trivial interval. Even the bounds of an interval need not be
a solution - due to outward rounding and irrational numbers that cannot be
represented. On the positive side, intervals allow to approximate irrational
numbers like 7f or v'2 to arbitrary precision.

Advanced interval constraint solvers like N umerica combine interval prop­
agation with variable elimination and interval extensions of Newton's approx­
imation method to find the zeros of the functions expressed by the allowed
constraints. Another approach is to approximate non-linear arithmetic ex­
pressions by linear ones, e.g., using Taylor expansions.

13.2 Applications

Non-linear constraints appear in the modeling, simulation, and analysis of
physical, chemical, and molecular-biological processes and systems, and in
hybrid systems. We will illustrate a simple case of interval consistency for non­
linear polynomials with the Munich rent advisor (Chap. 16). Trigonometric
functions are common in geometric reasoning for spatial databases and robot
motion planning. Another application area is financial analysis.

Part III

Applications

14. Market Overview

This part of the book presents uses of constraint techniques in three classes
of application: timetabling, optimal placement, and reasoning with impre­
cise and incomplete information. The three applications involved the au­
thors of this book and were implemented in Prolog and CRR at the Ludwig­
Maximilians-Universitiit of Munich (LMU) and at the European Computer
Industry Research Center (ECRC) in Munich, Germany.

Before we introduce the applications, we give a brief overview of the com­
mercial market of constraint programming as it presents itself at the time of
writing this book. Up-to-date information can be found on the web-pages of
this book.

Since the beginning of the 1990's, constraint-based programming has been
commercially successful. CLP has proven its merits in a variety of applica­
tion areas, including decision support systems for scheduling and resource
allocation. The world wide revenue generated by constraint technology was
estimated to be on the order of 100 million dollars in 1996 [59].

Constraint technology has matured. Constraint solvers and search tech­
niques are offered not only in logic programming languages, but increasingly
as software components for standard programming languages like C and Java.

The main commercial suppliers of constraint programming languages are

• SICS with Sicstus Prolog
• IC-PARC with Eclipse Prolog
• ILOG with ILOG Optimization Suite

as well as the smaller suppliers

• COSYTEC with CHIP
• PrologIA with Prolog IV
• Siemens with IF/Prolog

Sicstus and Eclipse Prolog are also the most used academic constraint lan­
guages. There are also many academic implementations like, e.g., Mozart
(former OZ), which is object-oriented, and Screamer, which is Lisp-based.
More details and links can be found on the web-pages of this book.

Constraint-based software can be used profitably for reasoning with in­
complete but also complete information and for solving combinatorial prob­
lems in decision support systems (expert systems, intelligent agents).

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

102 14. Market Overview

The use of constraint programming supports the complete software devel­
opment process, because executable specification and rapid prototyping are
possible. In particular, the advantages are

• the declarative modeling of problems, which leads to robust, flexible, and
maintainable software faster,

• the possibility of representing in a mathematical model incomplete and
imprecise (inexact, uncertain, and fuzzy), as well as complete information,

• reasoning with such information and the automatic propagation of the
effects as soon as new informations become known,

• the synergy between constraint solving and search and optimization tech­
niques for solving hard combinatorial problems.

The flexibility of the constraint-based approach constitutes the main ad­
vantage over specialized tools which are likely to be harder to maintain, be­
cause they possibly cannot be adapted as easily to a change in the problem.

The main industrial application areas of constraint technology are on
one hand design, synthesis, simulation, verification, and error diagnosis of
electronic, electrical, mechanical and software components, as well as entire
industrial processes and work flows. On the other hand, there are scheduling,
planning, rostering, timetabling of personnel, finances, traffic, networks and
other resources, as well as transport and placement optimization, configura­
tion, and layout generation.

In research, constraints become a more and more mainstream formalism.
Not only in areas of artificial intelligence, such as machine vision, natural lan­
guage understanding, temporal and spatial reasoning, qualitative reasoning,
computational logic, theorem proving, and intelligent agents, but also in di­
verse research fields such as computer graphics and user interfaces, program
analysis, database systems, robotics, electrical engineering, circuit design,
chemistry, linguistics, and molecular biology, to name a few.

Everywhere where resources have to be managed and their use to be
optimized, constraint technology is a potential solution, therefore its use has
been wide spread in industry from the very beginning. The following list
mentions some early users of constraint-based tools:

• Transport facilities (British Airways, Lufthansa, Delta Airlines, Hong Kong
International Terminals, SNCF)

• Automobile and aircraft industries (Ford, Renault, Peugeot, Citroen, Daim­
ler, Michelin, Lockheed Martin, Airbus)

• Electronics (IBM, Alcatel, Philips, Hewlett-Packard, Whirlpool, Bosch,
Motorola, Thomson, Siemens)

• Telecommunications (France Telecom, AT&T, Nokia)
• Finances (Citicorp, National Westminster Bank)
• Energy supplies (Shell)
• Food industries (Uncle Ben's)
• Commerce (El Corte Ingles)

14. Market Overview 103

• Chemistry (Rhone Poulenc)
• Military (Dassault)
• Public sector (NASA)

A random selection of early, pioneering concrete commercial applications
from the first half of the 1990's are briefly mentioned here.

• The system Daysy performs short-term personnel planning for Lufthansa
after disturbances in air traffic (delays, etc.), such that changes in the
schedule and costs are minimized.

• Nokia uses IFProlog for the automatic configuration of software for mobile
phones.

• Siemens uses the Circuit Verification Environment (CVE) developed in IF­
Prolog with Boolean constraints for design and for verification of hardware
(VLSI chips).

• As early as 1991 ICL developed with DecisionPower (a CHIP derivate) a
placement application for Hong Kong International Terminals (one of the
biggest container harbors in the world) for optimizing the placement of
containers in warehouses between arrival and clearing.

• Renault has been using a version of CHIP in short-term production plan­
ning in its car manufacturing plants since 1995.

• Dassaults Application "Made" in CHIP decides where and how complex
aircraft parts shall be cut out of a metal, so that as few waste and time
losses as possible occur. Dassault operates several constraint-based appli­
cations.

• ILOG developed the tool "Sagitaire" for the French railways (SNCF) which
plans timetables and tracks for over 1700 trains for the train station Paris
du Nord.

• The LOCARIM system was developed by COSYTEC for France Telecom
to propose a cabling of the telecommunication network of a building given
its architectural plan.

A good survey paper on practical applications of CLP is [59].

15. Optimal Sender Placement for Wireless
Communication

Mobile communications comes to company sites. Be it as digital cordless
telecommunication (DECT) or as wireless local area networks (W-LAN). No
cabling is required, but access points, i.e., small, local radio transmitters
(senders) have to be installed. They should cover the installation site. Plan­
ning their locations is difficult, since the specifics of radio wave propagation
have to be taken into account.

The industrial prototype POPULAR (Planning of Picocellular Radio) [25]
was one of the first systems for coverage planning. It computes the minimal
number of senders and their location, given a blue print of the building and
information about the materials used for walls and ceilings. It does so by
simulating the propagation of radio waves using ray tracing and subsequent
constraint-based optimization of the number of senders that are needed to
cover the whole building. Award-winning POPULAR was developed by the
European Computer Industry Research Center (ECRC), Siemens Research
and Development (ZFE), the Siemens Personal Networks Department (PN),
and the Institute of Communication Networks at the Aachen University of
Technology.

15.1 Approach

To solve the problem, one starts with computing the characteristics of the
building using a grid of test points (Fig. 15.1). Each test point represents
a possible receiver position. For each test point, the space where a sender
could be put to cover the test point, the radio cell, is calculated using ray
tracing. Ray tracing simulates the propagation of radio waves in the building,
where they are absorbed and reflected by walls and floors. Alternatively,
experimental measurements on site are possible.

The radio cell will usually be a rather odd-shaped object, since the cover­
age is not a smooth or differentiable function. A small change in the receivers
location such as a move around the corner may cause a substantial change in
the received power. However, if the test grid is sufficiently small (several test
points per square meter), we can expect that if two neighboring test points
are covered, the space in between - hence the whole building - can also be
covered.

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

106 15. Optimal Sender Placement for Wireless Communication

® test point
r---------------------------------~

® ® ® ®

® ®

H2 step/x

® ® H2 ®

® ® H1 ®

1,7m

Fig. 15.1. Grid of test points in a building

Fig. 15.3 shows simple cases of radio wave propagation with one or two
senders in an office building.

For each radio cell, a constraint is set up that there must be a location
of a sender (geometrically speaking, a point) somewhere in that space. Then,
one tries to find locations that are in as many radio cells at the same time as
possible. Thus, the possible locations are constrained to be in the intersections
of the radio cells covered. A sender at one of these locations will cover several
test points at once. In this way, a first solution is computed. To minimize
the number of senders, a branch-and-bound method is used. It consists in
repeatedly searching for a solution with a smaller number of senders until
the minimal number is found.

15.2 Solver

For simplicity of presentation, we restrict ourselves to two dimensions and we
approximate the radio cell by a single rectangle. The 2-D coordinates are of
the form X#Y. Rectangles are orthogonal to the coordinate system and are rep­
resented by a pair of their left upper and right lower corner coordinates, i.e.,
Rectangle = r (A#B, C#D). A sender is characterized by its location. For each
radio cell, a constraint inside (Sender, Rectangle) is imposed. It means
that Sender is a point that must be inside Rectangle.

non_empty @ inside(S,r(A#B,C#D)) ==> A<C, B<D.

15.2 Solver 107

• • • • • •• section

o test point

Fig. 15.2. Typical radio cells in a building

intersect @ inside(8,r(A1#B1,C1#D1»,inside(8,r(A2#B2,C2#D2»
<=>
A is max(A1,A2), B is max(B1,B2),
C is min(C1,C2), D is min(D1,D2),
inside(8,r(A#B,C#D».

These rules can be seen as an extension of interval constraints to two
dimensions. The first rule (named non_empty) says that the constraint
inside(8,r(A#B,C#D» is satisfiable only if the rectangle has a non-empty
area. The intersect rule handles the case when a sender's location 8 is con­
strained by two inside constraints to be in two rectangles at once. Then
one can replace these two constraints by one new inside constraint whose
rectangle is the intersection of the two initial rectangles.

To compute a solution, one tries to equate as many senders as possible.
This can be accomplished by the following labeling procedure label:

label, inside(81,R1), inside(82,R2) ==> (81=82 ; true).

For every pair of senders 81 and 82, the propagation rule tries to equate
them using 81=82 in a disjunction with true. Equating senders causes the
intersect rule to fire with the inside constraints associated with the
senders. As a result of repeated labeling, a sender's location will be con­
strained more and more. Thus, the intersect rule will be applied again

108 15. Optimal Sender Placement for Wireless Communication

Fig. 15.3. Result of placing one or two senders

and again until the rectangle becomes very small. If the rectangle becomes
empty, the non-empty rule causes failure and so initiates backtracking. This
will undo one of the equations S1=S2 by choosing the other disjunct true.

It is straightforward to extend this solver so that it works with unions
of rectangles. Unions can describe the radio cell to any desired degree of
precision. The union corresponds to a disjunctive constraint
inside(S,Rl) V ... V inside(S,Rn)
which is more compactly implemented as inside (S, [R1 , ... ,Rn]).

intersect © inside(S, L1), inside(S, L2) <=>
intersect(L1, L2, L3),
non_empty (L3),
inside(S, L3).

intersect(L1, L2, L3) <=>
setof(R, intersect1(L1,L2,R), L3).

intersect1(L1, L2, r(A#B,C#D)) <=>

member(r(Al#Bl,Cl#Dl), Ll),
member(r(A2#B2,C2#D2), L2),
A is max(Al,A2), B is max(Bl,B2),
C is min(Cl,C2), D is min(Dl,D2),
A<C, B<D . % non-empty

15.2 Solver 109

The built-in setof collects all non-empty results R of intersecting elements
of the lists L1 and L2 in the list L3.

The above solver can be adapted quickly to work with other geometric
objects than unions of rectangles by changing the definition of intersect1/3.
The lifting to three dimensions just amounts to adding a third coordinate
and code analogous to the one for the other dimensions. In practice, there
are additional requirements: senders can only be installed on walls or ceilings,
or along LAN cables. This can be expressed by constraining senders to be
inside the allowed area, using additional inside constraints.

Fig. 15.4. Covering a medieval monastery

110 15. Optimal Sender Placement for Wireless Communication

15.3 Evaluation

For a typical office building (that requires a handful of senders), an optimal
placement is found by POPULAR within a few minutes. The overall quality of
the placements produced is comparable to that of a human expert. Fig. 15.2
shows the result of covering a medieval monastery.

In 1994, the only other tool available with similar functionality was
WISE [21], which is written in about 7500 lines of C++. For optimization
WISE uses an adaptation of the NeIder-Mead direct search method that op­
timizes the percentage of the building covered. The CLP code for POPULAR
is about 4000 lines of Prolog and CRR with more than half of it for graphics
and user interface. POPULAR was written in roughly one man year. The big
advantage of the CLP approach is flexibility, e.g., when changing the labeling
heuristic or extending the solver.

16. The Munich Rent Advisor

The Munich Rent Advisor (MRA) [24], developed by the European Computer
Industry Research Center (ECRC) and the Ludwig-Maximilians-Universitat
of Munich (LMU), is the electronic version of the "Mietspiegel" (MS) for
Munich. MSs are published regularly by German cities. They are basically a
written description of an expert system that allows to estimate the maximum
fair rent for a flat. These estimates are legally binding.

The calculations are based on size, age, and location of the flat and a se­
ries of detailed questions about the flat and the house it is in. Some of these
questions are difficult to answer. However, in order to be able to calculate
the rent estimate by hand, all questions must be answered. Usually, the cal­
culation is performed by hand in about half an hour by an expert from one
of the renter's associations. The MRA brought the advising time down to a
few minutes that the user needs to fill in the web form. Using constraints,
the user of the MRA need not answer all questions. The user may not want
to dislose information, does not care about the question, or know the (exact)
answer. Tens of thousands have used the award-winning MRA service on the
World-Wide Web (WWW).

16.1 Approach

The MS is derived from a statistical model compiled from sample data using
statistical methods such as regression analysis. Due to the underlying statis­
tical approach, there is the problem of inherent imprecision which is ignored
in the printed version of the MS. Using constraints the MRA can account for
the statistical imprecision.

The scheme for calculating the rent estimate is roughly as follows:

Estimated Rent = Size * Basic Rent per Square Meter

* (Sum of Deviations as Percentage + 100) * 0,01

* (Imprecision Deviation Percentage + 100) * 0, 01

+ Fixed Costs

The calculation starts with the average rent per square meter taken from
a table with about 200 entries. The deviations from the average rent are com-

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

112 16. The Munich Rent Advisor

puted from the answers regarding the size, location, features of the flat, as well
as age and state of the house. There are six yes-no questions about features
of the house concerning, e.g., number of floors, optical impression, lift , etc.,
and 13 yes-no questions about features of the flat concerning, e.g., central
heating, separate shower, dish-washer, etc. The answers to these questions
combined with the age of the house yield the deviations from the average
rent. The overall deviation may be up to ±60%.

The MRA is available on the internet using a single form on the WWW
(Fig. 16.1). To process the answers from the questionnaire and return its

I. BasIc Quesdons

What Is \he size 01)'OUI" Oat (In square""'lers)? all"".t 76; In' no more then ~ m'

How many moms has your Oat? not more than .. room(s)

In which yt'ar was your house buD t?

II. District

PI ase choose the district) Ii"" In from the list ri&h' ... ,... Boaenhausen ... 1

III. QUesdODS about the House

Do you live In the back premises?

WonId you say)'OW" house looks auod?

E.s. old-fashioned windows, lancy balconies.

Fig. 16.1. Part of the form

Don'OUlolII

..... Yt$ ~No 00.'1"""111

result, a simple stable special-purpose web-server was written in Prolog. The
MRA server only deals with the input posted from the form. A web page
is assembled from the result of the calculation and sent back to the user
(Fig. 16.2) .

16.2 Solver

From a eLP point of view, the MRA application is rather atypical: it is
not concerned with the NP-complete constraint-pruned search for a solution,
but executing an existing calculation in the presence of partial information.
The computation proceeds deterministically from constrained input variables
(the user data) to constrained output variables (the rent estimate), since the
original MS has already solved the problem. There is no need for full-fledged

16.2 Solver 113

Netsca e: Results Munlc:.:;h;..:;R:.::.en:.:.:t"-'Ad::.v'-'I.:..:D::...r _ ______ ~~~H
RIo Edt \/leW Go __ Op_ DnCUIry _

The Calculation Derived the Following Result:

Type Result In DM

Rent between ffT7 .73 and 1086.15

Rent without ' ebenkoslen ' between 581.'" and 768.08

• Nebenkosten . between 296.26 and 318.06

Even if you have answered all questions, therewiU still besome imprecission
due to the statistical model used .

We used the following information you gave LIS:

BasIc Informadon Your Input

Size of the flat in squaremeters between 65 lind 70

Year, in which the housewu wilt between 1950 and 1960

i 'umber oi rooms

Fig. 16.2. Partial result of a sample query

constraint solving and labeling, only for constraint propagation in the forward
direction: the answer one expects is the smallest interval covering all possible
rents, not an enumeration of all possible rents by backtracking.

The approach was first to implement the tables, rules , and formulas of
the MS in CLP as if the provided data were precise and completely known.
Then constraints were added to capture the imprecision due to the statistical
approach and incompleteness due to partial answers of the user. Finally, the
formulas of the rent calculation were considered as constraints that refine the
rent estimate by propagation from the input variables which are constrained
by the partial answers.

114 16. The Munich Rent Advisor

In the MRA, dealing with imprecise numerical information involves non­
linear arithmetic computations with intervals. An existing interval domain
solver was modified, so that it can deal with equations of the form

Co + Cl * Xl + C2 * X2 + ... + Cn * Xn = Y and C * Xl * X2 * ... * Xn = y,

where Ci and C are numbers and Xi and yare different variables and n:2:0.
The implementation for linear equations is straightforward. In the solver,

the equation Co + Cl * Xl + C2 * X2 + ... + Cn * Xn = Y is represented by
the constraint sum (CO : CO+ChX1+C2*X2+ ... +Cn*Xn+O=Y). The constant Co

is replaced by the interval CO: CO and the summand 0 is introduced to end the
summation. A constraint of the form sum (Min: Max+Rest=Y) means that the
interval Min: Max plus the sum of the polynomial Rest gives an interval for
the variable Y. The rules below define forward propagation: from the intervals
associated with the variables Xi in the polynomial they compute an interval
for Y:

sum(Min .. Max+C*X+Rest=Y), X in A .. B ==>
NewMin is Min + min(C*A,C*B),
NewMax is Max + max(C*A,C*B),
sum(NewMin .. NewMax+Rest=Y).

sum(Min .. Max+O=Y) <=> Y in Min .. Max.

The first rule reads: if there is a constraint sum(Min .. Max+C*X+Rest=Y)
where the variable X is between A and B (X in A .. B), then C*X is between
min(C*A,C*B) and max(C*A,C*B). We can replace c*x by this interval and
add it to Min .. Max.

This results in the new constraint sum (NewMin .. NewMax+Rest=Y). After
we have eliminated all variables this way, we are left with sum (Min .. Max+O=Y) ,
which means Y in Min .. Max, as is expressed by the second rule. Since we do
not need backward propagation in the application, these two rules suffice.

The implementation for non-linear equations is analogous. The equation
C * Xl * X2 * ... * Xn = Y is represented by mult (C .. C*XhX2* ... *Xn*1=Y).

mult(Min .. Max*X*Rest=Y), X in A .. B ==>
NewMin is min(Min*A,Max*B,Max*A,Min*B),
NewMax is max(Min*A,Max*B,Max*A,Min*B),
mult(NewMin .. NewMax*Rest=Y).

mult(Min .. Max*1=Y) <=> Y in Min .. Max.

16.3 Evaluation

To implement the MRA, it took a developer about 4 weeks to write the
WWW user interface, only 2 weeks to write the calculation part and 1 week

16.3 Evaluation 115

to debug it. The high-level eLP approach means that the program can be
easily maintained and modified. This is crucial, since every city and every
new version comes with different tables and rules for the MS. One could have
used standard interval domains to express the required constraints. How­
ever, it would have been quite difficult to tailor the amount and direction of
constraint propagation to the needs of the application at hand.

17. University Course Timetabling

University course timetabling problems are combinatorial problems, which
consist in scheduling a set of courses within a given number of rooms and
time periods. Solving a real-world timetabling problem manually often re­
quires a significant amount of time, sometimes several days or even weeks.
Therefore, a lot of research has been invested in order to provide automated
support for human timetablers. Contributions come from the fields of oper­
ations research (e.g., graph coloring, network flow techniques) and artificial
intelligence (e.g., simulated annealing, tabu search, genetic algorithms, con­
straint satisfaction) [50].

In practice, there is no timetable that fulfills all the constraints. Thus, we
have to distinguish two kinds of constraints. Hard constraints are conditions
that must be always satisfied, soft constraints may be violated, but should
be satisfied as far as possible.

Most existing constraint-based timetabling systems either do not support
soft constraints [9] or use a branch-and-bound search instead of chronological
backtracking [26]. Branch and bound starts out from a solution and requires
the next solution to be better. Quality is measured by a suitable cost function
that depends on the set of violated soft constraints. With this approach,
however, soft constraints play no role in selecting variables and values, i.e.,
they do not guide search.

Another approach is to adopt techniques developed to propagate hard
constraints; soft constraint propagation is intended to associate values with
an estimate of how selecting a value will influence solution quality, i.e., which
value is known (or expected to) violate soft constraints, or the other way
round, which value is known (or expected to) satisfy soft constraints. By
considering estimates in value selection, one hopes that the first solution
will satisfy a lot of soft constraints. For example, [42] presents a commercial
C++ library providing black-box constraint solvers and search methods for
the nurse scheduling problem.

Inspired by this approach, a constraint-based timetabling system for the
Ludwig-Maximilians-Universitat of Munich, called IfIPlan1 , has been devel­
oped using a CRR solver which performs hard- and soft-constraint propaga­
tion [3].

1 IflPlan is an acronym for the German "Planer fUr das Institut fUr Informatik".

T. Frühwirth et al., Essentials of Constraint Programming
© Springer-Verlag Berlin Heidelberg 2003

118 17. University Course Timetabling

17.1 Approach

To model the university timetabling problem, only one variable for each
course holding the period is needed, i.e., the starting time point, it has been
scheduled for. Each domain of the variables consists of the whole week, the
periods being numbered from 0 to 167, e.g., 9 denotes 9 a.m. on Monday, and
so on. Requirements, wishes, and recommendations can be expressed with a
small set of specialized constraints.

• No-clash constraints demand that a course must not clash with another
one.

• Preassignment constraints and availability constraints are used to express
teachers' preferences and that a course must (not) take place at a certain
time.

• Distribution constraints make sure that there is at least one day (hour)
between one course and another or that two courses are scheduled for
different days.

• Compactness constraints make sure that one course will be scheduled di-
rectly after another.

With respect to soft constraints, we chose to distinguish three grades of pref­
erences: weakly preferred, preferred and strongly preferred, which are trans­
lated to the integer weights 1, 3, and 9.

Since soft constraints may be violated, the values to be constrained must
not be removed from the domain of the variable. Moreover, when we have
to choose a value for the variable during search, we must be able to decide
whether a certain value is a good choice or not. Therefore, each value must
be associated with an assessment. We chose to represent a domain as a list
of value-assessment pairs. For example, assume the domain of X is [(3, 0),
(4, 1), (5, -1)], then X may take one of values 3, 4, and 5, whereas 4 is
encouraged with assessment 1 and 5 is discouraged with assessment -1.

17.2 Solver

The solver is based on three types of constraints.

• domain (X , D) means that X must be assigned a value occurring in the list
of value-assessment pairs D.

• in (X, L, W): Its meaning depends on the weight W. If W = inf, i.e., if the
constraint is hard, it means that X must be assigned a value occurring in
the list 1. If W is a number, i.e., if the constraint is soft, it means that the
assessment for the values occurring in L should be increased by W.

• notin(X, L, W), if hard, means that X must not be assigned any of the
values occurring in the list L. If it is soft, it means that the assessment for
the values occurring in L should be decreased by W.

17.2 Solver 119

Propagating a soft constraint is intended to modify the assessment of
the values to be constrained. For example, assume the domain of X is [(3,
0), (4 , 1), (5, -1)] and assume the existence of the constraint in (X ,
[3], 2) stating that 3 should be assigned to X with preference 2. Then we
have to increase the assessment for value 3 in the domain of X by adding
2 to the current assessment of 3, obtaining the new domain [(3, 2), (4,
1), (5, -1)] for X. However, applying a hard constraint will still mean to
remove values from the variable's domain. Consequently, an in constraint is
processed by either pruning the domain or increasing the assessment for the
given values.

fd_in_hard @ domain(X, D), in(X, L, W) <=> W = inf I
domain_intersection(D, L, D1),
domain (X , D1).

fd_in_soft @ domain(X, D), in(X, L, W) <=> W \= inf I
increase_assessment(W, L, D, D1),
domain (X , D1).

In case a hard in constraint has arrived, rule fd_in.Jlard looks for the cor­
responding domain constraint, which contains the current domain D, and
replaces both by a new domain constraint, which contains the new domain
D1. The domain D1 results from intersecting D with the list of values L. Rule
fd_in_soft works quite similar, except for D1 results from D by increasing
the assessments for the values occurring in L. Note that the guards exclude
each other. Therefore, whichever constraint arrives, only one of the rules will
be applicable. The rules for no tin are similar.

fd_notin_hard @ domain (X , D), notin(X, L, W) <=> W
domain_subtraction(D, L, D1),
domain (X , D1).

inf I

fd_notin_soft @ domain(X, D), notin(X, L, W) <=> W \= inf I
decrease_assessment(W, L, D, D1),
domain (X , D1).

Subtracting weights, which are always positive, may result in negative assess­
ments.

Whenever a domain of a variable has been reduced to the empty list, the
variable cannot be assigned a value without violating hard constraints. This
case is dealt with by the following simplification rule.

fd_empty @ domain(_, []) <=> false.

With only one value left in a domain of a variable, we can assign the
remaining value to the variable immediately.

fd_singleton @ domain(X, [(A, _)]) ==> X = A.

120 17. University Course Timetabling

We use a propagation rule instead of a simplification rule because the domain
constraint must not be removed. Without it the processing of in and notin
constraints imposed on the domain of a variable would not be guaranteed
and thus an inconsistency might be overlooked.

Treatment of Global Constraints. Up to now we only dealt with the
simple constraints domain, in and notin. Now we exemplify how to ex­
press global (n-ary) application-level constraints in terms of in and notin
constraints.

no_clash(W, Xs) means that, depending on the weight W, the variables
from XS must or should be assigned distinct values. It is translated to notin
constraints. This translation is data-driven: whenever one of the variables
from XS is assigned a value, this value is discouraged or forbidden for the
other variables by the following rule.

fd_no_clash @ no_clash(W, Xs) <=>
XS \= [_],
select_ground_var(Xs, X, XsRest)
I
post_notin_constraints(W, X, XsRest),
no_clash(W, XsRest).

The guard first makes sure that XS contains at least two elements. Then it se­
lects a ground variable X from Xs, remembering the other variables in XsRest.
With no ground variable in Xs, the Prolog predicate select_ground-yar fails.
If the guard holds, no_clash(W, Xs) is replaced by

• notin constraints produced by the predicate post...notin_constraints,
one for each member of XsRest, discouraging or forbidding the value X,
and

• a no_clash constraint stating that the variables in XsRest should or must
be assigned distinct values.

Note that the predicate post...notin_constraints fails in case XsRest con­
tains the value X.

A singleton list of variables means that there is nothing more to do. This
case is handled by the following rule.

fd_no_clash_singleton @ no_clash(_, [_]) <=> true.

The translation of the other application-level constraints either follows this
scheme or is a one-to-one translation.

Interaction of the no_clash Rules and the Rules for Primitive Con­
straints. In the following, we present two derivations to show how the eRR
rules interact with each other. In the first derivation, we deal only with hard
constraints.

17.3 Generation of Timetables 121

domain(X, [(1,0), (2,0)]), domain(Y, [(1,0), (2,0)]),
no_clash (inf, [X, Y]), in(X, [1], inf) f-tfd_in-hard

domain(X, [(1,0)]), domain(Y, [(1,0), (2,0)]),

no_clash (inf, [X, Y]) f-tfd_singleton

domain(X, [(1,0)]), domain(Y, [(1,0), (2,0)]),
no_clash (inf, [X, Y]), X=1 f-tfd--.no_clash

domain(X, [(1,0)]), domain(Y, [(1,0), (2,0)]), X=1

notin(Y, [1], inf), no_clash(inf, [Y]) f-tfd--.no_clash_singleton

domain (X , [(1,0)]), domain(Y, [(1,0), (2,0)]), X=1

notin (Y, [1], in!) f-tfd--.notin-hard

domain (X , [(1,0)]), X=1, domain(Y, [(2,0)]) f-tfd_singleton

domain (X , [(1,0)]), X=1, domain(Y, [(2,0)]), Y=2

In the second derivation, we want to show how the rules treat soft
no_clash constraints.

domain (X , [(1,0), (2,0)]), domain(Y, [(1,0), (2,0)]),

no_clash (1, [X, Y]), in(X, [1], inf) f-tfd_in-hard

domain(X, [(1,0)]), domain(Y, [(1,0), (2,0)]),

no_clash (1, [X, y]) f-tfd_singleton

domain (X , [(1,0)]), domain(Y, [(1,0), (2,0)]),

no_clash (1, [X, Y]), X=1 f-tfd--.no_clash

domain (X , [(1,0)]), domain(Y, [(1,0), (2,0)]), X=1,

notin(Y, [1], 1), no_clash (1 , [Y]) f-tfd--.no_clash_singleton

domain (X , [(1,0)]), domain(Y, [(1,0), (2,0)]), X=1

notin(Y, [1], 1) f-tfd--.notin_soft

domain(X, [(1,0)]), domain(Y, [(1,-1), (2,0)]), X=1

17.3 Generation of Timetables

The generation of a timetable proceeds as follows. Each course is associated
with a domain constraint allowing for the whole week, the periods being num­
bered from 0 to 167. It is important to note that, for each course, the initial
assessment for all periods is 0, indicating that no period is given preference
initially. Then preassignment constraints and availability constraints will be
translated into in and notin constraints. Adding in and notin constraints
may narrow the domains of the courses using the rules presented above.
Propagation continues until a fixpoint is reached, that is to say, when further
rewriting does not change the store. Usually, the solver is not powerful enough
to determine that the constraints are satisfiable. In order to guarantee that
a valid solution is found a search procedure is called.

122 17. University Course Timetabling

17.4 Evaluation

IflPlan has been in use at the Computer Science Department of the University
of Munich since 1996. It brought down the time necessary for creating a
timetable from a few days by hand to a few minutes on a computer. The core
of the solver takes no more than 20 lines of code. Due to the declarativity
of the approach, IflPlan can be easily adapted to solve timetabling problems
for other universities.

Part IV

Appendix

A. Foundations from Logic

Even though we expect the reader to be familiar with first-order logic [40],
we give some definitions in order to introduce our terminology and notation.

A.1 First-Order Logic: Syntax and Semantics

This section introduces first-order languages and defines how the elements of
such a language are interpreted, i.e., how a meaning is assigned to them.

Definition A.I.1 (Alphabet). The formulae of a first-order language are
constructed from an alphabet consisting of

• logic symbols: -.1, T, ---', /\, V -+, V, and:3
• syntactic symbols: "(", '~", and ","
• a countably infinite number of variables: X, Y, Z, ...
• function symbols: f, g, h, .. .
• predicate symbols: p, q, r, .. .

These five categories of symbols are pairwise disjoint.

The sets of function and predicate symbols depend on the application.
They are given as the signature of the language.

Definition A.I.2 (Signature). A signature of a first-order language con­
sists of

• a set of function symbols, each with arity n E N1 , and
• a set of predicate symbols, each with arity n E N.

A symbol with arity n is called an n-ary (or nullary, unary, binary, ternary
in the case of n = 0,1,2,3) symbol. Function and predicate symbols with arity
a are called constants and proposition symbols, respectively.

Definition A.I.3 (Term, Formula). The sets of terms and formulae that
can be constructed with a given signature are defined inductively as follows.

• A term is

1 We consider zero a natural number, i.e., N = {a, 1,2, ... }.

126 A. Foundations from Logic

a variable or
a function term f(to, ... , tn-d, where f is an n-ary function symbol and
the arguments to, ... ,tn-l are terms.

• A formula is
- an atomic formula (atom) p(to, ... ,tn-I), where p is an n-ar'y predicate

symbol and the arguments to, ... ,tn-l are terms, or
- the falsity ..1 or
- the truth T or
- the negation of of a formula F or
- the conjunction (F /\ F'), the disjunction (F V F') or the implication

(F -+ F') between two formulae F and F', or
- a universally quantified formula 'VxF or an existentially quantified for­

mula ~xF, where x is a variable and F is a formula.

Actually, we will use some syntactic sugaring.

• A formula of the form 'Vxo .. . 'Vxn-IF or ~xo ... ~xn-IF is abbreviated as
'Vxo ... xn-IF or ~xo ... xn-IF, respectively.

• x is an abbreviation for Xl, ... ,Xn for some integer n::::O.
• The parentheses around the empty argument list after a constant or propo­

sition symbol are omitted.
• We may write (F' *-- F) for (F -+ F').
• Parentheses around formulae may also be omitted according to the follow­

ing precedence and associativity rules. Negation and quantifiers precede
(i.e., bind more closely than) conjunction, conjunction precedes disjunc­
tion, and disjunction precedes the two directions of the implication. The
implication to the right (-+) associates to the right. The implication to the
left (*--) associates to the left.

• The same name may be used for function symbols and predicate sym­
bols with different arities. From the context it will be clear that these
"homonyms" are actually different symbols.

Now we will interpret the elements of a first-order language, i.e., we assign
a "meaning" to them.

Definition A.1.4 (Interpretation). Let E be a signature of a first-order
language. An interpretation 1 of E consists of

• a non-empty set U, called the universe,
• a function 1(f) : un -+ U for every n-ary function symbol f of E, and
• a relation 1(p) E un for every n-ary predicate symbol p of E.

Definition A.1.5 (Variable Valuation). Let V be a set of variables and
1 an interpretation. Then a variable valuation for V w. r. t. 1 is a function
from V into the universe of 1.

We will need an operation on variable valuations that modifies or adds
the value for a single variable.

A.l First-Order Logic: Syntax and Semantics 127

Definition A.L6. Given a universe U and a variable valuation TJ : V --+ U.
The function TJ[x H u] : V --+ U is defined as

TJ[x H u](y) = {TJ(Y) ~fY =J x,
u ify = x.

We say that a quantified formula VxF or 3xF binds the variable x within
the scope F. When a quantified formula is interpreted, the bound variable
will have a value assigned locally within the scope, independently of the value
assigned to this variable outside the quantified formula. An occurrence of a
variable x is free if it is not in the scope of a binding for x. In order to
interpret a formula, we only need a variable valuation for its free variables,
i.e., for the variables with a free occurrence. A variable is a free variable of a
formula if it has a free occurrence in that formula.

Definition A.L 7 (Free Variables). The set vars(t) of variables of a term
t is defined as

• vars(v) := {v} for a variable v
• vars(J(to, ... , tn-d) := vars(to) U ... U vars(tn-l)

The set free(F) of free variables of a formula F is defined as

• free(p(to, ... , tn-d) := vars(to) U ... U vars(tn-d
• free(T) := free(l..) := 0
• free(-,F) := free(F) for a formula F
• free(F 1\ F') := free(F V F') := free(F --+ F') := free(F) U free(F') for

formulae F and F'
• free(VxF) := free(3xF) := free(F) \ {x} for a variable x and a formula F

Given an interpretation for a signature E and a valuation for a set V of
variables, we can interpret the terms in the set T(E, V) and the formulae in
the set F(E, V), which are defined as follows.

T(E, V) := {t I t is a term with function symbols from E and
vars(t) ~ V}

F(E, V) := {F I F is a formula with function and predicate
symbols from E and free(F) ~ V}

A closed formula is a formula without free variables, i.e., an element
of F(E, 0). Closed formulae are also called sentences. A theory is a set of
sentences. A term, a formula, or a theory is ground if it does not contain any
variables. In particular, a ground term is an element of T(E, 0) and a ground
formula is a quantifier-free sentence.

To simplify the notation of formulae, we allow the omission of variables
for quantifiers in certain cases.

Definition A.LS (Universal and Existential Closure). The universal
closure (respectively, existential closure) of a formula F, denoted VF (respec­
tively, 3F), is the sentence VXI VX2 ... VxnF (respectively, 3XaX2 ... 3xnF),
where Xl, X2, ... ,Xn are all free variables of F.

128 A. Foundations from Logic

An interpretation gives a meaning to expressions in the logic of interest.

Definition A.I.9 (Interpretation of Terms and Formulae). Let I be
an interpretation oj a signature E with universe U and 71 : V --+ U a variable
valuation. Then the Junction 711 : T(E, V) --+ U is defined by induction on
the structure oj the term:

• 711 (v) := 7J(v) for a variable v
• 7Jl(f(to, ... ,tn-d) := I(f)(7Jl(to), ... ,7Jl(tn_d) Jor an n-ary function

symbol J and terms to, ... , tn- 1

For a formula F in F(E, V), it is defined by induction on the structure of F
when I and 71 satisfy F, written 1,71 F F:

• 1,71 FP(to, ... ,tn-d holds iff(7JI(to), ... ,7JI(tn_d) E I(p).
• I, 71 F 1. does not hold.
• 1,71 F T holds.
• 1,71 F of holds if}" I, 71 F F does not hold.
• 1,71 F F /\ F' holds iff I, 71 F F and 1,71 F F' hold.
• 1,71 F F V F' holds iff I, 71 F F or 1,71 F F' holds.
• 1,71 F F --+ F' holds iff I, 71 F F does not hold or 1,71 F F' docs.
• 1,71 F \:IxF holds iff I, 71 [x f--7 u] F F holds for all u E U.
• 1,71 F 3xF holds iff I, 71 [x f--7 u] F F holds for some u E U.

Notice that for the question whether 1,71 F F holds, it does not matter
how 71 maps variables that are not free in F. Sentences can be interpreted
without refering to a specific variable valuation at all.

Definition A.1.ID (Interpretation of Sentences and Theories).

• Let 710 be the variable valuation Jor the empty set of variables. Then an
interpretation I Jor a signature E satisfies a sentence Fin F(E, 0), written
IFF, if 1,710 F F holds. We also say that I is a model of F. An
interpretation is a model of a theory Th if it is a model oj each formula in
Th.

• A sentence is valid if it is satisfied by every interpretation. It is satisfiable
if it is satisfied by some interpretation. It is unsatisfiable if it is not satisfied
by any interpretation.

We write 1,71 IF F if I and 71 do not satisfy F, and I IF F if [does not
satisfy F.

Definition A.I.II (Logical Consequence). A sentence or theory <P is a
logical consequence of a sentence or theory 1Jr, written IJr F <P, if every model
of IJr is also a model of <P. Two sentences or theories are equivalent if they
are logical consequences of each other.

We restrict our attention to a certain class of interpretations. These in­
terpretations have a fixed universe and a fixed interpretation of the function
symbols; they differ only in the interpretation of predicate symbols. Thus, we
only need to care about the latter when defining a specific interpretation.

A.2 Basic Calculi and Normal Forms 129

Definition A.1.12 (Herbrand Interpretation). An interpretation 1 for
a signature E is a Herbrand interpretation if

• the universe of 1 is the set 7(E, 0) of ground terms, called the Herbrand
universe, and

• for every n-ary function symbol f of E, the assigned function 1(1) maps
a tuple (to, ... , tn-l) of ground terms to the ground term f(to, ... , tn-d.

A Herbrand model of a sentence or a theory is a Herbmnd interpretation
satisfying the sentence or theory.

The Herbrand base for a signature E is the set {p(to, .. . ,tn-d I p is
an n-ary predicate symbol of E and to, ... , tn-l E 7(E,0)}, i.e., the set of
ground atoms in F(E, 0).

A Herbrand interpretation is uniquely determined by the set of ground
atoms it satisfies. As is frequently done in the literature, we will usually
identify such a set 1 of ground atoms, i.e., a subset of the Herbrand base,
with the Herbrand interpretation satisfying exactly the elements of 1.

A.2 Basic Calculi and Normal Forms

By a calculus we understand a set of rules for the manipulation of formulae. A
calculus presupposes a logic and provides syntactic operations to derive new
formulae of this logic from given ones. A calculus is used to find out whether
some theory is satisfiable or whether some sentence is a logical consequence
of some theory. The basis for the operations are so-called inference rules,
which have the following general form:

The formulae Fl , ... , Fn are called the premises of the inference rule,
the formula F below is its conclusion. An application of the rule is possible
if the premises Fl , ... , Fn are given or have been derived by previous rule
applications; the effect of the application is that the conclusion formula F is
derived and added to the formulae.

As in an algorithm, every manipulation step of a calculus should be ef­
fectively computable and it should be decidable whether a manipulation step
is applicable in a given situation. However, a calculus is usually not deter­
ministic like an algorithm. That is, more than one manipulation step may be
applicable in a situation and the calculus need not provide a decision between
the steps.

Our interest is in a classical calculus for proving theorems in first-order
logic, the resolution calculus. Before we come to this calculus, we introduce
some auxiliary notions.

130 A. Foundations from Logic

A.2.1 Substitutions

Substitutions are a tool used in many calculi.

Definition A.2.1 (Substitution). Let V be a set of variables and let
T(E, V') be set of terms. A substitution is a function a : V --+ T(E, V'). A
substitution a : V --+ T(E, V') is finite if V is finite. The identity substitu­
tion will be denoted by E.

Substitutions are traditionally written as postfix operators. In the fol­
lowing, a substitution will be given as a set of pairs and terms of the form
{Xl f-..ttl, ... ,Xnf-..ttn }, where XiS are the variables and tis are the terms.

A substitution a : V --+ T(E, V') is implicitly extended homomor­
phically to a function a : T(E, V) --+ T(E, V') on terms. That is, for
an n-ary function symbol f of E and to, ... , tn-l E T(E, V), we define
f(to, ... , tn-da := f(toa, ... , tn-la). This allows us to compose substitu­
tions. In accordance with the postfix notation of substitution application,
the composition of substitutions is written as juxtaposition with the substi­
tutions to be applied from left to right.

A substitution a : V --+ T(E, V') may actually be applied to any term
with variables among V. Let E' be a signature containing at least all the
function and predicate symbols of E with appropriate arity, then T(E, V') is
a subset of T(E', V') and a can be used as a function from V into T(E', V').

Substitutions for a set V of variables are also extended to several other
types of objects. We introduce a generic name for all these objects.

Definition A.2.2 (Logical Expression). Logical expressions oveT' a set V
of variables are defined inductively as follows. A logical expression over V is

• a term with variables in V,
• a formula with free vaT'iables in V,
• a substitution fT'Om an arbitrary set of variables into some set T(E, V) foT'

some signatuT'e E OT'
• a tuple of logical expT'essions over V.

A logical expression is a simple expression if it does not contain quantifieT's
and infinite substit11tions.

Applying a substitution to a formula is defined recursively as follows:

• p(to, ... , tn-da := p(toa, ... , tn-la)
• l..a:= 1..
• Ta:= T
• (.F)a:= .(Fa)
• (F 1\ F')a:= (Fa) 1\ (F'a)
• (F V F')a := (Fa) V (F'a)
• (F --+ F')a:= (Fa) --+ (F'a)
• ('v'xF)a:= 'v'x'(Fa[x --+ x'D

A.2 Basic Calculi and Normal Forms 131

• (3xF)a:= 3x'(Fa[x f-t x'D
In the latter two cases, x' is an arbitrary variable that does not occur freely
in F(a[x f-t cD with some constant c.

Applying a substitution a to a substitution T is defined as the substitu­
tion composition Ta. Substitution composition is associative (like function
composition in general) and it also associates with substitution application.
This allows us to omit parentheses.

Definition A.2.3 (Instance). A logical expression e is an instance of a
logical expression e' if there is a substitution a such that e = e' a. In this
case, we also say that e' is more general than e.

Definition A.2.4 (Variable Renaming). A variable renaming for a logi­
cal expression e is a substitution a with

• a is injective
• a(X) E V for all x E V
• a(X) does not occur in e for free variables x of e

Definition A.2.5 (Variants). Two logical expressions are variants if they
are identical modulo a variable renaming, i. e., e and e' are variants if there
are two substitutions a and T such that e = e' a and e' = eT .

Several calculi apply substitutions to logical expressions in order to make
them equal. The process of finding appropriate substitutions is called unifi­
cation. We will perform unification for simple expressions only.

Definition A.2.6 (Unification).
Let eo, ... ,en-l be simple expressions.

• A unifier for eo, ... , en-l is a substitution a such that eoa = ... = en-lao
The simple expressions eo, . .. ,en-l are unifiable if such a unifier exists. A
unifier a for eo, ... ,en-l is most general if every unifier T for eo, ... ,en-l
is an instance of a, i.e., T = ap for some substitution p.

• A tuple of unifiers for eo, ... , en-l is a tuple (ao, ... , an-l) of substitutions
such that eoao = ... = en-lan-l. The simple expressions eo, ... ,en-l are
tuple-unifiable if such a tuple of unifiers exists. A tuple (ao, ... , an-t) of
unifiers for eo, ... ,en-l is most general if every tuple (TO, ... , Tn-t) of
unifiers for eo,···, en-l is an instance of (ao, ... , an-l), i.e., TO = aop
and ... and Tn-l = an-lP for some substitution p.

A.2.2 Negation Normal Form and Prenex Form

It is sometimes useful to restrict ourselves to certain classes of first-order
formulae. This allows us to apply specific calculi or to simplify general calculi.

132 A. Foundations from Logic

Negation

--...1 --.T

T ..1

F
F is atomic

--.(F 1\ F')
--.FV--.F'

Implication

F-+ F'
--.FVF'

--.(F V F')
--.F 1\ --.F'

Fig. A.1. Negation and implication rules

--.(F -+ F')
F 1\ --.F'

Definition A.2.7 (Negation Normal Form). A formula is in negation
normal form if it has no subformula of the form F -+ F' and in every sub­
formula of the form --.F' the formula F' is atomic.

A subformula of a formula F is any formula occurring in F.
For every sentence F, there is an equivalent sentence Fneg in negation

normal form. We obtain such a Fneg from F using the negation and impli­
cation rules from Fig. A.I in a sequence of application of inference rules as
follows. If F is not yet in negation normal form, then it has a sub formula
of the form G -+ G' or a subformula of the form -,G with a non-atomic G.
For a given subformula of this form, there is exactly one specialization of the
implication rule or one of the negation rules that has the subformula as its
premise. We replace the subformula with the conclusion of this specialized
rule. Replacements of this kind are performed as long as possible. The process
will terminate after a finite number of steps and leaves a formula in negation
normal form that is logically equivalent to the original formula F.

Definition A.2.8 (Prenex Form). A formula Fis in prenex form if it
is of the form Qoxo.·. Qn~lxn~lG, where every Qi is a quantijier, Xi is a
variable, and G is a formula without quantifiers. We call Qoxo ... Qn~lXn~l
the quantifier prefix and G the matrix.

For every sentence F, there is an equivalent sentence in prenex form and
it is possible to compute such a sentence from F.

A.2.3 Skolemization

The next goal is to eliminate the quantifier prefix. If there are only universal
quantifiers, we can simply omit the prefix because it is uniquely determined by
the variable symbols occuring in the matrix. If the prefix contains existential

A.2 Basic Calculi and Normal Forms 133

quantifiers, we apply a transformation called Skolemization: each existentially
quantified variable is replaced by a term composed of a new function symbol
whose arguments are all the variables of universal quantifiers preceding the
respective existential quantifier in the prefix.

Skolemization is defined here only for formulae in negation normal form.
This restriction is not needed. However, it simplifies the argumentation in
this section and the restricted definition will suffice for this book.

Definition A.2.9 (Skolemization). Let F E F(E, V) be a formula in
negation normal form with an occurrence of a subformula 3xG with free vari­
ables Vo, ... ,Vn-l. Let f be an n-ary function symbol not occurring in E, let
s be the term f(vo, ... , vn-d, and let F' be the same formula as F, but with
the occurrence of 3xG replaced by G[x M s].

Then F' is a Skolemized form of F with the Skolem function f.

Skolemization steps can be applied repeatedly to a sentence or a the­
ory in negation normal form, thus eliminating all occurrences of existential
quantifiers and introducing several Skolem functions.

A.2,4 Clauses

The resolution calculus given below works on a rather restricted set of first­
order formulae, namely clauses:

Definition A.2.10 (Literal, Clause). A literal is an atom or the negation
of an atom. An atom is called positive literal and the negation of an atom is
called a negative literal. A positive literal L and its negation -,L are called
complementary literals. A clause is a formula of the form V7":01 Li where
all the Li are literals. This notation is called a clause in disjunctive normal
form. If n = 0, then the clause is the empty clause (empty disjunction). A
clause with exactly one positive literal is called definite clause.

Thus, a clause is either the empty clause denoting ~ or a non-empty
clause Lo V ... V L n - 1 with n > 0.

We use some syntactic sugaring for clauses. For a clause V7::om - 1 Li with

for i = 0, ... , n - 1
for i = n, ... , n + m - 1

for atoms B j and Hk, we frequently write A.;''':~ B j -+ V:":Ol Hk. This is

called the implication form of the clause. A.;":~ B j is the body and V:":Ol Hk
is the head of the clause.

A sentence of the form \fxo, ... , .Tn-l C, where C is a clause, is called
a closed clause. Sometimes we sloppily identify a clause with its universal
closure. A theory is in clausal form or a clausal theory if it consists of closed
clauses.

We combine the normalization steps from Sects. A.2.2, A.2.3, and A.2.4.
An arbitrary theory Th can be transformed into clausal form as follows

134 A. Foundations from Logic

Resolution
RVA R'V.A'

RaV R'a'
Factoring

(a, a') is a most general pair of unifiers
for the atoms A and A'

Rv LV L'
(R V L)a

0" is a most general unifier for the literals Land L'

Fig. A.2. Inference rules of the resolution calculus

• Convert every formula in the theory into an equivalent formula in negation
normal form.

• Perform Skolemization in order to eliminate all existential quantifiers.
• Convert the resulting theory, which is still in negation normal form, into

an equivalent theory in clausal form.

A.2.5 Resolution

The resolution calculus [47] is a calculus for a clausal theory Th (see Fig. A.2).

In the resolution calculus, closed clauses are represented in disjunctive
form and the universal quantifiers are omitted for convenience. The disjunc­
tion V is considered to be associative and commutative and it has the falsity
..1 as its neutral element. (These properties could be described by inference
rules.)

The resolution calculus is based on two inference rules (Fig. A.2).

• The resolution rule takes two clauses 0 and Of that can be instantiated
in such a way that a literal from 0 and a literal from Of become comple­
mentary. Then the remaining literals from the two instantiated clauses are
combined into a new clause, which is called the resolvent and is added.

• The factoring rule takes a clause 0 that can be instantiated in such a way
that two literals of 0 become equal. Then one of these literals is removed
and the remainder of the instantiated clause, which is called the factor, is
added.

In both inference rules, most general unifiers are used in order to avoid too
strong an instantiation. Notice also that tuple unification (actually pair uni­
fication) is used in the resolution rule, whereas plain unification is used in
the factoring rule. This means that variables from different clauses can be
instantiated independently, whereas variables from the same clause have to
be instantiated uniformly.

List of Figures

3.1 Congruence.. 11

4.1 History of logic programming. .. 13
4.2 LP syntax. .. 14
4.3 LP transition rules ... 15
4.4 LP Unfold transition rule with case splitting. 16
4.5 Partial search tree for the goal path (b ,Y) 18

5.1 Early history of constraint-based programming. 23
5.2 CLP syntax. .. 26
5.3 CLP transition rules. .. 27
5.4 Search tree for the goal min (1 , 2 , C) 29

6.1 Early history of concurrent constraint logic programming. 31
6.2 CCLP syntax .. 33
6.3 CCLP transition rules. .. 34
6.4 CCLP with explicit parallelism. .. 34
6.5 Extended CCLP syntax of clauses .. 37
6.6 CCLP transition rules extended with atomic tell. 38

7.1 CHR syntax .. 42
7.2 CHR transition rules. .. 43
7.3 CHRv transition rule with case splitting. .. 49

15.1 Grid of test points in a building 106
15.2 Typical radio cells in a building 107
15.3 Result of placing one or two senders 108
15.4 Covering a medieval monastery 109

16.1 Part of the form .. 112
16.2 Partial result of a sample query 113

A.l Negation and implication rules 132
A.2 Inference rules of the resolution calculus 134

References

1. S. Abdennadher. Operational semantics and confluence of constraint propaga­
tion rules. In 3rd International Conference on Principles and Practice of Con­
straint Programming, LNCS 1330, Berlin, Heidelberg, New York, 1997. Springer.

2. S. Abdennadher, T. Fruhwirth, and H. Meuss. Confluence and semantics of
constraint simplification rules. Constraints Journal, Special Issue on the 2nd
International Conference on Principles and Practice of Constraint Program­
ming, 4(2):133-165,1999.

3. S. Abdennadher and M. Marte. University course timetabling using Constraint
Handling Rules. Journal of Applied Artificial Intelligence, 14(4):311-326,2000.

4. S. Abdennadher and C. Rigotti. Automatic generation of propagation rules
for finite domains. In 6th International Conference on Principles and Practice
of Constraint Programming, LNCS 1894, Berlin, Heidelberg, New York, 2000.
Springer.

5. S. Abdennadher and H. Schutz. CHR v: A flexible query language. In Flexible
Query Answering Systems, LNAI 1495, Berlin, Heidelberg, New York, 1998.
Springer.

6. K. R. Apt. Some remarks on boolean constraint. In K. R. Apt, A. C. Kakas,
E. Monfroy, and F. Rossi, editors, New Trends in Constraints, LNCS 1865,
Berlin, Heidelberg, New York, 2000. Springer.

7. K. R. Apt and E. Monfroy. Automatic generation of constraint propagation
algorithms for small finite domains. In 5th International Conference on Princi­
ples and Practice of Constraint Programming, LNCS 1713, Berlin, Heidelberg,
New York, 1999. Springer.

8. K. R. Apt and M. H. van Emden. Contributions to the theory of logic program­
ming. Journal of ACM, 29(3):841-862, 1982.

9. F. Azevedo and P. Barahona. Timetabling in constraint logic programming. In
2nd World Congress on Expert Systems, Estoril, Portugal, 1994.

10. F. Benhamou. Interval constraint logic programming. In A. Podelski, editor,
Constraint Programming: Basics and Trends, LNCS 910, Berlin, Heidelberg,
New York, 1995. Springer.

11. B. Buchberger. Introduction to Groebner bases. In B. Buchberger and F. Win­
kler, editors, Groebner Bases and Applications, pages 3-31. Cambridge Univer­
sity Press, Cambridge, UK, 1998.

12. K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293-322. Plenum Press, New York, 1978.

13. P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic
Programming, 27(3):185-226, 1996.

14. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Tiirnlund,
editors, Logic Programming, pages 231-251. Academic Press, London, 1982.

138 References

15. A. Colmerauer. An introduction to Prolog III. In J. W. Lloyd, editor, Computa­
tional Logic: Symposium Proceedings, pages 37-79. Springer, Berlin. Heidelberg,
New York, 1990.

16. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Mass., 1990.

17. M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7:201-215, 1960.

18. F. de Boer, J. Kok, C. Palamidessi, and J. Rutten. Semantic models for con­
current logic languages. Theoretical Computer Science, 86(1):3-34, 1991.

19. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theo­
retical Computer Science, Volume B: Formal Models and Sematics (B), pages
243-320. MIT Press, Cambridge, Mass., 1990.

20. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language chip. In International
Conference on Fifth Generation Computer Systems, pages 693-702. Institute
for New Generation Computer Technology, 1988.

21. S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela, and
M. H. Wright. WISE design of indoor wireless systems: Practical computation
and optimization. IEEE Computational Science & Engineering, 2(1):58-68,
1995.

22. T. Friihwirth. Theory and practice of constraint handling rules, Special issue on
constraint logic programming. Journal of Logic Programming, 37(1-3):95-138,
1998.

23. T. Friihwirth. As time goes by: Automatic complexity analysis of simplification
rules. In 8th International Conference on Principles of Knowledge Representa­
tion and Reasoning, Toulouse, France, 2002.

24. T. Friihwirth and S. Abdennadher. The Munich rent advisor: A success for
logic programming on the internet. Journal on Theory and Practice of Logic
Programming, Special Issue on Logic Programming and the Internet, 1(3),2001.

25. T. Friihwirth and P. Brisset. Optimal placement of base stations in wireless
indoor communication networks. IEEE Intelligent Systems Magazine, Special
Issue on Practical Applications of Constraint Technology, 15(1):49-53, 2000.

26. M. Henz and J. Wiirtz. Using Oz for college time tabling. In First International
Conference on the Practice and Theory of Automated Timetabling, pages 283-
296, Edinburgh, UK, 1995.

27. J. Herbrand. Recherches sur la theorie de la demonstrations, PhD thesis, 1930.
28. M. H6hfeld and G. Smolka. Definite relations over constraint languages. LILOG

Report 53, IWBS, IBM Deutschland, Stuttgart, Germany, Oct. 1988.
29. H. Hong. RISC-CLP(Real): Constraint logic programming over real numbers.

In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming:
Selected Research. MIT Press, Cambridge, Mass., 1993.

30. G. Huet. Resolution d'equations dans les langages d'ordre 1, 2, ... , PhD thesis,
1976.

31. J.-L. J. Imbert. Linear constraint solving in clp-languages. In A. Podelski,
editor, Constraint Programming: Basics and Trends, LNCS 910, Berlin, Heidel­
berg, New York, 1995. Springer.

32. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The
Journal of Logic Programming, 19 & 20:503-581, 1994.

33. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The clp(R) lan­
guage and system. A CM Transactions on Programming Languages and Systems,
14(3):339-395, 1992.

34. N. Karmarkar. A polynomial-time algorithm for linear programming. Combi­
natorica, 4:373-395, 1984.

References 139

35. R. Kowalski. Algorithm = logic + control. CACM, 22(7):424-435, 1979.
36. A. K. Mackworth and E. C. Freuder. The complexity of some polynomial

network consistency algorithms for constraint satisfaction problems. Artificial
Intelligence, 25:65-73, 1985.

37. M. J. Maher. Logic semantics for a class of committed-choice programs. In
J.-L. Lassez, editor, 4th International Conference on Logic Programming, pages
858-876, Cambridge, Mass., 1987. MIT Press.

38. M. J. Maher. Complete axiomatizations of the algebras of finite, rational, and
infinite trees. In 3rd Annual IEEE Symposium on Logic in Computer Science
LICS'88, pages 348-357, Los Alamitos, California, 1988. IEEE Computer Soci­
ety Press.

39. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans­
actions on Programming Languages and Systems, 4:258-282, 1982.

40. E. Mendelson. Introduction to Mathematical Logic. Wadsworth & Brooks,
Monterey, California, 1987.

41. S. Menju, K. Sakai, Y. Sato, and A. Aiba. A study on boolean constraint solvers.
In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming:
Selected Research, pages 253-268. MIT Press, Cambridge, Mass., 1993.

42. H. Meyer auf'm Hofe. ConPlan/SIEDAplan: Personnel assignment as a problem
of hierarchical constraint satisfaction. In 3rd International Conference on the
Practical Application of Constraint Technology, pages 257-272, London, 1997.
Practical Application Company Ltd.

43. R. Mohr and T. Henderson. Arc and Path Consistency Revisited. Artificial
Intelligence, 28:225-233, 1986.

44. R. Mohr and G. Masini. Good old discrete relaxation. In 8th European Con­
ference on Artificial Intelligence, pages 651-656, Munich, Germany, 1988.

45. M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer
and System Sciences, 16(2):158-167, 1978.

46. J.-C. Regin. A filtering algorithm for constraints of difference in csp. In AAAI
National Conference, pages 362-367, Seattle, Wash., 1994.

47. J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23-49, 1965.

48. K. Sakai and A. Aiba. CAL: A Theoretical Background of Constraint Logic
Programming and its Applications. Journal of Symbolic Computation, 8(6):589-
603, 1989.

49. V. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,
Mass., 1993.

50. A. Schaerf. A survey of automated timetabling. Technical Report CS-R9567,
CWI - Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands,
1995.

51. A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
1986.

52. E. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413-510, 1989.

53. G. Smolka. Residuation and guarded rules for constraint logic programming.
In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming:
Selected Research, pages 405-419. MIT Press, Cambridge, Mass., 1993.

54. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, LNCS 1000, Berlin, Heidelberg, New York, 1995. Springer.

55. A. Tarski. A Decision method for elementary algebra and geometry. University
of California Press, Berkeley, California, 1951.

56. P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57:291-321, 1992.

140 References

57. P. van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modeling Language
for Global Optimization. MIT Press, Cambridge, Mass., 1997.

58. P. van Hentenryck, V. A. Saraswat, and Y. Deville. Constraint processing in
cc(FD). In A. Podelski, editor, Constraint Programming: Basics and Trends,
LNCS 910, Berlin, Heidelberg, New York, 1995. Springer.

59. M. Wallace. Practical applications of constraint programming. Constraints
Journal, 1(1,2):139-168, 1996.

Index

x, 126
..l, 126
=,10
+--, 25
>--+, 10, 130
>--+*,10
po, 128
T,126
;,62
<=>, 62
==>, 62
[], 62

AKL,32
alldifferent, 86
alphabet, 125
ALPS, 31
answer, 15
- constraint, 28
answer constraint, 56, 57
arc consistency, 85
argument, 126
ask, 32
atom, 25, 126

backtracking, 16, 108
BDD,67
binding, 127
Boolean unification, 67
branch and bound, 106, 117

calculus, 10, 129
- logical, 10
CC,31
CHIP, 24
CIAO, 32
clause, 14, 133
- applicability condition, 33
- applicable, 33
- body, 14
- CCL, 32
- CL, 25

- closed, 133
- definite, 133
- empty, 133
- fresh variant, 15
- head, 14, 32
- Rom, 14
CLP(R),24
committed-choice, 32-34
completeness, 9, 54
completion, 19
- Clark's, 19
computation, 10
conclusion, 129
consistency
- bounds, 86
- global, 60
- local, 60
constant, 125
constant propagation, 64
constrain solver, 27
constraint, 25
- allowed, 53
- atomic, 25
- computable, 46
- global, 85
- hard, 117
- soft, 117
- solver, 24, 27, 56
- solving, 1
- symbol
-- built-in, 42
-- CRR, 42
- - user-defined, 42
- system, 27, 53
- theory, 29, 53
constraint solver, 56
- canonical, 58
- congruence respecting, 58

correct, 58
failure-preserving, 58
idempotent, 58

142 Index

- incremental, 58
- independence of variable naming, 58

satisfaction-complete, 58
constraint system, 27, 53
- B, 63
- E, 54
- I, 93
- FD,83

RT,69
independence of negated constraints
property, 54
strong-compactness property, 55

constraint theory, 29, 53
constraint-and-generate, 24
critical pair, 48
- joinable, 48

defined symbol, 14
depth-first search, 17
derivation, 10

failed, 15
fair, 21

- infinite, 15
successful, 15

determination, 57
disjunction
- empty, 133
domain, 53
domain constraint, 84
- enumeration, 84
- interval, 84

EBNF,9
entailment, 32
- test, 57
enumeration, 61
equation, 59
- arithmetic, 93
- l.h.s, 59

linear, 77, 83
normal form, 59
r.h.s.,59
slack-only, 80

equivalence relation, 10
expression

logical, 130
- simple, 130

fact, 14
factor, 134
first-fail principle, 61
flat, 93
flat normal form, 60
flattening, 80

formula, 126
- atomic, 126
- closed, 127
- conjunction, 126

disjunction, 126
- existential closure, 127
- existentially quantified, 126

ground,127
- implication, 126

negation, 126
- universal closure, 127

universally quantified, 126
function
- Skolem, 133

Gaussian elimination, 78
generate-and-test, 24
goal, 14, 25, 42
- empty, 14
- failed, 15

initial, 15
successful, 15

Grabner basis, 67, 93
guard, 32, 42

Herbrand base, 129

independence of negated constraints
property, 54

inequation, 80
- arithmetic, 93
- linear, 77, 83
inference rule, 129
- factoring, 134
- resolution, 134
instance, 131
integer programming, 67
interpretation, 126, 128
- Herbrand, 129

labeling, 61, 107
- domain splitting, 90, 96
- probing, 96

shaving, 96
value ordering, 61

- variable ordering, 61
linear polynomial, 84
literal, 133

complementary, 133
- negative, 133
- positive, 133
local propagation, 66
logical consequence, 128

matching, 34
model,128
- Rerbrand, 129
Mozart, 32

non-determinism, 16
- don't-care, 16
- don't-know, 16
normal form, 57
- clausal, 133
- disjunctive, 133
- fiat, 60, 64, 84
- negation, 132
- prenex, 132
- Skolemized, 133
NP-complete, 56, 60, 64, 66, 112

objective function, 81
occur-check, 70
OPM,31
optimization, 81

polynomial, 77
premise, 129
program
- eeL, 32
- eRR,42
-- confiuent, 48
- - terminating, 48
- eL, 25
- constraint logic, 25

logic, 14
- logical reading, 19
Prolog, 28
Prolog II, 24
Prolog III, 24

query, 15

rapid prototyping, 7
rational tree, 70
reduction, 10
resolution, 134
- SLD, 17, 27
resolvent, 134
rule, 14
- body, 42
- guard, 42
- head, 42
- propagation, 42
- - logical reading, 46
- simplification, 42
- - logical reading, 46

SAT problem, 65, 66
satisfiability test, 56
search procedure, 61
search routine, 61
search tree, 16, 27, 60
selection strategy, 16
semantics
- declarative, 9
- operational, 9
sentence, 127
- equivalent, 128
- satisfiable, 128
- unsatisfiable, 128
- valid, 128
signature, 53, 125
simplification, 56
Skolemization, 133
solution, 59
solved form, 59
soundness, 9
specification, 7
state, 14, 26, 43

critical ancestor, 48
- deadlocked, 33
- final, 10
-- failed, 14, 26, 43
-- successful, 14, 26, 43
- initial, 10, 14, 26, 43
- joinable, 48
- logical reading, 15, 28

Index 143

state transition system, 10
store
- constraint, 26
- goal, 26
strong-compactness property, 55
substitution, 130
- finite, 130
- identity, 130
symbol
- n-ary, 125
- constraint, 25
- function, 125
- predicate, 125
-- defined, 14

tell, 32
- atomic, 37
- eventual, 37
term, 125
- fiat, 60

function, 126
ground,127
Herbrand, 69

144 Index

theorem proving, 66
theory, 127
- Clark's equality, 20
- clausal, 133
- complete, 54
- ground, 127
- satisfaction-complete, 54
transition
- rule, 10
tree
- feature, 55
- finite, 73

rational, 70
- search, 16, 27, 60

unifiable, 131
unification, 24, 131
- Boolean, 67
- one-sided, 34

unifier, 131
- most general, 70, 131
- tuple, 131
union-find algorithm, 65
unit propagation, 65
universe, 53, 126
- Herbrand, 129

value, 55, 57
value propagation, 64
variable

free, 127
- renaming, 131
- slack, 80
- valuation, 126
variable elimination, 57, 59, 70, 78
variable projection, 57
variant, 131

Cognitive Technologies
Managing Editors: D.M. Gabbay J. Siekmann

Editorial Board: A. Bundy J.G. Carbonell
M. Pinkal H. Uszkoreit M. Veloso W. Wahlster
M. J. Wooldridge

Advisory Board:
Luigia Carlucci Aiello
Franz Baader
Wolfgang Bibel
Leonard Bole
Craig Boutilier
Ron Brachman
Bruce G. Buchanan
Luis Farinas del Cerro
Anthony Cohn
Koichi Furukawa
Georg Gottlob
Patrick J. Hayes
James A. Hendler
Anthony Jameson
Nick Jennings
Aravind K. Joshi
Hans Kamp
Martin Kay
Hiroaki Kitano
Robert Kowalski
Sarit Kraus
Kurt Van Lehn
Maurizio Lenzerini
Hector Levesque

John Lloyd
Alan Mackworth
Mark Maybury
Tom Mitchell
Johanna D. Moore
Stephen H. Muggleton
Bernhard Nebel
Sharon Oviatt
Luis Pereira
LuRuqian
Stuart Russell
Erik Sandewall
Luc Steels
Oliviero Stock
Peter Stone
Gerhard Strube
Katia Sycara
Milind Tambe
Hidehiko Tanaka
Sebastian Thrun
Junichi Tsujii
Andrei Voronkov
Toby Walsh
Bonnie Webber

ehe first to know
with the new online notification service

•

Springer Alert
You decide how we keep you up to date on new publications:

• Select a specialist field within a subject area
• Take your pick from various information formats
.Choose how often you'd like to be informed

And receive customised information to suit your needs

lUI.I,;/t,.dellllert

and then you are one click away
from a world of computer science infonnation!

Come and visit Springer's Computer Science
Online library

lUI.I,;/I,.delCOmp

t Springer

