
Studies in Computational Intelligence 539

Constraint
Programming and
Decision Making

Martine Ceberio
Vladik Kreinovich Editors

Studies in Computational Intelligence

Volume 539

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

e-mail: kacprzyk@ibspan.waw.pl

For further volumes:

http://www.springer.com/series/7092

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-

ments and advances in the various areas of computational intelligence—quickly and

with a high quality. The intent is to cover the theory, applications, and design meth-

ods of computational intelligence, as embedded in the fields of engineering, com-

puter science, physics and life sciences, as well as the methodologies behind them.

The series contains monographs, lecture notes and edited volumes in computational

intelligence spanning the areas of neural networks, connectionist systems, genetic

algorithms, evolutionary computation, artificial intelligence, cellular automata, self-

organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems.

Of particular value to both the contributors and the readership are the short publica-

tion timeframe and the world-wide distribution, which enable both wide and rapid

dissemination of research output.

Martine Ceberio · Vladik Kreinovich
Editors

Constraint Programming and
Decision Making

ABC

Editors

Martine Ceberio
Department of Computer Science
University of Texas at El Paso
El Paso Texas
USA

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso Texas
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-04279-4 ISBN 978-3-319-04280-0 (eBook)
DOI 10.1007/978-3-319-04280-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013957363

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Constraint programming and decision making are important. Constraint pro-
gramming and decision-making techniques are essential in the building of intel-
ligent systems. They constitute an efficient approach to representing and solving
many practical problems. They have been applied successfully to a number of
fields, such as scheduling of air traffic, software engineering, networks security,
chemistry, and biology. However, despite the proved usefulness of these tech-
niques, they are still under-utilized in real-life applications. One reason is the
perceived lack of effective communication between constraint programming ex-
perts and domain practitioners about constraints, in general, and their use in
decision making, in particular.

CoProd workshops. To bridge this gap, annual International Consstraint
Porgramming and Decision Making workshops CoProd’XX have been orga-
nized since 2008: in El Paso, Texas (2008, 2009, 2011, and 2013), in Lyon,
France (2010), and in Novosibirsk, Russia (2012); CoProd’2014 will be held in
Würzburg, Germany. This volume contains extended version of selected papers
presented at previous CoProd workshops.

CoProD workshops aim to bring together, from areas closely related to deci-
sion making, researchers who design solutions to decision-making problems and
researchers who need these solutions and likely already use some solutions. Both
communities are often not connected enough to allow cross-fertilization of ideas
and practical applications.

CoProD workshops aim at facilitating networking opportunities and cross-
fertilization of ideas between the approaches used in the different attending
communities. Because of this, in addition to active researchers in decision mak-
ing and constraint programming techniques, these workshops are also attended
by domain scientists – whose participation and input is highly valued in these
workshops.

The goal of CoProD workshops is therefore to constitute a forum for inter-
community building. The objectives of this forum are to facilitate:

– The presentation of advances in constraint solving, optimization, decision
making, and related topics;

– The development of a network of researchers interested in constraint tech-
niques, in particular researchers and practitioners that use numeric and sym-
bolic approaches (or a combination of them) to solve constraint and opti-
mization problems;

– The gap bridging between the great capacity of the latest decision-
making/constraint techniques and their limited use.

CoProD workshops can impact these communities by easing collaborations and
therefore the emergence of new techniques, and by creating a network of interest.

VI Preface

The objectives of CoProD are also relayed all year round through the website
constraintsolving.com.

Topics of interest. The main emphasis is on the joint application of constraint
programming and decision making techniques to real-life problems. Other topics
of interest include:

– Algorithms and applications of:
• Constraint solving, including symbolic-numeric algorithms
• Optimization, especially optimization under constraints (including
multi-objective optimization)

• Interval techniques in optimization and their interrelation with con-
straint techniques

• Soft constraints
• Decision making techniques

– Description of domain applications that:
• Require new decision making and/or constraint techniques
• Implement decision making and/or constraint techniques

Contents of the present volume: general overview. All these topics are repre-
sented in the papers forming the current volume. These papers cover all the
stages of decision making under constraints:

– how to formulate the problem of decision making in precise terms, taking
different criteria into account;

– how to check whether (and when) the corresponding decision problem is
algorithmically solvable;

– once we know that the decision problem is, in principle, algorithmically solv-
able, how to find the corresponding algorithm, and how to make this algo-
rithm as efficient as possible;

– how to take into account uncertainty, whether it is given in terms of bounds
(intervals), probabilities, or fuzzy sets?

How to formulate the problem of decision making: general case. The paper [2]
emphasizes that in decision making, it is important not to oversimplify the prob-
lem: a model which is a reasonably good (but not very accurate) fit for all previ-
ous observations can lead to misleading decisions. A similar conclusion is made in
[11]: if we try to simply our problem by ignoring some of the natural constraints,
often, the problem, instead of becoming algorithmically easier, becomes more
complex to solve. So, using a more realistic model not only makes the results of
the computations more adequate, it also often makes computations themselves
easier (and faster).

Case of multi-criterion decision making. How can we combine different criteria?

– It is desirable to find a combination rule which is in best accordance with the
actual decisions; a new method for solving the corresponding optimization
problems is presented in [14].

Preface VII

– In many practical situations, it is possible to use known symmetries to find
the most appropriate combination.
• The paper [10] uses symmetries to explain why tensors and polynomial
combination rules are often practically useful.

• The paper [7] applies similar symmetry ideas to a specific problem of
selecting the best location for a meteorological tower.

Instead of combining criteria and solving the resulting combined optimization
problem, we can alternatively solve the optimization problems corresponding to
all possible combinations, and then select the solution which is, in some rea-
sonable sense, the most appropriate. As shown in [21], in this case also natural
symmetries explain the efficiency of empirically successful selection heuristics.

When are problems algorithmically solvable?

– For general decision making problems, this question is analyzed in [1]; this
paper also analyzes when it is possible to solve the problem while avoiding
making irreversible changes.

– In some cases, when no algorithm is possible for a general mathematical prob-
lem, algorithms becomes possible is we only consider physically meaningful
cases, i.e., if we take into account additional physical constraints [12].

– In some cases, partial solutions can be extended to general ones:
• Paper [8] shows that, in principle, it is sufficient to be able to algorith-
mically compute the quality of the best decision, then it is possible to
algorithmically find this optimal decision.

• The paper [3] shows that it is always possible to combine algorithms for
different possible situations into a single algorithm – even when it is not
always algorithmically possible to decide which of the possible situations
we currently encounter.

How to design efficient algorithms for solving the problems. There are several
ways to design more efficient algorithms.

– First, it is often beneficial to reformulate the original problem.
• In [13], it is shown that often real-world problems become easier to solve
if we reformulate them in terms of constraints – e.g., in terms of con-
straint optimization – and then use constraint techniques to solve these
problems.

• Moreover, it turns out that sometimes, adding additional constraints [11]
make problems easier to solve – constraints which, at first glance, would
make the problem more complex to solve.

– Once the problem is formulated, we can try to come up with more efficient
algorithms for solving the problem. This can be done both on a higher level
– by coming up with a better numerical algorithm, or on lower level – by
making elementary steps of the corresponding numerical algorithm more
efficient. This volume contains examples of both approaches:
• Innovative efficient algorithms for constraint optimization and equation
solving are presented in [6, 19].

VIII Preface

• Efficient algorithms for dealing with matrix and, more generally, tensor
data are presented in [15].

– Often, while we do not have efficient general algorithms for solving a practical
problem, human experts efficiently solve this problem. In such situations, it
is important to learn how humans make decisions.

• For multi-agent decision making in multi-criteria situations, such an
analysis is presented in [5].

• Similar studies of human decision making are also important in situations
when we need to influence collective human decisions – e.g., evacuation
in emergency situations [20].

How to take uncertainty into account. For a single variable, the simplest type of
uncertainty is when we have bounds on this variables, i.e., when possible values
of this variable form an interval. For interval uncertainty,

– a new more efficient method is described in [19]; this method is useful in
solving systems of equations and in solving optimization problems under
interval uncertainty;

– a new control techniques under interval uncertainty is described in [16].

In multi-dimensional case, in addition to intervals restricting the values of
each variable, we may have additional constraints which limit the range of pos-
sible values of the corresponding tuples. Ellipsoids are often a computationally
efficient tool for describing the resulting tools. The paper [23] provides a theo-
retical explanation for this empirical success. In [17], it is shown that sometimes
half-ellipsoids provide an even more computationally efficient description of un-
certainty.

Several papers take into account probabilistic uncertainty. The paper [18] uses
interval techniques to simulate non-standard probability distribution useful in
biological applications. The paper [9] shows that constraints techniques, when
applied to statistical situations, explain well-known techniques of computational
statistics such as Gibbs sampling. Finally, the paper [22] describes a new ap-
proach to solving problems with probabilistic uncertainty in which, in addition
to continuous variables, more difficult-to-process discrete variables also need to
be taken into account.

Constraint optimization problems under interval-valued fuzzy uncertainty are
discussed in [4].

Resulting applications. Papers presented in this volume includes numerous ap-
plications. We want to emphasize three such applications:

– to meteorology and environmental science [7] (selecting the best location for
a meteorological tower),

– to biology [18]: how to find the most probable evolution history of different
species, and

– to engineering [16]: how to best control a magnetic levitation train.

Preface IX

Thanks. We are greatly thankful to National Science Foundation for support-
ing several CoProd workshops, to all the authors and referees, and to all the
participants of the CoProd workshops. Our special thanks to Professor Janusz
Kacprzyk, the editor of this book series, for his support and help. Thanks to all
of you!

References

1. E. C. Balreira, O. Kosheleva, and V. Kreinovich, “Algorithmics of Checking
Whether a Mapping Is Injective, Surjective, and/or Bijective”, this volume.

2. M. Ceberio, O. Kosheleva, and V. Kreinovich, “Simplicity is worse than theft: a
constraint-based explanation of a seemingly counter-intuitive Russian saying”, this
volume.

3. M. Ceberio and V. Kreinovich, “Continuous if-then statements are computable”,
this volume.

4. J. C. Figueroa-Garcia and G. Hernandez, “Linear programming with interval type-
2 fuzzy constraints”, this volume.

5. L. Garbayo, “Epistemic considerations on expert disagreement, normative justifi-
cation and inconsistency regarding multi-criteria decision-making”, this volume.

6. M. Hladik and J. Horacek, “Interval linear programming techniques in constraint
programming and global optimization”, this volume.

7. A. Jaimes, C. Tweedie, T. Magoc, V. Kreinovich, and M. Ceberio, “Selecting the
best location for a meteorological tower: a case study of multi-objective constraint
optimization”, this volume.

8. A. Jalal-Kamali, M. Ceberio, and V. Kreinovich, “Constraint optimization: from
efficient computation of what can be achieved to efficient computation of a way to
achieve the corresponding optimum”, this volume.

9. M. Koshelev, “Gibbs sampling as a natural statistical analog of constraints tech-
niques: prediction in science under general probabilistic uncertainty”, this volume.

10. O. Kosheleva, M. Ceberio, and V. Kreinovich, “Why tensors?”, this volume.
11. O. Kosheleva, M. Ceberio, and V. Kreinovich, “Adding constraints – a (seemingly

counterintuitive but) useful heuristic in solving difficult problems”, this volume.
12. V. Kreinovich, “Under physics-motivated constraints, generally-non-algorithmic

computational problems become algorithmically solvable”, this volume.
13. V. Kreinovich, J. Ferret, and M. Ceberio, “Constraint-related reinterpretation of

fundamental physical equations can serve as a built-in regularization”, this volume.
14. T. Magoč and F. Modave, “Optimization of the Choquet Integral using Genetic

Algorithm”, this volume.

15. L. Mullin and J. Raynolds, “Scalable, portable, verifiable Kronecker products on
multi-scale computers”, this volume.

16. P. S. V. Nataraj and Mukesh D. Patil, “Reliable and Robust Automated Synthe-
sis of QFT Controller for Nonlinear Magnetic Levitation System using Interval
Constraint Satisfaction Techniques”, this volume.

17. P. Portillo, M. Ceberio, and V. Kreinovich, “Towards an efficient bisection of el-
lipsoids”, this volume.

18. R. Sainudiin, “An auto-validating rejection sampler for differentiable arithmetic
expressions: posterior sampling of phylogenetic quartets”, this volume.

19. S. Shary, “Graph subdivision methods in interval global optimization”, this volume.

X Preface

20. Y.-J. Son, “An extended BDI-based model for human decision-making and social
behavior: various applications”, this volume.

21. U. A. Sosa Aguirre, M. Ceberio, and V. Kreinovich, “Why curvature in L-curve:
combining soft constraints”, this volume.

22. L. P. Swiler, P. D. Hough, P. Qian, X. Xu, C. Stoorlie, and H. Lee, “Surrogate
models for mixed discrete-continuous variables”, this volume.

23. K. Villaverde, O. Kosheleva, and M. Ceberio, “Why ellipsoid constraints, ellipsoid
clusters, and Riemannian space-time: Dvoretzky’s Theorem revisited”, this volume.

August 2013 Martine Ceberio
Vladik Kreinovich

University of Texas at El Paso

Table of Contents

Preface . V

Algorithmics of Checking whether a Mapping Is Injective, Surjective,
and/or Bijective . 1

E. Cabral Balreira, Olga Kosheleva, Vladik Kreinovich

Simplicity Is Worse Than Theft: A Constraint-Based Explanation of a
Seemingly Counter-Intuitive Russian Saying . 9

Martine Ceberio, Olga Kosheleva, Vladik Kreinovich

Continuous If-Then Statements Are Computable . 15
Martine Ceberio and Vladik Kreinovich

Linear Programming with Interval Type-2 Fuzzy Constraints 19
Juan C. Figueroa-Garćıa, Germán Hernández

Epistemic Considerations on Expert Disagreement, Normative
Justification, and Inconsistency Regarding Multi-criteria Decision
Making . 35

Luciana Garbayo

Interval Linear Programming Techniques in Constraint Programming
and Global Optimization . 47

Milan Hlad́ık, Jaroslav Horáček

Selecting the Best Location for a Meteorological Tower: A Case Study
of Multi-objective Constraint Optimization . 61

Aline Jaimes, Craig Tweedy, Tanja Magoc, Vladik Kreinovich,
Martine Ceberio

Gibbs Sampling as a Natural Statistical Analog of Constraints
Techniques: Prediction in Science under General Probabilistic Uncertainty 67

Misha Koshelev

Why Tensors? . 75
Olga Kosheleva, Martine Ceberio, Vladik Kreinovich

Adding Constraints – A (Seemingly Counterintuitive but) Useful
Heuristic in Solving Difficult Problems . 79

Olga Kosheleva, Martine Ceberio, Vladik Kreinovich

Under Physics-Motivated Constraints, Generally-Non-Algorithmic
Computational Problems become Algorithmically Solvable 85

Vladik Kreinovich

XII Table of Contents

Constraint-Related Reinterpretation of Fundamental Physical
Equations Can Serve as a Built-In Regularization . 91

Vladik Kreinovich, Juan Ferret, Martine Ceberio

Optimization of the Choquet Integral Using Genetic Algorithm 97
Tanja Magoč and François Modave

Scalable, Portable, Verifiable Kronecker Products on Multi-scale
Computers . 111

Lenore Mullin, James Raynolds

Reliable and Robust Automated Synthesis of QFT Controller for
Nonlinear Magnetic Levitation System Using Interval Constraint
Satisfaction Techniques . 131

P. S. V. Nataraj and Mukesh D. Patil

Towards an Efficient Bisection of Ellipsoids . 137
Paden Portillo, Martine Ceberio, Vladik Kreinovich

An Auto-validating Rejection Sampler for Differentiable Arithmetical
Expressions: Posterior Sampling of Phylogenetic Quartets 143

Raazesh Sainudiin

Graph Subdivision Methods in Interval Global Optimization 153
Sergey P. Shary

An Extended BDI-Based Model for Human Decision-Making and Social
Behavior: Various Applications . 171

Young-Jun Son

Why Curvature in L-Curve: Combining Soft Constraints 175
Uram Anibal Sosa Aguirre, Martine Ceberio, Vladik Kreinovich

Surrogate Models for Mixed Discrete-Continuous Variables 181
Laura P. Swiler, Patricia D. Hough, Peter Qian, Xu Xu, Curtis
Storlie, Herbert Lee

Why Ellipsoid Constraints, Ellipsoid Clusters, and Riemannian
Space-Time: Dvoretzky’s Theorem Revisited . 203

Karen Villaverde, Olga Kosheleva, Martine Ceberio

Author Index . 209

Algorithmics of Checking whether a Mapping

Is Injective, Surjective, and/or Bijective

E. Cabral Balreira1, Olga Kosheleva2, and Vladik Kreinovich2

1 Department of Mathematics, Trinity University
San Antonio, TX 78212 USA

ebalreir@trinity.edu
2 University of Texas at El Paso, El Paso, TX 79968, USA

{olgak,vladik}@utep.edu

Abstract. In many situations, we would like to check whether an al-
gorithmically given mapping f : A → B is injective, surjective, and/or
bijective. These properties have a practical meaning: injectivity means
that the events of the action f can be, in principle, reversed, while sur-
jectivity means that every state b ∈ B can appear as a result of the
corresponding action. In this paper, we discuss when algorithms are pos-
sible for checking these properties.

1 Formulation of the Problem

States of real-life systems change with time. In some cases, this change comes
“by itself”, from laws of physics: radioactive materials decays, planets go around
each other, etc. In other cases, the change comes from our interference: e.g., a
spaceship changes trajectory after we send a signal to an engine to perform a
trajectory correction. In many situations, we have equations that describe this
change, i.e., we know a function f : A → B that transform the original state
a ∈ A into a state f(a) ∈ b at a future moment of time. In such situations, the
following two natural problems arise.

The first natural question is: Are the changes reversible? For example, when
we erase the value of the variable in a computer, by replacing it with 0s, the
changes are not reversible: there is not trace of the original value left, and so
reconstructing the original value is not possible. In such situations, two different
original states a �= a′ leads to the exact same new state f(a) = f(a′). If different
states a �= a′ always lead to different states f(a) �= f(a′), then, in principle, we
can reconstruct the original state a based on the new state f(a). In mathematical
terms, mapping f : A → B that map different elements into different ones are
called injective, so the question is whether a given mapping is injective.

The second natural question is: Are all the states b ∈ B possible as a result
of this dynamics, i.e., is it true that every state b ∈ B can be obtained as f(a)
for some a ∈ A. In mathematical terms, mappings that have this property are
called surjective.

We may also want to check whether a mapping is both injective and surjective,
i.e., in mathematical terms, whether it is a bijection.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 1
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_1, c© Springer International Publishing Switzerland 2014

2 E.C. Balreira, O. Kosheleva, and V. Kreinovich

Thus, in practice, it is important to be able to check whether a given mapping
is injective, surjective, or bijective; see, e.g., [1–3]. In this paper, we analyze this
problem from an algorithmic viewpoint.

2 Case of Polynomial and, More Generally,
Semi-algebraic Mappings

Case Study. Let us first consider the case when the set A and B are semi-
algebraic sets, i.e., when each of these sets is characterized by a finite collection
of polynomial equalities and inequalities with rational coefficients. For example,
the upper half of the unit circle centered at the point (0, 0) is a semi-algebraic
set, since it can be described as the set of all the pairs (x1, x2) that satisfy two
polynomial inequalities: x2

1 + x2
2 ≤ 1 and x2 ≥ 0.

We also assume that the mapping f : A → B is semi-algebraic – in the sense
that the graph {(a, f(a)) : a ∈ A} of this function is a semi-algebraic set. For
example, every polynomial mapping is, by definition, semi-algebraic. Polynomial
mappings are very important, since every continuous function on bounded set can
be, within any given accuracy, approximated by a polynomial. Since in practice,
we only know the actual consequences of each action with some accuracy, this
means that every action can be represented by a polynomial mapping.

First Result: Algorithms Are Possible. In the polynomial case and, more gen-
erally, in the semi-algebraic case, all three above questions are algorithmically
decidable:

Proposition 1. There exists an algorithm, that, given two semi-algebraic sets
A and B and a semi-algebraic mapping f : A → B, checks whether f is injective,
surjective, and/or bijective.

Proof. Under the conditions of the proposition, each of the relations a ∈ A,
b ∈ B, and f(a) = b can be described by a finite set of polynomial equalities
and inequalities. A polynomial is, by definition, a composition of additions and
multiplications. Thus, both the injectivity and surjectivity can be described in
terms of the first order language with variables running over real numbers, and
elementary formulas coming from addition, multiplication, and equality. Namely,
injectivity can be described as

∀a ∀a′ ∀b ((a ∈ A& a′ ∈ A& f(a) = b& f(a′) = b& b ∈ B) → a = a′),

and surjectivity can be described as ∀b (b ∈ B → ∃a (a ∈ A& f(a) = b)). For
such formulas, there is an algorithm – originally proposed by Tarski and later
modified by Seidenberg – that decides whether a given formula is true or not;
see, e.g., [5, 9, 12]. Thus, our problems are indeed algorithmically decidable.

Remark 1. One of the main open problems in this area is Jacobian Conjecture,
according to which every polynomial map f : Cn → Cn from n-dimensional com-

plex space into itself for which the Jacobi determinant det

(
∂fi
∂xj

)
is equal to 1

Checking whether a Mapping Is Injective and/or Surjective 3

is injective; see, e.g., [4]. This is an open problem, but for any given dimension
n and for any given degree d of the polynomial, the validity of the correspond-
ing case of this conjecture can be resolved by applying the Tarski-Seidenberg
algorithm.

How Efficient Are the Corresponding Algorithms? The following results show
that the existence of the above algorithms do not mean that these algorithms
are necessary efficient, even for polynomial mappings.

Proposition 2. The problem of checking whether a given polynomial mapping
f : IRn → IRn is injective is, in general, NP-hard.

Proof. By definition, a problem is NP-hard if every problem from the class NP
can be reduced to it; see, e.g., [10]. Thus, to prove that this problem is NP-hard,
let us reduce a known NP-hard problem to it. As such a known problem, we take
a subset problem: given n+1 positive integers s1, . . . , sn, S, check whether there

exist values ε1, . . . , εn ∈ {0, 1} for which
n∑

i=1

si · εi = S. For each instance of this

problem, let us form the following polynomial mapping f(x1, . . . , xn, xn+1) =
(x1, . . . , xn, P (x1, . . . , xn) · xn+1), where

P (x1, . . . , xn)
def
=

n∑

i=1

x2
i · (1− xi)

2 +

(
n∑

i=1

si · xi − S

)2

.

If the original instance of the subset sum problem has a solution (x1, . . . , xn),
then for this solution, we have P (x1, . . . , xn) = 0 and thus, vectors

(x1, . . . , xn, 0) �= (x1, . . . , xn, 1)

are mapped into the same vector (x1, . . . , xn, 0); so, f is not injective.
Vice versa, if the original instance of the subset sum problem does not

have a solution, then P (x1, . . . , xn) is always positive – otherwise, the tuple
(ε1, . . . , εn) = (x1, . . . , xn) would be a solution to this original instance. Thus,
once we know

y = (y1, . . . , yn, yn+1) = f(x1, . . . , xn, xn+1),

we can recover all the inputs x1, . . . , xn, xn+1 as follows:

• xi = yi for i ≤ n and

• xn+1 =
yn+1

P (x1, . . . , xn)
.

So, the above mapping f is injective if and only if the original instance of the sub-
set problem has a solution. The reduction is proven, so the problem of checking
injectivity is indeed NP-hard.

Proposition 3. The problem of checking whether a given polynomial mapping
f : IRn → IRn is surjective is, in general, NP-hard.

4 E.C. Balreira, O. Kosheleva, and V. Kreinovich

Proof. This is proven by the same reduction as in the previous proof: when
P (x1, . . . , xn) = 0 for some x1, . . . , xn, then the element (x1, . . . , xn, 1) is not
in the range of the mapping; on the other hand, when P is always positive, the
mapping is surjective.

Proposition 4. The problem of checking whether a given polynomial mapping
f : IRn → IRn is bijective is, in general, NP-hard.

Proof. This is proven by the same reduction as in the previous two proofs.

Proposition 5. The problem of checking whether a given surjective polynomial
mapping f : IRn → IRn is also injective is, in general, NP-hard.

Proof. Similarly to the proof of Proposition 2, for each instance (s1, . . . , sn, S) of
the subset sum problem, we form the corresponding polynomial P (x1, . . . , xn).
This polynomial is always non-negative. Let us prove that P (x1, . . . , Pn) can

attain values smaller than δ2 · (1 − δ)2, where δ
def
=

0.1
n∑

i=1

|si|
if and only if the

original instance of the subset sum problem has a solution.
Indeed, if the original instance of the subset sum problem has a solution, then,

as we have shown in the proof of Proposition 2, the polynomial P (x1, . . . , xn)
attains the 0 value for some inputs x1, . . . , xn), and 0 is clearly smaller than
δ2 · (1 − δ)2. Vice versa, let us assume that for some inputs x1, . . . , xn, we get
P (x1, . . . , xn) < δ2 · (1 − δ)2. Since P (x1, . . . , xn) is the sum of non-negative
terms, each of these terms must be smaller than δ2 · (1 − δ)2. Each of these
terms is a square q2 of some expression q, so for each such expression q, we get
|q| < δ · (1− δ). In particular, for each i, we have |xi · (1− xi)| < δ · (1− δ) and

we also have

∣∣∣∣
n∑

i=1

si · xi − S

∣∣∣∣ < δ · (1− δ).

The inequality −δ ·(1−δ) < xi ·(1−xi) < δ ·(1−δ) implies that either |xi| < δ
or |xi − 1| < δ, i.e., that there exists a value εi ∈ {0, 1} for which |xi − εi| < δ.

Thus, |si ·xi−si ·εi| < |si| ·δ, and
∣∣∣∣

n∑
i=1

si · xi −
n∑

i=1

si · εi
∣∣∣∣ <

n∑
i=1

·|si|δ = 0.1. From

this inequality and the above inequality

∣∣∣∣
n∑

i=1

si · xi − S

∣∣∣∣ < δ · (1−δ), we conclude

that

∣∣∣∣
n∑

i=1

si · εi − S

∣∣∣∣ < 0.1 + δ · (1− δ). Here,
n∑

i=1

|si| ≥ 1, hence 0 ≤ δ ≤ 0.1 and

δ · (1− δ) ≤ δ ≤ 0.1. Thus,

∣∣∣∣
n∑

i=1

si · εi − S

∣∣∣∣ < 0.2. Both the sum
n∑

i=1

si · εi and the

value S are integers, so their difference is also an integer, and the only way for
the absolute value of this difference to be smaller than 0.2 is when this difference

is equal to 0, i.e., when
n∑

i=1

si · εi = S. Thus, if P (x1, . . . , xn) < δ2 · (1− δ)2 for

some inputs xi, then the original instance of the subset sum problem indeed has
a solution.

Checking whether a Mapping Is Injective and/or Surjective 5

For each instance of the subset sum problem, let us now use the corresponding
polynomial P (x1, . . . , xn) to form the following polynomial mapping

f(x1, . . . , xn, xn+1) = (x1, . . . , xn, x
3
n+1 + (P (x1, . . . , xn)− δ2 · (1− δ)2) · xn+1).

This mapping maps each set of tuples with given x1, . . . , xn into the same set, so
to check whether this mapping is surjective or injective, it is sufficient to check
whether each corresponding 1-D mapping

g(xn+1)
def
= x3

n+1 + (P (x1, . . . , xn)− δ2 · (1− δ)2) · xn+1

is, correspondingly, surjective or injective.
A function g(z) = z3+ a · z is always surjective: its values range from −∞ for

z → −∞ to +∞ for z → +∞. When a ≥ 0, this function is always increasing
(hence injective), since its derivative 3z2+a is always non-negative. When a < 0,
its derivative at 0 is negative, but this derivative is positive when z → ±∞, so
the function g(z) is not monotonic and thus, not injective. So, the above mapping
f(x1, . . . , xn, xn+1) is injective if and only if the coefficient a = P (x1, . . . , xn)−
δ2 · (1− δ)2 is non-negative for all x1, . . . , xn, i.e., if and only if P (x1, . . . , xn) ≥
δ2 · (1− δ)2 for all x1, . . . , xn. We have already shown that checking whether this
inequality is always true is equivalent to checking whether the original instance of
the subset sum problem has a solution. The reduction is proven, so the problem
of checking injectivity of surjective mappings is indeed NP-hard.

Remark 2. It would be interesting to find out whether it is NP-hard to check
whether a given injective polynomial mapping is bijective.

Polynomial Mapping with Computable Coefficients. For such mappings, the cor-
responding questions become algorithmically undecidable. A real number x is
called computable if there exists an algorithm that, given a natural number n,
returns a rational number rn which is 2−m-close to x. Equivalently, instead of
specifying the sequence 2−n, we can require the existence of an algorithm that,
given a rational number ε > 0, produces a rational number which is ε-close to
x; see, e.g., [6, 8, 11, 13].

Proposition 6. No algorithm is possible that, given a polynomial mapping
f : IRn → IRn with computable coefficients, decides whether this mapping is
injective.

Proof. The proof is based on the known fact that no algorithm is possible that,
given a computable real number a, decides whether this number is equal to 0 or
not. We can thus take n = 1 and f(x) = a · x. This mapping is injective if and
only if a �= 0. Since we cannot algorithmically decide whether a �= 0, we thus
cannot algorithmically check whether a given mapping is injective.

Proposition 7. No algorithm is possible that, given a polynomial mapping
f : IRn → IRn with computable coefficients, decides whether this mapping is
surjective.

6 E.C. Balreira, O. Kosheleva, and V. Kreinovich

Proposition 8. No algorithm is possible that, given a polynomial mapping
f : IRn → IRn with computable coefficients, decides whether this mapping is
bijective.

Proof. These two results are proven by the same reduction as the previous
proposition.

Proposition 9. No algorithm is possible that, given an injective polynomial
mapping f : [0, 1] → [0, 1] with computable coefficients, decides whether this
mapping is also surjective.

Proof. Indeed, for all a ∈ [0, 0.5], the mapping f(x) = (1 − a2) · x is injective,
but it is surjective only for a = 0.

Proposition 10. No algorithm is possible that, given an surjective polynomial
mapping f : IRn → IRn with computable coefficients, decides whether this map-
ping is also injective.

Proof. Indeed, for n = 1, the mapping f(x) = −a2 · x2 + x3 is always surjective,
but it is injective only when a2 = 0, i.e., when a = 0.

3 General Case

Analytical Expressions. If instead of allowing computable numbers, we allow
general analytical expressions, i.e., expression in terms of elementary constants
such as π and elementary functions such as sin, the above problems remain
algorithmically undecidable. Indeed, according to Matiyasevich’s solution of the
tenth Hilbert problem, it is not algorithmically possible to check whether a given
polynomial equality F (x1, . . . , xn) = 0 has an integer solution. Thus, we can form
a function as in the proof of Propositions 2, 3, and 4, with

P (x1, . . . , xn) =

n∑

i=1

sin2(π · xi) + F 2(x1, . . . , xn).

Here, P = 0 if and only if the equation F = 0 has an integer solution.

General Computable Case. For a computable mapping f between computable
compact sets A and B [6, 13], we can efficiently check approximate injectivity
and surjectivity. For example, instead of checking whether f(a) = f(a′) implies
a = a′, we can check, for given ε > 0 and δ > 0, whether d(f(a), f(a′)) ≤ δ
implies d(a, a′) ≤ ε, i.e., whether

m
def
= max{d(a, a′) : d(f(a), f(a′)) ≤ δ} ≤ ε.

It is known that between every two values 0 ≤ δ < δ, there exists a δ for which
the set {d(f(a), f(a′)) ≤ δ} is a computable compact [6] and thus, for which m is
computable. Thus, if we have two computable numbers 0 ≤ ε < ε, we can check

Checking whether a Mapping Is Injective and/or Surjective 7

whether m ≥ ε or m �≥ ε. So, within each two intervals (δ, δ) and (ε, ε), we can
algorithmically find values δ and ε for which the question of (δ, ε)-injectivity is
algorithmically decidable.

For surjectivity, a natural idea is to check whether every b ∈ B is ε-close to

some f(a), i.e., where s
def
= max

b∈B
min
a∈A

d(b, f(a)) ≤ ε. For computable mappings, s

is computable, thus, with each interval (ε, ε), we can algorithmically find a value
ε for which the question of ε-surjectivity is algorithmically decidable.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721, and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

1. Balreira, E.C.: Foliations and global inversion. Commentarii Mathematici Hel-
vetici 85(1), 73–93 (2010)

2. Balreira, E.C.: Incompressibility and global inversion. Topological Methods in Non-
linear Analysis 35(1), 69–76 (2010)

3. Balreira, E.C., Radulescu, M., Radulescu, S.: A generalization of the Fujisawa-
Kuh Global Inversion Theorem. Journal of Mathematical Analysis and Applica-
tions 385(2), 559–564 (2011)

4. Bass, H., Connell, E.H., Wright, D.: The Jacobian Conjecture: reduction of degree
and formal expansion of the inverse. Bull. Amer. Math. Soc. 7(2), 287–330 (1982)

5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2006)

6. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, N.Y (1985)
7. Keller, O.-H.: Ganze Cremona-Transformationen. Monatshefte für Mathematik

und Physik 47(1), 299–306 (1939)
8. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and

feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)
9. Mishra, B.: Computational real algebraic geometry. In: Handbook on Discreet and

Computational Geometry. CRC Press, Boca Raton (1997)
10. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, San Diego

(1994)
11. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,

Berlin (1989)
12. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.

Berkeley, Los Angeles (1951)
13. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Simplicity Is Worse Than Theft:

A Constraint-Based Explanation of a Seemingly
Counter-Intuitive Russian Saying

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
{mceberio,olgak,vladik}@utep.edu

Abstract. In many practical situations, simplified models, models that
enable us to gauge the quality of different decisions reasonably well, lead
to far-from-optimal situations when used in searching for an optimal
decision. There is even an appropriate Russian saying: simplicity is worse
than theft. In this paper, we provide a mathematical explanation of this
phenomenon.

In Science, Simplicity Is Good. The world around us is very complex. One of
the main objectives of science is to simplify it – and since has indeed greatly
succeeded in doing it. For example, when Isaac Newton discovered his dynamical
equations, it allowed him to explain the complex pictures of celestial bodies
motion in terms of simple laws, laws that enable us to predict their positions for
hundreds of years ahead.

From this viewpoint, a simplicity of a description is desirable. Yes, to achieve
this simplicity, we sometimes ignore minor factors – but without such simplifying
assumptions, it is difficult to make predictions, and predictions made based on
these simplifying assumptions is usually reasonably good. For example, in his
celestial mechanics studies, Newton ignored the fact that the planets and the
Sun have finite size, and treated them as points with mass. To some extent,
this simplifying assumption was justified: the gravitational field of a rotationally
symmetric body is indeed the same as the field generated by the point with the
same mass. However, real bodies are not perfectly symmetric, and there is a
small discrepancy between the actual field and Newton’s approximate values.

In Real Life, Simplified Models – That Seem to Be Working Well for Prediction
– Are Sometimes Disastrous When We Move to Decision Making. One of the
main purposes of science is to explain the world, to be able to predict what
is happening in the world. Once this understanding is reached, once we have
acquired the knowledge about the world, we use this knowledge to come up with
actions that would make the world a better place.

For example, once the scientists get a better understanding of how cracks
propagate through materials, it helps engineers design more stable constructions.
Once the scientists learn about the life cycle of viruses, it helps develop medicines
that prevent and cure the diseases caused by these viruses.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 9
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_2, c© Springer International Publishing Switzerland 2014

10 M. Ceberio, O. Kosheleva, and V. Kreinovich

What happens sometimes is that the simplified models, models which have led
to very accurate predictions, are not as efficient when we use them in decision
making. Numerous examples of such an inefficiency can be found in the Soviet
experiment with the global planning of economy; see, e.g., [11] and references
therein. In spite of using latest techniques of mathematical economics, including
the ideas of the Nobelist Wassily Leontieff [5] who started his research as a
leading USSR economist, the results were sometimes disastrous.

For example, during the Soviet times, buckwheat – which many Russian like
to eat – was often difficult to buy. A convincing after-the-fact explanation is
based on the fact that if we describe the economy in too many details, the
corresponding optimization problem becomes too complex to solve. To make it
solvable, the problem has been simplified, usually by grouping several similar
quantities together. For example, many different types of grains were grouped
together into a single grain rubric. The corresponding part of the optimization
task became as follows: optimize the overall grain production under the given
costs. The problem is that for the same expenses, we can get slightly more wheat
than buckwheat. As a result, when we optimize the overall grain production,
buckwheat is replaced by wheat – and thus, the buckwheat production shrank.

A similar example related to transportation is described in [10]. One of the
main symptoms of an inefficient use of trucks is that sometimes, instead of
delivering goods, trucks spend too much time waiting to be loaded, or getting
stuck in traffic. Another symptom is when a truck is under-loaded, so that a small
load is inefficiently transported by an unnecessarily large truck. In view of these
symptoms, a natural way to gauge the efficiency of a transportation company
is to measures the amount of tonne-kilometers that it produced during a given
time period. If this amount is close to the product of the overall truck capacity
and the distance which can be covered during this time period, the company
is more efficient; if this amount is much smaller, there is probably room for
improvement. In view of this criterion, when the first efficient reasonably large-
scale optimization algorithms appeared in the last 1960s, scientists decided to
use these algorithms to find the optimal transportation schedule in and around
Moscow – by optimizing the total number of tonne-kilometers. The program did
find a mathematically optimal solution, but this solution was absurd: load full
weight on all the trucks in the morning and let them go round and round the
Circular Highway around Moscow :-(

In all these anecdotal examples, a simplified model – which works reasonably
well in estimating the relative quality of the existing situations – leads to absurd
solutions when used for optimization. Such situations were so frequent that there
is a colorful Russian saying appropriate for this phenomenon: simplicity is worse
than theft.

Question. There is an anecdotal evidence of situations in which the use of sim-
plified models in optimization leads to absurd solutions. How frequent are such
situations? Are they typical or rare?

To answer this question, let us analyze this question from the mathematical
viewpoint.

Simplicity Is Worse Than Theft 11

Reformulating the Question in Precise Terms. In a general decision making
problem, we have a finite amount of resources, and we need to distribute them
between n possible tasks, so as to maximize the resulting outcomes. For exam-
ple, a farmer has a finite amount of money, and we need to allocate them to
different possible crops so as to maximize the income. Police has a finite amount
of officers, and we need to allocate them to different potential trouble spots so
as to minimize the resulting amount of crime, etc. In some practical problems,
we have limitations on several different types of resources, but for simplicity, we
will assume that all resources are of one type.

Let x0 be the total amount of resources, let n be the total number of possible
tasks, and let x1, . . . , xn be the amounts allocated to different tasks; then, xi ≥ 0
and x1 + . . .+ xn = x0. Let f(x1, . . . , xn) be the outcome corresponding to the
allocation x = (x1, . . . , xn). In many practical problems, the amount of resources
is reasonably small. In such cases, we can expand the dependence f(x1, . . . , xn)
in the Taylor series and keep only linear terms in this expansion. In this case,

the objective function takes a linear form f(x1, . . . , xn) = c0 +
n∑

i=1

ci · xi. The

question is then to find the values x1, . . . , xn ≥ 0 for which the sum c0+
n∑

i=1

ci ·xi

is the largest possible under the constraint that
n∑

i=1

xi = x0.

What Does Simplification Means in This Formulation. For this problem, simpli-
fication – in the sense of the above anecdotal examples – means that we replace
individual variables by their sum. This can be always done if for two variables
xi and xj , the coefficients ci and cj are equal. In this case, the sum of the corre-
sponding terms in the objective function takes the form ci·xi+cj ·xj = ci·(xi+xj),
so everything depends only on the sum xi + xj (and does not depend on the in-
dividual values of these variables).

Since this replacement can be done exactly when the coefficients ci and cj
are equal, it makes sense to perform a similar replacement when the coefficients
ci and cj are close to each other. In this case, we replace both coefficients ci
and cj , e.g., by their average. Similarly, if we have several variables with similar
coefficients ci, we replace all these coefficients by the average value.

Not all the variables have similar coefficients. Let us assume that for all other
variables xk, we have already selected some values, so only the variables with
similar coefficients remain. In this case, the objective problem reduces to opti-
mizing the sum

∑
ci · xi over remaining variables, and the constraint take the

form
∑

xi = X0, where X0 is equal to x0 minus the sum of already allocated
resources. If we now rename the remaining variables as x1, . . . , xm, we arrive at
the following situation:

– the original problem is to maximize the sum f(x1, . . . , xm) =
m∑
i=1

ci ·xi under

the constraint
m∑
i=1

xi = X0;

12 M. Ceberio, O. Kosheleva, and V. Kreinovich

– for simplicity, we replace this original problem by the following one: maximize

the sum s(x1, . . . , xm) =
m∑
i=1

c · xi under the constraint
m∑
i=1

xi = X0.

The Simplified Description Provides, in General, a Reasonable Estimate for the
Objective Function. Let us first show that the question is to estimate the value
of the objective function corresponding to given allocations x = (x1, . . . , xm),
then the estimation provided by the simplified expression is reasonably accurate.

Indeed, due to many different factors, the actual values ci differ from the av-
erage c. There are so many different reasons for this deviation, that it makes

sense to assume that the deviations Δci
def
= ci − c are independent identically

distributed random variables, with mean 0 and some standard deviation σ. In

this case, the approximation error a
def
= f(x1, . . . , xm)− s(x1, . . . , xm) takes the

form a =
m∑
i=1

Δci · xi. Since all Δci are independent, with mean 0 and stan-

dard deviation σ, their linear combination a has mean 0 and standard deviation

σ[a] = σ ·
√

m∑
i=1

x2
i . In particular, when the resources are approximately equally

distributed between different tasks, i.e., xi ≈ X0

m
, this standard deviation is

equal to σ[a] = X0 ·
σ√
m
. The actual value of the objective function is approxi-

mately equal to s(x1, . . . , xm) = c ·
m∑
i=1

xi = c ·X0. Thus, the relative accuracy of

approximating f by s can be described as the ratio
σ[a]

s
=

σ

c · √m
. When m is

large, this ratio is small, meaning that this simplification indeed leads to a very
accurate estimation.

For Optimization, the Simplified Objective Function Can Lead to Drastic Non-
optimality. From the mathematical viewpoint, the above optimization problem is

easy to solve: to get the largest gain
m∑
i=1

ci ·xi, we should allocate all the resources

X0 to the task that leads to the largest amount of gain per unit resource, i.e.,
to the task with the largest possible value ci. In this case, the resulting gain is
equal to X0 · max

i=1,...,m
ci.

On the other hand, for the simplified objective function, its value is the same
no matter how we distribute the resources, and is equal to X0 ·c. In this simplified
problem, it does not matter how we allocate the resources between the tasks, so
we can as well allocate them equally. In this case, the resulting gain is indeed
equal to X0 · c.

For random variables, the largest value max ci is often much larger than the
average c; moreover, the larger the sample size m, the more probable it is that
we will observe values which are much larger than the average. This is especially
true for power-law distributions which are frequent in economics and finance;

Simplicity Is Worse Than Theft 13

see, e.g., [1–4, 6–9, 12–14]. These distributions have heavy tails, with a high
probability of ci exceeding the mean. Thus, the simplified model can indeed lead
to very non-optimal solutions.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721, and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

1. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A.: Econophysics and Socio-
physics: Trends and Perspectives. Wiley-VCH, Berlin (2006)

2. Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K.: Econophysics of Wealth Distri-
butions. Springer-Verlag Italia, Milan (2005)

3. Farmer, J.D., Lux, T.: Applications of statistical physics in economics and finance.
A Special Issue of the Journal of Economic Dynamics and Control 32(1), 1–320
(2008)

4. Gabaix, X., Parameswaran, G., Vasiliki, P., Stanley, H.E.: Understanding the cubic
and half-cubic laws of financial fluctuations. Physica A 324, 1–5 (2003)

5. Leontieff, W.: Input-Output Economics. Oxford University Press, New York (1986)
6. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and

Complexity in Finance. Cambridge University Press, Cambridge (1999)
7. McCauley, J.: Dynamics of Markets, Econophysics and Finance. Cambridge Uni-

versity Press, Cambridge (2004)
8. Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley Publishers,

New York (2000)
9. Roehner, B.: Patterns of Speculation - A Study in Observational Econophysics.

Cambridge University Press, Cambridge (2002)
10. Romanovsky, J.V.: Lectures on Mathematical Economics. St. Petersburg Univer-

sity, Russia (1972)
11. Shmelev, N., Popov, V.: The Turning Point. Doubleday, New York (1989)
12. Stanley, H.E., Amaral, L.A.N., Gopikrishnan, P., Plerou, V.: Scale invariance and

universality of economic fluctuations. Physica A 283, 31–41 (2000)
13. Stoyanov, S.V., Racheva-Iotova, B., Rachev, S.T., Fabozzi, F.J.: Stochastic models

for risk estimation in volatile markets: a survey. Annals of Operations Research 176,
293–309 (2010)

14. Vasiliki, P., Stanley, H.E.: Stock return distributions: tests of scaling and univer-
sality from three distinct stock markets. Physical Review E: Statistical, Nonlinear,
and Soft Matter Physics 77(3) (2008), Publ. 037101

Continuous If-Then Statements Are Computable

Martine Ceberio and Vladik Kreinovich

Department of Computer Science,
University of Texas at El Paso,

500 W. University,
El Paso, TX 79968, USA

{mceberio,vladik}@utep.edu

Abstract. In many practical situations, we must compute the value of
an if-then expression f(x) defined as “if c(x) ≥ 0 then f+(x) else f−(x)”,
where f+(x), f−(x), and c(x) are computable functions. The value f(x)
cannot be computed directly, since in general, it is not possible to check
whether a given real number c(x) is non-negative or non-positive. Sim-
ilarly, it is not possible to compute the value f(x) if the if-then func-
tion is discontinuous, i.e., when f+(x0) �= f−(x0) for some x0 for which
c(x0) = 0.

In this paper, we show that if the if-then expression is continuous,
then we can effectively compute f(x).

Practical Need for If-Then Statements. In many practical situations, we have
different models for describing a phenomenon:

– a model f+(x) corresponding to the case when a certain constraint c(x) ≥ 0
is satisfied, and

– a model f−(x) corresponding to the case when this constraint is not satisfied,
i.e., when c(x) < 0 (usually, the second model is also applicable when
c(x) ≤ 0).

For example, in Newton’s gravitation theory, when we are interested in the
gravitation force generated by a celestial body – i.e., approximately, a sphere of
a certain radius R – we end up with two different formulas:

– a formula f+(x) that describes the force outside the sphere, i.e., where

c(x)
def
= ‖�r‖ −R ≥ 0,

and

– a different formula f−(x) that describes the force inside the sphere, i.e.,
where

c(x) = ‖�r‖ −R ≤ 0.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 15
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_3, c© Springer International Publishing Switzerland 2014

16 M. Ceberio and V. Kreinovich

Towards a Precise Formulation of the Computational Problem. In such situa-
tions, we have the following problem:

– we know how to compute the functions f+(x), f−(x), and c(x);
– we want to be able to compute the corresponding “if-then” function

f(x)
def
= if c(x) ≥ 0 then f+(x) else f−(x).

In general, we say that a function f(x) is computable if there is an algorithm
that, given an input x and a rational number ε > 0, produces a rational number
r for which |f(x)− r| ≤ ε.

In the above formulation, we assume that the function c(x) is computable for
all possible values x from a given set X , and that:

– the function f+(x) is computable for all values x ∈ X for which c(x) ≥ 0;
and

– the function f−(x) is computable for all values x ∈ X for which c(x) ≤ 0.

Why This Problem Is Non-trivial. The value f(x) cannot be computed directly,
since in general, it is not possible to check whether a given real number c(x) is
non-negative or non-positive; see, e.g., [2, 3].

Discontinuous If-Then Statements Are Not Computable. It is known that every
computable function is everywhere continuous; see, e.g., [3].

Thus, when the if-then function f(x) is not continuous, i.e., when f+(x0) �=
f−(x0) for some x0 for which c(x0) = 0, then the function f(x) is not computable.

Our Main Result. In this paper, we show that in all other cases, i.e., when the
if-then function f(x) is continuous, it is computable.

Algorithm: Main Idea. The main idea behind our algorithm is that in reality,
we have one of the three possible cases:

– case of c(x) > 0, when f(x) = f+(x);
– case of c(x) < 0, when f(x) = f−(x); and
– case of c(x) = 0, when f(x) = f+(x) = f−(x).

Let us analyze these three cases one by one.
In the first case, let us compute c(x) with higher and higher accuracy ε =

2−k, k = 1, 2, . . . As soon as we reach the accuracy 2−k <
c(x)

2
, for which

c(x) > 2 · 2−k, we get an approximation rk for which |c(x) − rk| ≤ 2−k, i.e., for
which

rk > c(x)− 2−k ≥ 2 · 2−k − 2−k = 2−k

and thus, rk > 2−k. Since we know that c(x) ≥ rk − 2−k, we thus conclude that
c(x) > 0.

Continuous If-Then Statements Are Computable 17

Similarly, in the second case, if we compute c(x) with higher and higher accu-

racy 2−k, we will reach an accuracy 2−k <
|c(x)|
2

, for which the corresponding

approximate value rk satisfy the inequality rk < −2−k and thus, we can conclude
that c(x) < 0.

In the third case, since f+(x) = f−(x), if we compute f+(x) and f−(x) with
accuracy ε > 0, then the resulting approximate values r+ and r− satisfy the
inequalities |f(x) − r+| = |f+(x) − r+| ≤ ε and |f(x) − r−| = |f−(x) − r−| ≤ ε
and therefore,

|r+ − r−| ≤ |r+ − f(x)|+ |f(x) − r−| ≤ ε+ ε = 2ε.

Vice versa, if the inequality |r+−r−| ≤ 2ε is satisfied (even if we know nothing
about c(x)), then in reality, the value f(x) coincides wither with f+(x) or with
f−(x).

In the first subcase, when f(x) = f+(x), we have

|f(x)− r+| = |f+(x) − r+| ≤ ε

and

|f(x)− r−| = |f+(x) − r−| ≤ |f+(x)− r+|+ |r+ − r−| ≤ ε+ 2ε = 3ε.

Thus, due to convexity of the absolute value, we have

|f(x)− r| ≤ 1

2
· (|f(x)− r+|+ |f(x)− r−|) ≤

ε+ 3ε

2
= 2ε.

In the second subcase, when f(x) = f−(x), we have

|f(x)− r−| = |f−(x)− r−| ≤ ε

and

|f(x)− r+| = |f−(x)− r+| ≤ |f−(x)− r−|+ |r− − r+| ≤ ε+ 2ε = 3ε.

Thus, due to convexity of the absolute value, we have

|f(x)− r| ≤ 1

2
· (|f(x)− r−|+ |f(x)− r+|) ≤

ε+ 3ε

2
= 2ε.

In both case, we have |f(x) − r| ≤ 2ε. So, if we want to compute f(x) with

a given accuracy α > 0, it is sufficient to find
α

2
-approximations r− and r+ to

f−(x) and f+(x) for which |r+ − r−| ≤ α
Thus, we arrive at the following algorithm for computing the if-then

function f(x).

18 M. Ceberio and V. Kreinovich

Resulting Algorithm. To compute f(x) with a given accuracy α, we simultane-
ously run the following three processes:

– computing c(x) with higher and higher accuracy ε = 2−k, k = 1, 2, . . .;

– computing f−(x) with accuracy
α

2
; and

– computing f+(x) with accuracy
α

2
.

Let us denote:

– the result of computing c(x) with accuracy 2−k by r,
– the result of the second process by r−, and
– the result of the third process by r+.

As we have mentioned in our analysis, eventually, one of the following three
events will happen:

– either we find out that rk > 2−k; in this case we know that (c(x) > 0 and
hence) the third process will finish, so we finish it and return r+ as the
desired α-approximation to f(x);

– or we find out that rk < −2−k; in this case we know that (c(x) < 0 and
hence) the second process will finish, so we finish it and return r− as the
desired α-approximation to f(x);

– or we find out that |r+ − ri| ≤ α; in this case, we return r =
r− + r+

2
as the

desired α-approximation to f(x).

Historical Comment. Our proof is a simplified version of the proofs described,
in a more general setting, in [3]; see also [1].

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721, and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

1. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principle, and weak com-
putability. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K.-I., Rettinger, R. (eds.)
Proceedings of the Sixth International Conference on Computability and Complex-
ity in Analysis CCA 2009, Ljubljana, Slovenia, August 18-22, pp. 81–92 (2009)

2. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

3. Weihrauch, K.: Computable Analysis: An Introduction. Springer, New York (2000)

Linear Programming with Interval Type-2 Fuzzy

Constraints

Juan C. Figueroa-Garćıa and Germán Hernández

Universidad Nacional de Colombia, Bogota, Colombia
jcfigueroag@udistrital.edu.co, gjhernandezp@gmail.com

Abstract. This chapter shows a method for solving Linear Program-
ming (LP) problems that includes Interval Type-2 fuzzy constraints. A
method is proposed for finding an optimal solution in these conditions,
using convex optimization techniques. The entire method is presented
and some interpretation issues are discussed. An introductory example
is presented and solved using our proposal, and its results are explained
and discussed.

1 Introduction

A special kind of Linear Programming (LP) models address fuzzy constraints,
those models are known as Fuzzy Linear Programming (FLP) models. There are
different ways for modeling fuzzy constraints, each one at a different complexity
level. Roughly speaking, fuzzy constrained problems are interesting since fuzzy
sets can deal with non-probabilistic uncertainty, which is a common practical
issue.

Some FLP models have been defined by Ghodousiana and Khorram in [1],
Sy-Min and Yan-Kuen in [2], Tanaka and Asai in [3], Tanaka, Okuda and Asai
in [4], Inuiguchi in [5], [6] and [7] who proposed solutions for several linear fuzzy
sets, all of them considering only Type-1 fuzzy sets. Recently, an intuitionistic
fuzzy optimization approach have been presented by Angelov [8] and Dubey
et al. [9], which is based on the idea of using two measures μA(x) and υA(x)
to represent both membership and non-membership degrees of x regarding a
concept A, constrained to 0 ≤ μA(x) + υA(x) ≤ 1, which is similar to a special
kind of Type-2 fuzzy set in the sense that the interval between μA(x) and υA(x)
can be shown as its footprint of uncertainty.

This chapter presents an extension of the method proposed by Zimmermann
[10] and [11], originally designed for Type-1 fuzzy constrained problems, to
an Interval Type-2 fuzzy constrained LP with piecewise linear membership
functions. The proposal is based on the use of Type-2 fuzzy numbers instead
of intervals or intuitionistic fuzzy sets which are alternative representations of
uncertainty.

The chapter is divided into seven sections. In Section 1 the introduction
and motivation are presented. In Section 2 the classical LP model with fuzzy

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 19
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_4, c© Springer International Publishing Switzerland 2014

20 J.C. Figueroa-Garćıa and G. Hernández

constraints is presented. In Section 3, some elements of linguistic uncertainty, in
particular Type-2 fuzzy constrains are introduced. In Section 4, the formal defi-
nition of an Interval Type-2 FLP model is presented. In Section 5, the proposed
optimization method is explained. Section 6 presents an illustrative application
example, and finally in Section 7 some concluding remarks are presented.

1.1 Applicability of Type-2 Fuzzy Sets

In practical applications such as financial, supply chain, Markov chains, control,
etc, the analyst needs to make a decision based on the decision variables x of
the system, so optimization techniques are oriented to find their optimal values
x∗, even when the problem is under uncertainty conditions.

In LP, all its parameters (costs, technological coefficients and constraints) are
considered as constant, but in practice we have that they may contain uncer-
tainty (randomness, fuzziness, etc). As more uncertainty sources are considered,
more complex is the model and the method used to reach a solution. A com-
mon scenario appears when defining a constraint since it could contain noise,
the method used for measuring may not be totally confident, or simply there is
no available data to define it, so decision makers (mostly experts of the system)
have to apply different strategies to handle uncertainty and find a solution of
the problem.

When the constraints of the problem are defined by the opinion of multiple
experts or they are based on non-probabilistic information, the problem is how
to measure those opinions and linguistic judgements, and then try to solve the
problem. Since 1960’s, another kind of uncertainty called linguistic uncertainty
has been defined. In this, the uncertainty about different perceptions of a con-
cept, mostly given by multiple experts with equally valuable opinions affects the
definition of the constraints of an LP problem. This kind of uncertainty can be
addressed using Interval Type-2 Fuzzy Sets (IT2FS).

An IT2FS is a more complex measure, so it needs more complex representa-
tions than classical fuzzy sets. In this way, our proposal is based on reducing its
complexity using a Type-reduction strategy that consists on finding a set embed-
ded into a Type-2 fuzzy set, in order to apply convex optimization techniques.

2 Basic Definitions

The linear programming (LP) problem is the problem of finding, among all
vectors x which satisfy a system of n inequalities Ax � b, the vector which attains
the largest value of the given objective function z = c′x. Now, a solution of an LP
is a vector x which simply satisfies all the constraints of the problem Ax � b, and
its optimal solution is a vector x∗ for which we have sup{c′x |Ax � b, x � 0},
so z(x∗) � z(x) for all x ∈ B, where all its parameters are crisp numbers
(a.k.a. constants or just numbers). For further information see Dantzig [12], and
Bazaraa, Jarvis and Sherali [13].

Linear Programming with Interval Type-2 Fuzzy Constraints 21

A fuzzy set A is a generalization of a crisp number. It is defined over a universe
of discourse X and is characterized by a Membership Function namely μA(x)
that takes values in the interval [0,1]. A fuzzy set A may be represented as a set
of ordered pairs consisting of a generic element x and its grade of membership
function, μA(x), i.e.,

A = {(x, μA(x)) |x ∈ X} (1)

The classical FLP problem is solves n inequalities as well, but using fuzzy sets
as boundaries, namely B with parameters b̌ and b̂, which are typically defined by
piecewise linear membership functions as shown in Figure 1. A fuzzy constraint
is then a partial order � for which we have x � B.

1

μBi

b̌i b̂i x ∈ R

x � Bi

Fig. 1. Fuzzy set Bi

Now, the FLP problem is the problem of solving n inequalities of the system
Ax � B, achieving the best value of given a goal z = c′x, and a solution of an
FLP is a vector x which satisfies all the constraints of the problem Ax � B.

The concept of optimal solution of an FLP is different (but not far) from the
optimality concept in LP. Fuzzy decision making basic principles were proposed
by Bellman and Zadeh [14], where the main idea to obtain a maximum intersec-
tion among fuzzy constraints and fuzzy goals (Zk), and then find a maximum
fulfilment of all fuzzy parameters. Given this basis, the FLP problem becomes
to a problem of finding a vector of solutions x ∈ R

m for a single goal (Z) such
that:

max
x∈Rm

α

{
m⋂

i=1

{ αBi, bi}
⋂

Z

}
(2)

Note that this value α is an operation point for which the intersection among
all constraints and a goal is maximum. This point α leads to a vector x∗ for which
we have to compute sup{c′x |Ax � B, x � 0}, where z(x∗) � z(x)∀x ∈ B. In
practice, this is a two goal problem where its first goal is to find a α which fulfills
(2) and the second goal is to find x∗ for which z(x∗) � z(x)∀x ∈ B.

22 J.C. Figueroa-Garćıa and G. Hernández

Based on those principles, Zimmermann proposed a method for finding a
solution, which is commonly called Zimmermann soft constraints method (See
Zimmermann [10] and [11]). His proposal uses piecewise linear fuzzy numbers
for defining B and an auxiliary variable α which follows the Bellman-Zadeh
decision making principle, based on the fact that Z can be computed as a linear
combination of the values of B, where ž = sup{c′x |Ax � b̌, x � 0} and ẑ =

sup{c′x |Ax � b̂, x � 0} with linear piecewise membership function defined as
the complement of μB. A brief explanation about this method is shown next.

2.1 The Zimmermann’s Soft Constraints Model

The soft constraints FLP model addressed here is as follows:

max
x∈X

z = c′x+ c0

s.t.

Ax � B (3)

x � 0

where x, c ∈ R
m, c0 ∈ R, A ∈ R

n×m. B is a vector of fuzzy numbers as shown
in Figure 1, and � is a fuzzy partial order.1

The Zimmermann’s soft constraints method imposes an additional restriction
on B: it shall be defined as a vector of m L-R fuzzy numbers with piecewise
linear membership functions B̃i, i ∈ Nm. These fuzzy numbers are defined by
parameters b̌i and b̂i (See Figure 1); and the remaining parameters are constants
viewed as fuzzy singletons. Zimmermann proposed a method for solving this
fuzzy constrained problems, described as follows:

1. Compute the inferior boundary of optimal solutions min{z∗} = ž by using
b̌i as a right hand side of the model.

2. Compute the superior boundary of optimal solutions max{z∗} = ẑ by using

b̂i as a right hand side of the model.
3. Define a fuzzy set Z(x∗) with parameters ž and ẑ. This set represents the

set of all feasible solutions regarding the objective. In other words, a thick
solution of the fuzzy problem (See Kall and Mayer [15] and Mora [16]). Given
the objective is to maximize, then its membership function is:

μZ(x; ž, ẑ) =

⎧
⎪⎪⎨
⎪⎪⎩

1, c′x � ẑ
c′x− ž

ẑ − ž
, ž � c′x � ẑ

0, c′x � ž

(4)

Its graphical representation is:

1 Usually B is a linear fuzzy number, but there is the possibility to use nonlinear
shapes.

Linear Programming with Interval Type-2 Fuzzy Constraints 23

1

μZ

ž ẑ z ∈ R

Set Z

Fig. 2. Fuzzy set Z

4. Create an auxiliary variable α and solve the following model:

max {α}
s.t.

c′x+ c0 − α(ẑ − ž) = ž (5)

Ax+ α(b̂ − b̌) � b̂

x � 0, α ∈ [0, 1]

5. Return z∗, x∗ and α∗.

This method uses α as a global satisfaction degree of all constraints regarding a
fuzzy set of optimal solutions Z. In fact, α operates as a balance point between
the use of the resources (denoted by the constraints of the problem) and the
desired profits (denoted by z), since the use of more resources lead to more
profits, at different uncertainty degrees. Then, the main idea of this method is
to find an overall satisfaction degree of both goals (Profits vs. resource use) that
maximizes the global satisfaction degree, i.e. minimizing the global uncertainty.

3 Interval Type-2 Fuzzy Constraints

As mentioned before, interval type-2 fuzzy sets allows to model lunguistic un-
certainty, i.e. the uncertainty about different perceptions and concepts. Mendel
[17–22] andMelgarejo [23, 24] provided formal definitions of IT2FS, and Figueroa
[25–28] proposed an extension of the FLP to include constraints with linguistic
uncertainty represented by IT2FS called Interval Type-2 Fuzzy Linear Program-
ming (IT2FLP) which are shown next

3.1 Basics on Interval Type-2 Fuzzy Sets

A Type-2 fuzzy set is a collection of infinite Type-1 fuzzy sets into a single fuzzy
set. It is defined by two membership functions: The first one defines the degree

24 J.C. Figueroa-Garćıa and G. Hernández

of membership of the universe of discourse Ω and the second one weights each of
the first Type-1 fuzzy sets. According to Karnik and Mendel [21], Karnik et.al.
[22], Liang and Mendel [20], Melgarejo [23, 24], Mendel [17, 29, 30], Mendel and
John [19], Mendel et.al. [18], and Mendel and Liu [31], basic definitions of Type-2
fuzzy sets include the following:

Definition 1. (Type-2 fuzzy set) A Type-2 fuzzy set, Ã, is described as the
following ordered pairs:

Ã = {(x, μÃ(x)) |x ∈ X} (6)

Here, μÃ(x)) is a Type-2 membership function which is composed by an infi-
nite amount of Type-1 fuzzy sets in two ways: Primary fuzzy sets Jx weighted
by Secondary fuzzy sets fx(u). In other words

Ã = {((x, u), Jx, fx(u)) |x ∈ X ;u ∈ [0, 1]} (7)

And finally we can get the following compact representation of Ã

Ã =

∫

x∈X

∫

u∈Jx

fx(u)/(x, u) =

∫

x∈X

[∫

u∈Jx

fx(u)/u

]/
x, (8)

where x is the primary variable, Jx is the primary membership function as-
sociated to x, u is the secondary variable, and

∫
u∈Jx

fx(u)/u is the secondary
membership function.

Uncertainty about Ã is conveyed by the union of all of the primary member-
ships, called the Footprint Of Uncertainty of Ã [FOU(Ã)], i.e.

FOU(Ã) =
⋃

x∈X

Jx (9)

Therefore, the FOU evolves all the embedded Jx weighted by the secondary
membership function fx(u)/u. These Type-2 fuzzy sets are known as Generalized
Type-2 fuzzy sets, (T2FS), since fx(u)/u is a Type-1 membership function. Now,
an Interval Type-2 fuzzy set, (IT2FS), is a simplification of T2FS in the sense
that the secondary membership function is assumed to be 1, as follows

Definition 2. (Interval Type-2 fuzzy set) An Interval Type-2 fuzzy set, Ã, is
described as:

Ã =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[∫

u∈Jx

1/u

]/
x, (10)

While a T2FS uses any form of Type-1 membership functions, an IT2FS differs
to a T2FS since it uses fx(u)/u = 1 as a unique weight for each Jx, being an
interval fuzzy set.

The FOU of an IT2FS is bounded by two membership functions: An Upper
membership function (UMF) μ̄Ã(x) and a Lower membership function (LMF)
μ
Ã
(x). A graphical representation is provided in Figure 2.

Linear Programming with Interval Type-2 Fuzzy Constraints 25

Ae

1

μã

a ∈ Ω
¯̌a ǎ â ¯̂a

μ μ

a

FOU

Fig. 3. Interval Type-2 Fuzzy set ã

Here, ã is an Interval Type-2 fuzzy set defined over an universe of discourse
a ∈ Ω, its support supp(ã) is enclosed into the interval a ∈ [¯̌a, ¯̂a]. μã is a linear
Type-2 fuzzy set with parameters ¯̌a, ¯̂a, ǎ, â and a, and Ae is a Type-1 fuzzy set
embedded in the FOU.

There are many ways to define the “knowledgeability” of any expert, so an
infinite number of Ae fuzzy sets are embedded in the FOU, each of these sets is
a representation of either the the knowledge of an expert about the universe of
discourse or his perception about it, which is an uncertainty source.

3.2 Uncertain Constraints

In this chapter, we refer to uncertain constraints when using IT2FS, so the pre-
sented approach solves interval type-2 fuzzy constraints (IT2FC). An IT2FC is a
type-2 fuzzy partial order namely � for which we have Ax � b̃. The membership
function which represents b̃i is:

b̃i =

∫

bi∈R

[∫

u∈Jbi

1/u

]/
bi, i ∈ Nm, Jbi ⊆ [0, 1] (11)

Note that b̃ is bounded by both Lower and Upper primary membership func-

tions, namely μ
b̃
(x) with parameters b̌ and b̂, and μ̄b̃(x) with parameters ¯̌b and

¯̂
b. Now, the FOU of each b̃ can be composed by two distances called △ and

∇, where △ is the distance between b̌ and b̌, △ = b̌ − b̌ and ∇ is the distance

between b̂ and b̂, ∇ = b̂− b̂. For further information about △ and ∇ see Figueroa
[26]. A graphical representation of b̃i is shown in Figure 4

In this Figure, b̃ is an IT2FS with linear membership functions μ
b̃
and μ̄b̃. A

particular value b projects an interval of infinite membership degrees u ∈ Jb, as
follows

Jb ∈
[
αb, αb

]
∀ b ∈ R (12)

26 J.C. Figueroa-Garćıa and G. Hernández

1

μb̃

b ∈ Rb̌ b̌ b̂ b̂

αb

αb

b

FOU
△

∇

∇ �= △

Fig. 4. IT2FS constraint with joint uncertain △ & ∇

where Jb is the set of all possible membership degrees associated to b ∈ R. Now,
the FOU of b̃ can be composed by the union of all values of u, i.e.

Definition 3. (FOU of b̃) Using (12) it is possible to compose the footprint of
uncertainty of b̃, u ∈ Jb as follows:

FOU(b̃) =
⋃

b∈R

[
αb, αb

]
∀ b ∈ b̃, u ∈ Jb, α ∈ [0, 1] (13)

Some interesting questions arise from the concept of an optimal solution in
terms of the decision variables x ∈ R given uncertain constraints b̃. The natural
way is by Type-reducing all IT2FS using centroid-based methods, and after-
wards solve the resultant interval optimization problem. However, this is not
recommendable because the centroid of an IT2FS constraint usually is outside
its FOU. Another easy way is by using the Center of FOU which is simply to
use the center of ∇ and △ as extreme points of a fuzzy set embedded into the
FOU of b̃, and then apply the Zimmermann’s method. This method can be used
in cases where the analyst has no complete knowledge about b̃.

In the following sections, some definitions about LP problems with IT2FS
constraints are provided together with a method for finding optimal solutions in
terms of x ∈ R regarding z and b̃.

4 The IT2FLP Model

Given the concept of an IT2FS constraint and the definition of an FLP, an
uncertain constrained FLP model (IT2FLP) can be defined as follows:

max
x∈X

z = c′x+ c0

s.t.

Ax � b̃ (14)

x � 0

Linear Programming with Interval Type-2 Fuzzy Constraints 27

where x, c ∈ R
m, c0 ∈ R, A ∈ R

n×m. b̃ is an IT2FS vector defined by two primary
membership functions μ

b
and μ̄b. � is a Type-2 fuzzy partial order.

Two possible partial orders � and � can be used, depending on the nature of
the problem. In our approach, only linear membership functions are used since
the main goal is to use LP models, due to they are easy to be optimized using
classical algorithms. The membership function of � is:

μ
b̃
(x; b̌, b̂) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, x � b̌

b̂− x

b̂− b̌
, b̌ � x � b̂

0, x � b̂

(15)

and its upper membership function is:

μ̄b̃(x;
¯̌b,
¯̂
b) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, x � ¯̌b
¯̂
b− x

b̂− b̌
, ¯̌b � x �

¯̂
b

0, x �
¯̂
b

(16)

A first approach for solving IT2FS problems is by reducing its complexity into
a simpler form, allowing to use well known algorithms. In this case, we propose
a methodology where its first step is to compute a fuzzy set of optimal solutions
namely z̃ and afterwards, a Type-reduction strategy to find an embedded Type-
reduced fuzzy set Z, is applied. This allows us to find an optimal solution using
the Zimmermann’s method, so the above is currently the problem of finding a
vector of solutions x ∈ R

m such that:

max
x∈Rn

α

{
m⋂

i=1

{ αBi,
αb̃i, bi}

⋂
z̃

}
(17)

where, αBi and
αb̃i are α-cuts made over all fuzzy constraints.

Given μz̃ , the problem becomes in how to find the maximal intersection point
between z̃ and b̃, for which α is defined as auxiliary variable. In practice, the
problem is solved by x∗, so α allows us to find x∗, according to (17). The proposed
methodology is presented in Figure 5.

4.1 Convexity of an IT2FLP

Another important condition to be satisfied by any LP model is convexity. In an
LP problem, convexity is a concept which means that the halfspace generated
by all A(xij) � b should be continuous. This means that every set b should not
be empty (non-null).

In an FLP, two convexity conditions should be guaranteed: a first one re-
garding b ∈ supp(b̃) which is supposed to be a convex space, and a second one
regarding b̃. This leads us to the following proposition:

28 J.C. Figueroa-Garćıa and G. Hernández

Crisp constraints B

Fuzzy
Constraints

Bounds
of z̃

Fuzzifier

Compute z̃

Type-Reducer

Zimmermann’s
method

Optimal
solution (x∗, α∗)

Type-Reduced
set Z

Interval FLP Optimization Process

Fig. 5. IT2FLP proposed methodology

Proposition 1. (Convexity of an IT2FLP) An IT2FLP is said to be convex iff

A(xij) � b̃ ∀ i ∈ Nm (18)

is a non-null halfspace, and b̃ is composed by convex μb̃ and μ
b̃
membership

functions.

Figueroa and Hernández [28] computed the set of all possible optimal solu-
tions of an IT2FLP, as function of b̃. Based on Kreinovich et.al. [32], global
optimization is only possible for convex objective functions, so the Proposition
1 states that the space of b should be defined by both a convex universe of dis-
course and membership functions (μb, μb). As z̃ is a function of b̃, b̃ → z̃, then

b̃ need to be defined by a convex membership function to ensure that z̃ be also
convex.

Remark 1 (Feasibility condition of the IT2FLP). The crisp boundaries of each
set b̃i generates a halfspace h(·) defined as follows:

h(·) � ¯̂
bi ∀ i ∈ Nm (19)

This means that h(·) is the halfspace generated by the set of all the values
of x contained into the support of b̃, x ∈ supp(b̃) (See Niewiadomski [33, 34]).
In this way, the IT2FLP model is feasible only if the polyhedron (or polytope)
generated by h(·) is a non-trivial set, that is:

P = {x |h(·) � ¯̂
bi, } (20)

where P is a non-trivial set of solutions (polyhedron or polytope) of a crisp LP
model. Here, P is a convex set of solutions of all the inequalities of IT2FLP.

Linear Programming with Interval Type-2 Fuzzy Constraints 29

Therefore, the problem is feasible only if the broadest value contained into b̃ is

feasible, i.e the one provided by
¯̂
b. It is clear that if there exists a solution at this

point, then all values of b �
¯̂
b are feasible as well, since they are contained into

the convex hull defined by
¯̂
b (See Wolsey [35], and Papadimitriou and Steiglitz

[36]).

5 Solution Procedure of an IT2FLP

Figueroa [25–27] proposed a method that uses △, ∇ as auxiliary variables with
weights c△ and c∇ respectively, in order to find an optimal fuzzy set embedded
into the FOU of the problem and then solve it by using the Zimmermann’s
method. Its description is presented next.

1. Calculate an optimal inferior boundary called Z minimum (ž) by using b̌ +△
as a frontier of the model, where △ is an auxiliary set of variables weighted
by c△ which represents the lower uncertainty interval subject to the following
statement:

△ � ¯̌b− b̌ (21)

To do so, △∗ are obtained solving the following LP problem

max
x,△

z = c′x+ c0 − c△ ′△

s.t.

Ax−△ � b̌ (22)

△ � ¯̌b− b̌

x � 0

2. Calculate an optimal superior boundary called Z maximum (ẑ) by using
¯̂
b + ∇ as a frontier of the model, where ∇ is an auxiliary set of variables
weighted by c∇ which represents the upper uncertainty interval subject to
the following statement:

∇ �
¯̂
b− b̂ (23)

To do so, ∇∗ are obtained solving the following LP problem

max
x,∇

z = c′x+ c0 − c∇ ′∇

s.t.

Ax−∇ � b̂ (24)

∇ �
¯̂
b− b̂

x � 0

30 J.C. Figueroa-Garćıa and G. Hernández

3. Find the final solution using the third and subsequent steps of the algorithm
presented in Section 2.1 using the following values of b̌ and b̂

b̌ = b̌+△∗ (25)

b̂ = b̂+∇∗ (26)

Remark 2. (About c△ and c∇) In this method, we defined c△ and c∇ as weights

of △ and ∇. In this chapter, we use c△i and c∇i as the unitary cost associated to

increase each resource b̌i and b̂i respectively.

Therefore, △ and ∇ are auxiliary variables that operate as a Type-reducers2,
this means that for each uncertain b̃i, we obtain a fuzzy set embedded on its FOU
where △∗

i and ∇∗
i become b̌i and b̂i to be used in the Zimmermann’s method

(See Section 2.1).

6 Application Example

The proposed method is illustrated using an example where the perception of
the experts of the system is used to define the constraints of the problem.

Now, if different experts provide an opinion based on their previous knowledge,
the problem is about how to use the information they have provided. Sometimes,
the experts use words instead of numbers to define a constraint (the demand of
a product, for instance), by using sentences as “I think that the availability of a

resource b should be between b1 and b2”, where b1 and b2 become b̌i and b̂i, as
presented in Section 2.1.

When different experts have different opinions using the same words, then
linguistic uncertainty appears (through △ and ∇), and Type-2 fuzzy sets arise
as a tool to handle this kind of uncertainty. In this way, we present the constraints
defined by the experts, where the main idea is to maximize the profits of the
system, so we need to compute z̃ and z∗ = c(x∗) using b̃, c and A which are
provided as follows.

A =

⎡
⎢⎢⎢⎢⎣

3 3 4 5
2 3 4 8
6 7 4 2
5 1 3 2
3 2 3 2

⎤
⎥⎥⎥⎥⎦
b̌i =

⎡
⎢⎢⎢⎢⎣

20
30
25
35
20

⎤
⎥⎥⎥⎥⎦
b̌i =

⎡
⎢⎢⎢⎢⎣

40
35
30
40
35

⎤
⎥⎥⎥⎥⎦
b̂i =

⎡
⎢⎢⎢⎢⎣

45
40
40
45
30

⎤
⎥⎥⎥⎥⎦
¯̂
bi =

⎡
⎢⎢⎢⎢⎣

60
45
50
55
50

⎤
⎥⎥⎥⎥⎦

cij =

⎡
⎢⎢⎣

7
5
7
9

⎤
⎥⎥⎦ c△ =

⎡
⎢⎢⎢⎢⎣

0.5
0.2
0.5
0.2
0.5

⎤
⎥⎥⎥⎥⎦
△ =

⎡
⎢⎢⎢⎢⎣

20
5
5
5
15

⎤
⎥⎥⎥⎥⎦
c∇ =

⎡
⎢⎢⎢⎢⎣

0.5
0.5
0.2
0.2
0.5

⎤
⎥⎥⎥⎥⎦
∇ =

⎡
⎢⎢⎢⎢⎣

15
5
10
10
20

⎤
⎥⎥⎥⎥⎦

2 A Type-reduction strategy regards to a method for finding a single fuzzy set embed-
ded into the FOU of a Type-2 fuzzy set.

Linear Programming with Interval Type-2 Fuzzy Constraints 31

This example is composed by four variables and five constraints whose param-
eters are defined by experts using IT2FS, so we apply the Algorithm shown in
Section 5 to find a solution of the problem. The obtained fuzzy set Z̃ is defined
by the following boundaries:

¯̌z = 41.667
¯̂z = 70.9091

ž = 57.7273

ẑ = 84.0909

6.1 Obtained Results

After applying the LP models shown in (22) and (24), the values of ž∗ and ẑ∗

are 49.9091 and 79.5909 respectively. By applying the Zimmermann’s method
we obtain a crisp solution of α∗ = 0.6099 and z∗ = 68.012. A detailed report of
the obtained solution is shown next.

△∗
1 = 0 ∇∗

1 = 8.6364 x∗
1 = 51.049

△∗
2 = 5 ∇∗

2 = 5 x∗
2 = 0

△∗
3 = 10 ∇∗

3 = 5 x∗
3 = 0

△∗
4 = 0 ∇∗

4 = 0 x∗
4 = 35.864

△∗
5 = 0 ∇∗

5 = 0

The optimal solution is provided in terms of x∗
j which are the optimal decision

variables, regarding the optimal satisfaction degree α. Figure 6 shows the Type-
reduced fuzzy set of optimal solutions z̃ which is embedded into the FOU of
Z̃ (See Figueroa and Hernández [28]), where the global satisfaction degree of
α∗ = 0.6099 allow us to find a solution of the problem, which leads to the above
values of x∗

j .

6.2 Discussion of the Results

As expected, an optimal solution of the problem is obtained in terms of x∗ and
α∗. For the sake of understanding, the proposed method obtains a fuzzy set
embedded into the FOU of b̃ and Z̃; this set is then used by Zimmermann’s
method which finally returns the values of x∗ and α∗.

The obtained ž and ẑ come from c△ and c∇, so the method selects only the
auxiliary variables which improve the goal of the system. Note that even when
the method incurs in additional costs for using △ and ∇, the global solution is
improved because c△ and c∇ were absorbed by the reduced costs of the model.

This happens because the method selects the constraints that increase the ob-
jective function, accomplishing (17) instead of the natural reasoning of treating
all constraints in the same way (using either proportional or linear increments
to find a combination of ž and ẑ), due to it uses c△ and c∇.

The analyst faces the problem of having an infinite amount of possible choices
of xj , so we point out that our approach helps decision making, based on a Type-
reduction strategy to reduce the complexity of the problem, getting results which

32 J.C. Figueroa-Garćıa and G. Hernández

1

μz̃

z ∈ R¯̌z
41.7

ẑ∗

79.59

ž
70.9

ẑ
84.09

α∗ 0.6099

¯̂z
57.73

ž∗

49.9

z∗ = 68.01

FOU

Fig. 6. Interval Type-2 fuzzy set z̃ embedded into the FOU of Z̃

are a selection made from the possible set of choices embedded into △ and ∇,
using α∗ as defuzzifier.

7 Concluding Remarks

The proposed method is able to deal with Type-2 fuzzy constraints using well
known fuzzy optimization techniques, achieving a solution of the problem.

Figure 4 shows the proposed methodology for designing optimization proce-
dures for IT2FLP problems. Different Type-reduction strategies may be used,
so the reader can use our methodology as a tool for new results.

The proposed method works alongside with the Zimmermann’s method for
finding a solution to a Type-2 constrained problem, using LP methods which
have high interpretability. This means that the problem can be solved using well
known algorithms, with a high interpretability and applicability of their results.

Finally, the proposed methodology is intended to be a guide about how to
address a problem which includes Type-2 fuzzy constraints, involving the opin-
ions and perceptions of different experts, using their previous knowledge and
non-probabilistic uncertainty. Other methods can be applied, so our proposal is
only an approach to solve this kind of problems.

References

1. Ghodousiana, A., Khorram, E.: Solving a linear programming problem with the
convex combination of the max-min and the max-average fuzzy relation equations.
Applied Mathematics and Computation 180(1), 411–418 (2006)

2. Sy-Ming, G., Yan-Kuen, W.: Minimizing a linear objective function with fuzzy
relation equation constraints. Fuzzy Optimization and Decision Making 1(4), 347
(2002)

Linear Programming with Interval Type-2 Fuzzy Constraints 33

3. Tanaka, H., Asai, K.: Fuzzy Solution in Fuzzy Linear Programming Problems.
IEEE Transactions on Systems, Man and Cybernetics 14, 325–328 (1984)

4. Tanaka, H., Asai, K., Okuda, T.: On Fuzzy Mathematical Programming. Journal
of Cybernetics 3, 37–46 (1974)

5. Inuiguchi, M., Sakawa, M.: A possibilistic linear program is equivalent to a stochas-
tic linear program in a special case. Fuzzy Sets and Systems 76(1), 309–317 (1995)

6. Inuiguchi, M., Sakawa, M.: Possible and necessary optimality tests in possibilistic
linear programming problems. Fuzzy Sets and Systems 67, 29–46 (1994)

7. Inuiguchi, M., Ramı́k, J.: Possibilistic linear programming: a brief review of fuzzy
mathematical programming and a comparison with stochastic programming in
portfolio selection problem. Fuzzy Sets and Systems 111, 3–28 (2000)

8. Angelov, P.P.: Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and
Systems 86(3), 299–306 (1997)

9. Dubey, D., Chandra, S., Mehra, A.: Fuzzy linear programming under interval un-
certainty based on ifs representation. Fuzzy Sets and Systems 188(1), 68–87 (2012)

10. Zimmermann, H.J.: Fuzzy programming and Linear Programming with several
objective functions. Fuzzy Sets and Systems 1(1), 45–55 (1978)

11. Zimmermann, H.J., Fullér, R.: Fuzzy Reasoning for solving fuzzy Mathematical
Programming Problems. Fuzzy Sets and Systems 60(1), 121–133 (1993)

12. Dantzig, G.: Linear Programming and Extensions. Princeton (1998)
13. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Networks Flow.

John Wiley and Sons (2009)
14. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management

Science 17(1), 141–164 (1970)
15. Kall, P., Mayer, J.: Stochastic Linear Programming: Models, Theory, and Compu-

tation. Springer (2010)
16. Mora, H.M.: Optimización no lineal y dinámica. Universidad Nacional de Colombia

(2001)
17. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New

Directions. Prentice Hall (2001)
18. Mendel, J., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple.

IEEE Transactions on Fuzzy Systems 14(6), 808–821 (2006)
19. Mendel, J., John, R.I.: Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy

Systems 10(2), 117–127 (2002)
20. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: Theory and design. IEEE

Transactions on Fuzzy Systems 8(5), 535–550 (2000)
21. Karnik, N.N., Mendel, J.: Operations on type-2 fuzzy sets. Fuzzy Sets and Sys-

tems 122, 327–348 (2001)
22. Karnik, N.N., Mendel, J., Liang, Q.: Type-2 fuzzy logic systems. Fuzzy Sets and

Systems 17(10), 643–658 (1999)
23. Melgarejo, M.: A Fast Recursive Method to compute the Generalized Centroid of

an Interval Type-2 Fuzzy Set. In: Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS), pp. 190–194. IEEE (2007)

24. Melgarejo, M.: Implementing Interval Type-2 Fuzzy processors. IEEE Computa-
tional Intelligence Magazine 2(1), 63–71 (2007)

25. Figueroa, J.C.: Linear programming with interval type-2 fuzzy right hand side pa-
rameters. In: 2008 Annual Meeting of the IEEE North American Fuzzy Information
Processing Society, NAFIPS (2008)

26. Figueroa, J.C.: Solving fuzzy linear programming problems with interval type-
2 RHS. In: 2009 Conference on Systems, Man and Cybernetics, pp. 1–6. IEEE
(2009)

34 J.C. Figueroa-Garćıa and G. Hernández

27. Figueroa, J.C.: Interval type-2 fuzzy linear programming: Uncertain constraints.
In: IEEE Symposium Series on Computational Intelligence, pp. 1–6. IEEE (2011)

28. Figueroa-Garćıa, J.C., Hernandez, G.: Computing optimal solutions of a linear
programming problem with interval type-2 fuzzy constraints. In: Corchado, E.,
Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012,
Part I. LNCS, vol. 7208, pp. 567–576. Springer, Heidelberg (2012)

29. Mendel, J.: Fuzzy sets for words: a new beginning. In: The IEEE International
Conference on Fuzzy Systems, pp. 37–42 (2003)

30. Mendel, J.: Type-2 Fuzzy Sets: Some Questions and Answers. IEEE coNNectionS.
A Publication of the IEEE Neural Networks Society (8), 10–13 (2003)

31. Mendel, J.M., Liu, F.: Super-exponential convergence of the Karnik-Mendel algo-
rithms for computing the centroid of an interval type-2 fuzzy set. IEEE Transac-
tions on Fuzzy Systems 15(2), 309–320 (2007)

32. Kearfott, R.B., Kreinovich, V.: Beyond convex? global optimization is feasible only
for convex objective functions: A theorem. Journal of Global Optimization 33(4),
617–624 (2005)

33. Niewiadomski, A.: On Type-2 fuzzy logic and linguistic summarization of
databases. Bulletin of the Section of Logic 38(3), 215–227 (2009)

34. Niewiadomski, A.: Imprecision measures for Type-2 fuzzy sets: Applications to
linguistic summarization of databases. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 285–294.
Springer, Heidelberg (2008)

35. Wolsey, L.A.: Integer Programming. John Wiley and Sons (1998)
36. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover Publications (1998)

Epistemic Considerations on Expert

Disagreement, Normative Justification, and
Inconsistency Regarding Multi-criteria Decision

Making

Luciana Garbayo

Philosophy Department, University of Texas at El Paso,
El Paso, TX 79968, USA
lsgarbayo@utep.edu

Abstract. This paper discusses some epistemic aspects of legitimate ex-
pert disagreement between domain scientists, while considering domain
specific multi-criteria decision-making problems. Particularly, it articu-
lates both 1) the problem of the normative justification for explaining
conflicting expert propositional knowledge, and also 2) the handling of
disagreement derived from non-conclusive evidence, standing-in as de-
scriptive properties of expert beliefs. Further, 3) it considers some pre-
liminary consequences of the resulting inconsistency in the automation
of conflicting expert multi-criteria decision making, and suggests that
the epistemic treatment of this procedure may help to clarify what types
of solution and difficulties may be there regarding the many dimensions
of knowledge justification.

1 Epistemology, Propositional Knowledge and the
Pivotal Role of Epistemic Justification in Disagreement

Epistemology or theory of knowledge is the special branch of philosophy that
carefully investigates conceptually what knowledge is. With Bertrand Russell’s
critical re-consideration of both scientific and ordinary knowledge in an analytic
key, in the turn of the 20th century [19], the field of epistemology passed to
focus especially on the study of propositional knowledge as knowledge of facts,
or descriptive knowledge, enunciated in clear declarative sentences. To know –
propositionally – is to know that something is the case (as opposed to know-
ing how, or simply, knowing “intuitively”). To know that something is the case
depends on the ability of the knower to support such declarative content with
reasons and/or evidence. Hence, a claim of propositional knowledge is neither
self-evident, nor private – it gives itself to public scrutiny and debate, despite
being eventually held individually.

The traditional analysis of such type of propositional knowledge demanding
of reasons and/or evidence is given in the justified true belief tradition (JTB).

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 35
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_5, c© Springer International Publishing Switzerland 2014

36 L. Garbayo

In this tradition, the study of epistemic justification – the conditions necessary
and sufficient for a person be said to be justified in her belief to hold true –
is pivotal for understanding both agreement and disagreement among peers on
holding propositional knowledge to be justified. Such concept of justification is
normative (or evaluative), for it refers to an evaluation of the criteria and/or
method used in approaching propositions, while seeking for a strong degree of
belief. Further, the study of justification contributes to the investigation of how
experts evaluate reasons and/or evidence to uphold knowledge and find eventu-
ally conflicting justifications to the revision of propositions in a shared domain.
Such variability may generate multi-criteria approaches to evaluate evidence,
and influence decision-making1. Epistemology has a role in untangling such rea-
sons and/or evidence methodologically and thereby, in finding fruitful ways to
re-describe disagreement, aiming at clarifying it productively.

2 The Justified True Belief Tradition

In order to provide a conceptual understanding of propositional knowledge, the
justified true belief (JTB) tradition analyzes it in three components. Proposi-
tional knowledge requires: 1) a belief (as a truth-bearer) that p (the object of the
proposition, say, “that the sky is blue”). It also requires such proposition to be
2) true of the world (meaning that it agrees with the truth-maker, semantically2,
referentially, etc), and 3) that such true belief that the sky is blue is further epis-
temically justified by the knower. To be able to fulfill a justification condition
here means that a person has reached necessary and sufficient sustaining reasons
and/or evidence to affirm that p, based on the strength of her means to access
the truth of the proposition, both cognitively and scientifically.

Definition 1. (Knowledge as JTB) A subject S knows that a proposition P is
true if and only if:

1. P is true
2. S believes that P is true, and
3. S is justified in believing that P is true.

1 In this chapter we will not focus on the ethical aspects of decision-making and justi-
fication in science – the focus here is restricted or bracketed, to normative scientific
justification to propositional knowledge descriptions – discounting other relevant
societal dimensions at this time.

2 Tarski’s leading semantic approach to truth involves the correspondence relation
between words and things, expressed in a T bi-conditional structure such as

“Snow is white” is true iff snow is white.

In this “T-Scheme” the same sentence goes in both parts: one as words, and the
other as thing/world; see [2], Chapter 2

Multi-Criteria Decision Making 37

In the JTB tradition, other ordinary types of knowledge (knowledge by ac-
quaintance, know-how) are mostly handled as playing a part of the justification
task. They answer to the question on the justification of propositional knowledge,
as it becomes extended to inquiries on the forces of contingent and necessity (a
priori and a posteriori) judgments in science, on the role of perception, on the
social and on the linguistic dimensions of knowledge, etc. – to name a few. In
this sense, propositional knowledge is instead a second-order type of vetted and
justified type of knowledge, in need of clearance over time.

Considerations on interpreting such knowledge correctly – expertly – rests also
on interlocutors agreeing on the logic and context of use thereof, and just then,
on its possibly different justifications3. Further nuances emerges when experts
consider modeling the different possibilities, including the truth-functional value
(many-valued, bi-valued) of a proposition, depending on the provided interpreted
semantics and the logic that expresses it, to consider also positing measurement
alternatives, degrees, quantification strategies, etc. A rigorous account of propo-
sitional knowledge strongly depends on considering precisely both its accurate
description (with its implicit logic and semantic background assumptions) and
its justification. Agreement or disagreement has to first be established by con-
sidering such structural logic-linguistic elements for interpreting propositional
knowledge.

3 Justified True Belief Fails: From Knowledge to
Justification, to Belief Revision

The JTB tradition has been famously attacked, in its pretension to offer an
analysis of knowledge as justified true belief, given that there might be cases
of justified true belief that are not instances of knowledge. Those are very

3 A simple example: for instance, if someone states propositionally that: “I know that

London is in Europe”, we have to first clarify ambiguities such as “which London
are you referring to?” (not a girl, or a company called London, but the city in
England – and not the one in Canada). After fixing the reference London-England,
semantically, we may ask how the person knows it, as a question of epistemic justi-
fication. For instance: to know London tout court, as of having been there herself, as
opposed to having read about it in an authoritative book, or inferred about it from
other sources of information. In both cases, it is the epistemic justification that
changes – knowing London (the city) as a personal, direct experience, and knowing
about London, through study, yields a very different scope of knowledge claims,
with perhaps very little overlapping.

38 L. Garbayo

interesting cases4 to learn from Gettier’s classic work [10]. Gettier pointed out5

that we may be justified in believing true propositions in ambiguous contexts
with coincidental and accidental justification, for example, or, be lucky to hold
a true proposition when there is inconclusive evidence that may agree with dif-
ferent interpretations we happen to hold. One may hold a JTB but not really
know conclusively, yet still be right – if the justification given to such true belief
depends mostly on the introspective awareness of what justifies the belief. This
is the case because cognitive accessibility is a necessary and sufficient condition
for knowing – what is called “internalist justification”6.

Yet, the discrepancy learned from Gettier-like cases introduces the idea that
cognitive accessibility and instrospection is not sufficient for attaining knowledge
– an externalist7, truth-conducive process8, even if opaque to introspection, is
needed – cognitive accessibility is neither necessary nor sufficient for knowledge
(for instance, children and animals know, without awareness). The externalist
thesis is that what matters is that evidence is associated with a true belief,
even if such association is in excess of the limited awareness of any individual
knower.

4 For instance: “Case I: Suppose that Smith and Jones have applied for a certain job.
And suppose that Smith has strong evidence for the following conjunctive propo-
sition: (d) Jones is the man who will get the job, and Jones has ten coins in his
pocket. Smith’s evidence for (d) might be that the president of the company assured
him that Jones would in the end be selected, and that he, Smith, had counted the
coins in Jones’s pocket ten minutes ago. Proposition (d) entails: (e) The man who
will get the job has ten coins in his pocket. Let us suppose that Smith sees the
entailment from (d) to (e), and accepts (e) on the grounds of (d), for which he has
strong evidence. In this case, Smith is clearly justified in believing that (e) is true.
But imagine, further, that unknown to Smith, he himself, not Jones, will get the job.
And, also, unknown to Smith, he himself has ten coins in his pocket. Proposition (e)
is then true, though proposition (d), from which Smith inferred (e), is false. In our
example, then, all of the following are true: (i) (e) is true, (ii) Smith believes that (e)
is true, and (iii) Smith is justified in believing that (e) is true. But it is equally clear
that Smith does not know that (e) is true; for (e) is true in virtue of the number of
coins in Smith’s pocket, while Smith does not know how many coins are in Smith’s
pocket, and bases his belief in (e) on a count of the coins in Jones’s pocket, whom
he falsely believes to be the man who will get the job” ([10], p. 122 Analysis).

5 Russell, in fact, has called attention to such problems before Gettier, in [19].
6 Definition 2. (Internalism) S believes b iff that which justifies b is cognitively ac-

cessible to S.
7 Notably, Alvin Goldman’s causal theory & reliabilist epistemology: “My proposal is
this. The justificational status of a belief is a function of the reliability of a process
or processes that cause it, where (as a first approximation) reliability consists in
the tendency of a process to produce beliefs that are true rather than false” ([11],
p. 137).

8 Definition 3. (Externalism) S believes b iff such belief is justified by a truth-

conducive process.

Multi-Criteria Decision Making 39

For our purposes, the interest in the revision of the traditional internalist
approach to justification and the introduction of the externalist approach is to
consider their association to the problem of the normative epistemic justifica-
tion in the sciences, and their role in expert disagreement. A focus on both an
externalist and an internalist approaches to epistemic justification jointly would
bring a way to illuminate how peers may disagree, while recognizing the same
evidence, and how expertise calibration, via direct and indirect evaluation of the
authority of peers on each others’ authority in the subject matter, would play a
role [14].

4 Fallibilism in Science, JTB and Expert Disagreements

Scientific knowledge emerges from a non-monotonic process, provided that one
holds some epistemic justification aligned with the world studied, to run such
iterations – even if the justifications themselves will need to be updated over
time. Perhaps one of the most important lessons is that the JTB in a post-
Gettier epistemology may offer a way into the modeling the dynamics of belief
change and its pitfalls, while considering the weight of its different modes of
justification, unequal access to evidence, etc, equated with failed or incomplete
instances of knowing. Such revision is compatible with fallibilism, arguably the
mainstream doctrine adopted by scientists. Fallibilism which suggests, in its
epistemic dimension, that provisional propositional knowledge iterations emerge
from a belief revision process – while the access to evidence and to the for-
mulation of theory which illuminates the proposition/hypothesis and confirms
it, changes over time9, mostly, with some level of cognitive progress. In other
words, knowledge, described here as JTB, in a fallibilist key, has, at most, the
role of a regulative ideal, associated to a goal-oriented pursuit, in considering
the cumulative dimension of evidence, and its justification.

If the characterization above is acceptable, then scientists should probably
try to better understand what epistemic justification is entailed in their sci-
entific judgments and in their disagreements. Also researchers who study such
experts’s activities should follow suit. In fact, recently, a new area of philosoph-
ical research has emerged within the broad field of epistemology, specifically
dedicated to the study of the epistemology of disagreement [4]. Such new in-
vestigation niche, we believe, has a special significance for scientists, who are
systematically involved in a number of disagreements of a special sort – namely,
expert disagreements. The epistemic study of those disagreements, while consid-
ering variable knowledge standards and some degree of methodological disunity
within a domain community, offers new ways to reflect upon its consequences,
particularly in managing legitimate disagreements in a choice context. Here a
strong argument may be made that philosophy – and epistemology, in particular

9 Fallibilism is commonly accepted among the natural scientists. Further, American
pragmatists, such as John Dewey and Peirce, were strong proponents of fallibilism
in philosophy; Karl Popper, famously, defended that such a position is the case in
science at large [18].

40 L. Garbayo

– can offer an important contribution to the interdisciplinary study of expert
disagreement, by helping to clarify structurally the underpinnings of knowledge
claims and its different types of justification.

In epistemic language, we can say that scientists qua experts, are, first and
foremost, epistemic peers. As epistemic peers, they have in principle equal pos-
sibilities to get the truth-functional value of their claims right [9], given that
they have roughly equal access to the same evidence, arguments, and display
roughly the same basic epistemic virtues needed in the profession, such as intel-
lectual honesty. As domain experts, they are roughly, equally prepared to eval-
uate propositions in their field. Disagreement then may appear in two forms: as
a merely, verbal disagreement, when experts fail to commensurate the language
that they use among themselves, and misunderstand each other (such case is
supposed to happen more in interdisciplinary scenarios, where a common vocab-
ulary has to be agreed upon for any fruitful collaboration – which is virtually
ruled out in this context, among domain-specific experts). Also, it may be a
case of legitimate or genuine disagreement, when, even with the same access to
evidence and arguments, they may disagree on the interpretation thereof. They
may then rightfully agree to disagree10.

Experts ideally possess appropriate justification to the knowledge they have
in their domain science. What is not known, can be treated expertly as in quan-
tifying uncertainty or in establishing degrees of knowledge, and be introduced in
the domain. Crucially, the awareness of knowing explicitly what you know and
distinguishing what you know that you do not know (as opposed to what you do
not know that you do not know), adds an important self-referential dimension
to managing one’s domain knowledge as an expert.

Now, epistemic justification is embedded into scientific justification: experts
may probe their scientific knowledge of x through experiment, observation or
modeling which ultimately, depend on justifying her beliefs epistemically – by
relying on the testimony of the senses, the use of reason, the consideration of
standards of coherence, of the role of background assumptions, etc. The crux of
the problem of offering an expert response and the debate that ensues, resides on
the strength of the justification, broadly conceived, to the claims made. It might
thus be safe then to affirm that the greater the expert, the better the epistemic
justification provided to the propositional knowledge affirmed in one’s domain.

Here, two dimensions of expert disagreement in the same domain are promi-
nent: one has to do with disagreement about descriptions of phenomena or ob-
jects, and the other has to do with disagreement about the criteria to normatively
justify knowing them. In the first case, there may be expert disagreement derived
from non-conclusive evidence, standing-in as descriptive properties of expert be-
liefs in reference to the phenomena studied in their domain. In other words,

10 Here we stand against Aumann’s classic position [1], who suggested that experts
would convert to find agreement among them over time, given that they share the
same priors – if they were Bayesian rational. We agree with Kelly [13], who suggests
that experts may share evidence, but that the decision on which parts of it may
constitute a prior, is open to peer disagreement.

Multi-Criteria Decision Making 41

experts may have reasons to disagree on the very description of their objects of
study, and pick up different parts of phenomena to be representative to model-
ing. This fact is well known and recognized both longitudinally, in the history
of science, driven by different same domain experts and rival re-descriptions of
their objects (“ontology driven” [3]) over time, but also synchronically, as dif-
ferent scientists may provide different descriptions to the same phenomena, also
given to their alliances to different theoretical ways to illuminate their objects.

Expert theoretical choices also provide, in fact, important epistemic justi-
fication to their description of phenomena. The theoretical disagreement that
matters in this case is the disagreement on the criteria by which experts pick up
phenomena meaningfully. Such is an evaluative criterion which illuminates the
descriptive elements. In this sense, justification is normative and, by the same
token, disagreement is not referenced in our ability to simply naively see some-
thing, but on the normative reasons to select from what we see, a description that
can be justified. When an epistemic agent is learning to see a microscopic image
or an X-ray, she is really not “seeing them” but selecting the phenomena from
the image and evaluating it as such selection, contrasted with multiple other pos-
sibilities. She does it while considering background assumptions, methodologies,
artifacts and so on.

The evaluative or normative justificational dimension of expert disagreement
among multiple experts refers to the disagreement on the set of criteria relevant
to consider the dependence relation of normative justification on the criteria of
description of phenomena. Such position of normative justification seems to be
the acceptance of a kind of methodism in epistemology [5]. Methodism is the
position in epistemology that asks “how do we know” primarily, before making
assertions about what is known – it requires a set of criteria. In fact, experts first
have to command the criteria of what constitute knowledge in their domain fields
in order to evaluate what to describe and to what extent we see it. In addition,
they have to implicitly approve the processes by which we acquire evidence,
such as perceptually, inferentially, etc. In this sense, epistemic justification is a
positive evaluation of both the process by which one sees – perceptually and with
reason, given a trained selective judgment of evidence, as a scientific justification,
in connection with an externalist resource to the truth-conduciveness of the
processes of picking-up phenomena.

Given that we are considering scientists in their individual spheres, we then
should add that, the normative, propositional justification should be acceptable
and coupled with one’s doxastic justification, except that its normative dimen-
sion might be eventually not shared. As Kvanvig simply puts it ([15], p. 7):

“Doxastic justification is what you get when you believe something for which
you have propositional justification, and you base your belief on that which
propositionally justifies it.”

If there is propositional justification for believing, but one’s normative criteria
might differ in considering such reasons and/or evidence, a scientist, as an expert,
may understand the position, but not give doxastic justification to it. Agreement
is given when scientists assent individually, with their doxastic justification. In

42 L. Garbayo

the case of disagreement, there is recognition of propositional justification, but
no doxastic assent.

5 Dealing with Multi-criteria Decision-Making in the
Context of Expert Disagreement

If methodism seems to be the case for describing the normative justification of
experts who may disagree on how they know the phenomena they pick up, and
do not offer doxastic justification for each other’s position, then it does happen
that, in an open field of research, there may be corresponding multiple expert
criteria to decide what to actually pick up as the relevant phenomena. Thus,
methodism accomodates a possible multi-criteria decision making problem in
modeling strong disagreement on normative justification to be considered by
epistemic peers, as they evolve and refine the knowledge of their domain science.

Surely, in order to identify such disagreement on multi-criteria decision making
regarding normative justification, epistemic peers have to deal away first with
their mere verbal disagreements, as mentioned before. Such type of disagree-
ment is the one based on mismatched communication on equivalent standards of
description, and commensurable conceptual frames. In order to overcome such
distracting scenarios, experts normalize their language, control carefully their
working definitions and vocabulary in general. A task of great difficulty and
quite relevant to disentangle expert disagreement from its verbal difficulties,
is that experts as epistemic peers should also strive to square away the role
of context-sensitivity in their descriptions and the use of their criteria, for the
sake of clarity. Careful preliminary considerations on context may allow them to
eventually know when to correctly agree to disagree, discounting context. Only
when both language is normalized and contexts are squared, we can consider the
possibility of legitimate expert disagreement to be the case among experts. Just
in this case, the normative justification for knowledge may finally and clearly
appear prominently as a legitimate reason for contention.

Legitimate disagreement on the normative justification we suggest, can be
mostly related to the methodological disunity found in philosophy and in many
crucial scientific areas, whereas multiple criteria are available to evaluate and
justify what is the case. Historically, such disunity becomes especially clear when
the development of a consensual metrics is needed.

If one considers all experts in principle credible and takes prima facie the
instances of their disagreements that are deemed legitimate, then the emerging
question is how to operate some dimension of cognitive progress with such dis-
agreements. A first alternative is to treat them all with the prominent Equal
Weight View [7]. Such view suggests that all epistemic peers’ judgments should
have equal weight – provided that they have access to the same evidence, so
that if they genuinely disagree, then skepticism should ensue for all positions,
until further evidence is presented. An alternative and competing view is the
Total Evidence View [13], in which it is prescribed that none of the peers give
up their positions while facing disagreement, but that they keep instead firmly

Multi-Criteria Decision Making 43

attached to their own views, while considering the total evidence, inclusive of
the disagreement as a data point as well. In a quick analysis, we can see that
in the first case, legitimate disagreement is taken to be only treatable by the
emergence of a new consensus, so agnosticism should be the rule until then.
But, in the second view, dissensus might be the case, and should be dealt with
a different attitude, of ownership.

In further analysis, this last view seems to express most of what happens
in real, legitimate, expert disagreement. Agnosticism does not seem to play a
strong role in argumentation; rather, it might stale it, if not properly measured.
In the case of experts standing their ground on different views, given the fact
that divergent normative justification may indeed justify different evaluative
criteria for knowledge, we can consider that it is more common the persistence
of disagreement.

Indeed, modeling such persistence of expert disagreement is of great impor-
tance for the study of its characteristics, consequences, and its evolution over
time. In this sense, rather than focusing on building an ideal model for ex-
pert consensus, here we suggest that the modeling of dissensus, from the point
of view of the argumentation process regarding the consideration of normative
justification for scientific claims should be encouraged. The idealized model of
consensus building has of course its relevant place, but it is insufficient, for its
limited ability to describe good enough real world processes. In comparison, to
express legitimate expert disagreement with multi-criteria normative justifica-
tion is quite relevant, so that we can better understand the totality of expert
claims and the depth and many layers of disagreements, inclusive of internalist
and externalist types of justification.

We suggest extending the Total Evidence View, to consider the combined
points of view of all experts participants in a legitimate disagreement, with the
degrees of expected inconsistency to be described, in the commensuration of
claims and justifications. Modeling such inconsistency may add much clarifica-
tion can be made in understanding types and trends in a debate among peers.

6 Computer Science and Epistemology of Disagreement:
Some Initial Convergent Notes

In solidarity with philosophy, computer scientists developed strategies to deal
with such problems of modeling disagreement by constituting a constraint se-
mantics to solve combinatorial search problems, such as considering optimiz-
ing the inconsistency of expert argumentation, as a soft constraint satisfaction
problem. In particular, Dung’s theory of argumentation (AF), designed to graph
sets of arguments considering binary conflicts based on attack relations between
them. In their description, the resulting arguments are weighted in AF based on
fuzziness, probability, and preference [6]. As a preliminary response, it seems that
such description in the case of the disagreement of experts is incomplete. Here
we focus on the relevance of epistemology in adding important new categories to
classify what disagreement is about, in its self-referential features as controlling

44 L. Garbayo

factors, and to better understand and analyze the inconsistency of the whole.
The case in point is to describe normative justification for constraint semantics,
in order to have a better dynamic picture of what happens in legitimate expert
disagreement.

In this sense, we preliminarily suggest that the epistemic treatment of the
automation procedure of multi-criteria decision making be a necessary layer of
information, so that disagreement is not clearly not only verbal, or ordinary,
but captures what is special about it, in the case of its legitimacy, including
its normative justification, the consideration of both internalist and externalist
strategies, and the assent of doxastic justification. The epistemic dimension as
just described, may be indeed part of the missing ontology of AF, given that it is
based only on “Beliefs and goals” [6], and not on claims and justifications, that
could be described in terms of justified true beliefs. The justificational dimension,
we would like to suggest, is the benchmark for reconsidering productively the
inconsistency in the whole of argumentation in the expert case, while experts are
redefining the field, as they revise normativity justificational standards proper
in their area – rather than lumping it with mere non-expert opinion, which are
mainly distractions.

7 Conclusion and Future Work: On Modeling
Methodological Disunity in Legitimate Disagreement
Contexts

The lessons quasi-learned so far, we suggest, are that, if we accept legitimate
disagreement to be the case among experts, we should first consider the norma-
tivity embedded in the justifications, and be able to model it accordingly, with
its nuances and degrees. Part of it, may be resolved with simulation analyt-
ics [20], mitigating ambiguities and introducing projections as a way to generate
further consideration of justification. But, further, to express such deep disagree-
ments and all its degrees, we also may need a non-classical logic approach for
manipulating methodological disunity in legitimate disagreement contexts with
its automation. Wang, Ceberio, et al. [21] explore fuzzy logic as an alternative
to characterize disagreement among peers, and the problems of multi-criteria
decision-making associated with such disagreements in a computational model.
We would like to suggest, with Martine Ceberio (oral communication), that dis-
agreement put us on the path of studying non-classic logic in general to describe
dissensus, and may contribute for a methodic way to model what. There is ex-
citing work ahead to be done, in a equally non-monotonic, self-revising way.

References

1. Aumann, R.J.: Agreeing to Disagree. The Annals of Statistics 4(6), 1236–1239
(1976)

2. Burgess, A.G., Burgess, G.P.: Truth. Princeton University Press, Princeton (2011)

Multi-Criteria Decision Making 45

3. Cao, T.Y.: Conceptual Developments of Twentieth Century Field Theories. Cam-
bridge University Press, Cambridge (1997)

4. Christensen, D.: Special Issue: “The Epistemology of Disagreement”. Episteme: A
Journal of Social Epistemology 6(3), 231–353 (2009)

5. Chisholm, R.: Theory of knowledge. Prentice Hall, Englewood Cliffs (1989)
6. Dung, F.M.: On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

7. Feldman, R.: Epistemology. Prentice Hall, Englewood Cliffs (2003)
8. Feldman, R., Warfield, T.A. (eds.): Disagreement. Oxford University Press, Oxford

(2010)
9. Foley, R.: Intellectual trust in Oneself and Others. Cambridge University Press,

Cambridge (2001)
10. Gettier, E.: Is Justified True Belief Knowledge? Analysis 23, 121–123 (1963)
11. Goldman, A.: What Is Justified True Belief? In: Pappas, G.R. (ed.) Justification

and Knowledge. D. Reidel, Dordrecht (1979)
12. Kelly, T.: The epistemic significance of disagreement. In: Hawthorne, J., Gendler,

T. (eds.) Oxford Studies in Epistemolgy, vol. 1. Oxford University Press (2005)
13. Kelly, T.: Peer Disagreement and Higher Order Evidence. In: Goldman, A.I., Whit-

comb, D. (eds.) Social Epistemology: Essential Readings. Oxford University Press
(2010)

14. Kitcher, P.: The Advancement of Science: Science without Legend, Objectivity
without Illusion. Oxford University Press, Oxford (1993)

15. Kvanvig, J.: Propositionalism and the Perspectival Character of Justification.
American Philosophical Quarterly 40(1), 3–18 (2003)

16. Lewis, D.: Elusive Knowledge. Australasian Journal of Philosophy 74, 549–567
(1996)

17. Peirce, C.S., Wiener, P.P.: Charles S. Peirce: Selected Writings. Dover, New York
(1980)

18. Popper, K.: Conjectures and Refutations. Routledge, London (1963)
19. Russell, B.: The Problems of Philosophy. Cosimo Classics. Bibliobazaar Open

Source Project (2007); 1st edn. (1912)
20. Stahl, J., Garbayo, L.: Simulation analytics as a tool to mitigate medical disagree-

ments (manuscript)
21. Wang, X., Ceberio, M., Virani, S., Garcia, A., Cummins, J.: A Hybrid Algorithm

to Extract Fuzzy Measures for Software Quality Assessment. Journal of Uncertain
Systems 7(3), 219–237 (2013)

Interval Linear Programming Techniques

in Constraint Programming and Global
Optimization

Milan Hlad́ık and Jaroslav Horáček

Charles University, Faculty of Mathematics and Physics,
Department of Applied Mathematics, Malostranské nám. 25, 118 00,

Prague, Czech Republic
{hladik,horacek}@kam.mff.cuni.cz

Abstract. We consider a constraint programming problem described
by a system of nonlinear equations and inequalities; the objective is to
tightly enclose all solutions. First, we linearize the constraints to get an
interval linear system of equations and inequalities. Then, we adapt tech-
niques from interval linear programming to find a polyhedral relaxation
to the solution set. The linearization depends on a selection of the relax-
ation center; we discuss various choices and give some recommendations.
The overall procedure can be iterated and thus serves as a contractor.

Keywords: Interval computation, linear programming, constraint
programming, global optimization.

1 Introduction

A constraint programming problem [6, 9, 10] is usually formulated as follows.
Consider equality and inequality constraints

fi(x) = 0, i = 1, . . . ,m, (1a)

gj(x) ≤ 0, j = 1, . . . , ℓ, (1b)

or, in compact form,

f(x) = 0,

g(x) ≤ 0,

where fi, gj : Rn �→ R are real-valued functions and f(x) = (f1(x), . . . , fm(x)),
g(x) = (g1(x), . . . , gℓ(x)). The objective is to enclose all solutions of the con-
straint system that lie inside a given box x = [x, x]. Similar problem is solved in
global optimization, where a global minimum of a function ϕ(x) subject to (1)
is searched for. This makes global optimization (seemingly) more complex, but
basic tools from constraint programming are intensively utilized there as well.

The fundamental idea behind our approach in solving (1) is to linearize the
constraints, and then adapt interval linear programming techniques. Linear re-
laxations were also studied e.g. in [1, 2, 5, 20, 27], and such polyhedral relaxations

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 47
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_6, c© Springer International Publishing Switzerland 2014

48 M. Hlad́ık and J. Horáček

were applied e.g. in solving global optimization problems [17, 19], or in control
theory [25]. Interval polyhedra as a new abstract domain were investigated in
[5], but their applicability for constraint programming is not well supported yet.
In [1], linear programming was applied to verify infeasibility of a special satisfia-
bility constraint program. Convex polyhedral approximation of quadratic terms
in the constraints was proposed in [20]. A general polyhedral relaxation by using
interval Taylor was investigated in [2, 21], and inner / outer linearizations in
[26].

An n-dimensional box can be regarded as an n-by-1 interval matrix. In general,
an interval matrix A is defined as

A := [A,A] = {A ∈ R
m×n; A ≤ A ≤ A},

where A,A ∈ R
m×n are given. The midpoint and radius of A are defined respec-

tively as

Ac :=
1

2
(A+A), AΔ :=

1

2
(A−A).

The set of all m-by-n interval matrices is denoted by IR
m×n.

Let us recall some results that we will utilize in this paper. A vector x is a
solution of an interval systemAx = b if it is a solution of Ax = b for some A ∈ A

and b ∈ b. The well-known Oettli–Prager characterization [24] (cf. [7, 13]) of the
solutions to Ax = b is written by means of a nonlinear system

|Acx− bc| ≤ AΔ|x|+ bΔ.

Throughout this paper, the relation ≤ and the notion of non-negativity etc. are
understood component-wise. If one knows a priori that x is non-negative, then
the above reduces to the linear system of inequalities

Ax ≤ b, Ax ≥ b, x ≥ 0.

Similar reduction is possible when x is non-positive or lies in any orthant. For
interval linear inequalities Ax ≤ b, the description of all solutions is due to
Gerlach [8] (cf. [7, 13])

Acx ≤ AΔ|x|+ b.

Again, non-negativity of variables simplifies the nonlinear description to a linear
one

Ax ≤ b, x ≥ 0.

2 Interval Linear Programming Approach

Our approach is based on linearization of constraints (1) by means of interval lin-
ear equations and inequalities; by using interval linear programming techniques
[12] we construct a polyhedral enclosure to the solution set of (1) and contract

Interval LP Techniques in CSP and Global Optimization 49

the initial box x. The process can be iterated, resulting in a nested sequence of
boxes enclosing the solution set.

Let x0 ∈ x; this point will be called the center of linearization throughout
the paper. Suppose that a vector function h : Rn �→ R

s has the following linear
enclosure on x

h(x) ⊆ Sh(x, x
0)(x− x0) + h(x0), ∀x ∈ x (2)

for a suitable interval-valued function Sh : IRn × R
n �→ IR

s×n. This is tradi-
tionally calculated by a mean value form [22]. More efficiently, one can employ a
successive mean value approach (as was done in [2]) or slopes; see [11, 22]. Alter-
natively, in some situations, the relaxation can be established by analysing the
structure of h(x). For example, relaxing quadratic terms can be done separately
by using McCorming-like linearizations [20].

We will apply (2) for both functions f and g. Thus, the solution set to (1) is
enclosed in the solution set to the interval linear system

Sf(x, x
0)(x − x0) + f(x0) = 0, (3a)

Sg(x, x
0)(x − x0) + g(x0) ≤ 0, (3b)

for any x0 ∈ x. Note that, in principle, we need not use the same x0 in both
sub-systems, however we will do so. Now, we will address the question what
choice of x0 ∈ x is suitable. For the sake of simplicity, denote (3) by

A(x− x0) + f(x0) = 0, (4a)

B(x− x0) + g(x0) ≤ 0. (4b)

2.1 Vertex Selection of x0

Let x0 := x. Since x − x is non-negative, the Oettli–Prager theorem describes
the solution set of A(x− x) + f(x) = 0 by linear inequalities

A(x− x) + f(x) ≤ 0, A(x− x) + f(x) ≥ 0,

or

Ax ≤ Ax− f(x), Ax ≥ Ax− f(x). (5)

By Gerlach theorem, the solution set to B(x− x) + g(x) ≤ 0 is described by

B(x− x) + g(x) ≤ 0,

or

Bx ≤ B x− g(x). (6)

Let x0 := x. Now, x−x is non-positive, the solution set to A(x−x)+f(x) = 0
is described by

Ax ≤ Ax− f(x), Ax ≥ Ax− f(x), (7)

and the solution set to B(x − x) + g(x) ≤ 0 is described by

50 M. Hlad́ık and J. Horáček

Bx ≤ Bx− g(x). (8)

We can choose any other vertex of the box x and accordingly obtain a linear
description; cf. [2, 26]. Employing all vertices is superfluous since there is 2n

of them. In [2], it is recommended to use two opposite corners of x; the other
corners would not significantly increase efficiency. Which pair of the opposite
corners is the best choice is still an open question; a random selection seems to
be acceptable.

2.2 Non-vertex Selection of x0

Let x0 ∈ x, not necessarily a vertex; the midpoint might be a good choice. The
solution set to A(x− x0) + f(x0) = 0 is described by

|Ac(x− x0) + f(x0)| ≤ AΔ|x− x0|, (9)

and the solution set to B(x − x0) + g(x0) ≤ 0 is described by

Bc(x − x0) ≤ BΔ|x− x0| − g(x0). (10)

These systems are not linear due to the absolute values. To get rid of them, we
will linearize them by the means of Beaumont [4].

Theorem 1 (Beaumont, 1998). Let y ∈ IR with positive radius. For every
y ∈ y one has

|y| ≤ αy + β, (11)

where

α =
|y| − |y|
y − y

and β =
y|y| − y|y|

y − y
.

Moreover, if y ≥ 0 or y ≤ 0 then (11) holds as equation.

This theorem helps in linearizing any of the above absolute values. Particularly
for x0 := xc, we get linearizations

|Ac(x− xc) + f(x0)| ≤ AΔxΔ,

or,

Acx ≤ Acxc +AΔxΔ − f(xc), −Acx ≤ −Acxc +AΔxΔ + f(xc),

for equations, and
Bcx ≤ Bcxc +BΔxΔ − g(xc)

for inequalities.
Denote by Dv the diagonal matrix with entries v1, . . . , vp. For an arbitrary

x0 ∈ x, linearization by Theorem 1 gives the following result.

Interval LP Techniques in CSP and Global Optimization 51

Proposition 1. Let x0 ∈ x. Then (4) has a linear relaxation

(Ac −AΔDα)x ≤ Acx0 +AΔv0 − f(x0), (12a)

(−Ac −AΔDα)x ≤ −Acx0 +AΔv0 + f(x0), (12b)

(Bc −BΔDα)x ≤ Bcx0 +BΔv0 − g(x0), (12c)

where αi =
1
xΔ
i

(xc
i − x0

i) and v0i = 1
xΔ
i

(xc
ix

0
i − xixi).

Proof. First, we show the relaxation for (4b). By Theorem 1, (10) is relaxed as

Bc(x− x0) ≤ BΔ|x− x0| − g(x0) ≤ BΔ(Dα(x− x0) + β)− g(x0),

where

αi =
1

2xΔ
i

(|xi − x0
i | − |xi − x0

i |) =
1

2xΔ
i

(xi − x0
i − (x0

i − xi)),

=
1

xΔ
i

(xc
i − x0

i),

βi =
1

2xΔ
i

((xi − x0
i)|xi − x0

i | − (xi − x0
i)|xi − x0

i |)

=
1

2xΔ
i

((xi − x0
i)(x

0
i − xi)− (xi − x0

i)(xi − x0
i)) =

1

xΔ
i

(xi − x0
i)(x

0
i − xi).

The inequality then takes the form of

(Bc −BΔDα)x ≤ Bcx0 +BΔ(−Dαx
0 + β)− g(x0).

Herein,

(−Dαx
0 + β)i = −αix

0
i + βi =

1

xΔ
i

(−(xc
i − x0

i)x
0
i + (xi − x0

i)(x
0
i − xi))

=
1

xΔ
i

(−xc
ix

0
i + x0

i x
0
i + xix

0
i − x0

ix
0
i − xixi + x0

i xi)

=
1

xΔ
i

(−xc
ix

0
i + xix

0
i − xixi + x0

i xi) =
1

xΔ
i

(xc
ix

0
i − xixi) = v0i .

Now, we prove (12a)–(12b). By Theorem 1, (9) is relaxed as

|Ac(x− x0) + f(x0)| ≤ AΔ|x− x0| ≤ AΔ(Dα(x− x0) + β),

from which

(Ac −AΔDα)x ≤ Acx0 +AΔ(−Dαx
0 + β)− f(x0),

(−Ac −AΔDα)x ≤ −Acx0 +AΔ(−Dαx
0 + β) + f(x0).

⊓⊔

52 M. Hlad́ık and J. Horáček

2.3 Convex Case

In the proposition below, an inequality is called a consequence of a system of
inequalities if it can be expressed as a non-negative linear combination of the
inequalities in the system. In other words, it is a redundant constraint if added
to the system.

Proposition 2. Let x0 ∈ x, but not a vertex of x. Suppose that A and B do
not depend on a selection of x0.

1. If fi(x), i = 1, . . . ,m are convex, then the inequality (12a) is a consequence
of the corresponding inequalities derived by vertices of x.

2. If fi(x), i = 1, . . . ,m are concave, then the inequality (12b) is a consequence
of the corresponding inequalities derived by vertices of x.

3. If gj(x), j = 1, . . . , ℓ are convex, then the inequality (12c) is a consequence
of the corresponding inequalities derived by vertices of x.

Proof. We prove the item 3; the other items are proved analogously. Let x1, x2 ∈
x and consider a convex combination x0 := λx1 + (1−λ)x2 for any λ ∈ [0, 1]. It
suffices to show that the inequality derived from x0 is a convex combination of
those derived from x1 and x2. For x1 and x2, the associated systems (12c) read
respectively

(Bc −BΔDα1)x ≤ Bcx1 +BΔv1 − g(x1), (13a)

(Bc −BΔDα2)x ≤ Bcx2 +BΔv2 − g(x2), (13b)

where α1
i = 1

xΔ
i

(xc
i − x1

i), α
2
i = 1

xΔ
i

(xc
i − x2

i), v
1
i = 1

xΔ
i

(xc
ix

1
i − xixi), and v2i =

1
xΔ
i

(xc
ix

2
i −xixi). Multiplying (13a) by λ and (13b) by (1−λ), and summing up,

we get

(Bc −BΔDα)x ≤ Bcx0 +BΔv0 − λg(x1)− (1− λ)g(x2),

where αi =
1
xΔ
i

(xc
i − x0

i) and v0i = 1
xΔ
i

(xc
ix

0
i − xixi). By convexity of g, we derive

(Bc −BΔDα)x ≤ Bcx0 +BΔv0 − g(x0),

which is the inequality (12c) corresponding to x0. ⊓⊔

The functions fi(x), −fi(x) or gj(x) need not be convex (and mostly they are
not). However, if it is the case, Proposition 1 is fruitful only when x0 is a vertex
of x; otherwise, the resulting inequalities are redundant. Notice that this may
not be the case for the original interval inequalities (4b).

Interval LP Techniques in CSP and Global Optimization 53

When fi(x), −fi(x) or gj(x) are not convex, non-vertex selection of x0 ∈ x

may be convenient. Informally speaking, the more non-convex the functions are
the more desirable may be an interior selection of x0.

2.4 Summary

To obtain as tight polyhedral enclosure as possible it is convenient to simultane-
ously consider several centers for linearization. If we have no extra information,
we recommend to relax according to two opposite corners of x (in agreement
with [2]) and according to the midpoint x0 := xc. Putting all resulting inequal-
ities together, we obtain a system of 3(2m + ℓ) inequalities with respect to n
variables. This system represents a convex polyhedron P and the intersection
with x gives a new, hopefully tighter, enclosure to the solution set.

When we calculate minima and maxima in each coordinate by calling linear
programming, we get a new box x′ ⊆ x. Achterberg’s heuristic introduced in [3]
reduces the computational effort by a suitable order of solving the linear pro-
grams. Rigorous bounds on the optimal values in linear programming problems
were discussed in [14, 23]. The optimal values of the linear programs are attained
in at most 2n vertices of P , which lie on the boundary of x′. It is tempting to
use some of these points as a center x0 for the linearization process in the next
iteration. Some numerical experiments have to be carried out to show how effec-
tive this idea is. Another possibility is to linearize according to these points in
the current iteration and append the resulting inequalities to the description of
P . By re-optimizing the linear programs we hopefully get a tighter enclosing box
x′. Notice that the re-optimizing can be implemented to be very cheap. If we
employ the dual simplex method to solve the linear programs and use the previ-
ous optimal solutions as starting points, then the appending of new constraints
is done easily and the new optimum is found in a few steps. We append only
the constraints corresponding to the current optimal solution. Thus, for each of
that 2n linear programs, we append after its termination a system of (2m+ ℓ)
inequalities and re-optimize.

In global optimization, a lower bound of ϕ(x) on P is computed, which updates
the lower bound on the optimal value if lying in x. Let x∗ be a point of P in
which the lower bound of ϕ(x) on P is attained. Then it is promising to use
x∗ as a center for linearization in the next iteration. Depending on the concrete
method for lower bounding of ϕ(x), it may be desirable to append to P the
inequalities (12) arising from x0 := x∗, and to re-compute the lower bound of
ϕ(x) on the updated polyhedron.

2.5 Illustration

In the following, we give a simple symbolic illustrations of different choices of
the center x0. In the figures, S denotes the set described by (1), the initial box
x is colored in light gray, and the linear relaxation in dark gray.

54 M. Hlad́ık and J. Horáček

Typical situation when choosing x0

to be a vertex:

x

x0

S

Typical situation when choosing x0

to be the opposite vertex:

x

x0

S

Typical situation when choosing
x0 = xc:

x S
x0

Typical situation when choosing
x0 = xc (after linearization):

x S
x0

Typical situation when choosing all of them:

x S

Example 1. Now, consider a concrete example with the constraints

π2y − 4x2 sinx = 0,

y − cos (x+ π
2) = 0.

where x ∈ x = [−π
2 ,

π
2], and y ∈ y = [−1, 1].

Notice that this example can be viewed as a “hard” instance for the classi-
cal techniques because the initial box is so called 2B-consistent (the domains of
variable cannot be reduced if we consider the constraints separately); see e.g.
[6, 18, 20]. Also the recommended preconditioning of the system by the inverse
of the Jacobian matrix for the midpoint values [11] makes almost no progress.

Interval LP Techniques in CSP and Global Optimization 55

However, the proposed interval linear programming approach contracts signifi-
cantly domains of both variables in only one iteration to x′ = [−0.9598, 0.9598]
and y′ = [−0.6110, 0.6110].

Figures bellow illustrate the linearization for diverse selections of the center
x0. In this example, the linearization does not depend the y-coordinate of x0

as the derivatives of the constraint functions with respect to y are constant.
Thus, we put x0

2 = 0, and varied the entry x0
1 only. The constraint functions are

colored in red and blue. The linearized functions are depicted by gray and light
gray bands, and their intersection (which is an enclosure of the solution) in dark
gray.

The center of linearization is
x0 = (0, 0).

The center of linearization is
x0 = (π6 , 0).

The center of linearization is
x0 = (π2 , 0).

The center of linearization is
x0 = (−π

2 , 0).

56 M. Hlad́ık and J. Horáček

New interval enclosure after the contractions
with centers x0 = (0, 0), (π2 , 0), (−π

2 , 0).

−pi/2 0 pi/2
−1

0

1

Radians

3 Parallel Linearization: Yes or No?

Parallel linearization was proposed by Jaulin [15, 16] as a simple but efficient
technique for enclosing nonlinear functions by two parallel linear functions. In
what follows, we show that for the purpose of polyhedral enclosure of a solution
set of nonlinear systems, our approach is never worse than parallel linearization
estimate.

In accordance with (2) and the subsequent, suppose that a vector function
h : Rn �→ R

s has the following interval linear enclosure on x

h(x) ⊆ A(x− x0) + b, ∀x ∈ x

for suitable interval matrix A ∈ IR
s×n and x0 ∈ x, where b := h(x0).

Let A ∈ A. Using subdistributivity

A(x− x0) + b ⊆ A(x− x0) + b + (A−A)(x − x0),

parallel linearization estimates the function h(x) from above and from below by
the following linear functions

h(x) ≥ A(x − x0) + b+ (A−A)(x− x0),

h(x) ≤ A(x − x0) + b+ (A−A)(x− x0).

For A := Ac and x := x0, we particularly get

h(x) ≥ A(x− x0) + b −AΔxΔ,

h(x) ≤ A(x− x0) + b +AΔxΔ.

Theorem 2. For any selection of x0 ∈ x and A ∈ A, the interval linear
programming approach from Section 2 yields always as tight enclosures as the
parallel linearization.

Interval LP Techniques in CSP and Global Optimization 57

Proof. We consider the estimation from above; the estimation from below can
be done accordingly. By the procedure from Section 2.2, the function h(x) on x

is estimated from above by

h(x) ≤ Ac(x − x0) +AΔ|x− x0|+ b.

(This includes the vertex selection of x0, too.) Then, the absolute value |x− x0|
is linearized by means of Beaumont

|x− x0| ≤ Dα(x− x0) + β

for some α ∈ R
n and β ∈ R. We want to show that the interval linear program-

ming upper bound

h(x) ≤ Ac(x− x0) +AΔ(Dα(x− x0) + β) + b

falls into parallel linearization estimations, that is,

Ac(x− x0) +AΔ(Dα(x− x0) + β) + b ∈ A(x− x0) + (A−A)(x− x0) + b,

or, equivalently,

(Ac −A)(x− x0) +AΔ(Dα(x− x0) + β) ∈ (A−A)(x− x0).

The ith row of this inclusion reads
n∑

j=1

(acij − aij)(xj − x0
j) +

n∑

j=1

aΔij(αj(xj − x0
j) + βj) ∈

n∑

j=1

(aij − aij)(xj − x0
j).

We prove a stronger statement, claiming that for any i, j,

(acij − aij)(xj − x0
j) + aΔij(αj(xj − x0

j) + βj) ∈ (aij − aij)(xj − x0
j).

Substituting for αj and βj , the left-hand side draws

(acij − aij)(xj − x0
j) + aΔij

(|xj − x0
j | − |xj − x0

j |
2xΔ

j

(xj − x0
j)

+
(xj − x0

j)|xj − x0
j | − (xj − x0

j)|xj − x0
j |

2xΔ
j

) (14)

This is a linear function in xj , so it is sufficient to show the inclusion only for
both end-points of xj. Putting xj := xj , the function (14) simplifies to

(acij − aij)(xj − x0
j) + aΔij

(|xj − x0
j |

2xΔ
j

(xj − x0
j)−

(xj − x0
j)|xj − x0

j |
2xΔ

j

)

= (acij − aij)(xj − x0
j) + aΔij |xj − x0

j |
∈ (aij − aij)(xj − x0

j)

⊆ (aij − aij)(xj − x0
j).

For xj := xj , the proof is analogous. ⊓⊔

58 M. Hlad́ık and J. Horáček

4 Conclusion

We showed that relaxation in constraint programming can be handled by means
of interval linear programming. This approach is easily generalized for global
optimization problems, too. Polyhedral relaxations are particularly convenient
for problems with continuous solution sets and for high-dimensional problems.
Curse of dimensionality still remains true, however, linear programming works
efficiently and the polyhedral relaxation is cheap to calculate.

Our approach has some degrees of freedom concerning the choices of x0. We
recommend to choose the center and two opposite vertices of the initial box, but
other choices may be just as good. If we have some information from the previous
iterations, then other suitable choices of x0 are under consideration. Basically,
more choices is better since it only increases correspondingly the number of
inequalities in the linear program.

Acknowledgments. The authors were supported by the Czech Science Founda-
tion Grant P402-13-10660S, and J. Horáček in addition by the Charles University
grant GAUK No. 712912.

References

1. Althaus, E., Becker, B., Dumitriu, D., Kupferschmid, S.: Integration of an LP
solver into interval constraint propagation. In: Wang, W., Zhu, X., Du, D.-Z. (eds.)
COCOA 2011. LNCS, vol. 6831, pp. 343–356. Springer, Heidelberg (2011)

2. Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval taylor.
In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298,
pp. 1–16. Springer, Heidelberg (2012)

3. Baharev, A., Achterberg, T., Rév, E.: Computation of an extractive distillation
column with affine arithmetic. AIChE J. 55(7), 1695–1704 (2009)

4. Beaumont, O.: Solving interval linear systems with linear programming techniques.
Linear Algebra Appl. 281(1-3), 293–309 (1998)

5. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: An abstract domain
to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS,
vol. 5673, pp. 309–325. Springer, Heidelberg (2009)

6. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Reliab.
Comput. 5(3), 213–228 (1999)

7. Fiedler, M., Nedoma, J., Ramı́k, J., Rohn, J., Zimmermann, K.: Linear optimiza-
tion problems with inexact data. Springer, New York (2006)

8. Gerlach, W.: Zur Lösung linearer Ungleichungssysteme bei Störung der rechten
Seite und der Koeffizientenmatrix. Math. Operationsforsch. Stat. Ser. Optimiza-
tion 12, 41–43 (1981)

9. Goualard, F., Jermann, C.: A reinforcement learning approach to interval con-
straint propagation. Constraints 13(1), 206–226 (2008)

10. Granvilliers, L.: On the combination of interval constraint solvers. Reliab. Com-
put. 7(6), 467–483 (2001)

11. Hansen, E.R., Walster, G.W.: Global optimization using interval analysis, 2nd edn.
Marcel Dekker, New York (2004)

Interval LP Techniques in CSP and Global Optimization 59

12. Hlad́ık, M.: Interval linear programming: A survey. In: Mann, Z.A. (ed.) Linear
Programming - New Frontiers in Theory and Applications, ch. 2, pp. 85–120. Nova
Science Publishers, New York (2012)

13. Hlad́ık, M.: Weak and strong solvability of interval linear systems of equations and
inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)

14. Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM J.
Optim. 14(3), 914–935 (2004)

15. Jaulin, L.: Reliable minimax parameter estimation. Reliab. Comput. 7(3), 231–246
(2001)

16. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied interval analysis. With ex-
amples in parameter and state estimation, robust control and robotics. Springer,
London (2001)

17. Kearfott, R.B.: Discussion and empirical comparisons of linear relaxations and al-
ternate techniques in validated deterministic global optimization. Optim. Methods
Softw. 21(5), 715–731 (2006)

18. Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric CSPs. Artif.
Intell. 139(1), 109–132 (2002)

19. Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving
optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)

20. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.-P.: Efficient and safe
global constraints for handling numerical constraint systems. SIAM J. Numer.
Anal. 42(5), 2076–2097 (2005)

21. Lin, Y., Stadtherr, M.A.: LP strategy for the interval-Newton method in deter-
ministic global optimization. Ind. Eng. Chem. Res. 43(14), 3741–3749 (2004)

22. Neumaier, A.: Interval methods for systems of equations. Cambridge University
Press, Cambridge (1990)

23. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear pro-
gramming. Math. Program. 99(2), 283–296 (2004)

24. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides. Numer. Math. 6,
405–409 (1964)

25. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of poly-
nomial systems by computation of Lyapunov-like functions. SIAM J. Control Op-
tim. 48(7), 4377–4394 (2010)

26. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval
linearizations for global optimization. In: Burgard, W., Roth, D. (eds.) Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA. AAAI Press (2011)

27. Vu, X.-H., Sam-Haroud, D., Faltings, B.: Enhancing numerical constraint propa-
gation using multiple inclusion representations. Ann. Math. Artif. Intell. 55(3-4),
295–354 (2009)

Selecting the Best Location for a Meteorological

Tower: A Case Study of Multi-objective
Constraint Optimization

Aline Jaimes, Craig Tweedy, Tanja Magoc,
Vladik Kreinovich, and Martine Ceberio

University of Texas at El Paso,
500 W. University,

El Paso, TX 79968, USA
vladik@utep.edu

Abstract. Using the problem of selecting the best location for a me-
teorological tower as an example, we show that in multi-objective op-
timization under constraints, the traditional weighted average approach
is often inadequate. We also show that natural invariance requirements
lead to a more adequate approach – a generalization of Nash’s bargaining
solution.

Case Study. We want to select the best location of a sophisticated multi-sensor
meteorological tower. We have several criteria to satisfy.

For example, the station should not be located too close to a road, so that the
gas flux generated by the cars do not influence our measurements of atmospheric
fluxes; in other words, the distance x1 to the road should be larger than a certain

threshold t1: x1 > t1, or y1
def
= x1 − t1 > 0.

Also, the inclination x2 at the should be smaller than a corresponding thresh-
old t2, because otherwise, the flux will be mostly determined by this incli-
nation and will not be reflective of the atmospheric processes: x2 < t2, or

y2
def
= t2 − x2 > 0.

General Case. In general, we have several such differences y1, . . . , yn all of which
have to be non-negative. For each of the differences yi, the larger its value, the
better.

Multi-criteria Optimization. Our problem is a typical setting for multi-criteria
optimization; see, e.g., [1, 4, 5].

Weighted Average. A most widely used approach to multi-criteria optimization
is weighted average, where we assign weights w1, . . . , wn > 0 to different criteria
yi and select an alternative for which the weighted average w1 · y1+ . . .+wn · yn
attains the largest possible value.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 61
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_7, c© Springer International Publishing Switzerland 2014

62 A. Jaimes et al.

Additional Requirement. In our problem, we have an additional requirement –
that all the values yi must be positive. Thus, we must only compare solutions
with yi > 0 when selecting an alternative with the largest possible value of the
weighted average.

Limitations of the Weighted Average Approach. In general, the weighted average
approach often leads to reasonable solutions of the multi-criteria optimization
problem. However, as we will show, in the presence of the additional positivity
requirement, the weighted average approach is not fully satisfactory.

A Practical Multi-criteria Optimization Must Take into Account That Measure-
ments Are Not Absolutely Accurate. Indeed, the values yi come from measure-
ments, and measurements are never absolutely accurate. The results ỹi of the
measurements are close to the actual (unknown) values yi of the measured quan-
tities, but they are not exactly equal to these values. If

– we measure the values yi with higher and higher accuracy and,
– based on the resulting measurement results ỹi, we conclude that the alterna-

tive y = (y1, . . . , yn) is better than some other alternative y′ = (y′1, . . . , y
′
n),

then we expect that the actual alternative y is indeed either better than y′ or
at least of the same quality as y′. Otherwise, if we do not make this assump-
tion, we will not be able to make any meaningful conclusions based on real-life
(approximate) measurements.

The Above Natural Requirement Is Not Always Satisfied for Weighted Average.
Let us show that for the weighted average, this “continuity” requirement is not
satisfied even in the simplest case when we have only two criteria y1 and y2.
Indeed, let w1 > 0 and w2 > 0 be the weights corresponding to these two criteria.
Then, the resulting strict preference relation ≻ has the following properties:

– if y1 > 0, y2 > 0, y′1 > 0, and y′2 > 0, and w1 · y1 +w2 · y2 > w1 · y′1 +w2 · y′2,
then

y = (y1, y2) ≻ y′ = (y′1, y
′
2);

– if y1 > 0, y2 > 0, and at least one of the values y′1 and y′2 is non-positive,
then

y = (y1, y2) ≻ y′ = (y′1, y
′
2).

Let us consider, for every ε > 0, the tuple y(ε)
def
=

(
ε, 1 +

w1

w2

)
, with y1(ε) = ε

and y2(ε) = 1 +
w1

w2
, and also the comparison tuple y′ = (1, 1). In this case, for

every ε > 0, we have

w1 · y1(ε) + w2 · y2(ε) = w1 · ε+ w2 + w2 ·
w1

w2
= w1 · (1 + ε) + w2

and
w1 · y′1 + w2 · y′2 = w1 + w2,

Best Location for a Meteorological Station 63

hence y(ε) ≻ y′. However, in the limit ε → 0, we have y(0) =

(
0, 1 +

w1

w2

)
, with

y(0)1 = 0 and thus, y(0) ≺ y′.

What We Want: A Precise Description. We want to be able to compare different
alternatives.

Each alternative is characterized by a tuple of n values y = (y1, . . . , yn), and
only alternatives for which all the values yi are positive are allowed. Thus, from
the mathematical viewpoint, the set of all alternatives is the set (R+)n of all the
tuples of positive numbers.

For each two alternatives y and y′, we want to tell whether y is better than y′

(we will denote it by y ≻ y′ or y′ ≺ y), or y′ is better than y (y′ ≻ y), or y and
y′ are equally good (y′ ∼ y). These relations must satisfy natural properties. For
example, if y is better than y′ and y′ is better than y′′, then y is better than y′′.
In other words, the relation ≻ must be transitive. Similarly, the relation ∼ must
be transitive, symmetric, and reflexive (y ∼ y), i.e., in mathematical terms, an
equivalence relation.

So, we want to define a pair of relations ≻ and ∼ such that ≻ is transitive, ∼
is transitive, ∼ is an equivalence relation, and for every y and y′, one and only
one of the following relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.

It is also reasonable to require that if each criterion is better, then the alter-
native is better as well, i.e., that if yi > y′i for all i, then y ≻ y′.

Comment. Pairs of relations of the above type can be alternatively characterized
by a pre-ordering relation

a � b ⇔ (a ≻ b ∨ a ∼ b).

This relation must be transitive and – in our case – total (i.e., for every y and
y′, we have y � y′ ∨ y′ � y. Once we know the pre-ordering relation �, we can
reconstruct ≻ and ∼ as follows:

y ≻ y′ ⇔ (y � y′ & y′ �� y);

y ∼ y′ ⇔ (y � y′ & y′ � y).

Scale Invariance: Motivation. The quantities yi describe completely different
physical notions, measured in completely different units. In our meteorological
case, some of these values are wind velocities measured in meters per second, or
in kilometers per hour, or miles per hour. Other values are elevations described
in meters, kilometers, or feet, etc. Each of these quantities can be described in
many different units. A priori, we do not know which units match each other, so
it is reasonable to assume that the units used for measuring different quantities
may not be exactly matched.

It is therefore reasonable to require that the relations ≻ and ∼ between the
two alternatives y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) do not change if we simply

change the units in which we measure each of the corresponding n quantities.

64 A. Jaimes et al.

Scale Invariance: Towards a Precise Description. When we replace a unit in
which we measure a certain quantity q by a new measuring unit which is λ > 0
times smaller, then the numerical values of this quantity increase by a factor of
λ: q → λ · q. For example, 1 cm is λ = 100 times smaller than 1 m, so the length
q = 2 m, when measured in cm, becomes λ · q = 2 · 100 = 200 cm.

Let λi denote the ratio of the old to the new units corresponding to the i-
th quantity. Then, the quantity that had the value yi in the old units will be
described by a numerical value λi ·yi in the new unit. Therefore, scale-invariance
means that for all y, y ∈ (R+)n and for all λi > 0, we have

y = (y1, . . . , yn) ≻ y′ = (y′1, . . . , y
′
n) ⇒ (λ1 ·y1, . . . , λn ·yn) ≻ (λ1 ·y′1, . . . , λn ·y′n)

and

y = (y1, . . . , yn) ∼ y′ = (y′1, . . . , y
′
n) ⇒ (λ1 ·y1, . . . , λn ·yn) ∼ (λ1 ·y′1, . . . , λn ·y′n).

Continuity. As we have mentioned in the previous section, we also want to
require that the relations ≻ and ∼ are continuous in the following sense: if
y(ε) � y′(ε) for every ε, then in the limit, when y(ε) → y(0) and y′(ε) → y′(0)
(in the sense of normal convergence in Rn), we should have y(0) � y′(0).

Let us now describe our requirements in precise terms.

Definition 1. By a total pre-ordering relation on a set Y , we mean a pair of a
transitive relation ≻ and an equivalence relation ∼ for which, for every y, y′ ∈ Y ,
one and only one of the following relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.

Comment. We will denote y � y′
def
= (y ≻ y′ ∨ y ∼ y′).

Definition 2. We say that a total pre-ordering is non-trivial if there exist y and
y′ for which y ≻ y′.

Comment. This definition excludes the trivial pre-ordering in which every two
tuples are equivalent to each other.

Definition 3. We say that a total pre-ordering relation on the set (R+)n is:

– monotonic if y′i > yi for all i implies y′ ≻ y;
– scale-invariant if for all λi > 0:

• (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) implies (λ1 · y′1, . . . , λn · y′n) ≻

(λ1 · y1, . . . , λn · yn), and
• (y′1, . . . , y

′
n) ∼ y = (y1, . . . , yn) implies (λ1 · y′1, . . . , λn · y′n) ∼

(λ1 · y1, . . . , λn · yn).
– continuous if whenever we have a sequence y(k) of tuples for which y(k) � y′

for some tuple y′, and the sequence y(k) tends to a limit y, then y � y′.

Best Location for a Meteorological Station 65

Theorem. Every non-trivial monotonic scale-invariant continuous total pre-
ordering relation on (R+)n has the following form:

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇔

n∏

i=1

(y′i)
αi >

n∏

i=1

yαi

i ;

y′ = (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn) ⇔

n∏

i=1

(y′i)
αi =

n∏

i=1

yαi

i ,

for some constants αi > 0.

Comment. In other words, for every non-trivial monotonic scale-invariant con-
tinuous total pre-ordering relation on (R+)n, there exist values α1 > 0, . . . ,
αn > 0 for which the above equivalence hold. Vice versa, for each set of val-
ues α1 > 0, . . . , αn > 0, the above formulas define a monotonic scale-invariant
continuous pre-ordering relation on (R+)n.

It is worth mentioning that the resulting relation coincides with the asymmet-
ric version [3] of the bargaining solution proposed by the Nobelist John Nash in
1953 [2].

Acknowledgments. This work was supported in part by the National Science
Foundation grant HRD-0734825.

References

1. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the
Art Annotated Bibliographic Surveys. Springer, Heidelberg (2002)

2. Nash, J.: Two-Person Cooperative Games. Econometrica 21, 128–140 (1953)
3. Roth, A.: Axiomatic Models of Bargaining. Springer, Berlin (1979)
4. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.

Academic Press, Orlando (1985)
5. Steuer, E.E.: Multiple Criteria Optimization: Theory, Computations, and Applica-

tion. John Wiley & Sons, New York (1986)

Gibbs Sampling as a Natural Statistical Analog

of Constraints Techniques:
Prediction in Science under General

Probabilistic Uncertainty

Misha Koshelev

Human Neuroimaging Lab,
Baylor College of Medicine,
One Baylor Plaza S104,
Houston, TX 77030, USA
misha.koshelev@bcm.edu

Abstract. One of the main objectives of science is to predict future
events, i.e., more precisely, the results of future measurements and ob-
servations. If we take into account the probabilistic uncertainty related
to the inaccuracy of the measurement results, to the inaccuracy of the
model, and to the inaccuracy of the prior information, then the most ad-
equate approach is to generate a posterior distribution by using Bayes’
theorem. For the simplest posterior distributions, we can deduce explicit
analytical formulas for the resulting statistical characteristics (mean,
standard deviation, etc.) of the predict future measurement result. How-
ever, in general, such formulas are not possible, so we have to use a
Monte-Carlo simulation of the corresponding joint distribution of the
future measurement results and model parameters.

The main computational challenge here is that there is no general
algorithm for simulating an arbitrary multi-variate distribution; such al-
gorithms are known only for single-variate distributions and – in some
cases – for the case of several variables. Thus, we need to reduce the
general simulation problem to such simplified cases. We show that this
problem can be solved by using the general constraints approach, and
that this idea clarifies Gibbs sampling – one of the most widely used
techniques for such simulation. This interpretation of Gibbs sampling
enables us to analyze Gibbs sampling – in particular, to obtain a (some-
what counterintuitive) result that while a straightforward parallelization
is possible for deterministic constraint propagation, parallelization does
not work even in the simplest two-variable probabilistic case.

Formulation of the Problem: Prediction in Science in a Realistic Setting – under
Probabilistic Uncertainty. One of the main objectives of science is to predict
future events – and thus, if we have a choice, to come up with a choice which
leads to the most beneficial future situation.

To predict an event means to predict the values of different observable and
measurable quantities q. In order to predict these values, we must know how these

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 67
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_8, c© Springer International Publishing Switzerland 2014

68 M. Koshelev

values depend on time t. For this dependence, we usually have a model q(t) =
f(t, c1, . . . , cn), where f is an algorithmically given function, and c1, . . . , cn are
parameters that needs to be determined based on the previous observations and
measurement results.

For example, in Newton’s celestial mechanics, the parameters ci are the cur-
rent masses, coordinates, and velocities of the celestial bodies, and the algorithm
f for computing the i-th coordinate xai(t) of the a-th body at moment t consists
of integrating the corresponding differential equations of motion

ma ·
d2xai

dt2
= �Fa =

∑

b�=a

mb ·ma

|�xb − �xa|3
· (xbi − xai).

In Newton’s theory, the formulas predict the exact values of the coordinates.
However, what we really want to predict are not the actual (unknown) future
values of the coordinates (or other physical quantities) but rather the (potentially
observable) future results of measuring these quantities. Since measurements are
never absolutely accurate, the measurement result is usually somewhat different
from the actual value of the measured quantity. At best, even if we know the exact
actual values of the future quantities, we can predict the probabilities of different
measurement results. Thus, at best, the model enables us, given the values of the
parameters c1, . . . , cn, to predict the probability of different measurement results.

This is especially true for situations like statistical physics where even the
exact future values of different quantities cannot be predicted: we can only only
predict the probabilities of different future values.

In general, the model enables us, given parameters values �c, to predict the
probabilities of different measurement results.

Traditional Physical Approach and Its Limitations. In the traditional physical
approach, we first estimate the values of the parameters ci based on the results
of the previous observations and measurements, and then we use these estimated
values to compute the probabilities of different future results.

The main limitation of this approach is that it does not take into account the
fact that the estimates ci are approximations. Let us illustrate this limitation on
the simplified example when we have exactly one parameter c1, and the actual
value coincides with this parameter: q1 = c1. In the past, all the measurements
were with a significant measurement inaccuracy. As a result, from these measure-
ment, we only get an approximate value c̃1 of the parameter c1. Let us assume
that the future measurement is, in contrast, very accurate, so its measurement
inaccuracy can be safely ignored.

In this case, the traditional physical approach predicts that the measured
value will be exactly c̃1. Thus, the predicted probability of getting this value
is 1, and the predicted probability of getting any other value c1 �= c̃1 is 0. In
reality, of course, the measured value will be equal to a slightly different number
c1. Thus, in reality, we will observe the measurement value whose predicted
probability is 0.

Gibbs Sampling as a Natural Statistical Analog of Constraints Techniques 69

In general, it is therefore desirable to take into account the difference between
the estimates c̃i and the actual values ci when predicting the probabilities of
different future measurement results.

Another limitation is that the traditional physical approach does not take
into account that, in addition to observations and measurements, we often have
additional prior information about the probability of different values �c.

Statistical Way to Take Prior Information into Account: Bayesian Approach. In
decision theory, it has been shown that under reasonable assumptions [3, 4], each
prior information can be formulated as an appropriate “prior” probability distri-
bution ρ0(�c) on the set of all possible values of the parameters �c = (c1, . . . , cn).
In addition to this prior probability, we have a model, that, for any given �c,
predicts the probability (density) of different measured values E: ρ(E |�c). In
this situation, once we know all the values E of the previous observations and
measurements, we can estimate the resulting probability �c by using the Bayes’
formula

ρ(�c |E) =
1

N
· ρ(E |�c) · ρ0(�c),

where N is the normalization coefficient selected to guarantee that the overall
probability is 1:

∫
ρ(�c) d�c = 1, i.e.,

N =

∫
ρ(E |�c) · ρ0(�c) d�c.

Now, the probability of different values q(t) can be obtained from the formula of
full probability, by combining the probability of getting this value q for different
parameters �c:

ρq(q) =

∫
ρ(q |�c) · ρ(�c |E) d�c.

Bayesian Approach: Need for Monte-Carlo Simulations. Our objective is to es-
timate such characteristics as the expected value of the predicted quantity, the
standard deviation, etc.

In the simplest cases, e.g., when all the distributions are Gaussian and in-
dependent, it is usually possible to come up with explicit analytical formulas
for these characteristics. However, in the general case, it is not possible to have
analytical formulas. In this case, under probabilistic uncertainty, it is reasonable
to use Monte-Carlo approach, in which we simulate the distribution of all the
involved unknown quantities: the parameters ci, and the future measured values
q, according to the joint distribution

ρ(�c, q) =
1

N
· ρ(q |�c) · ρ(E |�c) · ρ0(�c).

Once we have simulated this distribution, i.e., once we have a sample (�c(k), q(k)),
(k = 1, . . . ,M) whose distribution follows the above probability distribution law,
we can use the values q(k) from the corresponding simulated sample to estimate

70 M. Koshelev

the mean E[q], the standard deviation σ[q], and all other characteristics of q by
using the usual formulas

E[q] ≈ 1

M
·

M∑

k=1

q(k), (σ[q])2 =
1

M
·

M∑

k=1

(q(k) − E[q])2.

Monte-Carlo Simulation: Computational Challenge. The main computational
challenge is that there is no general way, even when we have an analytical formula
for the joint distribution, to produce the sample of tuples distributed according
to this distribution.

Monte-Carlo Simulation: Cases for Which Algorithms Are Known. While there
is no general algorithm for simulating an arbitrary probability distribution, it
is algorithmically possible to simulate an arbitrary distribution of a single ran-
dom variable. It is also sometimes algorithmically possible to simulate a joint
distribution for several variables: e.g., when this joint distribution is Gaussian.

In a computer, there is usually a standard number generator that generates
numbers r uniformly distributed on the interval [0, 1]. Thus, we can simulate an
arbitrary distribution by reducing it to this standard one. These are two known
algorithms for this reduction. In the first algorithm, we assume that we know
the cumulative distribution function (cdf) F (X) = Prob(x ≤ X) – and that we
know the corresponding inverse function F−1(u) for which F (F−1(u)) = u. In
this case, the result F−1(r) of applying this inverse function to the result r of the
standard random generator is distributed according to the desired distribution
F (X).

In the second algorithm, we assume that the distribution is located on an
interval [X,X], and that we know the probability density function (pdf) ρ(x),
and we know its largest value ρ0 on this interval. Under this assumption, we
can simulate the random variable uniformly distributed on the interval [X,X] as
x = X+r ·(X−X), then simulate again the standard random number generator
r, and pick x if r ≤ ρ(x)/ρ0. One can see that in this case, the probability of
selecting each value x ∈ [X,X] is indeed proportional to the desired pdf ρ(x).

Constraint Propagation: Brief Reminder. Let us show that to solve the above
problem, we can use the ideas from constraint propagation. Indeed, in constraint
propagation, we are interested in finding the values of the deterministic vari-
ables x1, . . . , xn that satisfies the given constraints, e.g., constraints of the type
fi(x1, . . . , xn) = 0 or fj(x1, . . . , xn) ≥ 0.

In the constraint propagation algorithms, we first transform each constraint
into an equivalent sequence of simpler constraints, i.e., constraints which are
simple enough so that for each of the resulting constraints gi(x1, . . . , xn) =
0 and for each variable j, once we know the values of all other variables
x1, . . . , xj−1, xj+1, . . . , xn, we can algorithmically find the value xj for which
this constraint is satisfied (or, alternatively, the set – usually, an interval – of
possible values xj for which this constraint is satisfied).

Gibbs Sampling as a Natural Statistical Analog of Constraints Techniques 71

Also, once we know the intervals (or more general sets) x1, . . . , xj−1, xj+1, . . . ,
xn of possible values of the corresponding variables x1, . . . , xj−1, xj+1, . . . , xn,
we can estimate the interval (set) xj of possible related values xj – possible in the
sense that the desired constraint is satisfies for some x1 ∈ x1, . . . , xj−1 ∈ xj−1,
xj+1 ∈ xj+1, . . . , xn ∈ xn.

Once we have a list of such simplified constraints, we repeatedly use the
corresponding value-determining algorithm to find the value (or set of values)
of different variables based on what we have already computed for the oth-
ers. In the numerical (no-sets) version of this algorithm, at each iteration t,
we select a constraint gi(x1, . . . , xn) = 0 and a variable xj , and we use the

above idea to find the new estimate x
[t]
j for xj based on the previous estimates

x
[t−1]
1 , . . . , x

[t−1]
j−1 , x

[t−1]
j+1 , . . . , x

[t−1]
n of all the other variables. In other words, we

find the value x
[t]
j for which

gi(x
[t−1]
1 , . . . , x

[t−1]
j−1 , x

[t]
j , x

[t−1]
j+1 , . . . , x[t−1]

n) = 0.

For all other variables xk, k �= j, we keep the previous values: x
[t]
k = x

[t−1]
k .

If the Process Converges, It Converges to the Desired Values. If this process

converges (i.e., if x
[t]
k → xk for all k), then in the limit, we conclude that

gi(x1, . . . , xn) = 0, i.e., that the i-th constraint is satisfied. Since we are con-
stantly cycling through all the constraints, this means that in the limit, we
satisfy all the constraints, so the limit tuple indeed solves the original constraint
satisfaction problem.

Similarly, if we deal with sets of possible values and each of these sets tends
to a single value, then these limit values satisfy all the desired constraints; see,
e.g., [2].

A Natural Probabilistic Analogue of Constraint Propagation. In constraint prop-
agation, once we know the values of all the variables x1, . . . , xj−1, xj+1, . . . , xn

except for one xj , we can then determine either the value xj of the selected
variable – or, if we cannot determine xj uniquely, we can find the set of possible
values of xj .

In the probabilistic case, once we know the values x1, . . . , xj−1, xj+1, . . . , xn

of all the variables except for the selected one, we cannot determine the
remaining value xj uniquely. Instead, we can find the corresponding condi-
tional probability distribution for this remaining variable, with the conditional
density ρ(xj |x1, . . . , xj−1, xj+1, . . . , xn). Since this resulting distribution is a
single-variate distribution, we can use one of the techniques for simulating this
distribution and get the corresponding xj . Thus, we arrive at the following al-
gorithm for simulating an arbitrary multi-variate distribution.

To generate one tuple (x1, . . . , xn) from the desired sample, we start

with an arbitrary tuple x
[0]
1 , . . . , x

[0]
n . On each iteration t, we select a vari-

able xj , and use the 1-D Monte-Carlo simulation to generate a value

72 M. Koshelev

x
[t]
j distributed according to the corresponding conditional distribution

ρ(xj |x[t−1]
1 , . . . , x

[t−1]
j−1 , x

[t−1]
j+1 , . . . , x

[t−1]
n).

For all other variables xk, k �= j, we keep the previous values: x
[t]
k = x

[t−1]
k .

We make sure that each variable is periodically selected: e.g., by simply cycling
through the variables in their natural order: first, we select x1, then x2, . . . , then
xn, then x1 again, etc.

Comment. This iterative process is known and it is one of the most widely
used in Monte-Carlo simulations, especially in the statistical analysis of human
behavior experiments (see, e.g., [1] and references therein). It is called Gibbs
sampling because it was originally derived from a set of complex ideas related
to Gibbs distribution in statistical physics. We have shown that it can be easier
(and, we believe, more naturally) derived if we view the simulation problem as
a natural probabilistic analogue of the constraint problems.

If the Process Converges, It Converges to the Desired Distribution. Let us show
that, similarly to the usual case of deterministic constraints, in the probabilistic
case, if the process converges, i.e., if the probability distribution of the tuples
on each iteration converges to some limit distribution ρl(x1, . . . , xn), then this
limit distribution coincides with the original distribution ρ(x1, . . . , xn).

Indeed, in the limit, since the limit distribution of equal to ρl(x1, . . . , xn), the
conditional distribution of xj relative to all the other variables has the corre-
sponding conditional probability density

ρl(xj |x1, . . . , xj−1, xj+1, . . . , xn) =
ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn)

ml(x1, . . . , xj−1, xj+1, . . . , xn)
,

where

ml(x1, . . . , xj−1, xj+1, . . . , xn)
def
=

∫
ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn) dxj

is the corresponding marginal distribution.
On the other hand, according to our iterative process, in the limit, the prob-

ability of having xj based on given values x1, . . . , xj−1, xj+1, . . . , xn is given by
the conditional probability distribution

ρ(xj |x1, . . . , xj−1, xj+1, . . . , xn) =
ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn)

m(x1, . . . , xj−1, xj+1, . . . , xn)
,

where m(x1, . . . , xj−1, xj+1, . . . , xn) is the corresponding marginal distribution.
Thus, for all possible values x1, . . . , xj−1, xj , xj+1, . . . , xn and for all possible

values j, we have

ρl(xj |x1, . . . , xj−1, xj+1, . . . , xn) = ρ(xj |x1, . . . , xj−1, xj+1, . . . , xn),

i.e.,

ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn)

ml(x1, . . . , xj−1, xj+1, . . . , xn)
=

ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn)

m(x1, . . . , xj−1, xj+1, . . . , xn)
.

Gibbs Sampling as a Natural Statistical Analog of Constraints Techniques 73

From this equality, we can conclude that

ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn)

ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn)
=

ml(x1, . . . , xj−1, xj+1, . . . , xn)

m(x1, . . . , xj−1, xj+1, . . . , xn)
,

i.e., that the ratio ρl(�x)/ρ(�x) does not depend on xj . Since this is true for all
j, this means that this ratio does not depend on anything, i.e., it is a constant:
ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn) = c · ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn). Since for
both distribution, the total probability is 1, we get

1 =

∫
ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn) dx1 . . . dxn =

c ·
∫

ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn) dx1 . . . dxn = c · 1 = c.

So, c = 1 and

ρl(x1, . . . , xj−1, xj , xj+1, . . . , xn) = ρ(x1, . . . , xj−1, xj , xj+1, . . . , xn).

In the Deterministic Case, the Standard Constraint Propagation Algorithm Can
Be Parallelized. Sometimes, constraint propagation algorithms converge slowly,
so it is desirable to speed up the corresponding algorithms. A natural way to
speed up an algorithm is to parallelize it, i.e., to perform different computation
steps in parallel. In the above algorithm, a seemingly natural way to parallelize

is to change several variables in parallel: namely, once we have the values x
[t−1]
1 ,

. . . , x
[t−1]
n , we simultaneously run two or more value-determining algorithms to

find the values of two or more variables x
[t]
j , x

[t]
j′ , . . . In other words, we find the

values x
[t]
j , x

[t]
j′ , . . . , for which

gi(x
[t−1]
1 , . . . , x

[t−1]
j−1 , x

[t]
j , x

[t−1]
j+1 , . . . , x

[t−1]
j′−1 , x

[t−1]
j′ , x

[t−1]
j′+1 , . . . , x

[t−1]
n) = 0;

gi′(x
[t−1]
1 , . . . , x

[t−1]
j−1 , x

[t−1]
j , x

[t−1]
j+1 , . . . , x

[t−1]
j′−1 , x

[t]
j′ , x

[t−1]
j′+1 , . . . , x

[t−1]
n) = 0.

If the process converges, then in the limit, we still have

gi(x1, . . . , xj−1, xj , xj+1, . . . , xj′−1, xj′ , xj′+1, . . . , xn) = 0

and
gi′(x1, . . . , xj−1, xj , xj+1, . . . , xj′−1, xj′ , xj′+1, . . . , xn) = 0,

i.e., satisfaction of all the constraints.

In the Statistical Case, Parallelization Is Not Possible. Let us show that in the
statistical case, in general, parallelization is not possible. Indeed, let us consider
the simplest case of a 2-dimensional normal distribution. Let us assume that we
have two variables x1 and x2 each of which is normally distributed with mean 0
and standard deviation 1, and that the covariance is equal to α ∈ (0, 1).

74 M. Koshelev

In this case, once can show that once we know x1, we can find x2 as

x2 = α · x1 + β · ξ,

where β =
√
1− α2 and ξ is a new normally distributed random variable with

mean 0 and standard deviation 1. Similarly, once we know x2, we can find x1 as
x1 = α · x2 + β · ξ.

And indeed, we can design a Gibbs sampling algorithm for simulating the

corresponding distribution: we start with arbitrary values x
[0]
1 and x

[0]
2 , and then

alternatively replace x
[t−1]
1 and x

[t−1]
2 either with

x
[t]
2 = α · x[t−1]

1 + β · ξ[t], x
[t]
1 = x

[t−1]
1

or with
x
[t]
1 = α · x[t−1]

2 + β · ξ[t], x
[t]
2 = x

[t−1]
2 .

At first, it may seem natural to parallelize this process and update both values
on each step:

x
[t]
1 = α · x[t−1]

2 + β · ξ[t]1 , x
[t]
2 = α · x[t−1]

1 + β · ξ[t]2 .

However, in this case, even if at the (t− 1)-st step, we get the correct covariance

C [t−1] = E
[
x
[t−1]
1 · x[t−1]

2

]
= α, on the next step, the covariance will be

C [t] = E
[
x
[t]
1 · x[t]

2

]
= E

[(
α · x[t−1]

2 + β · ξ[t]1

)
·
(
α · x[t−1]

1 + β · ξ[t]2

)]
.

Since ξi are independent from each other and from x
[t−1]
i , we thus get

C [t] = E
[
x
[t]
1 · x[t]

2

]
= α2 · E

[
x
[t−1]
1 · x[t−1]

2

]
= α3 �= α.

Thus, even if the process converges, the limit distribution is wrong. Actually,
in the above example, the covariance will decrease from α to α3, to (α3)3 =
α9, . . . , and, in the limit, to 0 – i.e., in the limit, instead of the correlated
normal random variables, we get independent ones.

References

1. Houser, D., Keane, M., McCabe, K.: Behavior in a dynamic decision problem: An
analysis of experimental evidence using a bayesian type classification algorithm.
Econometrica 72(3), 781–822 (2004)

2. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer,
London (2001)

3. Jaynes, E.T.: Probability Theory: The Logic of Science, vol. 1. Cambridge University
Press, Cambridge (2003)

4. Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey.
Dover, New York (1989)

Why Tensors?

Olga Kosheleva, Martine Ceberio, and Vladik Kreinovich

University of Texas at El Paso,
500 W. University,

El Paso, TX 79968, USA
{olgak,mceberio,vladik}@utep.edu

Abstract. We show that in many application areas including soft con-
straints reasonable requirements of scale-invariance lead to polynomial
(tensor-based) formulas for combining degrees (of certainty, of prefer-
ence, etc.)

Partial Orders Naturally Appear in Many Application Areas. One of the main
objectives of science and engineering is to help people select decisions which are
the most beneficial to them. To make these decisions,

– we must know people’s preferences,
– we must have the information about different events – possible consequences

of different decisions, and
– since information is never absolutely accurate and precise, we must also have

information about the degree of certainty.

All these types of information naturally lead to partial orders:

– For preferences, a < b means that b is preferable to a. This relation is used
in decision theory; see, e.g., [1].

– For events, a < b means that a can influence b. This causality relation is
used in space-time physics.

– For uncertain statements, a < b means that a is less certain than b. This
relation is used in logics describing uncertainty such as fuzzy logic (see,
e.g., [3]) and in soft constraints.

Numerical Characteristics Related to Partial Orders. While an order may be a
natural way of describing a relation, orders are difficult to process, since most
data processing algorithms process numbers. Because of this, in all three appli-
cation areas, numerical characteristics have appeared that describe the corre-
sponding orders:

– in decision making, utility describes preferences:

a < b if and only if u(a) < u(b);

– in space-time physics, metric (and time coordinates) describes causality
relation;

– in logic and soft constraints, numbers from the interval [0, 1] are used to
describe degrees of certainty; see, e.g., [3].

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 75
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_9, c© Springer International Publishing Switzerland 2014

76 O. Kosheleva, M. Ceberio, and V. Kreinovich

Need to Combine Numerical Characteristics, and the Emergence of Polynomial
Aggregation Formulas.

– In decision making, we need to combine utilities u1, . . . , un of different
participants. Nobelist Josh Nash showed that reasonable conditions lead to
u = u1 · . . . · un; see, e.g., [1, 2].

– In space-time geometry, we need to combine coordinates xi into a metric;
reasonable conditions lead to polynomial metrics such as Minkowski metric
in which

s2 = c2 · (x0 − x′
0)

2 − (x0 − x′
0)

2 − (x1 − x′
1)

2 − (x2 − x′
2)

2 − (x3 − x′
3)

2

and of a more general Riemann metric where ds2 =
∑
i,j

gij · dxi · dxj .

– In fuzzy logic and soft constraints, we must combine degrees of certainty di
in Ai into a degree d for A1 &A2; reasonable conditions lead to polynomial
functions like d = d1 · d2.

In Mathematical Terms, Polynomial Formulas Are Tensor-Related. In mathe-
matical terms, a general polynomial dependence

f(x1, . . . , xn) = f0+

n∑

i=1

fi ·xi+

n∑

i=1

n∑

j=1

fij ·xi ·xj+

n∑

i=1

n∑

j=1

n∑

k=1

fijk ·xi ·xj ·xk+ . . .

means that to describe this dependence, we need a finite collection of tensors f0,
fi, fij , fijk, . . . , of different arity.

Towards a General Justification of Polynomial (Tensor) Formulas. The fact that
similar polynomials appear in different application areas indicates that there
is a common reason behind them. In this paper, we provide such a general
justification.

We want to find a finite-parametric class F of analytical functions
f(x1, . . . , xn) approximating the actual complex aggregation. It is reasonable to
require that this class F be invariant with respect to addition and multiplication
by a constant, i.e., that it is a (finite-dimensional) linear space of functions.

The invariance with respect to multiplication by a constant corresponds to
the fact that the aggregated quantity is usually defined only modulo the choice
of a measuring unit. If we replace the original measuring unit by a one which
is λ times smaller, then all the numerical values get multiplied by this factor λ:
f(x1, . . . , xn) is replaced with λ · f(x1, . . . , xn).

Similarly, in all three areas, the numerical values xi are defined modulo the
choice of a measuring unit. If we replace the original measuring unit by a one
which is λ times smaller, then all the numerical values get multiplied by this
factor λ: xi is replaced with λ · xi. It is therefore reasonable to also require that
the finite-dimensional linear space F be invariant with respect to such re-scalings,
i.e., if f(x1, . . . , xn) ∈ F , then for every λ > 0, the function

fλ(x1, . . . , xn)
def
= f(λ · x1, . . . , λ · xn)

also belongs to the family F .

Why Tensors? 77

Under this requirement, we prove that all elements of F are polynomials.

Definition 1. Let n be an arbitrary integer. We say that a finite-dimensional
linear space F of analytical functions of n variables is scale-invariant if for every
f ∈ F and for every λ > 0, the function

fλ(x1, . . . , xn)
def
= f(λ · x1, . . . , λ · xn)

also belongs to the family F .

Main Result. For every scale-invariant finite-dimensional linear space F of
analytical functions, every element f ∈ F is a polynomial.

Proof. Let F be a scale-invariant finite-dimensional linear space F of analytical
functions, and let f(x1, . . . , xn) be a function from this family F .

By definition, an analytical function f(x1, . . . , xn) is an infinite series consist-
ing of monomials m(x1, . . . , xn) of the type

ai1...in · xi1
1 · . . . · xin

n .

For each such term, by its total order, we will understand the sum i1 + . . .+ in.
The meaning of this total order is simple: if we multiply each input of this
monomial by λ, then the value of the monomial is multiplied by λk:

m(λ · x1, . . . λ · xn) = ai1...in · (λ · x1)
i1 · . . . · (λ · xn)

in =

λi1+...+in · ai1...in · xi1
1 · . . . · xin

n = λk ·m(x1, . . . , xn).

For each order k, there are finitely many possible combinations of integers
i1, . . . , in for which i1+. . .+in = k, so there are finitely many possible monomials
of this order. Let Pk(x1, . . . , xn) denote the sum of all the monomials of order k
from the series describing the function f(x1, . . . , xn). Then, we have

f(x1, . . . , xn) = P0 + P1(x1, . . . , xn) + P2(x1, x2, . . . , xn) + . . .

Some of these terms may be zeros – if the original expansion has no mono-
mials of the corresponding order. Let k0 be the first index for which the term
Pk0(x1, . . . , xn) is not identically 0. Then,

f(x1, . . . , xn) = Pk0(x1, . . . , xn) + Pk0+1(x1, x2, . . . , xn) + . . .

Since the family F is scale-invariant, it also contains the function

fλ(x1, . . . , xn) = f(λ · x1, . . . , λ · xn).

At this re-scaling, each term Pk is multiplied by λk; thus, we get

fλ(x1, . . . , xn) = λk0 · Pk0(x1, . . . , xn) + λk0+1 · Pk0+1(x1, x2, . . . , xn) + . . .

78 O. Kosheleva, M. Ceberio, and V. Kreinovich

Since F is a linear space, it also contains a function

λ−k0 · fλ(x1, . . . , xn) = Pk0(x1, . . . , xn) + λ · Pk0+1(x1, x2, . . . , xn) + . . .

Since F is finite-dimensional, it is closed under turning to a limit. In the limit
λ → 0, we conclude that the term Pk0(x1, . . . , xn) also belongs to the family F .

Since F is a linear space, this means that the difference

f(x1, . . . , xn)− Pk0(x1, . . . , xn) =

Pk0+1(x1, x2, . . . , xn) + Pk0+2(x1, x2, . . . , xn) + . . .

also belongs to F . If we denote, by k1, the first index k1 > k0 for which the
term Pk1(x1, . . . , xn) is not identically 0, then we can similarly conclude that
this term Pk1(x1, . . . , xn) also belongs to the family F , etc.

We can therefore conclude that for every index k for which term Pk(x1, . . . , xn)
is not identically 0, this term Pk(x1, . . . , xn) also belongs to the family F .

Monomials of different total order are linearly independent. Thus, if there were
infinitely many non-zero terms Pk in the expansion of the function f(x1, . . . , xn),
we would have infinitely many linearly independent function in the family F –
which contradicts to our assumption that the family F is a finite-dimensional
linear space.

So, in the expansion of the function f(x1, . . . , xn), there are only finitely
many non-zero terms. Hence, the function f(x1, . . . , xn) is a sum of finitely
many monomials – i.e., a polynomial.

The statement is proven.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and DUE-0926721, by Grant 1 T36 GM078000-
01 from the National Institutes of Health, by Grant MSM 6198898701 from
MŠMT of Czech Republic, and by Grant 5015 “Application of fuzzy logic with
operators in the knowledge based systems” from the Science and Technology
Centre in Ukraine (STCU), funded by European Union.

References

1. Luce, R.D., Raiffa, R.: Games and decisions: introduction and critical survey. Dover,
New York (1989)

2. Nguyen, H.T., Kosheleva, O., Kreinovich, V.: Decision Making Beyond Arrow’s
Impossibility Theorem. International Journal of Intelligent Systems 24(1), 27–47
(2009)

3. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC
Press, Boca Raton (2006)

Adding Constraints –

A (Seemingly Counterintuitive but) Useful
Heuristic in Solving Difficult Problems

Olga Kosheleva, Martine Ceberio, and Vladik Kreinovich

University of Texas at El Paso,
El Paso, TX 79968, USA

{olgak,mceberio,vladik}@utep.edu

Abstract. Intuitively, the more constraints we impose on a problem,
the more difficult it is to solve it. However, in practice, difficult-to-solve
problems sometimes get solved when we impose additional constraints
and thus, make the problems seemingly more complex. In this method-
ological paper, we explain this seemingly counter-intuitive phenomenon,
and we show that, dues to this explanation, additional constraints can
serve as a useful heuristic in solving difficult problems.

Keywords: constraints, algorithmic problems, heuristics.

Commonsense Intuition: The More Constraints, the More Difficult the Problem.
Intuitively, the more constraints we impose on a problem, the more difficult it
is to solve it.

For example, if a university has a vacant position of a lecturer in Computer
Science Department, and we want to hire a person with a PhD in Computer
Science to teach the corresponding classes, then this hiring is a reasonably easy
task. However, once we impose constraints: that the person has several years of
teaching experience at similar schools and has good evaluations to show for this
experience, that this person’s research is in the area close to the classes that he
or she needs to teach, etc., then hiring becomes a more and more complicated
task.

If a person coming to a conference is looking for a hotel to stay, this is usually
an easy problem to solve. But once you start adding constraints on how far this
hotel is from the conference site, how expensive it is, how noisy it is, etc., the
problems becomes difficult to solve.

Similarly, in numerical computations, unconstrained optimization problems
are usually reasonably straightforward to solve, but once we add constraints,
the problems often become much more difficult.

Sometimes Constraints Help: A Seemingly Counterintuitive Phenomenon. In
practice, difficult-to-solve problems sometimes get solved when we impose addi-
tional constraints and thus, make the problems seemingly more complex.

Sometimes this easiness to solve is easy to explain. For example, when a trav-
eler prefers a certain hotel chain, and make this chain’s brand name a constraint,

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 79
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_10, c© Springer International Publishing Switzerland 2014

80 O. Kosheleva, M. Ceberio, and V. Kreinovich

then making reservations in a small town is usually not a difficult problem to
solve, because in this town, there is usually only one hotel from this chain.

However, in other cases, the resulting easiness-to-solve is not so easy to
explain.

Many such examples come from mathematicians solving practical problems.
For example, in application problems, mathematicians often aim for an optimal
control or an optimal design. To a practitioner, this desire for the exact optimum
may seem like a waste of time. Yes, it is desirable to find an engineering design
with the smallest cost under the given constraints – or, vice versa, with the best
performance under the given cost constraints – but since we can predict the
actual consequences of each design only approximately, wasting time to exactly
optimize the approximately optimize the approximately known function does not
seem to make sense. If we only know the objective function f(x) with accuracy
ε > 0 (e.g., 0.1), then once we are within ε of the maximum, we can as well stop.

In some cases, it is sufficient to simply satisfy some constraint f(x) ≥ f0
for some value f0. However, from the algorithmic viewpoint, often, the best
way to solve this problem is to find the maximum of the function f(x) on a
given domain – by equating partial derivatives of f(x) to 0. If there is a value
x for which f(x) ≥ f0, then definitely max

y
f(y) ≥ f0, so the place x where

the function f(y) attains its maximum satisfies the desired constraint. In other
words, by imposing an additional constraint – that not only f(x) ≥ f0, but also
that f(x) = max

y
f(y) – we make the problem easier to solve.

In theoretical mathematics, a challenging hypothesis often becomes proven
when instead of simply looking for its proof, we look for proofs that can be
applied to other cases as well – in other words, when we apply an additional
constraint of generalizability; see, e.g., [16] and references therein.

Similarly, interesting results about a physical system become proven in the
realm of rigorous mathematics, while, due to the approximate character of
the model, arguments on the physical level of rigor would be (and often are)
sufficient.

In engineering and science, often, problems get solved when someone starts
looking not just for a solution but for a solution that satisfies additional con-
straints of symmetry, beauty, etc. – or when a physicist looks for a physical
theory that fits his philosophical view of the world; a large number of examples
how the search for a beautiful solution helped many famous mathematicians and
physicists – including Bolzmann and Einstein – are described in [8].

In software design, at first glance, additional constraints imposed by software
engineering – like the need to have comments, the need to have simple modules,
etc. – seem to make a problem more complicated, but in reality, complex designs
often become possible only after all these constraints are imposed.

This phenomenon extends to informal problems as well. For example, in art,
many great objects have been designed within strict requirements on shape,
form, etc. – under the constraints of a specific reasonable regulated style of
music, ballet, poetry, painting, while free-form art while seemingly simpler and
less restrictive, does not always lead to more impressive art objects. Some people

Adding Constraints As a Useful Heuristic 81

find personal happiness when accepting well-regulated life rules – e.g., within a
traditional religious community – while they could not find personal happiness
in their earlier freer life.

How can we explain this seemingly counter-intuitive phenomenon?

Analysis of the Problem. By definition, when we impose an additional constraint,
this means that some alternatives which were originally solutions to the problem,
stop being such solutions – since we impose extra constraints, constraints that
are not always satisfied by all original solutions.

Thus, the effect of adding a constraint is that the number of solution decreases.
At the extreme, when we have added the largest possible number of constraints,
we get a unique solution.

It turns out that this indeed explains why adding constraints can make the
problems easier.

Related Known Results: The Fewer Solutions, the Easier to Solve the Problem.
Many numerical problems are, in general, algorithmically undecidable: for ex-
ample, no algorithm can always find a solution to an algorithmically defined
system of equation or find a location of the maximum of an algorithmically
defined function; see, e.g., [1, 2, 4–6, 17, 18, 22].

The proofs of most algorithmic non-computability results essentially use func-
tions which have several maxima and/or equations which have several solutions.
It turned out that this is not an accident: uniqueness actually implies algorith-
mic computability. Such a result was first proven in [19], where an algorithm
was designed that inputs a constructive function of one or several real variables
on a bounded set that attains its maximum on this set at exactly one point –
and computes this global maximum point. In [20], this result was to constructive
functions on general constructive compact spaces.

In [12, 14], this result was applied to design many algorithms: from optimal
approximation of functions to designing a convex body from its metric to con-
structive a shortest path in a curved space to designing a Riemannian space
most tightly enclosing unit spheres in a given Finsler space [7]. Several efficient
algorithms based on uniqueness have been described in [9–11].

On the other hand, it was proven that a general algorithm is not possible for
functions that have exactly two global maxima or systems that have exactly two
solutions; see, e.g., [12–15, 17].

Moreover, there are results showing that for every m, problems with exactly
m solutions are, in general, more computationally difficult than problems with
m− 1 solutions; see, e.g., [21].

Resulting Recommendation. The above discussion leads to the following seem-
ingly counter-intuitive recommendation: If a problem turns out to be too complex
to solve, maybe a good heuristic is to add constraints and make it more complex.

For example, if the problem that we have difficulty solving is an applied math-
ematical problem, based on an approximate description of reality, maybe a good
idea is not to simplify this problem but rather to make it more realistic. This

82 O. Kosheleva, M. Ceberio, and V. Kreinovich

recommendation may sound counter-intuitive, but applied mathematicians know
that often, learning more about the physical or engineering problem helps to
solve it.

This can also be applied to education. If students have a hard time solving a
class of problems, maybe a good idea is not to make these problems easier, but to
make them more complex. Again, at first glance, this recommendation may sound
counter-intuitive, but in pedagogy, it is a known fact: if a school is failing, the
solution is usually not to make classes easier – this will lead to a further decline
in knowledge. Anecdotal evidence shows that a turnaround happens when a new
teacher starts giving students more complex more challenging problems – and
this boosts their knowledge.

This recommendation is in line with a general American idea – that to be
satisfying, the job, among other things, must be a challenge.

Caution. Of course, it is important not to introduce so many constraints that
the problem simply stops having solutions at all. Since it is difficult to guess
which level of constraints will lead to inconsistency, it may be a good idea to
simultaneously several different versions of the original problem, with different
number of constraints added – this way, we will hopefully be able to successfully
solve one of them.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

1. Aberth, O.: Precise Numerical Analysis Using C++. Academic Press, New York
(1998)

2. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, New York
(1985)

3. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
4. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)
5. Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)
6. Bridges, D.S., Via, S.L.: Techniques of Constructive Analysis. Springer, New York

(2006)
7. Busemann, H.: The Geometry of Geodesics. Dover Publ., New York (2005)
8. Chandrasekhar, S.: Beauty and the quest for beauty in science. Physics To-

day 32(7), 25–30 (1979); reprinted in 62(12), 57–62 (2010)
9. Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre

Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Ef-
fektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Ein-
deutigkeitsbeweisen. Ph.D. Dissertation, Frankfurt am Main (1990) (in German)

10. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding
of de La Vallée Poussin’s proof for Chebycheff approximation. Annals for Pure and
Applied Logic 64(1), 27–94 (1993)

Adding Constraints As a Useful Heuristic 83

11. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer, Heidelberg (2008)

12. Kreinovich, V.: Uniqueness implies algorithmic computability. In: Proceedings
of the 4th Student Mathematical Conference, pp. 19–21. Leningrad University,
Leningrad (1975) (in Russian)

13. Kreinovich, V.: Reviewer’s remarks in a review of Bridges, D.S.: Constrictive func-
tional analysis. Pitman, London (1979); Zentralblatt für Mathematik 401, 22–24
(1979)

14. Kreinovich, V.: Categories of space-time models. Ph.D. dissertation, Novosibirsk,
Soviet Academy of Sciences, Siberian Branch, Institute of Mathematics (1979) (in
Russian)

15. Kreinovich, V.: Physics-motivated ideas for extracting efficient bounds (and al-
gorithms) from classical proofs: beyond local compactness, beyond uniqueness. In:
Abstracts of the Conference on the Methods of Proof Theory in Mathematics, June
3-10, p. 8. Max-Planck Institut für Mathematik, Bonn (2007)

16. Kreinovich, V.: Any (true) statement can be generalized so that it becomes trivial:
a simple formalization of D. K. Faddeev’s belief. Applied Mathematical Sciences 47,
2343–2347 (2009)

17. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and
feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)

18. Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math.
Soc. Providence, Rhode Island (1984)

19. Lacombe, D.: Les ensembles récursivement ouvert ou fermés, et leurs applications
à l’analyse récurslve. Compt. Rend. 245(13), 1040–1043 (1957)

20. Lifschitz, V.A.: Investigation of constructive functions by the method of fillings. J.
Soviet Math. 1, 41–47 (1973)

21. Longpré, L., Kreinovich, V., Gasarch, W., Walster, G.W.: m Solutions Good, m−1
Solutions Better. Applied Math. Sciences 2(5), 223–239 (2008)

22. Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, New
York (1989)

Under Physics-Motivated Constraints,

Generally-Non-Algorithmic Computational
Problems become Algorithmically Solvable

Vladik Kreinovich

Department of Computer Science,
University of Texas at El Paso,

El Paso, TX 79968, USA
vladik@utep.edu

http://www.cs.utep.edu/vladik

Abstract. It is well known that many computational problems are, in
general, not algorithmically solvable: e.g., it is not possible to algorith-
mically decide whether two computable real numbers are equal, and it
is not possible to compute the roots of a computable function. We pro-
pose to constraint such operations to certain “sets of typical elements”
or “sets of random elements”.

In our previous papers, we proposed (and analyzed) physics-motivated
definitions for these notions. In short, a set T is a set of typical elements if
for every definable sequences of sets An with An ⊇ An+1 and

⋂
n

An = ∅,

there exists an N for which AN ∩T = ∅; the definition of a set of random

elements with respect to a probability measure P is similar, with the
condition

⋂
n

An = ∅ replaced by a more general condition lim
n

P (An) = 0.

In this paper, we show that if we restrict computations to such typical
or random elements, then problems which are non-computable in the
general case – like comparing real numbers or finding the roots of a
computable function – become computable.

Keywords: constraints, computable problems, random elements,
typical elements.

Physically Meaningful Computations with Real Numbers: A Brief Reminder. In
practice, many quantities such as weight, speed, etc., are characterized by real
numbers. To get information about the corresponding value x, we perform mea-
surements. Measurements are never absolute accurate. As a result of each mea-
surement, we get a measurement result x̃; for each measurement, we usually
also know the upper bound Δ on the (absolute value of) the measurement error

Δx
def
= x̃− x: |x− x̃| ≤ Δ.

To fully characterize a value x, we must measure it with a higher and higher
accuracy. As a result, when we perform measurements with accuracy 2−n with
n = 0, 1, . . ., we get a sequence of rational numbers rn for which |x− rn| ≤ 2−n.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 85
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_11, c© Springer International Publishing Switzerland 2014

http://www.cs.utep.edu/vladik

86 V. Kreinovich

From the algorithmic viewpoint, we can view this sequence as an oracle that,
given an integer n, returns a rational number rn. Such sequences represent real
numbers in computable analysis; see, e.g., [9, 10].

First Negative Result. In computable analysis, several negative results are
known. For example, it is known that no algorithm is possible that, given two
numbers x and y, would check whether these numbers are equal or not.

Computable Functions and Relative Negative Results. Similarly, we can define a
function f(x) from real numbers to real numbers as a mapping that, given an
integer n, a rational number xm and its accuracy m, produces either a message
that this information is insufficient, or a rational number yn which is 2−n-close to
all the values f(x) for d(x, xm) ≤ 2−m – and for which, for every x and for each
desired accuracy n, there is an m for which a rational number yn is produced.
We can also define a computable function f(x1, . . . , xk) of several real variables
(and, even more generally, a function on a computable compact).

Several negative results are known about computable functions as well. For
example,

– while there is an algorithm that, given a function f(x) on a computable
compact set K (e.g., on a box [x1, x1]× . . .× [xk, xk] in k-dimensional space),
produces the values max{f(x) : x ∈ K},

– no algorithm is possible that would always return a point x at which this
maximum is attained (and similarly, with minimum).

From the Physicists’ Viewpoint, These Negative Results Seem Rather Theoreti-
cal. From the purely mathematical viewpoint, if two quantities coincide up to
13 digits, they may still turn to be different: for example, they may be 1 and
1 + 10−100.

However, in the physics practice, if two quantities coincide up to a very high
accuracy, it is a good indication that they are actually equal. This is how physical
theories are confirmed: if an experimentally observed value of a quantity turned
out to be very close to the value predicted based on a theory, this means that
this theory is (triumphantly) true. This is, for example, how General Relativity
has been confirmed.

This is how discoveries are often made: for example, when it turned out the
speed of the waves described by Maxwell equations of electrodynamics is very
close to the observed speed of light c, this led physicists to realize that light is
formed of electromagnetic waves.

How Physicists Argue. A typical physicist argument is that while numbers like
1+10−100 (or c · (1+10−100)) are, in principle, possible, they are abnormal (not
typical).

When a physicist argues that second order terms like a · Δx2 of the Taylor
expansion can be ignored in some approximate computations because Δx is
small, the argument is that

Physics-Motivated Constraints Make Problems Algorithmic 87

– while abnormally high values of a (e.g., a = 1040) are mathematically
possible,

– typical (= not abnormal) values appearing in physical equations are usually
of reasonable size.

How to Formalize the Physicist’s Intuition of Typical (Not Abnormal). A for-
malization of this intuition was proposed and analyzed in [1–7]. Its main idea
is as follows. To some physicist, all the values of a coefficient a above 10 are
abnormal. To another one, who is more cautious, all the values above 10 000
are abnormal. Yet another physicist may have another threshold above which
everything is abnormal. However, for every physicist, there is a value n such that
all value above n are abnormal.

This argument can be generalized as a following property of the set T of all
typical elements. Suppose that we have a monotonically decreasing sequence of
sets A1 ⊇ A2 ⊇ . . . for which

⋂
n
An = ∅ (in the above example, An is the set of

all numbers ≥ n). Then, there exists an integer N for which T ∩ AN = ∅.
We thus say that T is a set of typical elements if for every definable decreasing

sequence {An} for which
⋂
n
An = ∅, there exists an N for which T ∩AN = ∅.

Comment. Of course, to make this definition precise, we must restrict definability
to a subset of properties, so that the resulting notion of definability will be defined
in ZFC itself (or in whatever language we use); for details, see, e.g., [3].

Relation to Randomness. The above notion of typicality is related to the ran-
domness. Indeed, a usual definition of a random sequence (see, e.g., [8]) is based
on the idea that a sequence is random if it satisfies all the probability laws –
like the law of large numbers, the central limit theorem, etc. A probability law
is then described as a definable property that is satisfied with probability 1, i.e.,
as a complement to a definable set S of probability measure 0 (P (S) = 0). Thus,
we can say that a sequence is random if it does not belong to any definable set
of measure 0. (If we use different languages to formalize the notion “definable”,
we get different versions of Kolmogorov-Martin-Löf randomness.)

Informally, this definition means that (definable) events with probability 0
cannot happen. In practice, physicists also assume that events with a very small
probability cannot happen. It is not possible to formalize this idea by simply
setting a threshold p0 > 0 below which events are not possible – since then, for
N for which 2−N < p0, no sequence of N heads or tails would be possible at
all. However, we know that for each monotonic sequence of properties An with
lim p(An) = 0 (e.g., An = “we can get first n heads”), there exists an N above
which a truly random sequence cannot belong to AN . In [1–7], we thus propose to
describe a set R as a set of random elements if it satisfies the following property:
for every definable decreasing sequence {An} for which limP (An) = 0, there
exists an N for which R ∩AN = ∅.

88 V. Kreinovich

It turns out that properties of T and R are related:

– every set of random elements is also a set of typical elements, and
– for every set of typical elements T , the difference T −RK , where RK is the

set of the elements random in the usual Kolmogorov-Martin-Löf sense, is a
set of random elements [2].

Physically Interesting Consequences of These Definitions. These definitions have
useful consequences [1–7].

For example, when the universal set X is a metric space, both sets T and
R are pre-compact – with the consequence that all inverse problems become
well-defined: for any 1-1 continuous function f : X → X , the restriction of the
inverse function to T is also continuous. This means that, in contrast to ill-defined
problem, if we perform measurements accurately enough, we can reconstruct the
state of the system with any desired accuracy.

Another example is a justification of physical induction: crudely speaking,
there exists an N such that if for a typical sequence, a property is satisfied in
the first N experiments, then it is satisfied always.

New Results: When We Restrict Ourselves to Typical Elements, Algorithms be-
come Possible. In this paper, we analyze the computability consequences of the
above definitions. Specifically, we show that most negative results of computabil-
ity analysis disappear if we restrict ourselves to typical elements.

For example, for every set of typical pairs of real numbers T ⊆ IR2, there
exists an algorithm, that, given real numbers (x, y) ∈ T , decides whether x = y
or not. To prove it, consider a decreasing sequence of definable sets

An = {(x, y) : 0 < d(x, y) < 2−n}.

By definition of T , there exists an N such that AN ∩T = ∅. Thus, if we compute
d(x, y) with accuracy 2−(N+1) and get a value < 2−N , this means that x = y –
otherwise x �= y.

Similar (but somewhat more complex) arguments lead to

– an algorithm that, given a typical function f(x) on a computable compact
K, computes a value x at which f(x) attains its maximum,

– an algorithm that, given a typical function f(x) on a computable compact
K that attains a 0 value somewhere on K, computes a value x at which
f(x) = 0,

– etc.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and DUE-0926721, by Grant 1 T36 GM078000-
01 from the National Institutes of Health, and by Grant MSM 6198898701 from
MŠMT of Czech Republic.

Physics-Motivated Constraints Make Problems Algorithmic 89

References

1. Finkelstein, A.M., Kreinovich, V.: Impossibility of hardly possible events: physical
consequences. In: Abstracts of the 8th International Congress on Logic, Method-
ology, and Philosophy of Science, 1987, Moscow, vol. 5(2), pp. 23–25 (1987)

2. Kreinovich, V.: Toward formalizing non-monotonic reasoning in physics: the use of
Kolmogorov complexity. Revista Iberoamericana de Inteligencia Artificial 41, 4–20
(2009)

3. Kreinovich, V., Finkelstein, A.M.: Towards applying computational complexity to
foundations of physics. Notes of Mathematical Seminars of St. Petersburg Depart-
ment of Steklov Institute of Mathematics 316, 63–110 (2004); reprinted in Journal
of Mathematical Sciences 134(5), 2358–2382 (2006)

4. Kreinovich, V., Kunin, I.A.: Kolmogorov complexity and chaotic phenomena. In-
ternational Journal of Engineering Science 41(3), 483–493 (2003)

5. Kreinovich, V., Kunin, I.A.: Kolmogorov complexity: how a paradigm motivated
by foundations of physics can be applied in robust control. In: Fradkov, A.L.,
Churilov, A.N. (eds.) Proceedings of the International Conference “Physics and
Control” PhysCon 2003, Saint-Petersburg, Russia, August 20-22, pp. 88–93 (2003)

6. Kreinovich, V., Kunin, I.A.: Application of Kolmogorov complexity to advanced
problems in mechanics. In: Proceedings of the Advanced Problems in Mechanics
Conference APM 2004, St. Petersburg, Russia, June 24-July 1, pp. 241–245 (2004)

7. Kreinovich, V., Longpré, L., Koshelev, M.: Kolmogorov complexity, statistical
regularization of inverse problems, and Birkhoff’s formalization of beauty. In:
Mohamad-Djafari, A. (ed.) Bayesian Inference for Inverse Problems, Proceedings
of the SPIE/International Society for Optical Engineering, San Diego, California,
vol. 3459, pp. 159–170 (1998)

8. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer (2008)

9. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,
Berlin (1989)

10. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Constraint-Related Reinterpretation of

Fundamental Physical Equations Can Serve as a
Built-In Regularization

Vladik Kreinovich1, Juan Ferret2, and Martine Ceberio1

1 Department of Computer Science
2 Department of Philosophy,

University of Texas at El Paso, El Paso, TX 79968, USA
{vladik,jferret,mceberio}@utep.edu

Abstract. Many traditional physical problems are known to be ill-

defined: a tiny change in the initial condition can lead to drastic changes
in the resulting solutions. To solve this problem, practitioners regular-

ize these problem, i.e., impose explicit constraints on possible solutions
(e.g., constraints on the squares of gradients). Applying the Lagrange
multiplier techniques to the corresponding constrained optimization
problems is equivalent to adding terms proportional to squares of gradi-
ents to the corresponding optimized functionals. It turns out that many
optimized functionals of fundamental physics already have such squares-
of-gradients terms. We therefore propose to re-interpret these equations
– by claiming that they come not, as it is usually assumed, from uncon-
strained optimization, but rather from a constrained optimization, with
squares-of-gradients constrains. With this re-interpretation, the physical
equations remain the same – but now we have a built-in regularization;
we do not need to worry about ill-defined solutions anymore.

Keywords: constraints, fundamental physics, regularization, ill-defined
problems.

1 Formulation of the Problem

Optimization Reformulation of Physical Equations. Traditionally, laws of physics
have been described in terms of differential equations. However, in the 19th
century, it turned out that these equations can be reformulated as optimization
problems: the actual field is the one that minimizes the corresponding functional
(called action S). This optimization approach is very useful in many applications
(see, e.g., [1]) since there are many efficient algorithms for solving optimization
problems.

Decision Making and Control: Ideal Situation. In decision making and control
applications, in principle, we can similarly predict the result of different deci-
sions, different control strategies. Thus, we can select the decision (or the control
strategy) that leads to the most favorable result.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 91
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_12, c© Springer International Publishing Switzerland 2014

92 V. Kreinovich, J. Ferret, and M. Ceberio

Real-Life Prediction: Limitations. In practice, however, the situation is not so
simple. The main problem is that all measurements are only approximate. Even
for the most accurate measurements, the measured values of the initial conditions
are slightly different from the actual values.

Most prediction problems are ill-defined in the sense that small deviations in
the initial conditions can cause arbitrary large deviations in the predicted values.

Limitations: Example. One of the main reasons why the prediction problem is
ill-defined is that no matter how small a sensor is, it always has a finite size. As a
result, the sensor does not produce the value f(x) of the measured field f exactly
at a given spatial location x; the sensor always captures the “average” value of
a signal over a certain neighborhood of the point x – the neighborhood that
is occupied by this sensor. Hence, field components with high spatial frequency
f(x) = f0 ·sin(ω ·x) (with large ω) are averaged out and thus, not affected by the
measurement result. Therefore, in addition to the measured field f(x), the same
measurement result could be produced by a different field f(x) + f0 · sin(ω · x).
For many differential equations, future predictions based on this new field can
be drastically different from the predictions corresponding to the original field
f(x).

How This Problem Is Solved Now. To solve the problem, practitioners use regu-
larization, i.e., in effect, restrict themselves to the class of solutions that satisfies
a certain constraint; see, e.g., [5]. For example, for fields f(x), typical constraints
include bounds on the values

∫
f2 dx and

∫
f,i · f ,i dx, where

∫
F dx means in-

tegration over space-time (or, for static problems, over space), f,i
def
=

∂f

∂xi
, and

an expression f,i · f ,i means summation over all coordinates i.
By imposing bounds on the derivatives, we thus restrict the possibility of

high-frequency components of the type f0 · sin(ω ·x) and thus, make the problem
well-defined.

Limitations. The main limitation of different regularization techniques is that
the bounds on the derivatives are introduced ad hoc, they do not follow from the
physics, and different bounds lead to different solutions.

There is a whole art of selecting an appropriate regularization techniques, and,
once a technique is selected, of selecting an appropriate parameter. It is desirable
to come up with a more algorithmic way to making the equations well-defined.

2 Main Idea

A Mathematical Reminder: How to Optimize Functionals (see, e.g., [2]) As we
have mentioned, fundamental physical equations are described in terms of min-
imizing a functional called action. This functional usually has an integral form
S =

∫
L(f, f,i) dx; the corresponding function L is called a Lagrangian.

The main idea behind minimizing such functional is similar to the idea of
minimizing functions. For functions f(x1, . . . , xn), optima occur when all the

Constraint Reinterpretation of Fundamental Physical Equations 93

partial derivatives are 0s. Similarly, for a functional, an optimum occurs if the
functional derivative is 0:

δL

δf

def
=

∂L

∂f
·Δf − ∂

∂xi

(
∂L

∂fi

)
= 0.

This is how usual differential equations are derived from the optimization refor-
mulation of the corresponding physical theories.

A Mathematical Reminder: How Constraints Are Currently Taken into Account?
When we optimize a functional, e.g.,

∫
f2 dx, under a constraint such as

∫
f,i · f ,i dx ≤ Δ,

then, from the mathematical viewpoint, there are two options:

– It is possible that the optimum of the functional is attained strictly inside
the area defined by the constraints. In the above example, it means that the
optimum is attained when

∫
f,i · f ,i dx < Δ. In this case, all the (functional)

derivatives of the original functional are equal to 0. So, in effect, in this case,
we have regular physical equations – unaffected by constraints. We have
already mentioned that in this case, we often get ill-defined solutions.

– The case when the constrains do affect the solutions is when that the opti-
mum of the functional is attained on the border of the area defined by the
constraints. In the above example, it means that the optimum is attained
when

∫
f,i · f ,i dx = Δ.

Therefore, in cases when constrains are important to impose (and do not just
come satisfied “for free” already for the usual solution), the inequality-type con-
straints are equivalent to equality-type ones.

Optimization under such equality constraints is done by using the usual La-
grange multiplier approach: optimizing a functional F under a constraint G = g0
(i.e., equivalently, G − g0 = 0) is equivalent, for an appropriate real number λ,
to an unconstraint optimization of an auxiliary functional F + λ · (G− g0). The
value λ must then be found from the constraint G = g0.

In the above example, optimizing a functional
∫
f2 dx under a constraint∫

f,i · f ,i dx = Δ is equivalent to an unconstrained optimization of the auxiliary
functional ∫

(f2 + λ · f,i · f ,i) dx.

Observation. The action functionals corresponding to fundamental physics the-
ories already have a term proportional to f,i · f ,i for a scalar field f(x) or pro-
portional to similar terms for more complex fields (vector, tensor, spinor, etc.)

Discussion. At present, this is what physicists are doing:

94 V. Kreinovich, J. Ferret, and M. Ceberio

– They start with the (action) functionals S =
∫
Ldx corresponding to fun-

damental physical phenomena. These action functionals already have terms
proportional to f,i · f ,i.

– Based on these action functionals, physicists derive the corresponding differ-

ential equations
δL

δf
= 0.

– A direct solution to the resulting differential equations is ill-defined (too
much influenced by noise).

– Thus, instead of directly solving these equations, physicists regularize them,
i.e., solve them under the constraints of the type

∫
f,i · f ,i dx = Δ.

As we have mentioned, from the mathematical viewpoint, the regularization
constrains are equivalent to adding terms of the type f,i ·f ,i to the corresponding
Lagrangians. But these Lagrangians already have such terms! So, we arrive at a
natural idea.

Idea. Traditionally, in fundamental physics, we assume that we have an uncon-
strained optimization S =

∫
Ldx → min. A natural idea is to assume that in

reality, the physical world corresponds to constrained optimization F → min
under a constraint G = g0 – and place terms like f,i · f ,i into the constraint.

It Is Simply a Re-interpretation. At first glance, the above idea may sound like
a sacrilege: a group of non-physicists challenge Einstein’s equations? But we are
not suggesting to change the equations, the differential equations – the only thing
that we can check by observation – remain exactly the same. What we propose
to change is the interpretation of these equations:

– Traditionally, these equations are interpreted via unconstrained optimiza-
tion.

– We propose to interpret them via constrained optimization.

What Do We Gain? One might ask: if we are not proposing new equations, if
we are not proposing any new physical theory, then what do we gain?

Our main gain is that we now have a built-in regularization. We do not need
to worry about an additional outside regularization step anymore. We can not
be sure that our problems are well-defined.

Possible Additional Gain. There may also be an additional gain, with respect to
quantum versions of the fundamental physical theories. In contrast to the non-
quantum field theory, in the quantum versions, if we impose the constraints,
we do limit quantum solutions – because now, we are requiring the actual field
to satisfy the additional constraint, while in the quantum case, all fields are
possible (although with different probabilities). In quantum field theory, such
absolute constraints are known as super-selection rules; see, e.g., [6]. It is known
that such rules help to decrease divergence in quantum field theories (i.e., help
them avoid these theories leading to meaningless infinite predictions); so maybe
super-selection rules coming from our constrains will also be of similar help.

Constraint Reinterpretation of Fundamental Physical Equations 95

Possible Philosophical Meaning of Our Proposal. In addition to a pragmatic
meaning (well-foundedness of the problem, possible decrease in divergence, etc.),
our proposal may have a deeper philosophical meaning. To discuss such a mean-
ing, let us consider the simplest possible case of a scalar field f(x) corresponding
to a particle of rest mass m. In the traditional field theory, its Lagrangian has
the form L = m2 ·f2+f,i ·f ,i. For this theory, our proposal is, in effect, to make∫
f2 dx an optimized function, and to introduce a constraint

∫
f,i · f ,i dx = g0.

When we apply the Lagrange multiplier to this constrained optimization prob-
lem, we get the Lagrangian L = f2+λ ·f,i ·f ,i whose minimization is equivalent
to minimizing L′ = λ−1 · L = λ−1 · f2 + f,i · f ,i. In other words, we recover the
original Lagrangian, with m2 = λ−1. Now, in contrast to the traditional inter-
pretation, the rest mass m is no longer the original fundamental parameter – it
is a Lagrange multiplier that needs to be adjusted to fit the actual fundamental
constant g0 (which should be equal to

∫
f,i · f ,i dx).

Thus, the particle masses are no longer original fundamental constants – they
depend on the fields in the rest of the world. This idea may sound somewhat
heretic to a non-physicist, but it is very familiar to those who studied history
of modern physics. This general philosophical idea – that all the properties like
inertia, mass, etc. depend on the global configuration of the world – was pro-
moted by a 19 century physicist Ernst Mach (see, e.g., [3]), and it was one of
the main ideas that inspired Einstein to formulate his General Relativity theory
[4], a theory in which what Einstein called Mach’s principle is, to some extent,
satisfied.

In other words, our idea may sound, at first glance, philosophically somewhat
heretical, but it seems to be in line with Einstein’s philosophical foundations for
General Relativity.

Acknowledgments. This work was supported in part by the NSF grants HRD-
0734825 and DUE-0926721, and by Grant 1 T36 GM078000-01 from NIH.

References

1. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Addison
Wesley, Boston (2005)

2. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover Publ., New York (2000)
3. Mach, E.: The Science of Mechanics; a Critical and Historical Account of its Devel-

opment. Open Court Pub. Co., LaSalle, Illinois (1960)
4. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, New York

(1973)
5. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. W. H. Whinston

& Sons, Washington, D.C. (1977)
6. Weinberg, S.: The Quantum Theory of Fields. Foundations, vol. 1. Cambridge Uni-

versity Press, Cambridge (1995)

Optimization of the Choquet Integral Using

Genetic Algorithm

Tanja Magoč and François Modave⋆

Department of Computer Science,
University of Texas at El Paso,

500 W. University,
El Paso, Texas 79968, USA

{t.magoc,francois.modave}@gmail.com, francois.modave@ttuhsc.edu

Abstract. Decision making in an unavoidable part of out daily lives.
Many decisions are straightforward, but others require careful consider-
ation of each alternative and many attributes characterizing each alter-
native. If these attributes are mutually dependent, the Choquet integral
is a technique often used for modeling the decision making problem. With
a large number of attributes to consider, decision making becomes an op-
timization problem that requires huge computational resources in order
to be solved exactly. Instead of using a large amount of these resources,
heuristic techniques have been used to speed the computations and find
a suboptimal decision. Yet, these heuristic methods could be improved
to find better approximation with minimal increase in required computa-
tional resources. Genetic algorithm has been used in many situations as
a heuristic optimization technique. In this paper, we present some mod-
ifications to the genetic algorithm that allow more precise optimization.

1 Introduction

We face situations in which we need to make decisions on daily basis. Some
decisions are straightforward, while others are more complex and require more
detailed analysis and usage of computational techniques. In these complex sit-
uations, the study of multi-criteria decision making is a helpful tool. While dif-
ferent techniques exist to solve a multi-criteria decision making problem, one of
commonly used techniques when considering mutually dependent attributes of
alternatives is the Choquet integral with respect to a 2-additive measure, which
needs to be maximized. However, due to the shape of the Choquet integral (not
continuous and not differentiable function), there does not exist an optimization
technique that exactly solves this problem. Thus, heuristic techniques are used
to optimize the Choquet integral in practice. In this paper, we propose the use
of a modified genetic algorithm as the optimization technique. Several types of
modifications are tested and their performance recorded with respect to behavior

⋆ Current address: Family Medicine & Biomedical Sciences, Paul L. Foster School of
Medicine, Texas Tech University Health Sciences Center, 9849 Kenworthy Street,
El Paso, Texas 79924, USA.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 97
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_13, c© Springer International Publishing Switzerland 2014

98 T. Magoč and F. Modave

of the Choquet integral. Before describing the proposed modifications, we review
basics of multi-criteria decision making (Section 2) and genetic algorithms (Sec-
tion 3) as well as previous attempts to modify genetic algorithm to address some
of its drawbacks (Subsection 3.1). In Section 4, we propose new modification to
the genetic algorithm, and present the experimental setting (Section 5) and the
results of the experiments (Section 6), as well as the recommendation when to
use each type of modifications (Section 7).

2 Multi-criteria Decision Making

Multi-criteria decision making seeks an optimal solution among a (finite) set
of alternatives that are characterized by several attributes, i.e., criteria. Each
individual criterion can take a set of values, which could be ordered based on
the preference of a decision-maker. For example, if an individual wants to buy a
car, this individual will most probably consider the price, speed, miles per gallon,
safety rating, color, and other characteristics of cars. A rational car buyer would
prefer a low price, a possibility to drive more miles per gallon, and a high safety
rating. Thus, he/she would like to select the alternative (i.e., a car) that posses
the best value of each criterion (i.e., the cheapest car, the car with the highest
safety rating, etc.). However, in reality this is usually not possible. The cheapest
car does not have the highest safety rating. Thus, a decision-maker needs to
select an alternative that does not posses all the “perfect” characteristics. The
natural way to accomplish this goal is to combine the preferences over individual
attributes into a global preference over alternatives.

The criteria that a decision maker considers could be qualitative, such as color
of a car, or quantitative. Quantitative criteria could take continuous values in
some range, such as the price of a car, or could take discrete values, such as the
number of stars given for safety rating. Typically, it is possible to map the values
of each criterion onto a common scale, which is usually the range [0, 1], where 0
represents the lowest preference and 1 represents the highest preference.

The next task is to combine the values of individual preferences into a global
preference. Numerous methods exists to combine partial preferences into a global
preference. Simple methods, such as maximum and minimum, and additive meth-
ods, such as weighted sum, are usually not good aggregation operators. While
the former two methods rely on ordering alternatives based on only one crite-
rion, weighted sum considers all the criteria, but ignores dependencies among
the criteria. However, in reality, many criteria are not independent. For example,
the price of a car usually increases as the safety rating of the car increases, and
the safety rating decreases as the maximum speed increases.

Thus, we need to use non-additive approaches to take into consideration de-
pendencies. Non-additive (or fuzzy) measure theory is an extension of traditional
measure theory, which allows us to define integrals that take into consideration
dependencies among criteria. The Choquet integral is one of these integrals, but
its complexity makes it infeasible in many situations. However, the Choquet inte-
gral with respect to a 2-additive measure reduces the computational complexity
and still takes into account dependencies among criteria.

Optimization of the Choquet Integral 99

Definition 1. The Choquet integral with respect to a 2-additive measure μ is
given by [10]:

(C)

∫

I

fdμ =
∑

Iij>0

(f(i) ∧ f(j))Iij +
∑

Iij<0

(f(i) ∨ f(j))|Iij |+

n∑

i=1

f(i)

⎛
⎝Ii −

1

2

∑

j �=i

|Iij |

⎞
⎠ (1)

where Ii is the importance of the criterion i, usually given by the Shapley
value [20], and Iij is the interaction between the criteria i and j, usually given
by interaction index of order 2 [7, 11].

While Shapley value is given in the interval [0, 1] with 0 representing no im-
portance and 1 being the highest importance, interaction index can take values
in the interval [−1, 1], where

• I(i, j) > 0 if the criteria i and j are complementary;
• I(i, j) < 0 if the criteria i and j are redundant;
• I(i, j) = 0 if the criteria i and j are independent.

The function f(i) is the value of the criterion i mapped on the interval
[0, 1]. However, this mapping might depend on some variables, which are to be
optimized.

The goal of multi-criteria decision making is to select an alternative for which
the Choquet integral attains the highest value. However, the Choquet integral
is often not a differentiable function since it requires calculating maximum or
minimum of two functions, and therefore many standard optimization techniques
that use differentiation are not applicable. Thus, heuristic techniques are used
to maximize the Choquet integral. Genetic algorithm is one of these techniques.

Moreover, the solution to an optimization problem is often limited by some
constraints. The most common constraint is that all variables should be non-
negative, but many other constraints could be imposed. Thus, the optimization
function used in a genetic algorithm should be modified to take into account the
constraints.

3 Basics of a Genetic Algorithm

Before explaining possible modifications to a genetic algorithm to suit better
the optimization of the Choquet integral, we first review the basics of a classical
genetic algorithm.

Genetic algorithms (GAs) are heuristics used as an optimization technique or
a machine learning technique. Their performance is based on natural “survival
of the fittest” and biological inheritance in organisms. Therefore, they imitate
the processes of reproduction through the selection of the fittest individuals,
crossover, and mutation. The genetic algorithms were first introduced by John

100 T. Magoč and F. Modave

H. Holland [13] in early seventies, and since then they have found applications in
different areas including bioinformatics, chemistry, finance, scheduling, design,
etc. [5, 9].

A genetic algorithm simulates a biological evolution through generations.
Therefore, it starts with generating an initial population of individuals. Each in-
dividual is characterized by several values that are encoded in genes. The fittest
individuals are selected for crossover. The fitness of an individual in a genetic
algorithm is defined by an objective function that needs to be optimized. The
selection of individuals for crossover is usually carried out through the roulette
wheel method, which assigns to each individual probability of being selected by
the individual’s fitness relative to the fitness of the entire population.

Crossover of selected individuals allows for exchange of genetic material. The
simplest and the most traditional method for its simulation in a GA is a one-point
crossover technique in which a random point among genes is selected. The first
offspring is created by copying the genes up to the crossover point from the first
parent and the remaining genes from the second parent, while the reverse copy
of the parental material is used to create the second offspring. Two offsprings are
expected to have higher fitness than their parents which are discarded. However,
that is not always the case, so elitist strategy is often implemented to copy
at least the current best individual to the next generation. The non-overlapping
generations, which requires all parents to be replaced, in combination with elitist
strategy is used in experiments performed in this paper.

Further, usually with a very small mutation rate, a mutation may occur,
which allows for genetic material inherited from parents to be changed. In terms
of genetic algorithms, mutations allow for unexploited areas of search space to
be visited. One-point mutation is the most commonly used mutation technique
in a GA, where a gene is randomly selected and assigned a random value from
the range of values that gene can take.

Generations evolve indefinitely. However, for a genetic algorithm to be useful
in practice, either a convergence criterion should be achieved (all individuals
have same fitness) or a predefined number of generations (i.e., iterations) have
been reached. In our case, we will not test for the convergence criterion but
rather only the highest fitness achieved by an individual in a reasonable number
of iterations.

3.1 Modification of Genetic Algorithms

Genetic algorithm represents a relatively quick method to finding an optimum
and in most cases the results of a GA performance are better than the results
obtained by other optimization techniques. However, GA is not without draw-
backs. The main drawbacks include that the solution might be only local and
not global solution, the solution is not exact, and the speed of the convergence.
Since the earliest design of genetic algorithm, several methods have been sug-
gested to overcome these problems including increasing the size of population [6],
using different crossover operators that allow individuals to exploit new regions
[4], increasing the mutation rate [6], modifying the fitness assignments through

Optimization of the Choquet Integral 101

fitness scaling and sharing [15], using reserve selection [2], tracking changing
environments [3, 12], and restarting [1].

Despite all the proposed modifications, the most common and the most serious
drawback of a genetic algorithm still remains its premature convergence, which
leads to trapping the solution in a local optimum rather than a global one [5].
One of the main reasons of premature convergence is that the part of the search
space containing the global optimum value is not exploited. The usual attempts
to reach unexploited parts of the search space occur through mutations. However,
with a small probability of mutation occurring, it is not likely that all parts of
the search space could be reached. Thus, it is of crucial importance to initialize
and update the population in such a way that every part of search area could
be exploited. Several ideas have been developed on how to generate the initial
population including splitting the entire search space into subspaces of equal sizes
known as latin hypercube sampling [17], quasi random sampling [18], dividing
search space into subspaces based on population divergence [21], nonaligned
systematic sampling [19], simple sequential inhibition [8], and including some
particular individuals [14].

Four different techniques have been tested on a set of general functions [16]
and results were reported on the coverage of the search space, genetic diver-
sity of individuals in population, and speed of convergence. The four techniques
included pseudo-random sampling, Niederreiter generator, simple sequential in-
hibition process, and nonaligned systematic sampling. Pseudo-random sampling
is the most commonly used technique. It relies on pseudo-random generator to
generate diverse population. Niederreiter generators represent a quasi sampling
method, whose goal is to produce points that maximally avoid each other. Sim-
ple sequential inhibition process allows a new individual to enter the population
only if its distance from each individual already in the population is greater than
some predefined value Δ. Nonaligned systematic sampling divides search space
in hypercubes and generates an individual in each subspace.

The results show that the pseudo-random sampling is fast and produces a
great genetic diversity, but it usually does not cover the entire search space
and does not allow population to exploit the entire search space. Nonaligned
systematic sampling does not produce expected genetic diversity, but is able to
exploit the entire search space. Niederreiter generators outperformed pseudo-
random sampling in terms of search space coverage, but not in terms of genetic
diversity, while this quasi sampling method outperformed nonaligned systematic
search in genetic diversity but not in coverage of search space. Finally, simple
sequential inhibition process performed very well in both genetic diversity and
search space coverage criteria, but is a very slow algorithm.

Different modification of genetic algorithms have different impacts on the final
outcome of an optimization. These impacts are greatly dependent on the type of
the function optimized. In this paper, we focus on modifying the basic genetic
algorithm in order to maximize the function represented by the Choquet integral
with respect to a 2-additive measure.

102 T. Magoč and F. Modave

4 Modified Genetic Algorithm to Suit Applications in
Decision Making

We test two approaches for generating the initial population that will allow each
point of search space to be reached in short time: quasi sampling and adding
special individuals. We also compare the results of these functions to the result
of a classical genetic algorithm whose initial population is generated pseudo-
randomly.

The first approach generates “extreme” individuals. As the name suggests,
these individuals contain the limiting (extreme) values at each gene. If for each
gene i, we represent the values it can take by the interval [ai, bi], then two main ex-
treme n-gene individuals would be (a1, a2, . . . , an) and (b1, b2, . . . , bn). Of course,
we can create more extreme individuals by selecting either ai or bi for each gene i.
If considered in two-dimensions (i.e., an individual contains only two genes), two
extreme individuals would correspond to the corners of the quadrilateral that are
diagonally positioned form each other. In two-dimensional space, only two more
extreme individuals could be created, and they would correspond to the other two
corners of the quadrilateral. In three-dimensional search space, total of eight ex-
treme individuals could be created corresponding to eight corners of polyhedron.
In n-dimensional search space, the maximum number of extreme individuals is 2n.
In the next section, we explore in which cases and how well the existence of two
or more extreme individuals improves the performance of genetic algorithm. For
that reason we have implemented five different algorithms.

The first algorithm 2EXT creates only two main extreme individuals, which
are treated as all the other individuals in the population. The next two algo-
rithms consider these two individuals as special individuals in the population.
For each extreme individual, an individual from the population is selected and
the crossover is performed creating total of four new individuals that replace
randomly selected individuals in the population. This process is repeated ten
times in 10ITER algorithm and twenty times in 20ITER algorithm. After these
initial 10 or 20 crossovers are performed, the algorithm follows the steps of a
classical genetic algorithm:

create two extra individuals;

randomly initialize the remaining part of population;

for(i=0;i<10;i++) //for 20ITEM, the limits is 20 instead of 10

{

select an individual x from population;

crossover x with one extreme individual;

//it yields two children

crossover x with the other extreme individual;

//two more children

replace four randomly chosen individuals in the population;

//do not replace extreme individuals;

}

start the classical genetic algorithm;

Optimization of the Choquet Integral 103

The fourth proposed algorithm, 8EXT, utilizes eight extreme individuals. The
first two extremes are created in the same manner as in the 2EXT case, and the
remaining six extremes are generated by randomly picking either the lower or
the upper bound of the range of values for each gene. Finally, 2nEXT algorithm
generates all possible extreme individuals. However, this algorithm is only ap-
plicable to situations with small number of genes since creating all individuals
in 20- or 30-dimensional space would create population whose size is enormous,
thus creating just one generation in this situation would take extremely large
time and space.

The idea of having extreme individuals is that when they are involved in
crossover, they allow for generation of offsprings that are in areas possibly not
covered by any other individual. Thus, the main reason to start with extreme
individuals is to early generate population that is spread over the entire search
space and covers (almost) every existing “corner”. In general, for extreme indi-
viduals to have a significant effect on the performance of a genetic algorithm,
they need to participate in numerous crossover processes; thus, we created the
algorithms 10ITER and 20ITER, which perform several crossovers between each
extreme individual and any individual in the population before the extreme in-
dividuals are considered in the same manner as all the other individuals. We
test how much improvement in the performance of genetic algorithm is accom-
plished when different number of initial crossovers with extreme individuals is
performed.

The second approach to generating initial population that can reach any point
in the search space is by splitting the entire search space in subspaces and re-
quiring that at least one individual is randomly generated in each subspace. If
we make the assumption that all dimensions have the same ranges of values
that genes can take, in two-dimensional space, the subspaces would be small
squares covering the entire search space; in three dimensions, small cubes that
cover the entire search space, etc. The subspaces are equally spaced, so having
an individual in each subspace creates a population that occupies every part of
the search space. However, this algorithm becomes infeasible when the number
of genes is large as we need to create large number of subspaces (or a moderate
size) to cover the entire search space. If we create small number of subspaces
that are large, we are not guaranteeing that the population will be spread well.
The algorithm SPLIT that was used for the comparison to other algorithms used
four subintervals in each dimension when five-genes individuals were tested, and
eight subintervals when three-genes individuals were tested. In the next section,
we also explore the impact of the number of subspaces on the performance of
the algorithm.

5 Experiments

Two different functions with multiple coefficients were tested. The first function
takes the form that resembles what is happening within the Choquet integral
with respect to a 2-additive measure. We denote by x[i] the value that ith

104 T. Magoč and F. Modave

gene takes, which would correspond to the utility value of the criterion i. For
simplicity, calculation of maximum and minimum of two value is alternated.
After finding maximum or minimum value of a pair of utility values, this value
is multiplied by a randomly generated number in the interval [−1, 1], which would
correspond to the interaction index of order two. The function is optimized with
respect to variables x[i]. The pseudocode of the function follows:

f = 0;

for(i=0;i<(numberOfGenes-1);i++)

for(j=(i+1);j<numberOfGenes;j++)

{

if ((i mod 2) == 0)

f=f+a*min(x[i],x[j]);

else

f=f+b*max(x[i],x[j]);

}

return f;

The average maximum obtained in 20 runs of this algorithm are reported in
table 1.

The second function is even closer representation of the Choquet integral with
respect to a 2-additive measure, where the optimum value has to be reached
while satisfying numerous (soft) constraint. This function also involves calculat-
ing max or min of pairs of points, but in this case the points compared are not
directly values of genes but rather values of functions (called parameters) whose
inputs are values of particular genes. In addition to added complexity in terms
of elements for comparison, this function also simulates solving problem with
(soft) constraints by assigning penalties when constraints are not satisfied. Two
constraints imposed in this problem are:

1. Sum of values of all genes in an individual can not be greater than 1.
2. Each gene should have a positive value.

There is a high penalty imposed if the first constraint is not satisfied, while
a lower penalty is imposed for each gene not satisfying the second constraint.
Keeping the same notation as in the pseudocode of the previous function, and de-
noting by sums[i] the ith parameter for comparison, we present the pseudocode
of the (optimizing) function used for testing purposes:

for(i=0;i<numberOfGenes;i++)

sums[i]=0; //initialize functions

for(i=0;i<numberOfGenes;i++) //calculate parameters

for(j=0;j<numberOfGenes;j++)

if (((i+j) mod 2)==0) sums[i]=sums[i]+x[j];

else sums[i]=sums[i]-x[j];

f = 0;

for(i=0;i<(numberOfGenes-1);i++)

Optimization of the Choquet Integral 105

//calculate optimizing function

for(j=(i+1);j<numberOfGenes;j++)

if (((i+j) mod 2)==0)

f=f+(min(sums[i],sums[j]))*sums[i];

else

f=f-(max(sums[i],sums[j]))*sums[j];

if (sum>1) f=f-1000000; //first constraint

for(i=0;i<numberOfGenes;i++)

if (x[i]<=0) f=f-1; //second constraint

The average maximum obtained in 20 runs of this algorithm are reported in
Table 2.

Both functions, are tested using 3, 5, 10, 20, and 30 genes in an individual,
where each gene could take values in the range [0, 1].

6 Results

In this section, we tabulate the results obtained from the experiments and give an
explanation for the best performing variations of the genetic algorithm. Dashes
are placed in the entries in the table for which the experiments were not per-
formed either due to large initial population that would result from the partic-
ular method (in the case of 2nEXT and SPLIT algorithms) or due to achieving
the global optimum value by the initial population since the global optimum is
attained by one of the “extreme” individuals (in the case of 2EXT, 10ITER,
20ITER, and 8EXT algorithms). For the later reason, some algorithms are not
included in particular tables.

Table 1. Maximum obtained for the first function

method GA 2EXT 10ITER 20ITER 8EXT SPLIT

3 genes 1.99994 —– —– —– —– 2.00000

5 genes 12.9981 12.9995 12.9995 12.9994 12.9999 12.9990

10 genes 129.896 129.980 129.989 129.993 129.999 —–

20 genes 1182.97 1183.20 1184.30 1184.10 1184.30 —–

30 genes 4148.36 4151.45 4155.67 4158.49 4163.35 —–

All the modified algorithms outperformed the classical genetic algorithm when
tested on the first function. As expected, the best performance was achieved by
the 8EXT algorithm as the global optimum seems to lay along the boundary
of the given interval values for genes. Also the SPLIT algorithm performed ex-
ceptionally well in the application with three genes. However, all the other al-
gorithms achieved very close results, so we can not make any conclusions about
the algorithms based on the results from testing the first function. However, the
second function gives much more insides in the performance of the presented
algorithms.

106 T. Magoč and F. Modave

Table 2. Maximum obtained for the second function

method GA 2EXT 10ITER 20ITER 8EXT 2nEXT SPLIT

3 genes 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99987

5 genes 3.99731 3.99854 3.99902 3.99902 3.99805 3.99902 3.99896

10 genes -999376 21.5746 23.4975 23.4567 23.4130 20.4190 —–

20 genes -990082 60.6868 62.7694 82.3662 85.9714 —– —–

30 genes -950297 155.596 196.492 196.180 192.350 —– —–

When testing algorithms using the second function, we can see that all algo-
rithms except the SPLIT algorithm when only three genes are used outperformed
the classical GA. The 20ITER algorithm is constantly among the top two per-
formers, and even when it yields the second best answer, the reached optimum
is not far from the best optimum obtained by any of the algorithms.

Also, looking at the results of the classical GA, when the number of genes
increases, it is easy for this algorithm to be trapped in a local optimum and
not be able to overcome the penalties set for not satisfying constraints. We can
see this fact from the negative values in the Table 2, which resulted from the
inability of the algorithm to satisfy the first constraint.

6.1 Further Examination of the SPLIT Algorithm

The SPLIT algorithm is feasible only with small (i.e., ≤ 6) number of genes in
an individual. However, its performance is very good in these cases, so we spent
some time trying to conclude how many subintervals along each dimension would
result in the best performance of the algorithm.We tested three-genes individuals
on the two functions, by splitting each dimension into 4, 5, and 8 subintervals.
However, the obtained results (summarized in Table 3) were not conclusive.

In both functions, it seems that the best results were obtained when eight
subintervals were used. However, when we compare the results from using four
intervals to results when five intervals are used, the first and function behaved
better when the interval was split into four subintervals, while the second func-
tion performed better when five intervals were used. We would like to conclude
that using eight subintervals shows the best performance. However, we can not
make this conclusion as there is not enough evidence that higher the number of
subintervals leads to the better performance of the algorithm. Moreover, when
considering individuals that contain five or six genes, splitting intervals in eight
subintervals would result in generating a population of over thousand individu-
als, which might not be feasible.

6.2 Statistical Analysis

We performed t-test to determine the significance of the results obtained in
the modified algorithms compared to the classical genetic algorithm. The results
summarized in Table 4 show the p-values obtained by running one-tailed pairwise

Optimization of the Choquet Integral 107

Table 3. Maximum obtained by different versions of the SPLIT algorithm

function max f1 max f2

4 subintervals 2.2400 9.07017

5 subintervals 2.2396 9.27518

8 subintervals 2.2400 9.28987

Table 4. p-values obtained in one-tailed pairwise t-test between denoted algorithms
and classical GA

2EXT 10ITER 20ITER 8EXT 2nEXT SPLIT

0.0403 0.0403 0.0403 0.0403 0.2113 0.09803

t-test between all the results obtained in denoted algorithms against the classical
genetic algorithm.

Based on the obtained p-values, we can conclude at 95% confidence level that
proposed modifications in the first four algorithms (2EXT, 10ITER, 20ITER,
and 8EXT) outperform the classical genetic algorithm. The 2nEXT algorithm
gives us only 79% confidence level that obtained results are better than in the
classical GA, but this fact might be due to a low number of points for comparison.
Recall that we can run 2nEXT algorithm only when the dimension n is relatively
small, thus we had no values obtained for n > 5. Moreover, we did not run this
algorithm for the first function since the results of the first function lie very close
to (or on) the boundaries. Finally, the SPLIT algorithm is also applicable only
in situations with a small number of n, but we were able to run this algorithm
on both functions. We can conclude at 90% confidence level that, when n ≤ 5,
this algorithm outperforms the classical genetic algorithm.

7 Conclusion

The SPLIT algorithm showed good performs when three or less genes were used
to represent an individual. A little bit different setting allows for spreading in-
dividuals along (or closer to) the edges of the n-polytop representing the search
space rather than everywhere close to boundaries and inside the polytop. This
setting also allows for all ares of search space to be exploited since crossover of
two individuals could lead to production of an individual in the interior of the
search space. This is part of the future work.

The 8EXT algorithm performed the best when the genes’ values of the op-
timal solution lay along the boundaries of the intervals of possible gene values.
However, when not-knowing what to expect from the optimizing function (as it
is usually the case when modeling real life situations), the 10ITER and 20ITER
algorithms represent the best bet. They had outstanding performance in any sit-
uation. The 10ITER is better suited for smaller number of genes, while 20ITER

108 T. Magoč and F. Modave

is needed to perform optimization when higher number of genes is present in an
individual.

References

1. Beligiannis, G., Tsirogiannis, G.A., Pintelas, P.E.: Restarting: a technique to im-
prove classic genetic algorithms’ performance. In: Proceedings of World Academy
of Science, Engineering and Technology, vol. 1, pp. 144–147 (2005)

2. Chen, Y., Hu, J., Hirasawa, K., Yu, S.: Performance tuning of genetic algorithms
with reserve selection. In: IEEE Congress on Evolutionary Computation, pp. 2202–
2209 (2007)

3. Cobb, H.G.: Genetics algorithms for tracking changing environments. In: Proceed-
ings of the Fifth International Conference on Genetic Algorithms, pp. 523–530.
Morgan Kaufmann (1993)

4. Combarro, E.F., Miranda, P.: Identifying of fuzzy measures from sample data with
genetic algorithms. Computational Operational Reseach 33(10), 3046–3066 (2006)

5. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

6. De Jong, K.A.: An Analysis of the behavior of a class of genetic adaptive systems.
PhD thesis (1975)

7. Denneberg, D., Grabisch, M.: Shapley value and interaction index. Mathematics
of interaction index (1996)

8. Diggle, P.J.: Statistical analysis of spatial point patterns. Academic Press, London
(1983)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Professional (1980)

10. Grabisch, M.: The interaction and Mobius representation of fuzzy measures on fi-
nite spaces, k-additive measures: a survey. In: Grabisch, M., Murofushi, T., Sugeno,
M. (eds.) Fuzzy Measures and Integrals: Theory and Applications. Physica Verlag
(2000)

11. Grabisch, M., Roubens, M.: Application of the Choquet integral in multicriteria de-
cision making. In: Garbisch, M., Murofushi, T., Sugeno, M. (eds.) Fuzzy Measures
and Integrals: Theory and Applications. Physica Verlag (2000)

12. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel Prob-
lem Solving from Nature 2, pp. 137–144. Elsevier (1992)

13. Holland, J.H.: Adaption in natural artificial systems. University of Michigan Press,
Ann Arbor (1975)

14. Karci, A.: Novelty in the generation of initial population for genetic algorithms. In:
Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214,
pp. 268–275. Springer, Heidelberg (2004)

15. Kreinovich, V., Quintana, C., Fuentes, O.: Genetic algorithms: what fitness scaling
is optimal. Cybernetics and Systems: an International Journal 24, 9–26 (1993)

16. Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic
algorithm for continuous optimization problems. Journal of Global Optimiza-
tion 37(3), 405–436 (2007)

17. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

Optimization of the Choquet Integral 109

18. Niederreither, H.: Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia (1992)

19. Ripley, B.D.: Spatial statistics. John Wiley & Sons, New York (1981)
20. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.)

Contributions to the Theory of Games, vol. 2, pp. 307–317. Princeton University
Press (1953)

21. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: GAs with search
space division schemes. Evolutionary Computation 5(1), 61–80 (1997)

Scalable, Portable, Verifiable Kronecker

Products on Multi-scale Computers

Lenore Mullin1 and James Raynolds2

1 College of Computing and Information (CCI), University at Albany
State University of New York, Albany, NY

lenore@albany.edu
2 Drinker Biddle & Reath, L.L.P., Washington. D.C., USA

james.raynolds@dbr.com

Abstract. Understanding the layout of data and the accessing of that
data is paramount to the optimal performance of an algorithm on one
or many processors. This paper addresses the need for efficient tools to
implement and carry out tensor based computations for scientific and
engineering applications. In particular, we focus on certain ubiquitous
operations such as outer products of arbitrary multi-dimensional arrays
and matrix Kronecker products. We advocate an algebraic methodology
based on A Mathematics of Arrays (MoA) and the ψ-Calculus, in which,
any array based computer language (such as MATLAB) would be aug-
mented to achieve optimal performance for the computation of multiple
outer products. In this approach, an Operational Normal Form (ONF),
which specifies the most efficient implementation in terms of starts, stops,
and strides is mathematically derived given specific details of the pro-
cessor/memory hierarchy. The vision of this research is the creation of a
system in which the application scientist or engineer can use a functional
subset of his/her favorite language and, in so doing, have the ability to
generate code with high efficiency and compiler-like optimizations.

1 Introduction

High dimensional computational modeling is ubiquitous across the sciences and
engineering. Due to its support of matrix (and more recently tensor) opera-
tions [14], MATLAB is used as a rapid prototyping language. The interactive
mode of work is appealing to experimenters because it allows them to get initial
results without a lengthy edit, compile, link, execute cycle.

Currently there is considerable demand for efficient methods to handle tensor
based computing problems. According to van Loan: “The scientific and engineer-
ing communities are awash in a sea of high-dimensional, multi-indexed data sets.
Tensor methods are required to expose the underlying patterns...[p]ortability,
reusability, reliability, correctness, and modularity need to be reconciled with
the computational scientist’s need for efficiency, especially on massively parallel
multi-core architectures.” [31, 32].

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 111
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_14, c© Springer International Publishing Switzerland 2014

112 L. Mullin and J. Raynolds

At a recent NSF sponsored workshop held in Edinburgh, Scotland, co-
funded by Edinburgh’s Center for Numerical Algorithms and Intelligent Soft-
ware (NAIS) [25], three levels of interaction were identified, which, in somewhat
simplistic terms, can be summarized as the triple A’s:

Application ↔ Algorithm ↔ Architecture.

In the present work we discuss ways to augment MATLAB, or any ar-
ray/tensor language, to achieve optimal performance for multiple Kronecker
Products. Multiple Kronecker Products are widely used in many application
areas. In high-energy physics, for example, we find tensor based data sets arising
from outer products such as: space-time ©× color ©× spin. High-energy physics
computations consume the resources of today’s largest most advanced multi-core
computers and, as such, represent a good testing ground for the tensor based
research discussed herein.

An important realization is the need to identify core algorithms so as to:

– optimize multiple instantiations,
– scale the designs,
– map to complex processor memory hierarchies, and,
– verify correctness and thus guarantee computational reproducibility.

Widespread Use of MATLAB. MATLAB is a matrix-based high-level interactive
language that is used in many disciplines in industry, academia, and government
as a rapid prototyping language (e.g. it is used in electrical engineering, im-
age processing, aerospace engineering, physics, materials science, bioinformatics,
Simulink and FPGA design, etc.). For image processing applications the abil-
ity to handle 2D arrays of data and operate on them as first class objects (i.e.
monolithic entities with whole-array operations), greatly improves productivity.
Moreover, when arrays/tensors are first class data objects, the structure, shape
and dimensionality, of the tensor can aid in compilation.

The development of toolboxes and specialized libraries has also provided the
end user with tools for enhanced productivity. Recent awareness to n-dimensional
arrays, (i.e. tensors), as well as new insights into optimal implementations [31],
has led scientists to develop a Tensor Toolbox for MATLAB [3–7, 14], thus
providing a familiar environment that supports tensors and has motivated sub-
sequent algorithm research.

The Limitation with Respect to Compiled Performance. MATLAB, like any in-
terpretive language, is limited in the speed at which it can run programs when
compared with compiled machine code. Earlier versions of MATLAB provided
the facility to translate to C, but trying to add on a compiler in this way has
typically met with limited success. The C code produced could only be run when
linked with MATLAB proprietary libraries which were available only under li-
cense, limiting its use as a general code dissemination tool. Translation to C
also threw away information about the parallelism that was present in the orig-
inal whole-array, matrix-valued MATLAB expressions. As a result, when the C

Kronecker Products on Multi-scale Computers 113

code was compiled it was hard for the C compiler to deduce when it was safe
to use parallel hardware which might be present on the target processor. Conse-
quently, parallel MATLAB [13] was developed to give the user a tool to parallelize
MATLAB programs using MPI.

Our research advocates an environment that stays at the highest level
of mathematical interface and gives the user the highest level of
performance, correctness, and scalability, even to multi-core hybrid
systems.

When compiler support was implemented in APL, MATLAB’s predecessor,
the main limitation was that the anomalies in the language [10] made it difficult
to optimize and impossible to verify correctness of programs. MATLAB has data
structures (matrices), and anomalies similar to those of APL, and consequently,
solutions similar to those found for APL could be applied in the context of MAT-
LAB (or any other array-supporting language such as Fortran95, Phython, etc.).
Thus, it may be advantageous to identify a functional array sublanguage [29] that
can act as an intermediate representation in a compiler pipeline. This represen-
tation would retain information about parallelism while allowing high-level opti-
mizations to be made that capitalize on locality and successful data prefetching.
As an interpretive language, MATLAB also makes less efficient use of cache than
is possible with a compiler which, ideally, minimizes the formation of temporary
array values [28].

2 Background and Initial Goals

Relevant Techniques and Background. In order to address such questions in
the compiling of array languages, Mullin developed a Mathematics of Arrays
(MoA) and the ψ-Calculus (an indexing calculus based on shapes) [17]. This
research was motivated by the need to remove the anomalies in Iverson’s array
algebra [1] and to put closure on Abram’s ideas of defining all array operations
using shapes [2]. Such ideas were inspired by the work of Alan Perlis [30] and
Klaus Berkling [8]. Moreover, MoA and ψ-Calculus, can be used to abstract
complex processor memory layouts for tensor/array expressions, reduce these
expressions first to a semantic normal form (Denotational Normal Form-DNF)
then to an operational normal form (ONF). The ONF describes how to build the
code using start, stop, stride, and count: a universal machine abstraction [9, 18,
21, 24, 26, 27].

First Steps. The two workshops mentioned above: at Edinburgh [12], and at
NSF [31] illustrated ways in which researchers are attempting to meet the chal-
lenges posed by large scale tensor based computing. The Edinburgh workshop
report proposed a ten year challenge to design, verify, scale, and port a few
important algorithms from one or two highly used languages to one or two ar-
chitectures using an abstract machine.

Our research advocates choosing heavily used production languages and data
structures. Our hopes are to engage the language designers in our efforts and to
create a team of collaborators that can cooperatively solve this problem.

114 L. Mullin and J. Raynolds

3 The ψ-Calculus

Mechanization. MoA and the ψ-Calculus provide a way to compose array oper-
ations to minimize intermediate/temporary arrays. The ψ-Calculus provides a
mechanical way to compose indexing operations using shapes. Consequently, we
can use this theory to hand derive designs until tools, compilers, libraries, and
languages are developed. Although initial attempts have been made to mech-
anize ψ-reduction [11, 15, 19, 20, 22–24], no tool or language mechanizes the
designs developed so far by hand [21].

Core Algorithms

The Kronecker Product. In discussing the importance of the Kronecker Product,
Charles Van Loan quips that it is “the product of the times” and argues that
this product is ubiquitous in science and engineering computation [33]. The need
for efficient computation of multiple products pervades science, in particular,
quantum computing [16] and high energy physics [25]. Since there are numerous
descendants [33] of the Kronecker Product: The Left Kronecker Product, The
Hadamard Product, The Tracy-Singh Product, The Khatri-Rao Product and
the Generalize Kronecker Product, a generalized design and verification is worth
pursing.

Outer Product. A key notion of the present work is how the MoA outer prod-
uct can be formulated as the Kronecker product, a special case of the tensor
product. We will show that the use of the MoA outer product is superior to the
traditional approach when one is concerned with efficient implementations of
multiple Kronecker products. The MoA outer product is a general operation on
two arrays of any shape or dimension and applies any scalar operation, not just
multiplication (∗), to these two arrays (i.e. +, −, /, etc. are valid operations).
Using the ψ-Calculus (a calculus of indexing), we can compose multiple outer
products such that the creation of intermediate, temporary arrays is minimized
or eliminated. The first step in this procedure results in a semantic normal form,
the Denotational Normal Form (DNF) which specifies the algorithm in terms
of Cartesian array indices. Then the DNF to is translated into the Operational
Normal Form (ONF) which specifies how to build the code in terms of starts,
stops, and strides: an ideal machine abstraction. The ONF is obtained from the
DNF by utilizing specific information regarding the layout of the machine in
terms of complex processor memory hierarchies.

This is possible by abstractly lifting the dimension of an expression to include
all aspects of a processor, memory, communication topology. In this work we
focus on the Kronecker product between two matrices of arbitrary size resulting
in a block matrix. Let’s begin with an example where:

A =

[
1 2
3 4

]
, (1)

Kronecker Products on Multi-scale Computers 115

and

B =

⎡
⎣

5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎦ . (2)

The operation A
⊗

B, is called the Kronecker product and is defined as:

[
1 2
3 4

]⊗
⎡
⎣

5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1× 5 1× 6 1× 7 1× 8 2× 5 2× 6 2× 7 2× 8
1× 9 1× 10 1× 11 1× 12 2× 9 2× 10 2× 11 2× 12
1× 13 1× 14 1× 15 1× 16 2× 13 2× 14 2× 15 2× 16
3× 5 3× 6 3× 7 3× 8 4× 5 4× 6 4× 7 4× 8
3× 9 3× 10 3× 11 3× 12 4× 9 4× 10 4× 11 4× 12
3× 13 3× 14 3× 15 3× 16 4× 13 4× 14 4× 15 4× 16

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3)

Note implicitly in the operation above, that the 4 multiplications applied to B
have a substructure within the resultant array. That is, each component of A is
multiplied with all of B creating 4, 3×4 arrays. The result is stored in a matrix,
C, by relating the indices of A, i,j, with the indices of B, k,l, and encoding
them into row, column coordinates. Classically, i,k is correlated to a row of C,
and j,l is correlated to a column. In other words we write CM,N = Ai,j ∗ Bk,l

where M = {i, k}, and N = {j, l}, are composite indices advancing in row-major
ordering (i.e. {i, j} = {0, 0}, {0, 1}, {0, 2}, · · ·).

An important goal of this paper is to describe how shapes are integral to
array/tensor operations. By definition, the shape of an array is a vector whose
elements equal the length of each corresponding dimension of the array. Using
shapes, we will relate operations in A Mathematics of Arrays (MoA) to tensor
algebra and we will show how these shapes and the ψ-Calculus (also sometimes
written: Psi-Calculus) can be used to compose multiple Kronecker products and
map such operations to complex processor/memory hierarchies. We’ll also dis-
cuss how easily this can be embodied in an algebraic subset of MATLAB.

Shapes and the ψ Operator. Let’s begin by introducing shapes. The shape of A
is 2× 2, i.e., ρA = 〈2 2〉, the shape of B is 3× 4, i.e. ρB = 〈3 4〉 and the shape
of A

⊗
B is 6× 8, i.e. ρ(A

⊗
B) = 〈6 8〉. In this discussion we have introduced

the shape operator, ρ, which acts on an array and returns its shape vector.
Now, let’s look at the MoA outer product of A and B, denoted by A op×B.

The shape of A op×B is the concatenation of the shapes of A and B, i.e. a
4-dimensional array with shape 2 × 2 × 3 × 4. That is, ρ (A op×B) = 〈2 2 3 4〉.
The resulting array is indexed by a vector 〈i j k ℓ〉 that is ordered in row-major
order (i.e. in the order of a nested { i j k ℓ } loop with ℓ the fastest and i the
slowest increasing partial index).

116 L. Mullin and J. Raynolds

The MoA array operation: A op×B is defined by the following result:

[
1 2
3 4

]
op×

⎡
⎣

5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣
⎡
⎣

1× 5 1× 6 1× 7 1× 8
1× 9 1× 10 1× 11 1× 12
1× 13 1× 14 1× 15 1× 16

⎤
⎦
⎡
⎣

2× 5 2× 6 2× 7 2× 8
2× 9 2× 10 2× 11 2× 12
2× 13 2× 14 2× 15 2× 16

⎤
⎦
⎤
⎦

⎡
⎣
⎡
⎣

3× 5 3× 6 3× 7 3× 8
3× 9 3× 10 3× 11 3× 12
3× 13 3× 14 3× 15 3× 16

⎤
⎦
⎡
⎣

4× 5 4× 6 4× 7 4× 8
4× 9 4× 10 4× 11 4× 12
4× 13 4× 14 4× 15 4× 16

⎤
⎦
⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Notice that the layouts in Eqs. 3 and 4 are very similar. What is different is
the bracketing. The result of the MoA outer product is not a matrix but is rather
a multi-dimensional array. In contrast, the result of the Kronecker product is
a matrix (i.e. a two-dimensional array). The extra brackets reflect the fact that
the result of the outer product is a 4-dimensional array whose shape is obtained
by concatenating the shapes of the arguments (i.e. 〈2 2〉 concatenated to 〈3 4〉
yields 〈2 2 3 4〉).

So, do these arrays have the same layout in memory? The answer is no. What
is interesting, however, is that when the Kronecker product is computed it is
filled in, in a row major ordering relative to the right argument. The layout, ei-
ther row or column major, would reflect the access patterns needed to optimize
these operations across the processor/memory hierarchy. Let’s assume row ma-
jor. Thus flattening (i.e. creating a vector consisting of the elements of the array
in row-major order), the difference in layout is as follows. For the Kronecker
product we have:

〈1 × 5 1× 6 1× 7 1× 8 2× 5 2× 6 2× 7 2× 8 . . .〉, (5)

whereas for the MoA outer product we have:

〈1× 5 1× 6 1× 7 1× 8 1× 9 1× 10 1× 11 1× 12 . . .〉. (6)

Let’s consider how languages typically implement these operations. Typically,
assuming A, B, and C are defined as n by n arrays, the operation:

A
⊗

B
⊗

C, (7)

would be accomplished by materializing all of B
⊗

C as a temporary array, let’s
call it TEMP . Then A

⊗
TEMP would be computed. If n is large, this could

use an enormous amount of space.
Now, let’s look at how MoA and ψ-Calculus would perform the outer prod-

uct. Then, we’ll discuss how we can restructure the MoA outer product to
get the Kronecker product and in so doing we’ll be able to compose multi-
ple Kronecker products efficiently and deterministically over complex
processor/memory hierarchies.

Kronecker Products on Multi-scale Computers 117

Shapes and the Outer Product. Before beginning, we refer the reader to the
numerous publications on MoA and the ψ-Calculus, the most foundational is
given in Refs. [17, 21]. We thus take liberty to use operations in the algebra and
calculus by example. Only when necessary will a definition be given (as in the
following).

Definition 1. Assume A, B, C, are n×n arrays, that is, each array has shape:

ρA = ρB = ρC = 〈n n〉.

Assume the existence of the ψ operator and that it is well defined for n-
dimensional arrays. The ψ operator takes as left argument an index vector and
an array as the right argument and returns the corresponding component of the
array. For a full index (i.e. as many components are there are dimensions) a
scalar is returned and for a partial index, a sub-array is selected. Then,

D ≡ A op×(B op×C)

is defined when the shape of D is equal to the shape of A op×(B op×C). And the
shape of A op×(B op×C) is equal to the shape of A concatenated to the shape of
(B op×C) which is equivalent to the shape of A concatenated to the shape of B
concatenated to the shape of C. i.e.,

ρD = ρ(A op×(B op×C)) = ρA++ρ(B op×C)

= ρA++ρB ++ρC = 〈n n n n n n〉

Then, ∀ i0, j0, k0, l0,m0, n0 s.t.
0 ≤ i0 < n; 0 ≤ j0 < n; 0 ≤ k0 < n; 0 ≤ l0 < n; 0 ≤ m0 < n; 0 ≤ n0 < n

〈i0 j0 k0 l0 m0 n0〉 psi D
= (〈i0 j0〉ψ A)× (〈k0 l0 m0 n0〉ψ (B op×C))

= (〈i0 j0〉ψ A)× (〈k0 l0〉ψ B)× (〈m0 n0〉ψ C)

It is easy to see that we can compose as little or as much as we like given
the bounds of i0, j0, k0, l0,m0 and n0. We’ll return to how to build the above
composition. We’ll also discuss how to include processor memory hierarchies but
first we’ll discuss how to make the layout of the Kronecker product equivalent
to the layout of the MoA outer product.

Permuting the Indices of the MoA Outer Product. In order to discuss permuting
the outer product we must first discuss how to permute an array. One way is
through a transpose. We are familiar with transposing an matrix, i.e AT . We
know that A[j; i] denotes AT [i, j]. Let’s now discuss how to transpose a matrix
in MoA and then how to transpose an array in general.

Definition 2. Given the shape of A is m × n, i.e. ρA = 〈m n〉, then AT is
defined when the shape of AT is n×m. That is,

ρAT = 〈n m〉.

118 L. Mullin and J. Raynolds

Then, for all 0 ≤ i < n and 0 ≤ j < m

〈i j〉ψAT = 〈j i〉ψA

Let’s now generalize this to any arbitrary array.

Definition 3. Given the shape of A is 〈m n o p q r〉. Then AT is defined when
the shape of AT is 〈r q p o n m〉. Then for all 0 ≤ i0 < r; 0 ≤ j0 < q; 0 ≤ k0 < p;
0 ≤ l0 < o; 0 ≤ m0 < n; 0 ≤ n0 < m;

〈i0 j0 k0 l0 m0 n0〉ψAT = 〈n0 m0 l0 k0 j0 i0〉ψA

A question should immediately come to mind. Can the indices permute in
ways other than reversing them? The answer is yes, and in fact any permutation
consistent with the shape of the array is achieved by simply permuting the
elements of the index vector. That is, for an n-dimensional array there are n!
permutations. Note that the definitions for general transpose and grade up
presented below are the same definitions that were proposed to the F90 ANSI
Standard Committee in 1993 and were subsequently accepted for inclusion in
F95.

Definition 4. The operator gradeup is defined for an n-element vector con-
taining positive integers in the range from 0 to n − 1 in any order (multiple
entries of the same integer are allowed). The result is a vector denoting the po-
sitions of the lowest to the highest such that when the original vector is indexed
by the result of grade up, the original vector is sorted from lowest to highest.

Example. Given �a = 〈2 0 1 3〉,

gradeup[�a] = gradeup[〈2 0 1 3〉] = 〈1 2 0 3〉.

Thus,

�a [gradeup[�a]] = �a [〈1 2 0 3〉] = 〈2 0 1 3〉[〈1 2 0 3〉] = 〈0 1 2 3〉.

To clarify this example, we state the operations in words. The 0-th element
of the index vector is 1, implying that the element in position 1 of the vector
�a, i.e. 0, should be placed in the 0-th position of the result. The 1-st element of
the index vector, 2, implies that the 2-nd element of �a, i.e. 1 should be placed in
the 1-st position of the result and so on. We are now ready to define a general
transpose for n-dimensional arrays.

Definition 5. Given an array A with shape �s such that the total number of
components in �s denotes the dimensionality d, of A, AT�t is defined whenever the
shape of AT�t is �s

[
�t
]
, i.e. ρAT�t = �s

[
�t
]
. Then, for all 0 ≤∗ �i <∗ �s

[
�t
]
(the

symbols ≤∗ and <∗ imply element by element comparisons):

�iψAT�t =�i
[
gradeup

[
�t
]]
ψA

Kronecker Products on Multi-scale Computers 119

Example. Given

A =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 1 2
3 4 5
6 7 8
9 10 11

⎤
⎥⎥⎦

⎡
⎢⎢⎣

20 21 22
23 24 25
26 27 28
29 30 31

⎤
⎥⎥⎦

⎤
⎥⎥⎦

We first look at AT〈2 1 0〉 and note that this is equivalent to AT . The shape of
A is 〈2 4 3〉 so the shape of AT〈2 1 0〉 is 〈2 4 3〉[〈2 1 0〉] = 〈3 4 2〉. Then for all
0 ≤∗ 〈i j k〉 <∗ 〈3 4 2〉 (this is a shorthand notation for 0 ≤ i < 3; 0 ≤ j < 4;
0 ≤ k < 2) we have:

〈i j k〉ψAT〈2 1 0〉 = (〈i j k〉[gradeup[〈2 1 0〉]])ψA
= (〈i j k〉[〈2 1 0〉])ψA
= 〈k j i〉ψA (8)

=

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 20
3 23
6 26
9 29

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 21
4 24
7 27
10 30

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 22
5 25
8 28
11 31

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (9)

Now let’s look at another permutation of A noting there are 6 possible permu-
tations, i.e. 〈0 1 2〉, 〈0 2 1〉, 〈1 2 0〉, 〈1 0 2〉, 〈2 0 1〉, and 〈2 1 0〉. This time let’s
look at AT〈2 0 1〉 . Now the shape of AT〈2 0 1〉 is 〈2 4 3〉[〈2 0 1〉] = 〈3 2 4〉. Then for
all 0 ≤∗ 〈i j k〉 <∗ 〈3 2 4〉

〈i j k〉 ψ AT〈2 0 1〉 = (〈i j k〉[gradeup[〈2 0 1〉]])ψA
= (〈i j k〉[〈1 2 0〉])ψA
= 〈j k i〉ψA (10)

=

[[
0 3 6 9
20 23 26 29

] [
1 4 7 9
21 24 27 30

] [
2 5 8 11
22 25 28 31

]]

4 Changing Layouts Using Permutations

Now that we know how to permute an array over any of it’s dimensions we
can reorient the MoA outer product to have the same layout as the Kronecker
product.

Recall the layouts of the Kronecker product in Eq. 5 and the MoA outer
product in Eq. 6. Let’s first permute the MoA outer product such that it has
the same layout as the Kronecker product, and study the 4-d array defined by
the MoA outer product in Eq. 4. Now observe the permuted array given in the
following.

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[[
1×5 1×6 1×7 1×8

2×5 2×6 2×7 2×8

] [
1×9 1×10 1×11 1×12

2×9 2×10 2×11 2×12

] [
1×13 1×14 1×15 1×16

2×13 2×14 2×15 2×16

]]

[[
3×5 3×6 3×7 3×8

4×5 4×6 4×7 4×8

] [
3×9 3×10 3×11 3×12

4×9 4×10 4×11 4×12

] [
3×13 3×14 3×15 3×16

4×13 4×14 4×15 4×16

]]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(11)

120 L. Mullin and J. Raynolds

Flattening the 4-d array of Eq. 11 gives us the layout we want. In other words,
by flattening the array of Eq. 11 gives us the same one-dimensional array as
obtained by flattening the Kronecker product (see Eq. 5).

Notice which dimensions changed between the initial outer product in Eq. 4
and the transposed outer product in Eq. 11. The shape went from 2× 2× 3× 4
to 2 × 3 × 2 × 4. Reviewing Eqs. 5 and 6 we want 1 times 5, 6, 7, and 8 to be
next to 2 times 5, 6, 7, and 8, etc. in the layout. Thus, we want to leave the
0th dimension alone, the 3rd dimension alone and we wanted to permute the
1st dimension with the 2nd. Consequently, we want (A op×B)T〈0 2 1 3〉 , i.e. the
〈0 2 1 3〉 transpose of the outer product of A and B. Notice that this is the same
permutation used in correlating the indices of A and B with the indices of the
Kronecker product, i.e. i, j, k, l → i, k, j, l. Recall the discussion in the paragraph
following Eq. 3.

We now can discuss how to optimize these computations. Using MoA and
ψ-Calculus, one can not only compose multiple indices in an array expression
but, the algebraic reformulation of an expression can include processor/memory
hierarchies. This is done by increasing the dimensions of the arguments. Through
various restructurings, an expression can easily describe how to scale and port
across complex processor/memory architectures.

The resultant matrix of the Kronecker product is traditionally evaluated and
indexed as follows. The permutations on the input matrices in conjunction with
an equivalent permutation on the corresponding shapes followed by a pairwise
multiplication determines not only the resultant shape but how to store the
results in its associated index of the resultant array. This cumbersome computa-
tion and encoding into new 2-d indices gets more and more complicated as the
number of successive Kronecker products increases. Moreover, issues of paral-
lelization complicate the problem since various components in the left argument
are used over the columns of the result, assuming the partitioning was done by
rows. Other partitions are possible: blocks, columns, etc. When the input ma-
trices are large the problem is further complicated. This is not the case in MoA
and ψ-Calculus.

5 Multiple Kronecker Products

Multiple Kronecker products are common in conjunction with quantum comput-
ing and high energy physics (e.g. space-time ©× color ©× spin). How can these be
optimized to use basic abstract machine instructions (start, stop, stride, count)
at all levels up and down the processor/memory hierarchy?

Presently, multiple Kronecker products require the materialization of each
product. Notice what happens. After each pair of matrices is multiplied together,
the result must be stored using the permutations of the indices of the argument
arrays and encoded into row/column coordinates in a new matrix with size equal
to the product of the pairs of permuted shapes. For example, if the input arrays
were 2 × 2 and 3 × 3. The resultant shape would be a (2 ∗ 3) × (2 ∗ 3), i.e.
6 × 6. At first thought, this looks fine since each pair can be parallelized. Now,

Kronecker Products on Multi-scale Computers 121

if we then did a Kronecker product with a 2 × 2 array, the result would be a
12× 12 matrix. With each subsequent Kronecker product we’d need to store the
product in the rows and columns associated with the permuted indices. Ideally,
we want to compose multiple products in terms of their indexing such that we
index each array once while eliminating temporary arrays. MoA and ψ-Calculus
are ideally suited for this purpose and easily facilitate not only the composition
of multiple Kronecker/outer products but their mapping to complex processor
memory hierarchies.

To illustrate, let A be a 2 × 2 matrix and B be a 3 × 3 matrix. We are not
concerned with the specific values of the matrix elements since we need only
to consider manipulations of the indices. We assume the arithmetic is correctly
defined. We’ll perform E = (A

⊗
B)

⊗
A. The result within the parentheses

would have shape 6 × 6. This was due to the two input array shapes, i.e. 2 ×
2 and 3 × 3. Using, i, j to index A and k, l to index B bounded by their
associated shapes, the composite index {i, k} indexes the rows of (A

⊗
B) while

the composite index {j, l} indexes the columns of (A
⊗

B). For example, suppose
we have arrays A and B given by:

A =

[
1 2
3 4

]
, (12)

and,

B =

⎡
⎣
0 1 2
3 4 5
6 7 8

⎤
⎦ , (13)

their Kronecker product is:

C = A
⊗

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 0 2 4
3 4 5 6 8 10
6 7 8 12 14 16
0 3 6 0 4 8
9 12 15 12 16 20
18 21 24 24 28 32

⎤
⎥⎥⎥⎥⎥⎥⎦
. (14)

Now let’s compute E = C
⊗

A. The result is:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 2 2 4 0 0 2 4 4 8
0 0 3 4 6 8 0 0 6 8 12 16
3 6 4 8 5 10 6 12 8 16 10 20
9 12 12 16 15 20 18 24 24 32 30 40
6 12 7 14 8 16 12 24 14 28 16 32
18 24 21 28 24 32 36 48 42 56 48 64
0 0 3 6 6 12 0 0 4 8 8 16
0 0 9 12 18 24 0 0 12 16 24 32
9 18 12 24 15 30 12 24 16 32 20 40
27 36 36 48 45 60 36 48 48 64 60 80
18 36 21 42 24 48 24 48 28 56 32 64
54 72 63 84 72 96 72 86 84 112 96 128

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

122 L. Mullin and J. Raynolds

Recall that the result matrix is filled in by 6, 2× 2 blocks, over the rows and
columns using the encoding discussed above. Notice how complicated the indirect
addressing becomes using this approach to implementation of the Kronecker
product. Notice also that if we wanted to distribute the computation of a block
of rows to 4 processors, we’d need multiple components of the left argument.

Let us now look at doing the same operations, i.e. multiple outer products,
using the MoA, ψ-Calculus approach. We find:

C = Aop×B =
⎡
⎣
⎡
⎣
⎡
⎣
0 1 2
3 4 5
6 7 8

⎤
⎦
⎡
⎣

0 2 4
6 8 10
12 14 16

⎤
⎦
⎤
⎦
⎡
⎣
⎡
⎣

0 3 6
9 12 15
18 21 24

⎤
⎦
⎡
⎣

0 4 8
12 16 20
24 28 32

⎤
⎦
⎤
⎦
⎤
⎦ ,

(16)

is a 4-d array with shape 〈2 2 3 3〉. It is easy to see that indexing this array with
partial indices yields 4, 3 × 3 sub-arrays. That is, the indices, 〈0 0〉, 〈0 1〉, 〈1 0〉
and 〈1 1〉 are used to index C and each sub-array would be sent to available
processors 0, 1, 2, and 3, to create a start, stop, stride, mapping suitable for all
architectures to date. An example of selecting a subarray with a partial index is
given by:

〈1 0〉ψC =

⎡
⎣

0 3 6
9 12 15
18 21 24

⎤
⎦ . (17)

Mapping to Processors and the ONF. Next consider the operation C op×A. This
would yield a 6-d array with shape 〈2 2 3 3 2 2〉. We can easily pull apart the
arguments in the operations. We can also reshape this array into one of shape
〈4 3 3 2 2〉. We then would use the leftmost index to denote the processors over
which the array has been partitioned. We know the blocks each have 36 compo-
nents, i.e. the product of the shape exclusive of the first component: 3×3×2×2.

The following expressions illustrate how easy it is to compose, map, and scale
to a multi-processor architecture. As before, we get the shape.

ρ((A op B) op A) = (ρ(A op B) ++(ρA))

= (ρA) ++(ρB) ++(ρA)

= 〈2 2 3 3 2 2〉
(18)

and compose the indices.
Given 0 ≤∗ 〈i j〉 <∗ 〈2 2〉; 0 ≤∗ 〈k l〉 <∗ 〈3 3〉; 0 ≤∗ 〈m n〉 <∗ 〈2 2〉 and for all

0 ≤∗ 〈i j k l m n〉 <∗ 〈2 2 3 3 2 2〉;

〈i j k l m n〉ψ ((Aop×B) op× A)

= (〈i j k l〉ψ (A op× B)) × (〈m n〉ψA)
= (〈i j〉ψA)× (〈k l〉ψB)× (〈m n〉ψA)

(19)

From here we can easily map subarrays to the four processors using starts, stops,
and strides.

Kronecker Products on Multi-scale Computers 123

Let’s take the above, referred to as the Denotational Normal Form (DNF)
expressed in terms of Cartesian coordinates and transform it into its equivalent
Operational Normal Form (ONF) expressed in terms of start, stop, stride and
count. The DNF is independent of layout. The ONF requires one. Let’s assume
row-major (although column major or other orderings are equally possible). We’ll
see how natural that is for the outer product at all levels of implementation.

Let’s break up the above multiple outer product over 4 processors. We’ll need
to restructure the array’s shape 〈2 2 3 3 2 2〉, to 〈4 3 3 2 2〉. This allows
us to index the 0-th (i.e. the leftmost) dimension of this abstraction over the
processors. The following equation shows the result of this partitioning.

Under this partitioning, equation 19 for 0 ≤ p < 4, becomes:

〈i j k l m n〉ψ ((Aop×B) op× A)

= 〈p k l m n〉ψ ((�a op× B) op× A

= ((〈p〉ψ�a)× (〈k l〉ψB))× (〈m n〉ψA),
(20)

where 〈p〉ψ�a denotes the value located at the address @A[p] (i.e. the address of
A offset by p).

The entire right argument of Eq. 20 is used/accessed in all of the processors.
Thus, we think of the entire result of both products residing in an array with
π〈4 3 3 2 2〉 = 144 components (the π operator gives the product of the elements
of the vector) laid out contiguously in memory using a row-major ordering.

Thus, the equation above for 0 ≤ p < 4, becomes:

〈i j k l m n〉ψ ((Aop×B) op× A)

= 〈p k l m n〉ψ ((�a op× B) op× A

= ((〈p〉ψ�a)× (〈k l〉ψB))× (〈m n〉ψA),
(21)

where 〈p〉ψ�a denotes @A[p], i.e. the address of A offset by p.

Pseudo Code from the ONF. The following pseudo-code expression describes
what each processor, p, will do.

∀ p, q, r s.t. 0 ≤ p < 4 ; 0 ≤ q < 9; 0 ≤ r < 4

(avec[p] * bvec[q]) * avec[r]

In the above, avec and bvec are used to describe generic implementations. We
are able to collapse the 2-d indexing for A and B since their access is contiguous.
The approach we have just outlined has been applied to a number of other
problems [17, 18, 21].

6 n Kronecker Products: A New Theorem

We saw in previous sections how the Kronecker Product remained a matrix and
how that fact may pose problems in parallelizing the executions. In applications

124 L. Mullin and J. Raynolds

such as high energy physics, pairs of Kronecker Products are computed inde-
pendently on huge complex processor memory hierarchies. Imagine, if we could
compose the Kronecker Products and determine prior to compilation, how to
eliminate each temporary formed by each pair of products. Moreover, imagine if
we could easily determine how to map these operations due to the contiguity of
the data structure. We also saw in previous sections that we could permute the
indices of the Kronecker Product to exploit such locality. So far we’ve shown how
to compose three outer products and permute the result such that it is a matrix
in a Kronecker Product layout. We now show that this result generalizes
to any number of outer products resulting in an n-dimensional array.

Creating the Transpose Vector for an n-dimensional Transpose. We previously
saw that when we did two outer products we had to permute the resultant 4-
dimensional array using a 〈0 2 1 3〉 transpose vector. If we were to compose n
Kronecker Products we would create an n ∗ 2 dimensional array result. Thus, in
order to permute the indices such that we have a Kronecker Product layout we
would create a vector where the first half contained the even numbers from 0 to
(2 × n) − 2 and the second half of the vector contained the odd numbers from
1 to (2 × n) − 1. This vector would permute each index of the resultant array
by that permutation. Then, we’d reshape the array back into a two dimensional
array. This conjecture is easily proved by induction based on the properties of
the generalized transpose operator and the group properties of permutations of
indices.

Example. Let’s continue with our original example with a resultant array of
〈2 2 3 3 2 2〉. This array denotes 3 outer products and is a 6-dimensional array.
Thus, the transpose vector would be 〈0 2 4 1 3 5〉. We then get the product of the
shape of the even indices and odd indices. In this case it is 〈12 12〉. Consequently,
the resultant array after optimization is:

〈12 12〉reshape(〈0 2 4 1 3 5〉transposeA′)

where A′ is the 6-dimensional result of the composed and optimized MoA outer
products.

Implement These Ideas in MATLAB. As a first goal, we wish to be able to
call compiled programs from MATLAB, but eventually we hope to identify an
algebraic subset of MATLAB that is equivalent to the MoA algebra. Then, using
a compiler flag, users could opt to develop their MATLAB programs using the
subset to create flexible, high-performance programs that could also be called
from standard MATLAB. By incorporating these concepts into production level
programming languages we believe the user community will gradually adopt the
subset and thus create numerous callable high-performance routines. If we can
identify an algebraic subset of all array languages that are equivalent to the MoA
algebra, they could all be mapped to each other: Fortran95, Python, etc. This
promises to allow interpretive languages to perform at the speed of compiled
programs.

Kronecker Products on Multi-scale Computers 125

Progress in Implementation: An “Abstract Machine” for Tensor Operations. In
order to streamline the computation of multiple Kronecker Products we wish
to take advantage of data locality. As such we have derived an algorithm that
enables us to compute an array of indicies. This array of indices describes where
a particular element of the multiple Kronecker Product should be stored. Hav-
ing such an array of indices simplifies the computation by allowing us to cycle
through the computation of the of the “right hand sides” in a contiguous fashion
and assign whole blocks of the result to the result vector.

Our algoritm for the index vector shows that that index vector can be seen
to be of the form of an “outer product plus.” In particular we have found a
monolithic MoA expression for the index vector. An in-depth explanation of the
derivation will not be attempted. Rather we will explain the result in some brief
detail.

For a concrete example we consider a multiple Kronecker Product of four
4 × 4 matrices. Given a multi-dimensional index for the result of the form
〈i j k lmn o p〉, one can understand the resultant offset as a polynomial expres-
sion involving the elements of the index vector times various products of elements
of the shape vector. Without specifying in detail the values of these shape vector
products, let us denote them by a vector of values 〈c0 c1 c2 c3 c4 c5 c6 c7〉.

Next we form a collection of vectors �dm with 0 ≤ m < 8 such that �dm is
a product of the scalar cm with the vector of integers 〈0 1 2 3〉, so that �dm ≡
cm × 〈0 1 2 3〉 = 〈0 cm 2cm 3cm〉.

We next form the arrays “outer product plus” arrays:

B0 = �d0 op+ �d1

B1 = �d2 op+ �d3

B2 = �d4 op+ �d5

B3 = �d6 op+ �d7

The final result for the monolithic index vector is given by:

res = B0 op+ B1 op+ B2 op+ B3.

The first few values of this array, when flattened into a vector are as follows:

〈0 1 2 3 256 257 258 259 512 513 514 515 768 769 770 771 4 5 6 7 · · · 〉.
Note that this index vector is contiguous in blocks of four. If we were working
with outer products of larger arrays, the contiguous blocks would be longer
in length. Our derivation is completely deterministic in the sense that for any
number of outer products, we can predict not only the length of the contiguous
blocks but also the values in each block.

Understanding the algorithm in depth allows us to take full advantage of data
locality so as to be able to correctly prefetch blocks of data on the left and right
side of the computation so as to effectively overlap computation and IO.

126 L. Mullin and J. Raynolds

Implementation Using Low-Level SIMD Instructions. We have begun computa-
tionally implementing multiple Kronecker Products in C using low level SIMD
instructions provided for Intel Processors. Subroutines written in this way were
made callable by MATLAB (and Octave) using the commonly used “void mex-
Function” interface.

The basic data type used in these implementations is the so-called vFloat. A
vFloat variable is a 128 bit register variable representing four floats. Alterna-
tively a vFloat variable can be used to represent two double precision numbers.
Also available are arrays of vFloat variables. Thus to represent N floats, we use
a length N/4 vFloat array. Thus we see that, given the SIMD hardware instruc-
tions, we are necessarily constrained to work with arrays that are of length N
which is a multiple of 4.

Initial results are promising. We have compared the result of our multiple
Kronecker Product routine, implemented using SIMD instructions to what one
would obtain using MATLAB or Octave’s compiled “kron” subroutine. We ran
all tests using Octave to compute three Kronecker Products of four, 4×4 matrices
and found a factor of 2 speedup as compared to simply calling “kron” three times.

It is important to take a moment to reflect on this result. Note, in our SIMD
implementation, we have combined all three Kronecker Products into one op-
eration. In effect do a multiple loop over all possible values of the product.
In contrast, calling “kron” multiple times does effectively fewer computational
steps but is more time consuming because of the cost of the interme-
diate temporaries. To be more precise, consider a Kronecker Product of two
m × m matrices which each contain n = m2 values. To compute this in the
conventional way requires n2 operations. Thus computing three such Kronecker
Products requires 3n2 operations. In contrast by combining all three into a single
operation leads to nested loops resulting in effectively n4 operations.

Given this analysis, how could the MoA multiple Kronecker Product be twice
as fast as the conventional approach? The answer is that we, by using the SIMD
instructions along with the monolithic computation of the index vector, are
more effectively utilizing data locality to overlap computation and IO. We are
also getting a computational cost savings by eliminating intermediate temporary
arrays.

These initial results are encouraging and have motivatated continuing devel-
opment efforts along these lines. Further work needs to be done to develop a
completely general function that arbitrary input arrays and computes an ar-
bitrary number of Kronecker Products of them. Initial steps along these lines
will focus on the practical problem of input arrays comprising square matrices.
The general case can, of course, be handled by MoA techniques although such a
general case is considerably more complicated.

7 Conclusion

Optimization using the techniques of MoA and the ψ-Calculus is straightforward
and can be done at the time of parsing and tokenization. Once the syntax is

Kronecker Products on Multi-scale Computers 127

removed and tokens are used to create the execution tree, which is used by the
compiler, the tree is walked multiple times. First the shapes of each expression
are determined, then from the shapes the tree is walked again to translate all
formal operations into expressions involving direct indexing. The resultant tree
is the DNF. From that, the mapping function γ (that takes a shape and an index
and returns an offset) is used to map Cartesian coordinates to starts, stops, and
strides as illustrated in this paper. This can be directly compiled to hardware.

We have illustrated this approach in the context of efficient computation of
multiple Kronecker Products and have presented a discussion of its implemen-
tation using low level SIMD instructions. We have implemented a SIMD based
multiple Kronecker Product routine that is compiled and callable by MATLAB
or Octave. Initial results of numerical tests are promising, with a speedup of a
factor of two over the use of Octave’s built in “kron” program to compute three
Kronecker Products of four matrices.

References

1. Abrams, P.S.: What’s wrong with APL? In: APL 1975: Proceedings of Seventh
International Conference on APL, pp. 1–8. ACM, New York (1975)

2. Abrams, P.S.: An APL machine. PhD thesis, Stanford University, Stanford, CA,
USA (1970)

3. Acar, E., Dunlavy, D.M., Kolda, T.G., Morup, M.: Scalable tensor factorizations
with missing data. In: SDM 2010: Proceedings of the 2010 SIAM International
Conference on Data Mining (April 2010)

4. Acar, E., Kolda, T.G., Dunlavy, D.M.: An optimizations approach for fitting canon-
ical tensor decompositions. Technical Report SAND2009-0857, Sandia National
Laboratories, Albuquerque, NM and Livermore, CA (February 2009)

5. Bader, B.W., Kolda, T.G.: Matlab tensor toolbox version 2.4 (2001),
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

6. Bader, B.W., Kolda, T.G.: Algorithm 862: Matlab tensor classes for fast algorithm
prototyping. ACM Transactions on Mathematical Software 32(4) (December 2006)

7. Bader, B.W., Kolda, T.G.: Efficient matlab computations with sparse and factored
matrices. SIAM Journal on Scientific Computing 30(1), 205–231 (2007)

8. Berkling, K.: Arrays and the lambda calculus. Technical report, CASE Center and
School of CIS, Syracuse University (1990)

9. Eatherton, W., Kelly, J., Schiefelbein, T., Pottinger, H., Mullin, L.R., Ziegler,
R.: An fpga based reconfigurable coprocessor board utilizing a mathematics of
arrays. Technical report, University of Missouri–Rolla, Computer Science Depart-
ment (1995)

10. Gerhart, S.: Verification of APL Programs. PhD thesis, CMU (1972)

11. Helal, M.A.: Dimension and shape invariant programming: The implementation
and the application. Master’s thesis, The American University in Cairo, Depart-
ment of Computer Science (2001)

12. Kennedy, A., et al.: (October 2009),
http://kac.maths.ed.ac.uk/nsf-nais/home.php

13. Kepner, J.: Parallel matlab for multicore and multinode camputers. SIAM,
Philadelphia (2009)

http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
http://kac.maths.ed.ac.uk/nsf-nais/home.php

128 L. Mullin and J. Raynolds

14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Re-
view 51(3), 455–500 (2009)

15. McMahon, T.: Mathematical formulation of general partitioning of multi-
dimensional arrays to multi-dimensional architectures using the Psi calculus. Un-
dergraduate Honors Thesis (1995)

16. Mermin, N.D.: Quantum Computer Science. Cambridge University Press, Cam-
bridge (2007)

17. Mullin, L.M.R.: A Mathematics of Arrays. PhD thesis, Syracuse University (De-
cember 1988)

18. Mullin, L.R.: A uniform way of reasoning about array–based computation in radar:
Algebraically connecting the hardware/software boundary. Digital Signal Process-
ing 15, 466–520 (2005)

19. Mullin, L., Kluge, W., Scholtz, S.: On programming scientific applications in SAC
– a functional language extended by a subsystem for high level array operations.
In: Kluge, W.E. (ed.) IFL 1996. LNCS, vol. 1268, pp. 85–104. Springer, Heidelberg
(1997)

20. Mullin, L., Nemer, N., Thibault, S.: The Psi compiler v4.0 for HPF to Fortran
90: User’s Guide. Department of Computer Science, University of Missouri–Rolla
(1994)

21. Mullin, L.R., Raynolds, J.E.: Conformal computing: Algebraically connecting the
hardware/software boundary using a uniform approach to high-performance com-
putation for software and hardware applications. CoRR, abs/0803.2386 (2008)

22. Mullin, L., Rutledge, E., Bond, R.: Monolithic compiler experiments using C++
expression templates. In: Proceedings of the High Performance Embedded Com-
puting Workshop (HPEC 2002). MIT Lincoln Lab, Lexington (2002)

23. Mullin, L., Rutledge, E., Bond, R.: Monolithic compiler experiments using C++
Expression Templates. In: Proceedings of the High Performance Embedded Com-
puting Workshop HPEC 2002. MIT Lincoln Laboratory, Lexington (2002)

24. Mullin, L., Thibault, S.: Reduction semantics for array expressions: The Psi com-
piler. Technical Report CSC 94-05, Department of Computer Science, University
of Missouri-Rolla (1994)

25. NSF-NAIS Workshop Intelligent Software: The Interface between Algorithms and
Machines, Ediburgh, Scotland (October 2009),
http://adrg.maths.ed.ac.uk/nsf-nais

26. Pottinger, H., Eatherton, W., Kelly, J., Schiefelbein, T., Mullin, L.R., Ziegler, R.:
Hardware assists for high performance computing using a mathematics of arrays.
In: FPGA 1995: Proceedings of the 1995 ACM Third International Symposium on
Field-Programmable Gate Arrays, pp. 39–45. ACM, New York (1995)

27. Raynolds, J.E., Mullin, L.R.: Applications of conformal computing techniques to
problems in computational physics: the fast fourier transform. Computer Physics
Communications 170(1), 1–10 (2005)

28. Rosenkrantz, D.J., Mullin, L.R., Hunt III, H.B.: On minimizing materializations
of array-valued temporaries. ACM Trans. Program. Lang. Syst. 28(6), 1145–1177
(2006)

29. Tu, H.-C.: FAC: A Functional Array Calculator and it’s Applicaton to APL and
Functional Programming. PhD thesis, Yale University (1985)

30. Tu, H.-C., Perlis, A.J.: FAC: A functional APL language. IEEE Software 3(1),
36–45 (1986)

31. Van Loan, C.: (February 2009),
http://www.cs.cornell.edu/cv/tenwork/home.htm

http://adrg.maths.ed.ac.uk/nsf-nais
http://www.cs.cornell.edu/cv/tenwork/home.htm

Kronecker Products on Multi-scale Computers 129

32. Van Loan, C.: (May 2009),
http://www.cs.cornell.edu/cv/tenwork/finalreport.pdf

33. Van Loan, C.: The Kronecker product: A product of the times. In: SIAM Confer-
ence on Applied Linear Algebra, Monterey, California (October 2009)

http://www.cs.cornell.edu/cv/tenwork/finalreport.pdf

Reliable and Robust Automated Synthesis of

QFT Controller for Nonlinear Magnetic
Levitation System Using Interval Constraint

Satisfaction Techniques

P.S.V. Nataraj⋆ and Mukesh D. Patil

Department of Systems and Control Engineering,
Indian Institute of Technology, Bombay, Mumbai, 400 076. India

{nataraj,mdpatil}@sc.iitb.ac.in
http://www.sc.iitb.ac.in

Abstract. Robust controller synthesis is of great practical interest and
its automation is a key concern in control system design. Automatic
controller synthesis is still a open problem. In this paper a new, efficient
method has been proposed for automated synthesis of a fixed structure
quantitative feedback theory (QFT) controller by solving QFT quadratic
inequalities of robust stability and performance specifications. The con-
troller synthesis problem is posed as interval constraint satisfying prob-
lem (ICSP) and solved with interval constraint solver (realpaver)[1] . The
method is guaranteed to find all feasible controllers of given structure in
the search domain. The controller designed using proposed method is
experimentally tested on ECP’s Magnetic Levitation system [2] which
has open loop stable and unstable configurations.

Keywords: Robust Control, QFT, Automatic Loop Shaping,
Constraint Propagation, Interval Analysis, ICSP.

1 Introduction

A key step in the quantitative feedback theory (QFT) approach to robust control
system design (see [3]) is the one of synthesizing the controller. In this step, a
controller is synthesized to satisfy the magnitude-phase QFT bounds on the
nominal loop transmission function at each design frequency. Traditionally, this
synthesis was done manually by the designer, relying on design experience and
skill. Recently, several researchers have attempted to automate this step, see, for
instance, [4–6, 9–11].

The concept of controller design automation in QFT was introduced by [6]
who proposed an iterative procedure based on Bode’s famous gain-phase integral
to derive the shape of a nominal loop transfer function. The method, however,
needs a rational function approximation to obtain an analytical expression for

⋆ Corresponding author.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 131
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_15, c© Springer International Publishing Switzerland 2014

http://www.sc.iitb.ac.in

132 P.S.V. Nataraj and M.D. Patil

the loop transfer function, and straight line approximations for the nonlinear
QFT bounds.

Thomspon and Nwokah proposed a method based on nonlinear programming
techniques wherein the templates of the uncertain plant are approximated by
overbounding rectangles. Such a template approximation leads to overbounding
in the constraints derived for the optimization.

Bryant and Halikias addressed the problem of automatic loop shaping using
linear programming techniques wherein the QFT bounds are approximated by a
series of linear approximations. However, their method also leads to conservatism
in describing nonlinear QFT bounds by linear inequalities.

Chait et al proposed a method based on convexification of the non-convex
closed loop bounds [7]. The QFT design problem in this method is posed in
terms of the closed loop complementary sensitivity function. In this method the
closed loop non-convex bounds are transformed into linear inequalities without
any conservatism, and then a linear program is solved. However, as pointed by
these authors, the shortcoming of the method is that it involves fixing the poles
of the closed loop transfer function a priori.

Synthesis of controller is treated as an optimization problem in Chen et al.
[8–10] reformulated the problem as one of parameter optimization of a fixed
structure controller.

To the best of our knowledge, no method for QFT fixed order controller syn-
thesis for unstable configuration has been proposed using quadratic inequalities
of robust stability and performance specifications. In this paper, an ICSP based
method is proposed for automated synthesis of QFT controller for unstable con-
figuration of Magnetic Levitation system.

2 Some Preliminaries

2.1 Quantitative Feedback Theory

Consider a two degree freedom feedback system configuration (see Fig 1), where
G(s) and F (s) are the controller and prefilter respectively. The uncertain linear
time-invariant plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈ λ}, where λ ∈ ℜl is
a vector of plant parameters whose values vary over a parameter box λ

λ = {λ ∈ ℜl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l}

This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}

The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) (1)

and the nominal open loop transmission function is

L0(s) = G(s)P (s, λ0) = l0 exp
jΨ0 (2)

Reliable and Robust Synthesis of QFT Controller Using ICSP 133

Fig. 1. The two degree-of-freedom structure in QFT

2.2 Quadratic Inequalities for Parametric Uncertainty

The quadratic inequalities corresponding to the stability and performance spec-
ifications for parametric uncertainties are [12, 13]:

– Robust stability specification,

g2p2 + 2gp cos(φ+ θ) + 1 ≥ 0 (3)

– Robust stability margin specification,

g2p2
(
1− 1

w2
s

)
+ 2gp cos(φ+ θ) + 1 ≥ 0 (4)

– Robust sensitivity or (output disturbance rejection) specification,

g2p2 + 2gp cos(φ+ θ) +

(
1− 1

w2
do(ω)

)
≥ 0 (5)

– Tracking specification,

g2p2kp
2
i

(

1−
1

δ2(ω)

)

+ 2gpkpi

[

pk cos(φ+ θi) −
pi

δ2(ω)
cos(φ+ θk)

]

+

(

p2k −
p2i

δ2(ω)

)

≥ 0

(6)

where

δ(ω) =
|TU (jω)|
|TL(jω)|

3 Controller Synthesis Methodology

3.1 The Loop Shaping Problem

The QFT loop shaping problem for single-input single-output (SISO) or multi-
input single-output (MISO) systems or the MIMO systems can be described as
follows: Find a stabilizing linear time-invariant (LTI) controller G(s) such that
the feedback system whose nominal open-loop transmission function, L0(s, λ) =
G(s)P0(s, λ0), satisfies

L(s, λ) = G(s)P (s, λ) ∈ B(w), ∀ w ≥ 0

where, B(w), for any frequency w, denotes a set in the complex plane.

134 P.S.V. Nataraj and M.D. Patil

3.2 The Proposed Method

The QFT controller synthesis problem is posed as a constrained satisfaction
problem (CSP) with the fixed structure controller, and the constraint set as the
set of possibly non-convex, nonlinear magnitude-phase QFT bounds for stability
and performance specifications, at the various design frequencies. In this work,
the constraints are solved using constraint solver Realpaver. Several consistency
techniques like box, hull, 3B are implemented in Realpaver [14].

The controller synthesis procedures that lack an analytical or closed form so-
lution are usually iterative in nature, involving trial-and-error techniques and/or
thumb rules. The success of iterative controller synthesis process depends con-
siderably upon the expertise of the designer. With the exponential growth and
easy availability of computational power, such designs can now be automated.

The design automation can be posed as a constrained or unconstrained solving
problem (CSP). The steps involved in this process would be as follows:

– Selection of the robust control methodology.
– Formulation of the synthesis problem:

• Conversion of the control synthesis problem into ICSP
• Choice of the controller structure.
• Specification of the controller parameter search space.

– Choice of the ICSP solver for the above problem.

Algorithm for ICSP
Input: Constraints C, Initial Search Box, B and accuracy ǫ
Output: Solution Box with all feasible controllers or ”NO Solution Exists ”

1. Initialize the box list L with initial box B
2. Take a box from list L and prune it. If no box in list, Exit.
3. If box can not be pruned further and width of box is less or equal to ǫ, store

the box as solution. Go to step 2
4. Bisect the box in maximum width direction and put the sub-boxes in list.
5. Go to step 2.

The key features of the proposed method are:

– It enables the designer to specify in advance the structure of the controller
to be synthesized.

– It can deal directly with the numerical values of the possibly non-convex,
nonlinear QFT bounds at each design frequency. The QFT bounds can be
generated with, say, the QFT toolbox.

– It automatically takes care of the internal stability of the system.
– If for the specified structure and the given search box of controller parameter

values,
• no feasible controller exists, then the method is guaranteed to computa-
tionally verify this fact.

• a feasible controller does exist, then the method is guaranteed to find all
controllers lying within the search box.

Reliable and Robust Synthesis of QFT Controller Using ICSP 135

References

1. Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Transaction on Mathematical Software 32, 138–156
(2006)

2. Manual for Model 730, Magnetic Levitation System. Educational Control Products,
California, USA (1999)

3. Horowitz, I.M.: Quantitative feedback design theory (QFT). QFT Publications,
Boulder (1993)

4. Bryant, G.F., Halikias, G.D.: Optimal loop-shaping for systems with large param-
eter uncertainty via linear programming. Int. J. Control 62(3), 557–568 (1995)

5. Chait, Y., Chen, Q., Hollot, C.V.: Automatic loop-shaping of QFT controllers via
linear programming. Trans. of the ASME Journal of Dynamic Systems, Measure-
ment and Control 121, 351–357 (1999)

6. Gera, A., Horowitz, I.M.: Optimization of the loop transfer function. Int. J. Con-
trol 31, 389–398 (1980)

7. Chait, Y., Yaniv, O.: MISO computer aided control design using QFT. Interna-
tional Journal of Robust and Nonlinear Control (1998)

8. Chen, W., Ballance, D.J., Li, Y.: Automatic loop-shaping in qft using genetic
algorithms. In: Proceedings of 3rd Asia-Pacific Conference on Control and Mea-
surement, pp. 63–67 (1998)

9. Garcia-Sanz, M., Guillen, J.C.: Automatic loop-shaping of QFT robust controllers
via genetic algorithms. In: Proceedings of the 3rd IFAC Symposium on Robust
Control Design, Kidlington, U.K. (2000)

10. Paluri, N.S.V., Tharewal, S.: An interval analysis algorithm for automated con-
troller synthesis in QFT designs. Trans. of the ASME Journal of Dynamic Systems,
Measurement and Control 129, 311–321 (2007)

11. Thomspon, D.F., Nwokah, O.D.I.: Analytical loop shaping methods in quantitative
feedback theory. Trans. of the ASME Journal of Dynamic Systems, Measurement
and Control 116, 169–177 (1994)

12. Chait, Y., Tsypkin, Y.: SISO QFT design with Non-parametric Uncertainties. Pre-
sentation at the 1993 American Control Conference. University of Massachusetts,
USA, pp. 1694–1695 (1993)

13. Chait, Y., Yaniv, O.: Multi-input/single-output computer-aided control design us-
ing quantitative feedback theory. International Journal of Robust and Nonlinear
Control 3(1), 47–54 (1993)

14. Benhamou, F., Goualard, F., Granvilliers, L.: Revising hull and box consistency.
In: Proc. of 16th International Conference on Logic Programming, pp. 230–244
(1999)

Towards an Efficient Bisection of Ellipsoids

Paden Portillo, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science,
University of Texas at El Paso, El Paso, TX 79968, USA

pportillo2@miners.utep.edu, {vladik,mceberio}@utep.edu

Abstract. Constraints are often represented as ellipsoids. One of the
main advantages of such constrains is that, in contrast to boxes, over
which optimization of even quadratic functions is NP-hard, optimization
of a quadratic function over an ellipsoid is feasible. Sometimes, the area
described by constrains is too large, so it is reasonable to bisect this area
(one or several times) and solve the optimization problem for all the sub-
areas. Bisecting a box, we still get a box, but bisecting an ellipsoid, we do
not get an ellipsoid. Usually, this problem is solved by enclosing the half-
ellipsoid in a larger ellipsoid, but this slows down the domain reduction
process. Instead, we propose to optimize the objective functions over the
resulting half-, quarter, etc., ellipsoids.

Keywords: constraints, ellipsoids, bisection, computational complexity.

Constraints on a Single Variable. In many practical problems, we have prior
constraint on the values of different quantities. For each individual quantity x,
we usually know a lower bound x and an upper bound. Thus, we know that the
actual value of this quantity must lie within the interval [x, x].

Sometimes, we know several lower bounds; in this case, we take the largest of
them as x. Similarly, if we know several upper bounds, we can take the smallest
of these upper bounds as x.

Correspondingly, when are looking for a value that satisfies a certain condi-
tion (e.g., when we are solving an equation), or if we are looking for the best
option (i.e., solving an appropriate optimization problem), we should take this
constraint into account. For example, when finding the optimal value of x, we
should optimize the corresponding objective function f(x) under the given con-
straint on x – i.e., under the constraint that x ≤ x ≤ x.

Constraints on Several Variables: Boxes Naturally Appear. Usually, we have
several different variables x1, . . . , xn. For each of these variables xi, we usually
know a lower bound xi and an upper bound xi. Thus, we know that the actual
value of the tuple x = (x1, . . . , xn) belongs to the box [x1, x1] × . . . × [xn, xn].
Such box constrains and box uncertainty are typical for interval computations;
see, e.g., [8, 9, 12].

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 137
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_16, c© Springer International Publishing Switzerland 2014

138 P. Portillo, M. Ceberio, and V. Kreinovich

Problem with Box Constraints: Computational Complexity. The main problem
with box constraints is that already for quadratic objective functions

f(x1, . . . , xn) = a0 +

n∑

i=1

ai · xi +

n∑

i=1

n∑

j=1

aij · xi · xj ,

optimizing them over a box is, in general, an NP-hard problem; see, e.g., [11, 15].
This problem is computational complex not for some exotic quadratic function:
as shown in [5], it is actually even NP-hard for the sample variance

V (x1, . . . , xn) =
1

n
·

n∑

i=1

x2
i −

(
1

n
·

n∑

i=1

xi

)2

.

Informal Explanation of Computational Complexity. The above computational
complexity can be intuitively explained.

Indeed, a function of one variable f(x) attains its optimum (maximum or
minimum) on an interval [x, x] either at one of its endpoints, or at an internal
point x ∈ (x, x]. If this optimum is attained at an internal point, then at this

point, a derivative
df

dx
should be equal to 0. Thus, to find the largest and the

smallest value of a function f(x) on the interval [x, x], it is sufficient to consider

its value at the endpoints x and x and at a point x where
df

dx
= 0. When the

function f(x) is quadratic, its derivative is a linear function and therefore (unless
we have a degenerate case) there is only one point where the derivative is equal to
0. So, to find the optimum of a quadratic function of one variable, it is sufficient
to consider at most three values x (two if the point where the derivative is 0 lies
outside the given interval).

For optimizing a function f(x1, . . . , xn) of several variables on the box xi ≤
xi ≤ xi, the same trichotomy holds for each of the variables xi: with respect
to this variable, the optimum is attained either at one of the endpoints xi and
xi and at a point x where the corresponding partial derivative is equal to 0(

∂f

∂xi
= 0.

)

For each variable, we have only 3 options, but together, they form 3× . . .×3 =
3n options: e.g., when x1 = x1, we still have 3 different options for x2, etc. For
each of these 3n combinations of options, we have a system of linear equations
to solve – which is relatively easy (see, e.g., [4]), but the shear amount of such
cases makes this straightforward calculus-based algorithm exponential in time.
The NP-hardness results proves, in effect, that unless P=NP, no other algorithm
can solve this problem mush faster (in feasible polynomial time).

Ellipsoids: A Solution to the Computational Complexity Problem. One known
solution to the above computational complexity problem is to use ellipsoid

Towards an Efficient Bisection of Ellipsoids 139

constraints instead of the boxes, i.e., to use constrains of the type J(x1, . . . , xn) ≤
J0, where

J(x1, . . . , xn) = b0 +

n∑

i=1

bi · xi +

n∑

i=1

n∑

j=1

bij · xi · xj .

For such constraints, optimizing a quadratic function f(x) means that:

– either the optimum is attained inside the ellipsoid, then we have a system

of linear equations
∂f

∂xi
= 0;

– or the optimum is attained on the border J(x1, . . . , xn) = J0 of the ellipsoid.

In the second case, the Lagrange multiplier approach leads to the unconstrained
optimization of the auxiliary quadratic function f + λ · (J − J0), i.e., again, to
a solution of a system of linear equations. As a result, we get a solution x(λ) as
a function of λ.

The only additional problem is to find a single variable λ. This can be done
in a relatively straightforward way, by solving an equation J(x(λ)) = J0 with
one unknown λ. The complexity of solving such an equation does not grow with
the size n of the problem.

Computations can be made even more explicit if we take into account that
if we have two quadratic forms, one of which is positive definite, we can move
both to a diagonal form by applying an appropriate linear transformation; this
linear transformation can be easily computed; see, e.g., [4]. Thus, when we apply
an appropriate linear transformations of the coordinates, in the new coordinates

y1, . . . , yn, the ellipsoid J ≤ J0 becomes simply a unit circle
n∑

i=1

y2i = 1, and the

objective function takes the form

f(y1, . . . , yn) = w0 +

n∑

i=1

wi · yi +
n∑

i=1

wii · y2i .

In this case, the Lagrange functional takes the form

fλ = w0 +

n∑

i=1

wi · yi +
n∑

i=1

wii · y2i + λ ·
(

n∑

i=1

y2i − 1

)
,

so equating partial derivatives of fλ to 0 leads to wi +2wii · yi +2λ · yi = 0, i.e.,

to yi = − wi

2 · (wii + λ)
, and the equation for λ takes the following explicit form:

n∑

i=1

w2
i

4 · (wii + λ)2
= 1.

Because of this drastic reduction in computational complexity, ellipsoids have
been successfully used in many applications; see, e.g., [1–3, 6, 7, 13, 14].

140 P. Portillo, M. Ceberio, and V. Kreinovich

Need for Bisection. When the optimized function is simple – e.g., linear or
quadratic – it does not matter how big or small is the area, the algorithm is
the same. However, when the objective function is more complex, then for small
areas, we can expand the objective function into Taylor series

f(x1, . . . , xn) = a0+

n∑

i=1

ai ·xi+

n∑

i=1

n∑

j=1

aij ·xi ·xj+

n∑

i=1

n∑

j=1

n∑

k=1

aijk ·xi ·xj ·xk+. . . ,

and, with reasonable accuracy, keep only quadratic terms in this expansion.
For larger areas, such an approximation may not necessarily be sufficiently ac-

curate. A similar problem occurs when we consider domains described by boxes.
For boxes, a solution to this problem is straightforward: we divide (“bisect”) the
box into two sub-boxes by dividing one of the side intervals [xi, xi] into two by a

line xi = x̃i
def
=

xi + xi

2
. (In n-dimensional space, the equation xi = x̃i describes

a plane.)
We can then try to estimate the optimum of the function over both sub-boxes,

and, if necessary, further bisect each of these two sub-boxes into sub-sub-boxes
[9, 12].

Bisection for Ellipsoids: A Problem. With ellipsoids, we can apply a similar
idea: divide the ellipsoid into two halves by an appropriate plane. However, in
comparison to boxes, here, we have an additional problem:

– when we bisect a box, both halves are boxes;
– however, a half of an ellipsoid is not an ellipsoid.

Thus, even when we know the algorithms for optimizing quadratic functions
over ellipsoids, we cannot use them to optimize functions over half- or quarter-
ellipsoids.

How This Problem Is Solved Now. At present (see, e.g., [2, 3, 10]), this problem
is solved by enclosing each of the resulting half-ellipsoids into an ellipsoid. This
procedure enables us to apply the same optimizations as before, but it comes
with a price – that the enclosures are larger than the halves and thus, the size of
the regions decreases slower that in the case of boxes – where, e.g., the volume
of an area decreases by 2 on each bisection step. Since the areas do not go as
fast, we will need more iterations (and thus, more computation time) to reach
the desired small size.

Our Proposal. As an alternative, we propose to explicitly optimize quadratic
functions over half-, quarter-, etc. ellipsoids.

Indeed, suppose that after a small number of bisections d, we have the result-
ing region. Each bisection j, 1 ≤ j ≤ d, corresponds to selecting a half-space.
Each half-space can be described by a linear inequality ℓj(x) ≤ 0, with a lin-
ear function ℓj(x). As before, for each j, the optimum is attained either inside
the half-space or on its border, at a plane ℓj(x) ≤ 0. Thus, to find the desired

Towards an Efficient Bisection of Ellipsoids 141

optimum, we must check all 2d subsets of the set {1, . . . , d}. For each of these
subsets S, we take all the planes ℓj(x) = 0 with j ∈ S. The intersection of all
these planes with the original ellipsoid is still an ellipsoid of smaller dimension.
We then use the known ellipsoid-optimization algorithm to optimize the objec-
tive function over this smaller-dimension ellipsoid. The largest or smallest of
the desired values is the desired maximum or minimum of the original objective
function over our domain.

When d is small, the value 2d is also small, so we still get an efficient algorithm.

Acknowledgments. This work was supported in part by NSF grants HRD-
0734825 and DUE-0926721, and by Grant 1 T36 GM078000-01 from NIH.

References

1. Belforte, G., Bona, B.: An improved parameter identification algorithm for signal
with unknown-but-bounded errors. In: Proceedings of the 7th IFAC Symposium
on Identification and Parameter Estimation, NewYork, U.K. (1985)

2. Chernousko, F.L.: Estimation of the Phase Space of Dynamic Systems. Nauka
Publ., Moscow (1988) (in Russian)

3. Chernousko, F.L.: State Estimation for Dynamic Systems. CRC Press, Boca Raton
(1994)

4. Cormen, C.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Boston (2009)

5. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Exact bounds on
finite populations of interval data. Reliable Computing 11(3), 207–233 (2005)

6. Filippov, A.F.: Ellipsoidal estimates for a solution of a system of differential equa-
tions. Interval Computations 2(2(4)), 6–17 (1992)

7. Fogel, E., Huang, Y.F.: On the value of information in system identification.
Bounded noise case. Automatica 18(2), 229–238 (1982)

8. Interval computations website, http://www.cs.utep.edu/interval-comp
9. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Ex-

amples in Parameter and State Estimation, Robust Control and Robotics. Springer,
London (2001)

10. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4, 373–396 (1984)

11. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht
(1998)

12. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM
Press, Philadelphia (2009)

13. Schweppe, F.C.: Recursive state estimation: unknown but bounded errors and sys-
tem inputs. IEEE Transactions on Automatic Control 13, 22 (1968)

14. Schweppe, F.C.: Uncertain Dynamic Systems. Prentice Hall, Englewood Cliffs
(1973)

15. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press,
New York (1991)

http://www.cs.utep.edu/interval-comp

An Auto-validating Rejection Sampler for

Differentiable Arithmetical Expressions:
Posterior Sampling of Phylogenetic Quartets

Raazesh Sainudiin

Laboratory for Mathematical Statistical Experiments and
Department of Mathematics and Statistics,

University of Canterbury,
Private Bag 4800, Christchurch, New Zealand 8041

r.sainudiin@math.canterbury.ac.nz

http://www.math.canterbury.ac.nz/~r.sainudiin

Abstract. We introduce an efficient extension of a recently introduced
auto-validating rejection sampler that is capable of producing indepen-
dent and identically distributed (IID) samples from a large class of target
densities with locally Lipschitz arithmetical expressions. Our extension is
restricted to target densities that are differentiable. We use the centered
form, as opposed to the natural interval extension, to get tighter range
enclosures of the differentiable multivariate target density using interval
extended gradient differentiation arithmetic. By using the centered form
we are able to sample one hundred times faster from the posterior density
over the space of phylogenetic trees with four leaves (quartets).

Keywords: interval analysis, centered form, phylogentic inference.

1 Introduction

Obtaining independent and identical (IID) samples or realizations from a ran-
dom vector T with probability density function f(·), denoted T ∼ f(·), is a basic
problem in computational statistics. The density f(·)(t) : T ⊆ R

d → [0,∞) al-
lows one to obtain P(T ∈ B) =

∫
B f(·)(t)dt, the probability that T belongs

to any Borel set B. The density is absolutely continuous with respect to λd,
the product of d Lebesgue measures, i.e., f(·) ≪ λd, and integrates to 1, i.e.,∫
T
f(·)(t)dt = 1. A sampler is a randomized algorithm that transforms indepen-

dent and identically distributed (IID) samples fromM , the uniformly distributed
random variable on the unit interval, to those from the desired random object,
say the random vector T with density f(·).

In Bayesian estimation, we want to draw IID samples from a target posterior
density f(·) and more generally, in multivariate simulation, we want to draw IID
samples from a random vector T with probability density f(·). These samples
allow insights into the nature of the random vector itself. They are often used
to estimate an integral of interest about the random vector, say, Ef(·)(h(T)) :=

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 143
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_17, c© Springer International Publishing Switzerland 2014

http://www.math.canterbury.ac.nz/~r.sainudiin

144 R. Sainudiin

∫
T
h(t)f(·)(t)dt, where h(t) : T → R is bounded and Ef(·)(h

2(T)) < ∞, using

the estimator ĥn = n−1
∑n

i=1 h(ti), where t1, t2, . . . , tn are IID samples from T
with density f(·). For example, such integrals of interest can be the posterior
mean given by

∫
T
tf(·)(t)dt with h(t) = t, or the probability of an event A

given by P(A) :=
∫
T
11 A(t)f(·)(t)dt, with h(t) = 11 A(t), where 11 A(t) equals 1 if

t ∈ A and 0 otherwise. Due to the strong law of large numbers our estimator ĥn

converges to the desired Ef(·)(h(T)) with probability 1 as the number of samples
n approaches infinity. Furthermore, the condition Ef(·)(h

2(T)) < ∞ ensures the
asymptotic normality of our estimator due to the central limit theorem and
provides a straightforward calculation of a confidence interval.

In Bayesian phylogenetic estimation, we want to draw independent and iden-
tically distributed samples from a target posterior density on the space of phylo-
genetic trees. The standard approaches to sampling from the posterior density,
especially over phylogenetic trees, rely on Markov chain Monte Carlo (MCMC)
methods. Despite their asymptotic validity, it is nontrivial to guarantee that
an MCMC algorithm has converged to stationarity [5], and thus MCMC con-
vergence diagnostics on phylogenetic tree spaces are heuristic and may lead to
meaningless estimates [8].

A more direct method for simulating IID samples from a random variable
T with density f(·)(t) is the Rejection Sampler (RS) of von Neumann [15]. RS
can produce IID samples from the target density f(·)(t) := f(t)/(Nf) by only
evaluating the target shape f(t) — without knowing the normalising constant
Nf :=

∫
T
f(t)dt. Briefly, the idea behind RS is as follows: produce a point uni-

formly distributed in the (d+ 1)-dimensional region under an envelope function
that is strictly greater than or equal to the target shape and if this point is
below the target shape then accept its first d coordinates in T as a sample from
T , otherwise reject it and try again.

RS can produce samples from T ∼ f(·) according to Algorithm 1 when pro-
vided with (i) a fundamental sampler that can produce independent samples
from the Uniform[0, 1] random variable M with density 11 [0,1](m) : R �→ R, (ii)
a target shape f(t) : T �→ R, (iii) an envelope function ĝ(t) : T �→ R, such that,

ĝ(t) ≥ f(t) for all t ∈ T , (1)

(iv) a normalizing constant Nĝ :=
∫
T
ĝ(t)dt, (v) a proposal density g(t) :=

(Nĝ)
−1ĝ(t) over T from which independent samples can be drawn and finally

(vi) f(t) and ĝ(t) must be computable for any t ∈ T.
The random variable T , if generated by Algorithm 1, is distributed according

to f(·) (e.g. [17]). Let A(ĝ) be the probability that a point proposed according
to g gets accepted as an independent sample from f(·) through the envelope
function ĝ. Observe that the envelope-specific acceptance probability A(ĝ) is
the ratio of the integrals

A(ĝ) =
Nf

Nĝ
:=

∫
T
f(t) dt∫

T
ĝ(t) dt

,

An Auto-validating Rejection Sampler 145

Algorithm 1. von Neumann RS

input : (i) f ; (ii) samplers for V ∼ g and M ∼ 1[0,1]; (iii) ĝ; (iv) integer
MaxTrials;

output : (i) possibly one sample t from T ∼ f(·) and (ii) Trials

initialize: Trials ← 0; Success ← false; t ← ∅;

repeat // propose at most MaxTrials times until acceptance

v ← sample(g) ; // draw a sample v from RV V with density g

u ← ĝ(v) sample(1[0,1]); // draw a sample u from RV U with density 1[0,ĝ(v)]

if u ≤ f(v) then // accept the proposed v and flag Success

t ← v; Success ← true

end

Trials ← Trials +1 ; // track the number of proposal trials so far

until Trials ≥ MaxTrials or Success = true;
return t and Trials

and the probability distribution over the number of samples from g to obtain
one sample from f(·) is geometrically distributed with mean 1/A(ĝ) (e.g. [17]).

The crucial step in RS is the construction of an envelope function ĝ(t) that
is not only greater than the target shape f(t) := Nff(·)(t) at every t ∈ T ⊆ R

d,
but also easy to normalise and draw samples from. Moreover, a practical and
efficient envelope function has to be as close to the target shape as possible from
above in order to ensure a sufficiently high acceptance probability.

Moore rejection sampler (MRS) of [11, 12] uses the natural interval extension
of f over an adaptive partition of T to rigorously produce IID samples from the
posterior distribution over phylogenetic tree spaces. Informally, MRS [11, 12]
partitions the domain into boxes and uses interval analysis to rigorously enclose
the range of the target shape in each box; then it uses as envelope the piece-
wise constant function given by the upper bound of the range in each box.
More formally, the method employs the natural interval extension of the target
posterior shape f(t) : T �→ R to produce rigorous enclosures of the range of f over
each interval vector or box in an adaptive partition T := {t(1), t(2), . . . , t(|T|)} of
the tree space T = ∪it

(i). This partition is adaptively constructed by a priority
queue. The interval extended target shape maps boxes in T to intervals in R.
This image interval provides an upper bound for the global maximum and a
lower bound for the global minimum of f over each element of the partition of
T. This information is used to construct an envelope as a simple function over
the partition T. Using the Alias method [16] samples are proposed efficiently
from this normalized piece-wise constant function envelope for von Neumann
rejection sampling. Unlike many conventional samplers, each sample produced
by MRS is equivalent to a computer-assisted proof that it is drawn from the
desired target density.

146 R. Sainudiin

2 An Improved Approach

Suppose our target shape f : T → R, with T ⊆ R
d, is differentiable. Then the

centered form [7, 10] (of first order) of f over a box x ∈ T is

fc(x) := (f(c) + [∇f(x)](x− c)) ∩ f (x)

where, c := mid (x) is the midpoint of the box x, f(x) is the natural interval
extension of f over x and [∇f(x)] is the enclosure of the gradient of f over x.
For any box x ⊆ T it is well known that the centered form encloses the range,
i.e.,

f(x) := {f(x) : x ∈ x} ⊆ fc(x) ⊆ f(x) ,

and the range enclosure given by fc(x) is usually sharper than f(x) especially
as x shrinks. Instead of using the natural interval extension f(x) to enclose
f(x), the range of f over x, as done in [11, 12], our new approach employs the
centered form fc(x) to enclose the range of the target shape over each box x in
the partition of T.

We use gradient differentiation arithmetic using interval-extended automatic
differentiation (e.g. [9]) to obtain [∇f(x)], the enclosure of the gradient of f over
x. We use the implementation of this arithmetic in the grad arimodule of C-XSC
2.0, a C++ class library for extended scientific computing [6]. Using the centered
form to bound the range in MRS allows us to sample from the posterior density
over the space of phylogenetic quartets 100 times faster than using the natural
interval extension alone as in [11]. An open source C++ class library for MRS is
available from www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs under
the terms of the GNU general public license (GPL).

3 Phylogenetic Estimation

In this section we briefly review phylogenetic estimation as we will apply our
improved method to sample from challenging phylogenetic posterior densities.
Introduction to phylogenetics can be found in [14, 19]. Inferring the ancestral
relationship among a set of extant (presently surviving) species based on their
DNA sequences is a basic problem in phylogenetic estimation. A phylogenetic
tree relates the extant species represented by its leaf nodes with ancestral species
represented by its internal nodes. The topology or shape of the tree specifies the
order of speciation or branching events. The length of an edge (branch length)
connecting two nodes (species) in the phylogenetic tree represents the amount
of evolutionary time (divergence) between the two species as measured by the
differences in their DNA sequence due to mutation. One can obtain the likelihood
of a particular phylogenetic tree that relates the extant species of interest at
its leaves by superimposing a continuous time Markov chain model of DNA
mutation along the lengths of the branches on that tree. During the likelihood
computation, one needs to sum over all possible states of the DNA sequence at
the unobserved ancestral nodes. In [11] MRS was used to draw IID posterior

www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs

An Auto-validating Rejection Sampler 147

samples from small phylogenetic tree spaces of the same dimension (number of
branches) based on primate DNA sequence data. In [12] this was generalized
to the trans-dimensional setting where the number of branch length parameters
are allowed to vary between models of phylogenetic trees. However, only the
natural interval extension of the posterior density was used in [11] and [12] to
obtain upper bounds for the range before Moore rejection sampling. Here, we
will employ interval extended gradient differentiation arithmetic to obtain much
tighter enclosures of the posterior density, which is the product of a uniform
prior density and the likelihood function over phylogenetic trees.

Likelihood of a Phylogenetic Tree. Let d denote a homologous set of se-
quences of length v with character set A = {a1, a2, . . . , a|A|} from n taxa. We
think of d as an n × v matrix with entries from A. We are interested in esti-
mating the branch lengths and topologies of the tree underlying our observed
d. Let bk denote the number of branches and sk denote the number of nodes
of a tree with a specific topology or branching order labeled by k. Thus, for a
given topology label k, n labeled leaves and bk many branches, the labeled tree
kt is the topology-labeled vector of branch lengths (kt1, . . . ,

ktbk) contained in
the topology-labeled tree space k

T, i.e.,

k
T := {kt := (kt1, . . . ,

ktbk) ∈ R
bk
+ : kti > 0 for terminal branches} .

The tree space with |K| many topologies in the topology label set K can be
defined as follows:

K
T :=

⋃

k∈K

k
T .

An explicit model of sequence evolution is prescribed in order to obtain the
likelihood of observing data d at the leaf nodes as a function of the parameter
kt ∈ K

T for each topology label k ∈ K. Such a model prescribes Pai,aj
(t), the

probability of mutation from a character ai ∈ A to another character aj ∈ A

in time t. Using such a transition probability we may compute ℓq(
kt), the log-

likelihood of the data d at site q ∈ {1, . . . , v} or the q-th column of d, via the post-
order traversal over the labeled tree with branch lengths kt := (kt1,

kt2, . . . ,
ktbk).

This amounts to the sum-product Algorithm 2 [3] that associates with each node
h ∈ {1, . . . , sk} of kt subtending ℏ many descendants, a partial likelihood vector,

lh := (l
(a1)
h , l

(a2)
h , . . . , l

(a|A|)

h) ∈ R
|A|, and specifies the length of the branch leading

to its ancestor as kth.
Assuming independence across all v sites we obtain the likelihood function for

the given data d, by multiplying the site-specific likelihoods

ld(
kt) =

v∏

q=1

ld
�,q
(kt) . (2)

The maximum likelihood estimate is a point estimate (single best guess) of the
unknown phylogenetic tree on the basis of the observed data d and it is

argmax
kt∈KT

ld(
kt) .

148 R. Sainudiin

Algorithm 2. Likelihood by post-order traversal

input : (i) a labeled tree with branch lengths kt := (kt1,
kt2, . . . ,

ktbk), (ii)
transition probability Pai,aj (t) for any ai, aj ∈ A, (iii) stationary
distribution π(ai) over each character ai ∈ A, (iv) site pattern or data
d
�,q at site q

output : ld
�,q (

kt), the likelihood at site q with pattern d
�,q

initialize: For a leaf node h with observed character ai = dh,q at site q, set

l
(ai)
h = 1 and l

(aj)

h = 0 for all j �= i. For any internal node h, set
lh := (1, 1, . . . , 1).

recurse : compute lh for each sub-terminal node h, then those of their
ancestors recursively to finally compute lr for the root node r to obtain
the likelihood for site q,

ld
�,q (

kt) = lr =
∑

ai∈A

(π(ai) · l
(ai)
r) .

For an internal node h with descendants s1, s2, . . . , sℏ,

l
(ai)
h =

∑

j1,...,jℏ∈A

{ l(j1)s1
· Pai,j1(

kts1) · l(j2)s2 · Pai,j2(
kts2) . . . l

(jℏ)
sℏ ·Pai,jℏ(

ktsℏ) }.

The simplest probability models for character mutation are continuous time
Markov chains with finite state space A. We introduce the simplest such model
with just two characters as it is thought to well-represent the core problems in
phylogenetic estimation (see for e.g. [18]).

Posterior Density of a Tree. The posterior density f(·)(kt) conditional on
data d at tree kt is the normalized product of the likelihood ld(

kt) and the prior
density p(kt) over a given tree space K

T:

f(·)(kt) = ld(
kt)p(kt)∫

KT
ld(kt)p(kt) ∂(kt)

. (3)

We assume a uniform prior density over a large box or a union of large boxes in
a given tree space K

T. Typically, the sides of the box giving the range of branch
lengths, are extremely long, say, [0, 10] or [10−10, 10]. The branch lengths are
measured in units of expected number of DNA substitutions per site and there-
fore the support of our uniform prior density over K

T contains the biologically
relevant branch lengths. If K

T is a union of distinct topologies then we let our
prior be an equally weighted finite mixture of uniform densities over large boxes
in each topology. Naturally, other prior densities are possible especially in the
presence of additional information. We choose flat priors for the convenient in-
terpretation of the target posterior shape f(kt) = f(·)(kt)

∫
KT

ld(
kt)p(kt) ∂(kt) to

An Auto-validating Rejection Sampler 149

be the likelihood function in the absence of prior information beyond a compact
support specification.

Likelihood under Cavender-Farris-Neyman (CFN) Model. We now de-
scribe the simplest model for the evolution of binary sequences under a symmet-
ric transition matrix over all branches of a tree. This model has been used by
authors in various fields including molecular biology, information theory, oper-
ations research and statistical physics; for references see [2, 14]. This model is
referred to as the Cavender-Farris-Neyman (CFN) model in molecular biology,
although in other fields it has been referred to as ‘the on-off machine’, ‘symmetric
binary channel’ and the ‘symmetric two-state Poisson model’.

Under the CFN mutation model, only pyrimidines and purines, denoted re-
spectively by Y := {C, T} and R := {A, G}, are distinguished as evolutionary states
among the four nucleotides {A, G, C, T}, i.e. A = {Y, R}. Time t is measured by the
expected number of substitutions in this homogeneous continuous time Markov
chain with rate matrix:

Q =

(
−1 1
1 −1

)
,

and transition probability matrix P (t) = eQt :

P (t) =

(
1− (1− e−2t)/2 (1− e−2t)/2
(1− e−2t)/2 1− (1− e−2t)/2

)
.

Thus, the probability that Y mutates to R, or vice versa, in time t is a(t) :=
(1−e−2t)/2. The stationary distribution is uniform on A, i.e. π(R) = π(Y) = 1/2.

To get a concerete idea of the likelihood function let us consider the case when
there are only three taxa. Consider the unrooted tree space with a single topology
labeled 0 and three non-negative terminal branch lengths 0t = (0t1,

0t2,
0t3) ∈ R

3
+

as shown in Figure 1 (i). There are 23 = 8 possible site patterns, i.e. for each
site q ∈ {1, 2, . . . , v}, the q-th column of the data d, denoted by d

�,q, is one of
eight possibilities, numbered 0, 1, . . . , 7 for convenience:

d
�,q ∈

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7

R Y R Y R Y R Y

R , Y , R , Y , Y , R , Y , R
R Y Y R Y R R Y

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (4)

Given a multiple sequence alignment data d from 3 taxa at v homologous sites,
i.e. d ∈ {Y, R}3×v, Algorithm 2 can be used to compute the likelihood of any tree
0t ∈ 0

T as follows:

ld(
kt) =

v∏

q=1

ld
�,q
(kt) =

7∏

i=0

(
li(

kt)
)ci

, (5)

where li(
kt) is the likelihood of the the i-th site pattern as in (4) and ci is

the count of sites with pattern i. In fact, li(
kt) = P (i|kt) is the probability of

150 R. Sainudiin

observing site pattern i given topology label k and branch lengths t and similarly
ld(

kt) = P (d|kt). By using gradient differentiation arithmetic in Algorithm 2 we
can obtain the enclosure of ld(

kt), the likelihood of a box kt in the tree space
k
T, using the centered form. When there are four taxa we have three unrooted
topologies, each with five branch length parameters, as shown in Figure 1 (ii),
(iii) and (iv). In this case there are sixteen site patterns and we can similarly
obtain the likelihood for each topology using Algorithm 2.

✜
✜✜

❅
❅

✜
✜
✜❡

❡❡

✜
✜✜

❅
❅

✜
✜
✜❡

❡❡

✜
✜✜

❅
❅

✜
✜
✜❡

❡❡

❤❤❤❤❤

❆
❆
❆❆
✁
✁
✁

2t5

2t4

2t32t1

1 3

2
4

2t2

3t5

3t2

3t43t1

1 4

3
2

3t3

1t5

1t4

1t21t1

1 2

3
4

1t3

(ii) 1t (iii) 2t (iv) 3t(i) 0t

2

0t2

1

0t1

0t3

3

Fig. 1. The only topology of the unrooted tree with three taxa is shown in (i) and the
three unrooted trees on four taxa with five branch length parameters each are shown
by (ii), (iii) and (iv), respectively

4 Efficiency of MRS with Centered Form

For typical data sets on three taxa, including those in [12, Table 3], posterior
samples of size 105 using a partition of size 103 can be obtained about 100 times
faster by using the centered form as opposed to the natural interval extension of
the likelihood function. This speed-up is particularly significant for typical data
sets on four taxa as posterior samples of size 106 are available in about 30− 150
minutes as opposed to a few days.

We were able to produce 107 posterior samples in under two hours for all of
the synthetic data sets in [1]. These data sets are well-known in phylogenetics for
producing multiple maxima. The matrix plot of the first 104 posterior samples
in tree space 1

T is shown in Figure 2 for the following site pattern counts from
[1, Proof of Thm. 2]:

cYYYY = 1400, cRYYY = 1, cRYRR = 1, cRRYY = 300,

cRRYR = 1, cRYRY = 200, cYRRY = 100, cRRRY = 1 . (6)

The likelihood function for this data is known to attain the maximum at two
distinct points in 1

T. This is evident from the two clusters of posterior samples
in the matrix plot of Figure 2.

An Auto-validating Rejection Sampler 151

Fig. 2. The matrix plot of 104 posterior samples for the site pattern counts in (6)

5 Conclusion

In this paper, we use the centered form of the posterior density using gradient
differentiation arithmetic to get tighter range enclosures and thereby increase the
acceptance probability of the naive Moore rejection sampler [11, 12] that is only
based on the natural interval extension of the posterior density. When we apply
this centered form to produce IID samples from phylogenetic posterior densities
over three and four taxa tree spaces we observe a hundred-fold speedup. Higher-
order centered forms [10] in conjunction with constraint propagation [13] may
further improve the sampler efficiency enough to produce IID posterior samples
from five taxa phylogenetic trees with fifteen topologies in seven dimensions.

References

1. Chor, B., Hendy, M., Holland, B., Penny, D.: Multiple maxima of likelihood in
phylogenetic trees: An analytic approach. Mol. Biol. Evol. 17, 1529–1541 (2000)

2. Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the
Ising model. Advances in Applied Probability 10, 410–433 (2000)

3. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368–376 (1981)

4. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2003)

152 R. Sainudiin

5. Jones, G., Hobert, J.: Honest exploration of intractable probability distributions
via Markov chain Monte Carlo. Statistical Science 16(4), 312–334 (2001)

6. Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ library for extended scientific
computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Num.
Software with Result Verification. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg
(2004)

7. Moore, R.E.: Interval analysis. Prentice-Hall (1967)
8. Mossel, E., Vigoda, E.: Phylogenetic MCMC algorithms are misleading on mixtures

of trees. Science 309, 2207–2209 (2005)
9. Rall, L.B.: Automatic differentiation, techniques and applications. LNCS, vol. 120.

Springer, Heidelberg (1981)
10. Ratschek, H.: Centered forms. SIAM Journal on Numerical Analysis 17(5), 656–662

(1980)
11. Sainudiin, R., York, T.: Auto-validating von Neumann rejection sampling from

small phylogenetic tree spaces. Algorithms for Molecular Biology 4, 1 (2009)
12. Sainudiin, R., York, T.: An auto-validating, trans-dimensional, universal rejection

sampler for locally Lipschitz arithmetical expressions. Reliable Computing 18, 15–
54 (2013)

13. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization 33(4), 541–562 (2005)

14. Semple, C., Steel, M.: Phylogenetics. Oxford University Press (2003)
15. von Neumann, J.: Various techniques used in connection with random digits. In:

Von Neumann, J. (ed.) Collected Works, vol. V. Oxford University Press (1963)
16. Walker, A.J.: An efficient method for generating discrete random variables with

general distributions. ACM Trans. Math. Softw. 3, 253–256 (1977)
17. Williams, D.: Weighing the Odds: A Course in Probability and Statistics. Cam-

bridge University Press (2001)
18. Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings

of the Royal Soc. London B Biol. Sci. 267, 109–119 (2000)
19. Yang, Z.: Computational Molecular Evolution. Oxford University Press, UK (2006)

Graph Subdivision Methods

in Interval Global Optimization

Sergey P. Shary

Institute of Computational Technologies,
Novosibirsk, Russia

Abstract. The work advances a new class of global optimization meth-
ods, called graph subdivision methods, that are based on simultaneous
adaptive subdivision of both the function’s domain of definition and the
range of values. An application to interval linear systems is given.

Keywords: global optimization, interval analysis, adaptive subdivision.

1 Introduction

The subject matter of our paper is the problem of global optimization of a real-
valued function f : Rn ⊇ X → R over an axis-aligned rectangular box X (i. e.
over an interval vector):

find min
x∈X

f(x). (1)

The problem (1) is known to be (more or less) successfully solved by various
interval techniques [1, 3, 6], which enables one to reliably compute two-sided
bounds for both the optimum value and the argument it is attained at. The basis
of these methods is adaptive, according to the “branch-and-bound” strategy,
subdivision of the domain of the function to be minimized combined with the
interval evaluation of the ranges over the resulting subdomains.

The purpose of our work is to present a new promising interval approach for
the solution of the problem (1) that relies upon joint adaptive subdivision of
both the function’s domain of definition and its range of values. For some classes
of problems, the new approach is expected to turn out better than the traditional
techniques from [1, 3, 6] in either implementation flexibility or computational
efficacy and the quality of the results it produces. A shortened version of this
article has been previously published as [9].

2 Idea of the New Approach

Notice that any function f : R
n ⊇ X → R, being by the very definition a

special subset of the direct product Rn ×R, is an (n+1)-dimensional object. In
connection with it, we usually use the concept of the graph of the function f :

graph of f =
{
(x, t) ∈ R

n+1 | x ∈ R
n, t ∈ R, f(x) = t

}
.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 153
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_18, c© Springer International Publishing Switzerland 2014

154 S.P. Shary

However, the interval global optimization methods that we mentioned in Intro-
duction involve into active operation — adaptive subdivision — only the first
n coordinates of this set. The last (n + 1)-th coordinate of the function repre-
sented by its graph is processed in a substantially different manner, passively,
and the same is true for the overwhelming majority of the classical optimization
techniques. How could we correct the situation and what would be the result?

We start our consideration from the simplest case of a single-variable function
f : R ⊇ X → R, defined on a closed interval X, for which we have to solve the
problem (1). In the plane 0xy, let us construct a straight line parallel to the first
axis, with the equation y = l, where l is a constant. We can ascertain whether
the line intersects the graph of the function y = f(x) after having solved the
equation

f(x)− l = 0 (2)

on X or, alternatively, making sure that it is incompatible (unsolvable). As is
easily seen, the answer to the above question provides us with information on
the minimum (1) under computation: if the straight line y = l intersects the
graph of the function y = f(x), then

min
x∈X

f(x) ≤ l.

Moreover, if f(x) is continuous on X, then

min
x∈X

f(x) = min
{
l ∈ R | the equation f(x)− l = 0 is solvable

}
.

Therefore, varying the value of the “level” l and repeating the process of the
solution of the equation (2), we can substantially improve the estimate for the
sought-for minimum (1).

The procedure we have just described can be substantially modified by using
the ideas and methods of the interval analysis:

First, the interval methods make it possible to easily compute estimates for the
range of f over X from below and from above, which is necessary to deter-
mine the bounds of variation of the level l in the process of the correction of
the minimum.

Second, it makes sense to examine the intersection of the graph of the function
y = f(x) not with single lines, but with the whole bundles of lines parallel
to the 0x axis and defined by the equations y = l, where l is an interval in
R. We will be able thereby to estimate the global minimum (1) both from
below and from above, since minx∈X f(x) is not less than the minimum of
the left endpoints and not greater than the minimum of the right endpoints
of all the intervals l such that the bundle y = l intersects the graph of the
function y = f(x).

Third, the interval methods for the solution of equations (e.g. the interval New-
ton method and its modifications [1, 3, 5]) enable us, under very mild re-
quirement on the smoothness of f , to examine solvability of both the point
equation (2) and the interval equation f(x)− l = 0. The latter is understood
as the existence of some l ∈ l for which (2) is solvable.

Graph Subdivision Methods 155

x

y

y = f(x)

l

{

Fig. 1. Does the bundle of lines intersect the graph of the function?. . .

The answer produced by the interval methods may have one of the following
forms [1, 3, 5]:

1. The equation does not have solutions — unsolvable — within the interval
under consideration, i. e. 0 �∈ f(x)− l for any x ∈ X.

2. The equation has, with guarantee, a solution (or solutions) within the in-
terval under consideration, i. e. there certainly exists x⋆ ∈ X such that
f(x⋆)− l = 0 for at least one l ∈ l. We shall speak that the equation is just
solvable then.

3. Applying the solution procedure does not allow us to speak, with certainty,
that the equation is either has solutions or unsolvable on the given interval
X. In such cases, we shall speak that the equation is possibly solvable.

The third option is the most unfavorable algorithmically, but we should carefully
take it into account in our reasoning since this kind of uncertainty is quite actual
in computation often being the case when the equation (2) has multiple roots.
Notice also that the interval methods never lose roots and cannot at all output
the message “no solutions” if the equation really has them.

Finally, we will use the subdivision of the interval of the range of values instead
of the “varying the level” l. The overall interval version of the procedure for
finding the global minimum of the single-variable function f(x) over the interval
X can look as follows. It starts with computing a crude interval enclosure Y of
the range of values f(x) over X (for example, as the natural interval extension
of f on X). Further,

156 S.P. Shary

we bisect the interval Y to beget the subintervals Y ′ := [Y ′,mid Y] and
Y ′′ := [mid Y ,Y] , where mid Y = 1

2 (Y + Y) is the midpoint of Y ;

we check the solvability of the interval equations f(x) − Y ′ = 0 and f(x) −
Y ′′ = 0 :
– if the equations is unsolvable, then we discard the respective interval,

either Y ′ or Y ′′, and never consider it;
– solvability or possible solvability of the equation implies that either lower

or upper estimate of the global minimum can be corrected according to
the prescription formulated in the item “Second” of the list at page 154.

The above procedure correcting the estimate of the minimum (1) may be re-
peated with respect to its descendants Y ′ and Y ′′, after which the bisection-
correction ought to be carried out again and so on unless the computed lower
and upper bounds of the minimum are not sufficiently close to each other. Notice
that, to maintain guarantee of our computation, in such a process we have to
keep all the subintervals y of the initial interval Y for which the corresponding
equations f(x) − y = 0 are possibly solvable, since they may correspond to the
bundles having nonempty intersection with the graph.

3 Multidimensional Case

Theoretically, the computational scheme of the one-dimensional global optimiza-
tion algorithm we have developed in the preceding section is completely appli-
cable to the functions f(x) := f(x1, x2, . . . , xn) of several variables. The only
thing we should be able to do for that is to check intersection of the graph of
the function y = f(x) with the bundle of the hyperplanes y = l that are or-
thogonal to the 0y axis. Sometimes, that can be really done when we have a
powerful equations solver and are able to apply it easily. In particular, Semenov
[7] implemented a similar kind of procedure to refine the value of the optimum
in some problems.

However, in most cases the practical implementation of our idea encounters big
difficulties. The point is that, in the general multidimensional case, the solution
of an equation — inquiring into its solvability — is in no ways easier problem
than the global optimization. As opposed to the single-variable situation, we do
not have simple and efficient techniques such as the interval Newton method and
its modifications at our disposal. A way out of the difficulty may be subdivision
of the domain of definition of f — the box X — along some (but not all!)
selected coordinate directions, whose number and specific choice depend on the
problem under solution and its objective function.

The coordinate directions along which the function’s domain shall not be
subdivided will be referred to as mute, and first we consider the simplest meth-
ods having only one mute direction with the number μ ∈ {1, 2, . . . , n}. Let, in the

Graph Subdivision Methods 157

Table 1. The simplest graph subdivision method for global optimization * (one mute
variable)

Input

A box X ⊆ R
n and a function f : X → R. An accuracy ǫ > 0.

A number μ of the mute component, μ ∈ {1, 2, . . . , n}.

A method for checking the solvability of the single-variable interval equation
φ(Z, t) = 0 for φ and Z defined as (4)–(5).

Output

The lower y and upper y estimates, with the accuracy ǫ, for the global
minimum of the function f over the box X .

Algorithm

compute an enclosure Y of the range of f over X ;

assign Z := (X1, . . . ,Xμ−1,Xμ+1, . . . ,Xn,Y) ;

set z := Y and y := Y ;

initialize the working list L :=
{
(Z, z)

}
;

DO WHILE (y − z ≥ ǫ)

choose the component k of the box Z having the largest
length, i. e. such that wid Zk = max1≤i≤n wid Zi ;

bisect the box Z along the k-th coordinate to get the boxes Z′ and Z
′′

such that Z
′ := (Z1, . . . ,Zk−1, [Zk, mid Zk],Zk+1, . . . ,Zn) ,

Z
′′ := (Z1, . . . ,Zk−1, [mid Zk, Zk],Zk+1, . . . ,Zn) ;

if the equation φ(Z′, t) = 0 is solvable or possibly solvable on Xμ,
then assign z′ := Z

′
n and put the record (Z′, z′) into L so that

the second fields of the records in L increase ;

if the equation φ(Z′, t) = 0 is solvable on Xμ, set y := min{ y,Z
′

n} ;

if the equation φ(Z′′, t) = 0 is solvable or possibly solvable on Xμ,
then assign z′′ := Z

′′
n and put the record (Z′′, z′′) into L so that

the second fields of the records in L increase ;

if the equation φ(Z′′, t) = 0 is solvable on Xμ, set y := min{ y,Z
′′

n} ;

delete the former leading record (Z, z) from the list L ;

denote the new leading record of the list L by (Z, z) ;

END DO

y := z ;

158 S.P. Shary

space R
n+1, a line be given, parallel to the μ-th coordinate axis and having the

parametric equation ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r1,

...

xμ−1 = rμ−1,

xμ = t,

xμ+1 = rμ+1,

...

xn = rn,

y = l,

(3)

where t is a parameter varying over the entire of R and r1, . . . , rμ−1, rμ+1, . . . ,
rn, l are some constants. Similar to the one-dimensional case,

min
x∈X

f(x) = min

{
l ∈ R

∣∣∣ the line (3) defined by (3) intersects
the graph of the function y = f(x)

}

provided that f is continuous. Therefore, we can “feel about” the graph of the
function to be minimized by the one-dimensional lines, making use of the efficient
one-dimensional interval procedures (the famous interval Newton method and
modifications) to check whether the elementary “level equations” f(x) − l = 0
are solvable or not.

Turning to the interval optimization procedure, we designate

Z = (Z1, . . . ,Zn) := (X1, . . . ,Xμ−1,Xμ+1, . . . ,Xn,Y), (4)

φ(Z, t) := f(X1, . . . ,Xμ−1, t,Xμ+1, . . . ,Xn)− Y . (5)

The n-dimensional boxes Z represent the bundles of straight lines parallel to
the μ-th coordinate direction and “groping” the graph of the function y = f(x),
while the result of either intersection or nonintersection of the bundle with the
graph will be determined from the solution of the one-dimensional equation
φ(Z , t) = 0 on Xμ with respect to the unknown t. Keeping all the boxes that
have nonempty intersection with the graph is the guarantee that the sought-for
global minimum will not be lost.

To sum up, we organize the overall process of the successive improvement of
the estimates for the minimum (1) similar to what has been done in the
popular “branch-and-bound” based interval global optimization techniques
from [1, 3, 6]:

– we arrange all the boxes, produced from the subdivision of the initial
box Z, as a working list L;

– at each step of the algorithm, the bisected box is that from the list L
having the smallest left endpoint of the last component, i. e. the one
showing the smallest estimate of the range of f ;

– we bisect only the longest component in the box to be subdivided.

Graph Subdivision Methods 159

Additionally, the boxes of the form (4) that the list L consists of will be ordered
so that the values of the left endpoint of their last component (they represent
the ranges of values) increase. The first record of the working list is, as usual,
called leading for the current step of the algorithm. The overall pseudocode of
the new method that we are going to call graph subdivision method is given in
Table 1, where wid means the width of an interval.

Coming up next is a more general situation when s (1 ≤ s ≤ n) coordinate
directions are declared as mute, and without loss in generality we can take the
numbers of these directions as 1, 2, . . . , s. Let, in the space R

n+1, a plane be
defined, parallel to the mute coordinate directions and thus determined by the
equation ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = t1,
...

xs−1 = ts−1,

xs = ts,

xs+1 = rs+1,
...

xn = rn,

y = l,

(6)

where t1, . . . , ts are parameters varying over the whole of the real axis and
rs+1, . . . , rn, l are some constants. Similar to the one-dimensional case, if f is
continuous on X,

min
x∈X

f(x) = min

{
l ∈ R

∣∣∣ the plane defined by (6) intersects
the graph of the function y = f(x)

}
.

We denote

Z = (Z1, . . . ,Zn−s+1) := (Xs+1, . . . ,Xn,Y), (7)

ϕ(Z, t) := f(t1, . . . , ts,Xs+1, . . . ,Xn)− Y , (8)

so as the (n−s)-dimensional boxes Z are bundles of planes of the form (6), while
either the intersection or nonintersection of such bundles with the graph will be
determined from the result of the solution of the interval equation φ(Z , t) = 0
with respect to t = (t1, t2, . . . , ts). Therefore, we can “grope” the graph of
the objective function by the planes (6) provided that we are able to effectively
check the solvability of these equations of s unknowns.

Finally, we arrange the overall process of the successive improvement of the
estimates for the global minimum according to the “branch-and-bound” strategy,
and the pseudocode of the resulting new algorithm presented in Table 2 is quite
similar to the previous case of only one mute direction.

The two above pseudocodes are evidently intended for the computation of
the function’s minimum (1) only, but a straightforward modification may adjust
the algorithm in order to also find the values of the variables where f takes its

160 S.P. Shary

Table 2. The simplest graph subdivision method for global optimization * (several
mute variables)

Input

A box X ⊆ R
n and a function f : X → R. An accuracy ǫ > 0.

A method for checking the solvability of the interval equation ϕ(Z, t) = 0
for t = (t1, . . . , ts) and ϕ, Z, defined in (7)–(8).

Output

The lower y and upper y estimates, with the accuracy ǫ, for the global
minimum of the function f over the box X .

Algorithm

compute an enclosure Y of the range of f over X ;

assign Z := (Xs+1, . . . ,Xn,Y) ;

set z := Y and y := Y ;

initialize the working list L :=
{
(Z, z)

}
;

DO WHILE (y − z ≥ ǫ)

choose the component k of the box Z having the largest
length, i. e. such that wid Zk = max1≤i≤(n−s+1) wid Zi ;

bisect the box Z along the k-th coordinate to half-boxes Z ′ and Z
′′

such that Z
′ := (Z1, . . . ,Zk−1, [Zk, mid Zk],Zk+1, . . . ,Zn−s+1),

Z
′′ := (Z1, . . . ,Zk−1, [mid Zk, Zk],Zk+1, . . . ,Zn−s+1) ;

if the equation φ(Z′, t) = 0 on (X1,X2, . . . ,Xs) is solvable or possibly
solvable, then assign z′ := Z

′
n−s+1 and put the record (Z ′, z′) into L

so that the second fields of the records in L increase ;

if the equation φ(Z′, t) = 0 on (X1,X2, . . . ,Xs) is solvable, then

set y := min{ y,Z
′

n−s+1} ;

if the equation φ(Z′′, t) = 0 on (X1,X2, . . . ,Xs) is solvable or possibly
solvable, then assign z′′ := Z

′′
n−s+1 and put the record (Z′′, z′′) into L

so that the second fields of the records in L increase ;

if the equation φ(Z′′, t) = 0 on (X1,X2, . . . ,Xs) is solvable, then

set y := min{ y,Z
′′

n−s+1} ;

delete the former leading record (Z, z) from the list L ;

denote the new leading record of the list L by (Z, z) ;

END DO

y := z ;

Graph Subdivision Methods 161

f
(x

1
,x

2
)

0x1
0x2

Fig. 2. A global minimization process via graph subdivision technique for an objective
function f : R2 → R

global minimums. Namely, we should trace and store all the roots (either certain
or possible) of the “level equations” φ(Z, t) = 0 apart from the information
on their solvability. This will require extending the records that compose the
working list L to incorporate the root enclosures into them.

What can be said about the convergence of the graph subdivision methods?
In the traditional interval global optimization algorithms from [1, 3, 6], the
diameters of the leading boxes are well-known to tend to zero, and this should be
also valid for the graph subdivision methods inasmuch as their logical structure
coincides with that of the traditional methods. Therefore, the “level equations”
φ(Z , t) = 0 defined by (5) and (8) tend to point (noninterval) equations. If the
objective function f is such that the roots of φ(Z, t) = 0 depend continuously
on the parameter Z, then we can expect that the graph subdivision method
converges to global optimums.

Although the graph subdivision methods may appear unnecessarily complex in
comparison with the traditional (“direct”) interval global optimization methods
based on adaptive subdivision of the domain of the objective function, there
exists a large realm of problems where both approaches have equal practicalities.
These are optimization problems with implicitly defined objective functions. In
such problems, evaluation of the objective fucntion requires solving an equation
or a system of equations anyway.

Yet another idea that can make the graph subdivision methods much more
attractive and practical is the use of constraint propagation techniques for the

162 S.P. Shary

solution of ”level equations”. This is one of the main reasons why the article is
published among this collection of constraint propagation papers.

The simplest graph subdivision methods have been implemented using Sun
Microsystems’ Fortran 95 (also known as FORTE Fortran) and, for a number
of the standard test problems, demonstrated very high sharpness of enclosing
the global optimums, although achieved at the price of relatively large labor
consumption. Much is to be done to modify and tune up the new idea.

4 Gradient Tests

We use the term “gradient tests” to denote procedures that involve gradient of
the objective function and help to discard unpromising boxes from the working
list maintained by our algorithm.

If f is a continuously differentiable function then its gradient vanishes in
the global minimum point which are interior in the domain X. Therefore, if an
enclosure of the gradient over a box x lying in the interior of X does not contain
zero, then there are no extrema within x. Deleting the box x from the domain
of the objective function (and the corresponding record from the working list of
the algorithm) will not affect the results of the global optimization process.

If the subbox x is not interior for X, then we cannot discard it so simlply.
Although the interior of x really cannot have extremums of f , one need to
additionally investigate the part of x that shows up the boundary of the entire
domain box X. The techniques using gradients enclosures are very popular in
the interval global optimization methods (see [1, 3, 6]), but application of the
above idea in the graph subdivision methods has specific character.

In the graph subdivision methods, we do not subdivide the domain along
the mute coordinate directions. As the result, all the boxes from the working
list intersect the boundary of the initial domain X and never become inte-
rior subboxes. We have to take this fact into account when processing new
sub-boxes during the execution of the algorithm. Let, for example, the algo-
rithm of Table 1, with the mute direction μ, has generated a record (Z, z),
Z = (x1, . . . ,xμ−1,xμ+1, . . . ,xn,y), such that within the box (x1, . . . , xμ−1,
Xμ, xμ+1, . . . , xn) ⊆ X the gradient of the objective function does not contain
zero. Hence, the sought-for extremum can be attained only at the points from
the box (x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn) that goes out to the boundary ∂X of
the initial box X, i. e. they are in the intersection

X ∩ (x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn). (9)

Therefore, at best we have to retain for further processing only two (n − 1)-
dimensional subboxes of X, i. e.

(x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn),

(x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn),

Graph Subdivision Methods 163

obtained from (x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn) by throwing away the points of
the interior of X, and at worst we have to retain (2n − 1) or even 2n faces of
the intersection box (9) (in case (x1, . . . ,xμ−1,Xμ,xμ+1, . . . ,xn) = X).

The same happens to the graph subdivision methods with several mute vari-
ables, with the sole difference that the number of pieces of the boundary that
we have to retain may only increase.

To sum up, in the graph subdivision methods, we never discard the subboxes
entirely, but always retain parts of their boundaries. In the traditional “direct”
interval global optimization methods, whole subboxes may be in the interior of
the initial domain X, and we entirely discard them.

5 Application to Interval Band Linear Systems

The most interesting implementations of the idea of graph subdivision methods
are those where one can take several mute variables and thus substantially de-
screase the dimension of the argument of the original optimization problem. As
a practical example of such an application, we consider the problem of outer
component-wise estimation of the solution set to interval linear systems with
band matrices.

Solution set to the interval linear system

Ax = b (10)

with an interval m× n-matrix A and interval m-vector b is the set

Ξ(A, b) = { x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b) },

formed by all solutions to the point linear systems Ax = b for A ∈ A and
b ∈ b. Structure of the solution set is quite complex, and usually we confine
ourselves to the problems of approximate description (estimation) of the solution
set according to this or that sense. For simplicity, we consider only square systems
of equations with an n× n-matrix A.

An important problem arising in connection with the interval linear systems
(10) is that of computing outer component-wise estimates of the solution set:

For an interval system of linear algebraic equations Ax = b

find the estimates for min{ xν | x ∈ Ξ(A, b) } from below
and for max{ xν | x ∈ Ξ(A, b) } from above, ν = 1, 2, . . . , n.

(11)

When speaking of the “solution of interval linear systems of equations” one
often means the problem (11). In our work, we fix the index ν and concentrate
on computing only min{ xν | x ∈ Ξ(A, b) }, since

max{ xν | x ∈ Ξ(A, b) } = −min{ xν | x ∈ Ξ(A,−b) }.

The matrix A = (aij) (either point or interval) is called band, if there exists
nonnegative integers p and q, such that aij = 0 for j > i+ p and i > j+ q. Then

164 S.P. Shary

✲

✻

✚
✚
✚
✚
✚
✚
✚✚

✓
✓
✓
✓
✓
✓
✓✓

✚
✚
✚
✚
✚
✚
✚✚

✓
✓
✓
✓
✓
✓
✓✓

❍❍❍❍

❆
❆
❆
❆

❍❍❍❍
❆
❆
❆
❆

x1

x2

l

Fig. 3. Solution set and crossing it by a line

the value of (p+ q+1) is the width of the band in the matrix A. Below, we take
the assumption that the band is not “too wide”, namely

p+ q ≤ n

2
. (12)

When solving the problem (11), we suppose that an interval box V is known
that contains the solution set estimated, that is, V ⊇ Ξ(A, b). The box V can
be found by any of the methods described e. g. in [3–5], and its size is not a big
part of the entire technique.

The fact of fundamental importance is that the problem (11) of outer interval
estimation of the solution set is, in essense, an optimization problem. The cor-
responding reformulation can be given, for example, in the following way [8]. If
ν ∈ { 1, 2, . . . , n } is a fixed index, then, through l, we denote a straight line in
R

n that is parallel to the ν-th coordinate axis and has the parametric equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r1,
...

xν−1 = rν−1,
xν = t ,

xν+1 = rν+1,
...

xn = rn,

(13)

Graph Subdivision Methods 165

original matrix of the system

0

0 ⇒

0

0

⎧⎨⎩ q

{

p

⇐

0

0 ⇒
0

0
splitted “doubly triangular” matrix

Fig. 4. How the band matrix is transformed

166 S.P. Shary

where t is a real parameter. Every such line is entirely determined by an (n−1)-
dimensional vector r = (r1, . . . , rν−1, rν+1, . . . , rn)

⊤, and, to explicitly show its
parameters, we will designate this line as l(r). Also, let

Ω(r) = min { xν | x ∈ Ξ(A, b) ∩ l(r) }
be the smallest value of the ν-th coordinate of the points from the intersection
of l(r) with the solution set (10) (see Fig. 3). If Ξ(A, b) ∩ l(r) = ∅, then we set
Ω(r) = +∞. Then we have

min { xν | x ∈ Ξ(A, b) } = min

{
xν

∣∣∣ x ∈
⋃

l∩V �=∅

(
Ξ(A, b) ∩ l

) }

= min
{
min{ xν | x ∈ Ξ(A, b) ∩ l(r)}

∣∣ r ∈ (V 1, . . . ,V ν−1,V ν+1, . . . ,V n)
}

= min { Ω(r) | r ∈ (V 1, . . . ,V ν−1,V ν+1, . . . ,V n) }, (14)

i. e. finding the ν-the coordinate estimate of the points from the solution set
Ξ(A, b) reduces to optimization of the objective function Ω(r) over an (n− 1)-
dimensional interval box.

The main idea of the section is to apply the technique developed in §3 to
the solution of the optimization problem (14). If, in doing this, we take s mute
coordinate directions, then examining, at each algorithm step, intersections of
the bundles of s-dimensional planes with the solution set will require solving
interval n × s-systems of linear equations whose matrices are made up of the
columns of A having the numbers of mute components.

Specifically, we employ the general scheme of the graph subdivision methods
when the mute variables have the indices p + 1, . . . , n − q, so that there are
(n − p − q) of them in total. Let us consider in detail the situation when the
number ν of estimated component satisfies 1 ≤ ν ≤ p or n− q + 1 ≤ ν ≤ n.

If the first variables x1, x2, . . . , xp and the last variables xn−q, . . . , xn are
assigned specific values, then the initial band system (10) turns into an interval
linear system with an m×(n−p−q)-matrix that has a special form. Namely, the
boundaries of the band of its nonzero elements are diagonals of the new matrix
(see Fig. 3). Hence, such a matrix is represented as the union of two (overlap-
ping) triangular matrices, lower and upper ones. Each of the resulting triangular
interval linear systems can be solved by either forward or back substitution re-
spectively, and then the solvability of the entire interval n× (n− p− q)-system
can be revealed through intersecting of the enclosures for the solution sets to the
upper and lower susbsystems obtained.

Therefore, the dimension of the global optimization problem (14) that we have
to solve in connection with outer estimation of the solution set dicreases to just
(p+ q), no matter what is the dimension of the initial system. For example, for
tridiagonal interval linear systems this amounts to only 2.

In Tables 3–4, the overall algorithm for solving interval linear band systems
is presented. Table 3 shows how checking solvability of the interval subsystems

Graph Subdivision Methods 167

Table 3. Checking solvability of subsystem generated by the algorithm of Table 4

DO i = 1 TO n

b̆i(Z) := bi −

p∑

j=1

aijZj −

p+q∑

j=p+1

ai,j+n−p−qZj

END DO

Gp+1 := b̆1(Z) /a1,p+1 ;

DO i = p+ 2 TO n− q

Gi :=

(

b̃i−p(Z)−
i−1∑

j=p+1

ai−p,jGj

)/
ai−p,i

END DO

Hn−q := b̆n(Z) /an,n−q ;

DO i = n− q − 1 DOWNTO p+ 1

Hi :=

(

b̃i+q(Z)−

n−q∑

j=i+1

ai+q,jHj

)/
ai+q,i

END DO

IF (G ∩H �= ∅) THEN

the system Ăx = b̆(Z) is solvable

ELSE

the system Ăx = b̆(Z) is not solvable

END IF

can be organized, while Table 4 gives the general algorithm. In Tables 3–4, we

denote Z =
(
Z1,Z2, . . . ,Zp+q

)⊤ ∈ IR
p+q, and

Ă =
(
aij

)n−q

j=p+1
, b̆(Z) =

(
b̆1(Z), b̆2(Z), . . . , b̆n(Z)

)⊤
,

b̆i(Z) = bi −
p∑

j=1

aijZj −
p+q∑

j=p+1

ai,j+n−p−qZj .

The interval linear system Ăx = b̆(Z) is an analogue of the “level equation” from
§§2–3. To examine its solvability, we split it as shown in Fig. 4, and then compute
the interval vectors G = (G1,G2, . . . ,Gn)

⊤ and H = (H1,H2, . . . ,Hn)
⊤,

interval hulls of the solution sets to the lower and upper triangular interval
linear systems obtained from Ăx = b̆(Z). In the pseudocode of Table 3, G and
H are found by forward substitution and back substitution respectively.

Of course, in such testing solvability of the interval system, we allow some
coarsening, since we intersect not the solution sets of the subsystems, but their

168 S.P. Shary

Table 4. Estimating the solution set for band interval linear systems

Input

An interval linear system Ax = b with a band matrix A.

A number ν of the estimated component of the solution set.

An interval enclosure V ⊇ Ξ(A, b) for the solution set estimated.

Output

An estimate y for min{xν | x ∈ Ξ(A, b) } from below.

Algorithm

assign Z := (V 1, . . . ,V p,V n−q+1, . . . ,V n) ;

set z := V ν ;

initialize the working list L :=
{
(Z, z)

}
;

DO WHILE (the box Z is wide)

choose the component k along which the box Z has the largest
width, i. e. wid Zk = max1≤i≤(p+q) wid Zi ;

bisect the box Z along its k-th coordinate direction to such
boxes Z ′ and Z

′′ that
Z

′ := (Z1, . . . ,Zk−1, [Zk, mid Zk],Zk+1, . . . ,Zp+q) ,

Z
′′ := (Z1, . . . ,Zk−1, [mid Zk, Zk],Zk+1, . . . ,Zp+q) ;

if the system Ăx = b̆(Z ′) is solvable, then assign z′ := Z
′
ν

and put the pair (Z′, z′) into L so that the second field
of the pairs in L increase ;

if the system Ăx = b̆(Z ′′) is solvable, then assign z′′ := Z
′′
ν

and put the pair (Z′′, z′′) into L so that the second field
of the pairs in L increase ;

delete the former leading box (Z, z) from the list L ;

denote the current leading box of the list L through (Z, z) ;

END DO

y := z ;

interval hulls (i. e., the tightest enclosures), that is, wider sets. Let us consider,
as an example, the interval linear system

(
1 1

0 1

)
·
(
x1

x2

)
=

(
[−1, 1]

[−1, 1]

)
. (15)

Its matrix is an upper triangular point matrix, and the solution set is depicted at
Fig. 5. As the result, we can compute an estimate of the solution set to the band
interval linear system which is not optimal. But our computational experience

Graph Subdivision Methods 169

✲

✻

x1

x2

−1 1

−2

2

�
�
�
�
�

�
�
�
�
�

Fig. 5. Solution set for the system (15) and its interval hull

shows that they are quite sharp providing that the band width is small and
intervals in the matrix are not too wide.

As distinct from the graph subdivision methods from §§3–4 designed for the
solution of general optimization problems, we do not have to involve interval
bounds on the mute variables, that is, V p+1, V p+2, . . . , V n−q. The point is
that the procedure for testing solvability of the “level equations” used in the
algorithm (Table 3) can spare these values. Hence, initially we suffice to know
not the entire box V ⊇ Ξ(A, b), but only its components V 1, . . . , V p and
V n−q+1, . . . , V n.

There is room for further improvement of our algorithm through taking into
account fine geometric structure of the solution set to triangular interval linear
systems. For example, we can use prisms for enclosing them rather than axis
aligned boxes. This will require additional efforts to reveal their intersection,
but results in sharper estimates of the solution set.

References

1. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

2. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hen-
tenryck, P.: Standardized Notation in Interval Analysis. Computational Technolo-
gies 15(1), 7–13 (2010)

3. Kearfott, R.B.: Rigorous Global Search. Continuous Problems. Kluwer, Dordrecht
(1996)

4. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

5. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

170 S.P. Shary

6. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis
Horwood, Halsted Press, Chichester, New York (1988)

7. Semenov, A.L.: Solving optimization problems with help of the UniCalc solver. In:
Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, pp.
211–225. Kluwer, Dordrecht (1996)

8. Shary, S.P.: On Optimal Solution of Interval Linear Equations. SIAM Journal on
Numerical Analysis 32(2), 610–630 (1995)

9. Shary, S.P.: A Surprising Approach in Interval Global Optimization. Reliable Com-
puting 7(6), 497–505 (2001)

An Extended BDI-Based Model for Human

Decision-Making and Social Behavior:
Various Applications

Young-Jun Son

Systems and Industrial Engineering
The University of Arizona
Tucson, AZ 85721, USA
son@sie.arizona.edu

Abstract. An extended Belief-Desire-Intention (BDI) modeling frame-
work has been developed and refined by the author’s research group in
the last decade to mimic realistic human decision-making and social be-
haviors. The goal of this manuscript is to discuss various applications that
the proposed modeling framework has been applied, such as 1) evacuation
behaviors under a terrorist bomb attack, 2) pedestrian behaviors in the
Chicago Loop area, 3) workforce assignment in a multi-organizational so-
cial network for community-based software development, 4) pedestrian
behaviors in a shopping mall, 5) evacuation behaviors under fire in a
factory, and 6) error detection and resolution by people in a complex
manufacturing facility.

Keywords: BDI, human decision behavior, planning, Bayesian belief
network.

1 Introduction

The goal of this manuscript is to describe an extended Belief-Desire-Intention
(BDI) modeling framework [4] and [5] (see Fig. 1(a)) that has been developed
and refined by the author’s research group in the last decade for human decision-
making and social behavior, effectively integrating engineering-, psychology-,
and economics-based models. This manuscript is a reproduced version of the
extended abstract that was contained in the Proceedings of CoProd’11.

BDI [1, 6] is a model of the human reasoning process, where a person’s mental
state is characterized by three major components: beliefs, desires, and intentions.
Later, Zhao and Son [10] extended the decision-making module (corresponding
to the intention component) of the original BDI model to include three detailed
submodules: (1) a deliberator, (2) a real-time planner, and (3) a decision executor
in the decision-making (intention) module, where this extension was necessary
to accommodate both the decision-making and decision-planning functions in
a unified framework. In addition, an emotional module containing a confidence
index and time pressure also has been appended to represent these aspects of

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 171
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_19, c© Springer International Publishing Switzerland 2014

172 Y.-J. Son

human psychology. The emotional module affects and is affected by the three
other mental modules, that is, beliefs, desires, and decision making. While Zhao
and Son [10] provided a conceptual extension of the BDI model, Lee and Son [4]
later proposed actual algorithms and techniques that have been employed and
further developed to realize submodules for the extended model.

The submodules of the extended BDI modeling framework proposed by Lee
and Son [4, 5] are based on a Bayesian Belief Network (BBN), Decision-Field-
Theory (DFT), and a Probabilistic Depth-First Search (PDFS) technique, and a
key novelty of the framework is its ability to represent both the human decision-
making and decision-planning functions in a unified framework.

The extended BDI modeling framework mentioned in the previous in the
previous paragraphs has been sucessfully demonstrated for a human’s behaviors
under various applications, such as 1) evacuation behaviors under a terrorist
bomb attack (see Fig. 1(b)), 2) workforce assignment in a multi-organizational
social network for community-based software development (see Fig. 1(c)), 3)
pedestrian behaviors in the Chicago Loop area (see Fig. 1(d)), 4) pedestrian
behaviors in a shopping mall (see Fig. 1(e)), 5) evacuation behaviors under fire in
a factory (see Fig. 1(f)), 6) error detection and resolution by people in a complex
manufacturing facility, and 7) driver’s behaviors in path/route selection [3].

To mimic realistic human behaviors, attributes of the extended BDI frame-
work are reverse-engineered from human-in-the-loop experiments conducted in
the Cave Automatic Virtual Environment (CAVE) or other simulated settings
(e.g. software simulator running in a desktop or driving simulators). For emer-
gency evacuation scenario as an example [4, 5], each subject who participated in
the experiment was asked to evaluate the risk and the evacuation time of three
available paths (i.e., right, forward, and left) depending on the various environ-
mental observations (i.e., fire, smoke, police, and crowd) at each intersection.
Also, each subject was asked to select one of the three available paths. The data
collected on the relationship between the environment and the subject’s eval-
uation was used to construct a BBN in the form of a conditional probability
distribution. The constructed BBN infers 1) subjective evaluations for each at-
tribute (e.g., risk and time) of each given option and 2) subjective weights of
attention corresponding to each attribute, and the DFT calculates preference
values of the options based on those matrices of evaluations and weights.

After each agent model conforming to the extended BDI-framework is cali-
brated with the data collected from the human-in-the loop experiment, agents
together with the simulated environment (e.g. buildings, fire, smoke) are im-
plemented. In our work, AnyLogic (http://www.anylogic.com/) and Repast
(http://repast.sourceforge.net/) have been mainly used for those various applica-
tions depicted in Fig. 1. For each of the considered applications, the constructed
simulation has been then used to test the impact of various control factors (e.g.
demographics, number of police officers, information sharing via speakers for
the case of emergency evacuation) on the performance of interest (e.g. average
evacuation time, percentage of casualties).

An Extended BDI-Based Model 173

Fig. 1. (a) Components of an extended BDI framework [4, 5]; (b) Snapshot of emer-
gency evacuation simulation [5]; (c) Snapshot of multi-organizational social network
simulation [2]; (d) Snapshot of pedestrian behaviors in Chicago Loop area [9]; (e)
Snapshot of pedestrian behaviors in a shopping mall [8]; (f) Snapshot of evacuation
behaviors under fire in factory [7]

Later, the author’s group has been further refining their extended BDI
framework to address learning/forgetting of human as well as major human in-
teractions (e.g. avoidance, accommodation, compromise, collaboration and com-
petition). A preliminary work is available in [4], which is being researched further
by the author’s group.

174 Y.-J. Son

References

1. Bratman, M.: Intention, Plans, and Practical Reason. CSLI Publications (1987)
2. Celik, N., Lee, S., Xi, H., Mazhari, E., Son, Y.: An Integrated Decision Modeling

Framework for Multi-Organ. Social Network Management. In: Proceedings of the
Industrial Engineering Research Conference, IERC 2010, Cancun, Mexico, June
5-9 (2010)

3. Kim, S., Xi, H., Mungle, S., Son, Y.: Modeling Human Interactions with Learn-
ing under the Extended Belief-Desire-Intention Framework. In: Proceedings of the
Industrial and Systems Engineering Research Conference, ISERC 2012, Orlando,
Florida, May 19-23 (2012)

4. Lee, S., Son, Y.: Integrated human decision making model under belief-desire-
intention framework for crowd simulation. In: Proceedings of the 2008 Winter
Simulation Conference WSC 2008, Miami, Florida, December 7-10, pp. 886–894.
IEEE, New Jersey (2008)

5. Lee, S., Son, Y., Jin, J.: Integrated Human Decision Making and Planning Model
under Extended Belief-Desire-Intention Framework. ACM Transactions on Model-
ing and Computer Simulation 20(4), 23(1)–23(24) (2010)

6. Rao, A., Georgeff, M.: Decision procedures for BDI logics. Journal of Logic Com-
puting 8, 293–343 (1998)

7. Vasudevan, K., Son, Y.: Concurrent Consideration of Evacuation Safety and Pro-
ductivity in Manufacturing Facility Planning using Multi-Paradigm Simulations.
Computers and Industrial Engineering 61, 1135–1148 (2011)

8. Xi, H., Lee, S., Son, Y.: Chapter 4: An Integrated Pedestrian Behavior Model
Based on Extended Decision Field Theory and Social Force Model. In: Rothrock,
L., Narayanan, S. (eds.) Human-in-the-Loop Simulation: Methods and Practice.
Springer (2011)

9. Xi, H., Son, Y.: Two-Level Modeling Framework for Pedestrian Route Choice and
Walking Behaviors. Simulation Modelling Practice and Theory 22, 28–46 (2012)

10. Zhao, X., Son, Y.: BDI-based human decision-making model in automated manu-
facturing systems. International Journal of Modeling and Simulation 28, 347–356
(2008)

Why Curvature in L-Curve:

Combining Soft Constraints

Uram Anibal Sosa Aguirre, Martine Ceberio, and Vladik Kreinovich

Computational Sciences Program and Department of Computer Science
University of Texas, El Paso, TX 79968, USA

usosaaguirre@miners.utep.edu, {mceberio,vladik}@utep.edu

Abstract. In solving inverse problems, one of the successful methods of
determining the appropriate value of the regularization parameter is the
L-curve method of combining the corresponding soft constraints, when we
plot the curve describing the dependence of the logarithm x of the mean
square difference on the logarithm y of the mean square non-smoothness,
and select a point on this curve at which the curvature is the largest. This
method is empirically successful, but from the theoretical viewpoint, it
is not clear why we should use curvature and not some other criterion. In
this paper, we show that reasonable scale-invariance requirements lead
to curvature and its generalizations.

Keywords: soft constraints, inverse problems, regularization, L-curve,
curvature.

1 Formulation of the Problem

Inverse Problem: A Brief Reminder. In science and engineering, we are inter-
ested in the state of the world, i.e., in the values of different physical quantities
that characterize this state. Some of these quantities we can directly measure,
but many quantities are difficult or even impossible to measure directly.

For example, in geophysics, we are interested in the density and other prop-
erties of the material at different depths and different locations. In principle, it
is possible to drill a borehole and directly measure these properties, but this is
a very expensive procedure, and for larger depths, the drilling is not possible at
all. To find the values of such difficult-to-measure quantities q = (q1, . . . , qn), we
measure the values of the auxiliary quantities a = (a1, . . . , am) that are related
to qi by a known dependence ai = fi(q1, . . . , qn), and then reconstruct the values
qj from these measurement results.

In the idealized situation when measurements are absolutely accurate, we
can then reconstruct the desired values qj from the system of m equations
a1 = f1(q1, . . . , qn), . . . , am = fm(q1, . . . , qn). In real life, measurements
are never 100% accurate, so the measured values ai are only approximately
equal to fi(q1, . . . , qn). Usually, it is assumed that the measurement errors
ai − fi(q1, . . . , qn) are independent normally distributed random variables with
0 means and the same variance; see, e.g. [3]. In this case, the constraint that the

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 175
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_20, c© Springer International Publishing Switzerland 2014

176 U.A.S. Aguirre, M. Ceberio, and V. Kreinovich

values qj are consistent with the observations ai can be described as a constraint

s ≤ s0 on the sum s
def
=

m∑
i=1

(ai − fi(q1, . . . , qn))
2. The value s0 depends on the

confidence level: the larger s0, the more confident we are that this constraint
will be satisfied. For each value x0, the constraint x ≤ x0 is a soft constraint:
there is a certain probability that this constraint will be violated.

Often, this constraint is described in a logarithmic scale, as x ≤ x0, where

x
def
= ln(s).

Regularization: How to Take into Account Additional Constraints. Often, there
are additional constraints on qj . Usually, the values qj are more regular than ran-
domly selected values. Methods for taking these additional regularity constraints
into account are known as regularization methods; see, e.g., [4].

For example, in geophysics, the density values at nearby locations are usually
close to each other. In other words, the differences qj − qj′ corresponding to
nearby locations should be small.

This constraint can also be described in statistical terms: that there is a prior
distribution on the set of all the tuples, in which all the differences qj − qj′ are
independent and normally distributed with 0 mean and the same variance. In this
case, the constraint that the values qj are consistent with this prior distribution

can be also described as a constraint t ≤ t0 on the sum t
def
=

∑
(j,j′)

(qj − qj′)
2.

This constraint is also often described in a logarithmic space, as y ≤ y0, where

y
def
= ln(t).
We can combine the two constraints, e.g., by using the Bayesian statistics

to combine the prior distribution (describing the regularity of the actual val-
ues) and the distribution corresponding to measurement uncertainty. For the
resulting posterior distribution, the Maximum Likelihood method of determin-
ing the optimal values of the quantities qj is then equivalent to minimizing the
sum s + λ · t, for some coefficient λ depending on the variance of the prior
distribution.

There are also other more complex regularization techniques; see [4].

How to Determine a Regularization Parameter. As we have mentioned, the ac-
tual value of the regularization parameter depends on the prior distribution and
is, therefore, reasonably subjective. It is therefore desirable to find the value of
this parameter based on the data.

For each value of the parameter λ, we can find the corresponding solution
qj(λ), and, based on this solution, compute the values x(λ) and y(λ) of the
quantities x and y. These two values represent a point on a plane. Points cor-
responding to different values λ form a curve. In these terms, the question of
which value λ to choose can be reformulated as which point on the curve should
we choose?

In practice, often, this curve has a clear turning point, a point that is distinct
from others – as a point at which the curve “curves” the most. In such cases,
when we have an L-shaped curve, it is reasonable to select the turning point as

Why Curvature in L-Curve: Combining Soft Constraints 177

the point corresponding to the solution. This idea often leads to a good solution;
see, e.g., [1, 2].

In line with the above description, the desired point is selected as a point

at which the absolute value |C| of the curvature C =
x′′ · y′ − y′′ · x′

((x′)2 + (y′)2)3/2
takes

the largest possible value; here, as usual, x′ denotes the derivative
dx

dλ
, and x′′

denotes the second derivative of x with respect to the parameter λ.

Remaining Open Problem. Empirically, the method of selecting a point with
the largest curvature works well. It is therefore desirable to come up with a
theoretical justification for the use of curvature function – or at least for a class
containing the curvature function.

What We Do in This Paper. We provide such a justification: specifically, we show
that reasonable properties select a class of functions that include curvature.

2 Analysis of the Problem

Let us first analyze the invariance properties of curvature.

Scale-Invariance. The numerical values of each quantity depend on the selection
of a measuring unit. For example, if instead of meters, we use centimeters, then
all numerical values get multiplied by 100. In general, if we select a new mea-
suring unit which is c times smaller than the previous one, then all numerical
values get multiplied by c.

If we change a measuring unit for a to a new one which is ca time smaller,
then the numerical values of ai and ai − fi(q1, . . . , qn) get multiplied by ca. As

a result, the sum s =
n∑

i=1

(ai − fi(q1, . . . , qn))
2 gets multiplied by c2a, and the

original value x = ln(s) changes to x+Δx, where we denoted Δx
def
= ln(c2a).

Similarly, if we change a measuring unit for q to a new one which is cq time
smaller, then the numerical values of qj and qj − qj′ get multiplied by cq. As a
result, the sum t =

∑
(qj − qj′)

2 gets multiplied by c2q , and the original value

y = ln(t) changes to y +Δy , where we denoted Δy
def
= ln(c2q).

Under these changes x(λ) → x(λ)+Δx and y(λ) → y(λ)+Δy , the derivatives
do not change – since Δx and Δy are constants – and thus, the curvature does
not change. Thus, the curvature is invariant under these scale transformations.

Invariance under Re-scaling of Parameters. Instead of the original parameter λ,
we can use a new parameter μ for which λ = g(μ). This re-scaling of a parameter
does not change the curve itself and thus, does not change its curvature. So, the
curvature is invariant under these scale transformations.

Our Idea. Our main idea is to describe all the functions which are invariant with
respect to both types of re-scalings.

178 U.A.S. Aguirre, M. Ceberio, and V. Kreinovich

3 Main Result

Definition. By a parameter selection criterion (or simply criterion, for short),
we mean a function F (x, y, x′, y′, x′′, y′′) of six variables. We say that the pa-
rameter selection criterion F (x, y, x′, y′, x′′, y′′) is:

– scale-invariant if for all possible values Δx and Δy, we have

F (x+Δx, y +Δy, x
′, y′, x′′, y′′) = F (x, y, x′, y′, x′′, y′′);

– invariant w.r.t. parameter re-scaling if for every function g(z) and for the
functions x̃(μ) = x(g(μ)) and ỹ(μ) = y(g(μ)), we have

F (x̃, ỹ, x̃′, ỹ′, x̃′′, ỹ′′) = F (x, y, x′, y′, x′′, y′′).

Notation. By C(x, y, x′, y′, x′′, y′′), we denote the parameter selection criterion
corresponding to curvature.

Comment. Once a criterion is selected, for each problem, we use the value λ for
which the value F (x(λ), y(λ), x′(λ), y′(λ), x′′(λ), y′′(λ)) is the largest.

Main Result. A parameter selection criterion which is scale-invariant and
invariant w.r.t. parameter re-scaling if and only if it has the form

F (x, y, x′, y′, x′′, y′′) = f

(
C(x, y, x′, y′, x′′, y′′),

x′

y′

)

for some function f(C, z).

Proof

1◦. For each tuple (x, y, x′, y′, x′′, y′′), by taking Δx = −x and Δy = −y, we con-
clude that F (x, y, x′, y′, x′′, y′′) = F (0, 0, x′, y′, x′′, y′′). Thus, we conclude that

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′), where we denoted F0(x

′, y′, x′′, y′′)
def
=

F (0, 0, x′, y′, x′′, y′′), i.e., we conclude that the value of the parameter selection
criterion does not depend on x and y at all.

In terms of the function F0, invariance w.r.t. parameter re-scaling means that
F0(x̃

′, ỹ′, x̃′′, ỹ′′) = F0(x
′, y′, x′′, y′′).

2◦. When we go from the original function x(λ) to the new function x̃(μ) =
x(g(μ)), the chain rule for differentiation leads to x̃′ = x′ · g′ and thus, x̃′′ =
x′′ · (g′)2 + x′ · g′′. Similarly, ỹ′ = y′ · g′ and ỹ′′ = y′′ · (g′)2 + y′ · g′′.

In particular, at the point where g′ = 1, we have x̃′ = x, x̃′′ = x′′ + x′ · g′′,
ỹ′ = y′, and ỹ′′ = y′′ + y′ · g′′, and thus, invariance w.r.t. parameter re-scaling
means that F0(x

′, y′, x′′ + x′ · g′′, y′′ + y′ · g′′) = F0(x
′, y′, x′′, y′′). This is true for

every possible values of g′′. In particular, for g′′ = −y′′

y′
, we have y′′+ y′ · g′′ = 0

and thus,

F0(x
′, y′, x′′, y′′) = F0

(
x′, y′, x′′ − x′ · y

′′

y′
, 0

)
.

Why Curvature in L-Curve: Combining Soft Constraints 179

Since

x′′ − x′ · y
′′

y′
= C · ((x

′)2 + (y′)2)3/2

y′
,

we thus conclude that

F0(x
′, y′, x′′, y′′) = h(C, x′, y′),

where

h(C, x′, y′)
def
= F0

(
x′, y′, C · ((x

′)2 + (y′)2)3/2

y′
, 0

)
.

For the new function h(C, x′, y′), since the curvature is invariant w.r.t. pa-
rameter re-scaling, invariance means that h(C, x̃′, ỹ′) = h(C, x′, y′). This means
that

h(C, x′, y′) = h(C, x′ · g′, y′ · g′).

This is true for every possible values of g′. In particular, for g′ =
1

x′
, we have

x′ · g′ = 1 and thus,

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′) = h(C, x′, y′) = h

(
C, 1,

y′

x′

)
,

i.e., F (x, y, x′, y′, x′′, y′′) = f

(
C,

y′

x′

)
for f(C, z)

def
= h(C, 1, z).

The statement is proven.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36
GM078000-01 from the National Institutes of Health.

References

1. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM
Review 34(4), 561–580 (1992)

2. Moorkamp, M., Jones, A.G., Fishwick, S.: Joint inversion of receiver functions,
surface wave dispersion, and magnetotelluric data. Journal of Geophysical Re-
search 115, B04318 (2010)

3. Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice. Amer-
ican Institute of Physics, New York (2005)

4. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. W. H. Whinston
& Sons, Washington, D.C. (1977)

Surrogate Models for Mixed

Discrete-Continuous Variables

Laura P. Swiler1, Patricia D. Hough1, Peter Qian2, Xu Xu2,
Curtis Storlie3, and Herbert Lee4

1 Sandia National Laboratories,
Albuequerque, New Mexico, and Livermore, California

{lpswile,pdhough}@sandia.gov
2 University of Wisconsin-Madison, Madison, Wisconcin

{peterq,xuxu}@stat.wisc.edu
3 Los Alamos National Laboratory, Los Alamos, New Mexico

storlie@lanl.gov
4 Univerity of California, Santa Cruz, Santa Cruz, California

herbie@soe.ucsc.edu

Abstract. Large-scale computational models have become common
tools for analyzing complex man-made systems. However, when cou-
pled with optimization or uncertainty quantification methods in order
to conduct extensive model exploration and analysis, the computational
expense quickly becomes intractable. Furthermore, these models may
have both continuous and discrete parameters. One common approach
to mitigating the computational expense is the use of response surface
approximations. While well developed for models with continuous pa-
rameters, they are still new and largely untested for models with both
continuous and discrete parameters. In this work, we describe and in-
vestigate the performance of three types of response surfaces developed
for mixed-variable models: Adaptive Component Selection and Shrinkage
Operator, Treed Gaussian Process, and Gaussian Process with Special
Correlation Functions. We focus our efforts on test problems with a small
number of parameters of interest, a characteristic of many physics-based
engineering models. We present the results of our studies and offer some
insights regarding the performance of each response surface approxima-
tion method.

1 Introduction

Large-scale computational models have become common tools for analyzing com-
plex man-made systems. We are particularly interested in engineering models
that have a small number of variables of interest but are characterized by compu-
tationally expensive equation solvers such as partial differential equation solvers.
Many methods for exploring such models with data and scenario uncertainties
are computationally expensive. One key to successfully mitigating the computa-
tional expense involves the construction of surrogates for the large-scale models.
A surrogate can take many forms, but in this context we mean a meta-model or

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 181
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_21, c© Springer International Publishing Switzerland 2014

182 L.P. Swiler et al.

response surface approximation built from a limited amount of data generated
by the computationally expensive model. The purpose of the surrogate model is
to increase the efficiency of analyses that require frequent model interrogations
such as optimization and uncertainty quantification.

When the models are computationally demanding, meta-model approaches to
their analysis have been shown to be very useful. For example, one standard
approach in the literature is to develop an emulator that is a stationary smooth
Gaussian process [13, 23, 25]. There are many good overview articles which
compare various metamodel strategies. For example, Storlie et al. compare var-
ious smoothing predictors and nonparametric regression approaches in [30, 31].
Simpson et al. provide an excellent overview not just of various statistical meta-
model methods but also approaches which use low-fidelity models as surrogates
for high fidelity models [27]. This paper also addresses the use of surrogates in
design optimization, which is a popular research area for computationally expen-
sive disciplines such as computational fluid dynamics in aeronautical engineering
design. Haftka and his students developed an approach which uses “ensembles”
of emulators or hybrid emulators [35, 36]. The advantage of these types of hy-
brid or ensembles of emulators is that better performance can be obtained. For
example, one can select the best surrogate for various features or responses, or
one can use weighted model averaging of surrogates.

The particular challenge we address in our work is that of assessing the ac-
curacy relative to computational cost of surrogates for models that have both
continuous and discrete variables. While historically the variables of interest
in engineering models have been continuous, there is a growing use of discrete
variables that represent modeling choices (alternative plausible models) and de-
sign choices (e.g. discrete choices of materials, components, or operational set-
tings). The major challenge in using surrogates for mixed variable problems is
in handling the discrete variables. Typically, in surrogate models constructed
over continuous variables (e.g. polynomial regression, splines, Gaussian process
models), there is the assumption of continuity: as a continuous variable varies
by a small amount, the response is assumed to vary smoothly. With discrete
variables, we do not necessarily have continuous behavior. For example, if a
discrete variable representing a design choice varies from choice A to choice B,
the system may respond in a fundamentally different manner. Thus, surrogate
modeling approaches generally do not explicitly allow for categorical input vari-
ables. One option is to order these categorical inputs in some way and treat
them as continuous variables when creating a metamodel. In some cases, this
can lead to undesirable and misleading results. The other option is categorical
regression. In this approach, a separate surrogate model is constructed over the
continuous variables for each possible combination of the discrete variable values.
This approach has the advantage that the surrogate is only constructed on the
continuous variables, conditional on a particular combination of discrete values.
However, it quickly becomes infeasible as one increases the number of discrete
variables and/or the number of “levels” per variable [18]. It is clear that a more
appropriate and efficient treatment of categorical inputs is needed.

Surrogate Models for Mixed Discrete-Continuous Variables 183

In this work, we consider three approaches in the literature for constructing
mixed variable surrogates. They have their roots in response surface modeling
for continuous problems and tractably incorporate discrete variables in a manner
that relies on some simplifications and additional assumptions. Our goal is to
empirically evaluate and compare the three methods in order to gain insight into
how problem characteristics influence the efficacy of each surrogate approach.

The remaining sections of this paper discuss the three approaches we eval-
uated and the outcome of our computational experiments. Section 2 outlines
three approaches for constructing mixed variable surrogates. Section 3 describes
our approach for testing and evaluating the three surrogate methods. Section 4
provides results of the surrogates on several test problems, and Section 5 sum-
marizes the outcome.

2 Mixed Surrogate Approaches

This section describes three classes of methods that we investigated to generate
surrogate models for mixed discrete-continuous variable problems. These three
classes of methods are:

ACOSSO: ACOSSO, the Adaptive COmponent Selection and Smoothing Op-
erator, is a specialized smoothing spline model [29]. It uses the smoothing
spline ANOVA decomposition to separate the underlying function into sim-
pler functional components (i.e., main effects, two-way interactions, etc.)
then explicitly estimates these functional components in one optimization.
The estimation proceeds by optimizing the likelihood subject to a penalty
on each of the functional components. Each component involving continuous
predictors has a penalty on its roughness and overall trend, each component
involving discrete predictors has a penalty on its magnitude (L2-norm), while
interaction components involving both discrete and continuous predictors re-
ceive a combination of these penalties.

Gaussian Processes with Special Correlation Functions: Gaussian pro-
cess models are powerful emulators for computer models. A Gaussian process
model is defined by its mean and covariance function. The covariance func-
tion specifies how the response between two points is related: the idea is that
points close together in input space will tend to have responses that are sim-
ilar. Typically, the covariance function is a function of the distance between
the points. We investigated a variety of covariance functions that repre-
sent the covariance between discrete points and that appropriate for mixed
variable problems, all developed in Qian et al. [20, 39]: the exchangeable
correlation (EC), the multiplicative correlation (MC), and the unrestricted
correlation function (UC). For comparison, we also looked at the Individual
Kriging (IK) model which involves constructing a separate Gaussian pro-
cess surrogate over the continuous variables for each combination of discrete
variables. This is similar to categorical regression.

TGP: TGP, the treed Gaussian Process model, is an approach which allows
different Gaussian process models (GPs) to be constructed on different par-
titions of the space [8, 9]. This approach naturally lends itself to discrete

184 L.P. Swiler et al.

variables, where the partitioning can be done between different values or
sets of discrete variables. In TGP, the discrete or categorical variables are
converted to a series of binary variables. The binary variables are then what
are partitioned upon: they become the “nodes” of the tree [10].

2.1 Adaptive COmponent Selection and Shrinkage Operator
(ACOSSO)

The Adaptive COmponent Selection and Shrinkage Operator (ACOSSO) es-
timate [29] was developed under the smoothing spline ANOVA (SS-ANOVA)
modeling framework. As it is a smoothing type method, ACOSSO works best
when the underlying function is somewhat smooth. The type of splines we are us-
ing involve the minimization of an objective function involving a sum-of-squares
error term, similar to regression modeling. However, in the objective function
for the splines, there are additional terms which can be viewed as regularization
terms: these penalty terms help smooth the function and they also help perform
variable selection. In the ACOSSO implementation, there is a penalty on func-
tions of the categorical predictors. This penalty formulation provides a variable
selection and automatic model reduction: it encourages some of the terms in the
objective function to be zero, removing certain discrete variables or levels of dis-
crete variables from the formulation. To facilitate the description of ACOSSO,
we first describe the multiple smoothing spline, then introduce the treatment of
categorical predictors and the ACOSSO estimator.

Multivariate Smoothing Splines. Consider a vector of predictors x =
[x1, . . . , xI]

′. Assume that the unknown function f to be estimated belongs to
2nd order Sobolev space S2 = {f : f, f ′ are absolutely continuous and f ′′ ∈
L2[0, 1]}. The simplest extension of smoothing splines to multiple inputs is the
additive model [12]. For instance, assume that

f ∈ Fadd = {f : f(x) =
I∑

i=1

gi(xi), gi ∈ S2}, (1)

i.e., f(x) =
∑I

i=1 gi(xi) is a sum of univariate functions. Let xn =
[xn,1, . . . , xn,I]

′ be the nth observation of a multivariate predictor x, n =
1, . . . , N , and yn = f(xn) + εn. The additive smoothing spline estimate of f
is the minimizer of

1

n

N∑

n=1

[yn − f(xn)]
2 +

I∑

i=1

λi

∫ 1

0

[g′′i (xi)]
2
dxi (2)

over f ∈ Fadd. The minimizer of the expression in Eq. (2), f̂(x) =
∑I

i=1 ĝi(xi),
takes the form of a natural cubic spline for each of the functional components
ĝi. Notice that there are I tuning parameters (λi) for the additive smoothing
spline. These tuning parameters λi control the trade-off in the resulting esti-
mate between smoothness and fidelity to the data; large values of λ will result

Surrogate Models for Mixed Discrete-Continuous Variables 185

in smoother functions while smaller values of λ result in rougher functions that
more closely match the data. Generally, λi is chosen by generalized cross val-
idation (GCV) [6] or m-fold CV [14]. A generalization to two-way and higher
order interaction functions can also be achieved in a similar manner; see [29]
for the full details of including interactions in the SS-ANOVA framework. The
minimizer of the expression in Eq. (2) can be obtained in an efficient manner
via matrix algebra using results from reproducing kernel Hilbert space (RKHS)
theory; for details see [37] or [11].

Discrete Predictors. A large advantage to the SS-ANOVA framework is the
ability to handle categorical predictors with relative ease. To facilitate the discus-
sion, we generalize our notation to the following. Assume that x = [x1, . . . , xI]

′

are continuous on [0, 1] as previously in this section, while z = [z1, . . . , zJ]
′ are

unordered discrete variables, and let the collection of the two types of predictors
be denotedw = [x′, z′]′. For simplicity, assume zj ∈ {1, 2, . . . , bj} for j = 1, . . . , J
where the ordering of the integers representing the groups for zj is completely
arbitrary. For notational convenience, let Gi = S2 for i = 1, . . . , I. Also let the
class of L2 functions on the domain of zj (i.e., {1, 2, . . . , bj}) be denoted as Hj

for j = 1, . . . , J .
For simplicity, we can once again consider the class of additive functions,

Fadd = {f : f(w) =

I∑

i=1

gi(xi) +

J∑

j=1

hj(zj), gi ∈ Gi, hj ∈ Hj}. (3)

Let wn = [xn,1, . . . , xn,I , zn,1, . . . , zn,J]
′ be the nth observation of a multivariate

predictor w. The traditional additive smoothing spline is then the minimizer of

1

N

N∑

n=1

[yn − f(wn)]
2 +

I∑

i=1

λi

∫ 1

0

[g′′i (xi)]
2
dxi (4)

over f ∈ Fadd. Notice that in the traditional smoothing spline in (4) there is no
penalty term on the functions of the categorical predictors (hj).

Generalizing to the ACOSSO Estimate. The COmponent Selection and
Shrinkage Operator (COSSO) [15] penalizes on the sum of the semi-norms in-
stead of the squared semi-norms as in Eq. (4). A semi-norm is a norm which
can assign zero to some nonzero elements of the space. In this case, all functions
with zero second derivative (i.e., linear functions) will have zero penalty (i.e.,
semi-norm equal to zero). For ease of presentation, we will continue to restrict
attention to the additive model. However, all of the following discussion applies
directly to the two-way (or higher) interaction model as well.

The additive COSSO estimate, f̂(w) =
∑

ĝi(xi) +
∑

ĥj(zj), is given by the
function f ∈ Fadd that minimizes

186 L.P. Swiler et al.

1

N

N∑

n=1

[yn − f(wn)]
2 + λ1

I∑

i=1

{[∫ 1

0

g′i(xi)dxi

]2
+

∫ 1

0

[g′′i (xi)]
2
dxi

}1/2

+

λ2

J∑

j=1

⎧
⎨
⎩

bj∑

zj=1

h2
j(zj)

⎫
⎬
⎭

1/2

. (5)

There are four key differences in the penalty term in Eq. (5) relative to the addi-

tive smoothing spline of Eq. (4). First, there is an additional term
[∫ 1

0
g′i(xi)dxi

]2

in the penalty for continuous predictor functional components, which can also
be written [gi(1)− gi(0)]

2
, that penalizes the magnitude of the overall trend of

the functional components gi that correspond to continuous predictors. Second,
there is now a penalty on the L2 norm of the hj that correspond to the cate-
gorical predictors. Third, in contrast to the squared semi-norm in the additive
smoothing spline, each term in the sum in the penalty in Eq. (5) can be thought
of as a semi-norm over functions gi ∈ Gi or hj ∈ Hj , respectively, (only constant
functions have zero penalty). This encourages some of the terms in the sum to
be exactly zero. Fourth, the COSSO penalty only has two tuning parameters
(three if two-way interactions are included), which can be chosen via GCV or
similar means.

Finally, ACOSSO is a weighted version of COSSO, where a rescaled semi-
norm is used as the penalty for each of the functional components. Specifically,
we select as our estimate the function f ∈ Fadd that minimizes

1

N

N∑

n=1

[yn − f(wn)]
2
+ λ1

I∑

i=1

vi

{[∫ 1

0

g′i(xi)dxi

]2
+

∫ 1

0

[g′′i (xi)]
2
dxi

}1/2

+

λ2

J∑

j=1

wj

⎧
⎨
⎩

bj∑

zj=1

h2
j(zj)

⎫
⎬
⎭

1/2

, (6)

where the vi, wj , 0 < vi, wj ≤ ∞, are weights that can depend on an initial

estimate of f which we denote f̃ . Our implementation of ACOSSO takes f̃ to
be the COSSO estimate of Eq. (5), in which λ1 and λ2 are chosen by the GCV
criterion. We then use

vi =

[∫ 1

0

g̃2i (xi)dxi

]−1

for i = 1, . . . , I

wj =

⎛
⎝ 1

bj

bj∑

zj=1

h̃2
j(zj)

⎞
⎠

−1

for j = 1, . . . , J. (7)

This allows for more flexible estimation (less penalty) on the functional com-
ponents that show more signal in the initial estimate. As shown in [29], this

Surrogate Models for Mixed Discrete-Continuous Variables 187

approach results in better performance on many test cases and more favorable
asymptotic properties than COSSO.

The minimizer of the expression in Eq. (6) is obtained using an iterative
algorithm and a RKHS framework similar to that used to find the minimizer
of Eq. (4), see [29] for more details on the computation of the solution. The
two-way interaction model is used in the results of Section 4.

2.2 Gaussian Processes for Models with Quantitative and
Qualitative Factors

This section describes a computationally efficient method developed in Zhou,
Qian, and Zhou [39] for fitting Gaussian process models with quantitative and
qualitative factors proposed in Qian, Wu, and Wu [20]. Consider a computer
model with inputs w = (xt, zt)t, where x = (x1, . . . , xI)

t consists of all the
quantitative factors and z = (z1, . . . , zJ)

t consists of all the qualitative factors
with zj having bj levels. The number of the qualitative levels of z is given by

m =
J∏

j=1

bj . (8)

Throughout, the factors in z are assumed to be qualitative but not ordinal.
Gaussian process models with ordinal qualitative factors can be found in Section
4.4 of [20]. The response of the computer model at an input value w is modeled
as

y(w) = f t(w)β + ǫ(w), (9)

where f(w) = [f1(w), . . . , fp(w)]
t
is a set of p user-specified regression functions,

β = (β1, . . . , βp)
t is a vector of unknown coefficients and the residual ǫ(w) is a

stationary Gaussian process with mean 0 and variance σ2. The model in (9)
has a more general form than the standard Gaussian process model with only
quantitative factors x given by

y(x) = f t(x)β + ǫ(x), (10)

where f(x) = [f1(x), . . . , fp(x)]
t
is a set of p user-specified regression functions

depending on x only, β = (β1, . . . , βp)
t is a vector of unknown coefficients, and

the residual ǫ(x) is a stationary Gaussian process with mean 0, variance σ2 and
a correlation function for x.

For m in (8), let c1, . . . , cm denote the m qualitative levels of z and let w =
(xt, cq)

t (q = 1, . . . ,m) denote any input value. For two input values w1 =
(xt

1, c1)
t and w2 = (xt

2, c2)
t, the correlation between y(w1) and y(w2) is defined

to be
cor [ǫ(w1), ǫ(w2)] = τc1,c2ϕ(x1,x2), (11)

188 L.P. Swiler et al.

where ϕ is the correlation function for the quantitative factors x in the model
(9) and τc1,c2 is the cross-correlation between the qualitative levels c1 and c2.
The choice of ϕ is flexible. We use a Gaussian correlation function [25]

ϕ(x1,x2) = exp

{
−

I∑

i=1

φi(x1i − x2i)
2

}
(12)

but other correlation functions such as Wendland’s compactly supported correla-
tion function [38] may also be used.

The unknown roughness parameters φi in (12) will be collectively denoted as
Φ = {φi}. Them×mmatrixT = {τr,s}, with entries being the cross-correlations
among the qualitative levels, must be positive definite with unit diagonal elements
in order for (11) to be a valid correlation function. This condition can be achieved
in two ways. One way is to use the semi-definite programming techniques with
positive definiteness constraints [20], which are computationally intensive. [39]
provides a more efficient way for modeling T by using the hypersphere decom-
position, originally introduced for modeling correlations in financial applications
[21]. This method first applies a Cholesky-type decomposition to T

T = LLt, (13)

where L = {lr,s} is a lower triangular matrix with strictly positive diagonal
entries. Then, let l1,1 = 1 and for r = 2, . . . ,m, consider a spherical coordinate
system

⎧
⎪⎨
⎪⎩

lr,1 = cos(θr,1),

lr,s = sin(θr,1) · · · sin(θr,s−1) cos(θr,s), for s = 2, . . . , r − 1,

lr,r = sin(θr,1) · · · sin(θr,r−2) sin(θr,r−1),

(14)

where θr,s ∈ (0, π). Denote by Θ all θr,s involved in (14).
Suppose that the computer model under consideration is conducted at n dif-

ferent input values, Dw = (w0
1, . . . ,w

0
n), with the corresponding response values

denoted by y = (y1, . . . , yn)
t. The parameters in model (9) to be estimated are

σ2, β, Φ and Θ. The maximum likelihood estimators of these parameters are
denoted by σ̂2, β̂, Φ̂ and Θ̂, respectively. The log-likelihood function of y, up
to an additive constant, is

−1

2

[
n log(σ2) + log(|R|) + (y − Fβ)tR−1(y − Fβ)/σ2

]
, (15)

where F =
[
f(w0

1), . . . , f(w
0
n)
]t

is an n×pmatrix and R is the correlation matrix

with (i, j)th entry cor
[
ǫ(w0

i), ǫ(w
0
j)
]
defined in (11). Given Φ and Θ, β̂ and σ̂2

are
β̂ = (FtR−1F)−1FtR−1y, (16)

and
σ̂2 = (y − Fβ̂)tR−1(y − Fβ̂)/n. (17)

Surrogate Models for Mixed Discrete-Continuous Variables 189

Plugging (16) and (17) into (15), Φ̂ and Θ̂ can be obtained as

(Φ̂, Θ̂) = argmin
Φ,Θ

{n log(σ̂2) + log(|R|)}. (18)

The optimization problem in (18) only involves the constraints that θr,s ∈
(0, π) for Θ̂ and φi ≥ 0 for Φ̂. It can be solved by modifying the DACE toolbox
in Matlab [16] to incorporate the reparameterization in (14). A small nugget
term is added to the diagonals of R to mitigate potential singularity. The fitted
model can be used to predict the response value y at any untried input value.
Given σ̂2, β̂, Φ̂ and Θ̂, the empirical best linear unbiased predictor (EBLUP) of
y at any input value w0 is

ŷ(w0) = f t(w0)β̂ + r̂t0R̂
−1(y − Fβ̂), (19)

where r̂0 =
{
cor

[
ǫ(w0

0), ǫ(w
0
1)
]
, . . . , cor

[
ǫ(w0

0), ǫ(w
0
n)
]}t

and R̂ is the estimated
correlation matrix of y. Similarly to its counterpart for the Gaussian process
model in (10) with quantitative factors, the EBLUP in (19) smoothly interpolates
all the observed data points. Features of the function ŷ(w) can be visualized by
plotting the estimated functional main effects and interactions.

In this work, we consider four methods for building Gaussian process models
for a computer experiment with qualitative and quantitative factors.

– The individual Kriging method, denoted by IK. This method fits data as-
sociated with different qualitative levels separately using distinct Gaussian
process models for the quantitative variables in (10).

– The exchangeable correlation method for the qualitative factors, denoted by
EC. It assumes the cross-correlation τr,s in (11) to be

τr,s = c (0 < c < 1) for r �= s.

– The multiplicative correlation method for the qualitative factors, denoted by
MC. It assumes the cross-correlation τr,s in (11) to be

τr,s = exp{−(θr + θs)I[r �= s]} (θr, θs > 0).

– The method proposed in (13) and (14) with an unrestricted correlation func-
tion for the qualitative factors, denoted by UC.

2.3 Treed Gaussian Processes (TGP)

In practice, many situations involving the emulation of computer models call for
more flexibility than is reasonable under the common assumption of stationar-
ity. However, a fully nonstationary model may be undesirable as well, because
of the vastly increased difficulty of performing inference due to a nonstation-
ary model’s complexity. A good compromise can be local stationarity. A treed
Gaussian process (TGP) [8] is designed to take advantage of local stationarity.
It defines a treed partitioning process on the predictor space and fits distinct,

190 L.P. Swiler et al.

but hierarchically related, stationary GPs to separate regions at the leaves. The
treed form of the partition makes the model easily interpretable: having the
treed partitions with separate GPs makes it easy to identify the GP model in
each branch. At the same time, the partitioning results in smaller matrices for
inversion than would be required under a standard GP model and thereby pro-
vides a nonstationary model that actually facilitates faster inference. Using a
fully Bayesian approach allows for model averaging across the tree space, result-
ing in smooth and continuous fits when the data are not naturally partitioned.
The partitions are fit simultaneously with the individual GP parameters using
reversible jump Markov chain Monte Carlo, so that all parts of the model can be
learned automatically from the data. The posterior predictive distribution thus
takes into account uncertainty from the data, from the fitted parameters, and
from the fitted partitions.

TGP inherits its partitioning scheme from simpler treed models such as CART
[3] and BCART (for Bayesian CART) [5] . Each uses recursive binary splits so
that each branch of the tree in any of these models divides the predictor space in
two, with multiple splits allowed on the same variable for full flexibility. Consider
predictors x ∈ RP for some split dimension p ∈ {1, ..., P} and split value v,
points with xp ≤ v are assigned to the left branch, and points with xp > v
are assigned to the right branch. Partitioning is recursive and may occur on
any input dimension p, so arbitrary axis-aligned regions in the predictor space
may be defined. Conditional on a treed partition, models are fit in each of the
leaf regions. In CART the underlying models are “constant” in that only the
mean and standard deviation of the real-valued outputs are inferred. TGP fits
a Gaussian process Zν in each leaf ν using the following hierarchical model:

Zν |βν , σ
2
ν ,Kν ∼ Nnν

(Fνβν , σ
2
νKν) β0 ∼ Nm(μ,B)

σ2
ν ∼ IG(ασ/2, qσ/2)

βν |σ2
ν , τ

2
ν ,W,β0 ∼ Nm(β0, σ

2
ντ

2
νW) W−1 ∼ W ((ρV)−1, ρ)

τ2ν ∼ IG(ατ/2, qτ/2) (20)

where Fν = (1,Xν) contains the data in that leaf. N , IG, and W are the
Multivariate Normal, Inverse–Gamma, and Wishart distributions, respectively.
Kν is the separable power family covariance matrix with a nugget.

Classical treed methods, such as CART, can cope quite naturally with categor-
ical, binary, and ordinal inputs. For example, categorical inputs can be encoded
in binary, and splits can be proposed with rules such as xp < 1. Once a split
is made on a binary input, no further process is needed, marginally, in that
dimension. Ordinal inputs can also be coded in binary, and thus treated as cate-
gorical, or treated as real-valued and handled in a default way. This formulation
presents an alternative to that of Section 2.2. While that formulation allows a
powerful and flexible representation of qualitative inputs in the model, it does
not allow for nonstationarity. TGP allows the combination of qualitative inputs
and nonstationary modeling.

Surrogate Models for Mixed Discrete-Continuous Variables 191

Rather than manipulate the GP correlation to handle categorical inputs, the
tree presents a more natural mechanism for such binary indicators. That is, they
can be included as candidates for treed partitioning but ignored when it comes
to fitting the models at the leaves of the tree. The benefits of removing the
Booleans from the GP model(s) go beyond producing full-rank design matri-
ces at the leaves of the tree. Loosely speaking, removing the Boolean indicators
from the GP part of the treed GP gives a more parsimonious model. The tree is
able to capture all of the dependence in the response as a function of the indi-
cator input, and the GP is the appropriate nonlinear model for accounting for
the remaining relationship between the real-valued inputs and outputs. Further
advantages to this approach include speed (a partitioned model gives smaller
covariance matrices to invert) and improved mixing in the Markov chain when a
separable covariance function is used. Finally, the treed model allows the practi-
tioner to immediately ascertain whether the response is sensitive to a particular
categorical input by tallying the proportion of time the Markov chain visited
trees with splits on the corresponding binary indicator. A much more involved
Monte Carlo technique (e.g., following [24]) would otherwise be required in the
absence of the tree. Here we use the implementation developed by Broderick and
Gramacy [4].

3 Testing and Assessment Approach

In order to evaluate and compare the three mixed-variable surrogate modeling
approaches, we established a common experimental strategy that can be consis-
tently applied to all of them. There are three primary components to which we
paid particular attention. They are the test functions, the sample design used
for surrogate construction, and the comparison metrics. Each is described in the
following subsections.

3.1 Test Functions

In order to consolidate a common set of test functions on which to evaluate
the different surrogate approaches, we developed a generic C++ testbed. It was
designed and developed to meet the following requirements:

– ability to control the number of discrete variables and the number of levels
per discrete variable in order to test method scalability with respect to these
features,

– ability to control problem complexity in order to evaluate performance on a
variety of problems,

– extendable in order to easily add new functions, and
– easy to use in multiple computing environments across all surrogate software

packages.

The testbed include both defined hard-wired functions and randomly-
generated polynomial functions. The latter is based on work by McDaniel
and Ankenman [17]. We refer the reader to [33] for more details on the
implementation.

192 L.P. Swiler et al.

3.2 Sample Design

The accuracy of a response surface surrogate can be affected by the number of
data points used to build it as well as how those points are chosen. Therefore,
we vary the number and design of build points in our numerical experiments. All
designs are based on Latin Hypercube designs (LHD) of the parameter space.
We define n to be the number of LHD runs per qualitative level of the categorical
variables and m to be the number of discrete levels (or combinations of levels).
The total number of points used to build each surrogate is mn. We consider
n = 10, 20, 40, 80, and the sample design for each training set is constructed in
three different ways.

Standard Latin Hypercube. In this approach, one Latin Hypercube design
of size mn is generated over all of the continuous parameters. It is then
randomly split it into m groups of n samples, and each group is assigned a
qualitative level of the categorical variables.

k Latin Hypercube. In this approach, a separate Latin Hypercube design is
generated for every given level of categorical variables. That is, we generate
m independent Latin hypercube designs, each of size n and corresponding
to one qualitative level.

Sliced Latin Hypercube. This approach is based on recent work by Qian [19].
This design is a Latin Hypercube for the continuous factors and is sliced
into groups of smaller Latin Hypercube designs associated with different
categorical levels. In this case, we generate a sliced Latin hypercube design
with m slices, where each slice of n runs corresponds to one qualitative level.

Because of the randomness associated with the LHS samples, we generate 10
replicate training sets for each combination of n and design type.

3.3 Comparison Metric

Evaluating the performance of computational methods can be challenging, par-
ticularly with regard to the accuracy of the method. This is because the accuracy
required for different applications of the method can vary. In this study, our pri-
mary focus is on gaining an understanding of the accuracy of mixed variable
surrogates relative to each other, so we use a relatively fine-grained metric. In
particular, we use mean squared error between surrogate predictions and true
function values over a set of given points. For every replication of a given n and
training design type, the mean squared errors (MSE) are calculated based on a
testing set using a Latin hypercube design with 200 samples for each qualitative
level. We then compare the mean and spread of the errors. Lower values of these
quantities constitute better performance.

4 Results

We present selected results of our evaluation of the surrogate approaches dis-
cussed in Section 2. Specifically, we compared the results of TGP, ACOSSO,

Surrogate Models for Mixed Discrete-Continuous Variables 193

and the Gaussian process model with the various special correlation functions.
Generally, we found that sample design type (standard Latin Hypercube, kLHD,
or sliced LHD) did not have a large effect on the MSE. Thus, we show only the
results using the sliced LHD. We applied these different surrogate methods to
a set of test functions to be described and compared the results over different
training set sizes.

4.1 Test Function 2

The first function we considered in our numerical experiments has one categorical
variable with five levels. It also two continuous variables, both of which fall
between the values of 0 and 1. This function has regions where the responses at
the different categorical levels are very similar. This will allow us to evaluate how
well the different surrogate approaches can resolve the different discrete levels.

f(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(2πx3 − π) + 7 sin2(2πx2 − π) if x1 = 1
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 12.0 sin(2πx3 − π) if x1 = 2
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 0.5 sin(2πx3 − π) if x1 = 3
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 8.0 sin(2πx3 − π) if x1 = 4
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 3.5 sin(2πx3 − π) if x1 = 5

Fig. 1. Test Function 2

Figures 2-3 give the boxplots of the MSEs of the four methods for n = 10, 20.
The Y axis is the mean squared error (MSE) of the surrogate construction. The
Gaussian correlation function in (12) for the quantitative factors is used in the
IK, EC, MC and UC methods. Note that the Y-axis scale is different on these
figures. Ideally, it would be nice to see the MSE plotted on the same scale so

194 L.P. Swiler et al.

that it is easy to see the decrease in error as a function of the number of training
samples. However, the MSE varied so dramatically for some of these results that
keeping an MSE scale to allow for plotting maximum MSE values would result
in the reader not seeing the differences in situations where the MSE was low.

Overall, ACOSSO does very well on this function and outperforms the other
methods, especially at the smaller sample levels of n = 10 and n = 20. We
expect this is because the structure of the ACOSSO surrogate maps naturally
to separable functions such as this one. For the four GP correlation schemes, the
EC, MC and UC methods outperform the IK method.

Fig. 2. Test Function 2. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 10 using the sliced LHD scheme.

In summary for Test Function 2: ACOSSO performed the best overall, the
GP variations with IK, EC, MC and UC methods also performed well.

4.2 Goldstein-Price

The second function we considered is the Goldstein-Price function. It has one
continuous variable and one discrete variable. The discrete variable, x1, can take
on the values of −2, 0, and 2. The continuous variable, x2, ranges between the
values of −2 and 2. This function varies by five orders of magnitude over the
domain we chose, so we performed the surrogate construction in log space and
the error is presented in log space.

f(x) = (1 + (x1 + x2 + 1)2 · (19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))·
(30 + (2x1 − 3x2)

2 · (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2))

Surrogate Models for Mixed Discrete-Continuous Variables 195

Fig. 3. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC and UC methods
with n = 20 using the sliced LHD scheme

Fig. 4. Goldstein Price Function

196 L.P. Swiler et al.

Figures 5-6 give the boxplots of the MSEs of the four methods for n =
10, 20, 40. In these figures, the Y axis is the mean squared error of the sur-
rogate in log space. For the Gaussian process model, the four variations of IK,
EC, MC and UC methods all used the compact support Wendland correlation
function. For the Goldstein-Price function, the compactly supported correlation
performed better than the Gaussian correlation function.

Overall, the variations of the Gaussian process model do very well on this
function. ACOSSO also performs well, and the mean MSE from ACOSSO is
close to the mean from the various GP methods. However, the variability of
the ACOSSO results is slightly larger, as shown in Figures 5-6. Note that TGP
has larger MSE at all sample levels. However, when we performed the surrogate
construction in the original space without taking the logarithm of the Goldstein-
Price function, TGP outperformed the other methods. This is likely due to the
ability of TGP to identify different regions of the space with different properties
(e.g. the scale of the Goldstein-Price function is much smaller in the center of
the domain than at the edges of the domain we are using for this case study).

Fig. 5. Goldstein-Price. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 10 using the sliced LHD scheme.

4.3 Fourth Order Polynomial

Using the polynomial generator, we randomly generated a 19-term fourth order
polynomial. It has four parameters, two of which are continuous and two of
which are discrete. The x3 and x4 are continuous variables that fall between 0
and 100, and x1 and x2 are discrete variables that have three levels, namely 20,
50, and 80. The polynomial is given by the following:

Surrogate Models for Mixed Discrete-Continuous Variables 197

Fig. 6. Goldstein-Price. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 20 using the sliced LHD scheme.

f(x) = 53.3108+ 0.184901x1 − 5.02914 · 10−6x3
1 + 7.72522 · 10−8x4

1 −
0.0870775x2 − 0.106959x3 + 7.98772 · 10−6x3

3 + 0.00242482x4 +

1.32851 · 10−6x3
4 − 0.00146393x1x2 − 0.00301588x1x3 −

0.00272291x1x4 + 0.0017004x2x3 + 0.0038428x2x4 − 0.000198969x3x4 +

1.86025 · 10−5x1x2x3 − 1.88719 · 10−6x1x2x4 + 2.50923 · 10−5x1x3x4 −
5.62199 · 10−5x2x3x4

The results for the fourth order polynomial are shown in Figures 7-8. These
figures show that the Gaussian processes with the various correlation functions
such as EC, MC, etc. perform well. Interestingly, ACOSSO does not seem to
improve, even as the size of training set increases. That is, the average MSE for
ACOSSO with n = 10 is 1.5, while the average MSE for ACOSSO with n = 80
is 1.4. In contrast, the other approaches all improve the MSE by eight orders of
magnitude. We hypothesize that ACOSSO is struggling when there is significant
interaction between variables. In particular, it is trying to construct its response
as the aggregation of separable functions which may not capture the interactions
well.

198 L.P. Swiler et al.

Fig. 7. Fourth-order Polynomial. Boxplots of the MSEs for the TGP, ACOSSO, IK,
EC, MC and UC methods with n = 10 using the sliced LHD scheme.

Fig. 8. Fourth-order Polynomial. Boxplots of the MSEs for the TGP, ACOSSO, IK,
EC, MC and UC methods with n = 80 using the sliced LHD scheme.

Surrogate Models for Mixed Discrete-Continuous Variables 199

5 Summary

This paper investigated three main classes of surrogate methods which can han-
dle “mixed” discrete and continuous variables: adaptive smoothing splines, Gaus-
sian processes with special correlation functions, and Treed Gaussian processes.
We chose test problems which were challenging but tractable for repeated com-
parison runs. The results presented are representative of the extensive compar-
isons we performed, varying the number of build points used in the surrogate
construction, varying the sample designs used, and building multiple surrogates
of a given type so that we could compute statistics of the response to give fair
comparisons (e.g. so we would not be misled by constructing only one surrogate
on one set of build points).

Overall, all methods appear viable for small numbers of categorical variables
with a few levels, and we were able to gain some general insights across the
wide range of studies performed. ACOSSO and the Gaussian processes with
special correlation functions generally performed well. ACOSSO performed best
for separable functions, especially at small training set sizes. This is a particu-
larly valuable trait, as computational expense usually prevents large training set
sizes. When there are significant interactions between discrete and continuous
parameters, as in the fourth-order polynomial, ACOSSO performs poorly even
with a larger number of training points (40 or 80). Both results are expected be-
cause ACOSSO is constructed over separable functions, and its performance may
degrade somewhat when significant interactions between variables are present.
The GP with special correlation functions appears the most consistent of all the
methods. However, that approach was the most sensitive to build design and did
not perform as well with a plain LHD design, whereas ACOSSO and TGP were
not significantly affected by the design. TGP success depends on being able to
identify splits where individual GPs work well in separate parts of the domain.
TGP performs well on poorly scaled functions, but we found it does not perform
well when the continuous variables are not predictive for certain combinations
of categorical variable levels. These insights will allow us to move forward with
applying these surrogate methods to computational analysis problems for which
they are best suited.

Acknowledgements. The authors would like to thank a number of colleagues
for many fruitful discussions on this topic: William Hart, John Siirola, Jean-Paul
Watson, Genetha Gray, Cynthia Phillips, Ali Pinar, and David Woodruff. We
also thank Sandia management, specifically M. Daniel Rintoul, and the Labo-
ratory Directed Research and Development office at Sandia for supporting this
project. Finally, we would like to thank Ken Perano for writing the C++ software
that encodes the test functions we used to evaluate the surrogate approaches.

200 L.P. Swiler et al.

References

1. Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Eldred, M.S., Gay, D.M.,
Hough, P.D., Swiler, L.P.: DAKOTA, a multilevel parallel object-oriented frame-
work for design optimization, parameter estimation, uncertainty quantification,
and sensitivity analysis: Version 5.1 user’s manual. Technical Report SAND2010-
2183, Sandia National Laboratories, Albuquerque, NM (2010),
http://dakota.sandia.gov/documentation.html

2. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer Academic Publishers, Norwell (2004)

3. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth, Belmont (1984)

4. Broderick, T., Gramacy, R.B.: Classification and categorical inputs with treed
Gaussian process models. Journal of Classification 28(2), 244–270 (2011)

5. Chipman, H., George, E., McCulloch, R.: Bayesian CART Model Search (with
discussion). Journal of the American Statistical Association 93, 930–960

6. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating
the correct degree of smoothing by the method of generalized cross-validation.
Numerical Mathematics 31, 377–403 (1979)

7. Eubank, R.L.: Nonparametric Regression and Spline Smoothing. CRC Press, Lon-
don (1999)

8. Gramacy, R.B., Lee, H.K.H.: Bayesian treed gaussian process models with an appli-
cation to computer modeling. Journal of the American Statistical Association 103,
1119–1130 (2008)

9. Gramacy, R.B., Lee, H.K.H.: Gaussian processes and limiting linear models. Com-
putational Statistics and Data Analysis 53, 123–136 (2008)

10. Gramacy, R.B., Taddy, M.: Categorical inputs, sensitivity analysis, optimization
and importance tempering with tgp version 2, an r package for treed gaussian
process models. Technical report, R manual (2009), http://cran.r-project.org

11. Gu, C.: Smoothing Spline ANOVA Models. Springer, New York (2002)
12. Hastie, T., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall/CRC,

London (1990)
13. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models (with dis-

cussion). Journal of the Royal Statistical Society B 63, 425–464 (2001)
14. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and

model selection. In: Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, vol. 2(12), pp. 1137–1143 (1995)

15. Lin, Y., Zhang, H.: Component selection and smoothing in smoothing spline anal-
ysis of variance models. Annals of Statistics 34(5), 2272–2297 (2006)

16. Lophaven, S.N., Neilson, H.B., Sondergaard, J.: Dace - a matlab kriging toolbox.
Technical report (2009), http://www2.imm.dtu.dk/~hbn/dace/

17. McDaniel, W.R., Ankenman, B.E.: A response surface test bed. Quality and Reli-
ability Engineering International 16, 363–372 (2000)

18. Neter, J., Wasserman, W., Kutner, M.H.: Applied Linear Statistical Models, 2nd
edn. Irwin (1985)

19. Qian, P.Z.G.: Sliced latin hypercube designs (2011) (submitted)

http://dakota.sandia.gov/documentation.html
http://cran.r-project.org
http://www2.imm.dtu.dk/~hbn/dace/

Surrogate Models for Mixed Discrete-Continuous Variables 201

20. Qian, P.Z.G., Wu, H., Wu, C.F.J.: Gaussian process models for computer exper-
iments with qualitative and quantitative factors. Technometrics 50(3), 383–396
(2008)

21. Rebonato, R., Jackel, P.: The most general methodology for creating a valid cor-
relation matrix for risk management and option pricing purposes. The Journal of
Risk 2, 17–27 (1999)

22. Reich, B.J., Storlie, C.B., Bondell, H.D.: Variable selection in bayesian smoothing
spline anova models: Application to deterministic computer codes. Technomet-
rics 51(2), 110–120 (2009)

23. Sacks, J., Welch, W.J., Mitchel, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4), 409–435 (1989)

24. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Global sensitivity analysis, The Primer. Wiley and
Sons (2008)

25. Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Ex-
periments. Springer, New York (2003)

26. Schimek, M. (ed.): Smoothing and Regression: Approaches, Computation, and Ap-
plication. John Wiley, New York (2000)

27. Simpson, T.W., Toropov, V., Balabanov, V., Viana, F.A.C.: Design and analy-
sis of computer experiments in multidisciplinary design optimization: A review of
how far we have come – or not. In: Proceedings of the 12th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, Victoria, British Columbia,
Canada (September 2008) AIAA Paper 2008-5802

28. Storlie, C.B., Bondell, H.D., Reich, B.J.: A locally adaptive penalty for estima-
tion of functions with varying roughness. Journal of Computational and Graphical
Statistics 19(3), 569–589 (2010)

29. Storlie, C.B., Bondell, H.D., Reich, B.J., Zhang, H.H.: Surface estimation, variable
selection, and the nonparametric oracle property. Statistica Sinica 21(2), 679–705
(2010)

30. Storlie, C.B., Helton, J.C.: Multiple predictor smoothing methods for sensi-
tivity analysis: Description of techniques. Reliabililty Engineering and System
Safety 93(1), 28–54 (2008)

31. Storlie, C.B., Swiler, L.P., Helton, J.C., Sallaberry, C.J.: Implementation and eval-
uation of nonparametric regression procedures for sensitivity analysis of compu-
tationally demanding models. Reliability Engineering and System Safety 94(11),
1735–1763 (2009)

32. Swiler, L.P., Wyss, G.D.: A user’s guide to Sandia’s latin hypercube sampling
software: LHS UNIX library and standalone version. Technical Report SAND04-
2439, Sandia National Laboratories, Albuquerque, NM (July 2004)

33. Swiler, L.P., Hough, P.D., Qian, P., Xu, X., Storlie, C.B., Lee, H.: Surrogate models
for mixed discrete-continuous variables. Technical Report SAND2012-0491, Sandia
National Laboratories, Albuquerque, NM (August 2012)

34. Tibshirani, R.J.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society B 58, 267–288 (1996)

35. Viana, F.A.C., Haftka, R.T., Steffan Jr., V.: Multiple surrogates: How cross-
validation errors can help us obtain the best predictor. Structural and Multidisci-
plinary Optimization 39(4), 439–457 (2009)

202 L.P. Swiler et al.

36. Viana, F.A.C., Haftka, R.T., Steffan Jr., V., Butkewitsch, S., Leal, M.F.: Ensemble
of surrogates: a framework based on minimization of the mean integrated square er-
ror. In: Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, Schaumburg, IL (April 2008) AIAA
Paper 2008–1885

37. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics (1990)

38. Wu, Z.: Multivariate compactly supported positive definite radial functions. Ad-
vances in Computational Mathematics 4, 283–292 (1995)

39. Zhou, Q., Qian, P.Z.G., Zhou, S.: A simple approach to emulation for computer
models with qualitative and quantitative factors. Technometrics 53, 266–273 (2011)

Why Ellipsoid Constraints, Ellipsoid Clusters,

and Riemannian Space-Time: Dvoretzky’s
Theorem Revisited

Karen Villaverde1, Olga Kosheleva2, and Martine Ceberio2

1 Department of Computer Science, New Mexico State University,
Las Cruces, NM 88003, USA

kvillave@cs.nmsu.edu
2 University of Texas at El Paso, El Paso, TX 79968, USA

{olgak,mceberio}@utep.edu

Abstract. In many practical applications, we encounter ellipsoid con-
straints, ellipsoid-shaped clusters, etc. A usual justification for this ellip-
soid shape comes from the fact that many real-life quantities are normally
distributed, and for a multi-variate normal distribution, a natural con-
fidence set (containing the vast majority of the objects) is an ellipsoid.
However, ellipsoids appear more frequently than normal distributions
(which occur in about half of the cases). In this paper, we provide a
new justification for ellipsoids based on a known mathematical result –
Dvoretzky’s Theorem.

Keywords: ellipsoids, constraints, clusters, tensors, space-time physics,
Dvoretzky’s theorem.

1 Formulation of the Problem

Ellipsoids are ubiquitous. In many practical applications, we encounter ellip-
soid constraints, ellipsoid-shaped clusters, etc. (see, e.g., [2]), i.e., sets in an
n-dimensional space described by the formula

n∑

i=1

n∑

j=1

aij · xi · xj +

n∑

i=1

ai · xi ≤ a0. (1)

Reformulation in terms of tensors. The above formula (1) shows that to describe
an ellipsoid, we need to have a vector (= tensor of order 1) ai and a tensor aij
of order 2.

A usual probabilistic explanation of the ellipsoid shape. A usual justification
for this ellipsoid shape comes from the fact that many real-life quantities are
normally distributed, and for a multi-variate normal distribution, a natural con-
fidence set (containing the vast majority of the objects) is an ellipsoid.

M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making, 203
Studies in Computational Intelligence 539,
DOI: 10.1007/978-3-319-04280-0_22, c© Springer International Publishing Switzerland 2014

204 K. Villaverde, O. Kosheleva, and M. Ceberio

Indeed, it is known that uncertainty can be often described by the Gaussian
(= normal) distribution, with the probability density

ρ(x) =
1√
2π

· exp
(
− (x− a)2

2σ2

)
. (2)

This possibility comes from the Central Limit Theorem (see, e.g., [12]), according

to which the sum x =
N∑
i=1

xi of a large number N of independent small random

variables xi has an approximately Gaussian distribution. (To be more precise,
the theorem says that in the limit N → ∞, the distribution of the sum tends to
the Gaussian distribution.)

In practice, often, the measurement error is caused by a joint effect of a
large number of small independent factors, so it makes sense to conclude that
the distribution is approximately Gaussian. This theoretical conclusion has been
experimentally confirmed on the example of many actual measuring instruments;
see, e.g., [9].

The above result is about the 1-D distribution: of a random number. For the
multi-D case – of a random vector x = (x1, . . . , xn) – a similar result also leads
to multi-D Gaussian distribution, with an expression

ρ(x) = const · exp

⎛
⎝−

n∑

i=1

n∑

j=1

cij · (xi − ai) · (xj − aj)

⎞
⎠ . (3)

This probability density ρ(x) is everywhere positive; thus, in principle, an
arbitrary tuple Δx is possible. In practical statistics, however, tuples with very
low probability density ρ(Δx) are considered impossible. For example, in 1-
dimensional case, we have a “three sigma” rule: values for which |Δx1| > 3σ1 are
considered to be almost impossible. In the multi-dimensional case, it is natural
to choose some threshold t > 0, and consider only tuples for which ρ(Δx) ≥ t
as possible ones. This formula is equivalent to ln(ρ(x)) ≥ ln(t). For Gaussian

distribution, this equality takes the form
n∑

i=1

n∑
j=1

cij ·(xi−ai) ·(xj−aj) ≤ − ln(t),

i.e., the form of an ellipsoid.

Problem. While the probabilistic explanation is convincing, it does not cover all
the cases. Indeed, according to [9], normal distributions occur in approximately
half of the cases, while in many practical applications, ellipsoids appear more
frequently.

How can we explain this ubiquity of ellipsoids?

Taylor expansion: a possible explanation. Another possible explanation comes
from the fact that the function g(x1, . . . , xn) describing a general constraint
g(x1, . . . , xn) ≤ 0 is usually smooth; thus, it can be usually expanded in Taylor
series. In this expansion, terms of higher order become smaller and smaller, so
we can usually safely keep only a few first terms in this expansion. In particular,

Why Ellipsoid Constraints: Dvoretzky’s Theorem Revisited 205

if we only keep linear and quadratic terms, we get an expression (1) – i.e., an
ellipsoid.

This argument is reasonable, but it does not explain why in most cases, the
first two terms are sufficient and not, e.g., the first three – which would lead
to more complex shapes of constraints and clusters (and the use of tensors of
higher order).

Comment. An alternative explanation comes from the fact that ellipsoids are
known to be the optimal approximation sets for different problems with respect to
several reasonable optimality criteria; see, e.g., [5, 6]. However, they are optimal
only if we consider approximating families of sets characterized by the smallest
possible number of parameters.

2 New Explanation Based on Dvoretzky’s Theorem

What is Dvoretzky’s Theorem. In this paper, we propose a new explanation of
the ubiquity of ellipsoids. This explanation is based on a mathematical result
called Dvoretzky’s theorem.

The original version of this theorem [3] answered a question raised in 1956
by Alexander Grothendieck, one of the most important mathematicians of the
20 century. A. Dvoretzky proved that Grothendieck’s hypothesis is indeed true,
and that in general, convex sets in large dimensions have sections whose shape is
close to ellipsoidal – the larger the dimension, the close this shape to the shape
of an ellipsoid.

In 1971, V. L. Milman [7] strengthened this result by proving that not only
there exists an almost ellipsoidal shape, but also that almost all low-dimensional
sections of a convex set have an almost ellipsoidal shape. (Strictly speaking,
he proved that for every ε > 0, the probability to get a shape which is more
than ε-different from ellipsoidal goes to 0 as the dimension of the convex set
increases.)

How Dvoretzky’s theorem explains the ubiquity of ellipsoid clusters and ellipsoid
constraints. In clustering, one of the main problems is that usually, we only
measure a few quantities, not enough to easily classify objects. For example, in
military applications, the need to classify sonar records into submarine sounds,
whale sounds, and noise comes from the fact that we only have a weak (partially
observed) signal. Based on a high-quality low-noise recording, it is relatively easy
to distinguish between sounds produced by submarines and sounds produced by
whales.

Theoretically, each real-life object can be characterized by a point (vector)
containing the results of measuring all possible quantities characterizing this
object. In this theoretical description, objects are represented by points in a
(very) high-dimensional space, and natural classes of objects are sets in this
high-dimensional space.

However, in the real world, we only observe a few of these quantities. Thus,
what we observe is a lower-dimensional section of a high-dimensional set – and

206 K. Villaverde, O. Kosheleva, and M. Ceberio

we know that, according to Dvoretzky’s theorem, this section is almost always
almost ellipsoidal.

A similar argument can be made about constraints. The actual physical con-
straints depend not only on the observed quantities x1, . . . , xn, they also depend
on other quantities whose values we do not measure in our experiments. For
example, to avoid unnecessary side effects, it is usually recommended that the
amount x1 of a medicine that a doctor prescribes to a patient must lie within
bounds depending on the patient’s body weight x2. In other words, we have a
constraint of the type x1 ≤ k · x2, where the constant k depends on the specific
medicine. However, the actual effect of the medicine depends not only on the
body weight, it depends on many other characteristics of a patient – such as
physical fitness, general allergic reactions – characteristics that usually, we do
not measure. Similarly, in recipes for cooking, the amount of salt x1 is usually
listed depending on the amount of, say, meat x2 used in the cooking. However,
in reality, it should depend also on the parameters that a usual cook does not
measure exactly – such as the humidity in the air, etc. (That is why, in contrast
to typical US cookbooks that list the exact amounts of all the ingredients, in
Mexican, Russian, and French cookbooks these amounts are only approximately
listed – so that a skilled cook can take into account other parameters that are
difficult to measure :-)

In general, a physical constraint actually has a form
g(x1, . . . , xn, xn+1, . . . , xN) ≤ 0, where xn+1, . . . , xN are quantities that
we do not measure in this particular experiment. Thus, the correspond-
ing n-dimensional constraint set {x = (x1, . . . , xn) : g(x1 . . . , xn) ≤ 0}
is a section of the actual (unknown) multi-dimensional constraint set
{x = (x1, . . . , xn, . . . , xN) : g(x1 . . . , xn, . . . , xN) ≤ 0} – and we already
know that in almost all cases, such sections are almost ellipsoidal.

Auxiliary result: why Riemannian space-time? A similar argument can explain
why, contrary to physicists’ expectations, experiments seem to confirm the Rie-
mannian models of space-time. Before we provide this explanation, let us briefly
explain what is the Riemannian model and why physicists expected it to be
experimentally disproved.

Before Einstein’s General Relativity theory, it was assume that space in Eu-
clidean, i.e., that, in appropriate coordinates, the distance d(x, x+Δx) between

two close points can be described as d2(x, x+Δx) =
n∑

i=1

(Δxi)
2. In general (not

necessarily orthonomal) coordinates, this distance takes a more general form
n∑

i=1

n∑
j=1

gij ·Δxi ·Δxj . Einstein suggested that the space-time is locally Euclidean,

so that in the small vicinity of each point, there are coordinates in which the dis-
tance is Euclidean – but there are no coordinates in which the distance formula
is Euclidean at all the points [8]. Such spaces are known as Riemannian.

Einstein himself experimented with extending his theory from the usual
(observed) (3+1)-dimensional space-time to space-times of higher dimension [4].

Why Ellipsoid Constraints: Dvoretzky’s Theorem Revisited 207

It later turned out that higher dimensions are needed to make quantum field
theory consistent; see, e.g., [11].

A local Euclidean metric can be characterized by the fact that in this metric,
the unit ball is an ellipsoid. In principle, there are other metrics (e.g., lp-metric

for which dp(x, x+Δx) =
n∑

i=1

|Δxi|p) with different convex bodies for unit balls.

The corresponding generalization of Riemannian space-time is called a Finsler
space [1, 10].

One of the main ideas of quantum physics is that in contrast to classical
physics, where, e.g., some trajectories are allowed and some are not, in quantum
physics, all trajectories are allowed – just the probability of very non-standard
probabilities is small. Similarly, metrics should not be limited to Riemannian
metrics, Finsler metrics should also be possible – with some probability. However,
while experiments confirm non-standard trajectories of quantum particles and
non-standard behavior of quantum fields, surprisingly, all experimental data so
far confirms Riemannian metric.

Dvoretzky’s theorem explains this phenomenon: indeed, the actual space is
multi-dimensional, so we only observe a section of the corresponding convex unit
ball, and such a section is close to an ellipsoid.

References

1. Chern, S.-S., Shen, Z.: Riemann-Finsler Geometry. World Scientific, Singapore
(2005)

2. Chernousko, F.L.: State Estimation for Dynamic Systems. CRC Press, Boca Raton
(1994)

3. Dvoretzky, A.: Some results on convex bodies and Banach spaces. In: Proceedings
of the 1960 International Symposium on Linear Spaces, pp. 123–160. Jerusalem
Academic Press, Pergamon Press, Jerusalem, Oxford (1961)

4. Einstein, A., Bergmann, P.: On the generalization of Kaluza’s theory of electricity.
Ann. Phys. 39, 683–701 (1938)

5. Finkelstein, A., Kosheleva, O., Kreinovich, V.: Astrogeometry, error estimation,
and other applications of set-valued analysis. ACM SIGNUM Newsletter 31(4),
3–25 (1996)

6. Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set Val-
ued and Fuzzy Valued Random Variables. Kluwer Academic Publishers, Dordrecht
(2002)

7. Milman, V.D.: A new proof of A. Dvoretzky’s theorem on cross-sections of convex
bodies. Functional Analysis and Its Applications 5(4), 28–37 (1971) (in Russian)

8. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, New York
(1973)

9. Novitskii, P.V., Zograph, I.A.: Estimating the Measurement Errors. Energoatomiz-
dat, Leningrad (1991) (in Russian)

10. Pavlov, D.G., Atanasiu, G., Balan, V. (eds.): Space-Time Structure. Algebra and
Geometry. Russian Hypercomplex Society, Lilia Print, Moscow (2007)

11. Polchinski, J.: String Theory, vols. 1, 2. Cambridge University Press (1998)
12. Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice.

Springer, New York (2005)

Author Index

Aguirre, Uram Anibal Sosa 175

Balreira, E. Cabral 1

Ceberio, Martine 9, 15

Ferret, Juan 91
Figueroa-Garćıa, Juan C., 19

Garbayo, Luciana 35

Hernández, Germán 19
Hlad́ık, Milan 47
Horáček, Jaroslav 47
Hough, Patricia D., 181

Jaimes, Aline 61

Koshelev, Misha 67
Kosheleva, Olga 1, 9
Kreinovich, Vladik 1, 9

Lee, Herbert 181

Magoč, Tanja 97

Magoc, Tanja 61
Modave, François 97
Mullin, Lenore 111

Nataraj, P.S.V., 131

Patil, Mukesh D., 131
Portillo, Paden 137

Qian, Peter 181

Raynolds, James 111

Sainudiin, Raazesh 143
Shary, Sergey P., 153
Son, Young-Jun 171
Storlie, Curtis 181
Swiler, Laura P., 181

Tweedy, Craig 61

Villaverde, Karen 203

Xu, Xu 181

	Preface
	Table of Contents
	Algorithmics of Checking whether a MappingIs Injective, Surjective, and/or Bijective
	1 Formulation of the Problem
	2 Case of Polynomial and, More Generally, Semi-algebraic Mappings
	3 General Case
	References

	Simplicity Is Worse Than Theft: A Constraint-Based Explanation of a SeeminglyCounter-Intuitive Russian Saying
	References

	Continuous If-Then Statements Are Computable
	References

	Linear Programming with Interval Type-2 FuzzyConstraints
	1 Introduction
	1.1 Applicability of Type-2 Fuzzy Sets

	2 Basic Definitions
	2.1 The Zimmermann’s Soft Constraints Model

	3 Interval Type-2 Fuzzy Constraints
	3.1 Basics on Interval Type-2 Fuzzy Sets
	3.2 Uncertain Constraints

	4 The IT2FLP Model
	4.1 Convexity of an IT2FLP

	5 Solution Procedure of an IT2FLP
	6 Application Example
	6.1 Obtained Results
	6.2 Discussion of the Results

	7 Concluding Remarks
	References

	Epistemic Considerations on Expert Disagreement, Normative Justification, and Inconsistency Regarding Multi-criteria DecisionMaking
	1 Epistemology, Propositional Knowledge and the Pivotal Role of Epistemic Justification in Disagreement
	2 The Justified True Belief Tradition
	3 Justified True Belief Fails: From Knowledge to Justification, to Belief Revision
	4 Fallibilism in Science, JTB and Expert Disagreements
	5 Dealing with Multi-criteria Decision-Making in the Context of Expert Disagreement
	6 Computer Science and Epistemology of Disagreement: Some Initial Convergent Notes
	7 Conclusion and Future Work: On Modeling Methodological Disunity in Legitimate Disagreement Contexts
	References

	Interval Linear Programming Techniques in Constraint Programming and GlobalOptimization
	1 Introduction
	2 Interval Linear Programming Approach
	2.1 Vertex Selection of x0
	2.2 Non-vertex Selection of x0
	2.3 Convex Case
	2.4 Summary
	2.5 Illustration

	3 Parallel Linearization: Yes or No?
	4 Conclusion
	References

	Selecting the Best Location for a Meteorological Tower: A Case Study of Multi-objectiveConstraint Optimization
	References

	Gibbs Sampling as a Natural Statistical Analog of Constraints Techniques: Prediction in Science under GeneralProbabilistic Uncertainty
	References

	Why Tensors?
	References

	Adding Constraints – A (Seemingly Counterintuitive but) UsefulHeuristic in Solving Difficult Problems
	References

	Under Physics-Motivated Constraints, Generally-Non-Algorithmic ComputationalProblems become Algorithmically Solvable
	References

	Constraint-Related Reinterpretation of Fundamental Physical Equations Can Serve as aBuilt-In Regularization
	1 Formulation of the Problem
	2 MainIdea
	References

	Optimization of the Choquet Integral UsingGenetic Algorithm
	1 Introduction
	2 Multi-criteria Decision Making
	3 Basics of a Genetic Algorithm
	3.1 Modification of Genetic Algorithms

	4 Modified Genetic Algorithm to Suit Applications in Decision Making
	5 Experiments
	6 Results
	6.1 Further Examination of the SPLIT Algorithm
	6.2 Statistical Analysis

	7 Conclusion
	References

	Scalable, Portable, Verifiable KroneckerProducts on Multi-scale Computers
	1 Introduction
	2 Background and Initial Goals
	3 Theψ-Calculus
	4 Changing Layouts Using Permutations
	5 Multiple Kronecker Products
	6 n Kronecker Products: A New Theorem
	7 Conclusion
	References

	Reliable and Robust Automated Synthesis of QFT Controller for Nonlinear Magnetic Levitation System Using Interval ConstraintSatisfaction Techniques
	1 Introduction
	2 Some Preliminaries
	2.1 Quantitative Feedback Theory
	2.2 Quadratic Inequalities for Parametric Uncertainty

	3 Controller Synthesis Methodology
	3.1 The Loop Shaping Problem
	3.2 The Proposed Method

	References

	Towards an Efficient Bisection of Ellipsoids
	References

	An Auto-validating Rejection Sampler for Differentiable Arithmetical Expressions:Posterior Sampling of Phylogenetic Quartets
	1 Introduction
	2 An Improved Approach
	3 Phylogenetic Estimation
	4 Efficiency of MRS with Centered Form
	5 Conclusion
	References

	Graph Subdivision Methods�in Interval Global Optimization
	1 Introduction
	2 Idea of the New Approach
	3 Multidimensional Case
	4 Gradient Tests
	5 Application to Interval Band Linear Systems
	References

	An Extended BDI-Based Model for Human Decision-Making and Social Behavior:Various Applications
	1 Introduction
	References

	Why Curvature in L-Curve:Combining Soft Constraints
	1 Formulation of the Problem
	2 Analysis of the Problem
	3 MainResult
	References

	Surrogate Models for MixedDiscrete-Continuous Variables
	1 Introduction
	2 Mixed Surrogate Approaches
	2.1 Adaptive COmponent Selection and Shrinkage Operator (ACOSSO)
	2.2 Gaussian Processes for Models with Quantitative and Qualitative Factors
	2.3 Treed Gaussian Processes (TGP)

	3 Testing and Assessment Approach
	3.1 Test Functions
	3.2 Sample Design
	3.3 Comparison Metric

	4 Results
	4.1 Test Function 2
	4.2 Goldstein-Price
	4.3 Fourth Order Polynomial

	5 Summary
	References

	Why Ellipsoid Constraints, Ellipsoid Clusters, and Riemannian Space-Time: Dvoretzky’sTheorem Revisited
	1 Formulation of the Problem
	2 New Explanation Based on Dvoretzky’s Theorem
	References

	Author Index

