The Observer Pattern Using
Aspect Oriented Programming

Jacob Borella (jborella@it.edu)
['T-University of Copenhagen

VikingPLOP september 19-22 2003

Abstract

Usually only the solution of the 23 original design patterns, first proposed by
the “gang of four”, are considered reusable, whereas the implementation is not.
Using Aspect Oriented Programming this paper provides a new solution to and
a reusable implementation of the Observer pattern. The implementing languages
are AspectJ and AspectS respectively. A consequence of using this new imple-
mentation in an application is added complexity, why a simpler and not reusable
realization of the pattern might be preferable in some cases.

1 Introduction

Since the concept of design patterns were introduced in the article [4] written by
Gamma, Helm, Johnson, and Vlissides, the authors later to be known simply as
“the gang of four”, much work has been devoted to investigate design patterns. A
lot of the work has been used to identify other design patterns than the original
23 introduced in [3]|, books has been written about how to use and implement
patterns in different programming languages, and a lot has been written about
domain specific patterns. In spite of all the work done, the design patterns
are still considered reusable mostly at the conceptual level. As a consequence the
programmer still must implement the patterns for each application he is building.

In 2] it is noted that some architectural abstraction will sooner or later
become part of the language, suggesting that the best solution to the missing
reusability is to make the patterns part of the language. The drawback of this
approach is more complicated languages.

Another approach to the problem of reusability, is made possible by the intro-
duction of Aspect Oriented Programming (AOP), since this kind of programming
enables one to introduce code into an existing codebase and change behavior of
existing methods.

In general there seems to be two approaches for creating AOP implementations
of the patterns. To understand the difference between the two approaches it is
important to distinguish between problem, solution, and implementation of a
pattern. The problem identifies a design problem and explains when to use a
given pattern to solve this problem. The solution descripes in nonimplementation-
specific terms a solution to the problem. This is done by identifying main elements
of the pattern and how these elements relate and collaborate. The implementation
is a realization of a solution.

The first approach is to use AOP to implement the solutions that are given
in [3]. The other approach is to create genuinly new solutions to the problems of
the patterns in the light of AOP and implement these solutions.

What is new in this paper is, that a new solution to, and implementation
of, the Observer pattern is provided. This approach seems reasonable, because

the solutions to the problems of the patterns listed in [3| are not considering
AOP technologies. The implementing languages are AspectS [7| for Smalltalk
and AspectJ [8] for Java. The reason for choosing AspectS is that aspects can be
applied at runtime and because the language has a very different instantiation
policy than AspectJ, which is choosen mainly because it is the most popular
language.

2 An example of AOP

To introduce some important concepts of AOP a very simple, but still usefull
and genuinly new, implementation of the Observer pattern is provided. Assume

01 public class Subject {

02 private int state;

03

04 public void setState(int newState) { state = newState; 1}

05 public int getState() { return state; }

06 }

07 public class Observer {

08 public void showMessage(String msg) { System.out.println("[Observer] " + msg); }
09 }

10 public aspect SubjectAgent {

11 private java.util.LinkedList observers = new java.util.LinkedList();
12

13 public void Observer.update(Subject s) {

14 showMessage("subject changed state to " + s.getState());

15 }

16

17 public void addObserver(Observer o) { observers.add(o); }

18 public void removeObserver(Observer o) { observers.remove(o); }
19

20 after(Subject s) : set(int Subject.state) && target(s) {

21 java.util.Iterator i = observers.iterator();

22 while (i.hasNext()) {

23 ((Observer) i.next()).update(s);

24 ¥

25 }

26 }

Figure 1: The observer pattern.

that it doesn’t matter whether the implementation is reusable or how nice it
looks. The programmer simply want to get the job done. Each time a subject
changes state, some action must happen in its related observers. In the case of
this example a subject can set an instance variable called state. Each time state
is changed, all observers must show the new state on the screen. This can be
realized by the code listed in figure 1.

The new construct in this example is the aspect Subject Agent, which in this
example consists of a pointcut, an advice, an introduction, and two methods. The

introduction, which is located in line 13-15, introduces (read inserts) a method
update(Subject) in the Observer class. The pointcut in figure 1 is the part in
line 20 after the ’.”. It defines some well defined place in the executing code, in
this case the assignment of a new value to state. The advice denotes what to do
when a pointcut is reached. Code can usually be executed before, after, and/or
around the pointcut. In the example the code is to be executed after the above
mentioned pointcut. The code to execute is within the brackets in line 21-24,
and simply calls update on all registered observers. The methods for adding and
removing observers are as in Java.

Although this example is very simple, it might be a very usefull implemen-
tation of the Observer pattern in case the code is unlikely to be changed. It is
very simple to understand, but still separates the observer from the subject. The
motivation for using a more complicated, but reusable, solution should be the
same as always.

3 Analysis and requirements

The intent of the Observer pattern is to:

Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically. [3, p. 293]

This definition is implementation specific, because it assumes that "depen-
dents are notified". Such implementation is known as the push model, but it is
also possible to let the dependent poll for state changes. In this case there is
no notification. Using polling is considered inefficient for most applications, why
this paper will not consider such a solution.

In the original solution, the subject has at least two methods; addObserver(Observer)
and removeObserver(Observer). This choice of interface is not the only possible
one. Furthermore it must be decided where to place the methods of the inter-
face. Assuming that it is possible to make the pattern reusable, there are two or
three possibilities, depending on whether the pattern is realized as a class; at the
observer, subject, or pattern. The interface will be slightly affected by where the
methods are placed.

At the one extreme the original interface is kept. The resulting method names
can be seen in table 1. The consequence of using the interface in table 1 is that it
is only possible to introduce behavior at the class level (that is any observer class
must do the same in response to a change in a subject class). The behavior must
still be implemented (that is the observer must have some update logic, which
can be called by the subject).

Placed on the subject.

addObserver: anObserver

removeQObserver: anObserver

Indicate that anObserver now listens for changes in the
subject.

Indicate that anObserver no more listens for changes in
the subject.

Placed on the observer.

observe: aSubject
stopObserving: aSubject

Indicate that aSubject now is observed by the observer.
Indicate that aSubject is no more observed by the ob-
server.

Placed on the pattern.

startObserving: anObserver subject: aSubject
stopObserving: anObserver subject: aSubject

Explanation as for the observer case.
Explanation as for the observer case.

Table 1: Original interface depending on placement.

At the other extreme it is possible to let any observer instance do some action
in response to a state change in any subject instance. The methods are listed
in table 2. Remark that an agent is used in the table. The role of the agent
is to do some actions in one or more observers whenever an event (that is a
state change) occurs in one or more subjects. Using this definition the agent
maps many observers to many subjects. Depending on the implementation it
is beneficial to use a different mapping (one observer to many subjects or one

subject to many observers).

Placed on the observer.

do: anAction when: anFEvent in: aSubjectinstance

stopDoing: anld

Indicate that the observer must do anAction in response
to anFvent in aSubjectinstance. Return anld for the
agent.

Remove the agent given by anld from the observer.

Placed on the subject.

on: anObserverinstance do: anAction when: anEvent

stopDoing: anld

Indicate that anObserverinstance must do anAction in
response to anEvent in the subject. Return anld for the
agent.

Remove the agent given by anld from the subject.

Placed on the pattern.

on: anObserverInstance do: anAction when: anEvent

in: aSubjectInstance

stopDoing: anld

Indicate that the anObserverinstance must do anAc-
tton in response to anFvent in aSubjectInstance. Return
anld for the agent.

Remove the agent given by anld.

Table 2: AOP interface depending on placement.

As opposed to the original interface, there is no control of whether the code

introduced in anAction is correct.

For instance the programmer might as an

error specify the same action twice in response to a subject event. Furthermore
anAction in table 2 cannot access private fields in the observer unless it is placed
on the observer as an inner class or mechanisms are build into the language,
which allows other objects to access internal state of the observer (for instance
the keyword privileged in Aspect]J or friendly in C++). The advantage of using
inner classes is as noted above that they can access internal state. On the other
hand placing them as inner classes leads to code scattering and worse the actions

4

must be removed manually from every observer if some observer is to be used in
a context where it doesn’t play that role.

Placing anAction in separate classes avoids the above problems, but the ap-
proach might lead to a breach of encapsulation, because the observer is forced to
expose the state that must be changed or methods to call when a subject change
occurs.

If the methods are placed on the pattern, the interface is a little more com-
plicated than in the two other cases, but besides from that there doesn’t seem to
be any logical choice of placement.

4 Solution

A solution can be seen in figure 2. It has two classes (Subject and Observer)
and an aspect (Agent) not counting subclasses. No specific interface for the
Observer pattern behavior is chosen, but it is decided to place the methods on
the Observer. The role of the Agent is to observe the Subject and execute
some code on behalf of the Observer each time a subject change occurs. Which
kind of subject change one can listen for is specified by subclassing the Agent.
The Observer is composed of zero or more Agent’s depending on which subject

Figure 2: The observer using composition.

changes it listens for. The composition can be changed at runtime, making it
possible to change the subject changes an observer reacts to. Remark that this is
not the same as the old callback protocol, since the Subject is left unchanged.
The Observer has the responsibility of installing Agent’s and as a consequence
controls actions taken on itself.

The methods described in table 1 or 2 can be introduced in the Observer
class by introduction or by hardcoding them into the class. If using introduction
the code is separated into three components; the observer, the subject, and the
observer pattern.

5 A Smalltalk implementation

An implementation of the observer pattern using introduction in the observer of
the methods listed in table 2 is provided in appendix A. Smalltalk (Squeak) and
AspectS are used as implementing language.

The implementation is highly reusable. The only thing which is required is to
write a new agent per type of subject event and registrering it under some name
in the pool dictionary SubjectEventConstants. By looking at the implementation
of an Agent subclass in figure 3 it is easy to realize that the implementing work
is minimal. The only thing required is to supply the pointcut which denfines

getPointcut
~ OrderedCollection
with: (AsJoinPointDescriptor targetClass: Subject targetSelector: #price:)

Figure 3: The only method of the SubjectNameChangeAgent.

when a subject change occurs (in this case when the message price: is sent to a
Subject). The Subject and Observer classes are unaffected by the Observer
pattern only defining their own methods.

The Agent class is doing the actual method calls when a subject event occurs.
It is listed in figure 4 and is a subclass of AsAspect meaning that it can introduce

adviceSubjectChange
~ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: { #receiverInstanceSpecific. })
pointcut: [self getPointcut]
afterBlock: [:receiver :arguments :aspect :client :result |
doBlock copy fixTemps valueWithArguments: {receiver. self observer.}]

getPointcut
self subclassResponsibility

doBlock
~ doBlock

doBlock: aBlock
doBlock := aBlock

observer
~ observer

observer: newObserver
observer := new(bserver

Figure 4: Methods of the Agent class.

advice. In this case one advice is introduced, which activates a block of code in

an Observer each time a pointcut defined by its subclass (for instance the one
in figure 3) occurs. The ObserverPattern is not listed here, but it introduces
methods for managing all the agents in the Observer.

o Observer new.
s := Subject new.
pattern := ObserverPattern new.
pattern addObserverClass: Observer.
pattern install.
a := o do: [:subject :observer | observer showMessage: ’s name change to: ’> , subject name]
when: SubjectNameChange
in: s.
s name: ’apple’.
o stopObserving.
s name: ’want be noticed’
pattern uninstall.

Figure 5: Example of using the observer pattern.

Running the example in figure 5 results in the observer writing: "[observer| s
name change to: apple" to the transcript when the subjects changes name to "ap-
ple’. The second name change goes unnotified, since the observer stops observing
before. Remark that the pattern is instantiated and installed at runtime, making
it possible to change the implementation of it and assign roles at runtime. In a
more advanced version it could also be possible to create agents at runtime.

The programmer is required to deregistrer all agents prior to dereferencing
the observer (in the implementation of the original solution this results in some
calls to removeObserver(Observer)), otherwise it will still be active. There is no
workaround for that in languages using garbage collection. Calling uninstall on
the pattern results in the agents being removed as well.

6 An AspectJ implementation

In appendix B an implementation using AspectJ is provided. Due to the more
detailed pointcuts of AspectJ it is possible to listen not only for method calls
as in AspectS, but also the assignment of variables, instantiation of objects etc.
This gives AspectJ an advantage over AspectS.

The solution is very reusable. To introduce an observerrole into some object
it is only required to declare it in a subclass of ObserverPattern. For each kind
of subject change, an agent must be written (which as before is a trivial task),
and it must be specified in the subclass of ObserverPattern.

Since the implementation looks a lot like the one in Smalltalk /AspectS, only
an example of binding the pattern is provided in figure 6. This file is compiled
with the rest of the codebase, resulting in the ConsoleLogger being an observer
and SomeSubject a subject. A consequence is, that the code must be recompiled

7

aspect ObserverPatternBinding extends ObserverPattern {

public static final int SomeSubject.NAME_CHANGE = 0;
public static final int SomeSubject.PRICE_CHANGE = 1;

declare parents: ConsoleLogger implements Observer;
declare parents: SomeSubject implements Subject;

public Agent Consolelogger.getAgentFor(ActionIdentifier id) {
switch(id.action) {
case 0:
return SomeSubjectNameChangeAgent.aspect0f(id.subject);
case 1:
return SomeSubjectPriceChangeAgent.aspect0f(id.subject);
default:
return null;

Figure 6: Example of bindng the observer pattern.

each time one wants to apply the pattern to a new class, remove the pattern from
some class, or change the implementation of the pattern. This is a drawback of
using AspectJ.

Since there are no blocks in AspectJ or Java, an Action class is introduced.
It has the method execute, which is called on subject changes. Due to some
lack of instantiation policy in AspectJ, the agent maps one subject instance to
many actions. This approach is very similar to the AOP implementation of the
original solution.

7 Related work

In [5] Hannemann and Kiczales give an implementation of the original solution to
the Observer pattern. (At Hannemann’s homepage an implementation of the 23
design patterns from [3] are provided.) Their implementation, which introduces
methods corresponding to the ones listed in table 1 on the pattern, is also reusable
only requiring the binding of roles and specification of subject changes. There
are some problems using their implementation, which relates to their placement
of the observer methods on the pattern implementation. The method aspectOf()
is called on the implementing pattern class to access the pattern implementation.
Changing the implementation will thus require the programmer to change all
places in the codebase where the pattern methods are called, which is potentially
a lot of places. A possible workaround is to use an abstract factory to access
the pattern implementation, but this leads to code that are more complicated
than necessary. Another problem is that they simulate state of the subject (the

weak hashmap containing the observers per subject). Since there are introduction
mechanisms in AspectJ it seems to be a better solution to use this mechanism.

Some critique of the implementation by Hannemann and Kiczales is given in
[9], providing their own implementation of the Observer pattern in the language
Caesar. One point is, that the methods are introduced as top level methods on
the pattern. Besides from the above problem that one has to call the methods
on the aspect, for which there is a workaround, it can be discussed whether such
critique are justified, but an alternative not using top level methods are provided
in this paper.

Another point is the lack of dynamic deployment. This critique seems some-
what unjustified, since it lies in the nature of the language. The AspectS im-
plementation of the Observer pattern is an example of a dynamic deployable
implementation.

Other contributions to implementing design patterns using AOP are [6], provid-
ing an implementation of the Decorator and Visitor patterns, and [1] providing
an implementation of the Visitor pattern using AspectJ.

8 Conclusion

The primary goal was to obtain a reusable implementation of the Observer pat-
tern using AspectS/Smaltalk and AspectJ/Java respectively. This requirement
is met, since the only things left to do in the implementations is specifying the
bindings. That is which objects are observers and which subject changes there
are in the system. Furthermore the actions to do when a subject change occurs
must be provided, but that seems reasonable. The reusable part of the implemen-
tation is provided in the appendices A.1 and B.1. There are differences between
the two implementations, which are mostly due to the differences between the
implementing languages.

The AspectS implementation is dynamic because of the dynamic nature of the
language. At runtime it is both possible to replace the pattern implementation,
assign roles, and introduce new pointcuts. Since the pointcuts can only catch
message sends between objects and the throwing of exceptions, the granularity
of the subject events that can be caught are somewhat limited.

The AspectJ implementation is static, which are mostly due to the fact that
the advice are weaved into the codebase at compiletime. It is thus not possible,
without an extra effort, to change pattern implementation at runtime or assign
new roles. On the other hand the pointcuts that can be expressed are far more
detailed than in AspectS.

Both implementations raises the problem of breach of encapsulation. The ac-
tions that are defined can only access external methods and state on the observer.

As a consequence the observer might be forced to expose some state which were
meant to be internal. Furthermore the pointcuts in Smalltalk can only intercept
message sends and thrown exceptions. In order to be able to detect internal
subject changes it might be required to access this state through message sends,
which also leads to breach of encapsulation.

The conclusion is that AOP can make the Observer pattern reusable, provid-
ing an alternative to changing the language. A new consequence of using the new
Observer pattern solution is added to the list in 3, p. 296]; the reusability adds
complexity. For many applications the very simple solution provided in figure 1
might be as usefull in applications where the observer/subject relation is unlikely
to change.

Whether other patterns can be made reusable are the subject of future work,
some of which is already done in the articles listed in the references section. Still
a lot of work lies ahead before all of the patterns are fully explored.

References

[1] D. Bardou and O. Hachani. Using aspect-oriented programming for design
patterns implementation. In Reuse in Object-Oriented Information Systems
Design workshop. 8th International Conference on Object-Oriented Informa-
tion Systems (OOLS 2002), 2002.

[2] B. B. Christensen. Architectural abstractions and language mechanisms. In
Proceedings of the Asia Pacific Software Engineering Conference, 1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - El-
ements of Reusable Object-Oriented Software. Addison-Wesley professional
computing series. Addison-Wesley, July 2001.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. Lecture Notes in
Computer Science, 707:406-431, 1993.

[5] J. Hannemann and G. Kiczales. Design pattern implementation in java and as-
pectj. In Proceedings of the 17th Annual ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2002.

[6] R. Hirschfeld, R. Lammel, and M. Wagner. Design Patterns and Aspects —
Modular Designs with Seamless Run-Time Integration. In Proc. of the 3rd
German GI Workshop on Aspect-Oriented Software Development, Technical
Report, University of Essen, 2003.

[7] Robert Hirschfeld. Aspect-oriented programming with aspects.

10

[8] http://www.eclipse.org/aspectj/.

[9] M. Mezini and K. Ostermann. Conquering aspects with caesar. In Proceed-

ings of the 2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD), 2003.

11

A The observer pattern implementation in Smalltalk.

A.1 Reusable part

*xx Agent kkx

AsAspect subclass: #Agent
instanceVariableNames: ’observer doBlock ?
classVariableNames: ’°
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
adviceSubjectChange
~ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: { #receiverInstanceSpecific. })
pointcut: [self getPointcut]
afterBlock: [:receiver :arguments :aspect :client :result |
doBlock copy fixTemps valueWithArguments: {receiver. self observer.}]

getPointcut
self subclassResponsibility

doBlock
~ doBlock

doBlock: aBlock
doBlock := aBlock

observer
~ observer

observer: newObserver
observer := new(bserver

***% ObserverPattern **x*
AsAspect subclass: #0bserverPattern
instanceVariableNames: ’activatorsPerObserver observers ’
classVariableNames: ’?
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
removeAllActivators
activatorsPer(Observer valuesDo: [:bagOfActivators
bagOfActivators do: [:activator | activator uninstalll]

init
activatorsPerObserver := Dictionary new.
observers := QrderedCollection new.
adviceAddTo

" AsIntroductionAdvice
qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
pointcut: [self getPointcut: #add:to:]
introBlock: [:receiver :arguments :aspect :client |
arguments second addReceiver: arguments first]

adviceDoWhenIn
~ AsIntroductionAdvice
qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
pointcut: [self getPointcut: #do:when:in:]
introBlock: [:receiver :arguments :aspect :client |
| activator observerActivators
activator := arguments second new.

12

observer: receiver.
doBlock: arguments first.
activator addReceiver: arguments third.
activator install.
observerActivators
activatorsPerObserver at: receiver
observerActivators add: activator.
activator]

activator
activator

adviceRemoveFrom
~ AsIntroductionAdvice

ifAbsentPut: [Bag new].

qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })

pointcut: [self getPointcut: #remove:from:]

introBlock: [:receiver :arguments :aspect :client |

arguments second removeReceiver: arguments first]

adviceStopObserving
~ AsIntroductionAdvice

qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
pointcut: [self getPointcut: #stopObserving]

introBlock: [:receiver :arguments :aspect :

(activatorsPerObserver at: receiver) do:

client |

[:a |

a uninstall].

activatorsPerObserver removeKey: receiver.]

adviceUndo
~ AsIntroductionAdvice

qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })

pointcut: [self getPointcut: #undo:]

introBlock: [:receiver :arguments :aspect :
arguments first uninstall.
(activatorsPer0Observer at: receiver)

getPointcut: theSelector
| ol
o := OrderedCollection new.
observers do: [:observerClass |
o add: (AsJoinPointDescriptor targetClass:

uninstall
self removeAllActivators.
super uninstall

addObserverClass: theClass
observers add: theClass

theClass
theClass

remove(Qbserver(Class:
observers remove:

Class methods:
new
~ super new init

A.2 Example code

k%% Main kx*

Object subclass: #Main
instanceVariableNames:
classVariableNames: ’°
poolDictionaries: ’SubjectEventConstants ’
category: ’Design Patterns-Observer’

el

client |

remove: arguments first]

observerClass targetSelector: theSelector)].

13

Class methods:
runExample
| o sO sl a patternl|
o := Observer new.
s0 := Subject new.
sl := Subject new.
pattern := ObserverPattern new.
pattern addObserverClass: Observer.
pattern install.

a := o do: [:subject :observer | observer showMessage: ’s name change to:

when: SubjectNameChange
in: sO.

o add: sl to: a.

s0 name: ’apple’.

o stopObserving.

sl name: ’pear’.

pattern uninstall.

sl name: ’want be noticed’

createSubjectEventTable
SubjectEventConstants
at: #SubjectNameChange put: SubjectNameChangeAgent ;
at: #SubjectPriceChange put: SubjectPriceChangeAgent.

*xx Observer *¥x

Object subclass: #Observer
instanceVariableNames: ’’
classVariableNames: ’?
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
showMessage: thelMessage
Transcript show: ’[observer] ’ , theMessage ; cr.

*%% Subject %%

Object subclass: #Subject
instanceVariableNames: ’price name ’
classVariableNames: ’?
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
name

name

name: newName
name := newName

price
~ price

price: newPrice
price := newPrice

% SubjectNameChangeAgent *xx*

Agent subclass: #SubjectNameChangeAgent
instanceVariableNames: °?
classVariableNames: ’’
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
getPointcut
~ OrderedCollection

> , subject name]

14

with: (AsJoinPointDescriptor targetClass: Subject targetSelector: #name:)

*%% SubjectPriceChangeAgent **x

Agent subclass: #SubjectPriceChangeAgent
instanceVariableNames: °’
classVariableNames: ’’
poolDictionaries: ’?
category: ’Design Patterns-Observer’

Instance methods:
getPointcut
~ OrderedCollection
with: (AsJoinPointDescriptor targetClass: Subject targetSelector: #price:)

B The observer pattern using AspectJ

B.1 Reusable part
Action.java

public abstract class Action {

public abstract void execute();

}
Agent.java

import java.util.Iterator;
import java.util.Hashtable;

public abstract aspect Agent pertarget(target(ObserverPattern.Subject)){
private Hashtable activators = new Hashtable();
protected abstract pointcut action();

after() : action() {
Iterator i = activators.values().iterator();
while (i.hasNext()) {
((Action) i.next()).execute();
}
¥

public void addAction(ObserverPattern.0Observer key, Action a) {
activators.put(key, a);

}

public void removeAction(ObserverPattern.0Observer key) {
activators.remove(key);
}
}

ObserverPattern.java

import java.util.Iterator;
import java.util.Hashtable;

public abstract aspect ObserverPattern {
public static class ActionIdentifier{
public int action;
public Subject subject;

15

¥

protected interface Subject{};//marker interface
protected interface Observer{

abstract Agent getAgentFor(ActionIdentifier id);
};

//introductions in observer
private Hashtable Observer.installedActions = new Hashtable();
private int Observer.nextId = 0;

public int Observer.doAction(Action theAction, int when, Subject in){
int idInt = nextId++;
Actionldentifier id = new ActionIdentifier();
id.action = when;
id.subject = in;
getAgentFor(id) .addAction(this, theAction);
installedActions.put(new Integer(idInt), id);
return idInt;

}

public void Observer.undoAction(int undoId){
Actionldentifier id = (Actionldentifier) installedActions.get(new Integer(undoId));
getAgentFor(id) .removeAction(this);
installedActions.remove(id);

}

public void Observer.stopObserving() {
Iterator i = (Iterator) installedActions.values().iterator();
while (i.hasNext()) {
ActionIdentifier id = (ActionIdentifier) i.next();
getAgentFor(id) .removeAction(this);

installedActions.clear();

}
SubjectObserverAction.java

public abstract class SubjectObserverAction extends Action {
protected Object sub, obs;

public SubjectObserverAction(Object subject, Object observer){
obs = observer;
sub = subject;

B.2 Example code

ConsoleLogger.java

public class ConsoleLogger {
private String name;

public ConsoleLogger(String name) {
this.name = name;

}

public void log(String msg) {
System.out.println("[" + name + "] " + msg);

}

16

ObserverMain.java,
import it.edu.jborella.patterns.observer.SubjectObserverAction;

public class ObserverMain {
public static void main(String[] args) {
SomeSubject subject = new SomeSubject();
ConsoleLogger logger = new ConsoleLogger("s logger");
int id0 = logger.doAction(
new SubjectObserverAction(subject, logger){
public void execute(){
((ConsoleLogger) obs).log("subject changed price to: " +
((SomeSubject) sub).getPrice());
}
3,
SomeSubject .PRICE_CHANGE,
subject
W
int idl = logger.doAction(
new SubjectObserverAction(subject, logger){
public void execute(){
((ConsoleLogger) obs).log("subject changed name to: " +
((SomeSubject) sub).getName());
}
},
SomeSubject .NAME_CHANGE,
subject
)3
subject.setPrice(123);
subject.setName("apple");
logger.stopObserving();
//logger.undoAction(id0);
subject.setPrice(3987);
subject.setName ("burger");

}
ObserverPatternBinding.java

import it.edu.jborella.patterns.observer.Agent;
import it.edu.jborella.patterns.observer.(QbserverPattern;

aspect ObserverPatternBinding extends ObserverPattern {

public static final int SomeSubject.NAME_CHANGE = 0;
public static final int SomeSubject.PRICE_CHANGE = 1;
declare parents: ConsoleLogger implements Observer;
declare parents: SomeSubject implements Subject;

public Agent Consolelogger.getAgentFor(ActionIdentifier id) {
switch(id.action) {

case 0:

return SomeSubjectNameChangeAgent.aspect0f (id.subject);
case 1:

return SomeSubjectPriceChangeAgent.aspectOf(id.subject);
default:

return null;

}
SomeSubject.java

public class SomeSubject {

17

private int price;
private String name;

public String getName() {
return name;

}

public int getPrice() {
return price;

}

public void setName(String newName) {
name = newName;

}
public void setPrice(int newPrice) {
price = newPrice;
}
by
SomeSubjectNameChangeAgent.java
import it.edu.jborella.patterns.observer.Agent;
public aspect SomeSubjectNameChangeAgent extends Agent {
protected pointcut action() : call(public void SomeSubject.setName(String));
}
SomeSubjectPriceChangeAgent.java
import it.edu.jborella.patterns.observer.Agent;
public aspect SomeSubjectPriceChangeAgent extends Agent {

protected pointcut action() : call(public void SomeSubject.setPrice(int));
}

18

