

Foundations of AOP for
J2EE Development

Renaud Pawlak, Lionel Seinturier, and
Jean-Philippe Retaillé

Foundations of AOP for J2EE Development

Copyright © 2005 by Renaud Pawlak, Lionel Seinturier, and Jean-Philippe Retaillé

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-507-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Houman Younessi

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Translator: Chelsea Creekmore

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editors: Linda Harmony, Ami Knox, Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor and Artist: Wordstop Technologies Pvt. Ltd., Chennai

Proofreader: Elizabeth Berry

Indexer: John Collin

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA

94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly

by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

 To our families and friends

v

Contents at a Glance

Foreword . xv

About the Authors . xvii

About the Technical Reviewer. xix

Introduction . xxi

■CHAPTER 1 Introducing AOP . 1

■CHAPTER 2 The Concepts of AOP . 7

■CHAPTER 3 AspectJ . 23

■CHAPTER 4 Java Aspect Components . 61

■CHAPTER 5 JBoss AOP. 91

■CHAPTER 6 Spring AOP . 113

■CHAPTER 7 AOP Tools Comparison . 137

■CHAPTER 8 Design Patterns and AOP . 149

■CHAPTER 9 Quality of Service and AOP . 171

■CHAPTER 10 Presentation of the Sample Application . 205

■CHAPTER 11 Using AOP within the Sample Application’s
Business Tier . 227

■CHAPTER 12 Using AOP in the Sample Application’s
Presentation and Client Tiers . 271

■INDEX . 311

vii

Contents

Foreword . xv

About the Authors . xvii

About the Technical Reviewer. xix

Introduction . xxi

■CHAPTER 1 Introducing AOP . 1

Looking at Programming Paradigms . 1

The Origins of AOP . 2

OOP: A Promising Paradigm . 2

The Limitations of OOP . 4

The Case of Crosscutting Functionalities . 4

The Case of Code Scattering . 5

The Benefits of AOP . 5

Summary . 6

■CHAPTER 2 The Concepts of AOP . 7

The Concept of an Aspect . 7

Code Scattering . 8

A New Dimension in Modularity . 8

Aspect Weaving . 12

Joinpoints . 14

Different Types of Joinpoints . 15

Pointcuts . 16

Advice Code . 17

Different Types of Advice Code . 17

The Introduction Mechanism . 19

Aspect Composition . 19

Design . 19

Weaving . 20

Summary . 20

Contents

viii ■C O N T E N T S

■CHAPTER 3 AspectJ . 23

A First Application with AspectJ . 24

The Order-Management Application . 24

Execution . 26

A First Trace Aspect . 26

A First Pointcut Descriptor . 27

A First Piece of Advice Code . 28

Compiling . 29

Running . 30

Pointcut Descriptors . 30

Wildcards . 30

Joinpoint Introspection . 33

Defining Joinpoints . 36

Pointcut Parameterization . 41

Summary of Pointcut Descriptors . 41

Advice Code . 43

The Code of an Advice Code Block . 43

The Different Types of Advice Code . 43

Advice Code and Exceptions . 46

The Introduction Mechanism . 47

Fields, Methods, and Constructors . 47

Inherited Classes and Implemented Interfaces 48

Exceptions . 48

Advanced Features . 49

The Abstract Aspect . 49

Aspect Inheritance . 49

Aspect Instantiation . 50

Aspect Ordering . 51

The Privileged Aspect . 52

Declaring Warnings and Errors . 52

Load-Time Weaving . 53

New Features in AspectJ 5 . 53

Working with Annotations in Aspects . 53

Defining Aspects with Annotations . 54

Aspect Instantiation in AspectJ 5 . 58

Other Java 5 Features . 58

Summary . 58

■C O N T E N T S ix

■CHAPTER 4 Java Aspect Components . 61

Creating a First JAC Application . 61

Creating a First Aspect . 61

Compiling a JAC Application . 66

Running a JAC Application . 67

Creating Pointcuts . 68

Pointcut Expressions . 68

Associating a Wrapper with a Pointcut . 71

Creating Wrappers . 72

Methods . 72

Constructors . 73

Joinpoint Introspection . 73

Wrapper Chains . 74

Configuring Aspects and JAC Applications . 75

Configuring Aspects . 75

Configuring JAC Applications . 78

Using the Introduction Feature . 78

Role Methods . 79

Exception Handlers . 80

Using the JAC Aspects Library . 81

Using the User-Interface Aspects . 81

Using the Persistence and Transaction Aspects 83

Using the Distribution Aspects . 83

Using Other Aspects . 84

Programming in UMLAF . 85

Advanced Features . 86

Aspect Instantiation . 86

Aspect Ordering . 86

RTTI . 87

Object Naming . 87

Run Options . 88

Summary . 88

■CHAPTER 5 JBoss AOP . 91

Using JBoss AOP: An Introduction . 91

A First Trace Aspect . 91

A First Pointcut . 92

A First Interceptor . 92

Compiling . 93

Running . 95

x ■C O N T E N T S

Pointcuts . 95

The Different Types of Pointcuts . 96

Associating an Interceptor with a Pointcut . 98

Interceptors . 100

Implementing an Interceptor . 100

Joinpoint Introspection . 101

Aspect Classes . 102

Using the Mix-In Mechanism . 103

Definition . 103

Example . 104

Annotations . 105

Annotations in Pointcut Definitions . 105

Annotations for Writing Aspects . 105

Advanced Features . 108

Dynamic AOP . 108

Instantiating an Aspect . 109

Configuring an Aspect . 109

Introducing Annotations . 110

Summary . 111

■CHAPTER 6 Spring AOP . 113

An Overview of the Spring Framework . 113

Bean Factories . 114

Creating and Configuring Beans . 114

Other Bean Configuration Features . 117

Abstraction Layers . 119

Spring AOP: An Introduction . 120

A Simple Trace Aspect . 120

A Simple Pointcut . 120

A Simple Interceptor . 121

A Simple Advisor . 121

Pointcuts . 122

Basics . 122

Programmatically Defined Pointcuts . 123

Regexp Pointcuts . 124

Associating an Interceptor with a Pointcut 125

Advice . 126

Interceptors (“Around” Advice) . 126

Other Types of Advice . 126

“Introduction” Advice and Mix-Ins . 129

■C O N T E N T S xi

Advanced Features . 132

Ordering Aspects . 132

Programmatically Configured Aspects . 132

Auto-Proxying . 133

Summary . 135

■CHAPTER 7 AOP Tools Comparison . 137

Weaver Implementation . 138

Aspect . 139

Pointcut . 139

Pointcut Definition . 140

Joinpoint Types . 140

Advice . 142

Advice Code Types . 142

Joinpoint Introspection . 143

Introduction Mechanism . 143

Advanced Features . 144

Aspect Instantiation . 144

Aspect Ordering . 145

Aspect Reuse . 145

Summary . 146

■CHAPTER 8 Design Patterns and AOP . 149

Design Patterns, or Elements of Reusable Software 149

Implementation of Design Patterns with AOP . 150

The Singleton Design Pattern . 150

Description . 150

A First Implementation of the Singleton Aspect

with JBoss AOP . 151

A Second Implementation of the Singleton Aspect

with AspectJ . 154

Evaluation of the Implementation . 155

The Observer Design Pattern . 157

Description . 158

Aspect-oriented Implementation . 158

Evaluation of the Implementation . 161

xii ■C O N T E N T S

The Command Design Pattern . 161

Description . 161

Aspect-oriented Implementation . 161

Evaluation of the Implementation . 164

The Chain of Responsibility Design Pattern . 165

Description . 165

Aspect-oriented Implementation . 165

Evaluation of the Implementation . 167

The Proxy Design Pattern . 168

Description . 168

Aspect-oriented Implementation . 168

Summary . 170

■CHAPTER 9 Quality of Service and AOP . 171

Design by Contract . 171

Foundations of Design by Contract . 172

Contracts in Java . 174

Implementing Contracts with AOP . 174

Testing Applications . 180

Coverage Analysis . 181

Nonregression Tests . 185

AOP for Application Administration and Supervision 191

JMX . 191

Using JMX with AOP . 194

Summary . 204

■CHAPTER 10 Presentation of the Sample Application 205

Sample Application Architecture . 205

The Application at a Glance . 205

The Data Tier . 208

The Business Tier . 209

The Client Tier . 216

Sample Application Design . 219

Using J2EE Design Solutions . 219

Using AOP . 225

Summary . 226

■C O N T E N T S xiii

■CHAPTER 11 Using AOP within the Sample Application’s
Business Tier . 227

Improving Business Tier Design Patterns . 228

The Session Facade . 228

The Business Object . 233

Business Tier Improvement: Beyond Design Patterns 247

Resolving Object References . 247

Using AOP . 250

Precondition Factorization . 254

AOP-based Implementation . 255

Business Tier Aspects Synthesis . 258

AOP As an Integration Technique . 261

Managing Distributed Transactions with JTA 262

A JTA Solution . 262

EJBs As an Infrastructure for the Automatic

Integration of Transactions . 264

AOP and the Modular Integration of Transactions 266

Summary . 269

■CHAPTER 12 Using AOP in the Sample Application’s
Presentation and Client Tiers . 271

Using AOP for Distributed Communications . 271

Design Patterns for Business Layer Access 272

Aspect-oriented Implementation of the

Access Design Patterns . 280

Client Tier Communication Aspects Synthesis 291

Using AOP for the Presentation of the Client Tier 293

Using AOP for UI Concerns . 293

Using AOP in the Design Patterns of the Web Presentation Tier 298

Front Controller . 298

Application Controller . 302

Context Object . 304

Interception Filter . 306

View Helper . 309

Web Presentation Tier Summary . 309

Summary . 309

■INDEX . 311

xv

Foreword

Aspect orientation as a concept and aspect-oriented programming (AOP) as a technology

have emerged as an attempt to provide further separation of concerns in the way we compose

software. Aspects modularize concerns that otherwise would pervade and crosscut many areas

of a program or application. As such, they can be thought of as a second-dimension modular-

ization of operational nature, where the structural idea of a component would be the first.

Although the ideas, concepts, and approaches (e.g., reflection) behind AOP are not new,

the approach as it stands is novel in applying these ideas to form the aforementioned second

dimension of modularization. AOP therefore is an important development in modern software

engineering.

The book in your hands, Foundations of AOP for J2EE Development, provides an excellent

overview of this technology, its features, and its limitations. Dr. Pawlak, Mr. Retaillé, and

Dr. Seinturier have provided detailed discussion of aspect orientation as an approach, AOP as

a technology, and various implementations of AOP and how they might be used.

It would be mere speculation to attempt to predict the future of AOP, or indeed its impact

on software engineering or its longevity. What we can say about it with certainty, however, is that

all students, investigators, and serious practitioners of software engineering should become

familiar with this technology and assess its potential in their own work. Foundations of AOP for

J2EE Development is an excellent resource to begin to do so.

—Houman Younessi

Professor of Computer Science and Chairman of the Department of Engineering and

Science Rensselaer Polytechnic Institute, Hartford Graduate Campus

Hartford, Connecticut

xvii

About the Authors

■RENAUD PAWLAK holds a PhD in computer science and is currently a computer science

researcher at INRIA, a public research institute in France. In 2003–2004, he was a postdoctorate

fellow at Rensselaer Polytechnic Institute (RPI), Hartford Graduated Campus, where he taught

software engineering and AOP to graduate students. His research focuses on the separation of

concerns (SoC) in software engineering, reflection, distributed middleware, and AOP. He

developed an original programming model that is directly applicable to distributed environ-

ments (the Aspect Component Model). In January 2000, he cofounded the company AOPSYS,

with the primary goal of supporting the use of AOP and SoC-related techniques in industry. He

is the founder and main programmer of the JAC framework, which is currently being used by

AOPSYS to develop projects for a variety of customers. He is the author of more than 20 publi-

cations, including international research papers, popular science articles, and tutorials for JAC

and AOP.

■JEAN-PHILIPPE RETAILLÉ holds qualifications in several areas of computer science and business,

including a degree in computer science engineering (MEng) and an MBA from the Sorbonne

(France). He currently works as an IT architect for a large European insurance company. His

main focus is on thin client architectures using J2EE as a means to improve developer produc-

tivity during software development. He is involved in several projects using J2EE in the French

banking and insurance sectors. Jean-Philippe is particularly interested in all technologies that

improve software quality, including AOP.

■LIONEL SEINTURIER received his PhD degree in computer science from the CNAM, Paris

(France), in December 1997 and currently holds a research position in computer science at

LIFL, a computer science research laboratory that is jointly owned by the University of Lille

(France) and INRIA (the French research agency for computer science). He is also an assistant

professor in computer science at the University of Paris 6. Before joining academia, Seinturier

worked as a research engineer for France Telecom’s R&D department on the integration of

ATM network technology and CORBA middleware. Seinturier’s research interests include AOP

and systems, middleware, and distributed algorithms. He is one of the programmers of the JAC

AOP framework and the author of more than 25 international publications, including articles

and tutorials on AOP.

xix

About the Technical Reviewer

■HOUMAN YOUNESSI is an internationally renowned educator, practitioner,

consultant, and investigator. Officially recognized by his peers as one of

the world’s top authorities in object-oriented software engineering (a

field in excess of 100,000), he is probably best known for being one of the

three main inventors of the OPEN methodology. Dr. Younessi combines

world-class research-based knowledge with recognized industry experi-

ence to bring forth innovations in research as well as in the classroom

and to industry, where his consultation is regularly sought by many

leading organizations. A multidisciplinarian, he has expertise and publications in many fields,

including electrical engineering, software engineering, information systems, business process,

and business process re-engineering (for which he has written the CRC handbook encyclopedic

entries), as well as molecular biology, bioinformatics, and biochemistry. Recently, he co-

invented (with one of his postdoctoral students) the new paradigm of recombinant program-

ming, which is likely to have a profound effect on how large-scale software systems are

designed in the future.

Dr. Younessi is currently Professor of Computer Science and Chairman of the Department

of Engineering and Science at Rensselaer Polytechnic Institute (RPI), Hartford Graduate

Campus. Prior to joining academia, Dr. Younessi held a number of positions of responsibility

and leadership in industry. He has led both technical and marketing efforts, and has been

responsible for projects, budgets, staff, and revenue. In his last role in industry, he founded,

staffed, and grew (in less than five years) an IT consulting firm from an initial size of two

(himself and an employee) to a sizeable organization of 16 consulting staff and a revenue of

several million dollars. He has also provided consulting services to some of the largest compa-

nies and government organizations around the world (the state governments of New York and

Michigan, BHP, Royal Dutch Shell Oil Corp., Maersk, and Hitachi, to name a few).

Dr. Younessi is frequently asked to many prestigious venues and to participate in national

and international committees and boards. He was the U.S. head of delegation to the ISO SC7

meeting in Malaga, Spain, and a member of the Australian Research Council (the Australian

equivalent of the NSF) IT grant-proposal review board. He has also been part of the Australian

team to promulgate and validate the ISO 15504 standard. Dr. Younessi is also the category

editor for the ACM Computing Reviews and serves on the editorial or review board of several

international journals.

xxi

Introduction

Aspect-oriented programming (AOP) is a programming paradigm that was defined at the

Xerox Palo Alto Research Center (PARC) in the mid-1990s. The roots of this paradigm can be

traced back to several works designed to improve code modularity and facilitate reuse and

maintenance.

The benefits of AOP for modularizing code have drawn attention from many application

developers, especially those in the domain of web applications. Indeed, AOP is an excellent

complement to Internet-oriented application servers such as Sun Microsystems’s J2EE or

Microsoft’s .NET. With AOP, developers can facilitate the development and boost the produc-

tivity of these types of applications. However, AOP is not limited to the domain of web-centric

applications. Similar to other programming paradigms (such as objects), AOP is a general tech-

nique that can be applied to any kind of application.

This book defines and explains the concepts of AOP. The implementation of these

concepts is illustrated by a presentation of four major existing AOP products (AspectJ, JAC,

JBoss AOP, and Spring AOP). In addition, this book shows how you can use AOP for program-

ming J2EE applications.

Target Audience
This book aims to present the concepts of AOP in a clear and pedagogical way. No prior knowl-

edge of the domain is needed. Instead of focusing on the advanced programming concepts of a

particular AOP language, this book provides a broad overview of the existing products available

for programming with aspects.

Many readers, including the following, will be interested in this book:

• Programmers curious about gaining insight into a new domain of computer science

• IT project managers wishing to learn what the expected benefits of AOP are

• Application developers seeking accurate information about AOP products

• PhD and MSc students needing an introduction to AOP and a state-of-the-art compar-

ison of existing implementations

How to Read This Book
The chapters of this book were written to be as independent as possible; therefore, it is not

necessary to read the chapters sequentially from the first to the last to gain valuable informa-

tion about AOP. Each reader can choose his or her own reading plan.

That said, we will outline some recommended reading for each target audience listed in

the previous section:

xxii ■I N T R O D U C T I O N

• Programmers: Chapters 1 and 2 are recommended for gaining an overview of what AOP

is and for learning its basic concepts. Reading Chapter 3 on AspectJ is also recom-

mended, since this chapter shows how the concepts of Chapter 2 are implemented in the

leading tool of the domain. The three last chapters (10, 11, and 12) illustrate the use of

AspectJ for developing J2EE applications.

• IT project managers: Chapter 1 is recommended for obtaining a quick overview of AOP.

The first pages of Chapter 2 are also useful to learn the main motivations for the intro-

duction of this new programming paradigm. We also recommend reading Chapter 9 to

understand how AOP can help to improve Quality of Service, which has a direct impact

on an application’s use. Chapter 10 gives a typical example of a J2EE application that can

benefit from being developed with aspects.

• Application developers: Chapter 2, which covers the concepts of AOP, is recommended.

Chapters 3 through 6 are recommended, as they provide an overview of how the

concepts of AOP are implemented in existing tools. Chapters 8 and 9 show how AOP can

be used for programming design patterns, contracts, and application managements.

Finally, Chapters 11 and 12 present a case study of programming a J2EE application with

AOP.

• PhD and MSc students: Chapters 1 and 2 are recommended for gaining an overview of

AOP and for learning its basic concepts. Chapters 3 through 6 are recommended, as they

provide an overview of how the concepts of AOP are implemented in existing tools. We

recommend reading the comparison in Chapter 7, which explores the differences and

similarities between these tools. Finally, Chapter 8 illustrates the power of AOP for

implementing crosscutting structures, such as the well-known design patterns of soft-

ware engineering.

Book Road Map
The first two chapters introduce AOP and present the main new concepts of this paradigm. The

three major notions of AOP—aspects, pointcuts, and joinpoints—are defined. These chapters

are recommended for readers without any prior knowledge of AOP.

The major existing products of AOP are presented in Chapters 3 through 7. Each chapter in

this section is dedicated to a particular product: AspectJ (the leading language of the domain),

JAC, JBoss AOP, and Spring AOP. These chapters can be read independently. Each chapter

assumes only that you are familiar with the concepts presented in the first part. Chapter 7

compares the features of the four presented products.

Chapters 8 and 9 present the uses of AOP for programming design patterns, for improving

software quality and for supervising and administering applications. These chapters are inde-

pendent and can be read separately. AspectJ is the language chosen to illustrate the concepts

introduced in these chapters. Reading Chapter 3 on AspectJ beforehand may help you under-

stand the examples presented.

A case study of an aspect-oriented J2EE application is presented in Chapters 10 to 12.

Chapter 10 is a general presentation of the application, independent of a solution (AOP or not)

for implementing it. The next two chapters show how AOP can improve the implementation of

the business tier of the application, and then the presentation tier. Chapters 11 and 12 are

stand-alone and can be read separately.

■I N T R O D U C T I O N xxiii

About the Code Examples
The code examples provided in this book assume some basic knowledge of the Java program-

ming language. The case study presented in Chapters 10 through 12 assumes knowledge of the

principles of programming applications with J2EE.

All code examples from this book can be downloaded from Source Code area of the Apress

web site (http://www.apress.com). In some cases (especially the J2EE case study), the programs

presented in the text are truncated and only selected relevant excerpts are presented. The

downloadable source code for this book contains the full version of all programs.

Frequently Asked Questions
The following series of questions and answers will help you gain a first insight into AOP, and

understand its impacts on other programming paradigms and its role on enterprise application

developments.

What Is AOP?

Several kinds of concerns need to be addressed when developing applications. These concerns

can be classified in two categories: functional concerns, which deal with the business logic of

the application, and technical concerns, which are related to the executing environment (oper-

ating system, network, etc.).

The principle known as the separation of concerns aims to decouple and separate each

concern as much as possible to foster modularity. Object-oriented programming (OOP) has

provided a good solution for separating many business concerns, and as a result applications

are more reusable since the separated concerns can be easily reused in several different appli-

cations. However, technical or functional concerns that are said to be crosscutting are not

easily dealt with using OOP.

AOP is a paradigm for separating concerns and for modularizing crosscutting concerns in

well-identified software entities called aspects.

Does AOP Replace OOP?

AOP does not replace OOP. AOP complements OOP by modularizing crosscutting concerns.

Therefore, programming an AOP application is still a matter of writing classes with fields and

methods. AOP adds a new dimension of modularity in the sense that these classes are comple-

mented with aspects, which implement concerns not efficiently modularized with classes.

Is AOP Used in Enterprise Applications?

AOP is a relatively new technique that appeared in the mid-1990s. As far as we know, no major

software editor sells applications that were developed with AOP. However, many vendors, such

as IBM, are investigating the use of AOP to improve the efficiency of developing J2SE and J2EE

applications.

xxiv ■I N T R O D U C T I O N

 Compared to OOP, the adoption of AOP appears to be faster. Indeed, even though the first

versions of object-oriented languages appeared in 1967 with Simula 67, it was not until the

mid-1980s that objects were used for developing enterprise applications with C++. The cost of

adopting AOP is less than the cost of adopting OOP because AOP languages complement

existing OOP languages. Aspects can then be smoothly integrated in existing applications

without the need for any major redevelopment of the existing code.

1

■ ■ ■

C H A P T E R 1

Introducing AOP

This book presents aspect-oriented programming (AOP), which defines a new programming
paradigm. By the word paradigm, we mean a set of principles that structure the modeling of
programs and, as a consequence, the development of programs.

As its name suggests, aspect-oriented programming introduces a new concept—that of
the aspect. Some years ago, object-oriented programming (OOP) introduced the concept of the
object, which initiated a new way to structure applications and write programs. The same idea
applies to the concept of the aspect.

In 1996, Gregor Kiczales and his team at the Palo Alto Research Center (PARC), a subsid-
iary of Xerox Corporation that is located in California, originally defined the concept of the
aspect. Although this definition made 1996 the official birthday of AOP, many of AOP’s
underlying ideas preceded this date. Some of OOP’s limitations motivated the introduction of
the aspect, which also originated in research domains, such as those of reflection and the
meta-object protocol.

After the concept of the aspect was defined, an aspect-oriented language, named AspectJ,
was soon implemented, with the first versions made available in 1998. AspectJ, which remains
the most popular AOP language, extends the Java language with new keywords that make it
possible to program aspects.

Above and beyond AspectJ, AOP itself has remained a subject of great interest since 1998
within the research community. As a result, many other languages and tools, the majority of
which are constructed around Java, have been developed. These include Java Aspect
Components (JAC), JBoss AOP, and AspectWerkz.

Despite the focus on Java, it’s important to keep in mind that nothing about AOP is specific
to OOP in general or Java in particular. The notion of the aspect is an abstract concept that, like
the notion of the object, can be applied to different languages. Tools of varying completeness
exist to support AOP in C, C++, C#, and Smalltalk. Furthermore, any existing language could be
extended to support the concepts of AOP.

Because the concept of the aspect is relatively new, encouraging a large community of
developers to adopt AOP is an important task.

Looking at Programming Paradigms
Viewed as a programming paradigm, you can see AOP as OOP’s successor. However, the aim of AOP
is not to replace OOP, but to complement it, allowing you to create clearer and better-structured
programs.

Since the introduction of assembly language, a family of programming paradigms has
been developed that allows programmers to create software of increasing complexity. The
concepts of the procedure and the object have, each in their own ways, contributed to better

2 C H A P T E R 1 ■ I N T R O D U C I N G A O P

code structuring and greater manageability of large programs. Think of AOP, which aims to
continue this tradition, as the latest addition to this family of paradigms.

For example, the concept of the procedure, which languages such as Pascal embody, allows
you to partition a program into entities called procedures. As you know, each procedure is
simpler to write and understand than the program as a whole is. You therefore build a program
as a set of procedures that call one another. The use of procedures aids the development of large
applications because individuals on a team can independently develop procedures. Individuals
can also test procedures independently, allowing programming errors to be more easily
located.

Although the transition was not instantaneous, procedural programming contributed to
the disappearance of the goto instruction. This instruction, which transferred execution to a
specific line of the program, tended to cause “spaghetti code.” In other words, the program
would quickly become tangled—preventing the ability to reuse some parts of the program
independently of others.

Procedural programming, on the other hand, allows you to code elementary tasks that
each contain clearly identified beginning and end points. This type of programming makes it
possible to create libraries of procedures that can be reused by many different programs.

Procedural programming simplifies the coding process. It allows programmers to develop
modular—hence more understandable—programs by giving a clearer structure to the code.
However, procedural programming does not provide a secure structure for any of the data.
Indeed, one of the great weaknesses of this paradigm is that global variables can be accessed
from anywhere in the program—and doing so improperly can lead to unexpected side effects.

The Origins of AOP
Like all programming paradigms, AOP is based on pre-existing concepts that had already been
exploited in the past—but in limited, specific situations. While recognizing the importance of
the work of Gregor Kiczales, who integrated the ideas that underpin AOP, the programming
community must not forget that many other projects served as foundations for this work.

AOP uses ideas from various domains of information technology—specifically, those of
meta programming, reflection, and meta-object protocols. These domains were developed by
Mehmet Aksit, Jean-Pierre Briot, Shigeru Chiba, Pierre Cointe, Jacques Ferber, Patricia Maes,
Brian Smith, and many others. Additionally, some of AOP’s key mechanisms relate to features
of object-oriented languages that never became popular, such as the before and after instruc-
tions of CommonLoops and Flavors. Also apparent are the similarities between AOP and certain
recent techniques that generative programming and model-driven architectures (MDA) use.

However, the AOP approach as a whole remains original. Therefore, AOP must not be seen
as competing with the techniques that it was developed from, but as presenting a logical and
coherent structure that integrates these techniques for solving real-world problems.

OOP: A Promising Paradigm
The aim behind the development of OOP was to organize the data of an application and its
associated processing into coherent entities. Doing so was achieved by having objects that
encapsulate data along with the methods that manipulate the data and carry out the
processing.

From a conceptual point of view, an application is broken down according to the real-
world objects that it models. In a stock-management application, for example, you might find
supplier, article, customer, and other types of objects.

C H A P T E R 1 ■ I N T R O D U C I N G A O P 3

By grouping together all the objects that possess the same characteristics, the concept of a
class complements the concept of the object. In the stock-management application, all the
supplier objects belong to the same class, which is named supplier.

When designing a solution to a concrete problem, deciding how to split up the program
into classes and, therefore, objects is far from simple. Many variations are possible, so different
developers may come up with very different solutions. Approaches such as that of the Rational
Unified Process (RUP) platform aim to rationalize the conceptual choices you need to make.

Regardless of the design process, the way you divide an application into classes and
objects must be guided, above all, by the real-world data that the application models. The most
important factor that influences how you choose the classes is the way you want to organize—
in other words, group together—the business data of the application. Classes first and
foremost provide a grouping mechanism for the data, with the associated processing included
as the methods.

The OOP concepts of the class and the object allow you to write programs that feature
more of the following than programs that use the procedural paradigm:

Modularity: Because the processing that concerns an item or set of data is grouped
together with the data in the same software entity (the class), a certain degree of
modularity is achieved.

Reusability: As a result of modularity, only the extent to which a class is well designed,
self-sufficient, and targeted at a precise goal determines its likelihood of being reusable in
different software contexts.

Reliability: Because the data is encapsulated within objects, it can be manipulated only
through the methods that define the object’s interface. (Directly manipulating the data is
not possible.) The valid ways to access the objects are therefore clearly identified, and
programmers can safely use any of them.

Extendability: The concept of inheritance allows you to create new classes from those that
already exist. A new class can extend an existing class by adding data or processing, or it
can specialize the existing elements. For example, you could extend a class that manages
data lists so that it manages only stacks. (A stack is a list that requires specific rules for
adding and removing elements).

Because of these advantages, OOP has undeniably improved software engineering.
Developers have built more-complex programs in a simpler fashion than would have been
possible through procedural programming. Furthermore, developers have written large
applications in object-oriented languages. For example, the Java 2 Platform, Enterprise Edition
(J2EE) application servers were programmed in the Java language. Similarly, developers have
implemented complex class hierarchies to construct graphical user interfaces. The Swing API,
included in Java 2 Platform, Standard Edition (J2SE), falls into this category.

However, the transition from procedural programming to OOP occurred with consider-
able effort, with developer training representing a significant cost. Now that OOP is just
starting to be widely understood, it is legitimate to ask whether introducing a new paradigm
such as AOP is desirable.

To answer that question, we can begin by affirming that AOP does not call into question
what has been achieved through OOP. Applications that are programmed according to AOP
remain organized into classes and objects. AOP simply adds new concepts that allow you to
improve object-oriented applications by making them more modular. In addition, AOP
streamlines the development process by allowing the separation of development tasks. For
example, highly technical functionalities, such as security, can be developed by specialized

4 C H A P T E R 1 ■ I N T R O D U C I N G A O P

experts, and aspects allow you to more easily integrate these functionalities into the rest of the
application.

No doubt the adoption of AOP will take a long time and require effort, but it can be done
gradually when the need is clearly identified.

The Limitations of OOP
The importance of OOP for developing complex programs is undeniable. However, we will
show that writing clear and elegant programs using only OOP is impossible in at least two
cases: when the application contains crosscutting functionalities, and when the application
includes code scattering.

The Case of Crosscutting Functionalities

Previously, we mentioned that when you analyze how to organize an application into classes,
the analysis must be driven by the need for separating and encapsulating the data and its
associated processing into coherent entities.

Although the classes are programmed independently of one another, they are sometimes
behaviorally interdependent. Typically, this is the case when you implement rules of referen-
tial integrity. For example, a customer object must not be deleted while an outstanding order
remains unpaid; otherwise, the program risks losing the contact details for that customer. To
enforce this rule, you could modify the customer-deletion method so that it initially deter-
mines whether all the orders have been paid. However, this solution is deficient for several
reasons:

• Determining whether an order has been paid does not belong to customer management
but to order management. Therefore, the customer class should not have to manage this
functionality.

• The customer class should not need to be aware of all the data-integrity rules that other
classes in the application impose.

• Modifying the customer class to take these data-integrity rules into account restricts the
possibilities of reusing the class in other situations. In other words, once the customer
class implements any functionality that is linked to a different class, customer is no
longer independently reusable, in many cases.

Despite the fact that the customer class is not the ideal place to implement this
referential-integrity rule, many object-oriented programs work this way for lack of a better
solution. You might be thinking about integrating this functionality into an order class instead,
but this solution is no better. No reason exists for the order class to allow the deletion of a
customer. Strictly speaking, this rule is linked to neither the customers nor the orders but cuts
across these two types of entities.

One of the aims of dividing the data into classes is making the classes independent from
one another. However, crosscutting functionalities, such as the rules of referential integrity,
appear superimposed on the division—violating the independence of the classes. In other
words, OOP does not allow you to neatly implement crosscutting functionalities. As a
compromise, you can resign yourself to implementing them in individual classes, but remain
conscious that this solution is not ideal.

C H A P T E R 1 ■ I N T R O D U C I N G A O P 5

The Case of Code Scattering

In OOP, the principal way that objects interact is by invoking methods. In other words, an
object that needs to carry out an action invokes a method that belongs to another object. (An
object can also invoke one of its own methods.) OOP always entail two roles: that of the invoker
and that of the invoked.

When you write the code to call a method, you do not need to worry about how the service
is implemented because the call interacts only with the interface of the invoked object. You
need only ensure that the parameters in the call correspond to those of the method’s signature.

Because methods are implemented within classes, you write each method as a block of
code that is clearly delimited. To change a method, you obviously modify the file that contains
the class where the method is defined. If you alter just the body of the method, the modifica-
tion is transparent because the method will still be called in exactly the same way.

However, if you change the method’s signature (for example, by adding a parameter),
further implications arise. You must then modify all the calls to the method, hence you must
modify any classes that invoke the method. If these calls exist in several places in the program,
making the changes can be extremely time-consuming.

The main point is this: Even though the implementation of a method is located in a single
class, the calls to that method can be scattered throughout the application. This phenomenon
of code scattering slows down maintenance tasks and makes it difficult for object-oriented
applications to adapt and evolve. Any change in the way that a service is used requires many
other changes—a costly process that can also introduce errors.

The Benefits of AOP
AOP complements OOP by offering solutions to the two challenges just explained—solutions
that implement crosscutting functionalities and eliminate code scattering. Chapter 2 will show
that the concept of an aspect allows you to integrate crosscutting functionalities and code
scattering into an object-oriented application by using the new concepts of the pointcut, the
joinpoint, and the advice.

In procedural programming, you divide the application according to the functionalities
that you need to implement. OOP goes one step further by obliging you to group related data
items and their associated processing tasks into coherent entities. AOP then establishes a
certain balance by allowing you to superimpose a new layer onto the data-driven composition
of OOP. This layer corresponds to the crosscutting functionalities that are difficult to integrate
directly through the OOP paradigm.

An aspect-oriented application consists of the following two parts:

• Classes: These constitute the base of the application and implement the business logic.
In other words, the classes implement those parts of the application that deal directly
with the real-world problem to be modeled.

• Aspects: These integrate the supplementary elements (classes, methods, and data) that
correspond to crosscutting functionalities and code scattering.

Designing an aspect-oriented application thus begins by breaking down the problem to
define the classes and the aspects. No universal rule exists for deciding whether a functionality
should be implemented in a class or in an aspect. Furthermore, you can implement the same
functionality in either one or the other, depending on the context. For example, you might
implement the constraints of real-time execution as aspects in a management application but
as classes in an application that supervises industrial processes.

6 C H A P T E R 1 ■ I N T R O D U C I N G A O P

The second design stage consists of putting the classes and the aspects together to obtain
an operational application. You carry out this process by using the AOP concepts of the
crosscut and the joinpoint. These concepts allow you to decide where in the program to insert
the aspects and, therefore, which functionalities these aspects will implement.

On another note, remember that when OOP was introduced, the object-oriented
languages were either extensions of existing languages (C++ is an extension of C) or completely
new languages (such as Smalltalk and Java). In both cases, new compilers had to be developed.

AOP presents a slightly different situation because the tools exist either as frameworks or
as extensions to existing languages. An example of the latter is the AspectJ language, which
Chapter 3 presents in detail. AspectJ adds new keywords to the Java language that allow the use
of AOP concepts, such as the aspect, the crosscut, and the joinpoint.

Examples of AOP frameworks are JAC, JBoss AOP, and AspectWerkz, all of which Chapters
4, 5, and 6 present. These frameworks use the syntax of an existing programming language,
which in these cases is Java. You use the AOP concepts by means of the classes and methods in
the framework. For example, defining an aspect through JAC comes down to extending a class
that the framework contains.

Since the introduction of AOP, a hot debate has raged between those in favor of language

extensions and those in favor of frameworks. In one case, you need to learn a language’s new

keywords; in the other case, you need to learn a new framework’s API. Regardless, both cases

require a learning phase.

Summary
This chapter introduced the concept of the aspect which, as its name suggests, serves as the
main contribution to the AOP paradigm. Gregor Kiczales and his team at the Palo Alto
Research Center (PARC) defined the concept of the aspect in 1996. Several existing ideas led to
the emergence of AOP, and research domains such as those of reflection and the meta-object
protocol actively contributed.

Although the concept of the aspect is a general programming concept that could be
applied to any programming paradigm (functional, procedural, or object-oriented), the history
of AOP is tightly linked to that of the OOP paradigm. Most of the existing AOP languages are
extensions of OOP ones, such as Java and C#. Furthermore, the motivation for defining the
concept of the aspect originated from the limitations of OOP.

This chapter described the two main OOP limitations: crosscutting functionalities and
code scattering. The former refers to the fact that you cannot keep certain functionalities
clearly modular when you implement them in classes. The latter refers to the fact that you can
use classes to keep the implementation—but not the use—of functionalities modular. Because
AOP provides a solution to these limitations, AOP complements rather than replaces OOP as a
programming paradigm.

By analyzing why these limitations occur, this chapter introduced the benefits that you
can expect from the AOP paradigm—benefits that stem from the clear and modular implemen-
tation of crosscutting functionalities and code scattering.

7

■ ■ ■

C H A P T E R 2

The Concepts of AOP

This chapter introduces the basic concepts of AOP. Although AOP is relatively new, many of

the basic concepts are already well established. This chapter gives a general introduction to the

concepts of AOP, and the rest of the chapters demonstrate the use of these concepts with the

four most advanced tools that are currently available: AspectJ/AspectWerkz, JAC, JBoss AOP,

and Spring.

Every new programming paradigm brings with it a set of concepts and definitions. This

was the case for the procedural approach, with the notions of the module and the procedure,

and for the object-oriented approach, with the concepts of encapsulation, inheritance, and

polymorphism. Important changes accompanied each of these new paradigms. From a tech-

nical point of view, the structure of the programs changed radically, so those involved in

software development were required to learn new techniques. As with the previous paradigms,

AOP brings a set of new concepts to the table. However, improvements in the quality of appli-

cations and the increased modularity that AOP allows counterbalance the costs of learning the

new concepts.

Since the majority of AOP environments (including AspectJ/AspectWerkz, JAC, JBoss AOP,

and Spring) are built on Java, this book uses the terminology and the concepts of Java;

however, none of the concepts of AOP are specific to this language. In the same way that the

concept of the object can be applied with success to various languages, the concept of the

aspect can be implemented with C++ (AspectC++), C# (AspectC#), Smalltalk (Apostle), and

even procedural languages such as C (AspectC). Furthermore, the concepts of AOP are impor-

tant not only during the coding phase but earlier in the software development—during the

conceptual program-design phase. Tools such as Theme/UML and JAC UML Aspectual

Factory (UMLAF) propose Unified Modeling Language (UML) notations to model AOP

concepts.

The Concept of an Aspect
To understand and manage a complex program, you generally divide it into smaller subpro-

grams. Optimal partitioning criteria have been the subject of numerous studies—the aim of

these studies being to help developers with the design, development, maintenance, and evolu-

tion of software.

When a program is written with the procedural approach, the application is modularized

according to the actions or procedures to be carried out. With the object-oriented approach,

on the other hand, the modularization is based on the data to be encapsulated in the classes.

8 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

With both paradigms, certain functions are more difficult to modularize than others. We say

that the code related to such a function is scattered.

Code Scattering

The issue of code scattering is not linked to a particular language and has been shown to be a

problem in numerous applications, whether OOP or another paradigm has been used. In fact,

code scattering can appear in any environment—from Java with J2SE or J2EE, to C# with .NET,

to additional languages. However, the most extensive study of this phenomenon has been

carried out using Java.

For example, the AspectJ team analyzed the Tomcat servlet container. They realized that if

some functionalities, such as URL pattern matching and XML parsing, were cleanly modularized

in one or two classes each, others, such as the logging functionality and the management of user

sessions, were highly scattered throughout the application.

Analysis of Code Scattering

Having established that code scattering occurs, it is normal to ask whether you could eliminate

the problem by composing the class structure differently or designing the application in

another way.

The main reason that code scattering occurs has to do with the differences in the way that

a service is made available and the way that it is used. A class gives access to one or more

services through its methods. It is relatively easy to group the available services together in the

same place—in other words, in the same class. However, once these services have been used

from several classes, it is difficult to re-engineer the application to group the calls to those

methods together. It is therefore not surprising that a fundamental and well-known service is

called from all over the application.

Code scattering is an effect that manifests itself in any complex program. However, the

exact way it manifests itself depends on the application, the modeled concerns, the used

libraries, and the frameworks. Because it heavily depends on a concrete problem, code scat-

tering is difficult to remove.

Code scattering in an application slows down the development, maintenance, and evolu-

tion of the program. When several functionalities are scattered, the situation worsens because

the code starts to contain many calls to multiple concerns that are a priori loosely coupled but

that need to be integrated together. This phenomenon is apparent in many applications.

A New Dimension in Modularity

The main contribution of AOP is to provide a way of bringing together—in an aspect—code

that would otherwise have been scattered throughout the application.

■Definition Aspect—A programming unit designed to capture a functionality that crosscuts an

application.

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 9

An aspect is often described as being a crosscutting structure. In fact, Gregor Kiczales, the

inventor of the concept of the aspect, stated that, “AOP is about capturing a crosscutting

structure.”

The definition of an aspect is almost as general as that of a class. When you model a

problem, you use classes to represent the types of objects (customers, orders, suppliers, and so

on), and each object contains the appropriate data (attributes) and processes (methods). In the

same way, aspects are used to implement functionalities (security, persistence, logging, and so

on) within an application, and these functionalities similarly require data and processing.

With AOP, an application consists of classes and aspects. An aspect differs from a class in

that it implements a crosscutting functionality. As you saw earlier, a crosscutting functionality

within the procedural or object-oriented paradigm is one that is called throughout the code of

the application. Including classes and aspects in the same application means that modularity

can occur in two dimensions: the base functionalities that are implemented by classes (this

dimension could be called structural), and the crosscutting functionalities that are imple-

mented by aspects (this dimension could be called operational).

Figure 2-1 illustrates the effect of an aspect on the code of an application. The left side of

the figure represents an application consisting of three classes. The horizontal lines show the

lines of code that correspond to a crosscutting functionality, such as logging. This functionality

crosscuts the application because it affects all the classes. The right side of the figure shows the

same application using an aspect to manage the logging functionality (the shaded rectangle).

The code of this functionality is now entirely contained within the aspect, and the classes are

now separate from the code. An application designed in this way is simpler to write, maintain,

and adapt than one without aspects.

Figure 2-1. The impact of an aspect on the location of a crosscutting functionality

The rest of this section presents some of the characteristics of aspects. We then introduce

the concept of aspect weaving.

10 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

The Integration of Crosscutting Functionalities

You will see later in this chapter that an aspect itself is composed of two parts: the pointcut and

the advice code. The advice code contains the code to be executed, whereas the pointcut

defines the points in the program where this code should be implemented.

Clearly, the code of an aspect—or, more precisely, the advice code—depends on the oper-

ation you want to implement. For example, if you want to ensure data persistence, you need to

write code that saves the data in a database. Although you could code this functionality from

first principles directly within the aspect, you would rarely choose to do this. It is considered

good practice to use a dedicated API, such as Hibernate. With this type of framework, the code

of the aspect simply makes calls to the API. This way of working means that the aspect does not

need to know how the services are implemented, and the aspect is therefore kept independent

from a particular implementation.

Following this best practice, an aspect simply allows you to integrate a crosscutting func-

tionality that is implemented using a dedicated API into an application. In Figure 2-2, the

PersistenceAspect aspect uses Hibernate to integrate the data-persistence functionality into

Class1 and Class3.

Figure 2-2. Integration of a crosscutting data-persistence functionality using an aspect

Strictly speaking, an aspect does not directly implement a crosscutting function but uses a

dedicated API to achieve this. However, for ease of readability in this book, we shall just say

that an aspect implements a crosscutting functionality.

Nonfunctional Services and Aspects

Most applications are comprised of two types of concerns: business and nonfunctional.

Business concerns, also called functional requirements, correspond to the real-world behavior

that you want to model. Nonfunctional concerns, or nonfunctional requirements, are additional

services that the application must implement—essentially, technical or system-level concerns.

For example, in an application that manages human resources, the functionalities for adding

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 11

and deleting an employee are business concerns, whereas application security and privileges

are nonfunctional concerns.

However, you need to be careful when using this distinction because a service can be

nonfunctional in one application but functional in another.

In most cases, the nonfunctional services are called throughout the code of the business

layer. Nonfunctional services are therefore fundamentally crosscutting. Consequently,

nonfunctional services are implemented as aspects in AOP, whereas business concerns are

implemented as classes. In some cases, however, the business concerns are crosscutting—

making it appropriate to implement them as aspects.

Dependency Inversion

With object-oriented or procedural programming, as soon as an application uses a technical

service from an API, a dependency is created between the application and the service. A link is

generated for every explicit call the application makes to the API. When the API changes or its

semantics evolve, calls to its services must be changed throughout the application. Such modi-

fications are potentially costly—especially when the API is used in many different locations in

the application.

In addition, you must understand the main principles of the API to be able to use it. You

must know which methods to call, the order to call them in, and the parameters to pass to

them. The nonfunctional service has to be integrated into every new application that is devel-

oped. So, even though the API is developed only once, it may be integrated into many different

applications.

Figure 2-3. Dependency inversion between an application and a nonfunctional API

Figure 2-3 illustrates the direction of dependency in OOP and how this changes in AOP.

The left side shows that, in OOP, the application uses and thus depends on the nonfunctional

service. The situation is the same with procedural programming.

12 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

The right side shows the situation in AOP. An aspect uses the nonfunctional service and

integrates it into an application. Contrary to OOP, the application no longer depends on the

service—it is the aspect that depends on the application. This change in the direction of the

links between the service and the application is not specific to AOP; it is sometimes the case for

frameworks, as well. The principal advantage of this inversion is that it makes the work of the

application developer easier.

With AOP, the application developer does not need to worry about the nonfunctional

services. It is the aspect developer who, in addition to writing the code of the service itself,

manages the integration of that service into the application. The advantage is that the special-

ized aspect developer has a better understanding of the service than the application developer,

who is only a user of this API. This lowers the risk of a service being used incorrectly. In partic-

ular, the aspect developer can make sure that the service integration is correct by

implementing some constraints on the way the service can be used.

Aspects and Frameworks

Like AOP, frameworks show dependency inversion, as previously described, whereby the code

of the application does not depend on the library.

A framework1 is a set of classes that offers a reusable structure for writing applications.

Frameworks are used in numerous areas of application development, especially user inter-

faces. A J2EE application server can be considered a framework that manages the execution of

applications based on web or Enterprise JavaBeans (EJB) components.

Developing an application with a framework consists of writing code that is handled by

the framework. This code is not run directly—instead, the framework invokes it according to

the context. In other words, the framework forms a set of services that extends the code that

you write.

The situation is similar with AOP. Services are provided by aspects that extend the busi-

ness layer of the application. The difference is that frameworks provide a set of fixed services,

whereas those provided by AOP are entirely programmable within the aspects. AOP therefore

offers a much more general mechanism for dependency inversion than frameworks, which are

limited to the application domain that they were initially conceived for.

Aspect Weaving

An aspect-oriented application contains classes and one or several aspects. The operation that

takes these classes and aspects as input and produces an application that integrates the func-

tionalities of the classes and the aspects is known as aspect weaving. The program that

performs this operation is called an aspect weaver or just a weaver. The resulting application is

said to be woven.

■Definition Aspect weaver—A program that integrates classes and aspects. The weaving can be

performed at either compile time or run time.

1. Ralph Johnson, “Framework = (compopnents + patterns),” Communications of the ACM, 40(10), (1997)

39–42.

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 13

Compile-Time Weaving

With compile-time weaving, the weaver is a program that, prior to any execution, produces an

application code in which the classes are extended by the aspects. AspectJ, which is presented

in detail in Chapter 3, is the most well-known compile-time aspect weaver.

A compile-time weaver is very similar to a compiler and is often referred to as an aspect

compiler or even as a compiler.

With modern object-oriented languages, such as Java and C#, applications are compiled

into intermediate bytecode. When weaving aspects with these applications, two solutions can

be envisioned: weaving the aspects with the source code, or weaving them with the bytecode.

Bytecode weaving is more common than source-code weaving. A bytecode weaver can

weave commercial and third-party applications that do not make their source code available.

Furthermore, a bytecode weaver is generally simpler to program. The structure and the

grammar of a source language such as Java are much more complex than that of the associated

bytecode. The bytecode is therefore simpler to parse and analyze. A direct consequence of this

increased simplicity is that the performance of a bytecode weaver is often superior to that of a

source-code weaver.

The output of a compile-time weaver can be either source code or bytecode. However, in

the case of bytecode weaving, the output is always bytecode. The advantage of generating

source code is that it can be easily read by a programmer, who can then study the weaving

process and understand what the weaver has done. The disadvantage of generating source

code is that this code must then be compiled into bytecode, which slows down the code-

production chain. In many cases, fast weaving strategies are preferred. That is why early

versions of AspectJ generated source code, but versions 1.1 and later generate bytecode.

With compile-time weaving, aspects are added to the application code. When executed,

this new code does not make any distinction between the original code and the code that

comes from the aspects. This weaving is thus said to be static. To remove or add an aspect, a

total reweaving of the application is needed.

Run-Time Weaving

With run-time weaving, the distinction between application objects and aspects is clearly

established during the execution. A run-time weaver is a program that is able to orchestrate the

execution of these two types of entities. In other words, the weaver executes either the applica-

tion code or the aspect code, depending on the defined weaving directives.

The process of weaving aspects at run time can be compared to maintaining a relationship

between a set of application objects and a set of aspect instances. An application object that is

bound to an aspect instance is aspectized by this aspect. An aspect instance can be bound to

several application objects (the aspect crosscuts several locations of the application) and,

conversely, an application object can be bound to several aspect instances (more than one

aspect applies to the same location).

The advantage of run-time weaving is that the relationships between objects and aspects

can be dynamically managed. By adding or removing a binding, you can weave or unweave a

concern while the application is running. This dynamic quality is particularly useful for appli-

cations, such as web servers, that must be highly available and that cannot be stopped for long

time frames.

14 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

In most cases, run-time weavers transform the application’s code or its bytecode before

running it. The purpose of this adaptation is to make the classes ready for run-time weaving. All

the code elements that can be adapted at run time are modified to introduce hooks. A hook is

a piece of code that redirects the execution flow of the application toward an aspect. Hooks are

introduced at the beginnings of methods, for example, or just before method calls. The types of

locations where hooks can be introduced depend on the weaver. Note that hooks are not

necessarily locations where aspects apply but locations where aspects potentially apply.

Among all the hooks introduced by a run-time weaver, only a selected subset will redirect the

execution flow toward an aspect. The aspect programmer decides which hooks effectively

perform this redirection.

Instead of using a weaver to transform the application code, you can take advantage of an

alternative solution that consists of running the application in a supervisory mode. This tech-

nique is similar to running the application in a debugger in that whenever the execution

reaches a location where an aspect applies, the supervisor interrupts the normal execution

flow and runs the aspect. The advantage of this technique is that it leaves the application free

from any transformation. The disadvantage is that the supervisory mode introduces a cost that

slows down the execution of the application.

In several implementations, the insertion of hooks is performed just before the execu-

tion—while the application is being loaded into the virtual machine. With the Java language,

the class-loading mechanism can be customized and associated to a bytecode-engineering

library, such as the Byte Code Engineering Library (BCEL) (see http://jakarta.apache.org/

bcel), ASM (see http://asm.objectweb.org), or the Java Programming Assistant (Javassist) (see

http://www.csg.is.titech.ac.jp/~chiba/javassist/index.html). For example, the run-time

weaver of JAC uses BCEL, whereas that of JBoss AOP uses Javassist.

The notion of hooks that are inserted by a run-time weaver is closely related to the notion

of the joinpoint, which is presented in the next section.

Joinpoints
In the previous section, you learned that an aspect is a software entity that implements a cross-

cutting functionality. The definition of an aspect, or crosscutting structure, relies on the notion

of a joinpoint.

■Definition Joinpoint—A point in the control flow of a program where one or several aspects apply.

Although the notion of a joinpoint is general (potentially, each instruction of a program

can be a joinpoint), all the points in the control flow are not considered useful for AOP. Join-

points are grouped according to their types, and only a subset of all possible joinpoint types are

supported by aspect-oriented languages.

Furthermore, the notion of the joinpoint is tightly related to a particular execution of a

program (the control flow). Two different executions of the same program may give different

sets of joinpoints.

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 15

Different Types of Joinpoints

Although the definition of a joinpoint occurs at run time, that definition is based on the struc-

ture of a program (its classes, methods, fields, and so on). The following chapters present in

detail the various joinpoint types that are supported by existing aspect-oriented languages.

The following categories describe the commonly encountered types that are independent of

any implementation.

Methods: With object-oriented languages, the execution of a program can be seen as a

sequence of method calls and method executions. The various execution scenarios of an

application can be expressed in terms of sequences of messages that trigger method

executions. Method calls and method executions are thus two commonly used joinpoint

types. Note that method executions are considered joinpoints even if they are not, strictly

speaking, “points.” A method starts, continues, and ends—its execution spans a time

period. Instead of considering the beginning and end as two separate points, the execu-

tion as a whole is a type of joinpoint.

Constructors: Constructors are the main entities used to create the objects of an applica-

tion. As with methods, the calls and executions of a constructor correspond to joinpoint

types.

Exceptions: An exception is thrown to signal an abnormal run-time situation, and it is

caught to execute a particular treatment. These two events are major points in the execu-

tion of an application. They can be both considered joinpoint types.

Fields: Many aspects, such as the persistence aspect, need to deal with the application’s

data. Fields are the main code elements that implement this data. Hence, aspect-oriented

languages consider read and write operations on fields as joinpoint types.

Method calls and executions are clearly the most widely used joinpoint types in AOP.

Other code elements, such as code blocks like for loops and if statements, define the structure

of a program. With the exception of static code blocks in AspectJ, these elements are consid-

ered too fine grained to be used when defining aspects. Even though these elements define

useful treatments for method bodies, it is assumed that the crosscutting nature of a function-

ality can be captured with higher-level elements, such as the ones mentioned in the previous

list.

Aspect-oriented-compiler designers often use the term joinpoint shadow. Like a hook for

run-time weavers, a joinpoint shadow is a place in the program where an aspect can poten-

tially apply. Hence, the joinpoints—as the points where the aspects actually apply—are a

subset of the set of joinpoint shadows. Depending on the information needed by the aspects,

several pieces of data can be constructed during run time when a joinpoint is reached. A join-

point object can even be provided by the language.

Finally, all programs, even the simplest ones, contain many different joinpoints. The task of

the aspect programmer is to select the joinpoints that are useful for implementing a given aspect.

This selection is performed with the notion of a pointcut, which is presented in the next section.

16 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

Pointcuts
In the previous section, you learned that joinpoints are the points in the control flow of a

program where one or several aspects apply. Yet, the notion of a joinpoint is not sufficient by

itself to define which joinpoints are pertinent for a given aspect. An entity is needed for

describing joinpoints. This entity is defined by the notion of a pointcut.

■Definition Pointcut—A set of joinpoints where an aspect applies.

Above all, the crosscutting nature of an aspect is expressed with a pointcut because a

pointcut groups joinpoints that are located in different source files. Of course, these joinpoints

are not chosen randomly. They share the “common secret” in that they are located in the parts

of the program where a given aspect applies. Pointcuts are thus a way of “talking about” the

application. It is often said that a pointcut defines the “where” of an aspect. On the other hand,

the “what” of an aspect is defined by the advice code, as we will explain in the next section.

It is important to note that most pointcuts are application dependent. When an aspect

needs to be reused for a different application, it is likely that the definition of the pointcuts will

need to be adapted to the locations in the new application.

As illustrated by the previous definition, the notions of the pointcut and the joinpoint are

linked. A pointcut is defined by a set of joinpoints and, conversely, a set of joinpoints define a

specific pointcut. However, note that the natures of these two notions are somewhat different.

Joinpoints are well-defined run-time entities (they occur in the control flow of a program),

whereas pointcuts cannot be attached to a particular structure or time slot of the running

program. Instead, pointcuts are to be seen as structural code elements that participate in the

definition of an aspect.

As illustrated in the following chapters, a language for defining pointcuts is included in

every existing aspect-oriented tool. Although each tool defines its own syntax, the principles

remain the same. The ultimate goal of a pointcut language is to provide a simple and flexible

way to query the joinpoints about a given program’s structure—so an aspect can be applied to

the joinpoints. Typically, the language is a kind of pattern language with quantification opera-

tors, wildcard symbols (such as *), and Boolean operators. Keywords are also included for

designating joinpoint types.

EXAMPLES OF POINTCUTS

To familiarize you with AOP syntax, the following examples of widely used pointcut types show implementa-

tions in AOP pseudocode (with a syntax that is similar to that of AspectJ):

• Data-modification pointcut: This type of pointcut designates all the write operations on a set of fields.

When data that is represented as a set of fields needs to be saved in a database, such a pointcut can be

used for persistence aspects, for example. This type of pointcut can also be used in GUIs to update

views that are associated with data. Here is an example of a data-modification pointcut:

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 17

 // all the field set operations on all the fields (*) of class C

 pointcut dataModification(): set(C.*)

• Method-calls pointcut: This type of pointcut designates all the calls to a set of methods. Such a pointcut

can be used to compute a message-sequence chart, for example. Here is an example of a method-calls

pointcut:

 // all the calls to the methods of C returning void

 // and taking any parameters (..)
 pointcut calls(): call(void C.*(..))

• Method-executions pointcut: This type of pointcut designates all the executions of a set of methods.

Such a pointcut can be used to compute method-execution times, for example. Here is an example of a

method-executions pointcut:

 // all the executions of the methods of C returning any type (*)
 // and taking any parameters (..)

 pointcut executions(): execution(void A.*(..))

Advice Code
In the previous section, you learned that a pointcut defines where an aspect applies. The advice

code defines what the instructions of an aspect are.

■Definition Advice code—The definition of the behavior of an aspect.

Advice code is associated with a pointcut to implement a crosscutting functionality. The

treatments that are defined in the advice code are performed for all the joinpoints that are

included in the associated pointcut.

Much like a method, the advice code owns a body that contains instructions. However,

unlike a method, the advice code is never called directly but is woven into the joinpoints that

are specified in the associated pointcut.

Different Types of Advice Code

Three main types of advice code exist:

• before: The advice code is executed before the joinpoints.

• after: The advice code is executed after the joinpoints.

• around: The advice code is executed before and after the joinpoints.

For “around” advice code, you need to separate the instructions that must be executed

before the joinpoints from the ones that must be executed after. This is done with a special

18 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

instruction, which in most cases is named proceed. The proceed instruction provides a way of

resuming the normal execution of the program and executing the code that is contained in the

joinpoint. To intuitively understand “around” advice code, think of a decorator design pattern in

which a decorating method is the “around” advice code, and proceed is the call to the next deco-

rator or decorator object.

The execution of a program with “around” advice code can be summed up as follows:

1. The program executes normally.

2. Just before a joinpoint that is included in a pointcut, the “before” part defined in the

“around” advice code is executed.

3. A call to proceed is made.

4. The piece of code that is defined in the joinpoint is executed.

5. The “after” part defined in the “around” advice code is executed.

6. The program execution is resumed just after the joinpoint.

The call to proceed is optional. If proceed is not called, the code of the joinpoint is not

executed, and the program execution resumes just after the joinpoint.

Advice code blocks can be classified according to whether they always call proceed, never

call it, or call it under certain conditions. For example, a trace aspect always calls proceed

because its purpose is to keep track of the application’s execution—not to modify its normal

execution. A security aspect calls proceed when access is granted to the user; it doesn’t call

proceed when access is denied. An optimization aspect never calls proceed if it replaces the

original implementation of a functionality with an optimized version.

In addition to the three previously listed advice-code types, some languages (including

AspectJ) define two other types: “after returning” and “after throwing.” The idea is that a

method can either return normally or throw an exception. The first case corresponds to the

execution of the “after returning” advice code, whereas the second one leads to the execution

of the “after throwing” advice code.

Here is a simple example (still using pseudocode) of “around” advice code, which prints

some tracing messages before and after the execution of the joinpoint:

around void a() {

 System.out.println("before joinpoint");

 proceed();

 System.out.println("after joinpoint");

}

Then, in an aspect, this advice code can be linked to pointcuts. For example, the following

aspect links the previous advice code to the pointcuts that were defined in the previous section:

aspect MyAspect {

 a() : dataModification();

 a() : calls();

 a() : executions();

}

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 19

This aspect prints the specified messages around the executions of all the joinpoints that

are denoted by the dataModification, calls, and executions pointcuts.

The Introduction Mechanism
The notions of the pointcut and the advice code allow you to reason about the structure of an

application and to implement crosscutting functionalities through behavioral modifications.

The control flow of the program deviates to the advice code, which adds, removes, or modifies

behavior. The introduction mechanism is complementary and allows you to extend the static

structure of a program.

■Definition Introduction—An extension mechanism for bringing new structural code elements into an

application.

The two most common code elements that are introduced by aspects are fields and

methods. In relation to methods, interfaces can also be introduced—the idea is to let a target

class implement a new interface. In some aspect-oriented frameworks, such as JAC (see

Chapter 4), exception handlers can also be introduced. The idea is to define handlers for excep-

tions that are not caught by the application.

Like the inheritance relationship of OOP, the introduction mechanism allows for the

extension of existing classes. However, contrary to inheritance, the introduction mechanism

does not allow for the redefinition of existing elements—it can only add new ones. This limita-

tion is due to the goal of conserving the program’s integrity, especially when several aspects are

composed together. Next, we elaborate on the well-known problem of aspect composition.

Aspect Composition
The concepts that have been defined so far deal with the definition of aspects and their integra-

tion with applications. This section raises the issue of aspect interactions—for example, how

distinct aspects that are woven into the same application interact. This issue is known as aspect

composition.

The study of aspect composition can be carried out from two complementary points of

view: that of design time (when choosing the aspects for an application), and that of weave

time (when applying several aspects to the same joinpoints).

Design

Like classes, aspects can be independently programmed and then reused and integrated into

an application. The aspect programmer must therefore verify that aspects do not conflict nor

introduce inconsistencies in the execution of the application.

Several kinds of conflicts can arise:

Incompatibility: Two aspects can introduce incompatible functionalities. For example, a

transaction aspect and a persistence aspect can conflict. Indeed, when programmed with

20 C H A P T E R 2 ■ T H E C O N C E P T S O F A O P

persistence frameworks, such as Hibernate, a persistence aspect uses a database to store

data that is modified during a so-called persistent session. Most of the time, transactions

involve data that is also stored in databases. Hence, the database is a resource that is

shared by the two aspects. When developed separately, the aspects might not be aware of

the operations performed on the database by one another.

Dependence: Two aspects can be linked. In this case, if one aspect is used, the other must

also be used.

Redundancy: Two aspects might implement the same functionality differently. For

example, several data-compression algorithms can be implemented. The joint utilization

of two data-compression aspects might be useless and should be avoided.

These kinds of conflicts occur at the semantic level and cannot be simply addressed at the

programming level with the existing aspect-oriented tools. For example, existing aspect

weavers cannot automatically detect that two aspects implement data-compression algo-

rithms. The weavers reason about the instructions that must be appended to the joinpoints,

but they usually cannot reason about the semantics of these instructions. (However, some

research prototypes are currently being developed.) Therefore, the job of detecting whether

two aspects are incompatible, dependant, or redundant is entirely the responsibility of the

aspect programmer.

Weaving

In addition to posing potential semantic conflicts, the composition of several aspects might

require the execution of the distinct aspects that must be woven into an application.

For example, a security aspect and a trace aspect might define pointcuts that include the

same set of joinpoints. In this case, the execution order of the two aspects should be defined.

There is no automatic solution to this problem. For example, you might want to trace all

requests—even those that will be rejected because the user is not authorized. (In this case, the

trace aspect must be applied first). Or, you might want to trace only the requests from autho-

rized users. (In this case, the security aspect must be applied first.) Hence, given two aspects,

you must decide on and define the correct execution order.

Summary
This chapter introduced the basic concepts of AOP. The concepts that were presented are inde-

pendent of any implementation by a specific language or framework. This chapter provided a

reference for the following chapters in this book, where the concepts will be illustrated specif-

ically with AspectJ, JAC, JBoss AOP, and Spring.

The concept of an aspect aims to modularize a crosscutting functionality. A functionality

is said to be crosscutting when its implementation is not cleanly located in one file but is scat-

tered throughout many different files of an application. By locating these scattered elements in

one place, the concept of an aspect improves modularity and leads to applications that are

easier to understand, debug, and maintain.

AOP is a technique that complements OOP. The purpose of AOP is not to replace classes

and objects. Hence, an aspect-oriented application is still organized around a set of classes.

Aspects enhance these classes by implementing crosscutting functionalities.

C H A P T E R 2 ■ T H E C O N C E P T S O F A O P 21

Implementing an aspect consists of defining advice code and pointcuts. The advice code

defines what the behavior of the aspect is, and pointcuts define where this behavior is to be

applied in the application. The point in the program execution where an aspect applies is

called a joinpoint. AOP provides the additional notion of introduction, which is the mech-

anism for extending an application.

23

■ ■ ■

C H A P T E R 3

AspectJ

In the previous chapter, we presented the basic concepts of AOP with the notions of the

aspect, the pointcut, the joinpoint, and the advice code.

In this chapter, we will illustrate the way that these concepts are implemented in AspectJ.

The syntax and concepts presented here correspond to version 1.2.1 of the language.

Gregor Kiczales and his team, who are credited with the creation of AOP at the Palo Alto

Research Center (PARC), are responsible for the invention and development of AspectJ—

which is now the leading tool for AOP. The first versions of AspectJ were released in 1998 and,

as of December 2002, the AspectJ project has left PARC and joined the open-source Eclipse

community. Today, AspectJ is the most widely used aspect-oriented language.

THE HISTORY OF ASPECTJ

The histories of AspectJ and AOP are closely related. AspectJ has always been considered by Gregor Kiczales

as the project that would illustrate the concepts of AOP. Although the notion of the aspect dates back to 1996,

and the first versions of AspectJ were released in 1998, the ideas and research that culminated in AOP date

back to before this time. Research in reflection in the 1980s and work on open implementations in the 1990s

served as background for the development of AOP.

Invented in 1984 by Brian Smith, and studied and popularized by Patricia Maes in 1997, reflection is a

programming technique that introduces a two-level architecture. The first level, called the base level, consists

of the application. The second level, called the meta level, controls and supervises the base level. Although the

notions of the aspect and the meta level differ, they share a common goal: to separate business functionalities

from technical concerns. This separation aims to result in better modularization of programs. Prior to inventing

the concept of the aspect, Kiczales spent time conducting research in the domain of reflection. In 1991, he

was coauthor of The Art of the Metaobject Protocol (MIT Press, 1991).

The founding document of AOP was published and presented in 1997 by Kiczales during the European

Conference on Object-Oriented Programming (ECOOP). Presentations had been held previously, in 1996, but

the 1997 article is considered seminal. Simultaneously, the first prototypes of AOP languages appeared in

1996–97.

Christina Lopez, a member of Kiczales’s team at the time and an important contributor, developed the

D language and its implementation, DJava. The D language contained two types of aspects: distribution and

concurrency-management. Soon after, Lopez and Kiczales realized that this new approach could be general-

ized and applied to other aspects. A general-purpose language that could implement any kind of aspect was

needed.

In 1998, Kiczales and his team made the decision to switch from D to AspectJ. Soon after, the first imple-

mentations of AspectJ were released. At almost the same time, Aspect-Oriented Tcl Object System (A-TOS),

24 C H A P T E R 3 ■ A S P E C T J

which was the first prototype of Java Aspect Components (JAC), was implemented. Since then, several

versions of AspectJ have been released, and each one has included new features and/or bug fixes. The first

major version of AspectJ, designated version 1.0, was released in November 2001. This was also the year

during which AOP was fully recognized by the international computer-science community. A special edition of

the leading journal, Communications of the ACM, was devoted to AOP.

In December 2002, the AspectJ project left PARC and joined the open-source Eclipse community. Since

then, the AspectJ Development Tools (AJDT) plug-in has been developed. It enables you to write, compile, and

run an aspect-oriented program within the IBM Eclipse IDE.

A First Application with AspectJ
This section presents a simple example of an aspect-oriented application with AspectJ. This

example introduces the syntax for writing aspects, pointcuts, and advice code.

The example is an order-management application that manages client orders. The appli-

cation implements a trace aspect, which traces the execution of the application and deter-

mines which methods are called and the order that they are called in.

The Order-Management Application

The order-management application enables a client to add items to an order and to compute

the amount of that order. References to the items and their prices are stored in a catalog.

This application defines three classes: Customer, Order, and Catalog. The Customer class,

which is shown in Listing 3-1, is the main entry point of the application.

Listing 3-1. The Customer Class for the Order-Management Application

package aop.aspectj;

public class Customer {

 public void run() {

 Order myOrder = new Order();

 myOrder.addItem("CD",2);

 myOrder.addItem("DVD",1);

 double amount = myOrder.computeAmount();

 System.out.println("Order amount: US$"+amount);

 }

 public static void main(String[] args) {

 new Customer().run();

 }

}

The main method creates an object from the Customer class and calls the run method. The

latter method creates an order (a myOrder object), calls the addItem method two times with a

reference and a quantity, computes the amount of the order, and displays the amount.

The orders are managed by the Order class, which is shown in Listing 3-2.

C H A P T E R 3 ■ A S P E C T J 25

Listing 3-2. The Order Class for the Order-Management Application

package aop.aspectj;

import java.util.*;

public class Order {

 private Map items = new HashMap();

 public void addItem(String reference,int quantity) {

 items.put(reference,new Integer(quantity));

 System.out.println(

 quantity+" item(s) "+reference+ " added to the order");

 }

 public double computeAmount() {

 double amount = 0.0;

 Iterator iter = items.entrySet().iterator()

 while (iter.hasNext()) {

 Map.Entry entry = (Map.Entry) iter.next();

 String item = (String) entry.getKey();

 Integer quantity = (Integer) entry.getValue();

 double price = Catalog.getPrice(item);

 amount += price*quantity.intValue();

 }

 return amount;

 }

}

The Order class records the items and the ordered quantities in a hash map (in the items

field). This map is indexed with the item references. The associated map values are the quanti-

ties of the ordered items. The addItem method adds an item to the order and displays a message

that reports on the operation. The computeAmount method iterates over the ordered items,

determines each price, and returns the total amount of the order.

The price of each item is determined by the Catalog.getPrice method, which is shown in

Listing 3-3.

Listing 3-3. The Catalog Class for the Order-Management Application

package aop.aspectj;

import java.util.*;

public class Catalog {

 private static Map priceList = new HashMap();

26 C H A P T E R 3 ■ A S P E C T J

 static {

 priceList.put("CD", new Double(15.0));

 priceList.put("DVD", new Double(20.0));

 }

 public static double getPrice(String reference) {

 Double price = (Double) priceList.get(reference);

 return price.doubleValue();

 }

}

The Catalog class records the price of each item in the priceList hash map. This table is

indexed by the item references. The associated values are the item prices. The static code block

initializes the priceList map with two items: a CD that costs US$15 and a DVD that costs

US$20. The getPrice method returns the price of the item that was given as a parameter.

Execution

The order-management application has so far been written purely in Java. The principle of

AOP is to leave applications unpolluted by code that is not related to the main functionality. As

a result, AOP allows you to focus on the core business, which in this case is the management of

orders.

The nonfunctional concerns, such as security, tracing, and the management of transac-

tions, can be independently added through aspects. The output of the order-management

application is shown in Listing 3-4.

Listing 3-4. The Output of the Order-Management Application

2 item(s) CD added to the order

1 item(s) DVD added to the order

Order amount: US$50.0

A First Trace Aspect

The business core of the application has now been developed. We will now proceed with the

development of a first aspect. This aspect, developed separately from the classes, monitors

each ordered item by displaying messages before and after the addItem method, which is

defined in the Order class.

The AspectJ code for this aspect is shown in Listing 3-5.

Listing 3-5. A First Trace Aspect for the Order-Management Application

 1 package aop.aspectj;

 2

 3 public aspect TraceAspect {

 4

 5 pointcut toBeTraced():

C H A P T E R 3 ■ A S P E C T J 27

 6 call(public void Order.addItem(String,int));

 7

 8 void around(): toBeTraced() {

 9 System.out.println("-> Before calling addItem");

10 proceed();

11 System.out.println("<- After calling addItem");

12 }

13 }

The AspectJ language extends the Java syntax with new keywords. In Listing 3-5, the first

new keyword you encounter is aspect. Like a class, an aspect is named (in this case,

TraceAspect) and can be defined in a package (in this case, aop.aspectj). An aspect can also be

extended through inheritance, as you will see in the “Aspect Inheritance” section later in this

chapter.

In the philosophy held by the AspectJ creators, an aspect is a software entity that is largely

similar to a class—in that both define a piece of code that abstracts and modularizes a concern.

Although the concern is crosscutting in the case of an aspect, classes and aspects belong to the

same level and must obey—as often as possible—the same rules.

In the examples that are distributed with AspectJ, the similarities go so far that classes and

aspects1 use the same .java extension.

Aspects define pointcuts and advice code; the following sections describe these elements.

A First Pointcut Descriptor

In an aspect, the pointcut keyword is used to define a pointcut descriptor. Pointcut descriptors

can be named. In the example of the TraceAspect aspect, the pointcut descriptor is named

toBeTraced.

Each pointcut descriptor is an expression (see line 6 in Listing 3-5) that denotes the set of

associated joinpoints. Several different types of joinpoints can be used. However, this is not the

case in the example of the toBeTraced pointcut descriptor, in which call is the only type of

joinpoint.

The call joinpoint designates the points where a method is called. The signature of the

called method is given in parentheses. The signature refers to the addItem method, which is

defined in the Order class, has two parameters of type String and int, returns void, and is

public. This signature is so precise that only one method fits this pointcut. In the “Wildcards”

section later in this chapter, you will see that wildcards can be used to match several methods

with the same pointcut descriptor.

The toBeTraced pointcut is associated with the addItem method; however, this does not

mean that only one joinpoint exists for this pointcut. In fact, all the locations where the method

is called match the pointcut. In the example in Listing 3-1, when addItem is called two times in

the run method of the Customer class, both locations match the pointcut.

In general, the number of joinpoints associated with a pointcut is not predetermined—the

number varies depending on the particular pointcut and its application. It is possible to write

1. In many applications, there is a clear difference between business functionalities and crosscutting

functionalities. The former are implemented in classes and the latter in aspects. It can then be interest-

ing to clearly state this difference by giving different extensions to file names. You could choose, for

instance, .aj or .ajava for files containing aspects, and keep .java for files containing classes.

28 C H A P T E R 3 ■ A S P E C T J

a pointcut descriptor with no associated joinpoints and, in this case, the aspect will not modify

the application. Although this is possible, it is highly unlikely that such a pointcut descriptor

would be useful—most of the time, this type of pointcut descriptor corresponds to an error.

Tools are available to detect these types of cases and avoid them. For example, the AJDT

plug-in provides a view that gives the corresponding joinpoints of each defined pointcut.

Figure 3-1 gives an illustration of this view. As shown in the advises node, the toBeTraced

pointcut descriptor is associated with two joinpoints for the Customer class. If there were no

associated joinpoints, the correctness of the pointcut would have been questioned.

Figure 3-1. The AJDT view of joinpoints associated with a pointcut descriptor

A First Piece of Advice Code

The TraceAspect aspect defines only one piece of advice code. (See line 8 in Listing 3-5). Three

types of advice code exist: “before,” “after,” and “around.” For the first type, the advice code

is executed before each joinpoint that is associated with the pointcut; for the second type, it is

executed after; for the third type, it is executed before and after.

For any type of advice code, the joinpoints are designated by a pointcut, and each piece of

advice code is associated with a pointcut. In the TraceAspect aspect, the advice code is of the

“around” variety, and the associated pointcut is toBeTraced. The code is given between

brackets. In this example, the “around” advice code is executed before and after the calls to the

addItem method.

In the TraceAspect example, AspectJ expects the methods included in the pointcut to

define the return type as void. It follows that the addItem return type is void.

Advice code is a regular block of code. Any existing Java instruction, such as a method call,

a variable assignment, a for statement, a while statement, or an if statement, can be used.

AspectJ adds the new keyword proceed to this list. When reached, this keyword triggers the

execution of the joinpoint. The instructions prior to proceed are executed before the joinpoint,

and those following proceed are executed after. Hence, proceed delimits a “before” part and an

“after” part in the advice code.

The execution of a program with “around” advice code is as follows:

1. The program is started.

2. Just before a joinpoint, the “before” part is executed.

C H A P T E R 3 ■ A S P E C T J 29

3. The proceed method is called.

4. The corresponding joinpoint is executed.

5. The “after” part is executed.

6. Program execution resuming, just after the joinpoint.

The call to proceed is optional. Certainly, it is valid for “around” advice code to not call

proceed. In such a case, the code associated with the joinpoint is not executed. After the execu-

tion of the advice code, the program execution resumes directly after the joinpoint.

Advice code can call proceed in some cases and not in others. This can be seen in the case

of a security aspect that controls access to a method. If the user is authenticated, the call is

authorized and the aspect calls proceed. If the user does not own sufficient rights, the call is

rejected and the security aspect does not call proceed. In such a case, the joinpoint is not

executed.

The “before” and “after” advice code blocks do not need to call proceed. They are designed

to be executed before and after joinpoints. AspectJ raises an error if proceed appears in the

body of “before” or “after” advice code.

Compiling

AspectJ is a compile-time weaver (since version 1.2, AspectJ can also weave aspect at load-

time). The aspect and class input files are woven together by AspectJ to produce a final appli-

cation. This application can then be executed as a regular Java application.

To compile the aspect with the three classes of the order-management application, call

the ajc compiler from the operating-system command shell with the following command:

ajc TraceAspect.aj *.java

This command produces a set of .class files that contain the bytecode of the aspectized

application.

The first versions of AspectJ produced Java code. The output of the ajc compiler was a Java

program in which instructions from aspects and classes were merged. This Java code could

then be compiled by the regular javac Java compiler. The advantage of this approach was that

the produced code could easily be read by developers, who could then study the way that the

pointcuts and advice code blocks were implemented.

Despite these benefits, this approach had several drawbacks. The first had to do with

performance. The initial translation from Java to Java was costly. In addition, a syntax analysis

of the Java code was needed before the result of the weaving could be generated—and writing

a Java syntax analyzer that is fast enough to manage huge amounts of code is a difficult task.

Even more, this task is redundant with the one performed when the produced code is

compiled. The second disadvantage had to do with the source code needed to perform the

weaving. In some cases, the application was commercial or came from a developer who did not

release the source code. As a result, the Java-to-Java compilation could not be applied.

To avoid these difficulties, the new versions of AspectJ can weave bytecode in .class or

.jar files and do not require source code. The ajc compiler provides the option –injar to use

this feature.

30 C H A P T E R 3 ■ A S P E C T J

Running

The order-management application, which is woven with the TraceAspect aspect, can be run

by calling the Java virtual machine with the Customer class.

To be run in a UNIX or Windows shell, the command is as follows:

java aop.aspectj.Customer

The output of this command is shown in Listing 3-6.

Listing 3-6. The Output of the Order-Management Application with the Trace Aspect

-> Before calling addItem

2 item(s) CD added to the order

-> After calling addItem

-> Before calling addItem

1 item(s) DVD added to the order

-> After calling addItem

Order amount: US$50.0

In this run, each call to the addItem method corresponds to a joinpoint. The execution is

trapped, and the advice code defined in the TraceAspect aspect applies. This is “around”

advice code. The message -> Before calling addItem is displayed, the proceed instruction is

called, the “after” part is executed, and the message -> After calling addItem is displayed. Note

that the call to proceed executes the addItem method.

Pointcut Descriptors
In the previous section, we introduced the basic elements of the AspectJ syntax. We showed
how to write, compile, and run a first aspect-oriented application.

Although it is simplistic, the order-management application illustrates a major AOP char-

acteristic: the separation of business from technical code. The Customer, Order, and Catalog

classes play the role of the business code, whereas the TraceAspect aspect implements the

technical part of the application. This separation is made possible by the use of pointcuts.

Pointcuts allow you to describe where the aspects must be applied in the code. Therefore,

pointcuts give you a way of “talking about” the application by designating some of the strategic

locations of that application.

In the following sections, we present the syntax of the AspectJ language. We begin with the

syntax of pointcuts and follow with the syntax of advice code. You will see how more-generic

aspects can be written, how different types of joinpoints can be included, and how more-

complex pointcuts can be defined.

Wildcards

The toBeTraced pointcut, which was defined in the TraceAspect aspect in Listing 3-5, is not

generic. It captures calls exclusively to the addItem method. In more complex cases, it is impor-

tant for you to accurately define pointcuts that contain calls to several methods.

C H A P T E R 3 ■ A S P E C T J 31

AspectJ provides a pattern language, which allows the definition of expressions that

implicitly denote several methods or classes. These symbols (*, .., and +) are called wildcards.

In the following sections, we explain the principle and definition of these wildcards and give

usage examples of them.

Principle

When wildcards are used jointly with the different types of joinpoints that we describe later in

this chapter (in the “Joinpoint Types” section), the wildcards act as a powerful syntax capable

of describing many pointcuts. In return, this flexibility can lead to pointcut descriptors that are

complex and subtle.

Other AOP environments, such as JAC and JBoss AOP (see Chapters 4 and 5), have made

different choices. Their pointcut languages define fewer operators and, as a consequence, their

expression powers are not as flexible as that of AspectJ. On the other hand, their pointcut

descriptors are simpler to write, understand, and debug.

The discussion about the trade-offs between power and simplicity remains open. Yet, in

computer science and other domains, the simple solutions are often the most widely used.

Similarly, the simplest pointcuts are the ones more frequently reused. Therefore, we use the

simple pointcuts to illustrate and promote AOP.

The following sections define the *, .., and + wildcards. They are presented according to

the element types (method, class, signature, package, and subtype) that they denote.

Method and Class Names

The asterisk (*) can be used to denote method and class names. You will see in the “Method

Signatures” and “Package Names” sections, later in this chapter, that the asterisk can also be

used for signatures and package names.

For methods, the asterisk designates “some or all of the methods defined in a class.”

The following expression designates all the public methods in the Order class that have

two parameters of type String and int and that return void:

public void aop.aspectj.Order.*(String,int)

The asterisk can be used in combination with letters to designate all the method names

that contain the substring “Item”, for instance. In such a case, the expression is *Item*.

As stated, the asterisk can also be used for class names. The following expression desig-

nates all the public methods of all the classes in the aop.aspectj package that have two

parameters of type String and int and that return void:

public void aop.aspectj.*.*(String,int)

Method Signatures

Names, parameters, return types, and access modifiers (public, protected, and private), can

be used in AspectJ pointcut descriptors.

Method parameters can be omitted and replaced by two dots (..) to indicate “any param-

eter.” The following expression illustrates the public methods in the Order class that have any

parameters and that return void:

public void aop.aspectj.Order.*(..)

32 C H A P T E R 3 ■ A S P E C T J

Hence, the symbol of two dots handles the polymorphism of Java methods.

The return type and the access modifier can be omitted and replaced by the asterisk (*).

The following expression denotes all the methods defined in the Order class, regardless of

their parameters, return types, and access modifiers:

* * aop.aspectj.Order.*(..)

In addition, the asterisk that is used to replace the access modifier can be omitted without

changing the meaning of the pointcut. Therefore, the following expression is equivalent to the

one just presented:

* aop.aspectj.Order.*(..)

Package Names

The two-dots symbol can also be used with package names. For example, the following expres-

sion designates all the methods of any class named Order that is in any package of the aop

hierarchy, regardless of the subpackage level:

* aop..Order.*(..)

The use of the two-dots symbol between aop and Order is of great importance. Expressions

such as aop.Order.*(..) and aop.*.Order.*(..) look similar but lead to completely different

results. Although both expressions involve the methods defined in an Order class, they differ in

the following ways:

• The aop..Order.*(..) expression denotes the entire hierarchy that starts with the aop

package.

• The aop.Order.*(..) expression denotes only the class that is defined in the aop

package.

• The aop.*.Order.*(..) expression denotes only the classes that are defined in the direct

subpackages of the aop package.

Subtypes

The last wildcard, the plus sign (+), deals with type hierarchies and designates all the subclasses

of a given class. The following expression denotes all the methods of the Order class and its

subclasses:

* aop.Order+.*(..)

The plus sign can also be used after an interface name. In such a case, the pointcut desig-

nates all the methods of all the classes that implement the interface.

Because the plus sign can be used with either a class or an interface, it is referred to as a

subtyping operator.

Wildcard-Usage Example

We will illustrate the usage of wildcards by showing a second version of the trace aspect, which

is named TraceAspect2. The previous version, TraceAspect, intercepted only the calls to the

C H A P T E R 3 ■ A S P E C T J 33

addItem method. The new version is more generic and intercepts the calls to all the methods

defined in the Order class.

The code of the TraceAspect2 aspect is shown in Listing 3-7.

Listing 3-7. Using Wildcards in Pointcut Descriptors

 1 package aop.aspectj;

 2

 3 public aspect TraceAspect2 {

 4

 5 pointcut toBeTraced(): call(* aop.aspectj.Order.*(..));

 6

 7 Object around(): toBeTraced() {

 8 System.out.println("-> Before the call");

 9 Object ret = proceed();

10 System.out.println("<- After the call");

11 return ret;

12 }

13 }

The first difference between the TraceAspect and TraceAspect2 aspects is in the definition

of the pointcut. (See line 5 in Listing 3-7). The pointcut descriptor is now call(* aop.aspectj.

Order.*(..)). All the calls to the methods defined in the Order class are intercepted by the

pointcut—whatever the methods’ parameters and return types are.

A second difference can be found in the return type of the advice code block. Previously,

the type was void. Now, the pointcut intercepts either a method that returns void (for example,

addItem) or a method that returns double (for example, computeAmount). Strictly speaking, no

common supertype exists for both void and double. As a convention, AspectJ considers that

Object (see line 7 in Listing 3-7) is the common supertype for all Java primitive and object

types. The result of proceed is stored in the ret variable (see line 9), which is returned at the end

of the advice code block (see line 11).

Joinpoint Introspection

In the previous section, you learned that wildcards can be used to write generic pointcut

descriptors. With wildcards, a pointcut can be associated with several methods. You will see in

this section how to obtain some information about a joinpoint at run time. This is known as the

joinpoint-introspection mechanism.

The term introspection refers to examining the inner cause of a given phenomenon and

gaining information about it. In the context of AOP, the phenomenon is the joinpoint, and you

want to retrieve information about the part of the actual program that allows the joinpoint to

occur. A comparison can be made with the Java java.lang.reflect API that provides, for any

given Java program, a description of the program’s classes, fields, and methods. The program

is then said to have introspected to obtain information about itself.

In the context of AOP, the same principle applies. The joinpoint examines itself to gain

information about itself. This mechanism is useful for determining, for instance, the method

call that caused the joinpoint to occur.

34 C H A P T E R 3 ■ A S P E C T J

Introspection Syntax

The thisJoinPoint keyword implements the introspection mechanism in AspectJ. In regular

Java, this is the reference to the current object. Similarly, in AspectJ, thisJoinPoint is a refer-

ence to an object describing the current joinpoint, which implements the predefined

org.aspectj.lang.JoinPoint interface. Table 3-1 sums up the main methods defined in this

interface. Two of them, getSignature and getSourceLocation, use predefined interfaces, which

are Signature and SourceLocation, respectively. The AspectJ Javadoc documentation gives

more details on the methods provided by these interfaces.

Usage Example

We now illustrate the joinpoint-introspection mechanism with a third version of the trace

aspect, which is named TraceAspect3. In comparison to TraceAspect2, TraceAspect3 now

displays the following for each joinpoint:

• The name of the intercepted method call

• The parameters of the call

• The current object—in other words, the calling object

• The target object—in other words, the called object

The code of the TraceAspect3 aspect that performs this introspection and displays these

four pieces of information is shown in Listing 3-8.

Table 3-1. Main Methods Defined in org.aspectj.lang.JoinPoint

Method Signature Definition Comment

Object[] getArgs() Returns the joinpoint
arguments

When the joinpoint deals with a method, getArgs
returns the arguments of the call.

Signature
getSignature()

Returns the joinpoint
signature

The Signature interface gives a representation of
the signature of the joinpoint. When the join-
point deals with a method, Signature provides
methods for retrieving the joinpoint method’s
name, access modifiers (public, private, and so
on), class, and return type.

String getKind() Returns the joinpoint
type

SourceLocation
getSourceLocation()

Returns the localiza-
tion of the joinpoint in
the source code

SourceLocation is a predefined interface that
provides access to the file name, line number,
and class where the joinpoint is defined.

Object getTarget() Returns the target
object of the joinpoint

When the joinpoint deals with a method,
getTarget returns the called object.

Object getThis() Returns the source
object of the joinpoint

When the joinpoint deals with a method call,
getThis returns the calling object.

C H A P T E R 3 ■ A S P E C T J 35

Listing 3-8. An AspectJ Program for Joinpoint Introspection

package aop.aspectj;

public aspect TraceAspect3 {

pointcut toBeTraced(): call(* aop.aspectj.Order.*(..));

 Object around(): toBeTraced() {

 String methodName = thisJoinPoint.getSignature().getName();

 Object[] args = thisJoinPoint.getArgs();

 Object caller = thisJoinPoint.getThis();

 Object callee = thisJoinPoint.getTarget();

 System.out.println("-> Method "+methodName+" begins");

 System.out.print("-> "+args.length+" parameter(s) ");

 for (int i = 0; i < args.length; i++)

 System.out.print(args[i]+" ");

 System.out.println();

 System.out.println("-> "+caller+" to "+callee);

 Object ret = proceed();

 System.out.println("<- Method "+methodName+"ends");

 return ret;

 }

}

The output of the order-management application with the TraceAspect3 aspect is shown

in Listing 3-9. Before each call to a method from class Order, three lines display respectively:

the name of the called method, the parameters of the call, and the caller and the called object.

Listing 3-9. The Output of the AspectJ Program for Joinpoint Introspection

-> Method addItem begins

-> 2 parameter(s) CD 2

-> aop.aspectj.Customer@1cd2e5f to aop.aspectj.Order@19f953d

2 item(s) CD added to the order

-> Method addItem ends

-> Method addItem begins

-> 2 parameter(s) DVD 1

-> aop.aspectj.Customer@1cd2e5f to aop.aspectj.Order@19f953d

1 item(s) DVD added to the order

-> Method addItem ends

-> Method computeAmount begins

-> 0 parameter(s)

-> aop.aspectj.Customer@1cd2e5f to aop.aspectj.Order@19f953d

-> Method computeAmount ends

Order amount: US$50.0

36 C H A P T E R 3 ■ A S P E C T J

Defining Joinpoints

In the previous sections, you learned that wildcards and introspection can be used to write

generic pointcuts. Up until this point, we have shown joinpoints that deal only with method

calls. In this section, we will present other types of joinpoints.

Joinpoint Types

The joinpoint types provided by AspectJ can deal with methods, fields, exceptions, construc-

tors, static blocks and, finally, advice-code executions.

Methods

For methods, AspectJ defines two types of joinpoints: method calls (defined by the call

keyword) and method executions (defined by the execution keyword). In both cases, an

expression must be provided to designate the methods to be called or executed.

The first difference between the call and execution types concerns the context that the

joinpoint occurs in. In the former case, the joinpoint occurs in the context of the calling code,

whereas in the latter case, the joinpoint occurs in the context of the called code.

A second difference, which is a direct consequence of the first, is that the values returned

by the getThis and getTarget introspection methods differ. For the call type, getThis returns

a reference to the caller, and getTarget returns a reference to the callee. For execution, both

getThis and getTarget return a reference to the callee. The call type can thus be seen as more

general because both the caller and the callee are available.

A method can be associated with a call joinpoint and an execution joinpoint at the same

time. In such a case, the code is executed in the following order:

1. The “before” part of the advice code that is associated with the call joinpoint

2. The “before” part of the advice code that is associated with the execution joinpoint

3. The method

4. The “after” part of the advice code that is associated with the execution joinpoint

5. The “after” part of the advice code that is associated with the call joinpoint

Fields

The get and set joinpoint types intercept the instructions that read and write a field, respec-

tively. These types are useful when you want to implement aspects that manipulate the state of

an object. For instance, in the case of a persistence aspect, the state of an object needs to be

stored in a file or a database. When intercepted, the read and write operations can be easily

redirected to the file or the database.

The get and set types take an expression as a parameter that denotes the set of fields

included in the pointcut. The definition of this expression contains three parts for each field: its

type, the class that defines it, and its name. All of these parts can contain wildcards.

The following expression intercepts all the read operations on the items field of type Map

that is defined in the Order class:

get(Map Order.items)

C H A P T E R 3 ■ A S P E C T J 37

As for method calls and executions, the full class names (in other words, those including

package names) as well as the wildcards (*, .., and +) can be used when writing the expressions

for get and set.

Exceptions

The handler type corresponds to a joinpoint that occurs when a catch block of instructions

begins. This type allows you to define aspects that perform compensation treatments when

exceptions are thrown.

For example, this type of joinpoint can be used to log the messages that are generated by

the thrown exceptions in a running application. Another usage example is defining a common

treatment for all the exceptions of a given type. However implemented, the handling of excep-

tions with an aspect usually lightens the application—making it far more readable and

maintainable.

The handler type is associated with an exception name. A name can contain the wildcards

(*, .., and +). For example, the following expression intercepts the executions of the blocks that

catch the java.io.IOException exception or one of its subtypes:

handler(java.io.Exception+)

With the current version of AspectJ, only “before” advice code can be defined for pointcuts

that use the handler type. Hence, some code can be executed at the beginning of a catch block

but not at the end.

Constructors

AspectJ can define pointcuts that include class constructors. To achieve this, two joinpoint

types are available: initialization and preinitialization. The initialization joinpoint

corresponds to the actual execution of the declared constructor, excluding a possible call to an

inherited constructor. The preinitialization joinpoint corresponds to the initialization code

that is executed before the execution of the constructor, including any default field initializa-

tions and any field initializations that have been declared within the class body.

As for the call and execution types, the initialization type takes an expression as a

parameter that denotes the constructor or the set of constructors to be intercepted. This

expression contains a class name, the new keyword, and a signature, and it can contain the

usual wildcards (*, .., and +).

For example, the following expression intercepts the executions of all the constructors,

regardless of their signatures, that are defined in the Customer class:

initialization(Customer.new(..))

With AspectJ, “before” and “after” advice code is valid with initialization pointcuts, but

“around” advice code is not.

Static Code Blocks

In Java, static code blocks define the instructions that are executed while a class is being initial-

ized—in other words, when the class is loaded in the virtual machine. These blocks are often

used to initialize static fields.

38 C H A P T E R 3 ■ A S P E C T J

Several static code blocks can be associated with a single class. In such a case, the order

they are executed in corresponds to the order of their definition. The staticinitialization

joinpoints correspond to the executions of these static blocks.

With staticinitialization, advice code can be executed before and after a static block.

For instance, the following expression intercepts the execution of all static blocks that are

defined in the Catalog class:

staticinitialization(Catalog)

As for other pointcut descriptors, class names can be associated with package names and

wildcards.

Advice-Code Execution

The last existing variety of AspectJ joinpoint, adviceexecution, corresponds, as its name

suggests, to the execution of advice code. Therefore, you can define an aspect that modifies the

execution of another aspect. However, the adviceexecution type should be used with caution.

If it is used carelessly, there is a high risk of obtaining endless loops during the execution of the

application.

All the joinpoint types we have previously presented accept an expression as a parameter;

this is not the case for adviceexecution. This joinpoint occurs when advice code, including

advice code that will be associated with the joinpoint itself, is executed.

Consider the following pointcut descriptor and advice code:

pointcut aa(): adviceexecution();

Object before(): aa() { ... }

Before each execution of an advice code block, the aa pointcut launches the advice code

that is given in the example. However, this advice code does not differ from any others—its

execution triggers the occurrence of the pointcut, then the execution of the advice code, and so

on. To avoid this endless loop, the adviceexecution type must be used with the filtering opera-

tors that the next section presents.

Filtering Operators

The joinpoints presented previously offer a rich syntax and can be used to define many

different pointcut descriptors. You will learn in this section that they can also be combined

with logical operators and that filtering operators allow you to restrict the set of caught

joinpoints.

Logical Operations

Each defined pointcut descriptor can be compared to a Boolean function. For a given join-

point, if the pointcut applies, the function returns true; if it does not apply, the function

returns false.

With this logical reasoning in mind, the use of the Boolean operations AND, OR, and NOT

is intuitive. They correspond to the conjunction, disjunction, and negation of the occurrence

of a joinpoint, respectively. AspectJ supports these three operations with their Java syntax: &&

for AND, || for OR, and ! for NOT.

C H A P T E R 3 ■ A S P E C T J 39

The following expression encompasses the executions of the computeAmount method and

of the getPrice method:

execution(* Order.computeAmount(..)) || execution(* Catalog.getPrice(..))

The evaluation of a pointcut descriptor is computed for every existing joinpoint. A given

joinpoint can be either the execution of computeAmount or the execution of getPrice but never

both at the same time. Consequently, the use of && instead of || in the previous pointcut

descriptor will not intercept any joinpoint.

The use of && instead of || in a pointcut descriptor is a frequent mistake. However, since

the syntax of the expression is correct, the AspectJ compiler does not report an error. Only by

using a tool such as the AJDT Eclipse plug-in for AspectJ (see Figure 3-1), which allows you to

check the joinpoints that are associated with the pointcut, can you detect that no such points

exist and that the pointcut descriptors are erroneous.

In general, combining different joinpoint types in a pointcut descriptor must be done with

the || operator.

Pointcut descriptors can include tests. An expression containing if is followed by a

Boolean expression and can be combined with any other pointcut expression.

For instance, the expression

if(thisJoinPoint.getArgs().length() == 1)

returns true when the current joinpoint defines only one parameter, and it returns false in the

other cases.

Filtering

A pointcut descriptor such as get(* aop..*.items) intercepts all the read operations on the

items field. For the order-management application, two such joinpoints are included:

• The joinpoint in the addItem method where items is read in order to call the put method.

• The joinpoint in the computeAmount method where items is read in order to call get.

In certain situations, it can be useful to restrict this set to contain only one joinpoint. The

withincode keyword, associated with a method name, can be used for this purpose. The

method name can contain wildcards (*, .., and +).

The expression withincode(expr) will return true if the name of the method containing

the joinpoint matches expr.

The expression

get(* aop..*.items) && !withincode(* aop..*.computeAmount(..))

designates all the read operations for the items field that are not defined in the computeAmount

method.

The use of || instead of && in the previous expression does not lead to the expected result.

Indeed, !withincode(* aop..*.computeAmount(..)) is true for any joinpoint that is not in the

computeAmount method. The evaluation of the expression with the logical OR operator is thus

true for these joinpoints, and the pointcut intercepts more joinpoints than expected. In sum,

no truly useful situation requires the joint usage of || and withincode.

40 C H A P T E R 3 ■ A S P E C T J

The second keyword, within, exists for filtering joinpoints. This keyword is associated with

a class or interface name and can contain wildcards. The within keyword allows you to retain

joinpoints that are defined in a given class or set of classes.

Two keywords, this and target, allow you to perform filtering depending on object refer-

ences. You previously learned that getThis and getTarget return the current object and the

target object of a call or execution joinpoint, respectively. For instance, for the call type,

getThis returns the reference to the caller, and getTarget returns the reference to the called

object. The this and target keywords play the same role for pointcut descriptors, and they

apply filtering depending on the class of the current object or target object. Each is associated

with a class or interface name and can contain wildcards.

The expression

call(* aop..*.addItem(..)) && this(aop.aspectj.Order)

is true for all the calls made to the addItem method by the Order class. This expression excludes

any calls to addItem made by other classes.

Control-Flow Filtering

The filtering operators presented previously are static. They do not depend on the dynamics of

the program or the way the program is run but only on its structure. Therefore, all the previous

joinpoints can be statically computed without the program needing to be run.

AspectJ defines two additional filtering operators, cflow and cflowbelow. These are

referred to as control-flow operators. Intuitively, the control flow of a program encompasses all

the methods that are visited during the program’s execution.

To illustrate the way that cflow and cflowbelow work, take the example of a simple

program that calls the Foo.foo and Bar.bar methods from the main method. The Foo.foo
method also calls Bar.bar. This last method does not perform any calls.

The following pointcut descriptors intercept the calls to the bar method only if bar is

called from foo, so calls to bar from main are ignored:

pointcut foopcd(): call(* Foo.foo(..));

pointcut callToBarInFoo(): call(* Bar.bar(..)) && cflow(foopcd());

The callToBarInFoo pointcut descriptor specifies that calls to bar only in the control flow

of the foopcd pointcut descriptor are considered. The foopcd pointcut descriptor designates all

the calls to the foo method.

Intuitively, you can consider that the control flow of the program enters the foopcd

pointcut when foo is called and exits the pointcut when the call returns. The expression

cflow(foopcd()) designates all the joinpoints located between this entry point and exit point.

More formally, the cflow operator is associated with a pointcut named p. All the joinpoints

that occur between the moment the program encounters one of the joinpoints included in p

and the moment the program exits this joinpoint are denoted by cflow(p()).

The cflowbelow operator is similar to cflow except that the joinpoints belonging to p are

not returned by cflowbelow.

C H A P T E R 3 ■ A S P E C T J 41

Pointcut Parameterization

In the previous sections, you learned about the keywords, operators, and symbols that can be

used with AspectJ to define pointcuts. You learned that each pointcut descriptor is named and

defined in an aspect, and that the advice code defines the treatment to be executed before and

after the joinpoints that are denoted by their associated pointcuts.

In OOP languages, the methods can be parameterized. In AOP, the parameterization also

applies to pointcut descriptors. The parameters contain the information that is passed from

the pointcut to the utilizing advice code.

The parameters of a pointcut, like those of a method, are defined in parentheses after the

name of the pointcut. Each parameter has a name and a type.

The following toBeTraced pointcut descriptor defines four parameters (src, dst, ref, and

qty):

pointcut toBeTraced(Customer src, Order dst, String ref, int qty)

Pointcut parameters can pass three kinds of information: the source of the joinpoints that

are included in the pointcut, the target of those joinpoints, and the parameters of those join-

points. The goal is to expose the information from the joinpoint so the advice code can access

that information.

The source and target of the joinpoints are accessed with a modified version of the this

and target operators, which we previously presented. Instead of being associated with a class

name, the operators here use an identifier. The arguments of the joinpoints are accessed with

the args operator followed by a list of identifiers.

As an example, consider the following toBeTraced2 pointcut descriptor:

pointcut toBeTraced2(Customer src, Order dst, String ref, int qty) :

 call(* *.*(..)) && this(src) && target(dst) && args(ref,qty);

This example denotes all the calls (by the call(* *.*(..)) subexpression, specifies that

the source must be bound to the src parameter (by the this(src) subexpression), that the

target must be bound to dst (by the target(dst) subexpression), and that the arguments must

be bound to the ref and qty variables (by the args(ref,qty) subexpression).

Thanks to the type information that is given in the signature of the pointcut, you can

deduce that the pointcut deals with calls to methods that the Order class defines, that take

parameters of type String and int, and that are made from the Customer class.

You previously saw that the source, target, and arguments could be accessed through the

joinpoint-introspection mechanism and the thisJoinPoint keyword. As you have seen in this

section, pointcut parameterization is an alternative means to achieve this end—but in a typed

way. Furthermore, parameterizing a pointcut generally brings more-efficient run-time perfor-

mances than introspection. The only drawback of parameterization is that the types need to be

available at compile time, which is not always the case when programming generic pointcuts.

Summary of Pointcut Descriptors

The AspectJ pointcut language provides a rich syntax and many keywords. Compared to JAC,

JBoss AOP, and AspectWerkz, which are presented in the following chapters, AspectJ can

define pointcut descriptors that are more precise—although more complex to learn.

42 C H A P T E R 3 ■ A S P E C T J

To conclude the discussion of joinpoints, we present Table 3-2, which gives a summary of

all the existing types of joinpoints in AspectJ. We classify them by their function into the

following categories:

• Methods (call and execution)

• Fields (get and set)

• Exceptions (handler)

• Constructors (initialization and preinitialization)

• Static code blocks (staticinitialization)

• Advice code (adviceexecution)

In addition to these joinpoint types, AspectJ pointcut descriptors can also include the

operators that are illustrated in Table 3-3. These operators can be grouped into the following

categories:

• Logical (&&, ||, !, if)

• Joinpoint location in the code (withincode and within)

• Joinpoint source and target (this and target)

• Control-flow (cflow and cflowbelow)

Table 3-2. AspectJ Joinpoint Types

Type Definition

call(methexpr) A call to a method that matches methexpr

execution(methexpr) An execution of a method that matches methexpr

get(fieldexpr) A read operation on a field that matches fieldexpr

set(fieldexpr) A write operation on a field that matches fieldexpr

handler(exceptexpr) An execution of a catch block for an exception that matches
exceptexpr

initialization(constexpr) An execution of a constructor that matches constexpr

preinitialization(constexpr) An execution of an inherited constructor that matches
constexpr

staticinitialization(classexpr) An execution of a static block in a class that matches classexpr

adviceexecution() An execution of an advice code block

C H A P T E R 3 ■ A S P E C T J 43

Advice Code
You learned that pointcut descriptors define the areas where the instructions from an aspect

need to be inserted. These instructions are defined in advice code blocks.

In object-oriented languages, the behavior of a class is defined in its methods. In contrast,

in AOP, this behavior is defined in advice code. In an aspect, there may be several advice code

blocks, with each one containing a set of instructions. In addition, each advice code block has

a type and is associated with a pointcut descriptor.

The Code of an Advice Code Block

The code of an advice code block can contain any valid Java instruction, such as a method call,

a variable assignment, an object creation (using new), a loop (using for, while, or do/while), a

test (using if), and an exception-handling block (using try/catch).

Two additional instructions, proceed and thisJoinPoint, are also valid in AspectJ. These

instructions are used exclusively for advice code; in any other context, they generate compiler

errors. The proceed keyword executes the joinpoint and can be used only in “around” advice

code. The thisJoinPoint keyword can be used for any kind of advice code. As mentioned previ-

ously, thisJoinPoint is a reference to an object that describes the current joinpoint.

The Different Types of Advice Code

AspectJ defines five types of advice code. Of these five, “before,” “after,” and “around” are the

more-commonly encountered ones. The last two types, “after returning” and “after throwing,”

can be seen as refinements of the “after” type.

Table 3-3. AspectJ Operators in Pointcut Descriptors

Keyword Definition

&& Logical AND

|| Logical OR

! Logical NOT

if(expr) Evaluation of the Boolean expression expr

withincode(methexpr) true when the joinpoint is defined in a method with a signature that
matches methexpr

within(typeexpr) true when the joinpoint is defined in a class with a name that matches
typeexpr

this(typeexpr) true when the source-object type for the joinpoint matches typeexpr

target(typeexpr) true when the target-object type for the joinpoint matches typeexpr

cflow(pcd) true for any joinpoint located from the entry of the given pointcut
descriptor (pcd) to the exit, inclusive

cflowbelow(pcd) true for any joinpoint located from the entry of the given pointcut
descriptor (pcd) to the exit, exclusive

44 C H A P T E R 3 ■ A S P E C T J

The “Before” Type

“Before” advice code is executed before the joinpoints that are included in the pointcut associ-

ated with the advice code.

The following example illustrates the usage of “before” advice code:

before(): toBeTraced() {

 System.out.println("... before the joinpoints included in toBeTraced ...");

}

The syntax for the definition of “before” advice code consists of the type of advice code

(here, before), the name of the pointcut descriptor that is associated with the advice code

(here, toBeTraced), and the code itself between curly brackets.

The second part, the name of the pointcut descriptor, is not mandatory. You can provide

the code of the pointcut descriptor right after the type. In this case, the pointcut is said to be

anonymous. An example of anonymous pointcut is the following:

before(): call(* Order.addItem(..)) { ... }

However, the use of a named pointcut descriptor is preferred because this produces

programs that are clearer and easier to maintain. Furthermore, when a pointcut descriptor is

reused in several advice code blocks, the use of a name avoids useless, error-prone repetitions.

In the previous section, you learned that pointcut descriptors can accept parameters.

Hence, when used, the associated advice code must also be parameterized.

The example in Listing 3-10 reuses the toBeTraced2 pointcut descriptor with four parame-

ters and associates the pointcut with “before” advice.

Listing 3-10. Defining Parameterized Pointcuts

 1 pointcut

 2 toBeTraced2(Customer src, Order dst, String ref, int qty):

 3 call(* *.*(..)) &&

 4 this(src) && target(dst) && args(ref,qty);

 5 before(Customer src, Order dst, String ref, int qty):

 6 toBeTraced2(src,dst,ref,qty) {

 7 System.out.println(

 8 "... before the joinpoints included in toBeTraced2 ...");

 9 System.out.println(src + " " + dst + " " + ref + " " + qty);

10 }

The four parameters that are defined in the pointcut descriptor are also used for the defi-

nition of the advice code. (See line 6 in Listing 3-10). These parameters are then available for

any instruction that is defined in the body of the advice code block.

The “After” Type

“After” advice is executed after each associated joinpoint. Its code uses the same syntax rules

as “before” advice. The previous examples of the toBeTraced and toBeTraced2 pointcut

descriptors would be valid simply by replacing the before keyword with after.

C H A P T E R 3 ■ A S P E C T J 45

The last two types of advice code that are defined by AspectJ are “after returning” and

“after throwing.” These types ensue from the idea that the execution of a joinpoint—for

instance, a method-execution joinpoint—ends normally or with the raising of an exception.

The former case is handled by the “after returning” type, whereas the latter case is handled by

the “after throwing” type.

The “After Returning” Type

“After returning” advice code is executed after each normal execution of the joinpoints that are

associated with the pointcut descriptor.

The following code illustrates the usage of the “after returning” type:

after() returning (double d): ... {

 System.out.println("The returned value is: "+d);

}

The value that is returned by the joinpoint can be accessed with the variable found in

parentheses after the after returning keywords. The variable is either the exact type (here,

double) of the value returned by the joinpoint or a valid supertype (for example, Object for all

Java types, including primitive types).

The “After Throwing” Type

“After throwing” advice code is executed when a given joinpoint that is associated with a

pointcut descriptor ends its execution by raising an exception.

The following code illustrates the usage of the “after throwing” type:

after() throwing (Exception e): ... {

 System.out.println("The raised exception is: "+e);

}

The exception that is raised by the joinpoint can be accessed with the variable defined in

parentheses following the after throwing keywords. In the previous example, the variable is e.

This variable can be used anywhere in the body of the advice code.

The “Around” Type

“Around” advice code is executed before and after each associated joinpoint. The proceed

keyword executes the joinpoint, which is bound by the “before” and “after” parts of the advice

code. Specifically, this keyword executes the joinpoint in the following way:

1. The “before” part is executed.

2. The joinpoint is executed when the proceed keyword is used.

3. The “after” part is executed.

In “around” advice code, the “before” or “after” part can be empty; then, the “around”

advice code is equivalent to “before” or “after” advice code. The proceed keyword is optional in

“around” advice code. If proceed is not used, the joinpoint is not executed. This behavior could

46 C H A P T E R 3 ■ A S P E C T J

correspond to a security aspect in which calls from unauthorized users are rejected, for

instance. The proceed keyword can be used several times in the same “around” advice code

block. However, this situation is infrequent and corresponds to cases in which several attempts

at executing the application are needed—for instance, after an unexpected error.

Unlike “before” and “after” advice code, the return type of “around” advice code is associ-

ated with the return type of the joinpoints. If the “around” advice code is not a supertype of

the return type that is defined for the joinpoints, the AspectJ compiler raises an error. When

other return types (including the void return type) appear for the joinpoints in a given

pointcut, the Object type must be used as the return type of the advice code. (In Java, Object is

considered the supertype of all types.)

Listing 3-11 illustrates the use of “around” advice code.

Listing 3-11. “Around” Advice-Code Example

Object around(): ... {

 System.out.println("before");

 Object ret = proceed();

 System.out.println("before");

 return ret;

}

In Listing 3-11, the call to proceed returns a value that is stored in the ret variable. This is

the value that is returned by the joinpoint. This value and, in fact, all other values, must be

returned by the advice code (as is done here by the return ret instruction).

When the advice code is associated with a parameterized pointcut descriptor, all the

parameters must be passed when proceed is called. This is illustrated by Listing 3-12.

Listing 3-12. “Around” Advice Code with Parameters

Object around(Customer src, Order dst, String ref, int qty):

 toBeTraced2(src,dst,ref,qty) {

 System.out.println("before");

 Object ret = proceed(src,dst,ref,qty);

 System.out.println("after");

 return ret;

}

Advice Code and Exceptions

Advice code has the ability to raise an exception when needed. In such cases, the type of the

exception must be specified in the signature of the advice code. For methods, the throws

keyword must be used to specify the exception.

The following piece of code defines “around” advice code that possibly throws an

exception:

 Object around() throws Exception: ... {

 /* ... */

 if(/*condition*/)

 throw new Exception();

 /* ... */

}

C H A P T E R 3 ■ A S P E C T J 47

When an exception is declared by advice code, the type of the exception must also be spec-

ified in the signature of the joinpoint. For instance, a method-execution joinpoint must list the

exception in the throws clause. This is a limitation that obliges the application code to be aware

of the exceptions thrown by the aspects. In practice, this limitation can be solved by specifying

that the advice code raises an exception of type RuntimeException. In Java, run-time exceptions

are unchecked; therefore, the signatures of the program methods can be left unchanged.

The Introduction Mechanism
In the previous sections, you learned that pointcut descriptors and advice code blocks allow an

aspect to extend or modify the behavior of an application. Pointcut descriptors designate join-

points (method calls, method executions, read operations, write operations, and so on) in the

execution flow of a program, and advice code blocks add instructions before or after these join-

points. In all cases, if no joinpoints are activated, the advice code will not be executed either.

The introduction mechanism is used in AspectJ to extend the structure of an application.

The term introduction refers to the process of the aspect adding code elements to the applica-

tion. AspectJ can introduce, or add, six categories of these elements: fields, methods,

constructors, inherited classes, implemented interfaces, and exceptions. The following

sections will explain these categories in detail.

Contrary to advice code, which extends the behavior of an application only when the join-

points are executed, the introduction mechanism is unconditional—the extended code is

always added.

AspectJ uses the term intertype declaration to refer to the introduction mechanism. The

concept behind this is that an aspect, which is considered a type, declares elements (for

example, fields, methods, inherited classes, and implemented interfaces) on behalf of other

types—in other words, on behalf of the classes of the application.

No special keyword is defined in AspectJ for introduced elements, which are defined

declaratively.

Fields, Methods, and Constructors

An aspect that introduces fields, methods, or constructors in a class performs a declaration on

behalf of this class. This declaration follows the same rules as a regular Java declaration. The

name of the field or method is preceded by the name of the class that the introduction is to be

performed in. Constructors are designated with the new keyword.

The aspect in Listing 3-13 introduces the date field, two methods named getDate and

setDate, and a constructor in the Order class.

Listing 3-13. Intertype Declaration

import java.util.Date;

public aspect AddDate {

 private Date Order.date;

 public Date Order.getDate() { return date; }

 public void Order.setDate(Date date) { this.date=date; }

48 C H A P T E R 3 ■ A S P E C T J

 public Order.new(Date date) { this.date=date; }

 after(): initialization(Order.new(..)) {

 Order myOrder = (Order) thisJoinPoint.getTarget();

 myOrder.date = new Date();

 }

}

In the AddDate aspect in Listing 3-13, “after” advice code is defined after the instantiations

of the Order class. This advice code collects the references of the instantiated orders and sets

the current date to the introduced date field.

Although these introductions are simplistic, they should be dealt with cautiously. Accord-

ingly, the elements defined in the application must not conflict with the elements introduced

by the aspect. For instance, if a date field already exists in the Order class, a compiler error

occurs.

AspectJ does not provide an option to check whether a field or method name already exists

before it performs the introduction. The existence of conflicting elements is revealed only

during compile time when the error occurs. Therefore, it is up to you to manually correct the

program or the aspect when this occurs.

Inherited Classes and Implemented Interfaces

In addition to fields and methods, the introduction mechanism provided by AspectJ allows you

to modify the inheritance and implementation hierarchies defined in an application. The

declare parents keyword combination permits this.

The following aspect adds the AddDateItf interface to the Order class and creates an inher-

itance link between AddDateImpl and Order:

public aspect AddDate2 {

 declare parents: Order implements AddDateItf;

 declare parents: Order extends AddDateImpl;

}

The addition of a new interface is always possible since there are no constraints in Java on

the number of interfaces implemented by a class. This is not the case for inheritance because

only a single inheritance is supported in Java.

In the previous example, if the Order class was already a subclass of the Document class, the

modification of the inheritance link by the AddDate2 aspect would have produced a compiler

error.

The names of the classes to be modified can contain wildcards. Logical expressions

created with the Boolean OR operator (||) can be written to modify several classes with a single

declaration.

Exceptions

The last element that can be introduced performs the function of catching the exceptions that

are raised by an application.

The exceptions raised by the application are wrapped in a special exception called

org.aspectj.lang.SoftException.

C H A P T E R 3 ■ A S P E C T J 49

The declare soft keyword combination is provided to implement this introduction

mechanism. A type and a pointcut descriptor must be provided. The type designates the type

of exceptions to be caught, and the pointcut descriptor designates the joinpoints where the

exceptions are to be caught.

For instance, the following line of code

declare soft: IOException+: call(* InputStream.*(..))

declares that the subclasses of a certain exception—the IOException exception that is thrown

when a method defined in the InputStream class is called—must be wrapped in the org.
aspectj.lang.SoftException exception.

Advanced Features
The previous sections introduced the many features offered by AspectJ for programming

aspects. As with other languages, advanced functionalities—apart from the mainstream

features—that complement the language exist. In AspectJ, these are the concepts of the

abstract aspect, aspect inheritance, aspect instantiation, aspect ordering, and the privileged

aspect.

The Abstract Aspect

The aim of the abstract aspect in AspectJ is to define an aspect that has some undefined

elements (pointcuts or methods). These elements are then said to be abstract. This concept is

similar to that of an abstract class. The precise definition of these elements will be given in a

subaspect.

Abstract aspects allow you to factor definitions that are shared by several aspects. As with

abstract classes, abstract aspects cannot be instantiated.

The abstract keyword is used to define abstract aspects. It can be written before the

aspect or pointcut keyword (for defining pointcut descriptors) and before the method that is

abstract in the aspect. The following section illustrates the precise definition of an abstract

aspect.

Aspect Inheritance

Inheritance can be used with aspects like it is used with classes. The goal is to extend an aspect

without rewriting it completely. Only single inheritance is supported.

As with classes, the extends keyword provides the inheritance feature. In the following line

of code, the TraceAspect2 aspect extends the TraceAspect aspect:

public aspect TraceApect2 extends TraceAspect { ... }

However, aspect inheritance does not follow the same exact rules as class inheritance. An

aspect can extend only abstract aspects, whereas a class can extend both abstract and nonab-

stract classes.

A pointcut can be redefined in a subaspect. If a pointcut is redefined, the redefined version

will always be used. Pointcut redefinition with aspect inheritance follows the same rules as

method redefinition with class inheritance.

50 C H A P T E R 3 ■ A S P E C T J

Conversely, advice code cannot be redefined. Inherited advice code is thus always avail-

able in a subaspect.

The code in Listing 3-14 defines the abstract TraceAspect aspect with the abstract

toBeTraced pointcut descriptor. TraceAspect2 extends TraceAspect and defines the toBeTraced

pointcut descriptor.

Listing 3-14. The Definition of an Abstract Aspect

public abstract aspect TraceAspect {

 abstract pointcut toBeTraced();

 before(): toBeTraced() { ... }

}

public aspect TraceAspect2 extends TraceAspect {

 pointcut toBeTraced(): call(* Order.*(..));

}

Aspect Instantiation

By default, a unique instance of an aspect is created when the application is launched. The

aspect is then said to be a singleton. The same aspect instance is shared by all the application

objects.

In special cases, it can be useful to create several instances of a given aspect. Different

application objects are then aspectized by the different instances. For example, this feature

can be used to dedicate different pieces of data to each part of the application.

The three following cases can occur:

• The aspect is a singleton, and only one instance of the aspect exists at run time. This is

the default case.

• The aspect is instantiated several times, and the instances are associated with different

application objects.

• The aspect is instantiated several times, and the instances are associated with different

control-flow sequences of the application.

No keyword exists for the first case because this is the default behavior when the aspect

keyword is used.

For the second case, two keywords are available: perthis and pertarget. The aspects can

then be written as follows:

aspect <name> perthis(<poincut>) { ... }

aspect <name> pertarget(<poincut>) { ... }

When perthis is used, an instance of the aspect is created for every object that is an

executing object of the given pointcut. The other objects (those that are not executing objects

of the pointcut) are not aspectized. When pertarget is used, an instance of the aspect is created

for every object that is the target object of the given pointcut.

For the third case, two keywords are available: percflow and percflowbelow. The aspects

can then be written as follows:

C H A P T E R 3 ■ A S P E C T J 51

aspect <name> percflow(<poincut>) { ... }

aspect <name> perclfowbelow(<poincut>) { ... }

When percflow is used, an aspect instance is created each time the application enters the

control-flow sequence that is designated by the pointcut. As for the cflow operator in pointcut

definitions, the joinpoints belongs to the control flow. When percflowbelow is used, an aspect

instance is created each time the application enters the control-flow sequence that is desig-

nated by the pointcut, but the joinpoints are not included in the control flow.

The static aspectOf method is defined for each aspect and returns the aspect instance that

is currently in use. For example, in the singleton TraceAspect aspect, the call TraceAspect.

aspectOf() returns the reference to the singleton. For the perthis and pertarget types, a

parameter must be passed when aspectOf is called; this parameter gives the source or the

target object that is associated with the requested instance. For the percflow and

percflowbelow types, no parameters are needed. The method returns the aspect instance or

null, depending on whether the current run is included in the control-flow sequences that are

defined for the aspects.

Aspect Ordering

When two or more aspects apply to the same joinpoint, the execution order of these aspects

must be determined.

AspectJ allows you to define explicit ordering rules. This is called explicit ordering. If the

rules are undefined, the compiler automatically orders the aspects. This is called implicit

ordering.

Explicit Ordering

The declare precedence keyword combination allows you to declare the execution order of

different aspects.

The following code illustrates the usage of this keyword combination:

aspect GlobalOrder {

 declare precedence: Authentication, Trace;

}

aspect Authentication { ... }

aspect Trace { ... }

In the previous code, the Authentication aspect is always executed before Trace is. Wild-

cards can be used in the aspect names that are associated with declare precedence.

Despite the location of the definition, the order is valid for the whole program. The declare

precedence keyword combination can be used several times in a program. If the given orders

are inconsistent, the AspectJ compiler raises an error.

Implicit Ordering

When no order is defined, or when the order is defined for some aspects but not for others,

AspectJ applies the following rules:

52 C H A P T E R 3 ■ A S P E C T J

• The subaspects are applied before the inherited aspects.

• No order is guaranteed for aspects that are not linked by an inheritance relationship.

• If several advice code blocks apply to the same joinpoint for a given aspect, the following

rules apply:

• “After” advice code blocks are executed last.

• Advice code blocks are executed in the order in which they are defined in the aspect.

These rules can lead to inconsistencies which are raised by the AspectJ compiler.

It is recommended that the aspect order be defined explicitly and as often as possible with

the declare precedence keyword combination. When you write an aspect, it is favorable to first

write all the “before” advice code and then the “after” advice code.

The Privileged Aspect

For accessing fields or methods, the same rules apply to aspects as Java classes. For example,

aspects cannot read or write a private or protected field. The purpose of this particular rule is

to guarantee the integrity of the program and to avoid the accidental and erroneous altering of

objects.

Nevertheless, some cases require a bypass of this limitation. AspectJ provides for these

cases the concept of a privileged aspect:

privileged aspect <name> { ... }

A privileged aspect can access all the fields and methods defined in a class—regardless of

their access modifiers. This feature must be used cautiously as it may corrupt the normal

behavior of the program.

Declaring Warnings and Errors

AspectJ offers a mechanism that raises compile-time warnings or errors whenever a given

pointcut expression is matched by a program. In this way, you can be notified if your program

defines unwanted code elements.

For example, the aspect in Listing 3-15 raises a warning if the Remote interface is imple-

mented in the bank.ejb package.

Listing 3-15. Declaring Warnings with an Aspect

public aspect Foo {

 declare warning:

 execution(* Remote+.*(..)) && within(bank.ejb.*):

 " Remote may interfere with EJBs in bank.ejb";

}

A message can be associated with each raised warning.

The declare error keyword combination works similarly.

C H A P T E R 3 ■ A S P E C T J 53

Load-Time Weaving

By default, AspectJ is a compile-time weaver. Given a set of .java source files and a set of

aspects, the ajc command-line tool produces a set of .class files in which the aspects are

woven to the classes.

Since version 1.2, AspectJ can weave code at load time. The source code of the program is

no longer required, and AspectJ can weave any class that can be obtained with the class-loading

mechanism of the Java language.

New Features in AspectJ 5
During the writing of this book, AspectJ 1.2.1, which was released on November 5, 2004, was

the latest stable version of AspectJ. However, a newer version, numbered 1.5.0 and officially

called AspectJ 5, is under preparation. The first major developments of AspectJ 1.5.0M1 were

made available to the developing community in December 2004. The main purpose of this

evolution was to incorporate the changes brought to the Java language by Java 5.

The features described in the remainder of this section can be found in the developer

release of AspectJ 1.5.0, which is available at the time of the writing of this book. By the time

AspectJ 5 is final, these features may have slightly changed according to user’s feedback, design

choices, or error corrections.

Most of the changes brought by AspectJ 5 deal with annotations (also known as metadata).

First, an aspect can deal with an annotated Java program. The annotations defined for classes

or methods can be taken into account when defining a pointcut. Also, annotations can be

introduced into a Java program. Second, annotations have an impact on the syntax of the

AspectJ language itself. Instead of using dedicated keywords such as aspect and pointcut, you

can write annotated Java classes that will be understood by the AspectJ weaver as aspects.

These two categories of features are presented in the remainder of this section.

Working with Annotations in Aspects

The handling of annotations in Java programs brings several changes to the AspectJ language.

The changes concern the definition of an aspect, the pointcut-definition language, and the

introduction of annotations.

Annotations and Pointcut Definitions

You learned in the previous sections that a pointcut can capture elements of a Java program,

such as methods and fields, and link them together in order to aspectize them. In this process,

the writing of a pointcut relies heavily on the elements that define a field or method, such as the

name, type, or signature. It then seems natural to incorporate annotations for fields or

methods in the writing of a pointcut.

With AspectJ 5, the pattern language for a pointcut descriptor is extended with the at-sign

symbol (@) followed by an annotation name. For instance, the following expression

execution(@Transaction * *.*(..))

designates all the joinpoints that are executions of a method annotated with @Transaction,

regardless of the method’s return type, declaring class, name, or signature.

54 C H A P T E R 3 ■ A S P E C T J

Several annotations can be specified, in which case all of them are required for the

element to be included in the pointcut.

The Boolean OR operator (||) can be used between annotations to signify that at least one

of the annotations must be present. For instance, @(Foo || Bar) means that either @Foo or @Bar

is required as an annotation.

The Boolean NOT operator (!) is used in front of an annotation. For instance, !@Foo means

that all elements that are not annotated with @Foo are included in the definition.

Joinpoints can be filtered according to the annotations available to the source and target

objects of a method call. The @this and @target operators are defined for this purpose. For

instance, the following expression

call(* *.*(..)) && @target(@Transaction)

designates all the calls to a method that is annotated with @Transaction.

At the time this book was written, it was not possible to match joinpoints based on their

annotation values. This facility may be supported in future releases of AspectJ.

Introducing Annotations

In AspectJ 5, the declare keyword is associated with four new forms that allow you to introduce

annotations in Java programs.

Introducing annotations consists of defining a pattern that refers to program elements

(classes, interfaces, fields, methods, or constructors) and giving the annotations that must be

introduced for all the program elements that match the pattern.

For instance, the following instruction

declare @type: bank.* : @EJBean;

introduces the annotation @EJBean for all the types (classes and interfaces) that are defined in

the bank package.

Similarly, annotations can be introduced for methods. The keyword combination is then

declare @method and the pattern refers to method names. For example, the following

instruction

declare @method: bank.*.deposit(..): @Transaction(value="required");

introduces the annotation @Transaction(value="required") for all the deposit methods that

are defined in the bank package.

The declare @field and declare @constructor keywords follow the same principle.

Defining Aspects with Annotations

Using the previously presented features, you can write aspects that deal with a Java program

containing annotations, or you can write aspects that introduce annotations.

The annotations that are presented in this section are very different. Their purpose is to

replace the current syntax of the AspectJ language and to allow you to write annotated Java

classes. These classes are understood by the AspectJ weaver not as regular Java classes but as

aspects. This approach creates an entirely new development style in which there are no more

syntax extensions, but instead there are a set of annotations available for AOP.

C H A P T E R 3 ■ A S P E C T J 55

The first annotation is @Aspect. A Java class annotated with @Aspect is understood as an

aspect. The following code snippet defines the TraceAspect4 aspect:

@Aspect

public class TraceAspect4 {

 // ...

}

You learned in the “Advanced Features” section earlier in this chapter that aspects can be

qualified, either with an instantiation clause (using perthis, pertarget, percflow, or

percflowbelow) or with the privileged keyword. These qualifiers still exist with the @Aspect

annotation style. For example, the following annotation

@Aspect(

 instantiationModel=AspectInstantiationModel.PERTARGET,

 perClausePattern="aPointcutDefinition()",

 isPrivileged=true)

defines a privileged aspect with a PERTARGET instantiation model.

Pointcut Definition

With the annotation-based development style, a pointcut is a method with an empty body that

is annotated with @Pointcut. This annotation takes the pointcut expression as a parameter. For

example, the following code snippet defines the pointcut toBeTraced:

@Pointcut("call(* aop.aspectj.Order.*(..))")

void toBeTraced() {}

With this new style, the parameters that would have been defined for a pointcut are now

defined as parameters of the annotated method.

Advice-Code Definition

Advice code blocks are already blocks of instructions, so it is quite natural that advice code

blocks are now methods. Five new annotations are available, one for each different type of

advice code: @Before, @After, @AfterReturning, @AfterThrowing, and @Around.

In all five cases, the annotation takes the associated pointcut expression as a parameter.

“Before” Advice Code

The following code snippet illustrates the definition of “before” advice:

@Before("toBeTraced()")

public void beforeTrace() { ... }

Note that with this new development style, advice code blocks now share the same name

as the method.

If the “before” advice code needs to access the joinpoint, a parameter of type JoinPoint is

added to the method signature, as shown here:

56 C H A P T E R 3 ■ A S P E C T J

@Before("toBeTraced()")

public void beforeTrace(JoinPoint jp) { ... }

If the pointcut expression defines parameters, these parameters will also be made avail-

able as method parameters. The following code lines, for example, define “before” advice code

for method calls in which the src and dst parameters are bound to the source and target,

respectively, of the call:

@Before("toBeTraced() && this(src) && target(dst)")

public void beforeTrace(Object src, Object dst) { ... }

This principle of appending the joinpoint and the pointcut parameters to the signature of

the advice-code method also applies to other types of advice code.

“Around” Advice Code

“Around” advice code is similar to “before” advice code. The only issue here is raised by the

annotation development style, which is linked to proceed. If you do not change the old syntax,

the call to proceed will lead to a compiler error. (Keep in mind that aspects are now regular Java

classes.)

To solve this problem, AspectJ 5 defines proceed as a method of the ProceedingJoinPoint

interface, which extends the existing JoinPoint interface and allows the joinpoint to be visible

as a parameter of the “around” advice-code method.

The following lines of code illustrate the definition of “around” advice code:

@Around("toBeTraced()")

public Object trace(ProceedingJoinPoint jp) {

 // ... Before code

 Object ret = jp.proceed();

 // ... After code

 return ret;

}

“After” Advice Code

The definition of “after” advice code does not differ from the definition of “before” advice code

except that the annotation is @After.

The situation is slightly different for @AfterReturning and @AfterThrowing. The returned

value or the thrown exception must be made visible in the advice-code method.

In the case of @AfterReturning, a new parameter named returning is added to the annota-

tion. Its value identifies the method parameter that will contain the returned value. The

following lines define “after returning” advice code:

@AfterReturning(value="toBeTraced()", returning="ret")

public void afterTrace(Object ret) { ... }

The value returned by the intercepted joinpoints is assigned to the ret parameter.

The principle is the same for “after throwing” advice code, except that the annotation

defines a parameter named throwing for holding the thrown exception.

C H A P T E R 3 ■ A S P E C T J 57

Declare Statements

The declare statement is available in various forms in AspectJ:

• declare parents ... implements and declare parents ... extends: These are the two

most current forms, which allow you to introduce a new interface and a new superclass,

respectively.

• declare error and declare warning: These forms raise errors and warnings.

• declare @...: Annotations can be introduced with this form.

• declare precedence: Aspect ordering can be defined with this form.

• declare soft: This form can be used to soften exceptions.

At the time of the writing this book, all the previous forms of declare statements, except

declare parents ... extends and declare soft, were available with the new annotation-based

development style. The two exceptions may be added in a future release.

The aspect in Listing 3-16 illustrates the definition of the following:

• A precedence rule between all the aspects that have a name starting with Authentication

and the Trace aspect

• The declaration to raise a warning whenever the Remote interface is implemented in the

bank.ejb package

• The introduction of the annotation @EJBean for the types defined in the bank.ejb

package

• The introduction of the annotation @Transaction(value="required") for the deposit
methods defined in the bank.ejb package

Listing 3-16. AnnotationBased Declare Statements

@Aspect

@DeclarePrecedence("Authentication*,Trace")

public class GlobalOrder {

 @DeclareWarning("execution(* Remote+.*(..)) && within(bank.ejb.*)")

 final static String message = "Remote may interfere with EJBs in bank.ejb";

 @DeclareAnnotation("bank.*")

 @EJBean

 Object beans;

 @DeclareAnnotation("bank.*.deposit(..)")

 @Transaction(value="required")

 void depositMethods() {}

}

58 C H A P T E R 3 ■ A S P E C T J

Aspect Instantiation in AspectJ 5

AspectJ 5 supports the five aspect-instantiation modes—the default singleton mode, perthis,

pertarget, percflow, and percflowbelow—that are available in the previous version. (See the

“Aspect Instantiation” section earlier in this chapter for further details.)

AspectJ 5 introduces a sixth mode: PERTYPEWITHIN. With this mode, a new aspect instance

is created for each new type that is designated in the pointcut expression associated with

PERTYPEWITHIN.

The following aspect illustrates the PERTYPEWITHIN mode:

@Aspect(

 instantiationModel=AspectInstantiationModel.PERTYPEWITHIN,

 perClausePattern="aop.aspectj.*")

public class FooBarAspect { ... }

This aspect will be instantiated for each different class that is defined in the aop.aspectj

package.

Other Java 5 Features

Autoboxing does not impose any changes on the AspectJ language. The fact that primitive

types (int, float, double, and so on) are equivalent to their class-based ones (Integer, Float,

Double, and so on) simply means that when the AspectJ compiler computes the joinpoints that

match a given pointcut, the compiler does not distinguish between a primitive type and its

class-based counterpart.

Variable-length argument lists can be used when you write a pointcut descriptor. For

instance, the following pointcut descriptor

call(* *.*(double, Object...))

designates all the calls to all the methods that take at least a double argument and a variable-

length list of Object arguments as parameters.

Summary
This chapter presented the syntax of the AspectJ language. AspectJ extends the Java language

with keywords for writing aspects, pointcuts, advice code, and intertype declarations. An

aspect-oriented application in AspectJ contains Java classes that implement the core logic of

the application and AspectJ aspects that implement the crosscutting functionalities.

The classes and the aspects are woven together to produce the final application. Most of

the time, the weaving occurs at compile time. AspectJ provides a compiler (named ajc) for that.

With newer versions of AspectJ, the weaving can also be done at load time—when the applica-

tion is loaded into the Java virtual machine.

The pointcut language provided by AspectJ allows you to define where an aspect applies in

an application. A pointcut descriptor denotes a set of joinpoints. Several types of joinpoints are

supported by AspectJ. The two that are most frequently used are the call and execution join-

points. These are the points in the execution flow of a program where a method is called or

executed, respectively. Several other types of joinpoints exist in AspectJ: get and set for read

and write operations, handler for exceptions, initialization and preinitialization for

C H A P T E R 3 ■ A S P E C T J 59

constructors, staticinitialization for static code blocks, and adviceexecution for executions

of advice code.

Advice code defines the modifications that are brought to an application by an aspect.

Each advice code block is associated with a pointcut that defines where these modifications

apply. Three main types of advice code are provided by AspectJ: “before,” “after,” and

“around.” Advice code applies either before the executions of its associated joinpoints, after

the executions, or both. In the latter case, the advice code is called “around” advice code. Two

other types of advice code are provided by AspectJ: “after returning,” and “after throwing.” The

former applies for to that return normally, whereas the latter applies to joinpoints that end

their executions by raising an exception. The behavior of an aspect is provided by the advice

code blocks that are attached to the aspect. Any Java instructions are valid in those blocks.

AspectJ provides two additional instructions: thisJoinPoint and proceed. The former provides

information (method name, class name, parameters, and so on) about the current joinpoint.

The latter, which can be used exclusively with “around” advice code, allows you to execute the

joinpoint.

The mechanism known by the term intertype declaration provides a way for AspectJ to

extend an application with additional features, such as fields, methods, constructors, inter-

faces, and superclasses.

Finally, AspectJ 5 takes advantage of the many new features of the Java 5 language, and it

introduces a whole new development style that is based on annotations. Instead of using

keywords such as aspect and pointcut, you can write aspects as annotated Java classes.

61

■ ■ ■

C H A P T E R 4

Java Aspect Components

Chapter 3 presented the syntax and usage of one AOP environment: the AspectJ language.

This chapter presents a second AOP environment: Java Aspect Components (JAC).

Like AspectJ, JAC allows you to develop aspect-oriented programs. However, these

environments differ in two significant ways. First, AspectJ is a language that defines new

keywords, whereas JAC is a framework and, as such, is a regular Java program. JAC provides an

API that allows you to define aspects, pointcuts, and pieces of advice code.

Second, the two environments differ in their aspect-weaving mechanisms. AspectJ weaves

aspects at compile time or at load time. JAC weaves aspects at run time, which leads to more

adaptable programs because aspects can be dynamically added and removed.

A research team led by Renaud Pawlak, with Laurent Martelli and Lionel Seinturier,

designed JAC in 1999. The first versions were released in 2000, but the ideas behind JAC were

rooted in research that began in 1998 by the aforementioned team and several computer-

science research laboratories: the CEDRIC laboratory at CNAM (Conservatoire National des

Arts et Métiers), Paris; the LIP6 laboratory at University Paris 6; and the LIFL laboratory at the

University of Lille, France. Other contributors included Laurence Duchien and Gérard Florin.

JAC is open-source software that is freely released under the terms of the GNU Lesser

General Public License (LGPL). This license allows JAC to be incorporated into business

products. In 2003, JAC joined the ObjectWeb community for open-source middleware. For up-

to-date information about JAC, see http://jac.objectweb.org. For general information about

the ObjectWeb community, see http://www.objectweb.org.

Creating a First JAC Application
This section presents a simple example of an aspect-oriented application that uses JAC. The

example introduces the syntax for aspects, pointcuts, and advice code.

The example reuses the order-management application, which manages client orders,

that Chapter 3 presented. However, the code in this chapter uses JAC to implement the same

trace aspect as the one that was programmed in Chapter 3. This aspect traces the execution

of the application, thus determining the methods that are called and the order that they are

called in.

Creating a First Aspect

The first JAC aspect monitors each ordered item by displaying a message before and after the

addItem method, which the Order class defines.

62 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

This aspect is defined by two classes: TraceAspect and TraceWrapper. The TraceAspect

class defines the pointcut. The TraceWrapper class defines the advice code, which JAC calls a

wrapper. Listing 4-1 presents the TraceAspect code, and Listing 4-2 (later in this chapter)

presents the TraceWrapper code.

Listing 4-1. A Trace Aspect Component

 1 package aop.jac;

 2

 3 import org.objectweb.jac.core.AspectComponent;

 4

 5 public class TraceAspect extends AspectComponent {

 6

 7 public TraceAspect() {

 8 pointcut(

 9 ".*",

10 "aop.jac.Order",

11 "addItem(java.lang.String,int):void",

12 "aop.jac.TraceWrapper",

13 null, false);

14 }

15 }

Notice that the TraceAspect class defines an aspect by extending the AspectComponent

class, which is defined by the JAC API as the root class of all aspects. Consequently, JAC aspects

are often called aspect components.

Creating a First Pointcut

As you can see in Listing 4-1, the call to the pointcut method, which is inherited from

AspectComponent, declares a pointcut in the TraceAspect class. The method takes six parame-

ters. The first three designate the joinpoints that match the pointcut. The fourth, which is

shown on line 12, defines the wrapper that is associated with the pointcut. The last two

parameters define an exception handler and the way that the aspect is instantiated. (See the

“Introducing Exception Handlers” and “Aspect Instantiation” sections later in this chapter.)

The methods that match a pointcut are defined by three parameters: the method names

(on line 11), the class names (on line 10), and the object names (on line 9). As you will see in the

“Pointcuts” section later in this chapter, these parameters are strings that can contain

wildcards.

The pointcut that TraceAspect defines includes the addItem method, which takes a String

and an int as parameters for all the objects that are instances of the aop.jac.Order class.

JAC allows you to include only selected instances of a class in a pointcut. This feature can

be useful when programming distributed applications, for example. In such a case, some

server objects that are instances of the same class commonly need to be aspectized differently.

Object names in pointcut definitions allow this, as you will see in the “Object Naming” section

later in this chapter.

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 63

Creating a First Wrapper

As stated earlier, JAC uses the term wrapper instead of the term advice code. No difference

exists between an advice code block in AspectJ and a wrapper in JAC. Both are code blocks that

define the behavior of an aspect. The code that a wrapper defines can be executed before or

after the joinpoint.

JAC requires you to define wrappers and aspects in distinct classes. This feature allows you

to reuse wrappers independently from aspects. As you can see on line 12 of Listing 4-1, the

definition of a pointcut links a wrapper to an aspect.

Listing 4-2 presents the TraceWrapper code.

Listing 4-2. A Trace Wrapper

 1 package aop.jac;

 2

 3 import org.aopalliance.intercept.ConstructorInvocation;

 4 import org.aopalliance.intercept.MethodInvocation;

 5 import org.objectweb.jac.core.AspectComponent;

 6 import org.objectweb.jac.core.Wrapper;

 7

 8 public class TraceWrapper extends Wrapper {

 9

10 public TraceWrapper(AspectComponent ac) {

11 super(ac);

12 }

13

14 public Object invoke(MethodInvocation mi) throws Throwable {

15 System.out.println("-> Before addItem");

16 Object ret = proceed(mi);

17 System.out.println("-> After addItem");

18 return ret;

19 }

20

21 public Object construct(ConstructorInvocation ci) throws Throwable {

22 return proceed(ci);

23 }

24 }

Notice that you define JAC wrappers by extending the Wrapper class. These are always

“around” wrappers; no special definition exists for “before” or “after” wrappers. You can define

the latter two types by omitting the “after” or “before” part in an “around” wrapper.

JAC wrappers implement the AOP Alliance API.

64 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

AOP ALLIANCE

The AOP Alliance project is an open-source initiative that was created to standardize part of the API that

several existing AOP frameworks share. You can find the AOP Alliance web site at http://

aopalliance.sourceforge.net.

The various AOP frameworks offer different features, tools, and programming models. However, all the

frameworks share a set of internal functionalities. The goal of the AOP Alliance project is to identify these

features and propose a set of standard interfaces to implement them. AOP Alliance thus hopes to foster code

reuse across different frameworks.

At this writing, the AOP Alliance API is implemented by four frameworks: dynaop (see http://

dynaop.dev.java.net), JAC (see http://jac.objectweb.org), JoyAop (see http://

joyaop.sourceforge.net), and Spring (see http://www.springframework.org).

A wrapper must define a constructor with a parameter of type AspectComponent, and the

wrapper must call the corresponding inherited constructor. (See line 11 of Listing 4-2). This

constructor is called by the JAC runtime when the wrapper is instantiated. The parameter then

becomes the reference to the aspect that is associated with the wrapper.

The existing JAC joinpoints are method executions and constructor executions. The

invoke and construct methods are called by the JAC runtime when these joinpoints occur. The

methods return an Object and can throw an exception of type Throwable, which is the root class

for all exceptions and errors in Java. The invoke method takes a parameter of type

MethodInvocation. This parameter reifies the joinpoint with information such as the method

name or the parameters of the call. The ConstructorInvocation parameter plays the same role

for constructor executions.

The proceed method delimits the “before” and “after” parts of a wrapper. This method

executes the joinpoint, or it calls the next wrapper if several wrappers are woven for the same

joinpoint. The call to proceed is optional. Conversely, proceed can be called several times.

The invoke and construct methods are mandatory—even if they define no instructions.

Creating an Aspect-Configuration File

Aspect configuration is an essential task when programming with JAC. This feature is not often

provided by other AOP environments, such as AspectJ, although it is a key factor when reusing

aspects.

Each aspect that is defined with JAC is associated with an aspect-configuration file. You

choose the parameters that are to be configured in the aspect. The end user defines the aspect-

configuration file and the values that are associated with these parameters. For example, when

using a transaction-demarcation aspect, you must indicate the methods that are to be executed

in the transaction. When using a persistence aspect, you must designate the attributes that are

to be saved in a database.

The principle of an aspect-configuration file exists in other approaches, such as that of

J2EE. The idea is to separate the code from the initialization values that are used by the code.

The code can then be reused without any modifications or recompilations, whereas the

initialization values will depend on the execution context.

J2EE and JAC share the same principle—however, the way that they deal with the configuration

process differs. In both cases, a set of parameters is associated with the persistence, transaction,

naming, and access-control services. With J2EE, these parameters are provided by the servers, are

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 65

fixed, and cannot be changed. With JAC, you choose precisely the configuration parameters that you

want to provide.

The Syntax of an Aspect-Configuration File

Each aspect defined with JAC is associated with an aspect-configuration file that ends with the
.acc extension. This file is loaded at run time when the aspect is instantiated. The file can be
modified and reloaded while the program is running or between two runs of the same
program. The configuration of the program is then dynamically adapted.

Each line in an aspect-configuration file is a call to a public method that is defined in the
aspect class. A line begins with the name of the method, continues with a space-separated list
of parameters, and ends with a semicolon. (The “Creating an Aspect–Configuration File”
section later in this chapter defines the syntax of aspect-configuration files in more detail.)

An Example of Aspect Configuration

Listing 4-3 shows the TraceAspect2 aspect, which rewrites TraceAspect so that the pointcut is
made configurable through the trace method.

Listing 4-3. A Configurable Aspect Component for Tracing

package aop.jac;

import org.objectweb.jac.core.AspectComponent;

public class TraceAspect2 extends AspectComponent {

 public void trace(String objectPE, String classPE, String methodPE) {

 pointcut(

 objectPE, classPE, methodPE,

 "aop.jac.TraceWrapper",

 null, false);

 }

}

The trace method takes three parameters: objectPE, classPE, and methodPE. To define a

pointcut, the trace method calls the pointcut method with these three parameters. To obtain

a program similar to the one that is defined by TraceAspect, the aspect-configuration file

named traceaspect2.acc can be written as follows:

trace ".*" "aop.jac.Order" "addItem(java.lang.String,int):void"

The aspect-configuration file provides the current value for the definition of the pointcut.

These values can be changed without recompiling the aspect. Reloading the aspect-

configuration file into JAC at run time causes the pointcut that is associated with the aspect

and the traced joinpoints to change.

In the preceding example, we made the three parameters that define the pointcut

configurable. We could have extended the example by adding parameters to the trace method

for the wrapper class or for the remaining parameters. It is up to the aspect programmer to

make such choices.

66 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Creating an Application-Descriptor File

Each JAC application is associated with a .jac file. This file provides information about the

entry point of the application and the aspects that need to be initially woven. (See the

“Configuring JAC Applications” section later in this chapter for more details on this

application-descriptor file.)

An Example of an Application-Descriptor File

Listing 4-4 show the customer.jac file, which is a valid application-descriptor file for the

order-management application.

Listing 4-4. The Application-Descriptor File for the Order-Management Application

applicationName: Order management

launchingClass: aop.jac.Customer

aspects: traceid traceaspect2.acc true

jac.acs: traceid aop.jac.TraceAspect2

An application-descriptor file consists of property names and property values. In this type

of file, each line begins with a property name followed by a colon and ends with a property

value. In Listing 4-4, the applicationName property defines a string that identifies the

application, and the launchingClass property defines the fully qualified name of the class to be

loaded to launch the application.

The aspects and jac.acs properties deal with the aspects to be woven when the

application starts. For the aspects property, each aspect is defined by three values: an

identifier (here, traceid) that is chosen by the application–descriptor-file writer; the name of

the aspect-descriptor file (here, traceaspect2.acc); and a Boolean value (here, true) that

indicates whether the aspect is initially woven. For each identifier declared in an aspect, the

jac.acs property defines the class that implements the aspect. In our example, the traceid

identifier corresponds to the aop.jac.TraceAspect2 aspect.

Compiling a JAC Application

Five categories of files are to be included when programming with JAC:

• The .java files of the application—in this case, Customer.java, Order.java, and

Catalog.java.

• The aspect files—here, just TraceAspect2.java.

• The wrapper files—here, just TraceWrapper.java.

• The aspect-configuration files—here, just traceaspect2.jac.

• The application–descriptor file—here, customer.jac.

The first three categories of files can be compiled by calling the regular Java compiler,

javac or jikes, with the jac.jar JAC library referenced in the class path. The last two categories

contain text files that will be loaded and parsed by the JAC runtime.

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 67

If JAC was installed in the c:\jac directory, and all the application files were in the src

directory, you would run the Java compiler with the following command:

javac -d classes -classpath c:\jac\jac.jar src*.java

The resulting .class files would then be stored in the classes directory.

Running a JAC Application

An aspect-oriented application with JAC can be run by launching the framework with an

application-descriptor file. The jac.jar library contains all the classes that are needed to

launch the framework.

To run the order-management application, the command is as follows:

java -jar c:\jac\jac.jar -R c:\jac -C src;classes customer.jac

The -R option indicates the JAC installation directory (c:\jac in our example). The -C

option specifies the path-like structure (here, the src and classes directories) that JAC can load

files from. The last parameter in the command line is the name of the application-descriptor

file.

Output from a JAC Application

The previous command gives the output that is shown in Listing 4-5.

Listing 4-5. The Output of the Order-Management Application

JAC version 0.12.1

--- Launching Application Order management ---

--- configuring traceid aspect ---

-> Before addItem

2 item(s) CD added to the order

-> After addItem

-> Before addItem

1 item(s) DVD added to the order

-> After addItem

Order amount: US$50.0

JAC system shutdown: notifying all ACs...

Bye bye.

The first three lines of Listing 4-5 are automatically displayed by JAC. They contain a

welcome message with the JAC version number, the name of the application that was

launched, and a line for each woven aspect. The output of the application follows, showing

each execution of the addItem method, which is wrapped by a message. The last two lines of

output are displayed by JAC.

68 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Creating Pointcuts
The previous section introduced the basic elements of JAC. We showed how to write, compile,

and run a first aspect-oriented application. This section studies the definition of a pointcut.

The pointcut method, which is defined in the AspectComponent class, allows you to define

pointcuts. Three categories of parameters can be passed when you define a pointcut:

• Pointcut expression: This expression defines the joinpoints that are included in the

pointcut.

• Wrapper class: This class defines the code that will be executed before and after the join-

points.

• Exception handler: The exception handler that is associated with the pointcut provides a

method to catch and treat the exceptions that the joinpoints and the wrapper can throw.

The exception handler is a method with a given signature that is implemented in the

wrapper class. Exception handlers are optional.

The following sections explain these three categories in detail.

Pointcut Expressions

Pointcut expressions in JAC are composed of three subexpressions. A fourth is added when

programming distributed applications.

The joinpoints that are included in a pointcut are either method executions or constructor

executions. JAC also performs an automatic bytecode analysis to classify the methods that are

defined in an application. The purpose of this analysis is to detect whether the methods access

or modify the object state. This information is made available in the pointcut definition

language, and you can define pointcuts that include all the methods that perform read or write

operations on designated fields, for example.

The three subexpressions that are contained in a pointcut definition deal with the names

of classes, objects, and methods, respectively. The subexpressions are referred to as class

expressions, object expressions, and method expressions. These expressions can be thought of

as filters. Their purpose is to filter a set of classes, objects, or methods and retain only those that

match the expressions.

The roles of the three expressions can be defined as follows:

Class expression: A class expression defines a filter for class names. The filtering is

performed on fully qualified class names—for example, names that include the package

and class identifiers.

Object expression: An object expression defines a filter for object names. All business

objects that are instantiated by JAC are automatically associated with a name. This name

plays a role largely similar to that of a regular Java reference. The purpose is to uniquely

identify each created object so that you can aspectize certain objects of a class (to

customize their behaviors) while leaving others unchanged. The object names are

automatically created by appending instance numbers to the class name. For example, the

name order#0 identifies the first instance of the Order class.

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 69

Method expression: A method expression defines a filter for method signatures. A signature

contains a name, a comma-separated list of parameter types, and a return type. For

example, the expression addItem(java.lang.String,int):void designates the addItem

method that takes a String and an int as parameters and returns void.

The previous expressions are regular expressions that follow the syntax defined by the

GNU regexp library.

Regular Expressions

JAC uses the GNU regexp library (see http://www.cacas.org/java/gnu/regexp) to deal with

regular expressions. This library defines a syntax for regular expressions and provides an API to

check whether a string matches a given regular expression.

Operators

The GNU regexp library defines several operators for writing pattern expressions. However,

this section focuses only on the main operators. For additional information, see the documen-

tation on the GNU regexp Library web site.

The dot (.) operator provides a shortcut for designating any character. The * and +

operators allow you to designate repetitions of a given expression. The * operator matches zero

or n repetitions of an expression, whereas + matches at least one repetition of an expression.

The .* expression is widely used; it matches any sequence of characters.

The [] operator is used to designate a set of characters. For example, the expression [abc]

matches any of the characters a, b, or c. The ^ operator is equivalent to a Boolean NOT

operator. The expression [^abc] matches any character except a, b, or c. Intervals can be

defined in sets by using the minus operator (-). For example, the expression [d-m] matches any

lowercase letter between d and m, inclusive.

JAC Operators

In addition to the operators provided by the GNU regexp library, JAC defines four operators

that can be used in pointcut expressions: ALL, &&, ||, and !. The ALL operator is a shortcut for .*,

and the three remaining operators correspond to the Boolean AND, OR, and NOT operators,

respectively.

Examples of Regular Expressions

This section illustrates how to use GNU regular expressions with JAC.

The method expression set.*:void selects all the methods that have a signature starting

with set and ending with :void (the method returns void), regardless of the parameters.

The method expression set.*(java.lang.String):void selects all the methods that have a

name starting with set, that take a String as a parameter, and that have a return type of void.

The method expression get.*():.* selects all the methods that have a name starting with

get and that take no parameters, regardless of the return type.

The class expression ALL selects all the existing classes.

70 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Method-Type Operators

The purpose of method-type operators is to classify and select methods according to their

impact on the object state. For example, the you might want to select all the methods that

modify the object state by setting the value of a given field. (Such methods are called setters.)

In approaches such as that of JavaBeans, the definition of a setter relies on naming

conventions. In other words, the names of all setters must start with set. Whatever the body of

such a method is, the method is considered a setter. Conversely, a method with a name that

does not start with set is not considered a setter—even if the method sets a field. This can lead

to counterintuitive naming schemes. For example, a method that computes and sets the

amount of an order must be named setAmount if you want JavaBeans to consider the method a

setter—even if computeAmount would be more intuitive and logical.

To detect setters and getters, JAC relies on a bytecode analysis performed with the Byte

Code Engineering Library (BCEL). (See http://jakarta.apache.org/bcel.) When a class is

loaded, its bytecode is immediately analyzed. For example, when the opcode for reading a field

is present in a method body, metadata is attached to the method to classify it as a getter. This

metadata is made available when you write a pointcut.

The following method-type operators are defined by JAC:

• ACCESSORS: This operator selects each method that reads one or more fields defined in its

class.

• MODIFIERS: This operator selects each method that writes one or more fields defined in

its class.

• GETTERS(list): This operator selects each method that returns the value of any of the

fields mentioned in the given list. The list is a comma-separated list of fields, as in

GETTERS(name,address).

• SETTERS(list): This operator selects each method that sets the value of any of the fields

mentioned in the given list. The value must have been passed to the method as a parameter.

All the previously listed operators can be combined with those defined by the GNU regexp

library.

The following expression selects the methods that perform a write operation on a field, the

methods that return the value of the age field, and the methods that have a name starting with

compute:

MODIFIERS || GETTERS(age) || compute.*

To further illustrate these operators, consider the Person class that is shown in Listing 4-6.

Listing 4-6. An Illustration of Method-Type Operators with the Person Class

public class Person {

 private String name;

 private int age;

 public void birthday() { age++; }

 public String whatIsYourNamePlease() { return name; }

 public void foo(String first,String last) { name=first+last; }

 public void bar(String name) { this.name=name; }

}

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 71

The four previously listed operators define the following selections:

ACCESSORS selects the whatIsYourNamePlease and birthday methods. The birthday method

reads the age field before incrementing it, and the whatIsYourNamePlease method reads the

name field before returning it.

MODIFIERS selects the birthday, foo, and bar methods. These methods modify one of the

fields that is defined in the Person class.

GETTERS(name) selects the whatIsYourNamePlease method, which returns the value of the

name field.

SETTERS(name) selects the bar method, which sets the name field with a value that is passed

as a parameter. This last condition is important for qualifying the method as a setter.

Indeed, the foo method also sets the field name, but it does so with a value that is “passed”

indirectly as a parameter. (In other words, the value is obtained through string

concatenation.) Therefore, the foo method is considered not a setter but a modifier.

Two additional operators exist that classify methods depending on their behavior with

collections (for example, with fields that implement the java.util.Collection interface):

ADDERS(list): This operator selects the methods that add an element to a collection. The

added element must have been passed to the method as a parameter. The given list is a

comma-separated list of collection fields.

REMOVERS(list): This operator selects the methods that remove an element from a

collection. The removed element must have been passed to the method as a parameter.

Associating a Wrapper with a Pointcut

In the examples of the TraceAspect and TraceAspect2 aspects, you learned that the pointcut

method defines pointcuts. The first parameters passed to this method are expressions that deal

with the definitions of the classes, objects, and methods included in the pointcut. In this

section, we present the three cases in which a wrapper can be associated with a pointcut.

In the first and most frequent case, defining the wrapper requires two parameters:

wrapperClassName, which is a string that defines the wrapper class name; and one2one, which is

a Boolean value. The wrapper class must be a subclass of org.objectweb.jac.core.Wrapper. In

all cases, JAC dynamically instantiates the specified wrapperClassName class. When this

instantiation occurs, it depends on the value of one2one:

• A value of false causes all the joinpoints included in the pointcut to share the same

wrapper. In this case, the wrapper is a singleton.

• A value of true causes each joinpoint included in the pointcut to be associated with a

dedicated instance of the wrapper class.

The value false generates fewer objects and thus saves memory. However, if the wrapper

is stateful and the state depends on the joinpoint, the sharing can lead to inconsistencies. In

such a case, it is easier to have one dedicated instance of a wrapper for each joinpoint and use

the value true for one2one.

72 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

The second case is rather similar to the first. Three parameters instead of two must be

passed to define the wrapper. They are the wrapper class name; the Boolean one2one; and

initParameters, which is an array of objects. This last parameter contains the initial values that

must be passed when instantiating the wrapper.

With the last case, you pass a unique parameter named wrappee. This parameter must

implement the org.objectweb.jac.core.Wrapper type. The instance will be used to wrap all the

joinpoints included in the pointcut. This case is useful when the wrapper cannot be easily

created by the framework, or when you want to use a customized instance of a wrapper.

Creating Wrappers
In the previous section, you learned how to define a pointcut with JAC. In this section, you will

learn how to write wrappers.

Programming an aspect with JAC consists of writing at least two classes: one (such as

TraceAspect2) for the definition of pointcuts, and one for each wrapper associated with a

pointcut. This allows you to easily reuse pointcut definitions independently from wrappers

and vice versa.

Wrapper classes with JAC must extend the org.objectweb.jac.core.Wrapper class, which

is the root class of all existing wrappers. All wrappers are “around” wrappers.

Wrapper instances are created either by JAC or by you when you define the pointcuts. In
all cases, a link is maintained between the aspect and the wrapper instances. This link comes
into existence when a wrapper is instantiated; the wrapper provides a constructor that takes
the instance of the associated aspect as a parameter. This parameter implements the
org.objectweb.jac.core.AspectComponent type, which is the root class of all JAC aspects.

A typical definition of a wrapper class starts with the following lines of code:

import org.objectweb.jac.core.AspectComponent;

import org.objectweb.jac.core.Wrapper;

public class MyWrapper extends Wrapper {

 public MyWrapper(AspectComponent ac) { super(ac); }

With JAC, two types of joinpoints exist: method executions and constructor executions.

The “before” and “after” code that is executed around these joinpoints is defined in the invoke

and construct methods, which are presented in the following sections.

Methods

The code that is executed before and after a method-execution joinpoint is defined in the

invoke method. This method takes a unique parameter that implements the MethodInvocation

type, returns an Object, and throws the Throwable type. The definition of MethodInvocation is

detailed in the “Joinpoint Introspection” section later in this chapter. The declaration of the

invoke method is shown here:

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 73

public Object invoke(MethodInvocation mi) throws Throwable;

The proceed method can be called by the invoke method to execute the intercepted

method. Several aspects can be woven around the same joinpoint. In such a case, a chain of

wrappers is created around the joinpoint. The proceed method executes the next wrapper in

the chain or, if the end of the chain is reached, the intercepted method.

The proceed method can be called several times in the same invoke method. In such a

case, several executions of the same method are performed. This can be useful when you need

to rerun a method that previously failed.

On the other hand, the proceed method might never be called. In such a case, the inter-

cepted method is not executed, and the call is returned to the caller.

The general format of the invoke method is shown in Listing 4-7.

Listing 4-7. The General Format of the invoke Method

public Object invoke(MethodInvocation mi) throws Throwable {

 // before code

 Object ret = proceed(mi);

 // after code

 return ret;

}

The invoke method is mandatory—even if no code is defined.

Constructors

Like method executions, constructor executions can be aspectized with the construct method.

The signature of this method is as follows:

public Object construct(ConstructorInvocation ci) throws Throwable;

The proceed method plays the same role for construct as for invoke. No particular charac-

teristics distinguish invoke from construct, except the difference in their names.

Joinpoint Introspection

The term introspection refers to examining the inner cause of a given phenomenon and gaining

information about it. In the context of AOP, the phenomenon is the joinpoint, and you want to

retrieve information about the part of the actual program that allows the joinpoint to occur.

With JAC, the introspection mechanism is made available by the MethodInvocation and

ConstructorInvocation parameters that are passed when the invoke and construct methods

are called. These types are defined in the AOP Alliance API, which is included in JAC.

Figure 4-1 illustrates the interface hierarchy that defines MethodInvocation and

ConstructorInvocation.

74 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Figure 4-1. The org.aopalliance.intercept interface hierarchy

The JoinPoint interface is the root type for all interceptions. For each joinpoint, three

methods are defined: proceed, which executes the joinpoint; getThis, which returns the object

where the joinpoint occurred; and getStaticPart, which returns the code element defining the

joinpoint. This code element can be either a method or a constructor. It is represented by the

java.lang.reflect.AccessibleObject class which, in the J2SE reflection API, is the superclass

of all the code elements where reflection applies.

The Invocation interface extends JoinPoint with the getArguments method to manipulate

the arguments of the intercepted execution. These arguments are returned as an array of

objects that can be read or written.

The last two interfaces, ConstructorInvocation and MethodInvocation, correspond to

constructor executions and method executions. Each provides a method that returns the inter-

cepted constructor (as a parameter of type java.lang.reflect.Constructor) or the intercepted

method (as a parameter of type java.lang.reflect.Method).

Wrapper Chains

Several wrappers can be attached to the same joinpoint. These wrappers are referred to as

chained. In a wrapper, the call to proceed executes the next wrapper in the chain. When the end

of the chain has been reached, the joinpoint will be executed.

Figure 4-2 illustrates this mechanism with a chain of three wrappers. Each arrow repre-

sents either a method call or a method return. The arrows are numbered to indicate the

execution-flow order.

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 75

Figure 4-2. Execution order in a wrapper chain

The initial call is passed to the first wrapper in the chain which, in turn, executes the

“before” code. The first and second calls to proceed (arrows 2 and 3) execute the next wrapper

in the chain. When the execution flow reaches the third wrapper, the call to proceed executes

the joinpoint (arrow 4). After the execution of the joinpoint, the execution flow returns to the

third wrapper (arrow 5) which, in turn, executes the “after” code. Next, the “after” code for the

second and first wrappers is executed and, last, the call is returned.

Configuring Aspects and JAC Applications
Configuration is another key mechanism of JAC. This feature allows aspects to be reused

efficiently. This section presents the syntax of both aspect-configuration files and application-

descriptor files.

Configuring Aspects

Each aspect that is defined with JAC is associated with a text-based aspect-configuration file.

The extension for this type of file is .acc.

An aspect-configuration file provides the parameters that are required to adapt the aspect

to a new application. For example, the purpose of this file for a transaction aspect is to define

which methods in the application are to be executed in a transactional context.

The notion of an aspect-configuration file exists in other approaches, such as that of J2EE.

In J2EE, aspect-configuration files provide certain parameter values that tailor the system

services to the specific needs of the application. By configuring the services that are provided

by the application server, it is possible to reuse them with different applications. Although the

syntax of aspect-configuration files differs between J2EE and JAC (in the case of J2EE, the files

are XML files), the purpose is the same: allowing you to customize the aspects for the applica-

tion and later modify the customization without having to recompile the application.

76 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

The purpose of an aspect-configuration file is to define a list of method calls. These calls

are passed from JAC to the aspect just after the aspect’s instantiation. You choose the steps that

are required to configure the aspect, and the calls perform any configuration treatment that

you define.

Many possibilities are available when configuring aspects. For example, it is possible to

configure complex aspects, such as the GUI aspect, that would not be possible with an

approach based only on parameters and values. The power of the GUI aspect lies in its

configuration methods which, when called from the configuration file, construct the graphical

appearance of an application. (For more information on the GUI aspect, see the “Using the JAC

Aspects Library” section later in this chapter.)

The Syntax of Aspect-Configuration Files

An aspect-configuration file defines the aspect methods that must be called when the aspect is

instantiated.

Each line in the file begins with the name of the method to call, continues with the values

of the given parameters, and ends with a semicolon. The parameters are specified in a space-

separated list. String parameters must be written between double quotes, and arrays must be

written between brackets.

Comments in aspect-configuration files follow the same syntactic rules that Java does.

You can include other files in an aspect-configuration file by using the include keyword.

An Example of an Aspect-Configuration File

Consider the PresentationAC aspect that is shown in Listing 4-8.

Listing 4-8. The PresentationAC Aspect Component

package aop.jac;

import org.objectweb.jac.core.AspectComponent;

public class PresentationAC extends AspectComponent {

 public void display() { /* ... */ }

 public void setAttributesOrder(

 String className,

 String[] attributeNames) { /* ... */ }

 public void setCategory(

 String className,

 String[] attributeNames,

 String value) { /* ... */ }

}

PresentationAC defines the setAttributesOrder method to specify the display order for

the attributes of the given classname class. This order is defined by the attributeNames array,

which contains the attribute names.

The aspect-configuration file, named presentation.acc, contains the following lines:

setAttributesOrder Customer { lastName, firstName, phone, email };

setCategory Customer { lastName, firstName } main;

display ;

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 77

This aspect-configuration file calls the setAttributesOrder method and then calls the

display method. The first call takes the value Customer for the classname parameter, and it

takes the values lastName, firstName, phone, and email for the attributeNames array. No

parameters are defined for the call to the display method.

Grouping Parameters in Aspect-Configuration Files

Grouping parameters introduces some so-called “syntactic sugar” into aspect-configuration

files.

The syntax for grouping parameters is as follows:

group <value> {

 <method> [<parameter> ...] ;

 ...

}

When a group is used, the given value is added as the first parameter for every call that is

specified between the curly brackets. Grouping parameters can be used to avoid

redundancies—especially in cases that use the same value for several successive calls.

The following configuration file, named presentation2.acc, is equivalent to
presentation.acc:

group Customer {

 setAttributesOrder { lastName, firstName, phone, email };

 setCategory { lastName, firstName } main;

}

display ;

Strictly speaking, group is not a keyword; it is an identifier that you can freely choose. Any

identifier that is not a method name and that is defined in the aspect can be chosen for defining

a group.

Definitions that use the grouping mechanism can be nested. For example, the aspect-

configuration file

group Customer {

 attribute lastName {

 setCategory General ;

 }

}

is equivalent to

setCategory Customer lastName General ;

Definitions that use the grouping mechanism can be factored. For example, the aspect-

configuration file

group Customer,Employee {

 setAttributesOrder { lastName, firstName, phone, email };

}

is equivalent to

78 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

setAttributesOrder Customer { lastName, firstName, phone, email };

setAttributesOrder Employee { lastName, firstName, phone, email

Configuring JAC Applications

A JAC application-descriptor file is a text file that provides information about launching the

application. It defines a set of property names and values that is loaded by JAC when the end

user starts the application. The extension .jac is commonly used for application-descriptor

files.

Each line in an application-descriptor file starts with the name of a property followed by a

colon and ends with the property value. The backslash character (\) can be used to continue

the definition of the value to next line.

For example, the application-descriptor file

applicationName: Order management

launchingClass: \

 aop.jac.Customer

defines the values "Order management" and "aop.jac.Customer" for the applicationName and

launchingClass properties, respectively.

Lines starting with the pound-sign character (#) are interpreted as comments.

Table 4-1 presents the list of properties that can be used in an application-descriptor file.

Using the Introduction Feature
You can extend the structure of an application by using the introduction feature to add new

code elements. JAC can introduce, or add, two categories of these elements: role methods and

exception handlers.

Table 4-1. JAC Application-Descriptor Properties

Property Definition

applicationName The application name

launchingClass The main class name

aspects A series of three values for defining the aspect identifiers, the
aspect-configuration files, and the Boolean values that specify
whether the aspects are initially woven

jac.acs A series of two values for defining the aspect identifiers and the

classes that implement those aspects

jac.comp.wrappingOrder The weaving order when several wrappers apply to the same

joinpoint

jac.topology For distributed applications, the names of the hosts where the

application is deployed

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 79

Role Methods

You introduce a role method to define new behaviors.

A role method is defined in a wrapper class. You can choose the name, signature, and return

type of the method. However, the first parameter must be org.objectweb.jac.core.Wrappee. This

parameter corresponds to the application object where the method will be introduced.

The wrapper shown in Listing 4-9 illustrates the definition of a role method.

Listing 4-9. The Definition of a Role Method

package aop.jac;

import org.aopalliance.intercept.ConstructorInvocation;

import org.aopalliance.intercept.MethodInvocation;

import org.objectweb.jac.core.AspectComponent;

import org.objectweb.jac.core.Wrappee;

import org.objectweb.jac.core.Wrapper;

public class TraceWrapper4 extends Wrapper {

 public TraceWrapper4(AspectComponent ac) { super(ac); }

 public void computeAmountAndPrint(Wrappee o, String header) {

 double amount = ((Order)o).computeAmount();

 System.out.println(header+amount);

 }

 public Object construct(ConstructorInvocation ci) throws Throwable {

 return proceed(ci);

 }

 public Object invoke(MethodInvocation mi) throws Throwable {

 return proceed(mi);

 }

}

The computeAmountAndPrint method can be introduced in the Order class to compute and

print the amount of an order. The first parameter, o, is the instance of the Order class where the

role method is invoked. The second parameter, header, is a string that is printed before the

amount.

A role method can be called by the invokeRoleMethod method, which is defined in the

org.objectweb.jac.core.Wrappee class. This method takes three parameters: the instance that

receives the call, the name of the role method, and the array of objects to pass as parameters to

the method.

For example, the code block

Wrapping.invokeRoleMethod(

 (Wrappee)o, "computeAmountAndPrint", new Object[]{">> "});

80 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

corresponds to calling the computeAmountAndPrint method for the object o with the string ">>"

as a parameter.

Exception Handlers

Exception handlers enable you to modularize the treatments that are attached to exceptions.

Rather than scattering several versions of a try/catch block in the application code, you can

usually write the code that is defined in the catch block in a unique and well-defined entity: the

exception handler.

The exception handler is defined in a wrapper and catches exceptions that are generated

by joinpoints or wrappers. The handler is declared when you call the pointcut method to

define a pointcut. The signature of the pointcut method is imposed, a unique parameter of

type Exception must be defined, and the return type must be Object. The name of the

exception handler can be freely chosen.

Each defined exception handler can be dedicated to handling a particular type of

exception. For example, one handler can treat the IOException, whereas another handles

network exceptions.

The TraceAspect5 aspect, which is shown in Listing 4-10, illustrates the definition of an

exception handler.

Listing 4-10. An Example of a Role Method and an Exception Handler

package aop.jac;

import org.aopalliance.intercept.ConstructorInvocation;

import org.aopalliance.intercept.MethodInvocation;

import org.objectweb.jac.core.AspectComponent;

import org.objectweb.jac.core.Wrapper;

public class TraceAspect5 extends AspectComponent {

 public TraceAspect5() {

 pointcut(

 "ALL","ALL","ALL", "aop.jac.TraceWrapper4",

 "myIOExceptionHandler", false);

 }

}

public class TraceWrapper5 extends Wrapper {

 public TraceWrapper5(AspectComponent ac) { super(ac); }

 public Object myIOExceptionHandler(Exception e) throws Exception {

 System.out.println("Exception "+e.getMessage()+"raised");

 if (! (e instanceof java.io.IOException))

 throw e;

 return null;

 }

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 81

 public Object construct(ConstructorInvocation ci) throws Throwable {

 return proceed(ci);

 }

 public Object invoke(MethodInvocation mi) throws Throwable {

 return proceed(mi);

 }

}

The call to pointcut specifies that the myIOExceptionHandler method, which is defined in

the aop.jac.TraceWrapper5 class, will handle exceptions for the joinpoints and wrappers that

are included in the pointcut. This pointcut includes all the methods, classes, and objects that

are defined in the application. If the type is not IOException, the myIOExceptionHandler method

displays a message and propagates the exception.

Several exception handlers can be defined for a given joinpoint; in such a case, they are

chained. If a handler propagates the exception, the next handler in the chain is executed. If all

the handlers propagate the exception, the application exits.

Using the JAC Aspects Library
A library containing 16 different aspects is distributed with JAC. The purpose of this library is to

aid application developers by providing ready-to-use solutions for commonly encountered

problems. Several aspects are provided with the library to demonstrate that AOP can be

applied to the development of many different types of applications. The aspects provided in

the library permit you to quickly program a prototype or a demonstration. When used in an

operational context, however, you must improve and complete these aspects.

Among the 16 available aspects, the following are mature enough to be used in an opera-

tional context:

• GUI aspect

• Authentication aspect

• User-profile aspect

• Confirmation aspect

• Persistence aspect

• Integrity aspect

The following sections present the 16 aspects grouped into 4 categories: user-interface

aspects, persistence and transaction aspects, distribution aspects, and other aspects.

Using the User-Interface Aspects

The GUI aspect is one of the most original aspects provided by JAC. The purpose of this aspect

is to define the graphical user interface of the application.

Two versions of the GUI aspect are provided: Swing and HTML/servlet. They both support

the same configuration methods. Therefore, the end user can interact with the application

through a Swing interface or a web browser.

The org.objectweb.jac.aspects.gui.GuiAC class implements the GUI aspect.

82 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Overview of the GUI Aspect

Figures 4-3 and 4-4 illustrate the GUI aspect. The sample application manages invoices and

clients. Invoices and clients can be added and removed. Each invoice is linked to a client. The

application can list either the existing clients with their corresponding invoices or the current

invoices with their associated clients. (For more details on this application, see the JAC web site

at http://jac.objectweb.org. Click Documentation, and then click JAC Tutorial.)

Figure 4-3 is a snapshot of the Swing version of the application, whereas Figure 4-4 is a

snapshot of the HTML/servlet version. Both versions contain the same Java code and aspect-

configuration file. The only difference lies in the launching option that is passed to JAC and

that starts either the Swing GUI aspect or the HTML/servlet one.

Figure 4-3. Swing version of the GUI aspect

Figure 4-4. HTML/servlet version of the GUI aspect

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 83

Overview of Other User-Interface Aspects

In addition to the GuiAC aspect, the following aspects are available to handle interactions

between the user and the application:

• Authentication aspect: The AuthenticationAC aspect manages access control lists.

Method executions can be restricted to authorized users.

• User-profile aspect: The UserAC aspect manages user profiles.

• Session-management aspect: The SessionAC aspect manages user sessions. Data that is

dedicated to each individual user of the application can be stored and kept in memory

while the user is connected to the application.

• Confirmation aspect: The ConfirmationAC aspect displays dialog boxes that ask for
confirmation from the user.

Using the Persistence and Transaction Aspects

The persistence aspect permits the saving of data in files or databases. This aspect is used to

safely store any critical data that is used by an application.

The transaction aspect provides a way to safely execute an action or a group of actions.

A typical example of a transaction is a transfer between two bank accounts. In this case, the

transfer must be completed or the part of the transaction that was already performed will be

canceled.

Both the persistence and transaction aspects use databases. The persistence aspect uses

databases to safely save data; the transaction aspect uses databases to guarantee the properties

of atomicity, coherence, isolation, and durability.

JAC provides two versions of the persistence aspect: PersistenceAC and HibernateAC.

PersistenceAC uses JDBC to save data in a file or database; HibernateAC uses the Hibernate

(http://hibernate.bluemars.net) persistence framework.

JAC provides two versions of the transaction aspect: TransactionAC and DisTransAC.

TransactionAC performs simple transactions on objects that are stored in memory. This aspect

does not manage data locking; hence, concurrent executions may give inconsistent results.

DisTransAC uses the ObjectWeb Java Open Transaction Monitor (JOTM) transaction monitor.

JOTM implements a two-phase validation protocol on data that is stored in databases and that

can be distributed on different hosts of a network. (For more information about JOTM, see

http://jotm.objectweb.org.)

Using the Distribution Aspects

JAC provides a set of aspects for executions that occur on hosts distributed over a network and

for data that exists on such hosts. In this case, the application objects interact remotely with an

aspect that implements communications based on the Java Remote Method Invocation (RMI)

protocol. A prototype implementation of this aspect that is based on Common Object Request

Broker Architecture (CORBA) Internet Inter-ORB Protocol (IIOP) is also available.

Prior to the execution of a distributed application, JAC daemon servers must be launched

on all the hosts that will take part in the application. Then, the following aspects can be used to

implement distributed applications:

84 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

• Deployment aspect: The DeploymentAC aspect deploys an application on a set of remote

hosts. Starting from a reference host, the deployment process consists of uploading the

bytecode of the classes onto selected hosts and then copying or instantiating the appli-

cation objects on these hosts. Alternatively, DeploymentAC can install replicas of given

objects onto different hosts. This feature constitutes the basic mechanism for providing

fault-tolerant applications—whenever a host holding one of the replicas fails, any of the

other hosts that are still running can replace the faulty host.

• Consistency aspect: The ConsistencyAC aspect implements a memory-consistency

protocol among replicas. The chosen protocol provides strong consistency—as soon as

one of the replicas is modified, the modification is propagated to all the other replicas.

The goal is to keep all the replicas synchronized with the same data.

• Broadcasting aspect: The BroadcastingAC aspect broadcasts a method call to a set of

distributed replicas.

• Load-balancing aspect: The LoadBalancingAC aspect distributes requests to a set of

replicas. By using this aspect, you take advantage of the computing power of several

hosts. This aspect implements a simple round-robin algorithm for the load balancing.

The distribution aspects can be used to distribute both application objects and aspect

objects. Indeed, when managed by JAC, these types of objects contain no fundamental

differences. Hence, aspect objects can be remotely deployed or replicated with DeploymentAC,

and the different replicas can be managed by ConsistencyAC.

Implementing a distributed application with JAC is not limited to using the four distribution

aspects but also involves defining pointcuts. In the “Creating Pointcuts” section earlier in this

chapter, you learned that you must provide three expressions to define a pointcut. These expres-

sions define the objects, classes, and methods that are included in the pointcut. A fourth

expression, called a host expression, comes into play when you program distributed

applications.

The host expression is a regular expression that specifies the hosts that are included in the

pointcut. The joinpoints are filtered according to the objects, classes, methods, and hosts

where the joinpoints occur. Pointcuts are then distributed and can include joinpoints located

on different hosts.

Using Other Aspects

To conclude this presentation of the JAC aspects library, we present the following general-

purpose aspects that are useful in several application contexts:

• Cache aspect: The CacheAC aspect caches method results. When cached, the results can

be reused without the re-execution of the methods. This speeds up the execution time of

the application by avoiding unnecessary executions.

• Integrity aspect: The IntegrityAC aspect implements referential-integrity constraints

between sets of data. This aspect prevents the accidental deletion of data that is linked

by a logical constraint. For example, when managing clients and invoices, the end user

must not accidentally delete a client if invoices are still associated with the client. The

IntegrityAC aspect performs checks that enforce such constraints.

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 85

• Synchronization aspect: The SynchronizationAC aspect manages locks to synchronize

the access to methods. For example, this aspect ensures that a method is not executed by

more than one method at a time.

Programming in UMLAF
UML Aspectual Factory (UMLAF) is the standard IDE that is distributed with JAC. This IDE is a

rapid application development (RAD) environment that allows you to easily and rapidly

develop applications with JAC. UMLAF uses the Unified Modeling Language (UML) notation to

design applications.

UMLAF implements only the class diagrams that are defined in UML. Although this is far

from a full implementation of UML, class diagrams are nevertheless the most widely used

diagrams at this time. These diagrams are sufficient in many cases—especially when aspects

come into play.

UMLAF extends the UML notation by adding the notions of an aspect and a pointcut.

Aspects in UMLAF are considered to be a new kind of modeling element (much like classes);

pointcuts define a new kind of relationship.

Figure 4-5 displays a snapshot of UMLAF. Three classes (Invoices, Invoice, and Client),

an aspect (TraceAspect), and a pointcut are defined.

Figure 4-5. UMLAF—a UML RAD tool for aspect-oriented development with JAC

86 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

UMLAF covers the entire developmental life cycle of an application. The business core of

the application can be designed, new aspects can be added, and aspects that are defined in the

library can be reused. UMLAF automates the writing of aspect-configuration files and

application descriptors. A code-editing facility is provided. UMLAF generates JAC-specific

code, compiles applications, and launches applications.

UMLAF is an application that was written with JAC. Nine aspects were used for writing

UMLAF. The most important ones are GuiAC, SessionAC, PersistenceAC, ConfirmationAC, and

IntegrityAC.

Advanced Features
This section presents the advanced features of JAC.

Aspect Instantiation

When programming aspects with JAC, you must define two varieties of classes: one for the

aspects and another for the wrappers. One variety extends org.objectweb.jac.core.

AspectComponent, and the other extends org.objectweb.jac.core.Wrapper.

The cardinality of the aspect class is always one. Each aspect is represented by only one

instance per Virtual Machine (VM). An aspect manager (org.objectweb.jac.core.ACManager)

manages all the aspect instances used by an application and provides features to weave

aspects into the application.

The cardinality of the wrapper class is somewhat more complex. First, a wrapper can be

used in several pointcuts. Second, the cardinality varies for each pointcut depending on the

value of the one2one parameter, which is given when you define a pointcut.

When one2one is false, only one instance of a wrapper class is created for the pointcut.
This instance is shared by all the joinpoints that are included in the pointcut. When several
pointcuts use the same wrapper, each pointcut uses its own instance of the wrapper.

When one2one is true, each joinpoint owns an instance of the wrapper class.
When the application is distributed, these two rules are applied on each host. For example,

when one2one is false, one instance of a wrapper class exists per pointcut and per host.

Aspect Ordering

When several aspects apply to the same joinpoint, you must define the execution order

of the aspects. This order can be specified in the application-descriptor file with the

jac.comp.wrappingOrder property, which is an ordered list of wrapper-class names. Whenever

two wrappers specified in the list apply to the same joinpoint, their execution order is the one

defined by the list.

For example, the following definition specifies that AuthenticationWrapper must be

executed before VerboseWrapper:

jac.comp.wrappingOrder: \

 org.objectweb.jac.aspects.authentication.AuthenticationWrapper \

 org.objectweb.jac.wrappers.VerboseWrapper

There is no automatic rule that defines which wrapper must be executed before another;

this decision is up to you. In the previous example, we chose to first authenticate calls and then

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 87

log them. Therefore, only the calls that are successfully authenticated will be logged. In a

different context, we might choose to log every call—even those that are not successfully

authenticated. Hence, the reverse order would be defined.

When the jac.comp.wrappingOrder property is omitted, no ordering rule is enforced, and

the execution order is not guaranteed for two wrappers that apply to the same joinpoint.

RTTI

Run-time type identification (RTTI) can be thought of as an extension of reflection. The

purpose is to construct a data structure that represents the code elements of a Java program.

The elements taken into account are classes, methods, and fields. RTTI offers the ability to

define annotations for these elements. An API is provided to set and get these annotations.

RTTI is, then, very similar to the annotation mechanism introduced by J2SE 5.0—except that

annotation can be dynamically modified at run time.

You learned in the “Method-Type Operators” section earlier in this chapter that pointcut

expressions can contain keywords, such as SETTERS and REMOVERS, that select methods

according to their behaviors. These behaviors, which are determined by a bytecode analysis,

are stored as annotations in the RTTI API.

The method-type operators are not the only annotations that can be stored in the RTTI

API—any programmer-defined property can be stored. For example, the persistent annota-

tion can be attached to every field that needs to be saved in persistent storage. Values can also

be stored with the properties. For example, the authorizedUsers property together with the

value 10 can be attached to a method to declare that, at most, ten users can concurrently

execute this method.

Object Naming

Every application object created by JAC is assigned a unique name to identify it. By default, this

name is constructed by appending the pound-sign character (#) and an instance number to

the lowercase name of the class. The instance number starts at 0 and is incremented each time

a new instance is created. For example, order#0 is assigned to the first instance of the Order

class.

Pointcut expressions can select objects depending on their names.

The org.objectweb.jac.core.NameRepository class provides a repository for all the object

names that exist in the application.

The code block in Listing 4-11 displays the name and the reference of every existing object

in an application programmed with JAC.

Listing 4-11. Using the JAC Naming Repository

Repository rep = NameRepository.get();

Object[] objects = rep.getObjects();

for (int i = 0; i < objects.length; i++) {

 String name = rep.getName(objects[i]);

 System.out.println(name+" "+objects[i]);

}

The repository can be queried to find the reference associated with a name, and vice versa.

88 C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S

Run Options

Every application developed with JAC must be launched with the org.objectweb.jac.core.Jac

class, which is defined in the jac.jar file. Given the name of the application–descriptor file,

this class launches an application and the associated aspects.

The Jac class accepts a number of command-line parameters, which are presented in

Table 4-2.

Summary
In this chapter, we presented the JAC framework for dynamic aspect-oriented programming.

JAC does not introduce any new keywords nor a compiler, but it provides a framework and an

API for programming aspects. In JAC, aspects are run-time entities that can be woven and

unwoven while an application is running.

Aspects are defined by extending the AspectComponent class which, in JAC, is the root class

for all aspects. Among other things, this class defines the pointcut method for defining

pointcuts.

Pointcuts include two types of joinpoints: method executions and constructor executions.

These joinpoints are selected by regular expressions that filter the set of all classes, methods,

objects and, when the application is run in distributed mode, hosts. The granularity of a

pointcut is the object. Hence, some instances of a class can be included in a pointcut but others

cannot.

The code executed before and after a joinpoint is defined in a wrapper. Wrappers are

classes that implement the AOP Alliance API. They provide methods for the interception and

introspection of joinpoints.

Table 4-2. JAC Command-Line Parameters

Category Option Comment

Main -R directory Specifies the root directory of the JAC
installation

Main -C classpath Specifies the class path for launching the
application

Information -r Displays the version number of JAC

Information -v Displays information messages on the behavior
of JAC

Information -d Displays debugging information

Information -L file Redirects messages to the specified file

Information -h Displays a help message

GUI -G name Launches the Swing version of the GUI that has
the given name

GUI -W name[:port] Launches the HTML/servlet version of the GUI
that has the given name and, if specified, uses
the given port number for the web server

C H A P T E R 4 ■ J A V A A S P E C T C O M P O N E N T S 89

In a JAC application, you can introduce two kinds of code elements: role methods and

exception handlers. Both are defined as methods in a wrapper class.

JAC is distributed with a library of 16 ready-to-use aspects. These aspects cover a wide

range of commonly encountered needs—from maintaining persistent data to implementing a

GUI. The aspect that carries out the latter functionality may be the most original, and it

provides a way of displaying an application through Swing or a web browser.

The key mechanism for reusing a JAC aspect is aspect configuration. Configuring an

aspect consists of defining which parameters tailor the aspect to a specific application context.

Any parameter can be configured; it is up to you to define which part of the aspect to make

configurable. The configuration can be changed without recompiling the aspect or the appli-

cation. It can even be reloaded while the application is running, in which case it dynamically

reconfigures the aspects.

JAC is distributed with an IDE named UMLAF. You can design, program, compile, and

execute a JAC application with this RAD tool. This tool provides a class-diagram view of the

application that allows you to graphically design classes and aspects and their relationships.

91

■ ■ ■

C H A P T E R 5

JBoss AOP

This chapter illustrates a third environment for aspect-oriented programming: JBoss AOP.

The syntax and concepts presented in this chapter correspond to version 1.1.1 of JBoss AOP,

which is the latest version available at the time of the writing of this book.

JBoss AOP, like JAC, is a framework for AOP. Aspects and advice code blocks are written in

regular Java, without any new keywords. However, in JBoss AOP, pointcuts are defined in

XML—unlike JAC, where they are defined in Java. In addition, the weaving is dynamic and

performed at run time, similar to that in JAC.

JBoss AOP was designed and developed by Bill Burke. The JBoss Group—in particular,

Marc Fleury, the CEO—contributed to the ideas that led to the implementation of JBoss AOP.

JBoss AOP can be used as a stand-alone framework, or it can be included in the JBoss 4.x J2EE

application server.

JBoss AOP is open-source software released freely under the terms of the GNU Lesser

General Public License (LGPL). While JBoss AOP is open source, this license allows for the

incorporation of the software into business products. The JBoss AOP web site is http://

www.jboss.org/products/aop.

Using JBoss AOP: An Introduction
This section presents an example of an aspect-oriented application with JBoss AOP. This

example introduces the syntax for writing aspects, pointcuts, and advice code.

We will reuse the order-management application that was presented in Chapter 3. The

application manages client orders. We will implement the same trace aspect that was pro-

grammed in Chapter 3, but with JBoss AOP. This aspect traces the execution of the application

and determines the called methods and the order that they are called in.

A First Trace Aspect

The first aspect written with JBoss AOP monitors each ordered item by displaying a message

before and after the addItem method as defined in the Order class.

This aspect is defined by two files: jboss-aop.xml and TraceInterceptor.java. The former

is an XML file that defines a pointcut; the latter is a Java file that defines the advice code asso-

ciated with this pointcut.

JBoss AOP uses the term interceptor instead of advice code; however, there are no differ-

ences between the two. Both define code that will be run before and after the joinpoints

included in the pointcut.

92 C H A P T E R 5 ■ J B O S S A O P

A First Pointcut

JBoss AOP pointcuts are defined in an XML file. The preferred file name is jboss-aop.xml,

although this name can be changed.

Two main XML tags are available: <bind> to define a pointcut, and <interceptor> to define

the interceptor associated with the pointcut. The “Pointcuts” section later in this chapter

defines the syntax of these tags in more detail.

We illustrate the mechanism for defining pointcuts with the jboss-aop.xml file that is

shown in Listing 5-1.

Listing 5-1. The XML Definition of a Pointcut with JBoss AOP

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <aop>

 3 <bind

 4 pointcut="execution(

 5 public void aop.jboss.Order->addItem(java.lang.String,int))"

 6 >

 7 <interceptor class="aop.jboss.TraceInterceptor" />

 8 </bind>

 9 </aop>

After the regular header for all XML documents (shown on line 1 of Listing 5-1), the <aop>

tag starts the definition of the aspects.

The tag for defining a pointcut is <bind>. The pointcut attribute (shown on line 4 of

Listing 5-1) provides the pointcut expression. In the given value, the expression contains the

execution keyword and a method signature. The execution keyword denotes the joinpoints

where the methods that are associated to the given signature are executed. In Listing 5-1, the

signature designates the addItem method defined in the Order class. Although not the case in

this example, the signature can contain wildcards.

The <interceptor> tag (shown on line 7 of Listing 5-1) defines the interceptor that is asso-

ciated with the pointcut. In the listing, the corresponding class is org.jboss.TraceInterceptor.

A First Interceptor

With JBoss AOP, an interceptor class must implement the org.jboss.aop.advice.Interceptor

interface. This interface defines two methods: getName, which returns the name of the inter-

ceptor, and invoke, which defines the code to be run before and after the joinpoints.

The class in Listing 5-2 defines the TraceInterceptor interceptor that was mentioned in

the previous pointcut definition.

Listing 5-2. A JBoss AOP Trace Interceptor

package aop.jboss;

import org.jboss.aop.advice.Interceptor;

import org.jboss.aop.joinpoint.Invocation;

import org.jboss.aop.joinpoint.MethodInvocation;

C H A P T E R 5 ■ J B O S S A O P 93

public class TraceInterceptor implements Interceptor {

 public String getName() { return "TraceInterceptor"; }

 public Object invoke(Invocation invocation) throws Throwable {

 MethodInvocation mi = (MethodInvocation) invocation;

 String methodName = mi.getMethod().getName();

 System.out.println("-> Before "+methodName);

 Object rsp = invocation.invokeNext();

 System.out.println("-> After "+methodName);

 return rsp;

} }

The invoke method is called by the JBoss AOP framework just before the occurrence of a

joinpoint. The only argument of this call contains information about the joinpoint. The return

type corresponds to the value returned by the aspect.

Several types of joinpoints exist with JBoss AOP. In the previous pointcut definition, the

only type mentioned was that of method executions. In the example in Listing 5-2, the

invocation parameter in the call to invoke can only denote method executions. The first line in

the body of invoke performs a cast operation to assign invocation to the mi variable, which is of

type MethodInvocation. The interceptor displays a message, calls the invokeNext method,

displays another message, and returns. The invokeNext method plays the same role that

proceed does with AspectJ or JAC—when called, invokeNext executes the joinpoint.

Compiling

The two most convenient ways of compiling an application written with JBoss AOP are with the

JBoss AOP IDE or with Ant.

The JBoss AOP IDE, which is a plug-in for Eclipse, allows you to write, compile, and run

JBoss AOP applications inside Eclipse. Instructions for installing the JBoss AOP IDE can be

found on the JBoss AOP web site at http://www.jboss.org/products/aop. This plug-in adds the

notion of a JBoss AOP project to Eclipse. You define a pointcut either by modifying the

jbossaop.xml file, which is automatically added when the project is created, or by interactively

selecting the methods in Eclipse that need to be included in the pointcut.

The second solution for compiling a JBoss AOP application is using Ant. Suppose that

JBoss AOP is installed in the c:\jboss-aop-1.1.1 directory. The file that is shown in Listing 5-3

and that is named build.xml allows you to compile and run the order-management

application.

Listing 5-3. An Ant File for Compiling a JBoss AOP Application

<?xml version="1.0" encoding="UTF-8"?>

<project default="run" name="Gestion de commandes">

 <property name="jboss-aop.root" value="c:\jboss-aop-1.1.1"/>

94 C H A P T E R 5 ■ J B O S S A O P

 <target name="prepare">

 <path id="classpath">

 <pathelement path="." />

 <fileset dir="${jboss-aop.root}/lib">

 <include name="*.jar" />

 </fileset>

 </path>

 <taskdef name="aopc" classname="org.jboss.aop.ant.AopC"

 classpathref="classpath"/>

 </target>

 <target name="compile" depends="prepare">

 <javac srcdir="src" destdir="." debug="on" deprecation="on"

 optimize="off" includes="**">

 <classpath refid="classpath"/>

 </javac>

 <aopc compilerclasspathref="classpath" classpathref="classpath"

 verbose="true">

 <classpath path="."/>

 <src path="."/>

 <aoppath path="jboss-aop.xml"/>

 </aopc>

 </target>

 <target name="run" depends="compile">

 <java fork="yes" failOnError="true" className="aop.jboss.Customer">

 <sysproperty key="jboss.aop.path" value="jboss-aop.xml"/>

 <classpath refid="classpath"/>

 </java>

 </target>

</project>

The build.xml file defines three tasks: compile, run, and prepare. Each task is also called a

target and is defined by a <target> tag. The first target compiles the application by compiling

the .java files with the regular Java compiler (see the <javac> tag), and then it prepares the

compiled classes for weaving with the JBoss AOP compiler (see the <aopc> tag). Note that

<aopc> is a custom Ant task that is defined in the prepare target (see the <taskdef> tag). The run

target launches the application by running the Java virtual machine (see the <java> tag).

Finally, prepare is a utility target, which is run before compile to set the Java class path and to

declare the custom aopc Ant task.

To compile the order-management application, call Ant from the operating-system

command shell with the following command:

ant compile

C H A P T E R 5 ■ J B O S S A O P 95

Running

To run the order-management application, call Ant from the operating-system command shell

with the following command:

ant run

The output of this command is shown in Listing 5-4.

Listing 5-4. The Output of the Order-Management Application with a JBoss AOP Trace Aspect

Buildfile: build.xml

prepare:

compile:

run:

 [java] -> Before addItem

 [java] 2 item(s) CD added to the order

 [java] -> After addItem

 [java] -> Before addItem

 [java] 1 item(s) DVD added to the order

 [java] -> After addItem

 [java] Order amount: US$50.0

BUILD SUCCESSFUL

Total time: 1 second

The two executions of the addItem method have been trapped, and the messages of the

TraceInterceptor interceptor are displayed before and after these joinpoints.

Pointcuts
This section presents, in detail, the syntax of the XML file for defining pointcuts with JBoss

AOP.

The default name for this file is jboss-aop.xml, but the name can be changed if necessary.

The corresponding XML Document Type Definition (DTD) defines the <aop> tag as the root

tag. Several pointcuts can be defined in the same file. Each pointcut is defined by the <bind> tag

and associated with an interceptor by the <interceptor> tag.

The general structure of a jboss-aop.xml file is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<aop>

 <bind pointcut=" ... pointcut expression ... " >

 <interceptor class=" ... interceptor class ... " />

 </bind>

 ...

</aop>

96 C H A P T E R 5 ■ J B O S S A O P

The Different Types of Pointcuts

JBoss AOP allows you to define five types of pointcuts: method, constructor, field, all, and

method call. Each of these types is associated with a specific keyword, which is used when you

write a pointcut expression.

In this section, we explain the common rules concerning the wildcards that are used to

write pointcut expressions, we define the five types of pointcuts, and we give the rules for

filtering joinpoints.

Wildcards

When defining a pointcut, you write an expression to declare the elements that must be

included in the pointcut. In the previous example of the order-management application, the

pointcut expression was as follows:

<bind pointcut="execution(

 public void aop.jboss.Order->addItem(java.lang.String,int))" >

Only the addItem method was included in the pointcut, with its fully qualified signature

provided. In more general cases, you want to include more than one method per pointcut. In

such cases, the asterisk (*) and two-dots symbol (..) can be used as wildcard characters to

replace any part of the signature. Additionally, annotations can be used in place of method

names and class names. Table 5-1 illustrates the usage of wildcards in method signatures.

When you write pointcut expressions, the $instanceof keyword can be used in place of

class names. This keyword is associated with a type name (class or interface) and designates all

the classes that either implement the given type (if the type is an interface) or are subclasses of

the given type (if the type is a class). For example, * $instanceof(Remote)->*(..) designates all

the methods defined in classes that implement the Remote interface.

Table 5-1. Examples of Wildcard Usage with JBoss AOP

Expression Definition

public void aop.jboss.
Order->addItem(*,int,*)

All public methods named addItem that are defined in the
aop.jboss.Order class and that take three parameters, the
second being an int

public void aop.jboss.Order-
>add*(..)

All public methods with a name starting with add that are
defined in the aop.jboss.Order class, whatever their param-
eters are

private * aop.jboss.Order-
>*(..)

All private methods that are defined in the aop.jboss.Order
class

* aop.*.O*->getX() The getX methods defined in any class that has a name
starting with the letter O and that is a subpackage of the aop
package

* *->@Remote(..) All methods that are associated with the @Remote annotation

* @Persistent->*(..) All methods defined in a class that is associated with the
@Persistent annotation

C H A P T E R 5 ■ J B O S S A O P 97

Pointcut expressions can be combined with the logical AND, OR, and NOT operators (AND,

OR, and !). For example, the following expression

<bind pointcut="execution(* Foo->foo()) OR execution(* Bar->bar())" >

includes all the joinpoints where the foo method is executed and all the joinpoints where the

bar method is executed.

The pointcut-naming mechanism allows you to factor expressions that are used in several

pointcut definitions. For this, the <pointcut> tag assigns a name to an expression. You can then

reuse this name when writing a pointcut. For example, the two lines

<pointcut name="foo" expr="execution(* Foo->foo())" />

<pointcut name="bar" expr="execution(* Bar->bar())" />

define the expressions foo and bar, which can then be used in pointcut expression such as the

following:

<bind pointcut="foo OR bar" />

Method-Execution and Constructor-Execution Pointcuts

The execution keyword designates method and constructor executions in pointcut definitions.

You have already seen several examples of pointcut definitions that include method execu-

tions. The principle is the same for constructor executions, except that the new keyword

replaces the method name in the definition. For example, the following pointcut

<bind pointcut="execution(public aop.jboss.Order->new(..))" >

includes the executions of all the public constructors defined for the Order class.

Field Pointcuts

Operations on fields can be included in pointcut definitions. For these actions, three keywords

are available: get, set, and field. The get keyword designates read operations. The set

keyword designates write operations. Finally, the field keyword designates read and write

operations. These keywords are associated with the names of the fields that are to be included

in the pointcut. For method signatures, these names can contain the asterisk (*) wildcard char-

acter. For example, the expression

<bind pointcut="set(private * aop.jboss.Order->articles*)" >

designates the write operations on all the fields that have a name starting with articles and that

are defined in the Order class.

The all Pointcut Type

The all pointcut type encompasses all the previously described types—method, constructor,

and field. For example, the definition

<bind pointcut="all(aop.jboss.O*)" >

98 C H A P T E R 5 ■ J B O S S A O P

includes all the joinpoints where a method or constructor is executed, where a field is read or

written, and where the location is a class that both belongs to the aop.jboss package and has a

name starting with the letter O.

Method-Call Pointcuts

The last type of pointcut defined by JBoss AOP handles method calls. The following expression

illustrates the usage of the call type:

<bind pointcut="call(* aop.jboss.Order->*(..))" >

This expression includes all the joinpoints where a method that is defined in the Order
class is called.

Filtering Joinpoints

The previous keywords allowed you to select joinpoints based on their types. In many situa-

tions, you must also select joinpoints based on where the code corresponding to the joinpoint

is defined (using the within and withincode keywords) and on whether the declaring class

defines any given methods or fields (using the has and hasfield keywords).

The within keyword is associated with a class expression, such as within(aop.jboss.*.).

This pointcut-definition snippet includes only the joinpoints that are defined in the corre-

sponding classes. In the example, the classes belong to the aop.jboss package.

The withincode keyword plays the same role for method and constructor expressions. For

example, the expression withincode(public *->*(..)) includes the joinpoints that are defined

in a public method or constructor.

A pointcut expression containing the has keyword includes only the joinpoints defined in

a class that contain the given method (or methods, if the expression contains wildcards). For

instance, the expression has(void *->foo(..)) selects the joinpoints declared in any class that

contains a method named foo.

The hasfield keyword plays the same role for field expressions.

Note that these filtering operators are seldom used alone. Usually they are combined with

logical operators and with keywords for selecting joinpoint types. For example, the expression

<bind pointcut="call(* aop.jboss.Order->addItem(..)) AND

 withincode(* aop.jboss.Customer->run())" >

selects the joinpoints that are located in the run method of the Customer class and where the

addItem method of the Order class is called.

Associating an Interceptor with a Pointcut

In the previous section, we presented the definition of a pointcut expression with the <bind>

tag. In this section, we will present the mechanism that associates a pointcut with an

interceptor.

C H A P T E R 5 ■ J B O S S A O P 99

Declaring an Interceptor

You can attach an interceptor to a pointcut with the <interceptor> tag. The only mandatory

information is the name of the class that implements the interceptor. For example, the

following declaration

<bind pointcut="execution(* aop.jboss.Order->*(..))">

 <interceptor class="aop.jboss.MyInterceptor" />

</bind>

associates the aop.jboss.MyInterceptor interceptor to the pointcut that includes the execu-

tions of all the methods defined in the Order class.

Optionally, interceptors can be named. The assigned name can be referenced in the

jboss-aop.xml file whenever the corresponding interceptor needs to be reused. This feature

avoids copy-and-paste errors by removing useless, redundant declarations of an interceptor-

class name. The following lines of code illustrate the usage of a named interceptor:

<interceptor class="aop.jboss.MyInterceptor" name="myInter" />

<bind pointcut="execution(* aop.jboss.Order->*(..))">

 <interceptor-ref name="myInter" />

</bind>

In this example, the interceptor aop.jboss.MyInterceptor interceptor is named myInter.

This name is used in the pointcut definition (see the <interceptor-ref> tag).

Interceptor Stacks

The mechanism of an interceptor stack provides a way to group interceptors. The stack is

named and can be used to define a pointcut. All the interceptors grouped in the stack will be

executed around the joinpoints included in the pointcut. The stack is ordered, and the inter-

ceptors are executed in the order of their definition in the stack.

The <stack> tag is used to define an interceptor stack. Interceptors can be added to the

stack by giving either their class (using the <interceptor> tag) or their name (using the

<interceptor-ref> tag). For example, the following code

 <stack name="myStack">

 <interceptor-ref name="myInter" />

 <interceptor class="aop.jboss.Interceptor2" />

 </stack>

defines the myStack stack, which contains two interceptors: myInter, and the anonymous inter-

ceptor implemented by the aop.jboss.Interceptor2 class.

The <stack-ref> tag is available for associating a pointcut definition with an interceptor

stack, and it can be used when defining a pointcut:

<bind pointcut="execution(* aop.jboss.Order->*(..))">

 <stack-ref name="myStack" />

</bind>

Note that stacks can also include other stacks.

100 C H A P T E R 5 ■ J B O S S A O P

Interceptors
The previous section presented the XML syntax provided by JBoss AOP for defining pointcuts.

This section presents the way that interceptor classes are written.

JBoss AOP interceptors are equivalent to AspectJ advice code and JAC wrappers—they

define code that can be run before and after joinpoints.

Implementing an Interceptor

A JBoss AOP interceptor class must implement the org.jboss.aop.advice.Interceptor inter-

face. Two methods are defined in this interface:

• getName: This method must return an identifier, which you have chosen, for the

interceptor.

• invoke: This method defines the code that must be run before and after the joinpoint.

The signature of the invoke method is:

Object invoke(Invocation invocation) throws Throwable;

This method’s unique parameter, invocation, reifies the joinpoint and provides informa-

tion about its parameters and location. In the next section, we will present the methods

available for joinpoint introspection in detail.

The invoke method is invoked by the JBoss AOP framework whenever a joinpoint is met

that matches the pointcut definition associated to the interceptor. The value for invocation is

provided by the framework.

In the body of the invoke method, the call to invokeNext executes either the joinpoint or, if

a stack is defined, the next interceptor in the stack. The invokeNext method is implemented by

the Invocation type and plays the same role as proceed does for AspectJ and JAC.

In regular cases, invokeNext is invoked one time by the interceptor. However, the call to

invokeNext is optional. Conversely, an interceptor can attempt to call invokeNext several times.

The general pattern of an interceptor definition is shown in Listing 5-5.

Listing 5-5. A JBoss AOP Interceptor

import org.jboss.aop.advice.Interceptor;

import org.jboss.aop.joinpoint.Invocation;

public class MyInterceptor implements Interceptor {

 public String getName() { return "aName"; }

 public Object invoke(Invocation invocation) throws Throwable {

 System.out.println("Before code ");

 Object rsp = invocation.invokeNext();

 System.out.println("After code");

 return rsp;

} }

C H A P T E R 5 ■ J B O S S A O P 101

Joinpoint Introspection

The term introspection refers to examining the inner cause of a given phenomenon and gaining

information about it. In the context of JBoss AOP, you want to retrieve information about the

part of the program that lets the joinpoint occur.

The Invocation interface is the root type for the introspection mechanism. This interface

is implemented by the InvocationBase class. Each type of a joinpoint is represented by a

subclass of InvocationBase. Figure 5-1 illustrates this hierarchy. For clarity, only the main

methods are given. You should refer to the Javadoc documentation provided with JBoss AOP

for a list of all the methods that are defined in this hierarchy.

Figure 5-1. The org.jboss.aop.Invocation hierarchy for joinpoint instrospection with JBoss AOP

The InvocationBase class provides some common methods that are shared by all the join-

point types. The getTargetObject and getInterceptors methods return the object where the

current joinpoint occurred and the array of interceptors associated to the current joinpoint,

respectively. The invokeNext method executes the joinpoint.

Each class that implements Invocation corresponds to a type of a joinpoint:

• The CallerInvocation class reifies method and constructor calls. Four direct subclasses

are defined (only the first one is represented on the figure):

MethodCalledByMethodInvocation, MethodCalledByConstructorInvocation,

ConstructorCalledByMethodInvocation, and ConstructorCalledByConstructorInvocation.

These classes represent method and constructor calls that come from either a method or

a constructor.

102 C H A P T E R 5 ■ J B O S S A O P

• The MethodCalledByMethodInvocation class reifies a method called from another

method. The parameters of the call can be retrieved with the getArguments method. The

getCalledClass and getCalledMethod methods return the class and the method called,

respectively. The getCallingClass and getCallingMethod methods return the same

pieces of information for the caller side.

• The ConstructorInvocation class corresponds to the executions of a constructor. The

getArguments and getConstructor methods retrieve the arguments and the constructor

that was executed, respectively.

• The FieldInvocation class corresponds to operations on fields. Two subclasses,

FieldReadInvocation and FieldWriteInvocation, are defined to reify read and write

operations, respectively.

• The MethodInvocation class reifies method executions. The getArguments method

returns the array of the arguments of the execution. The getMethod method returns the

method where the execution occurred.

Aspect Classes

With the Interceptor interface provided by JBoss AOP, you can use the invoke method to write

the code that would be written in an advice code block with AspectJ. This mechanism is limited

because you can only write one piece of advice code per interceptor class. To suppress this

limitation, JBoss AOP proposes the notion of the aspect class.

An aspect class in JBoss AOP is a regular Java class that groups several interception

methods together. Each method has the same signature as the invoke method in an interceptor

class. However, you can freely choose the method name. (The name invoke is no longer

mandatory.) Thus, several different interception methods can be written in the same class.

The MyJBossAOPAspect class, shown in Listing 5-6, illustrates the notion of the aspect class.

Listing 5-6. A JBoss AOP Aspect Class

package aop.jboss;

import org.jboss.aop.joinpoint.Invocation;

public class MyJBossAOPAspect {

 public Object methInterceptor(Invocation invocation) throws Throwable {

 System.out.println("Before code");

 Object rsp = invocation.invokeNext();

 System.out.println("After code");

 return rsp;

} }

As with interceptors, the association between a pointcut and an advice class is declared in

the jboss-aop.xml file. The <advice> tag must be used. The XML file in Listing 5-7 gives an

example.

C H A P T E R 5 ■ J B O S S A O P 103

Listing 5-7. An XML File for Associating a Pointcut with an Aspect Class

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <aop>

 3 <aspect class="aop.jboss.MyJBossAOPAspect" />

 4 <bind pointcut="execution(void *->addItem(..))">

 5 <advice name="methInterceptor"

 6 aspect="aop.jboss.MyJBossAOPAspect" />

 7 </bind>

 8 </aop>

The XML file declares that the aop.jboss.MyJBossAOPAspect class is an advice class (see

line 2 in Listing 5-7), and it binds this class to the pointcut that includes all the executions of the

addItem method.

Using the Mix-In Mechanism
With the mix-in mechanism provided by JBoss AOP, you can extend the behavior of an appli-

cation. This mechanism is similar to the mechanism known as intertype declaration in AspectJ.

With the mix-in mechanism, you can introduce interfaces, fields, and methods to the

existing classes of an application.

Definition

Like pointcuts and interceptors, a mix-in is defined in the jboss-aop.xml file with the

<introduction> and <mixin> tags. The basic code for defining a mix-in is as follows:

 <introduction class="aop.jboss.Order">

 <mixin>

 ...

 </mixin>

 </introduction>

In this example, the mix-in mechanism is applied to the Order class.

Within the tags <mixin> and </mixin> tags, three other tags can be used:

• <class>: This tag provides the class that will be “mixed in” with the class of the applica-

tion (in the previous example, the Order class.) The mix-in class contains the code

elements (fields and methods) that are to be added to the application class.

• <interfaces>: This tag defines the interface implemented by the class that is “mixed in”

with the application. The class can implement several interfaces; in this case, a comma-

separated list of interface names is given.

• <construction>: This tag provides the constructor call, which must be used to instan-

tiate the mix-in class. We will illustrate its usage in the following section. Conceptually,

the mix-in mechanism introduces the code element of the mix-in class in an application

class. Concretely, two objects exist in the Java virtual machine: one for the application

class and one for the mix-in class. The <construction> tag defines the way this mix-in

instance is created.

104 C H A P T E R 5 ■ J B O S S A O P

Example

To illustrate the mix-in mechanism, we will extend the order-management application by

adding a date to all the orders that are created. We will begin by defining the interface and the

class that will be mixed in with the application.

The CalendarItf interface defines methods for setting and retrieving a date. The Calendar

class, which is shown in Listing 5-8, provides an implementation for this interface.

Listing 5-8. The Implementation of the Calendar Class

package aop.jboss;

import java.util.Date;

public interface CalendarItf {

 public void setDate(Date date);

 public Date getDate();

}

public class Calendar implements CalendarItf {

 private Object initial;

 private Date date;

 public Calendar(Object initial) {

 this.initial = initial;

 date = new Date();

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public Date getDate() {

 return date;

 }

}

In addition to the setDate and getDate methods, the Calendar class defines a constructor

that takes an Object as a parameter. This is the constructor that will be called by JBoss AOP

when this mix-in class is instantiated.

The XML file in Listing 5-9 associates the Calendar mix-in class with the Order application

class.

Listing 5-9. Defining a Mix-In with JBoss AOP

<?xml version="1.0" encoding="UTF-8"?>

<aop>

 <introduction class="aop.jboss.Order">

 <mixin>

 <interfaces> aop.jboss.CalendarItf </interfaces>

 <class> aop.jboss.Calendar </class>

 <construction> new aop.jboss.Calendar(this) </construction>

C H A P T E R 5 ■ J B O S S A O P 105

 </mixin>

 </introduction>

</aop>

An application class that is extended with the mix-in mechanism can be cast to the types

of the interfaces specified in the <interfaces> tag. In the example in Listing 5-9, every instance

of Order can be converted to CalendarItf.

Annotations
Annotations are a new feature introduced by Java 5. Annotations provide a way of extending

the definition of a Java program element, such as a method or a class. For example, a method

can be associated with annotations that reveal additional characteristics, such as the fact that

the access to the method is restricted to given users or the fact that the method must be

executed within the context of a transaction.

There are two ways of working with annotations in JBoss AOP. First, you can define anno-

tations in your application and use these annotations when writing pointcuts. Second, annota-

tions can be used to write aspects. In this last case, annotations replace the declarations that

are usually written in the jboss-aop.xml XML file.

Annotations in Pointcut Definitions

When you write a pointcut, an annotation can be used in place of a type name (class or inter-

face), method name, or parameter name. All the code elements that are associated with the

given annotations will match the pointcut.

For example, the following pointcut

<bind pointcut="execution(* *->@Transaction(..))" >

includes the executions of all the methods that are annotated with @Transaction.

As a second example, consider the following definition:

<bind pointcut="execution(* $instanceof{@Bean}->*(int,@Key))" >

Such a pointcut includes the executions of all the methods defined in a class that imple-

ments an interface annotated with @Bean. As an additional condition, only the methods that

take two parameters, the first being an int and the second one being annotated with @Key, are

included.

Annotations for Writing Aspects

The second use of annotations is for writing aspects. You can write annotated Java code to

define classes or pointcuts, for example. With annotations, the jboss-aop.xml XML file, which

was previously required with JBoss AOP, is suppressed. Every definition that could be written

in XML can now be replaced by an annotation in a Java file.

106 C H A P T E R 5 ■ J B O S S A O P

Annotated Aspects

The first useful annotation is @Aspect. As its name suggests, this annotation defines an aspect

class. You learned in the previous sections that an aspect class is a collection of interception

methods. The same definition applies here, except that the class is preceded by the @Aspect

annotation. In the following example, the MyJBossAOPAspect class is declared as an aspect class:

import org.jboss.aop.Aspect;

@Aspect

public class MyJBossAOPAspect {

 ...

}

Annotated Pointcut Definitions

Within an aspect class, you define interception methods. Two additional actions must be

performed. First, you must define pointcuts. Second, you must associate a pointcut to each

defined interception method.

With JBoss AOP, pointcuts are defined as public static fields of type Pointcut and are

annotated with @PointcutDef, and interception methods are annotated with @Bind. The

@PointcutDef pointcut takes a string that contains the pointcut expression as a parameter. The

@Bind pointcut takes a string that references the field defining the pointcut as a parameter.

The aspect class that is shown in Listing 5-10 sums up these notions.

Listing 5-10. The JBoss AOP Annotation Style for Defining Pointcuts

package aop.jboss;

import org.jboss.aop.Aspect;

import org.jboss.aop.PointcutDef;

import org.jboss.aop.pointcut.Pointcut;

@Aspect

public class MyJBossAOPAspect {

 @PointcutDef("call(* Foo->Bar(..))")

 public static Pointcut pcd;

 @Bind(pointcut="aop.jboss.MyJBossAOPAspect.pcd")

 public Object myInterceptor(Invocation invocation) {

 // ... Before code

 Object ret = invocation.invokeNext();

 // ... After code

 return ret;

}

The pcd field defines a pointcut that includes the calls to the Bar method defined in the Foo

class. The myInterceptor method is an interception method that is bound to the pcd pointcut.

C H A P T E R 5 ■ J B O S S A O P 107

Annotated Mix-In

You learned in the previous section that the mix-in mechanism allows you to extend the appli-

cation classes. With this mechanism, mix-in classes define code elements that will be

introduced in target application classes.

The annotation for defining a mix-in is @Mixin. Two parameters must be defined: target is

the class where the mix-in must be applied, and interfaces is the list of interfaces that are

introduced in the target class and that are implemented by the mix-in class.

The @Mixin annotation must be associated with a static method defined in an aspect class

(in other words, a class annotated with @Aspect) or an interceptor class. The method annotated

by @Mixin acts as a constructor for mix-in objects. Given a parameter that is an application

object, this method must return the mix-in object, which will be introduced in the application

object.

The AnnotatedMixIn aspect class, which is shown in Listing 5-11, illustrates the usage of

annotated mix-in.

Listing 5-11. The JBoss AOP Annotation Style for Defining Mix-Ins

package aop.jboss;

import org.jboss.aop.Aspect;

import org.jboss.aop.Mixin;

@Aspect

public class AnnotatedMixIn {

 @Mixin(target=Order.class, interfaces={CalendarItf.class})

 public static Calendar createCalendar(Order myOrder) {

 return new Calendar(myOrder);

} }

In Listing 5-11, the createCalendar method creates an instance of the Calendar class. This

instance is introduced in the target Order class, and it implements the CalendarItf interface.

Annotated Interceptors

The @InterceptorDef annotation can be used to define interceptor classes. A second annota-

tion, @Bind, must be provided. As for pointcut definitions, this annotation binds the interceptor

to a given pointcut.

The interceptor class in Listing 5-12 illustrates the usage of @InterceptorDef.

Listing 5-12. The JBoss AOP Annotation Style for Defining Interceptors

package aop.jboss;

import org.jboss.aop.advice.Interceptor;

import org.jboss.aop.joinpoint.Invocation;

@InterceptorDef

@Bind(pointcut="execution(public aop.jboss.Order->*(..))")

108 C H A P T E R 5 ■ J B O S S A O P

public class TraceInterceptor implements Interceptor {

 public String getName() { return "TraceInterceptor"; }

 public Object invoke(Invocation invocation) throws Throwable {

 // ... Before code

 Object ret = invocation.invokeNext();

 // ... After code

 return ret;

} }

Advanced Features
This section presents the advanced features of JBoss AOP.

Dynamic AOP

Besides the ability to declare pointcuts in XML files or with annotations, JBoss AOP offers the

possibility of dynamically declaring and weaving a pointcut.

The code snippet in Listing 5-13 illustrates this feature.

Listing 5-13. Dynamic Weaving

 1 import org.jboss.aop.AspectManager;

 2 import org.jboss.aop.advice.AdviceBinding;

 3

 4 AdviceBinding ab = new AdviceBinding("execution(* *->foo(..)");

 5 ab.addInterceptor(myInterceptor.class);

 6 AspectManager.instance().addBinding(ab);

A new pointcut (here, called an advice binding) is declared (see line 4 in Listing 5-13). An

interceptor class (myInterceptor) is associated with this pointcut (see line 5). Finally, the advice

binding is registered with the aspect manager (see line 6).

This functionality requires you to perform a so-called preparation phase. For JBoss AOP,

this phase consists of transforming some selected application objects. These objects will then

be ready to be aspectized in the future through the addBinding method.

There are two ways of preparing application objects:

• You can use the <prepare> tag in an XML file. The tag takes a pointcut expression as a

parameter. All the objects included in the pointcut will be prepared.

• You can associate the @Prepare annotation with a public static field of type Pointcut.

As with the tag, a parameter for denoting the objects to be prepared is required.

For example, the following XML code snippet

<prepare expr="execution(Foo->*(..))" />

prepares all the objects of the Foo class.

C H A P T E R 5 ■ J B O S S A O P 109

Instantiating an Aspect

By default, every aspect or interceptor class defined with JBoss AOP is a singleton. This means

that only one instance of each class can exist when the application is run. This mode is called

PER_VM.

The advantage of the PER_VM mode is to limit memory consumption and avoid unneces-

sary creations of the aspect class. The drawback is that any field defined in the class will be

shared by all the advice-code executions; hence, if these executions are concurrent, access to

the field may need to be synchronized.

Three other modes are available for aspects and interceptors: PER_CLASS, PER_INSTANCE,
and PER_JOINPOINT. In the first case, an instance of the aspect class is created for every class that

is included in a pointcut associated to this aspect. With PER_INSTANCE, an instance of the aspect

class is created for each object included in the pointcut. Finally, with PER_JOINPOINT, an

instance is created for every encountered joinpoint.

These modes are declared either in XML or with annotations. In XML, the <aspect> tag for

declaring an aspect takes scope as a parameter; scope contains the chosen mode. The same

parameter is available for the @Aspect annotation.

If none of these four modes fits your needs, you can decide to provide your own

factory class. This class will be responsible for creating instances of aspects or intercep-

tors. A factory class must implement the org.jboss.aop.advice.AspectFactory interface.

Aspect factory classes are declared either in XML or with annotations.

Configuring an Aspect

The purpose of the configuration mechanism is to separate the definition of application

parameters from the definition of the initial values assigned to these parameters. The parame-

ters are usually defined as fields in Java classes. The values are defined in an external file (for

instance, a text file or XML file.) You can then modify the values without recompiling the code

where the parameters are defined.

JBoss AOP offers a mechanism for configuring aspect classes with parameters. The type of

each parameter must be either a primitive type, such as int, double, or boolean, or one of the

following:

• String

• String[]

• Class

• Class[]

• BigDecimal

• File

• Document

• InetAddress

• URL

110 C H A P T E R 5 ■ J B O S S A O P

Aspect classes must provide methods that set their configuration parameters. Parameter

values are defined in the jboss-aop.xml file. The <attribute> tag can be included in each

<aspect> tag that defines an aspect. The attribute’s name and value associated with <attribute>

define the value for the corresponding parameter name.

For example, the following aspect class defines two parameters named header and count:

public class MyAspect {

 public void setHeader(String value) { /* ... */ }

 public void setCount(int value) { /* ... */ }

}

The following XML code snippet defines the values “->” and “3” for header and count:

<aspect class="MyAspect">

 <attribute name="header" value="->" />

 <attribute name="count" value="3" />

</aspect

Introducing Annotations

With the mix-in mechanism, you can introduce new methods into existing application classes.

In addition, JBoss AOP allows you to introduce annotations into a class, method, field, or

constructor.

There are two ways of introducing annotations: in the jboss-aop.xml XML file or with

annotations. The latter case may be somewhat confusing, but you will see that annotations are

written to introduce other annotations into an application.

Introducing Annotations with XML

In a jboss-aop.xml file, the <annotation-introduction> tag can be used to introduce anno-

tations. This tag is associated with a pointcut expression. The annotation will be added to each

joinpoint included in the pointcut.

For example, the following XML code snippet

<annotation-introduction expr="execution(*->foo(..))">

 @Release(production=false,version=1)

</annotation-introduction>

introduces the @Release(production=false,version=1) annotation into every foo method

defined in the application.

Introducing Annotations with Annotations

In the “Annotations” section earlier in this chapter, you learned that every part of a declaration

(aspect, pointcut, mix-in, and so on) that can be written in an XML file can also be written as an

annotation. Therefore, instead of using the previously mentioned XML <annotation-

introduction> tag, you can write an annotation that will perform the same job.

The annotation for introducing another annotation is @AnnotationIntroductionDef. Three

parameters must be provided:

C H A P T E R 5 ■ J B O S S A O P 111

• expr: This parameter is a string that contains a pointcut expression. Every joinpoint

included in the pointcut will be annotated.

• invisible: When set to false, this Boolean parameter allows the introduced annotation

to be visible at run time. When set to true, the introduced annotation is visible only at

compile time.

• annotation: This parameter is a string that introduces an annotation.

For example, the same annotation introduction that the previous section illustrated can

be written as shown in Listing 5-14.

Listing 5-14. The JBoss AOP Annotation Style for Defining Annotations

package aop.jboss;

import org.jboss.aop.Aspect;

import org.jboss.aop.AnnotationIntroductionDef;

import org.jboss.aop.annotation.AnnotationIntroduction;

@Aspect

public class AnnotatedAnnotationIntroduction {

 @AnnotationIntroductionDef(

 expr = "execution(*->foo(..))",

 invisible = false,

 annotation="@Release(production=false,version=1)")

 public static AnnotationIntroduction a;

}

The @AnnotationIntroductionDef annotation must be associated with a public static field

that is of type AnnotationIntroduction and that is defined in an aspect class or interceptor

class.

Summary
In this chapter, you learned to write an application with the JBoss AOP framework. JBoss AOP

can be used alone, or it can be embedded in the JBoss application server. As with other AOP

languages and frameworks, a JBoss AOP aspect is composed of pointcuts and advice code.

JBoss AOP advice code blocks are defined in either interceptor classes or so-called aspect

classes. With interceptors, you have the possibility of defining just one advice code block per

class, whereas several advice code blocks can be defined in the same aspect class. In both

cases, the advice code block is a method, and in the case of interceptors, it is named invoke.

These methods define the code that must be executed before and after joinpoints. Just as

AspectJ and JAC provide the proceed method for executing the joinpoint, JBoss AOP provides

the invokeNext method.

Pointcuts can be defined either in XML files or with annotations added to the aspect and

interceptor classes. In the former case, the definition of the pointcuts is clearly separated from

that of the interceptors and aspect classes. Hence, these classes are independent of any

112 C H A P T E R 5 ■ J B O S S A O P

pointcut and can be reused more easily. With annotations, pointcuts and aspects are defined

in the same location. The advantage of this situation is that it allows the beginner AOP

programmer to be more intuitive. Annotations are defined next to the aspect classes, so they

are easier to understand. The other advantage of annotations is that they are natively

supported by modern IDEs, such as the recent versions of Eclipse, which include Java 5.

Like JAC, JBoss AOP is a framework that supports dynamic AOP. In other words, aspects

can be woven and unwoven at run time without stopping the application.

Finally, the recent versions of JBoss AOP are distributed with a library of ready-to-use

aspects for transaction management (specifically, demarcation, injection, and locking), secu-

rity, remote interactions, clustering, and cache management.

113

■ ■ ■

C H A P T E R 6

Spring AOP

This chapter presents a fourth environment for aspect-oriented programming: Spring AOP.

Spring AOP is part of the Spring Framework Open Source project (http://

www.springframework.org), which aims to simplify the development of J2EE applications.

Spring was initially created by Rod Johnson, and has been Open Source since February 2003.

The architectural concepts, however, go back to early 2000, and emerged from its creator’s

experience on J2EE commercial developments, which have been published in Rod Johnson’s

book, Expert One-on-One J2EE Design and Development (Wrox Press, 2002). Spring is now a

successful Open Source project with a very active community, and is licensed under the terms

of the Apache 2.0 license.

Although AOP is not the primary goal of the Spring Framework, the support that AOP

provides, though limited, is general enough to be depicted in this book. Similar to JAC, Spring

AOP supports the AOP Alliance API, which is a common effort of standardization for generic

interception in Java, as used by many AOP platforms. In addition, Spring AOP has been designed

to be easily used in many J2EE environments and application servers (such as WebLogic,

Tomcat, JBoss, Resin, and Jetty).

In this chapter, we briefly present the architecture of the Spring Framework in general. We

then focus on Spring AOP and the provided AOP features.

Note that we use Spring version 1.2 only as a reference since it is the most recent and stable

version available at the time of this writing.

An Overview of the Spring Framework
The Spring Framework belongs to the family of lightweight containers. The Spring container

manages beans. It is simply materialized by a factory (org.springframework.beans.factory.

BeanFactory) that needs to be called when instantiating new beans. More specifically, in a J2EE

environment, the factory is generally an application context (org.springframework.context.

ApplicationContext, subclass of BeanFactory) that supports all the operations necessary so

that the beans can be initialized and run in a J2EE environment. AOP and other supports such

as message resource handling, event propagation, and declarative configuration mechanisms

are also implemented by the factory.

Spring and its factories implement the so-called Inversion of Control (IoC), also known as

the Dependency Injection. This means that all of the configuration, especially the bean depen-

dencies, is in charge of the factories (lightweight containers). As a direct consequence, it is not

necessary for the beans to resolve other beans or to go through complex initialization

processes, because the factory does it all.

114 C H A P T E R 6 ■ S P R I N G A O P

Bean Factories

In order to implement the IoC and to correctly initialize the created beans, factories need to be

aware of an application’s environment. This is why, in most cases, factories are configured.

A typical factory is org.springframework.beans.factory.xml.XmlBeanFactory, which allows the

factory to be configured through some XML configuration files. The following code creates

a factory configured with a file called conf.xml:

ClassPathResource res = new ClassPathResource("conf.xml");

XmlBeanFactory factory = new XmlBeanFactory(res);

In general, however, the configuration file is called applicationContext.xml. Since the

application may contain several modules, it can also be divided into several parts:

ClassPathXmlApplicationContext appContext = new ClassPathXmlApplicationContext(

 new String[] {"applicationContext.xml", "applicationContext-part2.xml"});

BeanFactory factory = (BeanFactory) appContext;

In this code, we use the ClassPathXmlApplicationContext factory, which is an application

context (a factory) that supports XML configuration. Of course, for the final user it can simply

be seen as a BeanFactory.

Creating and Configuring Beans

In order to be created, beans require the following:

• A Java class definition

• A configuration

The Java class definition is usually a regular Java class following bean conventions: prop-

erties should be accessible through getter/setter pairs. Spring, however, allows any class to

become a bean, and therefore any kind of Java object can be managed by the container and

referenced by other beans, exactly like regular beans. Spring also allows the beans to define a

constructor with some parameters, so that the bean properties are initialized in a more

straightforward way.

As previously indicated, a typical bean configuration is written in an XML file, which

contains bean definition entries. (Note that configurations can also be achieved programmat-

ically, but we will not enter into this level of detail in this book.) Each bean entry defines the

name (or id) and the Java class of the bean. At this point, the bean can be referenced by other

bean definition entries. In addition, several configuration parameters can be added to the

entries such as the values of the properties, the values of the constructor’s parameters, life-

cycle management configurations, etc.

A First Bean Definition

As a simple example, we write the class in Listing 6-1.

C H A P T E R 6 ■ S P R I N G A O P 115

Listing 6-1. A First Bean Definition

package aop.spring;

public class ExampleBean {

 private AnotherBean beanOne;

 private YetAnotherBean beanTwo;

 private int i;

 public void setBeanOne(AnotherBean beanOne) {

 this.beanOne = beanOne;

 }

 public void setBeanTwo(YetAnotherBean beanTwo) {

 this.beanTwo = beanTwo;

 }

 public void setIntegerProperty(int i) {

 this.i = i;

 }

}

This class contains two references towards AnotherBean and YetAnotherBean, and an

integer property i. It also defines setters for all of them. In order to make this class recognized

as a bean by a Spring bean factory or application context, we must write the XML configuration

in Listing 6-2.

Listing 6-2. A First Configuration

1 <bean id="exampleBean" class="aop.spring.ExampleBean">

2 <property name="beanOne"><ref bean="anotherExampleBean"/></property>

3 <property name="beanTwo"><ref bean="yetAnotherBean"/></property>

4 <property name="integerProperty"><value>1</value></property>

5 </bean>

In this configuration, we create a new bean named exampleBean (id attribute of the bean

element), which is an instance of the class aop.spring.ExampleBean (class attribute of the

bean element) defined previously. The initialization of the properties is done through the

property elements. For primary properties, the value element will be used to create a primitive

value (line 4). For references, a ref element will be used to reference another bean (lines 2 and 3).

Of course, the referenced beans must be defined elsewhere in a similar manner. A minimal

configuration is as shown in Listing 6-3.

Listing 6-3. A First Configuration (Continued)

<bean id="anotherExampleBean" class="aop.spring.AnotherBean"/>

<bean id="yetAnotherBean" class="aop.spring.YetAnotherBean"/>

116 C H A P T E R 6 ■ S P R I N G A O P

In Spring, beans are singletons by default. In order to change this strategy, and to make the

factory create a new instance each time a bean is accessed, the configuration should set the

singleton attribute to false simply by changing the first line of the configuration of Listing 6-2:

<bean id="exampleBean" class="aop.spring.ExampleBean" singleton="false">

An Alternative Definition

As stated previously, an alternative to this is to use constructor initialization. In this case, the

bean class is defined as shown in Listing 6-4.

Listing 6-4. A Constructor-based Alternative Definition of Our First Bean

package aop.spring;

public class ExampleBean {

 private AnotherBean beanOne;

 private YetAnotherBean beanTwo;

 private int i;

 public ExampleBean(AnotherBean anotherBean,

 YetAnotherBean yetAnotherBean, int i) {

 this.beanOne = anotherBean;

 this.beanTwo = yetAnotherBean;

 this.i = i;

 }

}

And the configuration must be as shown in Listing 6-5.

Listing 6-5. Constructor-based Configuration

<bean id="exampleBean" class="aop.spring.ExampleBean">

 <constructor-arg><ref bean="anotherExampleBean"/></constructor-arg>

 <constructor-arg><ref bean="yetAnotherBean"/></constructor-arg>

 <constructor-arg type="int"><value>1</value></constructor-arg>

</bean>

Accessing the Bean

Once defined, a bean must be accessed through a factory. The BeanFactory class defines the

following methods:

• boolean containsBean(String): Checks that the factory contains a given bean name

• Object getBean(String): Instantiates/accesses a given bean name

• Object getBean(String,Class): Instantiates/accesses a given bean name and casts it to

a given class

C H A P T E R 6 ■ S P R I N G A O P 117

• boolean isSingleton(String): Determines whether or not the bean that corresponds to

the name is a singleton

• String[] getAliases(String): Returns the aliases for the given bean name (a bean can

have several names in the configuration)

We can now write a program for retrieving a reference on a bean after having checked that

it exists in the factory and that it is defined as a singleton:

// we assume that conf.xml contains the bean definition, and that ExampleBean

// is in the classpath

ClassPathResource res = new ClassPathResource("conf.xml");

XmlBeanFactory factory = new XmlBeanFactory(res);

ExampleBean myBean=null;

if(factory.containsBean("exampleBean") && factory.isSingleton("exampleBean")) {

 myBean=factory.getBean("exampleBean");

}

Bean Initialization and Dependency Injection

In the two equivalent definitions presented previously, when the program instantiates the

aop.spring.ExampleBean class, it uses the factory that is parameterized by the configuration to

automatically inject the values or the bean dependencies. In the first case of our example, the

factory called the setters to initialize the properties: this kind of injection is called setter-based

dependency injection. In the second case, the factory automatically called the constructor of

the class with the appropriate arguments: this is called constructor-based dependency injection.

In the case that several constructor arguments are of the same type, the ambiguity can be

solved by using the index attribute in the constructor-arg element; the index then corre-

sponds to the argument’s index, as declared in the constructor’s prototype.

The strength of the IoC (or Dependency Injection) model is that all the bean dependencies

are handled by the factory (container). Consequently, the factory implements all the lookup,

proxying, and any other tedious operations that are normally not completely transparent for

the beans (as in a typical EJB/J2EE programming model). For instance, there is no need to use

any locator or business delegate design patterns (see the section “Using J2EE Design Solu-

tions” in Chapter 10) because the factory will do it for you.

The bean factory will also check the configuration after it is created, which avoids possible

errors such as references to nonexisting beans or circular dependencies.

Other Bean Configuration Features

This section briefly mentions other bean configuration features.

Overview of the Supported XML Elements for Data

As you have seen, Spring allows the configuration of the bean primitive properties’ data with

the value XML element and the configuration of the references with the ref element.

Spring also supports collections (lists, sets, and maps) and data elements, as shown in the

configuration in Listing 6-6.

118 C H A P T E R 6 ■ S P R I N G A O P

Listing 6-6. A More Complex Configuration Example

<beans>

 ...

 <bean id="moreComplexObject" class="example.ComplexObject">

 <property name="someList">

 <list>

 <value>a list element </value>

 <ref bean="aReferencedBean"/>

 </list>

 </property>

 <property name="someMap">

 <map>

 <entry key="an entry key">

 <value>some value</value>

 </entry>

 <entry key="another entry key for a reference">

 <ref bean="myDataSource"/>

 </entry>

 </map>

 </property>

 <property name="someSet">

 <set>

 <value>some string</value>

 <ref bean="myDataSource"/>

 </set>

 </property>

 </bean>

</beans>

We summarize all the available data elements in the following list:

• bean: Inlines a bean definition (in this case, the bean can be anonymous and the id

attribute is not needed)

• ref: Defines a reference to another bean

• idref: Defines a string value that corresponds to a bean id (in this case, the factory

checks that the id exists in the application environment)

• list: Defines a list of any other elements

• set: Defines a set of any other elements

• map: Defines a map of entries (entry attribute)

• props: Defines a java.util.Properties element

• value: Defines a primitive value

• null: Defines a null value (indeed, <value\> defines an empty string and should be

replaced by <null\> when needed)

C H A P T E R 6 ■ S P R I N G A O P 119

All of these data elements are also recursively available within a property, an entry, a set,

or a list element.

Auto-wiring Collaborators

In order to minimize the XML configuration code, Spring provides some auto-wiring capabili-

ties. Auto-wiring consists of enabling the container (factory) to resolve the dependencies

automatically by using some pragmatic strategies. Even though this is not encouraged (well-

defined dependencies are preferred), this feature is worth mentioning since it illustrates the

real benefits and possibilities of factories and, consequently, of the IoC concept advocated by

Spring.

The auto-wiring mode of a bean can be configured by using the autowire attribute of the

bean element. It can take the following values:

• no: No auto-wiring at all.

• byname: The references are automatically added by matching the names of the properties

and the names of the beans.

• byType: The references are automatically added by matching the types of the properties

and the types of the beans.

• constructor: The references are automatically added by matching the types of the prop-

erties and the types of the bean constructor arguments.

• autodetect: Chooses constructor or byType through introspection of the bean class.

Other Features

Spring provides many other configuration features, such as object life-cycle management,

which specifies some bean destruction methods, as well as other features designed for beans to

be aware of the container. The reader interested in further details on this subject should refer

to literature that is specific to Spring, since it is not the goal of this book to enter into the non-

AOP details of Spring.

Abstraction Layers

Spring aims to facilitate J2EE development; therefore, it provides a set of abstraction layers that

assist with the integration of Spring bean-based applications with various technologies

commonly encountered in J2EE development. These abstraction layers, listed here, cleanly

integrate with the Spring bean container, especially through the IoC capabilities of Spring:

• A common abstraction layer for transaction management, which allows for pluggable

transaction managers and demarcate transactions, without the disadvantage of low-

level issues. Generic strategies for JTA and a single JDBC DataSource are included.

• A JDBC abstraction layer, which simplifies the writing of queries and error handling.

• Integration with Hibernate, JDO, and iBATIS SQL Maps, in terms of resource holders,

DAO implementation support, and transaction strategies. First-class Hibernate support

with a lot of IoC convenience features, which address many typical Hibernate integra-

tion issues.

120 C H A P T E R 6 ■ S P R I N G A O P

• A flexible MVC web application framework, built on core Spring functionality. This

framework is configurable via strategy interfaces, and accommodates multiple view

technologies like JSP, Velocity, Tiles, iText, and POI.

Spring AOP: An Introduction
We have presented the basics of Spring and the IoC principle; in this section, we introduce

Spring AOP with a simple example.

For our example, we reuse the same Order Management example as in the previous chap-

ters (see Chapters 3, 4, and 5) and implement the same trace aspect that was programmed in

these chapters, but now with Spring AOP. This aspect traced the execution of the application.

A Simple Trace Aspect

Our first aspect written with Spring AOP monitors each ordered item by displaying a message

before and after the method addItem as defined in the class Order.

Defining this aspect requires us to define a Java class TraceInterceptor (similar to

“around” advice), and also to define a corresponding bean in the XML bean definition file

(usually applicationContext.xml). Still in a bean definition file, a pointcut must be defined and

linked to the interceptor by using an advisor. In the Spring Framework, AOP is naturally inte-

grated because it follows the IoC principle and is consistently defined with the bean model.

Interceptor, pointcut, and advisor dependencies are implemented exactly like regular bean

dependencies.

In order to enable AOP, the program must use an ApplicationContext factory (or a deriva-

tive). It is important to notice that the ApplicationContext factory will return an AOP proxy

when accessing a bean. Spring uses J2SE proxies to generate the proxies when possible (when

an interface is defined for the bean), and CGLIB proxies otherwise. When a method is called on

a bean, it is the AOP proxy that automatically up-calls the potentially installed interceptors for

this method.

A Simple Pointcut

Spring AOP pointcuts are defined in the XML bean definition entries, but they can also be

defined programmatically (as you will see later in the “Pointcuts” section). A typical way to

define a pointcut in XML is to use a set of regular expressions (Perl 5 syntax). When all the

regular expressions of a pointcut match the method’s name (including its class name), it

means that the method is a joinpoint belonging to the pointcut (see Listing 6-7).

Listing 6-7. A Pointcut Configuration Example

1 <bean id="tracePointcut"

2 class="org.springframework.aop.support.Perl5RegexpMethodPointcut">

3 <property name="pattern"><value>aop.spring.Order.addItem</value></property>

4 </bean>

C H A P T E R 6 ■ S P R I N G A O P 121

This XML code defines a new pointcut bean identified by the tracePointcut ID and

instance of a RegexpMethodPointcut class (supporting regular expression). The pattern prop-

erty of line 3 defines a single regular expression matching the method addItem of the Order

class.

A Simple Interceptor

With Spring AOP, an interceptor class must implement the interface org.aopalliance.

MethodInterceptor and provide the implementation for the invoke method, which defines the

code to be run before and after the joinpoints.

The class in Listing 6-8 defines the interceptor TraceInterceptor as mentioned in the

previous pointcut definition:

Listing 6-8. A Trace Interceptor with Spring

package aop.spring;

import org.aopalliance.MethodInterceptor;

import org.aopalliance.MethodInvocation;

public class TraceInterceptor implements MethodInterceptor {

 public Object invoke(Invocation invocation) throws Throwable {

 String methodName = invocation.getMethod().getName();

 System.out.println("-> Before "+methodName);

 Object rsp = invocation.proceed();

 System.out.println("-> After "+methodName);

 return rsp;

} }

The method invoke is called by Spring AOP just before the occurrence of a joinpoint. The

only argument of this call contains information about the joinpoint. The return type corre-

sponds to the value returned by the aspect. Here, the interceptor displays a first message, calls

the method proceed, displays a second message, and then returns. The proceed method has the

same semantics as usual: it executes the advised method (also intercepted method or method

joinpoint).

Spring can only advise method calls: The creator of Spring considers field advising to be

potentially harmful in the Spring context, since it violates the bean encapsulation principles.

A Simple Advisor

In order to attach a pointcut to an interceptor, Spring adds the concept of a pointcut advisor.

Here, to attach the pointcut and interceptor defined previously, we add the XML definition in

Listing 6-9.

122 C H A P T E R 6 ■ S P R I N G A O P

Listing 6-9. Configuring a Trace Advisor

<bean id="traceAdvisor"

 class="org.springframework.aop.support.DefaultMethodPointcutAdvisor">

 <property name="advice">

 <ref local="traceInterceptor"/>

 </property>

 <property name="pointcut">

 <ref local="tracePointcut"/>

 </property>

</bean>

where traceInterceptor is the bean identifier of the trace interceptor defined as shown in

Listing 6-10.

Listing 6-10. Configuration of the Trace Interceptor

<bean id="traceInterceptor"

 class="aop.spring.TraceInterceptor">

The pointcut definition can be integrated directly into the advisor definition. This is the

case when, for example, the pointcut does not need to be reused in other aspects. In this case,

the advisor definition looks as shown in Listing 6-11.

Listing 6-11. A More Integrated Configuration of the Trace Advisor

<bean id="traceAdvisor"

 class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">

 <property name="advice">

 <ref local="traceInterceptor"/>

 </property>

 <property name="pattern">

 <value>aop.spring.Order.addItem</value>

 </property>

</bean>

Pointcuts
This section presents how to define pointcuts in Spring AOP.

Basics

In Spring, pointcuts are defined as regular beans that must implement the org.springframeork.

aop.Pointcut interface (see Listing 6-12).

Listing 6-12. The Pointcut Interface

public interface Pointcut {

 ClassFilter getClassFilter();

C H A P T E R 6 ■ S P R I N G A O P 123

 MethodMatcher getMethodMatcher();

}

The class filter of a pointcut is an object that defines the scope of the pointcut. It imple-
ments the interface in Listing 6-13.

Listing 6-13. The ClassFilter Interface

public interface ClassFilter {

 boolean matches(Class clazz);

}

The matches method returns true if the filtered class clazz belongs to the filter and, conse-

quently, if it is part of the parent pointcut’s scope.

The method matcher will then tell, for a filtered class, whether a given method is a join-

point for the parent pointcut. The interface is as shown in Listing 6-14.

Listing 6-14. The MethodMatcher Interface

public interface MethodMatcher {

 boolean matches(Method m, Class targetClass);

 boolean isRuntime();

 boolean matches(Method m, Class targetClass, Object[] args);

}

The isRuntime method indicates whether this matcher should be applied at run time on an

AOP proxy. In the AOP world, this kind of selection is called dynamic shadow selection. This

operation, which will reveal whether or not a shadow is a joinpoint for a given pointcut, is

performed at run time by using some contextual information. When isRuntime returns true,

the three-parameter matches method is called with the values of the current invocation. If

isRuntime returns false, only the two-parameter matches method is called. In the latter case,

the method matcher is used only once—during the AOP proxy initialization process.

Programmatically Defined Pointcuts

By using this API, programmers can define new pointcuts programmatically. Listing 6-15, for

instance, shows the definition of a pointcut that matches public void aop.spring.Order.

addItem(*,int,*).

Listing 6-15. A Programmatically Defined Pointcut

package aop.spring;

public class APointcut implements Pointcut {

 public ClassFilter getClassFilter() {

 return new ClassFilter() {

 public boolean matches(Class clazz) {

 return clazz.getName().equals("aop.spring.Order");

 }

 }

124 C H A P T E R 6 ■ S P R I N G A O P

 public MethodMatcher getMethodMatcher() {

 return new MethodMatcher() {

 public boolean matches(Method m, Class targetClass) {

 return Modifier.isPublic(m.getModifiers())

 && m.getName().equals("addItem")

 && m.getParameterTypes().length == 3

 && m.getParameterTypes()[1] == int.class;

 }

 public boolean isRuntime() { return false; }

 public boolean matches(Method m, Class targetClass, Object[] args) {

 return false;

 }

 }

}

Once this definition is complete, the programmer must simply define the corresponding

bean, so that the application context can apply this pointcut to the beans.

<bean id="myPointcut" class="aop.spring.APoincut">

Regexp Pointcuts

Spring provides an implementation for pointcuts that uses regular expressions in the class

org.springframework.aop.support.AbstractRegexpMethodPointcut (two implementations are

available: one for Perl5 and one for JDK regexps). A regexp pointcut defines the method

setPattern(String pattern). The setPatterns(String[] patterns) method can be used to

define several patterns with the or semantics. The advantage of this kind of pointcut is that it

can be used in an XML configuration to define a pointcut in a declarative way. It covers most of

the common cases so that programmatically defined pointcuts rarely need to be used. The

regexp pointcut, however, does not match on the parameter types nor on the return type, but

only on the fully qualified method name.

For instance, the code in Listing 6-16 defines a pointcut that matches all the getters and

setters of the Order class:

Listing 6-16. A Regexp Pointcut Example

<bean id="tracePointcut"

 class="org.springframework.aop.support.Perl5RegexpMethodPointcut">

 <property name="patterns">

 <list>

 <value>aop.spring.Order.get* </value>

 <value>aop.spring.Order.set*</value>

 </list>

 </property>

</bean>

C H A P T E R 6 ■ S P R I N G A O P 125

Control Flow Pointcut

In Spring, cflows are implemented by org.springframework.aop.support.ControlFlowPointcut,

which defines the two properties clazz and methodName. If methodName is null, the cflow starts at

all the methods of the class. Compared to other AOP frameworks, the Spring cflows are quite

limited since they cannot be applied to other pointcuts. Also, Spring does not support the cflow-

below concept. It is likely that, in the future, cflow capabilities will be enhanced if there is a

strong need in the community to use them in the Spring context.

Associating an Interceptor with a Pointcut

In the previous section, we defined pointcuts in Spring. In order to associate an interceptor

with a pointcut, the programmer must define a pointcut advisor. A pointcut advisor imple-

ments the org.springframework.aop.PointcutAdvisor interface, which is shown in Listing 6-17.

Listing 6-17. The PointcutAdvisor Interface

public interface PointcutAdvisor extends Advisor {

 Pointcut getPointcut();

}

And for an example of where org.springframework.aop.Advisor is the interface defining

the advising, see Listing 6-18.

Listing 6-18. The Advisor Interface

public interface Advisor {

 boolean isPerInstance();

 Advice getAdvice();

}

You can see that the advisor defines the advice and the instantiation policy. If the

isPerInstance method returns true, then a different advice instance will be used for each

advised bean. If it returns false, one instance will be shared by all the advised beans in the

application context. However, in Spring version 1.2 (the version used at the time of this

writing), our studies showed that the isPerInstance feature was not supported. So, only shared

instances are available at the moment.

In order to easily create new pointcut advisors, the programmer can use the org.

springframework.aop.support.DefaultPointcutAdvisor as it comes or subclass it). With a bean

configuration, we can bind an existing pointcut with an existing advice (see Listing 6-19).

Listing 6-19. Configuring an Advisor

<bean id="myAdvisor"

 class="org.springframework.aop.support.DefaultMethodPointcutAdvisor">

 <property name="advice"><ref local="myInterceptor"/></property>

 <property name="pointcut"><ref local="myPointcut"/></property>

</bean>

126 C H A P T E R 6 ■ S P R I N G A O P

The pointcut property can be omitted from the definition. In this case, the advisor will

advise all the methods of all the beans, similar to a .* pointcut.

As shown in our simple trace example, it is also possible to merge the definition of a regexp

pointcut in an advisor (à la AspectJ). The advisor then automatically creates a new regexp

pointcut, which is used to initialize the pointcut property.

Advice
The previous section presented the way for defining pointcuts in Spring. We now focus on

writing and using advice code. Spring provides several types of advice. The most general form

is the interceptor, which is similar to “around” advice.

Interceptors (“Around” Advice)

With Spring AOP, an interceptor class must implement the interface org.aopalliance.

MethodInterceptor and provide the implementation for the invoke method, which defines the

code to be run before and after the joinpoints.

Since Spring is compliant with the AOP Alliance API, programming “around” advice is

similar to programming “around” advice in JAC, and therefore the principles are the same

(refer to the section entitled “Wrappers” in Chapter 4). Also, Figure 4-1 gives the joinpoint

model of AOP Alliance, which is available for introspection in Spring.

Spring does not, however, support constructor interception. Since the beans are transpar-

ently built within the factory, which implements all the mechanics for dealing with beans

within a particular context, the constructor interception is not suitable for the Spring Frame-

work anyway. Thus, only the org.aopalliance.MethodInvocation is available for introspection

in Spring.

Other Types of Advice

Spring AOP also supports other kinds of advice that are not defined in the AOP Alliance and do

not rely on its introspection model.

Even though using the “interceptor” advice is the most general form, using another type of

advice can be beneficial because it is simpler to use, and it also can reflect better what the

aspect does without having to read the advice code. In addition, it is generally slightly more

efficient since it does not require the construction of the org.aopalliance.MethodInvocation

instance for introspection. Thus, the following advice types are preferred and should be used if

possible, unless the programmer needs the advice code to run on another AOP Alliance–

compliant platform.

“Before” Advice

The main advantage of a “before” advice is that there is no need to invoke the proceed method,

and therefore no possibility of inadvertently failing to proceed down the interceptor chain.

A “before” advice implements the MethodBeforeAdvice interface, which is shown in Listing

6-20. Even though this interface explicitly holds on method, Spring does not support field or

constructor advising. However, the API design does leave room for such an extension.

C H A P T E R 6 ■ S P R I N G A O P 127

Listing 6-20. The BeforeAdvice Interface

public interface MethodBeforeAdvice extends BeforeAdvice {

 void before(Method m, Object[] args, Object target) throws Throwable;

}

Note that the return type is void. The “before” advice can insert a custom behavior before

the joinpoint executes, but cannot change the return value. If a “before” advice throws an

exception, this will abort further execution of the interceptor chain. The exception will propa-

gate back up the interceptor chain. If it is unchecked, or on the signature of the invoked

method, it will be passed directly to the client; otherwise it will be wrapped in an unchecked

exception by the AOP proxy.

Listing 6-21 provides an example of a “before” advice in Spring that counts all method

invocations:

Listing 6-21. A Counting “Before” Advice Example

public class CountingBeforeAdvice implements MethodBeforeAdvice {

 private int count;

 public void before(Method m, Object[] args, Object target) throws Throwable {

 ++count;

 }

 public int getCount() {

 return count;

 }

}

“Throws” Advice

“Throws” advice is invoked after the return of the joinpoint if the joinpoint threw an exception.

Spring offers typed “throws” advice. This means that the org.springframework.aop.ThrowsAdvice

interface does not contain any methods: it is a tag interface that indicates the given object imple-

ments one or more typed “throws” advice methods. These should be of the form afterThrowing

([Method], [args], [target], subclassOfThrowable).

Only the last argument is required; therefore, there can be anything from one to four argu-

ments, depending on whether the advice method is interested in the method and arguments.

The following are examples of “throws” advice methods.

This advice will be invoked if a RemoteException is thrown (including subclasses—see

Listing 6-22).

Listing 6-22. A “Throws” Advice Example

public class RemoteThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {

 // Do something with remote exception

 }

}

128 C H A P T E R 6 ■ S P R I N G A O P

The advice in Listing 6-23 is invoked if a ServletException is thrown. Unlike the preceding

advice, it declares four arguments, so that it has access to the invoked method, method argu-

ments, and target object:

Listing 6-23. A “Throws” Advice Example, with Arguments

public static class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

 public void afterThrowing(Method m, Object[] args, Object target,

 ServletException ex) {

 // Do something with all arguments

 }

}

The final example, shown in Listing 6-24, illustrates how these two methods could be used

in a single class, which handles both RemoteException and ServletException. Any number of

“throws” advice methods can be combined in a single class.

Listing 6-24. A Combined “Throws” Advice Example

public static class CombinedThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {

 // Do something with remote exception

 }

 public void afterThrowing(Method m, Object[] args, Object target,

 ServletException ex) {

 // Do something will all arguments

 }

}

“After Returning” Advice

“After returning” advice in Spring implements the org.springframework.aop.

AfterReturningAdvice interface, shown in Listing 6-25.

Listing 6-25. The AfterReturningAdvice Interface

public interface AfterReturningAdvice extends Advice {

 void afterReturning(Object returnValue, Method m, Object[] args, Object target)

 throws Throwable;

}

“After returning” advice can access the return value but cannot modify it. Like “before”

advice, it can access the invoked method, the methods arguments, and the target.

As an example, the “after returning” advice in Listing 6-26 counts all successful method

invocations that have not thrown exceptions:

C H A P T E R 6 ■ S P R I N G A O P 129

Listing 6-26. A Counting “After” Advice Example

public class CountingAfterReturningAdvice implements AfterReturningAdvice {

 private int count;

 public void afterReturning(Object returnValue, Method m, Object[] args, Object

 target)

 throws Throwable {

 ++count;

 }

 public int getCount() {

 return count;

 }

}

This advice does not change the main execution path. If it throws an exception, this will be

thrown up the interceptor chain instead of a return value.

“Introduction” Advice and Mix-Ins

In Spring, introductions are implemented as a special kind of advice: the “introduction”

advice. Hence, introductions implement an org.springframework.aop.

IntroductionInterceptor interface, which is a subclass of the org.aopalliance.intercept.

MethodInterceptor (see Listing 6-27).

Listing 6-27. The IntroductionInterceptor Interface

public interface IntroductionInterceptor extends MethodInterceptor {

 boolean implementsInterface(Class intf);

}

When defining an introduction, the invoke method inherited from the AOP Alliance

MethodInterceptor interface must implement the introduction: if the invoked method is part of

an introduced interface, the introduction interceptor is responsible for handling the method

call. Note that contrary to regular interceptors, introductions cannot invoke proceed.

Since introduction advice applies only at class level, rather than at method level, the

“introduction” advice necessitates the use of a special kind of advisor, which is provided by an

org.springframework.aop.InterceptionIntroductionAdvisor (see Listing 6-28).

Listing 6-28. The InterceptionIntroductionAdvisor Interface

public interface InterceptionIntroductionAdvisor extends InterceptionAdvisor {

 ClassFilter getClassFilter();

 IntroductionInterceptor getIntroductionInterceptor();

 Class[] getInterfaces();

}

130 C H A P T E R 6 ■ S P R I N G A O P

Contrary to a regular advisor, the introduction advisor does not define any MethodMatcher

or Pointcut, so that only class filtering is logical. The getInterfaces method returns the inter-

faces introduced by the advisor.

To illustrate the use of introductions, we use a simple mix-in example taken from the

Spring test suite. Suppose that we want to introduce the interface in Listing 6-29 into one or

more objects.

Listing 6-29. The Lock Introduction Example: The Lockable Interface

package aop.spring;

public interface Lockable {

 void lock();

 void unlock();

 boolean locked();

}

At the end, we want to be able to cast any advised objects to Lockable and call lock and

unlock methods. When the lock method is called, the target object becomes locked, and all

setter methods will throw a LockedException. When the unlock method is called, the target

object behaves normally again.

To implement this example, we need an IntroductionInterceptor. Spring provides a

default implementation that is convenient for most cases and that can be subclassed for our

case: org.springframework.aop.support.DelegatingIntroductionInterceptor.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an

actual implementation of the introduced interface(s), concealing the use of interception to do

so. The delegate can be set to any object using a constructor argument; this is the default dele-

gate (when the no-arg constructor is used). In our example, the delegate is the LockMixin

subclass of DelegatingIntroductionInterceptor. Given a delegate (by default itself), a

DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the dele-

gate (other than IntroductionInterceptor), and will support introductions against any of

them. The final exposed interfaces are defined by the IntroductionAdvisor.

So, LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable.

DelegatingIntroductionInterceptor automatically deduces that Lockable can be supported

for introduction (see Listing 6-30).

Listing 6-30. The Lock Mix-in Implementation

package aop.spring;

import org.springframework.aop.support.DelegatingIntroductionInterceptor;

public class LockMixin extends DelegatingIntroductionInterceptor

 implements Lockable {

 private boolean locked;

 public void lock() {

 this.locked = true;

C H A P T E R 6 ■ S P R I N G A O P 131

 }

 public void unlock() {

 this.locked = false;

 }

 public boolean locked() {

 return this.locked;

 }

 public Object invoke(MethodInvocation invocation) throws Throwable {

 if (locked() && invocation.getMethod().getName().indexOf("set") == 0)

 throw new LockedException();

 return super.invoke(invocation);

 }

}

In this code, the locked instance variable adds some state to the target object. Notice that

we can overload the invoke method of the interceptor in order to implement the locked check.

This check could have been done in a separate “before” advice, but it is more concise in this

way because the invoke method can directly access the locked field. Mix-ins generally do not

require the redefinition of the invoke method. The DelegatingIntroductionInterceptor

default implementation is usually enough: it calls the delegated method if the method is intro-

duced, or otherwise proceeds towards the joinpoint.

The required “introduction” advisor can, for instance, subclass DefaultIntroductionAdvisor,

as shown in Listing 6-31, which directly implements ClassFilter, so that the matches method can

simply be overridden to select advised classes (by default all the classes are advised).

Listing 6-31. The Lock Mix-in Advisor Implementation

package aop.spring;

import org.springframework.aop.support.DefaultIntroductionAdvisor;

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

 public LockMixinAdvisor() {

 super(new LockMixin(), Lockable.class);

 }

 // we only apply the lock mix-in to the Order class

 public boolean matches(Class clazz) {

 return clazz.getName().equals("aop.spring.Order");

 }

}

The mix-in can then be activated with the simple XML definition:

<bean id="lockAdvisor" class="aop.spring.LockMixinAdvisor"/>

132 C H A P T E R 6 ■ S P R I N G A O P

It is important to understand that it is impossible to use an IntroductionInterceptor

without an IntroductionAdvisor. With introductions, the advisor is per-instance because it is

stateful, and therefore you need a different instance of LockMixinAdvisor and LockMixin for

each advised object, so that the locked variable is local to an advised bean.

Advanced Features
This section presents some advanced features of Spring AOP.

Ordering Aspects

By default, advice applies in the same order as constructed. At times, the programmer may

want to guarantee a given order. In Spring, to make the factory automatically ensure an order,

the advisor that installs the advice must implement the org.springframework.core.Ordered

interface (see Listing 6-32).

Listing 6-32. The Ordered Interface

public interface Ordered {

 int getOrder();

}

In advisors, getOrder returns Integer.MAX_VALUE by default, which means that it has the

lowest priority (0 being the highest). To force an order, you can configure the order property of

an advisor as any other bean; for example, to ensure that the lock mix-in showed in the prev-

ious section is applied with the highest priority, you use the code in Listing 6-33.

Listing 6-33. Ordering the Lock Advisor

<bean id="lockAdvisor" class="aop.spring.LockMixinAdvisor">

 <property name="order"><value>0</value></property>

</bean>

Programmatically Configured Aspects

Since Spring AOP is dynamic AOP, advice can be dynamically attached or detached from a

given advised object.

The Advised Interface

When using a factory that supports AOP (the ApplicationContext factory being the most

common), the bean instances returned by the factory during a call to the getBean methods are

actually AOP proxies. These AOP proxies implement the org.springframework.aop.framework.

Advised interface. Consequently, any program can cast the manipulated objects into the

Advised interface and access the AOP framework API to implement program-based dynamic

aspect configuration/reconfiguration.

The (partial) Advised interface is shown in Listing 6-34.

C H A P T E R 6 ■ S P R I N G A O P 133

Listing 6-34. The Advised Interface

public interface Advised {

 [...]

 Advisor[] getAdvisors();

 int indexOf(Advisor advisor);

 void addAdvisor(Advisor advisor) throws AopConfigException;

 void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

 boolean removeAdvisor(Advisor advisor) throws AopConfigException;

 boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

 void removeAdvisor(int index) throws AopConfigException;

 void addAdvice(Advice advice) throws AopConfigException;

 void addAdvice(int pos, Advice advice) throws AopConfigException;

 boolean removeAdvice(Advice advice) throws AopConfigException;

 boolean isFrozen();

}

The Advised interface provides all the primitives to programmatically manipulate the

advisors that apply on a given AOP Proxy. It also allows for direct advising, when an Advice

instance is available.

Notice the isFrozen method, which returns true if no configuration is possible on the

advised instance. When isFrozen returns true, an attempt to call any configuration method

will throw an AopConfigException.

Using the Proxy Factory

When a bean is accessed through a factory that does not originally support AOP, it is still

possible to programmatically add some AOP features. This is done through ProxyFactory,

which allows for the dynamic creation of a new proxy delegating to a new proxied bean. Listing

6-35 shows an example.

Listing 6-35. Example of Use for the Proxy Factory

// creates a new proxy factory

ProxyFactory factory = new ProxyFactory(MyBusinessInterfaceImpl);

// adds an interceptor to be added to all methods

factory.addInterceptor(myMethodInterceptor);

// adds an advisor

factory.addAdvisor(myAdvisor);

// retrieves an AOP proxy for my business interface

MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

Auto-Proxying

In Spring, a factory can be configured to automatically create specific proxies for the accessed

beans. This is the auto-proxy feature.

134 C H A P T E R 6 ■ S P R I N G A O P

With this feature, the programmer sets up certain special bean definitions in the XML

bean definition file for configuring the auto-proxy infrastructure. The configuration declares

the targets eligible for auto-proxying.

Two configuration means are available:

• Using an auto-proxy creator that refers to specific beans in the current context

• Auto-proxy creation driven by source-level metadata attributes

Using an Auto-Proxy Creator

For the first means of configuration, several auto-proxy creators are available in the org.

springframework.aop.framework.autoproxy package. For instance, the BeanNameAutoProxyCreator

automatically creates AOP proxies for beans with names matching literal values or wildcards (see

Listing 6-36).

Listing 6-36. Configuration for Auto-Proxying

<bean id="myBeanNameProxyCreator"

 class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">

 <property name="beanNames"><value>order*</value></property>

 <property name="interceptorNames">

 <list>

 <value>myInterceptor</value>

 </list>

 </property>

</bean>

Here, we ask for the creation of an AOP proxy for all the beans with names starting with

order. The AOP proxies will be advised by the advisors given by the interceptorNames property.

Metadata Driven Auto-Proxying

A particularly important type of auto-proxying is driven by metadata. Instead of using XML

deployment descriptors as in EJB, configuration for transaction management and other enter-

prise services is held in source-level attributes (similarly to the .NET model).

To implement this feature, the programmer can use the DefaultAdvisorAutoProxyCreator,

which automatically creates proxies for a given bean if an advisor has to advise any of its

methods. As a consequence, if the advisor is programmatically able to be metadata-aware by

using the Spring API for source-level metadata, or even the Java 5 metadata facility, the auto

proxying will be metadata driven. As an example, we can use the org.springframework.

transaction.interceptor.TransactionAttributeSourceAdvisor, which is provided by Spring

and selects the advisable method depending on source-level transactional attributes.

<bean id="autoProxyCreator"

 class=

 "org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator">

</bean>

<bean id="txAdvisor"

C H A P T E R 6 ■ S P R I N G A O P 135

 autowire="constructor"

 class=

 "org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">

 <property name="order"><value>1</value></property>

</bean>

Summary
In this chapter, we depicted the basic features of Spring and illustrated how to use Spring AOP.

Spring provides a lightweight bean container (factory) that implements the Inversion of

Control (Dependency Injection) principle. The IoC principle allows a clean separation

between the bean definition and the bean dependency management and configuration. In

short, when an application needs a bean, it asks the factory in charge of creating it and config-

uring it with the application context (usually expressed in XML bean configuration files).

A strength of Spring is that it applies the same IoC principles to AOP, which gives it two

primary advantages: First, AOP is cleanly integrated into the bean definition, which makes the

whole framework convincing and consistent. In addition, most of the development and config-

uration processes are already familiar to programmers who have used Spring beans. Second, it

gives a good balance between configuration and Java programming. Even though most AOP

basic features are usable through property configuration, it is always possible to customize the

AOP model programmatically, or even to provide new configurable AOP concepts. The clean

interface-based design of Spring is actually of a great help here.

From an abstract model perspective, Spring AOP defines the same concepts as classical

AOP (advice, pointcuts, introductions, cflows), except that it materializes the link between an

advice and a pointcut with the concept of an advisor. Introductions are handled as a special

type of advice; it is our feeling that some of the concepts provided need further enhancement

and refinement, which is understandable since Spring AOP is a young framework. The open

design of Spring, especially interface-based design and IoC, will make it easy to improve the

model in the future.

From an implementation perspective, Spring AOP relies on a proxy framework imple-

mented on top of the JDK and the CGLIB proxies, which allows for a more dynamic AOP.

Compared to other AOP implementations, it makes some of the Spring AOP support less effi-

cient and less flexible. In particular, the distinction between “call” and “execution” advice is

not clear, and the cflow mechanism is not as flexible as in AspectJ or JBoss-AOP. Having to

create a lot of proxies is also less efficient than more intrusive implementations such as

AspectJ. On the other hand, the Spring proxying mechanism, and especially the Spring auto-

proxying mechanism, gives a way to better integrate AOP in a J2EE environment that includes

complex legacy code.

137

■ ■ ■

C H A P T E R 7

AOP Tools Comparison

The previous chapters presented four of the most widely used tools for AOP: AspectJ, JAC,

JBoss AOP, and Spring AOP. This chapter compares these four tools with regard to program-

ming aspect-oriented applications.

AspectJ, JAC, JBoss AOP, and Spring AOP each has its own techniques for implementing

the concepts of AOP presented in Chapter 2. The three main concepts of AOP—aspect,

pointcut, and advice—can be implemented with each of the four tools, but their forms as well

as the means for programming them, such as syntax and API, vary. The terms used to describe

these concepts may also vary among the tools; for example, the term advice is used by AspectJ,

whereas JAC uses the term wrapper and JBoss AOP uses interceptor.

Besides some minor conceptual and terminology differences, these tools can be classified

into two types of approaches: the language approach (AspectJ) and the framework approach

(JAC, JBoss, and Spring). These two types of approaches imply some important differences,

which we’ll cover in this chapter.

Table 7-1 sums up and compares the features of AspectJ, JAC, JBoss AOP, and Spring AOP,

which we’ll cover in more detail throughout this chapter.

Table 7-1. Comparison of Features of AspectJ, JAC, JBoss AOP, and Spring AOP

Feature AspectJ JAC JBoss AOP Spring AOP

Approach Language Framework Framework Framework

Weaver
implementation

Compile time or
load time

Run time Run time Run time

Aspect Keyword aspect Class extending
AspectComponent

Regular Java class Set of advisors

Pointcut Dedicated syntax Method pointcut
with GNU regular
expression

XML tags with
java.util.regexp
expressions

XML with Perl 5 regular
expressions

After/before
code

Advice code Wrapper Interceptor Interceptor

Intercepted
object
execution

proceed proceed invokeNext proceed

138 C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N

Weaver Implementation
The heart of an aspect-oriented system is the aspect weaver. It is a tool used for integrating

aspects with classes. Several ways of performing the weaving exist. AspectJ employs a compile-

time weaver, which is typical of the language approach, whereas JAC, JBoss AOP, and Spring

AOP use run-time weavers, which are typical of the framework approach.

The AspectJ weaver can take either source code or bytecode as input. In addition to the

compile-time weaving mode is a load-time mode, where aspects can be woven while the byte-

code of the application is loaded into the JVM. The advantage of compile-time (or load-time)

weaving is that it delivers woven applications with better execution times than are possible for

run-time weaving. The disadvantage is that there is no distinction in the executed code

between the aspect code and the application code. If the programmer needs to modify, add, or

remove an aspect, then the entire application must be woven again.

With JAC, JBoss AOP, and Spring AOP, classes and aspects are compiled separately, and

the weaving is performed while the application is loaded and executed. Aspect and class

instances are separate run-time entities, and the weaver orchestrates the execution according

to the weaving directives. In such a mode, the weaving is an operation very similar to binding:

an aspect instance is bound to the objects where the aspect applies. The advantage of this

mode is that the binding can be dynamically modified, thus enabling the removal of aspects

and the weaving of new aspects without recompiling the application. This feature can be useful

for applications such as web servers, which have to be readily available, since new features can

be deployed without stopping the application. One of the disadvantages of run-time weaving

is that the applications are generally slower than statically woven ones.

Note that although AspectJ could also implement run-time weaving, it is less natural as

AspectJ follows the language approach. Most of the type checking performed by the compiler

would then be disabled, which would erase most of the advantages of the language approach.

On the other hand, the framework approach can hardly implement compile-time weaving,

since it would imply some preprocessing tool, which is implemented much more efficiently by

the language approach.

Table 7-1. Continued

Feature AspectJ JAC JBoss AOP Spring AOP

Introduction
mechanism

Intertype
declaration

Role method Mix-in Introduction advice
(mix-in)

Default aspect
instantiation
model

Singleton Singleton One aspect
instance per
aspectized class

Singleton

Aspect ordering Keyword declare
precedence

Property
jac.comp.
wrappingOrder

Declaration order
in the
jboss-aop.xml file

org.springframework.
core.Ordered interface
implementation

C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N 139

Aspect
We already mentioned that AspectJ is a language with its own syntax (with the AspectJ version 5,

this dedicated syntax can be replaced by annotations), whereas JAC, JBoss AOP, and Spring AOP

are frameworks.

With AspectJ, aspects are software entities that define pointcuts and advice code, and they

may also define fields and methods. Aspect inheritance has been implemented, but with some

restrictions compared to class inheritance. A concrete aspect can extend an abstract aspect,

but not another concrete one.

With JAC, aspects are regular Java classes that extend the AspectComponent class provided

by the JAC library. An aspect defines pointcuts, and advice code is written in separate wrapper

classes. One of the key features of JAC is the mechanism known as aspect configuration. This

tool allows the programmer to define the way an aspect can be reused with different applica-

tions while also tailoring to each application’s needs. For this, a set of configuration elements

is externalized from the aspects into some configuration files that can be modified without

recompiling the whole application.

The concept of an aspect in JBoss AOP is split in two kinds of files: intercepting methods or

interceptors implement advice code and are defined in Java classes, and pointcuts associate

these interceptors with joinpoints and are defined in XML files. With newer versions of JBoss

AOP, this distinction disappears; like in AspectJ, pointcuts can be defined with Java 5

annotations.

With Spring AOP, advice and pointcuts are implemented in regular Java classes, which are

configured as beans. The dependency injection principle allows for the configuration of the

links between advice and pointcuts. There is no explicit aspect entity; however, an aspect can

be seen as a set of advisors.

The study of these four tools shows that the concept of an aspect is not mandatory for AOP.

The actual primary concepts are pointcuts and advice, as well as a way to link them together.

An aspect is no more than a set of pointcuts and advice that are logically related to a given

concern. However, making this logical link explicit is not mandatory, and it is also useful to be

able to define advice and pointcuts independently from a given aspect. In this case, we can say

that these are anonymous pointcuts or advice.

Besides gathering pointcuts and advice, an important role of an aspect is to be used as a

configuration unit for a given concern. As just explained with the aspect configuration mecha-

nism of JAC, the configuration capability is of primary importance for aspect reuse. We will

detail this feature later in this chapter. However, when a system already natively supports a

configuration level (such as the Spring bean configuration level), the aspect concept is not

needed. It emerges from some configuration holding pointcuts and advice.

Pointcut
Recall that a pointcut is a set of code locations, called joinpoints, where an aspect can be

woven. This idea is central in AOP. Pointcuts define the crosscutting nature of an aspect.

A pointcut “talks about” the application and designates strategic locations where an aspect

applies.

140 C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N

In this section, we’ll summarize how to write pointcuts and the types of joinpoints

supported by the various aspect-oriented languages and frameworks featured in this book.

Pointcut Definition

All existing aspect-oriented tools provide a pointcut language for defining the set of joinpoints

that are included in a pointcut. Basically, this pointcut language can be seen as a query

language. Instead of being a classic database, the structure to which the query is applied is a

program. The goal here is to define a language that allows developers to write relevant queries

in the simplest and most practical way possible. Consequently, a pointcut language typically

defines a few keywords, the classical Boolean operators (AND, OR, NOT), and wildcards such

as the character * for selecting joinpoint sets in a concise way.

With AspectJ, pointcuts are defined with a dedicated syntax (the keyword pointcut) or

with a Java 5 annotation. JAC pointcuts are defined by invoking an API with GNU regular

expressions that define the set of joinpoints based on class names, object names, and method

signatures. JBoss AOP pointcuts are defined either as XML tags or as Java 5 annotations. Spring

AOP pointcuts can be defined either in XML or programmatically in Java.

Most of the time, pointcuts are dependant on the structure of the application. If the appli-

cation code changes, the locations where an aspect applies will most likely change too. The

situation is similar when programmers want to reuse their aspects with distinct applications:

pointcuts have to be adapted to the new application. This is why the aspect configuration

process mentioned in the previous section is so important. Note that with the language

approach (AspectJ), which implements the weaving at compile time, the joinpoints belonging

to a given pointcut can be determined at compile time, which is hardly the case for frame-

works. With the right tools (e.g., the AJDT Eclipse plug-in), aspect programmers can have

better control over their programs with the language approach.

As we said, pointcuts can be seen as queries on the program. These queries return a set of

joinpoints where the aspects apply. An aspect tool is characterized by the supported types

of joinpoints. For a given program, a type of joinpoint is materialized as a set of joinpoint

shadows—that is, all the program locations that correspond to a given joinpoint type. For

instance, the method call joinpoint type corresponds to all the places where a method is called.

In the next section, we’ll look at a comparison of the tools’ supported joinpoint types.

Joinpoint Types

AspectJ is the AOP tool that supports the largest set of joinpoint types. We’ll examine in this

section the types of joinpoints supported by AspectJ, JAC, JBoss AOP, and Spring AOP.

• Method execution: All AOP tools support this except Spring, which supports transparent

proxying.

• Method call: This type is supported by AspectJ and JBoss AOP. JAC does not support it.

When programming applications with remote communications, however, the method

calls can be intercepted by wrapping the client-side proxy, which is rather similar to a

method call joinpoint. Spring supports transparent proxying, which can be seen as

a method call pointcut.

• Constructor execution: All AOP tools except Spring support this type of joinpoint.

C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N 141

• Inherited constructor execution: When a constructor calls a superconstructor, AspectJ

can distinguish the execution of the current constructor from that of the inherited one.

• Field read: AspectJ and JBoss AOP can weave aspects around this joinpoint type. JAC and

Spring do not support it directly. However, JAC performs a bytecode analysis to detect

methods that read fields.

• Field write: This joinpoint type is similar to the field read type.

• Exception: AspectJ can intercept the start of an exception catch block. Neither JBoss

AOP, JAC, nor Spring supports this joinpoint type. However, they support some “after

throwing” advice (exception handlers in JAC), which modularize the handling of an

exception for all the joinpoints included in a pointcut. Note that the “after throwing”

advice (which is also supported by AspectJ) is less powerful than the catch block notifi-

cation, because it does not allow the aspect to modify the way a base program deals with

existing exceptions.

• Static block execution: This joinpoint type is supported by AspectJ, but not by the other

tools.

• Advice code execution: This is an AspectJ joinpoint type. With the other tools, advice code

is defined in a regular Java method. Programmers can thus aspectize the executions and

the calls of these methods.

• Control flow: AspectJ supports joinpoint types that correspond to entry into and the exit

from a control flow. This feature is not available with JBoss AOP or JAC; however, pro-

grammers can emulate it. Spring AOP supports some kinds of cflow.

It is interesting to note that tools that follow the framework approach (JAC, JBoss, and

Spring) support fewer joinpoint types than AspectJ. There are several reasons for this, both

technology and integration related.

On the technology side, since frameworks are written in pure Java and use reflection, byte-

code manipulation, and proxying techniques for their implementations, it is more compli-

cated for them to implement fine-grained joinpoint types such as, for instance, exception

catches.

Regarding integration, since the framework approaches are placed in the context of

component frameworks (EJB for JBoss and simple beans for JAC and Spring), they often delib-

erately decide to not support very fine-grained joinpoints in order to maintain the encapsu-

lation principle for the aspectized components. For instance, Spring and JAC deliberately do

not support field read/write joinpoint types so that the advice can be applied only to the

component interface (i.e., the fixed part of the components). As another example, Spring AOP

does not support constructor execution joinpoints because it may interfere with the construc-

tion process implemented in the Spring factory. Of course, these restrictions make the AOP

frameworks less flexible than AspectJ. On the other hand, they prevent the programmers from

misusing the framework, and they make the AOP programs more reusable. For example, refac-

toring a class by changing its implementation and fields, but not its interface, may impact an

AspectJ pointcut, but it will never impact a JAC or Spring pointcut, since they do not support

field interception.

Another important point is that some advanced joinpoint types of AOP provided by

AspectJ can be implemented by using less advanced features. For instance, the cflow feature

142 C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N

can be simply implemented by using execution advice and standard thread-local variables

(java.lang.ThreadLocal). This justifies the fact that these types of joinpoints, although useful

for simplification and clarity, are not always provided.

Advice
Pointcuts allow programmers to define where an aspect applies. The concept of advice code

defines the behavior of an aspect—in other words, advice code states what an aspect is doing.

The terms used for the code structure that defines the behavior of an aspect varies from

advice code (AspectJ), to wrapper (JAC), to interceptor (JBoss AOP and Spring AOP). However,

the idea behind these terms is the same: to define the instructions that will be executed before

and after the joinpoints.

Advice Code Types

The three main types of advice code are “before,” “after,” and “around.”

• “Before” advice code is executed before the joinpoints.

• “After” advice code is executed after the joinpoints. There are two main types of “after”

advice code:

• “After returning” advice code is executed after a normal execution/invocation.

• “After throwing” advice code is executed after an abnormal execution/invocation,

which leads to an exception being thrown.

• “Around” advice code is executed both before and after the joinpoints.

AspectJ and Spring provide all of these advice code types, while JAC and JBoss AOP chose

to provide only the “around” advice code type. Indeed, “around” advice code entails all the

other kinds of advice. For instance, “before” advice code can be seen as “around” code that

calls proceed and where the “after” part is missing. As another example, “after throwing” advice

code is “around” advice code that encapsulates the call to proceed in a try/catch block.

Providing the “before” and “after” constructs has several advantages. First, it makes the

aspect code clearer, as programmers can easily see what kind of function is implemented,

without having to look at the advice code. Second, it helps programmers avoid programming

mistakes such as forgetting to proceed to the joinpoint. Third, “before” and “after” advice code

can be implemented more efficiently by the AOP frameworks, since the reification of the join-

point is not needed in these cases (see the “before” and “after” advice code in Chapter 6).

However, these advantages are not crucial when programming complicated aspects that need,

for instance, to proceed or catch exceptions depending on particular execution contexts. In

these cases, the “around” advice code general form is preferred, and this explains why some

approaches stick with “around” advice code only.

Note that in all AOP tools, a special construction is provided for delimiting the “after” and

the “before” parts of “around” advice code. This construction takes the form of a keyword

(proceed) with AspectJ or a method call (proceed with JAC and Spring AOP, and invokeNext with

JBoss AOP). This is, however, a minor difference, and the underlying semantics remain the

same.

C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N 143

Finally, the major difference between AspectJ (language approach) and the other tools

(framework approach) is that AspectJ provides typed advice. Indeed, in AspectJ, advice code

can take well-typed parameters that are bound to some joinpoint contextual elements (e.g.,

parameters, targets, and callers). Well-typed advice code improves the program quality, read-

ability, and performance (static binding). However, the advantages of typed advice code need

to be balanced against the fact that it is not always possible to implement advice code in a

typed way, especially when it has to perform generic functions on the base program (e.g., a

persistence aspect should be applied generically on all the objects of the program and thus

cannot be typed).

Joinpoint Introspection

When advice code is executed before, after, or around a joinpoint, programmers sometimes

need to retrieve information about the current joinpoint. For example, a programmer may

need to know what the method associated with the joinpoint is or what the arguments of the

call are. The gathering of such information is called joinpoint introspection. All four AOP tools

presented in this book support this feature.

AspectJ provides the keyword thisJoinPoint for introspecting joinpoints in advice code.

This keyword returns a reference to an object created by AspectJ for each encountered join-

point. This object implements the org.aspectj.lang.JoinPoint interface and, depending on

the joinpoint type, several distinct methods exist for retrieving information about the current

joinpoint.

With JAC, Spring AOP, and JBoss AOP, advice code consists of regular Java methods. These

methods are called each time a joinpoint matches a defined pointcut. These methods take as a

parameter an object that, similar to the AspectJ keyword thisJoinPoint, provides information

about the current joinpoint. With JAC and Spring AOP, the interface implemented by this object

is org.aopalliance.intercept.Joinpoint, which belongs to the AOP Alliance standard API.

JBoss AOP uses a similar but JBoss-specific interface: org.jboss.aop.joinpoint.Invocation.

Introduction Mechanism
The introduction mechanism allows for extending an application with code elements (fields,

methods, etc.) defined in aspects.

With AspectJ, this mechanism is known as intertype declaration. The idea is that a type (an

aspect) performs declarations for a target type. AspectJ can introduce fields, methods, and

constructors. The target of the introduction is a class or an interface. If an interface is used, all

the classes that implement the interface are the target of the introduction. Interfaces can also

be introduced by AspectJ.

With JAC, two types of code elements can be introduced: methods and exception handlers.

The introduced methods (called role methods) and the exception handlers are defined in

wrapper classes. The role methods can be invoked with an API that relies on the Java runtime

reflection capabilities. The advantage of using reflection here is that the introduction mecha-

nism is very flexible: it is easy to add or remove an introduction at run time. The disadvantages

are that no type check of any kind is performed by JAC before the actual invocation, and the

invocation process is relatively slow due to reflection overhead.

144 C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N

JBoss AOP and Spring AOP provide a mechanism known as mix-in for introducing code

elements into an application. With this mechanism, the fields and methods defined in the mix-

in class are appended to the classes that are the target of the mix-in. Well-formed mix-ins

should implement an interface that declares the introduced methods. Under the hood, the

AOP framework will use bytecode manipulation to make the target class implement the mix-in

interfaces. Then, when invoking a mix-in method, programmers must cast the target object to

the interface declaring the method. This mechanism is not type-safe either, since Java does not

implement any strong type checks on the interfaces (dynamic binding). However, it has the

advantage of being far more efficient than reflection. Besides, once the cast is done on the

target object, the IDE will be able to provide some support, such as contextual help and code

completion.

To summarize the introduction mechanism, only the AspectJ language approach is type-

safe regarding this feature, since some type-checking mechanism is implemented by the

compiler. Tools that follow the framework approach cannot be type-safe, since they remain

pure Java, which does not support such a feature. However, the mix-in approach implemented

by JBoss and Spring seems to be a good trade-off. Indeed, most programmers would argue that

it is more natural to cast an object to a given interface to be allowed to call an introduced

method. With AspectJ, the code can sometimes be difficult to read and understand since it can

refer to methods that do not exist in any classes or interfaces supported by the target objects.

Advanced Features
This section compares the various advanced features implemented by AspectJ, JAC, JBoss AOP,

and Spring AOP. Specifically, we cover aspect instantiation, ordering, and reuse.

Aspect Instantiation

Similar to classes, aspects are code elements that can be instantiated, and the term aspect

refers to either a type or an instance. However, unlike with classes, aspects are not directly

instantiated by programmers; in other words, programmers never call new for instantiating an

aspect. Aspect instances are automatically created by the AOP language or framework.

With AspectJ, the default policy is to create only one instance of each existing aspect, such

as aspects for singletons. As a consequence, the data defined in an aspect are shared by all the

joinpoints where the aspect applies. Programmers can redefine this default policy by speci-

fying that one instance of the aspect must be created for every object that is the executing

object of a pointcut (clause perthis) or for every object that is the target object of a pointcut

(clause pertarget). Similarly, an aspect instance can be created each time the program enters

a control flow (clauses percflow and percflowbelow). AspectJ 5 provides a new instantiation

policy (clause pertypewithin).

With JAC, the instantiation policy deals with aspects and wrappers, both of which are by

default singletons. A distinct instantiation policy can be chosen for wrappers by specifying that

an instance of a wrapper must be created for every joinpoint included in a pointcut. When

programming distributed applications with JAC, aspect and wrapper instances are replicated

on each host.

The default policy implemented by JBoss AOP is to associate one instance of a wrapper

class per aspectized application class—in other words, one instance per class where one of the

pointcuts defined in the aspect matches. This default policy can be redefined by specifying a

C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N 145

factory that will be responsible for creating aspect instances according to the programmers’

needs.

Finally, Spring AOP default policy is also to instantiate aspects as singleton.

Although the framework approach provides default policies, it is always possible to instan-

tiate an aspect dynamically by using a lower-level Java API. In each framework (JAC, JBoss, and

Spring), it is thus possible to dynamically add new pieces of advice and introductions to a

target object. These features make the framework approach much more flexible than the

language approach.

Aspect Ordering

When several aspects apply around the same joinpoint, the execution order of these aspects

must be specified. Most of the time, this ordering depends on the semantics of aspects, and no

automatic rules can be defined. When considering a trace and a security aspect, for example,

the trace may be executed before the security if programmers want to trace every request.

Alternatively, the security may be executed first if programmers need only tracing requests

from unauthorized users. In such a case, the programmers must explicitly specify the ordering.

With AspectJ, aspect ordering is defined with the instruction declare precedence. The

order is global and applies to the whole application. Some ordering may be left unspecified,

and in this case, there is no guarantee of the execution order.

With JAC, aspect ordering is defined with the system property jac.comp.wrappingOrder.

JBoss AOP uses the tag <precedence> in the XML file jboss-aop.xml. Spring AOP provides an

interface (org.springframework.core.Ordered) that must be implemented to specify the order.

In all cases, the order is global, and there is no guarantee that some orderings will not be left

unspecified.

At first glance, it may appear that the precedence feature adopted by AspectJ and JBoss is

the most powerful, since it allows the ordering of aspects declaration. The precedence relation-

ship is transitive, and the aspect system will determine the final order by looking at all the

declared orders of all the aspects. However, we think that the precedence construct can lead to

maintainability issues when refactoring the program (i.e., when adding, removing, renaming,

or changing aspects). It indeed may happen that all the precedence declarations would need to

be changed across the program. Consequently, a centralized ordering declaration like JAC’s

seems to be reasonable for more complex programs. Hence, we advise programmers to use the

precedence feature of AspectJ and JBoss in a centralized way by creating a specific aspect for

managing all other aspect ordering. Unfortunately, the Spring ordering feature would not

allow any centralized ordering declaration.

Aspect Reuse

Just as programmers can reuse a library of classes with different applications, they can also

write libraries of aspects. Remember that, when writing an aspect, advice code defines the

behavior of the aspect, whereas pointcuts define where the aspect must be integrated in the

application. Pointcuts are therefore highly application-dependant and can seldom be reused,

so the issue of reusing aspects is essentially a matter of reusing aspect codes.

With AspectJ, inheritance and abstract pointcuts allow for the reuse of aspects. As with

abstract methods, an abstract pointcut is a pointcut declared with a name and a signature, but

without an expression. Abstract pointcuts can be used like any other pointcut to define advice

146 C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N

code. As with classes, the inheritance mechanism allows for extending an aspect, reusing the

existing definitions of the superaspect, defining new advice code in the subaspects, and

making abstract pointcuts concrete. With AspectJ, an aspect can extend an abstract aspect, but

not a concrete aspect. Reusing aspects is then a matter of writing abstract aspects with advice

code and abstract pointcuts and extending them to adapt the aspects to a given application by

making the pointcuts concrete.

With JAC, the writing of aspects is separated in two regular Java classes: one for the

wrapper and one for the aspect component. In addition, a configuration mechanism allows for

the definition of application-dependant parameters such as pointcut expressions and system

properties in so-called configuration files. Most of the time, reusing aspects with JAC is simply

a matter of writing a new configuration file for adapting the aspect component and the

wrapper classes to the new application.

JBoss AOP separates the writing of interceptors and of pointcuts. The former are regular

Java classes, whereas the latter are XML files. Interceptors are then easily reused, whereas

pointcuts must be adapted to each new application.

Finally, Spring AOP relies on its bean configuration mechanism to configure the aspects

for different contexts.

When we look at aspect reuse for these tools, we can see that the language approach uses

a language-level concept such as inheritance, while the framework approach uses configura-

tion. Both have their advantages and disadvantages. For instance, the inheritance approach is

less flexible than configuration, but it ensures better compatibility between the aspects and the

inherited aspects. In our opinion, a combination of the two approaches represents a complete

solution for aspect reuse.

Summary
In this chapter, we compared the four AOP tools presented in this book: AspectJ, JAC, JBoss

AOP, and Spring AOP. We outlined some of the minor differences among the tools, and we

explained that the major differences are the result of implementation dissimilarities between

the language approach (AspectJ) and the framework approach (JAC, JBoss AOP, and Spring

AOP).

As we have seen in this chapter, the language approach allows for static typing and more

compile-time checks, which improve the quality of the programs (see, for example, the “The

Joinpoint Types” section). The language approach is also more efficient, since compilers can

optimize the woven code for static binding and avoid run-time reflection or dynamic proxying

when they are not needed.

On the other hand, the framework approach uses run-time reflection and joinpoint intro-

spection. These techniques make the frameworks less efficient, but also more flexible than the

languages. Using the framework approach, it is possible to dynamically adapt an application

while it is running. In addition, the framework approach uses existing languages or tools such

as Java, XML, or Ant, which make it easier to integrate these tools within standard development

environments. This last point is key, since it explains the success of the framework approach,

while only one representative of the language approach is actually widely used: AspectJ.

The success of AspectJ is the result of the major work by AspectJ’s creators to integrate the

tool into IDEs such as Eclipse. Once AspectJ is well integrated, the use of AOP becomes simpler

than a dedicated language, since the IDE can provide support such as contextual help, code

C H A P T E R 7 ■ A O P T O O L S C O M P A R I S O N 147

completion, and design error detection, which can sometimes be tedious to support with the

framework approach since these tools perform less type checking.

Although the language and framework approaches sometimes compete, our feeling is that

they should be seen as complementary, since they have very different properties. The work

done with AspectJ 5, which aims to integrate the AspectJ language and the AspectWerkz frame-

work, is a step in the right direction. However, a lot of work is still needed to create an ideal tool

that cleanly integrates the fexibility of frameworks and the type-checking capabilities of

languages.

149

■ ■ ■

C H A P T E R 8

Design Patterns and AOP

Design patterns offer generic solutions for recurring design problems. Most developers who

use object-oriented programming are familiar with their use. Patterns are not specific to a

particular language; in fact, most of the problems they tackle are not even specific to a partic-

ular programming paradigm. Consequently, many design problems usually resolved through

object-oriented programming can be solved using AOP.

The core design patterns became popular in 1995 with Addison-Wesley’s publishing of

Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides (commonly known as the Gang of Four, or GoF). Although several other

design patterns have been defined since then, most are based on this work.

This chapter aims to redefine selected design patterns with the aspect-oriented approach.

We compare these redefined patterns with their object-oriented definitions so that the advan-

tages of AOP will be highlighted.

The first section of this chapter gives a quick introduction to these reusable models. We

then present and discuss the design patterns that show the most significant modularity

improvements with an AOP implementation.

Design Patterns, or Elements of Reusable

Software
Design patterns are one approach for reusability, which is one of the key concepts of object-

oriented programming.

The idea of a pattern is not unique to programming; in fact, the idea stems from a similar

concept that is used in architecture and town planning, an idea formalized by architect Christo-

pher Alexander. The ideas were adapted to object-oriented programming by Ward Cunningham

and Ken Beck in their article “Using Pattern Languages for Object-Oriented Programs,” which

was presented in 1987 at a conference in Orlando, Florida.

As stated previously, design patterns offer generic solutions to recurrent problems in

specific contexts. The context in which a design pattern is used is important because a problem

may be solved differently depending on the context. A good quality design pattern must be the

abstraction of a concrete and well-tested solution.

A design pattern must be well documented if it is to be used efficiently. Several catalogues

of design patterns are available, the GoF book being the most well known. Each catalogue is

split into sections that contain descriptions of the design patterns.

150 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

With this documentation, almost anyone can use these design patterns and allow best

practices to be applied easily in application development; however, it is still necessary to under-

stand the possible applications of a design pattern in order to use it correctly.

Implementation of Design Patterns with AOP
Currently, a great deal of research is being carried out on the implementation of design patterns

using AOP. This is because many design patterns crosscut, and therefore it is difficult to ensure

sufficient modularity of these patterns within the object-oriented paradigm.

In 2002, an OOPSLA conference article by Jan Hannemann and Gregor Kiczales1

discussed precursory research in this area. This work highlighted that implementing certain

design patterns in AOP can lead to the following advantages:

• Locality: The code of the functionality is contained within the aspect rather than within

the classes and, as a result, modularization is improved.

• Reusability: Refactoring code into aspects allows a greater degree of abstraction and

better reusability.

• Composition transparency: An object can have several patterns applied to it without the

global implementation becoming confusing.

• (Un)pluggability: The overall structure of the application depends less on the design

patterns implemented. With AOP, a simple parameter change allows you to activate or

deactivate a design pattern, for example, when making a class a singleton.

However, these four advantages were not apparent for all design patterns. Some show all

four benefits, others none. Of the 23 GoF design patterns, 17 show improvements with an

implementation using AOP; 12 benefit in all four ways.

The next sections apply AOP techniques to a sample of the GoF design patterns.

The Singleton Design Pattern
The first design pattern that we study with regards to aspect-oriented programming tech-

niques is the Singleton. We begin by providing a quick description of this pattern, and proceed

by giving two implementations of the pattern, one with JBoss AOP and one with AspectJ. We

then conclude this section with an evaluation of the implementations.

Description

The Singleton design pattern can be described as follows:

• The problem and its context: Certain classes should only have a single instance during

the execution of a program. This can be necessary for two reasons: either the class

models a unique object, such as a set of global variables for the application, and having

1. Jan Hannemann and Gregor Kiczales. “Design Pattern Implementation in Java and AspectJ.” Proceed-

ings of the 17th Conference on Object-Oriented Programming: Systems, Languages and Applications

(OOPSLA’02), ACM SIGPLAN Notices, 37(11): 161–173, November 2002.

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 151

two instances, may lead to run-time errors; or alternatively, because one instance is

sufficient to offer all the services required, and by ensuring that not more than one

instance is created, you economize memory and resources.

• The solution to the problem: The class must have a static attribute, usually called

instance, to store a reference to the unique instance, as well as a method, generally

called getInstance, that returns the value of instance. If the instance is null, getInstance

creates a new instance of the class and stores its reference in the instance attribute, and

then returns it to the caller.

Listing 8-1 shows one way in which the singleton can be implemented using Java.

Listing 8-1. Implementation of the Singleton Design Pattern Using Java

public class MySingleton {

 private static MySingleton instance = null;

 public static MySingleton getInstance() {

 if (instance==null) {

 instance = new MySingleton();

 }

 return instance;

 }

}

Because of the method getInstance, any class using MySingleton is ensured to be using the

same instance of this class. The inconvenience of this is that the new operator cannot be used

directly by the other classes to instantiate MySingleton. Using the Singleton design pattern is

therefore not transparent for the classes that use MySingleton because these classes have to call

getInstance instead of the usual constructor.

The issue of “transparency” in a design pattern, with respect to the other classes of an

application, is not limited to the Singleton design pattern. In general, the use of a design

pattern in an application has important implications for the classes with which it interacts.

Design patterns can therefore have a huge impact on the structure of an application and may

compromise the original object model.

While it is easy to recognize a singleton simply by reading the code, other design patterns

such as the Command design pattern are more difficult to identify. Although design patterns

are reusable in the sense that they structure the code, their implementation usually contains

elements that are specific to a particular context, and the code itself is therefore less reusable.

A First Implementation of the Singleton Aspect with JBoss AOP

This section presents two implementations of the Singleton design pattern, one with JBoss

AOP, and one with AspectJ.

As we saw in the previous example, the main issue preventing better modularization was

the fact that classes had to call the method getInstance rather than the usual constructor.

JBoss AOP and AspectJ allow you to solve the problem simply and effectively by defining

an aspect to modify the behavior of the constructor, which is invoked by the new operator to

152 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

create a new instance of the class. When the constructor is invoked, the aspect intercepts and

substitutes the new method with the code needed to manage the singleton.

With JBoss AOP, we can define the interceptor presented in Listing 8-2.

Listing 8-2. Implementation of the Singleton Design Pattern Using JBoss AOP

package aop.patterns.singleton;

import org.jboss.aop.advice.Interceptor;

import org.jboss.aop.joinpoint.Invocation;

public class SingletonInterceptor implements Interceptor {

 private Object singleton;

 public String getName() {

 return "SingletonInterceptor";

 }

 public Object invoke(Invocation invocation) throws Throwable {

 if (singleton==null) {

 singleton = invocation.invokeNext();

 }

 return singleton;

 }

}

The code of this interceptor is similar to the object-oriented implementation of the

singleton: it includes an attribute, which is used to store the unique instance of the singleton,

and the method invoke, which uses the same kind of test to check the existence of the instance

when a constructor is called. If the instance does not exist, invoke calls the constructor and

stores the instance generated in the singleton attribute.

Note that the interceptor contains the code to handle the singleton and that it can be

applied to a class in a way that is completely transparent for the rest of the application.

For the purpose of our example, we use a class called Stats, which contains various statis-

tics for an e-commerce site (see Listing 8-3).

Listing 8-3. Sample Class to Test theSingleton Design Pattern

package aop.patterns.singleton;

public class Stats {

 private int orders = 0;

 private float totalAmount = 0;

 private String status = "OK";

 public int getOrders() {

 return orders;

 }

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 153

 public void incOrders() {

 orders++;

 }

 public float getTotalAmount() {

 return totalAmount;

 }

 public void addAmount(float p) {

 totalAmount+=p;

 }

 public String getStatus() {

 return status;

 }

 public void setStatus(String p) {

 status = p;

 }

 public void reset() {

 orders = 0;

 totalAmount = 0;

 status = "OK";

 }

}

We will apply the Singleton design pattern to this class by parameterizing the file jboss-aop.

xml in the way shown in Listing 8-4.

Listing 8-4. Binding the Singleton Design Pattern to the Stats Class

<bind pointcut="execution(aop.patterns.singleton.Stats->new())">

 <interceptor class="aop.patterns.singleton.SingletonInterceptor">

</bind>

It is easy to check if the design pattern has been applied correctly by using the class in
Listing 8-5.

Listing 8-5. Main Class for Testing the Singleton Design Pattern with JBoss AOP

package aop.patterns.singleton;

public class SingletonExample {

 public static void main(String[] args) {

 Stats stats1 = new Stats();

 Stats stats2 = new Stats();

 if (stats1==stats2) {

154 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

 System.out.println("These instances are the same!");

 } else {

 System.out.println("These instances are not the same!");

 }

 }

}

We no longer need the method getInstance since the Singleton is accessed through a stan-

dard call to the constructor. The Singleton design pattern is now entirely transparent with

respect to the application.

The result obtained by running this program is the following:

These instances are the same!

We have successfully applied the Singleton design pattern to the class Stats without

needing to modify the code of Stats, or any class that uses it.

A Second Implementation of the Singleton Aspect with AspectJ

The same result can be obtained with AspectJ. We start by defining an abstract aspect indepen-

dent of the pointcut that determines the classes to be transformed into singletons (see

Listing 8-6).

Listing 8-6. Implementation of the Singleton Design Pattern Using AspectJ

package aop.patterns.singleton;

public abstract aspect AbstractSingletonAspect {

 private Object singleton = null;

 abstract pointcut singletonPointcut();

 Object around(): singletonPointcut() {

 if (singleton == null) {

 singleton = proceed();

 }

 return singleton;

 }

}

The abstract aspect defines two elements: an abstract pointcut, which must be defined by

the concrete aspects and with subclass AbstractSingletonAspect; and an “around” advice,

which is similar to the invoke method in the JBoss AOP interceptor.

This implementation presents a flow. In AspectJ, an aspect is a singleton by default, which

means that one instance of the aspect is shared by all the classes designated by the

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 155

singletonPointcut pointcut. Therefore, the aspect contains a reference to one unique instance

of the singleton class. Each time the advice is executed, the existing singleton is obliterated by

one of the newly created classes.

The AspectJ keywords perthis and pertarget cannot be used here since they would

generate one instance of the aspect for every instance of the class, which is the opposite of the

desired effect.

This problem can be solved in the following way:

• Define an abstract aspect as a superaspect for several concrete aspects: one for each

class to be turned into a singleton. This way, the individual classes will not interfere with

the other singletons. This is the solution we have chosen to implement in the preceding

example.

• Use a hash table (java.util.Hashtable) to store the singleton for each of the trans-

formed classes. We give an example of this solution in the next section.

We can now define a concrete aspect for each of the classes to be made into a singleton. If

we want to transform the Stats class into a singleton, as we did previously with JBoss AOP, we

must program the aspect shown in Listing 8-7.

Listing 8-7. Concrete AspectJ Aspect to Bind the Singleton Design Pattern to the Stats Class

package aop.patterns.singleton;

public aspect SingletonAspect extends AbstractSingletonAspect {

 pointcut singletonPointcut() : call(Stats.new(..));

}

Once the application is compiled, we execute the test class shown previously, obtaining

the following result:

These instances are the same!

We obtain the same result as with the JBoss AOP implementation: the Stats class has been

transformed into a singleton.

Evaluation of the Implementation

Unfortunately, this implementation of the Singleton design pattern has limited capability and

can cause execution errors.

The first problem is the multiple constructor issue. In the example, only one instance

reference is stored so that we always return the same instance of the class, regardless of the

constructor.

Another problem is that this implementation is intrusive and can have damaging side

effects on the way the application behaves, as will be described later.

156 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

Managing Multiple Constructors

In another context, we could use the singleton aspect with a class that contains several

constructors. Although multiconstructor classes are not as adaptable to the singleton design

pattern since it is designed to work with only one constructor, multiconstructor classes are

frequently used in real applications, and therefore we can extend the pattern to deal with this

case.

With different constructors, we can expect the creation of different instances (which is not

the case with our current implementation). This difficulty is, however, by no means insur-

mountable. It is possible to store one instance for each constructor. Besides, we can store an

instance not only depending on the header, but also on the values of the parameters.

With AspectJ, we obtain the result shown in Listing 8-8 for the abstract aspect.

Listing 8-8. Second Implementation of the Singleton Design Pattern Using AspectJ

package aop.patterns.singleton;

import java.util.Hashtable;

public abstract aspect AbstractMultipleSingletonAspect {

 private Hashtable singletons = new Hashtable();

 abstract pointcut singletonPointcut();

 private String getValue(Object o) {

 if (!o.getClass().isArray()) {

 return Integer.toString(o.hashCode());

 } else {

 StringBuffer value = new StringBuffer();

 Object[] temp = (Object[]) o;

 for (int i=0;i<temp.length;i++) {

 value.append(getValue(temp[i]));

 value.append('|');

 }

 return value.toString();

 }

 }

 Object around(): singletonPointcut() {

 String arguments;

 String signature = thisJoinPoint.getSignature().toString();

 if(thisJoinPoint.getArgs().length>0) {

 arguments = getValue(thisJoinPoint.getArgs());

 } else {

 arguments = "";

 }

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 157

 Object singleton = singletons.get(signature+arguments);

 if (singleton == null) {

 singleton = proceed();

 singletons.put(signature+arguments,singleton);

 }

 return singleton;

 }

}

This new implementation of the abstract aspect is more complex than the previous

example because we have used a hash table to store the singleton instances. The key used in

the hash table is determined according to the signature of the constructor and the value of the

arguments. The value is obtained using the method getValue (this method is explained in

Chapter 9 in the section “Nonregression Tests.”)

Now, to support multiple constructors, we have to create the aspect SingletonAspect by

subclassing the abstract aspect AbstractMultipleSingletonAspect. Using a hash table could

also solve the problem stated previously, whereas a concrete aspect cannot be shared by

several aspectized classes.

The Invasive Nature of the Aspect

The fact that we can transform any class into a singleton simply by applying an aspect to it

seems initially both simple and useful. However, this invasive modification of the Java new

operator is far from benign.

First, transforming a class into a singleton has consequences for the rest of the development.

The advantage of using the method getInstance in the object-oriented approach is that we know

immediately that this class is a singleton. With the AOP implementation of the singleton, any

class is potentially a singleton, since all we must do to achieve this transformation is change the

pointcut definition. For the final programmer, not knowing whether a class is a singleton could

lead to programming mistakes.

Second, it is important to take precautions when we make an existing class into a

singleton. If the singleton is called by more than one object, we have to ensure that multiple

calls to this shared instance of the class do not lead to errors. A classic mistake when imple-

menting a singleton is that the singleton attributes are obliterated each time a new object calls

it, leading to incoherencies. These attributes must be considered as global shared variables.

Finally, this aspect makes it difficult to use aspect composition, which is an important

functionality of AOP. For example, we cannot compose the singleton aspect with another

aspect that also replaces the instance returned by the constructor. This could be a real

problem, for example, when using a factory pattern aspect to replace a local instance of an

object by an instance provided by a remote proxy.

The Observer Design Pattern
The second design pattern that we study with regards to aspect-oriented programming tech-

niques is the Observer. We begin by providing a quick description of this pattern, and proceed

by giving an implementation of the pattern using AspectJ. We then conclude this section with

an evaluation of the implementation.

158 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

Description

In many situations, programmers need to be aware of objects’ state changes or pay attention to

the events produced by objects. For example, a text editor must activate the saving function-

ality when a file is modified. Other examples can be found in frameworks for building graphical

user interfaces. For instance, Swing heavily relies on the mechanism known as listeners;

listeners are objects that consume events emitted by other objects and react to these events.

The Observer design pattern consists of notifying observer objects when the states of other

objects, called subjects, change.

Hence, a pure object-oriented, aspect-free implementation of the observer design pattern

generally relies on two interfaces: Observer and Subject. The Subject interface is implemented

by all observed classes and provides methods for registering and removing observers. The

Observer interface is implemented by observers and provides methods for notifying state

changes.

Aspect-oriented Implementation

In this section, we propose an aspect-oriented implementation of the Observer design pattern.

With our solution, the management of observers and the detection of state changes are

handled by an aspect. First, an AspectJ abstract aspect is defined to implement the generic part

of the code. This aspect can be reused for all observers. Second, this aspect is extended to take

into account the needs of real observers.

Generic Part of the Implementation

The code of the abstract aspect is presented in Listing 8-9.

Listing 8-9. Implementation of the Observer Design Pattern Using AspectJ

 1 package aop.patterns.observer;

 2

 3 import java.util.Enumeration;

 4 import java.util.Vector;

 5

 6 public abstract aspect AbstractObserverAspect pertarget (subject()) {

 7

 8 private Vector observers = new Vector();

 9

10 public void addObserver(Object o) {

11 observers.add(o);

12 }

13

14 public void removeObserver(Object o) {

15 observers.remove(o);

16 }

17

18 protected abstract pointcut subject();

19

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 159

20 protected abstract pointcut event();

21

22 protected abstract void notifyEvent(Object subject,Object observer);

23

24 after(Object s) : event() && target(s) {

25 Enumeration elements = observers.elements();

26 while (elements.hasMoreElements()) {

27 Object o = elements.nextElement();

28 notifyEvent(s,o);

29 }

30 }

31 }

The AbstractObserverAspect aspect provides two methods, addObserver and

removeObserver, to register and remove observers.

In the method notifyEvent (line 22), the pointcuts subject (line 18) and event (line 20) are

code elements that are specific to the subject being observed. They are left abstract and will be

defined in subaspects. The notifyEvent method will implement the reaction to a state change.

The event pointcut will define the state changes of the event being observed. The subject

pointcut will define the subject to be observed.

An important point to notice is that the aspect AbstractObserverAspect is not a singleton

(clause pertarget on line 6). One instance of this aspect exists per subject to be observed.

The advice code defined on line 24 notifies all registered observers when a state change

occurs.

Implementation of Observers

With the class Stats defined previously, this section illustrates the definition of an observer to

monitor the addition and the removal of an order.

The code of this observer is shown in Listing 8-10.

Listing 8-10. Concrete AspectJ Aspect to Bind the Observer Design Pattern to the Stats Class

 1 package aop.patterns.observer;

 2

 3 public aspect OrdersObserverAspect extends AbstractObserverAspect {

 4

 5 protected pointcut subject() : initialization(Stats.new(..));

 6

 7 protected pointcut event() : set(int Stats.orders);

 8

 9 protected void notifyEvent(Object s,Object o) {

10 Stats statistics = (Stats)s;

11 OrdersObserver observer = (OrdersObserver)o;

12 observer.eventHandler(statistics.getOrders());

13 }

14 }

15

160 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

16 public class OrdersObserver {

17 public void eventHandler(int value) {

18 System.out.println("Orders observer called with value: "+value);

19 }

20 }

The OrdersObserver class implements the observer, and the OrdersObserverAspect aspect

defines the events and the observed subjects.

The pointcut event (line 7) defines the events that are observed: in this example, the

pointcut matches all the write operations performed on the field Stats.order. Thus, the

observed events are the addition or the removal of an order.

When such events occur, the advice code defined in the abstract AbstractObserverAspect

aspect calls the notifyEvent method. Here, this method (line 9) retrieves the number of orders

and forwards this number to the observer.

The observer (line 16) displays the total number of orders.

To test this observer, use the class shown in Listing 8-11.

Listing 8-11. Main Class for Testing the Singleton Design Pattern

package aop.patterns.observer;

public class ObserverExample {

 public static void main(String[] args) {

 Stats stats = new Stats();

 OrdersObserver observer1 = new OrdersObserver();

 OrdersObserverAspect.aspectOf(stats).addObserver(observer1);

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 OrdersObserverAspect.aspectOf(stats).removeObserver(observer1);

 stats.incOrders();

 stats.addAmount(10);

 }

}

This program displays the following result:

Orders observer called with value: 1

Orders observer called with value: 2

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 161

Evaluation of the Implementation

With the four criteria defined by Hannemann and Kiczales, we can evaluate our implementa-

tion as follows:

• Locality: The subject is free from any code managing observers. This code is located in

the AbstractObserverAspect abstract aspect. The code elements specific to subjects are

handled by concrete aspects, which extend AbstractObserverAspect.

• Reusability: The management of observers is reused systematically.

• Composition transparency: The aspect is not invasive. The behavior of the observed

subjects is extended, but not modified.

• (Un)pluggability: The link between the observed subject and its observers is weak. The

pointcuts for events and subjects define precisely where the design pattern must be

integrated.

The Command Design Pattern
The third design pattern that we study with regards to aspect-oriented programming tech-

niques is the Command. We begin by providing a quick description of this pattern, and

proceed by giving an implementation of the pattern using AspectJ. We then conclude this

section with an evaluation of the implementation.

Description

Through classes, the object-oriented approach offers a good way for modularizing treatments

that can be applied on data. These treatments are defined in methods. All the instances of a

class share the same treatments. Moreover, these treatments are immutable: they never

change as long as the instance exists. Because of this immutability, the notion of a method is a

safe, but rigid, way for defining treatments.

The Command design pattern provides a way of defining treatments independently from

the class where they will be applied. Several different commands can be defined and assigned

to as many classes as needed.

Aspect-oriented Implementation

This section defines our aspect-oriented implementation of the Command design pattern. As

with the Observer design pattern, we define an abstract aspect that provides the generic part of

the implementation. This aspect is then extended to be specialized for a real command.

Generic Part of the Implementation

The code that is shared by all commands is defined in the AbstractCommandAspect aspect.

Listing 8-12 presents the code of this aspect.

162 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

Listing 8-12. Implementation of the Command Design Pattern Using AspectJ

 1 package aop.patterns.command;

 2

 3 public abstract aspect AbstractCommandAspect pertarget(receiver()){

 4

 5 private Command command = null;

 6 public void setCommand(Command c) {

 7 command = c;

 8 }

 9

10 protected abstract pointcut receiver();

11

12 protected abstract pointcut execute();

13

14 before(Object receiver) : execute() && target(receiver) {

15 command.execute(receiver);

16 }

17 }

The preceding aspect implements the setCommand method, which sets the command to be

executed. Commands implement the Command interface, which defines a single execute method.

This method takes as a parameter the object (a Receiver’s instance) that receives the command.

The code of these two types appears in Listing 8-13.

Listing 8-13. Interfaces to Be Used with the Command Design Pattern

public interface Command {

 public void execute(Receiver receiver);

}

public interface Receiver {

 public void setCommand(Command command);

}

Two abstract pointcuts, receiver and execute, are defined in the AbstractCommandAspect

aspect. The receiver pointcut designates the classes where the command is run. The execute
pointcut designates the event that triggers the execution of the command. Notice that only one

instance of the AbstractCommandAspect aspect exists per receiver: commands are not shared by

receivers, and each different receiver handles its own commands.

Finally, a “before” advice (line 14) is defined to launch the execution of the command. This

advice code is executed before the joinpoints included in the execute pointcut; in other words,

before the events that will be designated as triggers. Notice that this pointcut is parameterized

with the target object of the joinpoint, that is to say, the object where the command is to be

performed.

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 163

Implementation of Commands

A concrete aspect can now be defined to integrate the Command pattern into the Stats class

(see Listing 8-14).

Listing 8-14. Concrete AspectJ Aspect to Bind the Command Design Pattern to the Stats Class

 1 package aop.patterns.command;

 2 public aspect CommandAspect extends AbstractCommandAspect {

 3 public void Stats.save() {}

 4 protected pointcut receiver() : initialization(Stats.new(..));

 5 protected pointcut execute() : call(void Stats.save());

 6 }

This aspect designates the instances of the Stats class as the receivers of the pattern (line 4).

An empty method, named save, is introduced in the Stats class. Call operations on this method

are included in the execute pointcut (line 5). Given the definition of the “before” advice in

AbstractCommandAspect, the command will be executed before the calls to the save method.

Several new commands can now be defined and associated to the Stats class. The

FileSaver class, shown in Listing 8-15, provides an example of such a command.

Listing 8-15. FileSaver Command

package aop.patterns.command;

import java.io.FileOutputStream;

import java.io.PrintWriter;

public class FileSaver implements Command {

 private String fileName;

 public FileSaver(String fileName) {

 this.fileName = fileName;

 }

 public void execute(Receiver receiver) {

 Stats stats = (Stats)receiver;

 try {

 FileOutputStream output = new FileOutputStream(fileName);

 PrintWriter writer = new PrintWriter(output);

 writer.println("STATISTICS");

 writer.println("Number of orders: "+stats.getOrders());

 writer.println("Total amount: " +stats.getTotalAmount());

 writer.println("Status: "+stats.getStatus());

 writer.flush();

 writer.close();

 }

164 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

 catch (Exception e) {

 System.err.println(e);

 }

 }

}

The CommandExample class in Listing 8-16 provides a way of testing the aspect-oriented

implementation of the Command design pattern with the command FileSaver.

Listing 8-16. Main Class for Testing the Command Design Pattern

package aop.patterns.command;

public class CommandExample {

 public static void main(String[] args) {

 Stats stats = new Stats();

 CommandAspect.aspectOf(stats)

 .setCommand(new FileSaver("c://temp/statistics.txt"));

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 stats.save();

 }

}

When run, this program generates a text file that contains the following data:

STATISTICS

Number of orders: 3

Total amount: 30.0

Status: OK

Evaluation of the Implementation

With the four criteria defined by Hannemann and Kiczales, we can evaluate our implementa-

tion as follows.

• Locality: The class that receives commands is free from any code managing these

commands. This code is located in the AbstractCommandAspect abstract aspect. The calls

to commands are handled by concrete aspects that extend AbstractCommandAspect.

• Reusability: The management of commands is reused systematically.

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 165

• Composition transparency: The aspect is not invasive. The behavior of the classes that

receives commands is extended, but not modified.

• (Un)pluggability: The link between the commands and the receivers of a command is

weak. The pointcuts for receivers and executions define precisely where the design

pattern must be integrated.

The Chain of Responsibility Design Pattern
The fourth design pattern that we study with regards to aspect-oriented programming tech-

niques is the Chain of Responsibility. We begin by providing a quick description of this pattern,

and proceed by giving an implementation of the pattern using AspectJ. We then conclude this

section with an evaluation of the implementation.

Description

The Command design pattern presented in the previous section allows the definition of

commands that are executed by objects. The Chain of Responsibility design pattern is more or

less an extension of this principle and allows you to group several commands in a chain. When

the chain is executed, each element of the chain is visited. When visited, an element either

performs a command or does nothing.

A pure object-oriented, aspect-free implementation of the Chain of Responsibility design

pattern generally relies on a Handler interface. Each command of a chain must implement this

interface, which generally provides two methods: setSuccessor for setting the successor of the

current command in the chain, and handle for performing the command. Depending on the

conditions chosen by the programmer, the handle method can perform the command and dele-

gate the call to the next element in the chain; it can also just perform the command or just

delegate the call.

Aspect-oriented Implementation

The implementation that we propose for the Chain of Responsibility design pattern uses the

notion of aspect precedence. In the previously presented design patterns, an abstract aspect

was defined to implement the code that was shared by all the commands in a chain. This

abstract aspect was then extended for each concrete command. Aspect precedence is the

notion used for ordering the execution of these commands in the chain.

Generic Part of the Implementation

The generic part of our implementation of the Chain of Responsibility design pattern is defined

in the AbstractChainAspect abstract aspect shown in Listing 8-17.

Listing 8-17. Implementation of the Chain of Responsibility Design Pattern Using AspectJ

 1 package aop.patterns.chainOfResponsibility;

 2

 3 public abstract aspect AbstractChainAspect pertarget(receiver()){

 4 protected abstract pointcut receiver();

166 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

 5 protected abstract pointcut execute();

 6 protected abstract void handle();

 7 after() : execute() {

 8 handle();

 9 }

10 }

With our implementation of the Observer and Command design pattern, the abstract

receiver pointcut will designate the objects where the Chain of Responsibility pattern needs to

be integrated.

The abstract execute pointcut defines the “condition,” which triggers the execution of the

chain.

The “after” advice (line 7) calls the abstract method handle. This method will be concret-

ized into subaspects to define the behavior implemented by each command in the chain.

Implementation of a Chain of Commands

We now define two simple commands, Step1ChainAspect and Step2ChainAspect, which will be

put in a chain (see Listing 8-18).

Listing 8-18. Concrete Aspect to Bind the Chain of Responsibility Design Pattern to the Stats Class

 1 package aop.patterns.chainOfResponsibility;

 2

 3 public aspect Step1ChainAspect extends AbstractChainAspect {

 4 protected pointcut receiver() : initialization(Stats.new(..));

 5 protected pointcut execute() : call(void Stats.incOrders());

 6

 7 protected void handle() {

 8 System.out.println("OrderHandler 1");

 9 }

10 }

11

12 public aspect Step2ChainAspect extends AbstractChainAspect {

13

14 declare precedence : Step1ChainAspect;

15

16 protected pointcut receiver() : initialization(Stats.new(..));

17 protected pointcut execute() : call(void Stats.incOrders());

18

19 protected void handle() {

20 System.out.println("OrderHandler 2");

21 }

22 }

Both aspects apply on the instances of the Stats class (see the pointcut receiver on lines 4

and 16). Both are also triggered when the Stat.incOrders method is called (see the pointcut

execute on lines 5 and 17).

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 167

The important point in this example is the use of the declare precedence clause at line 14,

which allows the definition of the aspect order in the chain. Here, the aspect Step2ChainAspect

will be executed after Step1ChainAspect.

The ChainExample class in Listing 8-19 illustrates the usage of our implementation of the

Chain of Responsibility design pattern.

Listing 8-19. Main Class for Testing the Chain of Responsibility Design Pattern

package aop.patterns.chainOfResponsibility;

public class ChainExample {

 public static void main(String[] args) {

 Stats stats = new Stats();

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 }

}

When run, this program displays the following output:

OrderHandler n°1

OrderHandler n°2

OrderHandler n°1

OrderHandler n°2

OrderHandler n°1

OrderHandler n°2

Evaluation of the Implementation

With the four criteria defined by Hannemann and Kiczales, we can evaluate our implementa-

tion as follows:

• Locality: The class where the chain of responsibility applies is free from any code related

to the management of this pattern. The aspect composition mechanism handles the

ordering of commands within a chain.

• Reusability: The management of the chain is reused systematically. The implementation

of any new chain only requires the definition of the new chain elements by extending the

abstract aspect.

• Composition transparency: The aspect is not invasive. The behavior of the classes that

receives commands is extended, but not modified.

168 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

• (Un)pluggability: The link between the chain of commands and the receivers is weak.

The pointcuts for receivers and executions define precisely where the design pattern

must be integrated.

The Proxy Design Pattern
The last design pattern that we study with regards to aspect-oriented programming techniques

is the Proxy. We begin by providing a quick description of this pattern, and proceed by giving

an implementation of the pattern using AspectJ.

Description

In many situations, the objects involved in a program cannot communicate directly through

local method calls. For example, objects in a distributed program are separated by a network.

In such situations, a proxy is used to transfer the communications from client to server over the

network. Distribution is not the only situation where proxies are useful. For example, if the

access to an object needs to be restricted to authorized users, a proxy can be inserted to

perform access checks.

A proxy is an object that acts as a representative for another object. A proxy can be generic;

in this case, it acts as a representative for any kind of object. Conversely, a proxy can be specific

and implement the same interface as the object it is representing.

The treatments performed by the proxy are out of the scope of design patterns. The

simplest existing proxy delegates the call to the main object without performing any additional

treatments.

In the remainder of this section, we take the example of a proxy that performs access

control checks.

Aspect-oriented Implementation

Our implementation of the Proxy design pattern for access control checks relies on an abstract

aspect. Concrete aspects will be defined later when we set the authorization rights and denote

the actual methods where the checks are to be applied.

Generic Part of the Implementation

The code of the abstract aspect is shown in Listing 8-20.

Listing 8-20. Implementation of the Proxy Design Pattern Using AspectJ

 1 package aop.patterns.accessproxy;

 2

 3 public abstract aspect AbstractAccessProxyAspect {

 4 protected String user;

 5 protected String password;

 6

C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P 169

 7 public void setAuthentication(String user,String password) {

 8 this.user = user;

 9 this.password = password;

10 }

11

12 protected abstract boolean isAuthorized();

13 protected abstract pointcut accessControl();

14

15 before() : accessControl() {

16 if (!isAuthorized()) {

17 throw new RuntimeException("Unauthorized access to: "+

18 thisJoinPoint.getSignature().getName());

19 }

20 }

21 }

The setAuthentication method sets the current user’s login and password. The

isAuthorized method is concretized into subaspects to define the access policy.

The accessControl abstract pointcut is associated to methods that should be protected

against unauthorized accesses. The “before” advice (line 15) performs the check and throws an

exception if the access is denied.

Implementation of Proxies

In Listing 8-21, we define a simple concrete aspect where the access is only granted to the user

with the login “admin” and the password “admin” for the methods of the Stats class.

Listing 8-21. Concrete Aspect to Bind the Proxy Design Pattern to the Stats Class

package aop.patterns.accessproxy;

public aspect AccessProxyAspect extends AbstractAccessProxyAspect {

 protected boolean isAuthorized() {

 if ("admin".equals(user)&&"admin".equals(password)) {

 return true;

 }

 return false;

 }

 protected pointcut accessControl() : call(* Stats.*(..));

}

The program in Listing 8-22 uses this aspect. The login and password must be provided as

command-line arguments.

170 C H A P T E R 8 ■ D E S I G N P A T T E R N S A N D A O P

Listing 8-22. Main Class for Testing the Proxy Design Pattern

package aop.patterns.accessproxy;

public class ProxyExample {

 public static void main(String[] args) {

 Stats stats = new Stats();

 if (args.length==2) {

 AccessProxyAspect.aspectOf().setAuthentication(args[0],args[1]);

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 stats.incOrders();

 stats.addAmount(10);

 }

 }

}

Summary
In this chapter, we presented the aspect-oriented implementation of five well-known design

patterns: Singleton, Observer, Command, Chain of Responsibility, and Proxy.

For these five cases, the implementation follows this principle: an abstract aspect is

defined to hold the code that is generic in the implementation of the pattern. This abstract

aspect defines abstract pointcuts that designate the locations in the program where the pattern

is to be integrated and the conditions under which the pattern must be triggered. This abstract

aspect is then extended to define the code, which is specific to, for example, a command or a

proxy.

The aspect-oriented implementations of these five design patterns lead to solutions that

are more interesting than pure object-oriented, aspect-free implementations. It is, however,

not the case for all existing design patterns. Patterns such as the Factory pattern or the Inter-

preter pattern do not benefit as much from aspects.

Deciding whether a design pattern will benefit from an aspect-oriented implementation is

a matter of evaluating whether

• The pattern defines a crosscutting structure.

• The four criteria of locality, reusability, composition transparency, and (un)pluggability

defined by Hannemann and Kiczales are met.

• The pattern leaves the structure of the base program unchanged.

171

■ ■ ■

C H A P T E R 9

Quality of Service and AOP

Since computing capacity follows the famous Moore’s law, software limits are constantly

being pushed back, and applications are becoming increasingly more complex. This comp-

lexity has to be managed and controlled because it can induce shortcomings and failures that

can impact the application’s Quality of Service. Quality of Service is a broad topic that covers

several complex issues. In this chapter, we will not enter into the details of the topic, but we will

focus on techniques that help to ensure that the functions implemented by the application are

correctly defined and executed. These techniques can be seen as a first step toward more

complex Quality of Service issues.

Several techniques can be used to manage the complexity of an application. This chapter

introduces three complementary techniques, all of which can be improved by using AOP:

• Design by Contract: This design methodology aims to formalize the constraints that are

linked to the use of classes. The principles of Design by Contract are far from being inte-

grated into languages; they can, however, be implemented by using AOP.

• Coverage Analysis: This technique checks for completeness through the implementation

of sound test cases and nonregression tests, which check whether the functions that are

related to an implementation change are still behaving according to the initial specifica-

tion. These tests can use the AOP code-instrumentation capabilities to better watch over

the application’s executions.

• Administration and Supervision: This technique keeps track of the running application

in order to prevent incidents or repair failures. With AOP, the Administration and Super-

vision functions can be easily separated from the rest of the application.

Design by Contract
Design by Contract is a design methodology that consists of formalizing the use of application

components. To do this, a number of logical constraints must be specified and checked by the

components to guarantee that their behavior is consistent with their specifications.

Design by Contract concepts were popularized by Bertrand Meyer in his book, Object-

Oriented Software Construction, Second Edition (Prentice Hall, 1997). Contracts were used in a

number of languages, such as Eiffel, as early as 1985. AOP provides the basic techniques to effi-

ciently implement Design by Contract.

Before detailing the AOP implementation of Design by Contract, we will first explain the

main principles of this methodology in the Java context.

172 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Foundations of Design by Contract

Most languages’ basic consistency-control mechanisms, such as type checking, are not suffi-

cient to ensure that a given class is properly used by a client program. The consistency of an

instance state with a method call or result necessitates the use of a more evolved concept—

contracts.

By implementing contracts, an application benefits in the following ways:

• Testing and debugging is improved. Contracts allow the strict definition of execution

conditions.

• Documentation and reusability are improved. Contracts are clearly materialized in the

component code or interface. The contracts can be taken into account to help avoid

mistakes when a component is reused.

• Error handling is improved. When a contract is not fulfilled, the initial error can be more

easily identified, and strategies can be implemented to overcome the problem.

Languages supporting Design by Contract can usually activate or deactivate the contracts

at compile time or at run time to improve performance. Note that contracts may be of different

natures, but they are not meant to replace any kinds of tests, such as security-related tests. This

is so even though some of these tests might then become redundant and possibly be removed

from the test suite.

Taxonomy of a Contract

A software-level contract can be compared to a legal contract. In a contract, there are typically

two contracting parties (the contractors). In software, the two contractors are a user compo-

nent and a provider component. A contract also defines an object, which defines what kind of

relationship is materialized between the two contractors. In addition to the contractors and

the object, a contract must also define mutual obligations, which regulate how the two con-

tractors realize the object of the contract. In software, these obligations are defined through

assertions.

■Definition Assertion—A logical Boolean expression that must be true at a given point in the program’s

execution.

In theory, an assertion can be used anywhere in the program’s code. For instance, an

assertion can be applied to a division operation to check that the divisor is different from zero.

An assertion condition must be literal and should avoid method calls, which have some side

effects.

Assertions have a generic form. However, object-oriented languages such as Java can use

four well-known forms: precondition, postcondition, class invariant, and internal invariant.

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 173

■Definition Precondition—An assertion that must be verified before the execution of a method. If the

precondition is false, the method must not be executed. For instance, a square-root method (sqrt) would

have the precondition parameter>=0.

■Definition Postcondition—An assertion that must be verified at the end of a method execution. The

postcondition allows you to verify that the method has been correctly executed. (From the user’s perspective,

the postcondition allows some assumptions about the values of that user’s variables, so redundant tests can

be avoided.) For instance, a square-root method (sqrt) would have the postcondition result>=0.

■Definition Class invariant—An assertion that must be verified by the state of the class (in other words,

by all the states of all the class instances). The class invariant guarantees that the objects remain in consistent

states. For instance, a Triangle class would have the class invariant vertexes=3, where vertexes is

either an attribute of the class or the result of a calculation on several attributes of the class.

■Definition Internal invariant—An assertion that must be verified within the body of a method. The

internal invariant helps to guarantee that the method is correctly implemented. For instance, in a method that

simulates a loan calculation would have the internal invariant total interest ratio >=0.

Conflict Handling

A contract conflict occurs when one or several assertions are not verified. This conflict can

arise for any reason, such as a hardware failure, the failure of a called routine, or a software bug

that makes it impossible to satisfy the contract.

In such cases, three strategies can be applied:

• Retrying: An alternative strategy is available. The contractors should restore the invari-

ants and make another attempt using a different strategy.

• Organized panic: No alternative is available. The contractors must restore the invariants,

terminate, and report failure to the user by triggering an exception.

• False alarm: It is possible to continue, maybe after some corrective measures are taken.

Contract Inheritance

One of the key mechanisms of OOP is inheritance. When inheritance is used, obligations are

also inherited, and the subclasses can modify the inherited contracts. To ensure that the

174 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

subclasses offer at least the same level of service as the superclasses, these modifications must

follow certain rules:

• For preconditions, subclasses keep the same conditions or make them less restrictive.

• For postconditions, subclasses keep the same conditions or make them more restrictive.

• For class invariants, the invariants of a superclass are automatically part of the invari-

ants of the subclasses.

• For internal invariants, the invariants of a superclass are kept identical only if the

subclass does not redefine the method that the invariant is defined about.

Contracts in Java

As requested by Java Specification Request (JSR) 41: A Simple Assertion Facility, Java 1.4 intro-

duced some limited contract support, which is similar to that offered by the C language

through the assert macro. The assert keyword that was added to Java can be in two forms:

• assert <condition>

• assert <condition> : <value>

In the first form, assert behaves as follows:

• If the Boolean condition returns true, the program execution continues.

• If the Boolean condition returns false, a java.lang.AssertionError is thrown.

In the second form, assert behaves as follows:

• If the Boolean condition returns true, the program execution continues.

• If the Boolean condition returns false, a java.lang.AssertionError is built by passing

value to the error’s constructor. The passed value must be either a constant string or a

function returning an object (which is then converted into a string by the toString

method).

Implementing Contracts with AOP

As shown in the previous section, Java provides very limited support for Design by Contract. In

particular, Java 1.4 does not implement any of the notions of preconditions, postconditions, or

class invariants. As we will show here, AOP provides useful techniques for implementing these

notions in Java.

To illustrate this point, we will use the JBoss AOP framework, which allows you to activate

and deactivate assertions without having to recompile the code. This process is not as straight-

forward with AspectJ. The provided examples can be easily transported into the JAC

framework.

Implementing Preconditions

The program in Listing 9-1 defines and uses the sqrt method.

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 175

Listing 9-1. An Example of the Use of the sqrt Method

package aop.contracts.preconditions;

public class PreConditionExample {

 public double sqrt (double p) {

 return Math.sqrt(p);

 }

 public static void main(String[] args) {

 PreConditionExample t = new PreConditionExample();

 System.out.println("sqrt of 4 : "+t.sqrt(4));

 System.out.println("sqrt of 0 : "+t.sqrt(0));

 System.out.println("sqrt of -4 : "+t.sqrt(-4));

 System.out.println("sqrt of 9 : "+t.sqrt (9));

 }

}

If you run the program without any preconditions, you obtain the results that are shown in

Listing 9-2.

Listing 9-2. An Execution Trace Without Preconditions

sqrt of 4 : 2.0

sqrt of 0 : 0.0

sqrt of -4 : NaN

sqrt of 9 : 3.0

As you can see, no exceptions are thrown when sqrt is called with a negative parameter

(– 4). In this case, the value returned by java.lang.Math.sqrt(double) is java.lang.Double.NaN

to indicate that the result is “not a number.”

By using JBoss AOP, you can implement a sqrt precondition within an interceptor (which

corresponds to the notion of advice code), as shown in Listing 9-3.

Listing 9-3. A Precondition Interceptor for the sqrt Method

01 package aop.contracts.preconditions;

02

03 import java.lang.reflect.Method;

04

05 import org.jboss.aop.Interceptor;

06 import org.jboss.aop.Invocation;

07 import org.jboss.aop.InvocationResponse;

08 import org.jboss.aop.InvocationType;

09 import org.jboss.aop.MethodInvocation;

10

176 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

11 public class PreConditionInterceptor implements Interceptor {

12

13 public String getName() {

14 return "PreConditionInterceptor";

15 }

16

17 public InvocationResponse invoke(Invocation invocation) throws Throwable {

18 if (invocation.getType() == InvocationType.METHOD) {

19 MethodInvocation methodInvocation = (MethodInvocation)invocation;

20 Method method = methodInvocation.method;

21 if ("sqrt".equals(method.getName())) {

22 Double parameter = (Double) methodInvocation.arguments[0];

23 if (parameter.doubleValue() < 0) {

24 throw new Error("Unfulfilled precondition");

25 }

26 }

27 }

28 InvocationResponse rsp = invocation.invokeNext();

29 return rsp;

30 }

31 }

The interceptor in Listing 9-3 implements the org.jboss.aop.Interceptor interface and

its two methods, getName and invoke. The invoke method behaves as follows:

1. The invocation type—InvocationType.CONSTRUCTOR, InvocationType.METHOD,

InvocationType.FIELD_READ, or InvocationType.FIELD_WRITE—is tested (see line 18).

This program is interested only in method invocations.

2. If the name of the invoked method is sqrt, the precondition is checked (see line 21).

3. The value of the sqrt argument is obtained from the arguments attribute of the

methodInvocation object (see line 22).

4. If the parameter has a negative value, an error is thrown (see line 24).

To actually apply the precondition to the program, the jboss-aop.xml file must be modi-

fied to declare that a new pointcut is associated with the interceptor. For this example, the

jboss-aop.xml file must contain the code that is shown in Listing 9-4.

Listing 9-4. The Deployment of the Precondition Interceptor

01 <interceptor-pointcut

02 methodFilter="ALL" fieldFilter="NONE" constructorFilter="NONE"

03 class="aop.contracts.preconditions.PreConditionExample">

04

05 <interceptors>

06 <interceptor class=

07 "aop.contracts.preconditions.PreConditionInterceptor"/>

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 177

08 </interceptors>

09

10 </interceptor-pointcut>

The XML tags in Listing 9-4 define the class (see line 3) that the interceptor is applied to

(see line 6). The methodFilter, fieldFilter, and constructorFilter parameters define the

pointcut; in this case, only the methods are advised. Note that because of these parameters, the

first if of the invoke method is not needed. Since no consistency checks are performed on

the interceptor type by JBoss AOP, the if test can be kept to make sure that the interceptor

works only on methods—even if a pointcut tries to apply the interceptor to something else.

Finally, after the program is compiled and correctly parameterized, the execution gives the

results that are shown in Listing 9-5.

Listing 9-5. The Execution Trace with the Precondition Interceptor

sqrt of 4 : 2.0

sqrt of 0 : 0.0

java.lang.Error: Unfulfilled precondition

 ...

Exception in thread "main"

When the precondition is not fulfilled, the program cannot continue its execution—unless

some conflict-resolution strategy is explicitly implemented. This behavior is better than the

default. Note that you can activate and deactivate the precondition—without any recompila-

tion—by modifying the jboss-aop.xml file.

Implementing Postconditions

Postconditions often access more data than preconditions. This data includes:

• The result of the invoked method

• The values of the parameters object attributes before and/or after the execution of the

invoked method

The implementation of postconditions is illustrated by the example—which purposely

contains a bug—that is shown in Listing 9-6.

Listing 9-6. An Example of an Incorrect Increment Function

package aop.contracts.postconditions;

public class PostConditionExample2 {

 public int increment(int p) {

 return p++;

 }

178 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

 public static void main(String[] args) {

 PostConditionExample2 t = new PostConditionExample2();

 System.out.println("incrémente 1 : "+t.increment(1));

 }

}

The body of the increment method should be return ++p;. For this method, the postcon-

dition is implemented by the interceptor that is shown in Listing 9-7.

Listing 9-7. A Postcondition Interceptor for the Increment Function

package aop.contracts.postconditions;

import java.lang.reflect.Method;

import org.jboss.aop.Interceptor;

import org.jboss.aop.Invocation;

import org.jboss.aop.InvocationResponse;

import org.jboss.aop.InvocationType;

import org.jboss.aop.MethodInvocation;

public class PostConditionInterceptor implements Interceptor {

 public String getName() {

 return "PostConditionInterceptor";

 }

 public InvocationResponse invoke(Invocation invocation) throws Throwable {

 boolean incrementInvocation = false;

 int incrementParameterValue = 0;

 if (invocation.getType() == InvocationType.METHOD) {

 MethodInvocation methodInvocation = (MethodInvocation)invocation;

 Method method = methodInvocation.method;

 if ("increment".equals(method.getName())) {

 incrementInvocation = true;

 incrementParameterValue = ((Integer) methodInvocation.arguments[0])

 .intValue();

 }

 }

 InvocationResponse rsp = invocation.invokeNext();

 if (incrementInvocation) {

 int result = ((Integer)

 rsp.getResponse()).intValue();

 if (result != (incrementParameterValue + 1)) {

 ...

 throw new Error(errorMsg.toString());

 }

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 179

 }

 return rsp;

 }

}

The interceptor is activated by adding the pointcut in Listing 9-8 to the jboss-aop.xml file.

Listing 9-8. The Deployment of the Postcondition Interceptor

<interceptor-pointcut

 methodFilter="ALL" fieldFilter="NONE" constructorFilter="NONE"

 class="aop.contracts.postconditions.PostConditionExample">

 <interceptors>

 <interceptor class="aop.contracts.postconditions.PostConditionInterceptor"/>

 </interceptors>

</interceptor-pointcut>

Now, if the program is executed, the trace messages in Listing 9-9 are obtained.

Listing 9-9. The Trace of the Increment Function when the Postcondition is Applied

java.lang.Error: Unfulfilled post-condition for increment.

The result (1) is not equal to an incrementation of the passed parameter (1).

 ...

Exception in thread "main"

This example shows that a clean Design by Contract approach, implemented with AOP,

will help you detect bugs concerning program values.

Implementing Invariants

There are two types of invariants—class and internal—that we have spoken about. A class

invariant usually needs to be checked after the execution of a method that can potentially

modify the state of the object. Not all methods should be checked. Indeed, an intermediate

method, which is part of a higher-level method defined for the same class, may leave the object

in an inconsistent state. It is only when the higher-level method ends that the object should be

left in a consistent state. Selecting the methods that the invariant is checked for can be

achieved either by advising only certain methods or by using cflow. The latter solution disables

the checking of the invariant when the advised method is in the control flow of a higher-level

method (usually belonging to the same class). This solution is more generic but slightly less

efficient than the former one because the aspect system adds some run-time tests to determine

whether the current method execution belongs to a given control flow. These run-time tests

are called residues.

The advice code in Listing 9-10 shows the implementation of an invariant that ensures

that a state field always equals 1.

180 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Listing 9-10. Advice Code for a state Invariant

...

public InvocationResponse invoke(Invocation invocation)

 throws Throwable {

 InvocationResponse rsp = invocation.invokeNext();

 if (invocation.getType() == InvocationType.METHOD) {

 MethodInvocation methodInvocation = (MethodInvocation)invocation;

 Method method = methodInvocation.method;

 Object target = methodInvocation.targetObject;

 int state = target.getClass().getDeclaredField("state").getInt(target);

 if (state != 1) {

 throw new Error("Broken class invariant.");

 }

 }

 return rsp;

}

...

As you can see, testing an invariant is similar to testing a postcondition, except that the

target object’s state has to be accessed through the java.lang.reflect API.

Testing Applications
To guarantee Quality of Service for the end user, applications need to be tested. Since AOP

allows code instrumentation for controlling and logging an application’s execution, AOP is a

useful tool for implementing tests in a simple way.

Two main categories of tests exist:

• Structural

• Functional

A structural test, or white-box test, verifies the application by checking its static structure

(its code or any equivalent representation). Such a test aims to identify static problems—such

as bad programming practice, unused variables, and unused methods—in the implementation

of the application. A typical structural test is coverage analysis, which consists of executing the

application in order to detect unused parts. Note that the Java compiler already implements

some of these verifications—locally, within method bodies.

A functional test, or black-box test, verifies that the behavior of the application is consistent

with its specification. Functional tests are widely used in the development process. In partic-

ular, these tests can be automatically generated from scenarios, which are identified during the

analysis and design stages. Among the functional tests, the nonregression tests consist of

executing two different versions of the application with the same scenarios. The purpose of

such tests is to detect potential differences in the behavior of the different versions.

The following sections show how AOP can be used to implement some of these tests.

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 181

Coverage Analysis

Coverage analysis can be implemented at several granularity levels. With most of the AOP tech-

nologies, the granularity is limited to the accessing of fields and the invocation of methods and

constructors. This type of coverage analysis is called function coverage analysis.

A coverage-analysis tool is composed of two elements: the recorder and the comparator.

The recorder is in charge of executing the application and recording all the invoked methods

and accessed attributes. The comparator compares the record with the program’s structure to

detect unused fields or methods.

We now present an example that implements only the recorder, which is the part that

specifically uses AOP. The recorder generates a comma-separated value (CSV) file so that the

file will be readable using standard tools such as Microsoft Excel. The following columns are

defined:

• The type of call or access

• The name of the class that the called or accessed element belongs to

• The name of the element

• The type (for fields) or the return type (for methods)

• The parameter types (for methods and constructors)

• The declared exceptions (for methods and constructors)

The JBoss AOP interceptor is defined in Listing 9-11.

Listing 9-11. A Simple Code-Coverage Analyzer Implemented with AOP

001 package aop.tests.cover;

002

003 import java.io.FileNotFoundException;

004 import java.io.FileOutputStream;

005 import java.io.PrintWriter;

006 import java.lang.reflect.Constructor;

007 import java.lang.reflect.Field;

008 import java.lang.reflect.Method;

009

010 import org.jboss.aop.ConstructorInvocation;

011 import org.jboss.aop.FieldInvocation;

012 import org.jboss.aop.Interceptor;

013 import org.jboss.aop.Invocation;

014 import org.jboss.aop.InvocationResponse;

015 import org.jboss.aop.InvocationType;

016 import org.jboss.aop.MethodInvocation;

017 import org.jboss.util.xml.XmlLoadable;

018 import org.w3c.dom.Element;

019

020 public class CoverRecorderInterceptor implements Interceptor, XmlLoadable {

021 private PrintWriter out;

182 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

022

023 public String getName() {

024 return "CoverRecorderInterceptor";

025 }

026

027 public void importXml(Element parameter) {

028 Element t=(Element)parameter.getElementsByTagName("record-file").item(0);

029 String fileName = "";

030 if (t != null) {

031 fileName = t.getAttribute("value");

032 if ("".equals(fileName)){

033 throw new RuntimeException("...");

034 }

035 } else {

036 throw new RuntimeException("...");

037 }

038 try {

039 FileOutputStream stream=new FileOutputStream(fileName);

040 out = new PrintWriter(stream);

041 } catch (FileNotFoundException e) {

042 throw new RuntimeException("...");

043 }

044 out.println("Call type,Class,Name,ReturnType,parameters,exceptions");

045 }

046

047 public void recordMethodCall(String className,

048 String methodName,Class returnType,Class[] parameters,

049 Class[] exceptions) {

050 ...

051 }

052

053 public InvocationResponse invoke(Invocation invocation)

054 throws Throwable {

055 String filter = (String) invocation.getMetaData("cover", "filter");

056 if (filter != null && filter.equals("true")) {

057 return invocation.invokeNext();

058 }

059 InvocationResponse rsp = invocation.invokeNext();

060 InvocationType invocationType = invocation.getType();

061 if (invocationType == InvocationType.METHOD) {

062 MethodInvocation methodInvocation = (MethodInvocation)invocation;

063 Method method = methodInvocation.method;

064 String className = method.getDeclaringClass().getName();

065 String methodName = method.getName();

066 Class returnType = method.getReturnType();

067 Class[] parameters = method.getParameterTypes();

068 Class[] exceptions = method.getExceptionTypes();

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 183

069 out.print("Method call,");

070 recordMethodCall(className,methodName,returnType, parameters,

071 exceptions);

072 } else if (invocationType==InvocationType.CONSTRUCTOR) {

073 ConstructorInvocation constructorInvocation =

074 (ConstructorInvocation)invocation;

075 Constructor constructor = constructorInvocation.constructor;

076 String className = constructor.getDeclaringClass().getName();

077 String methodName = "N/A";

078 Class returnType = null;

079 Class[] parameters = constructor.getParameterTypes();

080 Class[] exceptions = constructor.getExceptionTypes();

081 out.print("Constructor call,");

082 recordMethodCall(className,methodName,returnType, parameters,

083 exceptions);

084 } else if (invocationType == InvocationType.FIELD_WRITE ||

085 invocationType == InvocationType.FIELD_READ) {

086 if (invocationType == InvocationType.FIELD_READ) {

087 out.print("Field read access,");

088 } else {

089 out.print("Field write access,");

090 }

091 FieldInvocation fieldInvocation = (FieldInvocation)invocation;

092 Field field = fieldInvocation.field;

093 out.print(field.getDeclaringClass().getName());

094 out.print(',');

095 out.print(field.getName());

096 out.print(',');

097 out.print(field.getType());

098 }

099 out.println();

100 out.flush();

101 return rsp;

102 }

103 ...

104 }

The importXml method (see line 27) initializes the interceptor from the information

contained in the jboss-aop.xml file—in particular, from the value parameter of the

record-file tag, which defines the output file name.

The recordMethodCall method (see line 50) uses the out attribute to write the passed

parameters in a readable way. This method is used to record method and constructor calls.

The invoke method is the heart of the recorder. It verifies that the invoked element needs

to be recorded (see line 55), performs an introspection on the invocation, and writes the

expected data to the file (which is accessible through the out field).

The recorder will be tested on the program that is shown in Listing 9-12.

184 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Listing 9-12. A Simple Example to be Recorded

package aop.tests.cover;

public class CoverExample {

private static int myField = 0;

 public int increment(int value) {

 return ++value;

 }

 public int decrement(int value) {

 return --value;

 }

 public static int[] test(Object[] t,Object j)

 throws Exception,ArrayIndexOutOfBoundsException {

 System.out.println("Reading myField : "+myField);

 return null;

 }

 public static void main(String[] args) {

 CoverExample t = new CoverExample();

 System.out.println("Increment 1 : "+t.increment(1));

 System.out.println("Decrement 1 : "+t.decrement(1));

 try {

 test(null,null);

 } catch (Exception e) {}

 }

}

The running of the recorder on the program in Listing 9-12 is parameterized by the

jboss-aop.xml file that is shown in Listing 9-13.

Listing 9-13. The Deployment of the Recorder Interceptor

<interceptor-pointcut methodFilter="ALL" constructorFilter="ALL"

 fieldFilter="ALL" group="cover">

 <interceptors>

 <interceptor class="aop.tests.cover.CoverRecorderInterceptor"

 singleton="true">

 <record-file value="d:\\temp\\recordcover.csv" />

 </interceptor>

 </interceptors>

</interceptor-pointcut>

<class-metadata group="cover" class="aop.tests.cover.CoverExample">

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 185

 <default>

 <filter>false</filter>

 </default>

 <method name="main">

 <filter>true</filter>

 </method>

</class-metadata>

The pointcut is defined for all the potentially recorded elements (constructors, methods,

and fields) in the cover group, which is defined through the class-metadata tag. (Here, only

one tag is used for the sole class of the program.) When associating the interceptor with the

pointcut, a recorder-specific tag (record-file) is added. This tag defines the output file name

and is handled by the importXml method.

Metadata is then associated with the CoverExample class, which is defined as part of the

cover group. The filter variable, which is used by the interceptor to determine whether a

method should be analyzed, is initialized.

Running CoverExample produces the trace file that is shown in Listing 9-14.

Listing 9-14. The Recording Output File

Call type,Class,Name,Return / Type,parameters,exceptions

Field write access,aop.tests.cover.CoverExample,myField,int

Constructor call,aop.tests.cover.CoverExample,N/A,N/A,,

Method call,aop.tests.cover.CoverExample,increment,int,int,

Method call,aop.tests.cover.CoverExample,decrement,int,int,

Field read access,aop.tests.cover.CoverExample,myField,int

Method call,aop.tests.cover.CoverExample,test,int[],\

java.lang.Object[];java.lang.Object,\

java.lang.Exception;java.lang.ArrayIndexOutOfBoundsException

Figure 9-1 shows what the trace file looks like when it is opened with Microsoft Excel.

Figure 9-1. A coverage-analysis trace file in Microsoft Excel

Nonregression Tests

Detecting regressions consists of recording a reference behavior in one version of an applica-

tion and, then, while a newer version of the application is running, comparing the obtained

record to the newer version (the version to be tested). If a difference is detected, that difference

must be analyzed to determine whether it is a regression.

pyT/nruteRemaNssalCepyT llaC e noitpecxEsretemaraP s

tnidleiFymelpmaxErevoC.revoc.stset.poassecca etirw dleiF

A/NA/NelpmaxErevoC.revoc.stset.poallac rotcurtsnoC

nemercnielpmaxErevoC.revoc.stset.poallac dohteM t tnitni

nemercedelpmaxErevoC.revoc.stset.poallac dohteM t tnitni

tnidleiFymelpmaxErevoC.revoc.stset.poassecca daer dleiF

.avaj;noitpecxE.gnal.avajtcejbO.gnal.avaj;][tcejbO.gnal.avaj][tnitsetelpmaxErevoC.revoc.stset.poallac dohteM

186 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

This technique relies on two assumptions:

• The reference record corresponds to the correct behavior of the application and is bug

free.

• The reference record is deterministic. In other words, recording the same version of the

application with the same input always gives the same result.

To implement regression detection, both a recorder and a comparator must be imple-

mented. The granularity is at the level of method invocations. The regression-recorder

interceptor shown in Listing 9-15 is quite similar to the interceptor that was previously devel-

oped for coverage analysis.

Listing 9-15. A Simple Regression Analyzer Implemented with AOP

package aop.tests.regression;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.lang.reflect.Method;

import org.jboss.aop.Interceptor;

import org.jboss.aop.Invocation;

import org.jboss.aop.InvocationResponse;

import org.jboss.aop.InvocationType;

import org.jboss.aop.MethodInvocation;

import org.jboss.util.xml.XmlLoadable;

import org.w3c.dom.Element;

public class RegressionRecorderInterceptor implements Interceptor, XmlLoadable {

 private PrintWriter out;

 private String version;

 public String getName() {

 return "RegressionRecorderInterceptor";

 }

 public void importXml(Element parameter) {

 ...

 }

 public InvocationResponse invoke(Invocation invocation) throws Throwable {

 String filter = (String) invocation.getMetaData("regression", "filter");

 if ((invocation.getType() != InvocationType.METHOD)

 || (filter != null && filter.equals("true"))) {

 return invocation.invokeNext();

 }

 InvocationResponse rsp = null;

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 187

 Object response = null;

 Throwable exception = null;

 try {

 rsp = invocation.invokeNext();

 response = rsp.getResponse();

 } catch (Throwable e){

 exception = e;

 }

 MethodInvocation methodInvocation = (MethodInvocation)invocation;

 Method method = methodInvocation.method;

 String className = method.getDeclaringClass().getName();

 String methodName = method.getName();

 Object[] parameters = methodInvocation.arguments;

 out.print(version);

 out.print(',');

 out.print(className);

 out.print(',');

 out.print(methodName);

 out.print(',');

 if (response!=null) {

 out.print(getValue(response));

 } else if (method.getReturnType().isAssignableFrom(java.lang.Void.TYPE)) {

 out.print("void");

 } else {

 out.print("null");

 }

 out.print(',');

 StringBuffer temp = new StringBuffer();

 for (int i = 0; i < parameters.length; i++) {

 if (parameters[i]!=null) {

 temp.append(getValue(parameters[i]));

 } else {

 temp.append("null");

 }

 temp.append(';');

 }

 if (temp.length()>0) {

 temp.deleteCharAt(temp.length()-1);

 out.print(temp);

 }

 if (exception!=null){

 out.print(',');

 out.print("throws ");

 out.print(exception.getClass().getName());

188 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

 }

 out.println();

 out.flush();

 return rsp;

 }

 private String getValue(Object o) {

 if (!o.getClass().isArray()) {

 return Integer.toString(o.hashCode());

 } else {

 StringBuffer value = new StringBuffer();

 Object[] temp = (Object[]) o;

 for (int i=0;i<temp.length;i++) {

 value.append(getValue(temp[i]));

 value.append('|');

 }

 return value.toString();

 }

 }

 ...

}

The major difficulty of the implementation shown in Listing 9-15 involves dealing with

object values that are not easily represented as simple strings (for instance, arrays and user-

defined class instances). For the sake of the example, we have defined the getValue method,

which uses the java.lang.Object.hashCode method to get a unique representation of an object

and that also deals with arrays. Note that the call to invocation.invokeNext() is performed

within a try/catch block in order to record potential exceptions.

The recorder is tested on the program shown in Listing 9-16, which corresponds to the

earlier version of the application.

Listing 9-16. A Simple Example to Test for Regressions: Version 1

package aop.tests.regression;

import java.util.Vector;

public class RegressionExample {

 public int increment(int value) {

 return ++value;

 }

 public int decrement(int value) {

 return --value;

 }

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 189

 public static void test(Object[] t,Object j)

 throws Exception,ArrayIndexOutOfBoundsException {

 System.out.println("calling test ");

 throw new Exception("error in test");

 }

 public static void main(String[] args) {

 RegressionExample t = new RegressionExample();

 System.out.println("Increment 1 : "+t.increment(1));

 System.out.println("Decrement 1 : "+t.decrement(1));

 try {

 String[] array = {"str1","str2"};

 Object[] arrayOfArray = {array,"str3"};

 Vector v = new Vector();

 v.add("str4");

 v.add("str5");

 test(arrayOfArray,v);

 } catch (Exception e) {}

 }

}

To record the program’s execution, we must now define the jboss-aop.xml file, which is

shown in Listing 9-17.

Listing 9-17. The Deployment of the Regression Interceptor

<interceptor-pointcut methodFilter="ALL" constructorFilter="NONE"

 fieldFilter="NONE" group="regression">

 <interceptors>

 <interceptor class="aop.tests.regression.RegressionRecorderInterceptor"

 singleton="true">

 <record-file value="d:\\temp\\recordreg.csv" />

 <version value="1" />

 </interceptor>

 </interceptors>

</interceptor-pointcut>

<class-metadata group="regression"

 class="aop.tests.regression.RegressionExample">

 <default>

 <filter>false</filter>

 </default>

</class-metadata>

When the application is run, the record is generated, and the file opened with Excel gives

the result shown in Figure 9-2.

190 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Figure 9-2. The nonregression trace file generated for version 1 of the example

The next step is to perform the same recording on a different version of the application.

(Note that the version number in the jboss-aop.xml file must be changed before running the

application.) The code for version 2 is shown in Listing 9-18.

Listing 9-18. A Simple Example to Test for Regressions: Version 2

package aop.tests.regression;

import java.util.Vector;

public class RegressionExample {

 public int increment(int value) {

 return value++;

 }

 public int decrement(int value) {

 return value--;

 }

 public static void test(Object[] t,Object j)

 throws Exception,ArrayIndexOutOfBoundsException {

 System.out.println("calling test");

 throw new ArrayIndexOutOfBoundsException("error in test");

 }

 public static void main(String[] args) {

 RegressionExample t = new RegressionExample();

 System.out.println("Increment 1 : "+t.increment(1));

 System.out.println("Decrement 1 : "+t.decrement(1));

 try {

 String[] array = {"str1","str2"};

 Object[] arrayOfArray = {array,"str3"};

 Vector v = new Vector();

 v.add("str4");

 v.add("str5");

 test(arrayOfArray,v);

 } catch (Exception e) {}

 }

}

After its execution is recorded, the application gives the trace file that is shown in Figure 9-3.

noitpecxEsretemaraPesnopseRemaN dohteMemaN ssalCnoisreV

nemercnielpmaxEnoissergeR.noisserger.stset.poa1 t 12

nemercedelpmaxEnoissergeR.noisserger.stset.poa1 t 10

setelpmaxEnoissergeR.noisserger.stset.poa1 t noitpecxE.gnal.avaj sworht628313311;|6201453||5201453|4201453diov

diovniamelpmaxEnoissergeR.noisserger.stset.poa1

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 191

Figure 9-3. The nonregression trace file generated for version 2 of the example

Finally, by using the filtering features of Excel, you can compare the two trace files and

detect regressions. Figure 9-4 shows this comparison for the increment method. The compar-

ison highlights the fact that the increment method does not return the same result in version 1

as it does in version 2.

Figure 9-4. A comparison of the increment method in version 1 and in version 2

AOP for Application Administration

and Supervision
Even though administration and supervision are of primary importance for n-tier applications,

these tasks are barely taken into account by developers, who naturally tend to focus on the

applications’ main functions. Since they are not tackled up front, administration and supervi-

sion can benefit from the greater degree of separation among concerns that is provided by

AOP. Indeed, it is interesting to independently develop some administration and supervision

features so as to be able to plug and unplug these features when needed.

Certain standards—Simple Mail Transfer Protocol (SMTP) and Java Management Exten-

sions (JMX)—are available for administration and supervision, and it is preferable to use them

rather than code from scratch. In fact interoperability is often a requirement for administration

and supervision because these tasks can crosscut several subsystems of an enterprise

application.

JMX

With JMX, Java provides a standard specification and a library for administration and supervi-

sion. JMX relies on two main functionalities:

• The opening of Java components through a specific API so that the components become

fully accessible to the administration and supervision tools

• A notification mechanism for implementing automatic checks when needed

sretemaraPesnopseRemaN dohteMemaN ssalCnoisreV

nemercnielpmaxEnoissergeR.noisserger.stset.poa1 t 12

nemercedelpmaxEnoissergeR.noisserger.stset.poa1 t 10

setelpmaxEnoissergeR.noisserger.stset.poa1 t 628313311;|6201453||5201453|4201453diov

diovniamelpmaxEnoissergeR.noisserger.stset.poa1

nemercnielpmaxEnoissergeR.noisserger.stset.poa2 t 11

nemercedelpmaxEnoissergeR.noisserger.stset.poa2 t 11

setelpmaxEnoissergeR.noisserger.stset.poa2 t 628313311;|6201453||5201453|4201453diov

diovniamelpmaxEnoissergeR.noisserger.stset.poa2

noitpecxEsretemaraPesnopseRemaN dohteMemaN ssalCnoisreV

nemercnielpmaxEnoissergeR.noisserger.stset.poa1 t 12

nemercnielpmaxEnoissergeR.noisserger.stset.poa2 t 11

192 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Note that JMX is widely used by the administration consoles of the existing application

servers.

The JMX architecture is composed of the three following layers:

• Instrumentation: The role of this layer consists of opening the components to the other

layers. The components are then called manageable resources.

• Agent: This layer exploits the manageable resources of the previous layer and makes

them accessible, through adapters, to the outer application (in other words, to the

distributed services layer). This layer also offers several services—such as dynamic class

loading, manageable-resources monitoring, and timers—that can be used by the

distributed services layer.

• Distributed services: This layer gathers the application’s external components. These

components communicate with the agent layer through adapters and are mainly

composed of the administration and supervision tools.

The JMX architecture is designed to be open and easy to use. The adapters of the agent

layer make it easy for a JMX application to interoperate with standards and with existing

administration and supervision tools (such as IBM Tivoli and Hewlett-Packard OpenView).

The following sections present the different layers of JMX.

Instrumentation Layer

The instrumentation layer relies on the notion of the manageable resource. Resources are

implemented as regular Java objects (beans) that must follow a set of conventions to be admin-

istered and supervised by JMX. These resources are called MBeans, which stands for

Manageable Beans.

There are four types of MBeans: standard, dynamic, open, and model. Since this book is

not dedicated to JMX, we will deal only with standard MBeans, which are general enough to

demonstrate our point.

An MBean is a Java class if it implements an interface that is named from the class and the

MBean suffix. For instance, a Stats class is an MBean if it implements a StatsMBean interface,

as shown here:

package aop.management.jmx.simple;

public class Stats implements StatsMBean {

 ...

}

The role of the MBean interface is to define the fields and methods that are accessible from

the agent layer. For each attribute, you must define a getter method and, if the attribute is

modifiable, a setter method. The example in Listing 9-18 defines three read-only attributes and

a reset method.

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 193

Listing 9-19. A Simple MBean for Statistics Managment

package aop.management.jmx.simple;

public interface StatsMBean {

 public int getOrders();

 public float getTotalOrdersAmount();

 public String getStatus();

 public void reset();

}

Agent Layer

The agent layer is implemented by a specific JMX component, named MBeanServer, that is

defined in the MBeans specification. This component controls the communications between

the manageable resources and the outer world.

The MBeanServer component defines useful services, such as the monitoring service that

generates a notification when a field value is modified—thus allowing for the monitoring of the

manageable resources. There are three types of monitors:

• CounterMonitor: This type monitors the numeric attributes and sends a notification

event when a threshold value is reached. A new threshold value can then be calculated.

• GaugeMonitor: This type monitors the attributes and sends a notification event when a

value goes under or over a limit value.

• StringMonitor: This type monitors the string values and can send a notification event

when a string equals or differs from a reference string.

To be notified of monitoring events, Java classes must implement the javax.management.

NotificationListener interface.

Distributed Services Layer

The distributed services layer consists of a set of tools that can be connected to the JMX agent

through an adapter. The remainder of this chapter uses the HTTP adapter provided by MX4J

(an open-source implementation of JMX 1.1). As shown in Figure 9-5, the HTTP adapter

contains a GUI for administering the MBeans, creating new monitors, and more.

194 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Figure 9-5. The GUI for the HTTP adapter provided by MX4J

Using JMX with AOP

As stated previously, to transform a regular Java object into a manageable resource, you need

to implement an MBean interface. When using JMX with an existing application, it can be

useful to leave the existing objects untouched and transparently integrate the MBean interface

with aspects.

As a reference example, we will use a simplified order-management application. The

application is composed of two parts:

• The order-management part, which updates certain statistics about the orders

• The order-creation part, which generates certain arbitrary orders to test the order-

management part

Statistics are implemented in the Stats class, which is shown in Listing 9-20.

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 195

Listing 9-20. An Implementation of the Statistics Manageable Bean

public class Stats {

 private int orders = 0;

 private float totalAmount = 0;

 private String status = "OK";

 public int getOrders() {

 return orders;

 }

 public void incOrders() {

 orders++;

 }

 public float getTotalAmount() {

 return totalAmount;

 }

 public void addAmount(float p) {

 totalAmount+=p;

 }

 public String getStatus() {

 return status;

 }

 public void setStatus(String p) {

 status = p;

 }

 public void reset() {

 orders = 0;

 totalAmount = 0;

 status = "OK";

 }

}

The fields of the class are:

• orders: This field contains an order counter.

• totalAmount: This field accumulates the amounts of all the orders.

• status: This field represents the status (“OK” or “KO”) of the ordering process.

As its name implies, the reset method resets the fields to their initial values. The Stats

class is used by the main JMXExample class, which is shown in Listing 9-21.

196 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

Listing 9-21. A Simple Client Program for the Stats MBean

package aop.management.jmx.simple;

public class JMXExample {

 private static Stats statistics = new Stats();

 public static void sendOrder(float amount) {

 if (amount>0) {

 statistics.incOrders();

 statistics.addAmount(amount);

 } else {

 statistics.setStatus("KO");

 try {

 Thread.sleep(200);

 }

 catch (InterruptedException e) {

 }

 statistics.setStatus("OK");

 }

 }

 public static void main(String[] str) throws Exception {

 Injector injection = new Injector();

 injection.start();

 }

}

The sendOrder method is used by the Injector instance to simulate orders. If the passed

amount is positive, statistics are updated. Otherwise, an error is generated, and the status

attribute is set to “KO” for 200 milliseconds before being reset to “OK”.

The Injector class shown in Listing 9-22 is a Java thread that generates arbitrary orders.

More precisely, it generates ten random orders. Every five orders, an invalid order (with an

amount of –1000) is generated.

Listing 9-22. A Thread for the Random Generation of Orders

package aop.management.jmx.simple;

public class Injector extends Thread {

 public void run() {

 float amount = 0;

 for (int i=1;i<=10;i++) {

 try {

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 197

 System.err.println("Order #"+i);

 sleep(Math.round(Math.random() * 5000));

 } catch (InterruptedException e) {}

 if ((i%5)==0) {

 JMXExample.sendCommand(-1000);

 } else {

 amount = Math.round(Math.random() * 1500);

 JMXExample.sendCommand(amount);

 }

 }

 }

}

Creating a Manageable Resource with an Aspect

To become a manageable resource, the Stats class must implement a StatsMBean interface, as

shown in Listing 9-23.

Listing 9-23. The MBean Interface for Ordering Statistics

package aop.management.jmx.simple;

public interface StatsMBean {

 public int getOrders();

 public float getTotalAmount();

 public String getStatus();

 public void reset();

}

With MX4J, you must also define a class named StatsMBeanDescription, which is used for

documenting the attributes and methods of the MBean. This class is shown in Listing 9-24.

Listing 9-24. The MX4J Stats Bean Description

package aop.management.jmx.simple;

import java.lang.reflect.Method;

import mx4j.MBeanDescriptionAdapter;

public class StatsMBeanDescription extends MBeanDescriptionAdapter {

 public String getAttributeDescription(String attribute) {

 if (attribute.equals("Orders")) {

 return "Number of orders ";

 } else if (attribute.equals("Status")) {

 return "Status of the ordering process";

 } else if (attribute.equals("TotalAmount")) {

 return "Total amount of the orders";

198 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

 } else {

 return "Unknown attribute";

 }

 }

 public String getOperationDescription(Method method) {

 if (method.getName().equals("reset")) {

 return "Resets the attributes to their initial values ";

 } else {

 return "Unkown operation";

 }

 }

}

Once we have defined our interface and description class, we can use the introduction

mechanism of AOP to transform our Java class into a manageable resource. With JBoss AOP, an

empty interceptor must be defined, as shown in Listing 9-25.

Listing 9-25. An Empty Interceptor for Allowing Introductions

package aop.management.jmx.simple;

import org.jboss.aop.Interceptor;

import org.jboss.aop.Invocation;

import org.jboss.aop.InvocationResponse;

public class StatsMBeanInterceptor implements Interceptor {

 public String getName() {

 return "StatsMBeanInterceptor";

 }

 public InvocationResponse invoke(Invocation invocation) throws Throwable {

 return invocation.invokeNext();

 }

}

Finally, jboss-aop.xml defines the introduction, as shown in Listing 9-26.

Listing 9-26. The Deployment of the MBean-Interface Introduction

<interceptor-pointcut methodFilter="NONE" constructorFilter="ALL"

 fieldFilter="NONE"

 class="aop.management.jmx.simple.Stats">

 <interceptors>

 <interceptor class="aop.management.jmx.simple.StatsMBeanInterceptor"/>

 </interceptors>

</interceptor-pointcut>

<introduction-pointcut class="aop.management.jmx.simple.Stats">

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 199

 <interfaces>aop.management.jmx.simple.StatsMBean</interfaces>

</introduction-pointcut>

In addition, the main class must be modified as shown in Listing 9-27.

Listing 9-27. The Modification of the Example to Make it a JMX Client

01 package aop.management.jmx.simple;

02

03 import javax.management.MBeanServer;

04 import javax.management.MBeanServerFactory;

05 import javax.management.ObjectName;

06 import javax.management.JMException;

07 import javax.management.Attribute;

08 import javax.management.monitor.GaugeMonitor;

09 import javax.management.monitor.StringMonitor;

10 import javax.management.monitor.CounterMonitor;

11 import javax.management.NotificationListener;

12 import javax.management.Notification;

13 import java.net.URL;

14 import java.net.MalformedURLException;

15 import java.util.Map;

16 import java.util.HashMap;

17 import java.util.List;

18 import java.util.ArrayList;

19

20 public class JMXExample {

21

22 private int port = 8080;

23 private String host = "localhost";

24 private static Stats statistics = new Stats();

25

26 public static void sendCommand(float amount) {

27 ...

28 }

29

30 public void start() throws JMException, MalformedURLException {

31 MBeanServer server = MbeanServerFactory.createMBeanServer("OrderProcess");

32 ObjectName serverName = new ObjectName("Http:name=HttpAdaptor");

33 server.createMBean("mx4j.adaptor.http.HttpAdaptor",serverName,null);

34 server.setAttribute(serverName,new Attribute("Port",new Integer(port)));

35 server.setAttribute(serverName,new Attribute("Host",host));

36 ObjectName processorName = new ObjectName("Http:name=XSLTProcessor");

37 server.createMBean("mx4j.adaptor.http.XSLTProcessor",processorName,null);

38 server.setAttribute(processorName, new Attribute("UseCache",new

 Boolean(false)));

39 server.setAttribute(serverName, new

 Attribute("ProcessorName",processorName));

200 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

40

41 server.registerMBean(statistics, new ObjectName("OrderProcess:name=stats"));

42 ...

43 server.invoke(serverName, "start", null, null);

44 }

45

46 public static void main(String[] str) throws Exception {

47 JMXExample t = new JMXExample();

48 t.start();

49 Injector injection = new Injector();

50 injection.start();

51 }

52 }

The purpose of this modification is to handle the initialization of the MBeanServer compo-

nent and the HTTP adapter and to register the manageable resource. In our example, the

adapter is accessible through the http://localhost:8080 address, which is defined by the

added fields on lines 22 and 23 in Listing 9-27. An instance of MBeanServer is created on line 31,

and the adapter is initialized on line 39. The manageable resource is then registered in the

MBeanServer component (see line 5). Finally, we define two monitors. (For clarity, the actual

code of line 42 is shown in Listing 9-28.)

Listing 9-28. The Definitions of the Monitors for Listing 9-27

01 CounterMonitor ordersCounter = new CounterMonitor();

02 ObjectName ordersCounterName =

03 new ObjectName("OrderProcess","monitor","ordersCounter");

04 server.registerMBean(ordersCounter, ordersCounterName);

05 ordersCounter.setThreshold(new Integer(5));

06 ordersCounter.setOffset(new Integer(5));

07 ordersCounter.setNotify(true);

08 ordersCounter.setDifferenceMode(false);

09 ordersCounter.setObservedObject(new ObjectName("OrderProcess:name=stats"));

10 ordersCounter.setObservedAttribute("Orders");

11 ordersCounter.setGranularityPeriod(100L);

12 ordersCounter.addNotificationListener(

13 new NotificationListener() {

14 public void handleNotification(Notification notification,

16 Object handback) {

17 System.out.println(

18 "JMX Notification - Orders : threshold overflow");

19 }

20 }, null, null);

21 ordersCounter.start();

22

23 StringMonitor statusMonitor = new StringMonitor();

24 ObjectName statusMonitorName = new ObjectName("OrderProcess","monitor",

25 "statusMonitor");

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 201

26 server.registerMBean(statusMonitor,statusMonitorName);

27 statusMonitor.setNotifyDiffer(true);

28 statusMonitor.setNotifyMatch(true);

29 statusMonitor.setStringToCompare("OK");

30 statusMonitor.setObservedObject(new ObjectName("OrderProcess:name=stats"));

31 statusMonitor.setObservedAttribute("Status");

32 statusMonitor.setGranularityPeriod(100L);

33 statusMonitor.addNotificationListener(

34 new NotificationListener() {

35 public void handleNotification(Notification notification,

36 Object handback) {

37 if (notification.getType().equals("jmx.monitor.string.differs")) {

38 System.out.println("JMX notification - Abnormal process ");

39 } else {

40 System.out.println("JMX notification - Process OK");

41 }

42 }

43 }, null, null);

44 statusMonitor.start();

The monitor of line 1 in Listing 9-28 checks the number of incoming orders. Every five

orders, the monitor emits a notification event, which is received by the listener of line 13. The

monitor of line 20 checks the status attribute of the Stats bean and emits a notification when

the attribute’s state changes. These notifications are received by the listener of line 34.

When run, the application gives the output that is shown in Listing 9-29.

Listing 9-29. The Output of the JMX Example

JMX notification - Process OK

Order #1

Order #2

Order #3

Order #4

Order #5

JMX notification - Abnormal process

Order #6

JMX notification - Process OK

Order #7

JMX notification - Orders : threshold overflow

Order #8

Order #9

Order #10

JMX notification - Abnormal process

JMX notification - Process OK

202 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

As you can see, the application emitted notifications as expected. The delay comes from

the monitors’ granularity period, which must be set to 100 milliseconds with the

setGanularityPeriod method of the javax.management.monitor.Monitor class.

We can now use the HTTP adapter’s GUI to reset the Stats class, as shown in Figure 9-6.

Figure 9-6. Invoking the reset method through the HTTP adapter of MX4J

Extending a Manageable Resource with an Aspect

Through the use of AOP, we have been able to extend a regular Java class into a manageable

resource. In some cases, it is interesting to transparently introduce new functions or attributes.

Here, we propose to add a property that contains the mean amount of orders. To do so, we will

first modify StatsMBean and StatsMBeanDescription to take the new attribute into account, as

shown in Listing 9-30.

Listing 9-30. The Enhanced Stats MBean

package aop.management.jmx.mixin;

public interface StatsMBean {

 public int getMOrders();

 public float getMTotalAmount();

 public float getMeanOrderAmount();

 public String getMStatus();

 public void mReset();

}

Next, we will create a mix-in class that implements the new attribute, as shown in

Listing 9-31.

Listing 9-31. A Mix-in Implementation that Defines the Introduction

01 package aop.management.jmx.mixin;

02

03 public class StatsMBeanMixin implements StatsMBean {

04

05 private Stats advised;

06

C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P 203

07 public StatsMBeanMixin(Object p) {

08 advised = (Stats)p;

09 }

10

11 public float getMeanOrderAmount() {

12 if (advised.getOrders() > 0) {

13 return advised.getTotalAmount()/advised.getOrders();

14 } else {

15 return 0;

16 }

17 }

18

19 }

In JBoss AOP, a mix-in class constructor takes the advised object as a parameter (see line 7

in Listing 9-31). This parameter allows the mix-in class to access the advised object’s public

members, which here are those of the Stats class (see lines 12 and 13).

Finally, we can modify the introduction pointcut in the jboss-aop.xml file, as shown in

Listing 9-32.

Listing 9-32. The Deployment of the Introduced MeanOrderAmount Attribute

<introduction-pointcut class="aop.management.jmx.mixin.Stats">

 <mixin>

 <interfaces>aop.management.jmx.mixin.StatsMBean</interfaces>

 <class>aop.management.jmx.mixin.StatsMBeanMixin</class>

 <construction>new aop.management.jmx.mixin.StatsMBeanMixin(this)

 </construction>

 </mixin>

</introduction-pointcut>

To check that the program is operational, this new, aspect-added attribute can be moni-

tored with the JMX program that is shown in Listing 9-33.

Listing 9-33. Monitoring the Introduced Attribute

GaugeMonitor meanOrderAmountGauge = new GaugeMonitor();

ObjectName meanOrderAmountGaugeName =

 new ObjectName("OrderProcess","monitor","meanOrderAmountGauge");

server.registerMBean(meanOrderAmountGauge, meanOrderAmountGaugeName);

meanOrderAmountGauge.setThresholds(new Float(1000), new Float(500));

meanOrderAmountGauge.setNotifyHigh(true);

meanOrderAmountGauge.setNotifyLow(true);

meanOrderAmountGauge.setDifferenceMode(false);

meanOrderAmountGauge.setObservedObject(new ObjectName("OrderProcess:name=stats"));

meanOrderAmountGauge.setObservedAttribute("MeanOrderAmount");

meanOrderAmountGauge.setGranularityPeriod(100L);

meanOrderAmountGauge.addNotificationListener(

 new NotificationListener() {

204 C H A P T E R 9 ■ Q U A L I T Y O F S E R V I C E A N D A O P

 public void handleNotification(Notification notification,Object handback) {

 if (notification.getType().equals("jmx.monitor.gauge.low")) {

 System.out.println("JMX notification - Mean amount < 500 euros");

 } else {

 System.out.println("JMX notification - Mean amount > 1000 euros");

 }

 }

 }, null, null);

meanOrderAmountGauge.start();

The JMX program gives the expected result, which is shown in Listing 9-34.

Listing 9-34. The Output of the JMX Example with the Introduced Attribute

JMX notification - Mean amount < 500 euros

JMX notification - Process OK

Order #1

Order #2

JMX notification - Mean amount > 1000 euros

Order #3

Order #4

Order #5

JMX notification - Abnormal process

Order #6

JMX notification - Process OK

Order #7

JMX notification - Orders : threshold overflow

Order #8

Order #9

Order #10

JMX notification - Abnormal process

JMX notification - Process OK

Summary
In this chapter, you saw how AOP—by verifying that an application’s definition and execution

correspond to its identified requirements—can be used to improve the application’s Quality of

Service. First, we showed how AOP can help to implement contracts in a straightforward way.

Second, we showed the AOP implementation of two testing techniques: coverage analysis and

nonregression tests. Finally, we showed how to use AOP for the seamless integration of JMX

with a Java application.

Our AOP implementations did not provide more features than the existing tools do.

However, our implementations showed how AOP can be used at a developmental level to

improve code quality—without needing any specific support. Besides, an important advantage

of AOP technologies is that it provides the ability to plug and unplug Quality of Service support

when needed—even at run time if dynamic AOP tools are used.

205

■ ■ ■

C H A P T E R 1 0

Presentation of the Sample
Application

This chapter discusses the architecture and design details of a sample application that we’ll

use as a case study to demonstrate the strengths of AOP within the J2EE environment. This

well-known, simple sample application serves to present the material in an understandable

manner. The sample is developed from the Duke’s Bank application of the Sun ONE J2EE

application server. This application does not depend on Sun ONE specifically, and it can be

used efficiently on any J2EE application server by adapting the deployment scripts.

Since this book focuses on AOP, this chapter does not go into the details of J2EE program-

ming, but instead provides sufficient information on AOP and where it can be useful. A portion

of this chapter, however, is a review of the J2EE design patterns used by the sample application.

Please note that these patterns are different from the GOF patterns presented in Chapter 8.

Additionally, we do not present the application’s full code here; rather, we simply depict its

design.

If you’d like more detailed information on the application, please visit the Downloads area

of the Apress web site (http://www.apress.com) to access the case study code. If you aren’t

familiar with J2EE, we highly recommend doing some further reading on the subject before

you examine the code in detail.

Sample Application Architecture
Duke’s Bank is a classic J2EE application composed of tiers commonly found when developing

enterprise applications. It is packaged so that the modules corresponding to each tier are

clearly separated.

To simplify the code, we have slightly modified the Duke’s Bank application, notably its

packaging. For means of comparison, please refer to the original application, which is available

on the Sun Microsystems web site.

The Application at a Glance

Before we cover the details of the tiers, we’ll provide an overview of the whole application and

its organization in the sections that follow.

The Participating Tiers

As J2EE advises, the application is composed of several tiers, as shown in Figure 10-1.

206 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Figure 10-1. The Duke’s Bank application’s architecture

The tiers and their roles are as follows:

• The data tier allows for storage of the persistent data and is implemented within the

PointBase relational database.

• The business tier contains EJBs that implement the application’s logic. These EJBs are

the session EJB, which provides a client’s view of the application’s business logic, and

the entity EJB, which represents the persistent objects manipulated by the application.

The business tier directly accesses the data tier, especially through the entity EJBs.

• The presentation tier allows the application to be accessed through a browser. It

contains a web servlet/JSP container and accesses the business tier. Relative to the busi-

ness tier, the presentation tier can be considered as a specific Java client tier.

• The client tier can be either a web (thin client) or a Java application. In this case, it is a

web application, as it accesses the presentation tier through HTTP; in the case of Java, it

directly accesses the business tier for locating the EJBs and goes through RMI for remote

communication. In the latter case, the Java client self-manages its presentation on the

client site (thick client).

Organizing and Packaging the Code

Although you can use any IDE, we recommend using the Eclipse open source IDE (we used

Eclipse to develop the application presented in this chapter). Eclipse can be downloaded from

http://www.eclipse.org. You can import the Eclipse project from the file system. The AJDT

plug-in for AspectJ is required to compile it, and the installation of this plug-in is depicted in

the appendixes.

In contrast with the original application, we structured this application by separating the

code into several independent projects. This structure allows developers to work more effi-

ciently, especially in the case of a large project, where different teams could more easily be

assigned to the development of a given tier.

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 207

The Eclipse projects are as follows:

• The Commons project contains all the classes common to several tiers. For example, it

contains the transfer objects and the service locators, described later in more detail,

which are used by the client, business, and presentation tiers.

• The BusinessUtils project contains all the classes used by the business tier.

• The BusinessComponents project contains all the business Plain Old Java Objects

(POJOs).

• The EJBComponents project contains all the business EJBs.

• The ClientUtils project contains all the classes used by the client tier.

• The BusinessDelegates project contains all the delegates, described later in further

detail, that allow the clients to access the business objects transparently with regard to

the communication layer.

• The ApplicationClient project contains the client application and its logic.

Figure 10-2 illustrates the project dependencies.

Figure 10-2. The project dependencies

For further clarification on the Eclipse project’s packaging, please refer to the screen shots

later in this chapter, which show the internal organization of the tiers.

Packages contain regular and aspectized application classes. This organization allows

programmers to compare aspectized and regular code more efficiently, especially when using

the AJDT plug-in and its aspect visualizer.

Deploying the Application

The application is packaged and deployed on the Sun ONE J2EE application server. Our web

site publishes the packaging and compilation scripts, which allow the project to remain inde-

pendent from the chosen IDE. Although they are developed under Eclipse, the projects do not

use any specific plug-in or Eclipse technology, therefore it is easy to use a different IDE.

208 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

The relevant files are as follows:

• The deploySunONE.bat file, located at the root of the EJBComponent project, deploys the

application on the Sun ONE server and uses the Ant script SunONE.xml in the same loca-

tion. To execute this script, Ant must be installed and the Sun ONE server must be

launched.

• The SunONE.properties file is used to configure and connect the server during the

deployment phase.

• The property file of the client application, j2eeclient.properties, configures remote

access to the Sun ONE server. This file, which must be installed on the client side,

declares that the facade EJBs are accessible from the client. This file is independently

published.

The next sections cover the AOP-specific details of the different tiers.

The Data Tier

The data tier is implemented by a set of tables within a relational database. Since this tier is

based on the RDBMS technology, it does not benefit from AOP improvements. Only its access

by another tier can be improved using AOP.

For our simple application, the direct object-relational mapping can be applied (one table

equals one business class). The table-creation script is shown in Listing 10-1. The table

customer_account_xref (line 34) implements the association between the clients and the

accounts (multiple cardinality).

Listing 10-1. Table Creation Script for the Sample Application

1 // table creation

2 CREATE TABLE account

3 (account_id VARCHAR(8)

4 CONSTRAINT pk_account PRIMARY KEY,

5 type VARCHAR(24),

6 description VARCHAR(30),

7 balance DECIMAL(10,2),

8 credit_line DECIMAL(10,2),

9 begin_balance DECIMAL(10,2),

10 begin_balance_time_stamp TIMESTAMP);

11

12 CREATE TABLE customer

13 (customer_id VARCHAR(8)

14 CONSTRAINT pk_customer PRIMARY KEY,

15 last_name VARCHAR(30),

16 first_name VARCHAR(30),

17 middle_initial VARCHAR(1),

18 street VARCHAR(40),

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 209

19 city VARCHAR(40),

20 state VARCHAR(2),

21 zip VARCHAR(5),

22 phone VARCHAR(16),

23 email VARCHAR(30));

24

25 CREATE TABLE tx

26 (tx_id VARCHAR(8)

27 CONSTRAINT pk_tx PRIMARY KEY,

28 account_id VARCHAR(8),

29 time_stamp TIMESTAMP,

30 amount DECIMAL(10,2),

31 balance DECIMAL(10,2),

32 description VARCHAR(30));

33

34 CREATE TABLE customer_account_xref

35 (customer_id VARCHAR(8),

36 account_id VARCHAR(8));

37

38 CREATE TABLE next_account_id (id INTEGER);

39 CREATE TABLE next_customer_id (id INTEGER);

40 CREATE TABLE next_tx_id (id INTEGER);

The Business Tier

The application is composed of two distinct parts: a bank administration interface (accounts

and users) and an interface that allows the users to perform transactions on their accounts.

These two interfaces use a model that is implemented with EJBs and that directly accesses the

data tier.

Session Facades

Session facades are session EJB components that implement the application logic or, more

specifically, the business functions. A facade defines a high-level interface that enables the

subsystems accessed through it to be used more easily. Among other roles, it implements an

isolation layer that permits the subsystems to evolve with minimal impact for the facades’

users.

Facades are generally stateless and delegate to the entity EJBs. Usually, the client tier

accesses the entity EJBs through these facades. For this simple application, we define only two

facades: the Bank facade and the TXController facade.

The Bank facade manages accounts and users, and is therefore used mainly for administra-

tive purposes; users cannot, for example, create or delete accounts. Since the code is self-

explanatory we do not describe all the services in detail.

The code in Listing 10-2 shows the interface that corresponds to the public services of the

Bank facade—that is to say, the services that are accessible through an administration client.

210 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Listing 10-2. The Bank Interface

package aop.j2ee.business.session.bank;

// imports

[...]

public interface Bank extends EJBObject {

 public String createAccount(String customerId, String type,

 String description, BigDecimal balance, BigDecimal creditLine,

 BigDecimal beginBalance, Date beginBalanceTimeStamp)

 throws RemoteException, IllegalAccountTypeException,

 CustomerNotFoundException, InvalidParameterException;

 public void removeAccount(String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void addCustomerToAccount(String customerId,

 String accountId)

 throws RemoteException,

 AccountNotFoundException, CustomerNotFoundException,

 CustomerInAccountException, InvalidParameterException;

 public void removeCustomerFromAccount(String customerId,

 String accountId)

 throws RemoteException,

 AccountNotFoundException, CustomerRequiredException,

 CustomerNotInAccountException,

 InvalidParameterException;

 public ArrayList getAccountsOfCustomer(String customerId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public AccountDetails getAccountDetails(String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void setAccountType(String type, String accountId)

 throws RemoteException, AccountNotFoundException,

 IllegalAccountTypeException, InvalidParameterException;

 public void setAccountDescription(String description,

 String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void setAccountBalance(BigDecimal balance,

 String accountId)

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 211

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void setAccountCreditLine(BigDecimal creditLine,

 String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void setAccountBeginBalance(BigDecimal beginBalance,

 String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public void setAccountBeginBalanceTimeStamp(

 Date beginBalanceTimeStamp, String accountId)

 throws RemoteException, AccountNotFoundException,

 InvalidParameterException;

 public String createCustomer (String lastName,

 String firstName, String middleInitial, String street,

 String city, String state, String zip, String phone,

 String email)

 throws InvalidParameterException, RemoteException;

 public void removeCustomer(String customerId)

 throws RemoteException, CustomerNotFoundException,

 InvalidParameterException;

 public ArrayList getCustomersOfAccount(String accountId)

 throws RemoteException, CustomerNotFoundException,

 InvalidParameterException;;

 public CustomerDetails getCustomerDetails(String customerId)

 throws RemoteException, CustomerNotFoundException,

 InvalidParameterException;

 public ArrayList getCustomersOfLastName(String lastName)

 throws InvalidParameterException, RemoteException;

 public void setCustomerName(String lastName, String firstName,

 String middleInitial, String customerId)

 throws RemoteException, CustomerNotFoundException,

 InvalidParameterException;

 public void setCustomerAddress(String street, String city,

 String state, String zip, String phone, String email,

 String customerId)

212 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

 throws RemoteException, CustomerNotFoundException,

 InvalidParameterException;

}

The TXController facade manages all the possible bank account transactions through a

web application (i.e., an online banking application) or an ATM. Listing 10-3 shows the inter-

face that corresponds to the TXController facade.

Listing 10-3. The Transaction Controller (TxController) Interface

package aop.j2ee.business.session.txcontroller;

// imports

[...]

public interface TxController extends EJBObject {

 public ArrayList getTxsOfAccount(Date startDate, Date endDate, String accountId)

 throws RemoteException, InvalidParameterException;

 public TxDetails getDetails(String txId)

 throws RemoteException, TxNotFoundException, InvalidParameterException;

 public void withdraw(BigDecimal amount, String description, String accountId)

 throws RemoteException, InvalidParameterException,

 AccountNotFoundException, IllegalAccountTypeException,

 InsufficientFundsException;

 public void deposit(BigDecimal amount, String description, String accountId)

 throws RemoteException, InvalidParameterException,

 AccountNotFoundException, IllegalAccountTypeException;

 public void transferFunds(BigDecimal amount, String description,

 String fromAccountId,

 String toAccountId)

 throws RemoteException, InvalidParameterException,

 AccountNotFoundException, InsufficientFundsException,

 InsufficientCreditException;

 public void makeCharge(BigDecimal amount, String description, String accountId)

 throws InvalidParameterException,

 AccountNotFoundException, IllegalAccountTypeException,

 InsufficientCreditException, RemoteException ;

 public void makePayment(BigDecimal amount, String description,

 String accountId)

 throws InvalidParameterException, AccountNotFoundException,

 IllegalAccountTypeException, RemoteException;

}

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 213

Entity EJBs

The entity EJBs define the model on which the application’s functions are applied, and they are

usually implemented within the session facade EJBs. A client may directly access an EJB

without going through a facade, but this is not advised for the following reasons. First, it can

result in application services that are not well defined. Second, it couples the client’s imple-

mentations to the business model, which reduces the application evolution possibilities.

The entity EJBs of our model are the accounts, the users, and the transactions. As

explained earlier in reference to the data tier, each EJB corresponds to a table. The accounts

implement the Account interface, as shown in Listing 10-4.

Listing 10-4. The Accounts Interface

package aop.j2ee.business.entity.account;

import aop.j2ee.commons.to.AccountDetails;

[...] // other imports

public interface Account extends EJBObject {

 public AccountDetails getDetails() throws RemoteException;

 public BigDecimal getBalance() throws RemoteException;

 public String getType() throws RemoteException;

 public BigDecimal getCreditLine() throws RemoteException;

 public void setType(String type) throws RemoteException;

 public void setDescription(String description) throws RemoteException;

 public void setBalance(BigDecimal balance) throws RemoteException;

 public void setCreditLine(BigDecimal creditLine) throws RemoteException;

 public void setBeginBalance(BigDecimal beginBalance) throws RemoteException;

 public void setBeginBalanceTimeStamp(Date beginBalanceTimeStamp)

 throws RemoteException;

}

The users are implemented using the Customer interface shown in Listing 10-5.

Listing 10-5. The Customer Interface

package aop.j2ee.business.entity.customer;

import aop.j2ee.commons.to.CustomerDetails;

[...] // other imports

public interface Customer extends EJBObject {

 public CustomerDetails getDetails() throws RemoteException;

 public void setLastName(String lastName) throws RemoteException;

 public void setFirstName(String firstName) throws RemoteException;

 public void setMiddleInitial(String middleInitial) throws RemoteException;

 public void setStreet(String street) throws RemoteException;

 public void setCity(String city) throws RemoteException;

 public void setState(String state) throws RemoteException;

 public void setZip(String zip) throws RemoteException;

 public void setPhone(String phone) throws RemoteException;

 public void setEmail(String email) throws RemoteException;

}

214 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Transactions are EJBs implementing the Tx interface, as shown in Listing 10-6.

Listing 10-6. The Tx Interface

package aop.j2ee.business.entity.tx;

import aop.j2ee.commons.to.TxDetails;

[...] // other imports

public interface Tx extends EJBObject {

 public TxDetails getDetails() throws RemoteException;

}

Organizing the Business Tier Code

Figure 10-3 shows the organization of the EJBComponents Eclipse project, which corresponds to

the business tier and contains the EJBs.

Figure 10-3. Organization of the EJBComponents project (business tier)

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 215

The root package is aop.j2ee.business. The entity and session EJBs are placed in two

subpackages: aop.j2ee.business.entity and aop.j2ee.business.session. Within these pack-

ages, the EJB is defined within a specific package, which contains at least three implementa-

tion files:

• The file that defines the Remote interface (by convention, the business name)

• The file that defines the Home interface (by convention, the business name followed by

Home)

• The file that defines the Bean implementation (by convention, the business name

followed by Bean)

For example, for the EJB that implements the banking facade, the files are Bank.java,

BankHome.java, and BankBean.java, respectively.

A fourth file, which ends with POJO, corresponds to the POJO implementation of the bean

defined in the package; for instance, BankPOJO corresponds to BankBean in the bank package.

This non-EJB implementation is made possible through the use of aspects, as we’ll explain

further in Chapter 12. Since this file contains the aspectized implementation of the EJB, it is

easy for the developer to compare these two implementations and to visualize the impact of

the aspects.

Choosing one of these functionally equivalent implementations is done within the deploy-

ment descriptor file, ejb-jar.xml, which is located in the META-INF directory of the Eclipse

project. Listing 10-7 shows an example.

Listing 10-7. Sample of a Deployment Descriptor File for the Sample Application (Bank)

1 <ejb-jar>

2 <enterprise-beans>

3 [...]

4 <session>

5 <display-name>Bank</display-name>

6 <ejb-name>Bank</ejb-name>

7 <home>aop.j2ee.business.session.bank.BankHome</home>

8 <remote>aop.j2ee.business.session.bank.Bank</remote>

9 <ejb-class>aop.j2ee.business.session.bank.BankBean</ejb-class>

10 <session-type>Stateless</session-type>

11 <transaction-type>Bean</transaction-type>

12 </session>

13 [...]

14 </enterprise-beans>

15 </ejb-jar>

To use the aspectized implementation rather than the regular one, you must replace the

line that declares the EJB class (line 9) with the following line:

 <ejb-class>aop.j2ee.business.session.bank.BankPOJO</ejb-class>

All the aspects applied to the POJOs are defined in the aop.j2ee.business.entity.aspect

package, which we discuss later in this chapter. Note that since this is an AspectJ project, it

contains aspectj.jar in its CLASSPATH and uses ajc for compiling.

216 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

The Client Tier

The application defines two distinct clients: a Java client that uses Swing and allows for bank

administration and a web client that accesses the presentation tier through HTTP, pro-

grammed using the Servlets/JSP technologies.

The Swing Client

The Swing client is an administration application developed using Java Swing API. It allows for

the creation, modification, and deletion of users and accounts.

Figure 10-4 shows the Swing administration GUI, which consists of a simple two-part

interface. The left side is used to print out messages, such as requested information or errors,

and the right side is an input panel that allows for the creation or modification of user- and

account-related information. The possible operations are accessible through the menu bar.

The administration client’s implementation depends solely on the Bank business facade.

Figure 10-4. The Swing GUI for the bank administration

The Web Client

The web client is the interface that allows bank users to access and manage their accounts

through a browser. Its logic is defined in the presentation tier, which is developed with the

Servlets/JSP technologies. Figure 10-5 shows the web GUI.

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 217

Figure 10-5. The bank’s web GUI

Organizing the Java Swing Client Code

This section describes the Java Swing client code used for the bank administration.

Figure 10-6 shows the Java client project’s organization.

218 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Figure 10-6. Organization of the ApplicationClient project (Java Swing client tier)

The root package is aop.j2ee.client.java. Within this package, you can find two versions

of the application: the regular application developed without aspects (the regular package),

and the aspectized version (the aspectized package). The aspect package contains all the

AspectJ aspects of this latter version; this is an AspectJ project.

As shown in Figure 10-6, the Java administration client of the original version is simple. It

is composed of four Java classes: BankAdmin, DataModel, EventHandle, and Simple. The BankAdmin

class builds the actual GUI. It throws events that correspond to the possible actions of the

users. These events are handled by the event managers as defined and installed in EventHandle.

The DataModel class implements the effects of the actions in terms of calls to the business tier,

specifically to the aop.j2ee.business.session.bank facade. Note that the Simple class is not

part of the original application, but it will be used in the next chapter to test simple client-side

logic without having to deal with the whole client.

The client layer is by no means a design to be followed; we use it simply as a means to

describe the concerns that may arise when programming the Java client.

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 219

The Web Presentation Tier

The web presentation tier, which is programmed using Struts, is not aspectized because, in this

context, the benefits are limited. In Chapter 13 we discuss the possible aspectization of the

presentation tier design patterns in an application context not using Struts.

Sample Application Design
The design of the sample application was inspired by J2EE applications in general, and more

specifically by J2EE good practices and design patterns.

We’ll begin this section by presenting a selection of design patterns and solutions that are

specific to J2EE and that have been used previously in this context. We’ll then explain the ways

in which using AOP improves the design of the sample application.

The original Duke’s Bank application is included in the free distribution of the Sun ONE

application server, which is available on the Sun Microsystems site. Please refer to the original

application if you wish to make comparisons with the design presented here.

Using J2EE Design Solutions

The design of the original Duke’s Bank application is simple. Not all the available J2EE design

solutions are used, causing deficiencies in code modularity. For this case study, we have

changed the application slightly, notably by following J2EE design patterns to improve the

modularity of the application and also by modifying the organization of the code.

The use of J2EE design patterns offers two main advantages:

• These design patterns are well-tested, reusable design elements that allow us to follow

J2EE best practices.

• J2EE design patterns are well documented and developers are familiar with their use

(see http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html). Using

J2EE design patterns allows developers to understand the design of the application

better and makes it easier to identify the problems that we are looking to resolve using

aspects.

Using EJBs in addition to J2EE design patterns allows us to integrate services automati-

cally. For example, persistence can be managed in this way by the component container or

container-managed persistence (CMP) by applying it to the entity EJB. The same applies to

transactions, or container-managed transactions (CMTs), which can be integrated declara-

tively using the EJB deployment descriptors.

The next few sections briefly describe the different J2EE design solutions that we will

develop further later in the chapter. For more details, please refer to the J2EE documentation

(http://java.sun.com/j2ee/docs.html) and to the catalog of J2EE design patterns (see the

references section at the end of this book).

J2EE Business Tier Design Patterns

In applications built using J2EE, the business tier is the middle tier, and it forms the interface

between the client and the enterprise resources (data sources). It is therefore extremely impor-

tant that this tier is implemented in a way that ensures good performance, as well as provides

for ease of maintenance, evolution, scalability, and so on.

220 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Use of a business tier is not compulsory, but it is, however, highly recommended. In appli-

cations with a business tier, clients can access the company’s different data sources in a logical

and consistent way, which is not the case if the application allows direct access to the database.

Making data access consistent enables easier optimization of the application architecture. For

example, global performance can be improved by using load balancing or caching on applica-

tion servers. These improvements are linked to the use of a business layer and are only possible

if certain basic rules are respected. J2EE design patterns state these rules explicitly.

The two most important design patterns for the business layer are the session facade

pattern and the business object pattern, both of which are described in the sections that follow.

The Session Facade Pattern

The session facade pattern is simply a session EJB. Its principal functions are as follows:

• To ensure that the client is independent from the business model (the latter being

subject to modifications over time).

• To allow access to the data via objects without shared states that can be managed and

optimized automatically by the application server. Since the problem of state synchro-

nization is avoided, the server itself constructs pools of session objects according to the

different sessions opened by the clients.

• To create a functional interface to adding extra nonfunctional properties declaratively

using deployment descriptors, as we will explain later.

• To provide remote access to identified services via the J2EE lookup and communication

layers (Java Naming and Directory Interface, or JNDI, and Remote Method Invocation, or

RMI). This access is also configured in the deployment descriptors.

The Business Object Pattern

The business object pattern allows the session facade objects to access data via entity EJBs,

without resorting to direct use of the connectors for the different resources. As with the session

facade, use of business objects is not compulsory but is recommended.

The principal functions of the business object pattern are as follows:

• The encapsulation of data access within the object-oriented model, which simplifies

data access and avoids, for example, the need for SQL queries. The EJB model advocates,

among other things, use of Home interfaces for resolving business objects.

• Use of deployment descriptors for the declarative and automatic introduction of

nonfunctional properties such as persistence.

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 221

The Transfer Object Pattern

The use of other design patterns can also improve the design of a J2EE application, particularly

in terms of performance. The transfer object pattern allows us to group together services used

by a facade. This is useful when the services have fine-grained parameters that can cause

multiple sequences of calls between the client and the server, as these calls tend to induce a

great deal of network traffic, especially costly connections.

A transfer object implements the java.io.Serializable interface. The state of the transfer

object corresponds to a set of parameters and return values for a group of services. A transfer

object can be grouped inside another transfer object recursively; this is called a composite

transfer object.

Transfer objects are shared by the client and business layers. They must be accessible to

both layers and are therefore defined in the application’s Commons project.

J2EE Client Tier Design Patterns

The client tier must use the remote resolving and communication APIs to access the services of

the business tier. However, this can make the client-side code complicated. When this compli-

cation occurs, J2EE design pattern guidelines recommend the use of two design patterns: the

service locator and business delegate. We describe these patterns in the sections that follow.

The Service Locator Pattern

The service locator pattern allows generic access to a service by hiding from the client the

access mechanisms involved. Examples of this are the use of Home interfaces and using cache

management to improve service resolution performance.

The service locator is generally implemented in the form of a singleton with a resolve

method that the client uses directly. Service resolution is not limited to the session facades; we

can, for example, access data sources in the same way.

The service locator pattern can also be used in the business layer when EJBs such as

facades need to access services. Because different layers use the service locator, its code is

contained within the application’s Commons project.

Figure 10-7 shows the organization of the Commons project, which contains the classes and

interfaces used by the client and business layers. As you would expect, it contains a package for

managing exceptions (aop.j2ee.commons.exception), but also the transfer objects

(aop.j2ee.commons.to) and the service locators (aop.j2ee.commons.util.locator) explained in

this section.

222 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Figure 10-7. Organization of the Commons project

The Business Delegate Pattern

The business delegate pattern creates a client-side object, allowing the client to access the

facades of the business layer. In general, a delegate has the same interface as the facade to

which it is delegating, but this is not a requirement.

The main functions of the business delegate are as follows:

• To make the client independent of the facades, guaranteeing better application struc-

ture and independence of the projects. For example, with an application programmed in

this way, recompiling the business layer has no effect on the clients.

• To simplify the client-side code by regrouping common or generic functions within the

delegates. For example, a delegate can be used to group together replay policies or the

processing of certain exceptions.

• To make the client more independent of the way services are resolved. The business

delegate usually uses the service locator.

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 223

In our application, the client-side administration application uses a delegate to access the

Bank facade. For organizational reasons, delegates can be put in a separate project, as shown in

Figure 10-8.

Figure 10-8. Organization of the BusinessDelegates project

J2EE Presentation Tier Design Patterns

A number of design patterns are recommended for use when developing the business tier of an

application:

• The front controller pattern is used to centralize the management of requests.

• The application controller pattern is used to transparently manage application-level

requests.

• The context object pattern is used to allow object encapsulation of the request para-

meters simplifying the code of the presentation layer.

• The view helper pattern is used to migrate complex processing in JSP pages to Java

objects.

• The intercepting filter pattern is used to allow specific objects to systematically intercept

requests and process them with additional functions in a modular and parameterizable

way.

Although these design patterns are documented, using several together is not an easy task

for designers or developers. It is often preferable to use frameworks that integrate the full range

of presentation tier design patterns in a consistent and transparent manner. This is the chosen

solution for the original version of the sample application, Duke’s Bank, which is implemented

using the Struts open source framework.

Automatic Integration Solutions

In the context of J2EE, we use deployment descriptors (see the XML code in this section) to

configure nonfunctional services that are managed by the container. This technique allows us,

for example, to integrate transactions into the facade services or declaratively add persistence

to business objects. It is also possible to configure the components to include remote access

224 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

features such as naming or declaring a remote interface, as well as features for managing

rights. These solutions for automatic integration are referred to as declarative management or

container-managed solutions.

Listing 10-8 shows a section of the XML file ejb-jar.xml.

Listing 10-8. The ejb-jar.xml File for Automatic Integration of Technical Services

<enterprise-beans>

 <session>

 <description>no description</description>

 <display-name>BankEJB</display-name>

 <ejb-name>BankEJB</ejb-name>

 <home>aop.j2ee.business.session.bank.BankHome</home>

 <remote>aop.j2ee.business.session.bank.Bank</remote>

 <ejb-class>aop.j2ee.business.session.bank.BankBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

</enterprise-beans>

<assembly-descriptor>

 <security-role>

 <role-name>BankCustomer</role-name>

 </security-role>

 <security-role>

 <role-name>BankAdmin</role-name>

 </security-role>

<container-transaction>

 <method>

 <ejb-name>BankEJB</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>getCustomersOfAccount</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </method>

 <trans-attribute>Required</trans-attribute>

</container-transaction>

[...]

Listing 10-9 shows a section of the XML file sun-ejb-jar.xml.

Listing 10-9. The sun-ejb-jar.xml File for Naming and Access

<sun-ejb-jar>

<security-role-mapping>

 <role-name>BankCustomer</role-name>

C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N 225

 <group-name>Customer</group-name>

</security-role-mapping>

<security-role-mapping>

 <role-name>BankAdmin</role-name>

 <group-name>Admin</group-name>

</security-role-mapping>

 <enterprise-beans>

 <name>bank-ejb.jar</name>

 <unique-id>2059221019</unique-id>

 <ejb>

 <ejb-name>BankEJB</ejb-name>

 <jndi-name>ejb/bank</jndi-name>

 [...]

 </ejb>

 </enterprise-beans>

 [...]

</sun-ejb-jar>

These solutions simplify the programming task enormously, because rather than using

APIs explicitly in our code, we configure the container declaratively. In this way, J2EE allows us

to factor out a certain number of nonfunctional crosscutting concerns, a point that it has in

common with AOP. The next section describes how AOP can be used to complement—or even

replace—these solutions.

Using AOP

As you learned in Chapter 8, many design patterns can benefit from an aspect-oriented imple-

mentation. This also applies to a certain number of J2EE design patterns, where there are

demonstrable advantages to using AOP. This is the case for the service locator and the business

delegate, both evidently crosscutting. Other design patterns can also be improved by using

AOP. For example, the facade and the business object can be made independent of the EJB

technology used.

The automatic integration solutions discussed earlier can also be improved by using AOP,

as they demonstrate the following associated problems:

• Because the container manages the integration automatically, there are very few ways to

adjust this integration in cases where it is unsatisfactory or cannot be configured in the

required way.

• Declarative configuration only works well for simple cases and often necessitates

programming a complementary code fragment in Java, which limits its usefulness. It is

sometimes preferable not to parameterize at all and rely on explicit design solutions

such as design patterns and frameworks.

• Apart from in the case of normalized solutions, solutions for automatic integration often

depend on the application server, which limits portability.

AOP avoids most of these limitations by integrating services in a modular way, using

deployment descriptors when appropriate, but also AspectJ code, resulting in a technique that

is both flexible and powerful.

226 C H A P T E R 1 0 ■ P R E S E N T A T I O N O F T H E S A M P L E A P P L I C A T I O N

Summary
This chapter presented a J2EE banking program that was constructed from the Duke’s Bank

sample application and showed its organization into projects and packages. This allowed us to

explore its architecture and design comprehensively. After reading this chapter, you should

now have a basic understanding of the design problems of this application and the ways in

which AOP can resolve them.

The next two chapters present a detailed account of the use of AOP with this sample appli-

cation, tier by tier. Although design elements may affect several tiers, it is best to concentrate

on one at a time when implementing a design pattern. This allows the projects corresponding

to each of the layers to remain independent of each another.

For each of the tiers, we will evaluate the improvements offered by AOP according to three

criteria:

• Improvements in the implementation of the design patterns used, concentrating on

J2EE design patterns

• Improvements to a design element that is recognized as being crosscutting, but that is

not an identified design pattern or does not fit within the documented context of a

design pattern

• Improvements whereby the design depends less on the J2EE technologies, especially

EJBs

As far as the business layer is concerned, we will also evaluate the possibility of replacing

automatic integration with a solution using AOP.

227

■ ■ ■

C H A P T E R 1 1

Using AOP within the Sample
Application’s Business Tier

When implementing the business tier, programmers use J2EE design patterns. Most busi-

ness tier J2EE design patterns rely on EJBs. The session facade pattern, for example, advises the

use of a session EJB. Using EJBs allows for the automatic integration of additional concerns.

J2EE design patterns are also simpler than GoF design patterns.

In this chapter, we will explore the use of AOP within the business tier of our reference

application. You will see that, within this context, AOP has three main advantages:

• Making the application independent from EJB technology. In changing Enterprise envi-

ronments, which rely on new technologies, independence is a desirable property.

• Bringing an alternative, more flexible solution to the existing automatic integration

solutions.

• Simplifying the J2EE design pattern implementations and making them more trans-

parent to the user.

AOP OR COMPONENT CONTAINERS?

AOP and component-based programming share the same goal: to separate the business logic from the tech-

nical concerns such as persistence and transactions, and to integrate them in a clear and automatic way. The

major difficulty of integration comes from the interdependencies between the technical concerns, which are

then interleaved at the code level, thus going against the fundamental principles of software engineering:

encapsulation and separation of concerns.

Component containers integrate technical concerns at deployment time. For this, they rely on a compo-

nent model, like EJB, and on deployment descriptors, which are defined as XML files for EJBs. The latter files

parameterize the integration in a declarative manner. However, there is no simple solution to extend or modify

the integration mechanics when needed. In these cases, the use of design patterns, external frameworks, or

AOP can help the programmer to tune the integration.

Among all these solutions, AOP is the only one that specifies the integration in an imperative manner, that

is to say, through a program, which keeps the base program unchanged and technologically independent.

Indeed, in the case of design patterns, the program’s structure must be modified. In the case of frameworks,

dependencies need to be added towards the required APIs or classes need to be specialized. These are tech-

nological dependences that can be avoided with AOP.

228 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Improving Business Tier Design Patterns
In this section, we present some design patterns that can be used in the business tier and

discuss their weaknesses. We show that the use of AOP greatly increases the independence of

the server tier objects when it comes to technological and design choices.

In particular, we stress the fact that all the server-side EJBs can be implemented as Plain

Old Java Objects (POJOs) with the help of specific aspects. The use of EJBs then becomes

transparent.

The Session Facade

In a J2EE application that uses EJBs, the session facade is a session EJB that manages a set of

business objects and defines a middle-grained application interface. The advantages of using

a facade have been outlined in the literature on standard GoF design patterns.

In J2EE design patterns, the session facade must implement the javax.ejb.SessionBean

interface. This is how the application server automatically instantiates the class and handles

session object pools for the clients. In addition, within the context of EJB, an EJB allows the

facade to be directly accessible by remote clients through JNDI and RMI.

Regular Implementation

Without any aspects, the application facade for the TxController interface, from the package

aop.j2ee.business.session.txcontroller, is implemented as shown in Listing 11-1. (Note

that this interface has been introduced in Chapter 10 in the section “Session Facades.”)

Listing 11-1. The TxControllerBean Session Facade Implementation

001 package aop.j2ee.business.session.txcontroller;

002

003 import java.sql.*;

004 import javax.sql.*;

005 import java.util.*;

006 import java.math.*;

007 import javax.ejb.*;

008 import javax.naming.*;

009 import java.rmi.RemoteException;

010 import aop.j2ee.business.entity.tx.Tx;

011 import aop.j2ee.business.entity.tx.TxHome;

012

013 import aop.j2ee.business.entity.account.AccountHome;

014 import aop.j2ee.business.entity.account.Account;

015 import aop.j2ee.commons.exception.*;

016 import aop.j2ee.commons.util.*;

017 import aop.j2ee.commons.to.*;

018 import aop.j2ee.business.util.EJBGetter;

019

020 public class TxControllerBean implements SessionBean {

021

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 229

022 // fields

023

024 private TxHome txHome;

025 private AccountHome accountHome;

026 private Connection con;

027 private SessionContext context;

028 private BigDecimal bigZero = new BigDecimal("0.00");

029

030 // implementation of the business interface

031

032 public void withdraw(BigDecimal amount,String descr,String accountId)

033 throws InvalidParameterException,

034 AccountNotFoundException,IllegalAccountTypeException,

035 InsufficientFundsException {

036 Account account = checkAccountArgsAndResolve(amount, descr, accountId);

037 try {

038 String type = account.getType();

039 if (DomainUtil.isCreditAccount(type))

040 throw new IllegalAccountTypeException(type);

041 BigDecimal newBalance = account.getBalance().subtract(amount);

042 if (newBalance.compareTo(bigZero) == -1)

043 throw new InsufficientFundsException();

044 executeTx(amount.negate(),descr,accountId,newBalance,account);

045 } catch (RemoteException ex) {

046 throw new EJBException("withdraw: " + ex.getMessage());

047 }

048 } // withdraw

049

050 public void transferFunds(BigDecimal amount,String descr,

051 String fromAccountId,String toAccountId)

052 throws

053 InvalidParameterException,AccountNotFoundException,

054 InsufficientFundsException,InsufficientCreditException {

055 try {

056 Account fromAccount = checkAccountArgsAndResolve(

057 amount, descr, fromAccountId);

058 Account toAccount = checkAccountArgsAndResolve(

059 amount, descr, toAccountId);

060

061 String fromType = fromAccount.getType();

062 BigDecimal fromBalance = fromAccount.getBalance();

063

064 if (DomainUtil.isCreditAccount(fromType)) {

065 BigDecimal fromNewBalance = fromBalance.add(amount);

066 if (fromNewBalance.compareTo(

067 fromAccount.getCreditLine()) == 1)

068 throw new InsufficientCreditException();

230 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

069 executeTx(amount,descr,fromAccountId,fromNewBalance,fromAccount);

070 } else {

071 BigDecimal fromNewBalance = fromBalance.subtract(amount);

072 if (fromNewBalance.compareTo(bigZero) == -1)

073 throw new InsufficientFundsException();

074 executeTx(amount.negate(),descr,fromAccountId,

075 fromNewBalance,fromAccount); } //transferFunds

076

077 String toType = toAccount.getType();

078 BigDecimal toBalance = toAccount.getBalance();

079

080 if (DomainUtil.isCreditAccount(toType)) {

081 BigDecimal toNewBalance = toBalance.subtract(amount);

082 executeTx(amount.negate(),descr,toAccountId,toNewBalance,toAccount);

083 } else {

084 BigDecimal toNewBalance = toBalance.add(amount);

085 executeTx(amount,descr,toAccountId,toNewBalance,toAccount);

086 }

087 } catch (RemoteException ex) {

088 throw new EJBException("transferFunds: " + ex.getMessage());

089 }

090 } // transferFunds

091

092 // same principles for other methods

093 [...]

094

095 // private methods

096

097 private void executeTx(BigDecimal amount,String descr,String accountId,

098 BigDecimal newBalance,Account account) {

099 try {

100 makeConnection();

101 String txId = DBHelper.getNextTxId(con);

102 account.setBalance(newBalance);

103 Tx tx=txHome.create(txId,accountId,new Date(),amount,newBalance,descr);

104 } catch (Exception ex) {

105 throw new EJBException("executeTx: " + ex.getMessage());

106 } finally {

107 releaseConnection();

108 }

109 } // executeTx

110

111 private Account checkAccountArgsAndResolve(

112 BigDecimal amount,String description,String accountId)

113 throws InvalidParameterException, AccountNotFoundException {

114

115 Account account = null;

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 231

116 if (description == null)

117 throw new InvalidParameterException("null description");

118 if (accountId == null)

119 throw new InvalidParameterException("null accountId");

120 if (amount.compareTo(bigZero) != 1)

121 throw new InvalidParameterException("amount <= 0");

122 try {

123 account = accountHome.findByPrimaryKey(accountId);

124 } catch (Exception ex) {

125 throw new AccountNotFoundException(accountId);

126 }

127 return account;

128 } // checkAccountArgsAndResolve

129

130 // ejb methods

131

132 public void ejbCreate() {

133 try {

134 txHome = EJBGetter.getTxHome();

135 accountHome = EJBGetter.getAccountHome();

136 } catch (Exception ex) {

137 throw new EJBException("ejbCreate: " + ex.getMessage());

138 }

139 } // ejbCreate

140

141 public void setSessionContext(SessionContext context) {

142 this.context = context;

143 }

144

145 public TxControllerBean() {}

146 public void ejbRemove() {}

147 public void ejbActivate() {}

148 public void ejbPassivate() {}

149

150 // Database functions

151

152 private void makeConnection() {

153 try {

154 InitialContext ic = new InitialContext();

155 DataSource ds =

156 (DataSource) ic.lookup(CodedNames.BANK_DATABASE);

157 con = ds.getConnection();

158 } catch (Exception ex) {

159 throw new EJBException("Unable to connect to database. ");

160 }

161 } // makeConnection

162

232 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

163 private void releaseConnection() {

164 try { con.close(); } catch (SQLException ex) {

165 throw new EJBException("releaseConnection: " + ex.getMessage());

166 }

167 } // releaseConnection

168 } // TxControllerEJB

This sample, taken in its original form from the Duke’s Bank implementation, contains a

set of concerns that is interesting to modularize:

• It implements the SessionBean interface (lines 20 and 27).

• In the business method implementations (line 30), there is a recurrent call to the

method checkArgsAndResolve (lines 36, 57, 59, 111). This call has two roles: it allows the

use of a method to check certain preconditions on the arguments, and it resolves the

reference of an account by using its Home interface.

• It defines and handles references to other EJBs (lines 123, 134, 135).

• It implements and uses some database functions (lines 100, 101, 107, 150). The original

Duke’s Bank implementation does not use any particular integration technique for

persistence but directly uses the JDBC API.

These concerns make the facade’s code complicated and force the implementer to define

private methods (line 95). These methods clarify the code; however, since they are ad hoc, their

maintenance can be complex and error prone.

We will come back to these points in the remainder of the chapter. As for now, we focus

primarily on the problem of implementing the J2EE facade design pattern (as depicted by Sun

Microsystems) independently from the EJB session (lines 20 and 27).

AOP-based Implementation

AOP has a straightforward approach to making the code independent from the EJB technology:

create an aspect for transforming POJOs into EJBs, and use an empty marker interface—similar

to Serializable—to implement the aspect with intertype declarations based on this interface.

If the marker is

package aop.j2ee.business;

public interface SessionBeanProtocol {}

the following aspect POJOSession can transform a POJO implementing this interface into an

EJB session:

package aop.j2ee.business.aspect;

import javax.ejb.*;

import aop.j2ee.business.aspect.marker.SessionBeanProtocol;

public aspect POJOSession extends EJBResolver {

 // common session bean behavior

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 233

 declare parents: SessionBeanProtocol

 extends javax.ejb.SessionBean;

 private SessionContext SessionBeanProtocol.context;

 public void SessionBeanProtocol

 .setSessionContext(SessionContext context) {

 this.context = context;

 }

 public void SessionBeanProtocol.ejbRemove() {}

 public void SessionBeanProtocol.ejbActivate() {}

 public void SessionBeanProtocol.ejbPassivate() {}

 public void SessionBeanProtocol.ejbCreate() { [...] }

}

The implementation of the method ejbCreate (in the last line) contains certain initializa-

tions that are dedicated to EJBs.

In terms of modularity, the advantages are

• Locality: The code that implements the functions of the facade is located in a POJO,

while the code dealing with the EJB session is in an aspect.

• Reuse: We can extend the SessionBeanProtocol interface depending on our needs and

add new intertype declarations in POJOSession. Since the inheritance hierarchy is inde-

pendent from the business, the reuse and factoring of functions common to EJB sessions

are significantly increased.

• Composition: As the facade implementation is not coupled to the session facade design

pattern, it is easier to use other patterns at the same time with less-complicated code.

Note that the POJOSession aspect extends the abstract aspect EJBResolver and does not

impact the SessionBean’s implementation. (This will be described later in this chapter, in the

section “Business Tier Improvement: Beyond Design Patterns.”)

The Business Object

J2EE design patterns advise the use of entity EJBs for the definition of persistent business

objects. In theory, the use of an entity EJB allows the simple adding of transactional and persis-

tence properties. However, several patterns or frameworks exist to deal with the same issues in

a simpler and more efficient way.

For example, using the Hibernate Open Source framework for persistence is an efficient

replacement for entity EJBs. Most of the available frameworks do not require specific exten-

sions, and business objects are defined as POJO or traditional JavaBeans. For further evolutions,

it is interesting for the application to leave the business objects as independent as possible from

EJBs.

Regular Implementation

Listing 11-2 shows the implementation of an account as an entity EJB without the use of

aspects.

234 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Listing 11-2. The Account EJB

001 package aop.j2ee.business.entity.account;

002

003 import java.sql.*;

004 import javax.sql.*;

005 import java.util.*;

006 import java.math.*;

007 import javax.ejb.*;

008 import javax.naming.*;

009 import aop.j2ee.commons.exception.*;

010 import aop.j2ee.commons.util.Debug;

011 import aop.j2ee.commons.util.CodedNames;

012 import aop.j2ee.commons.util.DBHelper;

013 import aop.j2ee.commons.to.AccountDetails;

014

015 public class AccountBean implements EntityBean {

016

017 private String accountId;

018 private String type;

019 private String description;

020 private BigDecimal balance;

021 private BigDecimal creditLine;

022 private BigDecimal beginBalance;

023 private java.util.Date beginBalanceTimeStamp;

024 private ArrayList customerIds;

025

026 private EntityContext context;

027 private Connection con;

028

029 // business method

030

031 public AccountDetails getDetails() {

032 try {

033 loadCustomerIds();

034 } catch (Exception ex) {

035 throw new EJBException("loadCustomerIds: " +ex.getMessage());

036 }

037 return new AccountDetails(

038 accountId, type, description, balance, creditLine, beginBalance,

039 beginBalanceTimeStamp, customerIds);

040 }

041

042 public BigDecimal getBalance() { return balance; }

043 public String getType() { return type; }

044 public BigDecimal getCreditLine() { return creditLine; }

045 public void setType(String type) { this.type = type; }

046 public void setDescription(String d) { this.description = d; }

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 235

047 public void setBalance(BigDecimal balance) { this.balance = balance; }

048 public void setCreditLine(BigDecimal n) { this.creditLine = n; }

049 public void setBeginBalance(BigDecimal n) { this.beginBalance = n; }

050 public void setBeginBalanceTimeStamp(java.util.Date beginBalanceTimeStamp) {

051 this.beginBalanceTimeStamp = beginBalanceTimeStamp;

052 }

053

054 // methods ejb home

055

056 public String ejbCreate(String accountId, String type, String description,

057 BigDecimal balance, BigDecimal creditLine, BigDecimal beginBalance,

058 java.util.Date beginBalanceTimeStamp, ArrayList customerIds)

059 throws CreateException, MissingPrimaryKeyException {

060 if ((accountId == null) || (accountId.trim().length() == 0)) {

061 throw new MissingPrimaryKeyException("ejbCreate: accountId is empty");

062 }

063 this.accountId = accountId;

064 this.type = type;

065 this.description = description;

066 this.balance = balance;

067 this.creditLine = creditLine;

068 this.beginBalance = beginBalance;

069 this.beginBalanceTimeStamp = beginBalanceTimeStamp;

070 this.customerIds = customerIds;

071 try { insertRow(); } catch (Exception ex) {

072 throw new EJBException("ejbCreate: " + ex.getMessage());

073 }

074 return accountId;

075 }

076

077 public String ejbFindByPrimaryKey(String primaryKey)

078 throws FinderException {

079 boolean result;

080 try {

081 result = selectByPrimaryKey(primaryKey);

082 } catch (Exception ex) {

083 throw new EJBException("ejbFindByPrimaryKey: " + ex.getMessage());

084 }

085 if (result) {

086 return primaryKey;

087 } else {

088 throw new ObjectNotFoundException("Row "+primaryKey+" not found.");

089 }

090 }

091

092 public Collection ejbFindByCustomerId(String customerId)

093 throws FinderException {

236 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

094 Collection result;

095 try {

096 result = selectByCustomerId(customerId);

097 } catch (Exception ex) {

098 throw new EJBException("ejbFindByCustomerId " + ex.getMessage());

099 }

100 return result;

101 }

102

103 public void ejbRemove() {

104 try {

105 deleteRow(accountId);

106 } catch (Exception ex) {

107 throw new EJBException("ejbRemove: " + ex.getMessage());

108 }

109 }

110

111 // ejb methods

112

113 public void setEntityContext(EntityContext context) {

114 this.context = context;

115 customerIds = new ArrayList();

116 }

117

118 public void unsetEntityContext() {}

119

120 public void ejbLoad() {

121 try {

122 loadAccount();

123 } catch (Exception ex) {

124 throw new EJBException("ejbLoad: " + ex.getMessage());

125 }

126 }

127

128 public void ejbStore() {

129 try {

130 storeAccount();

131 } catch (Exception ex) {

132 throw new EJBException("ejbStore: " + ex.getMessage());

133 }

134 }

135

136 public void ejbActivate() {

137 accountId = (String)context.getPrimaryKey();

138 }

139

140 public void ejbPassivate() {

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 237

141 accountId = null;

142 }

143

144 public void ejbPostCreate(String accountId, String type, String description,

145 BigDecimal balance, BigDecimal creditLine, BigDecimal beginBalance,

146 java.util.Date beginBalanceTimeStamp, ArrayList customerIds) {}

147

148 // database methods

149

150 private void makeConnection() { [...] } // see TxControllerBean above

151 private void releaseConnection() { [...] } // idem

152 private void insertRow () throws SQLException {

153 makeConnection();

154 String insertStatement = "insert into account values (?,?,?,?,?,?,?)";

155 PreparedStatement prepStmt = con.prepareStatement(insertStatement);

156 prepStmt.setString(1, accountId);

157 prepStmt.setString(2, type);

158 prepStmt.setString(3, description);

159 prepStmt.setBigDecimal(4, balance);

160 prepStmt.setBigDecimal(5, creditLine);

161 prepStmt.setBigDecimal(6, beginBalance);

162 prepStmt.setDate(7, DBHelper.toSQLDate(beginBalanceTimeStamp));

163 prepStmt.executeUpdate();

164 prepStmt.close();

165 releaseConnection();

166 }

167

168 private void deleteRow(String id) throws SQLException {

169 makeConnection();

170 String deleteStatement ="delete from account where account_id = ? ";

171 PreparedStatement prepStmt =con.prepareStatement(deleteStatement);

172 prepStmt.setString(1, id);

173 prepStmt.executeUpdate();

174 prepStmt.close();

175 releaseConnection();

176 }

177

178 private boolean selectByPrimaryKey(String primaryKey) throws SQLException {

179 makeConnection();

180 String s = "select account_id from account where account_id = ? ";

181 PreparedStatement prepStmt = con.prepareStatement(s);

182 prepStmt.setString(1, primaryKey);

183 ResultSet rs = prepStmt.executeQuery();

184 boolean result = rs.next();

185 prepStmt.close();

186 releaseConnection();

187 return result;

238 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

188 }

189

190 Collection selectByCustomerId(String customerId) throws SQLException {

191 makeConnection();

192 String selectStatement = "select account_id from customer_account_xref " +

193 "where customer_id = ? ";

194 PreparedStatement prepStmt = con.prepareStatement(selectStatement);

195 prepStmt.setString(1, customerId);

196 ResultSet rs = prepStmt.executeQuery();

197 ArrayList a = new ArrayList();

198 while (rs.next()) {

199 a.add(rs.getString(1));

200 }

201 prepStmt.close();

202 releaseConnection();

203 return a;

204 }

205

206 private void loadAccount() throws SQLException {

207 makeConnection();

208 String selectStatement =

209 "select type, description, balance, credit_line, " +

210 "begin_balance, begin_balance_time_stamp " +

211 "from account where account_id = ? ";

212 PreparedStatement prepStmt =

213 con.prepareStatement(selectStatement);

214 prepStmt.setString(1, accountId);

215 ResultSet rs = prepStmt.executeQuery();

216 if (rs.next()) {

217 type = rs.getString(1);

218 description = rs.getString(2);

219 balance = rs.getBigDecimal(3);

220 creditLine = rs.getBigDecimal(4);

221 beginBalance = rs.getBigDecimal(5);

222 beginBalanceTimeStamp = rs.getDate(6);

223 prepStmt.close();

224 releaseConnection();

225 } else {

226 prepStmt.close();

227 releaseConnection();

228 throw new NoSuchEntityException("Row for id " +

229 accountId + " not found in database.");

230 }

231 }

232

233 private void loadCustomerIds() throws SQLException {

234 makeConnection();

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 239

235 String selectStatement = "select customer_id " +

236 "from customer_account_xref where account_id = ? ";

237 PreparedStatement prepStmt = con.prepareStatement(selectStatement);

238 prepStmt.setString(1, accountId);

239 ResultSet rs = prepStmt.executeQuery();

240 customerIds.clear();

241 while (rs.next()) {

242 customerIds.add(rs.getString(1));

243 }

244 prepStmt.close();

245 releaseConnection();

246 }

247

248 private void storeAccount() throws SQLException {

249 makeConnection();

250 String updateStatement =

251 "update account set type = ? , description = ? , " +

252 "balance = ? , credit_line = ? , " +

253 "begin_balance = ? , begin_balance_time_stamp = ? " +

254 "where account_id = ?";

255 PreparedStatement prepStmt =

256 con.prepareStatement(updateStatement);

257 prepStmt.setString(1, type);

258 prepStmt.setString(2, description);

259 prepStmt.setBigDecimal(3, balance);

260 prepStmt.setBigDecimal(4, creditLine);

261 prepStmt.setBigDecimal(5, beginBalance);

262 prepStmt.setDate(6, DBHelper.toSQLDate(beginBalanceTimeStamp));

263 prepStmt.setString(7, accountId);

264 int rowCount = prepStmt.executeUpdate();

265 prepStmt.close();

267 if (rowCount == 0) {266 releaseConnection();

268 throw new EJBException("Storing row for id " + accountId + " failed.");

269 }

270 }

271 } // AccountBean

Similar to the session facade, the business object implementation shows some nonmodu-

larized concerns:

• EJB technology dependency through the implementation of the EntityBean interface

(lines 15, 26, 111).

• Implementation and management of references (here a collection) towards other EJBs

(lines 24, 33, 233).

• Database access, more generally persistence management (lines 27, 71, 81, 96, 105, 148),

since it is a bean-managed persistence (BMP) EJB and not a container-managed persis-

tence (CMP) EJB.

240 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

• Business implementation (line 29).

• EJB instances resolving through the Home interface implementation (line 5).

The following sections illustrate how to clearly modularize these concerns with AOP by

implementing nonbusiness concerns in aspects.

AOP-based Implementation

AOP, similar to facade objects, must implement the javax.ejb.SessionBean interface; business

objects, such as entity EJBs, must implement the javax.ejb.EntityBean interface. AOP can be

used, like for the session facade, through a marker interface.

package aop.j2ee.business;

public interface EntityBeanProtocol {}

This empty interface must be implemented by the business objects or any entity EJB that

will have minimal impact on the code. An aspect (such as the one in Listing 11-3) transforms

POJOs into EJBs and implements the needed methods.

Listing 11-3. An Aspect to Transform POJO into an Entity EJB

package aop.j2ee.business.aspect;

import java.sql.*;

import javax.ejb.*;

import aop.j2ee.business.aspect.marker.EntityBeanProtocol;

public abstract aspect POJOEntity extends EJBResolver {

 declare parents: EntityBeanProtocol extends javax.ejb.EntityBean;

 private EntityContext EntityBeanProtocol.context;

 // generic EJB home methods ================================

 public String EntityBeanProtocol

 .ejbFindByPrimaryKey(String primaryKey)

 throws FinderException {

 boolean result;

 try {

 result = selectByPrimaryKey(primaryKey);

 } catch (Exception ex) {

 throw new EJBException("ejbFindByPrimaryKey: " +

 ex.getMessage());

 }

 if (result) {

 return primaryKey;

 } else {

 throw new ObjectNotFoundException

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 241

 ("Row for id " + primaryKey + " not found.");

 }

 }

 // generic EJB methods =====================================

 public void EntityBeanProtocol.ejbRemove() {

 try {

 deleteRow(getEntityId());

 } catch (Exception ex) {

 throw new EJBException("ejbRemove: " + ex.getMessage());

 }

 }

 public void EntityBeanProtocol

 .setEntityContext(EntityContext context) {

 this.context = context;

 setExtraContext();

 }

 public void EntityBeanProtocol.unsetEntityContext() {}

 public void EntityBeanProtocol.ejbLoad() {

 try {

 loadEntity();

 } catch (Exception ex) {

 throw new EJBException("ejbLoad: " + ex.getMessage());

 }

 }

 public void EntityBeanProtocol.ejbStore() {

 try {

 storeEntity();

 } catch (Exception ex) {

 throw new EJBException("ejbStore: " + ex.getMessage());

 }

 }

 public void EntityBeanProtocol.ejbActivate() {

 setEntityId((String)context.getPrimaryKey());

 }

 public void EntityBeanProtocol.ejbPassivate() {

 setEntityId(null);

 }

 // persistence protocol

242 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

 private void EntityBeanProtocol.makeConnection() {}

 private void EntityBeanProtocol.releaseConnection() {}

 private void EntityBeanProtocol.insertRow () throws SQLException {}

 private void EntityBeanProtocol.deleteRow(String id) throws SQLException {}

 private boolean EntityBeanProtocol.selectByPrimaryKey(String k) { return false; }

 private void EntityBeanProtocol.loadEntity() throws SQLException {}

 private void EntityBeanProtocol.storeEntity() throws SQLException {}

 private String EntityBeanProtocol.getEntityId() throws SQLException{return null;}

 private void EntityBeanProtocol.setEntityId(String id) {}

 private void EntityBeanProtocol.setExtraContext() {}

}

In this case, unlike the reference implementation, the common behaviors of the entity

EJBs can be more easily factorized. Similar to session EJBs, you can decouple the factorizations

into two independent inheritance hierarchies: a functional hierarchy, for the POJOs that

implement the business, and, if needed, a technical hierarchy that can be formed by the

aspects and the markers.

For the POJOSession aspect, we extend the abstract aspect EJBResolver. This aspect is not

used in the EntityBean interface implementation and will be described later in the “Resolving

Object References” section.

Modularization of the Business Persistence

One important advantage of using aspects with entity EJBs is that persistence management

can be inserted in a more generic manner by the aspects. Here, we insert a persistence protocol

by using intertype declarations.

Since the POJOEntity aspect is abstract, these intertype declarations can be specialized

depending on the targeted EJB, as shown in Listing 11-4, which illustrates the account

example.

Listing 11-4. An Aspect to Transparently Introduce Persistence into the Account POJO

package aop.j2ee.business.aspect.sql;

import java.sql.*;

import java.util.*;

import java.math.*;

import javax.ejb.*;

import aop.j2ee.commons.exception.*;

import aop.j2ee.commons.util.Debug;

import aop.j2ee.business.entity.account.AccountPOJO;

import aop.j2ee.business.aspect.POJOEntity;

public privileged aspect SQLAccount extends POJOEntity {

// EJB- or EJBHome-specific methods

public String AccountPOJO.ejbCreate(String accountId,String type,

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 243

 String description,BigDecimal balance,BigDecimal creditLine,

 BigDecimal beginBalance,java.util.Date beginBalanceTimeStamp,

 ArrayList customerIds)

 throws CreateException, MissingPrimaryKeyException {

 if ((accountId == null) || (accountId.trim().length() == 0)) {

 throw new MissingPrimaryKeyException(

 "ejbCreate: accountId arg is null or empty");

 }

 this.accountId = accountId;

 this.type = type;

 this.description = description;

 this.balance = balance;

 this.creditLine = creditLine;

 this.beginBalance = beginBalance;

 this.beginBalanceTimeStamp = beginBalanceTimeStamp;

 this.customerIds = customerIds;

 try {

 insertRow();

 } catch (Exception ex) {

 throw new EJBException("ejbCreate: " + ex.getMessage());

 }

 return accountId;

}

public void AccountPOJO.ejbPostCreate(String accountId,String type,

 String description,BigDecimal balance,BigDecimal creditLine,

 BigDecimal beginBalance,java.util.Date beginBalanceTimeStamp,

 ArrayList customerIds) {}

public Collection AccountPOJO.ejbFindByCustomerId(

 String customerId) throws FinderException {

 Collection result;

 try {

 result = selectByCustomerId(customerId);

 } catch (Exception ex) {

 throw new EJBException("ejbFindByCustomerId " +

 ex.getMessage());

 }

 return result;

}

private void AccountPOJO.setExtraContext() {

 customerIds = new ArrayList();

}

private void AccountPOJO.setEntityId(String id) {

 this.accountId = id;

244 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

}

private String AccountPOJO.getEntityId(String id) {

 return this.accountId;

}

// SQL persistence methods (implementation)

private Connection AccountPOJO.con;

// see AccountBean for implementations

private void AccountPOJO.makeConnection() { [...] }

private void AccountPOJO.releaseConnection() { [...] }

private void AccountPOJO.insertRow() throws SQLException { [...] }

private void AccountPOJO.deleteRow(String id)

throws SQLException { [...] }

private boolean AccountPOJO.selectByPrimaryKey(String primaryKey)

{ [...] }

private Collection AccountPOJO

 .selectByCustomerId(String customerId) throws SQLException { [...] }

private void AccountPOJO.loadEntity() throws SQLException { [...] }

private void AccountPOJO.storeEntity() throws SQLException { [...] }

// SQL implementation for methods accessing collections

void around(AccountPOJO account) throws Exception :

 execution(private void AccountPOJO.loadCustomerIds())

 && this(account) {

 account.makeConnection();

 String selectStatement = "select customer_id "

 + "from customer_account_xref where account_id = ? ";

 PreparedStatement prepStmt =

 account.con.prepareStatement(selectStatement);

 prepStmt.setString(1, account.accountId);

 ResultSet rs = prepStmt.executeQuery();

 account.customerIds.clear();

 while (rs.next()) {

 account.customerIds.add(rs.getString(1));

 }

 prepStmt.close();

 account.releaseConnection();

 }

}

The implementation of the SQL requests does not differ from the regular implementation.

The development work is therefore similar in both versions. However, since the implementa-

tion is well modularized, it is easy to completely change the persistence mechanism by

removing the SQLAccount aspect.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 245

With these two aspects, the business object is now implemented as shown in Listing 11-5.

Listing 11-5. The Account POJO Implementation

package aop.j2ee.business.entity.account;

import java.util.*;

import java.math.*;

import aop.j2ee.commons.to.AccountDetails;

import aop.j2ee.business.aspect.marker.EntityBeanProtocol;

public class AccountPOJO implements EntityBeanProtocol {

 private String accountId;

 private String type;

 private String description;

 private BigDecimal balance;

 private BigDecimal creditLine;

 private BigDecimal beginBalance;

 private java.util.Date beginBalanceTimeStamp;

 private ArrayList customerIds;

 // business methods

 public AccountDetails getDetails() {

 try {

 loadCustomerIds();

 } catch (Exception ex) {

 throw new EJBException("loadCustomerIds: "

 + ex.getMessage());

 }

 return new AccountDetails(accountId, type,description,balance,

 creditLine, beginBalance, beginBalanceTimeStamp,customerIds);

 }

 public BigDecimal getBalance() { return balance; }

 public String getType() {return type; }

 [...] // other Account methods implementations

 // protocol to load related objects

 private void loadCustomerIds() throws Exception {}

}

This implementation is done as a regular POJO or JavaBean. It can be easily reused in its

original form in the context of a framework or technology other than EJBs or JDBC. For

instance, you can write an aspect that will make the object persistent through another frame-

work such as Hibernate or Spring.

246 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Careful readers would have noted the use of the empty method loadCustomerIds at the end

of the AccountPOJO class, which is used by the method getDetails. As the name suggests,

loadCustomerIds loads the customer IDs that are related to the current account. It is not imple-

mented in the business object but in the SQLAccount aspect (see the “around” advice of Listing

11-4). This is a common technique used to delegate the implementation of a function within a

dedicated aspect, performed in two phases as described here:

1. You define one or several empty methods within an object. These methods define a

generic but inactive protocol.

2. You implement these methods within aspects, by using “around” advice codes that

replace the empty implementation by not calling proceed.

This technique is more flexible and explicit than an object-oriented design based on

inheritance, for instance. Within this book, we refer to this technique as the implicit protocol

technique for three reasons:

• It defines a protocol as methods.

• This protocol is private to the object but can be made public, for example, within an

interface that would be implemented by the object.

• Its implementation is implicitly handled by an external aspect.

The following section uses this technique for object references resolving with research

protocols similar to the loadCustomerIds method.

AOP VS. DESIGN PATTERNS

As explained previously in Chapter 8, AOP offers alternate solutions to design patterns. Whether or not to use

AOP depends on the needs of the programmer. The choice is guided mostly by implementation concerns such

as code modularity, complexity, and evolution. However, these criteria are subjective and often difficult to

evaluate up front. They become important during development, when the need for new functions makes the

application’s code more complex. Therefore, it is important to possess experience in developing real-world

applications in order to accurately evaluate the advantages and disadvantages of a chosen solution, whether

with AOP or otherwise.

AOP is a young field, and feedback from those using it is still needed. This feedback should go far beyond

regular design patterns, since AOP opens new possibilities. In the long term, good AOP practice should be

identified and stated in a guide similar to the GoF’s book. In such a guide, aspect-oriented design patterns

would most likely handle problems such as code reuse, complexity, modularity, and evolution. As of now,

these problems are rarely ever handled by regular design patterns.

In this book, we provide a set of aspect-oriented techniques that allow programmers to deal with some

of the aforementioned problems. These solutions include the implicit protocol, the anchoring protocol tech-

niques, and the internationalization aspect, depicted later in Chapter 12 in the section “Using AOP for UI

Concerns.” However, even though these techniques are reusable and open the door to good AOP practice, they

do not replace designer expertise. It is the designer who is the key for identifying the crosscutting concerns

that may appear at any level of the application.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 247

Business Tier Improvement: Beyond Design

Patterns
Certain concerns can be crosscutting to the business tier and difficult to handle with J2EE

design patterns. With these concerns, the GoF design patterns may be useful.

As stated in Chapter 8, concerns not compatible with design patterns can often be imple-

mented by using AOP. Indeed, AOP often offers simpler solutions than those proposed by

design patterns.

In this section, we study a solution for modularizing reference resolving and preconditions

in the context of our case study, the banking application.

Resolving Object References

Resolving object references is usually implemented through a well-defined protocol that

allows the search based on certain criterions. Within the EJB context, the Home interface

defines this protocol, which is implemented by the EJB.

Listing 11-6 illustrates the protocol for the account business object.

Listing 11-6. The Home Interface of Account

package aop.j2ee.business.entity.account;

01 import java.util.*;

02 import java.math.*;

03 import javax.ejb.*;

04 import java.rmi.RemoteException;

05 import aop.j2ee.commons.exception.MissingPrimaryKeyException;

06

07 public interface AccountHome extends EJBHome {

08

09 public Account create (String accountId, String type, String description,

10 BigDecimal balance, BigDecimal creditLine, BigDecimal beginBalance,

11 Date beginBalanceTimeStamp, ArrayList customerIds)

12 throws RemoteException, CreateException, MissingPrimaryKeyException;

13

14 public Account findByPrimaryKey(String accountId)

15 throws FinderException, RemoteException;

16

17 public Collection findByCustomerId(String customerId)

18 throws FinderException, RemoteException;

19

20 } // AccountHome

The create method allows for the creation of a new account by a client object. For

instance, the Bank session EJB uses this method in the implementation of createAccount. It is a

typical method for a Home interface. The findByPrimaryKey(String) method is also a classical

method. It allows the client objects to access a given account instance through its primary key.

Finally, findByCustomerId(String customerId) reveals the relation between the customers

248 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

(Customer) and the accounts (Account). This method is used to access the customer’s accounts.

For each relation between the EJB, a similar method can be defined in the Home interface.

The use of the Home interface implies a dependency to the EJB model. Even though it is a

light dependency, it has a crosscutting effect because each client object (typically a session EJB

such as Bank and TxController) must implement the Home interface accessing code, which

uses some EJB and JNDI primitives. The technological dependency can be reduced by using

the locator pattern. However, then the use of the locator itself becomes a crosscutting concern

and requires additional design efforts.

In order to illustrate the complications related to reference resolving, we use our original

design of the Duke’s Bank example, which does not use the service locator pattern.

Let us refer again to the TxController session EJB implementation. Remember that the

account resolving is implemented in the checkAccountArgsAndResolve method, as shown in

Listing 11-7.

Listing 11-7. The checkAccountArgsAndResolve Method

01 private Account checkAccountArgsAndResolve(

02 BigDecimal amount,String description,String accountId)

03 throws InvalidParameterException, AccountNotFoundException {

04

05 Account account = null;

06 if (description == null)

07 throw new InvalidParameterException("null description");

08 if (accountId == null)

09 throw new InvalidParameterException("null accountId");

10 if (amount.compareTo(bigZero) != 1)

11 throw new InvalidParameterException("amount <= 0");

12 try {

13 account = accountHome.findByPrimaryKey(accountId);

14 } catch (Exception ex) {

15 throw new AccountNotFoundException(accountId);

16 }

17 return account;

18 } // checkAccountArgsAndResolve

The accountHome field (line 13) has been initialized with other similar fields when the EJB

was created, as shown at line 4 of Listing 11-8.

Listing 11-8. The EJBCreate Method

01 public void ejbCreate() {

02 try {

03 txHome = EJBGetter.getTxHome();

04 accountHome = EJBGetter.getAccountHome();

05 } catch (Exception ex) {

06 throw new EJBException("ejbCreate: " + ex.getMessage());

07 }

08 } // ejbCreate

The EJBGetter class factorizes the EJB Home resolving code, as shown in Listing 11-9.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 249

Listing 11-9. The EJBGetter Class

package aop.j2ee.business.util;

import javax.rmi.PortableRemoteObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import aop.j2ee.commons.util.CodedNames;

import aop.j2ee.business.entity.account.*;

[...] // other imports

public final class EJBGetter {

 public static AccountHome getAccountHome()

 throws NamingException {

 InitialContext initial = new InitialContext();

 Object objref = initial.lookup(CodedNames.ACCOUNT_EJBHOME);

 return (AccountHome)

 PortableRemoteObject.narrow(objref, AccountHome.class);

 }

 [...] // other resolving methods

}

In the original Duke’s Bank design, the account resolving and the transaction parameters

testing are factorized within a single method. These two independent concerns are mixed

because of the need to hide the use of the Home interface. This choice makes the transactional

method code less explicit.

Listing 11-10 is an example of a business service implementation that corresponds to an

account withdrawal.

Listing 11-10. A Withdrawal Business Service Implementation

01 public void withdraw(BigDecimal amount,String description,

02 String accountId)

03 throws InvalidParameterException, AccountNotFoundException,

04 IllegalAccountTypeException, InsufficientFundsException {

05

06 Account account =

07 checkAccountArgsAndResolve(amount, description, accountId);

08 try {

09 String type = account.getType();

10 if (DomainUtil.isCreditAccount(type))

11 throw new IllegalAccountTypeException(type);

12 BigDecimal newBalance = account.getBalance().subtract(amount);

13 if (newBalance.compareTo(bigZero) == -1)

14 throw new InsufficientFundsException();

15 executeTx(

16 amount.negate(),

17 description,

250 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

18 accountId,

19 newBalance,

20 account);

21 } catch (RemoteException ex) {

22 throw new EJBException("withdraw: " + ex.getMessage());

23 }

24 } // withdraw

25

26 private void executeTx(BigDecimal amount, String description,

27 String accountId, BigDecimal newBalance, Account account) {

28

29 try {

30 makeConnection();

31 String txId = DBHelper.getNextTxId(con);

32 account.setBalance(newBalance);

33 Tx tx = txHome.create(txId,accountId,new java.util.Date(),

34 amount,newBalance,description);

35 } catch (Exception ex) {

36 throw new EJBException("executeTx: " + ex.getMessage());

37 } finally {

38 releaseConnection();

39 }

40 } // executeTx

The executedTx method of line 15 gathers two independent functions that would benefit

from being explicitly coded within the functional implementation: the Tx EJB creation (line 33),

and the invocation of setBalance (line 32) on an account.

As shown in the code, the Tx EJB creation uses a database-related method: DBHelper.

getNextTxId (line 31), which returns the next available transaction identifier. This operation is

a low-level operation that should probably not be used within a business method.

Conceptually speaking, we can classify all the presented operations—Home interface

resolving, account lookup from a primary key, and instantiation of the Tx EJB—within a

reference-managing concern. This concern depends highly on the J2EE infrastructure and on

the EJB model. This is clearly a crosscutting concern for all EJB accessing or for the creation of

EJBs, particularly the session EJBs.

The use of design patterns such as the locator can make the code less dependent on the

infrastructure and minimize the design efforts through reuse. However, it is then the use of the

pattern that becomes a crosscutting concern. Furthermore, the use of a locator pattern still

requires an indirect use of the EJB model.

Using AOP

AOP, and more precisely the previously discussed implicit protocol technique, significantly

simplifies the design and efficiently modularizes the reference-resolving crosscutting concern.

First, we defined the reference accessing protocol in the EJB itself, as shown in Listing 11-11.

In our program, it is a POJO since it automatically implements the javax.ejb.SessionBean inter-

face through the POJOSession aspect. This POJO, named TxControllerPOJO, will be detailed in the

rest of the chapter, once all the applied aspects have been presented.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 251

Listing 11-11. The Implicit Protocol for EJB Resolving

 [...]

 // excerpt of the TxControllerPOJO implicit resolving protocol implementation

 private Collection findTxByAccountId(Date startDate,

 Date endDate,String accountId) throws Exception {return null;}

 private Tx findTxByPrimaryKey(String txId)

 throws Exception {return null;}

 private Account findAccountByPrimaryKey(String accountID)

 throws Exception {return null;}

 private Tx createTx(String accountId, Date date,

 BigDecimal amount, BigDecimal newBalance, String description)

 throws Exception {return null;}

We now define the aspect implementing this protocol. In our study, this aspect is called

the EJBResolver aspect, which is an abstract aspect extended by the POJOSession and

POJOEntity concrete aspects. The purpose of the EJBResolver aspect is to implement common

behaviors for reference-resolving implementation, as shown in Listing 11-12.

Listing 11-12. The Aspect Implementation of the EJB Resolving Implicit Protocol

01 package aop.j2ee.business.aspect;

02

03 import java.util.Collection;

04 import java.util.Date;

05 import java.math.BigDecimal;

06 import aop.j2ee.business.entity.account.AccountHome;

07 import aop.j2ee.business.entity.account.Account;

08 import aop.j2ee.business.entity.tx.TxHome;

09 import aop.j2ee.business.entity.tx.Tx;

10 import aop.j2ee.business.aspect.sql.DBUtil;

11

12 public abstract aspect EJBResolver {

13

14 static protected TxHome txHome;

15 static protected AccountHome accountHome;

16 [...] // Other homes...

17

18 Account around(String accountID) throws Exception: execution(

19 private Account *.findAccountByPrimaryKey(String) && args(accountID) {

20 return accountHome.findByPrimaryKey(accountID);

21 }

22

23 Tx around(String txID) throws Exception:

24 execution(private Tx *.findTxByPrimaryKey(String)) && args(txID) {

25 return txHome.findByPrimaryKey(txID);

26 }

27

252 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

28 Collection around(Date start,Date end,String accountId) throws Exception:

29 execution(private Collection *.findTxByAccountId(Date,Date,String))

30 && args(start,end,accountId) {

31 return txHome.findByAccountId(start,end,accountId);

32 }

33

34 Tx around(String accountId, Date date, BigDecimal amount,

35 BigDecimal newBalance, String description)

36 throws Exception:

37 execution(private Tx *.createTx(String, Date, BigDecimal, BigDecimal, String))

38 && args(accountId,date,amount,newBalance,description) {

39 return txHome.create(DBUtil.getNextTxId(),accountId,date,

40 amount,newBalance,description);

41 }

42

43 [...] // other resolving methods

44 }

With EJBs, the implementation of these methods is fairly simple since they only delegate

to the Home interfaces.

Note the use of the DBUtil.getNextTxId method (line 39), which makes the database iden-

tifier creation transparent to the POJOs when creating a new transaction. The references on the

required Home interfaces are stored in noninitialized private attributes. The attributes can be

initialized by the concrete aspects that implement this abstract one.

Thus, the subaspects can implement session or entity EJB specificities, and must initialize

the Homes. For instance, the POJOSession aspect performs this initialization in the ejbCreate

method, as shown in Listing 11-13.

Listing 11-13. EJB References Initialization in the POJOSession Aspect

package aop.j2ee.business.aspect;

[...] // imports

public aspect POJOSession extends EJBResolver {

 declare parents: SessionBeanProtocol

 extends javax.ejb.SessionBean;

 [...] // see above for the other methods implementations

 public void SessionBeanProtocol.ejbCreate() {

 try {

 if(txHome==null)

 txHome = EJBGetter.getTxHome();

 if(accountHome==null)

 accountHome = EJBGetter.getAccountHome();

 } catch (Exception ex) {

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 253

 throw new EJBException("ejbCreate: " + ex.getMessage());

 }

 }

}

Once these aspects are applied, the withdrawal method of the TxControllerPOJO class is as

shown in Listing 11-14.

Listing 11-14. The Aspectized Withdrawal Method

01 public void withdraw(BigDecimal amount,String description,

02 String accountId) throws

03 InvalidParameterException, AccountNotFoundException,

04 InsufficientFundsException, InsufficientCreditException {

05

06 checkAccountArgs(amount, description, accountId);

07 Account account;

08 try {

09 account = findAccountByPrimaryKey(accountId);

10 } catch (Exception ex) {

11 throw new AccountNotFoundException(accountId);

12 }

13 try {

14 String type = account.getType();

15 if (DomainUtil.isCreditAccount(type))

16 throw new IllegalAccountTypeException(type);

17 BigDecimal newBalance = account.getBalance().subtract(amount);

18 if (newBalance.compareTo(bigZero) == -1)

19 throw new InsufficientFundsException();

20 account.setBalance(newBalance);

21 createTx(amount.negate(),description,accountId,newBalance,account);

22 } catch (RemoteException ex) {

23 throw new EJBException("withdraw: " + ex.getMessage());

24 }

25 } // withdraw

Lines 9 and 21 show the use of the implicit protocol.

The withdrawal and other business method implementations have the following

characteristics:

• They are clearer than the method that used the Home protocol. This protocol requires

the resolving of the references through JNDI, the managing of these references, and the

identification of the newly created EJBs. None of these are required with the implicit

protocol technique, and the programmer simply uses the protocol methods without

knowing their implementation.

• They are more modular. The implementation of the EJB-resolving logic is located within

a unique aspect instead of being dispatched in all the EJBs. Then it becomes easier to

factorize common reference-resolving mechanisms.

254 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

• They are less technologically dependent. If the defined implicit protocol is of the right

detail level, it is then simple to change the actual implementation of the resolving.

Precondition Factorization

In Chapter 9, we presented the use of AOP for transparently adding constraints within a

program, particularly for adding pre- and postconditions.

Here, we apply the same principles to the reference application.

Regular Implementation

The implementation of the TxController session facade shows that the arguments of an

account operation must be checked by preconditions.

If we focus on the withdrawal operation discussed before in the context of TxControllerPOJO,

the implementation shown in Listing 11-15 is obtained.

Listing 11-15. The Withdraw Implementation, with Arguments Checks Included

01 [...]

02 public void withdraw(BigDecimal amount,String description,

03 String accountId)

04 throws

05 InvalidParameterException, AccountNotFoundException,

06 InsufficientFundsException, InsufficientCreditException {

07

08 checkAccountArgs(amount, description, accountId);

09 Account account;

10 try {

11 account = findAccountByPrimaryKey(accountId);

12 } catch (Exception ex) {

13 throw new AccountNotFoundException(accountId);

14 }

15 try {

16 String type = account.getType();

17 if (DomainUtil.isCreditAccount(type))

18 throw new IllegalAccountTypeException(type);

19 BigDecimal newBalance = account.getBalance().subtract(amount);

20 if (newBalance.compareTo(bigZero) == -1)

21 throw new InsufficientFundsException();

22 account.setBalance(newBalance);

23 createTx(amount.negate(),description,accountId, newBalance,account);

24 } catch (RemoteException ex) {

25 throw new EJBException("withdraw: " + ex.getMessage());

26 }

27

28 } // withdraw

29

30 [...]

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 255

31 private void checkAccountArgs(BigDecimal amount,String descr, String accountId)

32 throws InvalidParameterException, AccountNotFoundException {

33 if (descr == null)

34 throw new InvalidParameterException("null description");

35 if (accountId == null)

36 throw new InvalidParameterException("null accountId");

37 if (amount.compareTo(bigZero) != 1)

38 throw new InvalidParameterException("amount <= 0");

39 }

In the preceding code, we can see the different tests implementing the preconditions

(lines 8, 17, and 20). In this case, the preconditions can be split into two parts:

• The part that checks the consistency of the parameters, implemented in

checkAccountArgs (line 8). This is the parameter precondition part.

• The part that is more business-related and that checks that the type of account allows

the current withdrawal operation (line 17) and that the balance is high enough to

perform the withdrawal (line 20). This is the business precondition part.

AOP-based Implementation

The following sections describe the use of AOP to implement the two precondition types previ-

ously encountered.

Parameter Preconditions Aspect

It is obvious that the first precondition part benefits from an AOP implementation. It is a generic

test, which is systematically executed before each account operation, for instance, before credit

and withdrawal operations. It is therefore a crosscutting concern that can be implemented as a

pre-/postcondition aspect. With an aspect, the implementation is modular (see Listing 11-16).

Listing 11-16. An Aspect to Check the Arguments of a Transaction

package aop.j2ee.business.aspects;

01 import java.math.BigDecimal;

02 import aop.j2ee.business.session.txcontroller.TxControllerBean;

03

04 import aop.j2ee.commons.exception.*;

05

06 public aspect TxCheckArgs {

07

08 private BigDecimal TxControllerBean.bigZero = new BigDecimal("0.00");

09

10 before(TxControllerBean controller,BigDecimal amount,

11 String description,String accountId)

12 throws InvalidParameterException:

13 execution(void aop.j2ee.business.session.txcontroller.

256 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

14 TxControllerBean.*(BigDecimal,String,String))

15 && args(amount,description,accountId) && this(controller) {

16 controller.checkAccountArgs(amount,description,accountId);

17 }

18

19 before(TxControllerBean controller,BigDecimal amount,

20 String description,String fromAccountId, String toAccountId)

21 throws InvalidParameterException:

22 execution(void aop.j2ee.business.session.txcontroller.

23 TxControllerBean.*(BigDecimal,String,String,String)) && this(controller)

24 && args(amount,description,fromAccountId,toAccountId) {

25 controller.checkAccountArgs(amount,description,fromAccountId);

26 controller.checkAccountArgs(amount,description,toAccountId);

27 }

28

29 private void TxControllerBean.checkAccountArgs(

30 BigDecimal amount,String description,String accountId)

31 throws InvalidParameterException {

32 if (description == null)

33 throw new InvalidParameterException("null description");

34 if (accountId == null)

35 throw new InvalidParameterException("null accountId");

36 if (amount.compareTo(bigZero) != 1)

37 throw new InvalidParameterException("amount <= 0");

38 }

39 }

The TxCheckArgs parameter precondition aspect introduces the checkAccountArgs method

in TxControllerBean through an intertype declaration (line 29). It also defines two advice codes

applied on the prototypes that correspond to an account operation (line 10), and that corre-

spond to an account transfer (line 19).

Business Preconditions Aspect

As stated previously, the second set of preconditions correspond to the business concerns and

are part of the business rules set. We call them business preconditions. Note that, in general,

preconditions can also be completed with postconditions in order to implement, for instance,

potential invariants. For more details on this generic issue, you can refer to Chapter 9.

In our current case study, externalizing the preconditions within an aspect is useful for

three principal reasons:

• These preconditions may evolve with time. We can imagine, for instance, that the

precondition changes and ensures that a minimum amount is necessary for a with-

drawal in order for it to accept a negative balance.

• These preconditions can be applied depending on the context. We can imagine that we

do not want to apply the preconditions if the withdrawal operation is executed within

another service that would already have applied its own preconditions. In this case, the

use of aspects, particularly the AspectJ cflows, is well suited to easily implement contex-

tual tests.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 257

• The use of an aspect simplifies the code, which reflects the main behavior of the service.

Analogously to use cases, the service’s implementation only contains the main scenario,

with no errors. This allows the programmer to better understand the service and to more

easily identify the strategic joinpoints where other concerns can be inserted. For

instance, if preconditions are code within aspects, it becomes easier to add a transaction

management concern, as you will see later on.

In general, postconditions are defined within the same aspect. However, that is not the

case here.

The implementation of the business preconditions is slightly different from the parameter

preconditions (see Listing 11-17).

Listing 11-17. An Aspect to Check the Business Preconditions of the Accounts

01 package aop.j2ee.business.aspect;

02

03 import java.math.BigDecimal;

04 import java.rmi.RemoteException;

05 import javax.ejb.EJBException;

06 import aop.j2ee.business.entity.account.Account;

07 import aop.j2ee.business.session.txcontroller.TxControllerPOJO;

08 import aop.j2ee.commons.exception.*;

09 import aop.j2ee.commons.util.DomainUtil;

10

11 public aspect CheckBusinessConditions {

12

13 pointcut setBalance(Account account, BigDecimal amount):

14 call(void Account.setBalance(BigDecimal))

15 && args(amount) && target(account) && within(TxControllerPOJO);

16

17 before(Account account, BigDecimal amount) throws

18 InsufficientFundsException, InsufficientCreditException :

19 setBalance(account,amount) {

20

21 try {

22 String type = account.getType();

23 if (DomainUtil.isCreditAccount(type)) {

24 if (amount.compareTo(account.getCreditLine()) == 1)

25 throw new InsufficientCreditException();

26 } else {

27 if (amount.compareTo(DomainUtil.bigZero) == -1)

28 throw new InsufficientFundsException();

29 }

30 } catch (RemoteException ex) {

31 throw new EJBException("transferFunds: " + ex.getMessage());

32 }

33 }

34 }

258 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

We chose to implement the precondition in a generic manner by applying the test to the

account setBalance function (see pointcut line 13).

The application of the two precondition aspects finally simplifies the business code, as

shown in Listing 11-18 in the new implementation of the withdraw method extracted from the

TxControllerBean class.

Listing 11-18. The Final WithdrawIimplementation, with All Concerns Aspectized

public void withdraw(BigDecimal amount,String description,

 String accountId)

 throws AccountNotFoundException, EJBException {

 Account account;

 try {

 account = accountHome.findByPrimaryKey(accountId);

 } catch (Exception ex) {

 throw new AccountNotFoundException(accountId);

 }

 try {

 BigDecimal newBalance = account.getBalance().subtract(amount);

 account.setBalance(newBalance);

 createTx(amount.negate(),description,ccountId,

 newBalance,account);

 } catch (RemoteException ex) {

 throw new EJBException("withdraw: " + ex.getMessage());

 }

}

Business Tier Aspects Synthesis
The aspect-oriented version of the business tier contains three generic aspects:

• aop.ejb.business.aspect.EJBResolver (abstract), for reference resolving and EJB

creation

• aop.ejb.business.aspect.POJOSession (extends EJBResolver), for transforming the

POJOs that implement the aop.ejb.business.aspect.maker.SessionBeanProtocol into

session EJBs

• aop.ejb.business.aspect.POJOEntity (abstract and extending EJBResolver), for trans-

forming the POJOs that implement the aop.ejb.business.aspect.maker.

EntityBeanProtocol into entity EJBs

Through the application of these aspects, the session and entity objects of the application

can be implemented as POJOs, independently from the J2EE/EJB technology. The global

design of the application is more modular, and certain concerns such as pre-/postcondition

checking and reference resolving are made simpler and localized.

As an example, the TxController session facade can be implemented (see Listing 11-19).

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 259

Listing 11-19. The Final Aspectized TxControllerPOJO

package aop.j2ee.business.session.txcontroller;

import java.util.*;

import java.math.*;

import javax.ejb.*;

import java.util.Date;

import java.rmi.RemoteException;

import aop.j2ee.business.entity.tx.Tx;

import aop.j2ee.business.entity.account.Account;

import aop.j2ee.commons.exception.*;

import aop.j2ee.commons.util.*;

import aop.j2ee.commons.to.*;

import aop.j2ee.business.aspect.marker.SessionBeanProtocol;

public class TxControllerPOJO implements SessionBeanProtocol {

 public void withdraw(BigDecimal amount,String description,

 String accountId)

 throws

 InvalidParameterException,AccountNotFoundException,

 InsufficientFundsException, InsufficientCreditException {

 Account account;

 try {

 account = findAccountByPrimaryKey(accountId);

 } catch (Exception ex) {

 throw new AccountNotFoundException(accountId);

 }

 try {

 BigDecimal newBalance = account.getBalance().subtract(amount);

 account.setBalance(newBalance);

 createTx(amount.negate(),description,accountId,newBalance,account);

 } catch (RemoteException ex) {

 throw new EJBException("withdraw: " + ex.getMessage());

 }

 } // withdraw

 public void transferFunds(BigDecimal amount,String description,

 String fromAccountId, String toAccountId)

 throws

 InvalidParameterException,AccountNotFoundException,

 InsufficientFundsException,InsufficientCreditException {

 Account fromAccount;

 Account toAccount;

260 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

 try {

 fromAccount = findAccountByPrimaryKey(fromAccountId);

 } catch (Exception ex) {

 throw new AccountNotFoundException(fromAccountId);

 }

 try {

 toAccount = findAccountByPrimaryKey(toAccountId);

 } catch (Exception ex) {

 throw new AccountNotFoundException(toAccountId);

 }

 try {

 String fromType = fromAccount.getType();

 BigDecimal fromBalance = fromAccount.getBalance();

 BigDecimal fromAmount=

 DomainUtil.isCreditAccount(fromType)?amount.negate():amount;

 BigDecimal fromNewBalance = fromBalance.subtract(fromAmount);

 fromAccount.setBalance(fromNewBalance);

 createTx(fromAmount,description,fromAccountId,fromNewBalance,fromAccount);

 String toType = toAccount.getType();

 BigDecimal toBalance = toAccount.getBalance();

 BigDecimal toAmount=

 DomainUtil.isCreditAccount(fromType)?amount.negate():amount;

 BigDecimal toNewBalance = toBalance.subtract(toAmount);

 toAccount.setBalance(toNewBalance);

 createTx(toAmount,description,toAccountId,toNewBalance,toAccount);

 } catch (RemoteException ex) {

 throw new EJBException("transferFunds: " + ex.getMessage());

 }

 } // transferFunds

 [...] // other business methods

 // implicit resolving protocol

 private Collection findTxByAccountId(Date startDate, Date endDate,

 String accountId) throws Exception {return null;}

 private Tx findTxByPrimaryKey(String txId) throws Exception {return null;}

 private Account findAccountByPrimaryKey(String accountID) throws Exception

 {return null;}

 private Tx createTx(String accountId, Date date, BigDecimal amount,

 BigDecimal newBalance, String description) throws Exception {return null;}

}

As stated before, we can note the independence of the code from the EJB and the

simplicity of the business code. For a persistent entity POJO, we can refer to the AccountPOJO

implementation, previously given in the section “The Business Object.”

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 261

Figure 11-1 shows an overview of the piece of code added by the aspects in AccountPOJO

(left bar) and TxControllerPOJO (right bar). Each bar corresponds to a file, and the size of the

bar depends on the number of lines in the represented file. Each line where an aspect adds

code is shown with a color that corresponds to the particular aspect.

Note that the graphics produced by the Aspect Visualizer of the AJDT Eclipse plug-in does

not show the intertype declarations. This explains why AccountPOJO does not seem to be modi-

fied a great deal by the aspects. Note the line at bottom of the left bar, which corresponds to the

protocol implicit implementation, and more precisely to the implementation of the

getCustomerIds method within AccountPOJO.

Figure 11-1. Synthesis and visualization of the aspects

AOP As an Integration Technique
Application servers rely on component containers. Their ultimate goal is to integrate all the

concerns that are linked to distributed enterprise application development into the middle-

ware layer as transparently as possible. The best integration support is provided when a

concern can be integrated in a declarative manner. The programmer then needs to consider

container-oriented management systems such as container-managed persistence (CMP)

and container-managed transaction (CMT), also called declarative transaction management

(DTM). In J2EE, the integration is parameterized within an XML deployment descriptor.

In this section, we study the container-oriented management of transactions. After

describing the underlying mechanisms and limitations, we show how AOP offers an alternative

solution for flexible and transparent transaction management in J2EE.

262 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Managing Distributed Transactions with JTA

Java Transaction API (JTA) defines a set of interfaces and mechanisms for using distributed

transactions. A transaction is distributed when several data sources are involved. In general,

data sources are located on different servers, but this is not mandatory. JTA can also be used for

only one data source. Within J2EE, JTA is typically used to make a session EJB facade service

transactional.

The reference banking application only has one data source: a PointBase database. It is

interesting to evaluate possible data distributions. For example, accounts and transactions

could be stored in two distinct databases in order to balance the load and the data volume. In

addition, it is useful for the system administration since transactions can call for a different

maintenance process than the accounts. In this case, the use of JTA and an architecture that

supports distribution is important.

In short, JTA relies on the definition of three communication interfaces between three

main entities: the application, the transaction manager, and the transactional resources. In the

context of an application server, JTA defines an interface between the application server and

the transaction manager. This interface permits the notification of the manager for operations

occurring on EJBs within the transactions. It also allows the client to access an automatically

and transparently transmitted transactional context, which is accessible from any EJB partici-

pating in a transaction. Within a transaction, a participating EJB can access through the

transactional context an object that represents the transaction: an instance of javax.

transaction.UserTransaction.

A JTA Solution

The code in Listing 11-20 is a rewrite of the transfer function of TxControllerBean so that it

ensures transactional properties by using JTA.

Listing 11-20. Manual Control of Transactions with JTA

01 // a modified version of aop.j2ee.business.session.TxControllerBean to use JTA

02 [...]

03 javax.transaction.UserTransaction ut;

04

05 public void transferFunds(BigDecimal amount,String descr,

06 String fromAccountId,String toAccountId)

07 throws

08 InvalidParameterException,AccountNotFoundException,

09 InsufficientFundsException,InsufficientCreditException {

10

11 Account fromAccount;

12 Account toAccount;

13

14 fromAccount= checkAccountArgsAndResolve(amount, descr, fromAccountId);

15 toAccount= checkAccountArgsAndResolve(amount, descr, toAccountId);

16

17 ut= context.getUserTransaction();

18

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 263

19 try {

20 ut.begin();

21 } catch (Exception e) {

22 throw new EJBException("transferFunds: " + e.getMessage());

23 }

24

25 try {

26

27 String fromType= fromAccount.getType();

28 BigDecimal fromBalance= fromAccount.getBalance();

29

30 if (DomainUtil.isCreditAccount(fromType)) {

31 BigDecimal fromNewBalance= fromBalance.add(amount);

32 if (fromNewBalance.compareTo(fromAccount.getCreditLine()) == 1)

33 throw new InsufficientCreditException();

34 executeTx(amount,descr,fromAccountId,fromNewBalance,fromAccount);

35 } else {

36 BigDecimal fromNewBalance= fromBalance.subtract(amount);

37 if (fromNewBalance.compareTo(bigZero) == -1)

38 throw new InsufficientFundsException();

39 executeTx(amount.negate(),descr,fromAccountId,fromNewBalance,fromAccount);

40 }

41

42 String toType= toAccount.getType();

43 BigDecimal toBalance= toAccount.getBalance();

44

45 if (DomainUtil.isCreditAccount(toType)) {

46 BigDecimal toNewBalance= toBalance.subtract(amount);

47 executeTx(amount.negate(),descr,toAccountId,toNewBalance,toAccount);

48 } else {

49 BigDecimal toNewBalance= toBalance.add(amount);

50 executeTx(amount, descr, toAccountId, toNewBalance, toAccount);

51 }

52

53 ut.commit();

54

55 } catch (Exception ex) {

56 try {

57 ut.rollback();

58 } catch (Exception e) {

59 throw new EJBException("transferFunds: " + e.getMessage());

60 }

61 throw new EJBException("transferFunds: " + ex.getMessage());

62 }

63 } // transferFunds

As shown, managing transactions with JTA complicates the application code. Further-

more, it is a crosscutting concern since it must be handled with each participating EJB.

264 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

This concern adds the following elements:

• A field that stores the UserTransaction object and allows it to be quickly accessed (line 3)

• The initialization of this field at the beginning of the transactional method (line 17)

• A call to begin, which indicates a transaction start (line 20)

• A call to commit to ask for the realization of the transaction (line 53)

• A rollback invocation to ask for the cancellation of the transaction in case of an error

(line 57)

In addition, we need to manage the exceptions that can be thrown by the transaction itself.

Here, we handle them in a generic way.

EJBs As an Infrastructure for the Automatic Integration of

Transactions

The J2EE specification given by Sun Microsystems allows the transactions to be declaratively

defined through dedicated attributes, which are defined in deployment descriptors. These

attributes are applied to EJB methods and parameterize the behavior of the container

regarding the transaction manager when these methods are invoked.

These attributes are the following:

• TX_NOT_SUPPORTED: Indicates that the method is not transactional. If this method is

invoked within a transaction, this transaction is suspended during the method

execution.

• TX_SUPPORTS: Indicates that the bean that supports the method will be included in the

transaction as a participant. If the client does not define any transaction, the container

can create a new transaction depending on the implementation.

• TX_REQUIRED: Indicates that the method must be executed within the context of a trans-

action. If not, the container automatically creates a new one.

• TX_REQUIRES_NEW: Indicates that the method triggers the creation of a new transaction,

even if the client has already defined one. In this later case, the transaction of the client

is replaced by the newly created transaction.

• TX_BEAN_MANAGED: Indicates that the EJB method manually implements the transaction

management by using JTA, for instance.

• TX_MANDATORY: Indicates that the method has to be executed within a transaction. If not,

the container throws a TransactionRequired exception.

Figure 11-2 shows the messages that are sent from the application to the transaction

manager, and to the transactional resources when the transferFunds method is set to

TX_REQUIRES_NEW—which means that a transaction will automatically be created by the

container, even if a transaction has already been defined by the client—and that the methods

Account.setBalance and AccountHome.create are set to TX_REQUIRED.

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 265

The call to the transferFunds method triggers the begin message to the manager, which in

turn creates a new transaction. This transaction is added to the current thread’s context and is

automatically transmitted to the participating EJBs. When the Account EJBs are used and the Tx

bank-level transactions are created, they are added to the current transaction as participants.

The successful end of the transferFund method triggers the commit, while an EJBException

catch implies a rollback.

Figure 11-2. Declarative transactions mechanism in J2EE

The existence of container-managed transactions allows the program’s code to remain

free from the transaction concern. However, this technique has its limitations.

The attributes defined by the EJB standard are too simple to cover all the possible cases

that can arise when developing complex applications. For instance, the programmer may need

to retry a transaction if it did not complete successfully in the first place. It is also common to

optimize the application by not applying a transaction within some contexts, which depends

on the application or environment state. Nevertheless, when it comes to optimization, it is

sometimes useful to limit the transaction application scope to an instruction group rather than

to the whole method code. In this case, the only way is to use the TX_BEAN_MANAGED attribute and

to manually code the transactional logic.

Even in the cases when the provided attributes allow the description of the transactional

logic, this technique still requires some code to be written in order to handle the client-side

exceptions and some rollback management cases.

In particular, the programmer may need to force the rollback of a transaction within a

participant. In this case, the setRollbackOnly method shall be used (see line 7 of Listing 11-21)

in order to cancel the transaction, even if higher-level participants try to commit the

transaction.

As an example, the code in Listing 11-21 prevents a negative setBalance from occurring in

any transactional context:

266 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Listing 11-21. An Example of Use for the setRollbackOnly Method

01 [...]

02 public void setBalance(double amount)

03 throw InsufficientFundsException {

04 if(balance >= 0) {

05 balance = amount;

06 } else {

07 context.setRollbackOnly();

08 throw new InsufficientFundsException(balance);

09 }

10 }

11 [...]

As you can see, the declarative transaction management is not an ideal solution. The

following sections show how AOP can be used in its place.

AOP and the Modular Integration of Transactions

Because of its flexibility, AOP is helpful for integrating transactions in a modular way, and by

avoiding the limitations previously encountered.

Indeed, to make a method transactional (here transferFunds), the transaction aspect

shown in Listing 11-22 can be used.

Listing 11-22. An Aspect for Modularizing Transaction Management Code

01 package aop.j2ee.business.aspect;

02

03 import javax.ejb.EJBException;

04 import aop.j2ee.business.session.txcontroller.TxControllerPOJO;

05

06 public privileged aspect Transaction {

07 Object around(TxControllerPOJO controller) :

08 execution(* TxControllerPOJO.transferFunds(..)) && this(controller) {

09

10 Object result;

11 try {

12 controller.context.getUserTransaction().begin();

13 } catch (Exception e) {

14 throw new EJBException("transferFunds: " + e.getMessage());

15 }

16 try {

17 result=proceed(controller);

18 controller.context.getUserTransaction().commit();

19 } catch (Exception ex) {

20 try {

21 controller.context.getUserTransaction().rollback();

22 } catch (Exception e) {

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 267

23 throw new EJBException("transferFunds: " + e.getMessage());

24 }

25 throw new EJBException("transferFunds: " + ex.getMessage());

26 }

27 return result;

28 }

29 }

Contrary to the container-managed transactions, the code that implements the start of a

transaction (line 12) is fully open and accessible to the programmer, who can then implement

all the variants required for the application.

To limit the transaction’s scope to a group of instructions within a given method, you use

the anchoring protocol technique.

This technique is similar to the implicit protocol technique, which has already been used

several times in this book. The main difference is that the aspect does not implement the

protocol methods but uses them as anchor points to add code within the target method.

For instance, we define two methods, beginTx (lines 4 and 19) and endTx (lines 5 and 28),

as the anchoring protocol in Listing 11-23.

Listing 11-23. Using an Anchoring Protocol in the transferFunds Method

01 // modification of TxControllerBean by using a anchoring protocol

02 [...]

03 // protocol definition

04 private void beginTx() {};

05 private void endTx() {};

06

07 public void transferFunds(BigDecimal amount,String description,

08 String fromAccountId,String toAccountId)

09 throws

10 InvalidParameterException,AccountNotFoundException,

11 InsufficientFundsException,InsufficientCreditException {

12

13 Account fromAccount;

14 Account toAccount;

15

16 fromAccount= checkAccountArgsAndResolve(amount, description, fromAccountId);

17 toAccount= checkAccountArgsAndResolve(amount, description, toAccountId);

18

19 beginTx();

20

21 try {

22 String fromType= fromAccount.getType();

23 BigDecimal fromBalance= fromAccount.getBalance();

24

25 if (DomainUtil.isCreditAccount(fromType)) {

26 [...] // transfer implementation (see before)

27

268 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

28 endTx();

29

30 } catch (RemoteException ex) {

31 throw new EJBException("makePayment: " + ex.getMessage());

32 }

33

34 } // transferFunds

Then, the aspect shown in Listing 11-24 introduces the transaction management logic for

the code placed between the beginTx and endTx anchors.

Listing 11-24. Using an Aspect to Inject the Transaction Management Code with the Anchoring

Protocol

package aop.j2ee.business.aspect;

import javax.ejb.EJBException;

import aop.j2ee.business.session.txcontroller.TxControllerPOJO;

import aop.j2ee.business.entity.account.Account;

public privileged aspect Transaction {

 javax.transaction.UserTransaction ut;

 after(TxControllerPOJO controller) : execution(

 void TxControllerPOJO.beginTx())

 && withincode(* TxControllerPOJO.transferFunds(..))

 && this(controller) {

 ut= controller.context.getUserTransaction();

 try {

 ut.begin();

 } catch (Exception e) {

 throw new EJBException("transferFunds: " + e.getMessage());

 }

 }

 after() : call(void TxControllerPOJO.endTx())

 && withincode(* TxControllerPOJO.transferFunds(..)) {

 ut.commit(); try {

 ut= null;

 } catch (Exception ex) {

 try {

 ut.rollback();

 } catch (Exception e) {

 throw new EJBException("transferFunds: " + e.getMessage());

 }

C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R 269

 throw new EJBException("transferFunds: " + ex.getMessage());

 }

 }

 after()throwing(Exception ex)

 throws

 EJBException : call(* Account +.* (..))

 && withincode(* TxControllerPOJO.transferFunds(..)) {

 try {

 if (ut != null)

 ut.rollback();

 } catch (Exception e) {

 throw new EJBException("transferFunds: " + e.getMessage());

 }

 throw new EJBException("transferFunds: " + ex.getMessage());

 }

The anchoring protocol technique, however, does not allow a precise management of

exceptions. This can be solved by testing the variable that indicates we are within the delimited

zone (here ut).

When the environment allows, it is also important to take multithreading into account (it

is not used in our example). The use of the threadlocals for the variables that have to be shared

by advice codes is then necessary. The aspect instantiation directive per thread can also be an

elegant solution.

Summary
In this chapter, we have presented the use of AOP to improve the design of the business tier.

From a separation of concerns perspective, we can conclude that the AOP is successfully

applied to our case study since many crosscutting concerns have been more clearly separated,

including the following:

• Dependencies towards the EJB/J2EE technology

• Management and resolving of business object references

• Persistence

• Preconditions (including technical and business preconditions)

• Transactions

It is still possible to modularize other concerns, such as logging, that we have not shown

here.

Figure 11-3 shows the components that form the business tier when all the aspects are

applied. Each gray bar corresponds to a regular EJB. Indeed, the gray color indicates that no

aspects have been applied. The first bar corresponds to the Entity EJB AccountBean, the second

corresponds to the AccountPOJO, and so on for each component.

270 C H A P T E R 1 1 ■ U S I N G A O P W I T H I N T H E S A M P L E A P P L I C A T I O N ’ S B U S I N E S S T I E R

Figure 11-3. Business tier components and their aspects

We can note that the sizes of the business components implementations are clearly

smaller for the POJO versions. This comes from the persistence externalization.

Advice codes are used more in facade components (like the last two) than in the business

components. This comes from an implementation choice, which makes a great use of inter-

type declarations on business components.

271

■ ■ ■

C H A P T E R 1 2

Using AOP in the Sample
Application’s Presentation and
Client Tiers

In Chapter 11, we used AOP to improve the business tier design of the Duke’s Bank case study

application presented in Chapter 10. In this chapter, we’ll investigate the use of AOP in other

tiers—in particular, the Java (Swing) client tier and the presentation tier. We will not use the

data tier since it cannot benefit from Java-based AOP techniques (as we explained previously

in Chapter 11).

The original design of the case study does not adapt completely to AOP because it uses ad

hoc design solutions. The web presentation tier, for example, uses the Struts framework, which

encapsulates some difficult design issues. This does not mean that AOP cannot be useful, espe-

cially for improving Struts implementation or integration. However, because of the inherent

complexity, in this chapter we introduce simplified pieces of design to more clearly illustrate

the advantages of AOP.

We first show the use of AOP in the Java Swing client, and then we elaborate on its impacts

for the web (Servlets/JSP) presentation tier.

Using AOP for Distributed Communications
Communication issues can arise when clients access the business servers in a three-tier J2EE

environment. The client tier contains several design patterns that are designed to deal with the

concerns that come with distributed communications.

The J2EE design patterns for communication and data transfer most often impact the

client side and occasionally impact the server side. Thus, these patterns represent an impor-

tant source of crosscutting, especially when building multiclient applications.

As previously explained, the use of J2EE design patterns is not mandatory. However, by

using them, we can contrast aspect-oriented implementations with well-documented, well-

known, and proven reference designs.

272 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Design Patterns for Business Layer Access

The three main J2EE design patterns for client/server communication are the business dele-

gate, the service locator, and the data transfer object. In this chapter, we illustrate these

patterns used with and without the help of AOP.

For simplicity, we use a basic Java client that accesses the sample application presented in

Chapter 11 as well as this one. We discuss its limitations and show how aspects improve the

client implementation independence with regard to the technology and the design choices.

Business Delegate

The goal of the business delegate is to hide the implementation details of the server remote

access protocol, such as the lookup of the EJB container, through a JNDI repository or the

processing of remote invocations. As a consequence, this design pattern reduces the coupling

between the presentation tier clients and the business tier.

However, this design pattern does not completely eliminate the dependence, because its

interface is subject to change if the business services are modified. Moreover, the systematic

reference to the business delegate layer within each client implementation constitutes by itself

a crosscutting concern.

Even though the location and the transparency of the distribution layers are benefits of

this pattern, the business delegate can induce some subtle utilization problems. Indeed, the

client cannot use a business delegate as if it was a local object, since doing so may generate

serious performance issues, such as network overloads. Therefore, client-side programmers

must be aware that the manipulated objects are proxies for remote objects.

Listing 12-1 defines a simple Java client, which we have developed to illustrate the issues

discussed in this section. These issues can be transposed into real bank clients: the Java Swing

administration client and the servlet-based presentation layer.

Listing 12-1. A Simple Client for the Bank Application

01 package aop.j2ee.client.java.regular;

02

03 import java.math.BigDecimal;

04 import java.util.Date;

05 import aop.j2ee.client.delegate.BankDelegate;

06 import aop.j2ee.commons.to.AccountDetails;

07

08 public class Simple {

09

10 public static void main(String[] args) {

11 try {

12 BankDelegate deleguate = new BankDelegate();

13 String customerId = deleguate.createCustomer("Pawlak","Renaud","P",

14 "Frederick St","Hartford","CT","06105","NA",

15 "renaud@aopsys.com");

16 System.out.println("Created new customer " + customerId);

17 String accountId = deleguate.createAccount(customerId,"Debit",

18 "This is a test.",new BigDecimal(100),new BigDecimal(0),

19 new BigDecimal(100),new Date());

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 273

20 System.out.println("Created new customer " + accountId);

21 deleguate.setAccountBalance(new BigDecimal(200), accountId);

22 System.out.println("Changed balance");

23 AccountDetails details = deleguate.getAccountDetails(accountId);

24 System.out.println("Account details:");

25 System.out.println(details);

26 } catch (Exception e) {

27 System.err.println(e.getMessage());

28 e.printStackTrace();

29 }

30 }

31 }

Here, the client uses only the business delegate created in line 12. All the code related to

remote communication is modularized in this object.

As shown in the code in Listing 12-2, the business delegate is quite complex, as it inte-

grates the calls to the getServiceFacade method, which implements the EJB lookup in the JNDI

repository of the application server (line 34). This code uses a locator object, which we present

later (see line 26 for its initialization).

Listing 12-2. A Business Delegate Implementation for the Bank Application

001 package aop.j2ee.client.delegate;

002

003 import java.math.BigDecimal;

004 import java.rmi.RemoteException;

005 import java.util.ArrayList;

006 import java.util.Date;

007 import java.util.ResourceBundle;

008

009 import javax.ejb.CreateException;

010 import javax.naming.NamingException;

011

012 import aop.j2ee.commons.exception.*;

013 import aop.j2ee.commons.to.AccountDetails;

014 import aop.j2ee.commons.to.CustomerDetails;

015 import aop.j2ee.commons.util.locator.ServiceLocator;

016

017 import aop.j2ee.business.session.bank.BankHome;

018 import aop.j2ee.business.session.bank.Bank;

019

020 public class BankDelegate {

021

022 private ResourceBundle messages;

023 private static ServiceLocator locator;

024 Bank bank = null;

025

026 private void init() throws SystemException {

027 try {

274 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

028 locator = ServiceLocator.getInstance();

029 } catch (NamingException ne) {

030 throw new SystemException(ne.getMessage());

031 }

032 }

033

034 private Bank getServiceFacade() throws SystemException {

035 if(bank!=null) return bank;

036 try {

037 BankHome home = (BankHome) locator.lookupHome(Bank.class);

038 bank = home.create();

039 } catch (ClassNotFoundException cne) {

040 throw new SystemException(cne.getMessage());

041 } catch (NamingException ne) {

042 throw new SystemException(ne.getMessage());

043 } catch (CreateException ce) {

044 throw new SystemException(ce.getMessage());

045 } catch (RemoteException re) {

046 throw new SystemException(re.getMessage());

047 }

048 return bank;

049 }

050

051 public BankDelegate() throws SystemException {

052 if (locator == null)

053 init();

054 }

055

056 public void addCustomerToAccount(String customerId,

057 String accountId)

058 throws RemoteException, AccountNotFoundException,

059 CustomerNotFoundException, CustomerInAccountException,

060 InvalidParameterException {

061 Bank bank;

062 try {

063 bank = getServiceFacade();

064 } catch (SystemException ex) {

065 ex.printStackTrace();

066 return;

067 }

068 bank.addCustomerToAccount(customerId, accountId);

069 }

070

071 public String createAccount(String customerId,String type,

072 String description,BigDecimal balance,BigDecimal creditLine,

073 BigDecimal beginBalance, Date beginBalanceTimeStamp)

074 throws

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 275

075 RemoteException, IllegalAccountTypeException,

076 CustomerNotFoundException,InvalidParameterException {

077

078 Bank bank;

079 try {

080 bank = getServiceFacade();

081 } catch (SystemException ex) {

082 ex.printStackTrace();

083 return null;

084 }

085 return bank.createAccount(

086 customerId,type,description,balance,creditLine,beginBalance,

087 beginBalanceTimeStamp);

088 }

089

090 public String createCustomer(String lastName,String firstName,

091 String middleInitial,String street,String city,String state,

092 String zip,String phone,String email)

093 throws InvalidParameterException, RemoteException {

094 Bank bank;

095 try {

096 bank = getServiceFacade();

097 } catch (SystemException ex) {

098 ex.printStackTrace();

099 return null;

100 }

101 return bank.createCustomer(lastName,firstName,middleInitial,

102 street,city,state,zip,phone,email);

103 }

104

105 public AccountDetails getAccountDetails(String accountId)

106 throws RemoteException, AccountNotFoundException,

107 InvalidParameterException {

108

109 Bank bank;

110 try {

111 bank = getServiceFacade();

112 } catch (SystemException ex) {

113 ex.printStackTrace();

114 return null;

115 }

116 return bank.getAccountDetails(accountId);

117 }

118

119 [...] // same delegation pattern

120 // to the bank for the other services

121 }

276 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

With each business delegate method, we retrieve the instance of the session facade intro-

duced in Chapter 11 (line 63) and we call the corresponding service of this facade with the

needed arguments (line 68).

Another advantage of the business delegate is that it encapsulates the remote communi-

cation strategies. For instance, timeout, retry, and caching policies can be implemented within

the delegate so that the client code becomes more independent from these nonfunctional

concerns.

Next, the code in Listing 12-3 shows the implementation of a simple retry policy within a

delegate. This policy makes the application more stable if the network or server is temporarily

unavailable. In this case, if the service resolving fails, we stop the current thread during one

second (line 17) before retrying (line 18). Similarly, if we encounter an error during the invoca-

tion, we wait one second (line 33) and recursively retry (line 35). Note that we force the

resolution of the facade in line 34.

Listing 12-3. Adding a Retry Policy to the Bank Delegate

01 public class BankDelegate {

02

03 [...]

04

05 public String createAccount(String customerId, String type, String descr,

06 BigDecimal balance, BigDecimal creditLine, BigDecimal beginBalance,

07 Date beginBalanceTimeStamp)

08 throws

09 RemoteException, IllegalAccountTypeException, CustomerNotFoundException,

10 InvalidParameterException {

11

12 Bank bank;

13 try {

14 bank= getServiceFacade();

15 } catch (SystemException ex) {

16 try {

17 Thread.sleep(1000);

18 bank= getServiceFacade();

19 } catch (SystemException ex2) {

20 ex2.printStackTrace();

21 return null;

22 } catch (InterruptedException ex2) {

23 ex2.printStackTrace();

24 return null;

25 }

26 }

27 String result=null;

28 try {

29 result = bank.createAccount(customerId, type, descr, balance, creditLine,

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 277

30 beginBalance, beginBalanceTimeStamp);

31 } catch (RemoteException ex) {

32 try {

33 Thread.sleep(1000);

34 bank= null;

35 createAccount(customerId, type, description, balance, creditLine,

36 beginBalance, beginBalanceTimeStamp);

37 } catch (InterruptedException ex2) {

38 ex2.printStackTrace();

39 }

40 }

41 return result;

42 }

43 [...]

 The implementation in Listing 12-3 is clearly better than a simple implementation that

would resolve and invoke the facade directly from the client code. However, this improvement

is not entirely satisfactory for several reasons. First, to keep a clean business-level API, it is pref-

erable to implement one business delegate for each business object. Even though this work is

done only once in theory, coding the delegates is an error-prone and tedious task. Second, the

accesses to the business delegate API constitute a crosscutting concern. Finally, delegates are

not easy to reuse since they depend on the communication layer of the underlying J2EE

infrastructure.

Notice that the business delegate implementation uses a class called ServiceLocator,

which implements another client-side design pattern explained in the next section.

Service Locator

The service locator design pattern reduces the complexity resulting from the client’s need to

locate and create remote services access stubs. This concern is typical of J2EE environments.

The modularization of this concern within a service locator does not remove all the technolog-

ical dependencies.

First, a service locator user, such as a business delegate, must reference the javax.ejb.

EJBHome and javax.ejb.EJBLocalHome interfaces. In addition, the exceptions of the javax.ejb,

java.rmi, and javax.naming packages must be handled by the utilizing codes. These depen-

dencies are shown in the BankDelegate code, which uses the service locator.

Some crosscutting concerns will remain when using the service locator within distinct

client codes—for example, within a servlet-based presentation tier client and a business dele-

gate of a Swing client. These crosscutting concerns implement the references to the EJB

interfaces, the handling of the aforementioned exceptions, and the service locator reference,

which we find within each client.

Recall that the service locator is also an implementation of the GoF singleton design

pattern. Chapter 8 shows how a regular class can be automatically transformed into a singleton

with a dedicated aspect (see the section “The Singleton Design Pattern” in Chapter 8 for more

details).

278 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Data Transfer Object

Within the client code given at the beginning of this chapter, we see the use of a service called

getAccountDetails, which returns an object instance of the AccountDetails type. This object

aggregates the attributes’ values of an account and presents an interface close to Account. This

object is one instantiation of a participant of a J2EE design pattern: the data transfer object.

A data transfer object can be used in two main cases:

• When a client computation unit needs to access more than one piece of data returned by

the business layer (multiple downloads)

• When a client computation unit needs to send more than one piece of data to be

completed (multiple uploads)

It is possible to reduce the number of remote calls by using the data transfer object design

pattern, as shown in Listing 12-4. This pattern then proposes the use of a transfer object, which

is designed to transfer a set of data from the client to the server, or vice versa. In this case, we

use an AccountDetails transfer object. Since the transfer objects must be accessed from the

client as well as from the server, all the transfer objects of the application are placed in the

aop.j2ee.commons.to package (to means transfer object).

Listing 12-4. A Transfer Object for the Bank Application

01 package aop.j2ee.commons.to;

02

03 import java.math.BigDecimal;

04 import java.util.Date;

05 import java.util.ArrayList;

06

07 public class AccountDetails implements java.io.Serializable {

08

09 private String accountId;

10 private String type;

11 private String description;

12 private BigDecimal balance;

13 private BigDecimal creditLine;

14 private BigDecimal beginBalance;

15 private Date beginBalanceTimeStamp;

16 private ArrayList customerIds;

17

18 public AccountDetails(String accountId, String type, String descr,

19 BigDecimal balance, BigDecimal creditLine, BigDecimal beginBalance,

20 Date beginBalanceTimeStamp, ArrayList customerIds) {

21

22 this.accountId = accountId;

23 this.type = type;

24 this.description = descr;

25 this.balance = balance;

26 this.creditLine = creditLine;

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 279

27 this.beginBalance = beginBalance;

28 this.beginBalanceTimeStamp = beginBalanceTimeStamp;

29 this.customerIds = customerIds;

30 }

31

32 public String getAccountId() {return accountId;}

33 public String getDescription() {return description;}

34 public String getType() {return type;}

35 public BigDecimal getBalance() {return balance;}

36 public BigDecimal getCreditLine() {return creditLine;}

37 public BigDecimal getBeginBalance() {return beginBalance;}

38 public Date getBeginBalanceTimeStamp() {return beginBalanceTimeStamp;}

39 public ArrayList getCustomerIds() {return customerIds;}

40 public void setAccountId(String accountId) {this.accountId = accountId;}

41 public void setType(String type) {this.type = type;}

42 public void setDescription(String descr) {this.description = descr;}

43 public void setBalance(BigDecimal balance) {this.balance = balance;}

44 public void setCreditLine(BigDecimal n) {this.creditLine = n;}

45 public void setBeginBalance(BigDecimal n) {this.beginBalance = n;}

46 public void setBeginBalanceTimeStamp(Date beginBalanceTimeStamp){

47 this.beginBalanceTimeStamp = beginBalanceTimeStamp;

48 }

49 public void setCustomerIds(ArrayList ids) {this.customerIds= ids;}

50 public String toString() {

51 return "account "+accountId+" ("+type+")\n"+

52 "description: "+description+"\n"+

53 "balance: "+balance+"\n"+

54 "creditLine: "+creditLine+"\n"+

55 "beginBalance: "+beginBalance+"\n"+

56 "beginBalanceTimeStamp: "+beginBalanceTimeStamp+"\n"+

57 "customerIds: "+customerIds+"\n";

58 }

59

60 }

To be remotely transferable trough Remote Method Invocation (RMI), the transfer object

must implement the java.io.Serializable interface. If the client is located on the same virtual

machine as the server object (for instance, a local EJB), the client does not use RMI and the

Serializable interface is then just redundant information.

For our case, with the Simple client, it is possible to optimize the client/server transfer of the

data (upload). To do so, the client can use a CustomerAndAccountInfos transfer object, which

aggregates the set of data for a given account and customer couple. The calls will then be reduced

to one unique invocation to Bank.createAccountWithCustomer(CustomerAndAccountInfos),

which is a new service to be added to the server for this specific optimization.

The main problem of the data transfer object pattern comes from the introduction of new

server-side services. These services target the remote data exchange’s optimization and

depend greatly on how the clients use the servers. They pollute the business interfaces and

280 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

make the global application less maintainable. For instance, when the business’s needs evolve,

important changes may have to be made to these patterns.

In conclusion, even though transfer objects can be employed in some cases (for instance,

to aggregate the state of a given object), they are more difficult (and dangerous) to use in

general (for example, when trying to optimize communication costs like

CustomerAndAccountInfos). These objects are difficult to anticipate and can change depending

on the application’s architecture. Thus, a better modularization of this concern’s implementa-

tion would be a great help for maintainability reasons. In the following section, we explain how

AOP implements this separation.

Aspect-oriented Implementation of the Access Design Patterns

In the previous sections, we presented the three main design patterns for the business layer

access: the business delegate, the service locator, and the data transfer object. These patterns

work together to manage the business layer access within a distributed J2EE environment. We

have discussed their limits and defects.

In this section, we propose an aspect-oriented implementation of these design patterns,

which can be used as an alternative, elegant solution.

Eliminating Business Delegates

With an aspect-oriented design, the business delegate design pattern is not frequently needed.

Indeed, the purpose of this pattern is to encapsulate the communication with the business

facade (resolution, error handling, retry, and timeout). However, all this can be easily encapsu-

lated within an “around” advice code.

This advice is to be applied to the direct invocations of a facade, which is called by a

remote client through its Remote interface. The resolution of this interface can be done similarly

to the business tier, by using the implicit protocol technique.

A first aspect of J2EE service locator can be implemented as shown in Listing 12-5.

Listing 12-5. The Locator Aspect

01 package aop.j2ee.client.java.aspect;

02

03 import java.rmi.RemoteException;

04 import javax.ejb.CreateException;

05 import javax.naming.NamingException;

06

07 import aop.j2ee.business.session.bank.BankHome;

08 import aop.j2ee.commons.exception.SystemException;

09

10 import aop.j2ee.commons.util.locator.*;

11

12 public aspect Locator {

13 public static final String BANK_SERVICE = "aop.j2ee.business.session.Bank";

14

15 public pointcut ejbservice(Class aClass) : call(

16 * aop.j2ee.client.java.aspectized..*.getServiceFacade(Class))&&args(aClass);

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 281

17

18 protected pointcut connectionservice(String aDataSource) :

19 call(* aop.j2ee.client.java.aspectized..*.getDatabaseConnection(String))

20 && args(aDataSource);

21

22 protected pointcut jmsservice(String aJMSObject) : call(

23 * aop.j2ee.client.java.aspectized..*.getJMSObject(String))&&args(aJMSObject);

24

25 protected Object createService(Class aClass, Object home)

26 throws Exception {

27 if (aClass.getName().equals(BANK_SERVICE)) {

28 BankHome bankhome = (BankHome) home;

29 return bankhome.create();

30 }

31 throw new Exception("Cannot create service for " + aClass);

32 }

33

34 public pointcut exception() :

35 call(* aop.j2ee..*+.*(..) throws *Exception)

36 && within(aop.j2ee.client.java.aspectized.* +);

37

38 private EJBServiceLocator ejbLocator;

39 private JDBCServiceLocator jdbcConnectionLocator;

40 private JMSServiceLocator jmsObjectLocator;

41

42 Object around(Class aClass)

43 throws SystemException : ejbservice(aClass) {

44 Object service = null;

45 try {

46 if (ejbLocator == null)

47 ejbLocator = new EJBServiceLocator();

48 Object home = ejbLocator.lookup(aClass);

49 service = createService(aClass,home);

50 } catch (NamingException ne) {

51 throw new SystemException(ne.getMessage());

52 } catch (ClassNotFoundException cne) {

53 throw new SystemException(cne.getMessage());

54 } catch (CreateException ce) {

55 throw new SystemException(ce.getMessage());

56 } catch (RemoteException re) {

57 throw new SystemException(re.getMessage());

58 } catch (Exception e) {

59 throw new SystemException(e.getMessage());

60 }

61 return service;

62 }

63

282 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

64 Object around(String aDataSource)

65 throws SystemException : connectionservice(aDataSource) {

66 Object connection = null;

67 try {

68 if (jdbcConnectionLocator == null)

69 jdbcConnectionLocator = new JDBCServiceLocator();

70 connection = jdbcConnectionLocator.lookup(aDataSource);

71 } catch (Exception ne) {

72 throw new SystemException(ne.getMessage());

73 }

74 return connection;

75 }

76

77 Object around(String aName)

78 throws SystemException : jmsservice(aName) {

79 Object jmsObject = null;

80 try {

81 if (jmsObjectLocator == null)

82 jmsObjectLocator = new JMSServiceLocator();

83 jmsObject = jmsObjectLocator.lookup(aName);

84 } catch (Exception ne) {

85 throw new SystemException(ne.getMessage());

86 }

87 return jmsObject;

88 }

89 }

This aspect goes beyond EJB service resolution because it also allows for the resolution of

JMS services and data sources. It relies on a simple implicit protocol that hides the implemen-

tations of the actual resolution, which is transparently inserted by the aspects.

Hence, for each resolving type, the client can define one of these empty methods:

• aclass.getServiceFacade(Class) (pointcut line 15)

• aclass.getDatabaseConnection(Class) (pointcut line 18)

• aclass.getJMSObject(Class) (pointcut line 22)

The actual implementations are then provided by the corresponding “around” advice

codes (lines 42, 64, and 77).

Thanks to this aspect, the Simple client defined previously can be modified as shown in

Listing 12-6.

Listing 12-6. The Simple Client Aspectized

package aop.j2ee.client.java.aspectized;

import java.math.BigDecimal;

import java.util.Date;

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 283

import aop.j2ee.business.session.bank.Bank;

import aop.j2ee.commons.to.AccountDetails;

import aop.j2ee.commons.exception.SystemException;

public class Simple {

 public static void main(String[] args) {

 try {

 BankDelegate deleguate = new BankDelegate();

 String customerId =

 deleguate.createCustomer("Pawlak","Renaud","P",

 "Frederick St","Hartford","CT","06105","NA",

 "renaud@aopsys.com");

 System.out.println("Created new customer " + customerId);

 String accountId =

 deleguate.createAccount(customerId,"Debit",

 "This is a test.",new BigDecimal(100),new BigDecimal(0),

 new BigDecimal(100),new Date());

 System.out.println("Created new customer " + accountId);

 deleguate.setAccountBalance(new BigDecimal(200), accountId);

 System.out.println("Changed balance");

 AccountDetails details =

 deleguate.getAccountDetails(accountId);

 System.out.println("Account details:");

 System.out.println(details);

 } catch (Exception e) {

 System.err.println(e.getMessage());

 e.printStackTrace();

 }

 }

 // implicit protocol for service resolving/locating

 static Object getServiceFacade(Class cl) throws SystemException {

 return null;

 }

}

This technique is particularly well suited for clients accessing the service through a busi-

ness interface, which is most often the case. In the rare case in which the client needs to access

the business layer through a dedicated interface (which should be avoided for maintainability

reasons), it is still possible to use a classic business delegate pattern.

Like a regular client, the business delegate can use an implicit resolving protocol. It then

relies on the aspects in case a communication layer–related problem occurs. We explain this in

further detail next.

284 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Managing Communication Layer–Related Problems

As stated previously in this chapter, to improve the reliability of the application in a distributed

environment, which is by nature subject to service interruptions, it is important to implement

policies such as retry or cache. Since we have eliminated the business delegate pattern,

these policies cannot be implemented in the delegate any longer; they must be implemented

in aspects.

AOP offers a natural framework to separate some subconcerns within the main remote

communication concern. For instance, it is possible to separate retry and cache within two

independent aspects. This design choice depends on the designers and their needs. It must be

done after a careful analysis of the maintainability and evolution needs.

The aspect shown in Listing 12-7 implements a retry policy for account creation in the case

of a physical communication error between the client and the server. This aspect can be

considered as a simple fault tolerance aspect.

Listing 12-7. The Retry Aspect

01 package aop.j2ee.client.java.aspect;

02

03 import java.math.BigDecimal;

04 import java.rmi.RemoteException;

05 import java.util.Date;

06 import aop.j2ee.business.session.bank.Bank;

07 import aop.j2ee.commons.exception.*;

08 import aop.j2ee.client.java.aspectized.Simple;

09

10 public aspect Retry {

11

12 pointcut retry(String customerId,String type,String description,

13 BigDecimal balance,BigDecimal creditLine,

14 BigDecimal beginBalance,

15 Date beginBalanceTimeStamp):

16 call(public String Bank+.createAccount(..))

17 && within(Simple) && args(customerId,type,description,

18 balance,creditLine,beginBalance,beginBalanceTimeStamp);

19

20 String around(String customerId,String type,String description,

21 BigDecimal balance,BigDecimal creditLine,

22 BigDecimal beginBalance,Date beginBalanceTimeStamp)

23 throws RemoteException,IllegalAccountTypeException,

24 CustomerNotFoundException,InvalidParameterException:

25 retry(customerId, type, description, balance, creditLine,

26 beginBalance, beginBalanceTimeStamp) {

27 String result=null;

28 try {

29 result = proceed(customerId,type,description,

30 balance,creditLine,beginBalance,beginBalanceTimeStamp);

31 } catch (RemoteException ex) {

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 285

32 try {

33 Thread.sleep(1000);

34 result = proceed (

35 customerId,type,description,

36 balance,creditLine,beginBalance,beginBalanceTimeStamp);

37 } catch (InterruptedException ex2) {

38 ex2.printStackTrace();

39 }

40 }

41 return result;

42 }

43 }

The advice code of the aspect in Listing 12-7 is linked to the retry pointcut, which denotes

the calls to the implementations of the remote Bank interface (line 16). The initial call of the

service is done through the first call to proceed (line 29). If an error occurs, the retried call is

done through a second call to proceed (line 34) after having waited one second (line 33). This

aspect code can fall into an infinite loop when the communication layer systematically throws

a RemoteException. This problem must be handled by modifying the implementation or by

defining a new advice code to detect and break the infinite loops in a generic way.

To apply this aspect to a set of methods, instead of one particular method, we can use the

nontyped generic AOP, which uses wildcards and the joinpoint API to access the base level

information reflectively. Thus, the solution presented in Listing 12-8 is applied to all the

facade’s methods.

Listing 12-8. Applying the Retry Aspect to All Bank Methods

 Object around():

 call(public * Bank+.*(..))

 && within(Simple) {

 Object result=null;

 try {

 result = proceed();

 } catch (RemoteException ex) {

 try {

 Thread.sleep(1000);

 result = proceed();

 } catch (InterruptedException ex2) {

 ex2.printStackTrace();

 }

 }

 return result;

 }

286 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

TYPED VS. GENERIC AOP

Some AOP technologies allow advice codes and pointcuts to be statically typed; this is called typed AOP. The

Prose project, for example, allows for the typing of certain advice parameters, which results in optimization

possibilities. Rickard Oberg proposes an implementation technique, based on abstract schemas, that provides

static typing. AspectJ is certainly the most advanced language for this issue. In particular, it permits the

binding of the different elements composing a joinpoint to some pointcut variables that can be used within the

advice implementations.

When AOP is nontyped, or generic, and when joinpoint information needs to be accessed, the best alter-

native is to use reflection. Advice codes can introspect a joinpoint and access the current object (this or

target), the currently invoked or executed method, and its parameters. All this information is available

through untyped objects (java.lang.Object or java.lang.reflect.Method). Programmers then

manually cast and unbox the objects as needed. In typed AOP, the program can pass an int parameter to an

advice code, whereas in the generic case, the same parameter will be an Object to be cast into an Integer

instance.

Both techniques have their advantages and drawbacks. Typed AOP permits a certain degree of program

validation during the compilation and weaving phases. As a consequence, the IDE can potentially offer better

support in terms of code completion, contextual help, and browsing. On the other hand, typed AOP is less flex-

ible and makes it more difficult to write reusable advice code, as previously shown in the retry aspect. Typed

AOP implies a strong dependency between the base program and the aspects. If the base program interface

changes, it is likely to have an impact on the aspect’s implementation, including the advice code, which can

prevent reusability and evolution. This is the separation of concerns paradox: the better the concerns are sepa-

rated, the less likely they are to evolve separately. Conversely, generic AOP allows the creation of generic and

reusable aspects. However, it almost completely disables the compile- and weaving-time tests. Consequently,

programmers should be more careful when programming with generic AOP.

With regard to performance, typed AOP has a great advantage over generic AOP, especially when advice

code uses the advised method parameters. Indeed, the reflexive access to the arguments implies the creation

of an array of objects, which is the primary reason for performance loss in generic AOP and, more generally,

in reflective programming (see the java.lang.reflect API). We should note that this performance issue is

completely insignificant for most real-world applications, where the complexity of the aspects and the busi-

ness layer make the overhead insignificant in comparison. For instance, the generic retry aspect presented

earlier creates an insignificant overhead in comparison to the remote call, which is done to invoke the facade’s

service.

For an optimal aspect-oriented design, both typed and generic AOP techniques should be used in a judi-

cious way, so that the advantages of each can be realized when possible.

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 287

THE SEPARATION OF CONCERNS PARADOX

The ultimate goal of AOP is to provide better separation of concerns. This goal is reached with aspects since

they allow the modularization of concerns that are not clearly modularized using regular programming tech-

niques. However, with the separation of concerns into different modules, another kind of dependency appears

when different modules are integrated. This dependency, which we can refer to as association coupling, is

particularly important when using statically typed AOP.

For instance, with the statically typed retry aspect, a change in the method signature captured by the

pointcut invalidates this pointcut definition, as well as the associated advice codes. Any evolution of the

application can then become tedious in the long run. It is a paradox in the sense that separation of concerns

makes the application more understandable and, at the same time, more difficult to maintain. This is the sepa-

ration of concerns paradox.

The use of generic AOP minimizes this problem, but a coupling still remains within pointcuts or aspect

configurations when supported (within the configuration interfaces of JAC, the XML configuration files of JBoss

AOP or AspectWerkz, or even the annotations when using the upcoming Java 5–based technologies).

Even though we cannot deny the separation of concern paradox, aspect-oriented design is still a better

alternative. With this design, the coupling of aspects is more localized than the coupling of the same imple-

mentation without any aspects. Additionally, it allows for faster refactoring in the case that the application

changes. In other words, AOP does not remove the dependencies, but it allows for better control over them.

Tool support can also help to control these dependencies. In JAC, for instance, the configuration level reduces

the dependencies to a minimum. In AspectJ, we can improve the decoupling with the systematic use of

abstract aspects (see Chapter 3) and the actual definitions of the pointcuts within concrete aspects extending

the abstract aspects. The pointcut library technique can also be useful. For more details about these tech-

niques, please refer to AspectJ’s specific guides.

Introducing the Data Transfer Objects Transparently

As previously explained, the data transfer object pattern allows for the optimization of client/

server communications. It gathers a set of elementary requests into higher-level requests,

which use transfer objects to aggregate the parameters of the elementary requests.

In specific cases, this design pattern greatly benefits from AOP; however, it is not recom-

mended for modifying the business API for the purpose of optimizing the communications.

Also, complicating the clients’ implementation for the same reasons would be an anti-pattern.

With the help of AOP, we can define two aspects, one for the client and one for the server,

so we can entirely free the application code from this optimization concern. First, we need to

find the server utilization schemas (use cases) within the clients code that could benefit from a

data transfer object optimization. If we take the code of the Simple client, we will see that the

account creation is done in two consecutive remote invocations: a call to Bank.createCustomer

and a call to Bank.createAccount, which take as a parameter the current created customer. This

use case occurs, for instance, when registering a new customer and assigning that user a

default account. This is a frequent operation that we would like to implement with only one

remote call, to reduce network traffic. It can also be interesting to deal with one unique call/

transaction so that the rollback can be implemented in a more efficient way (only a local client-

side cancellation is needed until we actually perform the call).

288 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Once the use case code has been identified, we will define the transfer object that aggre-

gates the needed data. Since this object will be used by the aspects, it can be useful to define it

in a different package than the transfer objects that are explicitly used by the business layer

(located in aop.j2ee.commons.to).

In Listing 12-9, the CustomerAndAccountInfos class defines a transfer object that gathers all

the needed data.

Listing 12-9. The CustomerAndAccountInfos Transfer Object

package aop.j2ee.commons.aspect.to;

import java.math.BigDecimal;

import java.util.Date;

import java.io.Serializable;

public class CustomerAndAccountInfos implements Serializable {

 private String type;

 private String description;

 private BigDecimal balance;

 private BigDecimal creditLine;

 private BigDecimal beginBalance;

 private Date beginBalanceTimeStamp;

 private String lastName;

 private String firstName;

 private String middleInitial;

 private String street;

 private String city;

 private String state;

 private String zip;

 private String phone;

 private String email;

 public CustomerAndAccountInfos() {}

 public String getDescription() {return description;}

 public String getType() {return type;}

 [...]

 public void setType(String type) {this.type = type;}

 public void setDescription(String description) {

 this.description = description;

 }

 [...]

}

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 289

We now define a service (see Listing 12-10) that creates a new customer with a default

account, using this data transfer object. As expected, this new service is defined by an aspect

using intertype declarations. Two declarations are needed: one for adding the service proto-

type in the Remote interface of the bank facade (line 10) and another to add its implementation

within BankBean or its POJO version, depending on whether we have used the business tier

aspects presented in the previous chapter (line 16).

Listing 12-10. A Transfer Object Aspect (Server Side)

01 package aop.j2ee.business.aspect;

02

03 import java.rmi.RemoteException;

04 import aop.j2ee.commons.aspect.to.*;

05 import aop.j2ee.business.session.bank.*;

06 import aop.j2ee.commons.exception.*;

07

08 public aspect ServerSideTO {

09

10 public abstract String Bank

11 .createAccountWithCustomer(CustomerAndAccountInfos infos)

12 throws

13 RemoteException,IllegalAccountTypeException,

14 CustomerNotFoundException,InvalidParameterException;

15

16 public String BankBean

17 .createAccountWithCustomer(CustomerAndAccountInfos infos)

18 throws

19 RemoteException,IllegalAccountTypeException,

20 CustomerNotFoundException,InvalidParameterException {

21

22 String customerId = createCustomer(infos.getLastName(),

23 infos.getFirstName(),infos.getMiddleInitial(),

24 infos.getStreet(),infos.getCity(),infos.getState(),

25 infos.getZip(),infos.getPhone(),infos.getEmail());

26

27 String accountId = createAccount(customerId,infos.getType(),

28 infos.getDescription(),infos.getBalance(),

29 infos.getCreditLine(),infos.getBeginBalance(),

30 infos.getBeginBalanceTimeStamp());

31

32 return accountId;

33 }

34 }

For the client side, we define an aspect that allows the transparent use of this service when

the aggregated invocation sequence is used, as shown in Listing 12-11.

290 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Listing 12-11. A Transfer Object Aspect (Client Side)

01 package aop.j2ee.client.java.aspect;

02

03 import java.math.BigDecimal;

04 import java.util.Date;

05 import aop.j2ee.commons.aspect.to.*;

06 import aop.j2ee.business.session.bank.Bank;

07 import aop.j2ee.client.java.aspectized.Simple;

08

09 public aspect TransferOptimizer {

10

11 ThreadLocal to = new ThreadLocal();

12

13 Object around(String lastName,String firstName,

14 String middleInitial,String street,String city,

15 String state,String zip,String phone,String email) :

16 call(String aop.j2ee.business.session.bank.Bank+

17 .createCustomer(..))

18 && args(lastName,firstName,middleInitial,street,city,

19 state,zip,phone,email)

20 && withincode(void Simple.main(String[])) {

21 CustomerAndAccountInfos infos=new CustomerAndAccountInfos();

22 infos.setLastName(lastName);

23 infos.setFirstName(firstName);

24 infos.setMiddleInitial(middleInitial);

25 infos.setStreet(street);

26 infos.setCity(city);

27 infos.setState(state);

28 infos.setZip(zip);

29 infos.setPhone(phone);

30 to.set(infos);

31 return null;

32 }

33

34 Object around(Bank bank,String customerId,String type,

35 String description,BigDecimal balance,BigDecimal creditLine,

36 BigDecimal beginBalance,Date beginBalanceTimeStamp) :

37 call(String aop.j2ee.business.session.bank.Bank+

38 .createAccount(..))

39 && args(customerId,type,description,balance,creditLine,

40 beginBalance,beginBalanceTimeStamp)

41 && withincode(void Simple.main(String[]))

42 && target(bank) {

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 291

43 CustomerAndAccountInfos infos =

44 (CustomerAndAccountInfos)to.get();

45 if (infos == null) {

46 return proceed(bank,customerId,type,description,balance,

47 creditLine,beginBalance,beginBalanceTimeStamp);

48 } else {

49 infos.setType(type);

50 infos.setDescription(description);

51 infos.setBalance(balance);

52 infos.setCreditLine(creditLine);

53 infos.setBeginBalance(beginBalance);

54 infos.setBeginBalanceTimeStamp(beginBalanceTimeStamp);

55 String id = bank.createAccountWithCustomer(infos);

56 // reset the transfer object

57 to.set(null);

58 return id;

59 }

60 }

The implementation of the communication optimization aspect TransferOptimizer relies

on a simple idea. When the first method of the sequence is called (the first advice code), we

replace the call by the creation of the transfer object and its partial initialization (line 21). This

transfer object is then locally saved in a threadlocal variable (lines 11 and 30). The threadlocal

makes the aspect thread safe. Hence, the TransferOptimizer aspect behaves like an upload

cache.

When the second method of the sequence is called, we complete the transfer object initial-

ization with the parameters and invoke the createAccountWithCustomer remote service (line 55).

This service is transparently added by the server-side aspect. If the thread local returns null

(line 44), we assume that we are not within a sequence to optimize and we directly invoke the

service (line 46). This technique can be generalized to any sequence.

Optimization aspects depend on the application code. If the program changes, the aspect

is likely to be invalidated. For instance, if the program were using the createCustomer method’s

result, the optimization would not be valid any longer, since the program would have to return

a null value for createCustomer. This coupling is stronger than the separation of concern

paradox coupling. In this case, the aspect can be invalidated even if the object interfaces are

stable, since the aspect heavily relies on their internal implementation.

Client Tier Communication Aspects Synthesis

So far, we have presented three aspects to manage typical concerns found in a distributed

context, and we have applied them to a simple Java client (aop.j2ee.client.java.aspectized.

Simple). These aspects are illustrated Figure 12-1.

292 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Figure 12-1. Three aspects for client/server communication

The three aspects have the following roles:

• aop.j2ee.client.java.aspect.Locator uses an implicit protocol to resolve the business

facades. The darkest line of the Simple.java bar corresponds to the implementation of

the getServiceFacade method, which is defined but not implemented by the client.

• aop.j2ee.client.java.aspect.Retry implements a retry policy to minimize the impacts

of potential communication errors. We use the generic aspect, which applies to all the

methods (three lines).

• aop.j2ee.client.java.aspect.TransferOptimizer enhances the client’s performance

by seamlessly introducing a transfer object. The two lines related to this aspect corre-

spond to the createCustomer and createAccount calling sequence, which we optimize

with the transfer object.

This is not a complete design of a distributed concern. Coverage of all the possible subcon-

cerns of this complicated concern is beyond the scope of this book, but this design gives you

some indication of how to build well-designed distributed applications by using AOP. Note

that the same design has also been successfully applied to the administration client of the

bank.

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 293

Using AOP for the Presentation of the Client Tier
Once the communication concerns are managed, the client handles the presentation, which is

usually a complicated task. In the case of Swing-based clients, the techniques do not differ from

non-J2EE applications. For a thin web client, the implementation differs, since the presentation

is located on the server side within a web container over JSP/Servlets.

This section presents use cases for AOP in the presentation tier. First, we show examples

of the UI in general. Next, we study the web presentation tier by enhancing the design patterns

commonly used for this tier.

Using AOP for UI Concerns

Because of its complexity, the UI often represents an important part of an application’s devel-

opment. Although these concerns are not J2EE specific, aspects can help in their development.

In the sections that follow, we illustrate the use of AOP for two generic UI concerns: inter-

nationalization and condition verification on input data. To do so, we rely on the Java Swing

administration client of the banking application.

Application Internationalization

An ongoing concern during development of J2EE applications is application internationaliza-

tion. Internationalization consists of supporting several languages within the same application.

Property files are frequently used to support this concern. In Java, however, numerous opera-

tions need to be performed in order to implement internationalization.

For instance, a common solution for handling error messages is to define the error

message set within a property file, which can be translated into different languages. The client-

side configuration indicates which file to use in the program. For the banking administration

client, this configuration is done by a launching parameter:

%JAVA_HOME%\bin\java –Daop.j2ee.config.applicationname=BankAdmin

 -Daop.j2ee.config.applicationconfigdir=c:/aop/config

 -Daop.j2ee.config.applicationpropertyfile=bankadmin.properties

 aop.j2ee.client.java.BankAdmin

When necessary, the client program manages the access mechanism to the messages

defined in the file. Generally, these accesses are scattered all over the code, particularly in the

exception handling code, as illustrated in Listing 12-12.

Listing 12-12. Sample Application Excerpt That Illustrates Exception Handling

01 // excerpt of aop.j2ee.client.java.regular.DataModel

02 [...]

03 protected void createActInf(int currentFunction, String returned) {

04 AccountDetails details = null;

05 //View Account Information

06 if ((currentFunction == 4) && (returned.length() > 0)) {

294 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

07 try {

08 details = bank.getAccountDetails(returned);

09 boolean readonly = true;

10 frame.setDescription(details.getDescription());

11 ArrayList alist = new ArrayList();

12 alist = details.getCustomerIds();

13 frame.createActFields(

14 readonly,

15 details.getType(),

16 details.getBalance(),

17 details.getCreditLine(),

18 details.getBeginBalance(),

19 alist,

20 details.getBeginBalanceTimeStamp());

21 } catch (AccountNotFoundException ex) {

22 frame.resetPanelTwo();

23 frame.messlab3.setText(

24 messages.getString("AccountException")

25 + " " + returned + " "

26 + messages.getString("NotFoundException"));

27 } catch (RemoteException ex) {

28 frame.messlab.setText(

29 messages.getString("Remote Exception"));

30 } catch (InvalidParameterException ex) {

31 frame.messlab.setText(

32 messages.getString("InvalidParameterException"));

33 }

34 } [...]

Lines 24, 26, 29, and 32 show where the application accesses the international messages,

which are indexed by string keys. As demonstrated, internationalization is a crosscutting

concern, which can be difficult to handle. In addition, maintenance is more difficult since the

accesses are scattered in the client code and closely tangled with exception handling.

The externalization of the error handling concern in the internationalization context is

performed in the i18n aspect. However, the internationalization concern must also deal with

issues such as measurement units, currencies, and labels in graphical components.

The i18n aspect shown in Listing 12-13 is the first step toward a modular internation-

alization.

Listing 12-13. A Simple Internationalization Aspect

01 package aop.j2ee.client.java.aspect;

02

03 import java.rmi.RemoteException;

04 import aop.j2ee.commons.exception.*;

05 import aop.j2ee.client.java.aspectized.BankAdmin;

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 295

06

07 public privileged aspect I18n {

08

09 // translation of common exception messages

10 Object around() throws RemoteException, InvalidParameterException:

11 call(* aop.j2ee.business.session.bank.Bank+.*(..) throws *Exception)

12 && within(aop.j2ee.client.java.aspectized.*+) {

13

14 Object value = null;

15 try {

16 value = proceed();

17 } catch (RemoteException ex) {

18 throw new RemoteException(BankAdmin.messages.getString(

19 "Remote Exception"),ex);

20 } catch (InvalidParameterException ex) {

21 throw new InvalidParameterException(BankAdmin.messages.getString(

22 "InvalidParameterException"),ex);

23 }

24 return value;

25 }

26

27 // handling of joinpoint-specific exceptions

28 Object around(String accountId) throws AccountNotFoundException:

29 call(* aop.[...].Bank+.getAccountDetails(String) throws *Exception)

30 && args(accountId) && within(aop.j2ee.client.java.aspectized.*+) {

31

32 Object value = null;

33 try {

34 value = proceed(accountId);

35 } catch (AccountNotFoundException ex) {

36 throw new AccountNotFoundException(

37 BankAdmin.messages.getString("AccountException")

38 + " " + accountId + " "

39 + BankAdmin.messages.getString("NotFoundException"),ex);

40 }

41 return value;

42 }

43

44 [...] // other specific exceptions

45 }

For each exception thrown, the aspect builds a new exception that contains an interna-

tionalized message (lines 18, 21, and 36) in order to modularize the management of error

message internationalization.

Figure 12-2 gives an overview of where the aspect is applied by showing the advised calls

within the bank administration client (see aop.j2ee.client.java.aspectized.DataModel).

296 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

Figure 12-2. Application of the i18n aspect to the Swing Java client of Duke’s Bank

With the previous aspect, the internationalized exceptions are sent to the client. The client

does not have to handle this concern itself. For instance, the createActInf method of the

administration client can be simplified as shown in Listing 12-14.

Listing 12-14. Aspectizing the Administration Client with the i18n Aspect

// excerpt of aop.j2ee.client.java.aspectized.DataModel

[...]

protected void createActInf(int currentFunction, String returned) {

 AccountDetails details= null;

 if ((currentFunction == 4) && (returned.length() > 0)) {

 try {

 details= bank.getAccountDetails(returned);

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 297

 boolean readonly= true;

 frame.setDescription(details.getDescription());

 ArrayList alist= new ArrayList();

 alist= details.getCustomerIds();

 frame.createActFields(

 readonly,

 details.getType(),

 details.getBalance(),

 details.getCreditLine(),

 details.getBeginBalance(),

 alist,

 details.getBeginBalanceTimeStamp());

 // exception messages are already internationalized by the i18n aspect

 } catch (AccountNotFoundException ex) {

 frame.resetPanelTwo();

 frame.messlab3.setText(ex.getMessage());

 } catch (RemoteException ex) {

 frame.messlab.setText(ex.getMessage());

 } catch (InvalidParameterException ex) {

 frame.messlab.setText(ex.getMessage());

 }

 }

}

The client can access the original exception by using the ex.getCause method. After

Java 1.4, the cause of the exception is also included in the stack trace and is shown by the

ex.printStackTrace method below the “caused by” line. This works only if the aspect passes

the original exception as a parameter while constructing the internationalized exception (see

lines 18, 21, and 36 of the i18n aspect).

Input Constraints Verification

When developing UIs, verifying constraints on the data entered by the users is a recurring

issue. For example, all data entered to create a new client should be verified and checked for

accuracy. The program should test that the e-mail, ZIP code, and so forth are correctly

formatted. The program can also force the user to enter additional information.

It is important to clearly modularize this concern for three main reasons:

• First, it is a concern that crosscuts all the functions related to data input and validation.

• Second, in general, it is a concern that evolves and is refined over time, sometimes inde-

pendent of other concerns.

• Third, for the security of the application, the entered data should be controlled on the

server side. For client latency reasons, it is also preferable to implement some control on

the client. Aspect-oriented modularization makes it easier to maintain consistency

between the client and server sides.

298 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

To clarify the second point, we can compare the aspect-oriented development of the

constraint verification to a use case–based development methodology. In a use case–based

methodology, we find primary use cases, which correspond to the normal behavior of the

application (here, the entering of the data by the user), and secondary use cases, which corre-

spond to the abnormal behavior of the application (here, errors and input error handling).

Among secondary cases, a use case–guided analysis generally assigns priorities to the use

cases. Some of them are not critical and do not need to be implemented during the first itera-

tions (for instance, checking that the entered name starts with an uppercase letter).

Similarly, when developing UI and data verification, we start with primary cases (verifica-

tions) and critical secondary cases. Only after the development of these cases is completed can

we implement the noncritical cases (verifications). If the verification concern is not correctly

modularized, testing a new case will be difficult because its code will be tangled up with the

code of the preexisting cases.

Thus, the use of AOP helps to handle the growing complexity of the verification concern.

In particular, the use of well-chosen pre-/postcondition aspects (such as the ones explained in

Chapters 9 and 11) allow the modularized implementation of the verification concern.

Using AOP in the Design Patterns of the Web

Presentation Tier
In a J2EE context, the web presentation logic relies on Servlets technology. Servlets are Java

components that reply to HTTP requests coming from the web server and are transmitted to

the J2EE web container. Some well-known containers are Apache Tomcat (reference imple-

mentation) and Caucho Resin (http://www.caucho.com/resin-2.1/index.xtp). To help with

the programming of GUI dedicated servlets, Sun Microsystems defined the JavaServer Pages

(JSP) standard.

Since servlets are low-level components, certain J2EE design patterns have been defined

to manage the presentation efficiently. Here we will evaluate how aspects enhance the design

of the presentation tier when compared to J2EE design pattern–based solutions.

In this section, we introduce the presentation tier design patterns and discuss how they

can be improved with AOP. We do not rely directly on the sample application since the presen-

tation would be too complicated to discuss here. Furthermore, the sample application uses the

Struts framework, which provides a packaged and ready-to-use implementation of a set of

J2EE design patterns.

To fully understand this section, knowledge of Servlets/JSP technologies (http://java.sun.

com/products/jsp/docs.html) and of presentation tier J2EE design patterns (http://java.sun.com/

blueprints/corej2eepatterns/Patterns/index.html) is necessary.

Front Controller

The role of a front controller design pattern is to centralize the base management logic of the

requests and to forward them to the appropriate managers. Thus, the client’s requests go

through the front controller, which contains a command dictionary.

Command objects are usually instances of the application controller design pattern, even

though it is still possible to choose alternate designs. More precisely, the controller’s behavior

handles the requests by looking up the appropriate command for the given request’s URL and

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 299

delegating this request to the command. In addition, the controller can encapsulate server-

specific data in a context object. Context objects are regular Java objects used to make the GUI

logic as independent as possible from the HTTP protocol.

Listing 12-15 presents the important parts of a simple front controller.

Listing 12-15. A Simple Front Controller

package aop.j2ee.client.web.controller;

01 import java.io.IOException;

02 import java.util.Hashtable;

03 import javax.servlet.RequestDispatcher;

04 import javax.servlet.http.HttpServlet;

05 import javax.servlet.http.HttpServletRequest;

06 import javax.servlet.http.HttpServletResponse;

07 import aop.j2ee.client.web.protocol.RequestContextFactory;

08 import aop.j2ee. client.web.protocol.RequestContext;

09

10 public class FrontController extends HttpServlet {

11 static final String ERROR_VIEW = "/error.jsp";

12 [...] // other URLs

13 static Hashtable pathInfoCommandMap = new Hashtable();

14

15 public void init(javax.servlet.ServletConfig config) throws ServletException {

16 super.init(config);

17 pathInfoCommandMap.put("/logon","aop.j2ee.[...].LoginController");

18 pathInfoCommandMap.put("/subscribe","aop.j2ee. [...].SubscribeController");

19 [...] // other paths of application controllers

20 }

21

22 public void doGet [...] // process method invocation

23 public void doPost[...] // process method invocation

24

25 protected void process(HttpServletRequest request, HttpServletResponse resp)

26 throws ServletException, IOException {

27 String pathInfo = request.getPathInfo();

28

29 try {

30 // lookup the real path by delegating to the application controller

31 pathInfo=invokeApplicationController(pathInfo,request,resp);

32 } catch(Exception e) {

33 pathInfo = ERROR_VIEW;

34 }

35 // forward the control to the view / command

36 RequestDispatcher dispatcher = request.getRequestDispatcher(pathInfo);

37 dispatcher.forward(request,resp);

38 }

300 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

39

40 private String invokeApplicationController(

41 String aRequestPathInfo,

42 HttpServletRequest aRequest,

43 HttpServletResponse aResponse) throws Exception {

44 ApplicationController controller = null;

45 String className = (String)pathInfoCommandMap.get(aRequestPathInfo);

46 if(className != null) {

47 Class controllerClass = Class.forName(className);

48 controller = (ApplicationController)

49 controllerClass.newInstance();

50 if(controller != null)

51 aRequestPathInfo = (String)controller.process(aRequest,aResponse);

52 }

53 return aRequestPathInfo;

54 }

55 }

The process method of line 25 is a common method for handling requests. It checks if the

user is logged. If so, it forwards the request to the requested URL; otherwise, it forwards the

request to the login page.

When the application evolves, the front controller code becomes more complicated and

handles more specific cases. A strategy to avoid this problem is to create an inheritance hier-

archy to replace excessive conditional logic. For instance, for an application containing three

distinct functional zones, we can factorize the commonalities within a superclass. Even though

this design seems simple, it is complicated and tedious to program since the presentation layer

and its associated needs are complex and often permanently redefined.

The use of an aspect improves the application’s modularity by separating the base logic of

a front controller from a given piece of application logic. For instance, in Listing 12-16, the

FrontController aspect handles the delegation and encapsulation of the requests toward the

application controllers.

Listing 12-16. A Simple Front Controller Aspect

01 package aop.j2ee.client.web.aspect;

02

03 import java.util.Hashtable;

04 import javax.servlet.http.HttpServlet;

05 import javax.servlet.http.HttpServletRequest;

06 import javax.servlet.http.HttpServletResponse;

07 import aop.j2ee.client.web.protocol.RequestContextFactory;

08 import aop.j2ee.client.web.protocol.RequestContext;

09 import aop.j2ee.client.web.controlleur.*;

10

11 public aspect FrontController {

12 static Hashtable pathInfoCommandMap = new Hashtable();

13

14 static {

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 301

15 pathInfoCommandMap.put("/logon","aop.j2ee.[...].LoginController");

16 pathInfoCommandMap.put("/subscribe","aop.j2ee.[...].SubscribeController");

17 }

18

19 pointcut trapApplicationController(String aRequestPathInfo,

20 HttpServletRequest aRequest, HttpServletResponse aResponse):

21 call(private String FrontController.invokeApplicationController(

22 String,HttpServletRequest,HttpServletResponse) throws Exception)

23 && args(aRequestPathInfo,aRequest,aResponse);

24

25 String around(String aRequestPathInfo,

26 HttpServletRequest aRequest,

27 HttpServletResponse aResponse)

28 throws Exception: trapApplicationController(aRequestPathInfo,

29 aRequest,aResponse) {

30 ApplicationController controller = null;

31 String className =

32 (String)pathInfoCommandMap.get(aRequestPathInfo);

33 if(className != null) {

34 Class controllerClass = Class.forName(className);

35 controller = (ApplicationController)controllerClass.newInstance();

36 if(controller != null) {

37 RequestContextFactory factory = RequestContextFactory.getInstance();

38 RequestContext context = factory.getRequestContext(aRequest);

39 aRequestPathInfo = (String)controller.process(context);

40 }

41 }

42 return aRequestPathInfo;

43 }

44 }

Note that here we use the implicit protocol technique, through the

invokeApplicationController protocol method captured by the pointcut of line 11.

With this aspect, the front controller code implements the implicit protocol (line 23), as

shown in Listing 12-17.

Listing 12-17. The Aspectized Implementation of the Front Controller

01 package aop.j2ee.client.web.controller;

02

03 import java.io.IOException;

04 import javax.servlet.RequestDispatcher;

05 import javax.servlet.ServletException;

06 import javax.servlet.http.HttpServlet;

07 import javax.servlet.http.HttpServletRequest;

08 import javax.servlet.http.HttpServletResponse;

09

10 public class FrontController extends HttpServlet {

302 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

11 static final String ERROR_VIEW = "/error.jsp";

12

13 public void doGet [...] // process invocation

14 public void doPost [...] // process invocation

15

16 protected void process(HttpServletRequest request,

17 HttpServletResponse response)

18 throws ServletException, IOException {

19 [...] // no changes

20 }

21

22 // implemented by the aspect

23 private String invokeApplicationController(

24 String aRequestPathInfo,

25 HttpServletRequest aRequest,

26 HttpServletResponse aResponse)

27 throws Exception { return aRequestPathInfo; } // default

28 }

Thus, the front controller code is independent from the application. The application’s

specific paths are defined within the aspect. HTTP requests are encapsulated in the application-

level requests (RequestContextFactory and RequestContext) of the aop.j2ee.client.web.

protocol package.

Application Controller

The application controller design pattern centralizes the control and the invocation of the

application-specific views and commands. Similar to the front controller, a typical design

implies that a base class implements the commonalities of the controllers. Also, the use of an

aspect can be more efficient than inheritance for factorization.

Listing 12-18 shows that AOP simplifies the design of the application’s presentation for the

factorization of common functions. In any case, it allows the centralization of object initializa-

tions (see advice code lines 15 and 23).

Listing 12-18. An Application Controller Aspect

01 package aop.j2ee.client.web.aspect;

02

03 import aop.j2ee.client.web.bean.*;

04 import aop.j2ee.client.web.controller.*;

05 import aop.j2ee.client.web.protocol.RequestContext;

06 import aop.j2ee.client.web.protocol.LoginRequestContext;

07 import aop.j2ee.client.web.protocol.SubscriptionContext;

08

09 public aspect ApplicationController {

10

11 // initialization, through getRequestData, of the application controllers

12

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 303

13 void around(Object aBean,RequestContext aContext):

14 call(* LoginController.getRequestData(..)) && args(aBean,aContext) {

15 LoginRequestContext context=(LoginRequestContext)aContext;

16 UserBean bean = (UserBean)aBean;

17 bean.setUser(context.getUserName());

18 bean.setPassword(context.getUserPassword());

19 }

20

21 void around(Object aBean,RequestContext aContext):

22 call(* SubscribeController.getRequestData(..)) && args(aBean,aContext) {

23 SubscriberBean bean = (SubscriberBean)aBean;

24 SubscriptionContext context = (SubscriptionContext)aContext;

25 bean.setFirst(context.getFirstName());

26 bean.setLast(context.getLastName());

27 bean.setEmail(context.getEmail());

28 }

29 [...] // other controllers

30 }

With this aspect, the implementation of an authentication controller, for instance, focuses

only on the request treatment implementation, as shown in Listing 12-19, still by using an

implicit protocol (line 18).

Listing 12-19. An Aspectized Login Controller

01 package aop.j2ee.client.web.controller;

02

03 import aop.j2ee.client.web.controller.ApplicationController;

04 import aop.j2ee.client.web.command.Command;

05 import aop.j2ee.client.web.command.LoginCommand;

06 import aop.j2ee.client.web.protocol.RequestContext;

07 import aop.j2ee.client.web.protocol.LoginRequestContext;

08

09 // ApplicationController is an interface which defines process()

10 public class LoginController implements ApplicationController {

11 static final String USERBEAN_ATTR = "userbean";

12 static final String SUCCESS_VIEW = "/subscribe.html";

13 static final String FAILURE_VIEW = "/login.jsp";

14

15 public LoginController() {}

16

17 // implemented by the aspect (implicit protocol)

18 public void getRequestData(Object aBean,

19 RequestContext aRequestContext) {}

20

21 public Object process(RequestContext aRequestContext)

22 throws Exception {

23 Command logon = new LoginCommand();

304 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

24 LoginRequestContext context = (LoginRequestContext)aRequestContext;

25 // initialize the bean which receives the request’s data

26 getRequestData(logon.getReceiver(),context);

27 // execute the login command

28 String logicalRequest = ((Boolean)logon.executeCommand()).booleanValue()?

29 SUCCESS_VIEW:FAILURE_VIEW;

30 // put the bean in the context

31 context.setSessionAttribute(USERBEAN_ATTR,logon.getReceiver());

32 return logicalRequest;

33 }

34 }

Context Object

The context object design pattern encapsulates a contextual state linked to a request but inde-

pendent of the HTTP protocol. The context object can then be used in the different roles of the

presentation tiers.

The use of context objects makes the treatments simpler, more generic, and less dependent

on a particular web container. The context object classes are generally part of an inheritance

hierarchy, where the parent classes deal with the specificities of the HTTP protocol; they

contain references to the javax.servlet.http package.

With AOP, the whole context object design pattern can be made independent from the

HTTP protocol. The code of HttpRequestContext shows how to introduce the specificities of

the HTTP protocol (see Listing 12-20).

Listing 12-20. A Context Object Aspect

package aop.j2ee.client.web.aspect;

import javax.servlet.http.HttpServletRequest;

import aop.j2ee.client.web.protocol.*;

public aspect HttpRequestContext {

 public static final String USER_PARAM = "subscriber";

 public static final String PASSWORD_PARAM = "password";

 // implementation of the tag interface

 declare parents: LoginRequestContext implements HttpRequestContext;

 declare parents: SubscriptionContext implements HttpRequestContext;

 [...] // other contexts types...

 public HttpServletRequest HttpRequestContext.request;

 public HttpServletRequest LoginRequestContext.loginRequest;

 public HttpServletRequest SubscriptionContext.subscriptionRequest;

 // implementation of the common behaviors

 public void HttpRequestContext.initialize(HttpServletRequest aRequest) {

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 305

 request = aRequest;

 }

 public void HttpRequestContext.setHttpRequest(HttpServletRequest aRequest) {

 request = aRequest;

 }

 public HttpServletRequest HttpRequestContext.getHttpRequest() {

 return request;

 }

 public String HttpRequestContext.getAuthType() {

 return getHttpRequest().getAuthType();

 }

 // same principle...

 public String HttpRequestContext.getCharacterEncoding() {...}

 public int HttpRequestContext.getContentLength() {...}

 public String HttpRequestContext.getContentType() {...}

 public String HttpRequestContext.getContextPath() {...}

 public String HttpRequestContext.getPathInfo() {...}

 public String HttpRequestContext.getPathTranslated() {...}

 public String HttpRequestContext.getProtocol(){...}

 public String HttpRequestContext.getQueryString(){...}

 public String HttpRequestContext.getRemoteAddress(){...}

 public String HttpRequestContext.getRemoteHost(){...}

 public String HttpRequestContext.getRemoteUser(){...}

 public String HttpRequestContext.getRequestedSessionID(){...}

 public String HttpRequestContext.getRequestURI(){...}

 public String HttpRequestContext.getScheme(){...}

 public String HttpRequestContext.getServerName(){...}

 public String HttpRequestContext.getServletPath(){...}

 public Object HttpRequestContext

 .getSessionAttribute(String aAttribute) {...}

 public void HttpRequestContext.setSessionAttribute(String attr,Object val) {...}

 public Object HttpRequestContext.getRequestAttribute(String aAttribute){...}

 public void HttpRequestContext.setRequestAttribute(String attr,Object val) {...}

 // login

 public void LoginRequestContext.setHttpRequest(HttpServletRequest aRequest) {

 loginRequest = aRequest;

 }

 public HttpServletRequest LoginRequestContext.getHttpRequest() {

 return loginRequest;

 }

306 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

 public void LoginRequestContext

 .initialize(HttpServletRequest aRequest) {

 loginRequest = aRequest;

 setUserName(aRequest.getParameter(USER_PARAM));

 setUserPassword(aRequest.getParameter(PASSWORD_PARAM));

 }

 // subscription

 public void SubscriptionContext.setHttpRequest(

 HttpServletRequest aRequest) {

 subscriptionRequest = aRequest;

 }

 public HttpServletRequest SubscriptionContext.getHttpRequest() {

 return subscriptionRequest;

 }

 public void SubscriptionContext

 .initialize(HttpServletRequest aRequest) {

 subscriptionRequest = aRequest;

 setFirstName(aRequest.getParameter(FIRST_PARAM));

 setLastName(aRequest.getParameter(LAST_PARAM));

 setEmail(aRequest.getParameter(EMAIL_PARAM));

 }

 // other requests

 [...]

}

Interception Filter

The role of the interception filter is to intercept the incoming requests and outgoing responses

so that extra functions can be applied. The web container is responsible for calling the filters,

which can be declaratively added and removed in the web.xml file, as shown in Listing 12-21.

Listing 12-21. Declarative Configuration of the Filters

<filter>

<filter-name>silverMembership</filter-name>

<filter-class>

aop.j2ee.presentation.controller.MembershipFilter

</filter-class>

<init-param>

<param-name>subscriptionType</param-name>

<param-value>silver</param-value>

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 307

</init-param>

<init-param>

<param-name>denyPage</param-name>

<param-value>/secure/denied.jsp</param-value>

</init-param>

</filter>

The filters encapsulate recurring logic within reusable objects and thus enhance the code

modularity. For instance, they can add/remove or activate/deactivate presentation elements

depending on the user’s profile.

Listing 12-22 shows part of a filter that changes the response to deny a page if the user is

not authorized to access the current application space.

Listing 12-22. An Authorization Filter Example

01 package aop.j2ee.client.web.controller;

02

03 import java.io.IOException;

04 import javax.servlet.*;

05 import javax.servlet.http.*;

06 import aop.j2ee.presentation.bean.SubscriberBean;

07

08 public class MembershipFilter implements Filter {

09 [...]

10 private String subscriptionType;

11 private String denyPage;

12

13 public MembershipFilter() {}

14

15 public void init(FilterConfig config) throws ServletException {

16 subscriptionType = config.getInitParameter("subscriptionType");

17 denyPage = config.getInitParameter("denyPage");

18 }

19

20 public void doFilter(ServletRequest request,

21 ServletResponse response,

22 FilterChain chain)

23 throws IOException, ServletException {

24 [...] // applies a treatment on the request

25 // go on with the application of the filters

26 chain.doFilter(request,response);

27 [...]/ / applies a treatment on the response

28 }

29

30 public void destroy() {}

31 }

308 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

In the filter object design pattern, we can identify a typical structure of AOP: the “around”

advice code. To get the same effect, we could replace the MembershipFilter class with an

aspect, and the filter method doFilter (line 20) with “around” advice code. Indeed, the invoca-

tion of the doFilter method on the chain (line 26) has a similar effect as proceed within

“around” advice code.

The use of AOP does not greatly improve the code modularity, because the resulting

implementation is very similar to that of the filter object pattern. However, it can improve

performance in an outstanding way since the web container handles the interception chain in

a transparent and noncontrollable manner. The mechanism is dynamic and may induce over-

head. Due to compile-time weaving such as in AspectJ, the interception code can be inserted

directly within the target class code, thus removing the implementation of the chain initializa-

tion and iteration mechanism.

Listing 12-23 shows an aspect-oriented implementation of a filter.

Listing 12-23. An Implementation of the Authorization Filter Using AOP

01 package aop.j2ee.client.web.aspect;

02

03 import java.io.IOException;

04 import javax.servlet.*;

05 import javax.servlet.http.*;

06 import aop.j2ee.presentation.bean.SubscriberBean;

07

08 public class SilverMembershipFilterAspect {

09 declare precedence: GoldMembershipFilterAspect,

10 SilverMembershipFilterAspect, *;

11

12 private String FrontController.subscriptionType="silver";

13 private String FrontController.denyPage="/secure/denied.jsp;

14

15 pointcut filter(ServletRequest request,ServletResponse response):

16 execution(protected void process(HttpServletRequest, HttpServletResponse))

17 && args(request,response);

18

19 around(ServletRequest request,

20 ServletResponse response): filter(request,response) {

21

22 throws IOException, ServletException {

23 [...] // applies a treatment to the request

24 // continues the filters application

25 proceed(request,response);

26 [...] // applies a treatment to the response

27 }

28 }

In the aspect-oriented solution, proceed implements the call to the next filter (line 25). The

order in which the filters are applied is defined by the precedence declaration (line 9). Here, we

apply the filter with the pointcut that corresponds to the execution of the request processing of

C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P L E A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S 309

the front controller (line 15). This ensures that all the incoming requests and outgoing

responses are filtered out. The pointcut could have been factorized in a superclass, since it is

the same for all the filters.

Note that this technique is more flexible than the original. By modifying the pointcut we

can, for instance, install the filters on the application controllers rather than only the front

ones. The only disadvantage of this technique is that the filters are not defined in a declarative

way (in the web.xml file). When a change is made, the application then needs to be recompiled.

View Helper

The view helper is a Java object that implements subparts of a JSP page’s logic. This design

pattern externalizes Java code out of the JSP for maintenance and performance reasons.

Indeed, when the Java logic of a JSP is implemented in a view helper, the code is compiled and

loaded only once, thus avoiding the handling of too much Java code by the web servlet

container.

In specific cases, the implementation of the view helper is improved by using AOP. For

instance, we can add filters to modify the behavior of the helper regarding some session-based

criteria such as user preferences. This use of AOP can be considered as a generalization of the

interception filters previously described. Note that the systematic use of AOP for filtering can

lead to better separation of concerns. Filtering, for example, can be used to implement some

internationalization features in a modular way.

Web Presentation Tier Summary

AOP improvements are less systematic in the presentation tier than in the business and client

tiers. This is due to two main reasons:

• The web tier uses Java and the Servlet model to handle the requests, as well as screen

linking. It is a low-level, interaction-based implementation, and there is no explicit or

stable business model where the aspects can be applied in a systematic way. It is also

interesting to note that, for the controller design pattern aspect-oriented implementa-

tion, business specificities are implemented within the aspects.

• The presentation tier already uses non-Java technologies for separating concerns. For

instance, the layout is defined in HTML within JSP pages. Except for the view helpers,

presentation cannot be improved by Java-based AOP technologies. Other technologies,

such as eXtensible Stylesheet Language Transformations (XSLT), should be preferred or

combined for maximum efficiency.

Summary
In this chapter, we studied the use of AOP in the client and presentation tiers. When possible,

we used the sample application in our examples. We showed that AOP offers many improve-

ments for modularizing remote communication–related issues. The three main J2EE design

patterns for distribution present many drawbacks that can be avoided through the use of AOP.

310 C H A P T E R 1 2 ■ U S I N G A O P I N T H E S A M P LE A P P L I C A T I O N ’ S P R E S E N T A T I O N A N D C L I E N T T I E R S

For the presentation tier, AOP is useful for modularizing typical concerns, such as interna-

tionalization and pre- and postcondition checks. Existing presentation frameworks such as

Struts and Swing already provide abstraction for and deal with presentation-related concerns.

In these contexts, AOP is less efficient; however, the study of the J2EE design patterns for the

presentation tier shows that AOP can be used efficiently to build or enhance such frameworks.

311

INDEX

■A
abstract aspect, AspectJ, 50

Chain of Responsibility pattern, 165–167
Command pattern, 161–164
Observer pattern, 157–161
Proxy pattern, 168–170

acc (.acc) extension
aspect-configuration files, JAC, 75

access modifiers, AspectJ
wildcard for access modifiers, 31

ACCESSORS
method-type operators, JAC, 70, 71

Account EJB
implementation of business object pattern,

233–239
Account interface

sample application, 213
AccountBean class, 234
AccountDetails class, 278
AccountPOJO class, 244
acs property, jac, 78
AddDateItf interface, Order class, 48
ADDERS

method-type operators, JAC, 71
addItem method

Customer Class, AspectJ, 24
Order Class, AspectJ, 25
TraceAspect class, JAC, 62, 67

Administration and Supervision functions,
191–204

introduction, 171
Java Management Extensions, 191–194

agent layer, 193
distributed services layer, 193
using JMX with AOP, 194–202

advice binding, JBoss AOP
weaving pointcuts, 108

advice code, 17–19
AOP summary, 21
comparing AOP tools, 142–143
definition, 17
pointcuts and joinpoints, 28
types of, 17

advice code execution joinpoint type
comparing AOP tools, 141

advice code, AspectJ, 43–47
after advice code, 44
after returning advice code, 45

after throwing advice code, 45
around advice code, 45
before advice code, 44
code of an advice code block, 43
joinpoint types, 38

advice code, AspectJ 5
defining aspects with annotations, 55

advice code, JAC
see wrappers, JAC

advice code, JBoss AOP
see interceptors, JBoss AOP

advice code, Spring AOP
see interceptors, Spring AOP

advice tag, jboss-aop.xml file, 102
adviceexecution joinpoint type, AspectJ, 38, 42
advised interface, Spring AOP, 132–133
advises node

number of joinpoints associated with
pointcut, 28

advisors, Spring AOP
linking pointcut to interceptor, 120

after advice, AspectJ, 17
advice code types, 44
proceed method, 29

@After annotation, AspectJ 5, 56
after keyword, AspectJ, 44
after returning advice, AspectJ, 45
after returning advice, Spring AOP, 128–129
after throwing advice, AspectJ, 45
AfterReturningAdvice interface, Spring AOP,

128
agent layer, JMX, 192, 193
aliases, Spring AOP

getAliases method, BeanFactory class, 117
all pointcut type, JBoss AOP, 97
anchoring protocol technique

aspect injecting Transaction Management
code, 268

AnnotatedMixIn aspect class, 107
annotation-introduction tag, jboss-aop.xml,

110
AnnotationIntroductionDef annotation, JBoss

AOP
annotation parameter, 111
introducing annotations with annotations,

110
annotations

AspectJ 5, 54–57
JBoss AOP, 105–108, 110

312 ■I N D E X

annotated aspects, 106
annotated interceptors, 107
annotated mix-in, 107
annotated pointcut definitions, 106

Ant
compiling JBoss AOP application, 93
running JBoss AOP application, 95

AOP (aspect-oriented programming)
advantages for business tier, 227
AOP as integration technique, 261–269
AOP or design patterns, 246
application administration and supervision,

191–202
background/history, 23
benefits of, 5
business tier improvements using, 250–254
comparing language approaches, 137, 146
design patterns of web presentation tier,

using in, 298–309
designing classes and aspects, 5
distributed communications, 271–292
generic AOP, 286
implementation of access design patterns,

280
implementing contracts with, 174–179
OOP and, 3
origins of, 2
presentation of client tier, using for, 293–298
sample application design, 225
testing applications, 180–191
using JMX with AOP, 194–202

AOP Alliance API, 64
JAC wrappers, 63
Spring AOP, 113

aop tag, jboss-aop.xml file
defining JBoss AOP pointcuts, 95
JBoss AOP aspects, 92

aop.j2ee.business package
EJBComponents project, 215

aop.j2ee.client.java package
sample application, 218

APIs
dependency inversion, 11

application controller pattern
J2EE design solutions, 223
using AOP in web presentation tier, 302–304

ApplicationClient project, Eclipse IDE, 207
DataModel class, 218
Simple class, 218

ApplicationContext factory, Spring AOP, 120
ApplicationController aspect, 302
application-descriptor files, JAC

comments, 78
compiling JAC application, 66
configuring JAC applications, 78
creating JAC aspect, 66

example, 66
properties, 66, 78
running JAC application, 67

applications
techniques to manage complexity of

applications, 171
argument lists

variable length argument lists, 58
around advice code, 17

advice code types, AspectJ, 45
around advice code with parameters, 46
return type, 46

comparing AOP tools, 142
eliminating business delegates, 280
proceed method, 17

around advice, Spring AOP
see interceptors, Spring AOP

@Around annotation, AspectJ 5, 56
around keyword, AspectJ, 45
around wrappers, JAC, 63
ASM, 14
@Aspect annotation, AspectJ 5, 55
@Aspect annotation, JBoss AOP, 106, 109
aspect classes, JAC

cardinality of, 86
aspect classes, JBoss AOP

advice code blocks, 111
interceptors, 102

aspect components, JAC, 62
aspect composition, 19–20

consequences of transforming a class into a
singleton, 157

design, 19
weaving, 20

Aspect factory classes, JBoss AOP
instantiating an aspect, 109

aspect instantiation
AspectJ 5, 58
comparing AOP tools, 138, 144–145
JAC, 86
JBoss AOP, 109

aspect ordering
AspectJ, 51–52
comparing AOP tools, 138, 145
JAC, 86–87
Spring AOP, 132

aspect oriented applications, 5
aspect reuse

comparing AOP tools, 145–146
aspect tag, jboss-aop.xml

instantiating an aspect, 109
aspect weaving, 12–14

AspectJ, 29
comparing AOP tools, 137–138
compile-time weaving, 13

313■I N D E X

definition, 12
JAC, 61

AspectComponent class, JAC
brief summary, 88

AspectComponent class, JAC API, 62
aspect-configuration files, JAC

compiling JAC application, 66
configuring aspects, JAC, 75–78
creating JAC aspect, 64–65
example, 65
grouping parameters in, 77–78
syntax, 65, 76
using, 76

AspectJ, 23–53
abstract aspect, 49
advice code, 28, 43–47

after advice code, 44
after returning advice code, 45
after throwing advice code, 45
around advice code, 45
before advice code, 44

aspect inheritance, 49
aspect instantiation, 50
aspect ordering, 51–52
background/history, 1, 23
Chain of Responsibility pattern, 165–167
Command pattern, 161–164
creating first application, 24–30

advice code, 28
compiling, 29
pointcut descriptor, 27
trace aspect, 26

declaring warnings and errors, 52
filtering operators, joinpoints, 38–40
introduction mechanism, 47–49
JAC compared, 61
joinpoint introspection, 33–35
joinpoints, defining, 36–40
keywords

aspect, 27
call, 36
declare error, 52
declare, 54
declare parents, 48
execution, 36
extends, 49
percflowbelow, 50
pertarget, 50
pointcut, 27
privileged, 52
proceed, 28, 45
thisJoinPoint, 34
throws, 46
withincode, 39

load-time weaving, 53

Observer pattern, 157–160
pointcuts, 27, 30–43
pointcut parameterization, 41
pointcut wildcards, 30–33
privileged aspect, 52
Proxy pattern, 168–170
Singleton pattern, 154–155
trace aspect, 26
weaving, 29

AspectJ 5, 53–58
after advice code, 56
annotations, 54–57
around advice code, 56
aspect instantiation, 58
autoboxing, 58
before advice code, 55
declare statements, 57

aspectOf method, TraceAspect class, 51
aspects

aspect inheritance, 49–50
background of concept, 1
business precondition aspect, 256–258
business tier aspects, 258–261
business tier components, 270
checking arguments of transaction, 255
comparing AOP tools, 139
consequences of transforming a class into a

singleton, 157
constituent parts of AOP application, 5
creating manageable resource with, 197–202
extending manageable resource with, 202
data transfer objects, 287
definition of, 9
dependence, 20
dependency inversion, 11
designing AOP classes and aspects, 5
frameworks, 12
FrontController aspect, 300
HttpRequestContext aspect, 304
inheritance, 27
integration of crosscutting functionalities,

10
managing communication layer, 284
Retry aspect, 285
TransferOptimizer aspect, 291
transforming POJO into entity EJB, 240–242
transparently introducing persistence into

account POJO, 242
aspects, AspectJ

abstract aspect, 49
aspect inheritance, 50
aspect instantiation, 51
aspect ordering, 51–52
Chain of Responsibility design pattern,

165–167
Command design pattern, 161–164

314 ■I N D E X

declaring warnings and errors, 52
load-time weaving, 53
Observer design pattern, 157–161
privileged aspect, 52
Proxy pattern, 168–170
Singleton pattern, 154–157

aspects, JAC
aspects property, 78
authentication aspect, 83
brief summary, 88
broadcasting aspect, 84
cache aspect, 84
compiling JAC application, 66
configuring aspects, 75–78

brief summary, 89
confirmation aspect, 83
consistency aspect, 84
creating JAC aspect, 61–66

creating application-descriptor file, 66
creating aspect-configuration file, 64–65
creating pointcut, 62
creating wrapper, 63–64

defining behavior of, 63
deployment aspect, 84
distributed transactions aspect, 83
execution order of, 86
GUI aspect, 82
hibernate aspect, 83
HTML/servlet GUI aspect, 81
integrity aspect, 84
JAC aspects library, 81–85
load balancing aspect, 84
mature aspects, 81
persistence aspect, 83

creating JAC aspect, 64
reusing, 64, 75

brief summary, 89
session management aspect, 83
Swing GUI aspect, 81
synchronization aspect, 85
transaction aspect, 83
transaction-demarcation aspect, 64
user interface aspects, 81
user profile aspect, 83

aspects, JBoss AOP
annotations for writing aspects, 106–107
files defining aspect, 91
instantiating an aspect, 109
ready-to-use aspects, 112
Singleton pattern, 151–154

aspects, Spring AOP
programmatically configured aspects,

132–133
simple trace aspect, 120

assert keyword

contracts in Java, 174
assertions, 172
attribute tag, jboss-aop.xml

configuring aspect classes with parameters,
110

authentication aspect, JAC, 81, 83
AuthenticationAC aspect, JAC, 83
authorization filter

using AOP in web presentation tier, 308
autoboxing, AspectJ 5, 58
autodetect value, autowire attribute

bean data element, Spring AOP, 119
automatic integration solutions

AOP advantages for business tier, 227
auto-proxy feature, Spring AOP, 133–135
autowire attribute

bean data element, Spring AOP, 119

■B
Bank interface

sample application, 210
BankAdmin class

ApplicationClient project, 218
BCEL (Byte Code Engineering Library), 14, 70
bean data element, Spring AOP, 118
bean dependencies, Spring AOP, 113
BeanFactory class, Spring AOP

methods, 116
beans factories, Spring AOP

XmlBeanFactory, 114
beans, Spring AOP

see also MBeans
accessing beans, 116–117
auto-wiring collaborators, 119
bean definition, 114–116

constructor based alternative definition,
116

containsBean method, BeanFactory class,
116

creating and configuring, 119
getBean method, BeanFactory class, 116

Beck, Ken, 149
before advice, 17

AspectJ, 44
Spring AOP, 126–127

@Before annotation, AspectJ 5, 55
before code

comparing AOP tools, 137
before keyword, AspectJ, 44
BeforeAdvice interface, Spring AOP, 126
beginTx method, 267
@Bind annotation, JBoss AOP

annotated interceptors, 107
annotated pointcut definitions, 106

bind tag, jboss-aop.xml file
annotations in pointcut definitions, 105

315■I N D E X

attaching interceptor to pointcut, 99
definition of pointcut expression, 98
JBoss AOP pointcuts, 92, 95

black-box tests, 180
BMP (bean managed persistence)

implementation of business object pattern,
239

Boolean operations, AspectJ, 38
broadcasting aspect, JAC, 84
BroadcastingAC aspect, JAC, 84
build.xml file, Ant

compiling JBoss AOP application, 93–94
Burke, Bill, 91
business concerns, 10
business delegate pattern

aspect-oriented implementation, 280,–283
dependency injection, 117
implementation for bank application, 273
J2EE design solutions, 222

business object pattern
AOP based implementation, 240–242
modularization of business persistence,

242–246
regular implementation, 233–240

business persistence
modularization of, 242

business preconditions aspect
precondition factorization, 255

business tier
AOP advantages for, 227
business tier aspects, 258–261
business tier components and their aspects,

270
improvements using AOP, 250–254
improving business tier design patterns

business object pattern, 233–246
session facade pattern, 228–233

J2EE business tier design patterns, 219–221
precondition factorization, 254
resolving object references, 247–252
sample application, 206, 209–215

organizing business tier code, 214
BusinessComponents project, Eclipse IDE, 207
BusinessDelegates project, Eclipse IDE, 207
BusinessUtils project, Eclipse IDE, 207
byname value, autowire attribute

bean data element, Spring AOP, 119
Byte Code Engineering Library (BCEL), 14, 70
byType value, autowire attribute

bean data element, Spring AOP, 119

■C
cache aspect, JAC, 84
CacheAC aspect, JAC, 84
Calendar class

mix-in mechanism, JBoss AOP, 104

CalendarItf interface
mix-in mechanism, JBoss AOP, 104

call joinpoint, AspectJ, 36, 42
CallerInvocation class

joinpoint introspection, JBoss AOP, 101
Catalog Class, AspectJ, 25
cflow operator

comparing AOP tools, 141
cflow operator, AspectJ

control-flow filtering, joinpoints, 40, 43
cflowbelow operator, AspectJ

control-flow filtering, joinpoints, 40, 43
cflows, Spring AOP, 125
Chain of Responsibility design pattern

description, 165
evaluating AOP implementation, 167
AspectJ implementation, 165–167

checkAccountArgs method
TxControllerBean class, 256

checkAccountArgsAndResolve method
TxControllerBean class, 231, 248

checkArgsAndResolve method
implementation of session facade pattern,

232
CheckBusinessConditions aspect, 257
class expression

pointcut expressions, JAC, 68
class inheritance

aspect inheritance compared, 49
class invariant assertions

contract inheritance, 174
definition, 173
implementing invariants, 179

class tag, jboss-aop.xml file
mix-in mechanism, JBoss AOP, 103

classes
aspects compared, 9
constituent parts of AOP application, 5
crosscutting functionalities, 4
designing AOP classes and aspects, 5
JAC including selected instances of,

62factors influencing choice in OOP, 3
single instance classes, 150
Singleton pattern, 150
wildcard for subclasses, 32

ClassFilter interface, Spring AOP, 123
ClassPathXmlApplicationContext factory,

Spring AOP, 114
client tier

J2EE client tier design patterns, 221–223
sample application, 206, 216–219
Swing client, 216
using AOP for presentation of, 293–298

ClientUtils project, Eclipse IDE, 207
CMP (container managed persistence)

316 ■I N D E X

implementation of business object pattern,
239

code scattering, 8
limitations of OOP, 5

collaborators, Spring AOP
auto-wiring collaborators, 119

Command design pattern, 161–165
description, 161
evaluating AOP implementation, 164
AspectJ implementation, 161–164
interfaces to be used with, 162

command objects, 298
comments

application-descriptor files, JAC, 78
Commons project, Eclipse IDE, 207

service locator pattern, 221
communications

distributed communications, 271, 291
comparator

coverage analysis, 181
component containers

AOP or component containers, 227
composition transparency

Chain of Responsibility pattern, 167
design patterns in AOP, 150
Observer pattern, 161

computeAmount method, Order Class, AspectJ,
25

concerns, 10
AOP as integration technique, 261
component containers, 227
manual control of transactions with JTA, 264
nonfunctional concerns, 10

configured aspects, Spring AOP
Advised interface, 132–133
programmatically configured aspects, 132

configuring aspects, JAC, 75–78
configuring JAC applications, 78
confirmation aspect, JAC, 81, 83
ConfirmationAC aspect, JAC, 83
consistency aspect, JAC, 84
ConsistencyAC aspect, JAC, 84
construct method, JAC

creating JAC wrapper, 64
creating wrappers, 73

construction tag, jboss-aop.xml file
mix-in mechanism, JBoss AOP, 103

constructor execution joinpoint type
comparing AOP tools, 140

constructor value, autowire attribute
bean data element, Spring AOP, 119

constructor-execution pointcuts, JBoss AOP, 97
ConstructorInvocation class

joinpoint introspection, JBoss AOP, 102
ConstructorInvocation parameter

joinpoint introspection, JAC, 73
constructors

bean class definition, Spring AOP, 116
creating wrappers, JAC, 73
evaluation of Singleton pattern, 156–157
introduction mechanism, AspectJ, 47
joinpoint types, AspectJ, 37

container managed solutions, 224
AOP as integration technique, 261

containsBean method, BeanFactory class
Spring AOP, 116

context object pattern
using AOP in web presentation tier, 304–306

context objects, 299
contracts

see also Design by Contract
AOP implementing, 174–179
conflict handling, 173
contracting parties, 172

control-flow filtering
joinpoints, AspectJ, 40

CounterMonitor monitor type
MBeanServer component, 193

coverage analysis, 181–185
introduction, 171
recorder, 181

create method
resolving object references, 247

crosscutting concerns
manual control of transactions with JTA, 263
resolving object references, 248
service locator pattern, 277

crosscutting functionalities
AOP summary, 20
aspects and classes compared, 9
integration of, 10

data-persistence functionality, 10
limitations of OOP, 4

crosscutting structure
definition of aspect, 8

Cunningham, Ward, 149
Customer Class, AspectJ, 24
CustomerAndAccountInfos class

data transfer objects, 288

■D
D language, 23
data elements, XML

Spring AOP, 117
data tier

sample application, 206, 208–209
data transfer object pattern

aspect-oriented implementation, 287
transfer object aspect (client side), 290

debugging applications

317■I N D E X

benefits of implementing contracts, 172
declarative management solutions, 224
declare precedence keywords, AspectJ, 51–52
declare soft keywords, AspectJ, 49
declare statements, AspectJ 5

defining aspects with annotations, 57
declare warning keywords, AspectJ, 52
DefaultAdvisorAutoProxyCreator, Spring AOP,

134
DelegatingIntroductionInterceptor, Spring AOP,

130–131
deleteRow method, AccountBean class, 237
Dependency Injection, Spring AOP, 113

constructor-based dependency injection,
117

description, 135
setter-based dependency injection, 117

dependency inversion, 12
deployment aspect, JAC, 84
deployment descriptor file

sample application, 215
DeploymentAC aspect, JAC, 84
deploySunONE.bat file

deploying sample application, 208
design

aspect composition, 20
sample application, 225

Design by Contract, 171–180
contracts in Java, 174
foundations of, 172–174
implementing contracts with AOP, 174–179
implementing invariants, 179
implementing postconditions, 177–179
implementing preconditions, 174–177
introduction, 171

design patterns, 149
application controller pattern, 302–304
business delegate pattern, 272–277
business layer access, 272
business object pattern, 233–246
Chain of Responsibility pattern, 165–168
Command pattern, 161–164
context object pattern, 304–306
crosscutting, 150
data transfer object pattern, 278–280
evaluating benefit of AOP implementation,

170
filter object pattern, 308
front controller pattern, 298–302
implementation with AOP, 150
improving business tier patterns, 228–246
interception filter, 306–308
J2EE client tier patterns, 223
J2EE design solutions, 219–225

business object pattern, 220
context object pattern, 223

front controller pattern, 223
intercepting filter pattern, 223
service locator pattern, 221

Observer pattern, 157–161
Proxy pattern, 168–170
service locator pattern, 277
session facade pattern, 228–233
Singleton pattern, 151–157
using AOP in web presentation tier, 298–309
view helper pattern, 309

DisTransAC aspect, JAC, 83
distributed aspects

distributed applications, 83
pointcuts, JAC, 84

distributed communications
using AOP for, 271–292

distributed services layer, JMX, 192, 193
distributed transactions, 262–264
distributed transactions aspect, JAC, 83
documentation

benefits of implementing contracts, 172
Duke’s Bank application

sample application architecture, 205–219
sample application design, 219–225

dynamic AOP, JBoss AOP, 108
dynamic shadow selection, AOP, 123
dynaop, AOP Alliance framework, 64

■E
Eclipse IDE

compiling JBoss AOP application, 93
running aspect-oriented programs, 24

ejbActivate method
AccountBean class, 236
EntityBeanProtocol interface, 241

EJBComponents project, Eclipse IDE, 207, 214
ejbCreate method

AccountBean class, 235
AccountPOJO class, 243
SessionBeanProtocol, 252
TxControllerBean class, 231, 248

ejbFindByCustomerId method
AccountBean class, 236
AccountPOJO class, 243

ejbFindByPrimaryKey method
AccountBean class, 235
EntityBeanProtocol interface, 241

EJBGetter class, TxControllerBean class, 248
ejbLoad method

AccountBean class, 236
EntityBeanProtocol interface, 241

ejbPassivate method
AccountBean class, 237
EntityBeanProtocol interface, 241

ejbRemove method

318 ■I N D E X

AccountBean class, 236
EntityBeanProtocol interface, 241

EJBResolver aspect
business tier improvements using AOP, 251
description, 258

EJBs
Account EJB, 233–239
AOP advantages for business tier, 227
entity EJBs, 213–214
implementation of session facade pattern,

232
POJO implementation, 215
sample application business tier overview,

206
ejbStore method

AccountBean class, 236
EntityBeanProtocol interface, 241

empty methods, 246
endTx method, 268
entity EJBs

J2EE design patterns, 233
EntityBean interface

implementing business object pattern, 239,
240

EntityBeanProtocol interface, 240
error handling

benefits of implementing contracts, 172
EventHandle class

ApplicationClient project, 218
exception handler

creating pointcuts, JAC, 68
exception handlers

application internationalization, 293
chaining, 81
introduction feature, JAC, 80–81

exception joinpoint type
comparing AOP tools, 141

exceptions
advice code, AspectJ, 46
introduction mechanism, AspectJ, 48
joinpoint types, 15

executedTx method
resolving object references, 250
TxControllerBean class, 230

execution joinpoint
joinpoint types, AspectJ, 36, 42

execution keyword, JBoss AOP
JBoss pointcuts, 92
method- and constructor-execution

pointcuts, 97
explicit ordering

aspect ordering, AspectJ, 51
expr parameter

AnnotationIntroductionDef annotation,
JBoss APO, 111

extendability

OOP (object-oriented programming), 3
extensions

acc (.acc) extension, 75
jac (.jac) extension, 78

■F
factory class, JBoss AOP

instantiating an aspect, 109
Factory design pattern

aspects and, 170
field pointcuts, JBoss AOP, 97
field read/write joinpoint types

comparing AOP tools, 141
FieldInvocation class

joinpoint introspection, JBoss AOP, 102
FileSaver class

implementing Command pattern with
AspectJ, 163

filter object pattern
using AOP in web presentation tier, 308

filtering
declarative configuration of filters, 306
joinpoints, AspectJ, 39

filtering operators
joinpoints, AspectJ, 38–40

findByCustomerId method
resolving object references, 247

findByPrimaryKey method
resolving object references, 247

Fleury, Marc, 91
framework approach

comparing AOP tools, 137, 146
frameworks

Spring Framework, 113–120
front controller pattern

using AOP in web presentation tier, 298–302
FrontController class, 299

aspectized implementation of, 301
function coverage analysis, 181
functional requirements

business concerns, 10
functional tests, 180

■G
Gang of Four, 149
GaugeMonitor monitor type

MBeanServer component, 193
get joinpoint type, AspectJ, 36, 42
getAliases method, BeanFactory class

Spring AOP, 117
getArgs method, JoinPoint interface

org.aspectj.lang, 34
getDate method, Calendar class

mix-in mechanism, JBoss AOP, 104
getDetails method, AccountBean class, 234

319■I N D E X

getDetails method, AccountPOJO class, 245
getEntityId method, AccountPOJO class, 244
getInstance method

Singleton pattern, 151
getInterceptors method, InvocationBase class

joinpoint introspection, JBoss AOP, 101
getInterfaces method

InterceptionIntroductionAdvisor interface,
Spring AOP, 130

getKind method, JoinPoint interface
org.aspectj.lang, 34

getName method, Interceptor interface
implementing preconditions, 176
JBoss AOP interceptors, 92, 100

getNextTxId method
resolving object references, 250

getNextTxId method, DBUtil class, 252
getPrice method, Catalog Class, AspectJ, 25
getServiceFacade method

business delegate implementation for bank
application, 273

getSignature method, JoinPoint interface
org.aspectj.lang, 34

getSourceLocation method, JoinPoint interface
org.aspectj.lang, 34

getTarget method, JoinPoint interface
call and execution joinpoint types, AspectJ,

36
org.aspectj.lang, 34

getTargetObject method, InvocationBase class
joinpoint introspection, JBoss AOP, 101

GETTERS
method-type operators, JAC, 70, 71

getThis method, JoinPoint interface
org.aspectj.lang, 34

global shared variables
transforming a class into a singleton, 157

GNU regexp library, 69
see also regular expressions

goto instruction
demise of, 2

granularity
creating manageable resource with an

aspect, 202
grouping parameters

aspect-configuration files, JAC, 77–78
GUI aspect, JAC, 81–82
GUI parameter, Jac class, 88
GuiAC aspect, JAC, 82

■H
handler joinpoint type

joinpoint types, AspectJ, 42
Hannemann, Jan, 150
has keyword, JBoss AOP, 98
hasfield keyword, JBoss AOP, 98

hashCode method
regression analyzer, 188

Hibernate
entity EJBs, 233
integration of crosscutting functionalities,

10
hibernate aspect, JAC, 83
HibernateAC aspect, JAC, 83
Home interface

business object pattern, 240
resolving object references, 247–248
session facade pattern, 232

host expression
distributed applications, 84

HTML/servlet GUI aspect, JAC, 81–82

■I
I18n aspect, 294, 296
idref data element, Spring AOP, 118
if keyword

joinpoints, AspectJ, 43
implicit protocol technique

anchoring protocol technique, 267
brief description, 250
business tier improvements using AOP, 253

importXml method
coverage analysis, 183

incompatibility
aspects, 19

increment method
coverage analysis, 185
implementing postconditions, 178
regression testing example, 191

information parameter, Jac class, 88
inheritance

aspect inheritance, AspectJ, 49–50
aspects, 27
contract inheritance, 173
introduction mechanism, AspectJ, 48
OOP (object-oriented programming), 3

inherited constructor execution joinpoint type
comparing AOP tools, 141

initialization joinpoint types, AspectJ, 37, 42
Injector class

using JMX with AOP, 196
input constraints verification

using AOP for UI concerns, 293–297
insertRow method, AccountBean class, 237
instanceof keyword

pointcut expressions, JBoss AOP, 96
instantiation

see aspect instantiation
instrumentation layer, JMX, 192, 193
integration, Spring AOP, 119
integrity aspect, JAC, 81, 84

320 ■I N D E X

IntegrityAC aspect, JAC, 84
intercepted object execution

comparing AOP tools, 137
interception filter

using AOP in web presentation tier, 306–308
InterceptionIntroductionAdvisor interface,

Spring AOP, 129
Interceptor interface, JBoss AOP, 100
interceptor tag, jboss-aop.xml file

attaching interceptor to pointcut, 99
JBoss AOP pointcuts, 92, 95

@InterceptorDef annotation, JBoss AOP, 107
interceptor-ref tag, jboss-aop.xml file

defining interceptor stacks, 99
interceptors, JBoss AOP, 100–103

advice code blocks, 111
associating interceptor with pointcut, 98–99
coverage analysis, 181
creating manageable resource with an

aspect, 198
declaring interceptors, 99
deployment of regression interceptor, 189
grouping interceptors, 99
implementing, 100
implementing postconditions, 179
implementing preconditions, 175–176
instantiating an aspect, 109
interceptor stacks, 99
introduction, 92–93
joinpoint introspection, 101

interceptors, Spring AOP, 126
associating with pointcuts, 125
comparing AOP tools, 142
trace aspect, 120

interfaces tag, jboss-aop.xml file
mix-in mechanism, JBoss AOP, 103, 105

internal invariant assertions
contract inheritance, 174
definition, 173

Interpreter design pattern
aspects and, 170

intertype declaration
see introduction mechanism, AspectJ

introduction advice, Spring AOP, 129
introduction feature, JAC, 78–81

exception handlers, 80–81
role methods, 79–80

introduction mechanism, 19
AOP summary, 21
comparing AOP tools, 138, 143–144

introduction mechanism, AspectJ, 47–49
introduction tag, jboss-aop.xml file

creating manageable resource with an
aspect, 198

mix-in mechanism, JBoss AOP, 103

IntroductionInterceptor interface, Spring AOP,
129

introspection
joinpoint introspection, AspectJ, 33–35

thisJoinPoint keyword, 34
joinpoint introspection, JAC, 73

invariants, 179
Inversion of Control (IoC)

see Dependency Injection, Spring AOP
invisible parameter

AnnotationIntroductionDef annotation,
JBoss APO, 111

Invocation interface
joinpoint introspection, JAC, 74
joinpoint introspection, JBoss AOP, 101

InvocationBase class
invoke method, Interceptor interfacejoinpoint

introspection, JBoss AOP, 101
coverage analysis, 183
JBoss AOP interceptors, 92–93, 100, 102
Spring AOP interceptors, 121

invoke method, JAC
creating wrappers, 64, 72

invokeNext method, Interceptor interface
JBoss AOP interceptors, 93, 100

invokeNext method, InvocationBase class
joinpoint introspection, JBoss AOP, 101
regression analyzer, 188

invokeRoleMethod method, JAC, 79
Ioc (Inversion of Control)

see Dependency Injection, Spring AOP
isFrozen method

Advised interface, Spring AOP, 133
isPerInstance method

Advisor interface, Spring AOP, 125
isRuntime method

MethodMatcher interface, Spring AOP, 123
isSingleton method, BeanFactory class

Spring AOP, 117

■J
J2EE design solutions

AOP advantages for business tier, 227
automatic integration solutions, 223–224
business tier design patterns, 219–221

improving, 228–246
client tier design patterns, 221–223
presentation tier design patterns, 223

J2EE environments
Spring AOP, 113

j2eeclient.properties file
deploying sample application, 208

jac (.jac) extension
application-descriptor files, 78

JAC (Java Aspect Components), 61–89
aspects

321■I N D E X

aspect components, 62
aspect configuration, 75–78
aspect creation, 61–66
aspect instantiation, 86
aspect ordering, 86–87
configuring, 75–77
creating aspect, 62
creating aspect configuration file, 65
creating aspect descriptor file, 66
distribution aspects, 83
JAC aspects library, 81–85
persistence aspects, 83
timing of aspect weaving, 61
transaction aspects, 83
user interface aspects, 81–83

AspectJ compared, 61
background/history, 23
compiling JAC application, 66–67
configuring JAC applications, 78
creating JAC application, 61–67
exception handlers, 80
GNU regexp, using with JAC, 69
GUI aspects, 82
implementing contracts with AOP, 174
introduction feature, 78–81
JAC operators, 69
joinpoint introspection, 73
keywords, 88
licensing, 61
method type operators, 70
object naming, 87
output from JAC application, 67
pointcuts, 62, 68–72

associating wrapper with, 71
operators, 69
pointcut expressions, 68
regular expressions, 69

programming in UMLAF, 85–86
research team, 61
role methods, 79
run options, 88
running JAC application, 67
run-time type identification (RTTI), 87
summary, 88
wrappers, 71, 72–75

constructors, 73
methods, 72
wrapper chains, 74

JAC aspects library, 81–85
AuthenticationAC aspect, 83
BroadcastingAC aspect, 84
CacheAC aspect, 84
ConfirmationAC aspect, 83
ConsistencyAC aspect, 84
DeploymentAC aspect, 84

DisTransAC aspect, 83
GuiAC aspect, 82
HibernateAC aspect, 83
IntegrityAC aspect, 84
LoadBalancingAC aspect, 84
PersistenceAC aspect, 83
SessionAC aspect, 83
SynchronizationAC aspect, 85
TransactionAC aspect, 83
UserAC aspect, 83

Jac class, 88
JAC Naming Repository

object naming, 87
JAC, AOP Alliance framework, 64
jac.acs property, 78
jac.comp.wrappingOrder property, 78
jac.topology property, 78
Java Aspect Components

see JAC
Java class definition, Spring AOP, 114
Java contracts, 174
java files (.java files)

compiling JAC application, 66
Java Management Extensions

see JMX
Javassist (Java Programming Assistant), 14
JBoss AOP, 91–112

advice code blocks, 111
annotations, 105–108, 110–111
aspect-oriented application using, 91–94
aspects

aspect instantiation, 109
introduction to, 91

compiling JBoss AOP application, 93–94
configuring aspect classes with parameters,

109–110
dynamic AOP, 108
implementing contracts with AOP, 174
implementing Singleton pattern, 151–154
interceptors, 92, 100–103
licensing, 91
mix-in mechanism, 103–105, 110–111
pointcuts, 92, 95–99
running JBoss AOP application, 95
summary, 111
web site, 91

jboss-aop.xml file
aspect classes, JBoss AOP interceptors, 102
compiling JBoss AOP application, 93
configuring aspect classes with parameters,

110
defining JBoss AOP pointcuts, 95
files defining JBoss AOP aspect, 91
general structure of, 95
introducing annotations into application,

110

322 ■I N D E X

mix-in mechanism, JBoss AOP, 103
JDBC abstraction layer, Spring AOP, 119
JMX (Java Management Extensions), 192–202

agent layer 192, 193
architecture layers, 192
distributed services layer, 192, 193
instrumentation layer, 192, 193
using JMX with AOP, 194–202

creating manageable resource with an
aspect, 197–202

extending manageable resource with an
aspect, 202

Johnson, Rod, 113
JoinPoint interface

joinpoint introspection, JAC, 74
JoinPoint interface, org.aspectj.lang

methods, 34
joinpoint introspection

AspectJ, 33–35
comparing AOP tools, 143
JAC, 73
JBoss AOP, 101–102

joinpoint shadow, 15
joinpoints, 14–15

AOP summary, 21
comparing AOP tools, 140
definition, 14
granularity, 15
types of, 15

joinpoints, AspectJ
call joinpoint, 27
defining joinpoints, 36–40
filtering operators, 38–40

control-flow filtering, 40
joinpoint introspection, 33–35

program listing, 35
thisJoinPoint keyword, 34

joinpoint types, 36–38
adviceexecution type, 38
exceptions, 37
fields, 36
handler type, 37
initialization type, 37
preinitialization type, 37
static code blocks, 37
staticinitialization type, 38

joinpoints, JAC
creating JAC wrapper, 64
exception handler, 68
execution order of aspects, 86
joinpoint introspection, 73
pointcut expressions, 68
wrapper chains, 74
Wrapper class, 68

joinpoints, JBoss AOP

all pointcut type, 98
joinpoint introspection, 101–102
method-call pointcuts, 98
wildcards in pointcut expressions, 97

JOTM (Java Open Transaction Monitor), 83
JoyAop, AOP Alliance framework, 64
JTA (Java Transaction API)

manual control of transactions with JTA,
262–264

■K
Kiczales, Gregor, 1–2, 6, 150

AOP description, 9
AspectJ, 23

■L
libraries

JAC aspects library, 81–85
list data element, Spring AOP, 118
load balancing aspect, JAC, 84
load-time weaving, AspectJ, 53
loadAccount method, AccountBean class, 238
LoadBalancingAC aspect, JAC, 84
loadCustomerIds method, AccountBean class,

239
locality

Chain of Responsibility pattern, 165–167
Command pattern, 161–164
design patterns in AOP, 150
Observer pattern, 158–161
session facade pattern, 233

Locator aspect
business delegate pattern, 280
client/server communication, 292

Lockable interface, Spring AOP, 130
logical operations

joinpoints, AspectJ, 38
LoginController class

aspectized login controller, 303
Lopez, Christina, 23

■M
Maes, Patricia, 23
main parameter, Jac class, 88
makeConnection method, TxControllerBean

class, 231
map data element, Spring AOP, 118
marker interface

business object pattern, 240
Martelli, Laurent, 61
matches method

ClassFilter interface, Spring AOP, 123
MBeans (Manageable Beans)

description, 192
instrumentation layer, JMX, 192
MBean interface, role of, 192

323■I N D E X

StatsMBean interface, 197
types, 192
using JMX with AOP, 194

MBeanServer component
creating manageable resource with an

aspect, 200
MembershipFilter class, 307
metadata

see annotations
method call pointcuts, JBoss AOP, 98
method call/execution joinpoint types

comparing AOP tools, 140
method expression

pointcut expressions, JAC, 69
method signatures

pointcut expressions, JAC, 69
MethodBeforeAdvice interface, Spring AOP, 126
MethodCalledByMethodInvocation class

joinpoint introspection, JBoss AOP, 102
MethodInterceptor class

Spring AOP interceptors, 121
MethodInvocation class

joinpoint introspection, JBoss AOP, 102
MethodInvocation parameter

joinpoint introspection, JAC, 73
MethodMatcher interface, Spring AOP, 123
methods

code scattering, 5
creating wrappers, JAC, 72
joinpoint types, 15

AspectJ, 36
wildcards for method names/parameters, 31

method-type operators
pointcut expressions, JAC, 70–71

ACCESSORS, 70
ADDERS, 71
GETTERS, 70
MODIFIERS, 70
REMOVERS, 71
SETTERS, 70

run-time type identification (RTTI), 87
Meyer, Bertrand, 171
@Mixin annotation, JBoss AOP, 107
mix-in mechanism, JBoss AOP, 103–105

basic code for defining, 103
example, 104
extending manageable resource with an

aspect, 202
introducing annotations, 110–111

mixin tag, jboss-aop.xml file, 103
mix-ins, Spring AOP, 129
MODIFIERS

method-type operators, JAC, 70, 71
modularity, 8–12

OOP, 3

session facade pattern, 233
monitor types

MBeanServer component, 193
monitors

creating manageable resource with an
aspect, 200

multiple constructors
evaluation of Singleton pattern, 156–157

MVC web application framework
Spring AOP, 120

MX4J, 193
creating manageable resource with an

aspect, 197
MySingleton class

single instance classes, 151

■N
naming conventions

object naming, JAC, 87
networks

distributed aspects, 83
new keyword, AspectJ, 47
new operator

single instance classes, 151
nonfunctional concerns, 10
nonfunctional services

aspects and, 10–11
nonregression tests, 185–190
null data element, Spring AOP, 118

■O
object expression

pointcut expressions, JAC, 68
object life-cycle management, Spring AOP, 119
object naming, JAC, 87
ObjectWeb community, 61
Observer design pattern, 157–161

AspectJ implementation, 158–160
evaluating AOP implementation, 161

OOP (object-oriented programming), 2
AOP and, 3
code scattering, 5
crosscutting functionalities, 4
extendability, 3
factors influencing choice of classes, 3
inheritance, 3
limitations of, 4
modularity, 3
reliability, 3
reusability, 3

operators
GNU regexp library, 69
JAC operators, 69
method-type operators, JAC, 70–71

Order Class
mix-in mechanism, JBoss AOP, 104

324 ■I N D E X

Ordered interface, Spring AOP, 132
order-management application, AspectJ, 24–30

■P
packages

wildcard for package names, 32
paradigms in programming, 1
parameter precondition aspects

precondition factorization, 255–256
parameters

creating pointcuts, JAC, 68
grouping, aspect-configuration files, JAC,

77–78
Jac class, 88
pointcut parameterization, AspectJ, 41
wildcard for method parameters, 31

Pawlak, Renaud, 61
PER_CLASS mode, JBoss AOP, 109
PER_INSTANCE mode, JBoss AOP, 109
PER_JOINPOINT mode, JBoss AOP, 109
PER_VM mode, JBoss AOP, 109
percflow keyword, AspectJ, 50
persistence aspect, JAC, 64, 81, 83
persistence management

implementation of business object pattern,
239

using aspects with entity EJBs, 242
PersistenceAC aspect, JAC, 83
pertarget keyword, AspectJ, 155
perthis keyword, AspectJ, 50
PERTYPEWITHIN mode, AspectJ 5, 58
pluggability

design patterns in AOP, 150
Chain of Responsibility pattern, 168
Observer pattern, 161

pointcuts, 16–17
AOP summary, 21
comparing AOP tools, 139–142
data-modification pointcut, 16
definition, 16
joinpoints, 16
method-calls pointcut, 17
method-executions pointcut, 17
number of joinpoints associated with, 27
redefining in subaspect, 49
types of, 16

pointcuts, AspectJ, 30–43
joinpoint introspection, 33–35
joinpoints, defining, 36–40
order-management application, 28
pointcut descriptors, 27, 41

defining parameterized pointcuts, 44
joinpoints, 38

pointcut parameterization, 41
wildcards, 31–33

pointcuts, AspectJ 5
defining aspects with annotations, 55
@Pointcut annotation, 55

pointcuts, JAC
aspect configuration, 65
associating wrapper with, 71–72
brief summary, 88
creating, 68–72

associating wrapper with pointcut, 71–72
pointcut expressions, 68–71

creating JAC aspect, 62
distributed aspects, 84
pointcut expressions

class expression, 68
creating pointcuts, 68–72
method expression, 69
method-type operators, 70–71
object expression, 68
regular expressions, 69
subexpressions, 68

pointcut method parameters, 62
pointcut method, AspectComponent class,

62
creating pointcuts, 68

pointcuts, JBoss AOP, 95–99
annotations in pointcut definitions, 105
associating interceptor with pointcut, 98–99
extending manageable resource with an

aspect, 203
filtering joinpoints, 98
implementing preconditions, 177
introduction, 92
pointcut tag, pointcut-naming, 97
@PointcutDef annotation, 106
types of JBoss AOP pointcuts, 96
weaving, dynamic AOP, 108
XML definition of pointcut, 92

pointcuts, Spring AOP, 120, 122–126
definition of, 122
linking to interceptor, 121
Pointcut interface, 122
pointcut property, 126
PointcutAdvisor interface, 125
programmatically defined pointcuts,

123–124
regexp pointcuts, 124

POJO (Plain Old Java Objects)
AccountPOJO class, 245
implementing EJBs, 228

POJOEntity aspect, 240, 242, 258
POJOSession aspect, 232–233, 242

business tier improvements using AOP, 250,
252

description, 258
postcondition assertions, 177–179
precondition assertions, 173, 174–177

325■I N D E X

precondition factorization, 254
AOP based implementation, 255
parameter precondition aspect, 255
regular implementation, 254–255

preinitialization joinpoint types, AspectJ, 42
@Prepare annotation, JBoss AOP, 108
prepare tag, jboss-aop.xml, 108
presentation tier

see also web presentation tier
J2EE design patterns, 223
sample application, 206
web presentation tier, 219

PresentationAC aspect, JAC, 76
priceList hash map, Catalog Class, AspectJ, 26
privileged aspect, AspectJ, 52
procedural programming, 2
proceed keyword, AspectJ, 45
proceed method

execution of program with around advice
code, 28–29

FrontController class, 300
implementing empty methods within

aspects, 246
JAC, 64, 73
JBoss AOP, 111
Spring AOP, 121, 126

program control flow
joinpoints, 14

programming paradigms, 1
OOP, 2
procedural programming, 2

properties
application-descriptor files, JAC, 66, 78
initialization of properties, Spring AOP, 115

props data element, Spring AOP, 118
protocols

implicit protocol technique, 246
proxies

auto-proxy feature, Spring AOP, 133–134
Proxy design pattern, 168–170
ProxyFactory class, Spring AOP, 133

■Q
Quality of Service

Design by Contract, 171–180coverage
analysis, 181–185

Java Management Extensions (JMX),
191–202

nonregression tests, 185–190
testing applications, 180–190

■R
RAD (rapid application development)

environment
programming in UMLAF, 85

real-world behavior, 10

recorder
coverage analysis, 183–185

recordMethodCall method, 183
redundancy in aspects, 20
ref data element, Spring AOP, 118
reference record

regression tests, 186
references

implementation of business object pattern,
239

resolving object references, 250
referential integrity constraints

integrity aspect, JAC, 84
reflection

description, 23
run-time type identification (RTTI), 87

regexp library operators, 69
see also regular expressions

regexp pointcuts, Spring AOP, 124
regression analyzer, 186
regression interceptor, 189
regression testing

nonregression tests, 185–190
regular expressions

host expression, 84
using GNU regexp with JAC, 69

@Release annotation, JBoss AOP, 110
releaseConnection method, TxControllerBean

class, 232
reliability

OOP, 3
REMOVERS

method-type operators, JAC, 71
research team, JAC, 61
residues, 179
resolving object references, 247–252
Retry aspect, 284–285

client/server communication, 292
retry policy

business delegate pattern, 276
return types

advice code types, AspectJ, 46
wildcard for return types, 31

reusability
Chain of Responsibility pattern, 167
Command pattern, 164
design patterns in AOP, 150
elements of reusable software, 149
example with exception handlers, 80
Observer pattern, 161
OOP, 3
session facade pattern, 233

role methods
introduction feature, JAC, 79–80

RTTI (run-time type identification), 87

326 ■I N D E X

run options, JAC, 88
run-time weaving, 13

hooks, 14

■S
sample application

client for, 272
Customer interface, 213
table creation script, 208
transfer object for, 278

sample application architecture, 205–219
business tier, 209–215

entity EJBs, 213–214
session facades, 209–212

client tier
web client, 216

data tier, 208–209
deploying application, 207
organizing and packaging code, 207
overview, 205–208
tiers, 205–206
using Eclipse IDE, 206
web presentation tier, 219

sample application design, 219–225
using AOP, 225
using J2EE design solutions

automatic integration solutions, 223
business tier design patterns, 219–221
client tier design patterns, 221–223
presentation tier design patterns, 223

Seinturier, Lionel, 61
selectByCustomerId method, AccountBean

class, 238
selectByPrimaryKey method, AccountBean

class, 238
separation of concerns, 287
service locator pattern

design patterns for business layer access,
277

eliminating business delegates, 280
session facade pattern

AOP based implementation, 232
J2EE design solutions, 220
regular implementation, 228–232

session facades
Bank facade, 209–212
business delegate methods retrieving, 276

session management aspect, JAC, 83
SessionAC aspect, JAC, 83
SessionBean interface

business object pattern, 240
session facade pattern, 228, 232

set data element, Spring AOP, 118
set joinpoint type, AspectJ, 36, 42
setBalance method, 265
setDate method, Order Class, AspectJ, 47

setEntityContext method
AccountBean class, 236
EntityBeanProtocol interface, 241

setEntityId method, AccountPOJO class, 244
setExtraContext method, AccountPOJO class,

243
setGanularityPeriod method, 202
setPattern/setPatterns methods, Spring AOP,

124
setRollbackOnly method, 265
setSessionContext method, TxControllerBean

class, 231
SETTERS

method-type operators, JAC, 70, 71
signatures

method signatures, 69
Simple class

ApplicationClient project, 218
client for bank application, 272
eliminating business delegates, 282

Singleton design pattern, 150–157
classes, 150
description, 150–151
evaluating AOP implementations, 155
evaluation of implementations

multiple constructors, 156–157
implementation using Java, 151
AspectJ implementation, 154–155, 156

binding to Stats class, 155
JBoss AOP implementation, 151–154

binding to Stats class, 153
sample class to test, 152
testing with JBoss AOP, 153

singletons
aspect instantiation, AspectJ, 50
isSingleton method, Spring AOP, 117

Smith, Brian, 23
source-code weaving, 13
Spring AOP, 113–135

abstraction layers, 119
advantages, 135
advice types, 126–132
advised interface, 132–133
advisors, 121
after returning advice, 128–129
AOP Alliance API, 113
architecture overview, 113–120
aspects

aspect ordering, 132
trace aspect, 120

auto-proxy feature, 133–135
auto-wiring collaborators, 119
bean configuration, 114–119
before advice, 126–127
ClassPathXmlApplicationContext factory,

114

327■I N D E X

comparing AspectJ/JAC/JBoss AOP, 137
constructor interception, 126
creating and configuring beans, 114–117
Dependency Injection, 113, 117
description, 113, 135
disadvantages, 135
improving in the future, 135
interceptors, 121, 125, 126
introduction advice, 129
introduction to Spring AOP, 120–122
Inversion of Control (IoC), 113
mix ins, 129
pointcuts, 120, 122–126
proxy factory, 133
singletons, 116, 117
throws advice, 127–128
XML elements for data, 118–119

Spring, AOP Alliance framework, 64
SQLAccount aspect, 242, 246
sqrt method

implementing preconditions, 174
stack tag, jboss-aop.xml, 99
stack-ref tag, jboss-aop.xml file, 99
state invariant, 179
static block execution joinpoint type

comparing AOP tools, 141
staticinitialization joinpoint type, AspectJ, 42
Stats class

Chain of Responsibility pattern, AspectJ,
166–167

Command pattern, AspectJ, 163–164
creating manageable resource with an

aspect, 197
Observer pattern, AspectJ, 159–160
Proxy pattern, AspectJ, 169
Singleton pattern, AspectJ, 155
Singleton pattern, JBoss AOP, 152–153
using JMX with AOP, 194, 196

StatsMBean interface, 202
storeAccount method, AccountBean class, 239
StringMonitor monitor type, MBeanServer, 193
structural tests, 180
Subject interface

Observer pattern, 158
SunONE.properties file

deploying sample application, 208
Supervision functions

see Administration and Supervision
functions

Swing client
organizing Java Swing client code, 217–218
sample application, 216

Swing GUI aspect, JAC, 81–82
synchronization aspect, JAC, 85
SynchronizationAC aspect, JAC, 85
system-level concerns, 10

■T
target keyword, AspectJ

joinpoint filtering, 40
joinpoints, 43
pointcut parameterization, 41

testing applications, 180–191
this keyword, AspectJ, 43
thisJoinPoint keyword, AspectJ, 34
threads

using JMX with AOP, 196
throws advice, Spring AOP, 127–128
ThrowsAdvice interface, Spring AOP, 127
tiers

sample application architecture, 205–206
toBeTraced pointcut descriptor, AspectJ, 27
topology property, jac, 78
trace aspect, AspectJ, 24
trace aspects, JAC, 61
trace aspects, Spring AOP, 120
trace method, JAC, 65
TraceAspect aspect, AspectJ, 27, 28
TraceAspect class, JAC, 62
TraceInterceptor class, Spring AOP, 121
TraceInterceptor.java

files defining JBoss AOP aspect, 91
TraceWrapper class, JAC

creating aspect, 62
creating wrapper, 63

Transaction aspect, 266
anchoring protocol technique, 268

transaction aspect, JAC, 83
Transaction Controller interface, 212
transaction management

modular integration of transactions,
266–268

parameter precondition aspect, 255
Spring AOP, 119

TransactionAC aspect, JAC, 83
TransactionAttributeSourceAdvisor, Spring

AOP, 134
transaction-demarcation aspect, JAC, 64
transactions

declarative mechanism in J2EE, 265
EJBs for automatic integration of, 264–266
manual control with JTA, 262

transfer object aspect (client side), 290
transfer object aspect (server side), 289
transfer object pattern

J2EE design solutions, 221
transferFunds method

TxControllerBean class, 230, 262, 264
TxControllerPOJO class, 260

TransferOptimizer aspect
client/server communication, 292

transparency

328 ■I N D E X

see also composition transparency
Singleton pattern, 151

Tx interface
sample application, 214

TX_BEAN_MANAGED attribute, 264–265
TX_MANDATORY attribute, 264
TX_NOT_SUPPORTED attribute, 264
TX_REQUIRED attribute, 264
TX_REQUIRES_NEW attribute, 264
TX_SUPPORTS attribute, 264
TxCheckArgs aspect, 255
TxController facade, 212

business tier aspects, 258
precondition factorization, 254
resolving object references, 248
session facade pattern, 228, 232

TxControllerBean class, 229
anchoring protocol, transferFunds method,

267
manual control of transactions, JTA, 262
withdraw method, 258

TxControllerPOJO class
business tier aspects, 259
business tier improvements, 250
withdraw method, 253

■U
UI concerns, using AOP for, 293, 297
UML (Unified Modeling Language), 85
UMLAF (UML Aspectual Factory), 85–86, 89
unpluggability

see pluggability
user profile aspect, JAC, 83
UserAC aspect, JAC, 83
user-profile aspect, JAC, 81

■V
value data element, Spring AOP, 118
view helper pattern

J2EE design solutions, 223
web presentation tier, 309

■W
weaving

see also aspect weaving
source-code weaving, 13

web presentation tier, 219

see also presentation tier
using AOP in design patterns of, 298–309

white-box tests, 180
wildcards, AspectJ

method names, 31
method signatures, 31
package names, 32

wildcards, JBoss AOP, 96
withdraw method

resolving object references, 249
withdraw method

TxControllerBean class, 229
TxControllerPOJO class

business tier aspects, 259
precondition factorization, 254

within keyword, joinpoints
AspectJ, 40, 43
JBoss AOP, 98

withincode keyword, joinpoints
AspectJ, 43
JBoss AOP, 98

wrappers, JAC
AOP Alliance API, 63
around wrappers, 63
associating with pointcut, 71–72
brief summary, 88
cardinality of wrapper classes, 86
code execution time, 63
compiling application, 66
creating, 72–75
creating aspect, 62, 63–64
creating pointcuts, 68
creating wrappers, 72
defining wrappers, 63
execution order of aspects, 86
reusing, 63
role methods, 79
wrapper chains, 74

wrappingOrder property, jac.comp, 78

■X
XML configuration

bean definition, Spring AOP, 114, 116
XML elements for data, Spring AOP, 117–119
XmlBeanFactory bean factory

Spring AOP, 114

	Foundations of AOP for J2EE Development
	Table of Content
	Chapter 1 Introducing AOP.
	Chapter 2 The Concepts of AOP
	Chapter 3 AspectJ
	Chapter 4 Java Aspect Components
	Chapter 5 JBoss AOP.
	Chapter 6 Spring AOP
	Chapter 7 AOP Tools Comparison.
	Chapter 8 Design Patterns and AOP
	Chapter 9 Quality of Service and AOP
	Chapter 10 Presentation of the Sample Application
	Chapter 11 Using AOP within the Sample Application’s Business Tier
	Chapter 12 Using AOP in the Sample Application’sUsing AOP in the Sample Application’s Presentation and Client Tiers
	Index

