An Integrated Monitoring System for Smartphones

Christopher Miller
University of Notre Dame

miller.444@nd.edu

Justin Varner
Penn State University

jthevO5@gmail.com

ABSTRACT

Much work has been done in the area of monitoring on
traditional systems, such as servers, workstations and lap-
tops. User and application behavior has also been stud-
ied on a wide range of platforms. Recently, smartphones
have seen a dramatic increase in availability and adoption.
New monitoring tools are needed to handle the unique de-
mands of these mobile devices, such as minimal energy usage
and cellular network activity, and the unique opportunities
they provide, such as incorporating contextual information.
Smartphones include a wide range of sensors which can be
used to provide insights about the context of the activities
being monitored. Individuals also use their mobile phones
in a much different manner than traditional systems, and
these differences have not been fully explored. With a bet-
ter understanding of how these devices are used, and how
common usage patterns impact system performance, we can
improve upon system and application design. In this paper,
we introduce an integrated monitoring framework for mobile
phones which incorporates sensor, system and user activity.
Our expectation is that integrated monitoring solutions will
provide the foundation for various new solutions.

1. INTRODUCTION

The rapid increase in smartphones over the past few years
is having a significant impact on the primary computing in-
terface that many individuals use. As highly capable mobile
devices become more prevalent, more activities are being
pushed to these mobile devices, rather than using more ro-
bust systems. Much work has been done to study usage on
workstations and laptops [6, 1, 12, 7, 2, 4, 9], but typical
usage on smartphones can differ significantly. Smartphones
are natural candidates for more context-aware applications,
since they typically contain multiple sensors, such as GPS
and light sensors, which can provide information about the
users environment. Understanding how users interact with
these devices can help developers optimize applications and
system level components to improve performance and make
devices more efficient.

While previous work has focused on system and performance
monitoring on traditional devices, and on sensor and user ac-
tivity on mobile devices, we feel that utilizing an integrated
cross-layer monitoring tool which incorporates all informa-
tion provides an opportunity for novel and interesting dis-
coveries. For example, better understanding of the relation-
ship between user activity and sensor readings will allow for
analysis of complex socio-technical interdependencies (e.g.,

Sarah Chasins
Swarthmore College
schasil@swarthmore.edu

Curtis Carmony
Bard College

curtis.carmony@gmail.com cpoellab@cse.nd.edu

Carolyn Farris
University of Portland

farris11@up.edu

Christian Poellabauer
University of Notre Dame

how technology affects human activity and interaction and
how technology can be improved to better support next-
generation social networks). Another example would be to
study the interaction between sensor readings or user ac-
tivity and operating system activity. This could provide
new insights into the performance impacts of common us-
age patterns and applications, which can be used for the
optimization of operating systems or applications. We aim
to provide an integrated monitoring tool which incorporates
the three layers of activity: sensor, system, and user.

We design our monitoring framework for the Android mobile
operating system. There are several advantages to working
with this operating system. Firstly, Android is an open oper-
ating system, so much of the source code is easily accessible.
The openness of the platform has also resulted in a large
community of developers. Android is based on a standard
Linux kernel, which allows us to incorporate methods uti-
lized in Linux. Lastly, Android is a popular and growing
platform. It currently sells around 200,000 devices per day,
meaning there is a very large and rapidly growing user-base
for this platform. Using a combination of kernel patches and
kernel modules, we develop an abstracted interface layer for
monitoring. In this paper we introduce NDroid, an inte-
grated monitoring solution which provides a simple API for
research and development.

2. RELATED WORK

Significant work has been done in the areas of monitoring
and modeling on traditional systems. Tools such as PerfMon
[7] and PAPI [6] provide low level system performance mon-
itoring. Ganglia [9] and SuperMon [12] provide monitoring
tools for clusters and distributed systems. There has been
previous work on modeling user or system behavior [4, 1, 2]
as well, which is used to improve system performance or de-
sign. Some of these same concepts and methods can be uti-
lized in monitoring smartphones, but smartphones present
a greater importance on energy conservation, and provide
additional contextual information that can be incorporated
into the monitoring. Some early work in modeling user ac-
tivity on smartphones has been completed by Falaki et al.
18]

Previous work has attempted to extract contextual infor-
mation about users based on embedded or wearable sen-
sors, such as the Mobile Sensing Platform [5]. Recent work
has extended this concept to utilize the sensors available in
smartphones, since these are becoming ubiquitous wearable

sensing devices. Reddy et al. used smartphones to deter-
mine the transportation mode of an individual [14], while the
CenceMe project attempted to decipher multiple contextual
properties such as user activity and location, using a variety
of sensors and learning algorithms [11]. More recent work
has also attempted to use sensor data from smartphones and
user interaction with applications to model human behavior
[3, 13, 10, 11]. These studies can provide interesting discov-
eries which can aid in future system and application design.

3. MONITORING ON MOBILE PHONES

While system monitoring on standard systems has been ex-
tensively researched, little work has been done in the area of
monitoring on small mobile devices. Mobile phones provide
some unique opportunities and challenges for monitoring.
Since mobile phones have limited resources in comparison
to standard systems, efficiency is imperative. Mobile phones
run on batteries, therefore monitoring services should have
minimal impact on power usage, so that lifetime of devices
is not diminished. Also, since mobile phones have relatively
limited processing power and memory, the computational
impact on systems should be minimized. Smartphones offer
several unique opportunities as well. Smartphones incorpo-
rate various sensors, such as GPS, accelerometers, orienta-
tion sensors, and ambient light sensors. These sensors can
provide context information about the user and their envi-
ronment. These aspects of usage could not be as easily in-
tegrated with system monitoring on standard systems, and
could provide new understandings of how systems are used.
Also, smartphones are utilized differently than standard sys-
tems. This provides an opportunity to understand unique
usage patterns on a new platform.

Early efforts to model smartphone usage have shown that
there is a great diversity among how users interact with
these devices [8]. These findings indicate that optimization
of applications may best be achieved using dynamic meth-
ods which depend on the user or usage scenario. Developers
could incorporate monitoring services into their applications
to obtain information which may be useful for optimization.
This approach would not be ideal, however, as many de-
velopers would likely be incorporating similar monitoring
features into their applications, resulting in inefficiencies in
the overall system. This is particularly significant in smart-
phones, where resources are limited, so duplicated moni-
toring services can be expensive. It can also be difficult
to monitor some system level information, especially if it is
hardware dependent. Providing a single, simple to interface,
abstracted monitoring layer can greatly improve efficiency of
monitoring and make it much easier for developers to incor-
porate monitoring tools into their applications, which could
lead to novel improvements. This monitoring layer could
handle requests from all applications, and provide a single
interface to monitoring tools, which would eliminate inef-
ficiencies due to duplication of monitoring services. As an
example, if three applications needed to monitor the CPU
load at frequencies of 10 Hz, 20 Hz, and 100 Hz, respectively,
the monitoring layer could service all three of these requests
using a single 100 Hz monitoring service.

We developed the NDroid monitoring system to be inclu-
sive of all metrics which may be useful to developers or re-
searchers. The features which are monitored in the system

may be considered to fall in three categories: sensors, sys-
tem, and user activity. Sensors include any metrics provided
by readings from available sensors on the phone. This fea-
ture list will vary somewhat based on the device, but most
smartphones have a fairly standard group of sensors, such
as GPS and accelerometers. System features include any
metrics pertaining to the available resources of the system,
and any activities managed by the operating system or ker-
nel. The system resources would include processing power,
battery power, memory capacity, and network capacity. Sys-
tem activity would include read/write operations, network
actions such as sending a packet, and processor actions such
as context switches. All system features are monitored at
the kernel level. This is currently accomplished using a
patched kernel and kernel modules, but preferably these fea-
tures would later be pushed upstream to the main Android
kernel so that it will be available to all users. To provide
an efficient implementation which is consistent with current
kernel practices, monitoring features are implemented uti-
lizing the Linux notifier toolchain, which provides a pub-
lish /subscribe method of notifications. This method will
also allow the monitoring system to customize what is cur-
rently being monitored based on application needs, thereby
avoiding unnecessary use of system resources. To provide a
complete monitoring solution, NDroid will also incorporate
user activity monitoring. This includes monitoring of activi-
ties such as application usage and text messaging. Integrat-
ing this information with system monitoring and sensor data
provides the opportunity for stronger analysis of user activ-
ity and system performance. The following three sections
provide more detail about the three categories of monitor-
ing features, and the specific metrics which are monitored.

3.1 Sensors

Sensors can be used to determine contextual information
about the device and user. This data can be used to in-
fer user activity and environmental conditions. Combining
this information with system and user activity monitoring
may provide unique insights into how user interact with mo-
bile devices. Smartphones include an increasing number of
sensors, and research into how these can be used to infer
activity or contextual information has grown over the past
few years [14, 10]. As research in this area expands, there
will only be an increase in the contextual information that
can be derived from sensors. A list of the implemented and
planned monitoring features for sensors is shown in Table 1.

Table 1: Sensor monitoring features

Activity Feature | Description
GPS gps GPS sensor reading
Magnetometer | magneto | Magnetometer sensor
reading
Accelerometer accelx Accelerometer sensor
accely reading for x, y, and
accelz z axis
Orientation azimuth | Orientation sensor
pitch reading for azimuth,
roll pitch, and roll
Proximity proximity | Proximity sensor reading
Light light Ambient light sensor
reading

3.2 System

System monitoring encompasses most of what would be con-
sidered typical performance and system monitoring on tra-
ditional systems. In includes information about system re-
sources and operating system activity. System resources en-
compass the resources available to a system which directly
impact user experience. These resources include the proces-
sor, memory, and network resources, as well as vital system
resources such as the battery. A list of the implemented and
planned monitoring features for system resources is shown
in Table 2.

Table 2: System resource monitoring features

Activity Feature | Description
CPU cpufreq | Current CPU fre-
quency
CPU cpuload | CPU load
Memory memavail | Available memory
Cache cache Cache in use

Wifi Network wifibw Bandwidth of 802.11
interface
Wifi wifisig Signal strength of
802.11 connection
Cellular Network cellbw Bandwidth of cellular

data interface
Signal strength of cel-
lular connection

Cellular Network cellsig

Battery battlevel | Remaining battery
level (as percentage)

Battery battcurr | Active current usage of
system (in mA)

Battery battcap | Capacity of battery

Monitoring system resources can provide valuable informa-
tion for a number of applications. It may be used to optimize
the performance of a system by altering the function of the
system based on observed usage or available resources, as
is done in a userspace frequency scaling application. Appli-
cations can use this information to alter their behavior in
order to avoid negatively impacting the system or user ex-
perience. System resource monitoring may be used to model
the impact of applications on a system, and can be a tool for
optimizing applications. It may also be used to model user
behavior and activity, to determine methods to optimize the
system based on usage.

System activities include any action of interest which may
be taken by the system, typically utilizing system resources.
When integrated with system resource monitoring, these fea-
tures can be used to study how activities impact system
resource usage. When integrated with user activity moni-
toring, these features can be used to study how user activity
impacts the system. These features may also be used for
modeling of applications. It is possible that each applica-
tion has a fingerprint, which can be determined based on
observed system activity. Modeling system activity for dif-
ferent applications could provide useful insight to how the
system is being used, and what actions may be expected in
the future. This could allow developers and researchers an
opportunity to optimize system performance based on ex-
pected future needs. This information can also be useful
for applications, which may need to know the state of some

system components. A list of the implemented and planned
monitoring features for system activity is shown in Table 3.

Table 3: System activity monitoring features

Activity Feature | Description
CPU context Context switch on the
processor
I/0 memread | Read/Write
memwrite | internal memory
I/0 sdread | Read/Write sdcard
sdwrite or external storage
Interface Up netup 802.11 interface
/ Down netdown | up/down
Interface Up cellup Cellular interface
/ Down celldown | up/down
Interface Up blueup Bluetooth interface
/ Down bluedown | up/down
Interface Up gpsup GPS interface
/ Down gpsdown | up/down
Devices blueconn | Bluetooth device
bluedisc | connect/disconnect
Network nettrx 802.11 packet transmit
Network netrecv | 802.11 packet receive
Network celltrx Cellular network packet
transmit
Network cellrecv Cellular network packet
receive

3.3 User activity

User activities encompass activities observed at the appli-
cation layer. This information can be very useful for un-
derstanding typical usage patterns of smartphones. Mobile
phones provide a unique environment for system resource
usage, which has not been fully explored. Modeling user be-
havior and developing a better understanding of how these
devices are used can be instrumental to efforts to optimize
system performance. When combined with system monitor-
ing and sensor data, this data can also provide information
about how applications impact system activity and resource
usage. This can be a great tool for analyzing and improv-
ing application performance. A list of the implemented and
planned monitoring features for user activity is shown in
Table 4.

Table 4: User activity monitoring features

Activity Feature | Description
Application | appopen | Open / Close of

appclose | application by user

Cellular callsnd | Make / Receive a call

activity callrec | on cellular network

Cellular textsnd | Send / Receive a text

activity textrec | on cellular network

Email emailsnd | Send / Receive an
emailrec | email

Screen screen | On/Off state of screen

4. MONITORING API

The primary purpose of this monitoring tool is to facilitate
development and research for smartphones and mobile de-
vices. To do this, we aim to provide a simple and easy to

interface API, which will allow developers and researchers
to easily access the desired metrics from the system and
still provide a robust tool which allows them to customize
the monitoring metrics to their specific needs. To accom-
plish this, we use a kernel module, which serves as a central
manager for the monitoring processes, and a central point
of communication for the monitoring system and the devel-
oper. The NDroid module will expose an API to the devel-
oper which will allow them to request the features they want
monitored, and the properties for each monitoring activity.
The module will then communicate with other modules, and
with the kernel, to initiate only those monitoring services
which are needed. This will allow the system to provide
a very robust monitoring tool without having any greater
impact on the system than is necessary. The NDroid API
may be accessed by multiple applications, the module will
manage which features are needed by each requester, and
provide each only the information that is requested.

There are three primary types of requests that can be made
to NDroid: instantaneous reading, register a continuous mon-
itor, and register a notification monitor. The instantaneous
reading request is simply a request for the current value of a
particular feature that can be monitored. For instance, this
can be a request for the current load on the CPU. This a
single instance request, for cases when a continuous moni-
tor is not necessary. The format for such a request in the
NDroid APT is:

instant_value(ul6 FEATURE, (void *) VALUE)

FEATURE indicates the desired metric to be measured or read,
and VALUE is a pointer to the location where the value of the
metric should be stored.

For metrics that need to be continuously monitored over
time, the developer may register a continuous monitor of a
supported feature. They can do so by indicating the feature
they want to monitor, as well as the frequency of readings or
measurements. They will also indicate a callback function
for this monitor. This callback function will be used in a
similar fashion as the Linux notifier toolchain. The NDroid
module will call the function at the requested frequency, in-
cluding in the call a single argument which is the value of
the requested feature. The developer will need to provide
a function which handles this value to process it as desired.
This method is used to avoid unnecessary reads/writes to
the system or to external storage. This helps keep the mon-
itoring tool lightweight by passing the value directly to the
requester(s) rather than writing to the proc directory or to
a file. The format for such a request in the NDroid API is:

register_monitor(ulG FEATURE, time_t FREQUENCY,
(void *) FUNCTION)

The NDroid monitoring system can also be used to continu-
ously monitor features but only issue callbacks when certain
conditions are met. These monitors will be referred to as
notifiers. The monitoring module will continuously moni-
tor these features at the requested frequency, but will only
initiate a call to the callback function when the specified
criteria are met. The format for such a request is similar
to the monitor request, but with the additional information

to specify the notification conditions. These conditions may
be absolute qualifiers, such as notify when the feature value
rises above a certain threshold, or relative qualifiers, such as
notify when the feature value changes by a certain thresh-
old. The supported condition types are shown in Table 5.
The format for such a request in the NDroid API is:

register_notifier(ul6 FEATURE, time_t FREQUENCY,
ul6 CONDITION, ul6 VALUE, (void *) FUNCTION)

Table 5: Supported condition types for registered

notifier monitor
Condition Description
MINTHRESH Notify when metric falls below a
minimum threshold
MAXTHRESH | Notify when metric goes above a
maximum threshold
CHANGE Notify anytime there is a change in
metric value
UPTHRESH Notify when metric rises a specified
threshold
DOWNTHRESH | Notify when metric falls a specified
threshold
ABSOLTHRESH | Notify when metric rises/falls an ab-
solute threshold

5. FUTURE WORK AND DISCUSSION

We are currently implementing the NDroid monitoring tool,
and plan to fully implement all monitoring features described
above, as well as any additional features which are found to
provide useful information. The API module will be im-
plemented to manage each of these metrics, and to expose
the described interface to developers for ease of integration.
We will also look into alternate methods of monitoring fre-
quency. Rather than leaving frequency of monitoring deci-
sions to users or developers, an alternate option would seek
to provide an optimal frequency, such as the Markov-optimal
sensing policy proposed in [15]. Following completion of
implementation, we will extensively test all features of the
monitoring tool to measure its impact on energy usage and
processing latency. It is always important to minimize im-
pact on a system when monitoring, but given the limited
resources of smartphones, it is especially critical. The mon-
itoring tool has been designed with this in mind, and should
be fully tested to ensure that it meets these expectations.
Impact to both battery lifetime and system responsiveness
should be negligible to users.

Future work will also need to include an examination of the
privacy consequences of this tool. The tool will of course
be designed to only capture state information which could
be useful to understanding usage, such as capturing a text
message send event, without capturing the text in the mes-
sage. Despite this, the tool will have the ability to generate
a detailed log of what applications the user used, at what
times, and under what environmental conditions (based on
sensor readings). This could be considered a privacy con-
trol issue, even though specifics of the application use are
not captured. This may not be an issue for research which
is conducted with a controlled group of active participants.
However, if this tool should become an integrated part of An-
droid to support simple access to system resource data by

application developers, then these privacy issues will need
to be addressed.

There is still much to be learned about how individuals uti-
lize their smart and multimedia phones. Our current knowl-
edge base is rooted primarily in common usage on tradi-
tional systems. Usage patterns on mobile phones may, and
likely do, differ significantly than usage on traditional sys-
tems. Understanding how these devices are utilized can pro-
vide valuable information to optimize both hardware and
software design, and improve performance and utility. This
monitoring tool will be used to capture data on application
usage and typical user activity. We hope to use this data to
develop models which will provide a better understanding
of how applications impact the system and how users utilize
smartphone devices. These models could provide the insight
needed to improve system performance, or the performance
of applications.

6. ADDITIONAL AUTHORS

Additional authors: Aaron Striegel (University of Notre Dame,

email: striegel@nd.edu)

7. REFERENCES

[1] L. A. Barroso, K. Gharachorloo, and E. Bugnion.
Memory system characterization of commercial
workloads. In 25th Annual International Symposium
on Computer Architecture, pages 3—14, 1998.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of
design techniques for system-level dynamic power
management. IEEE Trans. VLSI Syst, 8(3):299-316,
2000.

[3] F. Bentley and C. Metcalf. The use of mobile social
presence. IEEE Pervasive Computing, 8(4):35-41,
20009.

[4] S. Charbonnier, C. Garcia-Beltan, C. Cadet, and
S. Gentil. Trends extraction and analysis for complex
system monitoring and decision support. Eng. Appl. of
Al 18(1):21-36, 2005.

[5] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel,
B. Harrison, B. Hemingway, J. Hightower, et al. The
mobile sensing platform: An embedded activity
recognition system. IEEE Pervasive Computing, pages
32-41, 2008.

[6] J. Dongarra, K. London, S. Moore, P. Mucci, and
D. Terpstra. Using PAPI for hardware performance
monitoring on Linux systems. In Conference on Linux
Clusters: The HPC Revolution, National Center for
Supercomputing Applications (NCSA), University of
Illinois, Urbana, IL, June 2001.

[7] R. Enbody, K. Pellini, and W. Moore. Performance
monitoring in advanced computer architecture. In
Proceedings of the 1998 workshop on Computer
architecture education, page 17. ACM, 1998.

[8] H. Falaki, R. Mahajan, S. Kandula,

D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in smartphone usage. In MobiSys, pages
179-194. ACM, 2010.

[9] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing,
30(5-6):817-840, 2004.

[10] E. Miluzzo, C. Cornelius, A. Ramaswamy,

T. Choudhury, Z. Liu, and A. T. Campbell. Darwin
phones: the evolution of sensing and inference on
mobile phones. In S. Banerjee, S. Keshav, and

A. Wolman, editors, MobiSys, pages 5-20. ACM, 2010.

[11] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. Eisenman, X. Zheng, and
A. Campbell. Sensing meets mobile social networks:
the design, implementation and evaluation of the
cenceme application. In Proceedings of the 6th ACM
conference on Embedded network sensor systems,
pages 337-350. ACM, 2008.

[12] R. G. Minnich. Supermon: High-performance
monitoring for Linux clusters. In Proceedings of the 5th
Annual Linuzx Showcase and Conference, Nov. 2001.

[13] D. Peebles, H. Lu, N. Lane, T. Choudhury, and
A. Campbell. Community-Guided Learning:
Exploiting Mobile Sensor Users to Model Human
Behavior. 2010.

[14] S. Reddy, J. Burke, D. Estrin, M. Hansen, and
M. Srivastava. Determining transportation mode on
mobile phones. 2008.

[15] Y. Wang, B. Krishnamachari, Q. Zhao, and
M. Annavaram. Markov-optimal sensing policy for
user state estimation in mobile devices. In IPSN,
pages 268-278. ACM, 2010.

