

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a

Glance

About the Author .. xiii

About the Technical Reviewers ... xv

About the Contributor .. xvii

Foreword .. xix

Acknowledgments .. xxi

Introduction .. xxiii

Chapter 1: Getting Started: The Android USB Framework ■ 1

Chapter 2: Discovering and Managing USB Within Android ■ 17

Chapter 3: USB Storage ■ .. 37

Chapter 4: USB Tethering ■ .. 69

Chapter 5: USB Accessory ■ .. 79

Chapter 6: USB Audio ■ ... 101

Contents at a Glancevi

Chapter 7: Android Debug Bridge (ADB) ■ 125

Appendix A: Battery Charging Using USB ■ 139

Appendix B: Using libusb in Android ■ .. 157

Index .. 167

xxiii

Introduction

The Android open platform, which was introduced in 2007, is now in more than

50 million devices. The application store statistics show billions of downloads.

It has literally conquered the mobile handset market, overtaking many

established players. It is also expanding beyond mobile platforms into unique

products such as the Android Stick, which converts a normal TV to a smart

one.

If you are a developer who works on embedded systems, there is no escape

from this ever-growing platform. This inevitability creates a need for good

reference books for engineers who are interested in getting started with

Android. There are many books in the market covering Android application

programming and its development environment. If you are looking for

something like that in this book, you are in the wrong place. This book is much

more than that. The book explains the complete Android framework, from the

API to the internals of Android, along with the kernel below them.

This book exclusively covers the internals of the Android USB framework. Why

USB? Similar to the Android platform, USB is also inevitable in the embedded

world. On the Android platform, USB is the primary connectivity solution, as an

interface used to debug and also as an interface used to charge the batteries

of the Android device.

Does this mean this book is only for USB engineers? In fact, it will be useful to

any developer working on the Android platform. Why?

If you are a multimedia developer on the Android platform, you need USB for

media transfer or to play back audio. This book explores MTP and USB audio

in both USB device and USB host modes.

If you are a core developer who works on charging, you need to understand

the USB charging specifications, which are explained in the book.

Introductionxxiv

If you are a networking developer interested in tethering, USB plays a role

using the RNDIS specification, which is explained in the book.

If you are an application developer interested in managing USB devices from

an Android platform, this book explores the Android USB Service framework,

which manages USB functionalities.

Last but not least, Android Debug Bridge (ADB), the debugging tool of Android,

is over USB and knowledge of its internals is a definite value-add for any

application or platform developer. This book details the internals of ABD to the

kernel level.

This book covers everything about USB on Android, from the different USB

classes supported in device mode to the USB host framework that manages

the USB devices connected to the Android platform. Each chapter explains

USB class specification before exploring how the functionality (class) is

implemented on the Android platform. This gives readers a clean perspective as

to what the USB specification demands and how it is implemented in Android.

The Android framework has migrated to different versions by now. As a

platform or application developer, it’s important you know about the major

changes each version introduced. The book covers the major changes in the

USB framework between the versions, including interesting bug fixes that were

undocumented in the Android specifications.

Intended Audience
The primary audience for this book are application developers and engineers

who work hands-on with Android. This book is for an application developer

who has an idea for a USB app and wonders how to implement it. This book

will be a definite guide for the developer to manage USB on Android.

Because the book covers APIs to the Linux kernel, core platform developers

will find it easy to put data point to debug. Thus, core Android platform

developers working on USB, audio, media, and others are the next primary

audience for the book.

Technical managers, architects, and senior managers who look for the eagle-

eye view of a system are a secondary audience for the book. The book will

enable them to understand the different blocks of the Android USB subsystem

and help estimate the complexity involved.

Student and engineers can use this book as a do-it-yourself reference, as

it explains the different blocks of the Android USB framework, from the

application level to the kernel.

Introduction xxv

What You’ll Learn
Understand the Android USB framework, from the APIs to the kernel layer, and

enable advanced USB application development.

Learn all the major USB functionalities by exploring the USB class

specifications not covered in any of the USB books.

Learn the newly introduced Android Open Accessory (AOA) protocol and

explore the developing NFC reader using the AOA protocol.

Learn about critical changes in the Android USB framework among different

Android versions.

Learn how USB charging works, with an explanation of the USB battery

specification.

Learn how to switch between MTP and mass storage and vice versa, in order

to share storage with a host PC.

Salient Features
Real-world useful applications enhance your Android experience, including

reverse tethering, AOA audio, AOA NFC reader, switching between MTP and

UMS, and more. Complete project source is available, which will help you try

it on your own.

Covers advanced technical topics (Android and USB) that aren’t covered in

other texts.

All design diagrams (Microsoft Visio) are on the CD for reuse by developers

and architects.

Covers the major differences in the Android USB framework between

Android versions.

Covers all major USB functions, such as MTP, audio, charging, and mass

storage, along with Google-defined USB functions like ADB and AOA, all by

exploring their specifications.

Chapter Introduction
Though there are different types of Android-powered devices, this book details

the Android USB framework with a mobile hand-held device in mind. The

following section provides a brief description of each chapter in this book.

Introductionxxvi

Getting Started: The Android USB Framework
Android defines its requirement through the Compatibility Definition Document

(CDD) and mandates that Android devices comply with this specification.

This chapter provides a brief overview of the USB requirements defined in the

Android CDD. The chapter subsequently explains various USB-related Android

APIs that the Android framework exports for application developers in order to

manage USB functionalities or devices.

Discovering and Managing USB Within Android
Discovering and managing a device is the first step and a crucial part any

programming activity. This chapter describes how USB function discovery is

made inside the Android framework when an Android device is connected in

USB device mode. The chapter also details how a USB device is detected inside

the Android framework when an Android device is connected in host mode.

USB Storage
Media is one of the key features of mobile devices and is predominantly

managed using USB. Media over USB is managed using two USB

specifications: Media Transfer Protocol (MTP) and Mass Storage Class (UMS).

This chapter briefly details these two specifications and provides an overview

of the USB specification’s requirements. The chapter also details how media

files are transferred to a host PC when the Android device is in USB device

mode (both UMS and MTP).

This chapter also explains how a USB-based external media device (say, a

USB flash drive or an MTP device) is managed by the Android framework in

USB host mode.

USB Tethering
Tethering is a method by which mobile devices shares their Internet

connectivity with other devices, such as personal computers or laptops. An

Android device uses the RNDIS protocol over USB to tether and share Internet

connectivity with other devices. The RNDIS protocol is Microsoft-specific and

is very similar to the USB ECM class specification. This chapter provides a

brief overview of the RNDIS specification and explains the USB part of the

Android framework that facilitates tethering.

Introduction xxvii

USB Accessory
Android Open Accessory (AOA), an Android-specific class defined by Google,

was introduced in the Ice Cream Sandwich version of Android to facilitate

Android devices in managing external devices. The chapter details the AOA

protocol and its operations with an example application. With the Jelly Bean

version of Android, the AOA protocol was improved to support the USB

Human Interface Device (HID) class. The chapter provides a brief overview of

the USB HID class and its implementation inside the Android framework.

USB Audio
The USB audio specification defines transport that provides an efficient way to

propagate and control digital audio. With the Jelly Bean version of Android, an

Android system in USB device mode supports the USB audio class. This support

of digital audio over USB is packed with the AOA protocol. This chapter provides

a brief overview of USB audio specification and subsequently explains the

Android framework that implements the device audio class. The chapter explains

the device and host audio implementations within the Android framework.

Android Debug Bridge
Android Debug Bridge (ADB) is a command-line client/server debug tool that allows

you to communicate with an Android-powered device using USB as a transport.

This chapter details the ADB protocol defined by Google and subsequently explains

how the Android USB framework implements the ADB protocol.

Appendix A: Battery Charging Using USB
Most battery-powered hand-held devices use a USB port to generate power

for charging the battery. Android-powered hand-held devices also use USB as

the primary power source to charge the battery. This USB class is covered as

part of this appendix since there is no real Android USB framework for battery

management. This is because USB charging specification focuses on the

charging current and other low-level details; there is no USB-level protocol.

This chapter provides a brief overview of the USB charging specification and

subsequently explains the USB part of the Android battery manager framework.

Introductionxxviii

Appendix B: Using libusb in Android
Protocols like USB allow developers to write driver at user space to manage

its functionality. The USB user space driver called libusb is available in almost

all popular desktop operating systems. Since libusb is a generic driver, it can

be used with any USB device. This chapter explores how to write a simple

application over libusb on the Android platform.

1

Chapter 1
Getting Started: The

Android USB Framework

What you will learn:

Android USB CDD requirements	
Overview of Android USB packages	
Architectural diagram of Android USB framework	
Android USB APIs	

Android has become one of the most successful open platforms, powering

up millions of mobile devices and similar embedded devices worldwide.

According to Google, more than a million new Android devices are added

to this statistic every day. This large market presence and continuous

market penetration makes it the ideal platform for developers, SMEs, and

bigger enterprises to portray their presence and reach out to end users. For

Android devices, Google provides the necessary infrastructure to develop

new applications. These devices can reach millions of end users through

Google’s open market platform named “Google Play.”

Such a large development and deployment process necessitates

standardization in order to ensure compatibility of these applications across

the multitudes of Android devices that exist. To facilitate this, Google

created a compatibility program that enables application developers,

end users, and platform manufacturers to maintain program consistency

and a similar user experience across devices. A detailed overview of the

compatibility program is available on Google’s Android web site at

https://source.android.com/compatibility/overview.html. The

compatibility program consists of three key components: Compatibility

https://source.android.com/compatibility/overview.html

CHAPTER 1: Getting Started: The Android USB Framework2

Definition Document (CDD), Android Platform Source Code, and a Compatibility

Test Suite (CTS). Any device that claims to be an “Android” device has to

comply with the Android CDD and successfully pass all CTS test suites.

In order to study the framework within Android, it is important to understand

the aforementioned three key components. Thus, in order to best study

the Android USB framework, it is important to focus and explore what

Android CDD defines as a USB requirement, and how that requirement is

implemented.

This chapter starts with exploring the USB section of the Android CDD, and

subsequently presents a complete overview of the Android USB framework

by providing a break down of the implementation process. Later on, the

chapter will explore various USB APIs that the Android framework exports in

order to assist an application developer in managing the USB functionality

of an Android device.

Android CDD – USB
At the time of this writing, Android 4.4 Kit Kat is the latest version of Android

and Android 4.4 CDD defines the compatibility requirement of the Android

Kit Kat version. You can find the complete list of Android CDDs on Google’s

Android website at http://source.android.com/compatibility/downloads.html.

So, what is an Android CDD? In simple terms, the Android CDD defines the

requirements that must be met in order for a device to claim that it is an

Android-compatible device. To an extent, Android CDD is brief in that it is

a 30-40 page document. This document can point to specifications like the

USB Audio, for example, to indicate the user’s expectation. The CDD also

identifies features as “must,” “must not,” “required,” “shall,” “shall not,”

“should,” “should not,” “recommended,” “may,” and “optional,” as per the

IETF standard that is defined in RFC2119. It is important for developers

to pay attention to these terms and take care while developing Android

applications when using an optional feature or any feature listed as “may.”

When it comes to USB, an Android device can operate in two modes—USB

device mode or USB host mode.

USB Device Mode
When an Android device is connected to a host PC using USB, as illustrated

in Figure 1-1, the Android device is said to be in USB device mode and

power is sourced from the host PC USB port. (A device that needs more

power than the host can provide should have its own power source.)

http://source.android.com/compatibility/downloads.html

CHAPTER 1: Getting Started: The Android USB Framework 3

USB Host Mode
When a USB device is connected to an Android device, as illustrated in

Figure 1-2, the Android device is said to be in USB host mode, and the

Android device has to supply power to the connected device. An Android

device functioning as a USB embedded host or as an On-The-Go (OTG)

host must supply 5V/500mA of power when the connected device is USB

bus powered.

Figure 1-1. Illustration of an Android device in USB device mode

Figure 1-2. Illustration of an Android device in USB host mode

There is also a unique Android USB setup, which was introduced during the

Honeycomb version of Android, named the USB accessory mode.

CHAPTER 1: Getting Started: The Android USB Framework4

USB Accessory Mode
In USB accessory mode, an Android device that is in the USB device mode

can manage external devices. This ability is achieved by connecting the

Android device to an external embedded accessory device, which acts as

a USB host. The Android device goes to USB accessory mode in order to

manage devices that connect to the accessory device. Figure 1-3 depicts

Android accessory mode with a simple illustrative example of managing

a camera from an Android device using an accessory device. Accessory

mode is explained in detail in Chapter 5, which will provide you with a better

understanding of the process.

Figure 1-3. Illustration of an Android device in USB accessory mode

Table 1-1. Illustration of an Android CDD 4.4 as Defined in USB Device Requirements

USB Device Requirement

The port must be connectable to a USB host with a standard USB-A port.	
The port should use the micro-USB form factor on the device side. 	
Existing and new devices that run Android 4.4 are very strongly

encouraged to meet these requirements in Android 4.4 so that they will

be able to upgrade to future platform releases.

The port should be centered in the middle of an edge. Device 	
implementations should either locate the port on the bottom of the

device (according to natural orientation) or enable software screen

rotation for all apps (including the home screen), so that the display

draws correctly when the device is oriented with the port at the bottom.

Existing and new devices that run Android 4.4 are very strongly

encouraged to meet these requirements in Android 4.4 so that they will

be able to upgrade to future platform releases.

The USB section of Android CDD defines which USB functionalities have to

be supported in the host and device modes. Tables 1-1 and 1-2 capture the

requirements when an Android device acts as a USB device or as a USB host.

(continued)

CHAPTER 1: Getting Started: The Android USB Framework 5

USB Device Requirement

If the device has other ports (such as a non-USB charging port) it 	
should be on the same edge as the micro-USB port.

It must allow a host connected to the device to access the contents of 	
the shared storage volume using either USB Mass Storage Protocol or

the Media Transfer Protocol.

It must implement the Android Open Accessory API and specification 	
as documented in the Android SDK documentation, and also must

declare support for the hardware feature android.hardware.usb.
accessory [Resources, 52].

It must implement the USB audio class (version not mentioned in CDD) 	
as documented in Android SDK documentation (http://developer.
android.com/reference/android/hardware/usb/UsbConstants.
html#USB_CLASS_AUDIO).

It should implement support for USB battery charging specification 	
(version 1.2) [Resources, 64]. Existing and new devices that run Android

4.4 are very strongly encouraged to meet these requirements in Android

4.4, so that they will be able to upgrade to future platform releases.

Device implementations must implement the Android Debug Bridge. 	
If a device implementation omits a USB client port, it must then

implement the Android Debug Bridge via a local area network (such as

Ethernet or 802.11).

Table 1-1. (continued)

Table 1-2. Illustration of an Android CDD 4.4 as Defined in USB Host Requirements

USB Host Requirement

It may use a non-standard port form factor, but if so, the device must 	
be shipped with a cable or cables that will adapt the port to a standard

USB-A.

It must implement the Android USB host API as documented in the 	
Android SDK and declare support for the hardware feature

android.hardware.usb.host (http://developer.android.com/guide/
topics/usb/host.html).

These requirements are defined in section 7.7 USB of the Android CDD 4.4,

and you should also note that the requirements are brief and point to the

actual specifications. It is important to note that there are few requirements

that define actual physical characteristics of an Android device. These

physical characteristics will be handy when maintaining compatibility with

external accessories, such as audio docks.

http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/guide/topics/usb/host.html
http://developer.android.com/guide/topics/usb/host.html

CHAPTER 1: Getting Started: The Android USB Framework6

Over and above these two tables, USB requirements can also be found

across other sections such as “Memory and Storage.” The following snippet

captures one such requirement from the storage section of CDD:

“Regardless of the form of shared storage used, device

implementations MUST provide some mechanism to access the

contents of shared storage from a host computer, such as USB

mass storage (UMS) or Media Transfer Protocol (MTP). Device

implementations MAY use USB mass storage, but SHOULD

use Media Transfer Protocol. If the device implementation

supports Media Transfer Protocol:

The device implementation should be compatible 	
with the reference Android MTP host and Android
File Transfer [Resources, 57].

The device implementation should report a USB 	
device class of 0x00.

The device implementation should report a USB 	
interface name of MTP.

If the device implementation lacks USB ports, it must then

provide a host computer with access to the contents of the

shared storage by some other means, such as a network file

system.”

The storage section defines how the storage space of an Android device

should be shared by a host PC over USB. The storage section explains in

detail mandating MTP as the preferred USB protocol for sharing the storage

space.

 DID YOU KNOW?

Have you ever wondered why your Android device is not enumerating as Mass Storage

device from Ice Cream Sandwich and later? The secret lies in Android CDD. From the

following two snippets, it is very apparent that Android has moved from Mass Storage to

MTP as the default mechanism to connect to the host computer.

Android CDD 2.3 – Ginger Bread Version

“It must implement the USB mass storage specification, to allow a host connected to the

device to access the contents of the /sdcard volume.”

CHAPTER 1: Getting Started: The Android USB Framework 7

Android CDD 4.0.3 – Ice Cream Sandwich Version

“Regardless of the form of shared storage used, device implementations MUST provide

some mechanism to access the contents of shared storage from a host computer, such as

USB mass storage (UMS) or Media Transfer Protocol (MTP). Device implementations may use

USB mass storage, but should use Media Transfer Protocol.”

Now that you are able to understand Google Android’s USB requirements,

you can now explore how these requirements are built within the Android

framework.

Android USB Architecture
This section explains Android USB architecture based on the various USB

modes in which an Android device can perform as explained in the initial

section. In simple terms, an Android platform is made of Android Linux

kernel as the base to manage the platform resources. A Java-based Android

framework sits on top of Android Linux kernel, providing the necessary

user experience. Some Android features lay within the kernel, and certain

features are available only at the Android framework. In case of USB, the

functionality is managed between the Android Linux kernel and the user

space Android framework.

DID YOU KNOW?

An important point to note is that the kernel discussed here is called the “Android Linux

kernel” because it’s not same as the generic Linux kernel, and most importantly, not the

same as the Linux USB gadget framework. The USB device stack is referred to as the USB

gadget framework, and is yet to be integrated as part of the mainline kernel.

The following section provides a top-level architectural view of Android USB

in USB device mode, detailing the complete Android USB starting from the

Android Linux kernel to the user space Android framework.

When you connect an Android device to a host PC, the Android device is

said to be in USB device mode and can export multiple USB functionalities

like MTP, ADB, or CDC to the host PC through its descriptors. This type

of USB device is referred as a composite device, where a single USB

device supports multiple USB functions through their interfaces. From the

architecture diagram shown in Figure 1-4, you can infer that the composite

infrastructure is part of the kernel and most of the USB device functions are

CHAPTER 1: Getting Started: The Android USB Framework8

implemented as “class drivers” within the Android Linux kernel. There are

exceptions, like ADB and MTP, which are implemented on both sides, i.e.

the kernel and user space. In such cases, the kernel driver implements just

the transport part of USB, guaranteeing delivery of the data. The Android

framework performs the functional management, implementing the class-

level protocol, which other chapters of this book will explore in more detail

later. The following section provides a brief overview of the architectural

blocks used in the USB device mode, as represented in Figure 1-4.

USB Gadget Driver

Android Composite Driver

Android USB API

(android.hardware.usb)

USB Service

USB Service USB Function
JNI

Java Android

User Space

Android

Kernel Space

USB Controller Driver

O
th

e
r In

fra

Figure 1-4. Android USB device framework architecture

USB Service
The USB Service framework is the key factor and is the backbone in

Android USB device mode. In a way, the role of this framework is to

listen to and communicate state changes in Android kernel USB driver

and subsequently pass that information on to other interested Android

frameworks. Those frameworks then pass that information further to other

modules by broadcasting their intent with only the necessary information.

This framework also manages USB functions that an Android device has to

share when connected to a host PC. More details about this framework will

be explained further in Chapter 2, entitled “Discovering and Managing USB

within Android.”

CHAPTER 1: Getting Started: The Android USB Framework 9

USB Function
Most of the USB functions are implemented in the Android Linux kernel

space. However, USB functions like ADB or MTP are implemented as

user space daemons integrated within the Android framework. This

block represents the daemons that implement USB Class requirements.

Subsequent chapters on ADB and MTP provide a detailed view on how this

module interacts with the kernel below and other Android frameworks.

android.hardware.usb
Android APIs for USBs are represented as a android.hardware.usb package

and are discussed in further detail in later sections of this chapter. In a USB

device mode, these APIs have a minimal role, as there are no APIs that allow

managing a USB device’s functionality. The exception to this is Android

accessory mode, where developers are required to write applications to

manage external devices over USB device mode.

Other Infra
Within the Android framework there are many other frameworks that are

interested in the USB state changes, like connection, disconnection, or a

switch of USB functionalities. This “other infra” represents Android modules

like storage infrastructure, network daemon infrastructure, and charging

infrastructure, to name a few that are interested in USB state changes.

These other infrastructures hook themselves up to the USB framework

for the Intent that the USB Service module generate. In Chapter 2, we

will provide some insight into how to listen to USB states changes. Other

chapters will deal with storage and tethering, including details of how they

hook and receive the necessary information.

This module also represents the user interface part of Android that

communicates USB state changes to the user over the Notification panel.

The Android USB architecture is the same in USB accessory mode and USB

device mode, as accessory mode is nothing but the USB device mode with

some deviation.

Now that you understand how the Android framework in USB device mode

works, you can explore the Android framework in USB host mode. Similar

to device mode, host mode keeps most of the class functions implemented

within the Linux kernel, but classes like MTP host mode are implemented

in Android user space. It is important to note that, unlike the device stack

(gadget driver), which differs from the mainline Linux kernel, the USB host

stack is same as the mainline Linux kernel. Though Linux kernel has support

for almost all USB devices, an Android device in USB host mode might not

CHAPTER 1: Getting Started: The Android USB Framework10

support all devices because the Android device is functioning as a limited

capability USB embedded host or USB OTG host. It is important to note that

Android CDD did not define USB host functionalities like it did for the USB

device mode. Thus USB host class support, like support for the 3G dongle,

is determined by the Android device manufacturer.

 DID YOU KNOW?

A PC host can support most of the USB devices in the market, but a USB OTG host or

USB-embedded host typically supports a much smaller set of devices. A USB OTG host or

a USB embedded host provides a list of supported devices called the Targeted Peripheral

List (TPL) and presents only those devices to the user. According to the USB On-The-Go and

Embedded Host specification, it is unreasonable for an OTG host or embedded host to support

all range of USB devices. For example, connecting a camera to a printer may make sense, but

it does not make sense for a printer to support a USB barcode scanner or a USB speaker.

Figure 1-5 provides a top-level architecture diagram of the Android USB

host mode framework.

USB Core

Class Driver

Android USB API

(android.hardware.usb)

USB Service USB Function

USB Service USB FunctionJNI

Java

Android

User Space

Android

Kernel Space

Host Controller Driver

libusbhost

O
th

e
r

In
fr

a

Kernel USB File System

Figure 1-5. Android USB host framework architecture

CHAPTER 1: Getting Started: The Android USB Framework 11

USB Service
Similar to device mode, USB Service is the key part in the USB host mode.

The main role of this framework is to detect state changes like connection

and disconnection within the USB host kernel drivers, and convert those

changes into a format that is understood in the Android space. This

framework is explained in greater detail in Chapter 2.

USB Function
USB host mode classes (functions) like MTP are implemented within the

Android framework, and their functionality is spread across the Java and JNI

layers. This USB function framework represents the class implementation

and the implementation necessary for USB Host APIs. Thus, the main role

of this framework is to translate USB application requests and communicate

them to the USB device connected to the kernel below. Chapter 3, “USB

Storage,” provides a detailed picture of USB function implementation while

Chapter 2 provides internals of USB Host APIs.

libusbhost
One of the most popular USB user space drivers on Linux is libusb, while

libusbhost is a similar, thinner version of it, adapted to Android USB

host requirements. The main role of this library is to act as an interface

between the Linux kernel USB driver and the Android USB framework. This

also makes it possible to implement necessary infrastructure to facilitate

detection of any new USB device connected to the kernel below. A more

detailed analysis of libusbhost is available as part of Appendix B, “Using

libusb in Android.” Chapter 3, “USB Storage,” and Chapter 2 also provide

detail about how the library is used within the Android USB framework.

Kernel USB File System
In USB host mode, the kernel file system plays a key role, starting from detecting

a USB device when it gets identified within the kernel, to transferring information

from Android to the kernel space. To better understand the USB host mode

operation, it is important to first understand the kernel USB file system.

Other Infra
Inside the Android framework, there are other frameworks like audio, volume

daemon, and so on, that are interested in knowing USB state changes.

Some of these infrastructures take on the role of presenting the USB

functionality to the user.

CHAPTER 1: Getting Started: The Android USB Framework12

Having understood the Android USB requirements and the top-level blocks

of Android USB framework, you’ll now explore the various USB-related APIs

that the Android framework exposes in order to manage a USB device or

functionality.

Android USB Packages
The Android framework is a Java-based system, and the term “package”

is used in Java programming to organize similar Java classes into a

namespace. This practice enables programmers to easily manage access

rights and avoid conflicts. Along the same line of thought, Android USB

functional implementations are collated in a single namespace, called the

android.hardware.usb. This section explores different USB classes collated

in this package, as well as the APIs that deliver these USB classes’ exports

to a programmer. The section further covers the MTP class, a USB host

function packaged separately to manage media device connected to an

Android device over USB.

android.hardware.usb
The android.hardware.usb package is a collection of USB host APIs and USB

accessory APIs. USB host APIs were introduced as part of Android Honey

Comb 3.1 version (API level 12), and the support is available on Android 3.1

and higher. USB accessory APIs were introduced in Android Honey

Comb 3.1 version (API level 12) as well, but the support was back-ported

to Android Ginger Bread 2.3.4 version (API level 10). The back-ported

version of accessory APIs can be imported using the package name

com.android.future.usb. The next sections explore the different classes and

their functions.

UsbAccessory
This class represents a USB accessory device connected to an Android

device that’s in USB device mode. Note that a USB accessory is an external

hardware device acting as a USB host, as explained in Figure 1-3.

When an accessory device is connected to an Android device, applications

can search for and get product information like the manufacturer name,

model, version, and so on, from other devices that connect to the accessory.

This class provides necessary methods for an application developer to get

product information, as previously stated. Complete details of this class are

available at http://developer.android.com/reference/android/hardware/
usb/UsbAccessory.html. A detailed analysis of how these accessory

methods work is explained in detail in Chapter 5, “Android Accessory.”

http://developer.android.com/reference/android/hardware/usb/UsbAccessory.html
http://developer.android.com/reference/android/hardware/usb/UsbAccessory.html

CHAPTER 1: Getting Started: The Android USB Framework 13

UsbDevice
This class represents a USB device connected to an Android in USB

host mode. A UsbDevice object contains information that describes the

capabilities and other USB specific details of the USB device, such as

protocol, class, device ID, and so on. It is important to note that a UsbDevice

can be instantiated by a UsbService implementation of the UsbHostManager.

Complete details of this class are available at http://developer.android.com/
reference/android/hardware/usb/UsbDevice.html.

UsbManager
This class is the core part of the Android USB package. It provides the

state information of USB and discusses the methods to communicate with

the USB devices that are connected. At this moment of writing, this class

provides methods only for host mode. The class provides the necessary

methods in order to provide permission to the USB device and shares

the intent that communicates state information. Complete details of this

class are available at http://developer.android.com/reference/android/
hardware/usb/UsbManager.html.

UsbDeviceConnection
This class is used to provide the necessary methods for the user to send

and receive data to a USB device. An instance of the usefulness of this class

is when an application opens a USB device using the openDevice method.

This class supports the transfer of bulk and controls data synchronously,

unlike the queue method of UsbRequest. It also provides the requestWait

method, which is used for asynchronous data transfer. Complete details

of this class are available at http://developer.android.com/reference/
android/hardware/usb/UsbDeviceConnection.html.

UsbInterface
This class is also used to represent an interface of a USB device connected

to the Android host. An interface in USB is used to represent functionalities

of the USB device. If a USB device has multiple functionalities, there will

be multiple UsbInterface objects. This class provides methods to retrieve

class, protocol, and endpoint details. Complete details of this class are

available at http://developer.android.com/reference/android/hardware/
usb/UsbInterface.html.

http://developer.android.com/reference/android/hardware/usb/UsbDevice.html
http://developer.android.com/reference/android/hardware/usb/UsbDevice.html
http://developer.android.com/reference/android/hardware/usb/UsbManager.html
http://developer.android.com/reference/android/hardware/usb/UsbManager.html
http://developer.android.com/reference/android/hardware/usb/UsbDeviceConnection.html
http://developer.android.com/reference/android/hardware/usb/UsbDeviceConnection.html
http://developer.android.com/reference/android/hardware/usb/UsbInterface.html
http://developer.android.com/reference/android/hardware/usb/UsbInterface.html

CHAPTER 1: Getting Started: The Android USB Framework14

UsbEndpoint
This class is used to represent the endpoint of an interface and provides

methods that can retrieve the details of an endpoint. In USB terms, this

class provides information from a USB endpoint descriptor of a connected

device. At the time of this writing, there is no support for an isochronous

endpoint. Complete details of this class are available at http://developer.
android.com/reference/android/hardware/usb/UsbEndpoint.html

UsbRequest
This class represents a USB packet used to read and write to or from

a connected USB device. An object of UsbRequest is used to transfer

bulk or to interrupt data asynchronously. After “queuing” a request, a

program has to wait for the response using the requestWait method of

UsbDeviceConnection. This class does not support control transfer over

endpoint zero. At the time of this writing, support for isochronous transfer

has not been provided. Complete details of this class are available at

http://developer.android.com/reference/android/hardware/usb/
UsbRequest.html.

These classes discussed previously, other than UsbAccessory, constitute the

Android USB host APIs and are packaged as android.hardware.usb.host

for developers who create USB host applications. There are other packages,

like android.mtp, that are derived from these set of APIs. The android.
mtp class provides MTP class support for an application developer, and a

detailed analysis of this process is provided in Chapter 3, “USB Storage.”

Conclusion
Android is widely deployed across many platforms and different vendors,

and it is important to have interoperability and to maintain quality. Android

defines a brief requirement specification, namely the Android Compatibility

Definition Document (CDD), to ensure that the different vendors of an

Android device can interoperate easily. This chapter provided a brief

overview of the USB requirements as defined in the latest Android CDD 4.4.

This is applicable to the Jelly Bean version of Android. As discussed in this

chapter, there have been few changes in the USB requirement, and you can

explore different CDD versions to understand how USB requirements have

evolved.

http://developer.android.com/reference/android/hardware/usb/UsbEndpoint.html
http://developer.android.com/reference/android/hardware/usb/UsbEndpoint.html
http://developer.android.com/reference/android/hardware/usb/UsbRequest.html
http://developer.android.com/reference/android/hardware/usb/UsbRequest.html

CHAPTER 1: Getting Started: The Android USB Framework 15

After discussing the CDD, this chapter also covered an architectural view of

the Android USB framework. Subsequent chapters will explore each block

of the Android USB framework in depth, and will cover their implementation

with examples. As part of an Android USB introduction, this chapter also

detailed different USB packages available for application developers to

manage USB functionality on Android. The packages include classes that

help manage the USB host and USB device functionality. A detailed analysis

of these classes will be carried out in subsequent chapters.

17

Chapter 2
Discovering and

Managing USB Within

Android

What you will learn:

USB Service	
USB Device Manager	

Architecture and Design Flow	
Example Application – USB Functionality Viewer	

USB Host Manager	
Architecture and Design Flow	
Example Application – USBView	

Conclusion	
An important first step in managing a device or resource is to detect and

identify the device or resource from the system. This is the first step at

the start of the program. To detect a resource, programs generally adapt

mechanisms like polling, interrupt, or event, and then get to know the

availability. Once a device or resource is detected and available, the

program will try to take control of the resource to manage it. Similarly,

Android USB framework has to provide mechanisms to detect or manage

a USB device in USB host mode and detect or manage USB functionalities

supported in USB device mode. This chapter introduces how Android USB

CHAPTER 2: Discovering and Managing USB Within Android 18

frameworks identify a USB device or USB functionality, and covers the Linux

kernel driver framework through the Android framework.

An Android device can be in USB device mode or USB host mode, thus

requiring two different frameworks for detection, and the management of

this is described in the following sections.

USB Device Management
When an Android device is connected to a PC via a USB port, USB

functions (like ADB and mass storage) are enabled within the Android

USB framework, and the Android device shows these functionalities in the

PC. The process detecting a USB connection to a PC starts at the kernel,

which subsequently communicates with the Android framework, which in

turn, decides what USB function should be shared with the PC. The initial

sections of this chapter explore this USB device detection process along

with the framework that manages the USB device function.

USB Host Management
With more powerful application processors emerging in the market, mobile

devices have started to support USB host mode operations. This means

that users can now connect USB devices such as mice, keyboards, and

USB flash drives, to their mobile devices. With Android running on such

devices, it has to be able to detect those USB device connections and

manage them. The later sections of this chapter explore how these USB

devices are detected and managed by the Android framework when working

as a USB host.

Within the Android framework, both of these management frameworks are

part of a single framework called the USB Service, which acts as a control

center for all other USB frameworks. This chapter explores the USB Service

framework by providing a top-level view of the program’s architecture

initially, and then subsequently, explores the two key USB management

frameworks in detail.

USB Service
USB Service is the core of the Android USB framework and is invoked as

part of the Android System Server framework. The Android system server,

which starts all the system services, starts the USB Service along with other

services during boot up.

CHAPTER 2: Discovering and Managing USB Within Android 19

The implementation of starting UsbService is in frameworks/base/services/
java/com/android/server/SystemServer.java, as shown in the following

snippet.

try {
 Slog.i(TAG, "USB Service");
 // Manage USB host and device support
 usb = new UsbService(context);
 ServiceManager.addService(Context.USB_SERVICE, usb);
} catch (Throwabsle e) {
 reportWtf("starting UsbService", e);
}

Figure 2-1 illustrates how a USB Service framework is placed within the

Android USB framework, and how it acts as the central node of the Android

USB framework.

USB Service

MTP VOLD
Tethering

Audio ServiceAccessory

Application
ADB

Figure 2-1. The USB Service framework acting as the core of USB functionality

Because the UsbService is the core, it’s important that you understand

the internals of the UsbService framework. The UsbService framework

constitutes all USB related states, functionality, and communication of both

the host and device. The UsbService framework also includes permissions

and the setting framework, namely UsbSettingsManager, allowing control of

USB functionality within the Android framework.

CHAPTER 2: Discovering and Managing USB Within Android 20

As discussed in the previous chapter, USB functionality is managed through

APIs exported via the package android.hardware.usb. Whenever an

application invokes these USB APIs to either to manage USB functionality,

or to manage a USB device the control is routed to the UsbService

framework. The UsbService framework implements two sub-frameworks—the

UsbDeviceManager and UsbHostManager frameworks. Whenever a host-related

API call or event occurs, it is delegated to UsbHostManager, and when device

events occur, control is delegated to UsbDeviceManager. Figure 2-2 illustrates

the building blocks of the UsbService framework.

USB Service

USB Device

Manager

USB Host

Manager

USB Settings

Manager

Figure 2-2. The various building blocks of UsbService

The implementation of the UsbService framework is available under file

frameworks/base/services/java/com/android/server/usb/UsbService.java.

The following sections explore the sub-framework of managing a USB

functionality initially, and subsequently, explore the framework of a USB

device in detail, with examples.

 DID YOU KNOW?

With Version 4.2, Android supports multiple user spaces on an Android device such as

tablets, allowing each user to have their own set of accounts, apps, system settings, files,

and any other user-associated data. USB also supports this feature of having multiple user

spaces, and is managed by the UsbService framework. The change is available through

the following Change-Id, I8a723ad3d55ac1bff99276c5f3a3f5e8f013432f, and

could help in understanding how the multiuser framework is implemented.

CHAPTER 2: Discovering and Managing USB Within Android 21

USB Device Manager
The USB Device Manager framework provides necessary functionalities

to manage USB states when the Android device is in USB device mode.

The framework is implemented in two files, namely /frameworks/base/
services/java/com/android/server/usb/UsbDeviceManager.java and

frameworks/base/services/jni/com_android_server_UsbDeviceManager.cpp.

The JNI implementation mostly takes care of the Android accessory

class, which is detailed in subsequent chapters, and plays a very small

role in managing the functionalities of the Android as a USB device.

Android USB device functionality is mostly managed by the Java class

framework UsbDeviceManager. Figure 2-3 illustrates a top-level view of

UsbDeviceManager.

USB Gadget Driver

Android Composite Driver

UsbDeviceManager

Android Init

system/core/init/

Java

Android

User Space

Android

Kernel Space

USB Controller Driver

init.usb.rc

UsbSettings

Manager

UsbService

sysfs
(/sys/class/android_usb/)

Figure 2-3. The UsbDeviceManager framework

CHAPTER 2: Discovering and Managing USB Within Android 22

Note that Figure 2-3 represents the UsbDeviceManager framework in a

typical setup, without Android accessory functionality. That is the reason

UsbDeviceManager JNI is not represented, as the role of the JNI is used only

in Android accessory mode.

The UsbDeviceManager framework functionality can be visualized in two

different sub-functionalities. One functionality listens for USB state changes

when the Android device is in USB device mode, and the other manages the

USB functionality in USB device mode. The following sections discuss how

these two functionalities are implemented, and then subsequently explain

them with control flow diagrams.

USB Function Configuration
Android devices are preconfigured with certain supported USB functions as

well as the default USB function configuration. This definition is available in

/system/core/rootdir/init.usb.rc. This file is in Android Init language,

which defines USB configuration requirements. A detailed explanation of

Android Init language is available in system/core/init/readme.txt, and

this section covers only what is used in USB configuration.

The Android Init language defines four broad classes of statements:

Actions, Commands, Services, and Options. The USB framework uses an

Actions statement followed by commands that control the USB functions,

as listed here:

on <trigger>
 <command>
 <command>
 <command>

An Actions class is basically a named sequence of commands that are

executed when an event matching the trigger occurs. Once the trigger event

occurs and is matched with the defined trigger, the action is added to the tail

of a to-be-executed queue. In the case of the USB device framework, the

“triggers” for the action are changes in the system property sys.usb.config file.

Any change to the “sys.usb.config” property matching the trigger defined in

the “/system/core/rootdir/init.usb.rc” commands defined below the trigger

will be executed. These triggers specify the USB functionality to be supported

by the Android device and commands ensures the availability of the USB

functionality.

CHAPTER 2: Discovering and Managing USB Within Android 23

You may wonder how these functionalities are controlled. As you can infer

from Figure 2-3, the Android gadget driver configurations are exported

as files to the system directory named /sys/class/android_usb/. The

parameters include the following list:

/sys/class/android_usb/android0/enable - Parameter that enables/disables
Android gadget driver
/sys/class/android_usb/android0/idVendor - Parameter used to send Android
devices vendor ID
/sys/class/android_usb/android0/idProduct - Parameter used to send Android
devices product ID
/sys/class/android_usb/android0/functions – Used to set USB functions to be
supported by the Android gadget framework.

There are other functionality-specific parameters, which are discussed in

the appropriate chapters to follow. During boot, these configurations are

managed by init daemons implemented in /system/core/init/ that read,

parse, and maintain the list for subsequent use during system configuration.

Consider the following configuration from the init.usb.rc file, which

handles ADB-only USB configuration:

adb only USB configuration
This should only be used during device bringup
This should also only be used as a fallback if the USB
manager fails to set a standard configuration
on property:sys.usb.config=adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct D002
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

In this action, when some Android framework sets the system property

sys.usb.config to adb, Android disables the Android gadget framework(write

/sys/class/android_usb/android0/enable 0), sets the VID/PID, and

then sets the USB function to be supported. After the USB function

to be supported is set, the control will back to the Android gadget

framework(write /sys/class/android_usb/android0/enable 1). Since

the enabled functionality is ADB, the ‘adbd’ daemon is then started. The

command in the Actions class also sets the system property sys.usb.state

to adb to indicate the UsbDeviceManager so that the transition of the function

is completed. The section entitled “Case 2: Managing USB Device Mode

Functionality,” provides a detailed control flow of the USB function

transition process.

CHAPTER 2: Discovering and Managing USB Within Android 24

Android Gadget Driver uevents
Linux kernel 2.6.10 (and onward) introduced a notification mechanism for

kernel and user space communication called the uevent. Linux kernel uses

Netlink to send kernel uevents to the user space. Netlink is a socket=like

mechanism used in Linux to pass information between the kernel and

the user process. Netlink, similar to a generic BSD socket infrastructure,

supports primitive APIs like socket(), bind(), sendmsg(), and recvmsg().

Figure 2-4 provides a simple illustration of a uevent mechanism.

Kernel Driver

User Space Application

Netlink

Socket u
e
ve

n
t

Figure 2-4. A simple representation of a uevent mechanism

These user events (uevents) that are generated from a kernel driver are used

by user space daemons to create or remove device files, run programs, and

load or remove a driver in the user land. These uevents are generally used

to represent the lifecycle of a kobject, which is a data structure generally

representing a device, to the user space.

The Android gadget kernel framework uses these uevents to communicate

device states to the user space via the Android UsbDeviceManager

framework. UsbDeviceManager listens to these uevents, collects and parses

them, and then switches to the appropriate state. Within the kernel, the

Android work function of the drivers/usb/gadget/android.c file implements

the Android gadget driver. This gadget driver forms three different state

strings with the keyword USB_STATE, in one of the formats shown here.

--cut--
char *disconnected[2] = { "USB_STATE=DISCONNECTED", NULL };
 char *connected[2] = { "USB_STATE=CONNECTED", NULL };
 char *configured[2] = { "USB_STATE=CONFIGURED", NULL };
 char **uevent_envp = NULL;
--cut--

CHAPTER 2: Discovering and Managing USB Within Android 25

When an Android device is connected as a USB device, the state of the

device is checked from the gadget driver’s flags. and the appropriate

environmental data is assigned to the uevent_envp variable. For example,

when the device is connected to the PC, USB_STATE=CONNECTED is set and

when drivers are installed successfully and the device is functional,

USB_STATE=CONFIGURED is set.

--cut--
 if (cdev->config)
 uevent_envp = configured;
 else if (dev->connected != dev->sw_connected)
 uevent_envp = dev->connected ? connected : disconnected;
--cut—

This state of information is then propagated to the user space using

kobject_uevent_env, using the KOBJ_CHANGE action, as shown here.

--cut—

 if (uevent_envp) {
 kobject_uevent_env(&dev->dev->kobj, KOBJ_CHANGE, uevent_envp);
 pr_info("%s: sent uevent %s\n", __func__, uevent_envp[0]);
--cut—

In the user space, Android’s UsbDeviceManager collects this USB_STATE

information and broadcasts it to other frameworks that are interested in

knowing the state change. Having an understanding of how the Android

kernel passes information and how USB configurations are decided, you

can now explore how UsbDeviceManager uses these frameworks to manage

the USB device functionality of an Android device.

Case 1: Discovering USB Device State Changes

The process of managing USB functions within the Android UsbDeviceManager

framework registers a uevent observer that will wait for state changes.

 // Watch for USB configuration changes
 mUEventObserver.startObserving(USB_STATE_MATCH);

USB_STATE_MATCH is defined as follows:

 private static final String USB_STATE_MATCH =
 "DEVPATH=/devices/virtual/android_usb/android0";

This string is used by the uevent observer to match the pattern in the string

of uevents broadcasted by the kernel driver. Once the pattern matches

the equivalent observer callback, in the UsbDeviceManager class is called.

UsbDeviceManager then posts a message indicating that the USB state

CHAPTER 2: Discovering and Managing USB Within Android 26

has changed, along with the state string (connected, disconnected, or

configured). Figure 2-5 illustrates how UsbDeviceManager posts the message

and then its subsequent actions.

Figure 2-5. The communication process during a connected uevent

Case 2: Managing USB Device Mode Functionality

Once a state message is received, the next step is to set the USB

configurations based on that state. The configuration setting is achieved

by using setCurrentFunction. This internally sets the system property

sys.usb.config with the current functions. As discussed in the previous

section, this change in the system property will trigger a set of actions

defined in the init.usb.rc file, thus enabling the Android device to switch to

the particular USB function. Figure 2-6 shows the control flow when a user

enables tethering that sets RNDIS as a USB function.

CHAPTER 2: Discovering and Managing USB Within Android 27

USB Host Manager
The USB host manager framework provides the necessary functionalities to

manage the USB state when an Android device is in USB host mode and

subsequently manages the USB device. Implementation of the USB host

manager framework is spread across two files: frameworks/base/services/
java/com/android/server/usb/UsbHostManager.java and /frameworks/base/
services/jni/com_android_server_UsbHostManager.cpp. Internally,

UsbHostManager provides the necessary framework to detect connections,

disconnections, and opening of any USB device to the Android system.

These functionalities are exported via UsbManager, a class of the

android.hardware.usb package, as implemented in /frameworks/base/core/
java/android/hardware/usb/UsbManager.java. The framework also collects

information related to the connected USB device and shares them with the

classes listed here, which help the classes interact with the USB device.

UsbDevice - /frameworks/base/core/java/android/hardware/usb/UsbDevice.java
and frameworks/base/core/jni/android_hardware_UsbDevice.cpp
UsbDeviceConnection - /frameworks/base/core/java/android/hardware/usb/
UsbDeviceConnection.java and /frameworks/base/core/jni/android_hardware_
UsbDeviceConnection.cpp

Figure 2-6. Managing USB functions

CHAPTER 2: Discovering and Managing USB Within Android 28

Note that the following two classes do not implement JNI, as the necessary

information is collected by UsbHostManager during the detection of a

USB device.

 UsbEndpoint- /frameworks/base/core/java/android/hardware/usb/UsbEndpoint.java
UsbInterface - /frameworks/base/core/java/android/hardware/usb/UsbInterface.java

The Android USB host framework also uses the UsbRequest class, which

represents a request packet that is used to read and write data over the

established USB connection. The UsbRequest framework is implemented in

the following class and JNI files:

UsbRequest: /frameworks/base/core/java/android/hardware/usb/
UsbRequest.java and /frameworks/base/core/jni/android_hardware_
UsbRequest.cpp

The USB host manager also uses UsbSettingsManager to obtain user

settings and generate intents to indicate any USB device state changes.

The JNI-level USB host manager framework also uses the library

libusbhost, which is implemented in /system/core/libusbhost/usbhost.c

to interact with the Android kernel.

Figure 2-7 provides a brief overview of the UsbHostManager framework and

its blocks, including the Android kernel USB blocks.

CHAPTER 2: Discovering and Managing USB Within Android 29

Having seen the various blocks of the UsbHostManager framework, you

can now learn how these blocks play a role in managing a USB device

connected to the system. To do this, you’ll classify the complete process

into three stages: i) discovering a device, ii) communicating with a device,

and iii) terminating communication with a device.

Stage 1: Discovering a Device
Discovery of a USB device that is being connected to an Android device at

an application level is through the ACTION_USB_DEVICE_ATTACHED intent, as

defined in Intent.java, listed here:

/**
 * Broadcast Action: A broadcast for a USB device attached event.
 *
 * This intent is sent when a USB device is attached to the USB
 * bus when in host mode.

USBCore

UsbService

UsbHostManager
UsbSettings

Manager

UsbHostManager(JNI)

Java

Android

UserSpace

Android

KernelSpaceHost Controller Driver

libusbhost

devfs/inotify

UsbDevice

UsbDeviceConnection

UsbRequest

(JNI)

Android USB API

UsbDevice, UsbDeviceConnection, UsbRequest

Figure 2-7. The UsbHostManager framework

CHAPTER 2: Discovering and Managing USB Within Android 30

 *
 * {@link #EXTRA_DEVICE} containing the {@link android.hardware.usb.
UsbDevice}
 * for the attached device
 *
 */
 public static final String ACTION_USB_DEVICE_ATTACHED =
 "android.hardware.usb.action.USB_DEVICE_ATTACHED";

Internally, the process of discovering a device starts much earlier during

initialization by registering a mechanism that can notify the Android

framework of a device connection. When a device is connected to an

Android system, the Android Linux kernel creates a device file entry

representing the device in /dev/bus/usb. The libusbhost library relies on this

device file entry to detect and communicate with a USB device. To detect an

entry in the /dev/bus/usb directory, libusbhost uses the inotify framework,

which will notify any new entry.

 DID YOU KNOW?

The inotify framework is a file-change-notification system, a feature of the Linux kernel

introduced in version 2.6.13. Applications can use this feature to monitor a list of events in

a file or folder and then get notified when changes occur. The framework also provides easy

methods for adding monitoring and receiving notification of events.

Figure 2-8 illustrates how UsbHostManager registers to the kernel using the

libusbhost library to detect a device and subsequently generate the

ACTION_USB_DEVICE_ATTACHED intent using the UsbSettingsManager.

CHAPTER 2: Discovering and Managing USB Within Android 31

When the Android system boots up, the UsbService framework creates a

UsbHostManager instance, and subsequently the onLoad function registers

UsbHostManager callbacks using register_android_server_UsbHostManager.

The registered callback will be called when a device is detected, along with

the device information. This information is used by the UsbHostManager to

generate the device-attached intent.

Now that you understand how the Android USB host framework detects

a USB device connection, you’re ready to learn how to open and

communicate with a connected device.

Stage 2: Communicating with a Device
After a USB device connection is detected, the next stage is to

communicate with the device. Inside the UsbHostManager framework, all

communications are routed via the libusbhost library. The libusbhost library

interacts with the device using the device’s file system of the Android kernel.

Figure 2-9 describes the control flow when a device open API is invoked.

Figure 2-8. A USB_DEVICE_ATTACHED intent

CHAPTER 2: Discovering and Managing USB Within Android 32

Stage 3: Terminating Communication with a Device
Detecting a USB device disconnection at the application level is

accomplished through the ACTION_USB_DEVICE_DETACHED intent, as defined in

the following Intent.java.

/**
 * Broadcast Action: A broadcast for USB device detached event.
 *
 * This intent is sent when a USB device is detached from the USB
 * bus when in host mode.
 *
 * {@link #EXTRA_DEVICE} containing the {@link android.hardware.usb.
UsbDevice}
 * for the detached device
 *
 */
 public static final String ACTION_USB_DEVICE_DETACHED =
 "android.hardware.usb.action.USB_DEVICE_DETACHED";

Disconnection of a USB device is detected at the kernel level, and the kernel

removes the device file entry from the /dev/bus/usb folder. The inotify

system detects the change in the file system and notifies the libusbhost

library monitor function. The callback function (usb_device_removed), which

is registered for device removal by the UsbHostManager framework, tells the

UsbHostManager framework to generate the ACTION_USB_DEVICE_DETACHED

intent using the UsbSettingsManager framework. Figure 2-10 illustrates how

ACTION_USB_DEVICE_DETACHED is generated in the Android USB framework.

Figure 2-9. An open API flow

CHAPTER 2: Discovering and Managing USB Within Android 33

Now that you’ve seen the complete flow of the USB host framework, you’ll

use what you’ve learned in a real application in the following section.

Sample 1: USBView
The purpose of this example is to demonstrate how an application can use

the USB host APIs to interact with a USB device connected to the Android

device. This application demonstrates how to implement a tool similar to

the famous USBView tool available to the PC on Android. The functionality

of the tool is to list the USB devices connected to the Android device along

with the descriptor details.

Design and Flow

The first step in the process, as discussed earlier, is to detect the connection

of a USB device in the system. This is achieved by registering for the

ACTION_USB_DEVICE_ATTACHED intent and by declaring an intent filter in the

AndroidManifest.xml file of the project, as shown here.

<activity
 android:name="com.example.usbview.ItemListActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />

Figure 2-10. A USB_DEVICE_ATTACHED intent

CHAPTER 2: Discovering and Managing USB Within Android 34

 <action android:name="android.h"/>
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <meta-data android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_list" />
</activity>

This declaration ensures that the activity is started when the registered

intent is received. Inside the activity, the first step is to get the USB system

service object to manage the USB device.

UsbManager manager = (UsbManager)getActivity().getSystemService(Context.
USB_SERVICE);

The UsbManager object provides the necessary controls to get the number of

devices connected to Android system and then open the device.

Iterator<UsbDevice> deviceIterator = deviceList.values().iterator();
boolean test = deviceIterator.hasNext();
DummyContent.clearItem();
if (test) {
 while(deviceIterator.hasNext()) {
 int i = 0, ret=10;
 UsbDevice device = deviceIterator.next();
 UsbDeviceConnection connection = manager.openDevice(device);

Once the connection is established with the device, you can send control

messages to retrieve the descriptors.

try {
 ret = connection.controlTransfer(0x80, 0x06, 1, 0,buffer, 18, 50000);
 Toast.makeText(getActivity().getBaseContext(),""+ret,2).show();
}

The descriptor received is then displayed in the list, as shown in Figure 2-11.

CHAPTER 2: Discovering and Managing USB Within Android 35

The complete code and project are available at http://www.apress.com/
9781430262084 and at https://git.techfugen.com/cgit/Android/apps/git/
usbview.git/. You can download the code and then send patches and add

functionality to the project.

Conclusion
The USB service framework implements leaf-level functionalities required for

the Android USB framework and forms the base framework that is used by

other frameworks. In this chapter, the USB device manager section explored

how different USB functions are managed. Later chapters discuss USB

Android accessory, USB storage, and USB tethering and will elaborate on

this device framework.

The host manager framework performs the simple work of detecting

insertion and removal of USB devices to the Android system. As discussed

in the USB host manager section and demonstrated through the example,

the host framework exposes the USB device connected to the application

framework. Chapter 3, “USB Storage” further explores the MTP host mode,

which will help further extend your understanding of USB host mode.

The USB Service framework also contains methods that implement permissions

and filters for the USB and accessory devices connected to the system. You

can read about how these filters are employed by the Android USB framework

in the UsbSettingsManager implementation in the following file: frameworks/
base/services/java/com/android/server/usb/UsbSettingsManager.java.

Figure 2-11. USBView Application snapshot

https://git.techfugen.com/cgit/Android/apps/git/usbview.git/
https://git.techfugen.com/cgit/Android/apps/git/usbview.git/
https://git.techfugen.com/cgit/Android/apps/git/usbview.git/
https://git.techfugen.com/cgit/Android/apps/git/usbview.git/

37

Chapter 3
USB Storage

What You Will Learn:

USB Storage Overview	
USB Mass Storage	
a. USB Mass Storage Overview

b. USB Mass Storage Device Android Framework

c. USB Mass Storage Host Android Framework

USB Media Transfer Protocol (MTP)	
a. USB MTP Overview

b. USB MTP Device Android Framework

c. USB MTP Host Android Framework

Example 1: Switch to UMS and MTP Mode	
Example 2: MTP Host Application	

Young or old, most mobile users use their mobile devices as music players,

cameras, and even for watching videos. To support these user scenarios, a

device has to provide ample storage space and the provision to access and

manage those storage spaces. Most mobile devices support two types of

shared storage spaces, namely internal fixed memory and external shared

memory, through standard SD card slots. Applications like cameras, music

players, and video players use these storage spaces to store and retrieve

data. Mobile devices provide transport mechanisms like USB and Bluetooth

for end users to transfer data between the mobile device and a host PC.

CHAPTER 3: USB Storage38

In an Android-powered device, according to Android’s CDD (Compatibility

Definition Document, which is discussed in Chapter 1), an Android-powered

device should provide a way to access the contents of shared storage from

a host computer using USB protocols, such as USB Mass Storage (UMS) or

Media Transfer Protocol (MTP). If the device does not support a USB port, it

can support media sharing to the host PC using other means, such as via a

network file system.

As detailed in Chapter 1, an Android-powered device can act in two USB

modes, namely as a USB device or as a USB host. When a user connects

an Android-powered device to a PC host, the Android device is in USB

device mode. In USB device mode, the Android device shares the storage

either through MTP or UMS mode. From Android version 4.0 (Ice Cream

Sandwich), the Android CDD mandated MTP as the default method to share

the storage space over USB as shown in the snippet below. Sometimes

OEMs provide an option for switching from MTP to UMS and vice versa,

which allows users to choose any protocol.

=============Android CDD Snippet==============

7.6.2. Application Shared Storage

Regardless of the form of shared storage that is used, device

implementations must provide some mechanism to access

the contents of shared storage from a host computer, such as

USB Mass Storage (UMS) or Media Transfer Protocol (MTP).

Device implementations may use USB mass storage, but

should still use Media Transfer Protocol.

=============Android CDD Snippet==============

When a USB flash drive or an MTP Android-powered device (say another mobile

device) is connected to an Android-powered device, the Android-powered

device is in USB host mode. In this scenario, the Android-powered device

has to provide a nominal 5V on the USB port’s VBUS line. Note that in

USB device mode, the host PC will provide power to the Android-powered

device. Figure 3-1 illustrates these two different modes.

CHAPTER 3: USB Storage 39

This chapter explores how these two USB protocols (UMS and MTP) are

used to manage the shared storage space in both USB host and device

modes. Unlike other chapters, since this chapter deals with multiple

protocols, the UMS operation in both USB host and USB device mode

followed by MTP mode is discussed.

USB Mass Storage (UMS) Overview
One of the most popular USB devices is the USB flash drive, which is a

handy device that is used to store and transfer data from a host PC. The USB

Mass Storage (UMS) class specification, defined by the USB-IF, provides an

overview of how a mass storage device has to behave on an USB bus. Of the

various protocols supported by the UMS class, devices like a USB flash drive

or a mobile device support the Bulk-Only Transport (BOT) protocol defined

in the USB-IF’s mass storage class Bulk-Only Transport specification. The

name comes from the fact that the protocol uses a bulk IN and a bulk OUT

endpoint for all data transfer. Other, rarely used, UMS class protocols use

interrupt transfers in addition to bulk transfers. The UMS protocol also uses

the default control pipe to clear a STALL condition on the bulk endpoints and

A
n

d
ro

id

D
e
vi

ce

A
n

d
ro

id

D
e
vice

USB Storage Device Mode

USB Storage Host Mode

Figure 3-1. Two different USB storage setups

CHAPTER 3: USB Storage40

to issue class-specific requests. To better understand the details of the BOT

UMS device’s endpoint requirement, Figure 3-2 captures the interface and

endpoints USB descriptors of an Android BOT UMS device.

Figure 3-2. The interface and endpoint descriptors for an Android USB mass storage device

From the descriptors, you will notice the descriptor’s bInterfaceSubClass

field indicates that the device uses the SCSI protocol and the

bInterfaceProtocol field indicates that the interface protocol is Bulk-Only

Transport. The descriptor also shows that the device uses bulk endpoints

with a maximum packet size (bMaxPacketSize) of 512. High-speed devices

must set bMaxPacketSize to 512.

CHAPTER 3: USB Storage 41

Now that you’ve read about the interface and endpoint details of a UMS

BOT Android device, the next section explains the UMS BOT protocol. It is

made up of two important components, the command block wrapper (CBW)

and the command status wrapper (CSW).

Command Block Wrapper (CBW)
The command block wrapper (CBW) is 31 bytes of data that contain a

command and its associated information. The CBW holds details like a fixed

signature, length of data expected, direction of data transfer, the logical unit,

and a payload that may contain a SCSI command to be executed. To better

understand the CBW, take a look at Figure 3-3, which shows a snapshot

from a USB protocol analyzer (Ellisys). It provides the finer details of the

various fields of the CBW.

Figure 3-3. The finer details of a CBW

Figure 3-3 provides a breakdown of a CBW captured using a USB bus

analyzer. The example CBW shows a payload containing a SCSI READ

command sent from the USB host requesting 512 bytes of data.

Command Status Wrapper (CSW)
The Command Status Wrapper (CSW) is a 13-byte response to the prior

command received and can be preceded by a data phase. The command

status block holds information like a fixed signature, information about the

data transfer, along with the status of the command. So you can better

understand the CSW, Figure 3-4 shows a snapshot from a USB protocol

analyzer (Ellisys). It provides the finer details of the various fields of the CSW.

CHAPTER 3: USB Storage42

Now that you understand how the BOT protocol and the SCSI protocol work

together to enable data transfer between a USB host and a UMS device,

this next section briefly explains the UMS protocol state machine. The UMS

BOT protocol uses a command-transport phase (CBW), a data-transport

phase (which is optional), and a status-transport phase (CSW), as shown in

the Figure 3-5.

Figure 3-4. The finer details of a CSW

CBW

CSW

Data Out

(from host ex: Write)
Data IN

(to host, Ex: Read)

Figure 3-5. A state diagram of a UMS BOT protocol

CHAPTER 3: USB Storage 43

The protocol starts with the USB host sending a CBW to the UMS class

device. Based on the command received, the USB device or host may

send data in the data-transport phase, or the data-transport phase may be

absent. To complete the command, the device sends a CSW in the status-

transport phase. All phases use bulk endpoints.

The following section explains how this protocol is implemented in an

Android environment, in both USB host and device modes. The subsequent

section explores the sequence of activities within the Android framework

when in UMS mode, and later concludes with an example that shows how

to switch an Android device between USB Mass Storage mode and Media

Transfer Protocol (MTP) mode.

Android Mass Storage Framework
The Android Mass Storage framework essentially consists of two

categories—the Android framework that manages the UMS protocol when

the Android device is in USB device mode and the Android Mass Storage

framework that manages the UMS protocol when the Android device is in

USB host mode. In both cases, the UMS protocol is completely managed by

the Android kernel layer and the Android framework is either used to enable

the functionality or to present the storage to the user. The following section

explores both the USB device and the USB host use cases in detail.

Android USB Mass Storage Device Framework
The Android USB Mass Storage device framework consists of both the

Android and kernel frameworks, with most of the work done at the Linux

kernel USB driver level. The Android USB framework in a USB device mass

storage use case performs basic functional management and provides the

necessary information to the user. The actual BOT protocol and interaction

with the storage device (such as an MMC card) is taken care at the kernel

level. Figure 3-6 provides an architectural view of the Android USB Mass

Storage device framework.

CHAPTER 3: USB Storage44

The Android USB Mass Storage device framework implementation is not

a separate file, but is interleaved within the UsbDeviceManager and the

UsbService frameworks implemented in the following files: frameworks/
base/services/java/com/android/server/usb/UsbDeviceManager.java and

frameworks/base/services/java/com/android/server/usb/UsbService.java.

The complete UMS class implementation is done at the Android kernel

level. The implementation is available in the drivers/usb/gadget/f_mass_
storage.c file.

The kernel driver implementation provides options to manage the number of

logical units (LUNs) to be supported by the driver and the sysfs interface to

help associate a storage location for each LUN. The typical representation

of a LUN is a drive letter. The following file is used to associate the storage

block to the UMS driver: /sys/class/android_usb/android0/f_mass_
storage/lun/file.

USB Gadget Driver

Android Composite

Driver

UsbDeviceManager Android

User Space

Android

Kernel Space

USB Controller Driver

init.usb.rc

UsbSettings

Manager

UsbService

sysfs

Mass Storage Driver

(f_mass_storage.c)

lun file

MMC Driver

Block

Driver

VFS

vold

Storage

Manager

Figure 3-6. An Android USB Mass Storage device framework

CHAPTER 3: USB Storage 45

The storage part of the UMS BOT device implementation is managed by

the MMC driver available in the /driver/mmc folder. This MMC driver creates

entries for the storage volumes in /dev/block for each partition. The storage

part of the UMS is managed by the StorageManager framework and by

the volume daemon (system/vold) that’s present in the frameworks/base/
core/java/android/os/storage/StorageManager.java, frameworks/base/
services/java/com/android/server/MountService.java, and system/vold/
VolumeManager.cpp files.

The MountService registers itself for the USB intent called

UsbManager.ACTION_USB_STATE, which is broadcasted to indicate changes in

the USB framework. The MountService waits for the USB_CONNECTED state, as

shown in the following snippet, and along with the storage manager, prepares

the Android framework to be ready for sharing the memory space with the

UMS gadget driver. The StorageManager class also uses an internal event

called EVENT_UMS_CONNECTION_CHANGED to communicate UMS state changes.

The volume daemon (vold) framework detects any addition of storage

volume and helps associate the storage medium to the UMS kernel driver.

// Watch for USB changes on primary volume
final StorageVolume primary = getPrimaryPhysicalVolume();
if (primary != null && primary.allowMassStorage()) {
 mContext.registerReceiver(
 mUsbReceiver, new IntentFilter(UsbManager.ACTION_USB_STATE), null,

mHandler);
}

The Android framework system UI, which presents users with the UMS

feature in the notification bar and enables them to mount storage to a UMS

driver, is available in the following file locations: frameworks/base/packages/
SystemUI/src/com/android/systemui/usb/StorageNotification.java and

/frameworks/base/packages/SystemUI/src/com/android/systemui/usb/
UsbStorageActivity.java.

The system UI relies on the USB_STATE change intent broadcasted by the Android

USB framework to dynamically update the UI to present the UMS feature.

The next section explores the sequence of internal activities that happen

when an Android device acts as a USB mass storage device.

Sharing the Storage
Inside the Android framework, when the device boots or switches to UMS

mode, the framework brings up the UMS functionality on the user interface.

This is because an SD card is mounted inside the device and for the UMS

to use the storage space, the storage has to be unshared and mounted to

CHAPTER 3: USB Storage46

the UMS driver. Figure 3-7 illustrates how a storage location is associated

with the UMS gadget driver in order to share memory over USB to a host PC

using the UMS protocol.

UsbStorage

Activity

Storage

Manager
vold sysfs

Mass Storage
Driver

Mount

Service

switchUsbMassStorage

enableUsbMassStorage

setUsbMassStorage
Enabled

doShareUnshareVolume

share, true

Vold Command

VolumeCmd::runCommand

shareVolume

/dev/block/vold/**

/sys/class/android_usb/android0/f_mass_storage/lun/file

Figure 3-7. A sequence of activity to mount storage over UMS

Communication between the volume daemon (vold) and the Android

Storage framework (MountService) is achieved by creating a connection to

the daemon using NativeConnectionFramework, as shown here:

/*
* Create the connection to vold with a maximum queue of twice the
* amount of containers we'd ever expect to have. This keeps an
* "asec list" from blocking a thread repeatedly.
*/
mConnector = new NativeDaemonConnector(this, "vold", MAX_CONTAINERS * 2,
VOLD_TAG, 25);

The mounting of storage is initiated by the user through the UI framework,

which passes the information to the StorageManager and subsequently to

the MountService, as illustrated in Figure 3-7. The MountService framework

forms a share command and passes to the daemon through the daemon

connector. Inside the daemon (vold), the command is received and

interpreted by system/vold/CommandListener.cpp and invokes shareVolume

to associate the storage to the UMS gadget driver.

CHAPTER 3: USB Storage 47

 DID YOU KNOW?

When the volume daemon associates storage space to the UMS gadget driver using

shareVolume, the function also disables caching by setting /proc/sys/vm/dirty_
ratio to '0' The diff history (a28056b38275003895ff5d9576681aca01544822) shows

that this has been changed to improve UI performance. This means that UMS will perform

slower, compared to previous versions of Android. Linux provides a default dirty_ratio

value of '20' To get better UMS performance, you can restore the default value.

Android USB Mass Storage Host Framework
Android framework officially provided its USB host requirement from the

Android ICS version by providing host APIs. But this doesn’t restrict the

use of the Android USB Mass Storage host mode, as long as the device

hardware includes a USB host controller and the necessary drivers are

enabled within the Android kernel. In the case of the Android UMS host

mode, all the necessary implementation is available inside the Android Linux

kernel and the UMS device shows up on the Android framework as a disk

device. Figure 3-8 illustrates various blocks of USB mass storage.

CHAPTER 3: USB Storage48

When a UMS device—say a USB flash drive—is connected to an

Android-powered device, the UMS device gets enumerated and the

usb-storage USB storage driver module associates with the device. The

USB storage subsequently registers to the SCSI driver and presents the USB

device as a block device to the user space using the block layer. Thus, a

complete USB abstraction takes place within the kernel layer and the device

is presented as a block device to the user framework. No special Android

USB framework is required for managing or viewing a UMS device in an

Android-powered device.

 DID YOU KNOW?

Whenever your Android-powered device claims it is OTG (On The Go) (host mode support)

and cannot enumerate a USB flash drive connected to it due to power issues, add a

“self-powered” hub between the Android-powered device and your USB flash drive. This

trick should help the Android-powered device enumerate the USB flash device.

USB Core

Android

User Space

Android

Kernel Space

Host Controller Driver

vold

/dev/block/SD*

File Explorer APP

USB Storage

Block Layer

SCSI

Android/Java Framework

Figure 3-8. The Android UMS host architechture

CHAPTER 3: USB Storage 49

USB Media Transfer Protocol (MTP) Overview
Media Transfer Protocol, or MTP, was developed by Microsoft to transfer

media files along with its meta-data using a client/server model. MTP was

initially developed as an extension of Picture Transfer Protocol (PTP) and

was later adapted as a USB class by the USB implementer forum. When an

Android device uses UMS implementation to share storage, it shares the

storage completely with full control to the PC host, which gets exclusive

rights to delete or format. This can lead to accidental loss of data or create

a situation in which users can’t access the memory when connected as

a UMS device. However, MTP provides a method to share storage in a

more secure and structured way. This means that during MTP operation,

the storage space is completely managed by the Android-powered device,

unlike with the UMS implementation.

MTP adopts an “operation-data-response” model for its communication,

where the USB host MTP implementation is referred to as the initiator and

the USB device MTP implementation is referred as the responder. A detailed

explanation of the communication model is provided in the subsequent

section. Figure 3-9 illustrates the two MTP roles that an Android-powered

device can play.

A
n

d
ro

id

D
e
vice

(U
S

B

D
e
vice

)

A
n

d
ro

id

D
e
vi

ce

(U
S

B
 H

o
st

)

USB MTP Responder Mode

USB MTP Initiator Mode

Initiator

Responder

MTP Device

Initiator

Responder

Figure 3-9. An Android powered device's different MTP roles

CHAPTER 3: USB Storage50

After having briefly introduced MTP, this chapter provides the details of

the MTP specification, and then explores the internals of the Android MTP

framework. At the end of the chapter, an application that demonstrates the

MTP initiator APIs, provided by the Android framework to communicate to

an MTP device, is explored.

Media Transfer Protocol Specification Overview
MTP was developed with the intention of providing seemly communication

that allows for the sharing of storage contents targeting devices like portable

media players, mobile phones, and so on. It is also important to note that

the MTP specification was defined as a transport-agnostic protocol, which

means the protocol can operate on a USB, a network interface, and similar.

The Media Transfer Protocol specification provided by the USB-IF defines

the implementation of MTP over USB and is available in http://www.usb.
org/developers/docs/devclass_docs/MTPv1_1.zip. Thus, this MTP

specification defines how MTP works over USB.

The communication model of MTP is peer-to-peer, and in that

communication setup, one device is referred to as the initiator and the other

device is referred to as the responder. The role of the initiator is to act as a

server and to initiate the transaction, whereas the role of the responder is

to service and respond to commands like a client to the initiator device. In

a USB environment, the USB host is the initiator and the USB device is the

responder. The transport requirement of MTP is to have a seamless data

transmission between initiator/responder and a notification mechanism to

inform the initiator of responder’s status changes. Figure 3-10 illustrates the

communication model of MTP.

MTP Initiator MTP Responder

Asynchronous Events

Data Transmission

Figure 3-10. An initiator and responder relationship

The transport requirement is taken care of by the USB protocol by defining

the MTP interface with bulk IN and OUT endpoints for data transfer. Also

defined is an interrupt endpoint for asynchronous notification of the status

information. Figure 3-11 shows an MTP interface descriptor and subordinate

endpoint descriptors for an Android device.

http://www.usb.org/developers/docs/devclass_docs/MTPv1_1.zip
http://www.usb.org/developers/docs/devclass_docs/MTPv1_1.zip

CHAPTER 3: USB Storage 51

Figure 3-11. An interface descriptor and endpoint descriptors for an Android MTP device

CHAPTER 3: USB Storage52

 DID YOU KNOW?

Though the USB-IF MTP specification (section 2.7) states that no specific or proprietary USB

string descriptor is required for USB enumeration, a MTP USB device has to provide a string

descriptor with a signature string to enumerate successfully with a Microsoft Windows PC.

(See http://androidxref.com/kernel_3.4/xref/drivers/usb/gadget/f_mtp.c#220.)

Now that you’ve read a brief overview of an MTP setup, it’s time to learn

about MTP and its operation. As an abstract over an underlying transport,

MTP is also independent of a file system and the file type of the media,

and the file is treated as a binary object. An MTP binary object also holds

additional meta-information about the file, thus enabling the protocol to act

on the binary object without understanding the format of the binary file.

A combination of the binary file and its meta-data is referred to as an MTP

object. To manage and gain access to MTP objects, MTP defines a set of

command and response protocols.

To have an understanding of MTP, consider a basic scenario of how an object

is pulled from a responder to an initiator, and go through the command/

response process. Figure 3-12 illustrates the exchanges happening when an

object is retried from a responder device.

MTP Initiator MTP Responder

GetDeviceInfo

Open Session(Session ID)

GetObjectHandles

GetObject(Handle)

Close Session

Return DeviceInfo & MTP_RESP_OK

Return ObjectHandles & MTP_RESP_OK

Return Object & MTP_RESP_OK

MTP_RESP_OK

MTP_RESPONSE_OK

Figure 3-12. The sequence of activities for retrieving an object from a responder

http://androidxref.com/kernel_3.4/xref/drivers/usb/gadget/f_mtp.c#220

CHAPTER 3: USB Storage 53

After successful enumeration of a responder, the first command sent by the

initiator is to get the device (responder) information using the GetDeviceInfo

command. Upon receiving it, the responder collects its information and

sends it back to the initiator in a format defined by MTP specification.

The data is also followed by a notification on the status of the command

execution, MTP_RESP_OK, upon successful completion. Subsequently, to

begin any operation, the initiator has to start a session with an OpenSession

command. Once a session is established, the initiator collects handles of

all the objects and retrieves interested objects from the responder using the

GetObject command.

The command and response sequence is carried out in three transaction

phases: i) the Operation request phase, ii) the Data phase, and iii) the

Response phase. The Data phase is optional and is valid only for certain

commands occurring between the Request and the Response phases.

The next section explores how this protocol is implemented within the

Android framework.

Android MTP Responder Framework
According to the Android CDD, an Android device should implement MTP

to share media with a host PC. When an Android device implements MTP, it

should be compatible with the Android reference MTP host implementation.

Inside the Android USB framework, the MTP responder framework

implementation is available in the following folders:

frameworks/base/media/java/android/mtp/
frameworks/av/media/mtp/
frameworks/base/media/jni/

The key file in the Android USB MTP Responder framework that manages

responder activity is MTPServer, and the kernel implementation of the MTP

is available in drivers/usb/gadget/f_mtp.c. Like other USB functionalities,

USB state management and the enabling of USB functionality is

interleaved with the UsbService and UsbDeviceManager implementations.

Communication between the kernel MTP module and the Android MTP

responder framework is through the device file called mtp_usb, which

implements the file operation to perform data operations.

Figure 3-13 illustrates the various modules of the MTP responder framework,

along with the USB kernel modules. The subsequent section explains the

different class frameworks involved in implementing an MTP responder.

CHAPTER 3: USB Storage54

MTPServer
The MTPServer class is the core framework in the responder implementation.

It consists of the following files:

frameworks/base/media/java/android/mtp/MtpServer.java
frameworks/av/media/mtp/MtpServer.cpp
frameworks/base/media/jni/android_mtp_MtpServer.cpp

The MTPServer‘s JNI implementation, acts as the interface to connect with

the kernel driver. The database is invoked when the MTPServer class gets

instantiated. The MTPServer CPP implementation manages the complete

command response interaction with the initiator.

USB Gadget Driver

Android Composite

Driver

UsbDeviceManager

Android

Kernel Space

USB Controller Driver

init.usb.rc

UsbService

sysfs

MTP Driver

(f_mtp.c)

MMC Driver

Block

Driver

VFS

MtpDatabase

JNI

MTPServer

Framework

(JAVA)

m
tp

_
u

sb

MtpServer

JNI

MTPServer

Framework

(CPP)

M
T
P

 S
e
rvice

Figure 3-13. The Android MTP Responder framework

CHAPTER 3: USB Storage 55

MTPRequestPacket
The MTPRequestPacket class is implemented for handling the request phase

of the MTP transaction for both the responder and the initiator, and the

implementation is conditionally compiled using macros. The implementation

can be found in the frameworks/av/media/mtp/MtpRequestPacket.cpp file.

MTPResponsePacket
The MTPResponsePacket class is implemented for the response phase of the

MTP transaction for both the responder and the initiator. The implementation

for both responder and initiator is conditionally compiled using macros.

The implementation can be found in the frameworks/av/media/mtp/
MtpResponsePacket.cpp file.

MTPDataPacket
The MTPDataPacket class is implemented for handling the data phase of the

MTP transaction for both the responder and the initiator. The implementation

for both responder and initiator is conditionally compiled using macros.

The implementation can be found in the frameworks/av/media/mtp/
MtpDataPacket.cpp file.

MTPDatabase
The MTPDatabase class is implemented to handle binary objects and the

meta-data stored in the storage of the Android device. The implementation

can be found in the frameworks/base/media/java/android/mtp/
MtpDatabase.java and frameworks/base/media/jni/android_mtp_
MtpDatabase.cpp files.

MTPEventPacket
The MTPEventPacket class is implemented for handling asynchronous

events for both the responder and the initiator. The implementation for

both responder and initiator is conditionally compiled using macros.

The implementation can be found in the frameworks/av/media/mtp/
MtpEventPacket.cpp file.

CHAPTER 3: USB Storage56

Now that you have an understanding of the various blocks of the Android

USB MTP responder framework, the following section explores how these

modules communicate with each other during an MTP transaction.

MTP Responder: Command/Response Sequence
The Android USB MTP device framework implementation is completely

managed through the MTPServer class, which includes transaction

management, managing the storage, and so on. The responder framework

is started by MTPService whenever the Android USB framework enables

MTP functionality. This functionality is managed by MtpReceiver.java and

MTPService.java, available in packages/providers/MediaProvider/src/com/
android/providers/media/.

Once the MTPService associates the database with the MTPServer and

instantiates the MTPServer, the Android device is ready to serve MTP

initiator commands. After a successful start, the MTPServer waits in an

infinite loop in the run member function for MTP command request from the

initiator. To understand this framework, we’ll consider a simple command

called GetDeviceInfo and explore the sequence of activity within the MTP

responder framework.

Figure 3-14 illustrates the complete sequence of activity within the

Android USB MTP responder framework when a GetDeviceInfo

command is received.

CHAPTER 3: USB Storage 57

Once the command is received by MTPServer, based on the command,

an optional data phase is managed. The command is parsed using the

handleRequest function.

In case of GetDeviceInfo, the command is managed by the doGetDeviceInfo

function, which collects information necessary for the response. The

function uses MTPDatabase to collect information like playback format and

device properties, and updates the MTPDataPacket to send it over to the

Android USB gadget driver.

MTP Server
MTPRequest

Packet

MTPResponse

Packet

MTPData

Packet

MTP Gadget

Driver

MTP

Database

read()

read()

vo
id

 M
tp

S
e
rv

e
r:

:r
u

n
()

Start of handleRequest

GetDeviceInfo

getSupportedPlaybackFormats

Start of doGetDeviceInfo

getSupportedCaptureFormats

getSupportedDeviceProperties

Update mData

End of doGetDeviceInfo

write

setOperationCode

setTransactionID

write

setTransactionID

write

write

End of handleRequest

Figure 3-14. A sequence of activities in the Android USB MTP responder framework

CHAPTER 3: USB Storage58

Once the data phase is successful, the MTPServer sends a response code that

indicates the status of the command execution using MTPResponsePacket, thus

completing all three transaction phases of the MTP communication.

Now that you have a good understanding of the MTP responder framework

and its internal operation within Android, you’re ready to explore the operation

of an MTP initiator framework, which is covered in the following section.

Android MTP Initiator Framework
As discussed in the previous section, the Android CDD mandates that an

Android MTP device should be compatible with the Android reference MTP

host implementation. This section explores this Android MTP host/initiator

framework, referred to as the android.mtp package. Inside the Android USB

framework, the MTP initiator framework implementation is available in the

following folders:

frameworks/base/media/java/android/mtp/
frameworks/av/media/mtp/
frameworks/base/media/jni/

Unlike with the responder framework, Android provides APIs for the Initiator

framework, so that developers can create applications to manage MTP

devices connected to a USB host. Table 3-1 provides a brief description of

the APIs provided by the Android USB framework to manage MTP devices.

Table 3-1. MTP Initiator android.mtp Package APIs

Class Description

MTPDevice Represents the MTP device that is connected and provides

leaf-level functions for MTP commands like GetDeviceInfo to

manage the device.

MTPStorageInfo Retrieves details related to the storage medium that the MTP

device is exporting, with leaf functions like getStorageID,

getFreeSpace, and so on.

MTPDeviceInfo Holds information about the MTP device information, as

defined in section 5.2.2 of the MTP specification.

MTPObjectInfo Holds information about the MTP object information, as

defined in section 5.3.1 of the MTP specification.

CHAPTER 3: USB Storage 59

Like the Android USB MTP device framework, the MTP host framework

and MTP class functionality are completely implemented at the Android

framework level, and transport over USB is done over the Android kernel’s

usb-core module. Figure 3-15 illustrates the MTP initiator architecture within

the Android framework.

USB Core

Android
User Space

Android
Kernel Space

Host Controller Driver

libusbhost

/dev/bus/usb

MTP Initiator APP (CameraBrowser)

MTPDevice MTPDeviceInfo MTPObjectInfo MTPStorageInfo

Host APIs

MTPDeviceJNI

JAVA/CPP

JAVA/CPP

Figure 3-15. The Android USB MTP initiator architechture

As illustrated in Figure 3-15, the kernel layer shares the MTP device

connected to the Android framework over the /dev/bus/usb files, which is

further accessed by the initiator framework using the libusbhost library.

To understand in more detail how a USB device is discovered by the Android

USB framework, refer back to Chapter 2, “Discovering and Managing USB

Within Android.”

It is also important to understand that unlike the responder framework, where

an MTPService framework binds itself when the Android device framework

enables MTP function, an MTP initiator is the bare framework provided for

an application developer to develop applications using the APIs exported

CHAPTER 3: USB Storage60

by the framework. Thus, for an Android USB MTP initiator architecture to be

complete, an application has to be installed that can discover an MTP device

and retrieve device and object information from the device.

The following section explores how the sequence of events occur in an MTP

initiator application from discovering and managing the device by retrieving

data and device information.

MTP Initiator: Discovering and Managing an
MTP Device
Unlike the MTPResponder framework, which is managed internally by the

Android USB framework, the initiator framework exports APIs to allow end

users to develop applications that will determine the functionality of the MTP

initiator device. This section explores two fundamental requirements for

an MTP initiator application, namely discovering the MTP device and then

managing the discovered device.

An MTP initiator application has to register the ACTION_USB_DEVICE_ATTACHED

intent to get intimation on any USB device connection. To understand how

and when this intent is generated, refer back to Chapter 2.

After receiving the intent, make sure to obtain the device handle to use the

MTPDevice class and open the device as shown in Figure 3-16. Internally, the

MTPDevice class determines if it’s an MTP device by retrieving the interface

details and returning the instance of an MTPDevice, as shown in this code

snippet from the MTPDevice.cpp:

if (interface->bInterfaceClass == USB_CLASS_STILL_IMAGE &&
 interface->bInterfaceSubClass == 1 && // Still Image Capture
 interface->bInterfaceProtocol == 1) // Picture Transfer Protocol (PIMA 15470)
{
 char* manufacturerName = usb_device_get_manufacturer_name(device);
 char* productName = usb_device_get_product_name(device);
 ALOGD("Found camera: \"%s\" \"%s\"\n", manufacturerName, productName);
 free(manufacturerName);
 free(productName);
} else if (interface->bInterfaceClass == 0xFF &&
 interface->bInterfaceSubClass == 0xFF &&
 interface->bInterfaceProtocol == 0) {

CHAPTER 3: USB Storage 61

After ensuring that the interface is an MTP, the MTPDevice class claims the

interface and returns to an MTPDevice object.

After claiming the interface, the next step is to manage the MTP device.

Figure 3-17 illustrates the sequence of activities within the Android MTP Initiator

framework that make up a complete transaction.

MTP

Initiator

App

MTP

Device

MTP

Request

Packet

MTPData

Packet

MTP

Packet

libushost

getThumbnail

write
transfer

usb_device_bulk_

transfer

MTP

Response

Packet

read

transfer

usb_device_bulk_

transfer
getResponseCode

if (MTP_RESPONSE_OK)

getData

read

transfer

usb_device_bulk_

transfer

Figure 3-17. A command/response sequence within an Android MTP initiator framework

MTP Initiator

App
MTPDevice

MTPDevice

Info

MTPStorage

Info

Android USB

Host

Framework

MTPDevice

Info

ACTION_USB_DEVICE_ATTACHED

openDevice

open

Check device’s

InterfaceClass,

InterfaceSubClass,

InterfaceProtocol

usb_device_claim_interface

MtpDevice *

Figure 3-16. The sequence of activities when an intiator application opens an MTP device

A command transaction involves multiple classes, namely MTPRequestPacket,

MTPResponsePacket, and MTPDataPacket. These classes implement the

three stages of MTP transactions as described in the beginning of the MTP

CHAPTER 3: USB Storage62

section. To understand the flow of this process, consider an example of the

GetThumbnail command and observe the sequence of activities.

void* MtpDevice::getThumbnail(MtpObjectHandle handle, int& outLength) {
 Mutex::Autolock autoLock(mMutex);

 mRequest.reset();
 mRequest.setParameter(1, handle);
 if (sendRequest(MTP_OPERATION_GET_THUMB) && readData()) {
 MtpResponseCode ret = readResponse();
 if (ret == MTP_RESPONSE_OK) {
 return mData.getData(outLength);
 }
 }
----cut----

When a command is received by the MTPDevice, it forms the request packet

and invokes the write function of the MTPRequestPacket class. Internally, all

of these packet classes are derived from an MTPPacket class, which acts as

an interface for the low-level function, that is, the interface for libusbhost.

The next stage is to handle the data phase of the transaction. The readData

function collects the data using an MTPDataPacket object. While these

two phases are successfully completing, the MTPDevice waits for the MTP_
RESPONSE_OK response code to get the data and for the user to be present in

the application.

Now that you have a detailed understanding of these two classes, namely

the UMS and the MTP, the next sections explore two examples of using

these frameworks within Android.

Example 1: Switching MTP to UMS
The purpose of this example is to demonstrate how an application can

switch between the USB protocols MTP and UMS to share the storage

media. It is important to note that this application requires control of

system files, and thus the Android device should have been rooted and the

application should run in super user mode. This application was tested with

Samsung Tab2, rooted with a custom Android from Cynogenmod, but this

procedure should work with all devices.

CHAPTER 3: USB Storage 63

Design and Flow

In a normal setup, if UMS is supported by an Android device’s init.usb.rc,

it will contain the following entries to manage USB functionality:

on property:sys.usb.config=mass_storage
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

on property:sys.usb.config=mass_storage,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

This information at boot time is loaded within the Android framework and

will be executed when the UMS (mass_storage) functionality is enabled by

the Android framework or by a user. Most vendors do not provide support

for UMS, and hence remove these type of entries from the init*.rc file.

Since the Android framework does not provide an option to set a particular

USB function through interface functions for the application, direct sets have

required functions using a super user library, thereby switching between

required functions.

To Switch to UMS Mode

The following code ensures the switching of USB functionality to UMS mode:

OnClickListener mtp2ums = new OnClickListener() {

public void onClick(View arg0) {

 Toast.makeText(getBaseContext(),"MTP MSC Click",Toast.LENGTH_LONG).show();

 execCommandAsSU("echo 0 > /sys/class/android_usb/android0/enable");
 execCommandAsSU("echo mass_storage,adb > /sys/class/android_usb/android0/

functions");
 execCommandAsSU("echo /dev/block/mmcblk1 > /sys/class/android_usb/

android0/f_mass_storage/lun/file");
 execCommandAsSU("echo 1 > /sys/class/android_usb/android0/enable");
 execCommandAsSU("setprop sys.usb.state mass_storage,adb");

 };
};

CHAPTER 3: USB Storage64

For UMS functionality to work, the Android kernel looks for the storage to be

shared with the host PC. This information is provided through a file that the

kernel exports, called f_mass_storage/lun/file. The application associates

the external SD card generally named mmcblk1p1 as follows:

execCommandAsSU("echo /dev/block/mmcblk1 > /sys/class/android_usb/
android0/f_mass_storage/lun/file");

This can be any valid block device that a user requires and can be identified

by busy box tools.

To Switch to MTP Mode

The following code ensures switching back from USB functionality to

MTP mode:

OnClickListener ums2mtp= new OnClickListener() {

public void onClick(View arg0) {
 Toast.makeText(getBaseContext(),"MSC MTP Click",Toast.LENGTH_LONG).show();
 execCommandAsSU("echo 0 > /sys/class/android_usb/android0/enable");
 execCommandAsSU("echo mtp,adb > /sys/class/android_usb/android0/functions");
 execCommandAsSU("echo 1 > /sys/class/android_usb/android0/enable");
 execCommandAsSU("setprop sys.usb.state mtp,adb");

 };
};

The complete code and project are available as part of the source code

download available at http://www.apress.com/9781430262084 and on

https://git.techfugen.com/cgit/Android/apps/git/mtp2ums.git/.

You can download the code and send patches to add functionalities,

like choosing appropriate storage, and so on, to the project. Figure 3-18

provides a snapshot of the application.

http://www.apress.com/9781430262084
https://git.techfugen.com/cgit/Android/apps/git/mtp2ums.git/

CHAPTER 3: USB Storage 65

Example 2: MTP Initiator Application
The purpose of this example is to demonstrate how an application can use

the android.mtp APIs to retrieve information from an MTP device’s storage

media. This “CameraBrowser” application is part of the Android framework

and is available in frameworks/base/media/tests/CameraBrowser/src/com/
android/camerabrowser/. As the detailed flow has been analyzed in the

previous sections, this example presents only the key points along with the

screen shots of the application in action.

Design and Flow

In this application, the Android device acts as a USB host. Therefore, the

first step is to have broadcast listener to get notified for USB_DEVICE_

ATTACHED intent that gets generated when a USB device is connected to

an Android USB host. To receive notification for the intent the setup is done

in the manifest, as in the file shown here:

</intent-filter>
 <intent-filter>
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 </intent-filter>
 <meta-data android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
</activity>

Figure 3-18. Snapshot of the MTP-MSC switch application

CHAPTER 3: USB Storage66

When an MTP device is connected to an Android device that’s running this

application, the application gets notified, as shown in Figure 3-19.

Figure 3-19. Snapshot of MTP application selection notification

Once you choose the application that will communicate with the device, the

application opens the device and adds the following to the user interface:

if (UsbManager.ACTION_USB_DEVICE_ATTACHED.equals(action)) {
 if (mtpDevice == null) {
 mtpDevice = openDeviceLocked(usbDevice);
 }
 if (mtpDevice != null) {
 for (Listener listener : mListeners) {
 listener.deviceAdded(mtpDevice);
 }
 }

The application then lists the connected device’s detail retrieved as shown in

Figure 3-20 using GetDeviceInfo in the text view, as shown here:

TextView textView2 = (TextView)view.findViewById(android.R.id.text2);
MtpDevice device = mDeviceList.get(position);
MtpDeviceInfo info = device.getDeviceInfo();
if (info != null) {
 textView1.setText(info.getManufacturer());
 textView2.setText(info.getModel());
} else {

CHAPTER 3: USB Storage 67

Clicking on the device listed by the CameraBrowser application as in

the above Figure 3-20 retrieves the media contents of the device using

StorageBrowser class.

protected void onListItemClick(ListView l, View v, int position, long id) {
 Intent intent = new Intent(this, StorageBrowser.class);
 intent.putExtra("device", mDeviceList.get(position).getDeviceName());
 startActivity(intent);
}

StorageBrowser and ObjectBrowser scan through the media of the connected

devices and present the information depicted in Figure 3-21.

Figure 3-21. Snapshot of the CameraBroswer Storage window

Figure 3-20. A snapshot of the CameraBrowser application

CHAPTER 3: USB Storage68

Conclusion
This chapter provided detailed information on various USB storage operations

and their framework along with the USB-IF defined class specification. As a

developer you can now explore further on each USB classes and build your

own application like a Media Player over USB or a application that allows to

update details of the media files using MTP.

On the UMS class though Android has moved away from UMS device

mode, it still keeps the framework intact so that a vendor could provide both

functionalities for the user.

69

Chapter 4
USB Tethering

What you will learn:

USB tethering overview	
RNDIS specification overview	
Android USB tethering framework	
Example: Reverse tethering	

Communication between any mobile device and a PC (Personal Computer)

has always been a basic requirement for end users. Mobile devices use

this communication generally to get a software update, to back up the

data from a device, or even to charge the battery. On the other hand, a PC

uses important data-communication features of a mobile device to gain

access to the Internet. With the evolution of modem and wireless telephony

technology (2G to 3G to 4G), mobile data communication devices have

increased tremendously. With the Internet becoming part and parcel of

everyone’s life, mobile devices can provide seamless data connections

with the aforementioned technologies. Thus, the process of sharing an

Internet connection with a PC is referred as “tethering” in the mobile world.

Mobile devices generally use tethers using USB (Universal Serial Bus), Wife,

or Bluetooth as the transport medium in order to share the Internet. This

chapter restricts itself to USB tethering.

When an Android mobile device tethers using USB, it enumerates as a

Remote Network Driver Interface Specification (RNDIS) device. RNDIS is

a Microsoft proprietary protocol for managing network communications.

Figure 4-1 shows the menu option used to enable USB tethering on an

Android device via the Wireless and networks option.

CHAPTER 4: USB Tethering70

After successful enumeration on a Windows PC, you can explore the control

panel lists for the Android device as an RNDIS device. Figure 4-2 illustrates

how a Windows Control Panel entry looks when a Samsung Android device

is USB tethered to a machine using Windows.

Figure 4-1. An option to enable Android USB tethering

Figure 4-2. Windows OS Control Panel entry of a USB tethered device

 DO YOU KNOW?

The tethering driver installation is automatic in the case of Windows 7 or later, but not in

case of Windows XP operating systems. See the following link for more information:

 https://support.google.com/android/answer/182134.

Now that you have an understanding of how to enable USB tethering on

an Android device, you’ll explore in detail the internals of Android USB

tethering. This chapter initially starts by exploring a brief picture of RNDIS

specification and follows with a detailed explanation of how an Android

tethering framework integrates itself within the Android USB framework. At

end of the chapter, you’ll explore how to use the USB tethering interface to

reverse the tether that shares the network from the PC to an Android device.

https://support.google.com/android/answer/182134

CHAPTER 4: USB Tethering 71

RNDIS Specification Overview
Unlike other USB classes, RNDIS is not a USB class specification as

defined by the USB implementer’s forum, but is a Microsoft-specific network

interface specification. According to Microsoft, the motivation behind this

specification is to eliminate the need of vendor-specific network drivers. The

role of the device is just to implement a transport driver that is complaint

with RNDIS protocols. The RNDIS specification can be downloaded from the

Microsoft web site using the following link: http://download.microsoft.com/
download/B/0/B/B0B199DB-41E6-400F-90CD-C350D0C14A53/%5BMS-RNDIS%5D.pdf.

This specification defines communication protocols between a host and

network devices connected over a transport such as a USB, thus enabling

the host to have network connectivity. It is important to note that RNDIS

specification does not define the transport to be used and its functionalities.

The specification states that the transport bus has to provide reliable control

and data channels for delivery network packets between the host and the

device. Figure 4-3 illustrates the general architecture of the RNDIS protocol

as provided by RNDIS specifications.

http://download.microsoft.com/download/B/0/B/B0B199DB-41E6-400F-90CD-C350D0C14A53/%5BMS-RNDIS%5D.pdf
http://download.microsoft.com/download/B/0/B/B0B199DB-41E6-400F-90CD-C350D0C14A53/%5BMS-RNDIS%5D.pdf

CHAPTER 4: USB Tethering72

Figure 4-3 shows how the RNDIS protocol is placed above the transport

protocol with a separate control and data channels. The control and data

channel can be implemented by bulk and interrupt endpoints of the USB

specification. Figure 4-4 illustrates interface and endpoints descriptors for

an RNDIS function on an Android device.

HOST

Host Operating System

Specific Networking

Driver Interface

A
P

I
C

a
lls

Host-Side RNDIS Device-Side RNDIS

D
a
ta

D
a
ta

C
o
n

tr
o
l

C
o
n

tr
o
l

Host-Side BUS

Transport Protocol

Device-Side BUS

Transport Protocol

Connecting Bus

Device

Wire

Network

Figure 4-3. RNDIS protocol architechture (Ref: Figure 1 RNDIS Specification)

CHAPTER 4: USB Tethering 73

As mentioned earlier, RNDIS is Microsoft proprietary, not a defined protocol

in the USB-IF’s CDC specifications. However, an RNDIS function can use

CDC with RNDIS as a vendor-defined protocol.

In the RNDIS Communications Control interface (bInterfaceNumber = 0),

bInterfaceClass = 2 to specify a CDC interface. The bInterfaceSubclass

field = 2 to specify the CDC Abstract Control Model subclass. The

bInterfaceProtocol field = 255 to specify that the interface uses a vendor-

defined protocol (RNDIS). The interface has one interrupt endpoint.

In the RNDIS Ethernet data interface (bInterfaceNumber = 1),

bInterfaceClass = 10 to specify a CDC data interface. The interface has a

bulk endpoint for each direction.

In this RNDIS setup, the responsibility of the host is to initialize the protocol,

establish control and data channels with the Android device, and exchange

control and data messages according to what the host operating system’s

network drivers need. The device’s responsibility is to interpret the control

messages sent by the host and respond to them with the appropriate data,

indicating network and device status to the host and exchanging the data

messages as requested by the host.

Figure 4-4. RNDIS protocol interface descriptor

CHAPTER 4: USB Tethering74

 DO YOU KNOW?

Unlike the CDC’s ECM subclass, RNDIS can combine multiple data packets and send them to

the host in one single bus transfer, which can provide a better throughput performance.

Having seen a brief overview of the RNDIS specification, you’ll now explore

how this requirement is implemented inside the Android framework.

Android USB Tethering Framework
The Android tethering framework consists of multiple transports

mechanisms, namely USB, WiFi, or Bluetooth, and this section focuses only

on the framework that is involved in tethering over USB. Inside Android USB

tethering, the transport layer is completely implemented inside the Android

kernel. The Android USB framework provides the necessary infrastructure to

enable tethering functionality in the Android kernel USB gadget driver. The

USB gadget driver also registers itself to the kernel network driver to bring

up a network interface over USB. When this USB Network interface is up,

the Android connectivity framework takes control of the interface to manage

network activity.

Android USB tethering implementation is spread over the USB Device

manager and Connectivity Manager framework in the following files,

respectively:

frameworks/base/services/java/com/android/server/usb/UsbDeviceManager.java
frameworks/base/services/java/com/android/server/connectivity/Tethering.java
frameworks/base/core/java/android/net/ConnectivityManager.java
frameworks/base/services/java/com/android/server/ConnectivityService.java

Figure 4-5 provides a top-level architecture view of Android USB tethering,

illustrating USB and networking blocks.

CHAPTER 4: USB Tethering 75

The Android Connectivity framework uses the netd daemon present in

/system/netd to manage the network interface for data service and to

collect necessary statistics. Inside the kernel, the RNDIS USB gadget driver

registers to the Linux network module as a USB Ethernet device.

Enabling USB Tethering
Now that you have an understanding of the internal blocks of USB tethering,

this section explores how USB tethering is enabled inside Android framework.

As explained in the initial section, USB tethering is enabled through the

click of a checkbox under the Wireless and Networks settings. The USB

tethering user interface is implemented through TetherSettings.java, which

also handles updating state changes of USB tethering inside the Android

framework using functions such as updateUsbState. When a user checks the

USB tethering option, the click handler for the resource that is implemented

invokes the setUSBTethering interface function, as shown in Figure 4-6.

USB Gadget Driver

Android Composite Driver

UsbDeviceManager Android
User Space

Android
Kernel Space

USB Controller Driver

init.usb.rc

UsbSettings
Manager

UsbService

sysfs

RNDIS Driver

(f_rndis.c)

Connectivity
Manager

netd

Network

Driver

Figure 4-5. Android USB tethering architechture

CHAPTER 4: USB Tethering76

This function call provides control to the Tethering class that is

implemented in Tethering.java using setUSBTethering from the

ConnectivityService instance. With control in the Tethering class,

the Android tethering framework sets RNDIS as the USB function using

setCurrentFunction. This internally indicates to the USB kernel gadget

driver to restart in RNDIS mode. Once the USB gadget driver is up, the

kernel indicates to the Tethering class on the state change using uevents.

This state change is used to start the connectivity management over the

USB RNDIS network adapter, which is taken care of by tetherUSB function.

Once the USB Ethernet interface is tethered, the status change is updated in

the user interface.

Example: Reverse Tethering Over USB
In the previous section, we explored how the tethering of a data connection

from an Android device is shared to a host PC. But there are times when

providing an Internet connection of a host PC to an Android device is

required. This example explains how to reverse a tether and share the

Internet from a host PC to an Android device. You might need reverse

tethering when you require a faster Internet connection (weak or no WiFi)

or want to avoid the data charge of a 3G connection. Let’s explore this for

fun—this example requires a rooted Android device and was tried on an

Ubuntu (12.04) Linux operating system with a rooted Samsung Tab2 with

Cynogenmod.

Tethering

Settings

Connectivty

Manager/Service

Tethering

Server

UsbDevice

Manager

USB Gadget

Driver

setUSBTethering

onClick

setUSBTethering

setCurrentFunction

(RNDIS)

uevent(Connected)

USB_CONNECTED

tetherUsb

tether

Update user on tether state

Figure 4-6. The activity sequence when USB tethering is enabled

CHAPTER 4: USB Tethering 77

Design and Flow
Reverse tether involves two key steps, namely, i) setting up the host PC to

share an Internet connection, and ii) setting up the Android device to look for

an Internet connection to the PC.

Host Setup

The host PC runs Ubuntu (12.04) and the steps for sharing an Internet

connection are based on the link: https://help.ubuntu.com/community/
Internet/ConnectionSharing. The following snippet is a set of commands

required to set up the Ubuntu host and is available as a script as part of the

source code download located at http://www.apress.com/9781430262084.

echo 1 > /proc/sys/net/ipv4/ip_forward
ifconfig usb0 192.168.0.1 netmask 255.255.255.0 up
iptables -F
iptables -t nat -F
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
iptables -P FORWARD ACCEPT

Device Setup

On the Android device, the requirement is to configure the network with the

host PC as the gateway and also to provide generic DNS gateways. The

following snippet is a set of commands that are required to set up the Android

device and is available as a script at http://www.apress.com/9781430262084.

ifconfig rndis0 192.168.0.2 netmask 255.255.255.0 up
route add default gw 192.168.0.1 dev rndis0
setprop net.dns1 8.8.8.8
setprop net.dns2 8.8.4.4

https://help.ubuntu.com/community/Internet/ConnectionSharing
https://help.ubuntu.com/community/Internet/ConnectionSharing
http://www.apress.com/9781430262084
http://www.apress.com/9781430262084

CHAPTER 4: USB Tethering78

Once both setups are successful, the Android device can use the Internet of

the host PC. Figure 4-7 shows the configuration details and browses over

the reverse tethered setup.

Figure 4-7. A snapshot of a reverse-tethered Android device with browsing capability

This device setup is automated as an application and is available as part

of the source code download located at http://www.apress.com/
9781430262084 and on https://git.techfugen.com/cgit/Android/apps/git/
reverse_tether.git/.

There is also a script that is made available along with the Android source

to help configure a host and an Android device in the following path:

development/scripts/reverse_tether.sh. Though this example demonstrates

reverse tethering on a Linux operating system, reverse tethering is also

possible on Microsoft Windows and Apple’s Mac operating systems.

http://www.apress.com/9781430262084
http://www.apress.com/9781430262084
https://git.techfugen.com/cgit/Android/apps/git/reverse_tether.git/
https://git.techfugen.com/cgit/Android/apps/git/reverse_tether.git/

79

Chapter 5
USB Accessory

What you will learn:

Android Open Accessory (AOA) Protocol	
USB HID Specification	
Android Open Accessory Framework	
Example: Android Open Accessory NFC Reader Using 	
Cypress FX3

The Android Open Accessory protocol was introduced in Android

Honeycomb version 3.1 and was also made available for the older 2.3.4

Gingerbread version. This was introduced to overcome the perceived

limitation of Android-powered devices that cannot initiate connections

with external USB devices. Android Open Accessory support is aimed

at overcoming the limitation of not being able to initiate connection to

external devices. Android-powered devices can now interact with Android

accessories through the Android Open Accessory protocol. Figure 5-1

illustrates an Android accessory setup, showing how an Android accessory

interacts with an Android-powered device.

Figure 5-1. An Android accessory setup in accessory mode

CHAPTER 5: USB Accessory80

Android accessories include items such as audio docks, lighting controllers,

SLR camera controllers, and other products that a developer wants to

communicate with over USB. In accessory mode, the Android-powered

device functions as a USB device and the attached Android accessory

functions as the USB host.

To facilitate developing accessory hardware, Google also introduced the

Android Accessory Development Kit (ADK), a reference implementation of an

Android Open Accessory device. This is aimed at helping Android hardware

accessory builders and software developers create accessories for Android.

Many chip manufacturers have come up with platforms based on this

reference design to facilitate new product development.

This chapter focuses on the software aspect of Android Open Accessory

(AOA), starting by exploring what is an Android Open Accessory protocol,

which features are supported by it, and subsequently, how the protocol

is placed in the Android USB framework with the help of block diagrams.

The chapter also briefly discusses the USB HID (Human Interface Devices)

specifications, which enable readers to effectively use Android Open

Accessory 2.0 as it includes the HID feature. It is important to understand

that the Android Open Accessory framework is spread across the Android

user space and Android kernel. Information flows between these layers

and is explored using sequence diagrams. At the end of this chapter, you’ll

explore these features with a case study example.

Android Open Accessory Protocol
As discussed, the Android Open Accessory (AOA) protocol was introduced

in the Honeycomb version of Android. The Android Honeycomb version

of the accessory protocol is referred to as AOA 1.0 and the equivalent

development kit was named ADK 2011. The newer version AOA 2.0 of

Android Open Accessory protocol was introduced as part of Android Jelly

Bean with a supporting development kit referred as ADK 2012. Both the

Android-powered device and the Android accessory have to adhere to the

Android Open Accessory protocol to interoperate. The AOA 2.0 protocol,

which is backward-compatible, is explored in subsequent sections of

this chapter.

In the initial version of the Android Open Accessory protocol supports only

accessory mode and the later versions were added to support audio and

HID. Figure 5-2 illustrates the functions supported by the Android Open

Accessory protocol.

CHAPTER 5: USB Accessory 81

As illustrated in Figure 5-2, the AOA 2.0 protocol includes three unique

features: accessory, audio, and HID.

ACCESSORY

An Android-powered device in accessory mode has a USB device port that uses two

bulk endpoints. Bulk endpoints can transfer large amounts of data quickly but have no

guaranteed maximum latency. The USB interface is exposed to the user space as a file for

Android applications to perform data transfer between the Android-powered device and an

Android accessory, which functions as the USB host.

AUDIO

The audio USB interface is new in Jelly Bean. It supports the standard USB 1.0 audio class

so it can stream audio from an Android-powered device to an Android accessory.

HID

The HID feature is not exposed as a USB interface to the Android accessory. The HID feature

is registered to an input subsystem of an Android-powered device through vendor-specific

requests on the control endpoint. Once registered, an Android accessory can send inputs

like key presses and cursor locations to an Android-powered device over USB. Note that in

this example, the USB host sends key press and cursor data to the USB device, while with a

conventional USB host, key press and cursor data travels from the device to the host.

Figure 5-2. Features of the Android Open Accessory protocol

CHAPTER 5: USB Accessory82

Now that you have an understanding of the different features of Android

Open Accessory protocol, it’s time to explore how the protocol works and

learn about the different commands supported by the protocol. An Android

accessory takes the following steps to start interacting with an Android-

powered device.

1. Detect the connected Android-powered device.

2. Check the Android-powered device’s accessory

mode.

3. Set the necessary mode settings and start the

Android-powered device in accessory mode.

4. Start communicating with the Android-powered

device. In some cases, the Android-powered device

must have an application that can understand and

respond to the Android accessory’s communications.

When enumerated successfully in accessory mode, an Android-powered

device uses a product ID based on the supported functionality. Only the first

two product IDs are applicable in the AOA 1.0 version. After enumerating in

accessory mode, the Android-powered device uses Google’s vendor ID

of 0x18d1.

0x2D00 - accessory
0x2D01 - accessory + adb
0x2D02 - audio
0x2D03 - audio + adb
0x2D04 - accessory + audio
0x2D05 - accessory + audio + adb

Having studied how the accessory hardware enumerates an Android-powered

device in accessory mode, you’ll now explore the USB control request and

the requests used. Requests related to audio functions will not be discussed

in the following section, but you can refer to Chapter 6, “USB Audio,”

which details the USB audio specification along with audio device and host

functions.

The accessory protocol operates on the control endpoint (endpoint 0) using

the vendor extension option provided by the USB control requests. The

following section describes the format of these vendor-specific control

requests, which manage the accessory protocol. Later sections explain how

these requests can be used.

CHAPTER 5: USB Accessory 83

Getting Accessory Protocol Version

This control request is used to determine the protocol version supported

by the Android-powered device. The request code is 51 and is indicated

through the bRequest field in the Setup packet of the control request. When

this request is received, the Android-powered device sends the supported

protocol version. When the device supports the AOA 1.0 protocol, it returns

1 in the data stage of the control transfer, and when the device supports

AOA 2.0, it returns 2 in the data stage.

bmRequestType bRequest wValue wIndex wLength Data

DEVICE_TO_HOST |

TYPE_VENDOR

ACCESSORY_GET_

PROTOCOL (51)

0 0 2 1 when AOA 1.0

2 when AOA 2.0

Managing HID

To manage the HID function in accessory mode, multiple control requests

are required. They can register/unregister the function and initiate HID

events. The following section explains these control requests.

The request ACCESSORY_REGISTER_HID with code 54 is used to hook the

accessory HID to the input system of the Android-powered device. This

request also holds information about the length of the report descriptor,

which will be subsequently sent, and also assigns an ID for future

communication.

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_

REGISTER_HID

(54)

Accessory

assigned ID for

the HID device

Length of the

HID report

descriptor

0 None

The protocol also allows an accessory to unhook the registered HID using

the ACCESSORY_UNREGISTER_HID request with a request code of 55. The ID

parameter should be the same one that was used during the register

command.

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_

UNREGISTER_HID

(55)

Accessory

assigned ID for

the HID device

0 0 None

CHAPTER 5: USB Accessory84

Once the HID is hooked up, the input system of the Android accessory

can send HID report data to the Android-powered device. The command,

ACCESSORY_SEND_HID_EVENT with request code 57, enables the Android

accessory to send a HID report to the Android-powered device using the ID

assigned during registration.

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_

SEND_HID_

EVENT (57)

Accessory

assigned ID for

the HID device

0 Length of

data

HID report

for the

event

Whenever the HID report data is larger than the maximum data supported

by the control endpoint, the Android accessory should use the following

request to send the remaining data. The wIndex parameter holds the offset,

which should be used to concatenate the data.

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_SET_

HID_REPORT_

DESC (56)

Accessory

assigned ID for

the HID device

Offset of

data in

descriptor

Length of

data

HID report

descriptor

Switching to Accessory Mode

When an Android accessory finishes collecting information and setting

up the Android-powered device for accessory mode, it uses the request

ACCESSORY_START with code 51. This request triggers the Android-powered

device to switch to accessory mode, which means the device re-enumerates

with Google’s vendor ID and a product ID based on the enabled feature.

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_START (53) 0 0 0 None

Informational Requests

This request sends descriptive information from the Android accessory

to the Android-powered device. The Android-powered device can display

the strings returned by the Android accessory to the user. The Android

accessory uses requests with code 52 to send the string information.

CHAPTER 5: USB Accessory 85

bmRequestType bRequest wValue wIndex wLength Data

HOST_TO_DEVICE |

TYPE_VENDOR

ACCESSORY_SEND_

STRING (52)

0 String ID Length of

string

Null-terminated

UTF-8 string

The following are the string types that the Android accessory may send to

the Android-powered device. The wIndex field of the request specifies the

string type.

#define ACCESSORY_STRING_MANUFACTURER 0
#define ACCESSORY_STRING_MODEL 1
#define ACCESSORY_STRING_DESCRIPTION 2
#define ACCESSORY_STRING_VERSION 3
#define ACCESSORY_STRING_URI 4
#define ACCESSORY_STRING_SERIAL 5

Now that you’ve seen various commands supported by the accessory

protocol, you can move to the next section, which briefly explores the USB

HID specification, as AOA 2.0 supports HID as one of its features.

USB HID Specification
Human Interface Devices (HIDs) are devices that are used primarily by

people to control the operation of computer systems. Typical examples

for HID-class devices include keyboards, mice, joysticks, and barcode

readers. The USB Human Interface Device (HID) class specification defines

a standard way for HIDs to communicate with a host that supports the

HID class.

Figure 5-3 illustrates different USB pipes involved in a typical USB HID setup

that pass information from the device to a host. A control endpoint is used

to receive and respond to USB-related control and class information, and an

interrupt endpoint is used to transmit asynchronous data.

Figure 5-3. A typical USB HID setup

CHAPTER 5: USB Accessory86

These pipes are exposed as descriptors to a USB host. Figure 5-4 illustrates

the descriptor tree of a typical USB HID device. As you can see from the

descriptor tree, it is similar to any other USB device, with the exception of

the additional HID descriptor information.

Figure 5-4. Descriptor tree of a simple USB HID device

In addition to a HID descriptor, every HID must have a HID-class report

descriptor. A HID-class physical descriptor is optional.

CHAPTER 5: USB Accessory 87

PHYSICAL DESCRIPTOR

A physical descriptor is a collection of information that describes a specific part or parts of

the human body that will manage the control or controls in the HID device. This descriptor

is optional and adds complexity to the complete system. This section does not go into

much detail about the physical descriptor, as it is rarely used and is not used in the

accessory protocol.

Report Descriptor

A report descriptor contains a collection of information that describes the data that a HID

sends and receives. Each piece of information in a report descriptor is an “item” that

consists of a byte that identifies the item and one or more bytes that contain the item’s

data. For example, 0x15 is the Logical Minimum item, and a value of 0x00 sets the logical

minimum value of the item to 0x00. A standard format for items is used, as illustrated

in Figure 5-5.

Figure 5-5. Report descriptor item format

The item field is classified into types based on the first byte fields, namely:

• bSize: These two bits differentiate whether an item is a short or long

item, thereby indicating the length of data in the item.

• bType: These bits classify an item as Main, Global, or Local type.

These types help to define the meanings of the data in the report.

• bTag: These bits specify the function of the item and will vary for each

type of item.

During enumeration, the USB host requests the report descriptor from a HID class device.

The host uses the information in the report descriptor to parse the data in received HID

reports, as illustrated in Figure 5-6. Figure 5-6 is a very simple representation of a report

descriptor, but in a practical setup, the usage and collections are nested to provide

relevant details.

CHAPTER 5: USB Accessory88

This section provided a very brief overview of the USB HID class

specification, and you can read more about HID descriptors in the latest HID

class specification version 1.11 to form a custom report descriptor for your

accessory device.

Android Open Accessory Framework
The Android Open Accessory (AOA) framework provides the necessary

interface for a user to manage and interact with an Android accessory.

The Android USB accessory framework acts as a responder, and primarily

responds to an Android accessory, which initiates the communication with

an Android-powered device to switch to accessory mode. The responder

implementation of the Android USB accessory framework is spread across

roughly three major files: frameworks/base/services/java/com/android/
server/usb/UsbDeviceManager.java, frameworks/base/services/java/com/
android/server/usb/UsbService.java, and /frameworks/base/services/
jni/com_android_server_UsbDeviceManager.cpp.

This Android framework is exposed via APIs as implemented in

/frameworks/base/core/java/android/hardware/usb/UsbAccessory.java.

Various accessory-related constants discussed in the previous section are

defined in external/kernel-headers/original/linux/usb/f_accessory.h.

Figure 5-6. A HID report descriptor

CHAPTER 5: USB Accessory 89

Having seen how different the code of the Android USB accessory

framework is organized within the Android framework, you’ll now explore

the building blocks of the Android USB Accessory framework. Figure 5-7

illustrates the architecture of the Android Open Accessory (AOA) framework

from the Android kernel to the Android framework in the user space.

Figure 5-7. The architecture of Android Open Accessory 2.0 (AOA 2.0) framework

CHAPTER 5: USB Accessory90

From Figure 5-7, it is apparent that most of the AOA framework is in the

kernel space and the interface to the user space is through file operations.

The AOA framework implementation in user space is mixed with the USB

Manager implementation that manages the USB states of the Android-

powered device. The other part of the AOA implementation is part of

the JNI framework. This JNI framework interacts with the Android kernel

accessory framework by managing file operations exported through the /
dev/usb_accessory file. The HID functionality of the AOA does not have

any implementation in the Android USB accessory framework and directly

interacts with the Android input subsystem. The USB functionality for HID lies

within the Android kernel as the Android USB gadget driver registers directly

to the kernel HID subsystem. Now that you have an understanding of the

implementation of the Android USB accessory framework, the next section

discusses the implementation requirement of the accessory hardware.

The functional requirement of an accessory hardware can be divided into

three major categories:

Detecting the AOA device	
Communicating with the accessory	
Communicating in HID mode	

Of these three categories, only the first two functionalities are part of the

Android USB framework. The HID communicates to the input subsystem

and is managed within the kernel itself.

Since an Android-powered device implements the responder part of the

accessory protocol to better understand the Android USB accessory

framework, it is important to explore the Android accessory (USB host) part,

which is also referred as the initiator. The following sections involve both the

initiator and responder to provide a better understanding of how the Android

Open Accessory protocol works.

Detecting an AOA Device

The detection of an AOA device is initiated by the Android accessory

(USB host) by sending an ACCESSORY_GET_PROTOCOL (51) control request over the

control endpoint. This is done once an Android-powered device is connected

to it. An Android-powered device returns either 1 or 2, based on the AOA

protocol version the device supports. Based on the version and necessity, the

Android accessory can register additional functionalities like audio or HID and

then send an ACCESSORY_START (53) request to indicate to the Android-powered

device to switch to accessory mode. The Android accessory also sends the

ACCESSORY_SEND_STRING (52) request to provide the manufacturer, model, and

version strings before sending the ACCESSORY_START request.

CHAPTER 5: USB Accessory 91

This next section explains the control and data flow that happens within the

Android USB framework of an Android-powered device. Communication to

the Android USB framework starts only when the Android-powered device

receives the ACCESSORY_START (53) request. Requests like ACCESSORY_GET_
PROTOCOL (51) are responded to and from the kernel layer, as illustrated

in Figure 5-8. When ACCESSORY_START (53) is received, the kernel layer

sends a UEvent indicating that it has received the request to switch to

accessory mode. To detect this information flow from the Android kernel

to the UsbDeviceManager framework (as discussed in Chapter 2), the

UsbDeviceManager framework registers the Android framework to monitor

UEvent changes with the string “DEVPATH=/devices/virtual/misc/usb_
accessory”, as shown here:

private static final String ACCESSORY_START_MATCH =
 "DEVPATH=/devices/virtual/misc/usb_accessory";

mUEventObserver.startObserving(ACCESSORY_START_MATCH);

Figure 5-8. The Android Open Accessory detection sequence

CHAPTER 5: USB Accessory92

When the UEventObserver matches the particular registered string, the

observer module that registered for the UEvent is notified, and in this

case, it is the UsbDeviceManager framework. The following snippet from

UsbDeviceManager.java implements the onUEvent, which receives the

notification and decodes the information in order to decide on the accessory

mode, subsequently calling startAccessoryMode when it is in accessory mode.

private final UEventObserver mUEventObserver = new UEventObserver() {
@Override
public void onUEvent(UEventObserver.UEvent event) {
if (DEBUG) Slog.v(TAG, "USB UEVENT: " + event.toString());

 String state = event.get("USB_STATE");
 String accessory = event.get("ACCESSORY");
 if (state != null) {
 mHandler.updateState(state);
 } else if ("START".equals(accessory)) {
 if (DEBUG) Slog.d(TAG, "got accessory start");
 startAccessoryMode();
 }
}
};

The startAccessoryMode in turn calls setCurrentFunctions to set the

accessory mode via /sys/class/android_usb/android0/functions and

/sys/class/android_usb/android0/enable exported by the kernel, and the

device re-enumerates in accessory mode. The way the device switches from

one USB function to another is detailed in Chapter 2.

Figure 5-8 illustrates the sequence of activities triggered by the Android

accessory to detect an Android-powered device and cause it to switch to

accessory mode. (Note: The sequence does not capture the enabling of

other features like audio or HID.)

Communicating with AOA in Accessory Mode

Once re-enumeration is successful in accessory mode, the next step is to

establish communication between the Android accessory and the Android-

powered device. The Android accessory uses USB to talk to the AOA

application running on the Android-powered device. Communication between

the Android framework and the kernel is through the /dev/usb_accessory file,

which is created by the kernel layer when the accessory switch happens. The

file is created in the /dev directory and is managed by the JNI implementation

com_android_server_UsbDeviceManager.cpp, as defined:

#define DRIVER_NAME "/dev/usb_accessory"

CHAPTER 5: USB Accessory 93

Android provides APIs to directly manage this file from the application through

this JNI implementation. The following sequence diagram (Figure 5-9)

provides an overview of the communication flow between the Android AOA

framework and the Android kernel (implemented in drivers/usb/gadget/
f_accessory.c), along with the accessory hardware.

Accessory Application UsbDeviceManager
Accessory

HardwareAccessory Gadget DriverAccessory JNIUSBManager

ACTION_USB_ACCESSORY_ATTACHED

getAccessoryList

getCurrentAccessory

hasPermission

openAccessory

openAccessory

openAccessory

nativeOpenAccessory

open
/dev/usb_accessory

InputStream.read

acc_read

Figure 5-9. Android Open Accessory (AOA) communication

Whenever an application invokes an openAccessory API from the

UsbDeviceManager, a native function call implemented in the JNI framework

is invoked. Once the open operation is successful, normal read, write,

and ioctl operations can be done using the file descriptor returned by the

openAccessory function.

Registering and Communicating in HID Mode

A typical Android accessory setup might require small amounts of data such as

key events (volume control, setting up time, and so on) or others that are similar

and are appropriate for the HID class. The AOA protocol uses vendor-specific

requests over the control endpoint to simulate HID class communications. This

section explains how to register a HID function in accessory mode and transfer

data from an Android accessory to an Android device.

CHAPTER 5: USB Accessory94

When an Android-powered device is in accessory mode and is functioning

as a HID, the complete functionality lies within the kernel, with the accessory

gadget driver directly interacting with the HID core kernel module. The HID

core further interacts with the input subsystem of the Android framework.

The Android USB framework is involved only to switch into accessory mode,

and further on, the interaction is between the accessory hardware and the

input subsystem via the kernel modules.

 DID YOU KNOW?

You may wonder why strings are sent by the Android accessory to the Android-powered

device during the start of accessory mode. The Android USB framework internally checks for

availability of manufacturer and model string in UsbDeviceManager before switching to

accessory mode:

// don't start accessory mode if our mandatory strings have not been set

boolean enableAccessory = (mAccessoryStrings != null &&

 mAccessoryStrings[UsbAccessory.MANUFACTURER_STRING] != null &&

 mAccessoryStrings[UsbAccessory.MODEL_STRING] != null);

For an Android application to receive a USB_ACCESSORY_ATTACHED intent, it has to create

an intent filter with a <usb-accessory>element to identify the accessory, as shown.

<meta-data android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"

 android:resource="@xml/accessory_filter" />

<resources>

 <usb-accessory manufacturer="Google, Inc." model="DemoKit" version="1.0"

/>

</resources>

 Figure 5-10 illustrates how to register a HID function in accessory mode and

transfer a HID report.

CHAPTER 5: USB Accessory 95

In the previous sections, you explored the Android accessory framework.

The following section demonstrates how to use this framework with an

example that interacts with an NFC device to convert the Android-powered

device to an NFC reader using the accessory interface.

Example: Android Open Accessory NFC Reader Using

Cypress Fx3

Near field communication (NFC) is a communication protocol that facilitates

communication between two devices mainly in a mobile ecosystem. NFC

extends on the Radio Frequency Identification (RFID) technology and

operates at a frequency of 13.56MHz. In an NFC environment, two entities

are involved in the transaction—a reader (initiator) and a tag (responder).

Figure 5-11 illustrates a simple NFC reader and tag.

Accessory Application
Android Input

Subsystem

Accessory

Hardware
Accessory Gadget Driver

Android Kernel

Input system

GetProtocol

return version supported

Start Accessory

ACCESSORY_REGISTER_HID

ACCESSORY_SET_HID _REPORT _DESC

hid_allocate_device

hid_add_device

re-enumeration in accessory mode

ACCESSORY_SEND_HID_EVENT

hid_report_raw_event

acc_complete_send_hid_event

hidinput_report_event

HID input received in the user space

Event Hub

Figure 5-10. Android Open Accessory HID registration and communication process

CHAPTER 5: USB Accessory96

Android

Powered

Device

USB Host

(Cypress FX3)

CYUSB3KIT

Adafruit

PN532 Kit

NFC Tag

USB UART

Figure 5-12. An NFC reader and NFC tag setup

Figure 5-11. An NFC reader and NFC tag

Android introduced NFC as part of its Ice Cream Sandwich version and

detailed information about it is available on Google’s website at

http://developer.android.com/guide/topics/connectivity/nfc/index.html.

Though NFC is available in the framework, there are Android devices in the

market that do not support NFC. Commercial NFC readers are also available

in the market. This example explores how to use the AOA protocol and add

external NFC reader capabilities to an Android device. Figure 5-12 provides

the setup details.

Design and Flow

Figure 5-13 captures the flow of activities in the setup shown in Figure 5-12,

which is used to retrieve a tag’s basic information.

http://developer.android.com/guide/topics/connectivity/nfc/index.html

CHAPTER 5: USB Accessory 97

The first step in the process is to connect the PN532 NFC shield board to

the Cypress FX3 development kit over a UART interface and place a tag, say

a Mifare card, near the PN532 NFC shield board. Once the setup is ready,

you power up the FX3 board and load the AOA NFC firmware. (Refer to

the Cypress documentation for how to set this up at http://www.cypress.
com/?rID=57990.) This should boot up the FX3 board in USB host mode.

On the Android device, you install the CyFX3_AOA_NFC application and

connect the Android device to the FX3 board using an OTG cable. When the

FX3 board detects a device insertion, it initiates the accessory protocol and

switches the Android device to accessory mode.

sendString(ACCESSORY_STRING_MANUFACTURER, "Cypress");

sendString(ACCESSORY_STRING_MODEL, "FX3 NFC Reader");

sendString(ACCESSORY_STRING_DESCRIPTION, "FX3 Android Accessory NFC Reader");

sendString(ACCESSORY_STRING_VERSION, "0.1");

sendString(ACCESSORY_STRING_URI, "www.cypress.com");

sendString(ACCESSORY_STRING_SERIAL, "0123456789");

Android

Device
FX3 PN532 NFC Tag

Open AOA

Interface

Switch AOA

Wait for Command

Read Tag

(EP IN)

Read Tag Info

(UART)

Tag Info

Tag Info

(UART)

Update Tag Info

(EP OUT)

AOA NFC App

Figure 5-13. Sequence of activities in AOA NFC reader setup

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990
http://www.cypress.com/

CHAPTER 5: USB Accessory98

status = CyFxSendSetupRqt(
 USB_SETUP_HOST_TO_DEVICE |
 USB_SETUP_TYPE_VENDOR |
 USB_SETUP_RECIPIENT_DEVICE,
 ACCESSORY_START, 0,0,
 0,0);

The next step inside the FX3 firmware is to successfully enumerate the

Android device in accessory mode and open the accessory interface shared

by the Android device, which are nothing but bulk IN and bulk OUT endpoints.

On the Android device side, when it switches from default mode to accessory

mode, the CyFX3_AOA_NFC is invoked by matching the manufacturer and

model string sent by the FX3 firmware, as shown in Figure 5-14.

Figure 5-14. Snapshot of the CyFX3_AOA_NFC application

Now press the Read TAG button to initiate the tag-reading process.

Internally this will send a custom command over the IN endpoint to the

FX3. The FX3 firmware recognizes that the application has asked for tag

CHAPTER 5: USB Accessory 99

information. To get the tag information, the FX3 firmware sends a sequence

of commands (shown next) specific to the PN532 NFC shield board over the

UART interface, as shown in the Figure 5-13.

/*To wake-up the PN532 NFC Reader */
send: 55 55 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff 03 fd d4 14 01 17
00
return: 00 00 FF 00 FF 00 00 00 FF 02 FE D5 15 16 00

/*To read the NFC Tag information. Bytes XX holds the TAG information*/
send: 00 00 FF 04 FC D4 4A 01 00 E1 00
return: 00 00 FF 00 FF 00 00 00 FF 0C F4 D5 4B 01 01 00 04 08 04 XX XX XX XX
5A 00

The PN532 NFC shield returns the tag information, which is read over the

UART, back to the FX3 firmware. The FX3 firmware subsequently sends

back the tag information over the OUT endpoint to the Android device

in accessory mode. The information is displayed in the edit box of the

application as shown in the Figure 5-15

Figure 5-15. Snapshot of the CyFX3_AOA_NFC application along with NFC Tag info

CHAPTER 5: USB Accessory100

Conclusion
The Android Open Accessory (AOA) protocol extends the power of Android-

powered devices by allowing the device to manage and communicate to

external hardware in device mode. For developers, there are many platform

providers who can provide accessory hardware development kits that

enable developers to experiment and come up with new ideas. You can find

many interesting videos about Android open accessories on YouTube. The

official video from Google that presents the AOA protocol can be found at

http://www.youtube.com/watch?v=s7szcpXf2rE.

The following links provide relevant information about Android Open

Accessory protocols: http://developer.android.com/tools/adk/index.
html and http://source.android.com/tech/accessories/index.html, which

contain an official description of the protocol. You can also find reference

implementations of the accessory software and hardware in following Git

repository: https://android.googlesource.com/device/google/accessory/
adk2012_demo.

http://www.youtube.com/watch?v=s7szcpXf2rE
http://developer.android.com/tools/adk/index.html
http://developer.android.com/tools/adk/index.html
http://source.android.com/tech/accessories/index.html
https://android.googlesource.com/device/google/accessory/adk2012_demo
https://android.googlesource.com/device/google/accessory/adk2012_demo

101

Chapter 6
USB Audio

What you will learn:

USB Audio Specification	
Android USB Audio	

USB Host Audio	
Playing Audio Over a USB Headset from an Android Device	

USB Device Audio	
Android Accessory Audio Dock Using Cypress FX3	

Entertainment is a key feature that users look for in any mobile device

when making a purchase decision. Android is no different in this regard,

and it addresses this issue with enriched features to entertain end users.

Google’s online digital store, Google Play, provides access to music, books,

movies, and apps to entertain the user. When it comes to music or movies,

audio is a key aspect that makes a huge difference in the user experience.

To experience quality audio, it is important to have a better transport

mechanism to move the audio data from the Android-powered device to

an external device. Android uses digital interfaces like USB, HDMI, and

Bluetooth as transport mechanisms to stream and move the audio data

around. Though there are different transport mechanisms, this chapter

explores USB as the audio transport interface.

Before starting, you must understand the different USB audio accessories

available in the market. The USB-based audio accessories can be broadly

classified based on the USB mode (host or device mode). Remember, there

are other audio accessories that use USB connections to stream audio.

These are referred as analog accessories and do not comply with USB

specification, thus they don’t fall into the USB mode classification.

CHAPTER 6: USB Audio102

ANALOG USB AUDIO

Audio accessories that use USB interfaces to stream audio data and follow the (obsolete)

USB Carkit n Specification (CEA-936-A) are generally referred to as analog audio systems.

When streaming analog data, these devices use only the physical interface of USB and do

not comply with USB specifications.

USB HOST AUDIO

In the market, there are Android devices (like tablet PCs) that can function as USB hosts and

are capable of communicating with USB devices connected to them. These Android devices

can support USB headsets to play back music and perform other audio functions. Though

not officially supported by Android CDD (Compatibility Definition Document), this chapter

explores these devices before moving onto device audio.

USB DEVICE AUDIO

Android-powered devices acting in USB accessory mode are mandated to support an audio

interface as one of its accessory interfaces by Android CDD. Introduced in the Jelly Bean

version of Android, this feature enables vendors to come up with new types of accessories

that can receive audio stream from an Android device through USB and play it back to

the users. Though there are not many devices available in the market except what was

demonstrated in Google I/O 2012 (by Gear4), the later half of this chapter explores how to

build this accessory audio device.

Now that you’ve read a quick overview of the different USB audio

devices available in the market, let’s explore how the Android framework

accommodates the later two USB audio device types within an

Android-powered device. To understand the Android framework, it’s

important to understand USB audio. The following section provides a brief

overview of the USB audio specification.

USB Audio Specification
The USB audio class specification provides a standard mechanism to

transport audio over USB, and this section is based on the USB-IF’s device

class definition for audio devices, Release 1.0. The USB audio specification

allows audio devices to interoperate by making software drivers as generic

CHAPTER 6: USB Audio 103

as possible. Like any other USB device, USB audio devices use descriptors

to describe their characteristics to a host. These descriptors hold detailed

information about the audio device, including information about how to

control and stream digital audio. But unlike other USB classes like Mass

Storage Class (MSC) or MTP, where the descriptors are more or less fixed,

a USB audio device descriptor varies based on the topology of the product.

This is because most of the features are optional and vendors can build an

audio device with multiple functionalities, thus the descriptor tree varies

between devices.

An audio device exposes its functionality to a host through its interfaces,

namely the audio control interfaceAudio streaming interface and the midi

streaming interface. An audio function must have at least one audio control

interface; the streaming interfaces are optional. A collection of single control

interfaces and sets of streaming interfaces is called an “audio interface

collection.” Figure 6-1 represents an audio function with different interfaces,

as illustrated in the USB audio class specification.

Figure 6-1. Audio function view as illustrated by the USB audio class specification

In simple terms, the audio control interface is used to manage functionality

that directly influences audio perception, including volume control, and the

audio streaming interface is mainly used to transport audio data between

the audio function and the external world.

CHAPTER 6: USB Audio104

To manage the properties of an audio function, the USB audio class

specification represents the audio function as addressable entities, namely

terminals and units. Units form the building blocks of an audio function,

representing sub-functionality of the USB function. These are the five

standard units as defined by the USB audio specification:

Mixer Unit (MU)	
Selector Unit (SU)	
Feature Unit (FU)	
Processing Unit (PU)	
Extension Unit (XU)	

Each unit manages a certain functionality of the audio function and is

associated with a unit descriptor, which can identify and describe the

characteristics of the unit. A terminal represents the connection points of an

audio function, and the specification defines two types of terminals:

Input Terminal (IT)	
Output Terminal (OT)	

An Input Terminal can be viewed as an entity that represents an entry point

that provides data to the audio function, and the Output Terminal can be

viewed as an entity that consumes data from the audio function.

Figure 6-2 illustrates a descriptor tree of Android audio accessories with

control and stream interfaces with units and terminals. These units and

terminals are assigned unique IDs and they are interlinked, withing the

interface using these unique IDs.

CHAPTER 6: USB Audio 105

The unique ID is also used to address a particular entity for which an

audio control request is to be sent. These requests are used to control

the functionality and characteristics of the audio function, such as volume

control and mute, among others.

Having been briefed on the USB audio specification, you’ll now explore the

building blocks of the Android USB framework and also explore how the

Android USB framework interfaces with the Android audio framework when

in USB host and device modes.

Android USB Audio
The Android USB audio framework is very thin when compared to other

Android USB frameworks, and it does not have dedicated files or directories

in which the functionality is implemented. Android USB audio functionality

Figure 6-2. Descriptor tree of an Android audio accessory

CHAPTER 6: USB Audio106

is interleaved within the Android USB Service framework, which was

discussed in Chapter 2, “Discovering and Managing USB Within Android.”

The transport part of the audio framework is implemented in the kernel USB

audio framework. This USB audio transport framework registers itself to the

Linux kernel sound driver framework, namely the ALSA (Advanced Linux

Sound Architecture) after USB enumeration. After successful registration

of the USB audio within the “sound card driver” (ALSA), the kernel labels

the USB audio device as a sound card and assigns it a unique sound card

number. This number is later used by the Android audio framework to

manage the device. Figure 6-3 illustrates a top-level view of the Android

USB audio framework.

Figure 6-3. Android USB audio architechtural view

The architecture of the USB device audio and USB host audio setup remains

the same. The only difference between these two is that in a USB device

setup, the kernel driver is the gadget driver module, and in a host setup,

the USB device connected is managed by the usb-core kernel module, as

illustrated in Figure 6-3.

CHAPTER 6: USB Audio 107

The Android USB audio framework is interleaved within the Android

USB Service framework, which just detects the USB functionality and

generates appropriate “intent” in order to pass the information to the

Android audio framework and indicate availability of a USB audio device.

To understand the simple framework of Android USB audio functionality,

you have to explore how the Android USB Service framework detects

and communicates USB audio device information to the Android audio

framework. The following sections explain intents that communicate

detection of a USB audio device and how these USB audio intents are

generated and broadcasted along with the sound card information.

Different audio output devices supported by the Android framework are

defined in frameworks/base/media/java/android/media/AudioManager.java.

The following code snippet shows the constants used to define USB audio

devices from the Android audio manager framework:

/** {@hide} The audio output device code for a USB audio accessory.
 * The accessory is in USB host mode and the
 Android device in USB device mode
*/
public static final int DEVICE_OUT_USB_ACCESSORY = AudioSystem.DEVICE_OUT_
USB_ACCESSORY;

/** {@hide} The audio output device code for a USB audio device. The device
is in USB device mode and the Android device in USB host mode
 */
public static final int DEVICE_OUT_USB_DEVICE = AudioSystem.DEVICE_OUT_USB_
DEVICE;

This audio device output code information is used by the Android audio

framework as part of policy decisions, such as routing the audio data.

The comments above each definition explain which USB audio device the

definition represents.

To communicate detection of these USB output devices, two intents are

used. These intents are defined in a common Android framework file, named

frameworks/base/core/java/android/content/Intent.java. The two USB

audio intents, when broadcast, carry device and sound card information

created by the USB device. This information is necessary for the audio

framework to further manage the audio device. Next, we’ll explore the

details of the two intents.

CHAPTER 6: USB Audio108

Intent for DEVICE_OUT_USB_ACCESSORY

When an Android-powered device acts as a USB device and goes into USB

audio accessory mode, the following intent is generated along with the

device and sound card information created by the USB device.

/**
 * Broadcast Action: A USB audio accessory was plugged in or unplugged.
 *
 * <p>The intent will have the following extra values:
 *
 * state - 0 for unplugged, 1 for plugged.
 * card - ALSA card number (integer)
 * device - ALSA device number (integer)
 *
 *
 * @hide
 */
@SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION)
public static final String ACTION_USB_AUDIO_ACCESSORY_PLUG =
 "android.intent.action.USB_AUDIO_ACCESSORY_PLUG";

Intent for DEVICE_OUT_USB_DEVICE

An Android device with a USB host port can attach to a USB audio device

like a USB headset. In this case, the following intent is generated along with

device and sound card information created for the USB device.

/**
 * Broadcast Action: A USB audio device was plugged in or unplugged.
 *
 * <p>The intent will have the following extra values:
 *
 * state - 0 for unplugged, 1 for plugged.
 * card - ALSA card number (integer)
 * device - ALSA device number (integer)
 *
 *
 * @hide
 */
@SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION)
public static final String ACTION_USB_AUDIO_DEVICE_PLUG =
 "android.intent.action.USB_AUDIO_DEVICE_PLUG";

CHAPTER 6: USB Audio 109

USB Host Audio
When an Android device such as a tablet PC, has a USB host port and

supports USB host mode, one of the key USB functionalities a user expects

is to have playback over a USB-powered audio device. Though Android

CDD doesn’t mandate and support USB host audio, the Android framework

has added stubs to enable this feature for future expansion. For example,

the USB_AUDIO_DEVICE_PLUG intent is defined but not generated in Jelly

Bean. This section explores a possible way to work around this, by giving

the Android Audio framework a new sound card created by the USB audio

device.

Since the Android USB framework does not implement USB host audio,

there is no source file to refer to in the Android USB framework for this

functionality. The stubs like the USB_AUDIO_DEVICE_PLUG intent’s definition are

available in frameworks/base/core/java/android/content/Intent.java, as

explained in the previous section. The Android audio service framework also

provides a stub of receiving the intent when it is broadcasted.

It is also important to know that in the USB host audio use case, most of

the USB-related work is done at the kernel level (usb-core and sound driver

ALSA), and the rest is taken care of in the Android audio framework, along

with user space ALSA. The link /proc/asound/cards, as shown in Figure 6-4,

is not available yet in the Android USB framework, but does have the

essential information for the intent generated by the Android USB Service

Manager framework. Figure-6-4 illustrates a typical USB host mode audio

architecture.

CHAPTER 6: USB Audio110

As shown in Figure 6-4, the kernel audio driver implementation ALSA is part

of the sound/usb folder of the kernel package. Whenever an audio device

is plugged into an Android-powered device, the usbcore manages the USB

audio device enumeration and registers the audio device to the ALSA layer.

Through the kernel-level ALSA layer and equivalent user space

ALSA libraries, the Android audio framework manages the USB audio device

for playback and other features.

In the typical Linux system and Android 4.0 and below, there is a user

space with ALSA as well. But with the Jelly Bean version of Android, a

lightweight user space ALSA library named tinyalsa has been introduced in

order to enable the Android audio framework to manage the audio devices

connected in a lightweight fashion. It is important to note that the ability to

support USB audio with playback or voice depends on the Android audio

framework and ALSA. The USB framework in audio use cases is just a

transport layer passing data from the audio framework to the DAC in

real time.

Figure 6-4. Android USB host audio architecture

CHAPTER 6: USB Audio 111

Now that you’ve read a brief overview of the USB host audio, the next

section explores a workaround you can use to give the Android audio

framework a new sound card created by the USB audio device.

Example: How to Play Audio Over a USB Headset from an

Android Device

As discussed in the previous section, in a USB host audio use case, an

Android device has all the necessary framework from the USB transport to

the Android audio framework. The missing link is the information broadcast

from the Android USB framework to the Android framework about the new

USB headset’s sound card details. So, if you can broadcast the USB_AUDIO_
DEVICE_PLUG intent with necessary sound card details, the Android device

will play audio over the USB headset. In the following section, you learn how

to send the USB_AUDIO_DEVICE_PLUG intent with the necessary sound card

details to the Android audio framework.

The first step is put the Android device into USB host mode by connecting

a USB headset. In the example setup, a Logitech USB handset was

connected to the Android device and enumerated, as shown in Figure 6-5.

Figure 6-5. Snapshot of USB enumeration detail in android

Figure 6-6. Snapshot of soundcard detail within android device

Note that this command for listing the connected USB devices works only if

the device is rooted. If the device is not rooted, you can skip this step.

Once the USB enumeration is successful, the next step is to confirm if a

sound card is successfully created when the usb-core registers the USB

audio device to the ALSA layer. This can be confirmed by reading

the /proc/asound/cards file, as shown in Figure 6-6.

CHAPTER 6: USB Audio112

This confirms that the USB headset has been successfully registered with

the ALSA layer and that a sound card has been created. It is time to send

a broadcast to indicate a USB headset sound card to the Android audio

framework. This can be achieved by using the am broadcast command, as

shown in Figure 6-7.

Figure 6-7. Snapshot of intent broadcast detail

As described in the previous sections, the USB_AUDIO_DEVICE_PLUG intent has

three parameters containing sound card details. As you saw in the previous

step, the headset has the card number 2 and you can retrieve detailed

information using the aplay -l command. A detailed description of the am
broadcast command is available in its help, which will help interpret the

previous broadcast. You can confirm successful execution from the terminal,

which displays Broadcast completed: result=0. A simple analysis of the

logs captured through logcat will confirm that the Android audio framework

received the intent, as shown here:

D/dalvikvm(1989): Note: class Landroid/app/ActivityManagerNative; has 165
unimplemented (abstract) methods
V/AudioService(398): Broadcast Receiver: Got ACTION_USB_AUDIO_DEVICE_PLUG,
state = 1, card: 2, device: 0
I/AudioFlinger(121): HAL output buffer size 1024 frames, normal mix buffer
size 1024 frames

Now the Android device is ready to stream data over the USB headset,

which you can confirm by playing a song using a music player.

 DID YOU KNOW?

The issue of not generating USB_AUDIO_DEVICE_PLUG has been reported in Google’s bug

repository and it confirms that Jelly Bean does not support USB audio devices other than the

accessory support, as evidenced at https://code.google.com/p/android/issues/
detail?id=36661.

https://code.google.com/p/android/issues/detail?id=36661
https://code.google.com/p/android/issues/detail?id=36661

CHAPTER 6: USB Audio 113

USB Device Audio
The Jelly Bean Android CDD mandates that USB device audio functionality

and Android-powered devices are expected to support audio traffic over

the USB device mode as per the USB audio specification. The top-level

requirement from Google is that an Android-powered device should support

a standard USB audio class interface that is capable of two-channel, 16-bit

PCM audio with a bit rate of 44.100kHz. This feature of an Android-powered

device allows vendors to come up with audio accessories and end users to

enjoy digital audio using an Android-powered device.

USB device audio functionality is similar to the USB host audio functionality

in that the device just acts as a transport medium to send and receive audio

streams in a timely manner. In a typical audio playback setup, a USB host

streams data out and the USB audio device plays it. However, it is also

possible to have an audio setup where the USB device streams data and

the USB host plays it. Figure 6-8 illustrates an audio accessory mode in

which the Android accessory hardware acts as a USB host.

Figure 6-8. A simple Android accessory setup

After successfully configuring an Android-powered device in accessory

mode for audio, data plays from the Android-powered device to the Android

accessory. In the Jelly Bean version of Android, the USB audio device

is supported only in output mode (IN transfers, device-to-host). There is

much less information on audio device topology and audio control request

support, other than what is already available on the kernel code.

Android-powered devices make the audio functionality available to end

users in combination with an accessory or ADB class. In USB-specific

terminology, an Android-powered device communicates its audio

functionality in the descriptors sent to the USB host during enumeration.

When the device switches to Android accessory mode, Google proposes

that the audio functionality and the accessory class be specified in one of

the following combinations. The hexadecimal numbers on the left represent

CHAPTER 6: USB Audio114

the PID (Product ID) in the USB device descriptor when supporting the said

functionality:

	0x2D02 - Audio

	0x2D03 - Audio and adb

	0x2D04 - Accessory and audio

	0x2D05 - Accessory, audio, and adb

We’ll now explore the Android USB device audio framework and

demonstrate the device audio feature with an example. To start with, we’ll

explore how the Android USB framework interfaces with the kernel USB

gadget framework in accessory audio setup. Figure 6-9 illustrates a top-level

architectural view of the Android audio accessory framework. As illustrated

in Figure 6-9, the Android USB Service manager is responsible for indicating

the availability of accessory sound cards to the Android audio framework.

The USB Service Manager achieves this by listening to uevents generated

by the gadget driver and subsequently reading the /sys/class/android_
usb/android0/f_audio_source/pcm file to collect card and device details.

These device and card details are then packed for the intent to broadcast to

the listeners. Note that during enumeration, f_audio_source/pcm is updated

by the gadget driver (drivers/usb/gadget/f_audio_source.c).

CHAPTER 6: USB Audio 115

Having read about the building blocks of the Android USB device audio,

we’ll now explore how to switch an Android-powered device to USB

accessory mode with audio support.

Switching to Accessory Device Audio Mode

The Android accessory audio functionality, unlike other functionalities

such as MTP, ADB, and mass storage, is not supported in the default

configuration of an Android device. As explained earlier, the audio function

is presented as one or more USB interfaces with the device functioning

in accessory mode. This means an Android-powered device has to be

put in accessory mode to enable the USB audio functionality. Figure 6-10

illustrates the sequence of activities that happens internally when an Android

device switches to an accessory audio device.

Figure 6-9. Android USB device audio architecture

CHAPTER 6: USB Audio116

In Figure 6-10, it is important to note that the module accessory host is

an external device and is not part of the Android framework. To switch the

accessory, the first step is to send commands from the Android accessory.

To enable audio along with an accessory, the Android accessory will have to

send the following vendor-defined control requests:

/* Control request for setting the audio mode.
 *
 * requestType: USB_DIR_OUT | USB_TYPE_VENDOR
 * request: ACCESSORY_SET_AUDIO_MODE
 * value: 0 - no audio
 * 1 - device to host, 44100 16-bit stereo PCM
 * index: 0
 * data none
 */
#define ACCESSORY_SET_AUDIO_MODE 58

Once these requests are successful, the Android accessory switches the

Android-powered device to accessory mode, using the following request:

/* Control request for starting device in accessory mode.
 * The host sends this after setting all its strings to the device.
 *
 * requestType: USB_DIR_OUT | USB_TYPE_VENDOR
 * request: ACCESSORY_START
 * value: 0

Audio

Framework

USB Service

Manager
ALSA

Android USB

Gadget Driver

Accessory

Host

acc_ctrlrequest

(GET_PROTOCOL)

acc_ctrlrequest

(SET_AUDIO)

acc_ctrlrequest

(ACCESSORY_START)

Ioctl(ACCESSORY_GET_AUDIO_MODE)

setCurrentFunctions(audio_source)

init.usb.rc

uevent(usb_state=configured)

update Audio Source Function

Intent.ACTION_USB_AUDIO_ACCESSORY_PLUG

card,device

Figure 6-10. Sequence of activities when switching to accesory audio mode

CHAPTER 6: USB Audio 117

 * index: 0
 * data none
 */
#define ACCESSORY_START 53

When this request is received by the Android-powered device, the kernel

driver indicates the Android USB Service framework to start accessory

mode through uevent. The Android USB Service framework’s UEvent

observer then calls the startAccessoryMode function to set the accessory

mode as the current USB functionality of the Android-powered device.

As you read in Chapter 2, current USB functionality of an Android device

is managed by the user space framework through the sysfs interface, and

is also applicable for use with this audio device case. The sysfs managing

command exists in the /system/core/rootdir/init.usb.rc file, and the

following snippet shows the device audio and adb configuration:

USB and audio accessory configuration
on property:sys.usb.config=accessory,audio_source
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d04
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

The Android USB gadget driver creates additional system file entries for

each USB function that it supports, which are then used by user space

modules. In the case of audio function, the Android USB gadget framework

extends sound card details using the /sys/class/android_usb/android0/
f_audio_source/pcm file. This file is read for the details of the sound card

and the intent is packed with card details to be broadcasted. This action

is managed by the updateAudioSourceFunction function, and is called to

state changes in the Android USB gadget driver, as indicated by USB_STATE

uevents.

 DID YOU KNOW?

Inside the kernel, when the user space sets the USB functions, the USB gadget driver

registers the sound driver of Linux (ALSA), and a PCM sound card audio_source is

created, as shown. The following /proc entries are from an Android-powered device that

lists the sound card details, similar to what was discussed in the USB host section.

CHAPTER 6: USB Audio118

root@android:/ # cat /proc/asound/cards
cat /proc/asound/cards
0 [omap4wm8994]: - omap4_wm8994
 omap4_wm8994
1 [OMAP4HDMI]: - OMAP4HDMI
 OMAP4HDMI
2 [audiosource]: audio_source - audio_source
 USB accessory audio source

The Android audio service framework listens to this accessory audio

broadcast in the frameworks/base/media/java/android/media/
AudioService.java file, as shown:

 } else if (action.equals(Intent.ACTION_USB_AUDIO_ACCESSORY_PLUG) ||
 action.equals(Intent.ACTION_USB_AUDIO_DEVICE_PLUG)) {
 state = intent.getIntExtra("state", 0);
 int alsaCard = intent.getIntExtra("card", -1);
 int alsaDevice = intent.getIntExtra("device", -1);
 String params = (alsaCard == -1 && alsaDevice == -1 ? ""
 : "card=" + alsaCard + ";device=" + alsaDevice);
 device = action.equals(Intent.ACTION_USB_AUDIO_ACCESSORY_PLUG) ?
 AudioSystem.DEVICE_OUT_USB_ACCESSORY : AudioSystem.
DEVICE_OUT_USB_DEVICE;
--cut---
 setWiredDeviceConnectionState(device, state, params);

The audio service framework extracts USB accessory sound card details.

When you start playing music in a music player, the data is streamed over

the USB interface. How the audio framework further manages the USB

sound card is beyond the scope of the book.

Now that you’ve seen how an Android-powered device switches to audio

mode, you can learn how to develop an audio-docking device that switches

an Android device to accessory audio mode, receives the data, and then

plays the audio with a real embedded setup.

Example: Android Accessory Audio Dock Using Cypress FX3

To develop an Android accessory, the first step is to identify a controller

chip with USB host support that also provides an interface to audio devices.

This example uses Cypress Semiconductor’s EZ-USB FX3 development kit

CYUSB3KIT and a DAC board, which supports I2S as input to play audio.

Figure 6-11 illustrates typical blocks of an Android accessory audio dock.

CHAPTER 6: USB Audio 119

ANDROID-POWERED DEVICE

This runs the Jelly Bean version of Android and streams audio over an ISO endpoint when in

accessory audio mode.

USB HOST (CYPRESS FX3)

This controller runs Android accessory host firmware that enables the accessory mode in

the Android device. It receives the audio data over the ISO endpoint and writes to a DAC over

the I2S interface.

DAC (DIGITAL TO ANALOG CONVERTER)

The digital-to-analog converter (DAC) plays the digital data (the song) into the speaker.

Now that you have an understanding of the different blocks of the audio

dock, let’s explore the FX3 firmware code. To start the development, install

the EZ-USB FX3 SDK, available from http://www.cypress.com/?rID=57990.

Once the installation is successful, open the Android audio project called

FX3_AOA_Audio from the CD.

Prepare the setup explained in the Figure 6-11 and program the firmware.

Now connect the Android device to the FX3 controller board and it will

bring the following firmware control to CyFxApplnStart in cyfxusbhost.c

Android

Powered

Device

USB Host

(Cypress FX3)

CYUSB3KIT

DAC

Speaker

USB I2S

Figure 6-11. The Android accessory audio dock setup

http://www.cypress.com/?rID=57990

CHAPTER 6: USB Audio120

This triggers the firmware to send the necessary commands to switch to

accessory mode using the switch_to_acc function, as shown:

sendString(ACCESSORY_STRING_MANUFACTURER, "Cypress");

 sendString(ACCESSORY_STRING_MODEL, "FX3 AOA Audio");

 sendString(ACCESSORY_STRING_DESCRIPTION, "FX3 Android Accessory Audio");

 sendString(ACCESSORY_STRING_VERSION, "0.1");

 sendString(ACCESSORY_STRING_URI, "www.cypress.com");

 sendString(ACCESSORY_STRING_SERIAL, "0123456789");

 status = CyFxSendSetupRqt(
 USB_SETUP_HOST_TO_DEVICE |
 USB_SETUP_TYPE_VENDOR |
 USB_SETUP_RECIPIENT_DEVICE,
 SET_AUDIO_MODE, 1,0,
 0,0);

 status = CyFxSendSetupRqt(
 USB_SETUP_HOST_TO_DEVICE |
 USB_SETUP_TYPE_VENDOR |
 USB_SETUP_RECIPIENT_DEVICE,
 ACCESSORY_START, 0,0,
 0,0);

After the control commands are sent, the Android device re-enumerates

in accessory mode, thereby exposing audio and accessory interfaces as

discussed in previous sections.

Now get the audio interface details and claim an isochronous (ISO) endpoint

to collect the audio data. Then pipe the audio data collected in the ISO to

the I2S channel, as shown in this code:

/* Add the IN endpoint. */
 CyU3PMemSet ((uint8_t *)&epCfg, 0, sizeof(epCfg));
 epCfg.type = CY_U3P_USB_EP_ISO;
 epCfg.mult = 1;
 epCfg.maxPktSize = 256;
 epCfg.pollingRate = 1;
 /* Since DMA buffer sizes can only be multiple of 16 bytes and
 * also since this is an interrupt endpoint where the max data
 * packet size is same as the maxPktSize field, the fullPktSize
 * has to be a multiple of 16 bytes. */
 size = ((256 + 0x0F) & ~0x0F);

http://www.cypress.com/

CHAPTER 6: USB Audio 121

 epCfg.fullPktSize = size;
 epCfg.isStreamMode = CyTrue;
 status = CyU3PUsbHostEpAdd (0x83, &epCfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto enum_error;
 }
 CyU3PDebugPrint (4, "EP Config success\r\n");

 /* Create a DMA channel for this EP. */
 CyU3PMemSet ((uint8_t *)&dmaCfg, 0, sizeof(dmaCfg));
 dmaCfg.size = size;
 dmaCfg.count = 6;
 dmaCfg.prodSckId = (CyU3PDmaSocketId_t)(CY_U3P_UIB_SOCKET_PROD_0 + (0x0F
& 0x83));
 dmaCfg.consSckId = CY_U3P_CPU_SOCKET_CONS;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 dmaCfg.notification = CY_U3P_DMA_CB_PROD_EVENT;
 dmaCfg.cb = CyFxAoADmaCb;
 dmaCfg.prodHeader = 0;
 dmaCfg.prodFooter = 0;
 dmaCfg.consHeader = 0;
 dmaCfg.prodAvailCount = 0;
 status = CyU3PDmaChannelCreate (&glHostAoACh, CY_U3P_DMA_TYPE_MANUAL_IN,
&dmaCfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }

 dmaCfg.prodSckId = CY_U3P_CPU_SOCKET_PROD;
 dmaCfg.consSckId = CY_U3P_LPP_SOCKET_I2S_LEFT;
 dmaCfg.notification = 0;
 dmaCfg.cb = NULL;
 status = CyU3PDmaChannelCreate (&glI2SLeftCh, CY_U3P_DMA_TYPE_MANUAL_OUT,
&dmaCfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }

 dmaCfg.prodSckId = CY_U3P_CPU_SOCKET_PROD;
 dmaCfg.consSckId = CY_U3P_LPP_SOCKET_I2S_RIGHT;
 status = CyU3PDmaChannelCreate (&glI2SRightCh, CY_U3P_DMA_TYPE_MANUAL_
OUT, &dmaCfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }

CHAPTER 6: USB Audio122

 CyU3PDebugPrint (4, "DMA Config success\r\n");

 status = CyU3PDmaChannelSetXfer (&glI2SLeftCh, 0);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }
 CyU3PDebugPrint (4, "left out success\r\n");

 status = CyU3PDmaChannelSetXfer (&glI2SRightCh, 0);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4, "right out failed 0x%x\r\n", status);
 goto app_error;
 }
 CyU3PDebugPrint (4, "right out success\r\n");

 /* Enable EP transfer. In stream mode, the transfer size should be zero.
*/
 status = CyU3PUsbHostEpSetXfer (0x83, CY_U3P_USB_HOST_EPXFER_NORMAL,
0);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }
 CyU3PDebugPrint (4, "hostepsetxfer success\r\n");

 /* Set for infinite transfer. */
 status = CyU3PDmaChannelSetXfer (&glHostAoACh, 0);
 if (status != CY_U3P_SUCCESS)
 {
 goto app_error;
 }

Now open a media player in the Android device and play an audio file. This

streams audio to the FX3 host, which subsequently pipes it to the DAC

board over the I2S channel. Figure 6-12 captures the audio data over the

ISO endpoint using a bus analyzer.

CHAPTER 6: USB Audio 123

Conclusion
Multimedia is one of the key functionalities in any mobile device and is

used as a key selling point. Among other multimedia features, audio is

an important feature that makes all the difference and convinces users to

buy a mobile device. Models like the “Walkman” series by many mobile

manufacturers are proof of this. To cater to this market and enhance user

experience, the Android Jelly Bean version introduced USB device audio

features. This chapter detailed this device audio framework, along with

examples of the USB host audio.

An important reason why Google included accessory device audio features

was to allow manufacturers to come up with new accessories for Android-

powered devices. Though there are numerous audio accessories available

in the market, the important difference is that they do not comply with USB

specifications and are referred to as analog audio accessories.

Figure 6-12. The ISO transfers when audio is played

125

Chapter 7
Android Debug Bridge

(ADB)

What You Will Learn:

ADB Overview	
Setting Up ADB	
ADB Protocol	
ADB Framework Architecture	
Exercises: Debugging Using JDB and Backup 	
Using ADB

Android Debug Bridge, popularly referred to as ADB, is the tool that Google

provides along with the Android framework to facilitate debugging and

managing an Android system. ADB uses USB or TCP as its transport layer

to communicate with an Android-powered device. ADB works in a simple

client/server architecture, and is made up of three key components, namely:

A server runs in the background of the host system and

communicates between the client and the ADB daemon

running on an emulator or device. The server also maintains

details of the connected device along with its state.

A client on the host system that connects to the server,

which can be an adb shell or adb logcat command that runs

on a terminal to the Dalvik Debug Monitor Server

(DDMS) tool.

CHAPTER 7: Android Debug Bridge (ADB)126

An ADB daemon that runs on the Android device/emulator

as part of the Android USB framework and interacts with the

server to help manage the Android-powered device.

It is important to note that on a host environment, the ADB server and

the ADB client share the same binary in the host environment. Figure 7-1

illustrates how these three components fit in an ADB setup.

Client
ADB

Server

ADB

Daemon

PC Host (adb.exe) Android Device(adbd)

Figure 7-1. An ADB setup with its three key modules

Client

(terminal,

DDMS)

ADB

Server

ADB

Daemon

PC Host Android Device

Figure 7-2. A terminal/DDMS ADB setup

This section discusses how these modules fit in a real setup with a couple

of examples. One of the most commonly used ADB commands is the

adb shell command. Assume that an Android device is connected to the

host PC using a USB with the Android Debug Bridge option enabled on

the device by going to Settings ➤ Developer Options. In this scenario, the

terminal where the ABD shell is running is the client, and the command

invokes the ADB server adb on the host PC. The ADB server then talks to

the host PC to the ADB daemon adbd on the Android device over the USB to

service the shell commands.

Another example is the Dalvik Debug Monitor Server (DDMS) debugging

tool, an eclipse plug-in tool that provides screen captures and logcat,

and processes information for an Android device. The DDMS tool in the

background relies on ADB’s services for its operations. In this setup, the

DDMS tool is the client component of the ADB setup. Figure 7-2 illustrates

the terminal and DDMS of an ADB setup.

CHAPTER 7: Android Debug Bridge (ADB) 127

Having briefly explored the building blocks of an ADB setup and how it

internally communicates, the following sections explore how to set up

ADB on a PC host, the protocol used by ADB to communicate, and its

architecture and features list. Finally, the chapter includes an example of

how to use JDB with ADB and back up with ADB.

Setting Up ADB
To set up ADB on a host PC, the first step is to download the Android SDK

from the following link: http://developer.android.com/sdk/index.html. The

following section explores how to set up ADB in Windows and Linux.

Windows
When extracting the SDK, you can find the adb.exe tool in the adt-bundle-
windows-x86-20130917\sdk\platform-tools folder. Since the SDK package

does not update the PATH, you have to set the platform tools folder in the

PATH environmental variable. This will allow you to run ADB from any location

from a command prompt.

Now, connect an Android-powered device to the host PC with ADB enabled

under Developer options. This should make the ADB function available to

the host PC, and can be confirmed using a simple ADB command called

adb devices. This command will print a list of all attached emulator/device

instances. Sometimes, you may need to configure a USB vendor ID for the

Android-powered device in a special file called adb_usb.ini.

This file will be created in the .android folder in the user’s home directory

($HOME) when installing the ADB setup. (For example, c:/Users/<user
name>/.android for Windows7). If the folder has not been created yet,

this folder has to be created along with the adb_usb.ini file. This setup is

required because internally within the ABD host implementation, vendor IDs

are matched (is_adb_interface) against a set of built-in vendor IDs, which

are defined in system/core/adb/usb_vendors.c#builtInVendorIds. The

ADB host implementation reads the INI file in order to update the vendor ID

list, along with the existing built-in vendor ID list in system/core/adb/usb_
vendors.c (the usb_vendors_init function).

You can also set the ANDROID_SDK_HOME environmental variable if for some

reason you want to place the .android folder in a different location. This

environmental variable should be set to the path of the .android folder,

which is read by the ADB implementation for the INI file path.

http://developer.android.com/sdk/index.html

CHAPTER 7: Android Debug Bridge (ADB)128

Linux
In Linux, the same rules apply, except in regard to how these rules are

actually set. To enable ADB to be run from any location from a terminal, set

the PATH environmental variable with the installation path.

export PATH=${PATH}:/<>/android-sdk-linux/tools
export PATH=${PATH}:/<>/android-sdk-linux/platform-tools

The .android/adb_usb.ini folder can be created in the user’s home folder

to add any unsupported vendor IDs, just like with the Windows setup. The

only difference in a Linux setup is that you have to provide permission for

a normal user account to be able to access the ADB interface of the USB

device. This can be achieved by adding udev rules, as discussed below, with

execution permission in the /etc/udev/rules.d/androids.rules file.

$ cat /etc/udev/rules.d/androids.rules
SUBSYSTEM=="usb", ATTR{idVendor}=="04B4", MODE="0666"

Now, when you run the adb devices command on the terminal, the Android

device will be listed with a serial number.

If the ADB is not be detected evenafter going through the above mentioned

steps, then In this situation, you might have to restart the ADB server by

running the adb kill-server command.

 DID YOU KNOW?

As of Android 4.2, the ADB tool was made more secure. The Developer Option menu option,

which allows you to enable ADB, is hidden. To enable this option, you have to tap Build

Number seven times from the Settings ➤ About Phone option.

ADB Protocol
Recall that there are two types of ADB commands. There are ADB

commands whose information lies within the server, and there are ADB

commands that require fetching information from the daemon on the

Android-powered device by the ADB server. A command that is serviced

within the server without communicating with the Android device is

referred to as host service, and commands that are serviced after fetching

information from the device through the daemon are termed local services.

In this section, we’ll explore the protocol involved in the host service and the

local service, which is over a transport medium like USB.

CHAPTER 7: Android Debug Bridge (ADB) 129

Client <-> Server Protocol
In an ADB setup, the mode of communication between a client and a server

is through standard socket programming over TCP. In this setup, the ADB

server listens to TCP port 5037 of the host, to which the client has to send

the request. The format of the request that the client has to send is shown in

Figure 7-3.

4 byte length Payload

host: <command>

host-serial: <command>

shell: <command>

Figure 7-3. The protocol packet format

The request from an ADB client should contain an initial four-byte field in

ASCII and a payload. The payload generally starts with the prefix keyword

host:, which indicates that the request is addressed to the server. Upon

receiving the request, the server will reply with an OKAY or FAIL string to

indicate the status of the request. That string is then followed by an optional

payload containing the length and requested data. To better understand

practically how the packets are seen on the socket, you can use a TCP

port-monitoring tool like Wireshark or tcpdump. Figure 7-4 shows how a

client’s request will look with various ADB commands.

Figure 7-4. Wireshark dump showing client and server communication over TCP

Server <-> ADB Daemon Protocol
There are command requests from ABD clients that require information from

the Android-powered device or emulator. The ADB server uses two types of

transport, mostly depending on the type of setup. When a host is connected

to a physical Android-powered device over USB, it uses USB as the

transport, and in the case of an Android emulator, the transport is through

TCP. The protocol is simple and straightforward; it simply has to forward the

CHAPTER 7: Android Debug Bridge (ADB)130

packet to and from the server. The command messages of the protocol layer

consist of a 24-byte header followed by an optional payload, (each field size

is four bytes), as shown here:

struct message {
 unsigned command; /* command identifier constant */
 unsigned arg0; /* first argument */
 unsigned arg1; /* second argument */
 unsigned data_length; /* length of payload (0 is allowed) */
 unsigned data_crc32; /* crc32 of data payload */
 unsigned magic; /* command ^ 0xffffffff */
};

The message can contain any of the following commands with the data

length, which indicates the payload length, and are generally quoted as a

string of ASCII characters.

#define A_SYNC 0x434e5953
#define A_CNXN 0x4e584e43
#define A_AUTH 0x48545541
#define A_OPEN 0x4e45504f
#define A_OKAY 0x59414b4f
#define A_CLSE 0x45534c43
#define A_WRTE 0x45545257

You can read more detailed information on the format of the command and

services of the two protocols in the following files:

	system/core/adb/SERVICES.TXT

	system/core/adb/OVERVIEW.TXT

	system/core/adb/protocol.txt

After you gain an understanding of ADB protocols and their setup, the

following section explores how this protocol is implemented in a host and an

Android device environment. This section also covers activity sequences on

how the information flows to and from the Android daemon in the Android

USB framework.

To understand the sequence of activities in a typical ADB setup, consider

two simple ADB commands, namely adb devices and adb shell ls, which

will cover the two kinds of services an ADB client can encounter. Before

using any of these services, the ADB protocol starts with the connect

command, which establishes the presence of the remote system. Both

the host ADB and the ADB daemon send a connect message when the

connection is established. The connect command is attached with a payload

that provides version, system identification, string, and the maximum data

that the ADB connection can hold. Once this state is achieved, the ADB

CHAPTER 7: Android Debug Bridge (ADB) 131

setup is ready for communication. Any command message sent before this

command is ignored.

Once the connection is established, a user can execute ADB commands.

Figure 7-5 illustrates the flow of information when the adb devices and

adb shell ls commands are executed. When the adb devices command

is executed, you will notice that the ADB server responds to the command

locally, without contacting the ADB daemon. The ADB server maintains

information on the list of connected devices and their state, which it uses to

respond to certain ADB commands, generally termed as “host services.”

ADB

Client

ADB

Server

ADB

Daemon

CNXN

CNXN

Payload with DeviceInfo

O
n

 C
o
n

n
e
ct

io
n

000Chost:devices

0004OKAY

<Payload>

a
d

b
 d

e
vi

ce
s

0004shell:ls

0004OKAY

OPEN[shell:]

OKAY

WRITE[ls]

OKAY

WRITE[payload]

OKAY

a
d

b
 s

h
e
ll

ls

WRITE[payload]

OKAY

P
ro

ce
ss fo

r ls g
e
ts cre

a
te

d
 to

se
n

d
 co

lle
cte

d
 in

fo
rm

a
tio

n

Figure 7-5. A sequence of activities between the client, the server, and the daemon

In the next command setup, the command is served by the ADB daemon,

and the ADB server facilitates the command by initiating, and subsequently

acting in, the pass-through mode. This command generally starts a service

within the ADB daemon or on the device the client interacts with. Figure 7-5

displays sequential activity for a non-interactive command. As an example,

the adb shell ls command is illustrated.

CHAPTER 7: Android Debug Bridge (ADB)132

 DID YOU KNOW?

An ADB connection had to be authenticated for ADB to work from Android version 4.2.2. If

an authentication process is not completed before executing the adb devices command, the

device will be listed as offline. Also, if you use just any old SDK setup, it will not work, and

you will have to download the latest SDK. ADB authentication is done with an RSA key pair.

ADB daemon on a device can maintain a list of hosts (PCs) that have been authenticated so

that they need not be authenticated each time. (Always allow the “This Computer” option to

be enabled, as shown in the figure.)

Now that you have an understanding of the various ADB services, the

following section explores the ADB architecture that resides inside an

Android-powered device.

Android ADB Architecture
The ADB framework, unlike the other Android USB framework functions,

does not have a Java or JNI framework component. It also does not expose

any API for application development, as the ADB functionality is a developer

debugging framework. The ADB framework is a daemon implemented

in the C language running in the Android user space. This daemon is

facilitated by the Android USB framework, namely UsbDeviceManager and

UsbDebuggingManager. Figure 7-6 provides the building blocks of ADB

framework within an Android powered device.

CHAPTER 7: Android Debug Bridge (ADB) 133

The UsbDeviceManager in the ADB use case is used to enable and disable

ADB functionality, as detailed in Chapter 2. The UsbDebuggingManager was

introduced with the Jelly Bean 4.2 version of Android, when the RSA-based

authentication feature was added for ADB. The UsbDebuggingManager.
java implementation can be found in the following directory along with the

UsbService framework: frameworks/base/services/java/com/android/
server/usb/. The UsbDebuggingManager opens a line to communicate with

an ADB daemon and acts as an interface between the user feedback on

authentication and the ADB daemon.

It can be inferred from Figure 7-6 that the ADB daemon implementation

relies on the Android kernel USB driver framework to send and receive

messages to an ADB server. The ADB daemon, which is a process that

starts when the device boots up, is generally started from the init.rc script.

The ADB implementation can be located in the /system/core/adb folder

of the Android framework. This folder contains the implementation of both

the ADB daemon and the ADB application that runs on a host. These two

applications share common files with code that is separated by the ADB_HOST

macro, including adb.c, transport.c, and transport_local.c.

You might also remember that the ADB executables share the same binary

on a host environment with the ADB client implementation. The ADB client

implementation is implemented through the key files called commandline.c

and adb_client.c. The source files in the system/core/adb are for the ADB

server and the ADB daemon. To determine the exact files that implement

Android USB Composite driver

ADB Function Driver(f_adb.c)

/dev/android_adb

ADB Daemon

(system/core/adb/) UsbDeviceManager

init.rc

Start daemon

during boot

Set ADB

Functions

UsbDebuggingManager

Figure 7-6. The building blocks of ADB inside an Android-powered device

CHAPTER 7: Android Debug Bridge (ADB)134

respective executables, the best place to look is the Android.mk file, which

generates the respective executables. The following is a snippet from the

makefile:

adbd device daemon
===

include $(CLEAR_VARS)

LOCAL_SRC_FILES := \
 adb.c \
 backup_service.c \
 fdevent.c \
 transport.c \
 transport_local.c \
 transport_usb.c \
 adb_auth_client.c \
 sockets.c \
 services.c \
 file_sync_service.c \
 jdwp_service.c \
 framebuffer_service.c \
 remount_service.c \
 usb_linux_client.c \
 log_service.c \
 utils.c

adb host tool
==

LOCAL_SRC_FILES := \
 adb.c \
 console.c \
 transport.c \
 transport_local.c \
 transport_usb.c \
 commandline.c \
 adb_client.c \
 adb_auth_host.c \
 sockets.c \
 services.c \
 file_sync_client.c \
 $(EXTRA_SRCS) \
 $(USB_SRCS) \
 utils.c \
 usb_vendors.c

CHAPTER 7: Android Debug Bridge (ADB) 135

As you can infer from the file list, the ADB daemon and the host executable

(adb.exe) share common files, and there are files that are specific to both

implementations. As discussed, the common files separate the respective

implementation by the ADB_HOST macro. The following section explores some

of the key features of ADB and their usage.

Example 1: Using JDB with ADB
Android ADB integrates support for Java Debug Wire Protocol (JDWP),

a protocol used for communication between a debugger and the

virtual machine. This section provides a brief summary of the JDWP

implementation and explains how to use Java Debugger (JDB) with ADB. It

all starts with an ADB daemon starting a named Unix server socket called

@vm-debug-control, which a JDWP thread connects to when it starts. After a

successful connection, the JDWP threads the PID of the process as a string

of four hexadecimal characters.

To connect a debugger, you can simply run the adb forward tcp:<hostport>
jdwp:<pid> command with an interested PID. This indicates the ADB

daemon to share the socket descriptor with the JDWP process. The JDWP

process uses the descriptor as it passes through the connection to the

debugger. The ADB JDWP implementation is spread across

dalvik/vm/jdwp/JdwpAdb.cpp and system/core/adb/jdwp_service.c for

detailed study.

Next you’ll see how to get the list of PIDs that use a JDWP service, and then

explore how to connect to the debugger JDB. The first step is to use the adb
jdwp command, which lists the PIDs that implement JDWP, as shown here:

root@rajaram-pc:/home/rajaram#
root@rajaram-pc:/home/rajaram# adb jdwp
491
1384
1400
801
612

Now connect JDB to the JDWP process using the adb forward command,

as shown in the following snippet. Then you connect to JDB using jdb
-attach localhost:port.

root@rajaram-pc:/home/rajaram# adb forward tcp:8000 jdwp:1384
root@rajaram-pc:/home/rajaram# jdb -attach localhost:8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...

CHAPTER 7: Android Debug Bridge (ADB)136

> threads
Group system:
 (java.lang.Thread)0xc141b1e358 <8> FinalizerWatchdogDaemon
cond. waiting
 (java.lang.Thread)0xc141b1e1a8 <7> FinalizerDaem cond. waiting

Once you’re connected with JDB, you can debug your application using the

JDB commands.

Example 2: Backing Up Your Phone with ADB
Another key feature of ADB is the ability to back up your Android device to

a host PC and then restore it on the device. This feature can be handy if you

lose data from your Android device. The following command-line snippet

lists the various adb backup options:

adb backup [-f <file>] [-apk|-noapk] [-shared|-noshared] [-all] [-system|-
nosystem] [<packages...>]
 - write an archive of the device's data to <file>.
 If no -f option is supplied then the data is written
 to "backup.ab" in the current directory.
 (-apk|-noapk enable/disable backup of the .apks themselves
 in the archive; the default is noapk.)
 (-shared|-noshared enable/disable backup of the device's
 shared storage / SD card contents; the default is noshared.)
 (-all means to back up all installed applications)
 (-system|-nosystem toggles whether -all automatically includes
 system applications; the default is to include system apps)
 (<packages...>is the list of applications to be backed up. If
 the -all or -shared flags are passed, then the package
 list is optional. Applications explicitly given on the
 command line will be included even if -nosystem would
 ordinarily cause them to be omitted.)

The backup command provides an option to choose the type of data for

backup or even ignore certain data. This backup mechanism requires user

intervention on the Android device side, as it provides the user an option to

set a password for the backup and allow or deny the backup process, as

shown in Figure 7-7.

CHAPTER 7: Android Debug Bridge (ADB) 137

Figure 7-7. User interface option in an Android device when the ABD backup command is executed

139

Appendix A
Battery Charging

Using USB

What you will learn:

Types of USB Chargers	
Overview of USB Battery Charging Specification	
Android USB Charging Framework	
Sample Application	

USB technology has evolved over the years as the standard for connecting

peripherals like keyboards, printers, and so on, to personal computers, and

as a result, USB has replaced serial and parallel ports. Modern devices like

smart phones and game controllers have also adopted this technology as

a primary transport mechanism. As part of their evolution, USB evolved

from a data interface to an important source of power to charge portable

devices like a smart phones, or even to power up an external audio speaker.

In Battery Charging Specification, the Battery Charging Working Group of

the USB Implementers Forum (USB-IF) has standardized how a USB power

source has to behave, the different types of USB power sources, and how

much power a device can consume when connected to a USB source.

This appendix explores USB-based charging that you, as an Android

developer, need to know to develop applications related to charging. This

chapter initially explores the different types of USB chargers available, and

explains how they are different, followed by exploring the USB specification

that defines USB battery charging. Furthermore, this chapter will provide

a quick overview of how Android framework implements battery charging

functionality. It is important to note that this Android Battery Charging

APPENDIX A: Battery Charging Using USB 140

framework is not part of Android USB framework, as charging doesn’t use

conventional USB communication protocols. That’s the reason this is an

appendix to the book. At the end, this appendix also uses an example to

explain how you can get additional information on a battery’s condition,

beyond just the battery charging status and the charge amount left.

Types of USB Chargers
As a typical user, you likely have multiple USB sources with which you can

charge batteries or use for powering a device and consuming power. This

section captures these different power sources in layman terms. Details

of its characteristics are explained in the next section of USB battery

specification overview.

Wall Charger
A typical USB charger that you receive along with a portable device is shown

in Figure A-1.

Figure A-1. Illustration of a wall charger unit

In this setup, the power source for the charging device is an AC power point.

The USB provides a medium of transferring power from the source to the

portable device.

APPENDIX A: Battery Charging Using USB 141

Personal Computer
When you have a host PC, say a desktop or a laptop computer, you can

connect your portable device (or peripheral) to any of the PC’s USB ports

to charge it. In this case, the power source is the host PC, as shown in

Figure A-2.

Figure A-2. A peripheral charging from a USB port of a PC (REF: Kindle documentation)

A USB car kit charger is also similar to this setup, where the power is

sourced from the car’s battery via a USB port.

Charging Dock
Another method for charging a portable device is through a charging

dock. Such docking devices provide a couple of functions aside from just

charging. The first example, shown in Figure A-3, is the Sony DK300. It can

act as a docking station that supports charging the mobile device, along

with a provision to play back audio as well.

Figure A-3. Illustration of the audio docking station of Sony DK300 (REF: User Guide)

In today’s market, you can find charging docks that provide functionalities

like serving as a hub and ones that allow you to connect USB devices, both

of which are shown in Figure A-4.

APPENDIX A: Battery Charging Using USB 142

In this setup, the dock will power up both the peripheral device, which acts

as a USB host, and the USB devices that are connected to it.

This section captured different types of USB-based chargers the users

generally deploy in their day-to-day activities. The following section

explains these charger types along with their characteristics from the

“Battery Charging 1.2” specification.

USB Battery Specification Overview
Having looked at different types of USB chargers in layman terms, you’ll

now read a quick overview of the Battery Charging 1.2 specification to

understand the characteristics of these chargers in engineering terms.

In a way, the main focus of the battery specification is to define the

characteristics of different chargers and describe their mechanisms for

how to detect the chargers. This section focuses on the different types

of charging options (USB ports and chargers) and their characteristics in

brief. The specification also details the mechanism that can differentiate the

different types, but that is beyond the scope of this book. Before you study

the different types of charging ports, you should first understand some key

USB terms relevant to this section.

Downstream Port 	
A port that data flows away from the host. In laymen

terms, a USB port on a host PC or on a hub, with ports

that are farthest from the host, are downstream ports.

Upstream Port 	
A port that sends data toward the host. Generally, a

port on a USB device and on a hub, with the port that is

closest to the host, are upstream ports.

Figure A-4. A Cypress HX3 ACA dock (left) and Sony LiveDock docking device (right) (REF: User Guide)

APPENDIX A: Battery Charging Using USB 143

Here are the different types of charging options (USB ports and chargers)

and their characteristics:

Standard Downstream Port (SDP)	
Refers to a port on a host or hub that’s compliant with

USB 2.0 specifications. This means a SDP port can

provide different power, depending upon the state of

connection with the USB device. An SDP port expects

a downstream device to have the following maximum

current consumption in different states:

2.5mA when the device is in a suspended state	
100mA when connected and not configured	
500mA or the amount of current requested by the device’s 	
configuration descriptor, whichever is less, when configured

When a USB device is connected to a SDP, the

device can draw 100mA and up to 500mA once the

device is enumerated successfully by the host. The

charging setup as described for the personal computer

example of the previous section represents a Standard

Downstream Port.

Charging Downstream Port (CDP))	
Refers to a port on a host or hub that’s compliant with

USB 2.0 specifications. But unlike the SDP, a CDP port

allows a USB device to draw more current, thereby

facilitating faster charging. When a portable device is

connected to a charging port, it is expected to behave

in the following way:

2.5mA when the device is in a suspended state	
100mA when it is connected and not configured	
Maximum of 1.5A when configured	

When a USB device is connected to a CDP, the device

will be enumerated successfully by the host. The

charging setup as described for the personal computer

example of the previous section can also represent a

Charging Downstream Port. A CDP port is generally

marked with a symbol to indicate to the user that it can

supply more power.

APPENDIX A: Battery Charging Using USB 144

Dedicated Charging Port (DCP)	
A downstream port that provides power over a USB

connection to a portable device. When a portable

device is connected to a DCP, a maximum of 1.5A

can be consumed by the device. The key difference

between a DCP and the other two charging ports is that

the D+ and the D- lines are shorted, which means there

is no support for enumeration. The wall charger example

in the previous section is an example of a DCP.

Accessory Charger Adapter (ACA)	
With portable devices becoming smaller to be more

attractive and convenient to users, the number of ports

available to the user becomes limited. On any given PD,

you will generally find a single USB port in which you

can connect a charger to charge the device or connect

a USB device like a mouse or keyboard. Herein lies the

problem of how to use a USB port for connecting a USB

keyboard when the device requires charging.

Accessory Charging Adapter (ACA) is aimed at

addressing this problem by expanding a single USB

port to be attached to a charger and a USB device at

the same time, as shown in Figure A-5.

Figure A-5. ACA representation by battery charging specification (REF: USB Battery Charging

Specification)

APPENDIX A: Battery Charging Using USB 145

The dock examples discussed in the first section of this

appendix belong to this class of device, and it supports

the following three ports:

OTG port: This port allows users to dock the device with a 	
Micro AB receptacle.

Accessory port: This port allows users to connect any device 	
to the PD.

Charger port: This port allows users to connect a charger that 	
can power up the PD and the accessory device.

An ACA is classified into two types, based on the

features it supports. If an accessory port of an ACA

has a Mirco-AB receptacle, allowing connection of A

and B devices, it is referred to as Micro ACA. When

the accessory port has only a Standard-A receptacle,

which allows connection of a B device, the ACA device

is referred to as a Standard ACA. Figure A-5 shows is a

typical standard ACA setup.

 DID YOU KNOW?

Have you ever wondered why your portable device takes more time to charge when it’s

connected to a USB port of a host PC than when connected to a wall charger? The answer

lies in the amount of current that is allowed to be consumed by a device from these ports.

A Standard Downstream USB 2.0 Port in a host PC allows a maximum of 500mA of current

to charge, whereas a wall charger (or a Charging Downstream Port on a host or hub) can

provide more than 1 amp, thus enabling the wall unit to charge faster.

The battery-charging specification also talks about handling dead batteries,

along with mechanisms to differentiate charging ports, and you can refer

to the specification for more details. It’s available at: http://www.usb.org/
developers/devclass_docs/USB_Battery_Charging_1.2.pdf.

http://www.usb.org/developers/devclass_docs/USB_Battery_Charging_1.2.pdf
http://www.usb.org/developers/devclass_docs/USB_Battery_Charging_1.2.pdf

APPENDIX A: Battery Charging Using USB 146

Android Battery Charging Overview
Android’s USB battery charging requirement is very straightforward.

According to Android CDD 4.2, the Android platform’s USB charging

requirement is as follows:

“It SHOULD implement support for USB battery charging

specification. Existing and new devices that run Android 4.2

are very strongly encouraged to meet these requirements

in Android 4.2 so they will be able to upgrade to the future

platform releases.”

A device that claims to be compatible with Android CDD 4.2 supports all

modes of USB charging, as explained in the previous section. Inside the

Android platform, most of the charging-related activities like detecting

the charger type and managing the battery, are done by the hardware and

the Android Linux kernel. The Android kernel shares information related to

battery charging using system file entries in the user space. The user space

Android framework presents the user details of the hardware and kernel

changes related to charging by reading the information exported by the

kernel. This is managed by the following two blocks of the Android Battery

framework.

Battery ManagerThis framework is implemented through the frameworks/
base/core/java/android/os/BatteryManager.java file and acts as an

interface between an application and the Battery Service framework. The

BatteryManager class defines the constants for applications to extract

information from the ACTION_BATTERY_CHANGED intent, which is generated by

the Battery Service.

Battery Service

The Battery Service framework is the core part of the Android Battery

framework. The Battery Service framework is responsible for generating

battery state-related intents and broadcasting them to other Android

frameworks. Internally, the battery service is divided into a class and a

JNI implementation. The battery service java class is implemented in

frameworks/base/services/java/com/android/server/BatteryService.
java and the JNI part is implemented through frameworks/base/services/
jni/com_android_server_BatteryService.cpp. The role of the JNI part is to

read appropriate battery driver-related files exported by the Android kernel

and pass them to the java class over global variables. The java class in turn

interprets the values and generates the appropriate intents related to the

battery state. It will shut down the device when the battery is critically low.

APPENDIX A: Battery Charging Using USB 147

Before getting into the details of the Android USB Battery Charging

framework, it’s important you understand what kind of information the

Android kernel exports that is related to battery charging in the user space.

The following snippet lists files and folders under /sys/class/power_supply

using the ADB shell of a Samsung Grand mobile:

shell@android:/sys/class/power_supply $ ls
ac
battery
bcm59056_charger
fuelgauge
usb
shell@android:/sys/class/power_supply $

shell@android:/sys/class/power_supply/battery $ ls
batt_lp_charging
batt_read_adj_soc
batt_read_raw_soc
batt_reset_soc
batt_temp_adc
batt_temp_adc_aver
batt_temp_aver
batt_type
capacity
capacity_level
device
health
model_name
power
present
status
subsystem
technology
temp
type
uevent
voltage_now
shell@android:/sys/class/power_supply/battery $

Few of the file entries listed here are specific to the vendor, and this section

focuses only on the entries that the Android framework uses. Internally,

the Android framework reads these files using a JNI implementation

(frameworks/base/services/jni/com_android_server_BatteryService.
cpp) and stores them internally for sharing with other applications. In the

following section, you’ll explore how a Battery Manager and Battery Service,

as represented in Figure A-6, generate battery charging-related intents.

Android Battery Charger framework uses the following intents to pass on the

status of battery charging.

APPENDIX A: Battery Charging Using USB 148

android.intent.action.BATTERY_CHANGED

This intent is generated to indicate that some of the battery-related

information has changed and any interested receiver has to recalculate. The

intent bundles the following extra data for the receiver, which can be used to

develop advanced battery applications:

STATUS - The status field holds one of the following values:
 - BATTERY_STATUS_UNKNOWN = 1;

 - BATTERY_STATUS_CHARGING = 2;

 - BATTERY_STATUS_DISCHARGING = 3;

 - BATTERY_STATUS_NOT_CHARGING = 4;

 - BATTERY_STATUS_FULL = 5;

HEALTH - The health field holds one of the following values:
 - BATTERY_HEALTH_UNKNOWN = 1;
 - BATTERY_HEALTH_GOOD = 2;

 - BATTERY_HEALTH_OVERHEAT = 3;

 - BATTERY_HEALTH_DEAD = 4;

 - BATTERY_HEALTH_OVER_VOLTAGE = 5;

Battery Driver

Android Battery Intents
(android.os.BatteryManager)

Battery Service

Battery Service

Java Android

User Space

Android

Kernel Space

sysfs

/sys/class/power_supply/

UEvent

Observer

("SUBSYSTEM=power_supply");

USB Gadget Driver

USB connection

status

Figure A-6. Illustrates the Android Battery Manager architecture when plugged in to a USB

power source

APPENDIX A: Battery Charging Using USB 149

 - BATTERY_HEALTH_UNSPECIFIED_FAILURE = 6;

 - BATTERY_HEALTH_COLD = 7;

PRESENT – The present field indicates the presence of the battery.
LEVEL – The level field indicates current battery level.
SCALE – The scale field indicates the maximum battery level, indicated
 as BATTERY_SCALE = 100 in BatteryService.java.
ICON_SMALL – The icon field hold the resource id of the battery icon
 based on the current battery status retreived by
 getIconLocked in BatteryService.java
PLUGGED – The plugged field indicates the type of power source and the
 value could be one of the following:
 /** Power source is an AC charger. */
 - BATTERY_PLUGGED_AC = 1;
 /** Power source is a USB port. */
 - BATTERY_PLUGGED_USB = 2;
 /** Power source is wireless. */
 - BATTERY_PLUGGED_WIRELESS = 4;
VOLTAGE – The voltage field indicates current battery voltage in
 Millivolts.
TEMPERATURE - The temperature field indicates current battery
 temperature in tenths of a degree Centigrade.
TECHNOLOGY – The technology field specifices the technology that battery is
made of.
INVALID_CHARGER – When the charge is unsupported, the charger variable is
set to non-zero numeral.

An important point to note about this intent is a protected intent can be

sent only by the system. This intent cannot be received through manifest

declarations and has to be explicitly registered.

android.intent.action.BATTERY_LOW

This intent is generated by the Android Battery framework to indicate that

the device has reached a low battery level. This intent can be sent only by

the system and is a protected intent.

android.intent.action.BATTERY_OKAY

This intent is generated by the Android Battery framework to indicate that

the device has recovered from a low battery level and is now OK. This intent

can be sent only by the system and is a protected intent.

android.intent.action.ACTION_POWER_CONNECTED

This intent is generated by the Android Battery framework when an external

power source is connected to the system. Any application registered for this

intent will be woken up and this protected intent can be sent only by the

system.

APPENDIX A: Battery Charging Using USB 150

android.intent.action.ACTION_POWER_DISCONNECTED

This intent is generated by the Android Battery framework when an external

power source is disconnected from the system. Any application registered

for this intent will be woken up, and this protected intent can be sent only by

the system.

Android Battery Framework Design

Having learned about the different intents related to Android Battery

framework, you’re ready to explore how these intents are generated and

sent to applications that are registered for these battery notifications.

Figure A-7 illustrates the sequence of operations for how a battery

framework registers to an Android platform until the intent generation.

The core part of the Android Battery framework is the Battery Service, which

is extended using Battery Manager with battery-related information for an

application. The Battery Service starts when the system loads up with the

JNI_OnLoad function. That function registers different frameworks, including

the Battery Service using the register_android_server_BatteryService

function, as illustrated in Figure A-8.

Figure A-7. The control flow of the Battery Service framework

APPENDIX A: Battery Charging Using USB 151

The Battery Service Java implementation starts observing for

SUBSYSTEM=power_supply uevents from the battery kernel driver. When the

string is matched by the UEventObserver, the Battery Service framework

starts reading the sysfs entries using the JNI function android_server_
BatteryService_update. The read values are compared with the previously

read values, which were stored internally within the Battery Service

framework. If the read value is different from the stored value, then the

Battery Service framework generates appropriate intents to communicate

the battery status to other Android frameworks.

From the sequence diagram Figure A-7, you can now see that the Battery

Manager class acts as a holder for the ACTION_BATTERY_CHANGED Intents’

extras. When applications receive the ACTION_BATTERY_CHANGED intent,

they can retrieve the additional data using the getIntExtra method, with

constants defined in the Battery Manager, as shown here:

int plugged = intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, 0);

 DID YOU KNOW?

Here are a few interesting change lists extracted from the Battery Service framework’s

history:

Fix a deadlock involving Battery Service (Ibf8ab13224f204a9857825265e864f93583bce8e)

The PowerManager may call into the Battery Service while holding its locks. You need to

be careful that the Battery Service doesn't call into other services, particularly the Activity

Manager, while holding its own locks.

Change-Id: Ibf8ab13224f204a9857825265e864f93583bce8e

This is a very recent fix, and if you are developing a battery application for older Android

versions like Gingerbread, you may be interested in this defect.

Shut down when capacity is 0% with no charging or when battery is dead.

The Android framework does not shut down when battery capacity is 0% and a charger

is attached (USB or AC). This handling is incomplete since a charger might very well be

attached, but the charging has stopped because the USB is suspended or the charging

algorithm has stopped because of battery safety handling. Also, shutdown may occur when

the battery is reported as “dead.” This might still happen, although the device may be

currently charging.

Change-Id: If328260ebf4d38f912e4d2fad204431cbb19c993

This change list can provide an idea of how to manage the battery status information

and control system shutdown. This was reverted and modified through change list

I1e6590611af43812f1bac223dd31570d1d90cfc5.

APPENDIX A: Battery Charging Using USB 152

Now that you have an understanding of the internals of the Android Battery

framework, it’s time to explore how to use this information to develop

advanced battery applications. The following section provides two example

applications demonstrating how to:

Access the battery driver system information by 	
bypassing the Android Battery framework.

Use the Android Battery framework intent to detect 	
when the battery is full.

Sample 1: Battery Status Explorer
The purpose of this example is to demonstrate how an application can

bypass the Android Battery framework and collect information about the

battery’s status directly from the files exported by the Android battery driver.

Design and Flo
The Android kernel battery driver exports battery information through files

mounted in the /sys/class/power_supply folder. The Android Battery

framework reads those files and broadcasts the contents as part of

the battery intents. However, an application developer can bypass this

framework and directly read the system files to gain additional information

about the battery status.

The application starts by setting up the default directory to /sys/class/
power_supply/battery/, which needs to be listed as shown here:

public class MainActivity extends Activity {

 private File f= new File("/sys/class/power_supply/battery/");
 private String []directory;
 private String start = "/sys/class/power_supply/battery/";

The application uses BaseExpandableListAdapter to list the file and the

contents on a click event, as shown here:

ExpandableListView myview = (ExpandableListView)findViewById(R.
id.expandableListView1);
myview.setOnChildClickListener(new ExpandableListView.OnChildClickListener() {

 @Override
 public boolean onChildClick(ExpandableListView parent, View v,
 int groupPosition, int childPosition, long id) {

--cut--

APPENDIX A: Battery Charging Using USB 153

 File myfile = new File(start + directory[groupPosition]);
 if(myfile.exists()) {
 if (myfile.isDirectory()) {
--cut--
 adp.notifyDataSetChanged();

--cut-- }
 }
 else
 return false;
--cut--
adp = new myAdapter(getBaseContext(), directory, start);
myview.setAdapter(adp);

The snapshot in Figure A-8 shows the application list /sys/class/power_
supply/battery folder along with its contents.

Figure A-8. Snapshot of Battery status explorer application

The complete code and project are available at http://www.apress.com/
9781430262084 and at https://git.techfugen.com/cgit/Android/apps/
git/batterystatusexplorer.git/. You can download the code and send

patches to add functionalities to the project.

http://www.apress.com/9781430262084
http://www.apress.com/9781430262084
https://git.techfugen.com/cgit/Android/apps/git/batterystatusexplorer.git/
https://git.techfugen.com/cgit/Android/apps/git/batterystatusexplorer.git/

APPENDIX A: Battery Charging Using USB 154

Sample 2: Charging Completion Indicator
The purpose of this example is to demonstrate how an application can parse

information from the ACTION_BATTERY_CHANGED intent and generate an alarm

when charging is complete. The application also indicates the charging

progress using a progress bar.

Design and Flow
As discussed in the initial sections of this appendix, if an application is

interested in receiving the intent ACTION_BATTERY_CHANGED, it has to register

rather than project the manifest file.

ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
batteryStatus = registerReceiver(null, ifilter);

After successful registration, you can extract the information passed over on

the intent that indicates the charging status.

level = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
scale = batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
batteryPct = (level / (float)scale) * 100;
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
int type = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

If the status indicates that charging is not complete, you can set the

progress bar to indicate the battery level.

if (isCharging) {
 if (type == BatteryManager.BATTERY_PLUGGED_AC)
 final_string = final_string + "AC Charger Plugged\n";
 if (type == BatteryManager.BATTERY_PLUGGED_USB)
 final_string = final_string + "USB Charger Plugged\n";
 textview.setText(final_string + "Battery % = " + batteryPct);
 if (progressbar.getProgress() <= 99) {
 progressbar.incrementProgressBy(1);

 } else {
 progressbar.setProgress((int)batteryPct);
 }

Once charging is complete and the battery is full, you can then play a tone

for a brief period.

APPENDIX A: Battery Charging Using USB 155

} else {
 textview.setText(final_string + "Battery % = " + batteryPct);
 progressbar.setProgress((int)batteryPct);
 genTone();
 if (temp < 10) {
 if ((temp & 1) == 1)
 audioTrack.play();
 else
 audioTrack.stop();
 temp++;
 }

}

This application indicates when to plug in a phone when charging and to

switch off the power source when the battery is fully charged. The complete

code and project are available at http://www.apress.com/9781430262084

and at https://git.techfugen.com/cgit/Android/apps/git/charging
completeindicator.git/. Figure A-9 provides a snapshot of the application.

Figure A-9. Snapshot of batteryinfo application

http://www.apress.com/9781430262084
https://git.techfugen.com/cgit/Android/apps/git/chargingcompleteindicator.git/
https://git.techfugen.com/cgit/Android/apps/git/chargingcompleteindicator.git/

APPENDIX A: Battery Charging Using USB 156

Conclusion
USB as a power source has come a long way and has matured through

formal specifications like the USB-IF’s Battery Charging Specification.

This appendix explored the different charger types in laymen terms and

then matched those devices with battery specification requirements.

This appendix also explored the charging frameworks inside Android and

included detailed examples.

Let’s not forget also to explore a recent development in the evolution of

USB-based charging, known as “USB power delivery.” The power delivery

specification is designed to deliver increased power levels and relax

power direction, which means either the host or device can supply power

and supportive negotiating power is required. You can find more detailed

information on power delivery on the USB organization’s website at

http://www.usb.org/developers/powerdelivery/.

http://www.usb.org/developers/powerdelivery/

157

Appendix B
Using libusb in Android

What you will learn:

Overview of libusbhost	
USB-Serial Driver Using libusb	
Building and Installing the Package	
Running the USB-Serial Application	

Developers who have worked for USB development requirements or

have conducted feasibility studies should definitely have encountered the

ubiquitous USB software library or the driver called libusb. Be it Windows,

Linux, or Mac, a libusb driver is available on all of these leading operating

systems and provides a generic interface in order to access and manage

USB devices that are connected to the system. On Linux, libusb is referred

to as the user space driver, which accesses the USB devices through the

device files exported by the usb-core driver in the Linux kernel. Android with

Linux kernel uses similar designs to manage USB devices connected to

Android power devices when acting in USB host mode.

The Android platform introduced USB host mode support in the Honeycomb

version by providing host APIs, as described in Chapter 1, “Getting Started:

The Android USB Framework.” This, however, was improved upon in the Ice

Cream Sandwich version of Android, at which point the complete system

that is available today was put in place. Android introduced a new library,

called libusbhost, which is a thinner version of libusb as the generic user

space driver for USB devices in the Android platform. The latest version

of the Android framework also includes libusb and libusb-compat library

sources.

APPENDIX B: Using libusb in Android158

This appendix explores the new library, libusbhost, in brief and explains

how USB host APIs use it for interacting with USB devices. In the following

sections, the appendix explains how to develop custom Android frameworks

using libusb for Android with an example. This example explains how to

develop JNI and aJava class, and includes a sample applications to fit to the

proprietary requirements using Cypress USB-serial development kits.

Overview of libusbhost
Linux kernel exposes USB devices connected to the system to the user

space through its device file system, which then enables user space

applications to manage the devices. Using this feature, the generic user

space library libusb evolved to manage the USB devices connected

to the Linux kernel from the user space. This open source library gives

applications easy access to USB devices with APIs. They allow open/close

communication with USB devices, perform control/data transfers, and even

contain a USB device reset.

There are two versions of the libusb APIs:

libusb-0.1: This is the original version of libusb; it’s now

deprecated.

libusb-1.0: This is the current version, with many new

features when compared to the legacy version, and is

recommended for new development.

There is also a compatibility library called libusb-compat-0.1.5 that provides

legacy API compatibility for the current version of libusb, allowing older

applications to have API compatibility. Additional information about libusb

can be found from its official web site at www.libusb.org.

The Android framework includes the current version of libusb and

libusb-compact in the following directories, respectively: external/libusb/

and external/libusb-compat/. Interestingly, the Android USB framework does

not use both of these libraries, but brings in a thinner user space library

called libusbhost that’s used for managing USB devices connected to an

Android powered device. The implementation of libusbhost is available

in the system/core/libusbhost/ directory. Figure B-1 provides a top-level

architectural view of the libusbhost framework.

http://www.libusb.org/

APPENDIX B: Using libusb in Android 159

USB Core

Android

User Space

Android

Kernel SpaceHost Controller Driver

Application

Java Class(Host API, MTP, etc)

JNI(Host APIs, MTP, etc)

/dev /bus /usb

libusbhost

iNotify

USB Monitor

USB Transfer Management

Figure B-1. The internals of libusbhost and their placement in an Android framework

As illustrated in Figure B-1, libusbhost is a simple implementation, providing

access to USB devices enumerated by the usb-core of the Linux kernel.

Though the library is implemented in a single file (system/core/libusbhost/

usbhost.c), the library is divided into possible functional blocks to better

represent the simplicity of the library.

USB Monitor
This module implements the addition and removal of USB devices using the

iNotify framework. The addition and removal information is passed through

the callbacks that are registered when the JNI framework starts monitoring

USB activity.

APPENDIX B: Using libusb in Android160

USB Transfer Management
This module implements the framework for establishing connections with

the device and, subsequently, for working with bulk, using interrupts, and

controlling transfers. The framework uses IOCTL exported by the usb-core

of the Android kernel framework for the aforementioned functionalities. The

framework supports both synchronous and asynchronous transfers, which

are exported to the applications through the JNI framework. This process

builds a custom framework using libusb.

In Chapter 2, “Discovering and Managing USB Within Android,” the host

section explores the usage of this library when an application tries to access

a device connected to an Android powered device. Having read about the

internal workings of libusbhost and how it is placed within the Android USB

framework, you’ll now explore how to develop a similar framework with

libusb.

USB-Serial Driver Using libusb
As previously discussed, the libusb library has been widely adapted in many

stable applications. Developers may be interested in maintaining the same

setup and don’t want to change it. So, this makes it important to understand

how to build an Android framework with libusb as the interface to the

Android kernel. This section explores how a libusb-based Android USB

framework can be built using a real-world example of Cypress’s USB Serial

Software Development Kit.

Consider a scenario of connecting a peripheral, like a weighing scale or

a bar code scanner, that has a serial port as the interface to a PC. With

powerful Android-powered embedded devices in the user's hands, these

peripherals need to support these devices. With Android devices providing

only a USB port, a USB-serial converter is an ideal solution to enable these

devices to connect. Figure B-2 illustrates a setup of connecting a peripheral

device, with a USB-serial converter, to an Android-powered device with USB

host support.

Figure B-2. A typical setup for connecting a weighing scale to an Android device

APPENDIX B: Using libusb in Android 161

To understand this setup, you’ll use the USB-to-serial converter of a

Cypress semiconductor: the USB-serial bridge controller. Cypress’s

USB-serial bridge controller is a full-speed USB controller that provides

configurable serial channels that allow users to select UART, I2C, or SPI

instead of the USB interface. You can find more about this chip on Cypress’s

web site at http://www.cypress.com/?id=4858&tabID=82672. Cypress also

provides a complete library and driver stack for USB-serial bridge controller

devices in order to facilitate integration of USB interfaces into an embedded

application. The Software Development Kit (SDK) provides configuration

tools, libraries, and drivers, including an Android-based driver application

solution. This solution uses libusb as the base library to interface with the

serial bridge controller, and you can download the driver and application

from http://www.cypress.com/?rID=83110.

The Android package contains a library based on libusb 1.0.9, a JNI

interface, a Java class, and an application that communicates to the serial

bridge controller, as shown in Figure B-3.

Figure B-3. The code base of Cypress’s Android serial driver

Figure B-4 illustrates how the libusb-based Android framework of the

Cypress USB-serial bridge fits into the Android USB framework architecture.

http://www.cypress.com/?id=4858&tabID=82672
http://www.cypress.com/?rID=83110

APPENDIX B: Using libusb in Android162

Figure B-4. The internals of Cypress’s USB-serial Android framework

USB Core

Cypress USB

Serial Android

Framework

Android

Kernel SpaceHost Controller Driver

libusb

Application(CyInit.Java, StartUSBSerial.java,etc)

Java Class(CyUSBSerial.java)

JNI(CyUSBSerial_JNI.c)

/dev/bus/usb

Building and Installing the Package
Now that you have a basic understanding of the package contents, this

section explores how to build and install the package in an Android-powered

device with USB host support. To build the package, you should have the

latest Android SDK and the Android NDK toolsets, which are available from

the http://developer.android.com/sdk/index.html web site. After these

toolsets are succesfully installed, open the Eclipse tool available in the

Android SDK and import the project workspace. The imported workspace

will look like Figure B-3. To configure NDK and set the NDK tool location,

select the Project Properties ➤ Builder ➤ NDK_Builder ➤ Edit option, as

shown in Figure B-5.

http://developer.android.com/sdk/index.html

APPENDIX B: Using libusb in Android 163

After successfully configuring NDK in the Eclipse environment, you should

build the package to generate two binaries: the Android application (./bin/

CyUSBSerial.apk) and the Cypress USB-serial library (./obj/local/armeabi/

libCyUSBSerial.so).

Once the binaries are built, it is important to load the Android device that the

USB-serial bridge device is to be connected to. Use the following code to

install the library and the application:

#adb push ./obj/local/armeabi/libCyUSBSerial.so /data/local/tmp
#adb install CyUSBSerial.apk

You can also refer to the README.txt file, which is part of this package, for

additional information on the setup and building procedures.

Running the USB-Serial Application
In the test setup, the Cypress’s USB-serial bridge device is connected to a

rooted Samsung Tab2 Android device, illustrated in Figure B-6. Since this

is a custom framework, it is important that the Android device be rooted,

thus allowing the addition of new libraries. It is also important to change the

permission of the USB-serial bridge device’s entry created in /dev/bus/usb/*

so that the application can open, close, or send data to the serial bridge

device.

Figure B-5. The Setup of NDK

APPENDIX B: Using libusb in Android164

Figure B-6. Connecting the Cypress USBBridge device to an Android device

Once all the setup is done, invoke the USBSerial application by the pressing

the icon created for the application. Figure B-7 provides a snapshot of the

initial screen of the application. Enter the VID and PID of Cypress’s USB-

serial bridge device, as shown in Figure B-7.

Figure B-7. Initial screen of the USBSerial bridge application

APPENDIX B: Using libusb in Android 165

Now, when you click Connect, the application searches for the device using

the libusb library. Then you may begin the USBSerial activity, as shown here:

deviceCount = CyUSBSerial.getDeviceInfoVIDPID(deviceNumber,
 deviceInfoA, cyVIDPID, infoListSize);
if (deviceCount > 0) {
 Intent ret = new Intent(CyInit.this, StartUSBSerial.class);
 startActivity(ret);
 finish();
}

This hand-over takes the application to a new interface, as shown in

Figure B-8.

Figure B-8. The initial screen of the USBSerial bridge application

The next step in the process is to choose which serial interface to use in

order to communicate with the serial device from the available interface,

such as I2C or SPI. Based on the interface selection, the application starts

the equivalent service, as shown:

String text = b.getText().toString();
if(text.equals("SPI"))
{
 Intent ret = new Intent(StartUSBSerial.this, SpiConfig.class);
 startActivity(ret);

APPENDIX B: Using libusb in Android166

 finish();
}
else if(text.equals("I2C"))
{
 Intent ret = new Intent(StartUSBSerial.this, I2CConfig.class);
 startActivity(ret);
 finish();
}

This application provided a brief overview of how to build a custom Android

USB framework based on the libusb library. Such a custom setup can

be very useful in development mode and when providing proprietary API

interfaces. On the contrary, this kind of custom setup brings additional

requirements of rooting a device and changing permissions of devices files.

Android provides a development environment, namely the Android Native

Development Kit (NDK), which allows developers to build such libraries

and integrate the Android framework. To study more about how to build

an application using NDK, refer to http://developer.android.com/tools/
sdk/ndk/index.html. Internally, the Android framework provides a similar

host framework that uses a simple and thinner library, similar to libusb. This

was explained in Chapter 2 in detail, which provided an example of how to

communicate with a USB device.

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

A ■
ADB daemon, 131–133

Android accessory audio dock, 118

Android Accessory Development

Kit (ADK), 80

Android battery charging

battery framework design

control flow, 150

JNI_OnLoad function, 150

Powermanager, 151

battery service, 146

android.intent.action., 148

architecture, plug in, 148

JNI implementation, 147

snippet files and folders, 147

Android Debug Bridge (ADB)

architecture

adb_client.c file, 133

ADB daemon, 133

backup command, 136–137

building blocks, Android

powered device, 132

commandline.c file, 133

file execution, 133

JDWP process, 135

definition, 125

protocol

client–server

communication, 129

command messages, 130

information flow, 131

strings of ASCII

characters, 130

TCP transport, 129

USB transport, 129

setup

adb shell command, 126

DDMS tool, 126

Linux, 128

terminal and DDMS, 126

Windows, 127

three key components, 125–126

Android Open Accessory (AOA)

framework, 88

AOA communication, 92

AOA device detection, 90

architecture of, 89

in HID registration and

communication process, 93

NFC reader and NFC tag, 95

CyFX3_AOA_NFC

application, 98

sequence of activities, 96

setup, 96

responder implementation, 88

Android Open Accessory (AOA)

protocol, 79–80

accessory mode, 81–82

ACCESSORY_START, 84

audio USB interface, 81

control request, 83

HID feature, 81, 83

string information request, 85

with Android-powered

devices, 79

Android USB, 1

CDD definition, 2

CDD requirements, 2

USB accessory mode, 4

USB device mode, 2, 4

USB host mode, 3, 5

Index

167

framework architecture, 7–8

android.hardware.usb

package, 9

class drivers, 8

infrastructure, 9, 11

kernel file system, 11

libusbhost, 11

USB functions, 9

USB host mode class, 8, 11

USB service, 11

Media Transfer Protocol

(MTP), 6

packages, 12

accessory device, 12

android.hardware.usb

package, 12

android.mtp class, 14

UsbDevice, 13

UsbDeviceConnection, 13

UsbEndpoint, 14

UsbInterface, 13

UsbManager, 13

UsbRequest, 14

Android USB management, 17

device management, 18

device manager (see USB

Device management)

host management, 18

host manager, 27

ACTION_USB_DEVICE_

DETACHED intent, 32

design and flow, 33

device communication, 31

device discovery, 29

framework, 29

inotify system, 32

JNI-level, 28

USB_DEVICE_ATTACHED

intent, 33

UsbRequest

framework, 28

USB servicebuilding

blocks, 20

USB service framework, 19

B ■
Bulk-Only Transport (BOT)

protocol, 39, 42

C ■
Class drivers, 8

Command block wrapper (CBW), 41

Command Status Wrapper (CSW), 41

Cypress

Android serial driver, 161

USBBridge device, 164

USB-serial Android

framework, 162

USBSerial bridge

application, 164–166

Cypress FX3, 118

D, E, F, G ■
Dalvik Debug Monitor Server

(DDMS) debugging tool, 126

Digital-to-analog converter (DAC), 119

H, I ■
HID physical descriptor, 87

HID report descriptor, 87

Human Interface Devices (HIDs), 85

J, K ■
Java Debug Wire Protocol (JDWP)

process, 135

L ■
libusb

APIs, 158

Cypress

Android serial driver, 161

USBBridge device, 164

USB-serial Android

framework, 162

USBSerial bridge

application, 164–166

Index168

Android USB (cont.)

definition, 157

NDK setup, 162–163

peripheral device, 160

USB-Serial Driver, 160

libusbhost

architectural view, 158–159

overview of, 158

Linux, 128

M ■
Media Transfer Protocol

(MTP), 6–7, 38, 49

application selection, 66

CameraBrowser application, 67

communication model, 50

host/initiator framework, 58

android.mtp Package APIs, 58

architechture, 59

command/response

sequence, 61

discovering and managing, 60

implementation, 6

interface and endpoint

decriptors, 50

operation-data-response

model, 49

responder enumeration, 53

responder framework, 53

command/response

sequence, 56

MTPDatabase class, 55

MTPDataPacket class, 55

MTPEventPacket class, 55

MTPRequestPacket class, 55

MTPResponsePacket class, 55

MTPServer class, 54

StorageBrowser and

ObjectBrowser scan, 67

transport-agnostic protocol, 50

to UMS, 62

MTP host mode, 9

N, O, P, Q ■
Near field communication (NFC), 95

R, S ■
Remote Network Driver Interface

Specification (RNDIS), 69

architechture, 72

CDC data interface, 73

definition, 71

interface descriptor, 73

T ■
Terminal, 104

U, V, W, X, Y, Z ■
USB

monitor, 159

transfer management, 160

USB accessory, 79

USB audio, 101

analog audio, 102

android-powered devices, 102

Android USB audio, 105

architechtural view, 106

DEVICE_OUT_USB_

ACCESSORY, 108

DEVICE_OUT_USB_

DEVICE, 108

frameworks, 107

USB device audio (see USB

device audio)

USB host audio (see USB

host audio)

class specification, 102

host audio, 102

USB charger

Android battery charging (see

Android battery charging)

battery specification

accessory charger

adapter (ACA), 144

Charging downstream

port (CDP), 143

dedicated downstream

port (DCP), 144

downstream port, 142

Index 169

standard downstream

port (SDP), 143

upstream port, 142

battery status explorer, 152

charging completion

indicator, 154

types

charging dock, 141

personal computer, 141

wall charger, 140

UsbDebuggingManager

device, 133

USB device audio

accessory mode, 113, 116

android accessory audio

dock, 118

architecture, 114–115

configuration, 117–118

Cypress FX3, 118

feature, 113

product ID, 114

vendor-defined control, 116

USB Device management

Android Gadget Driver uevents

KOBJ_CHANGE action, 25

mode functions, 26

state changes, 25

uevent mechanism, 24

USB_STATE format, 24

framework, 21

function configuration

actions class, 22

Android Init language, 22

parameters, 23

UsbDeviceManager

device, 133

USB host audio, 102

architecture, 110

enumeration, 111

framework, 112

intent broadcast snapshot of, 112

soundcard snapshot of, 111

USB_AUDIO_DEVICE_PLUG

intent, 109

USB Human Interface Device (HID)

class specification, 85

descriptor tree, 86

physical descriptor, 87

report descriptor, 87

setup, 85

USB Mass Storage (UMS), 38

BOT protocol, 39

class specification, 39

command block wrapper, 41

command status wrapper, 41

device framework, 43

class implementation of, 44

host architechture, 48

kernal driver

implementation, 44

MMC driver, 45

interface and endpoints

descriptors, 40

MountService, 46

USB storage, 37

USB technology. See USB charger

USB tethering, 69–70

Remote Network Driver Interface

Specification (RNDIS)

architechture, 71

CDC data interface, 73

definition, 71

interface descriptor, 72

reverse tethering, 76

device setup, 77

host setup, 77

USB tethering framework, 74

activity diagram, 76

architechture, 75

setUSBTethering interface

function, 75

TetherSettings.java, 75

updateUsbState, 75

Index170

USB charger (cont.)

Unboxing Android
USB

A Hands-On Approach with Real

World Examples

Rajaram Regupathy

Unboxing Android USB

Copyright © 2014 by Rajaram Regupathy

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied speciically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6208-4

ISBN-13 (electronic): 978-1-4302-6209-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the beneit of the trademark owner, with no intention of infringement of
the trademark.

he images of the Android Robot (01 / Android Robot) are reproduced from work created and shared
by Google and used according to terms described in the Creative Commons 3.0 Attribution License.
Android and all Android and Google-based marks are trademarks or registered trademarks of Google
Inc. in the United States and other countries. Apress Media LLC is not ailiated with Google Inc., and
this book was written without endorsement from Google Inc.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. he publisher makes no warranty, express or implied, with
respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Saswata Mishra
Technical Reviewers: Jan Axelson and Prathap Rajmohan
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/9781430262084. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430262084
www.apress.com/source-code/

To my father

Memories of the past

Remains in my heart

Those days were pleasant

But, still they cannot return

Now, I see my destination,

I ain’t any incarnation

Need to work hard

To be on the right path

With god on my side

Hope to reach it with some pride.

—Rajaram

vii

Contents

About the Author .. xiii

About the Technical Reviewers ... xv

About the Contributor .. xvii

Foreword .. xix

Acknowledgments .. xxi

Introduction .. xxiii

Chapter 1: Getting Started: The Android USB Framework ■ 1

Android CDD – USB ... 2

USB Device Mode ... 2

USB Host Mode ... 3

USB Accessory Mode .. 4

Android USB Architecture .. 7

USB Service .. 8

USB Function .. 9

android.hardware.usb ... 9

Other Infra... 9

USB Service .. 11

USB Function .. 11

Contentsviii

libusbhost ... 11

Kernel USB File System .. 11

Other Infra... 11

Android USB Packages .. 12

android.hardware.usb ... 12

UsbAccessory ... 12

UsbDevice ... 13

UsbManager ... 13

UsbDeviceConnection ... 13

UsbInterface ... 13

UsbEndpoint ... 14

UsbRequest .. 14

Conclusion ... 14

Chapter 2: Discovering and Managing USB Within Android ■ 17

USB Device Management .. 18

USB Host Management .. 18

USB Service ... 18

USB Device Manager ... 21

USB Function Configuration .. 22

Android Gadget Driver uevents ... 24

USB Host Manager .. 27

Stage 1: Discovering a Device .. 29

Stage 2: Communicating with a Device .. 31

Stage 3: Terminating Communication with a Device .. 32

Sample 1: USBView .. 33

Conclusion ... 35

Contents ix

Chapter 3: USB Storage ■ .. 37

USB Mass Storage (UMS) Overview .. 39

Command Block Wrapper (CBW) .. 41

Command Status Wrapper (CSW) ... 41

Android Mass Storage Framework .. 43

Android USB Mass Storage Device Framework .. 43

Sharing the Storage .. 45

Android USB Mass Storage Host Framework ... 47

USB Media Transfer Protocol (MTP) Overview 49

Media Transfer Protocol Specification Overview 50

Android MTP Responder Framework ... 53

MTPServer .. 54

MTPRequestPacket ... 55

MTPResponsePacket .. 55

MTPDataPacket .. 55

MTPDatabase .. 55

MTPEventPacket ... 55

MTP Responder: Command/Response Sequence ... 56

Android MTP Initiator Framework ... 58

MTP Initiator: Discovering and Managing an MTP Device 60

Example 1: Switching MTP to UMS ... 62

Example 2: MTP Initiator Application .. 65

Conclusion ... 68

Chapter 4: USB Tethering ■ .. 69

RNDIS Specification Overview ... 71

Android USB Tethering Framework ... 74

Enabling USB Tethering .. 75

Example: Reverse Tethering Over USB .. 76

Design and Flow ... 77

Contentsx

Chapter 5: USB Accessory ■ .. 79

Android Open Accessory Protocol ... 80

USB HID Specification ... 85

Android Open Accessory Framework .. 88

Conclusion .. 100

Chapter 6: USB Audio ■ ... 101

USB Audio Specification .. 102

Android USB Audio .. 105

USB Host Audio ... 109

USB Device Audio ... 113

Conclusion ... 123

Chapter 7: Android Debug Bridge (ADB) ■ 125

Setting Up ADB .. 127

Windows ... 127

Linux ... 128

ADB Protocol ... 128

Client <-> Server Protocol ... 129

Server <-> ADB Daemon Protocol .. 129

Android ADB Architecture .. 132

Example 1: Using JDB with ADB ... 135

Example 2: Backing Up Your Phone with ADB ... 136

Appendix A: Battery Charging Using USB ■ 139

Types of USB Chargers .. 140

Wall Charger ... 140

Personal Computer ... 141

Charging Dock .. 141

USB Battery Specification Overview ... 142

Android Battery Charging Overview .. 146

Contents xi

Sample 1: Battery Status Explorer .. 152

Design and Flo .. 152

Sample 2: Charging Completion Indicator ... 154

Design and Flow ... 154

Conclusion ... 156

Appendix B: Using libusb in Android ■ .. 157

Overview of libusbhost .. 158

USB Monitor .. 159

USB Transfer Management ... 160

USB-Serial Driver Using libusb .. 160

Building and Installing the Package .. 162

Running the USB-Serial Application .. 163

Index .. 167

xiii

About the Author

Rajaram Regupathy has more than 15 years

of professional experience in developing

firmware and system software-embedded

products. He enjoys designing and developing

new technology products from scratch. He

has patents in embedded domain and is also a

senior ACM member. A Linux and open source

enthusiast, he has published books on Linux

USB stack programming and written numerous

open source articles.

xv

About the Technical

Reviewers

Jan Axelson is the author of USB Complete,

USB Embedded Hosts, and other books about

hardware programming and design. Jan enjoys

experimenting with computer interfaces,

especially USB.

Prathap Rajmohan has 15 years of experience

in embedded software development and

has architected and developed embedded

TCP/IPv4/IPv6 and USB stacks for VoIP

phones and mobile devices. He is a Principal

Software Engineer at Logitech, where he

develops embedded firmware for Linux-based

products. He holds a B.E. in Electronics and

Communication from Anna University and an

M.S. in Software Systems from BITS, Pilani.

xvii

About the

Contributor

Sakethram Bommisetti works as a Senior

Software Engineer with Ericsson India and

received his bachelor’s degree in Engineering

from NIT Nagpur. He has experience in

porting different Android USB frameworks and

Android USB kernel, and contributed to the

development of examples in this book.

xix

Foreword

Like millions of others around the world, I use Android every day. That’s

because Android is the OS that powers my phone.

Of course, Android isn’t limited to phones; it’s also popular in embedded

systems of all kinds. And every phone or other Android device with a USB

port needs programming to manage the USB communications.

When Rajaram Regupathy mentioned to me that he was thinking about

writing a book on Android USB programming, I was delighted. I first

encountered Rajaram in the USB Experts group he manages on LinkedIn.

We discovered we were traveling parallel paths, exploring and writing

about the USB universe from different perspectives. Although I’d been

writing about USB hardware and programming for 15 years, Android USB

programming was something I hadn’t yet explored.

Now, writing a programming book is no easy task. You need the fortitude

to pore over reams of documentation, the expertise to test and debug what

the documents promise (sometimes the documents are wrong!), careful

attention to include everything your readers need and nothing more, and an

ability to present the information in a clear and logical way.

Rajaram was exactly the person for the job. If you need to program USB

communications for Android, this book will put you on the road to success.

I’m happy to add Unboxing Android USB to the short list of books that I

recommend on USB technology.

Jan Axelson

Author of USB Complete:

The Developer’s Guide and USB Embedded Hosts

xxi

Acknowledgments

This is my second book and I look at it as a product that I have taken

through various stages, from conceptualizing it, developing it, and finally

realizing it. This book would not have been possible without collaboration

and support by many people at various stages. I take this opportunity to

thank them all.

First, I would like to thank my Acquisition Editor, Saswata Mishra, who

played a key role from conceptualization to the production stages of this

book, providing effective input and suggestions. I would also like to thank

Mark Powers, my Coordinating Editor, who helped make the process

completely easy.

Sincere thanks to Jan for her kindness in accepting my request to review

the book, for taking the time to review it, and for sharing valuable comments

from her experiences. I also thank Prathap for his critical review of the text.

Special thanks to Sakethram for helping me out by preparing the Android

examples and also by providing critical inside information.

I also thank my colleagues at Cypress for helping to include the FX3-based

examples. Last but not least, I thank my wife, my daughter, and others for

making this journey yet again a smooth one.

	Contents at aGlance
	Contents
	About the Author
	About the TechnicalReviewers
	About theContributor
	Foreword
	Acknowledgments
	Introduction

